
MARIANA DE ARAÚJO SOUZA

AN ONLINE LOCAL POOL GENERATION METHOD FOR DYNAMIC
CLASSIFIER SELECTION

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2018

www.cin.ufpe.br/~posgraduacao

Mariana de Araújo Souza

AN ONLINE LOCAL POOL GENERATION METHOD FOR
DYNAMIC CLASSIFIER SELECTION

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: George Darmiton da Cunha Cavalcanti
Co-Advisor: Robert Sabourin

RECIFE
2018

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S729a Souza, Mariana de Araújo

An online local pool generation method for dynamic classifier selection /
Mariana de Araújo Souza. – 2018.

 70 f.: il., fig., tab.

 Orientador: George Darmiton da Cunha Cavalcanti.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2018.
 Inclui referências e apêndice.

 1. Inteligência artificial. 2. Seleção dinâmica de classificador. I. Cavalcanti,
George Darmiton da Cunha (orientador). II. Título.

 006.3 CDD (23. ed.) UFPE- MEI 2018-070

Mariana de Araújo Souza

An Online Local Pool Generation Method for Dynamic Classifier
Selection

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação

Aprovado em: 27/02/2018

BANCA EXAMINADORA

 __

Prof. Dr. Adriano Lorena Inacio de Oliveira

Centro de Informática / UFPE

 __

Profa. Dra. Marjory Cristiany da Costa Abreu

Departamento de Informática e Matemática Aplicada /UFRN

Prof. Dr. George Darmiton da Cunha Cavalcanti

Centro de Informática / UFPE

(Orientador)

To my “mãe do mel”, Iraci.

Acknowledgements

This dissertation has benefited from the support of many people, so I would like to spend
a few lines to sincerely thank some of them.

Firstly, I would like to thank my advisors, Prof George Darmiton and Prof Robert
Sabourin, for their guidance and patience throughout the completion of this work. Their ex-
pertise and support were of great importance not only for finishing this work but also as an
encouragement for achieving bigger goals as a researcher. Thank you very much!

A special thanks to Rafael Cruz, who immensely contributed to this work. It has been
a pleasure working with you, and I am hugely indebted for your kindness and your valuable
comments and suggestions.

I would also like to thank all members from the VIISAR research group. Our meetings,
though infrequent, have widened my views on many interesting and often related research topics.

On a more personal level, I would like to thank my family and my friends for always
being there for me when I needed the most.

To my fiancé, Saulo Pereira, for his support and understanding, and for rescuing me
whenever I dived too much for too long into my work. I own much of my sanity to you, my love.

Many thanks to my sister, who has never failed to support me even with thousands of
kilometers between us.

Last, but first in my heart, I am forever grateful to my parents for their love and support
in every step of the way. Their encouragement to pursue my education was always present
throughout my entire life, and without them I would not have come this far.

Educação não transforma o mundo. Educação muda pessoas. Pessoas

transformam o mundo.

—PAULO FREIRE

Abstract

Dynamic Classifier Selection (DCS) techniques have difficulty in selecting the most
competent classifier in a pool, even when its presence is assured. Since the DCS techniques rely
only on local data to estimate a classifier’s competence, the manner in which the pool is generated
could affect the choice of the best classifier for a given instance. That is, the global perspective
in which pools are generated may not help the DCS techniques in selecting a competent classifier
for instances that are likely to be misclassified. Thus, it is proposed in this work an online pool
generation method that produces a locally accurate pool for test samples in overlap regions of
the feature space. That way, by using classifiers that were generated in a local scope, it could be
easier for the DCS techniques to select the best one for those instances they would most probably
misclassify. For the instances that are far from the class borders, a simple nearest neighbors
rule is used in the proposed method. In this dissertation, an overview of the area of Multiple
Classifier Systems is presented, with focus on Dynamic Selection schemes. The most relevant
DCS techniques are also introduced, and an analysis on their effectiveness in selecting the most
competent classifier for a given instance in a globally generated pool is presented. Based on
that analysis, an online local pool generation scheme is proposed and analyzed step-by-step.
The proposed method is then evaluated over 20 classification problems, and the effect of its
parameters on performance are analyzed. Moreover, a comparative study with other related
methods is performed and the experimental results show that the DCS techniques were more
able to select the best classifier for a given sample when using the proposed locally generated
pool than when using a globally generated pool. Furthermore, the proposed method obtained a
greater accuracy rate in comparison with the related methods for all DCS techniques, on average,
and presented a considerable improvement for problems with a high proportion of borderline
instances. It also yielded a significant increase in performance compared to most related methods
evaluated in this work.

Keywords: Multiple Classifier Systems. Pool Generation. Dynamic Classifier Selection.

Resumo

Técnicas de Seleção Dinâmica de Classificador (DCS) têm dificuldade em selecionar o
classificador mais competente em um pool, mesmo quando a presença do mesmo é garantida.
Visto que as técnicas de DCS utilizam apenas dados locais para estimar a competência de um
classificador, a maneira na qual o pool é gerado poderia afetar na escolha do melhor classificador
para uma dada instância. Isto é, a perspectiva global na qual os pools são gerados podem não
ajudar as técnicas de DCS na seleção de um classificador competente para instâncias que são
mais prováveis de ser incorretamente classificadas. Portanto, é proposto neste trabalho um
método online de geração de pool de classificadores que produz um pool localmente preciso
para amostras de teste em áreas de sobreposição de classes no espaço de características. Dessa
forma, ao usar classificadores que foram gerados em um escopo local, poderia ser mais fácil para
as técnicas de DCS selecionarem o melhor classificador para essas instâncias mais difíceis de
classificar. Para as amostras posicionadas longe das bordas das classes, uma simples abordagem
utilizando os vizinhos mais próximos é usada no método proposto. Nesta dissertação, uma visão
geral da área de Sistemas de Multiplos Classificadores é apresentada, com foco em técnicas de
seleção dinâmica. As técnicas de DCS mais relevantes também são introduzidas, e uma análise
da eficácia das mesmas em selecionar o classificador mais competente para uma dada amostra
em um pool gerado globalmente é apresentada. Baseado nessa análise, um método de geração
local de pool de classificadores é proposto e analisado passo-a-passo. O método proposto é então
avaliado usando 20 problemas de classificação, e o efeito de seus parâmetros no desempenho são
analisados. Além disso, um estudo comparativo com outros métodos relacionados é realizado e
os resultados experimentais mostram que as técnicas de DCS foram mais capazes de selecionar
o melhor classificador para uma dada instância com o pool proposto, que foi gerado localmente,
do que com um pool gerado de forma global. Ademais, o método proposto obteve uma maior
taxa de acerto em comparação com os métodos relacionados para todas as técnicas de DCS,
em média, e apresentou uma melhora considerável para problemas com uma alta proporção de
instâncias próximas das bordas entre as classes. O método proposto também obteve um aumento
significativo no desempenho em comparação com a maioria dos métodos relacionados que foram
avaliados neste trabalho.

Palavras-chave: Sistemas de Múltiplos Classificadores. Geração de Pool de Classificadores.
Seleção Dinâmica de Classificador.

List of Figures

2.1 Stages of an Multiple Classifier Systems (MCS). In the first stage, a pool of classifiers
C = {c1,c2, ...,cM} of size M is generated using the training set T . In the second
stage, an Ensemble of Classifiers (EoC) C′ ⊆C is selected using the validation set
V . In the third stage, the final decision of the system is obtained by aggregating the
individual responses of the classifiers in C′. 20

2.2 Differences between (a) Static Selection and (b) Dynamic Selection. C is the resulting
pool of the generation phase, V is the validation set, C′ ⊆C is the selected Ensemble
of Classifiers (EoC) and xq is the query sample. In (a), the selection occurs during
the training stage. Therefore, the same EoC C′ is used to label all query instances
in the aggregation stage. In (b), the selection happens during the test stage. Thus, a
specific EoC C′ is obtained to label each query sample xq. 22

2.3 Example of a two-class problem and a pool containing two classifiers (C = {c1, c2})
that produce completely opposite responses. 24

2.4 Phases of a Dynamic Selection (DS) scheme. DSEL is the dynamic selection dataset,
which contains labelled samples, xq is the query sample, θq is the query sample’s
Region of Competence (RoC), C is the pool produced in the generation phase, δδδ is the
competence vector composed of the estimated competences δi of each classifier ci and
C′ is the resulting EoC of the selection phase. If the selection approach is Dynamic
Classifier Selection (DCS), C′ will contain only one classifier from C. Otherwise, the
most competent classifiers in C will be chosen to form the EoC. 25

2.5 Mean and standard deviation of the accuracy rate of the Oracle model and the DCS
techniques for Bagging-generated pool of 100 Perceptrons and a pool generated using
the Self-Generating Hyperplanes (SGH) method, for all datasets from Table 2.1. . . 32

2.6 Mean and standard deviation of the performance gap between the accuracy rates
of the Oracle model and the DCS techniques for Bagging-generated pool of 100
Perceptrons and a pool generated using the SGH method, for all datasets from Table
2.1. 32

2.7 Mean and standard deviation of the hit rate and of the memorization accuracy rate of
the DCS techniques using a pool generated by the SGH method, for all datasets from
Table 2.1. 33

3.1 Overview of the proposed technique. T is the training set, xq is the query sample,
θq is its Region of Competence (RoC), K is the size of θq, LP is the local pool,
M is the pool size of LP and ωl is the output label of xq. In the first phase, θq is
obtained and evaluated. If it only contains samples from the same class, the K-Nearest
Neighbors (K-NN) rule is used to label xq in the third phase. Otherwise, the local
pool is generated in the second phase, and xq is labelled via majority voting of the
classifiers in LP in the third phase. 36

3.2 Local pool generation phase. The inputs to the generation scheme are the training
set T , the query sample xq, the size K of the query sample’s RoC and the local pool
size M. The output is the local pool LP. In the m-th iteration, the query sample’s
neighborhood θm of size Km is obtained and used as input to the SGH method, which
yields the subpool Cm. The classifiers from Cm are then evaluated over θm using a
DCS technique. The classifiers’ notation refers a classifier cm,k as the k-th classifier
from the m-th subpool (Cm). The most competent classifier cm,n in subpool Cm is
then selected and added to the local pool LP. This process is then repeated until LP

contains M locally accurate classifiers. 37
3.3 P2 Problem training dataset, with theoretical decision boundaries in grey. 39
3.4 Two different scenarios of the proposed method. In (a), the query instance xq belongs

to Class 2. Since all instances in its neighborhood θq belong to the same class, the
K-NN rule is used to label xq. On the other hand, the query sample’s neighborhood
θq in (b) contains both classes. Thus, the local pool LP will label the query instance
xq, which belongs to Class 1. 40

3.5 Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth
and (g) seventh iteration of the method, with its respective neighborhoods (θm) and
generated local subpools Cm formed by the depicted classifiers (cm,k). The arrows
indicate in which part of the feature space the classifiers label as Class 1. Each local
subpool Cm is obtained using the SGH method with its respective neighborhood θm,
which increases in each iteration, as input. The final local pool LP, formed by the
best classifiers in each subpool Cm, is shown in (h). 41

3.5 Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth
and (g) seventh iteration of the method, with its respective neighborhoods (θm) and
generated local subpools Cm formed by the depicted classifiers (cm,k). The arrows
indicate in which part of the feature space the classifiers label as Class 1. Each local
subpool Cm is obtained using the SGH method with its respective neighborhood θm,
which increases in each iteration, as input. The final local pool LP, formed by the
best classifiers in each subpool Cm, is shown in (h). 42

4.1 Mean percentage of test instances in overlap regions for all datasets from Table 2.1.
The Estimated bar indicates the times the local pool was used to classify an instance,
while the True bar indicates the true percentage of test instances in overlap regions
considering the entire dataser. The lines true and est indicate the averaged values of
all datasets for the estimated and true percentage of test instances, respectively. . . . 46

4.2 Comparison between the mean accuracy rates of two configurations (LP5 and LPe
5) us-

ing OLA. Each marker represents a dataset. The circles represent two-class problems,
while the plus signs represent multi-class problems. 49

4.3 Example of pool generation for multi-class problems. In all scenarios, xq belongs to
Class 1. In (a) and (c), the query instance’s (xq) neighborhood θ1 was obtained using
K-NN with K1 = 7. In (b) and (d), θ1 was obtained using a version of K-Nearest
Neighbors Equality (K-NNE) with K1 = 7 as well. These neighborhoods were used
as input to the SGH method, which yielded the corresponding subpool of classifiers
depicted in the images. 50

4.4 Mean hit rate of the SGH method applied over the entire training set (GP) and the
proposed technique with M = 5 (LPmc

5) for the three DCS techniques, for all datasets
from Table 2.1. 54

4.5 Mean accuracy rate of the Bagging, FIRE-DES, GP and LPmc
5 configurations for the

three DCS techniques, for all datasets from Table 2.1. 57
4.6 Critical difference diagram representing the results of a post-hoc Bonferroni-Dunn

test on the accuracy rates of the methods from Table 4.1 for (a) OLA, (b) LCA and
(c) MCB. The calculated critical difference value was CD = 1.0488. The values near
the methods’ labels indicate their average rank. Statistically similar methods are
connected by an horizontal line, while statistically different ones are disconnected. 58

A.1 Training set T of the toy problem, containing N = 350 instances and L = 5 classes. 67
A.2 Generation of hyperplanes using the SGH method over the toy problem. (a) First

iteration. (b) Second iteration. (c) Third iteration. (d) Last iteration. 69
A.3 Generated pool C = {c1,c2,c3,c4} over the training set T of the toy problem. . . . 70

List of Tables

2.1 Main characteristics of the datasets used in the experiments. 31

3.1 Majority voting of the classifiers from LP for the query instance from Figure 3.4b. . 43

4.1 Mean and standard deviation of the accuracy rate of the proposed technique using
(a) OLA, (b) LCA and (c) MCB. The local pool in configuration LPm uses K-NN
in the generation process and contains M = m classifiers and are grouped together.
Configurations referenced as LPe

m are also grouped and use K-NNE to generate M = m

classifiers. The row Avg rank shows the resulting mean ranks of a Friedman test with
al pha = 0.05 on each group. Best results are in bold. 47

4.0 Mean and standard deviation of the hit rate, i.e., the rate at which the right Perceptron
is chosen by (a) OLA,(b) LCA and (c) MCB using the GP and the LPmc

5 configura-
tions. The row Wilcoxon shows the result of a Wilcoxon signed rank test for the null
hypothesis that the difference between the hit rates of the proposed configuration and
the GP configuration comes from a distribution with zero median. The significance
level was α = 0.05, and the symbols +, − and ∼ indicate whether the if the com-
pared method is significantly superior, inferior or not significantly different from the
proposed method, respectively. Best results are in bold. 53

4.1 Mean and standard deviation of the accuracy rate of using (a) OLA, (b) LCA and (c)
MCB for a pool with 100 Perceptrons generated using Bagging (column Bagging), a
pool of 100 Perceptrons generated using Bagging and pruned with the DFP method
(column FIRE-DES), the GP configuration and the LPmc

5 configuration. The row
Wilcoxon shows the result of a Wilcoxon signed rank test for the null hypothesis
that the difference between the mean accuracy rates of the proposed configuration
and each of the remaining methods comes from a distribution with zero median.
The significance level was α = 0.05, and the symbols +, − and ∼ indicate if the
compared method is significantly superior, inferior or not significantly different from
the proposed method, respectively. The row Avg rank shows the resulting mean ranks
of a Friedman test with a significance level of α = 0.05, and the p-value of the test is
shown in row p-value. Best results are in bold. 55

List of Acronyms

DCS Dynamic Classifier Selection . 16

DES Dynamic Ensemble Selection. .16

DS Dynamic Selection . 16

K-NN K-Nearest Neighbors . 17

K-NNE K-Nearest Neighbors Equality . 25

LCA Local Class Accuracy. .26

MCB Multiple Classifier Behavior . 27

MCS Multiple Classifier Systems . 16

MLA Modified Local Accuracy . 27

OLA Overall Local Accuracy . 26

RoC Region of Competence . 35

SGH Self-Generating Hyperplanes . 29

SS Static Selection . 16

Contents

1 INTRODUCTION 16
1.1 Motivation and Problem Statement . 16
1.2 Overview of the Proposal . 17
1.3 Research Methodology . 17
1.4 Organization of the Dissertation . 18

2 BACKGROUND 19
2.1 Introduction . 19
2.2 Overview . 19
2.2.1 Generation . 20
2.2.2 Selection . 21
2.2.3 Aggregation . 22
2.2.4 The Oracle Model . 23
2.3 Dynamic Selection . 23
2.3.1 DCS Techniques . 26
2.4 Oracle-DCS Performance Gap . 28
2.4.1 The Self-Generating Hyperplanes Method . 29
2.4.2 Oracle-DCS Analysis . 30
2.5 Conclusion . 34

3 THE PROPOSED METHOD 35
3.1 Introduction . 35
3.2 Overview . 36
3.3 Step-by-step Analysis . 38
3.4 Conclusion . 43

4 EXPERIMENTS 44
4.1 Introduction . 44
4.2 Experimental Protocol . 44
4.3 Proposed Method Analysis . 45
4.3.1 RoC Evaluation . 45
4.3.2 Parameter Sensitivity . 45
4.4 Comparative Study . 51
4.4.1 Hit Rate . 52
4.4.2 Accuracy Rate . 54
4.4.3 Computational Cost . 58
4.5 Conclusion . 59

5 CONCLUSION 61

REFERENCES 63

APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD 67

161616

1 INTRODUCTION

Multiple Classifier Systems (MCS) aim to improve the overall performance of a pattern
recognition system by combining numerous base classifiers (WOŹNIAK; GRAÑA; COR-
CHADO, 2014; KITTLER et al., 1998; KUNCHEVA, 2014). An MCS contains three stages
(CRUZ; SABOURIN; CAVALCANTI, 2018a): (1) Generation, (2) Selection and (3) Aggregation.
In the first stage, a pool of classifiers is generated using the training data. In the second stage, a
non-empty subset of classifiers from the pool is selected to perform the classification task. In the
third and last stage, the selected classifiers’ predictions are combined to form the final system’s
output. There are two possible approaches in the selection stage: Static Selection (SS), in which
the same set of classifiers is used to label all unknown instances, or Dynamic Selection (DS),
which selects certain classifiers from the pool according to each query sample.

The DS techniques, which have been shown to outperform SS techniques, specially on
ill-defined problems (BRITTO; SABOURIN; OLIVEIRA, 2014; CRUZ et al., 2015), are based
on the idea that the classifiers in the pool are individually competent in different regions of the
feature space. The aim of the selection scheme is, then, to choose the classifier(s) that is(are) best
fit, according to some criterion, for classifying each unknown instance in particular (BRITTO;
SABOURIN; OLIVEIRA, 2014). The amount of classifiers singled out to label a given sample
separates the DS schemes in two groups (KO; SABOURIN; JR., 2008): Dynamic Classifier
Selection (DCS) techniques, in which the classifier with highest estimated competence in the
pool is selected, and Dynamic Ensemble Selection (DES) schemes, in which a locally accurate
subset of classifiers from the pool is chosen and combined to label the test sample.

In the context of DCS, the Oracle (KUNCHEVA, 2002) can be defined as an abstract
model that mimics the perfect selection scheme: it always selects the classifier that correctly
labels a given instance, if the pool contains such classifier. Thus, the Oracle accuracy rate
is the theoretical limit for DCS techniques. That way, the model can measure how close a
DCS technique is from its maximum performance and indicates whether there is still room for
improvements in classification accuracy, for a given pool of classifiers.

1.1 Motivation and Problem Statement

Since the Oracle simulates the ideal selector, it has been generally used in comparative
studies with regards to other selection schemes. However, a significant gap between the model

1.2. OVERVIEW OF THE PROPOSAL 17

and the DS techniques have been shown in several works (DIDACI et al., 2005; KO; SABOURIN;
SOUZA BRITTO JR, 2007).

The behavior of the Oracle regarding pool generation for DCS techniques was charac-
terized in SOUZA et al. (2017). It was shown that even though the presence of one competent
classifier was assured for a given instance, the DCS techniques still struggled to select it. This
analysis was done using a pool generation method that guarantees an Oracle accuracy rate of
100% on the training set.

It was reasoned that the nature of the Oracle makes it not very well suited to guide the
generation of a pool of classifiers for DCS since the model perceives the classification problem
globally, while DCS techniques use only local data to select the most competent classifier
for each instance. Thus, the difference in perspective between the Oracle model and the DCS
techniques hinder the latter in the process of achieving a recognition rate closer to their theoretical
maximum.

1.2 Overview of the Proposal

Based on these observations, it is proposed in this work a pool generation method which
attempts to explore the Oracle’s properties on a local scope. Since the Oracle and DCS techniques
view the problem from different perspectives, using the model in a local setting to match these
perspectives may help the DCS techniques in the choice of the most competent classifier for a
given instance. This work focus only on DCS techniques since their relationship to the Oracle
was already characterized previously, and so the results can be further analyzed based on certain
aspects presented in the previous work (SOUZA et al., 2017).

Thus, the main idea is to use the Oracle model to guide the generation of subsets of
classifiers for a specialized pool, so that each subpool is trained over a difficult region of the
feature space, in hopes that using Oracle information for these regions separately will lead
to a more accurate set of classifiers for the areas a globally generated pool is more prone to
misclassify. A difficult region in this context is any area of the feature space in which there is
overlap between the problem’s classes. That way, each difficult region will be fully covered
by subpools of classifiers, so that when a query instance’s location is identified as a difficult
area, the selection will be performed on the locally generated pool, formed by the most accurate
classifiers in this region. For samples located in regions with no class overlap, the classification
task is performed using a simple K-Nearest Neighbors (K-NN) rule.

1.3 Research Methodology

In this work, we aim to find out whether the use of locally generated pools is advantageous
in DCS context. The research questions we intend to answer are: (1) does the use of locally
generated pools aid the DCS techniques in selecting the best classifier for a given instance?, and

1.4. ORGANIZATION OF THE DISSERTATION 18

(2) do the recognition rates improve as a result of this?. To that end, the performance of the
proposed scheme is assessed using different DCS techniques over 20 public datasets, and the
results are compared to a classical pool generation method and a globally generated one.

The comparative study features two performance metrics: the hit rate, which is the rate
at which the DCS technique selects the correct classifier in memorization, and the accuracy
rate during test. The former indicates whether the DCS techniques have more/less difficulty in
selecting the most competent classifier in the pool, whilst the latter indicates if this ability results
or not in a better performance during generalization.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, the main concepts regarding MCS
are presented. The Oracle model and the most important DCS techniques are also introduced in
the chapter. Then, the characterization of the Oracle for DCS techniques is presented based on a
previous work.

With the most important concepts and relationships established in Chapter 2, the proposed
method is then introduced in Chapter 3. A step-by-step analysis using a toy problem of the
proposed method is also presented in the chapter to illustrate its generation process.

Experiments are conducted in Chapter 4. The results are then evaluated and discussed in
the chapter according to the research methodology presented previously.

Finally, the main points presented in this dissertation are summarized in Chapter 5. The
conclusions derived from the experimental results are summarized and this work’s contributions
are outlined. Finally, future works in this are suggested at the end of the chapter.

191919

2 BACKGROUND

2.1 Introduction

The “No Free Lunch Theorem” (WOLPERT; MACREADY, 1997) leads to the conclusion
that there is not a single machine learning algorithm capable of yielding a better performance
than all other algorithms for all problems. Since there is no universally superior classifier, an
alternative approach to this would be using several classifiers to perform the classification task. In
this context, MCS aim to exploit the competence of each classifier in a set, or pool of classifiers,
in hopes that the combined response of the pool may outperform each single classifier in it
(KITTLER et al., 1998; WOŹNIAK; GRAÑA; CORCHADO, 2014).

MCS have often been shown to yield a greater overall performance in comparison to sin-
gle classifier approaches (ALKOOT; KITTLER, 1999; OPITZ; MACLIN, 1999; FERNáNDEZ-
DELGADO et al., 2014). Several solutions to real world problems were also proposed using
MCS, such as recommendation systems (JAHRER; TÖSCHER; LEGENSTEIN, 2010), face
recognition (TORRE et al., 2015), intrusion detection (GIACINTO; ROLI; DIDACI, 2003) and
credit scoring (XIAO; XIAO; WANG, 2016).

In this chapter, the main concepts of MCS are introduced, with special attention to the
ones that are most closely related to this work. In Section 2.2, an overview of the main phases of
MCS is presented. The Oracle model, which is an important concept in MCS literature, is also
introduced in this section. Since this work is focused on Dynamic Classifier Selection, the main
DCS techniques found in the literature are presented in Section 2.3. Afterwards, the performance
gap between the Oracle and the DCS techniques, on which this work’s proposal is based, is
analyzed and discussed in Section 2.4. Finally, the main points presented in this chapter are
reviewed and summarized in Section 2.5.

2.2 Overview

Figure 2.1 depicts the three stages an MCS is composed of: (1) Generation, (2) Selection
and (3) Aggregation (BRITTO; SABOURIN; OLIVEIRA, 2014). In the generation stage, the
training set T is used as input to an ensemble method, which results in a pool of classifiers
C = {c1,c2, ...,cM} that contains M classifiers. In the selection stage, a non-empty subset C′ of
classifiers from C is selected to perform the classification task. This subset is called an Ensemble
of Classifiers (EoC) in MCS literature (CRUZ; SABOURIN; CAVALCANTI, 2018a). The

2.2. OVERVIEW 20

validation set V is often used in this stage. Moreover, the selection stage is entirely optional, that
is, the EoC C′ may be identical to the original pool C in an MCS. In the last stage, aggregation,
the outputs of all classifiers in C′ are combined to obtain the final decision of the system.

1) Generation 2) Selection 3) Aggregation
C = {c1,c2,...,cM} C’ = {ci,cj,...,ck} Decision

Figure 2.1: Stages of an MCS. In the first stage, a pool of classifiers C = {c1,c2, ...,cM} of size
M is generated using the training set T . In the second stage, an Ensemble of Classifiers (EoC)

C′ ⊆C is selected using the validation set V . In the third stage, the final decision of the system is
obtained by aggregating the individual responses of the classifiers in C′.

There are several approaches to all three stages of MCS. In this section, the main aspects
regarding each stage is presented. Moreover, the Oracle model, which is later used in this work,
is also presented.

2.2.1 Generation

The generation stage of an MCS is responsible for producing a pool of classifiers
C = {c1,c2, ...,cM} of size M using the training set, as Figure 2.1 shows. The resulting pool C

should contain accurate and diverse classifiers. Diversity is the measure of how complementary
the classifiers in the pool are, so that a pool that contains classifiers that make different mistakes
in different regions of the feature space is more diverse than a pool with classifiers that always
respond similarly. Since combining classifiers that output the same response makes little sense,
the classifiers in C should be somewhat diverse so that their strengths can contribute to the overall
performance of the system (ZHOU, 2012; KUNCHEVA, 2014).

In order to obtain a diverse pool of classifiers, ensemble methods can use one or a few of
the following strategies (KUNCHEVA, 2014):

� Manipulating parameters/initialization: For classifier models that require parame-
ters or initialization, such as Multi-Layer Perceptron (MLP) neural networks, altering
one or the other for each classifier being generated may yield a somewhat diverse
pool.

� Manipulating target labels: In this case, the classification task may be partitioned,
so that each classifier learns a different part. An example of this is the Error Correcting
Output Codes (ECOC) (DIETTERICH; BAKIRI, 1995) ensemble, in which each
classifier learns to separate two groups of classes.

2.2. OVERVIEW 21

� Using different classifier models: Each classifier model have inherent characteris-
tics which allows them to perceive the same problem from different perspectives.
Thus, an heterogeneous pool, which contains classifiers from different models, can
present some degree of diversity.

� Manipulating training data: Training each classifier in the pool with a different
version of the original training set may yield a quite diverse pool. To achieve this,
the training set can be manipulated in two ways: horizontally, in which the training
distribution is modified for each classifier, and vertically, in which the alterations are
done in the feature space. Classical ensemble methods, such as Bagging (BREIMAN,
1996), Boosting (SCHAPIRE et al., 1997) and Random Subspace (HO, 1998), fall
into this category. Bagging and Boosting manipulate the training distribution to
construct the pool of classifiers, the former via bootstrap sampling and the latter by
assigning weights to each sample and updating them iteratively. Random Subspace,
on the other hand, trains each classifier with a random subset of the problem’s
features.

2.2.2 Selection

In the selection stage, the most competent classifier(s) in C is(are) chosen to label the
unknown instances. These classifiers form the Ensemble of Classifiers C′, as depicted in Figure
2.1, and the choice of classifiers is usually done based on a set of validation data.

The selection of the classifiers in C can be performed statically or dynamically. In
SS, the EoC C′ is obtained during the training phase, and all test instances are labelled using
the same EoC during generalization. The selection in SS techniques is usually based on a
selection criteria, such as accuracy and diversity, which is estimated using only validation data
(CRUZ; SABOURIN; CAVALCANTI, 2018a). Moreover, optimization methods are often used
to obtain the static ensemble (PARTALAS; TSOUMAKAS; VLAHAVAS, 2008; DOS SANTOS;
SABOURIN; MAUPIN, 2009). Figure 2.2a illustrates this process.

In DS, on the other hand, the EoC C′ is obtained during generalization, that is, in the
test phase, as Figure 2.2b shows. The idea behind DS is that classifiers are experts in different
regions of the feature space (KO; SABOURIN; JR., 2008; BRITTO; SABOURIN; OLIVEIRA,
2014). So, instead of using all classifiers in the original pool C, the DS technique selects from C,
for each unknown instance xq, the most competent classifier(s) in the region where xq is located,
forming the EoC C′. Then, the selected classifiers are used in the aggregation phase to label this
specific query sample xq.

It has been been shown that using DS techniques is more advantageous in comparison
with SS approaches, specially when dealing with problems that possess a high level of uncertainty
for lack of enough training data (BRITTO; SABOURIN; OLIVEIRA, 2014). Due to their
importance in this work’s motivation and application, a more detailed view on the workings of

2.2. OVERVIEW 22

Static
Selection Aggregation

C’ = {ci,cj,...,ck}

xq

Decision

Training Test

C = {c1,c2,...,cM}

(a)

Dynamic
Selection Aggregation

C’ = {ci,cj,...,ck}

xq

Decision

Training Test

C = {c1,c2,...,cM}

(b)

Figure 2.2: Differences between (a) Static Selection and (b) Dynamic Selection. C is the resulting
pool of the generation phase, V is the validation set, C′ ⊆C is the selected Ensemble of Classifiers
(EoC) and xq is the query sample. In (a), the selection occurs during the training stage. Therefore,
the same EoC C′ is used to label all query instances in the aggregation stage. In (b), the selection
happens during the test stage. Thus, a specific EoC C′ is obtained to label each query sample xq.

DS approaches is presented later in this chapter.

2.2.3 Aggregation

In the aggregation phase, the output of the system is obtained by aggregating the responses
of all previously selected classifiers in C′ (Figure 2.1). The combination rule used in an MCS can
be non-trainable, trainable or based on dynamic weighting (CRUZ; SABOURIN; CAVALCANTI,
2018a).

Classical examples of non-trainable combiners, which have a fixed combination rule, are
the Majority, Sum and Product voting schemes (KITTLER et al., 1998). Trainable combiners use
a meta-classifier to learn the combination rule for each specific classification problem, and have
been shown to outperform non-trainable combiners in several works (CRUZ; CAVALCANTI;
REN, 2010; CRUZ et al., 2015; CRUZ; SABOURIN; CAVALCANTI, 2018a).

The dynamic weighting approach, on the other hand, is similar to DS methods, in a
way that the competence of each classifier in the original pool C is calculated based on a query
sample xq (Figure 2.2b) (CRUZ; SABOURIN; CAVALCANTI, 2018a). The main difference
between both schemes is that the response of all classifiers in C are weighted by their local
competence and combined to obtain the output of the system, while in DS techniques only the
selected classifiers (C′ of Figure 2.2b) have a say in the system’s final decision.

2.3. DYNAMIC SELECTION 23

2.2.4 The Oracle Model

An important concept related to MCS is the Oracle, an abstract model defined in
(KUNCHEVA, 2002). Let C = {} be a pool of classifiers, xq a given unknown sample and yq its
true label. If at least one classifier ci in the pool correctly labels xq, that is, if ∃ci ∈C|ci(xq) = yq,
the Oracle model outputs the correct label of xq. In other words, the Oracle model always
classifies a given instance correctly if there is a classifier in the pool able to correctly label it.
The Oracle is often regarded in the literature as a possible upper limit for the performance of
MCS, and for that reason, it is widely used to compare performances of different fusion and
selection schemes (KUNCHEVA, 2002; DIDACI et al., 2005).

The concept of the Oracle is also used in different areas of MCS. For instance, it is quite
related to the construction of pools. As previously stated, diversity is an important aspect in
the generation of a pool of classifiers for MCS. Intuitively, a highly diverse pool would have a
high Oracle accuracy rate (KUNCHEVA; WHITAKER, 2003; BROWN et al., 2005). Moreover,
in (RAUDYS, 2006), the Oracle is also noted as a sort of quality measure for a given pool of
classifiers.

Another area in which the Oracle’s properties are explored is DS techniques, which select
a specific set of classifiers according to each query sample. For instance, the K-Nearest-Oracles
Eliminate (KNORA-E) and K-Nearest-Oracles Union (KNORA-U) methods and their variants,
introduced in (KO; SABOURIN; SOUZA BRITTO JR, 2007), apply the concept of the Oracle
directly by selecting an ensemble formed by the classifiers, called the K nearest Oracles, which
correctly classify a given query sample’s neighbors. On the other hand, the Random Linear
Oracle method (KUNCHEVA; RODRIGUEZ, 2007) uses, instead of single classifiers in the
pool, mini ensembles with two classifiers and a random linear function, the latter functioning as
an Oracle that selects one of the two classifiers to use for labeling each test instance according to
its relative position to the hyperplane.

However, the Oracle model may not be a good reference model in some circumstances.
For instance, given a two-class problem and a pool composed of one random classifier and
another classifier complimentary to the first one. That is, when one classifier labels as Class
1, the other labels as Class 2, and vice versa. Figure 2.3 illustrates this example. In this case,
the Oracle would always correctly classify any instance, regardless of its location in the feature
space, since either c1 or c2 would be able to correctly label it at each turn. Thus, it does not fit
in the Bayesian paradigm (WOŹNIAK; GRAÑA; CORCHADO, 2014). The model was also
considered too optimistic to be the upper limit for DS schemes (DIDACI et al., 2005).

2.3 Dynamic Selection

As previously stated, DS schemes aim to single out the most competent classifier(s) to
label an individual unknown sample. The general process for obtaining a specific EoC for each
query instance can be divided in three phases (CRUZ; SABOURIN; CAVALCANTI, 2018a):

2.3. DYNAMIC SELECTION 24

Figure 2.3: Example of a two-class problem and a pool containing two classifiers (C = {c1, c2})
that produce completely opposite responses.

Region of Competence definition, competence estimation and selection approach.
In the first phase, the local area in which the query sample is located is obtained. This

area is called the Region of Competence (RoC) of the query instance. Then, the competence of
each classifier in the query sample’s RoC is estimated according to a given competence measure
in the second phase. Finally, either the classifier with highest competence level is singled out
or an ensemble composed of the most competent classifiers is selected in the last phase. If the
former, the selection approach is a Dynamic Classifier Selection (DCS) scheme. If the latter,
a Dynamic Ensemble Selection (DES) approach is used. Choosing more than one classifier to
label the query instance can be advantageous since the risk of selecting an unsuitable one is
distributed in DES schemes (KO; SABOURIN; JR., 2008).

Figure 2.4 illustrates the usual procedure for dynamically selecting classifiers. The query
sample xq and a set of labelled instances called the dynamic selection dataset (DSEL) are used
to define the query sample’s RoC (θq). The DSEL dataset can be either the training or validation
set. The RoC θq consists of a subset of the DSEL dataset that contains the closest labelled
instances to the query sample. Then, the competence of each classifier from the original pool C

is estimated over θq using a competence measure. The estimated competence of classifier ci is
denoted as δi in this image. The competence vector δδδ , which contains the competence estimates
from all classifiers in C, is then used in the selection approach, which can be a DCS or a DES
method, to obtain the EoC C′ to be used in the aggregation stage.

The RoC definition, which has a significant impact on the performance of DS tech-
niques (DIDACI; GIACINTO, 2004; LIMA; SERGIO; LUDERMIR, 2014; CRUZ; SABOURIN;
CAVALCANTI, 2016), can be performed using four main approaches (CRUZ; SABOURIN;
CAVALCANTI, 2018a):

2.3. DYNAMIC SELECTION 25

Define Region
of Competence

(RoC)

C’ = {ci,cj,...,ck}

xq

C = {c1,c2,...,cM}

Estimate
competence of

classifiers

Select
classifier(s)

θq
δ = [δ1,δ2,...,δM]

C’ = {ci}DCS

DES

DSEL

Figure 2.4: Phases of a DS scheme. DSEL is the dynamic selection dataset, which contains
labelled samples, xq is the query sample, θq is the query sample’s Region of Competence (RoC),

C is the pool produced in the generation phase, δδδ is the competence vector composed of the
estimated competences δi of each classifier ci and C′ is the resulting EoC of the selection phase. If

the selection approach is DCS, C′ will contain only one classifier from C. Otherwise, the most
competent classifiers in C will be chosen to form the EoC.

� Clustering methods: in this approach, the DSEL dataset is divided into clusters
during the training phase. Then, for all clusters, the competence of each classifier
is calculated, and an EoC with the most competent ones for each cluster is defined.
During generalization, the EoC used to label the query sample is the one assigned
to the cluster whose centroid is closest to the test instance. This approach is quite
fast since the RoC definition and also the classifiers’ competence estimation is done
during the training phase. Thus, the only computation it requires for selecting the
EoC during generalization is calculating the distance between the query sample and
the cluster’s centroids.

� K-Nearest Neighbors rule: the RoC is defined as the K-Nearest Neighbors of
the query sample in the DSEL dataset. Besides the classical K-NN method for
obtaining the query sample’s neighborhood, alternative methods, such as the K-
Nearest Neighbors Equality (K-NNE) (SIERRA et al., 2011) and adaptive K-NN
methods (WANG; NESKOVIC; COOPER, 2007) are also used in DS context. While
more computationally expensive than the clustering approach, since the distance
between the query sample and all DSEL dataset is required, the local region obtained
using a K-NN approach is more precise, which may lead to a better competence
estimation of classifiers and thus a more suitable EoC.

� Similarities in the decision space: the decision space, which is based on the
Behavior-Knowledge Space (BKS) (HUANG; SUEN, 1995), is an M-dimensional
space in which each dimension corresponds to the decision of one of the M classifiers
in the pool. The coordinates of a point in the decision space are then the outputs,
whether in predicted labels or class scores, of all classifiers with regards to a given
sample. This point is called the output profile of that particular instance. In such
approaches, the RoC definition is performed by computing the similarity between the
query sample’s output profile and the output profiles of the instances in DSEL. The
instances whose output profiles are the closest to the query sample’s one are selected

2.3. DYNAMIC SELECTION 26

to form its RoC.

� Potential functions: in this approach, the entirety of the DSEL dataset is used as
the RoC of each query sample. However, each instance in DSEL has a weight
assigned to it, so that samples far from the test instance have less influence in the
classifiers’ competence estimation than instances closer to it. Each instance’s weight
is calculated using a potential function, usually Gaussian, with the distance between
itself and query sample input. Though removing the need to set a neighborhood size,
as the K-NN approaches do, using the whole DSEL set for competence estimation is
quite costly in computational terms.

The estimation of a classifier’s competence, on the other hand, can be based on numer-
ous criteria, such as Accuracy (WOODS; KEGELMEYER JR; BOWYER, 1997), Ranking
(SABOURIN et al., 1993), Probabilistic (GIACINTO; ROLI, 1999), Behavior (KURZYN-
SKI; TRAJDOS, 2017), Oracle (KO; SABOURIN; SOUZA BRITTO JR, 2007), Data com-
plexity (BRUN et al., 2016), Meta-learning (CRUZ et al., 2015), Diversity (DOS SANTOS;
SABOURIN; MAUPIN, 2009), Data handling (XIAO et al., 2012) and Ambiguity (DOS SAN-
TOS; SABOURIN; MAUPIN, 2008). In Section 2.3.1, a few of these approaches are touched
upon in the context of DCS techniques.

2.3.1 DCS Techniques

Since the focus of this work is on pool generation for DCS techniques, the most relevant
ones, according to a recent survey on dynamic selection of classifiers (CRUZ; SABOURIN;
CAVALCANTI, 2018a), are introduced in this section. The notation used in this section is the
same as shown in Figure 2.4. Moreover, all DCS methods presented in this section use a K-NN
rule with neighborhood size K in order to define the query sample’s RoC θq. Therefore, θq is
always composed of K instances from DSEL, that is, θq = {x1,x2, ...,xK}.

Overall Local Accuracy

In the Overall Local Accuracy (OLA) method (WOODS; KEGELMEYER JR; BOWYER,
1997), the competence estimation of the classifiers is based on accuracy. The competence δi of
classifier ci is simply defined as the percentage of instances that it correctly classifies in the RoC
θq. The classifier that correctly classifies most instances in θq will have the highest competence
estimate, and will thus be selected by the method.

Local Class Accuracy

As with OLA, the selection criterion of the Local Class Accuracy (LCA) method
(WOODS; KEGELMEYER JR; BOWYER, 1997) is also accuracy. However, LCA also consid-
ers the label ωl assigned by classifier ci to the query sample xq in the competence estimation

2.3. DYNAMIC SELECTION 27

of ci. The competence δi of classifier ci is then defined as the percentage of correctly classified
instances among the ones in θq that belong to class ωl . The classifier with highest competence
estimate is then selected.

Modified Local Accuracy

The Modified Local Accuracy (MLA) method (SMITS, 2002) also estimates the compe-
tence δi of a classifier ci based on accuracy, though, unlike OLA and LCA, it takes into account
the distance of each instance xk ∈ θq to the query sample xq. The calculation of δi is described
in Equation 2.1, in which ωl is the label ci attributed to xq and Wk = 1/dq,k is the inverse of the
Euclidean distance between xq and xk.

δi =
1
K ∑

xk∈ωl

Wk
�
 �	2.1

It is important to note that the competence estimation in MLA disregards whether ci

correctly classifies xk or not. As long as it assigns to xk the same class as it did to xq, the former
will contribute to its competence level.

Modified Classifier Rank

Based on ranking, the Modified Classifier Rank method (SABOURIN et al., 1993;
WOODS; KEGELMEYER JR; BOWYER, 1997) assigns the competence δi of classifier ci as
the number of consecutive instances xk ∈ θq it correctly classifies. Then, the classifier with
highest competence estimate is considered to be the highest in the “rank" of classifiers, and is
thus selected to label the query sample xq.

Multiple Classifier Behavior

The Multiple Classifier Behavior (MCB) method (GIACINTO; ROLI; FUMERA, 2000)
is based on two selection criteria: accuracy and behavior. The competence estimation of a
classifier ci by the method is done as follows.

Firstly, the output profile, that is, the responses of all classifiers with regards to each
instance xk ∈ θq is obtained. Then, the query sample’s output profile and its similarity to all
output profiles from θq are also calculated. The similarity is defined as the proportion of equal
corresponding coordinate values between the output profile of xq and the output profile of xk.
All instances with similarities below a certain threshold are removed from θq. The similarity

threshold is a predefined parameter of the method. Finally, the competence δi of classifier ci is
calculated as the proportion of instances it correctly classifies from only the remaining ones in
θq. Thus, the similarity threshold provides a dynamic adaptation for the RoC of a given query
sample, which can be advantageous since the performance of the DS techniques are sensitive to
the RoC distribution (CRUZ; SABOURIN; CAVALCANTI, 2018b, 2017).

2.4. ORACLE-DCS PERFORMANCE GAP 28

If the difference between the competences of the most competent classifier and all other
classifiers in the pool is above a second predefined parameter, called the selection threshold, this
classifier is considered to be significantly superior to the rest and is thus selected. Otherwise, all
classifiers are combined using majority voting to label the query sample.

A Priori

The competence of a classifier ci in the A Priori method (GIACINTO; ROLI, 1999)
is estimated using the class posterior probability of ci on the query sample’s RoC θq, without
taking into account the label ωl the classifier assigns to the query instance xq. The calculation
of the level of competence δi by the A Priori method is described in Equation 2.2, in which
P(ω|xk ∈ ω,ci) is the posterior probability of the correct classification by ci of the sample
xk ∈ θq, and Wk = 1/dq,k is the inverse of the Euclidean distance between xq and xk.

δi =
∑

K
k=1 P(ω|xk ∈ ω,ci)Wk

∑
K
k=1Wk

�
 �	2.2

Similarly to the MCB method, the A Priori method selects the most competent classifier
only if its competence is significantly superior in comparison to the other classifiers. If not, all
classifiers are combined using majority voting.

A Posteriori

The A Posteriori method (GIACINTO; ROLI, 1999) is quite similar to the A Priori
method, in that it also uses the posterior probability of correct classification of a given classifier
to estimate its competence. However, the method also considers the label ωl the classifier ci gives
to the query sample xq in the calculation of the classifier’s level of competence δi (Equation 2.3).

δi =
∑xk∈ωl

P(ωl|xk,ci)Wk

∑
K
k=1 P(ωl|xk,ci)Wk

�
 �	2.3

In the A Posteriori method, as in the A Priori and MCB methods, if the classifier with
highest competence level does not surpass all others by a given threshold, the final decision of
the system is given by majority voting of all classifiers. Otherwise, the most competent classifier
is selected and used to label xq.

2.4 Oracle-DCS Performance Gap

For DCS techniques, the Oracle model simulates the perfect selection scheme by iden-
tifying the best expert for each particular test sample. The Oracle accuracy rate is, therefore,
the theoretical limit for such techniques. That way, the model can measure how close a DCS
technique is from its maximum performance and indicates whether there is still room for im-
provements in classification accuracy.

2.4. ORACLE-DCS PERFORMANCE GAP 29

However, it has been shown that there is a significant performance gap between DS
schemes and the Oracle (DIDACI et al., 2005; KO; SABOURIN; SOUZA BRITTO JR, 2007).
For instance, in (CRUZ et al., 2015), it was shown the accuracy rate of the Oracle was almost 20
percentile points greater than the accuracy of some DCS techniques, for a pool of 100 Perceptrons
generated using Bagging. In other words, the Oracle stated that, among those 100 classifiers,
there was at least one that could correctly classify these 20 percentile points of the query samples,
but the DCS techniques were not able to select any competent classifier in the pool for these
instances.

Based on that observation, the reasons why the Oracle can display undesired behavior
when used as a guide to generate a pool of classifiers for DCS schemes were investigated in
(SOUZA et al., 2017). To that end, a supervised method for producing a pool of classifiers that
guarantees an Oracle accuracy rate of 100% in the training set was introduced. This generation
method, called the Self-Generating Hyperplanes (SGH), assures the presence of at least one
competent classifier in the pool for each training sample. That is, the resulting pool is guaranteed
to contain at least one classifier able to correctly label any training instance. The behavior of the
DCS techniques, when the theoretical limit for the training set is maximum, was then analyzed,
and based on that analysis the relationship between the Oracle model and DCS techniques was
derived.

In this section, a summary on the characterization of the Oracle for DCS is presented.
Section 2.4.1 introduces the SGH method and its properties. This method was used to investigate
whether the use of the Oracle as a guide to generate a pool of classifiers for DCS techniques
was advantageous, given that the presence of at least one competent classifier for each training
instance is guaranteed in this scenario. Moreover, the SGH method is also used in the proposed
technique due to its properties. In Section 2.4.2, a brief analysis on the relationship between the
Oracle and DCS techniques in regards to pool generation is then presented based on the results
from the previous work.

2.4.1 The Self-Generating Hyperplanes Method

A simplified pseudocode of the SGH method is presented in Algorithm 1. For a more in
depth view on the SGH method, see Appendix 5. The method consists of generating hyperplanes
iteratively in such a way that each instance in the training set must be correctly classified by at
least one of the base classifiers in the pool, that is, the Oracle for the training dataset is 100%.
The base classifiers chosen to produce such hyperplanes were Perceptrons, due to their weakness.
Using weak base classifiers can provide more differences between the DS techniques (KO;
SABOURIN; JR., 2008), and hence a better comparison between them. Furthermore, to speed
up the training process, the method uses a heuristic to find the Perceptrons’ weights without
explicitly training them.

The input to the SGH method is only the training set T , and its output is the generated

2.4. ORACLE-DCS PERFORMANCE GAP 30

pool of classifiers (C). In each iteration (Step 3 to Step 15), the centroids of all classes in T are
obtained in Step 4 and stored in R. The two centroids in R most distant from each other, ri

and rj, are selected in Step 5. Then, a hyperplane cm is placed between ri and rj, dividing both
points halfway from each other. The linear classifier cm is then tested over the training set, and
the instances it correctly labels are removed from T (Step 7 to Step 12). Then, cm is added to C

in Step 13, and the loop is repeated until T is completely empty. That is, the SGH method only
stops generating hyperplanes when all training instances are correctly labelled by at least one
classifier in C, i.e., the Oracle accuracy rate for the training set is 100%.

Algorithm 1 General procedure of the Self-generating Hyperplanes (SGH) method.
Input: T = {x1,x2, ...,xN} . Training dataset
Output: C . Final pool

1: C←{} . Pool initially empty
2: m = 1 . Classifier count
3: while T 6= {} do
4: R← getCentroids(T) . Calculate each class’ centroid
5: ri,rj← selectCentroids(R) . Select the most distant centroids
6: cm← placeHyperplane(ri,rj) . Generate hyperplane between centroids ri and rj
7: for every xn in T do
8: ω ← cm(xn) . Test cm over training instance
9: if ω = yn then

10: T ←T −{xn} . Remove from T correctly classified instance
11: end if
12: end for
13: C←C∪{cm} . Add cm to pool
14: m = m+1
15: end while
16: return C

Apart from guaranteeing a theoretical limit of 100% in the training set, the SGH presents
other advantages in comparison with classical ensemble methods such as Bagging, Random
Subspace, and Boosting. It automatically defines the pool size according to the training data, so
it does not require the pool size to be set beforehand as these methods do. Also, the heuristic
used to train the classifiers makes the training much faster than in these methods.

It is also important to note that the algorithm is strictly deterministic, that is, it will
always generate the same pool given the same input (training set). Also, the generated classifiers
are simple, two-classes Perceptrons.

2.4.2 Oracle-DCS Analysis

The performance gap between the Oracle model and the DCS techniques was analyzed
in (SOUZA et al., 2017) over 20 public datasets (Table 2.1). Eleven from the UCI machine
learning repository (BACHE; LICHMAN, 2013), three from the Ludmila Kuncheva Collection
(KUNCHEVA, 2004) of real medical data, three from the STATLOG project (KING; FENG;
SUTHERLAND, 1995), two from the Knowledge Extraction based on Evolutionary Learning
(KEEL) repository (ALCALÁ et al., 2011) and one from the Enhanced Learning for Evolutive

2.4. ORACLE-DCS PERFORMANCE GAP 31

Neural Architectures (ELENA) project (JUTTEN, 2002).

Table 2.1: Main characteristics of the datasets used in the experiments.

Dataset
No. of

Instances
No. of

Features
No. of
Classes Class Sizes Source

Adult 48842 14 2 12435;3846 UCI
Blood Transfusion 748 4 2 570;178 UCI

Cardiotocography (CTG) 2126 21 3 1655;295;176 UCI
Steel Plate Faults 1941 27 7 158;190;391;72;55;402;673 UCI

German credit 1000 20 2 700;300 STATLOG
Glass 214 9 6 70;76;17;13;9;29 UCI

Haberman’s Survival 306 3 2 225;81 UCI
Heart 270 13 2 150;120 STATLOG

Ionosphere 315 34 2 126;225 UCI
Laryngeal1 213 16 2 81;132 LKC
Laryngeal3 353 16 3 53;218;82 LKC

Liver Disorders 345 6 2 145;200 UCI
Mammographic 961 5 2 427;403 KEEL

Monk2 4322 6 2 204;228 KEEL
Phoneme 5404 6 2 3818;1586 ELENA

Pima 768 8 2 500;268 UCI
Sonar 208 60 2 97;111 UCI

Vehicle 846 18 4 199;212;217;218 STATLOG
Vertebral Column 310 6 2 204;96 UCI

Weaning 302 17 2 151;151 LKC

The accuracy rates of different DCS techniques were obtained using four state-of-the-art
methods: OLA, LCA, MLA, and MCB. These techniques were chosen due to their superior
performance in comparison with other DCS techniques in (BRITTO; SABOURIN; OLIVEIRA,
2014). The RoC size K for each of the DCS techniques is set to 7, for they also performed the
best with this configuration in this survey.

The gap between the Oracle and the DCS techniques was evaluated using Bagging,
for it is a classical ensemble method used in several DS works (CRUZ et al., 2015; CRUZ;
SABOURIN; CAVALCANTI, 2015), and the SGH method, since it guarantees an Oracle
accuracy rate of 100% for the training data, which allows further analysis to be performed.

Figure 2.5 shows the mean accuracy rate over the test set of the Oracle model and the
four analyzed DCS techniques using a Bagging-generated pool of 100 Perceptrons and a pool
generated using the SGH method over all datasets. The mean pool size for the SGH method was
N = 3.80 Perceptrons.

It can be observed that, though the SGH method obtained similar accuracy rates to a pool
of size 100 generated by Bagging with considerably fewer classifiers for three of the four DCS
techniques, it performed quite poorly for MLA. This was due to the local competence estimation
in MLA, which is the sum of all the distances between the neighbors and the test instance, given
that the classifier labels them as of the same class (Equation 2.1). Therefore, if a classifier labels
a test instance and all its neighbors of the same class, it will be deemed more competent than
another classifier that labels only part of the neighborhood as of the same class, regardless of the
actual local accuracy rate of them both. Since MLA does not filter out non-applicable classifiers,

2.4. ORACLE-DCS PERFORMANCE GAP 32

Figure 2.5: Mean and standard deviation of the accuracy rate of the Oracle model and the DCS
techniques for Bagging-generated pool of 100 Perceptrons and a pool generated using the SGH

method, for all datasets from Table 2.1.

that is, classifiers that do not recognize any of a test instance’s neighbors, and the SGH generates
only two-class classifiers, the selection, especially for multi-class problems, became based solely
on the distance weighting, for usually each classifier in the pool labels most instances in the local
region as of one of the two classes it recognizes.

Figure 2.6: Mean and standard deviation of the performance gap between the accuracy rates of
the Oracle model and the DCS techniques for Bagging-generated pool of 100 Perceptrons and a

pool generated using the SGH method, for all datasets from Table 2.1.

It can also be observed that, even though the SGH yielded a significant increase in the
Oracle accuracy rate compared to Bagging, the accuracy rate of the DCS techniques did not
follow this behavior. That is, the Oracle-DCS performance gap was not narrowed, as Figure 2.6
shows. Thus, this suggests that using the Oracle as a guide to generate the pool of classifiers do
not necessarily improve the accuracy rate during the test, since guaranteeing an Oracle accuracy
rate of 100% in the training set and almost 100% in the test set, as Figure 2.5 shows, does not

2.4. ORACLE-DCS PERFORMANCE GAP 33

imply the DCS technique will be able to select the right classifier in the pool.

Figure 2.7: Mean and standard deviation of the hit rate and of the memorization accuracy rate of
the DCS techniques using a pool generated by the SGH method, for all datasets from Table 2.1.

A further investigation was performed on the behavior of the DCS techniques with
regards to the Oracle. Figure 2.7 shows the hit rate of the four DCS techniques, that is, the rate at
which these methods selected the correct classifier, and their accuracy rate for the training data
as well. The correct classifier of an instance in this context is the one that correctly predicted
the label of this instance in the generation phase (step 10 of Algorithm 1). The hit rate was
obtained by using the training set as test set with the pool generated by the SGH as input to the
DCS techniques. It is important to remember that the SGH guarantees an Oracle of 100%, in
other words, each instance in the training set has at least one classifier that correctly classifies
it. So, the hit rate presents a correlation with the classification accuracy in memorization of
DCS techniques. It can be observed that, even though the Oracle for the training dataset is
always 100%, the hit rate of the DCS techniques is in most cases more than 10 percentile points
behind the model, which means that, although the presence of the correct classifier in the pool is
guaranteed, the DCS techniques were not able to easily select it.

This shows a significant gap between the theoretical limit and the rate at which the DCS
techniques actually select the most competent classifier in the pool, suggesting that the Oracle,
as intuitive as it may be, is not the best guide for dynamically selecting a classifier. The reason
behind this is that the Oracle perceives the classification problem globally, deeming a classifier
competent as long as it correctly labels a given instance, regardless of its competence in that
region. DCS techniques, on the other hand, rely only on local information to select the best
classifier for each test instance. Thus, using the Oracle information as a guide to generating a
pool of classifiers for dynamic selection schemes may not be very suitable due to the difference
in their perspectives.

On the other hand, the hit rate captures in a better way the relationship between the
theoretical limit and the actual recognition rate because, since the Oracle and the DCS techniques

2.5. CONCLUSION 34

observe the problem from different perspectives, the hit rate measures the intersection between
these two perspectives. Therefore, the hit rate may be a better guide than the Oracle in the
process of generating a pool of classifiers.

2.5 Conclusion

In this chapter, an overall view on the main aspects regarding MCS was presented. The
three stages of an MCS were introduced in Section 2.2, with a brief description on the many
possible approaches for each one of them. The Oracle model and its importance in MCS literature
were also presented.

In Section 2.3, the general process of dynamically selecting a set of classifiers was further
explained. The main approaches for obtaining the RoC and estimating the competence of a
classifier were introduced as well. Since this work focus on DCS techniques, the most relevant
ones were also presented.

Section 2.4 presented a short analysis on the behavior of the Oracle in regards to DCS
techniques. It was shown that the DCS techniques struggle to select the most competent classifier
in the pool, even when its presence is assured by the Oracle. This analysis was accomplished
with the help of the SGH method, which always generates a pool with an Oracle accuracy rate
of 100%. It was concluded that, since the Oracle is performed globally, it may be unsuited to
be used as a guide to generate a pool of classifiers for DCS techniques, which consider only its
small RoC to estimate the competence and select the best classifier in the pool for a given query
sample.

353535

3 THE PROPOSED METHOD

3.1 Introduction

It was shown in (SOUZA et al., 2017) (Section 2.4), that the Oracle model, which is
performed over the entire dataset, was not the best guide in the search for a good pool for
DCS. It was argued that this is due to the fact that DCS techniques rely only on a small region,
an instance’s neighborhood, in order to select the most competent classifier for this instance.
Therefore, the difference in the perspectives of the Oracle model and the DCS techniques do not
favor the use of the model in generation methods in the DCS context.

With that in mind, it is proposed the use of an Oracle-guided generation method on a
local scope, so that the model’s properties may be explored by the DCS techniques. The idea is
to use a local pool (LP) consisted of specialized classifiers, each of which selected using a DCS
technique from a local subpool that contains at least one competent classifier for each instance in
class overlap regions of the feature space. A given test instance is in a class overlap area in this
context if its RoC is composed of samples from more than one class. If the unknown instance’s
Region of Competence (RoC) is located in a region with class overlap, the LP is generated on
the fly using its neighboring instances and then used to label the query sample. However, if
the query instance is far from the classes’ borders, no pool is generated and the output label is
obtained using the K-NN rule.

The reasoning behind the proposed approach is that using locally generated classifiers
for instances in class overlap areas may be of help to the DCS techniques due to their high
accuracy in these regions. Moreover, most works regarding DCS use classical generation
methods, which were designed for SS techniques (WOLOSZYNSKI; KURZYNSKI, 2011;
WOLOSZYNSKI et al., 2012; CRUZ; SABOURIN; CAVALCANTI, 2018a) and therefore do
not take into account the regional aspect of the competence estimation performed by the DS
techniques. Thus, matching the perspectives of the generation and the selection stages may be
advantageous for these techniques.

The proposed method is presented in more detail in this chapter. In Section 3.2, an
overview of the proposed method is presented. A step-by-step analysis of the proposed method
is then performed using a 2D toy problem in Section 3.3. Finally, the main aspects regarding the
proposed technique are summarized in Section 3.4.

3.2. OVERVIEW 36

3.2 Overview

The proposed method can be divided into three phases:

1. The RoC evaluation phase, in which the query instance’s RoC is obtained and
evaluated in order to identify if the test sample is in an overlap area of the feature
space. If the region contains instances from two or more classes, the local pool (LP) is
generated in the local pool generation phase and later used to label the query sample.
If not, the query sample is directly labelled by the K-NN rule in the generalization

phase.

2. The local pool generation phase, in which LP is generated. The pool size M of LP

is an input parameter of the method. Each classifier in LP is obtained iteratively by
using the SGH method over the query sample’s increasing neighborhood. In each
iteration, the SGH method yields a subpool with an Oracle accuracy rate of 100%
over that neighborhood. Then, a DCS technique is used to select the most competent
classifier in the generated subpool, adding it to LP.

3. The generalization phase, in which the query sample is labelled by the K-NN rule, if
all its neighbors share the same label, or by the majority voting of the classifiers in
LP, otherwise.

xq

Obtain Region
of Competence

(RoC)

Overlap
region?

θq

Generate local
pool

K-NN rule

xq,K,

Majority voting
yes

no

LP ωl

 xq,K,M,

1) RoC Evaluation 2) Local Pool Generation 3) Generalization

K

ωl

Figure 3.1: Overview of the proposed technique. T is the training set, xq is the query sample, θq
is its Region of Competence (RoC), K is the size of θq, LP is the local pool, M is the pool size of

LP and ωl is the output label of xq. In the first phase, θq is obtained and evaluated. If it only
contains samples from the same class, the K-NN rule is used to label xq in the third phase.

Otherwise, the local pool is generated in the second phase, and xq is labelled via majority voting
of the classifiers in LP in the third phase.

An overview of the proposed method’s three phases is depicted in Figure 3.1, in which
T is the training set, xq is the query sample, θq is the query sample’s Region of Competence
(RoC), K is the size of θq, LP is the local pool containing M classifiers and ωl is the output label
of the query sample. In the RoC evaluation phase, the K nearest neighbors in the training set
T of the query sample xq are selected to form the query sample’s RoC θq. The DSEL dataset

3.2. OVERVIEW 37

was not used in the proposed method because the SGH method did not present overfitting when
used for RoC definition (SOUZA et al., 2017). Then, the instances that compose θq are analyzed.
If all of them belong to the same class, the method skips the local pool generation and goes
directly to the generalization phase. The output class ωl of xq is then obtained using the K-NN
rule with parameter K. However, if there are two or more instances in θq that belong to different
classes, the query sample’s RoC is considered to be in a class overlap region. Thus, the local
pool LP containing M classifiers is generated in the second phase and used to label xq in the
generalization phase via majority voting. The local pool generation phase is explained next.

Obtain
neighborhood

Increase the
neighborhood

size

SGH method Select the best
local classifier

Add cm,n to LP

Stop?
yesno

LP

Cm = {cm,1, cm,2,...}

cm,n
θm

Km

M

xq

K

Local Pool Generation

Figure 3.2: Local pool generation phase. The inputs to the generation scheme are the training set
T , the query sample xq, the size K of the query sample’s RoC and the local pool size M. The

output is the local pool LP. In the m-th iteration, the query sample’s neighborhood θm of size Km
is obtained and used as input to the SGH method, which yields the subpool Cm. The classifiers
from Cm are then evaluated over θm using a DCS technique. The classifiers’ notation refers a

classifier cm,k as the k-th classifier from the m-th subpool (Cm). The most competent classifier cm,n
in subpool Cm is then selected and added to the local pool LP. This process is then repeated until

LP contains M locally accurate classifiers.

Figure 3.2 shows the generation procedure of the local pool LP. The pool size M of the
local pool is an input parameter. The other inputs are the training set (T), the query sample (xq)
and the query sample’s RoC size (K). The LP is constructed iteratively. In the m-th iteration, the
query sample’s neighboring instances in the training set are obtained using any nearest neighbors
method, with parameter Km. These neighboring instances form the query sample’s neighborhood
θm, which is used as input to the SGH method. The SGH method then returns a local subpool Cm

that fully covers the neighborhood θm. That is, the presence of at least one competent classifier
cm,k ∈Cm for each instance in θm is guaranteed. The indexes in the classifiers’ notation indicates
that the classifier cm,k is the k-th classifier from the m-th subpool (Cm). Then, the most competent

3.3. STEP-BY-STEP ANALYSIS 38

classifier cm,n from Cm in the region delimited by the neighborhood θq is selected by a DCS
technique and added to the local pool. The same procedure is performed in iteration m+1 with
the neighborhood size Km+1 increased by 2. This process is then repeated until the local pool
contains M locally accurate classifiers.

Algorithm 2 Pseudocode of the proposed method.
Input: T ,xq . Training dataset and query instance
Input: K,M . RoC size and pool size of local pool LP
Output: ωl . Output label of xq

1: θq← obtainRoC(xq,K,T) . Obtain the query instance’s RoC
2: if {∃xi,xj ∈ θq|ωi 6= ω j} then
3: LP←{} . Local pool initially empty
4: for every m in {1,2, ...,M} do
5: Km← K +2× (m−1) . Increase neighborhood size by 2
6: θm← obtainNeighborhood(xq,Km,T) . Obtain neighborhood of xq
7: Cm← generatePool(θm) . Generate local subpool Cm
8: cm,n← selectClassi f ier(xq,θm,Cm) . Select best classifier in Cm
9: LP← LP∪{cm,n} . Add cm,n to LP

10: end for
11: ωl ← ma jorityVoting(xq,LP) . Label xi with majority voting on LP
12: else
13: ωl ← KNN(xq,K,T) . Label query sample using K-NN rule
14: end if
15: return ωl

1) RoC
Evaluation

2) Local Pool
Generation

3) Gener-
alization

The proposed method’s pseudocode is shown in Algorithm 2. Its inputs are the training
set T , the query sample xq, the RoC size K and the local pool size M. In Step 1, the query
sample’s RoC θq is obtained by selecting the K closest samples to xq in the training set. The
RoC is then evaluated in Step 2. If all instances in θq belong to the same class, the method goes
straight to Step 13 and the query sample’s output label ωl is obtained using the K-NN rule with
parameter K and returned in Step 15.

However, if there are two instances xi and xj from θq that possess different labels ωi

and ω j, then the method proceeds to Step 3. Each classifier in the local pool LP is obtained in
the loop that iterates M times (Step 4 to Step 10). In each iteration, the neighborhood size Km

is calculated in Step 5. Then, the query sample’s neighborhood θm is obtained using a nearest
neighbors method in Step 6. The subpool Cm is then generated in Step 7 using the SGH method
with θm as training set. In Step 8, a DCS technique is then used to select the most competent
classifier cm,n in Cm. The classifier cm,n is added to LP in Step 9, and then the loop continues
until the local pool is complete. Finally, the query sample’s label ωl is obtained using majority
voting over the locally accurate classifiers in LP and returned in Step 15.

3.3 Step-by-step Analysis

In order to better understand the generation process by the proposed technique, the latter
was executed over a 2D toy problem dataset. The P2 Problem (VALENTINI, 2005) was chosen

3.3. STEP-BY-STEP ANALYSIS 39

for its complex borders, and noise was added to the original problem by randomly changing the
labels of the samples near the class borders. The toy problem used in this analysis contains 1000
instances, 75% of which were used for training and the rest for test. The P2 Problem training set
used as input to the method is depicted in Figure 3.3, with its theoretical decision boundaries in
grey. The pool size of the local pool for this demonstration was set to M = 7, and the RoC size K

was set to 7. The method used for selecting the query instance’s neighborhood in the local pool
generation phase (Step 6 of Algorithm 2) for this example was the regular K-NN rule, and the
DCS technique used to select the most competent classifier (Step 8 of Algorithm 2) was OLA.

0 0.2 0.4 0.6 0.8 1
Feature 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ea

tu
re

 2

Class 1
Class 2

Figure 3.3: P2 Problem training dataset, with theoretical decision boundaries in grey.

Two scenarios of the proposed scheme can be observed in Figure 3.4. In Figure 3.4a,
the input query instance xq of Algorithm 2 belongs to Class 2. The query sample’s RoC θq is
obtained selecting its k-nearest neighbors over the training set T in Step 1. In this case, since all
instances in θq belong to the same class, Class 2, xq is not located in an overlap region of the
feature space. Therefore, the procedure goes to Step 13, in order to obtain the output label ωl of
xq using the K-NN rule over the training set with parameter K. Then, the query sample’s label is
returned in Step 15. In this case ωl = 2 since all K neighbors of xq belong to this class.

In the second scenario, shown in Figure 3.4b, the query instance xq of Algorithm 2
belongs to Class 1. Its RoC θq is obtained in Step 1, with more than half of its instances
belonging to the opposite class. Thus, a simple K-NN rule would misclassify this query sample.
The query instance’s RoC θq is then analyzed in Step 2. Since there are instances in θq belonging
to different classes, the region the query sample is located is identified as a class overlap area
and the local pool LP will be generated and used from this step forward. Starting with an empty
set (Step 3), each iteration from Step 4 to Step 10 adds a single classifier to LP.

In the first iteration, the neighborhood size K1 is set to 7 in Step 5, and then the K1

3.3. STEP-BY-STEP ANALYSIS 40

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Feature 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
q

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
q

(b)

Figure 3.4: Two different scenarios of the proposed method. In (a), the query instance xq belongs
to Class 2. Since all instances in its neighborhood θq belong to the same class, the K-NN rule is

used to label xq. On the other hand, the query sample’s neighborhood θq in (b) contains both
classes. Thus, the local pool LP will label the query instance xq, which belongs to Class 1.

nearest neighbors of xq are selected to compose the query sample’s neighborhood θ1 in Step 6.
The local subpool C1 is then generated using θ1 as the input dataset to the SGH method. The
resulting pool, which guarantees an Oracle accuracy rate of 100% in θ1, is shown in Figure 3.5a,
containing only one classifier, c1,1. Since there is only one classifier in C1, c1,1 is selected to
compose LP in Step 8 and Step 9.

In the second iteration, the neighborhood parameter is increased by 2 in Step 5, and the
resulting neighborhood θ2 contains K2 = 9 instances, as shown in Figure 3.5b. Then, the local
subpool C2 is generated in Step 7, with θ2 as the input parameter of the SGH method. Since only
one classifier was able to deliver an Oracle accuracy rate of 100% over θ2, the resulting pool
contains only c2,1, which is selected in Step 8 to be added to LP in Step 9.

The neighborhood θ3, obtained in Step 6 of the third iteration, contains K3 = 11 instances,
as Figure 3.5c shows. C3 is then generated in Step 7 so that it fully covers θ3, resulting in only
one classifier (c3,1), which is later added to LP in Step 9.

The fourth local subpool C4, depicted in Figure 3.5d, is generated in Step 7 of the fourth
iteration, with neighborhood θ4 of size K4 = 13 as input to the SGH method. The only classifier
generated, c4,1, is then added to LP in Step 9.

In the fifth iteration, the neighborhood θ5 is obtained with parameter K5 = 15 in Step 6.
In Step 7, the SGH method yields the local subpool C5, depicted in Figure 3.5e. Afterwards, the
single classifier c5,1 in C5 is added to LP.

The neighborhood θ6 of the sixth iteration is obtained with K6 = 17 in Step 6. Then, the
local subpool C6 is generated in Step 7, resulting in two classifiers, c6,1 and c6,2, as shown in
Figure 3.5f. In Step 8, both classifiers are evaluated over θ6 using a DCS technique, OLA in this

3.3. STEP-BY-STEP ANALYSIS 41

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
1

c
1,1

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
2

c
2,1

(b)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
3

c
3,1

(c)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
4

c
4,1

(d)

Figure 3.5: Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth and
(g) seventh iteration of the method, with its respective neighborhoods (θm) and generated local
subpools Cm formed by the depicted classifiers (cm,k). The arrows indicate in which part of the
feature space the classifiers label as Class 1. Each local subpool Cm is obtained using the SGH

method with its respective neighborhood θm, which increases in each iteration, as input. The final
local pool LP, formed by the best classifiers in each subpool Cm, is shown in (h).

3.3. STEP-BY-STEP ANALYSIS 42

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
5

c
5,1

(e)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
6

c
6,1

c
6,2

(f)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

3
7

c
7,1

c
7,2

c
7,3

(g)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Feature 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
ea

tu
re

 2

Class 1
Class 2
x

q

c
1,1

c
2,1

c
3,1

c
4,1

c
5,1

c
6,1

c
7,1

(h)

Figure 3.5: Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth and
(g) seventh iteration of the method, with its respective neighborhoods (θm) and generated local
subpools Cm formed by the depicted classifiers (cm,k). The arrows indicate in which part of the
feature space the classifiers label as Class 1. Each local subpool Cm is obtained using the SGH

method with its respective neighborhood θm, which increases in each iteration, as input. The final
local pool LP, formed by the best classifiers in each subpool Cm, is shown in (h).

3.4. CONCLUSION 43

Table 3.1: Majority voting of the classifiers from LP for the query instance from Figure 3.4b.

c1,1 c2,1 c3,1 c4,1 c5,1 c6,1 c7,1 Total
Class 1 x x x x x 5
Class 2 x x 2

case. The most accurate one (c6,1) in C6 is returned and added to LP in Step 9.
In the last iteration, the local subpool C7 is generated in Step 7 using the neighborhood

θ7 with K7 = 19 instances. Then, the local subpool C7 is generated, yielding three classifiers that
fully cover θ7. Each classifier in C7, shown in Figure 3.5g, is then evaluated using OLA, and the
one that performs best over θ7 is selected. The selected classifier, c7,1 in this case, is then added
to the local pool, completing the generation process of LP, depicted in Figure 3.5h.

After the generation process of the local pool, each classifier in it labels the query instance
xq, and the final label is obtained by majority vote in Step 11. Table 3.1 shows the vote of each
classifier in LP. The final label returned in Step 11 by the local pool is ωl = 1, which is the true
class of xq.

3.4 Conclusion

In this chapter, an online pool generation method for DCS techniques was presented. The
proposed technique generates classifiers on a local scope, so that the DCS techniques may be
able to select the most competent one for a given instance more frequently, since the generation
and the selection are performed from the same perspective.

The proposed technique generates a pool comprised of locally accurate classifiers each
time a query sample is located in a class overlap region of the feature space. In such cases, the
local pool is obtained sequentially. In each iteration of the generation scheme, a local subpool is
generated over the query sample’s neighborhood, and the most competent classifier in the former
is selected by a DCS technique to compose the final local pool. The latter is then used to label
the query sample using majority voting. For instances located far from the classes’ borders, a
simple K-NN rule is applied instead.

An overview of the proposed method was presented in Section 3.2. The three phases
of the method were introduced and the pseudocode of the proposed scheme was presented and
explained in detail. In addition to that, the proposed method’s workings was further illustrated in
a step-by-step analysis using a toy problem in Section 3.3.

444444

4 EXPERIMENTS

4.1 Introduction

In Chapter 2, the main concepts of MCS were presented, with special attention to the
area of DCS. It was also shown that the DCS techniques have difficulty in selecting the best
classifier even when the pool contains it, as the Oracle model indicates. Then, in Chapter 3, an
online local pool generation method was proposed in order to aid the selection performed by
these techniques. The idea behind it was that, by using locally generated classifiers, it could
be easier for the DCS techniques to select the best among them, since the generation and the
selection perspectives match in this case.

In this chapter, an experimental analysis on the proposed method is performed. The aim
of these experiments is to observe whether the DCS techniques are more prone to selecting the
best classifier in the pool when said pool is generated locally and whether the use of such pools
increase classification rates, in comparison to globally generated pools.

This chapter is organized as follows. In Section 4.2, the experimental protocol for the
experimental analysis is outlined. Section 4.3 presents information regarding the proposed
method’s operation, as well as an analysis on the sensitivity of the proposed method’s parameter.
Lastly, a comparative study on the performance of DCS techniques using locally generated pools,
by means of the proposed technique, and globally generated pools is done in Section 4.4. The
main conclusions derived from the experiments are then summarized in Section 4.5.

4.2 Experimental Protocol

The DCS techniques chosen to evaluate the methods in the experiments were OLA,
LCA and MCB, since they outperformed the other evaluated DCS techniques in (BRITTO;
SABOURIN; OLIVEIRA, 2014) and have no issue with two-class classifiers, as MLA does
(Section 2.4.2). The RoC size K for each of the DCS techniques is set to 7, since it yielded the
best results in (BRITTO; SABOURIN; OLIVEIRA, 2014). Moreover, the proposed method was
tested with different parameter configurations, with the best overall configuration featuring in the
comparative study, while the baseline generation method (Bagging) was tested with the pool size
set to 100 classifiers, as it is often done in DS works (CRUZ et al., 2015; CRUZ; SABOURIN;
CAVALCANTI, 2015).

Experiments were conducted over the same 20 datasets described in Table 2.1. All

4.3. PROPOSED METHOD ANALYSIS 45

configurations were evaluated using 20 replications of each dataset from Table 2.1. For the
configurations that used pools generated by the SGH method, each replication was randomly
split, maintaining the class proportions, into two parts: 75% for training and 25% for test. Since
the SGH method did not present overfitting, both in global (SOUZA et al., 2017) and local
scope, it was chosen not to use a dynamic selection validation set (DSEL). In the comparative
study, however, two configurations use a pool of 100 classifiers obtained using Bagging. For
these configurations, the DSEL was used in order to avoid overfitting, and each replication was
thus randomly split: 50% for training, 25% for validation and the remaining 25% for test, also
maintaining the class proportions. The base classifier of all evaluated pools was the Perceptron
due to their weakness, since using weak base classifiers can provide more differences between
the DS techniques (KO; SABOURIN; JR., 2008).

4.3 Proposed Method Analysis

The proposed method was evaluated over the test set, and the results regarding its
operation are presented and analyzed in this section in three parts. In Section 4.3.1, an evaluation
on the method’s frequency at identifying an instance in class overlap areas is presented. Moreover,
Section 4.3.2 presents an analysis on the parameter sensitivity of the proposed method.

4.3.1 RoC Evaluation

The mean percentage of test instances truly located in class overlap regions is depicted
in the True bars of Figure 4.1 for all datasets. This percentage was obtained observing the
neighborhood of each test instance over the entire dataset. The mean percentage of test instances
the proposed method identified as in a class overlap region is also depicted in Figure 4.1
(Estimated bars). That is, the Estimated bars show the frequency at which the proposed method
generated and used the local pool, whilst the True bars show the actual proportion of instances
close to the class borders for each problem. It can be observed that, though the proportion
of instances in overlap regions varies greatly from problem to problem, the proposed method
was mostly able to identify in which cases the query sample was truly located in one and thus
generated a local pool to handle them.

The averaged value of the true and estimated percentage of instances in those regions is
also indicated in Figure 4.1 by the true and est lines, respectively. It can be observed that the
mean percentage of test instances truly located near the borders was 65.03%, while the proposed
method generated local pools for 64.48% of the test instances, on average.

4.3.2 Parameter Sensitivity

The proposed method was evaluated with different parameter configurations in order
to analyze the parameters’ effect on performance. Two neighborhood acquisition methods

4.3. PROPOSED METHOD ANALYSIS 46

Adult Blood CTG Faults Glass German Haberman Heart IonosphereLaryng.1 Laryng.3 Liver Mammog. Monk2 Phoneme Pima Sonar Vehicle Vertebral Weaning

Dataset

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
ag

e
of

 in
st

an
ce

s

True
Estimated

est

true

Figure 4.1: Mean percentage of test instances in overlap regions for all datasets from Table 2.1.
The Estimated bar indicates the times the local pool was used to classify an instance, while the
True bar indicates the true percentage of test instances in overlap regions considering the entire
dataser. The lines true and est indicate the averaged values of all datasets for the estimated and

true percentage of test instances, respectively.

(obtainNeighborhood() from Step 6 of Algorithm 2) were tested: the regular K-NN rule, and a
a version of the K-NNE method, in which the returned neighborhood contains an equal amount
of instances from all classes, given that these classes are present in the query instance’s RoC θq

(Step 1 of Algorithm2). Moreover, the parameter M was varied in the set {1,3,5,7} for each of
the two variations of the method. The configurations that use K-NN and M = m are referenced
as LPm, while the ones with K-NNE and M = m are referenced as LPe

m in the experiments.
The mean accuracy of each configuration can be observed in Table 4.1 for OLA, LCA

and MCB. The results are grouped by neighborhood acquisition method and DCS technique, and
the best values from each group are in bold. Moreover, the rows Avg rank and p-value show the
result of a Friedman test with a significance level of α = 0.5 on each group.

It can be observed from Table 4.1 that the best pool size value for a given problem and a
given neighborhood method varies little in regards to the DCS techniques. However, two main
aspects stand out in the results. The first is related to the neighborhood acquisition method.
It can be observed that on most multi-class datasets the use of K-NN greatly outperforms the
configurations that use K-NNE. The reason for this is further discussed afterwards.

The second aspect regards the best value of the pool size, which is clearly problem
dependent. It can be observed, for instance, that the recognition rate increase for the “Liver”
problem from configuration LPe

5 to configuration LPe
7 with the addition of only two classifiers in

the pool. The opposite occurs for the “Sonar” problem from configuration LPe
1 to configuration

LPe
3 . Thus, fine tuning of the method’s parameters is required in order to obtain the best

performance for each individual problem.
The Friedman tests indicate there is no significant difference between the configurations

4.3. PROPOSED METHOD ANALYSIS 47

Table 4.1: Mean and standard deviation of the accuracy rate of the proposed technique using (a)
OLA, (b) LCA and (c) MCB. The local pool in configuration LPm uses K-NN in the generation
process and contains M = m classifiers and are grouped together. Configurations referenced as

LPe
m are also grouped and use K-NNE to generate M = m classifiers. The row Avg rank shows the

resulting mean ranks of a Friedman test with al pha = 0.05 on each group. Best results are in bold.

(a)
Dataset LP1 LP3 LP5 LP7 LPe

1 LPe
3 LPe

5 LPe
7

Adult 84.68 (3.27) 84.36 (3.09) 84.80 (2.85) 83.61 (3.69) 86.10 (2.14) 86.99 (2.91) 87.69 (2.87) 87.75 (2.17)
Blood 70.08 (2.71) 72.02 (1.69) 72.50 (1.53) 74.02 (2.69) 75.72 (2.57) 76.84 (0.80) 76.68 (1.50) 77.31 (1.61)
CTG 91.80 (0.61) 91.95 (0.70) 91.89 (1.01) 92.20 (1.10) 91.22 (0.34) 90.74 (0.28) 90.42 (0.44) 89.98 (0.80)
Faults 71.74 (0.94) 72.37 (1.74) 72.65 (1.69) 72.40 (1.29) 68.91 (1.07) 67.30 (1.39) 66.21 (1.04) 65.93 (1.29)

German 71.20 (2.59) 72.32 (2.63) 72.96 (2.81) 72.24 (2.02) 72.94 (1.49) 74.28 (2.12) 74.76 (1.87) 74.08 (1.79)
Glass 69.43 (2.97) 69.25 (3.41) 69.62 (4.93) 68.11 (3.87) 67.45 (2.44) 64.81 (5.28) 63.87 (4.79) 62.36 (2.84)

Haberman 68.95 (3.90) 69.80 (3.81) 69.67 (5.02) 69.61 (4.07) 68.95 (2.02) 69.80 (2.07) 70.99 (2.32) 72.83 (2.64)
Heart 81.25 (3.37) 80.29 (4.54) 81.54 (5.06) 82.06 (4.86) 80.37 (4.06) 83.53 (3.29) 83.68 (3.66) 83.68 (3.27)

Ionosphere 88.81 (2.28) 89.32 (2.69) 90.45 (2.03) 91.59 (1.82) 89.72 (1.30) 90.74 (1.53) 91.02 (1.42) 91.31 (1.66)
Laryngeal1 78.40 (5.69) 80.00 (4.91) 78.87 (5.56) 77.74 (5.53) 80.94 (3.62) 79.81 (5.41) 80.57 (5.13) 80.57 (5.87)
Laryngeal3 68.99 (3.01) 69.83 (2.56) 71.74 (1.90) 72.13 (2.69) 66.57 (0.72) 67.42 (1.71) 66.69 (1.38) 65.96 (1.42)

Liver 58.95 (4.12) 60.87 (5.15) 61.22 (5.99) 60.06 (5.04) 61.92 (3.52) 63.26 (3.34) 64.01 (3.03) 67.50 (1.53)
Mammographic 75.70 (2.50) 76.47 (3.36) 76.51 (2.56) 76.32 (2.54) 81.80 (2.15) 82.26 (1.88) 82.38 (2.32) 82.38 (1.98)

Monk2 94.12 (1.68) 95.93 (1.14) 95.05 (0.81) 94.91 (0.97) 95.19 (1.46) 94.44 (1.12) 94.17 (0.74) 94.07 (0.76)
Phoneme 89.03 (0.65) 88.81 (0.37) 88.76 (0.45) 88.65 (0.55) 87.30 (0.25) 87.36 (0.31) 87.06 (0.41) 86.95 (0.55)

Pima 70.52 (1.80) 71.30 (1.71) 72.42 (2.11) 72.08 (1.75) 73.07 (1.39) 74.90 (1.26) 76.15 (1.38) 76.82 (2.21)
Sonar 83.56 (3.50) 82.88 (6.51) 84.23 (4.57) 83.46 (5.66) 78.85 (4.99) 77.69 (4.06) 76.73 (3.47) 75.19 (4.09)

Vehicle 72.10 (1.61) 73.56 (2.11) 73.61 (2.27) 74.15 (2.08) 72.76 (2.13) 72.81 (2.02) 72.08 (1.84) 70.73 (1.72)
Vertebral 80.64 (4.24) 80.83 (3.42) 83.33 (2.32) 85.06 (2.13) 84.68 (3.47) 86.15 (3.26) 87.44 (3.57) 86.47 (2.65)
Weaning 84.14 (2.43) 85.86 (2.56) 86.32 (1.73) 86.32 (1.83) 86.32 (2.19) 86.05 (2.19) 85.66 (1.86) 86.32 (2.43)
Average 77.70 78.40 78.91 78.84 78.54 78.86 78.91 78.91
Avg rank 3.45 2.55 1.675 2.325 2.725 2.4 2.375 2.5
p-value 2.16×10−4 0.81

(b)
Dataset LP1 LP3 LP5 LP7 LPe

1 LPe
3 LPe

5 LPe
7

Adult 85.58 (3.26) 85.29 (3.41) 85.84 (3.52) 84.65 (3.69) 85.81 (2.73) 86.59 (3.34) 87.37 (3.39) 87.11 (2.40)
Blood 72.39 (2.64) 75.56 (1.99) 77.21 (2.02) 77.93 (2.50) 75.24 (2.21) 76.57 (0.84) 76.49 (1.49) 76.94 (1.67)
CTG 91.95 (0.49) 92.05 (0.68) 92.23 (0.98) 92.22 (1.10) 91.25 (0.39) 91.00 (0.56) 90.69 (0.39) 90.58 (0.39)
Faults 72.73 (1.20) 73.30 (1.42) 73.64 (1.67) 73.20 (1.22) 69.10 (1.15) 68.22 (1.49) 66.85 (1.35) 66.28 (1.15)

German 71.30 (2.68) 72.22 (2.65) 73.20 (2.55) 72.86 (2.32) 72.94 (1.29) 74.32 (1.99) 74.88 (2.04) 74.12 (1.75)
Glass 70.38 (4.02) 70.75 (3.15) 70.28 (3.62) 66.98 (3.03) 66.42 (2.49) 69.06 (4.03) 62.92 (2.14) 63.58 (3.47)

Haberman 70.20 (3.12) 71.12 (2.72) 70.59 (3.50) 70.79 (3.74) 67.63 (2.11) 69.67 (2.72) 71.12 (2.20) 72.70 (2.52)
Heart 81.76 (4.06) 80.29 (4.54) 82.06 (5.39) 82.57 (5.42) 80.00 (3.83) 83.46 (3.44) 83.68 (3.66) 83.09 (3.32)

Ionosphere 88.86 (2.17) 89.94 (1.82) 91.08 (1.62) 91.36 (1.24) 90.11 (1.28) 91.48 (1.82) 91.59 (1.89) 91.82 (2.01)
Laryngeal1 79.06 (5.77) 79.62 (4.96) 79.62 (5.60) 79.25 (5.05) 80.38 (4.08) 79.62 (5.53) 80.57 (5.13) 80.57 (5.87)
Laryngeal3 69.55 (3.36) 70.28 (2.86) 72.92 (2.39) 73.54 (2.35) 66.46 (1.83) 67.19 (1.44) 66.80 (1.18) 67.81 (1.72)

Liver 58.95 (3.99) 60.99 (5.12) 62.09 (6.42) 62.03 (5.44) 62.56 (3.34) 63.37 (3.30) 63.90 (2.93) 67.09 (1.69)
Mammographic 77.62 (2.76) 79.52 (2.19) 80.10 (2.02) 80.10 (2.02) 81.75 (2.75) 82.31 (2.16) 82.38 (2.58) 82.40 (2.01)

Monk2 94.07 (1.60) 95.74 (1.22) 95.00 (0.87) 94.91 (0.97) 95.14 (1.47) 94.40 (1.14) 94.12 (0.75) 94.07 (0.76)
Phoneme 89.60 (0.41) 89.22 (0.36) 89.13 (0.56) 89.15 (0.48) 87.37 (0.29) 87.35 (0.36) 87.06 (0.46) 86.97 (0.53)

Pima 71.04 (1.98) 72.08 (1.74) 73.54 (1.69) 73.41 (0.98) 72.94 (1.72) 74.74 (1.20) 76.04 (1.26) 76.80 (2.19)
Sonar 83.37 (3.38) 82.79 (6.35) 84.13 (4.41) 83.27 (5.30) 80.00 (3.33) 78.08 (3.44) 76.92 (3.18) 76.54 (3.72)

Vehicle 72.74 (1.42) 72.36 (0.96) 73.92 (2.39) 73.47 (1.66) 73.14 (1.91) 73.09 (1.77) 72.36 (1.59) 72.12 (1.15)
Vertebral 81.86 (3.46) 82.50 (2.61) 83.46 (2.66) 85.38 (2.64) 85.38 (3.36) 86.15 (3.26) 87.44 (3.57) 86.41 (2.71)
Weaning 84.08 (2.37) 85.92 (2.49) 86.32 (1.73) 86.45 (2.01) 86.45 (2.26) 86.05 (2.19) 85.66 (1.86) 86.32 (2.43)
Average 78.35 79.07 79.82 79.68 78.50 79.14 78.94 79.17
Avg rank 3.45 2.675 1.75 2.125 2.8 2.45 2.375 2.375
p-value 1.84×10−4 0.68

4.3. PROPOSED METHOD ANALYSIS 48

(c)
Dataset LP1 LP3 LP5 LP7 LPe

1 LPe
3 LPe

5 LPe
7

Adult 85.38 (3.22) 84.91 (3.24) 85.46 (3.15) 84.65 (3.90) 85.43 (2.32) 86.65 (2.96) 87.63 (2.81) 87.75 (2.18)
Blood 72.07 (2.55) 74.26 (1.30) 74.84 (1.12) 76.89 (2.34) 74.95 (2.65) 76.14 (1.11) 76.44 (1.65) 76.49 (1.98)
CTG 91.90 (0.62) 92.17 (0.74) 92.19 (1.04) 92.10 (1.20) 91.45 (0.56) 90.92 (0.58) 90.63 (0.52) 90.23 (0.36)
Faults 72.43 (1.09) 72.73 (1.42) 72.77 (1.47) 72.80 (1.29) 68.70 (1.16) 67.54 (1.26) 66.31 (0.70) 66.24 (0.86)

German 71.44 (2.72) 72.24 (2.63) 73.36 (2.78) 72.82 (2.36) 72.90 (1.24) 74.32 (1.91) 74.86 (2.04) 74.12 (1.75)
Glass 69.15 (3.48) 69.81 (3.06) 68.49 (4.16) 66.51 (4.45) 65.57 (3.05) 64.34 (5.93) 64.62 (4.78) 62.08 (2.36)

Haberman 68.49 (2.91) 70.20 (3.34) 70.33 (4.49) 69.21 (3.23) 68.29 (2.09) 69.80 (3.29) 71.12 (3.21) 72.50 (3.08)
Heart 81.69 (4.01) 80.29 (4.54) 81.32 (4.91) 82.13 (4.73) 80.07 (3.83) 83.38 (3.57) 83.09 (3.95) 83.09 (3.32)

Ionosphere 88.98 (2.25) 89.77 (1.77) 91.02 (1.60) 91.53 (1.40) 90.23 (1.40) 91.25 (1.73) 91.25 (1.48) 91.31 (1.93)
Laryngeal1 78.68 (6.19) 79.72 (4.97) 79.06 (5.71) 78.30 (5.18) 80.00 (3.74) 79.43 (5.44) 80.66 (5.26) 80.38 (5.56)
Laryngeal3 69.61 (3.27) 70.00 (2.61) 71.91 (1.71) 72.02 (2.44) 66.57 (1.58) 67.08 (1.75) 67.47 (1.12) 66.35 (1.12)

Liver 59.30 (3.72) 60.58 (4.82) 61.45 (5.67) 61.22 (5.30) 61.98 (3.56) 63.14 (3.27) 64.30 (3.23) 67.33 (1.25)
Mammographic 76.71 (3.16) 78.10 (2.23) 78.44 (1.99) 78.89 (2.44) 81.71 (2.92) 82.45 (1.52) 82.26 (2.40) 82.28 (1.73)

Monk2 94.07 (1.60) 95.74 (1.22) 95.00 (0.87) 94.91 (0.97) 95.14 (1.47) 94.40 (1.14) 94.07 (0.76) 94.07 (0.76)
Phoneme 89.52 (0.50) 89.14 (0.40) 89.01 (0.60) 88.94 (0.45) 87.22 (0.33) 87.32 (0.36) 87.08 (0.42) 86.97 (0.58)

Pima 71.02 (1.76) 71.77 (1.71) 73.02 (1.69) 72.86 (1.61) 72.34 (1.66) 74.40 (1.15) 75.68 (1.03) 76.80 (2.23)
Sonar 83.85 (3.33) 83.56 (5.60) 84.23 (4.35) 83.27 (5.30) 80.00 (3.08) 77.98 (3.39) 76.92 (3.18) 76.35 (3.42)

Vehicle 72.85 (1.53) 74.34 (2.24) 74.62 (2.60) 74.72 (1.82) 73.00 (2.21) 73.25 (1.79) 72.48 (1.75) 71.63 (1.55)
Vertebral 81.73 (3.35) 82.56 (2.77) 83.65 (2.46) 85.45 (2.40) 85.58 (3.32) 86.28 (3.28) 87.31 (3.79) 86.41 (2.74)
Weaning 84.08 (2.37) 85.92 (2.49) 86.32 (1.73) 86.38 (1.72) 86.25 (2.15) 85.79 (1.98) 85.39 (1.75) 86.32 (2.43)
Average 78.15 78.89 79.32 79.28 78.37 78.79 78.98 78.93
Avg rank 3.4 2.6 1.8 2.2 2.85 2.325 2.325 2.5
p-value 7.77×10−4 0.52

that use K-NNE, and though in the K-NN cases there is a significant difference, as their p-value

suggests, the difference lies in the LP1 configuration, which obtained a much worse average rank
in the tests. Since for most DCS techniques and configurations the pool size M = 5 yielded the
greatest mean accuracy rate and the best average rank, the parameter is thus set in the comparative
study.

Discussion

From Table 4.1, it can be observed that the two neighborhood acquisition methods used
in the proposed technique yielded quite distinct results: the LPm configurations always surpassed,
by far most of the times, the LPe

m configurations for the multi-class problems for all three DCS
techniques. This phenomenon is illustrated in Figure 4.2, in which the mean accuracy rate of
the configurations LP5 and LPe

5 using OLA for each dataset is depicted. It can be observed that
the accuracy rate of LP5 is greater than that of LPe

5 for all multi-class problems. Also, for most
of these datasets, the difference in performance is rather big. The reason for this lies in the
neighborhood selection schemes used in the proposed method, as it can be observed in Figure
4.3, in which two multi-class toy problems are depicted.

In Figure 4.3a, the neighborhood θ1 of the query instance xq was obtained selecting
que sample’s K nearest neighbors. It can be observed that, since the border contains only two
classes (Class 1 and Class 2), this is also the case for all two-class problems. Therefore, the
SGH method, which generates only two-class classifiers, returns a pool with only one classifier
(c1,1) that cover the entire neighborhood θ1. Figure 4.3b shows the same scenario, but with θ1

being obtained using the version of K-NNE used in this work, which returns the same amount of

4.3. PROPOSED METHOD ANALYSIS 49

60 70 80 90 100
Mean accuracy rate (LP

5
)

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 r

at
e

(L
P

5e)

Figure 4.2: Comparison between the mean accuracy rates of two configurations (LP5 and LPe
5)

using OLA. Each marker represents a dataset. The circles represent two-class problems, while the
plus signs represent multi-class problems.

neighboring instances for all classes in the original K-NN neighborhood. That is, the instances
from classes too far from the query sample are not included in this method, as Figure 4.3b shows.
The generated pool also contains only one classifier (c1,1) that cover the instances in θ1. In both
presented cases, the DCS technique would select the correct classifier for this query sample,
which belongs to Class 1, though the classifier from Figure 4.3b seems better adjusted than the
one from Figure 4.3a.

On the other hand, Figure 4.3c shows a similar situation, but with Class 3 much closer to
the other two classes. In this case, the neighborhood θ1 returned by K-NN contains instances
from the three classes in the problem. Since the SGH method only generates two-class classifiers,
the coverage of θ1 is incomplete. This is due to the fact that the most distant class in the input
set is selected more frequently to draw the hyperplanes. It can be observed in Figure 4.3c
that Class 3, which is the farthest class and thus the least relevant one, is much better covered,
with all classifiers recognizing it, than the other two classes. In fact, there is not one classifier
that separates Class 1 from Class 2 in the generated pool. However, since the DCS technique
evaluates the classifiers competence over θ1 in the proposed technique, Class 3 only possesses
one instance, therefore its weight is much smaller than the remaining two classes in the classifiers’
score. That way, the classifier c1,3 would be selected by OLA, for instance, which would yield
the correct label of xq.

Figure 4.3d depicts the same scenario from Figure 4.3c, but with θ1 obtained using
K-NNE. Since the original K-NN neighborhood already contained an instance from Class 3, this
class is also included in θ1. This leads to the neighborhood containing K1 = 7 instances of each
of the three classes of the problem. The SGH method generates then two classifiers (c1,1 and
c1,2), and, as in the previous case, the most distant and least relevant class (Class 3) is favoured

4.3. PROPOSED METHOD ANALYSIS 50

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Feature 1

0.05

0.1

0.15

0.2

0.25

0.3

F
ea

tu
re

 2

Class 1
Class 2
Class 3
x

q

3
1

c
1,1

1

2

(a)

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Feature 1

0.05

0.1

0.15

0.2

0.25

0.3

F
ea

tu
re

 2

Class 1
Class 2
Class 3
x

q

3
1

c
1,1

2

1

(b)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Feature 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

F
ea

tu
re

 2

Class 1
Class 2
Class 3
x

q

3
1

c
1,1

c
1,2

c
1,3

2

3

1

3

1

3

(c)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Feature 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

F
ea

tu
re

 2

Class 1
Class 2
Class 3
x

q

3
1

c
1,1

c
1,2

2

1

3

3

(d)

Figure 4.3: Example of pool generation for multi-class problems. In all scenarios, xq belongs to
Class 1. In (a) and (c), the query instance’s (xq) neighborhood θ1 was obtained using K-NN with

K1 = 7. In (b) and (d), θ1 was obtained using a version of K-NNE with K1 = 7 as well. These
neighborhoods were used as input to the SGH method, which yielded the corresponding subpool

of classifiers depicted in the images.

4.4. COMPARATIVE STUDY 51

by the method, since all classifiers recognize it. The other two classes, which are closer to xq, do
not have a classifier in this subpool to distinguish among themselves. However, as opposed to the
previous case, the amount of instances of the farthest class is the same as the other two classes,
which makes its as relevant as the closer classes for the DCS techniques, since the classifiers are
evaluated over the entire θ1. In this example, as both classifiers correctly label two out of three
classes in the neighborhood, the DCS technique would choose one of them randomly, which
would in turn fairly degrade the performance of the system.

Therefore, a better approach for multi-class problems is to use the LPe
m, which evaluates

over the original neighborhood and is likely to give less weight to less relevant classes in the
border region. Therefore, the combined configurations of the proposed method, LPm for binary
problems and LPe

m for multi-class problems, is referenced as LPmc
m and is used from this point

forward in this work.

4.4 Comparative Study

In this section, a comparative study on the performances of the proposed method and
related approaches are presented. For simplicity, the proposed method’s configuration used
in this study is the LPmc

5 , which generates M = 5 classifiers and uses K-NN for multi-class
problems and K-NNE for two-class ones, since it performed the best in average rank and mean
accuracy rate (Section 4.3.2). The baseline method used in the comparison is Bagging with a
pool size set to 100 classifiers. Moreover, the SGH method over the entire training set is also
tested and compared, since it provides another global approach for generating classifiers. The
pool generated by this technique is referenced as the global pool (GP).

Another related method, though it is not a generation one, is the Frienemy Indecision
Region Dynamic Ensemble Selection (FIRE-DES) framework (OLIVEIRA; CAVALCANTI;
SABOURIN, 2017). In the FIRE-DES framework, when a query sample is in an indecision

region, that is, a neighborhood that contains more than one class, the classifiers that correctly
label instances from different classes in the query sample’s region of competence are pre-selected
to form the pool used in the DS technique. That is, if a border is detected in the query sample’s
RoC, the selection scheme searches only among the classifiers that cross this border. This
is performed using the Dynamic Frienemy Pruning (DFP), an online pruning method for DS
techniques. The FIRE-DES framework is designed for two-class problems, and it obtained a
significant increase in accuracy for most DS techniques, specially for highly imbalanced datasets,
in which cases the DFP method provided a considerable improvement in performance for those
techniques.

As shown in (OLIVEIRA; CAVALCANTI; SABOURIN, 2017) for two-class problems,
it is advantageous to use locally accurate classifiers for query samples close to a class border.
Due to the proposed local subpool generation in this work (Figure 3.2), it is guaranteed that
all classifiers in the final local pool (LP) cross the query sample’s RoC. Thus, the same idea

4.4. COMPARATIVE STUDY 52

of using only locally accurate classifiers for difficult regions indirectly applies to the proposed
method. Therefore, the FIRE-DES framework is also included in the comparative study that
follows. The pool used in this framework is the same as the one from the Bagging configuration,
which contains 100 classifiers.

The performance of these configurations is evaluated in memorization, using the hit rate
measure, and in generalization, using the accuracy rate over the datasets from Table 2.1. The
analysis on the hit rate is performed in Section 4.4.1, whilst the accuracy rates are compared in
Section 4.4.2. A comparative analysis on the computational cost of these configurations is also
performed in Section 4.4.3.

4.4.1 Hit Rate

The hit rate (SOUZA et al., 2017) is a metric derived from the SGH method (Section
2.4.1) which indicates how well the generated pool integrates with the DCS techniques. In the
SGH method, since the Oracle accuracy rate over the training set is 100%, each training instance
is assigned to a classifier in the pool that correctly labels it. The hit rate is then obtained using
the training set as test set, and comparing the chosen classifier to the correct classifier indicated
by the SGH method for each training instance. Thus, the hit rate is the rate at which the DCS
technique selects the correct classifier for a given known instance.

Since the hit rate is defined specifically for pools generated using the SGH method, the
hit rate of the proposed method is only compared with the GP configuration, which uses a pool
generated by the SGH method with the entire training set as input. The hit rate of the proposed
configuration is calculated the same way as the GP configuration, with the only difference being
for instances not in class overlap regions. In this case, the accuracy rate is used to compute
the measure. The comparison between the GP and the LP configurations is relevant because it
provides the answer to whether or not the generation over a local region instead of over the entire
problem is useful in the selection process of a DCS technique.

Table 4.0 shows the mean hit rates of the GP and the LPmc
5 configurations. It can be

observed that, for the majority of problems, the rate at which the DCS selects the correct classifier
is greater when using a locally generated pool than using a globally generated one. Figure 4.4
shows the mean hit rate of both configurations over all datasets from Table 2.1 for all three DCS
techniques. It can be observed an overall increase of about 5 percentage points in the hit rate as
a result of using locally generated classifiers instead of globally generated ones. A Wilcoxon
signed rank test was performed on the difference between the mean hit rate of both configurations
with a significance level of α = 0.5. The results (row Wilcoxon) show that there is a significant
difference on the frequency at which the classifiers are correctly selected in the local pool in
comparison with the global pool for all three DCS techniques. This suggests that using the same
perspective in generation and selection may indeed help the DCS techniques in the selection
process.

4.4. COMPARATIVE STUDY 53

Table 4.0: Mean and standard deviation of the hit rate, i.e., the rate at which the right Perceptron
is chosen by (a) OLA,(b) LCA and (c) MCB using the GP and the LPmc

5 configurations. The row
Wilcoxon shows the result of a Wilcoxon signed rank test for the null hypothesis that the difference

between the hit rates of the proposed configuration and the GP configuration comes from a
distribution with zero median. The significance level was α = 0.05, and the symbols +, − and ∼
indicate whether the if the compared method is significantly superior, inferior or not significantly

different from the proposed method, respectively. Best results are in bold.

(a)

Dataset GP LPmc
5

Adult 86.91 (0.87) 89.03 (0.88)
Blood 79.59 (0.51) 78.95 (1.10)
CTG 92.50 (0.59) 94.70 (0.23)
Faults 76.88 (1.26) 80.81 (0.56)

German 71.05 (1.44) 85.66 (1.03)
Glass 76.21 (1.98) 70.90 (0.71)

Haberman 76.26 (1.10) 74.24 (0.55)
Heart 84.06 (1.92) 88.32 (0.86)

Ionosphere 86.46 (1.48) 92.62 (0.91)
Laryngeal1 84.75 (2.07) 87.16 (1.29)
Laryngeal3 74.81 (2.95) 86.09 (0.81)

Liver 67.22 (1.40) 77.43 (1.25)
Mammographic 82.72 (0.64) 82.16 (0.87)

Monk2 85.77 (3.60) 95.83 (0.34)
Phoneme 87.40 (0.46) 89.89 (0.16)

Pima 75.64 (1.55) 83.22 (0.51)
Sonar 80.00 (3.62) 90.94 (0.99)

Vehicle 76.14 (1.49) 83.49 (0.86)
Vertebral 82.39 (2.14) 87.98 (1.00)
Weaning 83.45 (1.33) 93.80 (0.70)
Average 80.51 85.66

Wilcoxon - n/a

(b)

Dataset GP LPmc
5

Adult 86.77 (0.92) 89.42 (0.98)
Blood 80.20 (0.35) 78.70 (1.24)
CTG 92.63 (0.44) 95.23 (0.19)
Faults 76.84 (1.01) 81.47 (0.57)

German 75.75 (1.35) 86.16 (0.92)
Glass 77.95 (1.92) 76.11 (1.48)

Haberman 76.61 (1.46) 73.55 (0.79)
Heart 83.86 (2.40) 88.95 (0.96)

Ionosphere 87.34 (1.53) 93.90 (1.19)
Laryngeal1 84.81 (2.38) 87.46 (1.28)
Laryngeal3 73.98 (1.99) 87.16 (0.90)

Liver 70.62 (2.91) 77.72 (1.36)
Mammographic 82.83 (1.54) 80.75 (0.67)

Monk2 91.82 (3.61) 95.69 (0.34)
Phoneme 89.48 (0.44) 90.00 (0.16)

Pima 76.02 (1.67) 83.52 (0.50)
Sonar 83.46 (3.45) 91.85 (0.95)

Vehicle 77.98 (1.57) 82.84 (0.74)
Vertebral 84.33 (2.32) 88.28 (1.00)
Weaning 84.38 (1.72) 94.19 (0.92)
Average 81.88 86.15

Wilcoxon - n/a

(c)

Dataset GP LPmc
5

Adult 87.14 (0.73) 89.32 (0.90)
Blood 79.61 (0.51) 78.76 (1.21)
CTG 92.49 (0.63) 95.16 (0.20)
Faults 76.87 (1.26) 81.50 (0.49)

German 71.23 (1.47) 86.24 (0.99)
Glass 76.27 (1.99) 73.36 (1.07)

Haberman 76.35 (1.10) 74.02 (0.83)
Heart 83.96 (1.72) 89.18 (0.76)

Ionosphere 86.43 (1.43) 94.79 (1.00)
Laryngeal1 84.75 (1.93) 87.41 (1.39)
Laryngeal3 74.85 (2.90) 87.11 (1.10)

Liver 67.34 (1.28) 77.53 (1.33)
Mammographic 82.68 (0.73) 82.14 (0.74)

Monk2 86.67 (4.48) 95.83 (0.35)
Phoneme 87.40 (0.47) 90.08 (0.18)

Pima 75.82 (1.83) 83.52 (0.49)
Sonar 80.19 (3.63) 92.17 (0.98)

Vehicle 76.20 (1.51) 83.64 (0.75)
Vertebral 82.39 (2.19) 88.30 (1.02)
Weaning 83.36 (1.20) 94.29 (0.83)
Average 80.60 86.22

Wilcoxon - n/a

4.4. COMPARATIVE STUDY 54

OLA LCA MCB
DCS technique

0

20

40

60

80

100

H
it

ra
te

GP

LP
5
mc

Figure 4.4: Mean hit rate of the SGH method applied over the entire training set (GP) and the
proposed technique with M = 5 (LPmc

5) for the three DCS techniques, for all datasets from Table
2.1.

4.4.2 Accuracy Rate

The methods described in Section 4.4 were evaluated over the test set and Table 4.1
shows the mean accuracy rates for OLA, LCA and MCB. It can be observed that the proposed
method obtained a greater overall performance in comparison with all other methods for the
three DCS techniques, as Figure 4.5 shows. Generally, problems that contain a higher percentage
of instances near the class borders, such as “Monk2”, “German”, “Pima” and “Weaning” (Figure
4.1) considerably benefited from the use of the local pool. However, this does not determine
when it is best to use the local pool. For instance, for the “Ionosphere” dataset, which possesses
only about 30% of instances in overlap areas, the use of locally generated classifiers largely
increased the recognition rates, whist for a dataset such as “Sonar”, with more than 70% of
borderline samples, the accuracy rates were quite impaired. Overall, the proposed configuration
yielded greater accuracy rates for at least half of the datasets used in the experiments, for all
three DCS techniques.

A Wilcoxon signed rank test with significance level of α = 0.05 was also performed on
the mean accuracy rates of the proposed method and each one of the three compared methods.
The results are depicted in the Wilcoxon row. It can be observed that the proposed configuration
is significantly superior to the other three methods for all DCS techniques. This suggests that
integrating locally generated pools to DCS techniques may be advantageous performance-wise
compared to globally generated ones, in most cases.

The Friedman test was also used to compare the performance of all configurations from
Table 4.1 for each of the three DCS techniques evaluated. The level of significance of the test
was set to α = 0.05, and the average rank of each configuration and the p-value of the test are

4.4. COMPARATIVE STUDY 55

Table 4.1: Mean and standard deviation of the accuracy rate of using (a) OLA, (b) LCA and (c)
MCB for a pool with 100 Perceptrons generated using Bagging (column Bagging), a pool of 100
Perceptrons generated using Bagging and pruned with the DFP method (column FIRE-DES), the
GP configuration and the LPmc

5 configuration. The row Wilcoxon shows the result of a Wilcoxon
signed rank test for the null hypothesis that the difference between the mean accuracy rates of the
proposed configuration and each of the remaining methods comes from a distribution with zero

median. The significance level was α = 0.05, and the symbols +, − and ∼ indicate if the
compared method is significantly superior, inferior or not significantly different from the proposed
method, respectively. The row Avg rank shows the resulting mean ranks of a Friedman test with a
significance level of α = 0.05, and the p-value of the test is shown in row p-value. Best results are

in bold.

(a)

Dataset Bagging FIRE-DES GP LPmc
5

Adult 85.58 (3.43) 84.34 (3.41) 88.15 (2.93) 87.69 (2.87)
Blood 75.05 (2.24) 68.94 (2.91) 75.53 (1.14) 76.68 (1.50)
CTG 88.53 (1.62) 88.36 (1.72) 90.24 (0.77) 91.89 (1.01)
Faults 66.52 (1.65) 65.33 (1.95) 71.91 (1.60) 72.65 (1.69)

German 70.96 (2.50) 68.68 (2.48) 70.04 (2.35) 74.76 (1.87)
Glass 60.00 (6.97) 59.81 (7.04) 66.79 (4.17) 69.62 (4.93)

Haberman 72.17 (5.22) 66.91 (4.64) 71.58 (5.24) 70.99 (2.32)
Heart 80.74 (4.45) 80.59 (4.59) 86.62 (2.18) 83.68 (3.66)

Ionosphere 86.70 (2.95) 86.53 (3.00) 87.16 (2.76) 91.02 (1.42)
Laryngeal1 82.17 (4.04) 81.70 (5.16) 80.38 (4.26) 80.57 (5.13)
Laryngeal3 71.52 (5.97) 68.54 (5.32) 72.25 (1.71) 71.74 (1.90)

Liver 64.71 (4.64) 64.48 (5.19) 58.37 (3.53) 64.01 (3.03)
Mammographic 82.07 (1.77) 78.75 (3.56) 82.60 (2.47) 82.38 (2.32)

Monk2 87.82 (3.60) 87.45 (3.59) 86.20 (3.74) 94.17 (0.74)
Phoneme 80.25 (0.69) 75.89 (0.95) 86.74 (0.73) 87.06 (0.41)

Pima 72.27 (2.61) 69.04 (2.84) 72.29 (2.39) 76.15 (1.38)
Sonar 81.44 (2.36) 81.44 (2.59) 80.00 (3.33) 76.73 (3.47)

Vehicle 74.74 (2.11) 75.14 (2.25) 70.09 (2.57) 73.61 (2.27)
Vertebral 84.68 (3.52) 84.87 (3.69) 81.41 (2.06) 87.44 (3.57)
Weaning 76.05 (4.00) 76.18 (3.91) 78.68 (3.71) 85.66 (1.86)
Average 77.19 75.65 77.85 79.92

Wilcoxon - - - n/a
Avg rank 2.525 3.325 2.4 1.75
p-value 0.0017

4.4. COMPARATIVE STUDY 56

(b)

Dataset Bagging FIRE-DES GP LPmc
5

Adult 86.76 (3.55) 86.01 (3.34) 87.40 (2.82) 87.37 (3.39)
Blood 75.69 (2.13) 70.64 (2.41) 75.74 (1.04) 76.49 (1.49)
CTG 88.36 (1.24) 88.34 (1.44) 90.30 (0.84) 92.23 (0.98)
Faults 66.00 (1.69) 65.67 (2.23) 71.99 (1.53) 73.64 (1.67)

German 71.62 (1.61) 70.60 (1.70) 70.84 (1.87) 74.88 (2.04)
Glass 57.64 (4.56) 57.74 (4.76) 69.43 (3.33) 70.28 (3.62)

Haberman 71.97 (4.21) 70.13 (4.56) 71.05 (1.91) 71.12 (2.20)
Heart 81.25 (4.72) 81.25 (4.72) 86.47 (2.85) 83.68 (3.66)

Ionosphere 86.14 (4.28) 85.97 (4.21) 87.27 (3.21) 91.59 (1.89)
Laryngeal1 80.38 (3.26) 79.91 (3.31) 80.94 (4.70) 80.57 (5.13)
Laryngeal3 70.62 (5.43) 67.64 (6.66) 72.58 (2.14) 72.92 (2.39)

Liver 65.41 (4.84) 66.28 (4.48) 58.37 (2.81) 63.90 (2.93)
Mammographic 81.59 (3.05) 78.97 (4.24) 81.63 (3.06) 82.38 (2.58)

Monk2 85.60 (4.30) 85.42 (4.42) 90.28 (2.18) 94.12 (0.75)
Phoneme 80.84 (0.57) 77.09 (0.91) 87.01 (0.77) 87.06 (0.46)

Pima 74.92 (2.81) 73.67 (2.88) 73.23 (3.39) 76.04 (1.26)
Sonar 77.50 (4.42) 77.79 (4.43) 78.08 (5.01) 76.92 (3.18)

Vehicle 72.52 (1.38) 72.88 (1.38) 70.75 (2.22) 73.92 (2.39)
Vertebral 84.74 (2.97) 84.87 (2.75) 82.31 (1.93) 87.44 (3.57)
Weaning 73.16 (3.61) 73.36 (3.49) 78.82 (3.05) 85.66 (1.86)
Average 76.63 75.71 78.22 80.11

Wilcoxon - - - n/a
Avg rank 2.875 3.375 2.3 1.45
p-value 1.78×105

(c)

Dataset Bagging FIRE-DES GP LPmc
5

Adult 85.28 (2.92) 83.41 (2.61) 88.15 (2.93) 87.63 (2.81)
Blood 75.34 (1.89) 68.80 (3.73) 75.53 (1.14) 76.44 (1.65)
CTG 88.42 (1.53) 88.36 (1.64) 90.24 (0.77) 92.19 (1.04)
Faults 66.58 (1.37) 65.77 (2.32) 71.91 (1.60) 72.77 (1.47)

German 70.54 (2.02) 68.62 (2.20) 70.52 (2.08) 74.86 (2.04)
Glass 60.00 (7.04) 59.71 (6.87) 66.79 (4.17) 68.49 (4.16)

Haberman 70.32 (4.78) 66.97 (3.33) 71.71 (4.91) 71.12 (3.21)
Heart 81.91 (5.44) 83.38 (3.50) 86.18 (2.36) 83.09 (3.95)

Ionosphere 87.61 (2.32) 86.70 (2.63) 87.16 (2.71) 91.25 (1.48)
Laryngeal1 81.88 (4.25) 82.26 (5.09) 80.57 (4.59) 80.66 (5.26)
Laryngeal3 70.22 (6.48) 68.20 (4.72) 71.80 (1.58) 71.91 (1.71)

Liver 64.01 (5.11) 64.18 (4.88) 58.37 (3.49) 64.30 (3.23)
Mammographic 82.16 (1.86) 79.18 (3.52) 82.60 (2.47) 82.26 (2.40)

Monk2 87.51 (3.92) 87.36 (3.75) 87.96 (3.80) 94.07 (0.76)
Phoneme 80.53 (0.61) 76.58 (0.94) 86.73 (0.73) 87.08 (0.42)

Pima 72.08 (2.99) 68.54 (2.79) 72.71 (2.67) 75.68 (1.03)
Sonar 80.19 (3.64) 82.30 (3.27) 79.81 (3.09) 76.92 (3.18)

Vehicle 73.89 (1.97) 73.82 (2.76) 70.14 (2.52) 74.62 (2.60)
Vertebral 84.61 (4.15) 84.80 (3.60) 82.69 (2.22) 87.31 (3.79)
Weaning 77.10 (3.94) 77.03 (3.65) 79.21 (3.30) 85.39 (1.75)
Average 77.01 75.80 78.03 79.90

Wilcoxon - - - n/a
Avg rank 2.8 3.35 2.35 1.5
p-value 6.46×105

4.4. COMPARATIVE STUDY 57

OLA LCA MCB
DCS technique

0

20

40

60

80

100

A
cc

ur
ac

y
ra

te

Bagging
FIRE-DES
GP

LP
5
mc

Figure 4.5: Mean accuracy rate of the Bagging, FIRE-DES, GP and LPmc
5 configurations for the

three DCS techniques, for all datasets from Table 2.1.

shown in the Avg rank row and the p-value row, respectively. It can be observed that the proposed
method obtained the highest average rank for all DCS techniques.

Since the resulting p-values indicate that there is a significant difference between the
performances of the evaluated configurations for all three DCS techniques, a post-hoc Bonferroni-
Dunn test was performed afterwards to obtain a pairwise comparison between the configurations.
Two configurations are significantly different if the difference between their average rank is
greater than the critical difference CD. The critical difference diagrams (DEMŠAR, 2006)
depicted in Figure 4.6, show the results of the post-hoc tests for each DCS technique. The
configurations with no significant difference are connected by a bar, whilst significantly different
ones are not intersected in the diagram.

The critical difference value obtained by the Bonferroni-Dunn post-hoc test was CD =

1.0488. It can be observed from Figure 4.6 that the proposed configuration yielded a significantly
superior performance in comparison with the FIRE-DES framework for all DCS techniques,
which suggests that generating locally accurate classifiers is a better strategy than pruning a
large pool in search of such classifiers for instances in overlap regions, at least for balanced and
moderately imbalanced problems, as used in the experiments. The proposed configuration also
performed significantly better than Bagging when using LCA and MCB. Thus, using locally
generated pools may indeed be an advantageous alternative to using globally generated ones for
DCS techniques.

4.4. COMPARATIVE STUDY 58

(a) (b)

(c)

Figure 4.6: Critical difference diagram representing the results of a post-hoc Bonferroni-Dunn
test on the accuracy rates of the methods from Table 4.1 for (a) OLA, (b) LCA and (c) MCB. The

calculated critical difference value was CD = 1.0488. The values near the methods’ labels
indicate their average rank. Statistically similar methods are connected by an horizontal line, while

statistically different ones are disconnected.

4.4.3 Computational Cost

The computational cost of the configurations from Section 4.4 were evaluated in terms
of execution time in generalization for the three DCS techniques. Since the proposed method is
completely online, there is no computational cost in memorization, as opposed to the remaining
methods in the comparative study, so the execution time during training was not assessed.

It was observed that, even though the proposed method generates the pool during gener-
alization, the LPmc

5 configuration was at least three times faster, on average, than the Bagging
configuration in the test phase. In comparison with the FIRE-DES method, the LPmc

5 was about
5 times faster, on average. In comparison with the GP configuration, however, the proposed
method was nearly 10 times slower on average.

Two main aspects contribute to the reported computational times. The first one is the
frequency at which the local pool is generated. The LP is only generated when a test instance
is located in a class overlap area, which amounts to an average of nearly 65% of the instances
considering the datasets used in the experiments (Figure 4.1). That means that, for the remaining
35% of the instances, the K-NN was used to label the query sample, which is much faster than
the DCS techniques. On the other hand, for the remaining methods in the comparative study, the
DCS techniques always perform all steps of the selection regardless of where the query sample
is located. That is, even for an instance surrounded by samples of the same class, the DCS
technique evaluates all classifiers in the pool to select one to label it. Thus, for these methods,
the cost associated with the dynamic selection process is computed for all unknown instances.

4.5. CONCLUSION 59

By choosing when to use the pool of classifiers depending on the query sample at hand, the
proposed method is able to reduce the overall execution time in generalization, even though its
classifiers are produced online.

The second aspect that contributes to the computational cost in this case is the pool
size. The proposed method uses considerably fewer classifiers than Bagging usually does. In
the experiments, Bagging was tested with 100 classifiers, while the local pool contained only
5 classifiers. Thus, the evaluation of the classifiers in the proposed method is quite faster in
comparison with the methods that use the Bagging-generated pool. Adding to this the fact that
the Bagging-generated pool is evaluated for all unknown instances, as explained previously, it
can be understood why the proposed method was faster than the Bagging and the FIRE-DES
configurations overall. On the other hand, the pool size of the GP configuration is even smaller
than that of the proposed method, with an average of 3.8 classifiers. The GP configuration also
uses a readily available pool of simple two-class classifiers, so all these factors explain why it
was much faster than the proposed method.

4.5 Conclusion

In this chapter, a performance analysis of the proposed method was presented. Exper-
iments were conducted over 20 datasets according to the experimental protocol presented in
Section 4.2.

An analysis on the proposed method alone was performed in Section 4.3. It was shown
that the proposed method generates local pools for instances truly in class overlap regions of the
feature space, in most cases. A parameter sensitivity analysis was also performed, with variations
on the neighborhood acquisition method and the pool size. It was observed that each problem
benefits more from a specific number of classifiers and a neighborhood acquisition method, so
in order to achieve the best possible results, a fine tuning of the method’s parameters would be
necessary. Moreover, it was observed that, for multi-class problems, the use of K-NNE to obtain
the neighborhoods in the generation process of the method degrades the performance of the latter.
This was due to the nature of the SGH method, which generates only two-class classifiers. Thus,
a combined method that uses K-NNE for two-class problems and K-NN for multi-class ones
was proposed at the end of the proposed method’s analysis.

The performance in memorization and in generalization of the proposed method and
other related techniques was compared in Section 4.4. It was shown that the rate at which the
DCS techniques select the correct classifier in memorization was significantly increased when
using locally generated pools, in comparison with globally generated ones. Therefore, the hit
rate of the proposed method suggests that the DCS techniques seem to benefit from using locally
generated classifiers in the selection process.

Furthermore, the performances of the proposed method and three related methods were
evaluated in generalization. It was observed that the proposed method yields an overall accu-

4.5. CONCLUSION 60

racy rate greater than all other compared methods. The use of local pools was considerably
advantageous for problems with high percentages of borderline samples. Moreover, a Wilcoxon
signed rank test yielded that the proposed method was significantly superior than the other three
methods for all DCS techniques.

Finally, the computational cost of the evaluated methods was also assessed and it was
shown that, even though the proposed method generates the classifiers online, its overall execution
time was much faster than the methods that use a Bagging-generated pool. In comparison with
the global pool generated using the SGH method, however, the proposed method was much
slower. It was shown that the frequency at which the proposed method generates the local pool
and the size of the pool being evaluated by the DCS technique have a considerable impact on the
execution time of the test phase for the compared methods.

616161

5 CONCLUSION

In this work, an overview of the MCS field was presented. The stages of an MCS were
introduced, as well as the Oracle model and its importance. The process of dynamically selecting
classifiers was also further explained, and the most relevant DCS techniques were introduced.
It was also shown on a short analysis that the DCS techniques had difficulty in selecting a
competent classifier even though the presence of such a classifier in the pool was assured by the
Oracle model. It was reasoned that the Oracle, being performed globally, did not help in the
search for a good pool of classifiers for DCS techniques, because the latter use only local data to
select a competent classifier for any given instance.

Based on that observation, an online local pool generation method was proposed in this
work. The proposed technique involved generating subpools for each unknown instance in class
overlap regions of the feature space, so that a more locally accurate pool could be used, in
hopes that, by fully covering these regions with a locally specialist pool, it would be easier for
the DCS techniques to select the most competent classifiers for these instances. On the other
hand, instances surrounded by only one class would be labelled using a nearest neighbors rule.
The reasoning behind the proposed method is that, by generating the classifiers in the same
perspective as they are selected by the DCS techniques, the latter could better integrate to the
generated pool and thus select the most competent classifier more often, which in turn would
result in higher recognition rates.

Experiments were conducted over 20 public datasets. A parameter sensitivity analysis
on the proposed method was performed and it was concluded that the best parameter setting
varied from problem to problem. Moreover, it was shown that, due to limitations in the SGH
method, the K-NNE was not suited to be used in the proposed method for multi-class problems.
Thus, it was suggested the use of the regular K-NN rule for these cases and K-NNE for two-class
datasets. This combined approach was used in the comparative study, which evaluated the
proposed method and three other related methods.

The proposed method and a globally generated pool were tested over the training set,
and it was shown that the hit rate, that is, the rate at which the DCS techniques select the correct
classifier, was significantly increased for the proposed method. Thus, it was concluded that
the integrating locally generated pools to DCS techniques may actually help the latter in the
selection of the best classifier. Moreover, the proposed method and other three related methods
were evaluated in generalization and it was shown that the former outperforms the latter, on

62

average, specially for problems with a higher proportion of instances near the borders. It was
also shown that the proposed method yielded a significantly superior accuracy rate in comparison
with the other three methods. Thus, it was concluded that, not only do the DCS techniques select
the best classifier more frequently, but also the recognition rates of the DCS techniques indeed
increase when using the same local perspective in the pool generation stage.

Future works may include developing an automatic scheme for defining the parameters
of the proposed method, for, as it was shown, the proposed method requires fine tuning in order
to obtain the best performance for each specific problem. Furthermore, the generation process
may also be adapted to better accommodate multi-class problems, since the proposed method, as
the SGH method, generates only two-class classifiers, and this may hinder the performance of
the proposed technique.

636363
REFERENCES

ALCALÁ, J. et al. KEEL data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft
Computing, [S.l.], v.17, n.2-3, p.255–287, 2011.

ALKOOT, F.; KITTLER, J. Experimental evaluation of expert fusion strategies. Pattern
Recognition Letters, [S.l.], v.20, n.11, p.1361 – 1369, 1999.

BACHE, K.; LICHMAN, M. UCI machine learning repository. [Online], Available:
http://archive.ics.uci.edu/ml.

BREIMAN, L. Bagging predictors. Machine Learning, [S.l.], v.24, n.2, p.123–140, 1996.

BRITTO, A.; SABOURIN, R.; OLIVEIRA, L. Dynamic selection of classifiers - A
comprehensive review. Pattern Recognition, [S.l.], v.47, n.11, p.3665–3680, 2014.

BROWN, G. et al. Diversity creation methods: a survey and categorisation. Information
Fusion, [S.l.], v.6, n.1, p.5–20, 2005.

BRUN, A. L. et al. Contribution of data complexity features on dynamic classifier selection. In:
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016.
Anais. . . [S.l.: s.n.], 2016. p.4396–4403.

CRUZ, R. M.; CAVALCANTI, G. D.; REN, T. I. Handwritten digit recognition using multiple
feature extraction techniques and classifier ensemble. In: INTERNATIONAL CONFERENCE
ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, 17. Anais. . . [S.l.: s.n.], 2010.
p.215–218.

CRUZ, R. M. O. et al. META-DES: a dynamic ensemble selection framework using
meta-learning. Pattern Recognition, [S.l.], v.48, n.5, p.1925–1935, 2015.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. META-DES.H: a dynamic ensemble
selection technique using meta-learning and a dynamic weighting approach. In:
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 2015. Anais. . .
IEEE, 2015. p.1–8.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Prototype selection for dynamic
classifier and ensemble selection. Neural Computing and Applications, [S.l.], p.1–11, 2016.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Analyzing different prototype selection
techniques for dynamic classifier and ensemble selection. In: NEURAL NETWORKS (IJCNN),
2017 INTERNATIONAL JOINT CONFERENCE ON. Anais. . . [S.l.: s.n.], 2017. p.3959–3966.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Dynamic classifier selection: recent
advances and perspectives. Information Fusion, [S.l.], v.41, p.195–216, 2018.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Prototype selection for dynamic
classifier and ensemble selection. Neural Computing and Applications, [S.l.], v.29, n.2,
p.447–457, 2018.

DEMŠAR, J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, [S.l.], v.7, n.Jan, p.1–30, 2006.

http://archive.ics.uci.edu/ml

REFERENCES 64

DIDACI, L. et al. A study on the performances of dynamic classifier selection based on local
accuracy estimation. Pattern Recognition, [S.l.], v.38, n.11, p.2188–2191, 2005.

DIDACI, L.; GIACINTO, G. Dynamic classifier selection by adaptive k-nearest-neighbourhood
rule. Multiple Classifier Systems, [S.l.], p.174–183, 2004.

DIETTERICH, T. G.; BAKIRI, G. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, [S.l.], v.2, p.263–286, 1995.

DOS SANTOS, E. M.; SABOURIN, R.; MAUPIN, P. A dynamic overproduce-and-choose
strategy for the selection of classifier ensembles. Pattern Recognition, [S.l.], v.41, n.10,
p.2993–3009, 2008.

DOS SANTOS, E. M.; SABOURIN, R.; MAUPIN, P. Overfitting cautious selection of classifier
ensembles with genetic algorithms. Information Fusion, [S.l.], v.10, n.2, p.150–162, 2009.

FERNáNDEZ-DELGADO, M. et al. Do We Need Hundreds of Classifiers to Solve Real World
Classification Problems? Journal of Machine Learning Research, [S.l.], v.15, n.1,
p.3133–3181, 2014.

GIACINTO, G.; ROLI, F. Methods for dynamic classifier selection. In: INTERNATIONAL
CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, 10. Proceedings. . . [S.l.: s.n.],
1999. p.659–664.

GIACINTO, G.; ROLI, F.; DIDACI, L. Fusion of multiple classifiers for intrusion detection in
computer networks. Pattern Recognition Letters, [S.l.], v.24, n.12, p.1795–1803, 2003.

GIACINTO, G.; ROLI, F.; FUMERA, G. Selection of classifiers based on multiple classifier
behaviour. In: JOINT IAPR INTERNATIONAL WORKSHOPS ON STATISTICAL
TECHNIQUES IN PATTERN RECOGNITION AND STRUCTURAL AND SYNTACTIC
PATTERN RECOGNITION. Anais. . . Springer-Verlag, 2000. p.87–93.

HO, T. K. The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, [S.l.], v.20, n.8, p.832–844, 1998.

HUANG, Y. S.; SUEN, C. Y. A method of combining multiple experts for the recognition of
unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine
Intelligence, [S.l.], v.17, n.1, p.90–94, 1995.

JAHRER, M.; TÖSCHER, A.; LEGENSTEIN, R. Combining predictions for accurate
recommender systems. In: ACM SIGKDD INTERNATIONAL CONFERENCE ON
KNOWLEDGE DISCOVERY AND DATA MINING, 16. Proceedings. . . [S.l.: s.n.], 2010.
p.693–702.

JUTTEN, C. The Enhanced Learning for Evolutive Neural Architectures Project. [Online],
Available: https://www.elen.ucl.ac.be/neural-nets/Research/
Projects/ELENA/elena.htm.

KING, R. D.; FENG, C.; SUTHERLAND, A. Statlog: comparison of classification algorithms
on large real-world problems. Applied Artificial Intelligence, [S.l.], v.9, n.3, p.289–333, 1995.

KITTLER, J. et al. On combining classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, [S.l.], v.20, p.226–239, 1998.

https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm
https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm

REFERENCES 65

KO, A. H. R.; SABOURIN, R.; JR., A. S. B. From dynamic classifier selection to dynamic
ensemble selection. Pattern Recognition, [S.l.], v.41, n.5, p.1718–1731, 2008.

KO, A. H.-R.; SABOURIN, R.; SOUZA BRITTO JR, A. de. A new dynamic ensemble selection
method for numeral recognition. In: INTERNATIONAL CONFERENCE ON MULTIPLE
CLASSIFIER SYSTEMS, 7. Anais. . . Springer-Verlag, 2007. p.431–439.

KUNCHEVA, L. Ludmila Kuncheva Collection. [Online], Available:
http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm.

KUNCHEVA, L. Combining pattern classifiers: methods and algorithms. [S.l.]: J. Wiley,
2014.

KUNCHEVA, L. I. A theoretical study on six classifier fusion strategies. IEEE Transactions
on Pattern Analysis and Machine Intelligence, [S.l.], v.24, n.2, p.281–286, 2002.

KUNCHEVA, L. I.; RODRIGUEZ, J. J. Classifier ensembles with a random linear oracle. IEEE
Transactions on Knowledge and Data Engineering, [S.l.], v.19, n.4, p.500–508, 2007.

KUNCHEVA, L. I.; WHITAKER, C. J. Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning, [S.l.], v.51, n.2, p.181–207, 2003.

KURZYNSKI, M.; TRAJDOS, P. On a New Competence Measure Applied to the Dynamic
Selection of Classifiers Ensemble. In: INTERNATIONAL CONFERENCE ON DISCOVERY
SCIENCE. Anais. . . [S.l.: s.n.], 2017. p.93–107.

LIMA, T. P. F. de; SERGIO, A. T.; LUDERMIR, T. B. Improving Classifiers and Regions of
Competence in Dynamic Ensemble Selection. In: BRAZILIAN CONFERENCE ON
INTELLIGENT SYSTEMS (BRACIS), 2014. Anais. . . [S.l.: s.n.], 2014. p.13–18.

OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R. Online pruning of base classifiers
for Dynamic Ensemble Selection. Pattern Recognition, [S.l.], v.72, p.44 – 58, 2017.

OPITZ, D. W.; MACLIN, R. Popular ensemble methods: an empirical study. Journal of
Artificial Intelligence Research, [S.l.], v.11, p.169–198, 1999.

PARTALAS, I.; TSOUMAKAS, G.; VLAHAVAS, I. P. Focused Ensemble Selection: a
diversity-based method for greedy ensemble selection. In: ECAI. Anais. . . [S.l.: s.n.], 2008.
p.117–121.

RAUDYS, Š. Trainable fusion rules. I. Large sample size case. Neural Networks, [S.l.], v.19,
n.10, p.1506–1516, 2006.

SABOURIN, M. et al. Classifier combination for hand-printed digit recognition. In: SECOND
INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION.
Proceedings. . . [S.l.: s.n.], 1993. p.163–166.

SCHAPIRE, R. E. et al. Boosting the margin: a new explanation for the effectiveness of voting
methods. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 14. Anais. . .
Morgan Kaufmann Publishers Inc., 1997. p.322–330.

SIERRA, B. et al. K Nearest Neighbor Equality: giving equal chance to all existing classes.
Information Sciences, [S.l.], v.181, n.23, p.5158–5168, 2011.

http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm

REFERENCES 66

SMITS, P. C. Multiple classifier systems for supervised remote sensing image classification
based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote
Sensing, [S.l.], v.40, n.4, p.801–813, 2002.

SOUZA, M. A. et al. On the characterization of the Oracle for dynamic classifier selection. In:
INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS. Anais. . . [S.l.: s.n.],
2017. p.332–339.

TORRE, M. De-la et al. An adaptive ensemble-based system for face recognition in person
re-identification. Machine Vision and Applications, [S.l.], v.26, n.6, p.741–773, 2015.

VALENTINI, G. An experimental bias-variance analysis of svm ensembles based on resampling
techniques. IEEE Transactions on Systems, Man, and Cybernetics, [S.l.], v.Part B 35,
p.1252–1271, 2005.

WANG, J.; NESKOVIC, P.; COOPER, L. N. Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recognition Letters, [S.l.], v.28, n.2, p.207–213, 2007.

WOLOSZYNSKI, T. et al. A measure of competence based on random classification for
dynamic ensemble selection. Information Fusion, [S.l.], v.13, n.3, p.207–213, 2012.

WOLOSZYNSKI, T.; KURZYNSKI, M. A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recognition, [S.l.], v.44, n.10-11, p.2656–2668, 2011.

WOLPERT, D.; MACREADY, W. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, [S.l.], v.1, p.67–82, 1997.

WOODS, K.; KEGELMEYER JR, W. P.; BOWYER, K. Combination of multiple classifiers
using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, [S.l.], v.19, n.4, p.405–410, 1997.

WOŹNIAK, M.; GRAÑA, M.; CORCHADO, E. A survey of multiple classifier systems as
hybrid systems. Information Fusion, [S.l.], v.16, p.3–17, 2014.

XIAO, H.; XIAO, Z.; WANG, Y. Ensemble classification based on supervised clustering for
credit scoring. Applied Soft Computing, [S.l.], v.43, p.73–86, 2016.

XIAO, J. et al. Dynamic classifier ensemble model for customer classification with imbalanced
class distribution. Expert Systems with Applications, [S.l.], v.39, n.3, p.3668–3675, 2012.

ZHOU, Z. Ensemble methods. [S.l.]: Taylor & Francis, 2012.

676767

APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD

Since the SGH generation method possesses some interesting properties, as discussed in
Section 2.4.1, and for that reason is widely used in this work, it is presented in more detail with a
step-by-step analysis here. Algorithm 3 shows the procedure for generating the hyperplanes in
the SGH method. The toy problem used in the step-by-step analysis is shown in Figure A.1. The
training set of the toy problem contains N = 350 instances and L = 5 classes. The step-by-step
execution of the algorithm for this example happens as follows.

-6 -5 -4 -3 -2 -1 0 1 2 3 4

Feature 1

-4

-2

0

2

4

6

8

F
ea

tu
re

 2

Class 1
Class 2
Class 3
Class 4
Class 5

Figure A.1: Training set T of the toy problem, containing N = 350 instances and L = 5 classes.

Step 1 of Algorithm 3 consist of assigning to Ω the five possible labels of the problem
({1,2,3,4,5}). Step 2 assigns the Pool to an empty set, and Step 3 the classifier count is started.

In the first iteration of the algorithm’s outer loop, the centroids of each of the five classes
are calculated and stored in the set R (Step 5 to Step 7). All five centroids are represented by
asterisks (*) in Figure A.2a. Then, in Step 8 and Step 9, the two most distant points in R are
chosen, in this case r3 and r5, and their classes i,j = 3,5 identified. In Figure A.2a, Class 3 and
Class 5 centroids are the large asterisks in red.

From Step 10 to step 13, the weights w1 and bias b1 of classifier c1 are calculated, using
Equation A.1 and Equation A.2 with i,j = 3,5. The weights w1 of classifier c1 are the coordinates
of the normalized distance vector between the centroids (ˆn3,5), while the bias b1 is obtained by
applying the scalar product between the midpoint p3,5 between the classes and the normalized
distance vector between the centroids. These two parameters are calculated so that c1 separates
r3 and r5 halfway between them, as can be observed in Figure A.2a.

wm =
ri− rj

‖ri− rj‖
�� ��A.1

APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD 68

Algorithm 3 Self-generating Hyperplanes (SGH) method.
Input: T = {x1,x2, ...,xN} . Training dataset
Output: C . Final pool

1: Ω←{ω1,ω2, ...,ωL} . Set of problem classes
2: C←{} . Pool initially empty
3: m = 1 . Classifier count
4: while T 6= {} do
5: for every ωl in Ω do
6: rl← mean({∀xn ∈T |xn ∈ ωl}) . Calculate centroid of class ωl
7: end for
8: d← max(pairwiseDistance(R)) . Maximum distance between the classes’ centroids in R
9: i, j← f indIndex(d)

10: pi, j← (ri + rj)/2 . Calculate midpoint pi, j between the centroids
11: n̂i,j← (ri− rj)/d . Calculate normal vector
12: wm←{n̂i,j} . Calculate weights of classifier cm
13: bm←−pi, j · n̂i,j . Calculate bias of classifier cm
14: cm← constructPerceptron(wm,bm)
15: for every xn in T do
16: ω ← cm(xn) . Test cm over training instance
17: if ω = yn then
18: T ←T −{xn} . Remove from T correctly classified instance
19: end if
20: end for
21: C←C∪{cm} . Add cm to pool
22: m = m+1
23: end while
24: return C

bm =−wm ·
ri + rj

2

�� ��A.2

In steps 15 to 20, each instance in T is tested with c1, and the instances correctly
classified are then excluded from T . Since c1 correctly classifies all instances of Class 3 and
Class 5, as can be seen in Figure A.2a, by the end of that iteration T no longer contains instances
from both classes, though it still contains all instances of the other classes of the problem. In
step 21, the classifier c1 is then added to the pool C.

In the second iteration of the outer loop, T contains all instances of Class 1, Class 2,
and Class 4, so the centroids of these classes are calculated from Step 5 to Step 7 and stored in
R. These centroids are represented by the three asterisks in Figure A.2b. The centroids chosen
in Step 8 and Step 9 are r2 and r4, since they are the most distant to each other, as can be noticed
in Figure A.2b, in which they are the large asterisks in red.

The weights w2 and bias b2 of classifier c2 are then calculated from Step 10 to Step 14,
dividing the space between r2 and r4 right in the middle, as Figure A.2b shows. Classifier c2 is
then used to test each instance in T from Step 15 to Step 20, and the instances that remain in T

are the ones c2 classifies incorrectly. Since Class 2 and Class 4 are not linearly separable, c2 is
not able to eliminate all instances from these classes. Classifier c2 is added to C in step 21.

In the third iteration, T still has instances of Class 1, Class 2, and Class 4, so their
centroids r1, r2 and r4 are calculated and added to R from Step 5 to Step 7. It can be observed
that, since most of Class 2 and Class 4 instances were eliminated in the previous iteration, their

APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD 69

-5 -4 -3 -2 -1 0 1 2 3 4 5

Feature 1

-6

-4

-2

0

2

4

6

8

F
ea

tu
re

 2

Class 3
Class 5
c

1

3

5

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Feature 1

-2

-1

0

1

2

3

4

5

6

F
ea

tu
re

 2

Class 4
Class 2
c

2

4

2

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Feature 1

-8

-6

-4

-2

0

2

4

6

F
ea

tu
re

 2

Class 1
Class 4
c

3

4

1

(c)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Feature 1

0

0.5

1

1.5

2

2.5

F
ea

tu
re

 2

Class 1
Class 2
c

4

1

2

(d)

Figure A.2: Generation of hyperplanes using the SGH method over the toy problem. (a) First
iteration. (b) Second iteration. (c) Third iteration. (d) Last iteration.

APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD 70

centroids changed. It did not happen to the centroid of Class 1, as neither c1 nor c2 were able to
classify Class 1 instances.

The large asterisks in Figure A.2c show that centroids r1 and r4 are the most distant ones
in this iteration, with centroid r2 in black. Classifier c3 is then created from Step 10 to Step 14 so
that it splits the plane in a half. From Steps 15 to Step 20, each instance remaining in T is then
tested with c3, and the instances it correctly classifies are further eliminated from T . It can be
observed that the remaining Class 4 instance is correctly classified by c3, so T only possesses
Class 1 and Class 2 instances after the third iteration. In step 21, the classifier c3 is then added to
the pool.

In the fourth and last iteration, T contains only 4 instances, 3 of Class 1 and 1 of Class
2, as showed in Figure A.2d. Centroids r1 and r2 are calculated from Step 5 to Step 7 and chosen
to calculate the weights wm and bias b4 of classifier c4 from Step 10 to 14. Each instance in T

is tested with c4 in Step 15 to 20, and since it correctly classifies all 4 remaining instances, they
are eliminated and T turns into an empty set. Classifier c4 is then added to the pool C in step 21,
and the algorithm leaves the outer loop, returning C, which contains four classifiers, in step 24.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Feature 1

-8

-6

-4

-2

0

2

4

6

8

F
ea

tu
re

 2

Class 1
Class 2
Class 3
Class 4
Class 5
c

1

c
2

c
3

c
4

Figure A.3: Generated pool C = {c1,c2,c3,c4} over the training set T of the toy problem.

Figure A.3 shows the entire training dataset with all four classifiers generated by the
proposed method. The spatial disposition of the only four hyperplanes necessary to “cover” the
entire dataset can be observed. It is clear, from this example, that the SGH method generates at
least one competent classifier for each instance in the training set. Thus, it always guarantees
an Oracle accuracy rate of 100% over the input set, as discussed in Chapter 2. This design
also allows the definition of the hit rate, for in the generation process, each training instance
is assigned to a classifier, which is the one responsible for its elimination from the training set
(Step 18). Moreover, it can be observed that the resulting pool contains only two-class classifiers,
independently of the number of classes in the problem.

	INTRODUCTION
	Motivation and Problem Statement
	Overview of the Proposal
	Research Methodology
	Organization of the Dissertation

	BACKGROUND
	Introduction
	Overview
	Generation
	Selection
	Aggregation
	The Oracle Model

	Dynamic Selection
	DCS Techniques

	Oracle-DCS Performance Gap
	The Self-Generating Hyperplanes Method
	Oracle-DCS Analysis

	Conclusion

	THE PROPOSED METHOD
	Introduction
	Overview
	Step-by-step Analysis
	Conclusion

	EXPERIMENTS
	Introduction
	Experimental Protocol
	Proposed Method Analysis
	RoC Evaluation
	Parameter Sensitivity

	Comparative Study
	Hit Rate
	Accuracy Rate
	Computational Cost

	Conclusion

	CONCLUSION
	 REFERENCES
	APPENDIX A — THE SELF-GENERATING HYPERPLANES METHOD

