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ABSTRACT 

This work involved the q-Exponential distribution, which can be used to model each of the 

three phases of the bathtub curve and is an alternative to the Weibull distribution. The q-

Exponential has two parameters (𝑞 – shape; 𝜂 – scale) and it stems from the Tsallis’ non-

extensive entropy. This model does not have the limitation of a constant hazard rate like the 

Exponential one, thus allowing the modeling of either system improvement (1 < 𝑞 < 2) or 

degradation (𝑞 < 1). Besides, it has more flexibility regarding the decay of the Probability 

Density Function (PDF) curve and it can model very well data sets with extreme values (power 

law characteristic). This feature is interesting in the reliability context because many equipment 

can work for long time until the first failure. However, when data sets are related to the 

degradation phase of systems, the application of the q-Exponential distribution becomes 

difficult due to convergence problems in the estimation process via the maximum likelihood 

(ML) method. This difficulty is due to the monotone behavior of the q-Exponential log-

likelihood function when 𝑞 < 1, which is generally known as “monotone likelihood problem”. 

Because of that, it is almost impossible to obtain good estimates for the parameters considering 

the original log-likelihood function. In this sense, this research applied the Firth’s penalization 

method to solve this problem. We also verified that one of the regularity conditions imposed by 

the ML method is not satisfied by the q-Exponential distribution. Then, with the objective of 

satisfying this condition, it was also proposed a variable change, which partially solved just the 

problems of this distribution. Nevertheless, the Firth’s method yielded satisfactory results even for 

small samples. Comparisons of the results were performed via Monte Carlo simulations for the 

original and penalized q-Exponential distribution. Additionally, bootstrap confidence intervals 

were constructed for the parameters and comparisons were made between the fit provided by the 

q-Exponential and Weibull distributions. Application examples involving failure data of complex 

equipment using the Firth’s penalization method are presented and discussed. The obtained results 

indicate that the penalized log-likelihood enables the use of the q-Exponential distribution in the 

modeling of data sets related to degrading systems.  

 

Keywords: q-Exponential distribution. Reliability. Monotone likelihood. Firth’s method. 

 

 



   

 

 

        RESUMO 

Este trabalho envolveu a distribuição q-Exponencial, a qual pode ser usada para modelar as três 

fases da curva da banheira e é uma alternativa para a distribuição Weibull. A distribuição q-

Exponencial tem dois parâmetros (𝑞 – forma; 𝜂 – escala) e é oriunda da entropia não-extensiva 

de Tsallis. Este modelo não tem a limitação de uma taxa de falhas constante como a distribuição 

Exponencial, assim permite modelar tanto a fase de melhoramento (1 < 𝑞 < 2) quanto a de 

degradação (𝑞 < 1). Além disso, tem mais flexibilidade quanto ao decaimento da curva da 

Função Densidade de Probabilidade (FDP) e consegue modelar muito bem conjuntos de dados 

com grandes valores (característica de power law). Esta característica é interessante no contexto 

de confiabilidade porque muitos equipamentos podem trabalhar por muito tempo até que ocorra 

a primeira falha. No entanto, quando os conjuntos de dados estão relacionados à fase de 

degradação dos sistemas, a aplicação da distribuição q-Exponencial se torna difícil devido a 

problemas de convergência no processo de estimação pelo método da máxima verossimilhança 

(MV). Este problema acontece por causa de uma condição chamada de “verossimilhança 

monótona”. Por causa disso, é praticamente impossível obter estimativas plausíveis para os 

parâmetros através da função de verossimilhança original. Neste sentido, esta pesquisa aplicou 

o método de penalização de Firth para corrigir este problema. Também foi verificado que uma 

condição de regularidade imposta pelo método de MV não é satisfeita pela distribuição q-

Exponencial. Então, com o objetivo de satisfazer também esta condição, uma mudança de 

variável foi proposta, a qual solucionou apenas parcialmente os problemas desta distribuição. 

Todavia, o método de Firth produziu resultados satisfatórios mesmo para amostras pequenas. 

Comparações dos resultados foram realizadas através de simulações Monte Carlo para as 

distribuições q-Exponencial original e penalizada. Além disso, intervalos de confiança bootstrap 

foram construídos para os parâmetros e comparações foram feitas entre o ajuste alcançado pelas 

distribuições q-Exponencial e Weibull. Aplicações envolvendo dados de falhas de equipamentos 

complexos usando o método de penalização de Firth são apresentadas e discutidas. Os resultados 

obtidos indicam que a log-verossimilhança penalizada permite o uso da distribuição q-Exponencial 

na modelagem de dados de falhas na fase de degradação dos sistemas. 

 

Palavras-chave: Distribuição q-Exponencial. Confiabilidade. Verossimilhança monótona. Método 

de Firth. 
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1 INTRODUCTION 
 

The reliability concept is associated to the ability of a system to operate under designated 

operating conditions for a designated period of time or number of cycles (MODAREES, 1999). 

Recently, the reliability knowledge area had a significant increase. Perhaps, this development 

may be explained by its importance in a company. Nowadays, reliability is linked to some 

crucial aspects for a good management, such as costs, customer confidence, strategic 

management, strategic maintenance, workplace safety, etc. In this context, some probability 

distributions are used to model systems’ failure times to provide many important information 

to the company like failure probabilities, expected number of failures up to a certain time, mean 

time between failures (MTBF), among others. With all this information the company is able to 

improve their systems, to plan maintenance actions, to avoid failures etc. Among the probability 

models used in reliability, the Exponential and Weibull distributions are the most used ones. 

Recently, the q-Exponential distribution, proposed by Tsallis (1988), has emerged as an 

alternative. However, this probability model presents some features that should be investigated 

so as to enable its wide use in the reliability context. 

According to Tsallis (2009) the q-Exponential distribution is obtained by maximizing the 

non-extensive entropy under appropriate constraints, which is associated with the probability 

density function (for more details about these constraints see Tsallis (2009, p.89)). As other q-

distributions, it has been applied to a variety of problems in many research areas including the 

field of complex systems. Picoli, Mendes & Malacarne (2009) bring in their work a summary 

of its basic properties, like the success of q-distributions in describing some systems to be in 

part due to its ability of exhibit heavy-tails and model power law behavior. For instance, 

Malacarne, Mendes & Lenzi (2002) showed that the population of a country is well described 

by a q-Exponential distribution with Probability Density Function (PDF) presenting a power 

law behavior (PICOLI, MENDES & MALACARNE, 2003). Campo, Ferri & Roston (2009) 

verified that the temporal correlation function of hydrogen bonds can be modeled by a q-

Exponential probabilistic model. Bercher & Vignat (2008) indicated that q-exponentials are 

stable by a statistical normalization operation. Besides, Sales Filho et al. (2016) used the q-

Exponential to infer about a useful performance metric in system reliability, the index 𝑅 =
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𝑃(𝑌 < 𝑋), where 𝑌 is the stress, 𝑋 is the strength and both are supposed independent q-

Exponential random variables with different parameters. 

The q-Exponential distribution has two parameters: 𝑞 and 𝜂, where 𝑞 is the shape 

parameter and 𝜂 is the scale parameter. As compared to the Exponential distribution that has 

just one parameter (𝜂), the q-Exponential distribution has more flexibility regarding the decay 

of the PDF. Indeed, the Exponential probability distribution is a special case of the q-

Exponential when 𝑞 → 1. Another feature of this distribution is that it does not have the 

limitation of a constant hazard rate as the Exponential one, thus allowing the modeling of either 

system improvement (1 < 𝑞 < 2) or degradation (𝑞 < 1). Indeed, the q-Exponential distribution 

can model each of the three phases of the bathtub curve, which has three distinct periods: 

decreasing failure rate for infant mortality; constant failure rate for useful life; and increasing 

failure rate for wear-out. Figure 1 shows a bathtub curve. 

 

 

Figure 1: The classical bathtub curve. 

Source: Sellito (2005) 

 

The q-Exponential distribution can successfully model data with values of great 

magnitude (PICOLI, MENDES & MALACARNE, 2009). This feature is interesting on the 

reliability context because many equipment may work for long time until the first failure. 

However, an estimation problem verified in the q-Exponential distribution happens in the 

modeling of the degradation phase of systems (when 𝑞 < 1). The fit of data from degrading 

systems is crucial in reliability engineering and, in order to use the q-Exponential model in this 

case, the corresponding estimation problem must be solved.  
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For a given sample with values that have great order of magnitude, the q-Exponential 

distribution is expected to adjust the data well. In cases like these, the parameter 𝑞 lies within 

the interval (1, 2) and the corresponding q-Exponential PDF presents power law behavior 

(PICOLI, MENDES & MALACARNE, 2009). The maximum likelihood estimation of the q-

Exponential parameters when 1 < 𝑞 < 2 presents no difficulties. Nevertheless, it has been 

observed in Sales Filho et al. (2016) that, when 𝑞 < 1, the techniques used to obtain the 

maximum likelihood estimates either provide poor results or fail to converge. In those cases, 

the q-Exponential log-likelihood function seems to be monotonically increasing, which renders 

the estimation task theoretically impossible. A function is characterized as monotone when it 

preserves the relation of order. As the parameters’ values increase, the function’s value also 

increases. According to Pianto & Cribari-Neto (2011) the called “monotone likelihood” occurs 

when the log-likelihood obtains its maximum for infinite parameter values. Heinze & Schemper 

(2001) affirm that the monotone likelihood is noted in the fitting process of a Cox model if the 

likelihood converges to a finite value, while at least one parameter estimate diverges to ±∞.  

The q-Exponential distribution has the following PDF: 

 

𝑓𝑞(𝑡) =
(2−𝑞)[1−

(1−𝑞)𝑡

𝜂
]

1
1−𝑞⁄

𝜂
, for 𝑡 ≥ 0,   (1.1) 

𝑞 < 2 and 𝜂 > 0, 

when 𝑞 < 1, the PDF of Eq. (1.1) has a limited support with an upper bound that depends on 

the parameters 𝜂 and 𝑞: 

𝑡 ∈ {
[0;∞),   1 < 𝑞 < 2

[0,
𝜂

1−𝑞
] , 𝑞 < 1

.                                                                                                       (1.2) 

 

Some authors have studied in the problem of the monotone likelihood. There are some 

methods in the literature to solve this problem. However, the approaches used to correct this 

problem are different from author to author. For example, Firth (1993) developed a method 

based on an approach for bias reduction that does not depend on finiteness of 𝜃. The author 

worked with the exponential families. Loughin (1998) considered a bootstrap method that can 

be used to correct this problem by using the Cox proportional hazards model. Heinze & 

Schemper (2001) proposed an adaptation of a procedure by Firth (1993). Cribari-Neto, Frery & 
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Silva (2002) suggested a method to correct the likelihood function also based on resampling, 

they used the ℊ𝐴
0(𝛼, 𝛾, 𝑛) distribution.  

Other way to handle the q-Exponential likelihood function is by applying a variable 

change or a reparameterization. According to Cordeiro (1999), one of the regularity conditions 

to apply the maximum likelihood method refers to the independence of the PDF support with 

respect to its parameters. This condition is not verified with q-Exponential model as its support 

depends on the value of parameters 𝑞 and 𝜂, as can be seen in Equation (1.2).  

In this work, the Firth’s penalization method will be applied in order to penalize the q-

Exponential log-likelihood function. This method was chosen because of its efficiency and 

simplicity of implementation. However, a variable change will be implemented before the 

Firth’s method as an attempt to comply with the regularity condition. If this change of variable 

solves the q-Exponential problem, results will be compared. 

The log-likelihood function related to the q-Exponential distribution will be derived and 

analyzed to verify whether it presents the monotone likelihood problem. The Nelder-Mead 

(1965) optimization method will be used for function maximization because it presented a better 

result compared with the particle swarm optimization (PSO) method using the q-Exponential 

distribution (SALES FILHO, 2016). A change of variable will be performed, and the Firth’s 

penalization method will be applied in the q-Exponential log-likelihood function. Additionally, 

the original and penalized log-likelihoods will be compared through numerical experiments and 

using reliability-related data sets. 

 

 

1.1 Objectives 
 

1.1.1 General objective 
 

The general objective of this work is to use the Firth’s penalization method to correct the 

q-Exponential distribution log-likelihood function to obtain good estimates for its parameters. 

The proposed method will be applied to fit reliability-related data of engineered equipment.  

 

1.1.2 Specific objectives 
 

The specific objectives of this work are the following: 
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 Identification if there is any combination of parameters that turns the q-Exponential log-

likelihood into a monotone function; 

 Investigation of reparameterizations of the q-Exponential distribution that enable 

parameter estimation via the maximum likelihood method; 

 Investigation if the change of variables can correct the q-Exponential log-likelihood 

function and satisfy the regularity conditions; 

 Investigation of methods to correct the monotone log-likelihood of the q-Exponential 

distribution, if necessary; 

 Application of a variable change and of the Firth’s penalization method to try solving 

the monotone likelihood problem of the q-Exponential log-likelihood function; 

 Comparison of the results provided by the original and corrected q-Exponential log-

likelihoods. 

 Development of bootstrap confidence intervals for the parameters of the q-Exponential 

distribution; 

 Application of the q-Exponential distribution to reliability-related data and comparison 

of the q-Exponential results with the ones obtained by the Weibull model. 

 

1.2 Methodology 

 

This work is characterized as an applied research, because it is conducted to solve a 

specific problem of literature and to a practical methodology implementation. It presents an 

application of the Firth’s penalization method to correct the q-Exponential log-likelihood 

function in order to apply the q-Exponential distribution in reliability analyses. 

Additionally, this research can be classified as qualitative and quantitative. It is qualitative 

because it makes use of a literature review to understand and analyze the specific problem 

treated in this work. On the other hand, it is quantitative given that computational programs and 

statistical methods are used to find and understand solutions for the analyzed problem. 
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This research was divided into the following steps: 

 Step 1: initially, it was made an investigation about the topics considered in this work. 

The topics were: the features of the q-Exponential distribution; the monotone likelihood 

problem; the methods that can be used to solve this problem; parameter estimation; 

methods for function optimization to be used in the maximization of the q-Exponential 

log-likelihood function; reliability-related data from literature to be used to demonstrate 

the penalized function results.  

 Step 2: then, a change of variable was applied to the q-Exponential PDF as an attempt 

to satisfy regularity conditions and to solve the monotone likelihood problem. However, 

only the regularity conditions are met, since the new function did not produce good 

parameters’ estimates. This is an indication that, in spite of the change of variable, the 

monotone likelihood problem persists. 

 Step 3: next, study of the possible methods that could solve the q-Exponential problem 

and application of the Firth’s penalized method in the q-Exponential log-likelihood 

function. Tests were made using the software R.  

 Step 4: then, numerical experiments were implemented and performed; 

 Step 5: finally, the q-Exponential penalized function was applied to two application 

examples from literature.  

 

1.3 Structure of the work 

This research contains six chapters, including this introduction.  Chapter 2 provides the 

theoretical background: the q-Exponential distribution, important concepts and methods used 

over the work, such as Maximum Likelihood Estimation, bootstrap confidence intervals, Firth’s 

penalization method and Nelder-Mead optimization method. Chapter 3 presents an 

investigation of the q-Exponential distribution behavior depending on its parameters’ values. It 

also includes some reparameterizations and change of variables applied in an attempt to satisfy 

regularity conditions and to directly obtain the maximum likelihood estimates for its 

parameters. In Chapter 4, a penalization method is applied to the q-Exponential log-likelihood 
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function. In this chapter there are tables with comparisons between the results obtained with the 

original and the penalized functions. Chapter 5 brings two examples to show the applicability 

of the penalized function; it also presents comparisons with the fit provided by the Weibull 

distribution. And, finally, Chapter 6 provides the work’s conclusion. 
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2 THEORETICAL BACKGROUND 

 

In this chapter, the theoretical background that is necessary to this study is presented.  

 

2.1 Characterization of q-Exponential distribution 

 

The q-Exponential distribution has the PDF presented in Equation (1.1). The parameter 

𝑞 determines the density shape and is known as entropic index, and 𝜂 is the scale parameter. In 

the limit 𝑞 → 1, Equation (1.1) recovers the usual Exponential distribution.  

Figure 2 shows the behavior of the q-Exponential PDF for 𝜂 constant and three possible 

values of 𝑞. As it is possible to see through Equation (1.2) the support of the q-Exponential 

function is limited for 𝑞 < 1. Figure 2 shows, for example, that when the 𝑞 = 0.5 and 𝜂 = 3 

the support is limited by 6. 

 

Figure 2: q-Exponencial PDF for  η=3 and some values of q. 

Source: This research (2018) 

 

 

 

The q-Exponential has the following Cumulative Distribution Function (CDF): 

 

𝐹(𝑡) = 1 − [1 − (1 − 𝑞) (
𝑡

𝜂
)]

2−𝑞

1−𝑞
, 𝑡 ≥ 0                                                                          (2.1) 

 

By definition, the hazard rate is h(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 (MODARRES, KAMINSKIY & 

KRIVTSOV, 1999), where R(𝑡) is the reliability function with 𝑅𝑞(𝑡) = 1 − 𝐹(𝑡). Thus, it is 

possible write: 
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ℎ(𝑡) =

(2−𝑞)[1−
(1−𝑞)𝑡

𝜂
]

1
1−𝑞

𝜂

[1−
(1−𝑞)𝑡

𝜂
]

2−𝑞
1−𝑞

=
(2−𝑞)

𝜂
[1 −

(1−𝑞)𝑡

𝜂
]
−1

.                                                                 (2.2) 

 

Differently from the Exponential distribution, the q-Exponential hazard rate can be 

monotone increasing, monotone decreasing or constant for 𝑞 <  1, 1 <  𝑞 <  2 and 𝑞 → 1, 

respectively. Indeed, this is an important characteristic of the q-Exponential distribution, 

especially in the reliability context because this feature enables the q-Exponential to model the 

three phases of the bathtub curve. Figure 3 presents the behavior of the q-Exponential hazard 

rate and of the q-Exponential CDF. For 𝜂 = 3 and 𝑞 = 1.5 the hazard rate is decreasing.  

 
 

 

 

  
Figure 3: q-Exponential CDF with 𝜼 = 𝟑 and 𝒒 = 𝟏. 𝟓; b) q-Exponential 𝒉(𝒕) 

with  𝜼 = 𝟑  and 𝒒 = 𝟏. 𝟓. 

Source: This research (2018) 

 
 

 

 

The conditional reliability function (MODARRES, KAMINSKIY & KRIVTSOV, 1999) 

is 

 

𝑅(𝑡|𝑡0) =
[1−(1−𝑞)(

𝑡+𝑡0
𝜂

)]

2−𝑞
1−𝑞

[1−(1−𝑞)(
𝑡0
𝜂

)]

2−𝑞
1−𝑞

.                                                                                           (2.3) 
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This function calculates the reliability of an additional time period (𝑡) when the item has 

worked for a time period (𝑡0). Figure 4 presents the conditional reliability of the q-Exponential 

for 𝑡0 = 2h and for 𝑡0 = 5h. Figure 4 represents the case which the hazard rate is decreasing, 

1 < 𝑞 < 2. 

Figure 5 illustrates the conditional reliability of the q-Exponential for 𝑡0 = 80h and for 

𝑡0 = 100h. Besides, Figure 5 represents the case which the hazard rate is growing, 𝑞 < 1. 

 

Figure 4: Conditional reliability of the q-Exponential function 

with 𝜼 = 𝟏𝟓, 𝒒 = 𝟏. 𝟓 

Source: This research (2018) 

 

Figure 5: Conditional reliability of the q-Exponential function 

with 𝜼 = 𝟏𝟓𝟎, 𝒒 = 𝟎. 𝟓 

Source: This research (2018) 

 

 

 



22 
 

 

 

2.2 Estimation of parameters 

 

 

2.2.1 Maximum likelihood estimation 

 

There are some ways to estimate the parameters of a probabilistic model, but the 

maximum likelihood method is one of the most used techniques. Considering the uniparametric 

case, assume a random sample of the random variable 𝑇 with size 𝑛: 𝑇1, 𝑇2, … , 𝑇𝑛. It is the PDF 

of the random variable 𝑇, 𝑓(𝑡|𝜃), with 𝜃 ∈ Θ, where Θ is the parametric space. Thus, the 

likelihood function of Θ, for the considered sample, can be written as presented by Bolfarine & 

Sandoval (2000): 

 

𝐿(𝜃|𝑡) = ∏ 𝑓(𝑡𝑖|𝜃)𝑛
𝑖=1 .                                                                                                      (2.4) 

 

 

The value that maximizes the likelihood function is the maximum likelihood estimator of 

𝜃, and it is represented by 𝜃 and 𝜃 ∈ Θ. 

In general, maximizing the natural logarithm of the likelihood function is easier than 

maximizing directly the likelihood function. The log-likelihood function is defined as 

 

𝑙(𝜃|𝑇) = ln[𝐿(𝜃|𝑇)].                                                                                                                      (2.5) 
 
Thus, the maximum likelihood estimate for 𝜃 is obtained by calculating the root of the first 

derivative of the log-likelihood function, that is 

 
𝑑𝑙(𝜃|𝑇)

𝑑𝜃
= 0.                                                                                                                                         (2.6) 

 

In situations in which the solution of Eq. (2.6) is very difficult to obtain analytically, it can be 

provided by numerical procedures or by heuristics. 

In the specific case of the q-Exponential distribution, the likelihood function is  

 

𝐿(𝑞, 𝜂|𝑇) = ∏
(2−𝑞)[1−

(1−𝑞)𝑡𝑖
𝜂

]

1
1−𝑞⁄

𝜂

𝑛
𝑖=1 =

(2−𝑞)𝑛

𝜂𝑛
∏ [1 −

(1−𝑞)𝑡𝑖

𝜂
]
1

1−𝑞⁄
𝑛
𝑖−1   

 

(2.7) 
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and the corresponding log-likelihood function is  

 

𝑙(𝑞, 𝜂|𝑇) = ln(
(2 − 𝑞)𝑛

𝜂𝑛
∏[1 −

(1 − 𝑞)𝑡𝑖
𝜂

]

1
1−𝑞⁄𝑛

𝑖=1

) = 

=  𝑛 ln (
2−𝑞

𝜂
) +

1

1−𝑞
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
)𝑛

𝑖=1 .                                                       (2.8) 

 

 

 

The transformation above can be used because it is a monotonic transformation. In other 

words, it preserves the order of the numbers. Thus, the values that maximize Eq. (2.7) are the 

same that maximize Eq. (2.8). 

To obtain the Maximum Likelihood Estimates (MLEs) for the parameters the log-

likelihood function is maximized. This can be done by setting the first derivative of 𝑙 with 

respect to each parameter to zero. The q-Exponential score equations are the following: 

 

0 =
𝜕𝑙

𝜕𝑞
= −

𝑛

2−𝑞
+

1

(1−𝑞)2
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
) +

1

1−𝑞
∑

𝑡𝑖

𝜂(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1

𝑛
𝑖=1 ,                               (2.9)        

 

0 =
𝜕𝑙

𝜕𝜂
= −

𝑛

𝜂
−

1

1−𝑞
∑

(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 .                                                                      (2.10) 

 

It is possible to obtain a simplified expression for Equation (2.10), as 

𝑛 = −
1

(1−𝑞)
∑

(1−𝑞)𝑡𝑖

𝜂−(1−𝑞)𝑡𝑖

𝑛
𝑖=1 . 

However, the system formed by Equations (2.9) and (2.10) does not have a closed 

solution. Thus, numerical methods can be used to obtain parameters’ estimates. However, these 

methods may fail to converge and may yield poor parameters’ estimates, possibly because of 

the monotone likelihood problem. 

 

 

2.2.2 Observed and expected information 

 

To define observed and expected information is important before define the score 

function. Let 𝑙(𝜃|𝑇) be the log-likelihood function. The vector score is defined as  
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𝑈(𝜃|𝑇) = (
𝜕𝑙(𝜃|𝑇)

𝜕𝜃1
, ⋯ ,

𝜕𝑙(𝜃|𝑇)

𝜕𝜃𝑑
)
𝑇

;                                                                                (2.11) 

it is the gradient vector of the log-likelihood function.  

The observed information matrix (Fisher’s information) can be defined as  

𝐼𝑂(𝜃|𝑇) =

[
 
 
 
 −

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃1
2 ⋯ −

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃1𝜕𝜃𝑑

⋮ ⋱ ⋮

−
𝜕2𝑙(𝜃|𝑇)

𝜕𝜃𝑑𝜕𝜃1
⋯ −

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃𝑑
2 ]

 
 
 
 

. 

and the matrix of expected information (Fisher’s information) can be defined as  

 

𝐼𝐸(𝜃|𝑇) =

[
 
 
 
 𝐸 [−

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃1
2 ] ⋯ 𝐸 [−

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃1𝜕𝜃𝑑
]

⋮ ⋱ ⋮

𝐸 [−
𝜕2𝑙(𝜃|𝑇)

𝜕𝜃𝑑𝜕𝜃1
] ⋯ 𝐸 [−

𝜕2𝑙(𝜃|𝑇)

𝜕𝜃𝑑
2 ]

]
 
 
 
 

. 

 

An important property of  𝐼𝑂(𝜃|𝑇) and 𝐼𝐸(𝜃|𝑇) is that they measure the 

observed/expected curvature in the log-likelihood surface (RIBEIRO JR et al., 2012).  

 

2.2.3 Bootstrap confidence intervals 

 

Bootstrap is a computer intensive statistical technique based on resampling (EFRON, 

1993). The principal idea is to create a number of samples based on the available data set. The 

bootstrap method can be used to construct percentile confidence intervals for the parameters 

and also to estimate an estimator’s distribution. 

There are two types of bootstrap for the construction of confidence intervals: the 

parametric and the non-parametric bootstrap. The description below is based in Efron, (1993): 

 

Parametric Bootstrap: 

 Step 1: From a first sample for the variable 𝑇 =  {𝑡1, 𝑡2 ⋯𝑡𝑛}, estimate the parameters 

by maximizing the log-likelihood function; 
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 Step 2: A new sample for 𝑇 is generated using the estimates obtained in the previous 

step and a number generator for variable 𝑇. Based on this new sample, compute the 

bootstrap sample estimate of 𝜃, say 𝜃∗, by maximizing the log-likelihood function of 

the variable 𝑇; 

 Step 3: Repeat step 2 for 𝑁 times; 

 Step 4: By using 𝑁 values of 𝜃∗ and by adopting 𝛼 as significance level, find the 

percentiles 𝜃𝛼 2⁄
∗  and 𝜃1−(𝛼 2)⁄

∗ . Thus, it is possible to determine an approximate 

confidence interval, with confidence equal to 100∗(1 − 𝛼)%, for the parameter 𝜃, as: 

𝐶. 𝐼. =  (𝜃𝛼 2⁄
∗ , 𝜃1−(𝛼 2)⁄

∗ ).                                                                                   (2.11) 

 

 

Non-Parametric Bootstrap: 

 

 Step 1: From the original sample for the variable 𝑇 =  {𝑡1, 𝑡2 ⋯𝑡𝑛}, generate a new 

sample for 𝑇 by sampling with replacement. Based on this new sample, compute the 

estimate of  𝜃, 𝜃∗, by maximizing the log-likelihood function of the variable 𝑇; 

 Step 2: Repeat step 1 for 𝑁 times.  

 Step 3: By using 𝑁 values of 𝜃∗and by adopting a 𝛼 significance level, the percentiles 

𝜃𝛼 2⁄
∗  and 𝜃1−(𝛼 2)⁄

∗  are obtained; they determine an approximate confidence interval for 

the parameter with confidence level equal to 100∗(1 − 𝛼)%, using Equation (2.11). 

 

 

2.3 Bootstrapped Kolmogorov-Smirnov test (K-S Boot) 

 

According to Blain (2014), in practice, applying the one-sample Kolmogorov-Smirnov 

test (K-S test) is not very useful because it requires a simple null hypothesis, i.e., the distribution 

must be completely specified with all parameters known beforehand. A bootstrapped version 

of a K-S test was proposed as an alternative to overcome this problem (STUTE, MANTEIGA 

& QUINDIMIL, 1993). This method results in precise asymptotic approximations of the p-

values (CASTRO, 2013) and has the following steps: 
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 Step 1: From an initial sample from the variable = (𝑡1, 𝑡2, ⋯ , 𝑡𝑛) , estimate the 

parameters 𝛩 = (𝜃1, 𝜃2, ⋯ , 𝜃𝑛) and compute the theoretical CDF: 𝐹𝑛(𝑇, 𝜃). 

 Step 2: Compute 𝐷0 = 𝑚𝑎𝑥1≤𝑖≤𝑛 ||𝐹̂𝑛(𝑡𝑖) − 𝐹𝑛(𝑡𝑖 , 𝛩̂)|, |𝐹̂𝑛(𝑡𝑖−1) − 𝐹𝑛(𝑡𝑖, 𝛩̂)||, where 

𝐹̂𝑛(𝑇) is the empirical CDF. 

 Step 3: Use the estimates obtained in the first step to create new samples for 𝑇, i.e.: 

{𝑡1,𝑗
∗ , 𝑡2,𝑗

∗ , ⋯ , 𝑡𝑛,𝑗
∗ }. Based on these new samples, compute the bootstrap sample of 𝛩̂, say 

𝛩𝑗
∗ = {𝜃1𝑗

∗ , 𝜃2𝑗
∗ , ⋯ , 𝜃𝑘𝑗

∗ }, 𝑗 = (1, 2,⋯ ,𝑁). 

 Step 4: Repeat step 3 for 𝑁 times.  

 Step 5: Compute  

𝐷𝑗
∗ = 𝑚𝑎𝑥1≤𝑖≤𝑛 ||𝐹̂𝑛,𝑗

∗ (𝑡𝑖,𝑗
∗ ) − 𝐹𝑛,𝑗

∗ (𝑡𝑖,𝑗
∗ , 𝛩̂∗)|, |𝐹̂𝑛,𝑗

∗ (𝑡𝑖,𝑗
∗ ) − 𝐹𝑛,𝑗

∗ (𝑡(𝑖−1),𝑗
∗ , 𝛩̂∗)||. 

The null hypothesis is rejected if 𝐷0 > 𝐷(𝑁(1−𝛼)+1)
∗  at significance level 𝛼. An 

approximate p-value can be computed using: 

𝑝 =  
#{𝐷𝑗

∗≥𝐷0}+1

𝑁+1
, 

where  #{𝐷𝑗
∗ ≥ 𝐷0} indicates the number of times that 𝐷𝑗

∗ (𝑗 = 1, 2,⋯ , 𝑁) is bigger than 𝐷0. 

 

 

 

2.4 Regularity conditions  

 

The maximum likelihood method is one of the most used approaches methods to obtain 

estimates of the parameters of a probabilistic model. However, there are some regularity 

conditions that must be satisfied to guarantee the asymptotic properties of the maximum 

likelihood estimates of consistency, unity, normality, efficiency and sufficiency (CORDEIRO, 

1999).  
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Let 𝑡𝑖
′𝑠 be realizations of one random variable 𝑇 characterized by 𝑃𝜃 distributions that 

belong to one determined class 𝑃 and this class depends on one vector 𝜃  of dimension 𝑝, 𝜃 ∈

Θ. Let 𝑓(𝑡; 𝜃) and 𝐿(𝜃) = ∏𝑓(𝑡𝑖; 𝜃) be the density and likelihood functions, respectively. 

The following regularity conditions are required (CORDEIRO, 1999): 

i. 𝑃𝜃 are identifiable, i.e., 𝜃 ≠ 𝜃′ ∈ Θ implies 𝑃𝜃 ≠ 𝑃𝜃′; 

ii. 𝑃𝜃 distributions have the same support for all 𝜃 ∈ Θ, i.e., 𝐴 = {𝑡; 𝑓(𝑡; 𝜃) > 𝜃} does not 

depend on 𝜃;  

iii. There is an open set Θ1 in Θ that has 𝜃0 such that the density function 𝑓(𝑡; 𝜃), for almost 

every 𝑡, admits all derivatives until the third order in relation to 𝜃, for all 𝜃 ∈ Θ1; 

iv. 𝐸𝜃{𝑈(𝜃)} = 0 and the information matrix 0 < 𝐼(𝜃) < ∞ for all 𝜃 ∈ Θ1; 

v. There are functions 𝑀𝑖𝑗𝑘(𝑡) independent of  𝜃 such that, for 𝑖, 𝑗, 𝑘 = 1,⋯ , 𝑝, 

|
𝜕3 log𝑓(𝑡;𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
| < 𝑀𝑖𝑗𝑘(𝑡)                                                                                          (2.12) 

for all 𝜃 ∈ Θ1, where 𝐸𝜃0
{𝑀𝑖𝑗𝑘(𝑡)} < ∞. 

One of the problems verified in the q-Exponential distribution is that it does not satisfy 

the second regularity condition shown above, i.e., the function’s support depends on the 

parameters of the probability distribution. Then, this work applied a change of variable in order 

to try correct this problem. 

 

2.5 Change of variable 

 

When a function 𝑔 is invertible, it is possible to obtain an expression for the density 

function of  𝑌 = 𝑔(𝑇) using Theorem 1(FARIAS, KUBRUSLY & SOUZA, 2014): 

Theorem 1: Jacobian method 

Let 𝑋 be a continuous random variable with density function 𝑓𝑇. Let also 𝑔:ℝ →  ℝ be a 

strictly monotone and differentiable function in the 𝑙𝑚(𝑇) set. If  𝑌 = 𝑔(𝑇), then: 
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i. 𝑙𝑚(𝑇) = 𝑔(𝑙𝑚(𝑇)) = {𝑦 ∈ ℝ | ∃ 𝑡 ∈ 𝑙𝑚(𝑌) with 𝑦 = 𝑔(𝑡)}; 

ii. 𝑌 is a random variable; 

iii. 𝑓𝑌(𝑦) = 𝑓𝑇(𝑔−1(𝑦)) |
𝑑

𝑑𝑦
𝑔−1(𝑦)|, if 𝑦 ∈ 𝑙𝑚(𝑌). 

where 𝑙𝑚(𝑌) is a data set that can be finite or infinite. 

Demonstration of (iii) is presented below, the other demonstrations can be found in Farias 

Kubrusly & Souza (2014): 

To demonstrate item (iii) the Distribution Function Method is used. It is required to find 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦). It is important to divide the case that 𝑔 is strictly increasing and strictly 

decreasing. 

If 𝑔 is strictly increasing, 𝑔−1 can be obtained and it is also a strictly increasing function. 

Then, in this case: 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑔(𝑇) ≤ 𝑦) = 𝑃(𝑇 ≤ 𝑔−1(𝑦)) = 𝐹𝑇(𝑔−1(𝑦)).                          (2.13) 

Then, deriving with respect to 𝑦, it was found the relation between 𝑓𝑌 and 𝑓𝑇: 

𝑓𝑌(𝑦) =
𝑑

𝑑𝑦
𝐹𝑇(𝑔−1(𝑦)) = 𝑓𝑇(𝑔−1(𝑦))

𝑑

𝑑𝑦
𝑔−1(𝑦).                                                            (2.14) 

If 𝑔 is strictly decreasing, 𝑔−1 can be obtained and it is also a strictly decreasing function. 

Then, in this case: 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑔(𝑇) ≤ 𝑦) = 𝑃(𝑇 ≥ 𝑔−1(𝑦)) = 1 − 𝐹𝑇(𝑔−1(𝑦)).                   (2.15) 

Then, deriving in relation to 𝑦, the relation between 𝑓𝑌 and 𝑓𝑇 is obtained: 

𝑓𝑌(𝑦) =
𝑑

𝑑𝑦
(1 − 𝐹𝑇(𝑔−1(𝑦))) = −𝑓𝑇(𝑔−1(𝑦))

𝑑

𝑑𝑦
𝑔−1(𝑦).                                              (2.16) 

In case that 𝑔 is strictly increasing 
𝑑

𝑑𝑦
𝑔−1(𝑦) > 0 for all 𝑦, then it is possible to write 

𝑑

𝑑𝑦
𝑔−1(𝑦) = |

𝑑

𝑑𝑦
𝑔−1(𝑦)|.                                                                                                    (2.17) 

And in case that 𝑔 is strictly decreasing 
𝑑

𝑑𝑦
𝑔−1(𝑦) < 0 for all 𝑦, it is possible to write 
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𝑑

𝑑𝑦
𝑔−1(𝑦) = − |

𝑑

𝑑𝑦
𝑔−1(𝑦)|.                                                                                                (2.18) 

Thus, for any 𝑔 strictly monotone: 

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔−1(𝑦)) |
𝑑

𝑑𝑦
𝑔−1(𝑦)|.                                                                                  (2.19) 

 

 

 

2.6 Nelder-Mead optimization method 

 

 

The Nelder–Mead method is a numerical approach frequently applied to nonlinear 

optimization. It is also known as Downhill Simplex method. This method is used to find the 

minimum or maximum of an objective function in a multi-dimensional space. It is a method 

fairly used in unconstrained optimization problem of a function of 𝑛 variables. This numerical 

approach has been used in many studies with the aim of maximizing the log-likelihood function 

and to estimate the parameters of various probability distributions in many areas, as reliability, 

statistics, economy, etc. 

According to Gonçalves (2013), the Nelder-Mead method has the following 

characteristics:  

 Ease of computational implementation; 

 Calculations of the derivatives of the objective function are not necessary; 

 Few evaluations of the objective function are necessary; 

 The value of the objective function quickly decreases in the first iterations. 

The Nelder-Mead uses the concept of a simplex, which is a polytope with 𝑛 + 1 vertices 

in 𝑛 dimensions. 

Consider the problem of unconstrained minimization: 

 

min
𝑡∈𝔑𝑛

𝑓(𝑡), where 𝑓: 𝔑𝑛 ⟶ 𝔑.                                                                                           (2.20) 

 

In this work, 𝑓(𝑡) is the negative of the q-Exponential log-likelihood. 
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In one iteration of this method, the 𝑛 + 1 vertices of the simplex, 𝑡1, 𝑡2, ⋯ , 𝑡𝑛+1 belonging 

to 𝔑𝑛
 are required according to the growth of the values of 𝑓, i.e: 

𝑓(𝑡1) ≤ 𝑓(𝑡2) ≤ ⋯ ≤ 𝑓(𝑡𝑛+1),                                                                                        (2.21) 

 

where 𝑡𝑛+1 is the worst vertex and 𝑡1 is the best vertex. 

The repositioning of these vertices takes into consideration four coefficients: 

 Reflection coefficient (𝜌) 

 Expansion coefficient (𝜒) 

 Contraction coefficient (𝛾) 

 Reduction coefficient (𝜎) 

Nelder and Mead (1965) explain that these coefficients must satisfy the following 

restrictions: 

 

𝜌 > 0, χ > 1, 0 < 𝛾 < 1 and 0 < 𝜎 < 1. 

 

The Nelder-Mead method attempts to exchange the worst vertex of the simplex by another 

one with better value. The new vertex is obtained by reflection, expansion or contraction of the 

worst vertex along the line through this vertex and the centroid of the best n vertices. The worst 

vertex is replaced by a new vertex or the simplex is reduced around the better vertex at each 

iteration. 

Below is presented a set of steps that corresponds to an iteration of the Nelder-Mead 

algorithm (Nelder & Mead, 1965): 

 Step 1 - Rank: Rank the 𝑛 + 1 vertices: 

𝑓(𝑡1) ≤ 𝑓(𝑡2) ≤ ⋯ ≤ 𝑓(𝑡𝑛+1); 

 Step 2- Centroid: Calculate the centroid of the 𝑛 best vertices: 

𝑡̅ = ∑
𝑡𝑖

𝑛

𝑛
𝑖=1 . 
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 Step 3- Reflection: Calculate the reflected vertex (𝑡𝑟): 

𝑡𝑟 = 𝑡̅ + 𝜌(𝑡̅ − 𝑡𝑛+1). 

If 𝑓(𝑡1) ≤ 𝑓(𝑡𝑟) ≤ 𝑓(𝑡𝑛), then do 𝑡𝑛+1 = 𝑡𝑟 and finalize the iteration. 

 Step 4- Expansion: If 𝑓(𝑡𝑟) ≤ 𝑓(𝑡1), calculate the expanded vertex (𝑡𝑒): 

𝑡𝑒 = 𝑡̅ + χ(𝑡𝑟 − 𝑡̅). 

If 𝑓(𝑡𝑒) ≤ 𝑓(𝑡𝑟), then do 𝑡𝑛+1 = 𝑡𝑒 and end the iteration, else 𝑡𝑛+1 = 𝑡𝑟 and end the 

iteration. 

 Step 5- Contraction: If 𝑓(𝑡𝑟) ≥ 𝑓(𝑡𝑛) 

5.1 External: 

      If (𝑡𝑛) ≤ 𝑓(𝑡𝑟) ≤  𝑓(𝑡𝑛+1), calculate the external contraction vertex (𝑡𝑐𝑒) : 

𝑡𝑐𝑒 = 𝑡̅ + 𝛾(𝑡𝑟 − 𝑡̅). 

             If 𝑓(𝑡𝑐𝑒) ≤ 𝑓(𝑡𝑟), then do𝑡𝑛+1 = 𝑡𝑐𝑒 and end the iteration, otherwise go to step 6. 

              5.2 Internal: 

              If 𝑓(𝑡𝑛) ≥ 𝑓(𝑡𝑛), calculate the internal contraction vertex(𝑡𝑐𝑖): 

𝑡𝑐𝑖 = 𝑡̅ − 𝛾(𝑡̅ − 𝑡𝑛+1). 

               If 𝑓(𝑡𝑐𝑖) ≤ 𝑓(𝑡𝑛+1), then do 𝑡𝑛+1 = 𝑡𝑐𝑖 and end the iteration, else go to step 6. 

 

 Step 6- Reduction: Calculate vectors 𝑣𝑖 = 𝑡1 + 𝜎(𝑡𝑖 − 𝑡1), 𝑖 = 2,⋯ , 𝑛 + 1. The 

vertices (not ordered), for the next iteration are: 𝑡1, 𝑣2, ⋯ , 𝑣𝑛+1.  

Nelder & Mead (1965) explain that given a tolerance ∆𝑡𝑜𝑙, the following stop criterion 

takes into account the function value in the simplex vertices: 

√∑
(𝑓(𝑡𝑖)−𝑓(𝑡̅))

2

𝑛
𝑛+1
𝑖=1 < ∆𝑡𝑜𝑙.                                                                                              (2.22) 
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2.7 Firth’s penalization method 

 

A method to penalize the log-likelihood function in order to reduce the bias of the MLE 

was proposed by Firth (1993). Actually, the idea behind his method is that since the parameter 

estimate may not exist it is safer to modify the estimation equations for bias correction prior to 

estimation. Then, let 𝑈∗(𝜃) be the modified score function. For the exponential family model, 

the 𝑟th component of the modified score equation is given by 

𝑈𝑟
∗(𝜃) = 𝑈𝑟(𝜃) + 𝐴𝑟(𝜃),                                                                                                  (2.23) 

in which 𝐴𝑟(𝜃) is the rth part of 𝐴(𝜃) = −𝐼(𝜃)𝐵1(𝜃) 𝑛⁄ , 𝑟 = 1,⋯, dim(𝜃). 𝐵1(𝜃) is denoted 

here as the first order term in the bias expansion on the MLE: 𝐵(𝜃) = 𝐵1(𝜃) 𝑛⁄ + 𝐵2(𝜃) 𝑛⁄ +

⋯. 

In the case of an exponential family in canonical form, the observed information (Fisher’s 

information) does not depend on the data, and it follows that 

𝐴𝑟(𝜃) =
𝜕

𝜕𝜃𝑟
{
1

2
log|𝐼(𝜃)|}.                                                                                                   (2.24) 

The correction of the likelihood function is applied as follows 

𝐿∗(𝜃|𝑇) = 𝐿(𝜃|𝑇)|𝐾(𝜃)|1 2⁄ ,                                                                                              (2.25)                                                                                                

where the penalization term  |𝐾(𝜃)|1 2⁄  is the determinant of the Fisher information matrix and 

it is the Jeffreys (1946) invariant prior. Equivalently, estimation can be executed by maximizing 

𝑙∗(𝜃|𝑇) = 𝑙(𝜃|𝑇) +
1

2
log|𝐾(𝜃)|.                                                                                        (2.26)                                                                                                                                                                          

Note that the method proposed by Firth (1993) can be more easily applied in canonical 

exponential models. The exponential family in the canonical mode is defined as 

𝑓(𝑡; 𝜃) = ℎ(𝑡)𝑒𝑥𝑝(𝜂(𝜃)𝑢(𝑡) − 𝑏(𝜃))                                                                            (2.27) 

where the functions ℎ(𝑡), 𝜂(𝜃), 𝑢(𝑡) and 𝑏(𝜃) assume real values. However, even when applied 

to functions that are not members of this group, this penalty method yields great results, as in  

Fonseca & Cribari-Neto (2016) that used it with a bimodal Birbaun-Saunders model. 
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3 INVESTIGATION AND CHANGES IN THE q-EXPONENTIAL LOG-LIKELIHOOD 

FUNCTION 

 

This chapter will show an investigation about the behavior of the q-Exponential log-

likelihood function and changes in its PDF as an attempt to correct its monotone behavior. 

 

3.1 Behavior of the q-Exponential log-likelihood function 

 

The following steps are applied to find an expression of the log-likelihood as a function 

of either  𝜂 or 𝑞, so as to ease the identification of situations in which the log-likelihood is 

monotone increasing. First, we will show an evaluation of the arguments of the logarithms of 

𝑙(𝑇|𝑞, 𝜂) =  𝑛 ln (
2−𝑞

𝜂
) +

1

1−𝑞
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
)𝑛

𝑖=1   

in order to establish the criteria that the q-Exponential parameters must satisfy to preserve the 

validity of the log-likelihood function: 

 

 For 1 < 𝑞 < 2, there is no problem, all arguments are valid. 

 For 0 < 𝑞 < 1, the argument of the logarithms in the second part of Eq. (2.8) must satisfy 

the following inequality:  

 

(1−𝑞)𝑡𝑖

𝜂
< 1, ∀ 𝑖.       (3.1) 

 

Otherwise, the logarithm function would become indefinite, as its argument would be 

smaller or equal to zero. 

 For 𝑞 ≤ 0, the same inequality in Eq. (3.1) must be satisfied. 

 

Through inequality (3.1), 𝑡𝑖 can be expressed as 

 

𝑡𝑖 <
𝜂

(1−𝑞)
,       (3.2) 

 

which has to be true for all 𝑖, including 𝑡𝑚𝑎𝑥
𝑜 , the largest observed value in the sample. Thus, 

𝑡𝑚𝑎𝑥
𝑜  should be strictly smaller than the term of the right side, which will be called 𝑡𝑚𝑎𝑥: 

 

𝑡𝑚𝑎𝑥
𝑜 <

𝜂

(1−𝑞)
= 𝑡𝑚𝑎𝑥.  (3.3) 
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Also, 𝛿 is defined as the difference between 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥
𝑜 : 

 

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑎𝑥
𝑜 = 𝛿.                                                         (3.4) 

 

 

Parameter 𝜂 can be isolated from the equality in Eq. (3.3) and, by using Eq. (3.4), it can 

be written as a function of 𝑞, 𝑡𝑚𝑎𝑥
𝑜  and  𝛿:  

 

𝜂 = (1 − 𝑞)𝑡𝑚𝑎𝑥 = (1 − 𝑞)(𝑡𝑚𝑎𝑥
𝑜 + 𝛿).                                                          (3.5) 

 

Thus, 𝜂 in Eq. (2.8) can be replaced by the second equality of Eq. (3.5) and the following 

expression of the log-likelihood is obtained: 

 

𝑛 ln (
1

𝑡𝑚𝑎𝑥
𝑜 +𝛿

) + 𝑛 ln (
2−𝑞

1−𝑞
) +

1

1−𝑞
∑ (1 −

𝑡𝑖

𝑡𝑚𝑎𝑥
𝑜 +𝛿

)𝑛
𝑖=1 . (3.6) 

 

 

Notice that Eq. (3.6) is the log-likelihood function of Eq. (2.8) in terms of the parameter 

𝑞, the sample value 𝑡𝑚𝑎𝑥
𝑜  and the constant 𝛿. Parameter 𝜂 is implicitly present in this equation. 

 

Once Eq. (3.6) is obtained, we can write the following limit for 𝑞 → −∞: 

 

lim
𝑞→−∞

[𝑛 ln (
1

𝑡𝑚𝑎𝑥
𝑜 +𝛿

) + 𝑛 ln (
2−𝑞

1−𝑞
) +

1

1−𝑞
∑ (1 −

𝑡𝑖

𝑡𝑚𝑎𝑥
𝑜 +𝛿

)𝑛
𝑖=1 ] = 𝑛 ln (

1

𝑡𝑚𝑎𝑥
𝑜 +𝛿

) . (3.7) 

 

Therefore, the log-likelihood function has 𝑛 ln (
1

𝑡𝑚𝑎𝑥
𝑜 +𝛿

) as asymptote when 𝑞 → −∞. 

This also happens to be an upper bound for the maximum value for the log-likelihood function 

that is practically never reached, since the more negative the parameter q the ligher the  of the 

log-likelihood towards the asymptote. In this way, optimization techniques used to estimate the 

q-Exponential parameters when 𝑞 is lower than 1 may present convergence difficulties as they 

tend to reach huge negative estimates for 𝑞. This behavior of the estimation procedures is indeed 

expected, since the function to be maximized is monotone increasing as 𝑞 → −∞ (SALES 

FILHO, 2016). Such a convergence failure is reflected in the construction of confidence 

intervals, which tend to be large and practically useless.  

Now we will be isolate the parameter 𝑞 and will manipulate the log-likelihood function 

in order to set it in terms of 𝜂 and the observed sample values. Thus, inequality (3.1) can be 

written as 
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𝑞 > −(
𝜂

𝑡𝑖
) + 1.                                                                                                                     (3.8) 

Then, we can replace the value of 𝑞 in the first term of Eq. (2.8) by −(
𝜂

𝑡𝑚𝑎𝑥
0 +𝛿

) + 1, the 

parameter 𝛿 must be added to 𝑡𝑚𝑎𝑥
𝑜 because the theoretic 𝑡𝑚𝑎𝑥 is larger than the observed 𝑡𝑚𝑎𝑥

0 . 

In this way, the first term of Eq. (2.8) is 

 

𝑛 ln (
1

𝜂
+

1

𝑡𝑚𝑎𝑥+𝛿
) = 𝑛 ln (

(𝑡𝑚𝑎𝑥+𝛿)+𝜂

𝜂(𝑡𝑚𝑎𝑥+𝛿)
).                                                                                 (3.9) 

 

The second term of Eq. (2.8) can be written as 

 

 

ln ([1 −
𝑡𝑖

𝑡𝑚𝑎𝑥+𝛿
]

(𝑡𝑚𝑎𝑥+𝛿)
𝜂⁄

).                                                                                               (3.10) 

 

Thus, Eq. (2.8) also can be written as follows 

 

𝑙(𝑡|𝑞, 𝜂) = 𝑛 ln (
1

𝜂
+

1

𝑡𝑚𝑎𝑥+𝛿
) + ∑ ln([1 −

𝑡𝑖

𝑡𝑚𝑎𝑥+𝛿
]

(𝑡𝑚𝑎𝑥+𝛿)
𝜂⁄

)𝑛
𝑖=1 .         

                                                                                                                                             (3.11) 

Once Eq. (3.11) is obtained, we can write the following limit for 𝜂 → ∞: 

 

 

lim
𝜂→∞

𝑛 ln (
1

𝜂
+

1

𝑡𝑚𝑎𝑥+𝛿
) + ∑ ln([1 −

𝑡𝑖

𝑡𝑚𝑎𝑥+𝛿
]

(𝑡𝑚𝑎𝑥+𝛿)
𝜂⁄

)𝑛
𝑖=1 = 𝑛 ln (

1

𝑡𝑚𝑎𝑥+𝛿
).                   (3.12) 

 

The results found in Eq. (3.7) and Eq. (3.12) are the same. 

It is important to notice that the sample size is constant. Experiments with some different 

samples were made, and these tests showed that, when the value of q decreases, the log-

likelihood function increases. In other words, the called monotone likelihood is verified. Figure 

6 shows this behavior.  The red line represents an asymptote, which is the limit when 𝑞 → −∞. 

However, even the limit of the function when 𝑞 → −∞ being a finite a real number (Eq. (3.7)), 

this just happens in the infinite. In other words, it does not happen in practice. In this way, the 

green curve will always get closer to the asymptote but will never reach it. 

The behavior verified in Figure 6 is analogous as the one observed in Figure 7. The first 

shows the behavior of the log-likelihood function presented in Eq. (3.6) when 𝑞 → −∞. And 

the latter illustrates the behavior of the log-likelihood presented in Eq. (3.11) as 𝜂 increases. 
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Both graphics were constructed with 𝑛 = 50, 𝑞 =  −1000, 𝜂 = 4000 and 𝛿 = 0.0001. The 

asymptote represented by the red line in both graphics was calculated by the result of Eq. (3.7), 

which is the same as the result of Eq. (3.12). These asymptotes have the exactly same value 

when the sample is the same, as their value only depends on sample size, on the maximum 

sample value and on the value of 𝛿. The asymptote value presented in the Figure 6 and in Figure 

7 is -80.2470.  

 

 

Figure 6: Behavior of the log-likelihood function when the parameter q decreases. 

Source: This research (2018) 
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Figure 7: Behavior of the log-likelihood function when the parameter 𝜼 increases. 

Source: This research (2018) 

 

 

 

3.2 Change of variable of the q-Exponential probability model 

 

As discussed in the previous section, the q-Exponential distribution presents the called 

monotone likelihood, which concerns a behavior that makes the likelihood function increase as 

the parameters’ values increase in module. However, this is not the only problem verified in 

this distribution. There are some regularity conditions that must be satisfied to guarantee the 

properties of the maximum likelihood estimators, as shown in Sub-section 3.3. In fact, the 

regularity condition that treats the independence of the function’s support in relation to the 

parameters is not satisfied for the q-Exponential distribution. 

With the goal to correct the log-likelihood function of the q-Exponential to satisfy the 

regularity condition, was applied a change of variable. The description of the change of variable 

is below. 
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Initially, the variable Y is defined as a function of the random variable 𝑇~ 𝑞 − Exp as 

follows: 

 

 

𝑌 =
𝑡

𝑡𝑚𝑎𝑥
.                                                                                                                      (3.13) 

 

With this change, necessarily the function’s support will be between 0 and 1, because the 

variable 𝑇 has been divided by the theoretic maximum value. Thus, the regularity condition 

problem was solved, and the function’s support does not depend on the distribution parameters 

anymore. 

Using the results showed in (2.22), it follows 

 

𝑔−1(𝑇) = 𝑇 = 𝑌𝑡𝑚𝑎𝑥,                                                                                                        (3.14) 

 
𝑑𝑔−1(𝑇)

𝑑𝑦
= 𝑡𝑚𝑎𝑥,                                                                                                                   (3.15) 

 

where 

𝑡𝑚𝑎𝑥 =
𝜂

1−𝑞
= 𝑡𝑚𝑎𝑥

0 + 𝛿.                                                                                                     (3.16) 

                                                                                                

Then, 

𝑓𝑦 = 𝑓𝑡[𝑌𝑡𝑚𝑎𝑥]𝑡𝑚𝑎𝑥. 

 

 

then, 

𝑓(𝑦) =
2−𝑞

1−𝑞
(1 − 𝑦)

1

1−𝑞,                                                                                                       (3.17) 

 

where  

 

𝑌 =
𝑡

𝑡𝑚𝑎𝑥
0 +𝛿

.                                                                                                                        (3.18) 

Eq. (3.17) is the new q-Exponential PDF; in other words, it is the reparametrized function 

of the q-Exponential distribution. The new density function now can be a function composed 

just by the parameters q and 𝛿, but it is possible to obtain the parameter 𝜂 with Eq. (3.16) 

presented above. 
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The new q-Exponential log-likelihood function defined only by the parameters q and 𝛿 is 

given as follows 

𝑙(𝑦, 𝑞, 𝜂) = 𝑛 ln (
2−𝑞

1−𝑞
) +

1

1−𝑞
∑ ln(1 − 𝑦𝑖)

𝑛
𝑖=1 .                                                              (3.19) 

 

And the limit for 𝑞 → −∞ is the following: 

 

lim
𝑞→−∞

𝑛 ln (
2−𝑞

1−𝑞
) +

1

1−𝑞
∑ ln(1 − 𝑦𝑖)

𝑛
𝑖=1 = lim

𝑞→−∞
𝑛 ln (1 +

1

1−𝑞
) +

1

1−𝑞
∑ ln(1 − 𝑦𝑖)

𝑛
𝑖=1 = 0           

(3.20) 

 
 

The limit  𝑞 → −∞ goes equals zero and no larger depends on the sample length as is 

verified with the original log-likelihood function. Figure 10 shows the curve behavior with the 

log-likelihood function after the reparameterization with the parameters q and 𝛿. 

 

Figure 8: Behavior of the log-likelihood function after 

the change of variable with just the parameter q 

Source: This research (2018) 

 

Differently from Figure 6, by visual inspection of Figure 8 we see that now there is a 

value of parameter q that maximizes the log-likelihood function.  

Then, is calculated the log-likelihood function just with the parameter 𝜂. To that end, it 

was necessary use the following equality: 
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𝑞 =  − (
𝜂

𝑡𝑚𝑎𝑥
) + 1. 

 

Thus, it was obtained the new q-Exponential log-likelihood function just with the 

parameter 𝜂: 

 

𝑙(𝑦) = 𝑛 ln (
2+(

𝜂

𝑡𝑚𝑎𝑥
)−1

1+(
𝜂

𝑡𝑚𝑎𝑥
)−1

) +
1

1+(
𝜂

𝑡𝑚𝑎𝑥
)−1

∑ ln(1 − 𝑦𝑖)
𝑛
𝑖=1 = 𝑛 ln (

1+(
𝜂

𝑡𝑚𝑎𝑥
)

(
𝜂

𝑡𝑚𝑎𝑥
)

) +

1

(
𝜂

𝑡𝑚𝑎𝑥
)
∑ ln(1 − 𝑦𝑖)

𝑛
𝑖=1 =𝑛 ln (1 +

𝑡𝑚𝑎𝑥

𝜂
) +

𝑡𝑚𝑎𝑥

𝜂
∑ ln(1 − 𝑦𝑖)

𝑛
𝑖=1 . 

 
And the limit for 𝜂 → ∞ is the following: 

 

lim
𝜂→∞

𝑛 ln (1 +
𝑡𝑚𝑎𝑥

𝜂
) +

𝑡𝑚𝑎𝑥

𝜂
∑ ln(1 − 𝑦𝑖) = 0𝑛

𝑖=1 .                                              (3.21) 

 

The limit of the q-Exponential log-likelihood function as 𝜂 → ∞ is also zero, just like 

the result obtained in Eq. (3.20). 

Eq. (3.19) can be written just in terms of the parameters q and 𝛿 through the Eq. (3.16). 

Thus, it is important to know the behavior of the parameter 𝛿 too. Indeed, 𝛿 is an auxiliary 

parameter, and it will be used to obtain the original parameters of the q-Exponential distribution. 

Figure 9 presents the behavior of the log-likelihood with respect to 𝛿. 

 

Figure 9: Behavior of the parameter 𝜹. 

 Source: This research (2018) 
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It is possible to note that, differently from the new behavior of the parameter q, Figure 9 

indicates that the monotone likelihood problem still exists. Figure 10 presents the behavior of 

the q-Exponential log-likelihood function with both parameters together (𝑞 and 𝛿) and we 

clearly observe that the monotonic behavior of the log-likelihood function is still verified.  

 

 

3.2.1 Characterization of the modified q-Exponential distribution 

 

 

The new q-Exponential CDF and reliability function are as follows: 

  

𝐹(𝑦) = ∫
2−𝑞

1−𝑞
(1 − 𝑦)

1

1−𝑞
𝑦

−∞
𝑑𝑦 =  1 − (1 − 𝑦)

2−𝑞

1−𝑞,                                                            (3.23) 

 

  

𝑅(𝑦) = (1 − 𝑦)
2−𝑞

1−𝑞.                                                                                             (3.24) 

 
Thus, the new q-Exponential hazard rate is: 

 

ℎ(𝑦) =

2−𝑞

1−𝑞
(1−𝑦)

1
1−𝑞

(1−𝑦)
2−𝑞
1−𝑞

=
(2−𝑞)

(1−𝑞)
(1 − 𝑦)

𝑞−1

1−𝑞.                                                                              (3.25) 

 

Figure 11 presents the behavior of the new q-Exponential distribution hazard rate. The 

graphic shows an increasing curve. Thus, the properties of the q-Exponential, for 𝑞 < 1, are 

preserved. The distribution is still able to model data in the degradation phase of the bathtub 

curve. 

 

Figure 10: Graphic for the log-likelihood in function of q and t. 

Source: This research (2018) 
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Figure 11: New q-Exponential hazard rate to 𝒒 = −𝟐 and 

𝜹 = 𝟎. 𝟏 
 

Source: This research (2018) 

 

 

Although this change of variable solved partially the regularity condition related to the 

function’s support, and preserved properties of the q-Exponential probability model, such as an 

increasing hazard rate for 𝑞 < 1, as shown in Figure 11, this function does not produce good 

estimates for the parameters. Then, was applied the penalization Firth’s method in this function, 

this correction was implemented in the software R, but it did not solve the problem because the 

correction did not produce good parameter estimates. Indeed, the implementation made in R 

could not turn back any results for this situation, the function implemented just turn back 

computational errors.  

Therefore, it was decided to maintain this modification in this work, even though it does 

not solve the monotone log-likelihood problem. However, it is possible to think about other 

change of variables or any reparameterization for the q-Exponential log-likelihood function in 

future works or even find other method to correct this modified function. 
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4 PENALIZED q-EXPONENTIAL LOG-LIKELIHOOD  

  

In this chapter, Firth’s method is applied to penalize the q-Exponential log-likelihood 

function. A slight modification of the method was required and it will be described in what 

follows. This method was chosen to penalize the q-Exponential log-likelihood function 

basically for two reasons; the first respects to the efficiency obtained with the application, as it 

is possible see in Fonseca & Cribari-Neto (2018); and the second can be explained by the 

simplicity of this method. 

Under regularity conditions and for large samples, 𝜃~𝑁3(𝜃, 𝐼(𝜃)−1) approximately, 

where 𝐼(𝜃) is Fisher’s (expected) information matrix: 

𝐼(𝜃) = 𝐸 [
𝜕𝑙(𝜃)

𝜕𝜃

𝜕𝑙(𝜃)

𝜕𝜃𝑇
]. 

The score function of the q-Exponential log-likelihood is presented in Equations (2.9) and 

(2.10). In general, 𝐼(𝜃) = 𝐸[𝐽(𝜃)] is easier to compute, where 𝐽(𝜃) =  −𝜕2𝑙(𝜃) 𝜕𝜃𝜕𝜃𝑇⁄  is the 

observed information. For the q-Exponential model, we obtain 

𝐽(𝜃) = [
𝐽𝑞𝑞 𝐽𝑞𝜂

𝐽𝜂𝑞 𝐽𝜂𝜂
], 

where 

𝐽𝑞𝑞 = −
𝑛

(2−𝑞)2
+

2

(1−𝑞)3
∑ ln (1 −

(1−𝑞)𝑡𝑖

𝜂
)𝑛

𝑖=1 +
2

(1−𝑞)2
∑

𝑡𝑖

𝜂(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 +

1

(1−𝑞)
∑

𝑡𝑖
2

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 ,                                                                                            (4.1) 

𝐽𝜂𝜂 =
𝑛

𝜂2
+

1

(1−𝑞)
∑ (−

2(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)
−

𝑡𝑖
2(1−𝑞)2

𝜂4(1−
(1−𝑞)𝑡𝑖

𝜂
)
)𝑛

𝑖=1 ,                                           (4.2) 

𝐽𝑞𝜂 = 𝐽𝜂𝑞 =
1

(1−𝑞)2
∑

(1−𝑞)𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 +

1

(1−𝑞)
∑ −

𝑡𝑖

𝜂2(1−
(1−𝑞)𝑡𝑖

𝜂
)
−

𝑡𝑖
2(1−𝑞)

𝜂4(1−
(1−𝑞)𝑡𝑖

𝜂
)

𝑛
𝑖=1 .     (4.3) 

Thus, as previously presented, the original idea of this method involves the utilization of 

the matrix of the expected or the observed information (Fisher’s information), but in some cases 

the expected information it is not easily to be obtained. In these cases, the matrix of the observed 



44 
 

 

 

information can be used as an approximation of the expected information. The penalization is 

obtained by the Equation 2.26 (Firth’s penalization method). 

Table 1 presents the results of a Monte Carlo simulation ran with the original q-

Exponential log-likelihood function and with the penalized q-Exponential log-likelihood 

function for η constant and three values of 𝑞. This simulation was performed by the function 

Optim of the computational software R with 10000 replications for five sample sizes (20, 50, 

100, 500, 1000) and the numerical method utilized to do the maximizations was the Nelder-

Mead.  

Table 1: Point Estimation and Relatives Bias for parameters 𝒒 and 𝜼  with 𝜼 constant 

For 𝒒 = −𝟐𝟎 and 𝛈 = 𝟓 𝒒̂  Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -141900356 7095017 31963831 6392765 

Penalized function, n=20 -8.2962 -0.5851 2.0913 -0.5817 

Original function, n=50 -50594075 2529703 11797129 2359425 

Penalized function, n=50 -8.6269 -0.5686 2.2415 -0.5516 

Original function, n=100 -22844008 1142199 5377958 1075591 

Penalized function, n=100 -8.8741 -0.5562 2.3236 -0.5352 

Original function, n=500 -2213100 110654 525524.8 105104 

Penalized function, n=500 -9.8777 -0.5061 2.5832 -0.4833 

Original function, n=1000 -535200.5 26759.03 127240.5 25447.09 

Penalized function, n=1000 -10.7615 -0.4619 2.7966 -0.4406 

For 𝒒 = −𝟐 and 𝛈 = 𝟓 𝒒̂ Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -98051761 49025880 146483739 29296747 

Penalized function, n=20 -4.4989 1.2494 8.24302 0.6486 

Original function, n=50 -16157679 8078839 25362689 5072537 

Penalized function, n=50 -4.3327 1.1663 8.4486 0.6897 

Original function, n=100 -1600956 800476.8 2558381 511675.2 

Penalized function, n=100 -4.2796 1.1398 8.5361 0.7072 

Original function, n=500 -2.8395 0.4197 6.3609 0.2721 

Penalized function, n=500 -3.6188 0.8094 7.6328 0.5265 

Original function, n=1000 -3.2317 0.6158 7.0284 0.4056 

Penalized function, n=1000 -3.5828 0.7914 7.6010 0.5202 

For 𝒒 = 𝟎. 𝟓 and 𝛈 = 𝟓 𝒒̂ Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -4928221 -9856444 28659849 5731969 

Penalized function, n=20 0.3891 -0.2216 7.6341 0.5268 

Original function, n=50 -24925.44 29591.83 147964.1 -24925.44 

Penalized function, n=50 0.8546 0.7092 4.7675 -0.0464 

Original function, n=100 0.3610 -0.2779 5.7856 0.1571 

Penalized function, n=100 0.9645 0.9290 4.4141 -0.1171 

Original function, n=500 0.4720 -0.0559 5.1602 0.0320 

Penalized function, n=500 0.6298 0.2597 4.9724 -0.0055 

Original function, n=1000 0.4781 -0.0437 5.1462 0.0292 

Penalized function, n=1000 0.4948 -0.0102 5.0114 0.0022 

Source: This research (2018) 
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By analyzing the results showed in the Table 1, it is verified that the penalized q-

Exponential log-likelihood presented better parameter estimates compared to the original 

function, even for small sizes of sample as 20 and 50 observations.  

For 𝑞 = −20 and η = 5 the original q-Exponential log-likelihood function did not yield 

any good estimate for the parameters. Meanwhile the larger absolute relative bias that the 

penalized function reached for the parameter 𝑞 was -0.5851 and the larger absolute relative bias 

for the parameter η was -0.5817, i.e., the corrected function achieved a bias lower than 60% for 

the smallest sample size. This bias drops to lower than 50% as the size of sample is 1000 

observations. 

For 𝑞 = −2 and η = 5, the original function did not produce good results for the sample 

sizes 20, 50 and 100 realizations. Indeed, for these sample sizes the estimates are very poor. 

However, for these parameters values, starting of samples with 500 observations the original q-

Exponential log-likelihood function yields reliable estimates for the parameters. On the other 

hand, for both values of parameters, the corrected function produces good estimates for all 

sample sizes. However, it is important to make it clear that for great sample sizes (500 and 

1000, for example) the original function did produce slightly results than the penalized function.  

For 𝑞 = 0.5 and η = 5, the results for this combination of parameters were similar at the 

previous case. The original function produced good estimates for the parameters just for 

samples with a larger number of observations (100, 500 and 1000 realizations). And the 

penalized function yielded very good estimates for all the sample sizes, which means that the 

penalty in the q-Exponential log-likelihood function worked very well. The largest absolute 

relative bias verified with the corrected function was 0.9290 for the parameter 𝑞  and 0.5268 

for the parameter η. Meanwhile, the largest absolute relative bias that the original function 

produced was -9856444 for the parameter 𝑞 and 5731969 for the parameter η. 

Table 2 present the results of a Monte Carlo simulation ran with the original and penalized 

q-Exponential log-likelihood for 𝑞 constant and three values of η. This simulation was also 

performed by the function Optim of the computational software R with 10000 replications for 

five sample sizes (20, 50, 100, 500, 1000) and the numerical method utilized to do the 

maximizations was the Nelder-Mead. 
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Table 2: Point Estimation and Relatives Bias for parameters 𝒒 and 𝜼  with 𝒒 constant 

For 𝒒 = −𝟐 and 𝛈 = 𝟓𝟎 𝒒̂ Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -19770436 9885217 295654300 5913085 

Penalized function, n=20 -3.6797 0.8398 70.2032 0.4040 

Original function, n=50 -3206861 1603430 50337273 1006744 

Penalized function, n=50 -3.4177 0.7088 69.9918 0.3998 

Original function, n=100 -309689.9 154844 4951017 99019.33 

Penalized function, n=100 -3.3334 0.6667 70.0970 0.4019 

Original function, n=500 -2.4841 0.2420 57.7073 0.1541 

Penalized function, n=500 -3.1803 0.5901 69.0548 0.3810 

Original function, n=1000 -2.4325 0.2162 57.0019 0.1400 

Penalized function, n=1000 -3.0389 0.5194 66.9627 0.3392 

For 𝒒 = −𝟐 and 𝛈 = 𝟓𝟎𝟎 𝒒̂ Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -10294098 5147048 1540086511 3080172 

Penalized function, n=20 -3.6346 0.8173 695.8656 0.3917 

Original function, n=50 -1664069 832033.6 261186838 522372.7 

Penalized function, n=50 -3.4038 0.7019 697.7501 0.3955 

Original function, n=100 -159733 79865.48 25527798 51054.6 

Penalized function, n=100 -3.3228 0.6614 699.3281 0.3986 

Original function, n=500 -2.4983 0.2491 579.2700 0.1585 

Penalized function, n=500 -3.2385 0.6192 700.2667 0.4005 

Original function, n=1000 -2.3246 0.1623 552.0839 0.1041 

Penalized function, n=1000 -3.2141 0.6070 698.7303 0.3970 

For 𝒒 = −𝟐 and 𝛈 = 𝟏𝟎𝟎𝟎 𝒒̂ Rel. Bias  
𝒒̂ 

𝜼̂ Rel. Bias 
𝜼̂ 

Original function, n=20 -8970900 4485449 2686290200 2686289 

Penalized function, n=20 -3.6472 0.8236 1394.5930 0.3945 

Original function, n=50 -1409583 704790.3000 442743701 442742.7000 

Penalized function, n=50 -3.4039 0.7019 1395.3930 0.3953 

Original function, n=100 -134713.4000 67355.7100 43027614 43026.6100 

Penalized function, n=100 -3.3165 0.6582 1396.4650 0.3964 

Original function, n=500 -2.5063 0.2531 1161.0870 0.1610 

Penalized function, n=500 -3.2282 0.6141 1397.1590 0.3971 

Original function, n=1000 -2.3050 0.1525 1097.6210 0.0976 

Penalized function, n=1000 -3.2128 0.6064 1397.0850 0.3970 

Source: This research (2018) 

 

For 𝑞 = −2 and η = 50, the original function did not produce good results for the sample 

sizes 20, 50 and 100 realizations. For this sample sizes the estimates are very poor. However, 

for these parameters values, starting of samples with 500 observations the original q-

Exponential log-likelihood function yields good estimates for the parameters. On the other 

hand, for these both values of parameters, the corrected function still to produces good estimates 

of the parameters for all sample sizes.  
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For 𝑞 = −2 and η = 500, for this combination of parameters, once again the original q-

Exponential log-likelihood function only yielded good results for larger sample sizes (500 and 

1000 observations, for example). And once more the penalized function maintains good results 

(small biases) even for small sample sizes (20 and 50 observations, for example). 

For 𝑞 = −2 and η = 1000, the corrected function remained consistent, i.e. the results 

obtained with this function were still good even for small samples, just as for the other 

combinations of parameters. On the other hand, the original function only starts to produce 

good results for samples with at least 500 observations.  

The results presented in Tables 4.1 and 4.2 show that the penalized function is consistent 

and effective even for small sizes samples since it is possible to obtain good results in these 

cases. On the other hand, the original function proved to be more effective for big sizes sample. 

However, as the parameter 𝑞 increases in module, the original function does not yield good 

results even for larger sample sizes, as it is possible to see in the Table 1, for 𝑞 = −20 and η =

5. Other tests with values of the parameter 𝑞 higher in module were made and the results 

obtained by the original log-likelihood were not good. 

In practice, it is not viable to obtain samples with a big number of realizations, sometimes 

there are not financing to get this or just it is not possible. Thus, it is possible to affirm that the 

original function is not a good choice, because it only showed good results in specific cases. 

Moreover, as the parameter  𝑞 increases in module, the original function does not produce good 

results at all.  

4.1 Confidence intervals based on bootstrap methods 

 

In what follows, the parametric and non-parametric bootstrap methods will be applied to 

construct the confidence intervals for the parameters 𝑞 and 𝜂 of the q-Exponential distribution. 

 

4.1.1 Confidence intervals based on parametric bootstrap for the q-Exponential parameters 

 

The sequence showed below presents the way used to construct the confidence intervals 

based on parametric bootstrap for the q-Exponential parameters, 𝑞 and 𝜂: 
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1. Obtain estimates for 𝑞 and 𝜂 for the q-Exponential distribution by maximizing Equation 

(2.10). 

2. By using the estimates obtained in the first step and using   

𝑇 =
η [1 − 𝑈

(
1−𝑞
2−𝑞

)
]

1 − 𝑞
 

obtained by means of the inversion method, it is possible to generate a new sample 𝑇∗, 

i.e., {𝑡1
∗, 𝑡2

∗, ⋯ , 𝑡𝑛
∗}. Based on this new sample, the bootstrap estimates must be computed 

for 𝑞 and 𝜂, say 𝑞∗ and 𝜂∗, by maximizing Equation (2.10). 

3. Then, repeat the step 2 for 𝑁 times. 

4. Next, by using the 𝑁 values of 𝑞∗ and 𝜂∗, obtained in the step 3, and by adopting 𝛼 as 

significance level, the quantiles 𝛼 2⁄  and 1 − 𝛼 2⁄  for 𝑞∗ and 𝜂∗ are obtained. Finally,  

it is possible to obtain approximate confidence intervals for the parameters 𝑞 and 𝜂 with 

confidence of 100(1 − 𝛼)% by the following equations: 

𝐶𝐼[𝑞;  100(1 − 𝛼)%] = [𝑞𝛼 2⁄
∗ , 𝑞1−𝛼 2⁄

∗ ],                                                                     (4.4) 

𝐶𝐼[𝜂;  100(1 − 𝛼)%] = [𝜂𝛼 2⁄
∗ , 𝜂1−𝛼 2⁄

∗ ].                                                                     (4.5) 

Simulations were made in order to assess the coverage of 95% of the confidence intervals 

provided by the bootstrap method.  The nominal level of significance was set to 𝛼 = 0.05. The 

idea was to count how many times the true parameter value of 𝑞 and 𝜂 were within the 

confidence interval. For this experiment the penalized function was used, a Monte Carlo 

simulation experiment was performed with 5000 replications, for three sample sizes (𝑛 = 20, 

𝑛 = 50 and 𝑛 = 100) and for four parameter combinations, as shown in Table 3. 

From the analysis of the results reported in Table 3, it can be inferred that, in general, the 

results were satisfactory because the coverages obtained for the confidence intervals were, in 

general, close to the tested quantile (90% and 95%). However, for small samples (for example, 

𝑛 = 20), for some cases, the performance of the parametric bootstrap were worst compared 

with the performance provided by larger samples.  
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Table 3: Confidence Intervals Coverage obtained by the Parametric Bootstrap Simulations 

Sample Size Parameter value Coverage  Sample Size Parameter 

value 

Coverage  

𝑛 = 20 

𝑞 = −2 

 

0.840  

𝑛 = 20 
 

 

 

𝑞 = −5 

 

0.426 

 

η = 5 

 

0.558 

 

η = 50 

 

0.640 

 

𝑛 = 50 

𝑞 = −2 

 

0.982 

 

 

𝑛 = 50 
 

 

 

𝑞 = −5 

 

0.764 

 

η = 5 

 

0.976 

 

 

η = 50 

 

0.784 

 

𝑛 = 100 

𝑞 = −2 

 

0.982  

𝑛 = 100 

 

 

 

𝑞 = −5 

 

0.946 

η = 5 

 

0.980 

 

 

η = 50 

 

0.946 

Sample Size Parameter value Coverage  Sample Size Parameter 

value 

Coverage  

𝑛 = 20 

𝑞 = −10 

 

0.784 

 

 

𝑛 = 20 

 

 

 

𝑞 = −20 

 

0.840 

η = 80 

 

0.764 

 

 

η = 100 

 

0.84 

𝑛 = 50 

𝑞 = −10 

 

0.998 

 

 

𝑛 = 50 

 

 

 

𝑞 = −20 

 

0.986 

 

η = 80 

 

0.996 

 

 

η = 100 

 

0.976 

 

𝑛 = 100 

𝑞 = −10 

 

0.998 
 

𝑛 = 100 

 

 

 

𝑞 = −10 

 

0.986 

η = 80 

 

0.998 

 

η = 100 

 

0.986 

Source: This research (2018) 

 
 

4.1.2 Confidence intervals based on non-parametric bootstrap for the q-Exponential 

parameters 
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The steps presented following shows how to build the confidence intervals based on non-

parametric bootstrap for the q-Exponential parameters, 𝑞 and 𝜂: 

1. First, a new sample 𝑋∗ = {𝑥1
∗, 𝑥2

∗, ⋯ , 𝑥𝑛
∗} is generated with replacement from a original 

sample 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}. Based on this new sample, the estimates 𝑞∗ and 𝜂∗ for 𝑞 

and 𝜂 are computed by maximizing the Equation (2.10). 

2. Then, the first step must be repeated 𝑁 times. 

3. Finally, with the 𝑁 values of 𝑞∗ and 𝜂∗ obtained in the step 2 and by adopting 𝛼 as a 

significance level, the quantiles 𝛼 2⁄  and 1 − 𝛼 2⁄  for 𝑞 and 𝜂 must be found. Thus, it 

is possible construct by Equations (4.4) and (4.5) approximate confidence intervals for 

𝑞 and 𝜂, with confidence interval equals to 100(1 − 𝛼)%. 

Table 4 shows the Monte Carlo simulation results made to test how robust the q-

Exponential penalized function can be with respect to the non-parametric bootstrap confidence 

intervals. By analyzing Table 4 it is possible to note that, as the parametric bootstrap (Table 3), 

the non-parametric bootstrap is also satisfactory, once the probabilities reached with this 

method are in mostly superior than 80%. Some results were unsatisfactory, as for   𝑞 = −5, 

𝜂 = 50 and 𝑛 = 20, which for parameter 𝑞 the confidence interval coverage was of 0.478 and 

for parameter 𝜂 was of 0.490, both less than 50%, but these inferior results are the minority. On 

the other hand, for this same setting, when the size of the sample increases the results improve. 

The next chapter brings examples with reliability-related data in which both q-

Exponential log-likelihood functions, original and penalized, are applied. Besides, there is a 

comparison between the fit provided by the q-Exponential and Weibull distributions. 
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Table 4: Confidence Intervals Coverage obtained by the Non-Parametric Bootstrap Simulations 

Sample Size Parameter value Coverage  Sample Size Parameter 

value 

Coverage  

𝑛 = 20 

𝑞 = −2 

 

0.928  

𝑛 = 20 
 

 

 

𝑞 = −5 

 

0.478 

 

η = 5 

 

0.962 

 

 

η = 50 

 

0.490 

 

𝑛 = 50 

𝑞 = −2 

 

0.982 

 

 

𝑛 = 50 

 

 

 

𝑞 = −5 

 

0.622 

 

η = 5 

 

0.962 

 

 

η = 50 

 

0.730 

 

𝑛 = 100 

𝑞 = −2 

 

0.992 

 

 

𝑛 = 100 

 

 

 

𝑞 = −5 

 

0.684 

 

η = 5 

 

0.986 

 

 

η = 50 

 

0.824 

 

Sample Size Parameter value Coverage  Sample Size Parameter 

value 

Coverage  

𝑛 = 20 

𝑞 = −10 

 

0.518 

 
 

𝑛 = 20 
 

 

 

𝑞 = −20 

 

0.644 

 

η = 80 

 

0.83 

 

 

η = 100 

 

0.91 

 

𝑛 = 50 

𝑞 = −10 

 

0.622  

𝑛 = 50 

 

 

 

𝑞 = −20 

 

0.730 

η = 80 

 

0.824 

 

η = 100 

 

0.962 

 

𝑛 = 100 

𝑞 = −10 

 

0.824 
 

𝑛 = 100 

 

 

 

𝑞 = −10 

 

0.824 

η = 80 

 

0.962 

 

η = 100 

 

0.984 

Source: This research (2018) 
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5 EMPIRICAL APPLICATIONS 

 

In this chapter, two empirical applications with failure data are considered. They can be 

modeled by a q-Exponential distribution with 𝑞 <  1, i.e., with an increasing hazard rate (last 

phase of the bathtub curve). 

The first case study, whose data are in Table 5, involves a magnetic resonance imaging 

(MRI) equipment. MRI scanners use strong magnetic fields, radio waves, and field gradients to 

generate images of the organs in the body to be analyzed by doctors and specialists (PEREIRA, 

2017).  

Figure 12 shows an exams room. According to Pereira (2017), the exams room is 

composed by the main part of the equipment and the patient table, the gantry, with the magneto, 

the gradient coil and the radio frequency (RF). The author still explain that the magneto is a big 

coil that needs to be refrigerated by liquid helium in order to maintain its superconductors 

characteristics.  

Table 5: TBF of the MRI equipment (sample 1) 

Number  TBF  Number TBF  Number TBF Number TBF 

1 99 18 66 35 14 52 3 

2 38 19 25 36 35 53 46 

3 109 20 4 37 73 54 17 

4 10 21 8 38 18 55 7 

5 35 22 26 39 38 56 75 

6 42 23 98 40 140 57 58 

7 31 24 11 41 19 58 102 

8 18 25 87 42 10 59 6 

9 53 26 11 43 17 60 53 

10 3 27 54 44 4 61 47 

11 12 28 22 45 54 62 26 

12 13 29 13 46 26 63 87 

13 40 30 54 47 135 64 6 

14 6 31 19 48 44 65 13 

15 78 32 47 49 59   

16 77 33 14 50 11   

17 24 34 53 51 18   

Source: PEREIRA (2017) 
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Figure 12: Exams room of MRI 

Source: PEREIRA (2017) 

 

 

The second case study, whose data are in Table 6, refers to a UHT milk filling machine 

from the manufacturer Tetra Pak, A3 Flex version 015V (CARNAÚBA & SELLITO, 2013). 

The authors explain that the machine functions are: to manufacture the package, to sterilize the 

packing material, to pack the product and to provide the product in the final mat. Packaging 

machines are critical equipment for the production of dairy products and their breakdown can 

represent a complete stop of the entire process (SELLITO, BORCHADT & ARAÚJO, 2002). 

In the case studied in this dissertation a machine failure represents loss of production. 

The machine shown in Figure 13 is composed by some subsystems, for which many 

failure modes can cause a general failure. Thus, the first subsystem that fails causes the 

interruption of the production process (CARNAÚBA & SELLITO, 2013). The equipment 

failure data were collected by the software PLMS Centre Premium, which is provided by Tetra 

Pak. According to Carnaúba & Sellito (2013), this software collects data directly from the 

machine in real time, stores them in a database and provides the results by means of 

spreadsheets and graphics. Figure 13 shows an illustration of a packaging machine. 
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Table 6: TBF of the packaging machine (sample 2) 

Observation number Time Between 

Failure (TBF) 

1 7.492 

2 7.485 

3 9.449 

4 3.951 

5 1.748 

6 2.070 

7 10.628 

8 4.256 

9 5.262 

10 3.223 

11 8.376 

12 12.598 

13 5.303 

14 1.861 

Source: CARNAÚBA & SELLITO (2013) 

 

 

 

Figure 13: Packaging machine Tetra Pak 

Source: Tetra Pak (2013) 
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Tetra Pak recommends that this equipment receives a prior periodic review after 500 

hours of work and that is made a preventive maintenance on intervals of 1000 hours of work so 

as to extend the equipment maturity phase. Table 7 shows the descriptive statistics of samples 

1 and 2.  

 

Table 7: Descriptive statistics for samples 1 and 2 

 Mean St. Dev. Minimum Maximum Spread 

Sample 1 

 

38.4583 

 

30.7474 3 109 106 

Sample 2 

 

5.9787 

 

3.4368 1.748 

 

12.598 10.85 

Source: This research (2018) 

 

 

5.1 Applications 

 

Tables 5.1 and 5.2 present the samples collected by Pereira (2017) and by Carnaúba & 

Sellito (2013), respectively. The unity of measurement of these data is days, and it represents 

the time between failures (TBF). The Nelder-Mead optimization method was used for 

maximizing all the functions used in this work (penalized and original log-likelihood functions 

of the q-Exponential distribution). For these applications, it is important ratify that it has been 

considered a state following the repair called as good as new. 

Table 8 shows the estimates obtained for sample 1. Besides, there is a comparison 

between the results obtained with the original and with the penalized q-Exponential log-

likelihood. For parameter 𝑞, the two estimates are lower than 1, which is the case of an 

increasing hazard rate. Although the estimates obtained with the original function are 

reasonable, once the estimates have no a greater magnitude, the penalized function achieves a 

better result, with a greater value for the log-likelihood.  
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Table 8: Parameter estimates for sample 1 

Distribution 𝒒̂ 𝜼̂ Log-likelihood 

value 

Original 

q-Exponential 

0.6831 

 

64.6078 

 

-302.4141 

 

Penalized 

q-Exponential 

-2.9354 

 

550.9695 

 

-294.6075 

Source: This research (2018) 

 

Table 9 brings the parameters’ estimates for the second case (sample 2). For this case, the 

original log-likelihood provided poor estimates, in other words, this function produced 

estimates values very high. The values for 𝑞̂ and 𝜂̂ are incompatible with reality because of the 

high order of magnitude of these, once it is expected to obtain estimates no higher than 104. On 

the other hand, the result obtained with the penalized function are at least realistic. And, once 

more, the value of the log-likelihood reached with the corrected function is better than the one 

provided by the original function. Indeed, in both Tables 5.4 and 5.5, the value obtained for the 

log-likelihood function is in average twice as higher as the result given by the original function.  

 

Table 9: Parameter estimates for sample 2 

Distribution 𝒒̂ 𝜼̂ Log-likelihood 

value 

Original 

q-Exponential 

-6102699 

 

76881817 

 

-35.4695 

 

Penalized 

q-Exponential 

-2.8479 

 

48.4769 

 

-14.4215 

 

Source: This research (2018) 

 

After computing the parameter estimates, it was calculated the p-value for the two 

samples. It was used the K-S Boot test to obtain these measures. Table 6 contains the values of 
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sample 1. For this sample the p-value was of 0.5034, i.e., the null hypothesis can not be rejected, 

and the q-Exponential distribution can fit the data set.  

Table 6 contains the values of sample 2. For this sample the p-value was of 0.9470, i.e., 

this p-value practically represents a perfect fit of the data set. Therefore, the null hypothesis can 

not be rejected, and the q-Exponential distribution can fit the data set.  

Tables 10 and 12 presents the non-parametric and parametric confidence intervals for the 

samples 1 and 2. In these tables it is possible to see that the results obtained with the original 

function for the two samples are worse than the results reached by the penalized function. 

Besides, poor results were presented for sample 2, it is not possible to make reliable predictions 

with them. 

In Table 11, the non-parametric bootstrap confidence intervals are presented for the 

parameters 𝑞 and 𝜂 (samples 1 and 2). The width for each parameter confidence interval is also 

given in this table, this measure indicates the uncertainty about the true parameter value. The 

width of the non-parametric bootstrap confidence intervals for the sample 1 are better than for 

the sample 2, once that widths are lower. However, sample 1 (𝑛 = 65) is larger that sample 2, 

because of that it is expected better results with this sample. On the other hand, the widths 

obtained with the computed confidence intervals for sample 2 are not bad, once this sample 

have a small size (𝑛 = 14), and improved results are expected with bigger samples. The results 

presented in the Table 11 were obtained with the penalized q-Exponential distribution. 

Table 11 presents the parametric bootstrap confidence intervals for the parameters 𝑞 and 

𝜂 (samples 1 and 2), obtained by the penalized function. Once more, the parametric bootstrap 

yielded better results for the first sample, possibly due to the same previous reason (sample 

size). It is not clear which of the two bootstrap methods (non-parametric and parametric) is the 

best. This doubt occurs because in some cases the non-parametric yielded better confidence 

intervals, i.e., with smaller widths. In other cases, the parametric bootstrap produced better 

confidence intervals.  
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Table 10: Non-parametric bootstrap confidence intervals for samples 1 and 2 (original function) 

Sample 1 (90%) 90% Lower Upper Width 

 𝑞 0.0380 0.8978 0.8598 

 𝜂 41.2568 123.3934 82.1366 

Sample 1 (95%) 95% Lower Upper Width 

 𝑞 -0.4104 0.9377 1.3481 

 𝜂 38.5087 165.4682 126.9595 

Sample 2 (90%) 90% Lower Upper Width 

 𝑞 -102573800 

 

-0.3716 102573799.6 

 𝜂 18.3506 

 

1131927000 

 

1131926982 

Sample 2 (95%) 95% Lower Upper Width 

 𝑞 -118984800 

 

0.0210 

 

118984800 

 𝜂 13.2344 1397191000 

 

1397190987 

Source: This research (2018) 

 

 
Table 11: Non-parametric bootstrap confidence intervals for samples 1 and 2 (penalized function) 

Sample 1 (90%) 90% Lower Upper Width 

 𝑞 -4.0580 -2.9159 1.1421 

 𝜂 547.7873 551.3321 

 

3.5448 

Sample 1 (95%) 95% Lower Upper Width 

 𝑞 -4.3825 -2.9159 1.4666 

 𝜂 547.7873 551.3321 

 

3.5448 

Sample 2 (90%) 90% Lower Upper Width 

 𝑞 -5.1553 -2.8479 2.3074 

 𝜂 48.4769 

 

51.5575 

 

3.0806 

Sample 2 (95%) 95% Lower Upper Width 

 𝑞 -5.1553 -2.8479 2.3074 

 𝜂 48.4769 52.2729 

 

4.0806 

Source: This research (2018) 

 

For sample 1 the non-parametric bootstrap produced better results for the parameter η 

(Tables 5.6, 5.7, 5.8 and 5.9), once for this parameter the non-parametric bootstrap has small 
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confidence intervals widths. On the other hand, the parametric bootstrap (Tables 5.6, 5.7, 5.8 

and 5.9), in general, yielded better confidence intervals bootstrap for the parameter 𝑞 for sample 

1. For the second sample (Table 11), considering the penalized function, the non-parametric 

bootstrap yielded for the parameter 𝜂 a confidence interval with a width of 3.0806 (90% of 

confidence) and a confidence interval with a width of 4.0806 (95% of confidence) against a 

width of 11.6204 (90% of confidence) and a width of 13.1560 (95% of confidence) produced 

by the parametric bootstrap (Table 13). Thus, for this situation (for the parameter 𝜂), the non-

parametric yielded a better result.  

However, still for sample 2 (Table 13) and considering the penalized function, the 

parametric bootstrap yielded for the parameter 𝑞 a confidence interval with a width of 1.5667 

(90% of confidence) and a confidence interval with a width of 1.9564 (95% of confidence) 

against a width of 2.3074 (90% of confidence) and a width of also 2.3074 (95% of confidence) 

produced by the non-parametric bootstrap, which means that, in this case, the parametric 

bootstrap produced better results for the parameter 𝑞. 

One of the specific objectives of this work was to make comparisons between the fit 

provided by the q-Exponential distribution and the Weibull distribution. Thus, Figure 14 

illustrates the fit for sample 1 (Table 6) provided by both distributions. While the p-value 

reached with the q-Exponential distribution was of 0.5034 for the first sample, for this same 

sample the Weibull distribution could reach a p-value of 0.1358. Hence, the two distributions 

are able to fit this data set, however, the q-Exponential distribution is able to fit the data better 

than the Weibull distribution. Besides, Figure 14 ratify that, based on the sample 1, the q-

Exponential distribution can model the data better than the Weibull distribution. It is possible 

to see, through Figure 14, that the blue curve (Weibull curve) is under of the most points and 

also under the red curve (q-Exponential curve). On the other hand, the red curve touch most of 

the points. 

The p-value reached with the q-Exponential distribution was of 0.9470 for the second 

sample, which represents a great fit. The Weibull distribution, in turn, could reach a p-value of 

0.9710, which represents a fit even better than the one obtained with the q-Exponential 

distribution. Figure 15 shows the fit provided by the q-Exponential and by Weibull distributions 
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for the second sample (Table 6). Differently from the first case, this time, by only analyzing 

Figure 15 it is not possible to clearly see which of the two distributions better fits the data set. 

Table 12: Parametric bootstrap confidence intervals for samples 1 and 2 (original function) 

Sample 1 (90%) 90% Lower Upper Width 

 𝑞 -0.1584 0.8955 

 

1.0539 

 𝜂 43.4143 139.4417 

 

96.0274 

Sample 1 (95%) 95% Lower Upper Width 

 𝑞 43.4143 139.4417 96.0274 

 𝜂 39.4875 159.8111 

 

120.3236 

Sample 2 (90%) 90% Lower Upper Width 

 𝑞 -81011780 -3.4106 

 

81011776.59 

 𝜂 53.6857 

 

965083400 

 

965083346.3 

Sample 2 (95%) 95% Lower Upper Width 

 𝑞 -93562950 

 

-0.6384 

 

93562949.94 

 𝜂 21.2318 1100491000 

 

1100490979 

Source: This research (2018) 

 
Table 13: Parametric bootstrap confidence intervals for samples 1 and 2(penalized function) 

Sample 1 (90%) 90% Lower Upper Width 

 𝑞 -3.2914 -2.9302 0.3612 

 𝜂 544.8677 553.3966 

 

8.5289 

Sample 1 (95%) 95% Lower Upper  

 𝑞 -3.3495 -2.9212 0.4283 

 𝜂 543.8938 554.7666 

 

10.8728 

Sample 2 (90%) 90% Lower Upper Width 

 𝑞 -4.3889 -2.8222 1.5667 

 𝜂 45.8942 57.5147 11.6204 

Sample 2 (95%) 95% Lower Upper Width 

 𝑞 -4.7514 -2.7950 1.9564 

 𝜂 45.3651 58.5212 13.1560 

Source: This research (2018) 
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Figure 14: Theoretical (q-Exponential and Weibull) and 

empirical CDF’s for sample 1. 

Source: This research (2018) 

Figure 16 shows the conditional reliability for sample 1 by the q-Exponential distribution. 

This measure represents the probability of the system keep working after it had worked by a 

determined initial time (𝑡0). Figure 16 brings the conditional reliability for three initial times, 

once for 𝑡0 = 0 it has the original reliability. It is possible to infer, that the probability of the 

equipment work 200 days is very close to zero. Other information that this figure brings is that 

the last curve (𝑡0 = 150) decays quickly, it means that the probability of the equipment work 

more than 150 hours is small. 

 

 
Figure 15: Theoretical (q-Exponential and Weibull) 

and empirical CDF’s for sample 2. 

Source: This research (2018) 
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Figure 17 shows the conditional reliability for the second sample by the q-Exponential 

distribution. In this case, through of the Figure 17, it is possible see that the probability of the 

equipment work 12 hours is already close to zero. 

In summary, the two application examples showed an increasing behavior of the hazard 

rate, 𝑞 < 1, however, the q-Exponential distribution had a better performance fitting the first 

sample, while the Weibull distribution presented a slight better result for the second sample.  

 

 
Figure 16: Conditional Reliability for sample 1 

Source: This research (2018) 

 

 

 
Figure 17: Conditional Reliability for sample 2 

Source: This research (2018) 
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6 CONCLUSION 

   

Monotone likelihood is a problem that has been studied by some authors. In fact, this 

corresponds to a characteristic that turns almost impossible to obtain good parameter estimates 

for some distributions. It happens when the increase of the parameters’ values implies an 

increase in the log-likelihood function. In these situations plausible estimates are not obtained, 

once the log-likelihood function value always increases. In this work, we verified that the q-

Exponential distribution presents such a monotone behavior when its shape parameter assumes 

values less than one. 

In this context, this work applied a correction to the q-Exponential log-likelihood function 

based on the Firth’s method, which presents the monotone behavior when 𝑞 < 1, so that this 

distribution could model data sets related to increasing hazard rates (degradation phase of 

bathtub curve). The observed information was used instead of the expected information due to 

simplicity (the expected information related to the q-Exponential is very difficult or even 

impossible to be obtained). 

The corrected q-Exponential likelihood was used in synthetic data sets and the results 

obtained were superior when compared with the ones provided by the original likelihood, once 

the corrected function achieved small biases even for small sample sizes (20 observations, for 

example). As expected, when the sample size increases the results get better. On the other hand, 

the original q-Exponential produced worse results for samples up to 100 observations. They 

improve when the sample is of at least 500 observations. However, when parameter 𝑞 increases 

in absolute value, the original q-Exponential log-likelihood did not produce good results for 

any case, not even for large samples.  

In some cases, for greater sample sizes (at least 500 observations), the original q-

Exponential log-likelihood achieved slightly better results than its penalized version. But, in 

reliability engineering practice, it is not often possible or viable to draw large samples due to 

time and budget constraints. Thus, the penalized q-Exponential log-likelihood is a better option 

to model reliability-related data of equipment in the degrading phase of the bathtub curve 

(𝑞 < 1).  
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The application examples presented two situations with the increasing hazard rate.The 

two data sets were modeled by an original and a penalized q-Exponential log-likelihood. For 

the first case (sample 1), the 𝑞̂ and 𝜂̂ estimated by the original function did not produce terrible 

estimates, but it is possible see that the log-likelihood value obtained for this function is almost 

twice than the obtained by the penalized function, which means that the penalized function 

produced better results. For the second sample, the estimates obtained by the original function 

are really bad. On the other hand, the penalized function produced plausible estimates, and, 

again, the log-likelihood value of two maximizations is in average twice better for the corrected 

distribution, which also means a better modelling. 

Non-parametric and parametric bootstrap confidence intervals were constructed for the 

parameters 𝑞 and 𝜂. In general, the confidence intervals were not very accurate. Nevertheless, 

the confidence intervals were made for a sample with just 14 observations (sample 2), i.e, for a 

small sample. For sample 1, which has 65 observations, the intervals presented smaller widths. 

In general, it is expected that results improve with a larger sample size.  

Next, it was made a comparison between the fit of the data set provided by a q-

Exponential distribution to that of a Weibull distribution. The results obtained for the first 

sample shows that the q-Exponential distribution seems be more adequate to fit the data. On 

other hand, for the second case (sample 2) the Weibull distribution had a fit slightly better than 

the q-Exponential distribution. 

Finally, the penalization applied in the q-Exponential log-likelihood function is an 

advance for the reliability area. The Firth’s penalization method enables the estimation process 

associated with the q-Exponential modeling of data sets from degrading systems (𝑞 < 1) and 

provides plausible results. Thus, the q-Exponential and Weibull distributions are alternative 

models to handle failure data related to the first phase (as commented by Sales Filho et al. 

(2016)) and to third phase of the bathtub curve.  

6.1  Limitations and future works  

In this research, we verified that, besides the monotone likelihood, the q-Exponential has 

another problem: this distribution does not satisfy the regularity condition that affirms that the 

function’s support can not depend on the distributions parameters. This regularity condition is 

one of the assumptions for that the Maximum Likelihood Estimation could be used for 
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estimating parameters satisfactorily. Even though this subject is important, some distributions 

are not so rigorous with this rule, as the Generalized Pareto distribution.  

Therefore, in this work, a change of variable was performed in order to try to solve the 

mentioned regularity condition and the monotone likelihood. Just the first problem was solved 

for (𝑞 < 1). It is important to elucidate that this change of variable just satisfy the regularity 

condition for 𝑞 < 1, which represent the problematic case. However, the function found is not 

satisfactory because even with the Firth’s penalization, it was not possible to obtain the 

parameter estimates. But, perhaps there are other changes of variables that could solve both 

problems, regularity condition and monotone likelihood. This is a subject for future researches. 

Other way to solve the problem of the q-Exponential log-likelihood could be a 

reparameterization. Indeed, Sales Filho (2016) tried to use a reparameterization to estimate the 

q-Exponential parameters, and even though not having great results with this change, the author 

was be able to verify an improvement in the results. Thus, a reparameterization can be also a 

future alternative.  

This research brought many questions and ideas that can be developed in future works.  

They are listed in the following topics: 

 To investigate about some variable changes that could solve the problem of the regularity 

condition, and also solve the problem of the monotone likelihood of the q-Exponential 

distribution; 

 To research some reparameterization that could solve the problem of the monotone 

likelihood of the q-Exponential distribution; 

 To use other numerical method for function maximization and make comparisons with the 

results obtained with the Nelder-Mead method used in this work; 

 To research about other methods used to solve the monotone likelihood problem and 

implement it in the q-Exponential log-likelihood function and make comparisons with the 

results obtained in this work; 

 To extend this research for other q-distributions that presents the monotone likelihood 

problem and apply the corrected functions in reliability data sets; 
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 To develop a new method that could solve the monotone likelihood problem.  

 To research about this method together with the probabilistic model named generalized 

renewal process (GRP); 
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