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ABSTRACT 

The Graph Model for Conflict Resolution (GMCR) is based on concepts of Game Theory and 

Conflict Analysis and is useful for describing and analyzing conflicts. Stability analysis is used 

in the GMCR to determine possible solutions for the conflict. Several solution concepts have 

been proposed which accommodate different Decision Makers (DM's) behavior. Some of them 

are: Nash, General Metarationality (GMR) and Sequential Stability (SEQ). For a state to be 

Nash stable for a DM, such DM cannot move to a more preferred state in a single step. For 

GMR and SEQ, while considering moving to a more preferred state, the DM foresees whether 

the opponent can react leading the conflict to a state not preferred to the current one. What 

differs GMR and SEQ is that in SEQ, it is not allowed to harm the opponent if it does not 

benefit from such movement. However, we show by means of an example that there are 

situations in which to perform such reaction the opponent must be leaving a SEQ state for him, 

making it non-credible. In order to avoid that problem, we propose new solution concepts for 

the GMCR, called Higher-order Sequential Stabilities, and explore their relation with other 

solution concepts commonly used in the GMCR. Additionally, we introduce the concept of 

Higher-order Sequential Equilibria for coalitional analysis in the GMCR. 

 

Keywords: Conflict. Graph model. Stability notions. Credible threats.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 

RESUMO 

O Modelo de Grafo para Resolução de Conflitos (GMCR) é baseado em conceitos de Teoria 

dos Jogos e Análise de Conflitos e é útil para descrever e analisar conflitos. A análise de 

estabilidade é usada no GMCR para determinar possíveis soluções para o conflito. Diversos 

conceitos de solução foram propostos e acomodam diferentes comportamentos dos Tomadores 

de Decisão (DM's). Alguns deles são: Nash, Metaracionalidade Geral (GMR) e Estabilidade 

Sequencial (SEQ). Para um estado ser Nash estável para um DM, esse DM não pode se mover 

para um estado mais preferido em uma única etapa. Para GMR e SEQ, enquanto se considera 

mudar para um estado mais preferido, o DM prevê se o oponente pode reagir levando o conflito 

a um estado não preferido ao atual. O que difere GMR e SEQ é que, na SEQ, não é permitido 

prejudicar o oponente se ele não se beneficiar de tal movimento. No entanto, mostramos por 

meio de um exemplo que existem situações em que para realizar tal reação o oponente deve 

estar deixando um estado SEQ para ele, tornando-o não credível. Para evitar esse problema, 

propomos novos conceitos de solução para o GMCR, chamados de estabilidade sequencial de 

ordem superior, e exploramos sua relação com outros conceitos de solução comumente usados 

no GMCR. Adicionalmente, introduzimos o conceito de Equilíbrios Sequenciais de Alta Ordem 

para análise de coalizões no GMCR. 

 

Palavras-chave: Conflito. Modelo de grafo. Noções de estabilidade. Ameaças credíveis. 
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1 INTRODUCTION

Decision-making is a common action in people’s daily lives. In order to make a
decision it is important to perform an analysis of the objective and evaluate the procedures
that will help in achieving the main objective. One method that has aided engineers and
decision makers is the resolution of conflicts, its importance is due to the fact of increasing
social and political influence in engineering decision-making.

Conflict is a process that starts when one of the individuals realizes that its adver-
saries have negatively affected or negatively affect something that is a concern or interest
of the first individual. Such a definition encompasses a variety of existing conflicts within
an organization, such as: misalignment of purposes, different interpretation of facts, dis-
agreement caused by expected behavior (ROBBINS, 1990).

It is often inevitable that there are conflicts in situations where humans interact
with each other or in groups. Such conflicts can be exemplified as patent disputes between
multinational companies, wars between nations, management and labor negotiations, en-
gineering projects, among other possible conflicts.

The main objective of a conflict resolution analysis is to gain a better understanding
of the strategic points of a given dispute and thus make more informed and fairer decisions.
One of the advantages of using a conflict resolution method is that the result recommended
by an stability analysis is reliable in the sense that none of the individuals has advantage
of deviating alone from the suggested solution.

Game theory can be used to describe the process of conflict resolution. In 1993, Fang,
Hipel & Kilgour proposed the Graph Model for Conflict Resolution (GMCR), which is
a model based on ideas from Conflict Analysis and Game Theory. The GMCR has an
advantage of being easy to analyze and able to accommodate different behaviors in its
stability analysis. The recommendations generated from such analysis can be used by the
individuals involved in the conflict, by mediators or by analysts studying the conflict.

The GMCR is used to describe a conflict specifying the agents involved in the
conflict, called decision makers (DMs), and the possible scenarios, called states, that may
arise in the conflict. Each state is associated with a combination of actions or strategies,
one for each DM in the conflict. Thus, DMs can change the conflict state by changing
their actions, according to preferences that they have among the possible states and how
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they foresee that others will react to their moves. The stability analysis of the GMCR
consists of investigating which of the possible states are stable for some DM in the sense
that such DM has no incentive from moving away from it. If some state is stable for all
DMs, then it is called an equilibrium and is appointed as a possible conflict resolution.

Li et al. in 2004 used a new preference structure in the GMCR in which DMs
preferences are expressed by a triple of relations {≻i,∼i,Ui}, were s ≻i s1 and s ∼i s1 are
the strict preference and indifference relations, and s Ui s1 means that DM i is uncertain
as to whether he prefers state s to state s1, prefers s1 to s, or is indifferent between s and
s1. Rêgo & dos Santos in 2015 presented a generalized GMCR in which it was introduced
the possibility that the decision makers had probabilistic preferences among the possible
scenarios or states of the conflict. Rêgo & Vieira in 2017a modified the GMCR to model
interactive unawareness of DMs about the options available to them in the conflict, where
DMs can reason not only about the awareness level of the other DM but also about the
awareness level of the other DM regarding his or her own awareness level and so on. Rêgo
& Vieira in 2016 generalized a solution concept, called Symmetric Sequential Stability
(SSEQ), in the GMCR for conflicts involving n DMs.

The GMCR has been applied by a variety of authors. Kassab, Hipel & Hegazy
in 2006 applied a collaborative negotiation methodology in a Decision Support System
(DSS) that was named as GMCR II that aims to facilitate the negotiation of multiple
agent conflicts in large construction projects. Alamanda et al. in 2015 used the GMCR
for the case of waste pollution by the Majalaya textile industry in an area of the Citarum
River in Bandung regency.

There are several stability concepts for the analysis of the GMCR which differ in
the assumptions about the behavior of the decision makers involved in the conflict. For
example, according to the concept of Nash Stability (NASH, 1950; NASH, 1951), each DM
assesses whether or not it is possible to take the conflict to a preferable scenario, regardless
of possible reactions of the opponents. In the concepts of General Metarationality (GMR)
(HOWARD, 1971) and Sequential Stability (SEQ) (FRASER; HIPEL, 1984), the DMs
evaluate if the opponents can react taking the conflict to a state that is no better than the
current state. The difference between such concepts is given by the fact that in Sequential
Stability, the opponents’ reactions have to be beneficial to them as well. However, in the
Sequential Stability concept, although the opponents’ are not allowed to hurt themselves
while moving, their reaction might indicate to leave a state that is sequentially stable for
them, which does not seem to be credible since according to the solution concept under
analysis, a DM should not leave a SEQ stable state. Thus, the SEQ analysis does not
treat equally the DM who moves first and the others who move next.
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1.1 Justification

For the stability analysis of conflicts, it is important to use solution concepts that
better describe DMs behavior. Stability notions which are based on noncredible threats do
not seem to be appropriate. For that reason, in this dissertation, we propose new solution
concepts for the GMCR by modifying the concept of Sequential Stability to mitigate the
problem of noncredible threats found in the Sequential Stability concept. This problem
occurs because a DM leaves a state that is already SEQ for him only to punish his
opponent. To mitigate this problem we propose notions of stability of different orders.

In a sequentially stable state of order m, the opponent is not allowed to move away
from a state that is sequentially stable of order m−1 to him. Relationships between the
proposed stability concepts were also obtained, together with relationships with other
solution concepts commonly used in the GMCR. We also provide an existence result of
sequential equilibrium of any odd order in finite conflicts where moves and preferences
are transitive. Finally, we propose the concept of Higher-order Sequential equilibria for
coalitional analysis in the GMCR.

1.2 Objective

1.2.1 General Objective

We propose refinements of the concept of Sequential Stability in the GMCR for 2
DMs and n-DMs and investigate the relationship of these definitions with five solution
concepts commonly used in the GMCR. These refinements are intended to mitigate a
problem of noncredible threats that may occur in SEQ.

1.2.2 Specific objectives

To reach the general objective, the specific objectives are:

• Bibliographic review of the Graph Model for Conflict Resolution and of the stability
definitions;

• Development of new stability definitions, called Higher-order Sequential Stability,
which are based on iterations of the concept of Sequential Stability to avoid non-
credible threats;

• Establish relationships between the new concepts proposed and those commonly
used in the GMCR;

• Proposal of the concept of Higher-order Sequential Equilibria for coalitional analysis;
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• Elaboration and resolution of applications and examples;

• Analysis of results.

1.3 Structure of Work

The remaining sections of this dissertation are organized as follows. In Chapter 2,
the GMCR and the stability definitions mentioned previously are revised. In Chapter 3,
we present the definitions of Higher-order Sequential Stabilities for a DM for conflicts with
2 DMs, provide some of its properties, we present relationships between the proposed def-
initions and other solution concepts commonly used in the GMCR and we present three
applications to illustrate the proposed solution concepts. In Chapter 4, we present the
definitions of Higher-order Sequential Stabilities for a DM for conflicts with n-DMs, pro-
vide some of its properties, propose the definition of Higher-order Coalitional Sequential
Stability and study its properties and, conclude the chapter presenting applications to il-
lustrate the proposed solution concepts for multiple DMs. Finally, we finish in Chapter 5
with main conclusions and directions for future work.
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2 THEORETICAL FOUNDATION AND LITERATURE REVIEW

In this chapter we will present the concepts of a conflict model, the Graph Model for
Conflict Resolution. The definitions of stability concepts will also be presented. Finally,
we present an illustrative example of a conflict to explain the GMCR.

2.1 GMCR and solution concepts

Strategic conflict can be defined as a decision problem involving multiple DMs, each
of which presents distinct preferences regarding possible scenarios or states that could
occur as the end result of a conflict (HIPEL; KILGOUR; FANG, 2011).

A conflict model is a systematic structure that aims to encompass the main char-
acteristics of a strategic conflict (HIPEL; KILGOUR; FANG, 2011). From the conflict
model, it is possible to carry out analysis in order to determine the possible balances be-
tween the possible strategic interactions of DMs. DMs can make use of stability analysis
as well as related sensitivity analysis to assist them in decision-making in a conflict. In
this section we will present GMCR and its solution concepts.

2.1.1 GMCR

In order to apply the GMCR, it is necessary to understand that it represents a
conflict where the DMs involved may change the conflict state by changing actions. These
states and transitions are modeled as vertex and arcs of a graph, respectively. The GMCR
can incorporate irreversible movements, that is, a DM can change from state sk to state
sq, but it may not be able to change back from state sq to state sk. The GMCR can also
describe common movements, that is, more than one DM can cause a conflict to move
from one state to another.

Formally, the GMCR was introduced by Kilgour, Hipel & Fang em 1987 and is
composed of a directed graph and a preference relation for each DM involved in the
conflict over the set of possible states of the conflict. Let N = {1,2, . . . ,n} be the set
of DMs involved in the conflict and S = {s1,s2, . . . ,sm} be the set of states or possible
scenarios of the conflict. A collection of finite directed graphs Di = (S,Ai), i ∈ N, can be
used to model the course of the conflict, where Ai ⊆ S× S determines for each state to
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what states DM i can lead the conflict, called reachable states from s in one step (RÊGO;
VIEIRA, 2017b). A vertex of a graph is a possible conflict state, and therefore the set
of vertices, S, is common to all graphs. If DM i can move unilaterally (in one step) from
state sk to state sq, then there is an oriented arc from sk to sq in Ai.

The possible moves of a DM i can be represented in an efficient way through an
accessible list. For i ∈ N, the accessible list for DM i from state sk ∈ S is the set Ri(sk) of
all states to which DM i can move (in a single step) from state sk, formally defined by:

Ri(sk) = {sq ∈ S : (sk,sq) ∈ Ai}. (2.1)

It is common in the literature to assume that s /∈ Ri(s), ∀s ∈ S and ∀i ∈ N, which
implies that no state is accessible to itself for any DM.

A binary relation Θ on the set S is a set of ordered pairs of elements of S, i.e. Θ⊂ S×S.
Let ≻i be the (strict) preference relation of DM i over S, so that s ≻i s1 indicates that DM
i strictly prefers state s to state s1. The weak preference relation, ≿i, is used to model
the possible lack of strict preference, where s ≿i s1 means that DM i does not strictly
prefer state s1 to state s. Finally, ∼i is a binary relation that represents the absence of
strict preference in both directions, i.e. s ∼i s1 if and only if s ≿i s1 and s1 ≿i s. This latter
relation is usually called indifference relation. Assume that the relation ≻i is irreflexive, so
that there is no S such that s ≻i s, and asymmetric, so that it cannot occur both s1 ≻i s2

and s2 ≻i s1.

For i ∈ N, it is now possible to define the set of unilateral improvements for DM i

from state s, as follows:

R+
i (sk) = {sq ∈ Ri(sk) : sq ≻i sk}. (2.2)

Let H ⊆ N be a subset of DMs, called coalition, we define RH(s)⊆ S as being the set
of states that DMs in the coalition H can reach without consecutive movements of the
same DM from state s. Formally, RH(s) is defined inductively as follows. Let Ω(s,s1) be
the set of all DMs that make a last legal movement in any legal sequence of movements
from state s to state s1, where a sequence of movements is legal if DMs can move move
more than once in the sequence but not consecutively. RH(s) and Ω(·) are defined as being
the smallest sets such that:

(i) If s1 belongs to Ri(s) and i belongs to H, then s1 belongs to RH(s) and i belongs to
Ω(s,s1);

(ii) If s1 belongs to RH(s), i belongs to H, s2 belong to Ri(s1), and {i} is different from
Ω(s,s1), then s2 belongs RH(s) and i belongs to Ω(s,s2).
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Similarly, we can define R+
H(s) ⊆ RH(s) as the set of states that can be reached by

DMs in H by some legal sequence of unilateral improvements from state s. Let Ω+(s,s1)

be the set of all DMs that make a last improvement in any legal sequence of unilateral
improvements from state s to state s1. R+

H(s) and Ω+(·) are defined as being the smallest
sets such that:

(i) If s1 belongs to R+
i (s) and i belongs to H, then s1 belongs to R+

H(s) and i belongs to
Ω+(s,s1);

(ii) If s1 belongs to R+
H(s), i belongs to H, s2 belong to R+

i (s1), and {i} is different from
Ω+(s,s1), then s2 belongs R+

H(s) and i belongs to Ω+(s,s2).

2.1.2 Stability concepts in the GMCR

The study of possible movements and countermovements done by DMs in strategic
conflicts is called stability analysis. DMs may behave in different ways in conflict situations
and several stability concepts have been proposed to model such variety of behaviors.
We now recall some stability concepts that have been used in the GMCR, namely: Nash
Stability, General Metarationality (GMR), Symmetric Metarationality (SMR), Sequential
Stability (SEQ) and Symmetric Sequential Stability (SSEQ).

For illustrate this study of possible movements and countermovements done by DMs
in strategic conflicts we will present the example of the famous game-theory dispute known
as the ”Prisoner’s Dilemma” (AXELROD, 1984) that is very similar to the behavior of
decision-makers in a conflict situation. This dispute was used for the purpose of getting
ideas about human behavior in conflict resolution decisions (FRASER; HIPEL, 1984).

In the Conflict of the Prisoner’s Dilemma two individuals suspected of committing a
crime are arrested by the police. But the police do not have enough evidence to condemn
them. An exit found by the police is to separate the individuals who were arrested in
different rooms and propose the same agreement to them:

• If one of them cooperates (C) with his partner, ie does not confess, and the other
individual does not cooperate (D), that is, give away, the individual who betrayed
will be free and the one who cooperated, was silent, will receive the penalty of 10
years of jail;

• If both are silent, that is, cooperate with each other, each of the prisoners shall
receive the penalty of one year in jail;

• If both betray, that is, betray their partner, each will receive the sentence of 5 years
of jail.
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Table 1 – Normal form of Prisoners’ Dilemma
DM 2

C D
C CC CDDM 1 D DC DD

Source: This research (2018)

Each prisoner will have to make the decision without knowing the choice of his
partner. In this game, decision makers present 2 strategies, formulating a total of 4 possible
scenarios or decision states. The normal form of this game can be represented as follows:

As the normal form of the game shows Table 1, DM 1 controls the strategies of the
line, while DM 2 controls the strategies of the column. The pair of letters represents the
strategies of DM 1 and DM 2, respectively. For example, the DC state represents the case
where the DM 1 does not cooperate (D) and the DM 2 cooperates (C).

This game can be represented using the graph model, where the choices available
for each DM can be represented using nodes and arcs as shown in Figure 1, where the
decision states are represented by 1 (CC), 2 (CD) , 3 (DC) and 4 (DD).

Figure 1 – Possible movements of DMs in the Prisoners’ Dilemma.

Source: This research (2018)

The arcs that connect the nodes (decision states) 1 and 3 represent the possibility
of deciding to change from state 1 (CC) to state 3 (DC) or vice versa of DM 1. The same
happens with the movement between the decision states 2 and 4, represented by the arcs
connecting nodes 2 and 4. In this way it is possible to analyze the decision possibilities of
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DM 2.

The preference relation in this conflict for DM 1 is denoted by 3(DC)≻1 1(CC)≻1

4(DD) ≻1 2(CD) and for DM 2 2(CD) ≻2 1(CC) ≻2 4(DD) ≻2 3(DC). Note that the pre-
ferred decision state for DM 1 is state 3 (DC), in this state DM 1 will be free , since he
did not cooperate and DM 2 will receive a 10-year prison sentence because he cooperated.
For DM 2, the most preferred decision state is state 2 (CD) and the least preferred state
is state 3 (DC).

From the graph model for the Prisoners’ Dilemma we have seen that DM 1 can
change its decision from CC state to DC state, or between CD state and DD state. In the
case of DM 2 it can use its strategy to change from CC state to CD state or between DC
and DD decision state.

To analyze strategic conflicts, we now recall the most commonly used stability no-
tions in the GMCR literature. For all stability notions, if some state is stable for every
DM, it is called an equilibrium according to that stability notion.

2.1.2.1 Nash Stability

Let i ∈ N, state s ∈ S is Nash stable (or individually rational) for DM i if and only if
R+

i (s) = /0. Thus, a state is Nash stable for DM i, if, and only if, DM i cannot unilaterally
move to a more preferable state (NASH, 1950; NASH, 1951). Let SNASH

i denote the set of
all Nash stable states for DM i.

In the example of the Prisoners’ Dilemma, state 3 (DC) is Nash stable for DM 1,
since there is no state with more preference than state 3. State 1 (CC) is considered
unstable because there is another state that is more preferable for DM 1. Analyzing all
decision possibilities for Nash stability in relation to both players, we see that decision
state 4 (DD) is the only Nash equilibrium, since no DM can move unilaterally to a better
state from state 4. All other states are unstable for at least one DM, which can always
improve their situation by failing to cooperate with the other DM.

2.1.2.2 General Metarationality

The General Metarationality (GMR) concept was defined by Howard in 1971. Its
purpose is to model the behavior of a DM that analyzes their possible movements in a
conservative way, considering all possible reactions to their movements, ignoring their own
possible counter-reactions. Let i ∈ N, state s ∈ S is GMR stable for DM i if, and only if,
for all s1 ∈ R+

i (s) there is at least one s2 ∈ R j(s1) such that s ≿i s2. In the case for n-DMs
the state s ∈ S is GMR for a player i if, and only if, ∀s1 ∈ R+

i (s), ∃s2 ∈ R(N−i)(S1) : s ≿i s2.
Let SGMR

i denote the set of all GMR stable states for DM i.
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In the case of the Prisoner’s Dilemma, from state 1, DM 1 has a unilateral improve-
ment move to state 3. However, DM 2 can punish DM 1 by moving from state 3 to state
4 which is less preferable to DM 1 than state 1. Thus, state 1 (CC) is GMR stable for DM
1. By symmetry, this state is also GMR stable for DM 2, therefore a GMR equilibrium.
By analyzing all the states, it is possible to conclude that states 1 and 4 are equilibria
according to the GMR concept. It is noteworthy that if a state is Nash stable for any DM,
by definition it is also be GMR (and as we will see SMR, SEQ and SSEQ) stable for this
DM.

2.1.2.3 Symmetric Metarationality

A DM is said to use the Symmetric Metarationality stability criterion (SMR) when
he considers not only his own possible moves and his opponent’s reactions to each of these
movements, but also his own counter-reaction. The DM according to this criterion has the
capacity to analyze three movements ahead, while according to the criterion of General
Metarationality it observes only two movements ahead and according to the criterion of
Nash only one movement ahead. This notion was also proposed in 1971 by Howard and it
is a stability definition more restrictive than the General Metarationality. Let i ∈ N, state
s ∈ S is SMR for DM i if, and only if, for all s1 ∈ R+

i (s) there exists s2 ∈ R j(s1) such that
s ≿i s2 and s ≿i s3 for all s3 ∈ Ri(s2). For the case for n-DMs the state s ∈ S is SMR for a
player i if, and only, if ∀s1 ∈ R+

i (s), ∃s2 ∈ R(N−i)(s1) : s ≿i s2 and s ≿i s3 ∀s3 ∈ Ri(s2). Let
SSMR

i denote the set of all SMR stable states for DM i.

For example, in the Prisoner’s Dilemma problem when DM 1 moves from decision
state 1 to state 3, DM 2 may react moving from state 3 to state 4, where state 4 is not
preferred to state 1 by DM 1. In order to escape this punishment, DM 1 can only move
from state 4 to state 2, which is also not preferred to state 1 by DM 1. Thus, state 1 is
SMR stable for DM 1. State 1 is also SMR stable for DM 2 and, consequently, an SMR
equilibrium, together with state 4. It is worth noting that in an SMR stability analysis,
the focal DM must consider that his adversary may react hurting himself in order to force
the focal DM not to move to a more preferable decision state.

2.1.2.4 Sequential Stability

Defined by Fraser & Hipel ( 1979, 1984) it is similar to General Metarationality
(GMR), but according to SEQ the reactions of the opponent is also beneficial to him, i.e.,
it is not allowed to harm the opponent if one does not benefit from such move. Let i ∈ N,
state s ∈ S is Sequentially Stable (SEQ) for DM i if, and only if, for all s1 ∈ R+

i (s) there
exists s2 ∈ R+

j (s1) such that s ≿i s2. The definition for the case of n-DMs is the state s ∈ S
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is SEQ if, and only if, ∀s1 ∈ R+
i (s),∃s2 ∈ R+

(N−i)(s1) : s ≿i s2. Let SSEQ
i denote the set of all

SEQ stable states for DM i.

In the case of the Prisoners’ Dilemma, while analyzing the SEQ stability of state
1 for DM 1, we see that he has a unilateral improvement move to state 3. On the other
hand, DM 2 has a unilateral improvement move from state 3 to state 4, which is less
preferred than state 1 by DM 1. Thus, decision state 1 (CC) is SEQ stable for DM 1 and,
likewise, SEQ stable for DM 2. Thus, state 1 is a SEQ equilibrium. State 4 is Nash stable
for both players and, consequently, also a sequential equilibrium.

2.1.2.5 Symmetric Sequential Stability

Another type of Sequential Stability was proposed by Rêgo & Vieira in 2016. Known
as Symmetric Sequential Stability (SSEQ), it defines a kind of Sequential Stability in
which a DM, when planning to move, considers not only the reaction of its opponents,
but also its own counterattack. It is worth noting that the counterattack is not necessarily
a unilateral improvement for the DM, but rather that the resulting state is no better than
the current state for each possible counterattack. Let i ∈ N, state s ∈ S is SSEQ for DM
i if, and only if, for all s1 ∈ R+

i (s) there exists s2 ∈ R+
j (s1) such that s ≿i s2 and s ≿i s3

for all s3 ∈ Ri(s2). In the case of n-DMs, a state s ∈ S is Sequentially Symmetric Stable
(SSEQ) for DM i ∈ N if, and only if, for all s1 ∈ R+

i (s) there exists a s2 ∈ R+
(N−i)(S1) such

that s ≿i s2 and s ≿i s3 for all s3 ∈ Ri(s2). Let SSSEQ
i denote the set of all SSEQ stable

states for DM i.

Analyzing the SSEQ in the case of the Prisoner Dilemma problem we have a similar
result to the SEQ, but it is necessary to analyze the counter-response of the DM 1.
Therefore, state 1 of the conflict (CC) is also SSEQ stable for DM 1 and DM 2 and,
consequently, a SSEQ equilibrium, since the DMs cannot counteract the punishment of
the opponent. In addition, as state 4 (DD) is Nash stable, it is also SSEQ stable. Through
the stability analysis, we see that only state 1 and 4 are possible equilibria, state 4 being
the one which is equilibrium according to the largest number of stability concepts.

2.1.3 Coalitional Analysis in the GMCR

Coalitional analysis is an extension of the stability analysis to situations where the
DMs can act together, being able to realize improvements over the results they would
achieve if they were acting alone.

The definitions of coalitional analysis were given by Inohara and Hipel in 2008 and
Kilgour et al. in 2001. A coalition is any non-empty set of DMs, /0 ≠H ⊆N. Let φ(N) be the
class of all coalitions of DMs in N and R++

H (s) = {s1 ∈ S : s1 ∈ RH(s) and s1 ≻i s for all i ∈
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Table 2 – Stability of a state s for some coalition H in the GMCR

Notion Definition
CNash R++

H (s) = /0
CGMR ∀s1 ∈ R++

H (s), ∃s2 ∈ R++
φ(N−H)

(s1) : s ⪰i s2 for some i ∈ H

CSMR
∀s1 ∈ R++

H (s), ∃s2 ∈ R++
φ(N−H)

(s1) : s ⪰i s2 for some i ∈ H
and ∀s3 ∈ RH(s2), s ⪰ j s3 for some j ∈ H

CSEQ ∀s1 ∈ R++
H (s), ∃s2 ∈ R++

φ(N−H)
(s1) : s ⪰i s2 for some i ∈ H

CSSEQ
∀s1 ∈ R++

H (s), ∃s2 ∈ R++
φ(N−H)

(s1) : s ⪰i s2 for some i ∈ H
and ∀s3 ∈ RH(s2), s ⪰ j s3 for some j ∈ H

Source: This research (2018)

H} be the set of coalitional improvement moves from s by coalition H. Let C ⊆ φ(N) and
let RC(s) be the set of reachable states by class C from s by a legal sequence of movements,
where a legal sequence of movements of a class C is one in which no coalition moves twice
consecutively. Formally, RC(s) is defined inductively as follows. Let ΩC(s,s1) be the set of
all coalitions that make a last legal movement in any legal sequence of movements from
state s to state s1. RC(s) and ΩC(·) are defined as being the smallest sets such that:

(i) If s1 belongs to RH(s) and H belongs to C, then s1 belongs to RC(s) and H belongs to
ΩC(s,s1);

(ii) If s1 belongs to RC(s), H belongs to C, s2 belong to RH(s1), and H is different from
ΩC(s,s1), then s2 belongs RC(s) and H belongs to ΩC(s,s2).

Similarly, one can define R++
C (s) ⊆ RC(s) as the set of states that can be reached

by coalitions in C by some legal sequence of unilateral improvements from state s. Let
Ω++

C (s,s1) be the set of all coalitions that make a last improvement in any legal sequence
of unilateral improvements from state s to state s1. R++

C (s) and Ω++
C (·) are defined as

being the smallest sets such that:

(i) If s1 belongs to R+
H(s) and H belongs to C, then s1 belongs to R++

C (s) and H belongs
to Ω++

C (s,s1);

(ii) If s1 belongs to R++
C (s), H belongs to C, s2 belong to R+

H(s1), and H is different from
Ω++

C (s,s1), then s2 belongs R++
C (s) and H belongs to Ω++

C (s,s2).

Table 2 presents the definitions of CNash, CGMR, CSMR, CSEQ, and CSSEQ
stability of a state s for some coalition H for n-DM conflicts. For all these coalitional
stability definitions, a state is coalitional stable for a DM, if it is coalitional stable for all
coalitions that include such DM.
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2.2 Overview about the GMCR literature

Other preference structures have also been developed over time for the GMCR. Li
et al. in 2004, present a preference structure for the GMCR that includes uncertain or un-
known preferences in comparison of two states - “preferred”, “indifferent” and “unknown”.
Ben-Haim & Hipel in 2002 applied the information theory of gaps in order to observe
how the changes of uncertainties of preference of DMs could affect the equilibria and the
results of stability. Al-Mutairi, Hipel & Kamel in 2008 applied five labels to divide the
domain of Fuzzy preferences - “much more preferred”, “more preferred”, “indifferent”,
“less preferred” and “much less preferred”.

Rêgo & Santos in 2015, carried out a generalization of GMCR by introducing a
possibility for DMs to express their preferences among possible scenarios through prob-
abilistic preferences. They proposed four concepts of solution: 1) α-Nash stability; 2)
(α,β )-metarationality; 3) (α,β )-symmetric metarationality; and 4) (α,β , � )-sequential
stability. These can be used in conflicts with two or more DMs. They also analized ap-
plications where it was possible to observe the advantages obtained by allowing users to
express their preferences probabilistically.

In the GMCR literature, there are models that are able to represent different points
of view of the DMs regarding the ongoing conflict. According to Obeidi, Kilgour & Hipel
in 2009a, one way to allow decision makers to independently describe the conflict is by
modeling the effects of future scenario emotions considered by DMs, this model is known
as Perceptual GMCR. This type of preference structure enables large improvements in
the GMCR analysis, minimizing the complexity of describing realistic models, enhancing
the application of GMCR modeling algorithms in realistic conflicts that are composed of
perception and emotion.

In a conflict, the existence of discrepant perceptions of DMs, often caused by asym-
metric information between the DMs or by negative emotions, are modeled in the sys-
tems of perceptive graph models. Its objective is to make predictions related to possible
responses in order to reveal the dependence of these predictions on the variability in the
awareness of a DM. (OBEIDI; KILGOUR; HIPEL, 2009b)

Rêgo & Vieira in 2017a, proposed a modification in the GMCR to accommodate the
iterative unawareness of DMs in relation to the options available in a conflict. This model
allows a DM to reason about the awareness level of his opponents and about his own level
of awareness about his opponents awareness levels and so on. The authors also performed
a generalization of the standard solution concepts and an application in a hypothetical
conflict in a war situation.

In the next chapter, we present the notions of Higher-order Sequential Stability and
the relation of this new concept of stability with the concepts presented in this chapter.
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Three applications are performed to demonstrate the usefulness of the proposed model,
where two of them are classical games in Game Theory.
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3 HIGHER-ORDER SEQUENTIAL STABILITIES FOR BILATERAL CONFLICTS

In this chapter, we present an example that motivated us proposing the notions of
Higher-order Sequential Stabilities, by showing an inconsistency in the notion of Sequen-
tial Stability. We will also present definitions, properties, relationships among Higher-
order Sequential Stabilities and other solution concepts in the GMCR and applications.
A preliminary version of the results of this chapter was presented at the 21st Conference
of the International Federation of Operational Research Societies (IFORS), in July 2017,
in Quebec City, Canada. The complete results are under review at the journal IEEE
Transactions on systems, man and Cybernetics: Systems.

3.1 A motivational example

The following example presents a conflict where there exists a SEQ stable state for
one DM (focal DM) which relies on a reaction to the focal DM that is not credible. Such
reaction is not credible, in the sense that the state at which the opponent of the focal DM
moves, even though not being Nash stable, it is SEQ stable for the opponent.

Consider the conflict illustrated in Figure 2, where the state space is defined by
S = {s1,s2,s3,s4} with two decision makers, DM 1 and DM 2. Suppose that R1(s1) =

{s2},R1(s3) = {s4},R2(s2) = {s3} and R1(s2) = R1(s4) = R2(s1) = R2(s3) = R2(s4) = /0 . Also,
consider the following preference relations: s2 ≻1 s1 ≻1 s4 ≻1 s3 and s3 ≻2 s2 ≻2 s4 ≻2 s1.

Note that state s1 is SEQ and SSEQ for DM 1, since the only unilateral improvement
from s1 for DM 1 is state s2 and DM 2 has a unilateral improvement from s2 that takes
the conflict to s3 and s3 is worse than s1 for DM 1 and DM 1 can only move away from s3

to s4 which is also not preferred to s1 for DM 1. However, if we are adopting the criterion
that a DM will not move away from a state that is SEQ to him, the punishment of DM
2 going from state s2 to state s3 is not credible, since state s2 is SEQ for DM 2. In order
to see that, note that the unique unilateral improvement from s2 for DM 2 is state s3

and DM 1 has a unilateral improvement from s3 that takes the conflict to s4 and s4 is
worse than s2 for DM 2. This example motivates us to propose new solution concepts for
the GMCR by introducing the concept of Higher-order Sequential Stabilities to avoid the
problem of noncredible Sequential Stabilities.
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Figure 2 – GMCR which illustrates a noncredible sequentially stable state.

Source: This research (2018)

3.2 Higher-order Sequential Stabilities

From the analysis of the example shown in Subsection 3.1, we want to define a
solution concept that avoids DMs leaving from states which are SEQ for them both when
they are taking the position of a focal DM or when they are reacting to the focal DM. In
order to avoid having a circular definition, we need to define what we call a second order
SEQ stability notion, where the first order SEQ is the usual SEQ notion. Intuitively, a
state is second order SEQ stable for a DM if for every unilateral improvement that he
has, his opponent may react benefiting himself leaving a state which is not first order
SEQ stable for him such that the resulting state is not preferable for the focal DM to the
present state.

However, a similar problem may happen in the second order SEQ stability since
although the opponent of the focal DM cannot leave a first order SEQ stable state, he
may leave a second order SEQ stable state for him. That fact motivated us to define the
notion of SEQ stability for various orders. In the following definition, assume that S1−SEQ

i

is the set of all (first order) SEQ stable states for DM i, i.e., S1−SEQ
i = SSEQ

i .

Definition 3.2.1. For an integer m such that m ≥ 2, let Sm−SEQ
i be the set of all states that

satisfy m-th order sequential stability for DM i, where state s is m-th order sequentially
stable for DM i if for every state s1 ∈ R+

i (s), s1 /∈ S(m−1)−SEQ
j and there exists s2 ∈ R+

j (s1)

such that s ≿i s2.
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Therefore, for each DM i, there exists a sequence of sets (Sm−SEQ
i )∞

m=1 consisting
of the states which satisfies the various orders of SEQ stability for DM i. As usual for
sequences of sets, we can define two limiting sets, which are known as limin f and limsup

of the sequence. They are formally given by:

Sin f−SEQ
i =

∞∪
l=1

∞∩
m=l

Sm−SEQ
i (3.1)

and

Ssup−SEQ
i =

∞∩
l=1

∞∪
m=l

Sm−SEQ
i . (3.2)

It is well-known that Sin f−SEQ
i consists of the states which belong to all, except

finitely many, sets in the sequence (Sm−SEQ
i )∞

m=1 and that Ssup−SEQ
i consists of the states

which belong to infinitely many sets in the sequence (Sm−SEQ
i )∞

m=1.

Analyzing the stability of states from the motivational example according to the
proposed concept, we can verify that SNASH

1 = {s2,s4} ⊆ Sm−SEQ
1 and SNASH

2 = {s1,s3,s4} ⊆
Sm−SEQ

2 , for all m ≥ 1. Then, note that for all m ≥ 1, s3 /∈ Sm−SEQ
1 , since from s3 DM 1 has

a unilateral improvement move to s4 and, from s4, DM 2 has no move available to punish
DM 1. On the other hand, s1 ∈ SSEQ

1 (resp., s2 ∈ SSEQ
2 ) since from the unique unilateral

improvement from such state for DM 1, s2, (resp., DM 2, s3), there exists a unilateral
improvement for DM 2 (resp., DM 1) leading the conflict to state s3 (resp., s4), which is
worse than the initial one for DM 1 (resp., DM 2). Since for all m≥ 1, s3 /∈ Sm−SEQ

1 , it follows
that s2 ∈ Sm−SEQ

2 , for all m ≥ 2. This last result implies that s1 /∈ Sm−SEQ
1 for all m ≥ 2.

Thus, we have that Sin f−SEQ
1 = Ssup−SEQ

1 = {s2,s4} and Sin f−SEQ
2 = Ssup−SEQ

2 = S. Although
in this example the sets Sin f−SEQ

i and Ssup−SEQ
i are identical, we show in Theorem 3.3.2

that there are conflicts in which this equality does not hold.

In the following section, we study properties satisfied by the proposed Higher-order
Sequential Stabilities concepts.

3.3 Properties of Higher-order Sequential Stabilities

Theorem 3.3.1 shows us how the sets of m-th order sequentially stable states, for
different m values, relate to one another. Figure 3 illustrates the result of this theorem.

Theorem 3.3.1. Let m and m1 be any positive integers. For i ∈ N, if m1 is odd, then
Sm−SEQ

i ⊆ Sm1−SEQ
i , for all m ≥ m1 and, otherwise, if m1 is even, it follows that Sm1−SEQ

i ⊆
Sm−SEQ

i , for all m ≥ m1.
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Figure 3 – Relationship among m-SEQ stability for different m values.

Source: This research (2018)

Proof: We prove the theorem by mathematical induction on m1.

As S1−SEQ
i = SSEQ

i , for m1 = 1, we need to prove that if s ∈ Sm−SEQ
i , for m ≥ 1, then

s ∈ SSEQ
i . For m = 1, the result is trivially true. Assume that m ≥ 2 and that s ∈ Sm−SEQ

i ,
then for all s1 ∈ R+

i (s), s1 /∈ S(m−1)−SEQ
j and there exists s2 ∈ R+

j (s1) such that s ≿i s2. Thus,
for all s1 ∈ R+

i (s), there exists s2 ∈ R+
j (s1) such that s ≿i s2. Therefore, s ∈ SSEQ

i .

For m1 = 2, we need to prove that if s ∈ S2−SEQ
i , then s ∈ Sm−SEQ

i , for m ≥ 2. Assume
that s ∈ S2−SEQ

i , then for all s1 ∈ R+
i (s), s1 /∈ SSEQ

j and there exists s2 ∈ R+
j (s1) such that

s ≿i s2. Then, using the case m1 = 1, we have that S(m−1)−SEQ
j ⊆ SSEQ

j , for m−1 ≥ 1. Thus,
it follows that for all s1 ∈ R+

i (s), s1 /∈ S(m−1)−SEQ
j , for m ≥ 2, and there exists s2 ∈ R+

j (s1)

such that s ≿i s2. Therefore, s ∈ Sm−SEQ
i , for m ≥ 2.

Now assume the following inductive hypothesis:

(I1) ∀i ∈ N, Sm−SEQ
i ⊆ S(m1−1)−SEQ

i , for all m ≥ (m1 −1) and m1 −1 odd, and
(I2) ∀i ∈ N, S(m1−1)−SEQ

i ⊆ Sm−SEQ
i , for all m ≥ (m1 −1) and m1 −1 even.

First, suppose that m1 is odd. Then, assume that s ∈ Sm−SEQ
i , for m ≥ m1. Thus, it follows

that for all s1 ∈ R+
i (s), s1 /∈ S(m−1)−SEQ

j and there exists s2 ∈ R+
j (s1) such that s ≿i s2. As

m1 −1 is even and m−1 ≥ m1 −1, I2 implies that for all s1 ∈ R+
i (s), s1 /∈ S(m1−1)−SEQ

j and
there exists s2 ∈ R+

j (s1) such that s ≿i s2. Therefore, s ∈ Sm1−SEQ
i .

Second, suppose that m1 is even. Then, assume that s ∈ Sm1−SEQ
i . Thus, it follows
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that for all s1 ∈ R+
i (s), s1 /∈ S(m1−1)−SEQ

j and there exists s2 ∈ R+
j (s1) such that s ≿i s2.

Let m ≥ m1. As m1 − 1 is odd and m− 1 ≥ m1 − 1, I1 implies that for all s1 ∈ R+
i (s),

s1 /∈ S(m−1)−SEQ
i and there exists s2 ∈ R+

j (s) such that s ≿i s2. Therefore, s ∈ Sm−SEQ
i .

The next result shows that Sin f−SEQ
i consists of states which are higher-order SEQ

stable for DM i for at least one even order and that Ssup−SEQ
i consists of the states which

are higher-order SEQ stable for DM i for every odd order.

Corollary 3.3.1.1. Sin f−SEQ
i =

∪∞
m=1 S2m−SEQ

i and Ssup−SEQ
i =

∩∞
m=1 S(2m−1)−SEQ

i .

Proof: Using the result of Theorem 3.3.1, Equations 3.1 and 3.2 can be simplified.
First, Theorem 3.3.1 implies that ∩∞

m=l Sm−SEQ
i = Sl−SEQ

i if l is even and ∩∞
m=l Sm−SEQ

i =

S(l+1)−SEQ
i if l is odd. Therefore, ∪∞

l=1
∩∞

m=l Sm−SEQ
i =

∪∞
m=1 S2m−SEQ

i , as desired.

Second, Theorem 3.3.1 implies that ∪∞
m=l Sm−SEQ

i = Sl−SEQ
i if l is odd and ∪∞

m=l

Sm−SEQ
i = S(l+1)−SEQ

i if l is even. Therefore, ∩∞
l=1

∪∞
m=l Sm−SEQ

i =
∩∞

m=1 S(2m−1)−SEQ
i , as de-

sired.

It is well-known that Sin f−SEQ
i ⊆ Ssup−SEQ

i . Theorem 3.3.2 shows that the reversed
inclusion is not valid in the present context.

Theorem 3.3.2. There exist conflicts such that Sin f−SEQ
i ̸= Ssup−SEQ

i .

Proof: We show that result by means of an example of a conflict, where there exists
a state s in Ssup−SEQ

i − Sin f−SEQ
i for some DM i, i.e., s ∈ Sm−SEQ

i , for every odd m, and
s /∈ Sm−SEQ

i , for every even m, for some DM i. Consider a GMCR with 4 States s,s1,s2,s3

and 2 DMs such that R1(s) = {s1}, R1(s2) = {s3}, R2(s1) = {s2}, R2(s3) = {s}, s1 ≻1 s,
s3 ≻1 s2, s2 ≻2 s1 and s ≻2 s3. This conflict is illustrated in Figure 4.

Clearly, s1,s3 ∈ SNASH
1 and s,s2 ∈ SNASH

2 . We now show by induction that s,s2 ∈
(Ssup−SEQ

1 −Sin f−SEQ
1 ) and s1,s3 ∈ (Ssup−SEQ

2 −Sin f−SEQ
2 ). It is easy to see that s,s2 ∈ SSEQ

1

(resp, s1,s3 ∈ SSEQ
2 ) since from the unique unilateral improvement from such states for DM

1 (resp, DM 2) there exists a unilateral improvement for DM 2 (resp, DM 1) leading the
conflict to a state no better than the initial one for DM 1 (resp, DM 2). Thus, it follows
that s,s2 /∈ S2−SEQ

1 and s1,s3 /∈ S2−SEQ
2 .

For the induction hypothesis, assume that s,s2 ∈ (S(2m−1)−SEQ
1 −S2m−SEQ

1 ) and s1,s3 ∈
(S(2m−1)−SEQ

2 −S2m−SEQ
2 ). Let us show that s,s2 ∈ (S(2m+1)−SEQ

1 −S(2m+2)−SEQ
1 ) and s1,s3 ∈

(S(2m+1)−SEQ
2 −S(2m+2)−SEQ

2 ).

Since s,s2 ∈ SSEQ
1 and s1,s3 /∈ S2m−SEQ

2 , it follows that s,s2 ∈ S(2m+1)−SEQ
1 . Similarly,

since s1,s3 ∈ SSEQ
2 and s,s2 /∈ S2m−SEQ

1 , it follows that s1,s3 ∈ S(2m+1)−SEQ
2 . Since s,s2 ∈

S(2m+1)−SEQ
1 , it follows that s1,s3 /∈ S(2m+2)−SEQ

2 . Since s1,s3 ∈ S(2m+1)−SEQ
2 , it follows that

s,s2 /∈ S(2m+2)−SEQ
1 .
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Figure 4 – Conflict with a State that is m-SEQ Stable Only for Odd m.

Source: This research (2018)

Theorem 3.3.3 shows that if transitivity of preferences and movements hold for both
DMs, then there exists at least one state that is a m− SEQ equilibrium for every odd
m. Therefore, the notion of sup− SEQ is a refinement of the notion of SEQ, where the
existence result is still valid.

Theorem 3.3.3. If transitivity of preferences and movements hold, then the set Ssup−SEQ
1 ∩

Ssup−SEQ
2 is non-empty.

Proof: Suppose the theorem is false. Then for every state there exists at least one
DM for which such state is m−SEQ unstable for some m odd. Without loss of generality,
assume that there are m−SEQ unstable states for DM i for some m odd. By transitivity
of preferences and since S is finite, there exists some state s0 which is m−SEQ unstable
for DM i and there is no other m−SEQ unstable state s for DM i such that s ≻i s0.

Since s0 is m−SEQ unstable for DM i, there exists s1 ∈ R+
i (s0) such that:

(a) s1 ∈ S(m−1)−SEQ
j or

(b) for every s2 ∈ R+
j (s1),s2 ≻i s0.

Let us consider case (a) first. By definition of s0, s1, must be m− SEQ stable for
DM i and since m is odd S(m−1)−SEQ

j ⊆ Sm−SEQ
j . Thus, s1 is an m− SEQ equilibrium, a

contradiction.

Now consider case (b). Since s1 is m− SEQ stable for DM i ,it must be m− SEQ

unstable for DM j. Thus, let s∗2 ∈ R+
j (s1) be such that there is no s3 ∈ R+

j (s1) such that



34

s3 ≻ j s∗2. The existence of s∗2 follows from transitivity of preferences. Since s∗2 ∈ R+
j (s1),

case (b) implies that s∗2 ≻i s0. Therefore, s∗2 is m − SEQ stable for DM i. Thus, s∗2 is
m− SEQ unstable for DM j. Thus, there exists s3 ∈ R+

j (s
∗
2). Transitivity of movements

and preferences implies that s3 ∈ R+
j (s1) and since s3 ≻ j s∗2, we have a contradiction to the

definition of s∗2.

3.4 An alternative definition

An alternative way to overcome the problem of noncredible threats in the SEQ
analysis is to use the following alternative definition for SEQ stability of order m, where
the state in which the opponent of the focal DM moves is not (m− 1)− SEQ for the
opponent, however it also is not k−SEQ for the opponent for every 0< k <m. To formalize
that, in the following definition, assume that S1−SEQ2

i is the set of all (second kind first
order) SEQ states for DM i.

Definition 3.4.1. For an integer m such that m ≥ 2, let Sm−SEQ2

i be the set of all states that
satisfy second kind m-th order sequential stability for DM i, where state s is second kind
m-th order sequentially stable for DM i if for every state s1 ∈ R+

i (s), s1 /∈∪m−1
k=1 Sk−SEQ2

j and
there exists s2 ∈ R+

j (s1) such that s ≿i s2.

Theorem 3.4.1 shows that this alternative definition is a particular case of the
original definition of m-SEQ stability.

Theorem 3.4.1. Let i ∈ N. The set of second kind m-th order sequentially stable states for
DM i is equal to the set of 2-nd order sequentially stable states for DM i, for every m ≥ 2,
i.e., Sm−SEQ2

i = S2−SEQ
i , for every m ≥ 2.

Proof: We show the result by induction on m. Since by definition, ∀i ∈ N, S1−SEQ2

i =

S1−SEQ
i = SSEQ

i , it follows that S2−SEQ2

i = S2−SEQ
i , ∀i ∈ N. Therefore, by Theorem 3.3.1,

S2−SEQ2

i ⊆ S1−SEQ2

i , ∀i ∈ N.

Assume for the induction hypothesis that for all i ∈ N, Sm−SEQ2

i = S2−SEQ
i , for m ≥ 2.

Thus, ∪m
k=1Sk−SEQ2

j = S1−SEQ
j , which implies that S(m+1)−SEQ2

i = S2−SEQ
i .

Given this result, from now on, we focus only on the original definition of m-SEQ
stability.

3.5 Relationships among Higher-order Sequential Stabilities and other solution
concepts in the GMCR

In this section the relationships between Higher-order SEQs and other GMCR solu-
tion concepts are studied.
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Theorem 3.5.1. The following relations between Higher-order SEQs and standard stability
notions of the GMCR hold:

(a) For i ∈ N, if s ∈ SNASH
i , then s ∈ Sm−SEQ

i , for all m ≥ 1.

(b) For i ∈ N, if s ∈ Sm−SEQ
i for some m ≥ 1, then s ∈ SSEQ

i .

(c) For i ∈ N, if s ∈ Sm−SEQ
i for some m ≥ 1, then s ∈ SGMR

i .

(d) For i ∈ N, SSMR
i ⊈ Sm−SEQ

i , for all m ≥ 1.

(e) For i ∈ N, SSSEQ
i ⊈ Sm−SEQ

i , for all m ≥ 2.

(f) For i ∈ N, Sm−SEQ
i ⊈ SSMR

i , for all m ≥ 1.

(g) For i ∈ N, Sm−SEQ
i ⊈ SSSEQ

i , for all m ≥ 1.

Proof:

For part (a), if s ∈ SNASH
i , then R+

i (s) = /0. Therefore, it follows that s ∈ Sm−SEQ
i , for

all m ≥ 1.

For part (b), since by definition S1−SEQ
i = SSEQ

i , it follows from Theorem 3.3.1 that
Sm−SEQ

i ⊆ SSEQ
i , for all m ≥ 1.

For part (c), since SEQ implies GMR, the result follows from part (b).

For part (d), since, by part (b), m−SEQ implies SEQ and since SMR does not imply
SEQ, it follows that SMR does not imply m−SEQ.

For part (e), by Theorem 3.3.1, it is enough to show that SSSEQ
i ⊈ S3−SEQ

i . For
that, consider a GMCR with 2 DMs and 4 states s, s1, s2 and s3 such that R1(s) = {s1},
R1(s2) = {s3}, R2(s1) = {s2}, R2(s3) = {s}, s1 ≻1 s, s3 ≻1 s2, s ≻2 s1 and s2 ≻2 s1. Figure 5
illustrates this conflict.

Note that s is SSEQ stable for DM 1, since from s the unique unilateral improvement
for DM 1 is s1 and from s1 DM 2 has a unilateral improvement s2 which is no better than
s for DM 1 and from s2 DM 1 can only reach s3 which is no better than s.

However, we claim that s is not 3−SEQ stable for DM 1. In order to verify that, note
first that s2 is not SEQ stable for DM 1, since from s2 DM 1 has a unilateral improvement
s3 and from s3, DM 2 does not have any unilateral improvement move. Second note that
s1, the unique unilateral improvement for DM 1 from s, is 2-SEQ stable for DM 2, since
from s1 DM 2 can move to s2, which is not SEQ stable for DM 1, and from s2 DM 1
has a unilateral improvement s3, which is no better than s1 for DM 2. Therefore, s is not
3−SEQ stable for DM 1.
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Figure 5 – Conflict with a State that is m-SEQ Stable Only for Odd m.

Source: This research (2018)

For part (f), by Theorem 3.3.1, it is enough to show that S2−SEQ
i ⊈ SSMR

i . For that,
consider the example that was used in proof of letter (e). We showed that s1 is 2−SEQ

stable for DM 2.

To show that s1 is SMR unstable for DM 2, note that, from s1, DM 2 has a unique
unilateral improvement going to s2, but DM 1 can punish DM 2 moving from s2 to s3.
However, DM 2 can escape this punishment moving from s3 to s, and s is preferable to s1

for DM 2. Therefore, s1 is not SMR stable for DM 2.

For part (g), note that it follows from part (f). Since SSEQ implies SMR and by part
(f), m−SEQ does not imply SMR, it follows that m−SEQ cannot imply SSEQ.

Figure 6 illustrates the relationships described in Theorem 3.5.1.

3.6 Applications

In this section, we present three applications to illustrate the usefulness of the m-SEQ
stability concept. The first two applications are the classical game theory examples Match-
ing Pennies and Rock, Scissors and Paper. The third application is the representation of a
conflict that describes the confrontation of values between a Global Market-Driven econ-
omy and a Sustainable Ecosystem philosophy that was first modeled using the GMCR by
Hipel & Obeidi in 2005.
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Figure 6 – Relationships described in Theorem 3.5.1.

Source: This research (2018)

3.6.1 Matching Pennies

A zero-sum game is one in which one player’s gain is the other’s loss. A classic
example of a zero-sum game is the Matching Pennies game (GIBBONS, 1992). It has
the property that it does not have a Nash equilibrium in pure strategies, since in every
possible situation, one of the players has an incentive for changing strategies.

The Matching Pennies game involves two players who move simultaneously. Suppose
that each player has a penny and must choose whether to display it with heads(H) or
tails(T) facing up. If the pennies match, the first player wins and gets the other’s penny,
but if the pennies do not match, the second player wins and gets the penny.

Thus, a conflict described the Matching Pennies game has four states: HH, T T , T H

and HT . Figure 7 illustrates this conflict using the GMCR. The preferences of the DMs
are given by HH ∼1 T T ≻1 HT ∼1 T H and HT ∼2 T H ≻2 HH ∼2 T T .

In Table 3, the stable states for each DM are represented, according to the most
usual definitions of stability and also according to m−SEQ. Each cell in the array specifies
for which DMs, if any, the column state is stable according to the stability definition of
the corresponding line.

We can observe in Table 3 that the all the states are SEQ equilibrium, but this
result is only true for m−SEQ, if m is odd.
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Figure 7 – Possibility of movement’s decision in the game Matching Pennies.

Source: This research (2018)

Table 3 – Stable states according to some stability definitions Matching Pennies game

Stability Definition HH HT T H T T
Nash 1 2 2 1
GMR 1,2 1,2 1,2 1,2
SMR 1 2 2 1
SEQ 1,2 1,2 1,2 1,2
SSEQ 1 2 2 1
Odd m-SEQ 1,2 1,2 1,2 1,2
Even m-SEQ 1 2 2 1

Source: This research (2018)

3.6.2 Rock, Paper and Scissors

The Rock, Paper, Scissors game is a classic of Game Theory and is similar to the
Matching Pennies game in the sense that it is also a zero-sum game and it does not have
any Nash equilibrium in pure strategies (OSBORNE, 2004).

Rock, Paper, Scissors game is usually played between two decision makers, where
each player’s strategy space is {R,P,S}. Each DM simultaneously forms one of three shapes
with an extended hand. These shapes are Rock (closed hand), Paper (open hand) and
Scissors (two open fingers forming a V).

A DM who decides to play Rock will beats another DM who has chosen Scissors
(“rock crushes scissors”), but will lose to one who has played Paper (“paper covers rock”);
a play of Paper will lose to a play of Scissors (“scissors cut paper”). If both DMs choose
the same shape, the game is tied and is usually immediately replayed to break the tie.

Let us analyze a conflict that is described by the game Rock, Paper, Scissors using
the GMCR. It has nine possible states which describe the actions chosen by the two
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DMs involved. Figure 8 illustrate this conflict. The preferences of the DMs are given by
RS ∼1 PR ∼1 SP ≻1 RR ∼1 PP ∼1 SS ≻1 SR ∼1 RP ∼1 PS and SR ∼2 RP ∼2 PS ≻2 RR ∼2

PP ∼2 SS ≻2 RS ∼2 PR ∼2 SP. Table 4 presents the results of the stability analysis of the
Rock, Paper and Scissors game.

Figure 8 – Possibility of movement’s decision in the game Rock, Paper and Scissors game

Source: This research (2018)

TABLE 4 – Stable states according to some stability definitions in Rock, Paper, Scissors
game

Stability Definition RR PR SR RP PP SP RS PS SS
Nash 1 2 2 1 1 2
GMR 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
SMR 1 2 2 1 1 2
SEQ 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
SSEQ 1 2 2 1 1 2

Odd m-SEQ 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
Even m-SEQ 1 2 2 1 1 2

Source: This research (2018)

We can observe in Table 4 that again all states are SEQ equilibrium, but this result
is only true for m-SEQ if m is odd.

3.6.3 Conflict of Values

Hipel & Obeidi in 2005 studied using the GMCR a conflict generated by the con-
frontation of values of a Global Market-Driven Economy (GMDE) and a Sustainable
Ecosystem (SES) philosophy. They showed that the environment and social patterns will
continue to deteriorate if the entrenched positions and related value systems of both fields
persist.
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The game is represented by two DMs, GMDE and SES. The GMDE has three
options: Influence states to adopt market-oriented economic policies; Promote the ideals
of globalization and internationalization through a media that stresses the efficiency and
prosperity of societies that are part of global free trade agreements; and Reform the WTO
so that the environment is treated as a public trust and not as a commodity. SES has three
main options: Foster public education that promotes environmental integrity and social
responsibility, as well as warns of the dangers of succumbing to values of GMDE; Lobby
governments to incorporate environmental, ecosystem and other social concerns into free
trade agreements; and Put pressure on trade negotiators to consider more societal concerns
on their agenda.

Figure 9 presents the two DMs in the Conflict of Values model followed by the
options under their control. A “Y” opposite an option indicates “Yes”, the option is
selected by the DM controlling it, while “N” corresponds to “No”, the option is not taken.
It is possible to note that the GMDE is influencing governments and promoting the ideals
of free trade agreements, but not considering reforms. The SES is doing everything it can:
educating the public, lobbying governments and pressuring negotiators by demonstrating
whenever they conduct a meeting. Tension between the two opponents is escalating.

Figure 9 – Decision Makers and Options in the Conflict of Values.

Source: (HIPEL; OBEIDI, 2005)

In this game there are mathematically 64 (26) possible states in the Conflict of Values
model shown in Figure 9. In the modeling stage, unviable state removals are performed
to obtain the list of feasible states. In the Conflict of Values model, there are two reasons
for infeasibility. Some options are mutually exclusive and cannot be selected at the same
time. Therefore, the GMDE will not simultaneously select reform and influence options,
nor will it choose to reform and promote together. In addition, there are infeasible states
whenever the three options influence, promote, and reform are taken. It may also occur
that, if GMDE chooses to reform, SES will not pressure trade negotiators. Figure 10
illustrates the remaining 36 feasible states in the conflict, where state 36 corresponds to
the status quo state.
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Figure 10 – Feasible States in the Conflict of Values.

Source: (HIPEL; OBEIDI, 2005)

The preferences of each DM are presented in Figure 11 referring to the most preferred
to least preferred states. States in parentheses are equally preferred states for a DM and
higher states in a column are more preferred than those lower. For example, the GMDE
equally prefers states in the first set: (3,4), but the states in this set are more preferred
than states in the second set: (13,14), and so on.

Figure 11 – Preference Ranking of States in the Conflict of Values.

Source: (HIPEL; OBEIDI, 2005)

Analyzing this conflict, we can verify that the use of SEQ implies the existence of a
noncredible punishment in the analysis. In order to see that, note that from state 25, the
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DM SES can move to states 1,6,11,16,21,29, and 33. Of these states only states 6,16 and
33 are preferable to state 25 by DM SES, as can be seen by the Ranking of Preferences.
However analyzing these 3 states we see that:

• From state 6, DM GMDE can improve going to state 9 which is not preferable to
state 25 for DM SES;

• From state 16, DM GMDE can improve by going to state 19 which is not preferable
to state 25 for DM SES;

• From state 33, DM GMDE can improve by going to state 36 which is not preferable
to state 25 for DM SES.

Therefore, state 25 is SEQ for DM SES. Let us now verify that state 25 is not 2-
SEQ for DM SES, by showing that state 6 is SEQ for DM GMDE, which implies that the
punishment that DM GMDE would enforce in state 6 is noncredible. To see that state 6
is SEQ stable for DM GMDE, note that from 6 DM GMDE can only move to states 7,
8, 9 and 10. Of these states only states 8 and 9 are preferable to state 6 by DM GMDE.
However analyzing these 2 states we see that:

• From state 8, DM SES can improve going to state 35 which is not preferable to
state 6 for DM GMDE;

• From state 9, DM SES can improve by going to state 36 which is not preferable to
state 6 for DM GMDE;

In the next chapter we present the definitions of Higher-order Sequential Stabilities
for a DM for conflicts with n−DMs, provide some of its properties, and the definition of
Higher-order Coalitional Sequential Stability and study its properties.
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4 HIGHER-ORDERSEQUENTIALSTABILITIES FORMULTILATERALCONFLICTS

Many important conflict situations involve multiple parties. In such cases, where
there are more than 2-DMs in the conflict, while analyzing the stabilities for a focal DM,
he must foresee the sanctions that the other DMs may together achieve through a sequence
of movements. This sequence of movements of the opponents is usually restrained so that
in the sequence a given DM may even move more than once, but not twice consecutively,
that is, the DMs should alternate as they move.

As in the case of a bilateral conflict, the movements in the sanctions considered,
while analyzing the SEQ stability of a given state for a focal DM, must be unilateral
improvement moves. However, there is nothing in the definition of SEQ stability that
prevents the DMs from moving away from states which are SEQ stable for them, what
makes some of the sanctions noncredible.

Our purpose in this chapter, is to extend the results of the previous chapter for
multilateral conflicts. First, we define what is a m− th order credible legal sequence of
unilateral improvements for a coalition of DMs. Then, we define the notion of m− th order
sequential stability. Our next step, is to derive the properties of this new notion proposed
relating it to other commonly used stability notions used in the GMCR with multiple DMs.
We also introduce the concept of Higher-order Sequential Stability in coalitional analysis.
Finally, we illustrate the usefulness of the proposed model through two real-world conflict
situations.

4.1 Higher-order Sequential Stabilities for n DMs

Our first step in the analysis of Higher-order Sequential Stabilities for n DMs is to
identify what are the possible credible sanctions that the opponents of a focal DM may
impose on him or her. By credibility, we mean that DMs should not leave states which
are sequentially stable for them. In order to avoid a circular definition, we need to define
various orders of sequential stability, as in the case of bilateral conflicts.

For a coalition H ⊆ N and m ≥ 2, let R+m
H (s) be the set of states achievable by the

DMs in H through a m-order credible legal sequence of unilateral improvements from
state s, where the sequence of unilateral improvements is legal if DMs cannot move twice
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consecutively in the sequence and it is m-order credible if no DM leaves a state which
(m−1)-SEQ stable for him or her.

In what follows, we assume that R+1
H (s) = R+

H(s) and that Ω+1
H (·) = Ω+

H(·). Thus,
a first order credible move means that no DM leaves a Nash stable state to sanction
another DM. For m ≥ 2, let us define R+m

H (s) formally by induction. Note that, for m ≥ 2,
the definition of R+m

H (s) depends on the definition of S(m−1)−SEQ
i . Thus, to complete the

induction process, we define Sm−SEQ
i in terms of R+m

H (s) for m ≥ 1, as follows:

Definition 4.1.1. For an integer m such that m ≥ 1, let Sm−SEQ
i be the set of all states

satisfying the sequential stability of m order for DM i, where the state s is m−th order
sequentially stable for DM i if for each state s1 belonging to R+

i (s), there exists s2 belonging
to R+m

N−i(s1) such that s2 is not preferable to s for DM i.

Thus, since R+1
H (s) = R+

H(s), it follows that S1−SEQ
i = SSEQ

i , as in the case of bilateral
conflicts. Moreover, the intuition for a state s to be 2-SEQ stable, for DM i, is that for
every possible unilateral improvement move that DM i has, s1, the opponents may achieve
through a legal sequence of unilateral improvements, where no DM leaves a SEQ stable
state for himself, a state s2 which is no better that s for DM i. Thus, the sequence that
leads to a sanction is credible in the sense that no DM is moving away from a SEQ stable
state. However, in such a sequence of movements the opponents may move away from
a 2-SEQ stable state, leading to a non-credibility of higher order. Therefore, we propose
sequentially stability for several orders so that in the movements made by DMs to sanction
a focal DM, no DM leaves a SEQ stable state of the immediately lower order.

Thus, the various orders of sequential stability for a given DM i are given by the
sequence of sets (Sm−SEQ

i )∞
m=1. As in the case of bilateral conflicts, two limiting sets, known

as limin f and limsup, of this sequence can be defined as follows:

Sin f−SEQ
i =

∞∪
l=1

∞∩
m=l

Sm−SEQ
i (4.1)

and

Ssup−SEQ
i =

∞∩
l=1

∞∪
m=l

Sm−SEQ
i . (4.2)

As before, Sin f−SEQ
i is the set of states which belong to all, except finitely many, sets

in the sequence (Sm−SEQ
i )∞

m=1 and Ssup−SEQ
i is the set of states which belong to infinitely

many sets in the sequence (Sm−SEQ
i )∞

m=1.

Next, we analyze which properties are satisfied by the proposed Higher-order Se-
quential Stability notions for multilateral conflicts.
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4.2 Properties of Higher-order Sequential Stabilities for multilateral conflicts

Theorem 4.2.1 shows us how the sets of m-th order sequentially stable states, for
different m values, relate to one another.

Theorem 4.2.1. Let m and m1 be any positive integers. For i ∈ N, if m1 is odd, then
R+m

H (s)⊆ R+m1
H (s) and Sm−SEQ

i ⊆ Sm1−SEQ
i , for all m ≥ m1 and, otherwise, if m1 is even, it

follows that R+m1
H (s)⊆ R+m

H (s) and Sm1−SEQ
i ⊆ Sm−SEQ

i , for all m ≥ m1.

Proof: We prove the theorem by mathematical induction on m1.

Let us consider first the case m1 = 1. Then, we first show that R+m
H (s) ⊆ R+1

H (s) =

R+
H(s) and that Ω+m

H (s, ·) ⊆ Ω+1
H (s, ·) = Ω+

H(s, ·), for every H ⊆ N, s ∈ S and m ≥ 1. For
m = 1, the result is trivially true. Thus, let us consider the case m > 1. We prove that by
induction on the minimum number of moves made by DMs in the coalition H, l∗, that is
necessary to reach a state s1 ∈ R+m

H (s) by a m-order credible legal sequence of unilateral
improvements. For l∗ = 1, if s1 ∈ R+m

H (s), then it follows that s1 ∈ R+
i (s), for some i ∈ H,

and s does not belong to S(m−1)−SEQ
i and i ∈ Ω+m

H (s,s1). Thus, we have that s1 ∈ R+
H(s)

and i ∈ Ω+
H(s,s1).

For the induction hypothesis, assume that for any s1 ∈ R+m
H (s) which can be reached

by a m-order credible legal sequence of unilateral improvements by DMs in H in at most
l∗−1 steps, then R+m

H (s1)⊆ R+1
H (s1) = R+

H(s1) and that Ω+m
H (s,s1)⊆ Ω+1

H (s,s1) = Ω+
H(s,s1).

Thus, if s2 ∈ R+m
H (s) and can be reached by a m-order credible legal sequence of unilateral

improvements by DMs in H in exactly l∗ steps, it follows that there exists s1 ∈ R+m
H (s)

which can be reached by a m-order credible legal sequence of unilateral improvements by
DMs in H in exactly l∗− 1 steps, s2 ∈ R+

i (s1), i ∈ H, s1 does not belong to S(m−1)−SEQ
i ,

{i} is different from Ω+m(s,s1) and i ∈ Ω+m(s,s2). Therefore, by the induction hypothesis,
we have that there exists s1 ∈ R+

H(s) such that s2 ∈ R+
i (s1), i ∈ H and {i} is different from

Ω+(s,s1), which implies that s2 ∈ R+1
H (s) and i ∈ Ω+1(s,s2).

Therefore, if s ∈ Sm−SEQ
i , for m ≥ 1, it follows that for all s1 ∈ R+

i (s), there exists
s2 ∈ R+m

N−i(s1) such that s ≿i s2. Thus, since R+m
N−i(s1) ⊆ R+1

N−i(s1), it follows that for all
s1 ∈ R+

i (s), there exists s2 ∈ R+1
N−i(s1) such that s ≿i s2. Thus, s ∈ S1−SEQ

i = SSEQ
i .

For m1 = 2, we first show that R+2
H (s) ⊆ R+m

H (s) and that Ω+2
H (s, ·) ⊆ Ω+m

H (s, ·), for
every H ⊆ N, s ∈ S and m ≥ 2. We prove that by induction on the minimum number of
moves made by DMs in the coalition H, l∗, that is necessary to reach a state s1 ∈ R+2

H (s) by
a 2-order credible legal sequence of unilateral improvements. For l∗ = 1, if s1 ∈R+2

H (s), then
it follows that s1 ∈ R+

i (s), for some i ∈ H, and s does not belong to SSEQ
i and i ∈ Ω+2

H (s,s1).
By the case m1 = 1, we have that s1 ∈ R+

i (s), for some i ∈ H, and s does not belong to
S(m−1)−SEQ

i , for m ≥ 2, which implies that s1 ∈ R+m
H (s) and i ∈ Ω+m

H (s,s1).
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For the induction hypothesis, assume that for any s1 ∈ R+2
H (s) which can be reached

by a 2-order credible legal sequence of unilateral improvements by DMs in H in at most
l∗−1 steps, then R+2

H (s1)⊆ R+m
H (s1) and that Ω+2

H (s,s1)⊆ Ω+m
H (s,s1). Thus, if s2 ∈ R+2

H (s)

and can be reached by a 2-order credible legal sequence of unilateral improvements by
DMs in H in exactly l∗ steps, it follows that there exists s1 ∈ R+2

H (s) which can be reached
by a 2-order credible legal sequence of unilateral improvements by DMs in H in exactly
l∗−1 steps, s2 ∈ R+

i (s1), i ∈ H, s1 does not belong to SSEQ
i , {i} is different from Ω+2(s,s1)

and i ∈ Ω+2(s,s2). Therefore, by the case m1 = 1 and the induction hypothesis, we have
that there exists s1 ∈ R+m

H (s) such that s2 ∈ R+
i (s1), i ∈H, s1 does not belong to S(m−1)−SEQ

i

and {i} is different from Ω+m(s,s1), which implies that s2 ∈ R+m
H (s) and i ∈ Ω+m(s,s2).

Therefore, if s ∈ S2−SEQ
i , it follows that for all s1 ∈ R+

i (s), there exists s2 ∈ R+2
N−i(s1)

such that s ≿i s2. Thus, since R+2
N−i(s1) ⊆ R+m

N−i(s1), for m ≥ 2, it follows that for all s1 ∈
R+

i (s), there exists s2 ∈ R+m
N−i(s1) such that s ≿i s2. Thus, s ∈ Sm−SEQ

i , for m ≥ 2.

Now assume the following inductive hypothesis:

(I1) ∀i ∈ N, R+m
H (s) ⊆ R+(m1−1)

H (s) and Sm−SEQ
i ⊆ S(m1−1)−SEQ

i , for all m ≥ (m1 − 1) and
m1 −1 odd, and
(I2) ∀i ∈ N, R+(m1−1)

H (s) ⊆ R+m
H (s) and S(m1−1)−SEQ

i ⊆ Sm−SEQ
i , for all m ≥ (m1 − 1) and

m1 −1 even.

First, suppose that m1 is odd. We now show that R+m
H (s)⊆R+m1

H (s) and that Ω+m
H (s, ·)

⊆ Ω+m1
H (s, ·), for every H ⊆ N, s ∈ S and m ≥ m1. We prove that by induction on the

minimum number of moves made by DMs in the coalition H, l∗, that is necessary to reach
a state s1 ∈ R+m

H (s) by a m-order credible legal sequence of unilateral improvements. For
l∗ = 1, if s1 ∈ R+m

H (s), then it follows that s1 ∈ R+
i (s), for some i ∈ H, and s does not belong

to S(m−1)−SEQ
i and i ∈ Ω+m

H (s,s1). Thus, by (I2), we have that s1 ∈ R+
i (s), for some i ∈ H,

and s does not belong to S(m1−1)−SEQ
i , which implies that s1 ∈ R+m1

H (s) and i ∈ Ω+m1
H (s,s1).

For the induction hypothesis, assume that for any s1 ∈ R+m
H (s) which can be reached

by a m-order credible legal sequence of unilateral improvements by DMs in H in at most
l∗ − 1 steps, then R+m

H (s1) ⊆ R+m1
H (s1) and that Ω+m

H (s,s1) ⊆ Ω+m1
H (s,s1). Thus, if s2 ∈

R+m
H (s) and can be reached by a m-order credible legal sequence of unilateral improvements

by DMs in H in exactly l∗ steps, it follows that there exists s1 ∈ R+m
H (s) which can be

reached by a m-order credible legal sequence of unilateral improvements by DMs in H in
exactly l∗−1 steps, s2 ∈ R+

i (s1), i ∈ H, s1 does not belong to S(m−1)−SEQ
i , {i} is different

from Ω+m(s,s1) and i ∈ Ω+m(s,s2). Therefore, by (I2), we have that there exists s1 ∈
R+m1

H (s) such that s2 ∈ R+
i (s1), i ∈ H, s1 does not belong to S(m1−1)−SEQ

i and {i} is different
from Ω+m1(s,s1), which implies that s2 ∈ R+m1

H (s) and i ∈ Ω+m1(s,s2).

Therefore, if s ∈ Sm−SEQ
i , it follows that for all s1 ∈ R+

i (s), there exists s2 ∈ R+m
N−i(s1)

such that s ≿i s2. Thus, since for m ≥ m1, R+m
N−i(s1) ⊆ R+m1

N−i (s1), it follows that for all
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s1 ∈ R+
i (s), there exists s2 ∈ R+m1

N−i (s1) such that s ≿i s2. Thus, s ∈ Sm1−SEQ
i .

Finally, suppose that m1 is even. We now show that R+m1
H (s) ⊆ R+m

H (s) and that
Ω+m1

H (s, ·)⊆ Ω+m
H (s, ·), for every H ⊆ N, s ∈ S and m ≥ m1. We prove that by induction on

the minimum number of moves made by DMs in the coalition H, l∗, that is necessary to
reach a state s1 ∈R+m1

H (s) by a m1-order credible legal sequence of unilateral improvements.
For l∗ = 1, if s1 ∈ R+m1

H (s), then it follows that s1 ∈ R+
i (s), for some i ∈ H, and s does not

belong to S(m1−1)−SEQ
i and i ∈ Ω+m1

H (s,s1). By (I1), we have that s1 ∈ R+
i (s), for some

i ∈ H, and s does not belong to S(m−1)−SEQ
i , for m ≥ m1, which implies that s1 ∈ R+m

H (s)

and i ∈ Ω+m
H (s,s1).

For the induction hypothesis, assume that for any s1 ∈ R+m1
H (s) which can be reached

by a m1-order credible legal sequence of unilateral improvements by DMs in H in at
most l∗− 1 steps, then R+m1

H (s1) ⊆ R+m
H (s1) and that Ω+m1

H (s,s1) ⊆ Ω+m
H (s,s1). Thus, if

s2 ∈ R+m1
H (s) and can be reached by a m1-order credible legal sequence of unilateral im-

provements by DMs in H in exactly l∗ steps, it follows that there exists s1 ∈ R+m1
H (s)

which can be reached by a m1-order credible legal sequence of unilateral improvements by
DMs in H in exactly l∗− 1 steps, s2 ∈ R+

i (s1), i ∈ H, s1 does not belong to S(m1−1)−SEQ
i ,

{i} is different from Ω+m1(s,s1) and i ∈ Ω+m1(s,s2). Therefore, by (I1) and the induction
hypothesis (on l∗), we have that there exists s1 ∈ R+m

H (s) such that s2 ∈ R+
i (s1), i ∈ H, s1

does not belong to S(m−1)−SEQ
i and {i} is different from Ω+m(s,s1), which implies that

s2 ∈ R+m
H (s) and i ∈ Ω+m(s,s2).

Therefore, if s ∈ Sm1−SEQ
i , it follows that for all s1 ∈ R+

i (s), there exists s2 ∈ R+m1
N−i (s1)

such that s ≿i s2. Thus, since for m ≥ m1, R+m1
N−i (s1) ⊆ R+m

N−i(s1), it follows that for all
s1 ∈ R+

i (s), there exists s2 ∈ R+m
N−i(s1) such that s ≿i s2. Thus, s ∈ Sm−SEQ

i , for m ≥ m1.

Figure 3 still illustrates the result of this theorem.

The next result shows that Sin f−SEQ
i consists of states which are Higher-order SEQ

for DM i for at least one even order and that Ssup−SEQ
i consists of the states which are

Higher-order SEQ for DM i for every odd order.

Corollary 4.2.1.1. Sin f−SEQ
i =

∪∞
m=1 S2m−SEQ

i and Ssup−SEQ
i =

∩∞
m=1 S(2m−1)−SEQ

i .

Proof: Using the result of Theorem 4.2.1, the proof of Corollary 4.2.1.1 is identical
to the proof of Corollary 3.3.1.1.

Theorem 4.2.2 shows that the set of m−SEQ stable states, for m odd, is non-empty,
if preferences, ≻i, and movements, Ri, are transitive, for every DM i. It is easy to see
that if transitivity of preferences and movements holds, then for every coalition H ⊆ N, if
s1 ∈ R+m

H (s), then R+m
H (s1)⊆ R+m

H (s).

Theorem 4.2.2. If transitivity of movements and transitivity of preferences holds, then
Sm−SEQ ̸= /0, for every m odd.
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Proof: Suppose that Theorem 4.2.2 is false. Then, there exists some m odd such that
every state is not m− SEQ for at least one DM i ∈ N. Suppose that there is some state
m−SEQ unstable for DM i1 and let s0 be a state such that there is not other not m−SEQ

unstable state for DM i1 that is preferable to s0 for DM i1.

Then, there exists s1 ∈ R+
i1 (s0), such that for all s2 ∈ R+m

N−{i1}(s1), s2 ≻i1 s0. Since,
s1 ≻i1 s0, by definition of s0, we have that s1 is m − SEQ for DM i1 and therefore is
m−SEQ unstable for some DM i2, i2 ∈ N −{i1}. Thus, by definition of s1, we have that
if s ∈ R+m

N−{i1}(s1)∪{s1}, then s ≻i1 s0, and, consequently, is m−SEQ stable for DM i1.

We now show by induction the following fact. For k ≥ 1, there are distinct DMs
i1, i2, . . . , ik+1 and a state sk such that sk is not m−SEQ for DM ik+1 and if s∈ R+m

N−{i1,i2,...,ik}
(sk)∪{sk}, then s is m−SEQ for DMs i1, i2, . . . , ik. Since the set of DMs is finite and the
results holds for every k, we have a contradiction. For k = 1, we have already shown the
fact. Now, suppose that the fact is true for some k and let us show that it is also true for
k+1. Let tk+1 denote a state in R+m

N−{i1,i2,...,ik}
(sk)∪{sk} that is m−SEQ unstable for DM

ik+1 such that there is no other t state in R+m
N−{i1,i2,...,ik}

(sk)∪{sk} which is not m−SEQ for
DM ik+1, such that t ≻ik+1 tk+1. The existence of tk+1 is guaranteed by the fact that sk is
not m−SEQ for DM ik+1 and that ≻ik+1 is transitive.

By definition of m − SEQ, there exists sk+1 ∈ R+
ik+1

(tk+1) such that for every s ∈
R+m

N−{ik+1}
(sk+1), we have that s ≻ik+1 tk+1.

By transitivity of preferences and movements and the fact that tk+1 is not m−SEQ

for DM ik+1, sk+1 ∈ R+m
N−{i1,i2,...,ik}

(sk). Since sk+1 ≻ik+1 tk+1, sk+1 is m− SEQ for DM ik+1

and, since, sk+1 ∈ R+
N−{i1,i2,...,ik}

(sk), by the induction hypothesis, it is m− SEQ for DMs
i1, i2, . . . , ik. If sk+1 is m − SEQ for DMs in N − {i1, i2, . . . , ik+1}, the proof is finished,
since it would be a m − SEQ equilibrium. Otherwise, there is some DM ik+2 ∈ N −
{i1, i2, . . . , ik+1} such that sk+1 is not m− SEQ for DM ik+2. It remains to show that if
s ∈ R+m

N−{i1,i2,...,ik+1}
(sk+1)∪{sk+1}, then s is m− SEQ for DMs i1, i2, . . . , ik+1. We already

showed that if s = sk+1, then this is true. Now observe that

R+m
N−{i1,i2,...,ik+1}(sk+1)⊆ R+m

N−{i1,i2,...,ik}(sk+1)⊆ R+m
N−{i1,i2,...,ik}(sk).

Therefore, by the induction hypothesis, if s ∈ R+m
N−{i1,i2,...,ik+1}

(sk+1), then
s ∈ R+m

N−{i1,i2,...,ik}
(sk) and s is m− SEQ for DMs i1, i2, . . . , ik. It remains to show that s is

m−SEQ for DM ik+1. Since R+m
N−{i1,i2,...,ik+1}

(sk+1)⊆ R+m
N−{ik+1}

(sk+1), it follows that s ≻ik+1

tk+1, which implies, by definition of tk+1, that s is m−SEQ stable for DM ik+1.

Theorem 4.2.3 shows that the definition proposed in this chapter is a generalization
of that proposed in Chapter 3.

Theorem 4.2.3. If n = 2, them s is m-th order sequentially stable for DM i according to
the definition for multilateral conflicts if and only if, it is m-th order sequentially stable
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for DM i according to the definition for bilateral conflicts.

Proof: If n= 2, them N− i= { j}. Moreover, s2 ∈R+m
{ j}(s1) if and only if s1 /∈ S(m−1)−SEQ

j

and s2 ∈ R+
j (s1). Therefore, both definitions coincide.

4.3 An alternative definition

An alternative way to overcome the problem of noncredible threats in the SEQ
analysis is to use the following alternative definition for SEQ of order m, where the state
in which the opponent of the focal DM moves is not only when is not (m− 1)-SEQ for
the opponent, but it is also when is not k-SEQ for the opponent for every 0 < k < m. To
formalize that, consider the following definition:

Definition 4.3.1. For an integer m such that m ≥ 2, let Sm−SEQ2

i be the set of all states
that satisfy second kind m-th order sequential stability for DM i, where state s is second
kind m-th order sequentially stable for DM i if for every state s1 ∈ R+

i (s), there exists
s2 ∈ ∩m

k=1R+k
N−i(s1) such that s ≿i s2.

Theorem 4.3.1 shows that this alternative definition is a particular case of the orig-
inal definition of m-SEQ stability.

Theorem 4.3.1. Let i ∈ N. The set of second kind m-th order sequentially stable states for
DM i is equal to the set of 2-nd order sequentially stable states for DM i, for every m ≥ 2,
i.e., Sm−SEQ2

i = S2−SEQ
i , for every m ≥ 2.

Proof:

By Theorem 4.2.1, we have that for any m ≥ 2, ∩m
k=1R+k

N−i(s1) = R+2
N−i(s1). Therefore,

Sm−SEQ2

i = S2−SEQ
i , as desired.

Finally, based on this result, from now on, we are only interested on the original
definition of m−SEQ stability for multiple DMs.

4.4 Relationships among Higher-order Sequential Stabilities and other solution
concepts in the GMCR for multiple DMs

In this section the relationships between higher-order SEQ and other GMCR solution
concepts for conflicts involving multiple DMs are studied.

Theorem 4.4.1. The following relations between Higher-order SEQ and standard stability
notions of the GMCR hold:
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(a) For i ∈ N, if s ∈ SNASH
i , then s ∈ Sm−SEQ

i , for all m ≥ 1.

(b) For i ∈ N, if s ∈ Sm−SEQ
i for some m ≥ 1, then s ∈ SSEQ

i .

(c) For i ∈ N, if s ∈ Sm−SEQ
i for some m ≥ 1, then s ∈ SGMR

i .

(d) For i ∈ N, SSMR
i ⊈ Sm−SEQ

i , for all m ≥ 1.

(e) For i ∈ N, SSSEQ
i ⊈ Sm−SEQ

i , for all m ≥ 2.

(f) For i ∈ N, Sm−SEQ
i ⊈ SSMR

i , for all m ≥ 1.

(g) For i ∈ N, Sm−SEQ
i ⊈ SSSEQ

i , for all m ≥ 1.

Proof: Identical to the proof of Theorem 3.5.1.

Figure 6 still illustrates the relationships described in Theorem 4.4.1 for conflicts
with multiple DMs.

4.5 Coalitional Analysis

In this section, we introduce the concept of Higher-order Sequential Equilibria in
coalitional analysis for the Graph Model for Conflict Resolution. Our first step is to
identify what are the possible credible sanctions that the opponents of a focal coalition
may impose on it. By credibility, we mean that coalitions should not leave states which
are sequentially stable for them. In order to avoid a circular definition, we need to define
various orders of coalitional sequential stability, as in the case of bilateral and multilateral
conflicts.

For a coalition C ∈ φ(N) and m ≥ 2, let R++m
C (s) be the set of states achievable by

the coalitions in C through a m-order credible legal sequence of unilateral improvements
from state s, where the sequence of unilateral improvements is legal if coalitions cannot
move twice consecutively in the sequence and it is m-order credible if no coalition leaves
a state which (m−1)-SEQ stable for it.

In what follows, we assume that R++1
C (s) =R++

C (s) and that Ω++1
C (·) =Ω++

C (·). Thus,
a first order credible move means that no coalition leaves a coalitional Nash stable state
to sanction another coalition. For m ≥ 2, let us define R++m

C (s) formally by induction.

Note that, for m≥ 2, the definition of R++m
C (s) depends on the definition of S(m−1)−SEQ

H .
Thus, to complete the induction process, we define Sm−SEQ

H in terms of R++m
C (s) for m ≥ 1,

as follows:

Definition 4.5.1. For an integer m such that m ≥ 1, let Sm−SEQ
H be the set of all states

satisfying the coalitional sequential stability of m order for coalition H, where the state s



51

is m−th order coalitional sequentially stable for coalition H if for each state s1 belonging
to R++

H (s), there exists s2 belonging to R++m
φ(N−H)

(s1) such that s2 is not preferable to s for
DM i for some i ∈ H.

Thus, since R++1
C (s) = R++

C (s), it follows that S1−SEQ
H = SSEQ

H . Moreover, the intuition
for a state s to be 2-SEQ, for coalition H, is that for every possible unilateral improvement
move that coalition H has, s1, the opponents may achieve through a legal sequence of
unilateral improvements, where no coalition leaves a coalitional SEQ state for itself, a state
s2 which is no better that s for DM i, where i belongs to H. Thus, the sequence that leads
to a sanction is credible in the sense that no coalition is moving away from a coalitional
SEQ state. However, in such a sequence of movements the opponents may move away
from a coalitional 2-SEQ state, leading to a non-credibility of Higher-order. Therefore, we
propose coalitional sequential stability for several orders so that in the movements made
by coalitions to sanction a focal coalition, no coalition leaves a coalitional SEQ state of
the immediately lower order.

Thus, the various orders of coalitional sequential stability for a given coalition H

are given by the sequence of sets (Sm−SEQ
H )∞

m=1. As in the case of bilateral and multilateral
conflicts, two limiting sets, known as limin f and limsup, of this sequence can be defined
as follows:

Sin f−SEQ
H =

∞∪
l=1

∞∩
m=l

Sm−SEQ
H (4.3)

and

Ssup−SEQ
H =

∞∩
l=1

∞∪
m=l

Sm−SEQ
H . (4.4)

As before, Sin f−SEQ
H is the set of states which belong to all, except finitely many, sets

in the sequence (Sm−SEQ
H )∞

m=1 and Ssup−SEQ
H is the set of states which belong to infinitely

many sets in the sequence (Sm−SEQ
H )∞

m=1.

Next, we analyze which properties are satisfied by the proposed Higher-order Coali-
tional Sequential Stability notions for coalitional analysis.

4.6 Properties of Higher-order Coalitional Sequential Stabilities for coalitional
analysis

Theorem 4.6.1 shows us how the sets of m− th order coalitional sequentially stable
states, for different m values, relate to one another.
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Theorem 4.6.1. Let m and m1 be any positive integers. For i ∈ N, if m1 is odd, then
R++m

C (s)⊆ R++m1
C (s) and Sm−SEQ

H ⊆ Sm1−SEQ
H , for all m ≥ m1 and, otherwise, if m1 is even,

it follows that R++m1
C (s)⊆ R++m

C (s) and Sm1−SEQ
H ⊆ Sm−SEQ

H , for all m ≥ m1.

Proof: The proof for the Theorem 4.6.1 by mathematical induction is similar with
the proof of Theorem 4.2.1. The only necessary changes are to replace i for H and H for
C in the previous proof.

The next result shows that Sin f−SEQ
H consists of states which are Higher-order Coali-

tional SEQ for coalition H for at least one even order and that Ssup−SEQ
H consists of the

states which are Higher-order Coalitional SEQ for coalition H for every odd order.

Corollary 4.6.1.1. Sin f−SEQ
H =

∪∞
m=1 S2m−SEQ

H and Ssup−SEQ
H =

∩∞
m=1 S(2m−1)−SEQ

H .

Proof: Using the result of Theorem 4.6.1, the proof of Corollary 4.6.1.1 is identical
to the proof of Corollary 3.3.1.1.

4.6.1 Relationships among Higher-order Coalitional Sequential Stabilities and
other coalitional solution concepts in the GMCR

In this section the relationships between Higher-order Coalitional SEQ and other
GMCR coalitional solution concepts are studied.

Theorem 4.6.2. The following relations between Higher-order Coalitional SEQ and stan-
dard coalitional stability notions of the GMCR hold:

(a) For H ∈ φ(N), if s ∈ SNASH
H , then s ∈ Sm−SEQ

H , for all m ≥ 1.

(b) For H ∈ φ(N), if s ∈ Sm−SEQ
H for some m ≥ 1, then s ∈ SSEQ

H .

(c) For H ∈ φ(N), if s ∈ Sm−SEQ
H for some m ≥ 1, then s ∈ SGMR

H .

(d) For H ∈ φ(N), SSMR
H ⊈ Sm−SEQ

H , for all m ≥ 1.

(e) For H ∈ φ(N), SSSEQ
H ⊈ Sm−SEQ

H , for all m ≥ 2.

(f) For H ∈ φ(N), Sm−SEQ
H ⊈ SSMR

H , for all m ≥ 1.

(g) For H ∈ φ(N), Sm−SEQ
H ⊈ SSSEQ

H , for all m ≥ 1.

Proof: Identical to the proof of Theorem 3.5.1.

Figure 12 illustrates the relationships described in Theorem 4.6.2 for coalitional
analysis of conflicts with multiple DMs.
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Figure 12 – relationships described in Theorem 4.6.2.

Source: This research (2018)

4.7 Applications

Two applications are modeled in this section to illustrate how to analyze the m−SEQ

concept in conflicts with multiple DMs. The first application was studied by Alamanda et
al.in 2015, called the Majalaya’s Textile Industries Waste Pollution Conflict. This conflict
concerns the waste pollution in the Upstream of Citarum River in Indonesia. It models
the optimal solution based on the preferences for each DM in the conflict, namely the
government of West Java province, the residents of Majalaya, the textile industry, and
the independent environmental expert in the city of Bandung.

The second application is the Private Brownfield Renovation conflict which was
analyzed by Walker, Boutilier & Hipel in 2010. In particular, we analyze an acquisition
conflict, where one party attempts to besides buying the property as cheaply as possible,
also obtaining as much benefits as possible from the local government. On the other hand,
the property owner tries to sell the property at the highest possible price. The analysis
of the conflict shows how a friendly interaction of the decision makers in a conflict can
cause them to come to a consensus which benefits all.

While analyzing both conflicts, we point out some different results found regarding
the stability of some states compared to the original analysis. Besides pointing out the
mistakes, we show the importance of analyzing the credibility of the sanctions that may
be imposed on the focal DM.
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4.7.1 Majalaya’s Textile Industries Waste Pollution Conflict

This application has the objective of examining the conflicts in the textile industry
waste disposal in the upstream region of Citarum River by using the GMCR. The study
was realized in the years of 2010, 2011, 2013, and 2014 in the Majalaya textile industry
areas located in the upstream part of Citarum River, Majalaya sub-district, Bandung
regency in Indonesia.

In this game, there are 4 players, the Textile Industry (T), the West Java Provincial
Government (W), the Residents of Majalaya (M) and the Independent Environmental
Expert (I). According to Alamanda et al.in 2015, the DMs have the following options:

• Textile Industry (T)

– Maximizing function of the Waste-water Treatment Plant.

• West Java Provincial Government (W)

– Strict punishment the textile industry which proven to dump waste into the
upstream watersheds of Citarum river without processing;

– Doing 3-Re (Revision, Relocation and Recreation).

• The Residents of Majalaya (M)

– Demonstrating anarchically;

– Moving to a place safer from waste of textile industry.

• The Independent Environmental Expert (I)

– Doing negative publicity about the dangers of the waste of textile industry in
medias (printed and electronic).

The feasible states of the Majalaya Conflict are shown in Figure 13. Each DM can
change states by changing his own option keeping the options of the other DMs fixed.
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Figure 13 – Feasible state of Majalaya conflict.

Source: (ALAMANDA et al., 2015)

According to (ALAMANDA et al., 2015) the DM’s preferences are given by:

• The preference for DM T are:
6 ≻T 4 ≻T 2 ≻T 13 ≻T 10 ≻T 11 ≻T 7 ≻T 12 ≻T 5 ≻T 3 ≻T 1 ≻T 8 ≻T 9;

• The preference for DM W are:
13 ≻W 2 ≻W 5 ≻W 11 ≻W 4 ≻W 9 ≻W 8 ≻W 6 ≻W 12 ≻W 7 ≻W 1 ≻W 10 ≻W 3;

• The preference for DM M are:
12 ≻M 5 ≻M 10 ≻M 6 ≻M 9 ≻M 7 ≻M 8 ≻M 3 ≻M 13 ≻M 11 ≻M 2 ≻M 4 ≻M 1;

• The preference for DM I are:
11 ≻I 13 ≻I 7 ≻I 2 ≻I 4 ≻I 12 ≻I 10 ≻I 6 ≻I 5 ≻I 9 ≻I 8 ≻I 1 ≻I 3.

The stability of each state is indicated using letters. For the Nash stable state, (r)
is used, for the sequential stable state (s) is used, for the m-th order sequential stable
of state (ms) is used. If a state is unstable for a particular concept x, (notx) is used. In
Table 5, for each state and each DM, we list the unilateral moves available (UMs), the
unilateral improvements (UIs), the sanctions the opponents of the focal DM can impose
on him or her for each UI and the credible sanctions the opponents of the focal DM can
impose on him or her for each UI.

Having in hand the unilateral moves of DMs and the preferences of each DM, it is
possible to find the results presented in the Table 5. Observing the Table 5 of the results
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TABLE 5 – Stability Analysis Result of the Majalaya’s Textile Industries Waste Pollution

Textile Industry (T)
Stability r r r r r r r r r r r r r
State
Ranking 6 4 2 13 10 11 7 12 5 3 1 8 9

UMs
UIs

West Java Provincial Government (W)
Stability r r r r r r r r 2s nots nots r nots
State
Ranking 13 2 5 11 4 9 8 6 12 7 1 10 3

UMs 5 11 9 8
UIs 5 11 9 8
Sanction (I,10)
Credible
Sanction (I,10)

Residents of Majalaya (M)
Stability r r r r r r r r nots nots r nots nots
State
Ranking 12 5 10 6 9 7 8 3 13 11 2 4 1

UMs 12 9 8 7
UIs 12 9 8 7

Independent Environmental Experts (I)
Stability r r r 2s 2s r r r nots r nots r
State
Ranking 11 13 7 2 4 12 10 6 5 9 8 1 3

UMs 13 11 10 9 1
UIs 13 11 10 9 1

Sanction

(M,
12)
and
(M,
12,

W,5)

(M,
9)

(M,7),
(M,11,
W,11)
and

(M,9,
W,9,
M,9)

Credible
Sanction

(M,
12)

(M,
9)

(M,7),
(M,11,
W,11)
and

(M,9,
W,9,
M,9)

Source: This research (2018)
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of the analysis of the Majalaya’s conflict, we can note about the concepts of Nash and
sequential stability, that for DM T, none of the states presented any credible sanction,
since, for this DM, all the states are stable in Nash. However, some divergent results were
found in what was reported by Alamanda et al. in 2015. In the case of DM W state 1
is not SEQ, since it can move to 9 that is not credible, however in the article state 1 it
does not move to any state being then Nash. In state 10 the author states that he can
move to state 9 however he will not be SEQ, but state 10 is Nash because there is no
improvement from it. For DM M state 13 is not SEQ because it can move to state 12 and
DM 12 moves to 5 and from 5 DM I can move to 10 which is less preferable than 13 for
the DM M. In this way the author incorrectly states that it is SEQ, however it is a not
SEQ state. In the case of states 4 and 1 for DM M and 5 for DM I the author mentions
that they are sequentially stable states, but in fact they are not SEQ.

In relation to the results of m -SEQ. In this case, all SEQ states are also 2-SEQ,
since there is always a credible sanction, the only sanction would not involve W going
from 12 in the analysis of state 2 to DM I, but there is another sanction that is believable,
so the state is 2-SEQ.

4.7.2 Private Brownfield Renovation Conflict

The conflict in Private Brownfield Renovation is the acquisition of the brownfield
property, which involves a developer (D) or real estate company, the property owner (PO)
and the city government (CG). The property owner and the city government try to entice
the buyer into purchasing the property. DM D wants to buy the property for the lowest
possible price and to obtain as much benefits from DM CG as possible, while DM PO
tries to increase the property price as much as possible.

There are six options for the DMs involved. The property owner can either sell high
or low, the city Government can offer incentives and the developer has the option to buy.
Moreover, both the property owner and the developer have the option to walk away from
the negotiation. If they choose that option, they cannot move back to negotiation and
the conflict moves to state 13 no matter what are the options taken by the other DMs.
Since some options are exclusive, not all of the 26 possible combinations of options taken
are feasible. The options for each DM and the feasible states are displayed in Figure 14.
Each DM can change the conflict state by changing his own options, keeping the options
of the other DMs fixed. The only irreversible option is when DM PO or DM D decide to
walk away.
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Figure 14 – Feasible States in the Acquisition Conflict.

Source: (WALKER; BOUTILIER; HIPEL, 2010)

Figure 15 shows the preferences over the states for each DM. Each DM’s state’s
ranking is listed from left to right from most to least preferred, the equally preferred states
are in parenthesis within the state ranking.

Figure 15 – Ranking of states of the Acquisition Conflict.

Source: (WALKER; BOUTILIER; HIPEL, 2010)

Based on preference rankings and on the unilateral moves available for DMs, the
acquisition conflict can be analyzed.

Regarding the concepts of Nash and Sequential Stability, we found some results
different from what was reported by Walker, Boutilier & Hipel in 2010. For example, state
10 is sequentially stable for DM PO since from the unique UI 11 for him, there exists a legal
sequence of UIs where DM CG moves to state 8 followed by an UI from DM D leading the
conflict to state 13, which is worse than state 10 for DM PO. Walker, Boutilier & Hipel
misreported that state 10 does not satisfy Sequential Stability for DM PO. Moreover,
Walker, Boutilier & Hipel also reported that states 6 and 10 were sequentially unstable
for DM CG. However, from state 6, the unique UI for DM CG is state 3. But from state
3, there exists a legal sequence of UIs where DM D moves to state 9 followed by a move
to state 13 of DM PO and state 13 is worse than state 6 for DM CG. From state 10, the
unique UI for DM CG is state 7. But from state 7, there exists a legal sequence of UIs
where DM PO moves to state 8 followed by a move to state 13 of DM D and state 13 is
worse than state 10 for DM CG. Therefore, state 10 is a sequential equilibrium for the
conflict.

Regarding the concept, of m-th order sequential stability, we have that in the Table
6, we can see that: (i) states 7 and 11 are 2-SEQ equilibria, (ii) although state 10 is a
sequential equilibrium, it is not m-SEQ stable for DM PO and DM CG, for m > 1, because
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TABLE 6 – Stability Analysis Result of the Brownfield Conflict for the DM PO

Property Owner (PO)

Stability State
Ranking UMs UIs Sanction Credible

Sanction
r (8 7,9,13
r 11) 10,12,13
r (1 2,3,13
r 2 1,3,13
r 4 5,6,13
r 5 4,6,13
2s 7 8,9,13 8 (D,13) (D,13)

s, but ns for m>1 10) 11,12,13 11 (CG,8,D,13) None

ns (3 1,2,13 1,2 No Sanction
for 1 or 2

ns 6 4,5,13 4,5

No Sanction
for 4,

but for 5
(D,11,CG,8,D,13)

None for 4 or 5

r 13)

ns (9 7,8,13 7,8,13 No Sanction
for 7, 8 or 13

ns 12) 10,11,13 10,11,13 No Sanction
for 10, 11 or 13

Source: This research (2018)

the sanction to DM PO is not credible since it involves DM CG leaving state 11 which is
2-SEQ stable for DM CG and the sanction to DM CG is not credible since it involves DM
PO leaving state 7 which is 2-SEQ stable for DM PO. In the Table 7 : (iii) states 11 and
12 are 2-SEQ stable for DM CG, (iv) although state 6 is a sequentially stable for DM CG,
it is not m-SEQ stable for DM CG, for m > 1, because the sanctions are not credible since
they involve DM D leaving state 3 which is 2-SEQ stable for DM D. Finally, in the Table
8: (v) states 3 and 6 are 2-SEQ stable for DM D, (vi) although state 5 is a sequentially
stable for DM D, it is not m-SEQ stable for DM D, for m > 1, because the sanction is not
credible since it involves DM CG leaving state 11 which is 2-SEQ stable for DM CG, and
(vii) state 4 is SEQ and m-SEQ for DM D for m > 2, however it is not 2-SEQ for DM D,
since the sanction where DM CG moves from state 10 to state 7 is only credible for m > 2,
since this state is SEQ stable, but not m-SEQ stable for DM CG, for m > 1.
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TABLE 7 – Stability Analysis Result of the Brownfield Conflict for the DM CG

City Government (CG)
Stability State Ranking UMs UIs Sanction Credible sanction

r (8 11
r 9) 12

2s (11 8 8 (D,2) or
(D,13)

(D,2) or
(D,13)

2s 12) 9 9 (PO,7),
(PO,13)

(PO,7),
(PO,13)

r (1 4
r 2 5
r 3 6
r 7) 10
ns (4 1 1 No Sanction
ns 5 2 2 No Sanction

s, but ns for m>1 6 3 3 (D,9,PO,13),
(D,9,PO,8,D,13) None

s, but ns for m>1 10) 7 7 (PO,8,D,13) None
r 13

Source: This research (2018)
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TABLE 8 – Stability Analysis Result of the Brownfield Conflict for the DM D

Developer (D)

Stability State
Ranking UMs UIs Sanction Credible

Sanction
r 12 6,13
r 9 3,13
r 11 5,13
r 10 4,13

2s 6 12,13 12

(PO,13),
(PO,10,CG,7),

(PO,10,CG,7,PO,8),
(PO,11,CG,8)

(PO,13)

s, but ns for m>1 5 11,13 11 (CG,8) None

2s (3 9,13 9
(PO,13),
(PO,8),
(PO,7)

(PO,13),
(PO,8),
(PO,7)

s, n2s, but ms for m>2 4) 10,13 10
(PO,11,CG,8),

(CG,7),
(CG,7,PO,8)

(CG,7)
is only
credible
for m>2

r (1 7,13
r 2 8,13
r 7 1,13
r 13)

ns 8 2,13 2,13 No Sanction
for 2 or 13

Source: This research (2018)
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5 CONCLUSION

In this dissertation, we present some new definitions of stability, called sequential
stability of order m (m-SEQ) in the GMCR for conflicts with 2 DMs and n DMs. We
also propose the definition of higher-order coalitional sequential stability for coalitional
analysis. The m-SEQ stability, which is a refinement of SEQ stability, was proposed to
mitigate a problem of incredible threats that occur in SEQ. We present some properties
of the proposed concepts. In particular, we showed existence of m-SEQ equilibria in finite
GMCRs where preferences and moves are transitive, if m is odd. We also present some
results about the relationships of m-SEQ with five other solution concepts commonly used
in the GMCR.

For bilateral conflicts, three applications were made to demonstrate the efficiency
of the m−SEQ concept. Two classic applications of Game Theory, the Matching Pennies,
and The game Rock, Scissors and Paper, in which all states were SEQ, but the result was
only true for m−SEQ, if m was odd, and the Conflict of values between a Global Market-
Driven economy and a Sustainable Ecosystem philosophy, where it was possible to verify
that SEQ stability implied the existence of an incredible punishment in the analysis.

In order to broaden the results of the Chapter 3, new definitions were made for the
case of the sequential stability of the order m (m-SEQ) in the GMCR for conflicts with n

DMs, which generalized the definitions for conflicts with 2 DMs. To present the generalized
concept, the idea of a credible legal sequence of m-th order of unilateral improvements
for a coalition of DMs was proposed. Properties and relationships of m-SEQ stability
with other notions of stability commonly used in the GMCR with multiple DMs were
presented.

We introduce the concept of Higher-order Sequential Equilibria for coalitional anal-
ysis in the GMCR. Various orders of coalitional sequential stability were defined, as in the
case of bilateral and multilateral conflicts. Additionally, we also present the relationships
of coalitional m-SEQ with other solutions concepts used in the coalitional analysis in the
GMCR in the literature.

To demonstrate the utility of the sequential stability model of the m (m-SEQ) order
in the GMCR for conflicts with n DMs, the new definitions were applied in real-world con-
flict situations: Private Brownfield Renovation Conflict and Majalaya’s Textile Industries
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Waste Pollution Conflict.

Finally, from the results it was possible to perform refinements in the concept of
Sequential Stability for several decision makers, being able to make improvements related
to stability analysis.

5.1 Future Works

In future research, we intend to apply the m−SEQ with other Preference Structures
that were proposed to be used in the GMCR, such as Uncertain Preferences (LI et al.,
2004), Probabilistic Preference (RÊGO; SANTOS, 2015), Upper and Lower Probabilistic
Preferences (SANTOS; RÊGO, 2014), Fuzzy Preferences (BASHAR; KILGOUR; HIPEL,
2012) and Grey Preference (KUANG et al., 2015).We also intend to determine matrix
methods to efficiently find m-SEQ stability in a conflict.
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