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Abstract

In this thesis, two optical systems that generate non-classical states of light were
studied: a triply resonant Optical Parametric Oscillator (OPO) operating above
the threshold and a cold atomic ensemble of neutral 8’Rb atoms obtained from a
magneto-optical trap. The main idea in both cases is to prepare entangled states for
future use in quantum information protocols. In relation to the OPO, experimental
measurements of the complete quantum state for six modes of the electromagnetic
field produced by this system are theoretically explained. The investigation involves
the sidebands of the intense pump, signal and idler fields generated by stimulated
parametric down-conversion inside the resonator. The model takes into account the
coupling of the field modes with the phonon bath of the nonlinear crystal, clearly
showing the roles of different physical effects in shaping the structure of the quan-
tum correlations between the six optical modes. Moreover, it is theoretically and
experimentally studied how these modes are entangled to one another using the
positive partial transpose criterion in the continuous variables regime. It was found
that the hexapartite entanglement in this system can be thought of as being gener-
ated by a combination of two-mode squeezers and beam splitter Hamiltonians acting
on six different colors of light. On the other hand, in relation to the cold atomic
ensemble, a "write-read" scheme inspired by the Duan-Lukin-Cirac-Zoller (DLCZ)
protocol for long-distance quantum communication was implemented in order to ex-
perimentally generate an entangled state between individual photons of a mode of
the electromagnetic field and atomic excitations in a particular collective mode. By
performing photon statistics analysis it was possible to determine that the quantum
state of the system corresponds to an entangled two-mode squeezed vacuum state,
as expected from the theory. In the experiments, either one or two excitations are
initially stored in the atomic medium, which acts as a quantum memory, and are
subsequently mapped to one or two photons, respectively. Moreover, measurements
and theoretical modeling of the photonic wave packets were realized, observing an
acceleration in the photon emission due to the collective nature of the atomic state, a
phenomenon known as superradiance. Such progress opens the way to the study and
future control of the interaction of nonclassical light modes with collective quantum
memories at higher photon numbers.

Keywords: Entanglement. Quantum state. Superradiance.



Resumo

Nesta tese foram estudados dois sistemas Oticos geradores de estados da luz nao
classicos: um oscilador paramétrico 6tico (OPQO) triplamente ressonante que opera
acima do limiar e um ensamble atéomico frio de atomos de 8’Rb neutros obtido a
partir de uma armadilha magneto-6tica. A ideia principal em ambos os casos é pre-
parar estados emaranhados para uso futuro em protocolos de informacao quantica.
Em relacao ao OPO, medigoes experimentais do estado quantico completo, para os
seis modos do campo eletromagnético produzido por este sistema, sao explicadas te-
oricamente. A investigacdo envolve as bandas laterais dos campos de bombeio, sinal
e complementar gerados por conversao paramétrica descendente espontanea dentro
do ressonador. O modelo leva em consideracao o acoplamento dos modos do campo
com o banho de fonons do cristal nao-linear, mostrando claramente os papéis dos
diferentes efeitos fisicos na formacao da estrutura das correlagoes quénticas entre os
seis modos 6pticos. Além disso, é estudado tedrica e experimentalmente como esses
modos estdo emaranhados entre si fazendo uso do critério de transposi¢dao parcial
positiva no regime de varidveis continuas. Verificou-se que o emaranhamento hexa-
partite neste sistema pode ser pensado como sendo gerado por uma combinacao de
Hamiltonianas de compressao de dois modos e de divisores de feixes que atuam sobre
seis cores diferentes da luz. Por outro lado, em relagdo ao ensemble atémico frio,
foi implementado um esquema de “leitura-escrita” inspirado no protocolo de Duan-
Lukin-Cirac-Zoller (DLCZ) para comunica¢ao quantica de longas distancias com o
fim de gerar experimentalmente um estado emaranhado entre f6tons individuais de
um modo do campo eletromagnético e excitacdes atémicas em um modo coletivo
particular. Fazendo uma analise da estatistica dos fétons foi possivel determinar
que o estado quéntico do sistema corresponde a um estado de vacuo comprimido de
dois modos, como esperado pela teoria. Nos experimentos, uma ou duas excitagoes
sao inicialmente armazenadas no meio atémico, que atua como memoéria quantica, e
posteriormente sao mapeadas para um ou dois fo6tons, respectivamente. Além disso,
foram realizadas medigoes e uma modelagem tedrica dos pacotes de ondas foténicos,
observando-se uma aceleragao na emissao de foétons devido & natureza coletiva do
estado atémico, um fendmeno conhecido como superradidncia. Tal progresso abre o
caminho para o estudo e controle futuro da interagdo de modos da luz nao-classica
com memoérias quénticas coletivas em ntmeros de fétons mais altos.

palavras-chave: Enmaranhamento. Estado quantico. Superradidncia.
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1 Introduction

In the field of quantum optics, two of the most important systems used to generate
nonclassical states of light, as basic elements for quantum information processing, are the
Optical Parametric Oscillator (OPO) and cold atomic ensembles.

The OPO consists of a nonlinear crystal that couples three modes of a cavity through
the spontaneous parametric down conversion (SPDC) process (Fig. 1). This nonlinear
coupling provides the creation (or annihilation) of downconverted photon pairs (modes 1
and 2), through the annihilation (or creation) of a photon in the pump mode 0. Since the
pumped nonlinear crystal acts as a gain medium, if this gain matches the cavity losses, the
system gets into an oscillatory regime with the generation of intense output beams. By
controlling the pump power, it is possible to explore a wide set of different states of light.
The long list includes squeezed states [Wu 1986a], intense twin beams [Heidmann 1987,
entangled vacuum [Ou 1992|, squeezed pump field [Kasai 1997, Zhang 2001|, entangled
beams [Villar 2005], three mode quantum correlations [Cassemiro 2007] and three mode
multicolor entanglement [Coelho 2009]. The field modes produced by the OPO contain
intricate quantum properties that are not yet completely understood, both in theory and

in experiment.

e o aoalal  alaa
R oty oW1t2
ag“t(zi) .......................... ‘“
Agut(t) H +

/ lder o,

Figure 1: The basic optical parametric oscillator consists in one triply resonant cavity with a nonlinear
crystal, that is responsible for coupling the pump mode (0) to the signal (1) and idler (2) downconverted
modes. On the left side, the incoming pump field with frequency wg produces one output signal field
a9"* and one idler field a3*!, with frequencies wy and ws, respectively. A part of the pump field, ag, is
reflected from the cavity. On the right side, the nonlinear coupling provides the creation (or annihilation)

of downconverted photon pairs, through the annihilation (or creation) of a photon in the pump mode.

The applications of these nonclassical states in the continuous variable domain goes
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from the use of squeezing for ultra-sensitive measurements [Caves 1981,Collaboration 2011|
to the demands for entanglement in quantum information processing [Furusawa 1998],
with convergence of experiments for discrete and continuous variables of the electromag-
netic field [Takeda 2013]. Moreover, multimode entangled states in the continuous variable
domain are interesting candidates for quantum information processing [Chen 2014], lead-
ing to the search of sources involving modes defined either in time [Yokoyama 2013|,
frequency [Pinel 2012, Chen 2014| or momentum [Wang 2017].

The fundamental process for the generation of these nonclassical states of light is
the reversible exchange of energy among the pump field and the two downconverted
modes. With the aid of optical cavities, this effect is enhanced, and the output states
can be calculated with the help of the input-output formalism for optical cavities and the
master equation of the interacting Hamiltonian for the three modes of the field [Reid 1988,
Reid 1989].

Nevertheless, a detailed investigation over the detection process leads to a more com-
plete description of the quantum state represented in the basis of field quadratures [Bar-
bosa 2013c|. In fact, optical detection is generally based in interferometric techniques,
either by optical homodyning or by resonator self-homodyning [Barbosa 2013b|. On the
other hand, the measured quantum noise of light is analyzed in the frequency domain with
the help of an electronic local oscillator to filter the contribution at a given frequency,
associated with the sidebands of the optical field. Therefore, with careful data treatment,
it can be shown that although the three mode description remains a valid approach, a
more complete one can be obtained for the six detected modes of the field.

In relation to this system, the principal goal of this thesis is to present an explicit
evaluation of the quantum state for the six sideband modes of the OPO that are measured
by homodyne techniques and try to access modal correlations that cannot be available in
the simplified three-mode picture of single-beam quantum fluctuations (pump, signal and
idler). By explicitly using frequency modes of the field in the Hamiltonian, we are able
to deal with open cavities, looking for a more faithful description of the optical setups
usually involved in the nonclassical state generation. Moreover, the detailed sideband
description puts in evidence the role of each field in the evolution of the system, something
that remained implicit in the standard treatment [Reid 1988, Reid 1989]. This six mode
description allows the complete analysis of entanglement in the OPO, demonstrating a
deep hexapartite entangled structure for this system. This will also be treated in detail
in this thesis.

On the other hand, cold atomic ensembles are currently one of the most advanced
systems for the quantum control of light-matter interaction at the single excitation level.
They are usually used to create quantum memories which can faithfully store and re-
trieve quantum information encoded in photons. These memories are essential build-

ing blocks for scalable quantum technologies involving photons, such as linear optics
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quantum computing and long-distance quantum communication using quantum repeaters
[Briegel 1998, Duan 2001, Sangouard 2011].

Atomic ensembles provide an efficient way of reaching the strong interaction between
matter and light required for the implementation of quantum memories, without the need
for high-finesse cavities. In addition, they give the possibility to multiplex quantum infor-
mation, e.g. transmit information from multiple users on a single optical channel, which is
desirable in several applications. In particular, in quantum repeater architectures, this al-
leviates the limitation due to the communication time between the nodes [Simon 2007a].
In atomic ensembles, quantum information is stored as Collective Atomic Excitations
(CAEs). Single CAEs offer the important advantage that they can be efficiently trans-
ferred to single photons in a well-defined spatial-temporal mode thanks to constructive
interference between the involved atoms. The single CAE can be prepared by heralding
on detection of a photon that has undergone Raman scattering from an atomic ensem-
ble, according to the Duan, Lukin, Cirac, and Zoller (DLCZ) protocol [Duan 2001|. The
Hamiltonian governing the Raman scattering event is identical to that of SPDC, leading
to the production of an entangled state of the scattered light and the CAE, the so-called
two-mode squeezed vacuum state. While DLCZ utilizes only the first-order term of the
evolution under this Hamiltonian, higher-order terms can be used in combination with
more complex measurements on the scattered optical mode to produce arbitrary quantum
CAE states in a way similar to how it is done in systems based on SPDC [Ourjoumt-
sev 2006, Bimbard 2010, Cooper 2013].

Once the desired collective state has been produced, it needs to be measured. There-
fore, the readout stage of the DLCZ protocol may be used, in which the CAE is converted
into the optical domain in a manner similar to readout from a quantum optical memory
based on Electromagnetically Induced Transparency (EIT) [Fleischhauer 2000].

Several demonstrations of the building block of the DLCZ protocol have been reported
[Kuzmich 2003, Chou 2005, Choi 2008, Radnaev 2010] including functional elementary
segments of a quantum repeater [Chou 2007, Yuan 2008]. Most of these demonstrations,
however, used only one CAE per ensemble, although several ensembles have been already
implemented in the same atom trap [Lan 2009,Choi 2010,Pu 2017]. In this thesis we move
further by exploring the DLCZ protocol in the two-CAEs regime. In our experiments,
the cold atomic ensemble is created by a Magneto-Optical Trap (MOT) and either one
or two CAEs are initially stored in the atomic memory. The readout process results in
the enhanced emission of one or two photons, respectively, with properties that depend
on the quantum state of the memory. This phenomenon of enhanced photon emission
from an ensemble of atoms is known as superradiance [Dicke 1954] and highlights the

coherent nature of spontaneous emission . Due to superradiance, the photon emission in

!The first superradiance observations were reported in the 1970s using extended ensembles [Skrib-
anowitz 1973, Gross 1976] and although several of its features could be understood through classical
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the read process is highly directional, what permits an efficient detection by selecting the
appropriate mode. In relation to this system, our main purpose is to observe the increase
of the photon emission rate due to superradiance in both the single- and two-CAEs regime,
as well as the characterization of the Fock-state regimes with one or two photons being
emitted by the memory. To do so, we measure the wavepackets of the single-photon and
bi-photon emissions, evidencing superradiant acceleration in both cases, and perform a

photon statistics analysis that indicates the presence of quantum correlations.

1.1 Thesis outline

The main results of this thesis are: on the one hand, the explicit evaluation of the quan-
tum state for the six sideband modes of an OPO operating above the threshold and the
exploration of the hexapartite entanglement in this system. On the other hand, the exper-
imental characterization of the quantum state of an atomic memory containing up to two
CAEs and the experimental study on one- and two-photon superradiance in this system.

This thesis is organized as follows: In chapter 2, there is a brief discussion about the
concepts needed to derive the results of the thesis. In chapter 3, the theory fully describing
the quantum state of an OPO operating above threshold is developed. Moreover, a study
of hexapartite entanglement in this system is also developed. In chapter 4, we report a
series of experiments for the simultaneous study of single- and two-photon superradiance
and for the characterization of the quantum state of the atomic memory. Finally, in

chapter 5, the conclusions and perspectives on each of the studied systems are presented.

models [Gross 1982a], recent experiments, observing the superradiant collective acceleration of emission
with just a single CAE participating in the process (single-photon superradiance) [Mendes 2013b, de
Oliveira 2014], indicate that such classical analogues cannot be applied to describe the phenomenon.
In fact, this single-photon superradiance is a direct manifestation of the wave-particle duality, with
a single particle being emitted faster due to the interference of the probability amplitudes of emis-
sion by each atom. Such regime can be approximated by exciting an atomic sample with weak laser
light [Roof 2016, Aradjo 2016], although the photon statistics in this scheme do not present quantum
correlations.
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2 Fundamental concepts

In this chapter I briefly review the concepts used in the development of the ideas presented
in the next chapters. The goal is not to give a broad overview on each of the addressed

topics but to provide the reader with a more self-contained text and useful references.

2.1 Quantum entanglement

Quantum entanglement is a very particular kind of correlation that may exist between
subsystems of a composite system, much stronger than any classical correlations. Quan-
tum correlations, including quantum entanglement, seems to be one of the most intrigu-
ing problems of contemporary physics. Such correlations play a crucial role not only in
searching for the answers to the most fundamental questions concerning the laws ruling
quantum reality, but also in more practical applications such as those related to quan-
tum information theory. In particular, in quantum information, entanglement is viewed
as a resource, as in the protocols for quantum teleportation [Bennett 1993|, superdense
coding [Bennett 1992| or entanglement-based quantum cryptography ( quantum commu-
nication) [Ekert 1991].

Entanglement between physical systems can occur in observables with discrete or
continuous spectrum. In the first case, measurement results are restricted to a discrete set
of values, not necessarily finite, such as the set of integers; in the second case, any subset
of the real numbers can be obtained in a measurement. Examples of discrete observables
are the spin and its projections on the spatial axes and the number of photons in the
electromagnetic field. The position and momentum of a particle and the quadratures of
the electromagnetic field are examples of continuous observables.

In this section, we begin by presenting the formal definition of quantum entanglement
following the references |[Villar 2007, Cavalcanti 2008| and subsequently the criterion that
will be used in this thesis to identify the entanglement produced by an optical parametric

oscillator.



22

2.1.1  Formal definition of entangled states

Quantum states are described by semi-definite positive operators of unity trace acting on
a Hilbert space .7 known as the state space. Thus, an operator ¢ € A(J) (the Hilbert
space of operators acting on J¢) representing a quantum state satisfies: 1) (Z|g|¥) > 0
for all vectors W) € A, or, equivalently, if all eigenvalues are greater or equal zero, and
2) Tr(g0)=1. Such operators are called density matrices or density operators. Any density
operator can be written (non-uniquely) through convex combinations of one-dimensional

projectors, namely,

@:Zpi|¢i><¢i|a (2.1.1)

%

with

d pi=1 and  p; >0. (2.1.2)

A special case of representation Eq. (2.1.1) is when p; = 1 for some ¢, so we can
describe a quantum state by a unidimensional projector, i.e. ¢ = [¢;)(1;]. In this case, ¢
is called a pure state. Pure states are the extreme points of the set of quantum states and
then represent those systems from which we have the most complete information.

Systems composed by many subsystems 1, 2, ..., N are also represented by density

operators, but now acting on a vectorial space 7 with a tensorial structure:

H =N A =R AR ... QN N, (2.1.3)

where J4, 76, ..., 7y are the state spaces for each subsystem.
The notion of entanglement appears in these composite spaces. Let me present the
definition of entanglement and separability for these systems (also called multipartite

systems):

Definition 1 - Separability for multipartite systems
Multipartite separable states are those which can be written as a convex combination of

tensor products of density matrices, i.e.. 0 € A(®§Vfé) 1s separable if

Q—Zpl PP ®... M), (2.1.4)

where {p;} is a probability distribution. Alternatively, states that cannot be written in this
form are called entangled [Werner 1989]. In particular, when there is no partition that
can be written separately from the rest using a product as above, then the system is said

to have N-partite entanglement.
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An example of a bipartite entangled state is

0= % (100)(00] + [00){11] + [11)(00] + [11){11]). (2.1.5)

Note that the entanglement definition, included in definition 1, is not operational since
it does not provide a procedure that allows saying if a certain state can be written as given
by Eq. (2.1.4). In fact, doing this is a hugely difficult problem from the computational
point of view since in principle there are infinite bases on which it is possible to decompose
a density matrix. Therefore, it is necessary to resort to entanglement criteria, which are
directly applicable in an experimental context. Currently, there are several criteria for a
wide range of applications. However, we will only discuss the criterion explicitly used in
this thesis.

2.1.2  Positive Partial Transpose (PPT) criterion

In this subsection we will begin by presenting the entanglement criterion developed by
Peres and Horodecki |[Peres 1996, Horodecki 1996] for bipartite systems in the discrete
variables regime and then the extension of it for the continuous variables regime developed
by Simon [Simon 2000], saying in each case in which situations it is a necessary and/or
sufficient criterion for a state to be entangled. This continuous-variables case is of special
interest for this thesis since it will be used in chapter 3 to investigate how the entanglement
is distributed among the different modes of the electromagnetic field generated by an

optical parametric oscillator.

Discrete variables

PPT criterion (sometimes called Peres-Horodecki criterion) is a simple separability con-
dition for a bipartite state. This criterion can be used for both pure and mixed states
as well. It was first proposed as a necessary condition for every separable state by Asher
Peres in 1996 [Peres 1996|. By being a necessary condition, it means that every sepa-
rable state satisfy this condition, though some entangled states satisfy it as well. Later,
Horodecki familiy studied the criterion in more details and discovered that it was not only
a necessary but also sufficient condition for separable states of 2 x 2 and 2 x 3 dimensions.
Thus for a bipartite qubit state (2 x 2 dimensions), this criterion can be exploited to
confirm exactly whether a state is entangled or separable.

Following [Deesuwan 2010], the description and the principle underlying the criterion
can be explained as follows. First, for every physical state, the density matrix must be
positive-semidefinite, i.e. all of its eigenvalues must not be negative. Next, let us consider
a separable bipartite system, i.e. where the density matrix that describes it can be written

in the following way (see definition 1)
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pzzpi[;A@/aB. (2.1.6)

where p4 and p? are the density matrices that describe the A and B subsystems.
Let T be the usual transposition operator for matrices. Then to perform transposition
on the first subsystem (Partial Transposition or PT) is equivalent to operate T'® I on the

whole system (I being the identity operator). This gives,
~ ~ ~ANT ~
pre=(TehDp=>Y p(p") ©p" (2.1.7)

Because transposition does not change the eigenvalues of a matrix, ([)A)T must still be
positive-semidefinite. Thus, (ﬁA)T is a valid density matrix representing a physical state.
It implies directly that p’4 is also a valid density matrix, representing a physical sepa-
rable bipartite system and must be positive-semidefinite. This is the Peres’s necessary
condition:

Fvery physical separable bipartite density matrix, when a PT operation is applied, must
still be a physical density matriz, i.e. all of its eigenvalues must still not be negative.
It was shown by Horodecki, as mentioned above, that this is also a sufficient condition
for a two-qubit system which means any qubit state that do not satisfy this criterion is
entangled.

Let us now make some comments on the PPT criterion:

e A very important characteristic of the PPT criterion is that eigenvalues of p’4 are
invariant for unitary transformations performed on p [Peres 1996]. This allows us

to apply the criterion in any representation of p.

e The PPT criterion cannot be implemented directly in the laboratory until after
the density matrix has been reconstructed. This comes from the PT operation
not being a physical transformation since it can map physical states (with positive

probabilities) in non-physical states (with negative probabilities).

e The PPT criterion is very useful for the determination of entanglement for bipartite
states with a discrete Hilbert space. However, when the Hilbert space increases, the
application of this criterion becomes unfeasible. For systems of infinite dimension
(continuous-variables regime), like to the one that we consider in the chapter 3,
it is totally unfeasible to measure the density matrix. Therefore, instead of p,
quasi-probability representations are used that describe the system in the phase
space. The adaptation of this criterion for the continuous-variables regime was done
by Simon [Simon 2000|. In his article it is demonstrated that the PPT criterion
continues to be valid for bipartite quantum systems, being still a necessary and

sufficient criterion when the states in consideration are Gaussian. In what follows
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we will explain very briefly the implementation of this criterion in the continuous-
variables regime. For a more detailed discussion, we recommend consulting the
references |Villar 2007, Cassemiro 2008a].

Continuous variables

Systems of continuous variables are constituted by observables whose spectra can assume
continuous values. In general, these observables obey the rules of commutation for position

and momentum, i.e.,

49, p9)] = 2i6;;, (2.1.8)

where 7,7 = 1,2,..., N for a system composed of N modes. In this context, these
operators are known as amplitude (p9)) and phase (§%)) quadrature operators and they

are related to the usual annihilation (@) and creation (a7 ) operators as follows

pU) = a0 4 gt and G = —i(d(j) _ d(j)T)_ (2.1.9)

Following [Cassemiro 2008b], Gaussian states' are completely characterized by their

second order moments, organized in the covariance matrix

V= (QZ X7 4+ (X )ZT>T) /2, (2.1.10)

where
X = (pM g» p@ @ ... pIO) GONT (2.1.11)

—

The canonical commutation relations can be written in the compact form as [X, X

2iW, where

T]_

N
01
W=FPw, w = (_1 0> : (2.1.12)
j=1

With the purpose of representing a physical state, the covariance matrix must obey

the Heisenberg uncertainty principle [Simon 1987, Simon 1994],
V +iW > 0, (2.1.13)
which implies a condition in the symplectic eigenvalues v*) of the covariance matrix
B > 1 k=1,2,...,N. (2.1.14)

The symplectic eigenvalues of the covariance matrix can be obtained as the square roots

IThe state of a continuous variable system with N degrees of freedom is called Gaussian if its Wigner
function , or equivalently its characteristic function, is Gaussian.
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of the ordinary eigenvalues of —(WV)2.

As discussed above, the PPT criterion in the discrete-variables domain relies on the
positivity of the partially transposed density matrix [Peres 1996|, that could be used to
test the entanglement among all possible bipartitions of a system, this map is positive for
all separable states, however may be negative to entangled states. In continuous-variables
domain it is equivalent to a local inversion of time for the transposed subsystems [Si-
mon 2000] in phase space. In this case, the PT operation over the covariance matrix
turns ¢ into —¢™ for a determined subset of modes. Therefore, the PPT criterion
in continuous-variables domain establishes the following: if the resulting PT covariance
matrix V, violates the inequality of Eq. (2.1.13), then we have a sufficient condition for
the existence of entanglement among the transposed subset of modes and the remaining
subset [Simon 2000], or equivalently, the symplectic eigenvalues must violate Eq. (2.1.14)
in this case. The PPT criterion is both necessary and sufficient for pure or mixed states
in partitions 1 x (N — 1) [Simon 2000, Werner 2001]. Other partitions may posses bound
entanglement, nevertheless it is always sufficient.

The smallest symplectic eigenvalues Dy, of the PT covariance matrix is useful not only
to witness the entanglement but also to quantify it. In fact, the entanglement measure
given by the logarithmic negativity [Vidal 2002] can be written as a decreasing function
of Dyyin, for all (M + N)-mode bisymmetric Gaussian state [Adesso 2004]. Thus, a larger
violation of Eq. (2.1.14) implies a larger amount of entanglement.

In conclusion, we have an easily implemented criterion that will allow us to identify
the entanglement produced by one of the systems of interest in this thesis, an Optical

Parametric Oscillator. The results of this implementation are presented in the chapter 3.

2.2 Fabry-Perot cavity

Following closely the discussion in [Barbosa 2013a|, a Fabry-Perot cavity is formed by
a coupling mirror and an end mirror, with reflection coefficients r and r’, respectively,
which are separated by a distance L, as shown in Fig. 2. The reflection coefficients are
related to the transmission coefficients as 72 +¢?> = 1 and r? + " = 1.
When a field a4, with frequency w = kc strikes the cavity, a fraction of it is reflected
directly by the coupling mirror while the rest is transmitted, entering the cavity. After a
round trip through the cavity, part of this field is transmitted by the coupling mirror (the
other part was transmitted by the end mirror) and is superimposed on the reflected field
directly. The remaining part is reflected and propagates in a second round. This process
is repeated successively until reaching a steady state.

In order to know how the fields shown in Fig. 2 are related, we consider that each
mirror of the cavity behaves like a beam beam splitter (see Fig. 3), whose transformation

is given by [Walls 2008|:
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Figure 2: Fabry-Perot cavity. It is composed by a coupling mirror (left) and an end mirror (right), with
reflection coefficients r and 7/, respectively, which are separated by a distance L. The difference in the
trajectory of the fields that propagate inside and outside the cavity is only illustrative. In a real cavity,
these fields are overlapped.

g:r.f+t.e7 h:t-f—?”~€, (221)

So, the equations relating each field operator inside and outside the cavity (Fig. 2) in the

steady-state regime are given by

aR = T, + tayy, ap = tag, — ray, (2.2.2)

ar = t'ag, ay = —7' . (2.2.3)
Under free space propagation, the intracavity operators are related by a phase factor

. = e oy, ay = e *lay, (2.2.4)

depending on the wavelength k and on the optical distance L between the cavity mirrors.
Using the expressions given in Eq. (2.2.4) it is easy to solve the set of equations (2.2.2)

and (2.2.3) for the fields ag and o as a function of the incident field a;,. The solution is

QR = Tk1Oin, and ar = thLQin, (2.2.5)
where the reflection and transmission coefficients of the cavity are given by

r— ,r‘/672ikL d t ttlefikL
Tkl = ————————7+ an | A ————
1— TT"G_QZkL

1 o2kl (2.2.6)

From the expressions given in Eq. (2.2.5) we can say that a Fabry-Perot cavity behaves
basically as a frequency-dependent beam splitter where the reflection and transmission
coefficients satisfy the energy conservation relation |ryr|* + |txr|*> = 1. The parameter
k(2L) = 2mw(2L)/X\ measures the number of oscillations that fit within the cavity. The
normal (or resonant) modes of the cavity are characterized by \,, = 2L/m, m being a
natural number.

In order to better understand the behavior of the cavity let us see some particular
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Mirror

Beam
splitter h

Figure 3: Beam splitter transformation: the output fields g and h are the result of the interference
between the input fields e and f.

cases:

e r = 1: in this case the incident field does not enter the cavity and is completely

reflected by the coupling mirror, as expected.

e " =1 and r < 1: in this case, the incident field is also completely reflected by
the cavity but only after it has entered the cavity. For this case r,;, = €2, so the
reflected field receives a phase dependent on the frequency in relation to the incident
field. This type of cavity is known as a cavity without losses, in the sense that

the intensity of the reflected and incident fields is equal.

e r = r’: in this case, there is a total suppression of the reflected field when the
cavity is on resonance. This type of cavity is known as a cavity with impedance
matching, due to the analogy with electrical circuits, and occurs due to the de-
structive interference between the field reflected directly by the coupling mirror and

the reflected fields from inside the cavity.
There are three important parameters that characterize a Fabry-Perot cavity:

1. The free spectral range (FSR) is defined as the frequency difference between

two succesive resonant modes and is given by

C C
Af — == 2.2.
f >\m+1 >\m 2L Tcav, ( 7)

where 7,, is the time of flight in one round trip through the cavity.

2. The finesse is the parameter that gives us a measure of how narrow are the reso-

nance peaks in relation to the FSR and is given by [Ismail 2016|

™ (1=r\]"
F = 5 {arcsm ( 5 )] . (2.2.8)

rr!
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3. The resonant bandwidth is defined as the width at half height of a peak of

resonance of the cavity and is related to the FSR and finesse as

_ 47

of -

(2.2.9)

Finally, from the expressions (2.2.7), (2.2.8) and (2.2.9), we can conveniently rewrite the

argument that appears in the expressions for ry, and t as

27rfL T fzng

kL pu— pu—
c c/(2L)
where f' = f/df is the frequency in units of bandwidth. Furthermore, because the

(2.2.10)

system is periodic under any frequency shift by an integer multiple of the FSR, then we
can substitute f’ for the detuning in units of bandwidth, A= f' = fl., where f’ _ is the

res’ res

closest resonance frequency. Taking into account the above, the expressions in Eq. (2.2.6)
are rewritten as follows
r gl e—i2nA/F H! o—imA)F

rx = — and tx= —.
1— ,rrle—ZQﬂ'A/]: 1 — Trle—zZWA/f

(2.2.11)

The squared modulus and phase 0 of rx are plotted in Fig. 4 as a function of A.
The lorentzian curve |rx|? represents an attenuation in the reflected beam relative to the
incident one. The phase 0 varies from 27 to 0 across resonance such that the relative
phase between off-resonant and exactly resonant fields is m. The phase of tx has the
same shape, but varies from 7 to 0 across the resonance, similarly to simple mechanical

resonances.

Figure 4: Squared modulus (continuous line) and phase (dashed line) of rx as functions of the detuning

parameter A relative to the cavity bandwidth. The values used for the reflection coefficients of the mirrors
are R =12 = 96.0% and R’ = "% = 99.7%.
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2.3 Optical parametric oscillator

An OPO is a coherent light source similar to a laser but with an optical gain medium
from the parametric conversion. It is basically composed of three elements: an intense
light source (pumping laser), a nonlinear material with second-order susceptibility x(?
that acts as a gain medium and an optical cavity responsible for feedback of the medium
(Figure 5).

Reflected

OPO Idl
FR  Pump [ . ppg er
S o Wﬁﬂ N W2
@ ! -
Lar i
(OF}

Figure 5: Schematic description of an optical parametric oscillator, consisting of a crystal with nonlinear
susceptibility x(?) arranged inside a Fabry-Perot cavity. A laser light source supplies the pumping field
with frequency wg that interacts with the nonlinear crystal resulting in the creation of two new fields,
signal and idler, with frequencies w; and ws, respectively. The interaction process also gives rise to a
reflected field of frequency equal to the pump beam (reflected pump) that is separated from the incident
pump with the use of a Faraday Rotator (FR) and a PBS.

Due to the non-linearity of second order, the crystal absorbs photons from the pump
laser (frequency wp) with a small probability. Under ideal conditions, for each pump-
ing photon absorbed, the crystal emits two photons of lower frequencies w; and wy, re-
spectively. Because they are emitted at the same time, these photons are called twin
photons and the physical process that produces them is known as parametric down
conversion (PDC). In the PDC two conditions are satisfied: energy conservation or
frequency-matching (wy = wi+ws) and conservation of momentum or phase-matching
(Eo = El + Eg) The most common phase-matching are those of type I, when the twin
photons are generated with the same polarization, or of type II, when the polarizations
of both photons are orthogonal.

The conversion rate of photons becomes considerably greater when the crystal is placed
inside an optical cavity. The crystal happens to act as a gain medium and therefore, in
the same way as it happens in a laser, when the parametric gain exceeds the internal
losses of the cavity (total losses generated by the transmission of the mirrors, absorption,
dispersion and diffraction), it is said that the system oscillates and the OPO emits two new
coherent beams, signal and idler. The power of the pumping for which the parametric
gain equals the internal losses of the cavity is called oscillation threshold. When
reaching the oscillation threshold, part of the pumping energy is transferred to the signal
and idler beams, decreasing its intensity inside the crystal, which eventually leads to a
saturation of the parametric gain. This process allows the OPO to work in a steady
state [Debuisschert 1993, Martinelli 2002, Trager 2007, Breunig 2011].
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The optical cavity can be resonant for just a subset of the fields involved in the
parametric conversion, that is, for one (SRO), two (DRO) or three (TRO) fields. In this
thesis we will consider the case of a TRO, that is, a resonant OPO for pump, signal and
idler. The main characteristic of this configuration is that it has the lowest oscillation
threshold because the parametric gain increases with the intensities of the three fields
interacting through the crystal.

From the theoretical point of view, the PDC present in an OPO can be modeled

through the effective Hamiltonian of a three-wave mixing process given by [Walls 2008|

i, =il [a©aMia@1t - a@1a0™] (2.3.1)
-

where @™ and a™? are the annihilation and creation operators of the mode n € {0, 1,2},
corresponding to the pump, signal and idler beams, respectively (this notation will be
maintained throughout the thesis). Here, 7 is the time of flight through the medium,
considered the same for the three fields, and y is a constant proportional to the second-
order susceptibility x®2. Note that this Hamiltonian describes the creation of a pair of
photons with frequencies w; and wy from the annihilation of a photon with frequency wy
or the opposite process; creation of wy by the annihilation of w; and wy?.

As we will see in the next subsection, from the Hamiltonian Eq. (2.3.1) one can obtain
the main classical properties of a triply resonant OPO operating above the threshold®.
The quantum properties will be obtained in chapter 3, following the same formalism

developed in this section, and is one of the original results of this thesis.

2.3.1 Classical properties

From the PDC Hamiltonian given in Eq. (2.3.1), in this section we will obtain the main
properties of a triply resonant OPO operating above the oscillation threshold. In the
description, it is considered that the intracavity field is formed by the pump, signal and

idler beams, which allows us to calculate the average intensity of each of these fields.

Parametric gain of the fields

Let us start by considering the evolution of the fields within the nonlinear crystal, as
shown in Fig. 6. Using the PDC Hamiltonian given in Eq. (2.3.1) and the Heisenberg

equation, we find the following equations of motion for each of the field operators

2The explicit form of  is not important because it will be associated with the power for the threshold
(see section 2.3.1) .

3Since the nonlinear susceptibility crystal x(2) is placed inside a cavity, the two processes in the
Hamiltonian Eq. (2.3.1) can ocurr.

4From now on whenever we talk about an OPO we will be referring to this particular case.
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Figure 6: Propagation scheme of the fields within the crystal of nonlinear susceptibility x(? and lenght
l.
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\
where ¢ is the time evolution normalized to the time of flight throught the crystal 7. In
what follows, we consider a linearized description of the fields by their mean value and
fluctuation, i.e, each mode is described as a™ = a,,, +da'™, where ay,, is the mean light
field amplitude. In order to determine the evolution of the classical fields we neglect the

fluctuations da™ and thus obtain

¢ d
d_fawo Xy Oy s
d *
d_fawl = Xy, (2.3.3)
d
—Qy, = X0l
d¢ !

\

Because the parametric gain of the crystal is very small, we can expand the expressions
of the fields in powers of £&. Considering only the first order of the expansion, which is
sufficient for the description of a typical OPO [Debuisschert 1993], i.e.

day,,

o)

we obtain the variations of the amplitudes of the fields after crossing the nonlinear crystal:

ay, (§) ~ ay, (0)+¢ (2.34)

Qg (1) Qg (O) = XCQuy (O)awz (0)7
awl(l) = Quy (O> + Xy, (O)Oéz)g (O>7 (235)
O‘w(l) = O, (O) + Xy (0)0421 (O>»

\
From the expressions given in Eq. (2.3.5), which are consistent with those found in the

standard classical description [Debuisschert 1993, we can see that the amplitude of the
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e

L

Figure 7: Basic configuration of OPO, consisting of a nonlinear medium of length [ inside a Fabry-Perot
cavity of length L, made of one coupling mirror (left) and one end mirror (right) accounting for spurious
losses. In this theoretical design, the fields measured in the experiment are the fields reflected by the

cavity, i.e. of , af and of . The fields transmitted by the cavity account for all the spurious losses

present in the system for each mode, respectively.

pumping field decreases when passing through the crystal and that, on the other hand,
the intensity of the twin beams increases, as discussed earlier at the beginning of the

section.

Modeling the optical cavity: stationary equations

Once we have found the variation of the amplitudes of the fields when going through the
nonlinear crystal, the next step is to find the equations that govern the three fields within
the cavity in the stationary regime. Therefore, we are going to consider a Fabry-Perot
cavity around the crystal as shown in Fig. 7. It has a coupling mirror (left mirror) with
reflection and transmission coefficients 7, and ¢,, and an end mirror (right mirror) with
reflection coefficient 7/, and transmission coefficient ¢/ representing spurious losses (e.g.
absortion in the crystal or scattering on the optical interfaces).

For each round trip in the cavity, the fields gain an accumulated phase due to their
propagation in free space and within the crystal, which depends on the refractive index
n,, for each mode of the OPO, given by ¢, = 2L(()?))wn/c, where L((,g) =L+I(n, —1)is
the effective optical lenght between the cavity mirrors. We will not consider the phase
changes in the mirrors since in principle they will be considered as ideal®. In addition, as
discussed in the previous section, each field receives a gain introduced by the crystal, as
the one described by Eq. (2.3.5). Therefore, we can propose a set of equations similar
to those given in the Eqs. (2.2.2), (2.2.3) and (2.2.4), for each field under consideration,
and so find the following equations that govern the three intracavity fields a,,, = a,, (0)

in the steady-state regime for exact phase matching:

°In ref. [Debuisschert 1993] it is shown that these phase shifts can increase the oscillation threshold,
however, this increase can be compensated by a disagreement in the condition of phase matching. In the
worst case, the threshold would increase by a factor of 1.92.
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[0y = €7 (O — 2X0u ) o]+t
a,, = e ¥ [(ozw1 + 2xozw0a:§2) 7"17“'1} , (2.3.6)
A, = e ¥ [(ozw2 + QXOéwOazl) 7’27"5} .

\
The coefficients r,, and r, can be conveniently described by loss parameters 7, and 7/,

as

rp=e T, ty=(1-12)", (2.3.7)

1/2
r=em, = (1 - 7"2) . (2.3.8)
The total loss in a round trip can be directly evaluated from ~! = 7, + v/,. The loss
parameter v, will be called spurious losses or intracavity losses since, it can model any
coupling of the cavity with the outside that does not occur by means of the coupling
mirror. Using Eqgs. (2.3.7) and (2.3.8) and considering that the three fields are resonant

with the cavity (e7%" = 1), the expressions in Eq. (2.3.6) are rewritten in the following

way:
( .
o[l —e70] = =2y, 0,e” 70 + /1 — e~ 0al
Qg [1 — e‘”tl] = 2xaw0a226_7t1, (2.3.9)
Qg [1 — 6_75] = 2)(0%04216_75,
\

The solution of the system of equations (2.3.9) gives us the different operating regimes
of the OPO. From that we obtain the response of the OPO output for different input

powers.

Stationary solutions

The last two of Egs. (2.3.9) form a homogeneous system for signal and idler and their
conjugates. This system of equations admits a non-trivial solution if its determinant is

null. With this imposed condition we have

| Ay |2 . (e’YE - 1)

[ow, 7 (eh = 1)

| g, [*= and (2.3.10)
From the first expression given in Eq. (2.3.10), we can see that the intracavity pump

power does not depend on the incident pump power (above the oscillation threshold)



35

but only on the losses and the coupling constant x. Imposing |y, | = |aw,| = 0 in the
first expression of Eq.(2.3.9), we can get the power of the minimum pumping so that the

intense beams of signal and idler are generated

(1—e)" (e — 1) (e —1)
4x? (1 — e=2m) '

(2.3.11)

| Oéglo |1?h:

From this power up of the input field, the intracavity pump power is kept constant at the
value shown in Eq. (2.3.10) and the excess power is transferred to the twin beams.
From the Egs. (2.3.9), (2.3.10) and (2.3.11) we get the following expressions for

intracavity powers of all the fields under consideration

(1 — 67270) in
|y, 2 = ——5 | ad [, (2.3.12)
(1—e)
5 (1= e 20) (o — 1)

(673 — 1) (eﬂ' — 1>

| o, |2 o |7, with j=1,2, (2.3.13)

2
. has been

defined. Furthermore, the following expression is also found for the phases of the fields
(= |afe?)

: I o 12 ;
where the pump power relative to the oscillation threshold, o = ‘aglo‘ / }au?o

b0 = ¢1 + Po. (2.3.14)

Note that the sum of the phases of the twin beams is perfectly correlated with the pump
phase but the phase difference can fluctuate freely since the system is invariant under the
transformation a,, — a,,e? , a,, — a,,e . In other words, each of the phases can
vary as the three fields propagate through the cavity, however, due to the phase-matching

condition, the relationship given in Eq. (2.3.14) remains valid throughout the evolution.

2.4 Photodetection in the spectral domain

As we will see in the chapter 3, complete reconstruction of the quantum state of an OPO
operating above the threshold is achieved by performing a photodetection process in the
spectral domain, with the help of Fabry-Perot cavities, of each of the light beams generated
by this system (see Fig. 19). In order to have a better understanding of this measurement
technique, in this section we will describe very briefly its main characteristics following
the description done in [Barbosa 2013c].

Usual photodetectors, in continuous variables domain, only detect the intensity of light
beams via photoelectric effect, in which excitations of the electromagnetic field, i. e. the

photons, become electrons expelled from a material (usually a semiconductor). In this
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way, photodetectors generate a time-dependent photocurrent I(¢) that gives information
about the intensity of the incident light beams. In the high intensity regime (~ 101°
photons per second), it is a continuous signal deprived of quantum jumps associated with
individual quanta of light. As the measurement process is given by the photoelectric effect,
it is natural that the corresponding measurement operator is directly related to the photon
number operator a/ a,,, where a,, and a], are the photon annihilation and creation operators
in the mode with optical frequency w, respectively, satisfying [a,,, dL,] = J(w—«). In
fact, in the case of unit quantum efficiency, photodetectors measure directly the quantum
observable I(t) given by [Glauber 1963]

I(t) = E=(t)E* (1), (2.4.1)
where B+ (t) are the positive and negative frequency parts of the electric field operator,
E(t) = E*(t) + E~(t), written in the case of a narrowband light source, and within a

multiplicative factor, as
« 0 ) A T
Er(t) = / dwe ®ta,, E(t) = [E+<t)] . (2.4.2)
0

where the integration limits enclose a frequency interval compatible with the photode-
tector bandwidth around the optical frequency wy of a bright auxiliary field, the Local
Oscillator (LO). The LO field must posses a well-defined phase relation with respect to
the quantum state |¥) of remaining modes, i.e. modes in the frequency vicinity of the
LO, and is hence effectively described as a coherent state |ay,, ), where «a,,, = |a|exp(ip)
denotes its amplitude and phase.

With this general experimental arrangement, the field quantum state just prior to
detection is |, )|¥). Therefore, the quantum state average of Eq. (2.4.1), together with
Eq. (2.4.2), yields the photocurrent

I(t) o o + |a[(U] [e7a(t) + e#al (1)] |T), (2.4.3)

where small contributions have been disregarded. In this expression, the new annihilation

a(t) and creation a'(t) operators are defined as

/

a(t) = /O Oodwe*“w*woﬁaw, at(t) = [a(d)]", (2.4.4)

where the integral in w excludes the mode wy (a fact denoted by the prime).

In Eq. (2.4.3), the term |a/? is the mean photocurrent while the state-dependent term
represents quantum fluctuations of the photocurrent, whose corresponding measurement
operator is given by 61(t) = e~a(t) 4+ ¢#al(t). Note that the response time of a realistic
photodetector will necessarily impose the temporal integration of Eq. (2.4.3), defining the
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Figure 8: Sideband modes, at a Fourier frequency €, and the central mode with frequency wg (carrier)
of a narrowband coherent light beam.

spectral shape of measured mode a(t) in Eq. (2.4.4) [Yurke 1985b].
The photocurrent fluctuation given by Eq. (2.4.3) can be described in frequency do-

main by Fourier transform as

I = / SI(t) ™ *dQ, (2.4.5)

where the effective integration limits are determined by detection bandwidth. It is easy
to show that the spectral component of the photocurrent is a complex quantity associated

with the non-Hermitian operator
Io = e %a, + e%al, (2.4.6)

where a, and a, are the annihilation operators of the upper and lower sideband modes
at frequencies wy + € and wy — €, respectively (see Fig. 8). Therefore, for each Fourier
frequency (2, spectral analysis implies necessarily a two-mode detection scheme.

The non-Hermitian operator I can be written in terms of quantum-mechanical ob-

servables I.os and Iy, representing the photocurrent electronic quadratures as I =
(jcos + Z.jsin)/\/i, with

I :cosgpﬁuij—l—singoqu—i—dé
COS 2 2 )
V2 V2 (2.4.7)
j o Gu — Qe . DPu — Do
sin oS (P —sin g

where p, and ¢, are the amplitude and phase quadrature observables representing a
single longitudinal mode with optical frequency w, respectively. In terms of the photon
annihilation a,, and creation a/, operators, they relate as a,, = (p,, + i4.,)/2-

The measurement operators in Eq. (2.4.7) are associated with field modes that are

symmetric and antisymmetric combinations of sideband modes. A direct measurement of
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Figure 9: Scheme to measure electronic quadrature components of each photocurrent signal. The pho-
tocurrent is mixed with two electronic references in quadrature. Figure adapted from [Barbosa 2013c].

both photocurrent Fourier quadrature components, if possible, would provide direct infor-
mation about the optical quadrature components of these specific modes [Heidmann 1984].
In the ideal case, each measurement of an electronic quadrature component thus repre-
sents a single-mode measurement, free of assumptions. A possible technique to perform
this measurement is shown in Fig. 9, by mixing the photocurrent with two electronic
references in quadrature [Yuen 1980]. In typical experiments using this technique, the
Fourier frequency 2 is in the MHz range |Yurke 1985a, Barbosa 2013c].

Note that only with the use of the technique shown schematically in Fig. 9, it is not
possible to access all the information on the optical quadrature components of the field
because it does not allow us to control the parameter ¢ [see Eq. (2.4.7)]. This problem
can be solved, however, if this technique is combined with some interferometric detection
technique [Barbosa 2013c].

Homodyne Detection (HD) was the first interferometric technique to provide direct
access to quadrature field observables and still remains the most widely used measurement
technique in the continuous variables domain [Yuen 1978, Shapiro 1979]. Balanced HD is
the usual realization of HD in the laboratory [Yuen 1983, Schumaker 1984, Shapiro 1985|
and in the present discussion it is implemented as follows (see left panel in Fig. 10): the
field modes to characterize are mixed on a 50:50 beam splitter with the LO. Quantum
measurement is obtained by the difference between photocurrents recorded on a pair
of photodetectors placed on the two outputs of the beam splitter. At this point the
spectral analysis of the photocurrent quantum fluctuations is performed, making use of
the technique outlined in Fig. 9. The whole process is known as spectral HD. In this case,
the spectral HD is essentially described by the ideas presented above, and the measurement
operators of Eq. (2.4.7) can be directly applied. It is important to clarify that in order
to implement the spectral HD it is necessary to have a reference beam (the LO) with the
same frequency as the beam we want to measure (see left panel in Fig. 10). This is the

main drawback of being able to apply this technique to reconstruct the quantum state of
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Figure 10: Interferometric techniques. Left panel: Schematic view of the balanced HD. Prior to detecttion,
LO field in state |ay,) is added to the quantum field modes of interest with a controlled phase ¢,
using a 50:50 beam splitter. Information about the quantum field is retrieved after subtraction of the
photocurrents. Right panel: Schematic view of RD. The state of interest and the carrier mode are reflected
off an optical resonator prior to photodetection. Frequency-dependent losses and phase schifts, controlled
by resonator detuning A, allow quantum state reconstruction. Figures adapted from [Barbosa 2013c].

an OPO since it is very difficult to have a reference beam for each of the beams produced
by this system. Even, if somehow it were possible to implement it in this system, the
equation (2.4.7) shows that, although spectral HD is, in principle, able to provide two-
mode operator moments, it cannot achieve complete quantum state reconstruction. The
reason for that is the fact that symmetric and antisymmetric combinations of sideband
modes cannot be probed independently, since their measurement orientations in phase
space are fixed with respect to one another by a single parameter ¢ [Barbosa 2013b].

An alternative technique to spectral HD does not suffer from the same limitations, it is
known as Resonator Detection (RD). This technique is based on the dispersive property
of an optical resonator close to resonance, bringing an intrinsic asymmetry in the way
sideband modes are manipulated before photodetection. RD is realized by measuring the
intensity fluctuation of a field after its reflection from an optical resonator, as schematized
in the right panel in Fig. 10. Field modes in a narrow band close to resonance with the
optical cavity are phase shifted and attenuated just prior to detection. Similarly to HD,
RD needs an intense LO field to amplify the quantum fluctuations of the sideband modes
in the detection.

An optical resonator with high finesse transforms the field annihilation operators ac-
cording to

~

G — 7(AL) e + HA) by, (2.4.8)

where r(A,) and t(A,) = /1 —1r%(A,) are the resonator reflection and transmission
frequency responses, respectively. A vacuum mode, described by the annihilation operator

b.,, substitutes the missing fraction of reflected modes, a feature which proves essential to

the power of the technique regarding quantum state reconstruction [Barbosa 2013c].
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Substituting Eq. (2.4.8) in Eq. (2.4.6), the spectral operator of RD reads as

Jo(A) = RY(A) ay + R_g(A) a} + Tg(A) by + T_q(A) b, (2.4.9)
with
_ 1 ra) . o 1)

where A = (wy — w.)/7v is the detuning between carrier wy and resonator frequency w,
(v is the resonator bandwidth). Note that the coefficients Ro(A) and R* (A) do not
treat LO sidebands in a symmetric manner as the control parameter A is varied. This
fact alone allows for the full reconstruction of the quantum state of both sidebands,
including coherences therein. In fact, the operator in Eq. (2.4.9) can be written in terms
of two Hermitian measurement operators for the electronic quadrature components of
the photocurrents jcos and jsin, together with vacuum terms due to depletion that the

sidebands undergo when on resonance (jwc), by the expression jQ = (jcos + ijsin> / V2+

Jvae- The Hermitian measurement operators J.os and Jg, are given by

jcos A - Au Au _Pe —Y-q
. (A) 9C+ZA7 +y+QA +x ]?e Yy qu 7 (2.4.10)
in(A) = Y Put+ T Gu—YiPe+ 2140
where x4 and y4 are real functions of A defined as
zy + iy = (Ro + RLg)/2,
r_ 41y =i(Rq— R'g)/2. (2.4.11)

The fact that different coefficients appear for each quadrature operators in Eq. (2.4.10)
allows one to single out any sideband or combinations of them. Contrarily to HD, the
electronic quadrature measurement operators of RD undergo changes of modal basis de-
pending on A, revealing the inherent two-mode character of the technique. Thus, a truly
two-mode full state characterization is, in principle, possible using this technique. In fact,
it was the technique used to reconstruct the quantum state of the triply resonant OPO
studied in the chapter 3.

2.5  Magneto-optical trap

The Magneto-Optical Trap (MOT) is the most common technique used to trap neutral

atoms since 1987, when it was introduced |[Raab 1987]. The Reason for this is the relative
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Figure 11: The configuration of the laser beams in a three-dimensional MOT with two coils to produce
a quadrupole magnetic field. The orange ball in the middle represents the atomic cloud.

simplicity of the experimental setup for trapping and cooling the atomic gas from room
temperature down to the order of micro kelvins.

The basic configuration of a MOT consists of three pairs of counter-propagating red-
detuned laser beams arranged, in three perpendicular directions, and a pair of coils in
anti-Helmholtz configuration, as shown in Fig. 11. The polarization of each pair of beams
is chosen to have mutually orthogonal polarization. In our setup, the polarizations are o
and ¢~ which induce transitions into Zeeman sub-levels with the change Ampr = 1 and
Amp = —1, respectively. Without the magnetic field, these beams only create friction
forces since they will come into resonance with atoms that are moving in the opposite
direction of the wave’s propagation and thus decelerate those atoms. Therefore, this
configuration with no magnetic field is known as an optical molasses. This cooling
process is called Doppler cooling due to the use of the Doppler effect in decelerating
the atoms [Foot 2005].

Optical molasses alone provides cooling without trapping since it leads only to a
velocity dependent force. Therefore, to implement the trapping, it is required to apply a
position dependent force in order to confine the atoms. In a MOT, a quadrupole magnetic
field is applied to produce such force. This can be implemented by using two magnetic
coils with opposite current directions to produce a quadrupole magnetic field which causes
an imbalance in the scattering force applied by the laser beams.

In order to better understand the MOT principle, let us consider the one-dimensional
scheme in Fig. 12 for a simple atomic transition F' =0 — F” =1 (in the same way as it
is considered in [Foot 2005]). At the point in the middle of the coils, the magnetic fields
produced by the coils cancels out, so that B = 0. Close to this zero of the field there
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Energy

Figure 12: A conceptual scheme for a general one-dimensional MOT. Energy of the Zeeman sub-levels
as a function of the position in a one-dimensional MOT for the atomic transition F' =0 — F' = 1. Two
counter-propagating beams of circularly-polarized light with frequency w(red-detuned by A with respect
to the atomic transition) interact with the atoms coupling the o~ component with the mp = —1 sub-level
and the ot component with the mg = 1 sub-level according to the selection rules.

is an uniform field gradient that disturbs the atomic excited level®; the Zeeman effect
causes the energy of two sub-levels (with m’. = +1) of the F’ = 1 level to vary linearly
with the atom’s position, as shown for the z-axis in Fig. 12. The atoms are illuminated
by counter-propagating laser beams with opposite circular polarizations (o and ¢7) and
a frequency slightly smaller than the atomic resonance frequency (red-detuned) to give
damping by the optical molasses mechanism. The Zeeman shift causes an imbalance in
the radiation force in the following way: if an atom is displaced from the trap center along
the z-axis with z > 0, the Zeeman shift moves the sublevel m/}, = —1 closer to resonance
with the laser frequency. The selection rules lead to absorption of photons from the beam
that excites the Am/. transition and this gives a scattering force that pushes the atom
back towards the trap center. A similar process occurs when the atom is displaced towards
the opposite direction (z < 0). Therefore, the atom will always be pushed back towards
z =0, and a cold atomic cloud is formed at the trap center. In the limit of small Zeeman
shifts and small velocities the expression for the force on an atom inside a MOT can be
written as [Foot 2005

Fyor=—-a-v—k-2z, (2.5.1)

where « is the damping coefficient as a result of the damping force exerced on the atom
by the laser radiation and « is the spring constant for the restoring force induced by the
magnetic field.

In the same way as in the one-dimensional case, the 3D-MOT provides a combination
of a velocity dependent force, which damps the atomic motion, and a position depending

force, which pushes atoms back to the trap center. This combination of strong damping

6This perturbation does not occur for the ground state because its angular momentum is zero.
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Figure 13: Energy levels for the hyperfine structure of the 8’Rb D line. The cooling and repump
transitions are indicated by red arrows.

and trapping loads the MOT in a versatile and robust way.

As we will see later in chapter 4, in our experiment we are interested in the D2
transition of Rubidium 87, which has two ground-state hyperfine levels F' =1 and F = 2
(see Fig. 13). The atoms can decay into any of the F' levels with the probabilities
dictated by the Clebsch-Gordan coefficients. The trapping transition is chosen to be
F =2 — F’ = 3 with the majority of the atoms decaying back to their original F = 2
state, since it is a cyclic transition. This allows the atoms to be addressed by the trapping
beams for many consecutive cycles. However, a small portion of the atoms will decay into
the dark state F' = 1 which is not coupled by the cooling laser beam. These atoms do
not experience trapping forces and will eventually escape. Therefore, another laser, called
the repumping laser is required to excite the atoms from the F' = 1 level to the F' = 2
level from which it can decay back to the F' = 2 level where it can be excited again by
the cooling laser. Using this technique we managed to create a cloud of cold atoms in our

experiment using an MOT.

2.6 Photon-pairs generation from a cold atomic ensemble

In this section, we begin by describing the scheme of entangled photon pair generation
from a cold atomic ensemble that is considered in this thesis (see chapter 4). The scheme
is based on the Duan-Lukin-Cirac-Zoller (DLCZ) protocol, which is one of the most suc-
cessful experimental implementations of a quantum memory, proposed by Duan et al. in
his seminal work published in 2001 [Duan 2001].The operation of this scheme consists of
two parts (see subsection 2.6.1): the writing process that is very inefficient and performed
with a very low probability and, second, the reading process that is performed with high
efficiency and higher probability. This last part of the process is connected with the phe-
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nomenon of superradiance, which explains, among other things, the high efficiency of the
reading process. This phenomenon will be studied in more detail in subsections 2.6.2 and

2.6.3 in the regimes of one and two photons.

2.6.1 Photon-pairs from the DLCZ-protocol

The DLCZ protocol uses atomic ensembles that can emit single photons while creat-
ing simultaneously single atomic excitations, which are stored in the ensemble. The
photons can be used to entangle two distant ensembles [Chou 2005, Laurat 2007|. The
atomic excitation can be efficiently converted into a photon thanks to collective inter-
ference, which is used for entanglement swapping and various applications of entangle-
ment [Duan 2001, Mendes 2011]. Here we briefly describe the underlying physics following
the description done in [Sangouard 2011].

The basic (idealized) scheme is as follows (see Fig. 14). In an ensemble of three-level
systems with two ground states (|g) and |s)) and an excited state |e), all N atoms are

initially in the state |g). Therefore, the atomic state of the system can be written as

10a) = 19)*" (2.6.1)

An off-resonant laser pulse on the |g) — |e) transition (the write pulse) may lead to
the emission of a photon in field 1 on the |e) — |s) transition, via spontaneous Raman
emission, and consequently in the transfer of a single atom to state |s) (see write process
in Fig. 14). Therefore, the detection of a single photon in field 1, such that no information
is revealed about which atom it cames from, creates an atomic state that is a coherent
superposition of all the possible terms with N — 1 atoms in |¢g) and one atom in |s),

namely,

1) = \/LN;W”"S””"QN% (2.6.2)

which is known in literature as a W-state [Werner 1989).

An important feature of such collective excitations that is of great interest for prac-
tical applications is that they can be read out very efficiently by converting them into
single photons that propagate in a well-defined direction, thanks to collective interfer-
ence [Duan 2001, Laurat 2006, Simon 2007b, Mendes 2013b|. Resonant laser excitation of
such a state on the |s) — |e) transition (the read laser pulse) leads to an analogous state
with V — 1 atoms in |g) and one delocalized excitation in |e). All the terms in this state
can decay to the initial state |0,), with a probability that grows with the number of atoms
squared |Felinto 2005], while emitting a photon in field 2 on the |e) — |g) transition (see

read process in Fig. 14) 7.

“The extraction of the atomic excitation in a photonic mode during the reading process becomes highly
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Figure 14: Basic DLCZ scheme for photon-pair generation from a cold atomic ensemble. Write process:
All atoms start out in |g). A laser pulse off-resonantly excites the |g) — |e) transition, making it
possible for a photon (in field 1) to be emitted with small probability on the |e) — |s) transition (via
spontaneous Raman emission) in addition to storage of a collective atomic excitation. Read process:
After a programable time, a resonant laser is applied on the |s) — |e) transition, promoting the single
atomic excitation from |s) to |e), followed by collective emission on the |e) — |g) transition of a photon
in field 2 with a well-defined direction.

We have focused on the emission of a single photon into the mode of interest (field
1). However, since there is an ensemble of atoms, there are probability amplitudes for
the emission of two or more photons in field 1, accompanied by the creation of the same
number of atomic excitations in |s). This dynamics can be described by the following

Hamiltonian:

H=c¢ (a{&g + a1a> , (2.6.3)

where ( is a coupling constant that depends on the intensity and detuning of the laser,
number of atoms, and the strengths of the transitions |g) — |e) and |e) — |s); al is the
creation operator for a photon in field 1 and @] is the creation operator of an atomic exci-
tation in |s). The vacuum state |0) for the mode a, corresponds to the atomic state with
all atoms in |g), the state a} |0) with one excitation in a, corresponds to a state as in Eq.
(2.6.2) with one atom in |s), etc. This Hamiltonian, whose derivation is discussed in much
more detail in [Hammerer 2010|, thus describes the creation (and annihilation) of pairs of
bosonic excitations®. Using operator ordering techniques developed in [Collett 1988], one
can show that the application of this Hamiltonian in a two-mode vacuum state creates

the following two-mode entangled state (for ¢ very small) [Ortiz-Gutiérrez 2017]:

(Y1) = V1 =P [102) [00) + € /D [La) [L1) +*p[2,) [20) + O ()],
=./1— pzemﬁpn/z na, 1)
n=0

(2.6.4)

efﬁc1ent and directional when the phase matching condltlon kw + ! k = k1 + kz is fulfilled, where k and
k are the wave vectors for the write and read lasers and k1 and kz are the wave vectors for fields 1 and
2, respectively.

8Note that this Hamiltonian is formally equivalent to the Hamiltonian for the nonlinear optical process
of parametric down-conversion [Burnham 1970, Hong 1985, Wu 1986b, Hong 1987].
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where p = (t, t is the interaction time, and [ is a phase determined by the propagation
of the write field. Here we use the basis of the excitation number in the description of the
state, so that |n;) corresponds to the state of field 1 with n photons, associated to the
atomic state |n,) which has n atoms transferred to |s). The excitation probability of a
single atom transferred from |g) to |s) is p, and the probabilities to transfer two or more
atoms of |g) to |s), associated with the presence of two or more photons in field 1, shall
be equal to or less than p?, as can be seen in the equation.

As discussed above, a reading laser resonant with the transition |s) — |e) can be
applied to the atomic ensemble in order to map the atomic excitations stored at level |s)
in photons in the field 2. If we now look at the joint state between field 1 and field 2, we
obtain a state identical to that given in Eq. (2.6.4), just substituting the atomic kets by
the photonic kets of field 2 (assuming efficiency equals to 1 for simplicity):

tho,1) = /1 — pz e pn/? In2,n1)
n=0

(2.6.5)

where (3’ is determinated by the propagation of the read field. Note that this state is a
two-mode entangled state in the basis of number of photons, in the same way as in the
case of PDC [Mandel 1995, Duan 2001].

Finally, it should be noted that the reading process is not necessarily simultaneous
with the writing process. In fact, in most experiments based on the DLCZ scheme, these
processes are not, so it is necessary that the information recorded in the internal levels
of the atoms (during the writing process) to be preserved from decoherence processes, in
such a way that the atomic medium behaves like a memory. Therefore, the use of the
memory allows the collective atomic excitations entangled with photons in field 1 to be
stored in the atomic ensemble for a finite time until they are mapped in photons of field
2. This is basically the main idea of the DLCZ protocol for the generation of pairs of

entangled photons from a cold atomic ensemble.

2.6.2 Single-photon superradiance
Writing process

Let us consider an ensemble of three-level systems in lambda-like configuration (see write
process in Fig. 14), where we initially pump all N atoms to state |g). Thus, the atomic
ensemble is initially in the state given by Eq. (2.6.1). The system is excited by an
off-resonant writing beam®, with wavevector Ew and frequency w,, = ck,, inducing the
transition |g) — |e) — |s) in only one of the atoms of the ensemble. Consequently, it

leads to the emission of a photon, with wavevector k, on the |e¢) — |s) transition whose

9This beam acts in the form of a weak square pulse for easy of calculation.
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properties depend on the collective atomic state. This process is often called spontaneous
Raman emission. Treating the writing beam as a classical field and the other modes of
the electromagnetic field as quantum fields initially in vacuum, the effective Hamiltonian

that governs the time evolution of the system can be written as [Ortiz-Gutiérrez 2017|

H=Hy+V, (2.6.6)
with
N
o= /d3k Raogalag + 3 [yl gsl + ol si) il (2.6.7)
=1
A~ N a7 7
V= / Py [h@,;i&gsviageﬂ(kw*@"’ie“wwwgs—%z)t +Hel, (2.6.8)

where 645 ; = |g;)(s;| and the summation is evaluated over all atoms of the ensemble (each
one at the position 75). a; corresponds to the annihilation operator for an electromagnetic
mode with wavevector k. ﬁo is the free Hamiltonian for the atoms of the ensemble and
the electromagnetic field. V corresponds to the term that governs the effective interaction
of the atoms with the incident writing beam, which induces transitions between levels |g)
and |s)!%with the effective Rabi frequency Qf;» which depends on the amplitude (&,)
and detuning (A) of the writing beam and on the dipole moments () of the transitions
l9) = le) and |e) — [s), i.e., Qp; o< Ewfigepies /A

Considering the initial state of the atom-light system as given by

[¥(t = 0))1 = 10a)[0) = |g,0), (2.6.9)

where the field in the |e) — |s) transition is in an electromagnetic vacuum state |0), the

Hamiltonian evolution generates the following state in the interaction picture (at first
order in €2 .)

Ty .
Ut >T,))=lg,0 d3k; Q i(Fu—k) dt’ e~ @etwss = g 1) (2.6.10
P
0

where wys = wy, — ws, T, is the temporal width of the writing pulse, and |s;, 1;) represents
a state with atom 7 in |s), all others in the state |g), and with one photon with wavevector
k in the system.

The state of Eq. (2.6.10) presents intricate entanglement between the atomic collective

state (where we do not know which atom was transferred to the state |s)) and the light

10Note that we have considered the detuning of the writing beam large enough to adiabatically eliminate
the level |e) and describe the Raman process as a direct transition |g) — |s).
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Figure 15: Gaussian optical mode selected by an optical fiber in the writing process.

mode with one photon. However, the light mode is not very well defined. In principle, the
photon ‘1 ,;> can point in any direction. Therefore, in order to overcome this problem, we
will concentrate on a single mode of emission, which will then be entangled with a single
well-defined collective mode. For this, the first step is to use a write beam that can be
approximated by a plane wave. Next, we consider the projection in a specific Gaussian
mode a; of the field, which can be selected by a single-mode optical fiber and detected in
a photon detector as shown in Fig. 15. We consider the direction of detection as being the
z-axis. This optical mode can be written as a superposition of modes a; of plane wave,

namely,

i — /dcj’lqﬁl(cj’l)dqﬁmﬁ, (2.6.11)

where ¢; represents the component of k1 in the xy plane and the function ¢,(q1) defines
the mode (considered to be monochromatic). A quantum state with a photon in this mode
can be written as d1|0>, so that the projection in that state is made from the operator
(0la;. We can see the writing process as the coherent scattering of one photon of the
writing laser beam, which is treated as a classical field, into one photon in the mode
defined by a, together with a corresponding change on the quantum state of the atom
that scattered the photon [Monken 2013].

Considering that T}, is long enough and using the paraxial approximation \/m ~
ki —q3/(2k;), we have that the state of the system after performing the projection in the

detected mode is given by
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(Olay [yt > Tp))r o< [1a), (2.6.12)
with
N g ~ —
|1a> = Zcie’i(kw—klz)‘ri 8i>7 (2613)
i=1
and

o= [ dzion@et mnnn, (2.6.14)

where p; is the component of 7; in the zy plane and ), |¢;|* = 1.

Equation (2.6.12) provides, in a simplified way, the result of the projection of the
atomic state due to the detection of a photon in mode 1. Once this detection has occurred,
the resulting state needs to be normalized again, leading to the final state of the detection

process
V51 = [1a)- (2.6.15)

We can see then that the detection of a photon in mode 1 “prepares” the ensemble
of atoms in a well defined collective state, which can be read out very efficiently by
converting the collective atomic excitation into one photon that propagates in a well-

defined direction, thanks to collective interference. This will be discussed in what follows.

Reading process

Once the atomic medium is prepared in the state given by Eq. (2.6.15), it is possible
to convert the atomic excitation to a second mode of the light field, field 2, with high
efficiency. In what follows, we briefly discuss this conversion process. The technical details
of the calculations can be found in [Ortiz-Gutiérrez 2017].

As discussed in the subsection 2.6.1, we consider now the incidence of another intense
field, the reading beam, resonant on the |s) — |e) transition (see read process in Fig. 14).
This beam has amplitude &,, wavevector ET and frequency w, = ck,. We act with the
reading beam in resonance for two reasons: to increase the probability of the mapping
|s) — |e), and to induce transparency in the medium to increase the extraction efficiency
of light emitted in the |e) — |g) transition [Boller 1991]. It is important to stress from
the beginning that the |s) — |e) — |g) transition must be much more probable that the
|s) — |e) — |s) transition, because in the first all the atoms end in the same state of the
ensemble before the writing process (see Eq. 2.6.1). This results in a large constructive
interference reinforcing a global parametric process (same initial and final states), with
conservation of momentum and energy in the atomic ensemble. Even so, we will consider
the |s) — |e) — |s) transition in the theoretical model in order to obtain a better
quantitative description of the reading process. The Hamiltonian that governs the time

evolution of the system can then be written as
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H=Hy+Vi+Vs+ Vs, (2.6.16)

with

Hy, = /d3k hwgatag + > [Eglgi) (gil + Ealsi)(si| + Eclei)(eil],  (2.6.17)

‘71 _ Z -hgesa—es,igTeiEr.Fiei(wes_wr)t + H‘C'i| ’ (2.6.18)
‘72 = = Z /dsk hgeg,lz&eg,idﬁeiﬁﬁei(wegiwg)t + HC:| ) (2619)
V; = =Y / &k g, 6o iiipe™ e oD 4 H.c.] . (2.6.20)

7; L

Here Hy is the free Hamiltonian for the atoms of the ensemble and the electromagnetic
field. V; corresponds to the term that governs the interaction of the atoms with the
incident reading beam, which induces transitions between levels |s) and |e). g.s depends
on the dipole moment of the transition. This term generates Rabi oscillations between
levels |s) and |e) [Scully 1997]. V3 and Vi correspond to the terms that govern the
interaction of the atoms with other modes of the electromagnetic field, which are treated
as quantum fields, inducing a spontaneous decay from level |e) to levels |g) or |s) with
the emission of one photon [Scully 1997]. ek a0d g,z depend on the dipole moment of
the transition and on the wavevector k of the interacting electromagnetic mode.

Considering the initial state of the atom-light system is

N

D) = [1)]0) = 3 exeitoton)

=1

5, 0), (2.6.21)

where |1,) is given by Eq. (2.6.15), the Hamiltonian evolution generates the following

general state in the interaction picture:

() = Y e FhDT A (#)]5;,0) + Bi(t)]es, 0)]

i

+ [EEClo 1)+ Y [ @RD 5011, (2622)

where |e;, 0) represents a state with atom ¢ in state |e), with all other atoms in state |g),
and with no photons in the system; |g, 1) represents a state with all atoms in state |g) and
one photon with wavevector k in the system; and so on. Note that since there is initially

only one excitation in state |s), the temporal evolution remains essentially restricted to
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the space of a single excitation.
The time evolution of the state of Eq. (2.6.22) can be computed using the Schréodinger
equation in the interaction picture, from which we conclude that the coefficients A;, B;,

C} and D, » obey the following set of differential equations:

DAt o
OBt P
815( ) = z’ges&emr"”Ai(z&) +i/d3k€z(kw+k1z+k)-m %
X |:geg7];’€7;(weg_w];t)c’];<t) gesﬁei(wes_wg)Di?E(t)] ,(2.6.24)
8Cﬂ(t) , * ik —k1 2—k) 7 —i(Weq—wi
5t = Zdeng‘e (kw k k) te ( eg k)tBrL(t), (2625)
8%@ = ig’ !PT et (1), (2.6.26)

To solve this system of equations, we assume the following tentative form to B;(t)
[Mendes 2013b]:

Bi(t) = Bi(t)bi(t)e T, (2.6.27)
such that
Bi(t)abéf) = igesEr Ai(1), (2.6.28)
a%it) bz(t) — Z’/d?’kei(—lzw-&-kli-&-l;—’;r)ﬂ %

X [geg,gcg(t)ei(“eg’wﬁt) + ges,;;Dig(t)e"(w“*‘”ﬁ] (2.6.29)

The advantage of using this form of solution for B;(t) is that now we have two sets of
coupled equations with clearly distinct roles in the system. Eqgs. (2.6.23) and (2.6.28) form
a system similar to the one for the Rabi oscillation dynamics, while Egs. (2.6.25), (2.6.26)
and (2.6.29) form a system similar to the spontaneous decay dynamics [Scully 1997|. This
method of solution will be used to solve the system (2.6.25), (2.6.26) and (2.6.29) and
substitute the results to solve the system (2.6.23) and (2.6.28). The final result is the

following!!:

HTo find the expressions given by Eq. (2.6.30) and (2.6.31) we have considered that the atoms are
roughly uniformly illuminated by both write and read fields, which leads to the atomic dynamics for
the optical excitation |s) — |e) to not vary appreciably from one atom the other, i.c., 3;(t) = §,(¢) and
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Bi(t) = e xitt/2, (2.6.30)
Qgc;exilt/A 272
bi(t) =i g;; sinh ( - yQO|2t/2> , (2.6.31)
XiT — Q]2
with
Weghge T Weslize
[=Ty+ =2 397rh6063 , (2.6.32)
and
3 I'eg o " . 2 0 i(Kw—k1 2—k+ky)-(Fj—7)
Xi = 1—1—% T Z do [ dfsinfcos” fe' "™ AR (2.6.33)
i#i 70 0

where we have used that Qo = 29es&;, [9,, 5> = wegtte cos® 0/(2(2m) eoh], with 6 being
the angle between 7eg and the polarization vector of the emitted photon, and similarly
for |g,, z|>. Here, T is the decay rate from the state [e) to the states |g) or |s) for a free
atom, according to the Weisskopf-Wigner theory for the spontaneous decay [Scully 1997],
and y; is the superradiant enhancement parameter.

It is possible to find a simpler expression for the parameter y; if we consider typical
experimental conditions. To do this we need to substitute the summation in Eq. (2.6.33)

by an integral over the atomic density of the ensemble, i.e.,

. > N (22442 2) _,2 2
Z — /d3Tp<f> with p(’f’) = W@ ( Y >/(2W )6 /(2L ), (2634)
J

where W is the waist of the mode of the detected photon (considered to be Gaussian), L
is the width of the ensemble in the z-direction and NN is the total number of atoms in this
region'?. For the usual atomic ensembles used for performing quantum memories, typical
values for the quantities k, W and L are k =~ 10"m~', W ~ 10~*m and L ~ 103 m. Thus,
since k,, &~ —k, and ki ~ k, we find that the average value for v; is given by [Mendes 2013b]

LN
212k

An important point to note in this expression is the independence of x on L, typical of

X = (xi) =1 (2.6.35)

a superradiant emission from a cigar-shaped ensemble. Optical depth (OD) is defined

as the natural logarithm of the ratio of incident to transmitted radiant power through a

120nly the atoms that are in the region of the mode of the detected photon can store the excitation,
so only these atoms are considered to compute x;



23

material. From an experimental point of view N oc OD. In this way, the optical depth
parameterize the modification of x in the ensemble.
Substituting Eqs. (2.6.30) and (2.6.31) in Eq. (2.6.27), we arrive at

O e—Xilt/4 gike7i 72
Bi(t) =i OCZ‘ZFZ ¢ sinh <\/Xﬁ4 —\Qo|2t/2>. (2.6.36)
Xi

AT 02
T~ 1l

In this expression we can see clearly the Rabi oscillation behavior superposed with the
spontaneous decay. Unlike the semiclassical treatment where similar time dependences for
the optical coherence (combining exponential decay and a hyperbolic sine function) are
commonly deduced [Moretti 2008, we have now a spontaneous superradiant emission (for
X: > 1) with a single photon being emitted collectively by the ensemble of atoms. In other
words, we have an increase of the decay rate induced by the presence of the other atoms, a
phenomenon known as superradiance |Dicke 1954|. This increase of the decay rate is not
the result of stimulated emission, since only one photon is emitted by the ensemble, but
an effect that depends on the coherent distribution of the excitation through the atoms
of the ensemble, that is, it depends on a strong constructive interference of the atoms

induced by the system’s entanglement.

Wave function of the emitted photon in the reading process

We can now proceed to finding the spatial mode and temporal dependence of the photon
emitted in the reading process. There are two possibilities for the generation of a photon

from the spontaneous emission of level |e):

1. |e) — |s) emission: in this case, we necessarily have that the atom that was in |s;)
will return to |s;). According Eq. (2.6.22), if we trace out the atomic degrees of
freedom, we have an expression of the type ), |Di7,—5(t)|2, with D, z(?) given by Eq.
(2.6.26), for each component k of the field. Note that the dependence of D, on
the spatial phase eilku—kiZ=k+k)Ti does not select any preferential direction on the

photon emission and therefore the information imprinted in the quantum memory

is lost.

2. le) — |g) emission: in this case, all atoms will end up in the same level |g).
According Eq. (2.6.22), if we trace out the atomic degrees of freedom, we have then
an expression such as | [ d*ke(t)|?, with C(t) given by Eq. (2.6.25), highly sensitive
to the spatial phase eilku—kiZ=k+k)Ti of oach atom. We can see that the summation of

the spacial terms in Eq. (2.6.25) generates the directionality of the emitted photon,

since l;w = —E,, in the experiments and there is constructive interference only for
ko~ —k 2. So, the information imprinted in the quantum memory is transferred to

the photonic state. On the other hand, if the atomic density of the ensemble is small
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(OD small) such that there are no superradiance effects on the photon emission and
X =~ 1 (see Eq. (2.6.35)), since the decay rates from level |e) to levels |g) and |s)
are aproximately the same, there is a fundamental limit of 50% for the efficiency
of this quantum memory even if all decoherence processes and losses are perfectly
eliminated. However, when y > 1, this efficiency may increase since the decay rate
from level |e) to level |g) increases by a factor 2y — 1 in relation to the decay rate
from level |e) to level |s) [Mendes 2013b|. So, the higher the value of x, the more

efficient the overall quantum memory readout is [de Oliveira 2014].

Let us focus now in the second situation, i.e., in the emission of a photon on |e) — |g)
transition. In this case the decomposition into wavevectors of the state of the emitted
photon is given by Lim;_,.,Cy(t), with Cy(t) given by Eq. (2.6.25). To find the wave packet
of the emitted photon we must apply a Fourier transform over its frequency spectrum.
Let’s define the photonic mode 5 in terms of ¢, the wave vector component of photon 2

extracted in the xy plane. We have thus

Py (G, t) /dw,;e"’“ﬁt lim Cy(t'). (2.6.37)

t'—o0
In order to obtain an analytical expression for the photonic wave packet extracted

from the memory, we consider an important approximation: y; will have the same value

for all atoms in the ensemble, i.e.; y; = x. Therefore, Eq. 2.6.36 becomes

Bi(t) = c;e* T B(t), (2.6.38)
with
0 —xT't/4 2F2
B(t)=1 20; sinh (y/X4 — |Q0|2t/2> , (2.6.39)
Lk

4
having the same value for all atoms in the ensemble. Replacing Eq. (2.6.25) in Eq.
(2.6.37), using Eqgs. (2.6.36) and (2.6.14), and considering a cigar-shaped ensemble with
atomic density given by Eq. (2.6.34), we obtain [Mendes 2013a, Ortiz-Gutiérrez 2017|

Do, t) o g (— Qe L Rtk 2 p () emiwest, (2.6.40)

This expression demonstrates that the second photon is extracted in the conjugated mode
to field 1, with k. ~ —k;, and the corresponding transverse mode ¢, as expected!®. In

addition, we can see that its wave packet oscillates with a central frequency we,. The

13Tt worth mentioning that this directionality on the emission of the second photon depends only on
the extension of the atomic ensemble over large distances compared to A. Once this condition is fulfilled,
the directionality in the reading process grows proportionally to N2, a very well known effect in such
four-wave mixing systems [Mendes 2013b].
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conditional probability density p.(t) to detect the second photon at time ¢ once the first
photon was detected is then given by

pe(t) = F|B(t)[*, (2.6.41)

with I’ being a proportionality constant including, among other factors, the detection
efficiency, and B(t) given by Eq. (2.6.39). Obviously, in Eq. (2.6.41) we consider a very
small detection window, so we can assume F' constant throughout its duration. Another

important quantity is the total conditional probability p.:

Pe = /0 ) pe(t)dt, (2.6.42)

which gives the total probability of extracting the information stored in the medium,
mapping it in a photon in field 2. To compare theory and experiment, the normalized

conditional probability density is particularly important:

o _pdt)__IBEP
M= T TR

which is independent of F'. Finally, using Eq. (2.6.39), the above equation can be rewritten

(2.6.43)

as follows

~ Qt
Do(t) = ave X2 gjpn? (7) : (2.6.44)

with o = xT'Q2/Q? and Q = /O3 — x*I'?/4. Remember that I is the natural linewidth
for level |e), g the reading Rabi frequency, and x the superradiant enhancement for the

le) — |g) decay.

2.6.3 Two-photon superradiance

Recently, a theoretical analysis of the reading process of an atomic memory containing
two excitations of a collective atomic state was developed [Barros 2018|. Basically, this
analysis tells us that if we neglect the reabsorption of the photons by the atomic ensemble,

the two-photon wavepacket can be found from the following simple expression

Pec(ti, t2) = pe(ti)pe(ta), (2.6.45)

where p.(t) is the single-photon wavepacket given by Eq. (2.6.44). This approximation is
well justified in our system (see chapter 4) since the reading process occurs in a condition
of Electromagnetically Induced Transparency (EIT) [Boller 1991], in which the read pulse
induces a transparency in the medium for the outgoing photons. As highlighted in Ref. [de

Oliveira 2014], this is an interesting feature of the present system to study superradiance,
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since it eliminates various complications coming from propagation effects mixed with the
superradiant dynamics |Gross 1982b].

From Eq. (2.6.44) and the simple expression above relating it to the two-photon
wavepacket, we derive then the corresponding theoretical functions. By having ¢, =
ty + 7 > t;, we can integrate over 7 to obtain the normalized conditional probability
density to detect in ¢; the first photon of the pair in field 2:

xI'Q2

2
. xI'
1+ =—= — | == . 2.6.4
5 + 20 sin () (290) cos(Qt)] (2.6.46)

- Ot
Per(t)) = 2 e sin? (—)

On the other hand, if the integration run over ¢, we obtain the normalized conditional
probability density to detect the second photon in field 2 at a time 7 after the first one

was detected:

~ XTU _rry2 35 Q Q :
Per(T) = EToTR X7/ T + e [Qcos (1) + xT'sin (27)] ¢ |
(2.6.47)

These wavepackets clearly reproduce the essential aspects found in the previous subsec-
tion, that is, an exponential decay amplified by the superradiance effect combined with

an oscillatory term.
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3 Quantum description of the optical parametric oscillator

In this chapter, we present a new theoretical model that completely describes the quantum
state of an OPO operating above threshold [Munioz Martinez 2017]. The formalism is
carried out in the frequency domain in order to compare its predictions with experimental
results obtained using methods of self-homodyning [Villar 2004] and demodulation by in-
quadrature local oscillators [Barbosa 2013c|. In addition, we also present an analysis of
the entanglement in this system, which is published in [Barbosa 2017|.

We begin by presenting the Hamiltonian for the sideband coupling in the nonlinear
medium (Sec. 3.1), and the evolution of the field operators under propagation on this
medium (Sec. 3.2). It is followed by the detailed model for the open cavity that is used
to evaluate the operators of the output field (Sec. 3.3). With the relation between the
output and the input modes, momenta of any order can be evaluated. In the present
scenario, we will limit the study to the second order momenta, and the reconstruction
of the covariance matrix (Sec. 3.4). Nevertheless, the description wouldn’t be complete
without the coupling of phonons to the sideband modes, included in the Hamiltonian of
the system (Sec. 3.5). The obtained results are used to describe experimental results
at different pump powers (Sec. 3.6), with pump powers up to 75% above the oscillation
threshold. Finally, in subsection 3.6.2, we analyze in detail the hexapartite entanglement
present in this system from the experimental data and with the help of the PPT criterion

discussed in subsection 2.1.2.

3.1 Interaction Hamiltonian in the sidebands

As discussed in Sec. 2.3, on the heart of the OPO lies the coupling of three modes of the
electromagnetic field, that can be described by the well known Hamiltonian of spontaneous

parametric down conversion process, given by [Eq. (2.3.1)]
Ay = inX [a@@)aO 1)a®t(r) - he) . (3.1.1)
T

Each annihilation operator of the field a(™(t) is associated with the electric field op-

erator of a propagating wave and, in the limit of a cavity of infinite size, can be described
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by the contribution of operators at each frequency mode as [Walls 2008]

A (t) = e~iwnt / h Qe ™, (3.1.2)
where a,, 1o is the photon annihilation operator in the mode of frequency w = w,, + €2,
and we explicitly identify the carrier frequency of each field (w,) and the frequency shift
of each sideband relative to this carrier 2. The mode (n) specifies different directions
of propagation, polarizations or carrier frequencies. As in the situations we have in the
laboratory 2 < w, then we can approximate w, by oo in the integration limit in Eq.
(3.1.2).

A usual treatment in optical systems considers as carrier the mode with a significant
population of photons, that is much larger than the average number of photons on all
other modes. Therefore, in a linearized description of the fields by their mean value and

(n)

: : : An) e ~(n) :
a fluctuation, where each mode is described as a;,”, o = (G, o) + 0a,, ., We consider

that |, |2 = (@) > <&£Z)19&EZ)+Q> for |Q| > €, where o, is the mean field of the

carrier mode (n) and € is the carrier linewidth. In this approximation,

’

an(t) ~ a,, 1+ / dQe—mﬁaﬁﬁm, (3.1.3)

where the symbol [ ’ represents integration in (—oo, 00), but without the null frequency.
Using Eq. (3.1.3), we have
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As we are interested in processes which fulfill the condition of energy conservation, the
exponential outside the brackets is equal to 1. Now, the first term in the brackets is
constant and can be disregarded from the Hamiltonian. The next three terms do not
satisfy the condition of energy conservation and therefore will give positive or negative
contributions, depending on the region within the crystal. For a long crystal, they have no
effective contribution. The last term within the brackets, only depends on the sidebands
and is much smaller than those that depend linearly on the carriers. Thus, Eq (3.1.4) can

be approximated by

’

#0303 0) = of, [ d0ere Gl a2,

’

+ay, / dQdQY e =M1 62

/

Q- ~(0)T ~(1
+ awz/ QY e )taEJOLQaEJl)JFQ,. (3.1.5)
Only frequencies such that Q' = —Q, for the first term, or Q' = € for the second and
third terms, satisfy the energy conservation condition. Consequently, for a long crystal,

we have
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Finally, the Hamiltonian given in Eq (3.1.1) can be rewritten with the help of Eq (3.1.6)

as follows

E[X:/ dQH, (), (3.1.7)
where

2 G X« 1 2 1) (2
H,(Q) = —zﬁ;[ ( £J1)+Qa£12) ot ac(ul) Qaa(ug)+9>+

0)t ~(2) ~0)1 ~(2)
awl (afdo-‘rQan-i-Q—‘r wo Qawg Q) +

0t A(1 N TENG!
Qs (afjo)JrQale)JrQ + aio)jﬂail)_ﬂ> - h.c.]. (3.1.8)

Note that, under the validity of linearization, each set of sideband pairs defined by 2 > €
is decoupled from others sets defined by Q' # .

On the other hand, upper and lower sidebands are coupled in pairs in Eq. (3.1.8).
The field operators of these sidebands are pairwise measured by the treatment of detected
photocurrents in the frequency domain [Barbosa 2013b, Barbosa 2013c|. The treatment
for the evolution of these operators can be simplified if we change to the measurement
basis involving symmetric (S) and antisymmetric (LA) combinations of upper and lower

sidebands operators [Barbosa 2013c]

AN 1 n ~(n
(m [ R IN (3.1.9)

H,(Q) = Hys + Hya, (3.1.10)
where
a2 g X x ~(1) () A(O)T() ()T(
HXS(Q) - _Zﬁ; :i: awoa’s(a) ( ) + aw1 ( ) ( ) + awg s(a ) s(a h C. (3111)

where the + (—) signal is used for the symmetric (antisymmetric) combination of side-
bands along this article. This Hamiltonian describes a process leading to two-mode squeez-
ing involving downconverted modes a(()) and @' ( ) mediated by the intense pump field,

and two beam splitter processes exchanging photons between the pump and each down-
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converted mode, mediated by the intense complementary downconverted field. These
three processes lead to a rich entanglement dynamics, that was understood as a source
of tripartite entangled fields in the symmetric mode description [Villar 2006]. Beyond
this three mode description, a rich mesh of entanglement dynamics involving six modes
is generated by Eq. (3.1.8), combining creation and annihilation of pairs of photons in
downconverted sidebands and photon exchange between pump and downconverted side-
bands, leading to hexapartite entanglement among the involved modes as we will see later
in subsection 3.6.2.

On the other hand, Eq. (3.1.11) shows that the subspaces of symmetric and antisym-
metric combinations of sidebands are not coupled by the nonlinear medium. Nevertheless,
these correlations were already observed in experiments [Barbosa 2013c|, and their origin

is found somewhere else in the OPO, as we will see in Sec. 3.3.

3.2 Parametric gain of the fields

After passing through the nonlinear medium, the modes in subspaces of S/.A combinations
of sidebands will interact according to the Hamiltonian given by Eq.(3.1.10). Therefore,
the equations describing the evolution of the operators during their propagation through

the medium are given by

da'y)

s(a ~(2 (1

v = —x [awlai(i) + Ozwzai(i)} (3.2.1)
dd(l)

% = x| #auall) +a,af) | (3.2.2)
dd(z)

% = x| F ) +an,al)]. (3.2.3)

where ¢ is the normalized time evolution given by £ = t/7.

Defining As(a) = (dga) di((]()g dgi) &ig dgi) di%()lg)T, the set of differential equations

given by Eqs. (3.2.1-3.2.3) and their Hermitian adjoints can be written as

—

dAs(a

) —
=M, A, 3.2.4
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where

M, .0y = wz 3.2.5
COTXL 0 a0 0 %an, 0 (3.25)
ot 0 0 Ea,, 0 0
0 a,, =*a 0 0 0
From Eq. (3.2.4) the field leaving the crystal can be written as
A, = Gy (V) Asa)| 3.2.6
@], = Gs0 (D Asw| (3.2.6)

where

1
Gs(a)(X) = exXp (/0 df st(a)> . (3.2.7)

The matrix G, (x) is defined as the gain matriz of the medium, and allows the evaluation
of all &81) 1 and their Hermitian adjoints after passing through the crystal.

In the calculation of the evolution of the terms inside the cavity, it will be useful to
play with all creation and annihilation operators of the involved sidebands in a vector

form A — (dg;) 0 &L%)IQ e &EJ%)_Q &g)o)jﬂ -+ related to vectors As(a) as

—

A=A (AS, AG)T, (3.2.8)

where the transformation matrix is of the form

A= Afl — L 16><6 16><6 (3 9 9)
V2 \ Lexs -lexe | o

where 1446 are identity matrices of order 6. Taking into account Egs. (3.2.6) and (3.2.8),
the transformation of the field operators that propagated through the medium is given by

—

Al =G(A

¢=1

3.2.10
L (32.10)

where
G(x) = A (Gs(x) © Galx)) A. (3.2.11)

The symbol & represents a direct sum, resulting in a block diagonal matrix.

Thanks to the bilinear form of the Hamiltonian in Eq. (3.1.8), we have a linear
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Figure 16: Basic configuration of OPO.

evolution of the coupling of different fields through the medium, that will contribute to

the equations describing their evolution inside a cavity.

3.3 Physical effect of the optical cavity

It must be kept in mind that our goal is to theoretically model the evolution of the
sideband modes of an OPO, consisting of a nonlinear crystal located in a Fabry-Perot
cavity that we assume to have arbitrary losses for the fields involved, as shown in Fig.
16. In the same way as the cavity was modeled in subsection 2.3.1, the coupling mirror
(left mirror in the figure) has reflection and transmission coefficients, r, and t,, for each
carrier, and the end mirror (right mirror in the figure), with reflection coefficient r/, and

transmission coefficient ¢/, accounts for spurious losses (that may include absorption in

n’

the crystal or scattering on the optical interfaces). These coefficients can be conveniently

described by loss parameters 7, and 7/, as

re=e = (1—12)"% (3.3.1)

/ 19\ 1/2
=t = (1 — 7“712) : (3.3.2)

The total loss in a round trip can be directly evaluated from +! = ~,, +~/. The formal-
ism adopted here remains valid even in the open cavity regime, enabling the treatment
in the limit where the cavity is completely open for one of the modes, as in the case of a
doubly resonant OPO [de Andrade 2017].

The equations relating each field operator inside and outside the cavity (Fig. 16) are

given by the beam splitter transformation

— —

Ar =RA, + TB/ B = TA,, — RB (3.3.3)

—

Ar=RA,+T0C, ¢’'=TA, -RC, (3.3.4)
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with

R = diag(rg 7o 71 71 172 79 79 T - )

(
T = diag(to to t1 t1 ta ta to to---),
dlag(r To T Ty Ty Th T Ty )
(

= diag(tg t; t) ]t th ty -+ ), (3.3.5)

keeping the vector ordering for the field operators we used in the previous section. The
fields described by A,, enters the cavity through the coupling mirror, while A, models
the fields associated with vacuum modes coupled through spurious losses. Each field
&wz) 1o Will be transformed by the gain inside the crystal as described by Eq. (3.2.10).
Besides that, their phases will evolve during propagation along the cavity. Under perfect
phase matching conditions [Debuisschert 1993], if the refractive index for the fields are
close enough, we may consider that the evolution of the phase commutes with the gain.
Therefore the relation between the propagating fields on each side of the cavity will be

given by
C=e¢"G(y)B, B =c¢*G(y)/C. (3.3.6)
The phase vector

@ = () B p(—Q), with ¢(Q) = diag(v), —08 vy, —h, ¢85 — ¢3),  (3.3.7)

gives a different contribution for each sideband depending on the frequency shift 2 and

on the carrier frequency w,

(n)_wn—i—Q

Po = 2FSR,’ (3.3.8)

where FSR,, = ¢/ QLE,TQ) is the free spectral range for the mode n, with LE,Z) =L+I(n,—1)
being the effective optical length between the cavity mirrors, depending on the crystal
refractive index n,, and on the speed of light ¢. Evidently the effective phase contribution
will depend on the detuning between the carrier and the nearest cavity mode w;, an
integer multiple of 27FSR,,, given by A, = w,, — w,.

An important point related to the evolution of the sidebands should be noticed. Each
operator will undergo a different phase evolution, depending on their frequency. That will
mix symmetric and antisymmetric modes, even for null carrier detuning, since upper and
lower sidebands will, in this case, undergo opposite phase evolutions. This is the cause for

the correlations between symmetric and antissymetric modes observed in [Barbosa 2013c].
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Combining beam splitter transformation, phase evolution and gain, expressed in Egs.
(3.3.3)—(3.3.6) we can derive a linear transformation for the reflected modes, coupled to
the incident modes on the OPO, as

Ap =RA;, +T/A,, (3.3.9)
where
R, = R-Te G(x)ReG(x)D(x)T, (3.3.10)
T, = Te G(x) [I+Re“G(x)D(x)Re “G(x)] T, (3.3.11)
and
. A -1
D(y) = (1 - Re‘WG(X)R’e‘“”G(X)) . (3.3.12)

We should notice that the conversion matrix given by Eq. (3.2.9), relating individ-
ual modes to symmetric/antisymmetric combinations, commutes with the reflection and
transmission matrices given by Eq. (3.3.5), but not with the phase evolution matrix. It is
consistent with the fact that the coupling of symmetric and antisymmetric modes comes
from the opposite phase evolution for the sidebands. Another interesting point of the
formalism here adopted is that it allows the evaluation of the complete covariance matrix
for the sideband modes, in an approach valid for lossy cavities beyond the narrowband
regime employed in ref. [Collett 1984]. In the extreme limit, it can be used to study the
transformation of fields in doubly resonant cavities, even for the mode undergoing a single

pass through the nonlinear medium.

3.4 Hexapartite quantum state: covariance matrix in the eigenbasis of quadrature oper-

ators

Consistent with the description used in [Barbosa 2013c|, we can evaluate the covariance

matrix for the field quadratures pw and qw related to photon annihilation a op-

crator as al” = (p0 +i¢”)/2 and satisfying the commutation relation [p{”, "] =
2i0(w — ). The relevant quadrature operators can be ordered in a column vector
X = (ﬁ(o) cjb(u) ﬁf:f) (}LT,L) ---)T, that is directly related to the vector of field opera-
tors by X = NA, where N is the transformation matrix between these vectors.

Second order momenta of the field operators are all contained in the symmetrized

covariance matrix, evaluated over the quantum state of the system as

V= (oi XT) 4+ (X - XT>T> . (3.4.1)

l\DI»—
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Diagonal elements of V represent variances of single-mode quadrature operators, denoted

as, e.g., AQﬁ&n) = <]3£,")]§L(un)> Off-diagonal elements are correlations between different

quadratures operators, such as in, e.g., C (ﬁ&”)ﬁy)) = ((ﬁ&")ﬁg,n)> + @gﬂﬁ&n)» /2.
The basis transformation given by matrix N applied to Eq. (3.3.9) results in quadra-
ture operators XR = ﬁxﬁin + T;}_{V, where ﬁx = NRXNfl, T; = NT'XNfl. Thus, the

evaluation of the covariance matrix for the output fields results in
~ ~T  ~/__ ~T
Vr =R, ViR, + T, V,T , (3.4.2)

where Vj, is the input field covariance matrix and V, is the covariance matrix of the field
entering through the cavity loss channels. For losses coupling the cavity to vacuum modes
we have V,, = 1. The identity matrix 1 is associated with the standard quantum level of
noise (known in the literature as shot noise), characteristic of coherent states (including
vacuum).

The covariance matrix in the basis of §/A combinations of sidebands will have the

same form described in ref. [Barbosa 2013c]|

Vs Cs/a
VR(s/a) = <(C OV > : (3.4.3)

It is important to notice that the elements in the covariance matrices V, and V, are
related by a 7/2 rotation on the quadrature phase space, changing p, — ¢, and s — —p,
in covariance terms (e.g., C' (ﬁﬁ")qgm)) =-C ((j((l")ﬁgm)), A2p = AQ(j,(ln),...). Therefore, the
modeling described here is equivalent to the semiclassical approach often used in evalu-
ation of the noise spectra with the help of Langevin equations [Collett 1984, Walls 2008,
César 2009, Barbosa 2013c|, and both methods can be used to obtain the same amount
of information about the 2n modes of sidebands for n modes of carriers. However, it is
important to clarify that the method developed here is explicit in presenting the physical
origin of the correlations between symmetric and antisymmetric modes, something that
was elusive in the semiclassical model. As demonstrated in Secs. (3.1) and (3.3), these
correlations are not generated only by the cavity, or by the squeezing generating term in
Eq. (3.1.11), that is the only remaining term for operation below the oscillation thresh-
old. It is their combination with the beam splitting term, associated with signal and idler
mean fields, that will lead to these correlations.

Considering the particular case where the input is also a coherent state (Vy, = 1), for

exact resonance of the carriers (A, = 0), we have



67

ﬁgo) q§°) ﬁgl) qﬁ” A(2) ~(2)

]52,0) p© 0 uOY o u 9
¢1 o poO o o0 o 02
A(1) 1 12

v, = b u 0 0 (o (3.4.4)
ggl) o O g B 0 12
ﬁgz) p® o 1@ g p 0
d?\ o v o 2 o BO

with 12 independent terms and

(1) 5(2) ~(2)

R S B S s
2070 0 0 -k o k0
é”1 0 0 AOD 0 A
C Agl) 4 (01) 0 0 0 —Q(12) (3 4 5)
s/la — s 4.
qALgl) _/\(01) 0 0 0 ,'7(12) 0
]322) 0 4 (02) 012) 0 0
A§2) _)\(02) 0 _7,](12) 0 0 0

with 6 independent terms.

Evaluation of the covariance matrix depends on the value of the mean fields, as can
be seen in Eq.(3.2.5). As discussed in Sec. 2.3.1, the contributions to the gain matrix can
be explicitly scaled to the oscillation threshold [} |, as [Egs. (2.3.12) and (2.3.13)]

(1—e™0)

Xl aw = mx |l |fh, (3.4.6)
2% (1 — =270 1 '
Clay, P = S0 VTN a2 i, jo12, (347)

(@ —1) (e — 1)

where the normalized pump power is given by o = |2 |*/|al} |3,. Moreover, [Eq. (2.3.11)]

t \2 t t
20 in 2 _ (1-em 0) (eV t - 1) (e -1)
X | awo |th - 4 (1 _ 67270) ) (348)

implies that all the mean values can be related only to the cavity coupling terms and
the normalized pump power. Note that we have retained here the consideration that
evolution of the mean field amplitude inside the crystal is negligible, as discussed in Sec.

2.3.1. Further development can be done if we consider that these fields vary along the
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Figure 17: Covariance of the amplitude and phase quadratures of the three fields coming from the OPO,
Egs. (3.4.4) and (3.4.5), as a function of the normalized pump power. All quantities are in units of shot
noise, i.e. the standard quantum level of noise, characteristic of coherent states (including vacuum).We
employ in our numerical results the typical experimental values vy = 0.178 and v = 0.020 for the OPO
cavity mirrors transmissions, analysis frequency /27 = 21 MHz, and free spectral range FSR= 4.3 GHz.
For losses channels we use 7§ = 0.209 and 7' = 0.025. We assume equal mirror transmissions for signal
and idler beams, i.e., 71 = 72 =7 and 7} = 4 = ~*. The dashed lines are obtained from the semiclassical
model presented in [César 2009].

crystal [de Andrade 2017]. Nevertheless, in the integration in Eq. (3.2.7), we see that their
evolution will not affect the linearity of the solution regarding the mode operators, and
an effective contribution can be evaluated to obtain a precise description of the resulting
covariances.

The behavior of all elements from the Eqgs. (3.4.4) and (3.4.5) as functions of normal-
ized pump power o are presented in Fig. 17. For comparison, the same terms were also
plotted using the semiclassical theory presented in [César 2009] (dashed lines). We can
see that there is an excellent agreement between our theory and the semiclassical theory.
The discrepancies are due to the fact that the semiclassical theory is only valid for closed
cavities (y,,7. < 1) while our theory does not have any kind of approximation about
these quantities, so we can conclude that a consistent and complete OPO theory has been
developed.

While this treatment could account for the OPO spectra above the threshold, it doesn’t
account for extra noise sources, as the phonon-photon coupling in the crystal [César 2009].

Its effect can be included in the interaction Hamiltonian, as we will see next. This extra
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phonon noise may also introduce correlations between p and ¢ quadratures within V)
matrices, as well as correlations in the C,/, matrix, that can be also found in the case of

non-zero cavity detunings.

3.5 Physical effect of phonons in the nonlinear crystal in the quantum noise of light

In many experiments with above-threshold OPQO’s, an extra phase noise appears on the
optical fields which is caused by the scattering of light by thermal phonons within the
crystal and which considerably modifies the quantum state of the system. A detailed
semi-classical analysis of this effect was realized in [César 2009|. In this section we are
going to establish a quantum model for this excess phase noise in order to have a consistent

and complete quantum description of an OPO operating above threshold.

3.5.1 Complete interaction Hamiltonian

Photons that circulate inside the optical cavity of an OPO may eventually exert a small
radiation pressure on the crystal, leading to local density fluctuations associated with
acoustic phonons. On the other hand, fluctuations of the refractive index, of optical or
mechanical origin, will result in small phase fluctuations, leading to Stokes and Brillouin
light scattering [Boyd 1992| with frequency shifts in the scattered light. This process can
also be seen as a random detuning of the optical cavity, since it modifies its optical length
L.

In the present case, we will be interested in the fraction of the scattering that is coupled
to the cavity modes, with small shifts in the frequency (within the cavity bandwidth).
The Hamiltonian that correctly models this type of photon-phonon interaction is known

as optomechanical Hamiltonian! [Law 1995|, which for this case is given by

2 3
Hy=3 % H, (3.5.1)

where

A

) = hgagati(e)

Q>

™) (p) (Cgu)(t) n JU)T(t)) , (3.5.2)

is the optomechanical Hamiltonian for the optical mode @™ coupled to the mechanical

vibration mode d@. We may consider three possible modes of oscillation: one longitudi-

LA rigorous derivation of this Hamiltonian (for the specific case of a Fabry-Perot resonator with a
moveable end mirror) was given in [Law 1995]. This derivation keeps all the resonant modes of the optical
cavity, and shows how in principle one also obtains interaction terms where the mechanical resonator
can mediate scattering between different optical modes, and also terms corresponding to the dynamical
Casimir effect, where, e.g. , destruction of a phonon can result in the creation of a pair of photons. Such
additional terms are of negligible importance in the standard situation where the mechanical frequency
is much smaller than all optical frequency scales.
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nal, with propagation parallel to the wave vector of the field, and two transversal modes.
The optomechanical coupling strength g,; is expressed as a frequency. It quantifies the
interaction between a single phonon and a single photon. The Hamiltonian in Eq. (3.5.2)
reveals that the interaction of a vibrating non-linear crystal with the radiation field is fun-
damentally a nonlinear process, involving three operators (three-wave mixing), coupling
photon number operators to the creation and annihilation of phonons.

Following a procedure similar to that done in Sec. 3.1, we can write the bosonic

operator d%) with the help of the Fourier transform as
d9(t) = / et dy) (3.5.3)
0

with dg}n the phonon annihilation operator in the mechanical mode of frequency €2,,. The
Hamiltonian in Eq. (3.5.1) can also be described by a sum of contributing terms over

many different frequencies as H, = = dQH,(Q), where

2
1) =3 g, [awn (aﬁ’igcigﬁ + afjj}jﬂcig)) + h.c.} . (3.5.4)
n=0 j=1

Note that, satisfying energy conservation, different processes may occur from the annihi-
lation of a photon of the carrier, described in the linearization by the field amplitude «,, .
Either we may have the production of a photon in the lower sideband and the production
of a phonon from the annihilation of a carrier photon, or the production of a photon in the
upper sideband with the annihilation of a phonon. The reverse processes are described

by the Hermitian conjugate terms.
The complete Hamiltonian of the system, which includes the parametric down conver-

sion and the photon-phonon interaction, would be given by
H(Q) = H,(Q)+ H,(Q), (3.5.5)

where H, () and H,(Q) are given by the Egs. (3.1.8) and (3.5.4), respectively. Now a
complete evaluation of the contribution of both parametric down conversion and Brillouin

scattering to the OPO dynamics can be performed.

3.5.2  Parametric gain of the fields

The evolution of the system should now include the modes of the phonon bath. Let

—

- N\ T -
be A = (A,D) , where the field operator vector A was defined in the Sec. 3.2 and
D= (dg ) CZS t cfg ) 62(92 t cig’ ) cig’ )T)T lists the bosonic operators on the phononic reservoirs.

Therefore the set of differential equations describing the dynamics of operators can be
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written in compact form as follows:

— = Mg oA, (3.5.6)

where

M, iJ
Myg) = ( o ) (3.5.7)

J, = ( If ) o K= (T L), (3.5.8)

where

Q,, 0
L, = gnj< . ), (3.5.9)

0 —af,

, 0 o,
L. = g, S 3.5.10
s g ! ( _Oé::n 0 ) ( )

are the elements matrix of the matrices L and L', respectively. In Eq. (3.5.8) the "dagger"
denotes conjugate transpose of the matrix.
The solution of Eq. (3.5.6) is given by

—

Al =GH.9A| | (3.5.11)

£=0

‘{:1

where
1
G(x,9) = exp </ dg IM(X@) : (3.5.12)
0

3.5.3  Modeling the optical cavity

Following a procedure similar to that done in Sec. 3.3, we get similar expressions for the

output fields of the cavity. Specifically,

Ag =Ryl + T, A, (3.5.13)

(x:9)
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The expressions for the matrices R, 4) and T,(x, ») are similar to those given in Egs. (3.3.10)

and (3.3.11) but with the following modifications to account for the phonon operators.

= U = (p®06x6),
R — R = (R®04y),
T - T=(T& Lgue),
R — R = (R’ @ 04x¢),
T = T = (T' @ 1gxo).

3.5.4 Solution for the Gaussian quantum state

In analogy to Eq. (3.4.2), the covariance matrix for all fields (optical and phononic) is

Vi = Rig) VinR{y ) + Ty Vo T k) (3.5.14)

Considering the case where the field inputs are in a vacuum state, and the phonon reservoir

is in a thermal state, Vi, = (1 + 2n¢,) Lgxe, we have
Vin =V, = (112512 ® Vi) , (3.5.15)

considering here that the three phonon modes of the reservoir have the same temperature
and the same average number of phonons 7.

The resulting covariance matrix will be given by

A(0) 4(0) A(1) cjgl) A(2) ~(2)

Ds ds Ps Ds qs
P00 e dO ey ) e
Cfgo) er BO ey O ey (02
(1
V, = pg ) M(Ol) €4 P(l) €6 <(12) €7 (3.5.16)
i e VO e B e 02
]522) M(OQ) €5 ¢ (12) €s P(Q) €9
P\ s VO o D o g

and
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Figure 18: Covariance of the amplitude and phase quadratures of the three fields coming from the OPO,
Egs. (3.5.16) and (3.5.17), as a function of the normalized pump power. We employ in our numerical
results arbitrary values for optomechanical couplings: gg1 = go2 = goz = 7.0 mHz, g11 = g12 = g13 = 0.5
mHz, g1 = 1.0 mHz and ¢25 = g23 = 3.0 mHz. Thermal phonon density was arbitrarily set to n¢,=10.
The dashed lines are the results we would expect in the absence of phonons noise (continuous lines in
Fig. 17).
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A direct comparison with matrices in Eqs. (3.4.4) and (3.4.5) shows many additional
features coming from this added thermal reservoir. It is curious that even in the absence
of phonons in the reservoir, those terms should yet appear due to the photon-phonon
coupling of the zero-temperature fluctuations. Nevertheless, these terms would be small
in this case, and would not affect significantly the covariance, even though the resulting
state of the field is no longer pure due to the coupling to extra modes of the crystal.

The behavior of all elements from the Eqs. (3.5.16) and (3.5.17) as functions of
normalized pump power o are presented in Fig. 18 for the same parameters used in
Fig. 17. We can see that only terms that depend on quadratures of amplitude, in
the symmetric description, are unaffected by the inclusion of phonons. This behavior is
expected according to the semiclassical theory presented in [César 2009|. In addition, we
note that phonons can considerably modify the quantum state (covariance matrix), so it

is necessary to take this effect into account to completely characterize the state of the
OPO.

3.6 Experimental results

In this section we will use experimental data found by the research group led jointly by pro-
fessors Marcelo Martinelli and Paulo Nussenzveig of the University of Sao Paulo in Brazil,
in order to compare with the predictions of our theoretical model for a triply resonant
OPO operating above threshold. The specific details of the experiment together with the
measurement techniques used are very well described in [Barbosa 2013¢,Coelho 2013, Bar-
bosa 2013a| and therefore, in what follows, we will only describe very briefly such aspects
in order to establish the theory-experiment connection. It should be noted that this re-
search group has more than 15 years of experience in working with OPOs and that among
its most relevant results we can highlight the generation of entanglement between signal
and idler beams with different wavelengths [Villar 2005], the theoretical demonstration
of tripartite entanglement |[Villar 2006], measures of correlation between the twin beams
and the reflected pump beam |[Cassemiro 2007|, characterization of the spurious noise
introduced by the phonons in the crystal lattice of the non-linear crystal [César 2009, the
experimental verification of tripartite entanglement [Coelho 2009] and the characterization

of the dynamics of entanglement as a function of the losses [Barbosa 2010].

3.6.1 Reconstruction of the hexapartite quantum state

The experimental system is a triply resonant OPO operating above threshold, and the
setup is depicted in Fig. 19. The OPO cavity is pumped by the second harmonic of a dou-
bled Nd:YAG laser, filtered with a mode cleaning cavity to ensure that pump fluctuations
are reduced to the standard quantum level in amplitude and phase for frequencies above
20 MHz. The filtered pump beam is then injected in the OPO, with adjustable power,
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Figure 19: Setup for the reconstruction of the OPO beams’ covariance matrix. PBS, polarizing beam
splitter; BS, 50:50 beam splitter; IC, input coupler; OC, output coupler (OPO cavity); FR, Faraday
rotator.

through the input coupler (IC) with a reflectivity of 70% for the pump field (532nm)
and high reflectivity (> 99%) at 1064nm. The reflected pump field is recovered from
the Faraday rotator (FR). The infrared output coupler (OC) has a reflectivity of 96%
at ~1064 nm and high reflectivity (> 99%) at 532 nm. Both mirrors are deposited on
concave substrates with a curvature radius of 50 mm. The crystal is a type II phase-
matched KTP (potassium titanyl phosphate, KTiOPO,) with length [ = 12 mm, average
refractive index n=1.81(1) and antireflective coatings for both wavelengths. The average
free spectral range for the three modes is found to be of 4.3(5) GHz. The cavity finesse
for the pump mode is 15 and 124 for the signal and idler modes (the latter defined as
the mode with the same polarization as the pump). The overall detection efficiencies are
87% for the infrared beams and 65% for the pump, accounting for detector efficiencies
and losses in the beam paths. The threshold power is 60 mW, and the maximum pump
power was 75% above the threshold. In order to reduce the effect of phonon noise on the
system, the crystal is cooled to 260 K, and the OPO is kept in a vacuum chamber to avoid
condensation.

Phase noise measurements were performed using the ellipse rotation method described
in [Galatola 1991, Villar 2008|, with the help of analysis cavities. Cavities 1 and 2 (for
the transmitted infrared beams) have bandwidths of 14(1) MHz, and cavity 0 (for the
reflected pump) has a bandwidth of 12(1) MHz. This ensures a full rotation of the noise
ellipse for the chosen analysis frequency of 21 MHz. Mode matching of the beams to
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Figure 20: Measured variances of the amplitudes of the three fields coming from the OPQO, in the sym-
metric description, followed by their respective correlations. Cross correlations between symmetric and
antisymmetric modes are also displayed. Solid lines plot the corresponding theoretical curves of the
theory developed in sections 3.1-3.5.
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the analysis cavities was better than 95 %. Combining in-quadrature electronic local
oscillators and cavity detection |Barbosa 2013c, Barbosa 2013b|, the covariance matrix
of the output sidebands was reconstructed. Since the detected modes are of Gaussian
nature [Coelho 2015], determination of the covariance matrix is equivalent to the complete
tomography of the output state of the sidebands of the involved intense optical fields.

Covariances for the intensity fluctuations are show in Fig. 20, in terms of the symmet-
ric/antisymmetric modes, that results in a compact presentation of the covariance matrix.
They present a good agreement between theory and experiment. Deviations for the pump
field at higher pump power are consistent with the effects of mismatch in the pumping
field, that are aggravated by thermal lensing on the crystal. The pump cavity mode will
be more depleted with growing pump power, and the contributions of unmatched modes
will be more relevant, degrading the measurement of the variance and contributing as an
effective loss in detection. Nevertheless, correlations are less affected in this case, and
present a better agreement. It is curious to notice that correlations between the sym-
metric and antisymmetric modes are observed for pump and signal (or idler) correlations,
as predicted in [Barbosa 2013c|, revealing that there is more information on the system
beyond the three mode description. A full description of the measured state should nec-
essarily involve six fields, and the distinct role of each sideband becomes relevant for the
tomography of the system.

Phase quadrature measurements of fields of distinct colors are possible by the use of
analysis cavities. The results shown in Fig. 21 were evaluated with a limited number
of adjusting variables to describe the phonon coupling. The complete model involves
three coupling channels between each mode of the carrier to distinct reservoirs, one for
each oscillating mode of a crystal. Nevertheless, a toy model considering that pump and
idler are coupled to the same reservoir (since they have the same polarization), and the
orthogonally polarized signal with additional coupling to a second reservoir can be used
to adjust the curves to the data. Best results were obtained with gy; = 8.0 mHz for the
pump coupling, go1 = 3.6 mHz for the idler coupling, and g;; = 1.9 mHz for signal coupling
to one of the reservoirs, and g;» = 2.7mHz for signal coupling to the second reservoir.
Thermal phonon population density was arbitrarily set to ng, = 100, acting just as a
multiplicative constant in our model at high temperatures. It is curious to notice that
\/m ~ g21, and gg1 ~ 2go1, consistent with the scaling with wavelength described
in the semiclassical model for the phonon noise [César 2009).

It is clear that the photon-phonon coupling leads to additional noise to the system,
that should degrade the purity, if we compare with the expected results of the variance
in absence of phonon noise, shown by dashed lines in Fig. 21. This coupling prevents
the observation of phase squeezing for the pump mode in the present condition, and adds
noise to signal and idler fields. Since this additional noise is not perfectly correlated, it will

lead to degradation on the squeezing level at the sum of the phases, as we would expect
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Figure 21: Measured variances of the phase of the three fields coming from the OPO, in the symmetric
description, followed by their respective correlations. Cross correlations between symmetric and anti-
symmetric modes are also displayed. Solid lines plot the corresponding theoretical curves of the theory
developed in sections 3.1-3.5. Dashed lines are the result we would expect in the absence of phonons
noise.
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Figure 22: Measured correlations between amplitude and phase for each mode in symmet-
ric/antisymmetric description. Solid lines plot the corresponding theoretical curves of the theory de-
veloped in sections 3.1-3.5.

in the generation of entangled modes of the field [Reid 1988, Reid 1989|. Nevertheless,
quantum correlations for two [Villar 2005] and three modes [Coelho 2009] can be observed
if adequate control of the phonons is available.

So far, we have presented all the measurements for the 18 non-zero terms on the
matrices given in Eqgs. (3.5.16) and (3.5.17). A complete description of the system should
involve all the correlations between phase and amplitudes of each field in symmetric
and antisymmetric description. The present model shows that for perfect resonance of
the carriers, the contribution of the other terms in (3.5.16) and (3.5.17) should be zero.
Experimental results are close to that, as can be seen in Fig. 22. These Cross-correlations
may become effectively nonzero for growing pump powers, where thermal effects provide
some change in the refractive index leading to small detunings of the carrier modes.

In conclusion, the experimental results are in good agreement with the simple model
developed here, involving the transformation of the field operators in their reflection by
a cavity, the nonlinear coupling among the fields by the crystal and the photon-phonon
coupling. In the present case, discrepancies between this model and the semiclassical
one are smaller than 4% of the standard quantum level® being both compatible with the
experimental results.

Note that we had restricted the analysis to a linear model for the reconstruction of

the covariance matrix, valid for small intracavity gain. Since the output fields are in a

2Except for amplitude variance of the pump, reaching 9%.
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Gaussian state for all practical purposes [Coelho 2015], it characterizes a complete state
tomography involving six modes of an OPO in a wide range of pump values, opening the
path to explore the structure of hexapartite entanglement in this system as we will see

below.

3.6.2  Hezapartite entanglement

As seen in Sec. 3.1, the Hamiltonian involving the specific sideband modes of the three

carriers, with € > 0, is given by [see Eq. (3.1.8)]

2 X w (A1) A2 ~(1) A2
HX(Q) = _Zﬁ’; |:awo (afu)JrQasz)*Q + aful)fﬂat(UQLQ) +
~(0)F A2 ~(0)F ~(2
Oy <GEJ0)+Q@£JQ)+Q + afuo)fﬂai)g)fﬂ) +

(O A(1 SO A(1
Qi (afuo)lQaful)JrQ + afuo)jgail)_9> — h.c.], (3.6.1)

and the total Hamiltonian is given by the sum of the contributions for each positive
frequency €2, as fIX = f:o deIX(Q). Thus, the detailed treatment of the state of the
sideband modes associated with a single analysis frequency ) is decoupled from those of
frequencies €)' # Q.

The resulting Hamiltonian includes, therefore, a pair of terms involving the creation
and annihilation of pairs of photons in symmetric sideband modes of signal and idler fields,
mediated by the mean pump field. This term is associated with two-mode squeezing
operations, and it is the leading term when the OPO is below threshold, resulting in
entangled EPR states [Ou 1992] or squeezing in the case of degenerate signal and idler
modes [Wu 1986a]. Nevertheless, above threshold, mean field amplitudes for signal and
idler are non-zero, and the other four terms will imply in photon exchange between the
pump sidebands and the downconverted sidebands, mediated by the other downconverted
mean field. These beam splitter operations will couple all the six sidebands in a ring,
leading to a cascaded coupling among all modes. The result is an hexapartite entangled
state, controlled by the mean fields (Fig. 23).

Therefore, the state of the sidebands will depend on the mean fields, and it can be
directly related to the normalized pump power o for exact resonance [see Egs. (2.3.11)-
(2.3.13)], taking the oscillation threshold as o = 1. Variation of this single parameter
will enable the exploration of this rich structure of nonclassical fields. The only missing
part in the current discussion comes from phonon noise, responsible for degradation of
the purity of the field state, that is treated in detail in the Sec. 3.5 and analized in the
previous subsection. Moreover, since only bilinear terms are involved, the resulting state
will be Gaussian, as experimentally observed in [Coelho 2015].

Entanglement will be studied by the analysis of the physicality of the smallest sym-

plectic eigenvalue 7 of the covariance matrix for partially transposed density operator of
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Figure 23: Coupling of the six sideband modes of the field. Signal and idler sidebands are coupled by
photon pair creation and annihilation operators. All the other modes are pairwise coupled by beam-
splitter operations.

the state [Simon 2000]. Whenever o < 1, there is entanglement between the bipartitions
(further details in the subsection 2.1.2). In what follows, the superscript of 7 denotes the
modes that where selected among the six modes described in Fig. 23 as nf for the mode
at frequency w, —Q (i.e., at the lower sideband), and nu for modes at the upper sideband
wy, + 8, n referring to the carrier frequency. Experimental data for the covariance matrices
were presented in the previous subsection, as well as their theoretical values. They are
used in the evaluation of 7, as discussed in the subsection 2.1.2.

The error bars of the experimental symplectic eigenvalues are calculated from the
measured covariance matrix (with the respective errors for each of its elements) and using
the Monte Carlo method. Basically, a new random covariance matrix is constructed from
the measured matrix and its uncertainties. Each element of the new matrix is calculated
as the sum of the element of the matrix measured with a random Gaussian distribution
of average null and standard deviation equal to the uncertainty of the measured matrix.
We perform ten thousand simulations, each of them providing a symplectic eigenvalue.
Once this is done, a histogram is constructed and, the uncertainty for v is extracted from
it. The details of this procedure are very well explained in [Cassemiro 2008a].

If we transpose the individual sidebands, in a 1 x 5 bipartition, we can observe that
the measured states are fully entangled over the measured region (Fig. 24a), and although
the phonon noise degrades the violation of the entanglement limit 7 = 1, it is not suffi-
cient to lead to separability in this case. This is in contrast with the situation involving
the pair of sidebands of a single field (Fig. 24b), where the phonon noise leads to an
apparent decoupling of the pump field for powers beyond 65% above the threshold. The
resulting curve is very close to the one obtained in the demonstration of tripartite entan-
glement |Coelho 2009, when it was considered the symmetric combination of sidebands as
a single mode. We should notice that violation is always larger for bipartitions involving

at least one of the sidebands of the downconverted fields. We can see that this violation
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is maximized at the threshold, where we have the transition from a pure pair of bipartite
states [Ou 1992] to the situation where depletion of the pump couples the amplitudes of
the three modes, and energy conservation leads to phase correlations [Coelho 2009].

Next, we analyze 2 x 4 bipartitions. In Fig. (24c), upper and lower sidebands of
pairs of distinct fields are transposed. In Fig. (24d), upper or lower sidebands of distinct
fields are transposed. As far as just one of the sidebands of the downconverted fields is
contained in the subset, the curves present a similar behavior to the one observed for
1 x 5 bipartition of a single sideband of the downconverted field, demonstrating that
this is the leading term in the entanglement of the system. The situation changes if two
modes of the downconverted fields are taken in the bipartition. If both upper sidebands
are taken in one subsystem, the violation is maximized, and remains insensitive to the
pump power. This is reminiscent of the Einstein-Podolsky-Rosen (EPR) entangled state
generated below threshold, but also from the twin beam generation of the OPO above
threshold. These modes, and their counterpart in the lower sidebands, are responsible for
the so called amplitude correlation [Heidmann 1987|, and are directly connected by two
mode squeezed state operators in the scheme in Fig. 23. On the other hand, if upper
and lower sidebands of the downconverted fields are taken in the subsystem, the violation
is much smaller, but increases monotonically with the pump power within the studied
range.

Finally, we analyze the six 3 x 3 bipartitions. In Fig. (24e), all modes come from
different fields. Once again, maximal violation is obtained when a pair of upper and
lower modes of each downconverted fields are in the same bipartition. But entanglement
persists even if both upper, or both lower modes, are taken together with one of the pump
modes. In Fig. (24f), bipartitions involve both sidebands of a field, and one sideband of
other field. Therefore, the entanglement observed for single modes (Fig. 24a) is enhanced
with the help of the split of the sidebands of a single field.

Some features are worth of notice. The stronger and more resilient entanglement occurs
on bipartitions where the upper sidebands of signal and idler fields are split from their
lower sidebands. That is exactly the modes that are directly connected by a two-mode
squeezed state generator (Fig. 23), and are reminiscent of the sub-threshold entangled
pair. It is important that this violation is insensitive to pump power, just as the twin
beam noise compression in the OPO.

Next, when only one of the sidebands of the downconverted fields is kept apart in
one partition, entanglement is yet strong, although not as strong as previously. This is
the most common situation, occurring in 16 of the possible bipartitions. It is slightly
dependent on the pump power, but remains entangled all over the range.

The next situation it the one where upper and lower sidebands of one downconverted
field are split from its twin counterpart. In the four cases where this happens, entangle-

ment is monotonically reduced for increasing pump power. Finally, there are situations
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Figure 24: Smaller symplectic eigenvalues as an entanglement witness for normalized pump powers up to
80% above threshold: (a) (1 x 5) bipartition involving a single sideband, (b) (2 x 4) bipartition involving
pairs of sidebands of a single carrier, (¢) (2 x 4) bipartition involving upper and lower sidebands of a
pair of fields, (d) (2 x 4) bipartition involving upper or lower sidebands of a pair of fields, (e) (3 x 3)
bipartition involving at least one mode of each field, (f) (3 x 3) bipartitions involving a pair of modes of
a single field and one mode of the remaining field.
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Figure 25: Ranking of entanglement. a) the strong entanglement-two squeezers, b) the resisting entangle-
ment - single squeezer, ¢) the weak entanglement - the beam splitter and d) the declining entanglement
- squeezers and beam splitter.

where entanglement is not observed close to threshold. It happens when the upper side-
band of signal and lower sideband of idler are in the same partition, and their counterparts
in the other. These are exactly the pair of modes connected by the squeezing operator,
and close to threshold the beam splitter terms are negligible due to the low value of the
mean field of signal and idler fields. Therefore, we have two independent sets of modes.
They only become entangled when the pump power is increased, and the intense mean
downconverted fields begin to enable the photon exchange of these modes with the pump,
leading finally to entanglement. For this same reason, the situation where the partition in-
volving only upper and /or lower sidebands of the pump have negligible entanglement close
to threshold: the pump field is barely connected to the downconverted modes. Although
entanglement grows with the pump power, phonon noise on signal and idler begins to
reduce their correlation with the pump, eventually leading to disentanglement for higher
pump power. In summary, we can say that we have 4 types of entanglement for the
analyzed partitions: strong, resisting, weak, and declining entanglement as shown in Fig.
25.

In conclusion, the system presents hexapartite entanglement for pump power in the

range from 1.1 to 1.6 above threshold. Entanglement can be revealed by stronger violations
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if the modes directly coupled by two mode squeezing are split, but the beam splitter
operations acting recursively over the modes in the cavity feedback lead to multimode
entanglement involving all the fields. Better results can be expected if phonon noise is

suppressed (dashed lines in Figs. 24 and 25).
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4 Generation and characterization of CAEs from a cold atomic

ensemble

In this chapter, the main experimental results in our study of the storage and extraction
process of up to two CAEs in a cold atomic ensemble are shown. A portion of these results
was published in [Ortiz-Gutiérrez 2018|.

In section 4.1, we begin by describing how to create a cold atomic ensemble in our
laboratory. Next, in section 4.2, we describe our series of experiments which were con-
ducted in three stages. In the first two stages, subsections 4.2.1 and 4.2.2, the single and
two-photon superradiances are investigated simultaneously through the same experiment,
just being heralded by different types of events during the writing process. Possible corre-
lations between the two photons on the two-photon wavepacket are also investigated. As
discussed in subsection 2.6.3, the theory presented in [Barros 2018| is developed neglecting
any effect of reabsorption of photons by the ensemble in the reading process, in which case
no correlation between the two photons should be observed. In this case, the two-photon
wavepacket should be simply the product of two independent single-photon emissions, as
stated in Eq. (2.6.45). In this way, we are able to investigate possible correlations between
the two photons emitted in the reading process by comparing the experimentally mea-
sured two-photon wavepackets with the expected curves coming from the experimentally
measured single-photon wavepackets, and assuming independence between the emitted
photons. Finally, in the third stage (subsection 4.2.3), a statistical characterization of the
fields is performed in order to demonstrate the presence of quantum correlations between
the photons emitted in the writing and reading processes, and also to characterize the
quantum state of the system. All the experimental work was done jointly with Luis Or-
tiz Gutiérrez, and his doctoral thesis [Ortiz-Gutiérrez 2017| contains extra details on the

experimental system.

4.1 Atomic ensemble production

For all experiments below, a cold ensemble of N rubidium 87 (8"Rb) atoms, obtained from

a MOT, was used. These atoms belong to the family of alkaline metals, so they have sev-
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Figure 26: The configuration of the laser beams in our magneto-optical trap.

eral properties that facilitate their cooling and trapping [Steck 2015]. The most important
of these properties is that they have a cyclical transition between levels ’5251 12, F = 2>
and {52P3 2, F' = 3>, as mentioned in the section 2.5. The particular experimental setup
of our MOT is shown in Fig. 26. In this configuration, there are 4 perpendicular indepen-
dent beams in the horizontal plane and only the vertical axis is constituted by a single
retroflected beam. In order to achieve the configuration of circular polarizations necessary
for the cooling process to take place (see section 2.5), we use a set of six quarter-wave (A/4)
plates right before the vacuum chamber. The four beams of the horizontal plane come
from two beams through PBS cubes, as shown in Fig. 26. However, these two beams, in
turn, come from the two outputs of a Fiber Beam Splitter (FBS), whose two inputs are,
on the one hand, cooling light (red detuned from the |F' = 2) — |F’ = 3) transition) and,
on the other hand, repumping light (resonant with the |F' = 1) — |F’ = 2) transition).
In this way, we see that the repumping light is going to be involved in the four beams
of the horizontal plane, all being bichromatic. All light beams are derived from diode
lasers (THORLABS DL7140-201S) modulated by Acoustic-Optic Modulators (AOMs) to
address the D, line of 8Rb at 780 nm. In the end, we combine a magnetic field gradient
of 10 G/cm, generated through two coils in anti-Helmholtz configuration (not shown on
Fig. 26), with the cooling light and the repumping light to load up to N ~ 108 Rubidium
atoms into the MOT with temperatures below 1 mK.

The trap was kept on for 23 ms, before the trapping beams and the magnetic field
were turned off for 2 ms, as shown in Fig. 27. The MOT repumping light is kept on
for an extra 0.9 ms to pump all atoms to the |F' = 2) state, the initial |g) state of our
scheme. After the repumping light is turned off, the ensemble is kept in the dark from
all MOT light fields during 1.1 ms, the period in which the experiments take place. This
whole process is repeated with a frequency of 40 Hz. The residual magnetic field is
minimized up to a ground state linewidth of about 100 kHz, corresponding to magnetic
fields on the order of 36 mG, by means of three pairs of compensating coils in Helmholtz
configuration and performing microwave spectroscopy between the two hyperfine ground
states [de Almeida 2016]. Such linewidth should lead to a coherence time on the order
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Figure 27: Timing for all the experiments in section 4.2.

of 1.6 us, much larger than the separation between write and read processes employed in
our experiments.

In all the experiments in the next section, during the dark period of the MOT, a
sequence of 1000 sampling periods of 1 us duration is executed (see Fig. 27). Since
the temperature of the atoms is less than 1 mK, their motion can be neglected during a
sampling period. At each sampling period, a sequence of write and read pulses excite the
ensemble. The time duration of each of these pulses will depend on the specific experiment

that we are considering.

4.2 Experiments

4.2.1 First configuration: linear polarizations

The setup for our first stage of experiments is shown in Fig. 28. Each atom exhibits a A-
type level scheme consisting of a ground state |g) = |F = 2) a storage state |s) = |[F = 1)
and a excited state |e) = |F' = 2) (see Fig. 29). The atoms are initially prepared in the
ground state by the MOT repumping light, as explained in section 4.1. The write pulse
has a duration of about 50 ns and is 22 MHz red-detuned to the |g) — |e) transition.
Its duration and frequency are controlled by a sequence of two AOMs, one of them in
a double-pass configuration. The 4c diameter of the write beam in the MOT region is
420 pm. As a result of its action, photons may be emitted in the mode, called field
1, coupled to an input of a single-mode FBS that divides the output to two Avalanche
Photo-Detectors (APDs), Dla and D1b. The field responsible for our signal is emitted
in the |e) — |s) transition. In this way, the detection of n photons in field 1 heralds the
storage of n CAEs in the atomic ensemble.

The Optical Depth (OD) of the atomic ensemble is measured by sending a very weak
long pulse (about 1 us long) in the write-field spatial mode, with an adapted detuning A
to the |g) — |F’ = 3) transition, and observing its transmission 7'(A) after propagation
in the atomic ensemble. More specifically, from the full-width at half-maximum ¢ of the

transmission curve T'(A), we could calculate directly the OD of the ensemble through
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Figure 28: Experimental setup for the first configuration considered in our experiments: linear polariza-
tions.

the expression OD = In (2) [1 + (5/F)2} |Gattobigio 2010], where I'/2r = 6 MHz is the
inverse lifetime of the |F" = 3) state. This measurement technique allows one to measure
in a reliable fashion large optical depths, which is not possible by measuring directly
T(A = 0) due to finite signal-to-noise ratio and probe laser spectral width. The OD is
a crucial parameter |[de Oliveira 2014], since it is proportional to the number of atoms
in the system and is easily accessible experimentally. The number of atoms controls, for
example, the decay time of the collective superradiant emission [Mendes 2013b]. The
measurement of OD was performed typically in the center of the dark period of the MOT,
without write or read fields acting on the ensemble, and was changed by tuning the power
of the trap laser (laser 1 in Fig. 26).

In the MOT region, field 1 has a 40 diameter of 150 pm and “passes” through the
middle of the write beam forming an angle of about 2° with it. The polarizations of write
beam and field 1 are linear and orthogonal to each other (see Fig. 29), with extinction
ratios on the order of 10° for the orthogonal polarization in each field. This degree of
polarization of the fields is achieved by the transmission through a pair of PBSs, and the
rotation of the polarization of the write beam is done by a half-wave (A/2) plate right
before the vacuum chamber with the addition a A\/4 plate (not shown on Fig. 28) to
correct for small polarization distortions on the optical pathway.

About 100 ns after the write field is turned off, the read pulse is turned on for 350 ns
(see inset of Fig. 28) by a single AOM. This pulse is resonant with the |s) — |e) transition
and maps the collective state with n CAEs in |s) to a collective state with n CAEs in
le), which then decay superradiantly back to the initial state |g) [Ortiz-Gutiérrez 2018],
emitting photons in a second light mode, called field 2, coupled to the input of a single-
mode FBS that divides the output to two APDs, D2a and D2b. We call field 2 this final
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Figure 29: Lambda scheme for the configuration of linear polarizations. H and V denote horizontal and
vertical polarization, respectively.

superradiant emission of the overall, parametric four-wave-mixing process |Felinto 2005].
The polarizations of read pulse and field 2 are linear and orthogonal to write pulse and
field 1, respectively, as shown in Fig. 29. In addition, the read and field-2 beams are
mode matched and counterpropagating to the write and field-1 beams, respectively. This
configuration results in single-photon superradiance with negligible propagation effects
[Mendes 2013b,de Oliveira 2014]. For alignment, the write beam may be coupled to the
read-beam fiber, and vice versa, with about 80% coupling efficiency. On the other hand,
an alignment laser field coming out of the field-2 fiber may be coupled with about 70%
efficiency to the field-1 fiber.

As mentioned above, after the photons emitted in fields 1 and 2 are coupled to their
respective single-mode FBSs, they reach two independent pairs of APDs, as shown in
Fig. 28. The output of the APDs are directed then to a counting card (MCS6A from
FAST ComTec), which records all photodetection events for later analysis by software,
with 0.1 ns time resolution. In this way we may compute the various integrated quantities
Nia1p2qa2 giving the joint clicks-number for all detection events in a single sampling period.
Note that the subscripts represent the different APD’s in the way they were named in
Fig. 28, and the possible values that these subscripts can take are only 0, 1 and X. It
takes the value 0 when the detector corresponding to the subscript has not tired, the
value 1 when the detector detects a photon, and we use the value X to indicate that we
are not interested in this information, i.e. we are going to count here both cases, when
the corresponding APD fires and when it does not. For example, Nigxx means that the
detector la detected a photon, while we are sure that the other detector of field 1 (1b)
hasn’t detected anything and that both detectors of field 2 (2a and 2b) may have clicked
or not. From these quantities we may calculate, for example, three important normalized

correlations:

NllXX

g1 = ( Nsp, (4.2.1)

NlXXX)(NXlXX)
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NXXll
- Nsp, 4.2.2
92 = (Nyxix) Naxxr) 0 (422)
o Nixxi . Nixix
12 —
(NIXXX)(NXXXl) (NIXXX)<NXX1X)
N N N.
+ X1X1 + X11X SP7 (4.2.3)

(Nxixx)(Nxxx1) (Nxixx)(Nxxix)] 4

where Ngp is the total number of sampling periods performed during the whole measure-
ment time. The first two of these quantities measure the auto-correlations for fields 1 and
2, respectively. The third one measures cross-correlations between the two photon fields,
giving the probability of generating a photon pair divided by the probability of observing
an accidental coincidence event. The singular quantum nature of the correlations between

fields 1 and 2 may be directly verified by the violation of a Cauchy-Schwartz inequality,

g2
R=-72_<1, (4.2.4)
g11922

valid for classical fields [Kuzmich 2003, Clauser 1974]. Since gi; and g9 are typically
bounded by a maximum value of 2 for our system [Kuzmich 2003], we have that g;o > 2
also indicates purely quantum correlations between the fields.

Another important quantity, is

_ Nixix + Nixxi " Nxi1ix + Nxix1

2, 425
NlXXX NXlXX / ( )

Pc

which provides the conditional probability of detecting a photon in field 2 once a photon
in field 1 was previously detected in the same sampling period. In other words, it is
the probability of generating a photon in field 2 once the creation of the corresponding
collective state is heralded by the detection a photon in field 1. Finally, it is worth noting
that we may also compute all these quantities as a function of time inside each excitation
pulse. This last measurement then provides the various wavepackets for the photons,
together with the corresponding details of the dynamic of the reading process.

In order to identify the operating regime of our system, where one or two CAEs
are efficiently stored in the atomic ensemble, it was necessary to perform a preliminary
characterization. In Fig. 30 we plot then p., g12, R, and the Twin Generation Rate (TGR)
versus p; = (Nixxx + Nxixx)/Nsp !, for an OD=31.4 and a read power of 9.50 mW?2.

Tn order to be able to vary p;in a controlled way, which corresponds to the probability that a photon
is detected by one of the APDs of field 1 regardless of how many photons were detected on field 2,it is
necessary to vary the power of the write beam. The way in which we vary the write power is by using
different filters before the coupling of this beam into its optical fiber.

2The read power is fixed at a much greater value, since the extraction of the field-2 photon is a process
that must be implemented with greater efficiency [Mendes 2013b].
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Figure 30: Characterization of the system for the first configuration considered. Panel (a) shows the
conditional probability p., (b) the normalized cross-correlation function between fields 1 and 2, g12,
(c) the parameter R (directly related to the Cauchy-Schwartz inequality) that indicates the non-classical
nature between fields 1 and 2 for R> 1, and (d) the twin generation rate TGR. The wave packets measured
in this configuration correspond to p; = 0.0164, highlighted on a blue vertical bar, where p. = 9.51%,
g12 = 5.25, R= 19 and TGR=62.5Hz. The graphs show the transition of the region (I) dominated by
spurious noises, passing through the region (II) that characterizes a region of individual CAEs, reaching
the region (IIT) where multiple CAEs are generated.
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The TGR represents the rate of coincidence counts for second and can be obtained by
multiplying (N1x1x + Nixx1 + Nx11x + Nxi1x1)/Nsp by the number of sampling periods
per second (40000 in our case). The four panels in Fig. 30 were obtained from the same
data set with around 10° sampling periods. Error bars come from the uncertainty in
the accumulation of detection events, proportional to the square root of the number of
detections. As can be observed in Fig. 30(a), the curve for the conditional probability
p. presents several regimes for the generation of pairs of photons. For high values of
p1, indicated by region III, p. decreases as p; is reduced. This behavior indicates that
processes of multiple CAEs decrease with the write-pulse energy, while the correlations
g12 and the parameter R enter the nonclassical region with g5 > 2 and R> 1 [see Figs.
30(b) and 30(c)|]. On the other hand, in region II, we can see that p. remains almost
constant, which indicates that we are in the single-photon regime where the detection of
a photon in field 1 can lead to the detection of just one photon in field 2 [Laurat 2006].
Note that in this region g5 and R increase monotonically with the decrease in p;. Finally,
when passing to the region I, where p; is very low, spurious noises dominate the system
and the conditional probability decreases rapidly as p; goes to zero. A similar behavior
can be observed in the graphs of g and R . The explication for this behavior is because
in the region of p; — 0 the write power is so low that the detectors click more frequently
because of spurious light than for the photons emitted in the write and read processes.
As the spurious light has no correlation (g12=1), the coincidence detections are much less
likely than the singles (p1;1 < p1), in this way p. — 0.

In principle, in order to measure the wavepackets of the photons emitted in the reading
process, any value of p;, that is within the region II shown in Fig. 30(a), can be selected.
However, from the experimental point of view, only the larger values of p; in this region
are suitable for this type of measurements. The reason for this is that many events of
double and quadruple coincidences are needed in order to generate such wave packets
with good temporal resolution. As shown in Fig. 30(d), the TGR in the region II is
between 10 and 100 Hz. It is found that in this region the ratio between TGR and the
four coincidences rate (detection of two photons in field 1 and two in field 2) is ~ 2 x 103.
Taking this into account and always trying to have values of g;» and R high enough, we
have decided that the point to make this measurement would be p; ~ 0.0164, where we
can see that gio = 5.25, p. = 9.51% and TGR= 62.5 Hz. The choice of these values
corresponds finally to the choice of a certain write power.

The single-photon wavepacket is obtained from the quantity

[ Nio10(t) + Nigor(t) + Now1o(t) + Nowoa (2)

¢ (1) = , 12.6
Aial) Nioxx + Noixx ( )

where the quantity in the numerator is proportional to the joint probability density of

detecting a single photon in field 1 and a single photon in field 2 in a time window At
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around ¢ with ¢ = 0 as the moment the read field is turned on. In this way, p , (t) provides
the conditional probability density of detecting a single photon in field 2 around ¢ after

the detection of a photon in field 1. From this definition, we have

via= [ s (4.2.7)
0

Therefore, the normalized single-photon wavepacket is obtained from

piat) = L(t) (4.2.8)
P11
On the other hand, the two-photon wavepacket is obtained from the quantity
/

phalr,#) = A0, (1.29)

where the quantity in the numerator is proportional to the joint probability density of
detecting two events in field 1 and two events in field 2, where t + At and ¢’ + At/
are the time windows® where the two events in field 2 are detected, respectively. In
this way, p§72(t, t') provides the conditional probability density of detecting two events in
field 2, around t and t’, respectively, after the detection of two events in field 1. The
information contained in p§,(t,#') can be divided into different wavepackets depending on

the conditions we impose on the times ¢ and t':

e If we do not consider any sort of ordering on times ¢ and t’, then we can define a
wavepacket, independent of the detection order of the two photons in field 2, in the

following way:
oty = | [ ssatenie + [ ot 12 (4210
0 0

e Ift =1t and t' = t; + 7 > t;, we can integrate over T to obtain the conditional

probability density to detect in ¢; the first photon of the pair in field 2:

,05712(251) = / pho(ti, t1 + 7)d7 + / pho(ts + 7, t1)d. (4.2.11)
0 0

On the other hand, if the integration run over t;, we obtain the conditional proba-
bility density to detect the second photon in field 2 at a time 7 after the first one

was detected:

p;TQ(T) = / p§72(t1, tl + T)dtl + / p§72<t1 + T, tl)dtl (4212)
0 0

The corresponding normalized wavepackets for each of the expressions given in (4.2.10),

4.2.11), and (4.2.12), are denoted by p$,, psh and ps7, respectively 4.
2.2) P22 2,2

3t,t' = 0 at the moment when the read field is turn on.
4From now on, every time we use the word "wavepacket", we will be referring to the “normalized
wavepacket”.
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Figure 31: Single-photon wavepacket (cyan curve) compared with the normalized probability den-
sities p% 5(t), pio(t) and pgo(t) to detect either field-2 photons at time ¢ in the configuration of linear
polarizations.

Before showing the measured wavepackets, it is worth saying that for the configuration
considered in this subsection, where all atoms are initially prepared at the hyperfine level
|’ = 2), it is not possible to perform a direct comparison between the measured single- and
two-photon wavepackets and their respective theoretical expressions deduced on section
2.6. The reason of this is because the theory considers simple three-level atoms in A
configuration. However, what is actually possible to investigate with the experimental
results and with the help of the theory, are the possible correlations between the two
photons on the measured two-photon wavepacket, as will be seen below.

The measured single-photon wavepacket and the measured normalized conditional
probability densities of detecting two photons in field 2 (irrespective to the detection
order) conditioned over the different detections in field 1, for At = 0.5 ns, are plotted in
Fig. 31. All these plots were obtained from the same data set with about 10'° sampling
periods. In this figure we can see that the wavepackets clearly present beatings coming
the various Rabi oscillations involved in the reading process through different Zeeman
sublevels. As mentioned previously, this behavior was expected since we didn’t use an
optical pump in order to prepare the atoms in a particular Zeeman sublevel. Also, it can
be seen that the two-photon wavepacket (squares in Fig. 31) is close to the single-photon
wavepacket (cyan curve in Fig. 31). These results reflect the fact that emissions of the
two photons in field 2 are close to independent, and each one is approximated to a single-
photon emission from a atomic ensemble containing a single CAE. This conclusion is not

valid anymore for the wavepackets p§ 5 and p7,, which present significant differences with
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Figure 32: Two-photon wavepackets (empty squares curves) for the configuration of linear polar-
izations. Normalized probability densities p5(t1) and p5(7), conditioned on the detection of i photons
in field 1, to detect (a) the first field-2 photon at ¢; and (b) the second field-2 at time 7 after the first
detection, respectively. The black curves in (a) and (b) are obtained from Eq. (2.6.45) and the measured
single-photon wavepacket (cyan curve in Fig. 31).
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Figure 33: Experimental setup for the second configuration considered in our experiments: circular
polarizations with optical pumping.

respect to the single-photon wavepacket.

As discussed in subsection 2.6.3, if we neglect the reabsortion of the field-2 photons by
the atomic ensemble, the two-photon wavepacket can be found from the product of two
independent single-photon wavepackets, as stated in Eq. (2.6.45). In what follows, to the
two-photon wavepacket found in this way (using the measured single-photon wavepacket),
it will be called the numerical two-photon wavepacket. In order to investigate if this
approximation is valid in our system, in Fig. 32 it is shown the complete measured
two-photon wavepacket (empty square curve) and the numerical two-photon wavepacket
(black curve) As a comparison, wavepackets with other conditioning on the field 1 are also
included. Since there are two detections in field 2, the wavepacket information was divided
in two parts. In Fig. 32(a) we plot the normalized conditional probability densities 5)0(172,
piy and psh of detecting the first photon of the pair in field 2 at a time ¢; after turning on
the read field. In Fig. 32(b) we plot the normalized conditional probability densities p,,
piy and pg5, of detecting the second photon of the pair at a time 7 after the first one.
As can be seen in Fig. 32(a) and (b), the numerical two-photon wavepackets successfully
reproduce the behavior of the measured two-photon wavepackets. This clearly shows that
the approach of considering independence in the emission of the two photons in field 2 is
valid in our system. Once again this conclusion is not valid for wavepackets with other

conditionings.

4.2.2  Second configuration: circular polarizations with optical pumping

In order to explore the single- and two-photon superradiances with a single Rabi frequency
for the atoms and thus to be able to compare with their respective theoretical predictions,
the experimental setup of Fig. 28 was modified as shown in Fig. 33. Two large modifica-

tions had to be introduced. First, an optical pump beam has been incorporated. Second,
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Figure 34: Lambda scheme for the configuration of circular polarizations.

two 10 GHz in-fiber Mach-Zehnder Intensity Modulators (IMs) has been incorporated in
order to control the pulse durations in the experiment °(see Fig. 33).

In this configuration, at each sampling period an optical pumping pulse of 200 ns
duration prepares the atoms at the |g) = |F =2, mp = —2) state. This beam is red-
detuned 32 MHz from the |F' = 2) — |F’ = 3) transition and has circular ¢~ polarization,
being retro-reflected to reduce its mechanical action over the atoms. Once in state |g),
the atoms are excited during 50 ns by a circular, o write pulse 22 MHz red-detuned
from the |g) — |e) transition, with |e) = |F' = 2,mp = —1). With small probability, n
atoms may be transferred to the state |s) = |F = 1,mp = 0) spontaneously emitting n
o~ photons in field 1 (see Fig. 34). These are coupled to a single-mode FBS, leading to
two APDs, Dla and D1b.

After a storage time of 200 ns, the atoms are excited by a strong, 190 ns read pulse
resonant with the |s) — |e) transition. This pulse maps the stored collective state into
the state of a second light mode, field 2, leaving the whole ensemble again in state |g).
Field 2 is then directed to the analysis by a single-mode FBS, leading again to two APDs,
D2a and D2b.

As observed in Fig. 33, we use a combination of additional A\/4 and A\/2 plates,
compared to the experimental setup for linear polarizations (see Fig. 28), to transmit only
the photons with the correct polarizations. With the exception of these modifications,
the remaining aspects of our first series of experiments remained unchanged.

On the other hand, in order to directly address the superradiant aspects of the problem,
we now focus only on the single- and two-photon wavepackets of the retrieved photons
on field 2. Our guide are the theoretical expressions derived in section 2.6 [see Egs.
(2.6.44), (2.6.46) and (2.6.47)]. The measurement of these wavepackets was performed for

two different ODs. The single-(cyan curves) and two-photon (squares) wavepackets are

5The use of IMs instead of AOMs to control the duration of the read and optical pump pulses is
motivated by two reasons: first, because the optical pump pulse has to be switched fast enough so that it
does not interfere in the temporal window where the write pulse is acting on the ensemble; and secondly,
because the read pulse has to be as close as possible to a rectangular pulse to be able to compare our
measured wavepackets with their respective theoretical predictions derived in section 2.6.
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Figure 35: Single-photon wavepackets (cyan curves) for OD; (a) and ODy (b), compared to their
respective independent-detections two-photon wavepackets (squares curves). Red solid lines provide the
corresponding theoretical curves according to Eq. (2.6.44). Dashed lines plot the respective pure expo-
nential decays.

plotted in Fig. 35 for p; = 0.015 and a read-beam power of 3.95 mW. For each OD, around
10" sampling periods were used to generate the graphs. The cyan curve on Fig. 35(a)
is the measured single-photon wavepacket for our maximum optical deph (OD; = 31.4),
which corresponds to N a2 1.9 x 10° Rubidium atoms [de Oliveira 2014]. Since OD « N,
maximum OD enhances the collective effects behind superradiance. Other important
parameters for this curve are At = 0.5 ns, p. = 6.27%, and g5 = 7.50. The red curve
in this figure provides the theory of Eq. (2.6.44), for Qo = 0.4 x 10°rad/s, x = 4.0,
and I'/27 = 6.065 MHz (natural linewidth of |e)). The numerical values for {2y and x
were assumed in order to match the observed Rabi oscillation and its exponential decay,
respectively. These theoretical values would correspond to a read-beam power of 2.1 mW
and N ~ 1.1 x 10® [de Oliveira 2014], lying within a factor of two of our estimation for
these experimental parameters.

The cyan curve on Fig. 35(b) represents the measured single-photon wavepacket
with the optical depth reduced to ODy = 15.9. The red curve is for y = 2.52 =
1+(4.0—1)(OD3/OD), since x—1 and OD are both proportional to N [Mendes 2013b,de
Oliveira 2014]. Other important parameters for this curve are p. = 4.5% and g2 = 6.35.
It can be seen that the modification of the number of atoms changes the superradiant
decay rate, but not the frequency of the Rabi oscillations. On the other hand, once again
it is interesting to note that the independent-detections two-photon wavepacket (squares
curves in Fig. 35) is almost identical to the single-photon wavepacket for the two ODs
considered, indicating a possible independence in the emission of the two field-2 photons.

The measured single-photon wavepackets on Fig. 35 follow Eq. (2.6.44) with a few

remarks. For start, the first minimum of the experimental curves, at ¢ = 7 ns, has no
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relation to the underlining dynamics we are investigating, coming from a small ringing
on the beginning of the read pulse that we were not able to fully eliminate. Note that its
temporal position does not vary with optical depth. Moreover, we also verify that it does
not vary with read power [Ortiz-Gutiérrez 2018]. Second, the single-photon wavepacket
reaches a small plateau for long times. This comes from a larger noise level due to the
fact that we do not use any frequency filter in field 1, resulting in significant increase
in TGR, up to 40 Hz. Finally, the number of atoms was changed by a relatively small
amount between the cyan curves in Fig. 35, to avoid decreasing the rate of four-photons
detections. Both compromises to improve the count rates were crucial for the two-photon

wavepackets measurements.
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Figure 36: Two-photon wavepackets for circular polarizations and optical pumping. Panels (a) and
(b): Normalized probability density ps5b (1) to detect the first field-2 photon at time ¢1. Panels (c) and
(d): Normalized probability density ps5(7) to detect the second field-2 photon at time 7 after the first
detection. Data on panels (a) and (c¢) [(b) and (d)] resulted from the same measurements as for the
experimental cyan curve on Fig. 35(a) [Fig. 35(b)]. Red solid lines provide the theory from Eqs. (2.6.46)
and (2.6.47), for the same parameters of the red curves in Fig 35. Dashed lines plot the respective pure
exponential decays. Black solid lines plot the respective numerical two-photon wavepackets.

Finally, our measurements for the complete superradiant two-photon wavepackets are
shown in more details in Fig. 36 for the two optical depths of Fig. 35. Note that the
corresponding numerical two-photon wavepackets have also been included (black curves).
Figures 35(a) and 35(c) were obtained for OD;, and figures 35(b) and 35(d) for ODs.
In panels (a) and (b) we plot the normalized probability density psh(t1) of detecting the
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first photon of the pair in field 2 at a time ¢; after turning on the read field. In panels
(c) and (d) we plot the normalized conditional probability density p55(7) of detecting
the second photon of the pair at a time 7 after the first one. Our largest rate of four-
photon generation, for OD;, was 14 mHz. Equation (2.6.46) [(2.6.47)] is plotted as the red
curves on Figs. 35(a) and 35(b) [35(c) and 35(d)], for the same parameters, respectively,
as the red curves of Figs. 35(a) and 35(b). The results of Egs. (2.6.46) and (2.6.47)
capture the essential aspects of the measured two-photon wavepackets, with the decay of
ps(t1) with twice the rate of ps%(7)and Rabi oscillations in both curves. Moreover, it is
interesting to note that the numerical two-photons wavepackets successfully describe all
the experimental curves in Fig 36, including the first spurious minimum. All these results
clearly demonstrate the superradiant emission of the biphoton, with the proper enhanced
decay rates, and largely validates our hypothesis of independence in the emission of the two
photons. These results are consistent with Dicke’s theory for superradiance [Dicke 1954],
which also neglects interactions between the outgoing photons.

As a complement to the measures presented in this second stage of our series of ex-
periments, a statistical characterization of fields 1 and 2 will be presented in the next
subsection with the main purpose of characterizing the quantum state of the system.
This will also help us to demonstrate the existence of quantum correlations between the

photons emitted in fields 1 and 2.

4.2.3 Statistical characterization of the fields

As discussed in subsection 2.6.1, the ideal joint state between the photons emitted in field

1 and the associated CAEs, is described by a two-mode squeezed vacuum state as [see
Eq. (2.6.4)]

|¢a,1> =V 1 -Dp an) |01> + \/]_)|1a> |11> +p |2a> |21> + O (pS/Q)] ) (4213)

where the parameter p indicates, for p < 1, the probability to create a single CAE
correlated with a single photon in field 1. Using non-number-resolving detection with low

efficiency (the usual case), no detection in field 1 ideally projects the ensemble in the state

o) o [0a) + P2 [10) +p(2.) + ¥ 13) +... . (4.2.14)

On the other hand, one and two detections in field 1 would result in the states

[9n) o< [1a) + 92 [24) +p3a) + -+, (4.2.15)

and
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|2} o< |20) + P77 [30) + ..., (4.2.16)

respectively.

In order to experimentally characterize the quantum state of our atomic memory and
test how close it is to the ideal state given by Eq. (4.2.13), two modifications had to be
introduced on the setup of Fig. 33. First, the single-mode FBS in field 2 was substituted
by a Time-Multiplexing Detection (TMD) apparatus, consisting of a sequence of two
single-mode FBS with a fiber loop delaying in 100 ns one of the arms in the middle (left
side in Fig. 37). The outputs of the second FBS reach two detectors (Day,,Da). This
apparatus corresponds to a cascade of beam splitters leading to four detectors [Fitch 2003],
as shown on the right side in Fig. 37, with D ,D), representing the 100 ns delayed
responses of Dy,,Dq,. Second, the read pulse duration was decreased to 30 ns. With
these modifications, our experimental setup was prepared for the detection of up to two

photons in field 1 and up to four photons in field 2.
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Figure 37: Time-Multiplexing Detection (TMD) apparatus.

The photon-number analysis of field 2 conditioned on zero, one, or two detections in
field 1 are presented in Figs. 38(a), 38(b) and 38(c), respectively, as a function of the
probability p; for a detection in field 1 (ratio between number of detections in field 1
and number of sampling periods). P,; indicates the probability for j detections in field
2 conditioned on ¢ detections in field 1. In this way, Fig. 38(a) plots the values of F;,
related to |¢p), Fig. 38(b) the values of P, j, related to [¢1), and Fig. 38(c) the values of
P j, related to [t2). The three panels were obtained from the same data set. Error bars
come from the uncertainty in the accumulation of detection events, proportional to the
square root of the number of detections.

To compare Fig. 38 to the predictions of Eq. (4.2.13), note that p; = n;p, with 7
the detection efficiency. As p; decreases, with decreasing write intensities, we observe two
plateaus forming for P ; and P» 2, since those quantities should be roughly independent
of p in this limit [see Egs. (4.2.15) and (4.2.16) for |¢;) and |)s), respectively|. Although
Py has not been plotted in Fig. 38(a), it also remains constant (at a value very close to
1) when pl decreases. For perfect detection, 100% efficiency and number resolving, we
should not see a P, ;. However, in our limit of low efficiency, the loss of a photon in the
pair leads to a plateau on P; with twice (= 0.017) the value of P;; (= 0.0085), since
now two photons enter the TMD apparatus.
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Figure 38: Log-log graphs of probabilities P; ; to detect j photons in field 2 conditioned on the detection
of ¢ photons in field 1 as a function of the probability p; to detect one photon in field 1, with i = 0 (a),
1 (b) and 2 (c). Circles, squares, diamonds and triangles plot the probabilities of detecting one, two,
three and four photons in field 2. The solid lines are linear fits. The dashed lines provide the values for
the plateau of P;; and P»1[0.0085 for (b) and 0.0170 for (c)|]. The red and blue dashed lines gives the
square and cube, respectively, of the black one, corresponding to the Poisson levels for the two and three
photons components.
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Fock states |0,), |1,) and |2,) are limits of |¢)g), |¢1) and |i9) when p — 0. For finite
p, there are always some higher order components. For instance, from Eq. (4.2.14) we
expect the probabilities Py 1, P2, Po3 and Py 4 to decrease proportionally to p, p?, p* and
p*, respectively. From the log-log plot in Fig. 38(a), we obtain Py o< p®, Pya o< pi®,
Py s o pi® and Py 4 o< pi®, with sg1 = 0.94£0.01, sp2 = 1.89 £0.02, sp3 = 2.96+0.07 and
Soa = 3.67 £0.11, as expected. From Eq. (4.2.15), on the other hand, we expect Pj 5 x p
and P; 3 o< p?. From the log-log plot in Fig. 38(b), we obtain P 5 o< pi*? and P 3 o< pi*?,
with s19 = 1.07 & 0.02 and s13 = 1.99 + 0.07, once again compatible with the expected.
Finally, from Eq. (4.2.16), we expect P, 3 to be proportional to p, obtaining P, 3 o pi*
with so3 = 1.10 &£ 0.07 from Fig 38(c). All these results allow us to conclude that the
Fock states of our system comes from the two-mode squeezed vacuum state given by Eq.
(4.2.13).

Finally, besides observing the predicted suppression of higher order components in
the reading process of an atomic memory with one or two CAEs, it is also interesting to
compare some of their values to the expectation for a coherent state with single-photon
components consistent with the plateaus of Figs. 38(b) and 38(c) (upper dashed lines).
In both panels, the dashed lines in the middle and on the bottom give the square and
the cube of the value for the upper line, the expected results for a coherent state. We
measure then clear suppressions of P, and P 3 down to sub-poissonian levels. On the
other hand, due to the low efficiency for detecting coincidences between five events (two

in field 1 and three in field 2), we could not measure P; 3 in a clear sub-poissonian regime.

4.3 Summary of experimental results

In what follows, we summarize the main results of our series of experiments in the previous
section.

In the first one, described in subsection 4.2.1, we employed an experimental config-
uration with linear polarizations on all fields and without optical pumping to a specific
Zeeman sublevel. The results allowed for an investigation on the independence of the
photons on the two-photon superradiant emission, but not for a direct comparison with
the final theoretical expressions deduced on subsection 2.6.3. The experimental wavepack-
ets clearly presented beatings coming from the various Rabi oscillations involved in the
reading process through different Zeeman sublevels, while the theory considered a simpler
three-level atom in A configuration.

In the second stage of the experiments, described in subsection 4.2.2, we optically
pumped the atoms to a specific Zeeman sublevel and employed circular polarizations
for all fields, in order to guarantee a single Rabi frequency on the reading process. We
also observed a significant enhancement on the Rabi oscillations by turning on faster

the read beam, through the use of an in-fiber intensity modulator, which approximates
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the experiment to the theoretical assumption of a step function for the turning on of
the read field. With these modifications, we were finally able to directly compare our
experimental wavepackets to the theory of section 2.6, reaching a reasonable agreement.
As in subsection 4.2.1, we also analyzed for this new configuration the independence of the
two emitted photons in the two-photon superradiant wavepacket, by directly comparing
it to the expected results obtained from the experimental single-photon wavepackets.
Finally, in a third stage of experiments, we introduced a TMD system for the field
extracted in the reading process. This allowed us to detect up to four photons on the
superradiantly emitted field, and to characterize it, then, up to this amount of photons
on the Fock basis. Such analysis offered an important support for our claim that the Fock
states in our system comes from the two-mode squeezed vacuum state, expected to be
generated in our experimental conditions [Duan 2001|. It also offers some measure for
the purity of the superradiant Fock states as a function of the probability to generate the

corresponding collective states on the write process.
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5 Conclusions

OPO

In the continuous variables domain, the combined use of self-homodyning [Villar 2004]
and demodulation by in-quadrature local oscillators [Barbosa 2013c| allows the complete
reconstruction of the state of the six modes of the field in a triply resonant OPO operating
above the threshold. These modes are related to the sidebands of the downconverted
fields, generated by the nonlinear process, and the pump field, reflected by the cavity.
The experimental results obtained in a scientific collaboration with Marcelo Martinelli’s
group, at IFUSP, are in good agreement with the detailed model developed in this thesis,
involving the transformation of the field operators in their reflection by the cavity, the
nonlinear coupling among the fields by the crystal and the photon-phonon coupling. For
the chosen linear approach, the model reproduces the so-called “semiclassical model" of
the OPO, where quantized fields can be associated to stochastic fluctuations in a Langevin
equation, leading to a spectral matrix, associated with the Fourier transform of the two-
time correlation of the output fields. In the present case, discrepancies between the model
and the semiclassical one are smaller than 4% of the standard quantum level (except
for the amplitude variance of the pump, reaching 9%) being both compatible with the
experimental results.

The main result of the developed model is the demonstration that the imaginary
part of the spectral matrix, i.e. the correlations between symmetric and asymmetric
combinations of sidebands [Barbosa 2013c|, has not its physical origin in the nonlinear
process but on the evolution of the fields inside the cavity, combined with the effective
beam splitter transformation for downconverted and pump modes, explicitly derived in
the linearized model. This particular effect is not explicit in the semiclassical treatment.
The asymmetries in phase evolution of upper and lower sidebands lead to the coupling
of their symmetric and antisymmetric combinations. These effects are more important
for low analysis frequencies and are maximized as they get closer to the OPO cavity
bandwidth.

Using the PPT criterion in the continuous variables regime, the entanglement structure

in this system is experimentally and theoretically investigated. We were able to show
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that the system presents hexapartite entanglement for pump powers in the range from
1.1 to 1.6 times the oscillation threshold. More specifically, entanglement is revealed by
stronger violations if the modes directly coupled by two-mode squeezing are split, but the
beam splitter operations acting recursively over the modes in the cavity feedback lead to
multimode entanglement involving all the fields. Better results can be expected if phonon
noise is suppressed.

Finally, it is curious that the former tripartite treatment of the problem, although
valid, does not explore the stronger entanglement in this system. Much better results are
obtained using a single mode, or playing with smart combinations of modes. This will be
relevant for applications of this source in future quantum communication protocols, like

teleportation of entanglement swapping.

Cold atomic ensemble

From a cold atomic ensemble of 8’Rb and implementing a "write-read" scheme of counter-
propagating beams, inspired by the DLCZ protocol, successfully generation and character-
ization of the quantum state between individual photons in a mode of the electromagnetic
field and CAEs were achieved, which is compatible with a two-mode squeezed vacuum
state, as expected. The state characterization is done through a photon statistics anal-
ysis of the emitted light in the writing and reading process for different probabilities of
excitation of the atoms.

We also investigated the temporal dynamics of the photons emitted during the reading
process. To do so, we measure the wavepackets of the single-photon and bi-photon emis-
sions, evidencing superradiant acceleration in both cases. The photon statistics analysis
confirmed that the emitted light was close to Fock states. We show that the theoret-
ical models presented in [Mendes 2013b] and [Barros 2018| successfully interprets this
superradiant behavior in the Fock-state regimes with one and two photons, respectively.

There are still experimental features to improve in the system both in terms of four-
photon generation rate and number of atoms in the ensemble. Larger generation rates may
lead to purer single- and two-excitation states, but also to investigations of larger collective
states, with three or four excitations. On the other hand, larger number of atoms, through
larger optical depths of the atomic ensemble, may lead to different superradiant regimes,
possibly presenting some interaction between the extracted photons which in turn will
present an additional challenge in the detection system. All these developments point out
to the feasibility of a new approach to generate and control larger and purer Fock states
connected to long-lived atomic memories, useful for quantum metrology [Holland 1993]
and helping to lift the usually assumed restriction to single-photon sources as a possible

resource in the designing of new quantum information protocols [van Loock 2011].
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