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RESUMO

O agrupamento de dados é uma das questões mais importantes na mineração de dados
e na aprendizagem de máquinas. O objetivo principal é descobrir grupos homogêneos nos ob-
jetos estudados. A maior dificuldade é que não se tem conhecimento prévio sobre o conjunto
de dados. Usualmente as abordagens de agrupamento tradicionais são projetadas para pesquisar
grupos em todo o espaço. No entanto, em conjuntos de dados reais de alta dimensão, geralmente
existem muitas características irrelevantes para o agrupamento, onde os métodos tradicionais
não apresentam bom performance. O agrupamento em subespaços é uma extensão do agrupa-
mento tradicional que permite encontrar grupos em subespaços gerados apenas pelas variáveis
relevantes do conjunto de dados. No entanto a maioria desses métodos precisam configurações
de parâmetros não triviais e portanto o uso desses métodos em aplicações práticas é dificultado
devido a encontrar a parametrização apropriada. Este trabalho propõe um algoritmo de agru-
pamento particional difuso com regularização de entropia e seleção automática de variáveis. A
seleção de variáveis é feita através de distância adaptativa sendo a medida de dissimilaridade a
soma das distâncias Euclidiana entre padrões e protótipos para cada variável. A principal vanta-
gem da abordagem proposta sobre os métodos de agrupamento convencionais é a possibilidade
do uso de distâncias adaptativas, as quais mudam a cada iteração do algoritmo. Este tipo de
medida de dissimilaridade é adequado ao aprendizado dos pesos das variáveis dinamicamente
durante o processo de agrupamento, levando a uma melhora do desempenho dos algoritmos.
Outra vantagem da abordagem proposta é o uso do termo de regularização da entropia que
serve como um fator regulador durante o processo de minimização. O método proposto é um
algoritmo iterativo de três passos que fornece uma partição difusa, um representante para cada
grupo difuso e aprende um peso de relevância para cada variável em cada grupo. Para isto é
minimizada uma função objetivo que inclui uma função de distância multidimensional como
medida de dissimilaridade e entropia como o termo de regularização. Os experimentos realiza-
dos em conjuntos de dados simulados, do mundo real e em imagens corroboram a utilidade do
algoritmo proposto.

Palavras-chaves: Agrupamento difuso. Distância adaptativa. Regularização de máxima entro-
pia. Função objetivo.



ABSTRACT

Data Clustering is one of the most important issues in data mining and machine learning.
Clustering is a task of discovering homogeneous groups of the studied objects. Recently, many
researchers have a significant interest in developing clustering algorithms. The most problem
in clustering is that we do not have prior information knowledge about the given dataset. The
traditional clustering approaches are designed for searching clusters in the entire space. How-
ever, in high-dimensional real world datasets, there are usually many irrelevant dimensions for
clustering, where the traditional clustering methods work often improperly. Subspace clustering
is an extension of traditional clustering that enables finding subspace clusters only in relevant
dimensions within a data set. However, most subspace clustering methods usually suffer from
the issue that their complicated parameter settings are almost troublesome to be determined,
and therefore it can be difficult to implement these methods in practical applications. This work
proposes a partitioning fuzzy clustering algorithm with entropy regularization and automatic
variable selection through adaptive distance where the dissimilarity measure is obtained as the
sum of the Euclidean distance between objects and prototypes calculated individually for each
variable. The main advantage of the proposed approach to conventional clustering methods is
the possibility of using adaptive distances, which change with each iteration of the algorithm.
This type of dissimilarity measure is adequate to learn the weights of the variables dynamically
during the clustering process, leading to an improvement of the performance of the algorithms.
Another advantage of the proposed approach is the use of the entropy regularization term that
serves as a regulating factor during the minimization process. The proposed method is an itera-
tive three-step algorithm that provides a fuzzy partition, a representative for each fuzzy cluster.
For this, an objective function that includes a multidimensional distance function as a measure
of dissimilarity and entropy as the regularization term is minimized. Experiments on simulated,
real world and image data corroborate the usefulness of the proposed algorithm.

Key-words: Fuzzy clustering. Adaptive distances. Maximum-entropy regularization. Objective
function.
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1 INTRODUCTION

Clustering method aims at partitioning objects or data samples into groups such that the data
samples in the same cluster are relatively similar, while the objects in different clusters are re-
latively dissimilar (BEZDEK, 2013; HAVENS et al., 2012; HUANG; CHUANG; CHEN, 2012; WU et

al., 2012; RANA; JASOLA; KUMAR, 2013; LIPOVETSKY, 2013). Clustering as a kind of unsuper-
vised technique has a long history in machine learning, pattern recognition, data mining, and
so on, and many clustering algorithms have been exploited for various application scenarios.
However, clustering research is still far from a termination. The main reason is that the ever-
growing complexity of data constitutes a central challenge for the clustering community. This
complexity exhibits in various aspects, including the size of the dataset, the type of features, the
temporarily, or scalability and more generally the multiplicity of data (JIANG et al., 2015).

The most popular clustering algorithms are hierarchical and partitioning methods. Hierar-
chical methods deliver an output represented by a hierarchical structure of groups known as a
dendrogram, i.e., a nested sequence of partitions of the input data, whereas partitioning methods
aim to obtain a single partition of the input data in a fixed number of clusters, typically by op-
timizing (usually locally) an objective function. The result is a creation of separation hypersur-
faces among groups. Partitioning clustering methods can be performed mainly in two different
ways: hard and fuzzy. In hard clustering, the clusters are disjoint and non-overlapped. In this
case, any pattern may belong to one and only one group. On the other hand, in fuzzy cluste-
ring, an object may belong to all clusters with a specific fuzzy membership degree. The degree
of membership is essential for discovering intricate relations which may arise between a given
data object and all clusters (KAUFMAN; ROUSSEEUW, 2009). The fuzzy clustering method is pe-
culiarly effective when the boundaries between clusters of data are ambiguous. A good review
of main fuzzy clustering algorithms can be found in (HÖPPNER, 1999). Moreover, surveys of
various clustering methods can be found, for example, in (JAIN, 2010; JAIN; MURTY; FLYNN,
1999; XU; WUNSCH, 2005).

1.1 Motivation

Over the past few decades, various partitioning clustering algorithms have been proposed,
where K-means (DUDA; HART, 1973) and Fuzzy C-Means (FCM) (DUNN, 1973) are two well-
known clustering algorithms. One drawback of these clustering algorithms is that they treat all
features equally in deciding objects cluster membership. This disadvantage is not desirable in
some applications, such as high-dimensions sparse data clustering, where the cluster structure
in the dataset is often limited to a subset of features rather than the entire feature set. A bet-
ter solution is to introduce the proper attribute weight into the clustering process (TSAI; CHIU,
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2008a). Subspace clustering methods focus on seeking clusters in particular projections of di-
mensions (subspaces). A subspace cluster can be found in arbitrary subspaces rather than only
in the entire space. In other words, only the significant subspaces are found with clusters by
subspace clustering algorithms.

Several attribute-weighted fuzzy clustering methods have been proposed in the past few de-
cades. Keller and Klawonn (KELLER; KLAWONN, 2000) introduced a basic attribute-weighted
FCM algorithm by assigning one influence parameter to each single data dimension for each
cluster, while Frigui and Nasraoui (FRIGUI; NASRAOUI, 2004b) put forward an approach sear-
ching for the optimal prototype parameters and the optimal feature weights simultaneously. The
algorithm proposed in (DENG et al., 2010) presents a Enhanced Soft Subspace Clustering (ESSC)
algorithm by employing both within-cluster and between-cluster information.

Sadaaki and Masao (SADAAKI; MASAO, 1997) proposed a version of Fuzzy C-Means with
Entropy Regularization (FCM-ER). Despite the usefulness of FCM-ER, in comparison with the
conventional FCM, it still assumes that the variables have the same importance for the clustering
task. Later, Ref. (HANMANDLU et al., 2013) proposed a FCM with entropy regularization and
automatic selection of variables.

Choosing parameters is important for many clustering algorithms because adjusting the pa-
rameters can change the clustering results. In many subspace clustering algorithms, parameters
are usually required for both clusters and subspaces detection. However, a major problem is
that most parameters can be difficult to determine, especially if a data set has unknown infor-
mation or complicated types of data. The clustering algorithms can be even inapplicable for
some situations when their parameters are hard to choose.
1.2 Objective

The main aim of this research is to develop a partitional Soft Subspace Clustering (SSC) method
for clustering data that resolves the previous works limitations. In order to achieve this purpose,
we try to reduce parameters and to make parameters easily determinable.

Specific objectives of this work are:

• Investigate state of the art in fuzzy clustering algorithms, especially in methods based on
automatic variable selection and entropy regularization.

• Proposal and implementation a new fuzzy partitional clustering algorithm.

• Apply the algorithm to pattern recognition problems.

• Evaluate the results obtained with the proposed method.

• Compare results with literature algorithms.
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1.3 Publications

This work resulted, as a bibliographical production, in the article "Fuzzy clustering Algorithm
with Automatic Variable Selection and Entropy Regularization" accepted and published in
the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) where the fuzzy
clustering with automatic selection of variables and entropy regularization was evaluated. In
Appendix A is show the first page of the article (RODRÍGUEZ; CARVALHO, 2017).

1.4 Organization of Dissertation

In addition to this introductory chapter, this dissertation is organized into more five chapters, as
follows.

In chapter 2 it is seen an overview of the problem where hierarchical and partitional clus-
tering concepts are described. Fuzzy partitional clustering methods are reviewed, and the FCM
algorithm is briefly commented. The use of regularization term in the objective function is
shown in section 2.2 using the maximum entropy approach. The FCM-ER is described and
analyzed in subsection 2.2.1.1. In section 2.3 are discussed feature transformation and feature
selection techniques. The so-called Fuzzy Co-Clustering of Images (FCCI) (HANMANDLU et al.,
2013) is also reviewed because of the importance it has for the understanding of the proposed
work.

In chapter 3 the contribution of this work is shown: the proposal of a new FCM-type al-
gorithm for SSC based on adaptive Euclidean distances and entropy regularization term in the
objective function.

In chapter 4 are presented a set of experiments performed with both simulated and real
datasets, to demonstrate the effectiveness of the proposed method. The obtained results valida-
ted the superiority of the proposed clustering method respect to conventional approaches. The
algorithm is also tested for color segmentation with satisfactory results.

Finally, in chapter 5, conclusions about method performance, limitations, contributions and
future work are provided.



21

2 OVERVIEW OF THE PROBLEM

We are living in a world full of data. Every day, people encounter a significant amount of in-
formation and store or represent it as data, for further analysis and management. One of the
vital means of dealing with these data is to classify or group them into a set of categories or
clusters. Actually, as one of the most fundamental activities of human beings, classification
plays an essential and indispensable role in the long history of human development. To learn a
new object or understand a new phenomenon, people always try to seek the features that can
describe it, and further compare it with other known objects or phenomena, based on the simi-
larity or dissimilarity, generalized as proximity, according to some certain standards or rules.
Classification systems are either supervised or unsupervised, depending on whether they assign
new inputs to one of a finite number of discrete supervised classes or unsupervised categories,
respectively (BISHOP, 1995). In supervised classification, the mapping from a set of input data
vectors x ∈ RP, where P is the input space dimensionality, to a finite set of discrete class labels
y ∈ {1, ...,C}, where C is the total number of classes, is modeled regarding some mathematical
function y = f (x,w), where w is a vector of adjustable parameters. The values of these parame-
ters are determined (optimized) by an inductive learning algorithm (also termed inducer). This
algorithm aims to minimize an empirical risk functional (related to an inductive principle) on
a finite dataset of input-output examples, {(xi, yi), i = 1..N}, where N is the finite cardinality of
the available dataset.

In unsupervised classification, also called clustering or exploratory data analysis, no labeled
data are available (EVERITT et al., 2001). The goal of clustering is to separate a finite unlabeled
dataset into a limited and discrete set of “natural” hidden data structures, rather than provide
an accurate characterization of unobserved samples generated from the same probability distri-
bution. Clustering algorithms partition data into a certain number of clusters (groups, subsets,
or categories). Most researchers describe a cluster by considering the internal homogeneity and
the external separation (HANSEN; JAUMARD, 1997), i.e., objects in the same cluster should be
similar to each other, while patterns in different groups should not. Both the similarity and the
dissimilarity should be examinable in a clear and meaningful way. Here is given some simple
mathematical definitions of several types of clustering, based on the descriptions of (HANSEN;

JAUMARD, 1997).
"Data are defined as series of observation, measurements, or facts in the form of numbers,

words, sounds and/or images"(ROBERTS, 2000). Data can be treated as the lowest level of abs-
traction from which information and knowledge are derived. A dataset is a data-collection,
which is usually structured in a tabular form that consists of rows and columns, a tree form
with hierarchical structure or a graph form with interconnected nodes. Different structures are
required by various applications.

Let E = {e1, ...eN} be a set of N input patterns/objects. Each object ei, with 1 ≤ i ≤ N, is
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described by a feature vector xi = (xi1, . . . , xiP), with xi j ∈ R , with 1 ≤ j ≤ P. Then, a dataset is
a set of all feature vectors, D = {x1, . . . , xN} and can be represented in tabular form as in Table
1.

e1 x11 x12 ... x1P

ei xi1 xi2 ... xiP
...

...
...

...
...

eN xN1 xN2 ... xNP

Table 1 – Dataset representation

A classification for clustering methods is given according to how groups are created. The
most popular are hierarchical and partitioning methods. A hierarchical algorithm yields a den-
drogram representing the nested grouping of patterns and similarity levels at which groupings
change (FISHER, 1987). These type of algorithms are divided into two categories: divisible and
agglomerative algorithms (FRITZ; GARCÍA-ESCUDERO; MAYO-ISCAR, 2013). Also, hierarchical
clustering suffers from the fact that once a step (merge or split) is done, it can never be undone.
This rigidity is used to achieve smaller computation costs by not having to worry about a com-
binatorial number of different choices (AGRAWAL et al., 1998). Some interesting studies in this
direction are Chameleon (GORUNESCU, 2011) and Balanced Iterative Reducing and Clustering
Using Hierarchies (BIRCH) (MINING, 2006).

Hierarchical algorithms are based on distance, density, and continuity. These algorithms
have advantages of decreasing calculations and costs and as a disadvantage that they are nons-
calable. For large datasets, hierarchical methods become impractical unless other techniques are
incorporated, because usually hierarchical methods are O(N2) for memory space and O(N3) for
CPU time (ZAÏT; MESSATFA, 1997; HARTIGAN; HARTIGAN, 1975; MURTAGH, 1983), where N is
the number of data points in the dataset. One of significant issue of hierarchical methods is the
inability to reform a wrong decision, making this research focus on partitional algorithms that
do not suffers this kind of problems (section 2.1).

2.1 Partitional clustering overview

Given the number of partitions to construct, a partitional method creates an initial partition. It
then uses an iterative relocation technique that attempts to improve the partitioning by moving
objects from one group to another (AGRAWAL et al., 1998). The general objective is to obtain the
partition that, for a fixed number of clusters, minimizes the total square error. Every partitional
clustering algorithm obtains a single partition of the data instead of the clustering structure.
Thus, partitional methods have the advantage in applications involving large datasets for which
the construction of a dendrogram is computationally very complex (FRITZ; GARCÍA-ESCUDERO;

MAYO-ISCAR, 2013).
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Clustering algorithms can be classified into two categories, hard and soft (fuzzy) clustering
(DUNN, 1973). Hard partitional clustering attempts to seek a C-partition of D, D = D1 ∪ D2 ∪

... ∪ DC,C ≤ N such that:

1. Di , ∅, i = 1, ...,C;

2. ∪C
i=1Di = D;

3. Di ∩ D j = ∅ i, j = 1, ...,C and i , j.

For hard partitional clustering, each pattern only belongs to one cluster as established in
Axioma 3. (Figure 1). However, an object may also be allowed to belong to all groups with
a degree of membership, uik ∈ [0, 1], which represents the membership coefficient of the i-th
object in the k-th cluster and satisfies that:

∑︀C
k=1 uik = 1,∀i and

∑︀N
i=1 uik < N,∀k, as introduced

in fuzzy set theory (BEZDEK, 1981).
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(b) Hard partition set

Cluster 1

Cluster 2

Cluster 3

2 5 61 3 4
(c) Hard partition matrix

Figure 1 – Obtained hard partition from the dataset.

Fuzzy clustering is a widely applied method for obtaining fuzzy models from data (Fi-
gure 2). It has been used successfully in various fields including geographical surveying, finance
or marketing. Fuzzy cluster analysis relaxes that each object must be assigned to exactly one
cluster by allowing memberships, thus offering the opportunity to deal with data that belong to
more than one group at the same time (ESTER et al., 1996).

Generally, fuzzy clustering algorithms provide:
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(a) Dataset (b) Fuzzy partition set

(c) Fuzzy partition matrix

Figure 2 – Obtained fuzzy partition from the dataset.

• A fuzzy partition represented by the matrix U = (u1, . . . ,uN)=(uik)1≤i≤N
1≤k≤C

, where uik is the
membership degree of object ei into the fuzzy cluster k and ui = (ui1, . . . , uiC) (where C is
the number of clusters and N the number of objects.);

• A vector G = (g1, . . . , gC) where the component gk = (gk1, . . . , gkP) is the representative
or prototype (Figure 3) of the fuzzy cluster k, where gk j ∈ R.
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(a) Dataset (b) Prototype

Figure 3 – Prototype vector provided from the clustering algorithms.
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The most common algorithms used for hard clustering are K-Means (DUDA; HART, 1973),
K-Medoids (KAUFMAN; ROUSSEEUW, 1987), Partitioning Around Medoids (PAM) (KAUFMAN;

ROUSSEEUW, 1987), Clustering LARge Applications (CLARA) (KAUFMAN; ROUSSEEUW, 2009),
Clustering Large Applications based on RANdomized Search (CLARANS) (LU et al., 2013) and
for soft clustering Fuzzy C-Means (FCM) (MACQUEEN et al., 1967).

K-Means: It starts with a random initial partition and keeps reassigning the patterns to
clusters based on the similarity between the object and the cluster centers until a convergence
criterion is met. The method is relatively scalable and efficient for processing large datasets. The
time and space complexity are relatively small, and it is an order-independent algorithm (FRITZ;

GARCÍA-ESCUDERO; MAYO-ISCAR, 2013), but the method often terminates at a local optimum
and is not suitable for discovering clusters with nonconvex shapes or groups of very different
size (AGRAWAL et al., 1998). Moreover, some divergences exist in scientific community about the
best approach for initial partition selection, partition updating, number of clusters adjustment,
and stopping criterion (FRITZ; GARCÍA-ESCUDERO; MAYO-ISCAR, 2013). A major problem with
this algorithm is that it is sensitive to noise and outliers (GENNARI; LANGLEY; FISHER, 1989).

K-Medoid/PAM: PAM was one of the first K-Medoids algorithms introduced. The algo-
rithm uses the most centrally located object in a cluster, the medoid, instead of the mean. Then,
PAM starts from an initial set of medoids, and it iteratively replaces one of the medoids by one
of the nonmedoids if improves the total cost of the resulting clustering. This algorithm works
efficiently for small datasets but does not scale well for large datasets.

CLARA: Instead of taking the whole set of data into consideration, a small portion of the
actual data is chosen as a representative of the data. Medoids are then selected from this sample
using PAM. CLARA draws multiple examples of the dataset, applies PAM on each sample, and
returns its best clustering as the output. As expected, CLARA can deal with larger datasets than
PAM.

CLARANS: It draws a sample with some randomness in each step of the search. Concep-
tually, the clustering process can be viewed as a search through a graph. At each step, PAM
examines all of the neighbors of the current node in its search for a minimum cost solution. The
current node is then replaced by the neighbor with the largest descent in costs. The algorithm
also enables the detection of outliers.

FCM: The Fuzzy C-Means algorithm is most widely used (DUNN, 1973), and an extension
of classical and crisp K-Means clustering method in the fuzzy set domain so that it is extensi-
vely studied and applied in pattern recognition, image segmentation and image clustering, data
mining, wireless sensor network among others (MITRA; ACHARYA, 2005). The objects in FCM
can belong to more than one cluster, and a membership grade is associated with each of the
objects indicating the degree to which objects belong to different groups. This research is based
of FCM algorithm and more details about it are given in subsection 2.1.1.

Partitional algorithms are based on distance. These algorithms have as advantage low com-
putational complexity and as a disadvantage the need to set the number of clusters and the stop
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criterion.
One of the standard measures in the partitional clustering algorithms is based on a squared

error metric or the sum of squares metrics, which measures the squared (or sum of the squared)
distance (i.e., Euclidean spaces) between each instance in the associated cluster and the clus-
ter centroid, gk. As mentioned before, this type of grouping is called here the sum-of-squares
clustering, which aims to minimize the total within-cluster sum of squares (WEBB, 2003).

The sum-of-squares clustering is a categorization method type which divides a large group
of instances into a pre-determined number, i.e., C smaller clusters so that the instances within
each group (within-cluster information) are relatively similar while those between groups (between-
cluster information) are relatively dissimilar (KONONENKO; KUKAR, 2007). Let us consider a set
of clusters D = {D1, ...,DC} with the respective centroids G = {g1, ..., gc}, which are mapped
from a set of instances D = {x1, x2, ..., xi, ..., xN}. The sum of the sums of squares (square error)
over the C clusters is defined as

d2
ik = ‖xi − gk‖

2 =

P∑︁
j=1

(xi j − gk j)2 (2.1)

Where xi is the i-th object, gk is the prototype of the k-th fuzzy cluster and P represents the
number of variables. Many different types of sum-of-squares clustering algorithms depend on
the choice of clustering criterion to be optimized and the optimization procedure to be adopted
(WEBB, 2003), but mostly, they follow the basic algorithm structure by optimizing the metric
measures (i.e., in Equation 2.1) to obtain the desired clusters.

2.1.1 FCM algorithm

The fuzzy set theory was proposed by (ZADEH, 1965), and since then it has had significant in-
fluence in various areas and applications, which follow the concept of fuzziness and uncertainty
of belonging through a membership function. In the datasets, it is uncertain for the instances
to form exactly one cluster in their membership relations when cluster analysis is carried out.
Therefore, the concept of fuzzy membership in fuzzy clustering has been widely studied by
researchers. The basic idea of fuzzy clustering method is to allow each instance to belong to
all clusters with different degrees of membership (membership function) by extending the hard
membership interval from {0, 1} to [0, 1]. Thus, the fuzzy objective function that the FCM opti-
mizes (minimizes) is defined by (WANG, 1983) as follows:

JFCM(U,G) =

N∑︁
i=1

C∑︁
k=1

uαikd
2
ik (2.2)

where d2
ik =

∑︀P
j=1(xi j − gk j)2 (Equation 2.1) is the squared distance between the feature

vectors xi and the prototype gk and uik is the membership degree of xi object in the cluster k. The
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prototype vector and membership degree matrix are estimated by Equation 2.3 and Equation 2.4
respectively as shown below:

gk =

∑︀N
i=1 uαikxi∑︀N

i=1 uαik
(2.3)

where i = 1, ...,N, k = 1, ...,C and α ∈ (1,∞)

uik =
1∑︀C

h=1

(︁
dik
dih

)︁ 2
α−1

(2.4)

where 0 ≤ uik ≤ 1,
∑︀C

k=1 uik = 1 and 0 <
∑︀N

i=1 uik < N. By minimizing Equation 2.2 using
the Lagrangian optimization:

ℒFCM = JFCM −

N∑︁
i=1

λi

⎡⎢⎢⎢⎢⎢⎣ C∑︁
k=1

uik − 1

⎤⎥⎥⎥⎥⎥⎦
Taking the partial derivative of ℒFCM concerning uik and set the gradient to zero:

∂ℒFCM

∂uik
= αuα−1

ik d2
ik − λi = 0 (2.5)

then

uik =

(︃
λi

α

1
d2

ik

)︃ 1
α−1

(2.6)

It is known that
∑︀C

k=1 uik = 1, then:

C∑︁
h=1

uih =

C∑︁
h=1

(︃
λi

α

1
d2

ih

)︃ 1
α−1

= 1 (2.7)

Solving Equation 2.7 for
(︁
λi
α

)︁ 1
α−1 and substituting in Equation 2.6

uik =
1∑︀C

h=1

(︁
dik
dih

)︁ 2
α−1

The updating equation for estimating cluster centroid (center) gk can be derived as:

∂JFCM

∂gk
=

N∑︁
i=1

uαikxi − gk

N∑︁
i=1

uαik = 0 (2.8)

Solving Equation 2.8 yields the formula for gk as:

gk =

∑︀N
i=1 uαikxi∑︀N

i=1 uαik
In FCM method the loss (objective) function is defined as shown in Equation 2.2. Where U

denotes the grade of membership of the i-th pattern in the k-th fuzzy cluster, gk is interpreted
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as cluster center or prototype of the k-th cluster and α is a weighting exponent that controls the
extent of membership sharing between fuzzy clusters.

This FCM algorithm is a generalization of the basic K-Means algorithm. When the value of
α = 1, the FCM tends to be the basic K-Means. In general, the FCM performs comparatively
better than K-Means because the uncertainty less influences it and overlapping in the dataset.
The Algorithm 1 summarizes the FCM method steps.

Algorithm 1 FCM Algorithm

Input: The dataset D = {x1, . . . , xN};
The number C of clusters (2 ≤ C ≤ N);
The parameter α > 1;
The parameter T (maximum number of iterations);
The threshold ε > 0 and ε << 1.

Output:
The vector of prototypes G;
The matrix of membership degrees U;

1: Initialization
Set t = 0;

Randomly select C distinct prototypes g(t)
k ∈ D, k = {1, ...,C} to obtain the vector

of prototypes G = (g1, ..., gC);

Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such that

uik ≥ 0 and
∑︀C

k=1 u(t)
ik = 1;

Compute JFCM according to Equation 2.2.

2: repeat
Set t = t + 1

Set JOLD = JFCM

For k = 1, . . . ,C; j = 1, . . . , P, compute the component gk j of the prototype
gk = (gk1, ..., gkP) according to Equation 2.3.

Compute the elements ui j of the matrix of membership degrees U = (ui j)1≤i≤N
1≤ j≤C

according to Equation 2.4.

Compute JFCM according to Equation 2.2.

Set JNEW = JFCM.

3: until |JNEW − JOLD| < ε or t > T

A strict implementation of the FCM algorithm has an expected runtime complexity of
O(NPTC2) (HORE; HALL; GOLDGOF, 2007), where N is the number of data examples, C is the
number of clusters, P is the dimension of the data, and T is the number of iterations. It is possi-
ble to reduce the runtime to O(NPTC) with an optimization proposed by Kolen and Hutcheson
(KOLEN; HUTCHESON, 2002). The memory complexity of FCM is O(NP + NC) (SREENIVASA-

RAO; VIDYAVATHI, 2010), where NP is the size of the dataset and NC the size of the U matrix.
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Though FCM is a more applicable method; there are some objections against it:

1. Due to using Euclidean distance based on L2-norm space, the presence of outliers in the
dataset degrades the quality of the computed clustering centers.

2. The physical meaning of the fuzziness parameter α and a way of choosing its optimal
value is not well understood.

3. FCM deals with local minimum solutions only: it does not possess a mechanism with
which one can get global minimum solutions.

4. There is no easy way to determine the number of clusters.

5. Sensitivity to the initial guess (speed, local minima)

6. The FCM algorithm gives high membership values for the outlier points and due to this
the algorithm has difficulty in handling outlier points.

These problems sometimes lead to ineffective partitioning, incorrect localization and even-
tually, poor clustering performance (THOMAS; NASHIPUDIMATH, 2012; COX, 2005).

2.2 Entropy and Clustering

Entropy is the measure of information and uncertainty of a random variable (SHANNON, 2001).
Formally, if X is a random variable, S (X) the set of values that X can take, and p(x) the proba-
bility function of X, the entropy E(X) is defined as:

E(X) = −
∑︁

X∈S (X)

p(X) log(p(X)) (2.9)

Entropy is sometimes referred to as a measure of the amount of disorder in a system. A room
with socks strewn all over the floor has more entropy than a room in which socks are paired up,
neatly folded, and placed in one side of the sock and underwear drawer.

According to the principle of maximum entropy, if nothing is known about a distribution ex-
cept that it belongs to a particular category (usually defined regarding specified properties or me-
asures), then the distribution with the largest entropy should be chosen as the least-informative
default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior
information built into the distribution; second, many physical systems tend to move towards
maximal entropy configurations over time.

2.2.1 Maximum entropy clustering algorithms

As seen in previous sections, the objective of a clustering algorithm is the assignment of a set
of N feature vectors xi ∈ D into C clusters, which are represented by the prototypes gk ∈ G.
The certainty of the assignment of the feature vector xi into various clusters is measured by the
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membership functions uik ∈ [0, 1], k = 1, ...,C which satisfy the property
∑︀C

i=1 uik = 1. In other
words uik ∈ U, where the set U is defined as U = {uik ∈ [0, 1] :

∑︀C
k=1 uik = 1 ∀i = 1, ...,N}. For a

given set of membership functions, the squared distance between the feature vectors xi and the
prototype gk is measured by:

d2
ik =

P∑︁
j=1

(xi j − gk j)2 (2.10)

Most of the disadvantages of crisp clustering algorithms can be overcome by clustering
algorithms based on the gradual transition from soft to crisp decisions during the clustering
process (KARAYIANNIS; PAI, 1995). Such strategies can be implemented by formulating the
clustering problem as the minimization of an objective function which guarantees the transition
from the maximum uncertainty or minimum selectivity phase in the initial stages of the cluste-
ring process to the minimum uncertainty or maximum selectivity phase toward the end of the
clustering process. The minimization of the squared distance between the feature vectors and
the prototypes measured by Equation 2.10 can be the basis for the clustering process in the mi-
nimum uncertainty phase. If the entropy of uik is maximized, the assignment of feature vectors
into clusters is characterized by maximum uncertainty. In the minimum selectivity phase, the
clustering process is based on the maximization of the entropy

E(uik) = −

N∑︁
i=1

C∑︁
k=1

uik log(uik) (2.11)

or, equivalently, the minimization of the negative entropy, given by

E(uik) =

N∑︁
i=1

C∑︁
k=1

uik log(uik) (2.12)

Several maximum entropy clustering algorithms and their variants are available in the lite-
rature (ROSE; GUREWITZ; FOX, 1990; JAYNES, 1957). Miyagishi et al. (MIYAGISHI et al., 2000)
generalized the regularized objective function replacing the entropy term with Kullback–Leibler
(K-L) term and proposed an FCM-type counterpart of the Gaussian Mixture Models (GMMs)
with full unknown parameters and the clustering technique is called the Fuzzy C-Means cluste-
ring with regularization by Kullback–Leibler information (KLFCM).

2.2.1.1 FCM-ER algorithm

One approach of interest is a variant of FCM which takes into account entropy regularization
named Fuzzy C-Means with Entropy Regularization (FCM-ER) (LI; SADAAKI, 1995; SADAAKI;

MASAO, 1997). It involves the minimization of the following objective function:
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JFCM−ER =

C∑︁
k=1

N∑︁
i=1

(uik)
P∑︁

j=1

(xi j − gk j)2 (2.13)

+ Tu

C∑︁
k=1

N∑︁
i=1

(uik) ln(uik)

Subject to: C∑︁
k=1

(uik) = 1 (2.14)

The first term in the Equation 2.13 denotes the total heterogeneity of the fuzzy partition as
the sum of the heterogeneity of the fuzzy clusters; the second term is related to the entropy
which serves as a regularization factor during minimization process. The parameter Tu is the
weight factor in the entropy term that specifies the degree of fuzziness. Increasing Tu increases
the fuzziness of the clusters.

Deriving the update equations
The constrained optimization problem of FCM-ER can now be defined from Equation 2.13

by applying the Lagrange multipliers λi to constraint in Equation 2.14 as shown below.

ℒFCM−ER =

C∑︁
k=1

N∑︁
i=1

(uik)
P∑︁

j=1

(xi j − gk j)2 (2.15)

+ Tu

C∑︁
k=1

N∑︁
i=1

(uik) ln(uik) +

N∑︁
i=1

λi

⎡⎢⎢⎢⎢⎢⎣ C∑︁
k=1

uik − 1

⎤⎥⎥⎥⎥⎥⎦
Taking the partial derivative of ℒFCM−ER in Equation 2.15 with respect to uik and setting the

gradient to zero:

∂ℒFCM−ER

∂uik
=

P∑︁
j=1

(xi j − gk j)2 + Tu(ln(uik) + 1) + λi = 0 (2.16)

Solving Equation 2.16

uik = e−
∑︀P

j=1(xi j−gk j)
2

Tu e−1− λi
Tu (2.17)

It is known that
∑︀C

k=1(uik) = 1 then substituting uik for the expression in Equation 2.17:

C∑︁
k=1

uik =

C∑︁
k=1

e−
∑︀P

j=1(xi j−gk j)
2

Tu e−1− λi
Tu = 1 (2.18)

Solving Equation 2.18

e−1− λi
Tu =

1∑︀C
k=1 e−

∑︀P
j=1(xi j−gk j)

2

Tu

(2.19)
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Substituting e−1− λi
Tu (Equation 2.19) in Equation 2.17, the formula for computing the object

membership function uki reduces to:

uik =
e−

∑︀P
j=1

(xi j−gk j)
2

Tu∑︀C
h=1 e−

∑︀P
j=1

(xi j−gh j)
2

Tu

(2.20)

Taking the partial derivative of JFCM−ER(U,G) concerning G and setting the gradient to zero:

∂JFCM−ER

∂gk j
=

N∑︁
i=1

uikxi j − gk j

N∑︁
i=1

uik = 0 (2.21)

Solving Equation 2.21 yields the formula for gk j as:

gk j =

∑︀N
i=1 uikxi j∑︀N

i=1 uik
(2.22)

Optimal partitions U* of D can be obtained by solving for (U*,G*) at the local minima of
JFCM−ER.

Proposition 1. The updated values of uik given by Equation 2.20 never increase the objective

function in every iteration.

Proof. Consider the objective function as a function of uik alone.

JFCM−ER(U,G) =

C∑︁
k=1

N∑︁
i=1

uik

P∑︁
j=1

(xi j − gk j)2 + Tu

C∑︁
k=1

N∑︁
i=1

uik ln(uik) (2.23)

where (xi j − gk j)2 may be considered as constant. To prove Proposition 1, it has to be proved
that U*, i.e the updated values of uik given by Equation 2.20 are the local minima of the objective
function JFCM−ER(U*) provided that the constraint in Equation 2.14 is satisfied. For this it is
needed prove that the Hessian matrix ∂2JFCM−ER(U*) is positive definite.

∂2JFCM−ER(U*) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂2 JFCM−ER(U)
∂u11∂u11

. . . ∂2 JFCM−ER(U)
∂u11∂uNC

...
. . .

...

∂2 JFCM−ER(U)
∂uNC∂u11

. . . ∂2 JFCM−ER(U)
∂uNC∂uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Tu
u11

. . . 0
...

. . .
...

0 . . . Tu
uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
At U*, uik ≥ 0 and Tu is always assigned a positive value. Therefore the Hessian matrix

∂2JFCM−ER(U*) is positive definite. Then, it is proved the first necessary condition

∂JFCM−ER(uik)
∂uik

= 0 (2.24)

and the second sufficient condition that δ2JFCM−ER(U*) is positive definite. Therefore uik

update is indeed a local minimum of JFCM−ER(U) and it never increases the objective function
value. �
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Algorithm 2 FCM-ER Algorithm

Input: The dataset D = {x1, . . . , xN};
The number C of clusters (2 ≤ C ≤ N);
The parameter Tu > 0;
The parameter T (maximum number of iterations);
the threshold ε > 0 and ε << 1.

Output:
The vector of prototypes G;
The matrix of membership degrees U;

1: Initialization

Set t = 0;

Randomly select C distinct prototypes g(t)
k ∈ D(k = 1, ...,C) to obtain the vector

of prototypes G = (g1, ..., gC);

Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such that

uik ≥ 0 and
∑︀C

k=1 u(t)
ik = 1;

Calculate JFCM−ER according to Equation 2.13;

2: repeat
Set t = t + 1;

Set JOLD = JFCM−ER;

For k = 1, . . . ,C; j = 1, . . . , P, compute the component gk j of the prototype
gk = (gk1, ..., gkP) according to Equation 2.22;

Compute the elements ui j of the matrix of membership degrees U = (ui j)1≤i≤N
1≤ j≤C

according to Equation 2.20;

Calculate JFCM−ER according to Equation 2.13;

Set JNEW = JFCM−ER;

3: until |JNEW − JOLD| < ε or t > T

The FCM-ER algorithm steps are summarized in Algorithm 2.
The computational complexity for FCM-ER algorithm is O(NCPT ), where N is the number

of data examples, C is the number of clusters, P is the dimension of the data and T is the number
of iterations. The memory complexity of the algorithm is:

• CN for the fuzzy partition matrix U;

• CP for the representative (prototype) vector G.

2.3 Subspace Clustering Theory

Traditional clustering algorithms consider all features of an input dataset in an attempt to learn
as much as possible about each object described. In high dimensional data, however, many of
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the dimensions are often irrelevant. These irrelevant attributes can confuse clustering algorithms
by hiding clusters in noisy data. In very high dimensions it is common for all of the objects in
a dataset to be nearly equidistant from each other, completely masking the clusters.

2.3.1 Dimensionality Reduction

Techniques for clustering high dimensional data have included both feature transformation and
feature selection techniques. Feature transformations are commonly used on high dimensional
datasets. These methods include techniques such as principal component analysis and singular
value decomposition. The transformations preserve the original, relative distances between ob-
jects. In this way, they summarize the dataset by creating linear combinations of the attributes,
and hopefully, uncover latent structure. Feature transformation is often a preprocessing step, al-
lowing the clustering algorithm to use just a few of the newly created features. A few clustering
methods have incorporated the use of such transformations to identify important features and
iteratively improve their clustering (DING et al., 2002; HINNEBURG; KEIM, 1999). While often
very useful, these techniques do not remove any of the original attributes from consideration.
Thus, information from irrelevant dimensions is preserved, making these techniques ineffective
at revealing clusters when there are large numbers of irrelevant characteristics that mask the
groups. Another disadvantage of using combinations of attributes is that they are difficult to in-
terpret, often making the clustering results less useful. Because of this, feature transformations
are best suited to datasets where most of the dimensions are relevant to the clustering task, but
many are highly correlated or redundant.

Feature selection attempts to discover the attributes of a dataset that are most relevant to
the data mining task at hand. It is a commonly used and powerful technique for reducing the
dimensionality of a problem to more manageable levels. Feature selection involves searching th-
rough various feature subsets and evaluating each of these subsets using some criterion (BLUM;

LANGLEY, 1997; LIU; MOTODA, 2012; PENA et al., 2001). The most popular search strategies are
greedy sequential searches through the feature space, either forward or backward. The evalua-
tion criteria follow one of two basic models, the wrapper model, and the filter model (KOHAVI;

JOHN, 1997). The wrapper model techniques evaluate the dataset using the data mining algo-
rithm that will ultimately be employed. Thus, they wrap the selection process around the data
mining algorithm. Algorithms based on the filter model examine intrinsic properties of the data
to evaluate the feature subset before data mining.

Much of the work in feature selection has been directed at supervised learning. The main
difference between feature selection in supervised and unsupervised learning is the evaluation
criterion. Supervised wrapper models use classification accuracy as a measure of goodness.
The filter-based approaches almost always rely on the class labels, most commonly assessing
correlations between features and the class labels. In the unsupervised clustering problem, there
are no universally accepted measures of accuracy and no class labels. However, some methods
adapt feature selection to clustering.
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Entropy measurements are the basis of the filter model approach presented in (DASH et al.,
2002; DASH; LIU; YAO, 1997). The authors argue that entropy tends to be low for data that
contains tight clusters, and this is a good measure to determine feature subset relevance. The
wrapper method proposed in (DY; BRODLEY, 2004) forms a new feature subset and evaluates the
resulting set by applying a standard K-Means algorithm. The Expectation-Maximization (EM)
clustering algorithm is used in the wrapper framework in (DY; BRODLEY, 2000). Hybrid methods
have also been developed that use a filter approach as a heuristic and refine the results with a
clustering algorithm. One such method by Devaney and Ram uses category utility to evaluate
the feature subsets (DEVANEY; RAM, 1997). Another hybrid approach uses a greedy algorithm
to rank features based on entropy values and then uses K-Means to select the best subsets of
features (DASH; LIU, 2000).

In addition to using different evaluation criteria, unsupervised feature selection methods
have employed various search methods in attempts to scale to large, high dimensional datasets.
With such datasets, random searching becomes a viable heuristic method and has been used with
many of the criteria mentioned above (ACHLIOPTAS, 2001; BINGHAM; MANNILA, 2001; FERN;

BRODLEY, 2003). Sampling is another method used to improve the scalability of algorithms.
Mitra et al. partition the original feature set into clusters based on a similarity function and
select representatives from each group to form the sample (MITRA; MURTHY; PAL, 2002).

While quite successful on many datasets, feature selection algorithms have difficulty when
clusters are found in different subspaces. It is this type of data that motivated the evolution to
subspace clustering algorithms. Unlike feature selection methods which examine the dataset as
a whole, subspace clustering algorithms localize their search and can uncover clusters that exist
in multiple, possibly overlapping subspaces.

2.3.2 Subspace Clustering

Despite extensive studies of clustering techniques over the past decades, conventional methods
fall short when clustering is performed in high-dimensional spaces (PARSONS; HAQUE; LIU,
2004; SIM et al., 2013; KRIEGEL; KRÖGER; ZIMEK, 2009). A key challenge of most clustering
algorithms is that, in many real-world problems, data points in different clusters are often cor-
related with some subsets of features, i.e., groups may exist in various subspaces or a particular
subspace of all characteristics. Therefore, for any given pair of neighboring data points within
the same cluster, it is possible that the points are indeed far apart from each other in a few
dimensions of high-dimensional space.

Subspace Clustering (SC) is an extension of feature selection which tries to identify clusters
in different subspaces of the same dataset. Like feature selection, subspace clustering needs
a search method and evaluation criteria. Also, subspace clustering must somehow restrict the
scope of the evaluation criteria to consider different subspaces for each separate cluster.

In recent years a plethora of SC techniques have been developed to overcome this challenge.
SC seeks to group objects into clusters on subsets of dimensions or attributes of a dataset. It pur-
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sues two tasks, identification of the subsets where clusters can be found and discovery of the
groups from different subsets of attributes. According to how the subsets are identified, it can
be divided subspace clustering methods into two categories. The algorithms in the first class
determine the specific subsets of dimensions where clusters are discovered. These methods are
named Hard Subspace Clustering (HSC). The methods in the second category identify the sub-
sets of features according to the contributions of the dimensions in finding the corresponding
clusters. The contribution of an attribute is measured by a weight that is assigned to the di-
mension in the clustering process. These methods are named Soft Subspace Clustering SSC
because every dimension contributes to the discovery of clusters, but the attributes with larger
weights form the subsets of dimensions of the groups. The method in this work falls in the
second category.

Research into SC begins with an in-depth study of HSC methods for clustering high-dimensional
data. With HSC algorithms, an attempt is made to identify the exact subspaces for different clus-
ters, a process that can be further divided into bottom-up and top-down subspace search methods
(PARSONS; HAQUE; LIU, 2004).

The bottom-up search method takes advantage of the downward closure property of density
to reduce the search space, using an a priori style approach. Algorithms first create a histo-
gram for each dimension and select those bins with frequencies above a given threshold. The
downward closure property of density means that if there are dense units in k dimensions, there
are dense units in all (k − 1) dimensional projections. Candidate subspaces in two dimensions
can then be formed using only those dimensions which contained dense units, dramatically re-
ducing the search space. The algorithm proceeds until there are no more dense units found.
Adjacent dense units are then combined to form clusters. This is not always easy, and one clus-
ter may be mistakenly reported as two smaller clusters. The nature of the bottom-up approach
leads to overlapping groups, where one instance can be in zero or more clusters. Obtaining
meaningful results is dependent on the proper tuning of the grid size and the density threshold
parameters. These can be particularly difficult to set, mainly since they are used across all of the
dimensions in the dataset. A popular adaptation of this strategy provides data-driven, adaptive
grid generation to stabilize the results across a range of density thresholds.

The top-down subspace clustering approach starts by finding an initial approximation of the
clusters in the full feature space with equally weighted dimensions. Next, each dimension is
assigned a weight for each group. The updated weights are then used in the next iteration to
regenerate the clusters. This approach requires multiple iterations of expensive clustering algo-
rithms in the full set of dimensions. Many of the implementations of this strategy use a sampling
technique to improve performance. Top-down algorithms create clusters that are partitions of
the dataset, meaning each instance is assigned to only one cluster. Many algorithms also allow
for an additional group of outliers. Parameter tuning is necessary to get meaningful results. Of-
ten the most critical parameters for top-down algorithms is the number of clusters and the size
of the subspaces, which are usually very difficult to determine ahead of time. Also, since subs-
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pace size is a parameter, top-down algorithms tend to find clusters in the same or similarly sized
subspaces. For techniques that use sampling, the size of the sample is another critical parameter
and can play a significant role in the quality of the final results.

While the exact subspaces are identified in HSC, weight is assigned to each dimension in
the clustering process of SSC to measure the contribution of each dimension to the formation
of a particular cluster. In the clustering procedure, each dimension (i.e., feature) contributes
differently to every cluster. The value of weights can identify the subspaces of different clus-
ters after clustering. SSC can be considered as an extension of the standard feature weighting
clustering (BOUGUILA, 2009; CHEUNG; ZENG, 2007; DESARBO et al., 1984; HUANG et al., 2005;
DIDAY; GOVAERT, 1977) which employs a common weight vector for the whole dataset in the
clustering procedure. However, it is also distinct in that different weight vectors are assigned
to different clusters. From this perspective, soft subspace clustering may thus be referred to as
multiple features weighting clustering. SSC has recently emerged as a hot research topic, and
many algorithms have been reported (CHAN et al., 2004; FRIGUI; NASRAOUI, 2004b; FRIGUI; NAS-

RAOUI, 2004a; DOMENICONI et al., 2004; FRIEDMAN; MEULMAN, 2004; JING et al., 2005; GAN;

WU; YANG, 2006; GAN; WU, 2008; JING; NG; HUANG, 2007; DOMENICONI et al., 2007).
SSC algorithms can be broadly classified into three main categories:

1. Conventional Soft Subspace Clustering (CSSC): Classic feature weighting clustering al-
gorithms, with all of the clusters sharing the same subspace and a common weight.

2. Independent Soft Subspace Clustering (ISSC): Multiple feature weighting clustering al-
gorithms, with all of the clusters having their weight vectors, i.e., each group has an
independent subspace, and the weight vectors are controllable by different mechanisms.

3. Extended Soft Subspace Clustering (ExSSC): Algorithms extending the CSSC or ISSC
algorithms with new clustering mechanisms for performance enhancement and special
purposes.

In CSSC, clustering is performed identifying first the subspace using some strategies, and
then carrying out clustering in the subspace that was obtained to partition the data. This ap-
proach is referred to as separated feature weighting (SOETE, 1986; MAKARENKOV; LEGENDRE,
2001; MODHA; SPANGLER, 2003), where data partitioning involves two separate processes: subs-
pace identification and clustering in subspace. Clustering can also be conducted by performing
the two methods simultaneously, the approach is known as coupled feature weighting (BOU-

GUILA, 2009; CHEUNG; ZENG, 2007; DESARBO et al., 1984; HUANG et al., 2005; LI; GAO; JIAO,
2005; TSAI; CHIU, 2008b).

In ISSC, algorithms are developed based on the K-Means model (CHAN et al., 2004; DOMENI-

CONI et al., 2007; GAN; WU; YANG, 2006; JING; NG; HUANG, 2007; JING et al., 2005), FCM model
(FRIGUI; NASRAOUI, 2004b; KELLER; KLAWONN, 2000), and probability mixture model, in a
process where fuzzy weighting, entropy weighting, or other weighting mechanisms are adopted
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to implement feature weighting (CHEN; JIANG; WANG, 2008; CHEN; JIANG; WANG, 2012; PENG;

ZHANG, 2011).
Finally, ExSSC algorithms can be subdivided into eight subcategories, depending on the

strategies used to enhance the CSSC and ISSC algorithms. These subcategories are between-
class separation (DENG et al., 2010; LI; CHEN, 2008), evolutionary learning (LU et al., 2011; ZHU;

CAO; YANG, 2012), the adoption of new metrics (AMORIM; MIRKIN, 2012; SHEN et al., 2006;
WANG et al., 2014b), ensemble learning (DOMENICONI; AL-RAZGAN, 2009; GULLO; DOMENI-

CONI; TAGARELLI, 2013), multi-view learning (CHEN et al., 2013; GAN; NG, 2015), imbalanced
clusters (PARVIN; MINAEI-BIDGOLI, 2013), subspace extraction in the transformed feature space
(SOETE; CARROLL, 1994; TIMMERMAN et al., 2010), and other approaches such as the reliability
mechanism and those used for clustering categorical datasets (AHMAD; DEY, 2011; BAI et al.,
2011; CHEN et al., 2016; WANG et al., 2014a).

A category of ISSC algorithms have been developed based on the FCM/K-Means model
and entropy weighting. The weighting in this category of algorithms is controllable by entropy.
The attribute weighted fuzzy clustering problem is considered as a maximum entropy inference
problem (ZHOU et al., 2016), which aims to search for global regularity and obtain the smoothest
reconstructions from the available data.

2.3.2.1 FCCI algorithm

The FCCI algorithm (HANMANDLU et al., 2013) is a work of interest for the proposed approach.
The algorithm presents a novel color segmentation technique using the fuzzy co-clustering ap-
proach in which both objects and features have assigned a membership function. An objective
function which includes a multi-dimensional distance function as the dissimilarity measure and
entropy as the regularization term is formulated. Despite the matrix U of membership degrees
and the vector G of prototypes, the algorithm provides:

• A matrix of relevance weights V = (v1, . . . , vC) = (vk j)1≤k≤C
1≤ j≤P

where vk j is the relevance

weight of the j-th variable in the k-th fuzzy cluster and vk = (vk1, . . . , vkP).

FCCI involves the minimization of the following objective function:

JFCCI(U,V,G) =

C∑︁
k=1

N∑︁
i=1

uik

P∑︁
j=1

vk j(xi j − gk j)2

+Tu

C∑︁
k=1

N∑︁
i=1

uik ln(uik) + Tv

C∑︁
k=1

P∑︁
j=1

vk j ln(vk j) (2.25)

Subject to: C∑︁
k=1

(uik) = 1 (2.26)
P∑︁

j=1

(vk j) = 1 (2.27)
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where C and N represent the number of clusters and data points respectively, uki is the fuzzy
membership, vk j the feature membership and Tu and Tv the weight factors in the entropy terms.

The minimization of the first term in (Equation 2.25) assigns to the object a higher mem-
bership value taking into account the cluster center it is closest to and which feature is more
relevant for that particular cluster. The inner product vk j(xi j − gk j)2 assigns a higher weight to
the distance function about the prominent features and a lower weight to irrelevant features. The
first term, therefore, denotes the useful square of the Euclidean distance. The second and third
entropy regularization terms combine all uki and vk j separately. These contribute to the fuzzi-
ness in the resulting clusters. Tu and Tv are the weighting parameters that specify the degree of
fuzziness. Increasing Tu and Tv increases the fuzziness of the groups.

Deriving the update equations
The constrained optimization problem of FCCI can now be defined from Equation 2.25 by

applying the Lagrange multipliers λi and βk to constraints Equation 2.26 and Equation 2.27
respectively as shown below.

ℒFCCI =

C∑︁
k=1

N∑︁
i=1

uik

P∑︁
j=1

vk j(xi j − gk j)2

+Tu

C∑︁
k=1

N∑︁
i=1

uik ln(uik) + Tv

C∑︁
k=1

P∑︁
j=1

vk j ln(vk j)

+

N∑︁
i=1

λi(
C∑︁

k=1

uik − 1) −
C∑︁

k=1

βk(
P∑︁

j=1

vk j − 1) (2.28)

Taking the partial derivative of ℒFCCI in Equation 2.28 with respect to uik and setting the
gradient to zero:

∂ℒFCCI

∂uik
=

P∑︁
j=1

vk j(xi j − gk j)2 + Tu(1 + ln(uik)) + λi = 0 (2.29)

Solving Equation 2.29:

uik = e−
λi
Tu
−1−

∑︀P
j=1 vk j(xi j−gk j)

2

Tu (2.30)

Because
∑︀C

h=1(uih) = 1 then Equation 2.30 can be expressed like:

C∑︁
h=1

uih =

C∑︁
h=1

e−
λi
Tu
−1−

∑︀P
j=1 vh j(xi j−gh j)

2

Tu = 1 (2.31)

Solving Equation 2.31

e−
λi
Tu
−1 =

1∑︀C
h=1 e−

∑︀P
j=1 vh j(xi j−gh j)

2

Tu

(2.32)
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Substituting Equation 2.32 in Equation 2.30 the formula for computing the object mem-
bership function update uki reduces to:

uik =
e−

∑︀P
j=1

vk j(xi j−gk j)
2

Tu∑︀C
h=1 e−

∑︀P
j=1

vh j(xi j−gh j)
2

Tu

(2.33)

Similarly, taking the partial derivative of ℒFCCI concerning vk j and set the gradient to zero:

∂ℒFCCI

∂vk j
=

N∑︁
i=1

uik(xi j − gk j)2 + Tv(1 + ln(vk j)) + βk = 0 (2.34)

Solving Equation 2.34 respect to vk j

vk j = e−
βk
Tv
−1−

∑︀N
i=1 uik (xi j−gk j)

2

Tv (2.35)

Because
∑︀P

h=1(vkh) = 1 the Equation 2.35 can be expressed like:

P∑︁
h=1

vkh =

P∑︁
h=1

e−
βk
Tv
−1−

∑︀N
i=1 uik (xih−gkh)2

Tv = 1 (2.36)

Solving Equation 2.36 respect to the expression e−
βk
Tv
−1

e−
βk
Tv
−1 =

1∑︀P
h=1 e−

∑︀N
i=1 uik (xih−gkh)2

Tv

(2.37)

Substituting Equation 2.37 in Equation 2.35, is obtained the formula for the feature membership
function vk j as:

vk j =
e−

∑︀N
i=1

uik (xi j−gk j)
2

Tv∑︀P
h=1 e−

∑︀N
i=1

uik (xih−gkh)2

Tv

(2.38)

Taking the partial derivative of JFCCI(U,V,G) with respect to G and setting the gradient to zero:

∂JFCCI

∂gk j
= vk j

N∑︁
i=1

uikxi j − vk jgk j

N∑︁
i=1

uik = 0 (2.39)

Solving Equation 2.39 yields the formula for gk j as:

gk j =

∑︀N
i=1 uikxi j∑︀N

i=1 uik
(2.40)

Optimal partitions U* of D can be obtained by solving for (U*,V*,G*) at the local minima of
JFCCI .

Proposition 1. The updated values of uki given by Equation 2.33 never increase the objective

function in every iteration.
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Proof. Consider the objective function as a function of uik alone.

JFCCI(U,V,G) =

C∑︁
k=1

N∑︁
i=1

uik

P∑︁
j=1

vk j(xi j − gk j)2 + Tu

C∑︁
k=1

N∑︁
i=1

uik ln(uik) + constant (2.41)

where, constant=Tv
∑︀C

k=1
∑︀P

j=1 vk j ln(vk j). Also, the product vk j(xi j − gk j)2 may be considered as
constant.

To prove Proposition 1, it has to be proved that U*, i.e the updated values of uik given
by Equation 2.33 are the local minima of the objective function JFCCI(U*) provided that the
constraints in Equation 2.26 and Equation 2.27 are satisfied. For this it is needed prove that the
Hessian matrix ∂2JFCCI(U*) is positive definite.

∂2JFCCI(U*) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂2 JFCCI (U)
∂u11∂u11

. . . ∂2 JFCCI (U)
∂u11∂uNC

...
. . .

...

∂2 JFCCI (U)
∂uNC∂u11

. . . ∂2 JFCCI (U)
∂uNC∂uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Tu
u11

. . . 0
...

. . .
...

0 . . . Tu
uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
At U*, uik ≥ 0 and Tu is always assigned a positive value. Therefore the Hessian matrix ∂2JFCCI(U*)
is positive definite. It is proved the first necessary condition

∂JFCCI(uik)
∂uik

= 0

and the second sufficient condition that ∂2JFCCI(U*) is positive definite. Therefore uik up-
dated is indeed a local minimum of JFCCI(U), and it never increases the objective function
value. �

Proposition 2. For every iteration the updated values of vk j given by Equation 2.38 never

increases the objective function.

Proof. Proof is similar to proof of Proposition 1. �

The steps of FCCI algorithm are summarized in Algorithm 3.
The computational complexity for the FCCI algorithm is O(CNPT ) according to (LIU et al.,

2017), where N is the number of data examples, C is the number of clusters, P is the dimension
of the data and T is the number of iterations.

The memory complexity of the algorithm is:

• CN for the fuzzy partition matrix U;

• CP for the matrix of relevance weights V;

• CP for the representative (prototype) vector G.
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Algorithm 3 FCCI Algorithm

Input: The dataset D = {x1, . . . , xN};
The number C of clusters (2 ≤ C ≤ N);
The parameter Tu > 0 and Tv > 0;
The parameter T (maximum number of iterations);
the threshold ε > 0 and ε << 1.

Output:
The vector of prototypes G;
The matrix of membership degrees U;
The relevance weight vectors V.

1: Initialization
Set t = 0;

Randomly select C distinct prototypes g(t)
k ∈ D, , k = {1, ..,C} to obtain the vector

of prototypes G = (g1, ..., gC);

Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such that

uik ≥ 0 and
∑︀C

k=1 u(t)
ik = 1;

Initialize the matrix of relevance weights V = (vk j)1/P≤k≤C
1≤ j≤P

with vk j = 1, ∀k, j;

Compute JFCCI according to Equation 2.25.

2: repeat
Set t = t + 1

Set JOLD = JFCCI

3: Step 1: representation.

For k = 1, . . . ,C; j = 1, . . . , P, compute the component gk j of the prototype
gk = (gk1, ..., gkP) according to Equation 2.40.

4: Step 2: weighting.

Compute the elements vk j of the matrix of relevance weights V = (vk j)1≤k≤C
1≤ j≤P

according to Equation 2.38.

5: Step 3: allocation.

Compute the elements ui j of the matrix of membership degrees U = (ui j)1≤i≤N
1≤ j≤C

according to Equation 2.33.

Compute JFCCI according to Equation 2.25.

Set JNEW = JFCCI .

6: until |JNEW − JOLD| < ε or t > T

2.4 Chapter summary

This chapter presented concepts like partitional and fuzzy clustering, objective function optimi-
zation and was described clustering problem as an essential data processing technique. Several
methods of the literature were reviewed and commented briefly. The advantages and limitations
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of the approaches presented were also discussed. The regularization term benefit was analyzed
using the maximum entropy approach because of the advantages over conventional algorithms.
The FCM-ER algorithm was described and analyzed.

Classical fuzzy clustering algorithms treat all features equally in deciding objects cluster
membership. This disadvantage is not desirable in some applications, such as high-dimensions
data clustering, where the cluster structure in the dataset is often limited to a subset of the fe-
atures instead of the entire feature set. In this chapter was discussed a solution to this problem
including the appropriate weight of the variables learning in the clustering process. For this
purpose, the transformation techniques, feature selection and soft subspace clustering, consi-
dered as an extension of the standard feature weighting clustering, were shown and discussed.
The so-called Fuzzy Co-Clustering of Images was revised due to the importance it has for the
understanding of proposed work.



44

3 FUZZY C-MEANS CLUSTERING ALGORITHM WITH

ADAPTIVE EUCLIDEAN DISTANCES AND ENTROPY

REGULARIZATION

This chapter provides a description of proposed partitional Fuzzy C-Means clustering algorithm
with Adaptive euclidean distances and Entropy Regularization AFCM-ER in the objective func-
tion. This method performs fuzzy clustering using more intuitive relevance weight constraint for
SSC than current state-art.

The key in the information theory is a measure of uncertainty associated with the value of a
random variable. The information entropy (SHANNON, 1948) was designed to have the following
properties: (i) a random variable which follows a broad probability distribution reveals more
uncertainty than a one which follows a strongly peaked distribution; (ii) the uncertainty measure
should be additive concerning independent sources introducing uncertainty. Assuming X is a
discrete random variable taking values {X1, ..., Xi, ..., Xn}, according to a probability distribution
p(Xi) and S (X) is the set of values that X can take. A function fulfilling the above requirements
is given by Equation 3.1 as mentioned in the previous chapter.

E(X) = −
∑︁

X∈S (X)

p(X) log(p(X)) (3.1)

Assume that we are given a random variable X with an unknown probability distribution
p(Xi). Additionally, we are also given a prior information about the random variable: the expec-
ted value a (also defined as E[ f (Xi)]) of some property, here described by the function f (Xi).

a = E[ f (Xi)] =

n∑︁
i=1

p(Xi) f (Xi) (3.2)

The question is: what is the unbiased inference about the distribution p(Xi)? In other words,
what is the distribution which does not reduce the amount of uncertainty about the random
variable?

The maximum entropy principle states that the probability distribution should maximize
the information entropy subject to the prior knowledge about the random variable. If there is
no previous information, the solution is, quite intuitively, a uniform distribution assigning the
same probability to every value of the random variable which leaves you the largest remaining
uncertainty consistent with your constraints. That way you have not introduced any additional
assumptions or biases into your calculations.

Several maximum entropy clustering algorithms have been proposed in the past few deca-
des. One of them is the algorithm FCM-ER seen in subsection 2.2.1.1 proposed by Sadaaki
(SADAAKI; MASAO, 1997). Despite the usefulness of this algorithm in comparison with the con-
ventional FCM, it still assumes that the variables have the same importance for the clustering



Chapter 3. Fuzzy C-Means clustering algorithm with Adaptive euclidean distances and Entropy Regularization45

task. However, in most areas, we typically have to deal with high-dimensional datasets. In this
way, some variables may have a small weight for the clustering process or even be irrelevant,
and among the relevant variables, some may have greater weights than others. Also, the weight
of each variable in the construction of each cluster may be different, i.e., each cluster may have
a different set of important variables. An example is described in Figure 4, where Feature 1 and
Feature 2 variables are important for all clusters and the variable Feature 3 represents noise.
The synthetic dataset containing 3 groups is show in Figure 4 (a) and each possible subspace
are show Figure 4 (b)-(d). As seen in Figure 4 (b), relevant variable weighting can achieve bet-
ter description of a dataset. Several maximum entropy clustering algorithms and their variants
are available in the literature to solve this problem (ZHOU et al., 2016; DENG et al., 2010; CHEN

et al., 2012). An example is the FCCI algorithm presented by (HANMANDLU et al., 2013) seen
in subsection 2.3.2.1, that includes a multi-dimensional distance function as the dissimilarity
measure and entropy of objects and variables simultaneously as the regularization term in the
objective function. This method is a FCM-type algorithm with entropy regularization and au-
tomatic variable selection and uses two positive regularizing parameters Tu and Tv that specify
the clusters fuzziness degree.

FCM-ER and FCCI algorithms are highly sensitive to parameter values selection. For this
reason, finding the best parameter set for the algorithms is fundamental for the clustering pro-
cess. Selecting good parameters values will improve the algorithms performance. For FCM-ER
algorithm, there is only one regularization parameter (Tu). If this parameter is searched in a gi-
ven set including n values, then the computational cost for grid search is O(n). Meanwhile, for
FCCI algorithm, there are two regularization parameters (Tu and Tv). If these two parameters
are searched in the given sets with n1 values and n2 values, respectively, then the computational
cost for grid search is O(n1n2). In conclusion, find the best parameters for FCCI algorithm is
more difficult than for the FCM-ER algorithm.

A new FCM-type algorithm for SSC based on adaptive Euclidean distances (DIDAY, 1977),
and the entropy of the objects as the regularization term in the objective function is defined. The
proposed is an iterative three-steps relocation algorithm which determines:

• A matrix U of membership degrees;

• A vector G of representatives (prototypes) for the fuzzy clusters;

• A matrix V of relevance weights of the variables into the fuzzy clusters.

By optimizing an adequacy criterion that measures the fitting between the fuzzy clusters
and their representatives. The relevance weights of the variables change at each iteration of the
algorithm and differ from one fuzzy group to another. This work has the advantage that uses
adaptive Euclidean distances as dissimilarity measure improving the clustering process and just
requires the tuning of one parameter in comparison to the FCCI algorithm.
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Figure 4 – Plot of (a) synthetic 3 classes dataset, (b) projection into Feature 1 and Feature 2
subspace, (c) projection into Feature 2 and Feature 3 subspace and (d) projection
into Feature 1 and Feature 3 subspace.

3.1 The AFCM-ER algorithm objective function

The vector G of prototypes, the matrix V of relevance weights of the variables into the fuzzy
clusters, and the fuzzy partition U are obtained interactively in three steps (representation,
weighting, and allocation) by the minimization of a suitable objective function hereafter de-
noted as JAFCM−ER. In this work, it is defined an adaptive distance between the objects and the
prototype as:

dvk(xi, gk) =

P∑︁
j=1

vk j(xi j − gk j)2 (3.3)

where dvk(xi, gk) is a squared Euclidean distance between xi and gk parameterized by the
vector of relevance weights of the variables vk on the fuzzy cluster k. The relevance weights
change at each iteration of the algorithm, and differ from one fuzzy cluster to another. The
advantage of this adaptive distances is that the algorithm is able to recognize clusters of different
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shapes and sizes because introduce the proper attribute weight into the clustering process.
The proposed clustering criterion measures the heterogeneity of the fuzzy partition U as the

sum of the heterogeneity in each fuzzy cluster defined as:

JAFCM−ER =

C∑︁
k=1

N∑︁
i=1

(uik) dvk(xi, gk) (3.4)

+ Tu

C∑︁
k=1

N∑︁
i=1

(uik) ln(uik)

Where Tu is a positive regularizing parameter, with Tu > 0. This optimization problem
(Equation 3.4) is subject to:

C∑︁
k=1

(uik) = 1 (3.5)
P∏︁

j=1

(vk j) = 1 (3.6)

The minimization of the first term in Equation 3.4 assigns to the object a higher membership
value taking into account the cluster center it is closest to and which feature is more relevant
for that particular cluster. The inner product vk j(xi j − gk j)2 assigns a higher weight to the dis-
tance function about the prominent features and a lower weight to irrelevant features. In this
objective function, the first distance-based term defines the shape and size of the clusters and
encourages agglomeration, while the second term is the negative entropy of the elements and
is used to control the membership degree uik. These contribute to the fuzziness in the resulting
clusters. Tu is the weighting parameters that specify the degree of fuzziness. Increasing Tu in-
creases the fuzziness of the groups. Proposed objective function JAFCM−ER, is similar to JFCM−ER

(Equation 2.13) with an adaptive euclidean distance, to perform SSC, rather than simple Eucli-
dean distance used in FCM-ER algorithm. The used of Euclidean adaptive distance introduce
another constraint for relevance weights of variables, like in FCCI algorithm. However, unlike
Equation 2.27, a product constraint (Equation 3.6) is used to obtain better (not bounded) and
more intuitive relevance weights.

3.1.1 The optimization steps of the AFCM-ER algorithm

In the AFCM-ER algorithm, from an initial solution, the vector G of prototypes, the matrix
V of relevance weights of the variables on the fuzzy clusters, and the matrix of membership
degrees U are obtained interactively in three steps (representation, weighting and allocation) by
the minimization of the objective function JAFCM−ER (Equation 3.4).

Due to the convexity of the optimization problem given by Equation 3.4, the computation of
the matrices U and V can be obtained applying the Lagrange multipliers λi and βk to constraints
in Equation 3.5 and Equation 3.6 as follows:
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ℒAFCM−ER = JAFCM−ER −

C∑︁
k=1

βk

⎡⎢⎢⎢⎢⎢⎢⎣ P∏︁
j=1

vk j − 1

⎤⎥⎥⎥⎥⎥⎥⎦
+

N∑︁
i=1

λi

⎡⎢⎢⎢⎢⎢⎣ C∑︁
k=1

uik − 1

⎤⎥⎥⎥⎥⎥⎦ (3.7)

Representation
This step provides an optimal solution to the computation of the fuzzy clusters prototypes.

During the representation step of AFCM-ER, the matrix V of relevance weights of the variables
on fuzzy clusters, and the matrix of membership degrees U are kept fixed. Taking the partial
derivative which minimizes the criterion JAFCM−ER given in Equation 3.4 concerning the cluster
centroids gk j and set the gradient to zero we have:

∂JAFCM−ER

∂gk j
= vk j

N∑︁
i=1

uikxi j − vk jgk j

N∑︁
i=1

uik = 0 (3.8)

Solving Equation 3.8 yields the formula for gk j as:

gk j =

∑︀N
i=1 uikxi j∑︀N

i=1 uik
(3.9)

Weighting
This step provides an optimal solution to the computation of the relevance weights of the

variables in each fuzzy cluster.
During the weighting step of AFCM-ER, the vector G of prototypes and the matrix of

membership degrees U are kept fixed. The objective function (Equation 3.4) is optimized with
respect to the relevance weights.

Proposition 1. The vector of weights vk = (vk1, . . . , vkP) which minimizes the criterion JAFCM−ER

given in Equation 3.4 under vk j > 0 ∀ k, j and
∏︀P

j=1 vk j = 1 ∀ k, has its components vk j(k =

1, ...C, j = 1, ..., P) computed according to the following expression:

vk j =

{︁∏︀P
w=1

∑︀N
i=1 uik(xiw − gkw)2

}︁ 1
P∑︀N

i=1 uik(xi j − gk j)2
(3.10)

Proof. The constrained optimization problem of AFCM-ER can now be defined from Equa-
tion 3.4 by applying the Lagrange multipliers λi and βk to constraints Equation 3.5 and Equa-
tion 3.6 respectively as shown in Equation 3.7.

Taking the partial derivative ofℒAFCM−ER in Equation 3.7 concerning vk j and set the gradient
to zero it has:

∂ℒAFCM−ER

∂vk j
=

N∑︁
i=1

uik(xi j − gk j)2 −
βk

vk j
= 0 (3.11)
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From Equation 3.11 is obtained that

vk j =
βk∑︀N

i=1 uik(xi j − gk j)2
(3.12)

Substituting Equation 3.12 in Equation 3.6 we have

P∏︁
w=1

vkw =

P∏︁
w=1

βk∑︀N
i=1 uik(xiw − gkw)2

= 1 (3.13)

Solving Equation 3.13 we have:

βk =

⎧⎪⎪⎨⎪⎪⎩ P∏︁
w=1

N∑︁
i=1

uik(xiw − gkw)2

⎫⎪⎪⎬⎪⎪⎭
1
P

(3.14)

Substituting Equation 3.14 in Equation 3.12 the relevance weights of the variables in each
fuzzy cluster are calculated as:

vk j =
{
∏︀P

w=1
∑︀N

i=1 uik(xiw − gkw)2}
1
P∑︀N

i=1 uik(xi j − gk j)2
(3.15)

If we rewrite the criterion JAFCM−ER as

JAFCM−ER(v1, ..., vC) =

C∑︁
k=1

Jk(vk) (3.16)

with

Jk(vk) = Jk(vk1, ..., vkP) =

P∑︁
j=1

vk jJk j (3.17)

where Jk j =
∑︀N

i=1 uik(xi j−gk j)2 and Tu
∑︀N

i=1
∑︀C

k=1 uik ln(uik) are seem like a constant. Thus, an
extreme minimum value of Jk is reached when

Jk(vk1, ..., vkP) = P

⎧⎪⎪⎨⎪⎪⎩ P∏︁
j=1

Jk j

⎫⎪⎪⎬⎪⎪⎭
1
P

(3.18)

As Jk(1, ..., 1) =
∑︀P

j=1 Jk j, and as it is well known that the arithmetic mean is greater than
the geometric mean, i.e., 1

P

∑︀P
j=1 Jk j ≥ {

∏︀P
j=1 Jk j}

1
P , (a minimum is obtained in this case only if

Jk1 = . . . = JkP. Also, substituting Equation 3.15 in Equation 3.17, P{
∏︀P

j=1 Jk j}
1
P is obtained so

we conclude that this extremum is a minimum. �

Allocation
This step provides an optimal solution to the computation of the matrix of membership

degrees of the objects into the fuzzy clusters.
During the allocation step of AFCM-ER, the vector G of prototypes, and the matrix V

of relevance weights of the variables on fuzzy clusters are kept fixed. The objective function
(Equation 3.4) is optimized concerning the membership degrees.
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Taking the partial derivative ofℒAFCM−ER in Equation 3.7 concerning uik and set the gradient
to zero it has:

∂ℒAFCM−ER

∂uik
=

P∑︁
j=1

vk j(xi j − gk j)2 + Tu(1 + ln(uik)) + λi = 0 (3.19)

Solving Equation 3.19

uik = e
−

∑︀P
j=1 vk j(xi j−gk j)

2

Tu e
−λi
Tu
−1 (3.20)

If we have the constraint Equation 3.5 then we can express Equation 3.20 like

C∑︁
w=1

uiw =

C∑︁
w=1

[︃
e
−

∑︀P
j=1 vw j(xi j−gw j)

2

Tu e
−λi
Tu
−1

]︃
= 1 (3.21)

Solving Equation 3.21 we have

e
−λi
Tu
−1 =

1∑︀C
w=1 e

−
∑︀P

j=1 vw j(xi j−gw j)2

Tu

(3.22)

Substituting Equation 3.22 in Equation 3.20 the formula for computing the object mem-
bership function uik reduces to:

uik =
e−

∑︀P
j=1 vk j(xi j−gk j)

2

Tu∑︀C
w=1 e−

∑︀P
j=1 vw j(xi j−gw j)2

Tu

(3.23)

Proposition 2. The updated values of uik given by Equation 3.23 never increase the objective

function in every iteration.

Proof. Consider the objective function as a function of uik alone.
The product vk j(xi j − gk j)2 may be considered as constant. To prove Proposition 2, it has

to be proved that U*, i.e the updated values of uik given by Equation 3.23, are a local minima
of the objective function JAFCM−ER(U*) provided such that the constraints in Equation 3.5 and
Equation 3.6 are satisfied. For this it is needed to prove that the Hessian matrix ∂2JAFCM−ER(U*)
is positive definite.

∂2JAFCM−ER(U*) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂2 JAFCM−ER(U)

∂u11∂u11
. . . ∂2 JAFCM−ER(U)

∂u11∂uNC
...

. . .
...

∂2 JAFCM−ER(U)
∂uNC∂u11

. . . ∂2 JAFCM−ER(U)
∂uNC∂uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Tu
u11

. . . 0
...

. . .
...

0 . . . Tu
uNC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
At U*, uik ≥ 0 and Tu is always assigned a positive value. Therefore the Hessian matrix

∂2JAFCM−ER(U*) is positive definite. It has been proved the first necessary condition

∂JAFCM−ER(uik)
∂uik

= 0
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and the second sufficient condition that ∆2JAFCM−ER(U*) is positive definite. Therefore u*ik
update is indeed a local minimal of JAFCM−ER(U) and it never increases the objective function
value. �

Proposition 1 and Proposition 2 prove that the updated equations of AFCM-ER point to a
local minimal of the objective function.

3.1.2 The algorithm

The K-Means algorithm can be viewed as an EM algorithm and it is convergent because each
EM algorithm is convergent (CAMASTRA; VERRI, 2005). As the AFCM-ER algorithm is a mo-
dified version of the classical K-Means algorithm its convergence was proved above. The repre-
sentation, weighting, and allocation steps are repeated until the convergence of theAFCM-ER
algorithm is reached. The Algorithm 4 summarizes these steps.

According to the definitions in section 3.1, the computational complexity of AFCM-ER is
O(TCNP), where T is the total number of iterations required, and N, P, C indicate the number
of data objects, data dimensions and clusters respectively. For the storage, is needed memory to
keep:

• The data objects (NP);

• The membership matrix (CN);

• The attribute weight matrix (CP).
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Algorithm 4 AFCM-ER Algorithm

Input: The dataset D = {x1, . . . , xN};
The number C of clusters (2 ≤ C ≤ N);
The parameter Tu > 0;
The parameter T (maximum number of iterations);
the threshold ε > 0 and ε << 1.

Output:
The vector of prototypes G;
The matrix of membership degrees U;
The relevance weight vectors V.

1: Initialization
Set t = 0;

Randomly select C distinct prototypes g(t)
k ∈ D with k = {1, ...,C} to obtain the

vector of prototypes G = (g1, ..., gC);

Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such that

uik ≥ 0 and
∑︀C

k=1 u(t)
ik = 1;

Initialize the matrix of relevance weights V = (vk j)1≤k≤C
1≤ j≤P

with vk j = 1, ∀k, j;

Compute JAFCM−ER according to (Equation 3.4).

2: repeat
Set t = t + 1

Set JOLD = JAFCM−ER

3: Step 1: representation.

For k = 1, . . . ,C; j = 1, . . . , P, compute the component gk j of the prototype
gk = (gk1, ..., gkP) according to (Equation 3.9).

4: Step 2: weighting.

Compute the elements vk j of the matrix of relevance weights V = (vk j)1≤k≤C
1≤ j≤P

according to (Equation 3.15).

5: Step 3: allocation.

Compute the elements ui j of the matrix of membership degrees U = (ui j)1≤i≤N
1≤ j≤C

according to Equation 3.23.

Compute JAFCM−ER according to Equation 3.4.

Set JNEW = JAFCM−ER.

6: until |JNEW − JOLD| < ε or t > T

3.2 Chapter summary

This chapter presented the main contribution of this dissertation, a new FCM-type algorithm for
Soft Subspace Clustering based on adaptive Euclidean distances and entropy regularization term
in the objective function. The proposed method was developed considering the fuzzy clustering
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and the clustering in the feature space considering the constraint that the product of the weights
of the variables in each group (local adaptive distances) must be equal to one. This type of
dissimilarity measure is adequate to learn the variables weights during the clustering process
which lead to an improvement in the performance of the algorithms.

A new objective function was formulated, and update rules are derived. For AFCM-ER
algorithm was obtained an expression for the best prototypes of the clusters, the best vectors
of variable weights and the best fuzzy partition matrix. Convergence properties of the proposed
algorithm were also demonstrated.

In the next chapter are presented a set of experiments performed with both simulated and
real datasets to demonstrate the effectiveness of the proposed method. The algorithm is also
tested for color image segmentation.
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4 EXPERIMENTAL EVALUATION

This chapter provides the performance evaluation of the proposed algorithm and comparison
with literature methods. A series of experiments are performed with synthetic and real datasets.

The clustering methods are used for different real applications like image processing, data
mining, pattern recognition, statistical analysis, and so on. For illustrative purpose, the proposed
AFCM-ER algorithm is experimented with image datasets to evaluate its performance in color
image segmentation as in (HANMANDLU et al., 2013).

4.1 Experimental setting

To evaluate the performance of the proposed algorithm, several FCM-type clustering algorithms
(the FCM, FCM-ER and FCCI algorithms) are chosen for comparative analysis. A series of
experiments are performed with various datasets. All data were previously standardized to have
zero mean and a standard deviation of one.

The best clustering performance indicated by some index is not always consistent with
others indexes, therefore, is necessary to evaluate the performance of a clustering algorithm
with different metrics. As result, given a membership matrix U, with N objects and C clusters,
four measures were used to quantify the separation and the compactness of the clusters accor-
ding the fuzzy partition: Modified Partition Coefficient (MPC), the Partition Entropy coefficient
(PE), Simplified Fuzzy Silhouette (SFS) and Hullermeier and Rifqi index (FRHR).

From the fuzzy partition U = (u1, . . . ,uC) is obtained a hard partition Q = (Q1, ...,QC),
where the cluster Qk, k = 1..C, is defined as:

Qk = {i ∈ {1, ...,N} : uik ≥ uim,∀m ∈ {1, ...,C}}

Hard cluster partitions Qk were compared with the known a priori class partition according
to the Adjusted Rand Index (ARI), the F-Measure (FM), the Overall Error Rate of Classification
(OERC) and the Simplified Crisp Silhouette (SCS).

MPC, PE, SCS, SFS evaluate clustering results without the use of any external information.
The evaluation provided by these measures is based on the data itself and its partitioning, as
provided by a clustering algorithm. MPC will measures the amount of “overlap” between clus-
ters and PE index the fuzziness of the cluster partition. SCS and SFS measure how close objects
are in a cluster and how separated the clusters are, for hard and fuzzy partitions respectively.

ARI, FM, OERC, FRHR are preferable when ground-truth labels are available (DOM, 2002).
The ground-truth consists of class labels assigned to each data point. The ideal clustering is
selected based on how well the cluster labels produced by the algorithm match to the ground-
truth labels. External measures are used to compare the similarity of the two clustering results.
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ARI, FM, OERC are measures of correspondence between two partitions of the same data.
FRHR is a Rand index (RAND, 1971) extension used to compare two fuzzy partitions.

Each of these measures are described in details in next sections.

4.1.1 Partition Coefficient

Given a membership matrix U, with N objects and C groups, Bezdek (BEZDEK, 2013) attempted
to define a performance measure based on minimizing the overall content of pairwise fuzzy
intersection in the partition matrix U. He proposed a cluster validity index for fuzzy clustering
named Partition Coefficient (PC). The index was defined as

VPC =
1
N

N∑︁
i=1

C∑︁
k=1

(uik)2 (4.1)

The PC index indicates the average relative amount of membership sharing done between
pairs of fuzzy subsets in U, by combining into a single number, the average contents of pairs of
fuzzy algebraic products. The index values range in

[︁
1
C , 1

]︁
, where C is the number of clusters,

the closer the value of PC to 1, the crisper the clustering is.

4.1.2 Partition Entropy coeficient

Bezdek proposed the PE (BEZDEK, 1975) defined as:

VPE = −
1
N

N∑︁
i=1

C∑︁
k=1

uik log(uik) (4.2)

The PE index is a scalar measure of the amount of fuzziness in a given U. The PE index
values range in [0, log(C)], the closer the value of PE to 0, the crisper the clustering is. The
index value close to the upper bound indicates the absence of any clustering structure in the
datasets or inability of the algorithm to extract it.

4.1.3 Modified Partition Coefficient

Both PC and PE possess monotonic evolution tendency with the number of groups (C). Accor-
ding to (BEZDEK, 2013), the limitation can be attributed to their apparent monotonicity and an
extent, to the heuristic nature of the rationale underlying its formulation. Modification of the
VPC index can reduce the monotonic tendency and is define as:

VMPC = 1 −
C

C − 1
(1 − VPC) (4.3)

The range of MPC is the unit interval [0, 1], where MPC=0 corresponds to maximum fuz-
ziness and MPC=1 to a hard partition.
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4.1.4 Crisp silhouette

To define this criterion, consider a data object xi ∈ D belonging to cluster k ∈ {1, ...,C}. In the
context of crisp partitions produced by a prototype-based clustering algorithm, i.e., C-Means,
etc., this means that object xi is closer to the prototype of cluster k (gk) than to any other pro-
totype. In more general context, the membership of the i-th object to the k-th fuzzy cluster (uik)
is higher than the membership of this object to any other fuzzy cluster, i.e., uik > uiq for every
q ∈ {1, ...,C}, q , k. Let the average distance of object xi to all other objects belonging to
cluster k be denoted by aki. Also, let the average distance of this object to all objects belon-
ging to another cluster q, q , k, be called dqi. Finally, let bki be the minimum dqi computed
over q = 1, ..,C, q , k, which represents the dissimilarity of object xi to its closest neighboring
cluster. Then, the silhouette of object xi is defined as:

si =
bki − aki

max{aki, bki}
(4.4)

where the denominator is used just as a normalization term. The higher si, the better the
assignment of object xi to cluster k. In case k is a singleton, i.e., if it is constituted uniquely
by object xi, then the silhouette of this object is defined as si = 0. This prevents the Crisp
Silhouette (CS), defined as the average of si over i = 1, ...,N, Equation 4.5, to find the trivial
solution C = N, with each object of the dataset forming a cluster on its own. This way, the
best partition is achieved when CS is maximized, which implies minimizing the intra-cluster
distance (aki) while maximizing the inter-cluster distance (bki).

CS =
1
N

N∑︁
i=1

si (4.5)

Remark. An issue with the CS measure is that it depends on the highly intensive computa-

tion of all distances among all data objects. In order to get around this problem (HRUSCHKA;

CAMPELLO; CASTRO, 2006; HRUSCHKA; CASTRO; CAMPELLO, 2004) propose replace the terms

aki and bki in Equation 4.5 with simplified versions of them based on the distances between the

objects and the prototypes of the corresponding clusters. This modification has shown not to de-

grade accuracy while being able to significantly reduce the computational burden from O(N2)
to O(N). Moreover, it does not change the dependency of CS on average distances (in this case

represented by the prototypes), which is a desirable property concerning robustness to noise in

the data. For these reasons, the prototype-based version of CS described above is adopted in

this work. Finally, the Simplified Crisp Silhouette SCS takes its values from the [−1, 1] (1 is the

best and -1 is the worse result)

4.1.5 Simplified Fuzzy Silhouette

Both the original and prototype-based versions of the CS do not make explicit use of the fuzzy
partition matrix in their calculations. In those cases, the fuzzy partition matrix U is used only to
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impose on the dataset a crisp partition Q to which the CS measure can be applied. Specifically,
Q is such that qik = 1 if i = arg maxl{uil} and qik = 0 otherwise. Consequently, CS may not
be able to discriminate between overlapped data clusters, even if these clusters have their own
(distinct) regions with higher data densities, since it neglects information contained in the fuzzy
partition matrix U on degrees to which clusters overlap one another. This information can be
used to reveal those regions with high data densities by stressing the importance of data objects
concentrated in the neighborhood of the cluster prototypes while reducing the importance of
objects lying in overlapping areas. To do so, a generalized silhouette criterion, named Fuzzy
Silhouette (FS) (CAMPELLO; HRUSCHKA, 2006), is defined as follows:

FS =

∑︀N
i=1(uik − uiq)γsi∑︀N
i=1(uik − uiq)γ

(4.6)

where si is the silhouette of object xi according to Equation 4.4, uik and uiq are the first
and second largest elements of the i-th column of the fuzzy partition matrix, respectively, and
γ ≥ 0 is a weighting coefficient. If si is calculated according to Simplified Crisp Silhouette
(SCS) then fuzzy measure is named Simplify Fuzzy Silhouette (SFS). There is an important
aspect regarding Equation 4.6 that deserves particular attention. It differs from Equation 4.5 for
being a weighted average (instead of an arithmetic mean) of the individual silhouettes given
by Equation 4.4. The weight of each term is determined by the difference between the mem-
bership degrees of the corresponding object to its first and second best matching fuzzy clusters,
respectively. This way, an object in the near neighborhood of a cluster prototype is given more
importance than another object located in an overlapping area (where the membership degrees
of the objects to two or more fuzzy clusters are similar). The SFS index values range in [−1, 1],
where good partitions are expected to yield larger values.

4.1.6 Adjusted Rand Index

The Adjusted Rand Index (ARI) is the corrected-for-chance version of the Rand index (RAND,
1971). Though the Rand Index may only yield a value between 0 and 1, the ARI can yield
negative values if the index is less than the expected index (HUBERT; ARABIE, 1985).

The contingency table
Given a set D of N elements, and two groupings or partitions (i.e. clusterings) of these

points, namely X = {C1, ...,Cr} and Y = {Q1, ...,Qs}, the overlap between X and Y can be
summarized in a contingency table [ni j] where each entry ni j denotes the number of objects in
common between Ci and Q j: ni j = |Ci

⋂︀
Q j|.

The adjusted form of the Rand Index, the ARI, is calculated as:

ARI =

∑︀
i j

(︁
ni j
2

)︁
−

[︁∑︀
i

(︁
ai
2

)︁∑︀
j

(︁
b j
2

)︁]︁
/
(︁

N
2

)︁
1
2

[︁∑︀
i

(︁
ai
2

)︁
+

∑︀
j

(︁
b j
2

)︁]︁
−

[︁∑︀
i

(︁
ai
2

)︁∑︀
j

(︁
b j
2

)︁]︁
/
(︁

N
2

)︁ (4.7)
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X/Y Q1,Q2...Qs Sums
C1 n11, n12...n1s a1
...

...
...
. . .

Cr nr1, nr2...nrs ar

Sums b1, b2...bs n

where ni j, ai , b j are values from the contingency table. The ARI takes its values on the
interval [−1, 1], in which the value 1 indicates perfect agreement between partitions, whereas
values near 0 (or negatives) correspond to cluster agreement found by chance. The ARI index
evaluates the degree of agreement (similarity) between an a priori partition and a partition pro-
vided by a clustering method. Also, the ARI index is not sensitive to the number of clusters in
the partitions or the objects distribution in the groups.

4.1.7 Campello

Campello (CAMPELLO, 2007) presents a method for fuzzifying the indices of Rand, Jaccard,
Fowlkes-Mallow, Hubert and (one version of) the adjusted Rand. Campello’s scheme is based
on writing the equations in an equivalent form using (cardinalities of) intersections of the crisp
subsets D × D corresponding to each of the four totals, and then replacing the crisp sets with
fuzzy ones. Campello’s generalization for the Rand index equation a = 1

2

∑︀r
i=1

∑︀s
j=1 ni j(ni j − 1)

is:

a =

i−1∑︁
j=1

N∑︁
i=2

(︁(︁
∨r

k=1(uki ∧ uk j)
)︁
∧

(︁
∨s

k=1(vki ∧ vk j)
)︁)︁

(4.8)

Campello’s generalization of Rand’s index [i.e., fuzzy Rand of Campello (FRC)], sFRC(U,V),
is valued in [0, 1]; however, sFRC(U,V) = 1 on U = V is only necessary in the fuzzy case and
not necessary and sufficient for the index to take the value 1. Curiously, Campello states that
“the fuzzy Rand index cannot be seen as a general measure for comparing two fuzzy partiti-
ons,” even though his index is well defined for this case. Instead, he advocates using it only as a
measure to compare a fuzzy partition against a hard partition (possibly with a different number
of categories).

4.1.8 Hullermeier and Rifqi

Hullermeier and Rifqi (HULLERMEIER; RIFQI, 2009) argue that Campello’s fuzzy Rand index
(CAMPELLO, 2007) is in some sense defective because it is not a metric. Instead, their generali-
zation is guided by the fact that Rand’s index counts the number of paired agreements divided
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by the total number of possible pairs, and this leads them to a direct generalization of the Rand
index:

VFRHR(U1,U2) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎣N−1∑︁
i=1

N∑︁
j=i+1

|‖Ui
2 − U j

2‖ − ‖U
i
1 − U j

1‖|/

(︃
N
2

)︃⎤⎥⎥⎥⎥⎥⎥⎦ (4.9)

The FRHR index is a direct generalization of the original Rand index to the case where U1

and U2 are both fuzzy partitions. The FRHR index takes its values from the interval [0, 1], in
which the amount 1 indicates perfect agreement between fuzzy partitions, whereas values near
0 correspond to cluster agreement found by chance.

4.1.9 F-Measure

The traditional F-Measure FM between a class Pi(i = 1, ...,C) and a cluster Pk(k = 1, ...,C) is
the harmonic mean between Precision and Recall.

FM = 2
Precision(Pi, Pk)Recall(Pi, Pk)

Precision(Pi, Pk) + Recall(Pi, Pk)
(4.10)

The precision between a class Pi and a cluster Pk is the fraction between the number of
objects in the class Pi and the cluster Pk and the number of objects in the cluster Pk.

Precision(Pi, Pk) =
nik

ak
(4.11)

The recall is the fraction of the number of objects in the class Pi and the cluster Pk and the
number of objects in class Pi.

Recall(Pi, Pk) =
nik

bi
(4.12)

The FM (BAEZA-YATES; RIBEIRO-NETO et al., 1999) between a priori partition P = P1, ..., Pi, ..., PC

and a hard partition Q = Q1, ...,Qk, ...,QC given by a clustering algorithm is defined as:

FM(P,Q) =
1
N

C∑︁
i=1

bi max
1≤k≤C

FM(Pi,Qk) (4.13)

The FM is defined as the harmonic mean of pairwise precision and recall and takes its values
from the [0, 1] interval, in which the amount 1 indicates perfect agreement between partitions.

4.1.10 Overall Error Rate of Classification

In classification problems, each group Qk is associated with a priori class Pi and this association
must be interpreted as if the true a priori class were Pi. Thus, for an object belonging to a given
group Qk the decision is correct if the a priori class of this object is Pi. To obtain a minimum
classification error rate is necessary to find a decision rule that minimizes the probability of
error. p(Pi,Qk) is the posterior probability that a pattern belongs to class Pi when is associated
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with the group Qk. p(Qk) is the probability that the pattern belongs to the group Qk and function
p is the likelihood function.

The estimation of maximum a posteriori probability is the mode of a posteriori probability
p(Pi,Qk) and the index of the a priori class associated to this mode is given by:

MAP(Qk) = arg max
1≤i≤C

p(Pi,Qk) (4.14)

The Bayes decision rule that minimizes the average probability of error is select the a priori
class that maximizes the probability a posteriori. The classification error rate ERC(Qk) of the
group Qk is 1 − p(PMAP(Qk)|Qk) and the Overall Error Rate of Classification OERC is:

OERC =

C∑︁
k=1

p(Qk)(1 − p(PMAP(Qk)|Qk)) (4.15)

For a sample, p(PMAP(Qk)|Qk) = max1≤i≤C
nik
ak

. OERC (BREIMAN et al., 1984) is designed to
measure the ability of a clustering algorithm to find the a priori classes present in a dataset and
is calculated as:

OERC =

C∑︁
k=1

ak

N
(1 − max

1≤i≤C
nik/ak) = 1 −

max1≤i≤C nik

N
(4.16)

The OERC takes its values from the interval [0, 1] in which lower OERC values indicate
better clustering results.

4.1.11 Parameter setting

Parameter selection is a complicated process in clustering algorithms that result in significant
performance improvement or deterioration. In most bibliography methods, parameters adjust-
ment is made using objects labels, which is impracticable in real clustering applications. In this
work was adapted the proposal presented by Schwämmle et al. (SCHWÄMMLE; JENSEN, 2010)
to determine the parameter values in an unsupervised way.

The choice of the parameter α for FCM algorithm was calculated according Schwämmle et

al. using the function:

f (P,N) = 1 +

(︃
1418

N
+ 22.05

)︃
P−2 +

(︃
12.33

N
+ 0.243

)︃
P−0.0406 ln(N)−0.1134 (4.17)

where N represents the number of objects and P represents the number of variables.
For FCM-ER and AFCM-ER algorithms, Tu was founded without supervision as follows.

For each dataset, the value of Tu varied between 0.1 to 100 (with step 0.1), and the threshold for
Tu corresponds to the value of the fuzzifier at which the minimum distance between centroids
falls under 0.1 for the first time. Based on the premise that increasing Tu increases the fuzziness
of the clusters, was used binary search to find the Tu value, decreasing the search to O(log(N)).
An important observation is that the Tu value depends on the number of objects and variables
in the dataset.
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The Tv value for the FCCI algorithm varied between 0.1 to 108 (with step 0.1), and for every
Tv value, the choice of the parameter Tu followed the same procedure used in the case of the
FCM-ER and AFCM-ER algorithms. The selected parameters correspond to pair Tv, Tu with
the maximum centroid distance, this means parameter selection is made unsupervised.

For FCM, FCM-ER and the proposed AFCM-ER algorithm, there is only one regularization
parameter. Meanwhile, for FCCI algorithm, there is two regularization parameters Tu and Tv.

The parameter εwas set to 10−5, the maximum number of iterations T was 100, and for each
dataset, the number of clusters was set equal to the number of a priori classes.

The paired t-test was used to compare the proposed algorithm statistically with the other
three clustering methods computed from 100 repetitions. If the p-value was below the threshold
of the statistical significance level (usually 0.05), then the null hypothesis was rejected in favor
of an alternative hypothesis, which typically states that the two distributions differ. Thus, if the
p-value of two approaches was less than 0.05, the difference of the clustering results of the two
methods was considered to be significant.

4.2 Experiments on synthetic dataset

To show robustness of the proposed method in Soft Subspace Clustering problems, a synthetic
dataset (Gaussian) was created with four hundred instances in three dimensions. The synthetic
dataset was divided into four groups of 100 objects each, described by three-dimensional vectors
generated randomly from a normal distribution with means and standard deviations showed in
Table 2.

Table 2 – Mean vector (µ1, µ2, µ3) and standard deviation vector (σ1, σ2, σ3) for every cluster in
synthetic Gaussian dataset.

µ Cluster 1 Cluster 2 Cluster 3 Cluster 4
µ1 -0.5 0.5 0.0 0.0
µ2 -0.5 -0.5 0.5 0.5
µ3 0.0 0.0 -0.5 0.5
σ1 0.1 0.1 1.00 1.00
σ2 0.1 0.1 0.1 0.1
σ3 1.00 1.00 0.1 0.1

The artificial dataset was generated to demonstrate the capability of the proposed clustering
algorithm in finding optimal variables weights for each cluster. By mapping, this dataset into
all possible subspaces is observed that in almost every subspace, except Feature1-Feature3, two
of the groups are well separated. Figure 5 shows that cluster 1 and 2 are better described by the
variables Feature 1 and Feature 2, that is, those variables has higher weights in cluster 1 and
cluster 2 definition. Cluster 3 and cluster 4 are better described by the variables Feature 2 and
Feature 3, that is, these variables are relevant for the definition of clusters 3 and 4. In conclusion
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variable Feature 3 represents noise for clusters 1 and 2, whereas for cluster 3 and 4, the variable
Feature 1 represents noise.
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Figure 5 – The projection of the synthetic data in a single dimension (a) Feature 1, (b) Feature 2,
(c) Feature 3, two dimensions (d) Feature 1 and Feature 2, (e) Feature 2 and Feature
3, (f) Feature 1 and Feature 3 and three dimensions (g) Feature 1, Feature 2 and
Feature 3. In both (d) and (e) we can see that two clusters are properly separated, but
the remaining two are mixed together. In (f) the four clusters are more visible, but
still overlap each other are are impossible to completely separate

Also, the algorithms were tested with different shape sets to measure the performance in
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complex datasets. Their plots have been provided in Figure 6. Table 3 describes the datasets
briefly, where N represents the number of objects, P represents the number of variables, and C

represents the number of a priori clusters.
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Figure 6 – Plots of synthetic datasets with different shape sets (a) Aggregation, (b) Compound,
(c) Flame and (d) Spiral.

Table 3 – Summary of the synthetic datasets.

Dataset N P C Source
Gaussian 400 3 4 (FERREIRA; CARVALHO, 2014)

Aggregation 788 2 7 (GIONIS; MANNILA; TSAPARAS, 2007)
Compound 399 2 6 (ZAHN, 1971)

Flame 240 2 2 (FU; MEDICO, 2007)
Spiral 312 2 3 (CHANG; YEUNG, 2008)

4.2.1 Results and analysis

The α parameter value for FCM algorithm, Tu for FCM-ER and AFCM-ER algorithms and
(Tu,Tv) for FCCI algorithm are shown in Table 4.
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Table 4 – Parameters values for each algorithm in synthetic datasets.

Algorithm Gaussian Aggregation Compound Flame Spiral
FCM (α) 4.03 7.16 7.61 8.22 7.87

FCM-ER (Tu) 2.20 0.40 0.40 2.00 2.00
FCCI (Tu,Tv) (0.60,900) (0.10,20) (0.20,10) (1.00,100) (0.80,80)

AFCM-ER (Tu) 0.30 0.30 0.10 1.90 1.70

Table 5 illustrate the best clustering results (according to the objective function) for fuzzy
obtained for the algorithms in synthetic datasets respectively. Also, it is shown (in parenthesis)
the performance rank of each algorithm according to considered indices and datasets.

Table 5 – The best clustering results obtained on Synthetic dataset for fuzzy partitions.

Algorithm MPC PE SFS FRHR

Gaussian
FCM 0.1202(3) 1.2131(3) 0.5997(1) 0.5218(3)

FCM-ER 6.5 × e−7(4) 1.3863(4) 0.0007(4) 0.2485(4)
FCCI 0.3448(2) 0.9181(2) 0.4609(3) 0.6187(2)

AFCM-ER 1.0000(1) 0.0000(1) 0.4931(2) 1.0000(1)

Aggregation
FCM 0.0077(4) 1.9249(4) 0.6522(1) 0.2947(4)

FCM-ER 0.5650(3) 0.6148(3) 0.6272(2) 0.9165(2)
FCCI 0.5972(1) 0.5961(2) 0.3188(4) 0.8206(3)

AFCM-ER 0.5850(2) 0.5536(1) 0.5750(3) 0.9382(1)

Compound
FCM 0.0111(4) 1.7657(4) 0.5987(2) 0.3530(4)

FCM-ER 0.5278(2) 0.6488(2) 0.6024(1) 0.8562(1)
FCCI 0.3310(3) 0.9207(3) 0.0041(4) 0.7427(3)

AFCM-ER 0.9413(1) 0.0806(1) 0.5115(3) 0.8432(2)

Flame
FCM 0.0142(4) 0.6860(4) 0.6086(1) 0.5604(2)

FCM-ER 0.0150(3) 0.6856(3) 0.1289(4) 0.5464(3)
FCCI 0.0491(2) 0.6679(2) 0.1480(3) 0.5463(4)

AFCM-ER 0.2097(1) 0.5804(1) 0.4199(2) 0.6270(1)

Spiral
FCM 0.0135(3) 1.0857(3) 0.6628(1) 0.3619(3)

FCM-ER 2.5 × 10−05(4) 1.0986(4) 0.0057(4) 0.3328(4)
FCCI 0.2275(1) 0.8520(1) 0.3996(2) 0.4637(1)

AFCM-ER 0.1871(2) 0.8899(2) 0.3494(3) 0.4504(2)

Table 6 presents the clustering algorithms average performance ranking according to con-
sidered indices for fuzzy partitions computed from Table 5. It is also shown the performance
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ranking of the clustering algorithms (in parentheses) according to the average performance ran-
king and the Overall Average performance Ranking (OAR).

Table 6 – Average performance ranking for fuzzy partitions.

Algorithm MPC PE SFS FRHR OAR

FCM 3.6 (4) 3.6 (4) 1.2 (1) 3.2 (4) 3.3 (4)

FCM-ER 3.2 (3) 3.2 (3) 3.0 (3) 2.8 (3) 3.0 (3)

FCCI 1.8 (2) 2.0 (2) 3.2 (4) 2.6 (2) 2.5 (2)

AFCM-ER 1.4 (1) 1.2 (1) 2.6 (2) 1.4 (1) 1.3 (1)

It can be observed in Table 6 that the AFCM-ER algorithm presented the best average per-
formance rank (according to the objective function) respect to the fuzzy partitions, obtaining a
better quality of clustering in almost all datasets compared to the other approaches. For exam-
ple, in the Gaussian dataset, for the MPC, PE and FRHR indexes in Table 5, the AFCM-ER
obtain ideal clustering solutions because can adaptively identify the importance of each varia-
ble. Figure 7 displays the fuzzy (U) and hard (Q) partition matrices obtained by the algorithms
on the Gaussian dataset. In the first row the fuzzy partitions are shown, in the second row the
hard. Lighter colors correspond to higher object membership values in the cluster, and darker
colors are associated with low membership values. In every case, abscissa axis corresponds to
the objects and ordinate axis with retrieved clusters.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7 – Fuzzy and hard partition matrices obtained by (a) and (e) FCM, (b) and (f) FCM-
ER, (c) and (g) FCCI and (d) and (h) AFCM-ER algorithms. The first row shows the
fuzzy partition matrices and the second row the hard. Lighter colors correspond to
higher object membership values in the cluster, and darker colors are associated with
low membership values. In every case, abscissa axis corresponds to the objects and
ordinate axis with retrieved clusters.

The proposed algorithm provides an excellent partition quality in the synthetic Gaussian
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dataset. The result for the fuzzy and hard partitions are exactly equal to the ground truth for this
dataset. The worst performance rank (Table 6) was presented by FCM algorithm where SSC
was not made.

Table 7 illustrate the best clustering results (according to the objective function) for hard
partitions obtained for the algorithms in synthetic datasets respectively. Also, it is shown (in pa-
renthesis) the performance rank of each algorithm according to considered indices and datasets.

Table 7 – The best clustering results obtained on Synthetic dataset for hard partitions.

Algorithm ARI FM OERC SCS

Gaussian
FCM 0.7060(2) 0.7789(2) 0.1097(2) 0.4317(2)

FCM-ER 0.1613(4) 0.4379(4) 0.4157(4) 0.0005(4)
FCCI 0.3331(3) 0.4986(3) 0.2489(3) 0.4189(3)

AFCM-ER 1.0000(1) 1.0000(1) 0.0000(1) 0.4931(1)

Aggregation
FCM 0.5276(3) 0.6244(3) 0.1544(3) 0.4368(1)

FCM-ER 0.5677(2) 0.6432(2) 0.1295(2) 0.3598(2)
FCCI 0.3251(4) 0.4597(4) 0.2168(4) 0.2663(4)

AFCM-ER 0.7115(1) 0.7631(1) 0.0872(1) 0.3529(3)

Compound
FCM 0.4706(3) 0.5891(2) 0.1857(3) 0.2918(3)

FCM-ER 0.4773(2) 0.5874(3) 0.1777(2) 0.3925(2)
FCCI 0.2350(4) 0.3974(4) 0.2611(4) -0.0081(4)

AFCM-ER 0.5417(1) 0.6386(1) 0.1561(1) 0.4842(1)

Flame
FCM 0.4649(2) 0.7412(2) 0.2676(2) 0.4574(1)

FCM-ER 0.3676(3) 0.6941(3) 0.3163(3) 0.1293(4)
FCCI 0.0531(4) 0.5627(4) 0.4707(4) 0.1425(3)

AFCM-ER 0.4880(1) 0.7525(1) 0.2561(1) 0.3702(2)

Spiral
FCM -0.0054(4) 0.3281(4) 0.4457(1) 0.4150(1)

FCM-ER -0.0049(3) 0.3289(3) 0.4459(2) 0.0053(4)
FCCI -0.0010(2) 0.3407(2) 0.4505(3) 0.3891(2)

AFCM-ER -0.0006(1) 0.3444(1) 0.4528(4) 0.3363(3)

Table 8 presents the clustering algorithms average performance ranking according to con-
sidered indices for hard partitions computed from Table 7 respectively. It is also shown the
performance ranking of the clustering algorithms (in parentheses) according to the average per-
formance ranking and the OAR.
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Table 8 – Average performance ranking for hard partitions.

Algorithm ARI FM OERC SCS OAR

FCM 2.8 (3) 2.6 (2) 2.2 (2) 1.6 (1) 2.0 (2)

FCM-ER 2.8 (3) 3.0 (3) 2.6 (3) 3.2 (4) 3.3 (3)

FCCI 3.4 (4) 3.4 (4) 3.6 (4) 3.2 (4) 4.0 (4)

AFCM-ER 1.0 (1) 1.0 (1) 1.6 (1) 2.0 (2) 1.3 (1)

For hard partitions, the AFCM-ER algorithm also performed better than FCM, FCM-ER and
FCCI algorithms for most of the datasets (according to the objective function). According ARI
and FM the proposed method obtains rank (1) for all datasets and for Gaussian and Compound
dataset shows excellent results in all four indices. In conclusion, obtained results showed that
AFCM-ER algorithm is good for soft subspace clustering problems, even for different shape
sets the performance of proposed algorithm stays constant. FCCI shows the worst performance
for hard partition according OAR. This is because the AFCM-ER algorithm emphasizes more
on the importance of correct attributes for each cluster, obtaining higher clustering accuracy
compared with the other approaches. In Gaussian dataset, AFCM-ER algorithm emphasize on
the importance of the attributes 1 and 2 for clusters 1 and 2, and 2 and 3 for clusters 3 and
4, obtaining higher performance compared with FCCI algorithm. FCM and FCM-ER assume
the same importance of the variables in the clustering task, resulting in the worst performance
compared with the proposed algorithm. Table 9 shows the matrix V of relevance weights of the
variables on fuzzy clusters obtained by FCCI and AFCM-ER algorithms. These matrices cor-
respond to the best solution (according to the objective function) in 100 algorithms executions
in the Gaussian dataset.

Table 9 – Attribute weight assignment on Gaussian dataset.

Algorithm Attribute 1 Attribute 2 Attribute 3

FCCI
Cluster 1 0.3396 0.3385 0.3219
Cluster 2 0.3433 0.3405 0.3162
Cluster 3 0.3190 0.3416 0.3394
Cluster 4 0.3232 0.3382 0.3386
AFCM-ER
Cluster 1 14.1086 3.5036 0.0202
Cluster 2 11.2558 4.5525 0.0195
Cluster 3 0.0213 4.6917 10.0054
Cluster 4 0.0184 4.9081 11.0573

Table 10 summarizes the results produced by the four clustering algorithms, expressed in
terms of the means, standard deviations and p-value (comparing AFCM-ER with the others) of
MPC, PE, SFS and FRHR for fuzzy partitions obtained by executing each algorithm 100 times.
The first value indicate the mean and the second value is the standard deviation of the results.
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Table 10 – Clustering performance on the synthetic datasets for fuzzy partitions.

Algorithm MPC PE SFS FRHR
Gaussian

FCM 0.1165 ± 0.0111 1.2176 ± 0.0143 0.5703 ± 0.1436 0.5180 ± 0.0149
(p-value) 1.3 × 10−82 1.3 × 10−93 7.9 × 10−12 8.4 × 10−106

FCM-ER 0.0001 ± 0.0001 1.3862 ± 0.0002 0.0066 ± 0.0070 0.2513 ± 0.0024
(p-value) 4.2 × 10−89 2.3 × 10−100 5.4 × 10−95 3.9 × 10−130

FCCI 0.3448 ± 0.0000 0.9181 ± 0.0000 0.4609 ± 0.0000 0.6187 ± 0.0000
(p-value) 1.2 × 10−68 7.5 × 10−81 0.0647 7.4 × 10−100

AFCM-ER 0.8903 ± 0.1185 0.1197 ± 0.1293 0.4513 ± 0.0513 0.9719 ± 0.0365
Aggregation

FCM 0.0015 ± 0.0009 1.9416 ± 0.0026 0.3430 ± 0.1110 0.2494 ± 0.0093
(p-value) 8.8 × 10−132 3.2 × 10−165 1.0 × 10−20 4.5 × 10−130

FCM-ER 0.5800 ± 0.0270 0.5975 ± 0.0216 0.6260 ± 0.0321 0.9165 ± 0.0074
(p-value) 6.6 × 10−09 1.7 × 10−26 1.9 × 10−29 3.3 × 10−11

FCCI 0.5875 ± 0.0546 0.5925 ± 0.0782 0.2750 ± 0.0811 0.8120 ± 0.0177
(p-value) 0.0037 1.9 × 10−08 6.5 × 10−40 8.9 × 10−39

AFCM-ER 0.6053 ± 0.0295 0.5422 ± 0.0312 0.5004 ± 0.0667 0.8921 ± 0.0313
Compound

FCM 0.0058 ± 0.0026 1.7780 ± 0.0061 0.4981 ± 0.1027 0.3129 ± 0.0199
(p-value) 3.2 × 10−185 8.1 × −197 2.1 × 10−04 5.2 × 10−127

FCM-ER 0.5335 ± 0.0260 0.6200 ± 0.0346 0.5601 ± 0.0674 0.8631 ± 0.0082
(p-value) 4.6 × 10−114 4.0 × 10−116 0.0231 1.2 × 10−33

FCCI 0.3479 ± 0.0322 0.9260 ± 0.0371 0.1126 ± 0.1064 0.7470 ± 0.0131
(p-value) 1.9 × 10−122 6.0 × 10−131 5.4 × 10−61 8.2 × 10−57

AFCM-ER 0.9258 ± 0.0132 0.1029 ± 0.0181 0.5413 ± 0.0446 0.8280 ± 0.0194
Flame

FCM 0.0127 ± 0.0044 0.6868 ± 0.0022 0.5538 ± 0.1567 0.5577 ± 0.0075
(p-value) 2.1 × 10−63 5.9 × 10−62 1.3 × 10−23 0.6050
FCM-ER 0.0043 ± 0.0039 0.6910 ± 0.0020 0.0622 ± 0.0342 0.5408 ± 0.0029
(p-value) 6.5 × 10−66 2.6 × 10−64 1.8 × 10−70 6.9 × 10−05

FCCI 0.0485 ± 0.0012 0.6682 ± 0.0006 0.1442 ± 0.0053 0.5461 ± 0.0006
(p-value) 2.2 × 10−51 2.5 × 10−50 3.0 × 10−64 0.0034

AFCM-ER 0.1464 ± 0.0328 0.6156 ± 0.0181 0.3382 ± 0.0469 0.5602 ± 0.0468
Spiral

FCM 0.0096 ± 0.0054 1.0894 ± 0.0051 0.5428 ± 0.1746 0.3550 ± 0.0090
(p-value) 7.2 × 10−136 1.6 × 10−150 9.8 × 10−18 3.8 × 10−103

FCM-ER 0.0004 ± 0.0004 1.0982 ± 0.0004 0.0225 ± 0.0089 0.3365 ± 0.0022
(p-value) 5.3 × 10−146 1.1 × 10−165 3.8 × 10−110 1.7 × 10−147

FCCI 0.2241 ± 0.0110 0.8557 ± 0.0091 0.3730 ± 0.0342 0.4610 ± 0.0044
(p-value) 5.6 × 10−48 1.6 × 10−54 7.6 × 10−05 1.6 × 10−34

AFCM-ER 0.1876 ± 0.0065 0.8898 ± 0.0046 0.3546 ± 0.0253 0.4503 ± 0.0031

The clustering results regarding the means and standard deviations (Table 10) of the MPC,
PE, indicate robustness in the performance of the AFCM-ER algorithm in fuzzy partitions ob-
taining significantly better results over other compared approaches. For example, the best so-
lution of the proposed algorithm in Spiral dataset according to the objective function acquire
the second rank, but respect to the mean and standard deviation achieve the best performance
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over the others methods. These results suggest that the proposed algorithm has a good perfor-
mance in datasets with complex structures and detecting relevant and irrelevant features for the
determination of the clusters.

For SFS index the proposed algorithm obtains the second rank in the Table 6 and maintains
this same behavior in Table 10. For Gaussian dataset case, the rank for proposed algorithm
was (1) for SFS index in Table 6 and the third according to the mean. This result was obtained
because the proposed algorithm has a high degree of dispersion (Figure 8 (a)) so is less robust
for SFS index in the Gaussian dataset.

Paying attention to the obtained p-values, in Flame dataset for the FRHR index in FCM
algorithm, the results are not significantly different respect to proposed algorithm. For Aggre-
gation dataset, the proposed algorithm obtains the rank (1) in Table 6, but respect to the mean
and standard deviation get the rank (2). These results are obtained because the AFCM-ER algo-
rithm has a high degree of dispersion concerning the other approaches. The 100 iterations results
for FRHR for Flame and Aggregation datasets are shown in Figure 8 (b) and (c). However, in
real applications ground truth labels are not available, and from 100 algorithms executions, one
response has to be given. Because the problem nature is unsupervised, the best option is lower
objective function value result.
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Figure 8 – Box plots for the obtained values of (a) SFS in Gaussian dataset, (b) FRHR in Flame
dataset and (c) FRHR in Aggregation dataset.

Table 11 summarizes the results produced by the four clustering algorithms, expressed in
terms of the means, standard deviations and p-value (comparing AFCM-ER with the others) of
ARI, FM, OERC and SCS indices for hard partitions obtained by executing each algorithm 100
times. The first value indicate the mean and the second value is the standard deviation of the
results.
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Table 11 – Clustering performance on the synthetic datasets for hard partitions.

Algorithm ARI FM OERC SCS
Gaussian

FCM 0.7048 ± 0.0773 0.7789 ± 0.0559 0.1112 ± 0.0322 0.4024 ± 0.1013
(p-value) 1.1 × 10−12 3.4 × 10−14 2.0 × 10−09 0.2111
FCM-ER 0.1667 ± 0.0141 0.4366 ± 0.0082 0.4027 ± 0.0119 0.0035 ± 0.0028
(p-value) 2.0 × 10−64 2.7 × 10−61 8.3 × 10−72 2.3 × 10−72

FCCI 0.3331 ± 0.0000 0.4986 ± 0.0000 0.2489 ± 0.0000 0.4189 ± 0.0000
(p-value) 1.1 × 10−53 8.3 × 10−56 1.9 × 10−48 0.9008

AFCM-ER 0.8464 ± 0.1619 0.8895 ± 0.1167 0.0634 ± 0.0670 0.4199 ± 0.0827
Aggregation

FCM 0.5622 ± 0.0767 0.6619 ± 0.0601 0.1550 ± 0.0279 0.1736 ± 0.0669
(p-value) 0.0728 0.9102 7.2 × 10−10 2.3 × 10−34

FCM-ER 0.6033 ± 0.0432 0.6740 ± 0.0368 0.1199 ± 0.0121 0.3778 ± 0.0321
(p-value) 0.1533 0.1633 0.1348 0.5228

FCCI 0.3380 ± 0.0480 0.4697 ± 0.0381 0.2126 ± 0.0176 0.1673 ± 0.0735
(p-value) 1.8 × 10−38 7.2 × 10−36 1.1 × 10−43 3.3 × 10−37

AFCM-ER 0.5868 ± 0.1052 0.6607 ± 0.0864 0.1251 ± 0.0318 0.3723 ± 0.0769
Compound

FCM 0.5724 ± 0.0902 0.6792 ± 0.0741 0.1609 ± 0.0275 0.2784 ± 0.0726
(p-value) 1.1 × 10−10 8.6 × 10−14 5.7 × 10−04 1.6 × 10−49

FCM-ER 0.5127 ± 0.0509 0.6167 ± 0.0417 0.1668 ± 0.0164 0.3958 ± 0.0336
(p-value) 0.0061 0.0056 0.0083 8.6 × 10−38

FCCI 0.2764 ± 0.0307 0.4334 ± 0.0287 0.2498 ± 0.0085 0.0072 ± 0.0311
(p-value) 7.6 × 10−53 7.5 × 10−49 2.9 × 10−59 6.7 × 10−101

AFCM-ER 0.4923 ± 0.0651 0.5994 ± 0.0546 0.1728 ± 0.0197 0.5081 ± 0.0410
Flame

FCM 0.4415 ± 0.0921 0.7299 ± 0.0446 0.2793 ± 0.0461 0.4123 ± 0.1282
(p-value) 9.8 × 10−14 1.4 × 10−13 1.0 × 10−13 2.3 × 10−13

FCM-ER 0.3588 ± 0.0654 0.6899 ± 0.0317 0.3207 ± 0.0327 0.0633 ± 0.0344
(p-value) 1.9 × 10−07 3.1 × 10−07 2.1 × 10−07 6.1 × 10−67

FCCI 0.0613 ± 0.0043 0.5646 ± 0.0010 0.4669 ± 0.0020 0.1348 ± 0.0055
(p-value) 1.0 × 10−11 1.6 × 10−08 2.9 × 10−11 8.9 × 10−62

AFCM-ER 0.2292 ± 0.2184 0.6289 ± 0.1045 0.3853 ± 0.1091 0.2988 ± 0.0419
Spiral

FCM −0.0050 ± 0.0010 0.3351 ± 0.0116 0.4505 ± 0.0082 0.3263 ± 0.1155
(p-value) 1.8 × 10−29 1.6 × 10−10 0.0375 0.9663
FCM-ER −0.0050 ± 0.0007 0.3499 ± 0.0197 0.4621 ± 0.0154 0.0189 ± 0.0074
(p-value) 1.4 × 10−30 0.0055 5.7 × 10−09 3.9 × 10−92

FCCI 0.0022 ± 0.0042 0.3477 ± 0.0079 0.4528 ± 0.0029 0.3574 ± 0.0377
(p-value) 4.4 × 10−05 0.0015 0.2809 3.0 × 10−07

AFCM-ER −3.8 × 10−05 ± 0.0029 0.3443 ± 0.0055 0.4523 ± 0.0024 0.3268 ± 0.0370

The clustering results in terms of the means and standard deviations of the ARI, FM, OERC
and SCS values, indicate robustness in the performance of the AFCM-ER algorithm for hard
partitions in Gaussian dataset. For datasets with different shape sets the performance of pro-
posed method is less robust than FCM algorithm. In the Aggregation dataset, for FCM and
FCM-ER algorithms, the results are not significant different respect to the proposed algorithm
because the algorithm, despite the difference in the constraints, is a FCM algorithm variation.
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In general, the proposed algorithm shows the best performance in comparison with the other
approaches in the defined synthetic datasets for almost all indexes. Selecting the best solution
according to the objective function, showed a high performance. The results obtained accor-
ding to the mean and the variance for fuzzy partitions, the proposed method achieves the best
performance, although for the hard partitions accuracy decreased.

4.3 Experiments on real datasets

To show the effectiveness of the proposed method, ten real datasets available at the UCI ma-
chine learning repository (ASUNCION; NEWMAN, 1994) were chosen for comparative analysis:
Abalone, Breast tissue, Haberman, Iris plant, Led7, Scale, Sonar, Thyroid gland, UKM, and
Vehicle. Table 12 describes briefly the datasets.

Table 12 – Summary of the real datasets available at the UCI machine learning repository.

Dataset N P C Dataset N P C
Abalone 4177 8 3 Scale 625 4 3

Breast tissue 106 9 6 Sonar 208 60 2
Haberman 306 3 2 Thyroid gland 215 5 3

Iris plant 150 4 3 UKM 403 5 4
Led7 3200 7 10 Vehicle 846 18 4

Abalone: The objective is to predict the age of abalone from physical measurements. The
age of abalone is determined by cutting the shell through the cone, staining it, and counting the
number of rings through a microscope. This process is a tedious and time-consuming task. Other
measurements, which are easier to obtain, are used to predict the age. Further information, such
as weather patterns and location (hence food availability) may be required to solve the problem.

Breast tissue: Impedance measurements of freshly excised breast tissue were made at the
following frequencies: 15.625, 31.25, 62.5, 125, 250, 500, 1000 KHz. These measurements
plotted in the (real, imaginary) plane constitute the impedance spectrum from where the breast
tissue features are computed. The dataset can be used for predicting the classification of either
the original six classes or of 4 classes by merging the fibro-adenoma, mastopathy and glandular
classes whose discrimination is not necessary (they cannot be accurately discriminated anyway).

Haberman: This dataset contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on the survival of patients who had
undergone surgery for breast cancer. The task is to determine if the patient survived five years
or longer (positive) or if the patient died within five years (negative).

Iris plant: This dataset is perhaps the best-known database to be found in the pattern recog-
nition literature. Fisher’s paper is a classic in the field and is frequently referenced to this day.
The dataset contains three classes of 50 instances each, where each category refers to a type of
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iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable
from each other. The objective is to predict the class of iris plant.

Led7: This simple dataset domain contains 7 Boolean attributes and ten concepts, the set
of decimal digits. The LED displays contain seven light-emitting diodes, hence the reason for
seven characteristics. The task is to determine which digit is shown in the display. The problem
would be easy if not for the introduction of noise. In this case, each attribute value has the 10%
probability of having its value inverted. This dataset is a sample of 500 instances obtained from
the original data generator.

Scale: This dataset was generated to model psychological experimental results. Each exam-
ple is classified as having the balance scale tip to the right, tip to the left, or be balanced. The
attributes are the left weight, the left distance, the right weight, and the proper distance. The
correct way to find the class is the greater of (left-distance * left-weight) and (right-distance *
right-weight). If they are equal, it is balanced.

Sonar: The file "sonar.mines"contains 111 patterns obtained by bouncing sonar signals off

a metal cylinder at various angles and under various conditions. The file "sonar.rocks"contains
97 patterns obtained from rocks under similar conditions. The transmitted sonar signal is a
frequency-modulated chirp, rising in frequency. The dataset contains signals obtained from a
variety of different aspect angles, spanning 90 degrees for the cylinder and 180 degrees for
the rock. Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents
the energy within a particular frequency band, integrated over a certain period. The integration
aperture for higher frequencies occurs later in the time since these frequencies are transmitted
later during the chirp. The label associated with each record contains the letter "R"if the object
is a rock and "M"if it is a mine (metal cylinder). The numbers in the labels are in increasing
order of aspect angle, but they do not encode the angle directly.

Thyroid gland: The original thyroid disease (ann-thyroid) dataset from UCI machine lear-
ning repository is a classification dataset, which is suited for training ANNs. It has 3772 training
instances and 3428 testing instances. It has 15 categorical and six real attributes. The problem
is to determine whether a patient referred to the clinic is hypothyroid. Therefore three classes
are built: normal (not hypothyroid), hyperfunction and subnormal functioning. For outlier de-
tection, 3772 training instances are used, with only six real attributes. The hyperfunction class
is treated as outlier class, and other two classes are inliers because hyperfunction is a clear
minority class.

UKM: It is the real dataset about the students’ knowledge status about the subject of Elec-
trical DC Machines. The dataset had been obtained from Ph.D. Thesis. The users’ knowledge
class were classified by the authors using intuitive knowledge classifier (a hybrid ML technique
of K-NN and meta-heuristic exploring methods), k-nearest neighbor algorithm

Vehicle: The purpose is to classify a given silhouette as one of four types of vehicle, using
a set of features extracted from the silhouette. The vehicle may be viewed from one of many
different angles.
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4.3.1 Results and analysis

The choice of the parameter value for the four algorithms followed the same procedure used in
subsection 4.1.11. Table 13 shows the parameters values for each real dataset.

Table 13 – Parameters values in real datasets.

Algorithm Abalone Breast tissue Haberman Iris plant Led7
FCM (α) 1.45 1.62 4.16 3.18 1.56

FCM-ER (Tu) 13.10 1.20 2.20 2.60 2.00
FCCI (Tu,Tv) (1.60,500) (0.10,108) (0.60,2.5) (1.00,4.5) (0.20,900)

AFCM-ER (Tu) 12.00 0.60 9.30 2.30 0.10

Algorithm Scale Sonar Thyroid gland UKM Vehicle
FCM (m) 2.68 1.09 2.32 2.18 1.16

FCM-ER (Tu) 2.00 24.20 5.30 2.00 5.70
FCCI (Tu,Tv) (0.40,1.5) (0.40,1.5) (1.00,4.5) (0.40,80) (0.20,600)

AFCM-ER (Tu) 1.90 50.00 2.60 2.30 15.50

The fuzzy clustering algorithms were applied to the datasets to obtain a C-cluster partitions.
For each dataset, the algorithms were run 100 times, and the best results were selected accor-
ding to the minimum value of their objective function. Clustering results are also calculated,
expressed in terms of the means, standard deviations and the p-value of the indices values.

To have an intuitive understanding of the physical properties of the attribute weight assign-
ment was plotted the distribution of four attributes of the Iris plant dataset shown in Figure 9. It
can be seen that attributes 3 and 4 are more compact in each cluster. For this reason, they should
be more important and contribute more in clustering, so that higher weights should be assigned
to these two attributes.
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Figure 9 – Distribution of different attributes of Iris plant dataset.

Table 14 shows the matrix V of relevance weights of the variables on fuzzy clusters obtained
by FCCI and AFCM-ER algorithms. These matrices correspond to the best result according to
the clustering adequacy criterion in 100 algorithms executions. FCM and FCM-ER algorithms
assume the same importance of the variables for the clustering task. Compared with the FCCI
method, the proposed method emphasizes the importance of these two attributes, to achieve
higher clustering accuracy. This further verifies the physical meaning of the maximum entropy
method for attribute weight assignment which is consistent with the available data.

Table 14 – Attribute weight assignment on Iris plant dataset.

Algorithm Attribute 1 Attribute 2 Attribute 3 Attribute 4

FCCI

Cluster 1 0.0120 0.0059 0.6500 0.3321
Cluster 2 0.9597 0.0000 0.0183 0.0220
Cluster 3 0.0000 0.9998 0.0001 0.0001

AFCM-ER

Cluster 1 0.6170 0.6890 1.8150 1.2959
Cluster 2 0.4632 0.1053 5.8954 3.4787
Cluster 3 0.6520 0.6795 1.7794 1.2684

Figure 10 shows the fuzzy (U) and hard (Q) partition matrices obtained by the algorithms
on Iris plant dataset. Abscissa axis corresponds to the objects and ordinate axis with retrieved
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clusters. The first row in Figure 10 corresponds to the fuzzy partition matrices and the second
row the hard. It can be observed that the AFCM-ER algorithm provides a better quality fuzzy
and hard partitions in comparison with results obtained by the others approaches. This result is
achieved because AFCM-ER algorithm emphasizes more on the importance of attributes 3 and
4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10 – Fuzzy and hard partition matrices in real datasets obtained by (a) and (e) FCM,
(b) and (f) FCM-ER, (c) and (g) FCCI and (d) and (h) AFCM-ER algorithms. The
first row corresponds to the fuzzy partition matrices and the second row the hard.
Lighter colors correspond to higher object membership values in the cluster, and
darker colors are associated with low membership values. In every case, abscissa
axis corresponds to the objects and ordinate axis with retrieved clusters.

Table 15 shows the best clustering results (according to the objective function) for fuzzy
partitions. Also, it is shown (in parenthesis) the performance rank of each algorithm according
to the indices and considered datasets.

Table 16 presents the average performance ranking of the clustering algorithms according
to the indices considered computed from Table 15. It is also shown the performance ranking
of the clustering algorithms (in parentheses) according to the average performance ranking and
the OAR.

It can be observed that FCCI and AFCM-ER algorithms present the best average perfor-
mance rank (according to the objective function) respect to fuzzy partitions, obtaining a good
quality of clustering in real datasets. Moreover FCM algorithm achieved the third best average
rankings. FCM-ER algorithm presented the worst performance.
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Table 15 – Cluster validity measures on real datasets for fuzzy partitions.

Algorithms MPC PE SFS FRHR Algorithms MPC PE SFS FRHR
Abalone Scale

FCM 0.8131(1) 0.2151(1) 0.6155(1) 0.6026(1) FCM 0.0001(4) 1.0986(4) 0.2484(1) 0.4303(4)
FCM-ER 0.0081(4) 1.0905(4) 0.1493(4) 0.3657(4) FCM-ER 0.0001(4) 1.0985(3) 0.0063(4) 0.4312(3)

FCCI 0.0880(3) 1.0067(3) 0.3463(3) 0.4306(3) FCCI 0.5133(1) 0.4996(1) 0.0986(3) 0.5389(1)
AFCM-ER 0.0968(2) 0.9963(2) 0.4664(2) 0.4446(2) AFCM-ER 0.3364(2) 0.6951(2) 0.1692(2) 0.5272(2)

Breast tissue Sonar
FCM 0.6659(3) 0.5560(4) 0.5632(1) 0.7360(4) FCM 0.8801(1) 0.1010(1) 0.2811(1) 0.5036(1)

FCM-ER 0.6616(4) 0.4451(3) 0.4750(4) 0.7415(3) FCM-ER 0.0037(3) 0.6913(3) 0.0271(3) 0.5001(2)
FCCI 0.7866(2) 0.2892(2) 0.5153(3) 0.7551(1) FCCI 0.3906(2) 0.4427(2) 0.0584(2) 0.4998(3)

AFCM-ER 0.9376(1) 0.0925(1) 0.5239(2) 0.7423(2) AFCM-ER 0.0025(4) 0.6919(4) 0.0086(4) 0.4996(4)
Haberman Thyroid gland

FCM 0.0689(2) 0.6578(2) 0.5980(1) 0.5752(4) FCM 0.2364(2) 0.8347(2) 0.4691(1) 0.5787(3)
FCM-ER 0.0064(4) 0.6900(4) 0.0710(3) 0.5990(2) FCM-ER 0.0033(4) 1.0953(4) 0.0767(4) 0.5549(4)

FCCI 0.4146(1) 0.4335(1) 0.1841(2) 0.5760(3) FCCI 0.1036(3) 0.9780(3) 0.2513(3) 0.6659(2)
AFCM-ER 0.0096(3) 0.6879(3) 0.0401(4) 0.6086(1) AFCM-ER 0.2423(1) 0.7973(1) 0.3206(2) 0.6953(1)

Iris plant UKM
FCM 0.2437(3) 0.8623(3) 0.7288(3) 0.6157(3) FCM 0.0008(4) 1.3851(4) 0.0450(4) 0.2860(4)

FCM-ER 0.4433(2) 0.5744(2) 0.7609(2) 0.7516(2) FCM-ER 0.1612(3) 1.1455(3) 0.1918(2) 0.4943(3)
FCCI 0.2020(4) 0.9029(4) 0.6895(4) 0.5725(4) FCCI 0.2566(1) 0.9822(2) 0.1919(1) 0.5815(1)

AFCM-ER 0.4905(1) 0.4836(1) 0.7640(1) 0.7718(1) AFCM-ER 0.2436(2) 0.9611(1) 0.1714(3) 0.5580(2)
Led7 Vehicle

FCM 0.6165(3) 0.8353(3) 0.8049(1) 0.8180(3) FCM 0.8807(1) 0.1549(1) 0.4131(3) 0.6478(1)
FCM-ER 0.4185(4) 1.1055(4) 0.4855(3) 0.7814(4) FCM-ER 0.4654(3) 0.6896(3) 0.5250(1) 0.5660(3)

FCCI 0.7687(2) 0.4302(2) 0.5375(2) 0.8788(1) FCCI 0.6624(2) 0.4329(2) 0.4289(2) 0.6206(2)
AFCM-ER 0.9990(1) 0.0030(1) 0.3915(4) 0.8569(2) AFCM-ER 0.1434(4) 1.1347(4) 0.0342(4) 0.4567(4)

Table 16 – Average performance ranking for fuzzy partitions.

Algorithm MPC PE SFS FRHR OAR

FCM 2.4 (3) 2.5 (3) 1.7 (1) 2.8 (3) 2.5 (3)
FCM-ER 3.5 (4) 3.3 (4) 3.0 (4) 3.0 (4) 4.0 (4)

FCCI 2.1 (1) 2.2 (2) 2.5 (2) 2.1 (1) 1.5 (1)
AFCM-ER 2.1 (1) 2.0 (1) 2.8 (3) 2.1 (1) 1.5 (1)

The experimental results are also reported regarding the mean and standard deviation of
MPC, PE, SFS, and FRHR indexes for 100 runs of the corresponding algorithm for fuzzy parti-
tions. In particular, a paired two-tailed t-test has been adopted as the statistical test to compare
the performance of the proposed AFCM-ER algorithm and the other four methods on real da-
tasets. The p-value of t-test represents the probability that two sets of compared samples come
from distributions with equal means. The smaller the p-value, the more significant the diffe-
rence between the two average values is. Table 17 reports the means, standard deviations and
p-values of the index values obtained by the clustering algorithms on considered datasets for
internal indices (YEUNG; HAYNOR; RUZZO, 2001).

The results expressed regarding the means and standard deviations for fuzzy partitions, show
that the proposed algorithm usually demonstrates much better performance than the other ap-
proaches in almost all considered indices proving more robustness. Despite the good perfor-
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Table 17 – Clustering performance on real datasets for fuzzy partitions. The first value corres-
ponds to the mean and the second value is the standard deviation of 100 results.
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mance of the proposed algorithm, in the Breast tissue and UKM datasets, there is no significant
difference with the FCCI algorithm for FRHR and PE values respectively. Figure 11 and Fi-
gure 12 show the performance behavior of applying the four algorithms on Breast tissue and
UKM datasets as box plots for MPC, PE, SFS and FRHR values.
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Figure 11 – Clustering results on Breast tissue dataset using different metrics.
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Figure 12 – Clustering results on UKM dataset using different metrics.

Concerning to the comparison between the hard partition and the a priori partition, Table 18
shows the results considering ARI, FM, OERC, SCS and the performance rank (in parenthesis)
of each algorithm on real datasets.

By comparing the results in Table 18, it is further noticed that the best clustering perfor-
mance indicated by some index is not always consistent with others indexes, i.e., an algorithm
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showing good clustering performance with a high index value may not have a high value in the
other indexes as well. Example of this can be observed in Breast tissue dataset where the pro-
posed algorithm performance rank for ARI is (2), for FM is (1), (4) for OERC and (1) for SCS.
Therefore, it is necessary to evaluate the performance of a clustering algorithm with different
metrics.

Table 18 – Cluster validity measures on real datasets for hard partitions.

Algorithms ARI FM OERC SCS Algorithms ARI FM OERC SCS
Abalone Scale

FCM 0.1333(4) 0.4285(4) 0.3894(3) 0.5471(1) FCM 0.1279(1) 0.4628(1) 0.4173(1) 0.0008(4)
FCM-ER 0.1938(1) 0.5041(1) 0.3905(4) 0.1300(4) FCM-ER 0.0062(4) 0.3803(4) 0.4739(4) 0.0047(3)

FCCI 0.1904(2) 0.4811(2) 0.3746(2) 0.3443(2) FCCI 0.0574(3) 0.4152(3) 0.4501(3) 0.0669(2)
AFCM-ER 0.1855(3) 0.4730(3) 0.3731(1) 0.2835(3) AFCM-ER 0.1131(2) 0.4601(2) 0.4259(2) 0.1559(1)

Breast tissue Sonar
FCM 0.3019(3) 0.4286(3) 0.2099(2) 0.4782(2) FCM 0.0085(2) 0.5036(3) 0.4957(2) 0.2626(1)

FCM-ER 0.3208(1) 0.4422(2) 0.2013(1) 0.4105(4) FCM-ER -0.0015(3) 0.5063(2) 0.5007(3) 0.0211(3)
FCCI 0.2862(4) 0.4213(4) 0.2246(3) 0.4691(3) FCCI -0.0047(4) 0.4967(4) 0.5024(4) 0.0281(2)

AFCM-ER 0.3031(2) 0.4520(1) 0.2584(4) 0.5042(1) AFCM-ER 0.0190(1) 0.5268(1) 0.4905(1) 0.0068(4)
Haberman Thyroid gland

FCM -0.0011(3) 0.5480(3) 0.5009(3) 0.4839(1) FCM 0.1801(2) 0.5640(2) 0.4140(2) 0.3241(1)
FCM-ER -0.0027(4) 0.5473(4) 0.5016(4) 0.0634(3) FCM-ER 0.0577(3) 0.4670(4) 0.4788(3) 0.0455(3)

FCCI 0.1530(1) 0.6641(2) 0.4054(2) 0.1663(2) FCCI 0.0464(4) 0.4851(3) 0.4822(4) -0.0174(4)
AFCM-ER 0.1456(2) 0.7070(1) 0.3874(1) 0.0522(4) AFCM-ER 0.6933(1) 0.8510(1) 0.1534(1) 0.1611(2)

Iris plants UKM
FCM 0.6303(2) 0.7520(2) 0.1632(2) 0.5679(1) FCM 0.2630(1) 0.5156(1) 0.3563(4) 0.0249(4)

FCM-ER 0.6199(3) 0.7449(3) 0.1678(3) 0.2599(3) FCM-ER 0.1644(4) 0.3820(4) 0.3224(3) 0.1336(1)
FCCI 0.1853(4) 0.4534(4) 0.3597(4) 0.0577(4) FCCI 0.2349(3) 0.4394(3) 0.2997(2) 0.1256(2)

AFCM-ER 0.6882(1) 0.7909(1) 0.1377(1) 0.3977(2) AFCM-ER 0.2565(2) 0.4596(2) 0.2952(1) 0.1200(3)
Led7 Vehicle

FCM 0.5142(1) 0.5631(1) 0.0879(1) 0.5563(1) FCM 0.0770(2) 0.3082(4) 0.3466(1) 0.3754(1)
FCM-ER 0.4833(2) 0.5358(2) 0.0944(2) 0.3481(4) FCM-ER 0.0736(4) 0.3085(2) 0.3507(3) 0.2676(3)

FCCI 0.4589(3) 0.5138(3) 0.0988(3) 0.4889(2) FCCI 0.0767(3) 0.3084(3) 0.3472(2) 0.3455(2)
AFCM-ER 0.3139(4) 0.3930(4) 0.1431(4) 0.3919(3) AFCM-ER 0.1143(1) 0.3558(1) 0.3543(4) 0.0221(4)

The average performance ranking of the clustering algorithms for hard partitions was com-
puted from Table 18. The results according to the performance ranking of the clustering algo-
rithms, the average performance ranking and the OAR are presented in Table 19.

Table 19 – Average performance ranking for hard partition on real datasets.

Algorithm ARI FM OERC SCS OAR

FCM 2.1(2) 2.4(2) 2.1(2) 1.7(1) 1.8(2)
FCM-ER 2.9(3) 2.8(3) 3.0(4) 3.1(4) 3.5(4)

FCCI 3.1(4) 3.1(4) 2.9(3) 2.5(2) 3.3(3)
AFCM-ER 1.9(1) 1.7(1) 2.0(1) 2.7(3) 1.5(1)

The AFCM-ER algorithm for hard partitions, performed better than the other three algo-
rithms for most of the datasets. For example AFCM-ER algorithm in the Thyroid gland data-
set performed more than 25% better in ARI, FM and OERC. Moreover, the FCM and FCCI
algorithms achieved, respectively, the second and third best average rankings. The FCM-ER
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algorithm presented the worst performance according to the average ranking. Finally, the pro-
posed algorithm, in general, performed better with a higher frequency according to considered
indexes.

Table 20 reports the clustering results expressed in terms of the means, standard deviations
and p-values of the considered index values obtained by the fuzzy clustering algorithms on the
datasets for hard partitions.

The results expose that AFCM-ER algorithm significantly outperformed the other three al-
gorithms in most results. However, even though FCM, FCM-ER and FCCI are in general in-
ferior, they are able to achieve the good clustering performances for the Abalone, Led7, Scale
and UKM datasets. In the case of Scale dataset, results in Table 20 show that the AFCM-ER
algorithm is not significantly different in comparison with FCM algorithm for ARI, FM and
OERC indexes. Figure 13 shows the box plot of ARI, FM, OERC, and SCS values for Scale
dataset. Although there is no significant difference, the proposed method shows less degree of
dispersion than the FCM algorithm, so it is much more robust (stable) for this dataset.
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Figure 13 – Box plot for Scale dataset.

On the other hand, FCM-ER algorithm shows the best performance in ARI for Breast tissue
dataset (Table 18). However in Table 20, AFCM-ER algorithm significantly outperformed in
ARI. These results indicate that there is no single algorithm that is always superior to the others
for all datasets. In conclusion, the proposed algorithm obtained the best clustering results for
hard partitions compared with the literature proposals, indicating that automatic variable selec-
tion and entropy regularization is an effective way to enhance the performance of the clustering
algorithms.
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Table 20 – Clustering performance on real datasets for hard partitions. The first value corres-
ponds to the mean and the second value is the standard deviation of 100 results.
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4.4 Color segmentation

The segmentation of color images is a potential area of research due to its practical significance
in various fields. Image segmentation partitions the image into regions/segments such that pixels
belonging to a region are more similar to each other than those belonging to the different regions.
Clustering is a well-known approach for segmenting images. It strives to assess the relationships
among patterns of the dataset by organizing them into groups or clusters such that objects within
a group are more similar to each other than those belonging to different clusters. Clustering
in the color domain gives improved segmentation results since color components carry more
information than the grayscale components.

In this section, the proposed algorithm is experimented with the Berkeley segmentation
database (ARBELAEZ; FOWLKES; MARTIN, 2007) to evaluate its clustering performance and ro-
bustness in image segmentation. It is also carried out the experiments with the other approaches
on the image dataset. This segmentation application was performed as in the (HANMANDLU et

al., 2013) work.
All images are digitized to 24 bits per pixel in the RGB format. Since the distance between

any two points in the RGB space is not proportional to their color difference, the transformation
from the RGB space to a uniform color space: CIELAB is performed. The vector {a*, b*} of
CIELAB color space contains the total chrominance color information of pixels and is the fea-
ture space for our color segmentation experiments. The vector {L*} or luminance vector which
decides the darkness or fairness of the image segments is discarded in the clustering process to
ensure that the illumination effects do not affect the segmentation process.

4.4.1 Segmentation evaluation indices

The quality of the segmentation is generally judged by two types of indices: the goodness
methods such as Liu’s F-measure which ascertains the color difference in the CIELAB co-
lor space and also penalizes the formation of large number of segments, and the discrepancy
methods which ascertain the quality with respect to some reference result like ground truth
images for example the RAND index. The above two types of quality measures are used to-
gether to judge the efficiency and practicality of the proposed algorithms.

Liu’s Evaluation Measure (F): The performance of color segmentation is evaluated using
Liu and Yang’s (LIU; YANG, 1994) evaluation function F:

F(I) =
1

1000(N1 × N2)

√
G

G∑︁
i=1

e2
i
√

Ai
(4.18)

where I is the segmented image and N1 × N2 is the image size, G is the number of regions
of the segmented image, Ai is the area and ei is the average color error of the i-th region where
ei is defined as the sum of Euclidean distances between the {a*, b*} color vector of the pixels
of region i and the color centroid attributed to region i in the segmented image. The smaller
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the value of F(I) the better the segmentation result. Liu’s F-factor was chosen as one of our
evaluation criteria since it gives an accurate measure of the color differencing achieved by the
segmentation algorithm and at the same time penalizes large number of regions formed. Also is
used for comparative proposed algorithms with FCCI algorithm.

Probabilistic Rand index (PR): The PR index is a generalization of the RAND index
(RAND, 1971). It allows a comparison of the test segmentation with multiple ground truth ima-
ges through soft non-uniform weighting of pixel pairs as a function of the variability in the
ground truth sets. Consider a set of manually segmented (ground truth) images {S 1, ..., S k} cor-
responding to an image X = {x1, ..., xN}, where a subscript indexes one of N pixels. Let S test be
the obtained segmentation compared with the manually labeled set. Let lS test

i be the label of pixel
xi in segmentation S test and lS k

i the label of same pixel in the manually segmented image S k. It
is assumed that each label lS k

i can take values in a discrete set of size Lk, and correspondingly
lS test
i takes one of Ltest values.

Each human segmenter provides information about the segmentation S k of the image in the
form of binary numbers I(lS k

i = lS k
j ) for each pair of pixels (xi, x j) (UNNIKRISHNAN; HEBERT,

2005). The set of all perceptually correct segmentation defines a Bernoulli distribution giving a
random variable with the expected value denoted as hi j. The PR is then defined as:

PR(S test, {S k}) =
2
N

N∑︁
i=1

N∑︁
j=i+1

[mi jhi j + (1 − mi j)(1 − hi j)] (4.19)

where mi j denotes the event of a pair of pixels i and j having the same label in the test image
S test and hi j denotes the event of a pair of pixels i and j having the same label in {S k}:

mi j = I(lS test
i = lS test

j ) (4.20)

This measure takes values [0, 1], where 0 means no similarities between S test and {S 1, S 2, ..., S k},
and 1 means all segmentations are identical.

4.4.2 Experimental setting

A set of ten test images is taken from the Berkeley segmentation database (ARBELAEZ; FOWL-

KES; MARTIN, 2007) along with 5–7 ground truth segmentations available for each image in
the database for the evaluation of the results. The size of each image is either 321 × 481 or
481 × 321. In these experiments, all the datasets are preprocessed by normalizing the feature in
each dimension into the interval [−1, 1].

For each dataset, the value of the Tu parameter of proposed algorithm was varied between
10−7 to 10 (with step 0.1). The algorithms were executed on each dataset 100 times, and the
cluster centers were randomly initialized at each time.

The number of clusters C for each image was determined from the first local minimum
in the cluster validity according to Xie-Beni index as demonstrated by the example shown in
Figure 14. In this example, the number of clusters C was varied from 2 to 4. The corresponding
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values of Xie-Beni index for C = 2, ..., 4 are 0.5103, 0.2028 and 4.2291 respectively. It can be
observed a local minimum in C = 3; therefore the selected C value in this image is equal to 3.

(a) 2 Clusters (b) 3 Clusters

(c) 4 Clusters

2 3 4
Number of clusters

0

0.51

1.52

2.53

3.54

4.5
C

lu
st

er
 V

al
id

ity
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su

re
 (X

ie
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en
i)

(d) Xie-Beni values

Figure 14 – Segmentation results (a) for two clusters, (b) for three clusters, (c) for four clusters
and (d) the corresponding Clustering Validity Measure (Xie-Beni index).

The steps for color image segmentation with automatic cluster amount selection are outlined
in Algorithm 5:

The results shows that the AFCM-ER algorithm yields highly crisp values of object mem-
bership function uik (close to 0 and 1). On the other hand the feature membership values vk j are
highly fuzzy for high values due to restriction Equation 3.6 for AFCM-ER algorithm. The vk j

values however are accentuated by the lower values of parameter Tu in Equation 3.4 creating a
considerable influence in the computation of uik, eventually leading to crisp values of uik after
the iterative procedure. This helps in crisp classification during the defuzzification process.
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Algorithm 5 Algorithm for color image segmentation with automatic cluster amount selection.
1: Obtain the three dimensional RGB input image;
2: Convert RGB color space into the CIELAB color space with color dimensions P = 2, i.e,
{a*, b*};

3: Perform 2D to 1D transformation (CHACON; AGUILAR; DELGADO, 2002) (by lifting the
elements column wise) to generate data point xi j in the j-th dimension, j = 1, 2 for each
pixel i = 1, ...,N, where N is the size of the data;

C = 1;
S old = ∞;
S new = ∞;

4: while S old > S new do
S old = S new;
C = C + 1;
Find Tu following the same procedure used in subsection 4.1.11;
Run the algorithm and obtain fuzzy object membership function uik;
Calculate Xie and Beni’s (XIE; BENI, 1991) cluster validity and assign value to S new;

5: end while
6: Run the algorithm for C-1 clusters and obtain the object uik membership function.
7: Defuzzify uik into clusters.

4.4.3 Results and analysis

In this subsection are shown and analyzed the segmentation results obtained by the FCM, the
FCM-ER, the FCCI and the proposed AFCM-ER algorithms on input images.

The obtained segmentation results by the proposed algorithm are presented in Figure 15.
The segmentation shows that proposed method has a good match with human ground truth
segmentation as indicated by a high value of PR index (there is an excellent correspondence
with human perception), and also efficient color differentiation as indicated by a low value of
Liu’s evaluation measure F. The algorithm is also able to segment natural scenes containing
non-uniform illumination efficiently (Figure 15) by segregating shadows from sunlit portions
thus agreeing with human perception.

Table 21 shows Liu’s F-factor and PR values obtained by FCM, FCM-ER, FCCI and AFCM-
ER algorithms. In this table it is also presented the number of clusters obtained automatically
for the segmentation algorithm using the Xie-Beni index.

Table 21 clearly indicates that the AFCM-ER algorithm is the best among all these algo-
rithms, and respect to the PR index, the proposed approach gets the best performance (higher
PR) for all images. For PR index the worst result was obtained by FCM algorithm and for Liu’s
evaluation measure FCM-ER algorithm.

Figure 16 and Figure 17 show the color segmented results of the four methods for ten images
from the Berkeley Segmentation dataset. It is observed from the segmentation results that the
proposed method forms well defined and interpretable clusters even when the color difference
between two regions is not too distinct as in the case of the last image.
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8

(i) Image 9 (j) Image 10

Figure 15 – Color segmentation results of 10 test images from Berkeley segmentation dataset
by the proposed method.
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Table 21 – PR and Liu’s F-measure values for the obtained images segmentation from Berkeley
dataset by the proposed algorithm (AFCM-ER) and the other approaches.

Algorithms PR Liu’s F-
measure

Number
of

clusters

Algorithms PR Liu’s F-
measure

Number
of

clusters
Image 1 Image 6
FCM 0.7954 0.0079 2 FCM 0.7827 0.0039 2
FCM-ER 0.7890 0.0083 2 FCM-ER 0.7819 0.0116 2
FCCI 0.7139 0.0041 4 FCCI 0.7819 0.0091 2
AFCM-ER 0.8249 0.0065 3 AFCM-ER 0.8224 0.0048 3
Image 2 Image 7
FCM 0.7048 0.0065 2 FCM 0.4245 0.0011 3
FCM-ER 0.8086 0.0034 3 FCM-ER 0.5301 0.0012 2
FCCI 0.8076 0.0034 3 FCCI 0.6731 0.0008 3
AFCM-ER 0.8148 0.0030 3 AFCM-ER 0.8712 0.0010 2
Image 3 Image 8
FCM 0.8889 0.0013 2 FCM 0.7404 0.0070 2
FCM-ER 0.7714 0.0059 3 FCM-ER 0.7970 0.0056 3
FCCI 0.8948 0.0019 3 FCCI 0.7987 0.0057 3
AFCM-ER 0.8970 0.0016 3 AFCM-ER 0.8695 0.0037 4
Image 4 Image 9
FCM 0.9426 0.0040 2 FCM 0.8447 0.0082 3
FCM-ER 0.7605 0.0023 3 FCM-ER 0.8455 0.0082 3
FCCI 0.7830 0.0022 4 FCCI 0.8400 0.0107 3
AFCM-ER 0.9633 0.0076 3 AFCM-ER 0.8497 0.0075 3
Image 5 Image 10
FCM 0.6955 0.0026 2 FCM 0.6201 0.0096 3
FCM-ER 0.7002 0.0069 2 FCM-ER 0.6642 0.0049 4
FCCI 0.7002 0.0069 2 FCCI 0.6581 0.0044 4
AFCM-ER 0.8282 0.0030 3 AFCM-ER 0.8347 0.0045 6
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(a) Original (b) FCM (c) FCM-ER (d) FCCI (e) AFCM-ER

Figure 16 – Color segmentation results of different images (from top to bottom) with (a) Ori-
ginal images from Berkeley segmentation database (b) FCM method (c) FCM-ER
(d) FCCI (e) Proposed method segmentations.
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(a) Original (b) FCM (c) FCM-ER (d) FCCI (e) AFCM-ER

Figure 17 – Color segmentation results of different images (from top to bottom) with (a) Origi-
nal images from Berkeley segmentation dataset (b) FCM method (c) FCM-ER (d)
FCCI (e) Proposed method segmentations.
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4.5 Chapter summary

The proposed method utility was evaluated through several experiments with synthetic and real
datasets. The obtained results showed the superiority of the proposed algorithm when some
variables are more relevant than others for the determination of the clusters. The algorithm was
also tested for color image segmentation on the Berkeley segmentation dataset. The algorithm
showed that obtained results correspond to human perception and maintains a good trade-off

between the two segmentation evaluation measures and have a good match with human ground
truth segmentation.
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5 CONCLUSIONS

In this chapter conclusions of this fuzzy clustering algorithm for soft subspace clustering based
on adaptive Euclidean distances and entropy regularization research are presented. This work
was presented and published in the proceedings of 2017 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). A list of contributions and limitations of this work are presented,
as well as future work directions.

5.1 Contributions

It was proposed a new FCM-type algorithm for soft subspace clustering based on adaptive
Euclidean distances, and the entropy of the objects as the regularization term in the objective
function. An study of the state of the art of fuzzy clustering methods based on automatic varia-
bles selection and entropy regularization resulted as an identification of more suitable approach
for partitioning objects or data samples into groups.

In comparison with conventional methods, the proposed approach has a better adaptive dis-
tances, which change with each algorithm iterations and are different from one cluster to another
(local adaptive distances). This type of dissimilarity measure is adequate to learn the variables
weights during the clustering process, leading to an improvement in the performance of the
algorithms.

The algorithm starts from an initial fuzzy partition, then it alternates over three steps (i.e.
representation, weighting, and allocation) until it converges as the adequacy criterion reaches
a stationary value. At this point a new objective function is formulated and update rules are
derived. The derivation of the expressions of the relevance weights was made considering that
the product of the weight of the variables in each group should be equal to one.

At the end was obtained for proposed algorithm an expression for the best prototypes of the
clusters, the best vectors of variable weights, the best rule of allocation of the objects to the
clusters and the best diffuse partition matrix. Convergence properties of the proposed method
were also demonstrated. The proposed algorithm gives as solution: the best centroid of each
cluster, the best relevance weight of each variable, as well the best partition, according to the
clustering criterion.

The parameter selection is a complicated process in clustering algorithms that result in sig-
nificant performance improvement or deterioration. In most bibliography methods, parameters
adjustment is made using objects labels, that is impracticable in real clustering applications.
In this work was adapted the proposal presented by Schwämmle et al. (SCHWÄMMLE; JENSEN,
2010) to determine the parameter values in an unsupervised way, a novelty in this field.

The proposed method utility was demonstrated through various experiments with synthetic
and real datasets (available at the UCI machine learning repository) and color image segmen-
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tation.

5.2 Summary of Results

Experiments on synthetic datasets shown that AFCM-ER algorithm presented the best average
performance rank (according to the objective function) respect to the fuzzy partitions in almost
all datasets compared with the other approaches. The worst performance was presented by the
FCM algorithm. In terms of the means and standard deviations the proposed method manifested
robustness, obtaining significantly better results over other compared works.

In the other hand for hard partitions, the AFCM-ER algorithm also performed better than
the other approaches for most of the datasets (according to the objective function). The method
showed that is good for soft subspace clustering problems. Even for different shape sets the per-
formance of proposed algorithm stays constant because AFCM-ER algorithm emphasizes more
on the importance of correct attributes for the clusters, obtaining higher clustering accuracy. The
average clustering results, in terms of the means and standard deviations, indicate robustness in
the performance in hard partitions. The worst result was obtained by FCCI algorithm.

Result in real datasets show that proposed and FCCI algorithms present the best average
performance rank (according to the objective function) respect to the fuzzy partitions, obtaining
good quality of clustering in real datasets. Moreover, FCM and FCM-ER algorithms achieved
the third and fourth best average rankings respectively. The results expressed in terms of the
means and standard deviations, show that the proposed algorithm usually demonstrates better
performance than the other approaches in almost all considered indices, proving more robust-
ness despite not having presented the best overall average performance ranking according to the
objective function. The worst performance was presented by FCM-ER algorithm.

For the hard partitions, AFCM-ER performed better than the other algorithms for most
of the datasets. Moreover, the FCM and FCCI algorithm achieved, respectively, the second and
third best average rankings according to the average ranking. Finally, the proposed algorithm, in
general, performed better with a higher frequency. In terms of the means and standard deviations
the AFCM-ER algorithm significantly outperformed the other three algorithms in most datasets.

The algorithm was also experimented for color image segmentation on the Berkeley seg-
mentation database (ARBELAEZ; FOWLKES; MARTIN, 2007). The obtained results by AFCM-ER
algorithm showed that segmented images correspond to human perception. The segmentation
maintains a good trade off between the two segmentation evaluation measures and have a good
match with human ground truth segmentation. Respect to PR and F indexes, the AFCM-ER
algorithm presented the best performance among all these algorithms. For PR index the worst
result was obtained by FCM algorithm and FCM-ER algorithm for Liu’s evaluation measure.
Segmentation results by the proposed method form well defined and interpretable clusters even
when the color difference between two regions is not too distinct.

In general, the proposed algorithm obtained the best clustering results for hard partitions
compared with the literature proposals, indicating that automatic variable selection and entropy
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regularization is an effective way to enhance the performance of the clustering algorithms.

5.3 Limitations

The Euclidean distance is traditionally used to compare the objects and the prototypes in the
FCM algorithms, but theoretical studies indicate that methods based on Euclidean distance are
not indicated for samples with outlier and characteristics with outlier. The proposed method is
a version of the FCM-type algorithm for soft subspace clustering based on adaptive Euclidean
distances, and the entropy of the objects as the regularization term in the objective function. In
conclusion, the AFCM-ER algorithm is less robust to the presence of outliers.

5.4 Future Work

The distance metric used in clustering plays a critical role in Machine Learning algorithms.
Generally, fuzzy clustering algorithms use the Euclidean distance to reasonably describe relati-
onships between objects. The Euclidean distance metric considers that all variables are equally
important, in the sense that all have the same weight for group definition. Nevertheless, in most
areas of knowledge, and especially if we are dealing with high-volume datasets, some vari-
ables may be irrelevant. Among those that are relevant, some may be of greater importance
than others in building the groups. Also, the contribution of each variable to each group may
be different, for example, each group may have a different set of important variables. In addi-
tion, the Euclidean distance metric is not indicated for samples with outlier and characteristics
with outliers. An appropriate solution is to introduce a distance metric with good quality, robust
to outliers, and to identify relevant variables. The provision of such distance metrics is highly
problem-specific and determines the success or failure of a learning algorithm.

Without doubt, a good clustering is crucial for many real world applications. The semi-
supervised clustering based on the partitions methods, from the use of class labels, must-link
and can not-link constraints between objects (CHAPELLE; SCHOLKOPF; ZIEN, 2009) or degrees
of a priori membership in some instances is used to assist unsupervised clustering. This results
in a generally attractive approach, both in theory and practice, for requiring less human effort
and greater accuracy. In semi-supervised clustering, pairs of objects that must belong to the
same partition are indicated as a must-link, while objects belonging to different partitions are
indicated as can not-link. Such constraints are often easy to extract from applications that have
the availability of labeled historical data that could be used to guide the collating process when
such labels are no longer available. An added value of these techniques is that not only is the
quality of the resulting cluster improved, it provides a solution that is more consistent with
the user’s view of the domain, but also improves computational performance by removing low
quality groups or only with a few elements.

Therefore it is necessary to develop a method that uses a robust distance metric to outliers,
which incorporates automatic selection of variables in the objective function to take into account
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the importance of the variables and incorporate must-link and can not-link constraints to aid the
clustering process without supervision, giving continuity to the research in fuzzy clustering
algorithms with automatic selection of variables and entropy regularization materialized in the
work published by (RODRÍGUEZ; CARVALHO, 2017).
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Abstract—This paper proposes a partitioning fuzzy clustering
algorithm with automatic variable selection and entropy reg-
ularization. The proposed method is an iterative three steps
algorithm which provides a fuzzy partition, a representative
for each fuzzy cluster, and learns a relevance weight for each
variable in each cluster by minimizing a suitable objective
function that includes a multi-dimensional distance function as
thedissimilaritymeasureand entropy as theregularization term.
Experimentson real-world datasetscorroboratetheusefulnessof
the proposed algorithm.

I. INTRODUCTION

The analysis of prototype-based partitioning clustering is
an eff cient tool for image processing, data mining, pattern
recognition, and statistical analysis. Clustering methods seek
to organizesetsof items into clustersattending to their degree
of similarity/dissimilarity. Over the past few decades, various
partitioning clustering algorithms have been proposed, where
K -means [1] and fuzzy C-means (F CM ) [1] are two well
knownclusteringalgorithms.Onedrawbackof theseclustering
algorithms is that they treatall featuresequally indeciding the
cluster memberships of objects. This is not desirable in some
applications, such as high-dimensions sparse data clustering,
where the cluster structure in the dataset is often limited to a
subset of features rather than the entire feature set. A better
solution is to introduce the proper attribute weight into the
clustering process [2].
Partitioning methods can be divided into hard and fuzzy

clustering. Hard clustering provides a hard partition in which
each object of the dataset is assigned to one and only one
cluster. Fuzzy clustering generates a fuzzy partition which
assigns a degree of membership to each pattern in a given
cluster.Thedegreeof membership is important fordiscovering
intricaterelationswhichmayarisebetweenagivendataobject
and all clusters [3]. The fuzzy clusteringmethod is peculiarly
effective when the boundaries between clusters of data are
ambiguous.
Several attribute-weighted fuzzy clustering methods have

been proposed in the past few decades. Ref. [4] introduced
a basic attribute-weighted F CM algorithmby assigning one
inf uence parameter to each single data dimension for each
cluster, while Ref. [5] put forward an approach searching
for the optimal prototype parameters and the optimal feature

weights simultaneously. The algorithm proposed in Ref. [6]
present an enhanced soft subspace clustering (ESSC) algo-
rithm by employing both within-cluster and between-cluster
information.
Reference [7] proposed a version of F CM algorithmwith
entropy regularization.Despitetheusefulnessof thisalgorithm
(hereafter named FCM-ER) in comparison with the conven-
tional F CM , it still assumes that thevariables have the same
importance for the clustering task. Later, Ref. [8] proposed a
F CM with entropy regularization and automatic selection of
variables.
This paper presents a new F CM -type algorithm for soft
subspace clustering based on adaptive Euclidean distances,
and the entropy of the objects as the regularization term in
theobjective function. Theproposed is an iterative three-steps
relocation algorithm which determines a fuzzy partition, a
vector of representatives (prototypes) for the fuzzy clusters,
and learns a relevance weight of each variable in each fuzzy
cluster by optimizing an adequacy criterion thatmeasures the
f ttingbetweenthefuzzyclustersandtheir representatives.The
relevance weights change at each iteration of the algorithm,
and differ fromone fuzzy cluster to another. An advantageof
suchalgorithmis that it requires the tuning of less parameters
than does the Fuzzy Co-Clustering algorithm for Images
(hereafter named FCCI) of Ref. [8].
The paper is organized as follows. Section II reviews two
works closely related with the proposed approach. The fuzzy
clustering algorithm with automatic variable selection and
entropy regularization is presented in Section III. Section
IV provides several experiments with some UCI machine
learning repository datasets that corroborate the usefulness
of the proposed algorithm. Finally, conclusions are drawn in
Section V.

II. RELATED WORK

Several maximum entropy clustering algorithms and their
variants are available in the literature which aims to search
for global regularity and obtain the smoothest reconstructions
from the available data. In this section, we brief y describe
two algorithms closely related to our approach.
Let E = {e1,...,eN } be a set of N objects. Each object
ei (1≤ i ≤ N) isdescribedby thevectorxi = (xi1,...,xiP ),

978-1-5090-6034-4/17/$31.00 c 2017 IEEE
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