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ABSTRACT
Conventional X-ray radiography has been extensively used for inspection and qual-

ity assurance of industrial products. However, 2-D X-ray radiography cannot provide
quantitative information within three dimensions about the scanned object. To obtain
such depth information, X-ray Computed Tomography (CT) should be applied. Never-
theless, conventional CT systems (at which the X-ray source and detector rotates around
the target object) are cost ineffective, inflexible, and suffer from long acquisition times.
Therefore, the deployment of such technology is unfeasible for many industrial environ-
ments where high throughput is required as much as the best cost-benefit rate. The main
goal of this research is to design a simple and cost-effective X-ray CT imaging system of
high throughput for industrial environments. This system should comprises a single and
static pair of X-ray source and detector for imaging objects passing on a conveyor belt.
Such setup has been widely used with traditional radiographs for quality assurance in in-
dustrial environments; however, the large number of unknown projection views made such
setup unfeasible for CT. Computer vision- and machine learning-based improvements are
applied to incorporate prior knowledge about the scanned object into the CT imaging
workflow as a way of compensating the lack of multiple X-ray sources or moving parts
in both source and detector. More precisely, it is evaluated the use of priors related to
the materials composition and also the outer object shape, as well as the use of Machine
Learning techniques to apply priors automatically extracted from a training set of previous
reconstructions. The trade-off between reconstruction quality and system’s throughput is
exposed by linking the following measures: processing time, conveyor belt acceleration/de-
celeration, number of X-ray projections, reconstruction accuracy, and image resolution.
It is also shown that one of the proposed methods can improve the system’s throughput
in 21% while keeping the reconstruction accuracy over 90%. This research represents an
advance in the state-of-the-art since it demonstrates that is possible to generate good
quality reconstructions from projections acquired in an usual scanning setup where both
X-ray source and detector are statically positioned.

Key-words: Computed Tomography. Discrete Tomography. High throughput CT.



RESUMO
A radiografia tradicional, que utiliza raios-X, tem sido bastante utilizada para inspeção

e controle de qualidade de produtos na indústria. No entanto, através de uma radiografia
2-D não é possível obter informações qualitativas em três dimensões sobre o objeto anal-
isado. Para obter tal informação de profundidade, a Tomografia Computadorizada (TC)
pode ser aplicada. Todavia, sistemas convencionais de TC (nos quais a fonte de raios-X
e o detector giram em torno do objeto analisado) são de alto custo, inflexíveis, e necessi-
tam de um longo tempo para aquisição de dados. Dessa forma, o uso dessa tecnologia é
desaconselhável em ambientes industriais que demandam uma alta velocidade de proces-
samento, além de baixo custo de implantação e manutenção. O principal objetivo dessa
pesquisa é projetar um sistema de TC simples, de relativo baixo custo e de alta velocidade
para ambientes industriais. Esse sistema deve ser composto por um único par de fonte
e detector de raios-X posicionado estaticamente para escanear objetos que passam sobre
uma esteira elétrica. Tal configuração tem sido extensamente utilizada para inspeção de
qualidade utilizando radiografia 2-D em indústrias; no entanto, o baixo número de ângulos
de visões disponíveis têm feito essa configuração inapropriada para tomografia. Técnicas
implementadas usando visão computacional e aprendizagem de máquina são aplicadas
para introduzir conhecimento a priori sobre o objeto em estudo no fluxo de dados da
reconstrução de imagens em um sistema de TC, com isso espera-se compensar a falta de
múltiplas fontes de raios-X ou movimentos entre a fonte e o detector de radiação. Mais
precisamente, é avaliado o uso de conhecimento a priori sobre a composição do objeto
e seu formato externo, bem como o uso de técnicas de Aprendizagem de Máquina para
aplicar informações que foram extraídas automaticamente de um conjunto de treinamento
formado por reconstruções anteriormente realizadas. O balanceamento entre a qualidade
das reconstruções e a velocidade do sistema é apresentado nesse trabalho relacionando as
seguintes medidas: tempo de processamento, aceleração/desaceleração da esteira, número
de projeções de raios-X capturadas, acurácia da reconstrução e resolução da imagem re-
construída. Também é apresentado um método que é capaz de aumentar a velocidade do
sistema em 21% enquanto a acurácia da reconstrução é mantida em ao menos 90%. A
presente pesquisa contribuiu para o estado-da-arte da área ao demonstrar que é possível
gerar reconstruções de boa qualidade a partir da aquisição de projeções em um sistema to-
mográfico não convencional no qual o emissor e o receptor de radiação estão posicionados
estaticamente.

Palavras-chaves: Tomografia Computadorizada. Tomografia Discreta. Tomografia de
alta velocidade.
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1 INTRODUCTION

This initial chapter introduces the context of this research and states its main goal and
its specific objectives. A quick overview of the reduction of processing time in Computed
Tomography (CT) over time is also presented. Finally, the structure of this document is
exposed.

1.1 Context
The most successful companies around the world are committed to deliver the best

experience to the consumer at competitive prices. In fact, consumers consider the prod-
uct’s quality, functionality, price, and the reputation of the brand name when buying an
item. Simultaneously, in an era of globalization, manufacturing firms have been finding
economical advantages on outsourcing their production lines. In Information Technology
(IT) industry, Quanta Computer Incorporated (a Taiwan-based manufacturer) provides
computer devices to larger companies such as Apple, Compaq, Dell, Gateway, Lenovo and
Hewlett-Packard (NAGURNEY; LI, 2015). In the automotive industry, non-US based com-
panies such as Minda HUF, Visteon, Arvin Meritor and Rico Auto supply components to
the US head office of Volvo (NAGURNEY; LI, 2015). This trend creates a very competitive
market between the outsourcing companies. As a result, issues related to product quality
have been raised to another level because the reputation associated with the outsourced
product remains with the original firm.

The production quality is also an important issue in agriculture market. For instance,
Brazil is currently the third fruit producer in the world (GUEDES; SENA; TOLEDO, 2013).
However, Brazil has exported too few: it is only the fifteenth in the ranking of largest fruit
exporter countries (CARVALHO; MIRANDA, 2009). Brazil exports fewer fruits than Chile,
for example. In part, this is due to the difficulty of Brazilian rural producers in attending
the quality requirements of international markets.

Companies must invest in Non-destructive Testing (NDT) to assess the quality of
products just before they leave the industry. According to Shull (SHULL, 2002), the basic
principle of NDT is to “determine the quality or integrity of an item non-destructively".
For instance, to ensure the production quality at fruit industry, it is desirable to detect
browning and holes in apples without cutting them.

NDT may apply distinct technologies such as ultrasound, thermography, microwave,
visible radiation, radiology, and others. The decision about which method is the most
suited for each particular case is usually based on two aspects: (i) the properties that
should be evaluated (i.e. mechanical or electromagnetic); and (ii) the costs associated
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to the deployment and the maintenance of such inspection technology in relation to the
costs of manufacturing the product.

Ultrasonic NDT is based on the use of high-frequency sound waves (from 50 kHz to sev-
eral GHz). Since the propagation velocity of those waves varies according to environment
properties, the echo detected during an ultrasonic inspection can be used to character-
ize the object’s composition, structure, density, and geometry. Ultrasonic NDT has been
applied in aeronautical engineering (KATUNIN; DRAGAN; DZIENDZIKOWSKI, 2015), food
industry (MORRISON; ABEYRATNE, 2014), electrical engineering (YE et al., 2014), civil
engineering (PLANÈS; LAROSE, 2013), and other fields.

Thermographical NDT is classified as active or passive. In active thermography, an
external heating source is used to irradiate the object while a thermal camera measures
the resulting temperature distribution on the object’s surface. Active thermography has
been used in aeronautical engineering (BATES et al., 2000), in food industry (GINESU et al.,
2004), in civil engineering (MEOLA, 2007), and other fields. On the other hand, in passive
thermography, no external heating source is used. Then, the temperature distribution
along the object’s surface is measured within normal conditions. Passive thermography
has been used in inspection of electrical equipments (JADIN; TAIB, 2012), in food industry
(VERAVERBEKE et al., 2006; MANICKAVASAGAN et al., 2005), in civil engineering (CLARK;

MCCANN; FORDE, 2003), and other fields.
In microwave-based NDT, a high-frequency electromagnetic energy (from few hundred

MHz to few hundred GHz) irradiates the object. Those electromagnetic waves interact
with the dielectric1 regions of the object. As a result, by measuring the scattered and
transmitted electromagnetic waves through the object, it is possible to determine its
electrical properties. Microwave-based NDT has been used in electronics engineering (JU;

SAKA; ABE, 2001), in civil engineering (SAKAI et al., 2012), in pharmaceutical industry
(ANUAR et al., 2007), and other fields.

In NDT based on visible radiation, the object is irradiated using visible light, and
a standard video camera is used to record multiple image frames of the object. Then,
pattern recognition algorithms running on digital computers analyze such image frames.
Such algorithms can estimate the dimension, surface, and assembly characteristics of
a manufactured items. Visible radiation-based NDT has been used in textile industry
(BAHLMANN; HEIDEMANN; RITTER, 1999), in food industry (BROSNAN; SUN, 2004), and
other fields.

Radiology is one of the most commonly used NDT methods. In fact, it is one of the
few methods that can examine the interior of the objects. It is the only NDT method
that works on all materials according to Shull (SHULL, 2002). The required equipment
for X-ray testing includes at least a radiation source and a detector. Electrically powered
source tubes create radiation through the collision between accelerated electrons and a
1 refers to electrical insulator materials that can be polarized by an electric field.
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target material to release photons. By adjusting the voltage that accelerates the electron,
the system operator can control the energy of the photons. By adjusting the current in
the electrical circuit, the system operator can control the number of photons. The X-ray
detector is composed of an array of transducers that convert the intensity of the incident
radiation into electrical current. Since distinct materials absorb different levels of X-ray
energy according to its densities, the amount of energy that reaches the detector trans-
ducers can be used for imaging distinct structures that may comprise the interior of the
irradiated object. Those images are often referred to as radiography. Radiography-based
NDT has been used in food industry (HAFF; TOYOFUKU, 2008; KWON; LEE; KIM, 2008;
OGAWA; KONDO; SHIBUSAWA, 2003; AYALEW et al., 2004; JIANG et al., 2008; CHUANG et al.,
2011; MERY et al., 2011; NIELSEN; CHRISTENSEN; FEIDENHANS, 2014; KELKAR; BOUSHEY;

OKOS, 2015; MATHANKER et al., 2011), in electronics engineering (ETIEMBLE et al., 2015;
MAHMOOD et al., 2015; UEHARA; YASHIRO; MOMOSE, 2013; WANG; WANG; ZHANG, 2014),
in inspection of gas and oil transmission in pipelines (YAZDANI et al., 2014; YANG et al.,
2014), in automotive industry (CARRASCO; MERY, 2011; MERY, 2006; LI et al., 2006; MERY;

FILBERT, 2002; MERY, 2003), in electrical engineering (JASINIEN et al., 2009; FANTIDIS;

POTOLIAS; BANDEKAS, 2011), in welding inspection at nuclear, naval, chemical and aero-
nautical industries (WANG; LIAO, 2002; VILAR; ZAPATA; RUIZ, 2009; ZAPATA; VILAR; RUIZ,
2011; SHAO et al., 2012; ZAHRAN et al., 2013), in security inspection systems at airports
and railway stations (ZHANG; ZHANG; CHEN, 2005; WELLS; BRADLEY, 2012; MICHEL et al.,
2007; ABIDI et al., 2006; SINGH; SINGH, 2005; OERTEL; BOCK, 2006; NERCESSIAN; PANETTA;

AGAIAN, 2008), and other applications.
Despite widely used in industry, conventional X-ray radiography has an inherent draw-

back: it cannot provide depth information. Radiography superimposes information along
the radiation path onto the detector. As a result, it is impossible to identify features
of interest occluded by others or to quantify the volume occupied by a specific material
within the object. On the other hand, X-ray CT captures multiple X-ray radiography
projections from few hundred of different angles. Those projections are mathematically
combined by a computer algorithm to generate multiple 2-D cross-section images (which
are equivalent to create a 3-D model) of the irradiated object as illustrated in Figure 1.
In this thesis, Chapter 2 presents the mathematical tools that allow mapping the X-ray
data from the projection domain into the reconstruction domain2. For instance, Figure 2
(a) shows a conventional 2-D X-ray radiography of an apple; and Figure 2 (b) shows nine
cross-section images of the same apple generated by using CT. It is clear that CT provides
much more information than conventional radiography for quality inspection.

A typical workflow in CT imaging (illustrated in Figure 3) is composed of the follow-
ing stages (AARLE, 2012): acquisition, data preprocessing, reconstruction, segmentation,
and analysis. During the acquisition phase, an X-ray source and detector usually rotates
2 for detailed description about the domains involved in a CT processing, see Appendix A.
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Figure 1 – Representation of 2𝜎 + 1 cross sections of an apple that are generated in a CT
reconstruction.
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Figure 2 – Conventional 2D X-ray radiography of an apple (a); and nine cross section
images of the same apple generated by using CT. (Source: radiography and
image reconstructions acquired at BIOSYST-MeBios, KU Leuven, Belgium).

around a target object to generate X-ray projection data from multiple points of view
(i.e., projection angles). The visual representations of such raw data are referred to as
sinograms. Then, in the data preprocessing stage, a logarithmic transform is calculated
to map the intensity values of radiation in the projection data into log-corrected atten-
uation values. Next, the reconstruction phase aims at generating multiple 2-D images
representing the internal content of the target object in many cross sections. Thereby,
the intensity value in each pixel is related to the density of the material in that region of
the object. Afterwards, the segmentation step classifies the pixels into meaningful groups
to promote an easier analysis of the results. Finally, in the analysis stage, the output is
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evaluated according to specific metrics. This phase can be automated using a Computer
Vision algorithm.

acquisition
data

preprocessing
reconstruction segmentation analysis

Figure 3 – Typical workflow in CT imaging. In the acquisition phase, multiple X-ray pro-
jection data are generated from a target object. Then, in the data preprocessing
stage, the projection data is transformed into log-corrected attenuation values.
Next, the reconstruction phase aims on generating images representing internal
structures of a target object. Next, the segmentation step classifies the pixels
into meaningful groups. Finally, in the analysis stage, the output is evaluated
according to specific metrics given by the application. (Source: adapted from
(AARLE, 2012)).

The acquisition stage of conventional CT workflow is typically very time consuming
since the scanned object, the radiation source, and the X-ray detector must be rigorously
static about each other at every X-ray projection acquisition. Moreover, multiples projec-
tions are acquired from different angular views to compose the necessary raw data for a
CT reconstruction. Also, the hardware devices used to synchronize the X-ray pulses and
the rotation engine, the X-ray detector cells, and the radiation source are very expen-
sive. Therefore, the use of such technology is unfeasible for many industrial environments
which require a high throughput inspection and a deployment cost as low as possible.
The design of a simple, cost-effective, and fast X-ray CT system will allow the employ-
ment of such 3-D imaging technology in many industries that are currently employing
conventional 2-D radiography (e.g, inspection of food products, electronic components,
automotive engines).

1.2 Motivation
To the best of our knowledge, the high throughput X-ray CT systems that were de-

veloped up to the present date for NDT in industrial environments are expensive due to
the use of cutting-edge hardware-based technologies. For instance, to allow a full angular
sampling of few hundreds of radiography projections around the scanned object within
a short period, it is possible to increase the number of X-ray sources used in the system
or even to reduce the duration of one projection acquisition. As a result, the ratio be-
tween the costs associated with the deployment of such technology and the value of the
manufactured product itself is prohibitive to the most of the industries.

To popularize this 3-D imaging technology for NDT among as many industries as
possible, the design of a simple, flexible, and cost-effective CT technology is required. A
solution which covers those properties would allow the employment of this cutting-edge
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NDT technology to the inspection of lower cost (but not less important) products, such
as fruits and foods in general.

In this thesis, we propose the use of a simpler hardware design that will lead to a
cost-effective technology. Thus, software-based improvements are studied and discussed
in this thesis to incorporate prior knowledge into the reconstruction process as a way of
compensating the lack of expensive hardware devices into the X-ray CT system. In the
future, the technology developed in this work can be also incorporated into CT systems
that apply other types of radiation, such as gamma-ray.

1.3 Objectives
In this thesis, our main goal is to develop a fast and cost-effective CT system for

industrial environments by incorporating priors related to the scanned objects into the
image reconstruction workflow. To achieve this research goal, we defined the following
specific objectives:

• To evaluate the performance of conventional reconstruction techniques in a simple
setup for fast CT scanning comprising a single pair of X-ray source and detector
statically positioned for imaging objects passing on a conveyor belt.

• To incorporate prior knowledge related to the materials composition and also the
outer object shape into the imaging process.

• To incorporate prior knowledge extracted from a training set of similar objects
previously scanned into the imaging process.

• To evaluate both the processing time and reconstruction quality of the solutions
proposed in this thesis in relation to conventional techniques.

• To investigate if a solution for Non-destructive Testing (NDT) based on CT X-
ray imaging that bypasses the reconstruction stage would be plausible. Thus, the
acquisition stage would be directly connected to the analysis stage of the imaging
workflow.

1.4 Improvements in temporal resolution of CT systems over time
In CT imaging, temporal resolution refers to the duration of time required for the

full processing of one object cross-section. Toward the development of a high throughput
X-ray CT system, we are interested in the progress of temporal CT resolution along the
history.
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A fundamental principle of X-ray tomography is that the irradiated object should
remain unchanged during the acquisition of the projections (MAIRE; WITHERS, 2014).
Thus, researchers have been focused on the development of faster CT systems to allow
the imaging of moving organs (e.g., heart, and lungs) and the evaluation of events that
take place on small time scales (e.g., solidification process of a specific material).

In 1969, the first CT prototype had a temporal resolution of 9 days (BUZUG, 2008).
Since then, a lot of effort has been applied to make CT faster. By the end of 1979, the
acquisition time was reduced to less than 20 seconds (BUZUG, 2008) per image slice.
With the introduction of slip-ring scanners in 1987, researchers replaced the power source
cables which limited the rotation of the X-ray tube to single 360∘ turns about the object.
As a result, the scan time of 1 second became available to reconstruct isolated cross-
section images (KALENDER, 1994). In the 1990s, spiral CT allowed continuous scanning
of multiple cross-sections in the object. The spiral scanning geometry is exhibited in
Figure 4, the illustration shows that the X-ray source (1) and the detector rotate around
the patient (2) which is shifted at a speed of one slice thickness 𝑑 per rotation cycle.
As a result, a total scan of 20 to 60 seconds was enough to most medical applications
(KALENDER, 1994). In 1998, the multi-slice systems were introduced to scan from 2 to
4 cross-section images simultaneously (TAGUCHI; ARADATE, 1998). By the end of 2004,
256-slice CT systems were commercialized (MORI et al., 2004). In 2016, one of the most
advanced clinical CT systems produced by General Electric applies the spiral scanning
geometry with 𝑑 = 160 mm and a rotation speed of the X-ray tube about 0.28 seconds
per cycle.

The resolution time of medical CT scanners that apply the spiral geometry are limited
by the maximum centripetal acceleration that can be experienced by the X-ray tube. By
2006, this acceleration was about 30 times the gravitational force (KALENDER, 2006).
Higher speeds of rotation can only be achieved with investments on more robust hardware
devices.

In the early of the 1980s, an alternative approach to achieve a high-speed CT was
proposed for cardiac imaging (BOYD; LIPTON, 1983), the Electron Beam Tomography
(EBT). This technology is based on the magnetic deflection of an electron beam to replace
the mechanical motion of the X-ray tube was initially proposed. Due to the use of an
electrostatic field configuration within a gun of electron beams, EBT systems are costly
and less used nowadays.

Also in early of the 1980s, Berniger et al. patented the first CT system with multiple
X-ray sources to provide a high-speed scanning (BERNINGER; REDINGTON, 1980). That
configuration also included rotating parts around the object. About the same time, the
Dynamic Spatial Reconstructor (DSR) was developed at Biodynamics Research Unit at
the Mayo Clinic for a fast scanning (ROBB et al., 1983). The DSR simultaneously acquired
projections from 28 X-ray sources placed around a 160∘ within a circular structure which
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Figure 4 – Scanning geometry of spiral CT: the X-ray source (1) and the detector rotate
around the patient (2) which is shifted at a speed of one slice thickness 𝑑 per
rotation cycle.

rotates around the patient. Moreover, 2-D projections were acquired for each X-ray source.
As a result, the DSR could scan up to 240 adjacent cross-sections at rates up to 60 images
per second.

In 1998, Hori et al. (HORI; FUJIMOTO; KAWANISHI, 1998) proposed a high-speed CT
system based on 60 stationary X-ray sources. Such setup provided a throughput of 2000
slices per second. Also in 1998, Morton et al. (MORTON et al., 1998) designed a high-speed
system based on 7 X-ray sources arranged in an annular geometry for the analysis of mul-
tiphase flow. Morton’s system was able to generate 50 image cross-section per second. By
2005, the first commercialized Dual Source Computed Tomography (DSCT) comprised
two X-ray sources and two corresponding detectors offset by 90∘ rotating about the pa-
tient. This DSCT could provide a spatial resolution of 60 milliseconds (or a throughput
of 16 cross-section images per second).

In 2009, Morton et al. (MORTON et al., 2009) designed a Real Time Tomography (RTT)
system able to produce 480 cross-section images of objects travelling in a conveyor belt
at speed up to 0.5 m/s. To avoid any physical moving parts, Morton et al. proposed the
use of a multi-focus X-ray source circumference composed of 384 to 768 focal spots. By
pulsing those individual X-ray sources in a suitable scanning sequence, the impression
of motion was achieved without any moving parts. The first prototype of this machine,
the RTT80 (illustrated in Figure 5), was built for luggage inspection. Similar static setup
with X-ray sources pulsing in a sequence was also exploited in (NIEMI; LASSAS; SILTANEN,
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2013; THOMPSON et al., 2015).

Figure 5 – Prototype of RTT80 machine for luggage inspec-
tion. (Source: theengineer.co.uk, accessed on July 2016,
<https://www.theengineer.co.uk/issues/awards-2010/rtt80-baggage-
scanner/>).

All the methods mentioned above for improving the throughput of CT systems are
oriented to the development of new hardware-based technologies. More precisely, the idea
behind all those methods is: to acquire the highest number of projections within the shortest
period of time. Once many projection data is available, the projections are reconstructed
using standard Fourier-based methods (SHEPP; LOGAN, 1974) in the vast majority of
those cases. In this scenario, the ultimate limit of reachable time resolution is defined
by the hardware applied in the acquisition phase (RACK et al., 2010). As a result, all
those methods are costly due to the use of modern hardware-based technologies. Then,
the deployment of those systems may be prohibitive to many production lines due to its
cost-benefit ratio.

On the other hand, software-based improvements to the CT workflow have been pro-
posed to the scenarios in which too few projections are acquired because (i) the time to
collect the ideal number is prohibitively long or (ii) the X-ray dose3 must be limited to
safe levels (MAIRE; WITHERS, 2014). To deal with such under-sampled scenarios, the basic
strategy shared in the state-of-the-art is to incorporate prior knowledge about the scanned
objects into the (i) pre-processing, (ii) reconstruction, and/or (iii) post-processing stages.

This thesis is focused on the development of a fast and cost-effective CT system
for industrial environments based on incorporating prior knowledge about the scanned
object into the imaging process. The trade-off between reconstruction quality and system
throughput will be a guideline to evaluate the proposed solutions.
3 refer to the intensity of energy that is used in the scanning process.
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1.5 Document Structure
The next chapters of this document are organized as follows:
In Chapter 2, we summarize basic concepts and techniques related to the acquisition

and reconstruction stages of the CT workflow. This theory is fundamental to a complete
comprehension of this work.

In Chapter 3, we introduce and discuss technical issues that emerge in the design of
a fast inline X-ray CT system. This chapter also highlights the challenges that should be
overcome in this research.

In Chapter 4, we present an organized overview of the most relevant works previously
published in the literature about how to incorporate priors into the CT workflow.

In Chapter 5, we describe and justify the methods proposed in this thesis toward to
the development of a fast inline X-ray CT system.

In Chapter 6, we present experimental results and discussions about the methods
proposed in this thesis.

In Chapter 7, we summarize the contributions achieved in this work and also suggests
guidelines for future researches.
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2 BACKGROUND ON COMPUTED TO-
MOGRAPHY

This chapter presents some basic theory, methods, and techniques related to the data
acquisition and image reconstruction stages of Computed Tomography (CT) workflow.
In the following sections, the reader will find: a brief introduction to the history of X-
ray radiography and tomography in Section 2.1; an overview of the evolution of CT
scanning systems along the 1970s in Section 2.2; a description of the image reconstruction
techniques used in this work in Section 2.3; and a discussion about reconstruction problems
related to limited projection data in Section 2.4.

2.1 Introduction
This very brief introduction was written based on the book (BUZUG, 2008). For a

detailed study on the history of X-ray CT, the reader may check this bibliography.
Wilhelm Conrad Röntgen, in 1901, won the first Nobel Prize in Physics for his discov-

ery of a new radiation type able to easily penetrate into physical bodies. Such radiation
was named as “X-ray”, referring to an unknown kind of ray. Continuous improvements in
techniques to handle X-rays led to the first medical imaging technology: the radiography,
which first enabled physicians to “look inside” the human body without surgeries. In fact,
radiography can be used to “see inside” an opaque object. A conventional radiography
imaging setup comprises a target object between an X-ray source and a detector, as illus-
trated in Figure 6. When a short-duration pulse of X-rays is emitted toward the object,
the intensity of each X-ray is attenuated while it passes through the matter because the
photons of the radiation are absorbed by the atoms which compose the object. Once dis-
tinct particles absorb distinct levels of energy, each material has its attenuation coefficient
𝜇. Finally, by measuring the intensity of the X-ray beams (i.e., the number of photons)
that reaches the detector cells, it is possible to infer the attenuation coefficients inside the
target object.

Apart from medical applications, X-ray radiography is widely used today for Non-
destructive Testing (NDT) in the industry, in airports and border crossings to ensure
people’s safety, in archaeology laboratories to identify the composition of fossil and ar-
chaeological discoveries, and in forensic centers to corpses identification. X-ray radiogra-
phy, however, can not display three-dimensional information about the target object. For
this purpose, multiple X-ray projections should be taken from different perspectives (see
Figure 7) and then combined to create a 3-D model.

In 1917, Johann Karl August Radon proposed a couple of mathematical operators (the
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Figure 6 – Setup used in conventional radiography: a target object is positioned in be-
tween an X-ray source and a detector. When an X-ray beam passes through
the object, each X-ray is attenuated according to the material composition
along its path inside the object. Finally, by measuring the intensity of the X-
ray beams that reach the detector cells, one can infer the matter composition
and distribution inside the target object.

Radon Transform1 and Inverse Radon Transform), which defines the projection values of
a two-dimensional object function, and vice versa. Based on Radon’s contribution, Allan
MacLeod Cormack and Godfrey Hounsfield worked to develop the first prototype of a
transmission2 CT scanner in the second half of 20𝑡ℎ century. In 1979, both Cormack and
Hounsfield were awarded the Nobel Prize in medicine in recognition to their contributions.

1 for a complete description on Radon Transform, see Appendix B.
2 refers to the imaging technology at which an external radiation source radiates through the object in

the study.
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Figure 7 – Basic idea of a transmission tomography: multiple X-ray images are taken from
different perspectives and then mathematically combined to create a 3D model
of the scanned object.

2.2 The early days of CT
This short overview of the evolution of CT devices was written based on the works of

Buzug in (BUZUG, 2008) and Bushberg et al. in (BUSHBERG et al., 2011). For a detailed
description of the X-ray CT system generations, the reader may check these bibliographies.

From the very first prototypes, at the end of the 1960s, to the latest CT systems,
the literature organizes the evolution of such devices in four main generations which were
developed along the 1970s. By 1990s, the third and fourth generation of scanners were
adapted to yield the spiral scanning geometry3 that are applied up to the present day in
modern medical CT machines.

The first generation of CT scanners comprised an X-ray source, which emitted a single
needle-like X-ray beam, and a detector to compose the called pencil beam geometry, as
shown in Figure 8 (a): the source and a single detector were linearly translated and, at
each position increment, the detector was measured to generate a complete projection
(like in Figure 6). After a full linear translation, the pair source/detector was rotated and
the process was repeated to capture a new projection angle.

The CT scanners of the second generation were quite similar to the previous ones,
except for a narrow fan beam which replaced the single needle-like X-ray beam and
introduced a more extensive detector composed of approximately 30 elements, as shown
in Figure 8 (b). Since the detector array could measure several intensities simultaneously,
the acquisition time was reduced.

The development of a more extensive X-ray fan beam angle and correspondingly longer
detector array led to the third generation of CT scanners, which allowed the simultaneous
3 such spiral scanning geometry was previously discussed in Section 1.4.
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imaging of an entire measure field, as shown in Figure 8 (c). The acquisition time was
highly reduced since the continuous rotation of the source and detector was implemented
without interruptions for linear displacement.

The systems developed according to the fourth CT generation comprised a stationary
detector ring with up to 5000 elements and an X-ray continuous rotated outside (or inside)
such ring, as shown in Figure 8 (d).

source

detector

source

detector

(a) (b)

source

detector

source

detector

(c) (d)

Figure 8 – Diagram of the evolution of CT systems, developed along the 1970s, divided
into four generations: (a) in the first generation, CT scanners comprised an
X-ray source, which emitted a single needle-like X-ray beam, and a detector
to compose the called pencil beam geometry: for a complete scanning, rotation
of source/detector was interleaved with linear displacements; (b) in the second
generation, a narrow fan beam was developed to allow measuring several inten-
sities simultaneously; (c) in the third generation, a larger X-ray fan beam angle
and a correspondingly longer detector array allowed the simultaneous imaging
of an entire measure field, no more linear displacements were required; (d) in
the fourth generation, a stationary detector ring was introduced and the X-ray
source continuously rotated (or inside) such ring.
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2.3 Image reconstruction techniques
Image reconstruction algorithms are implemented in digital computers to map data

from the projection domain into the reconstruction domain4. In fact, such methods are
feasible alternatives to the Inverse Radon Transform5 initially proposed by Johann Radon
in (RADON, 1986).

Those techniques are divided into Continuous Tomography and Discrete Tomography.
Continuous Tomography comprises the more conventional and widely used methods at
which almost any value of attenuation coefficients that may occur within an object is
represented. On the other hand, Discrete Tomography comprises the techniques focused on
reconstructing images that consist of only a few attenuation coefficients. In the following
subsections, methods for Continuous and Discrete Tomography are exposed.

2.3.1 Continuous tomography

Such reconstruction methods are typically divided into two classes: the Analytical Re-
construction Methods and the Iterative Techniques. The first one, based on the Fourier
Slice Theorem, is the most used in present-day CT systems due its simplicity and ef-
ficiency. The second one finds approximate reconstructions within successive iterations
of an algorithm. Despite computationally expensive, the Iterative Techniques has been
attracting the attention of researchers due to its flexible operation with many distinct
scanning geometries, the possibility of incorporating prior knowledge into the process,
and the fast increase of computational power available nowadays.

Short overviews of the Analytical and Iterative reconstruction methods are presented
in the following subsections. The reader may find a complete description of those methods
in (KAK et al., 1988) and (BUZUG, 2008). The following subsections were also written
based on the concise and clear explanations presented in (AARLE, 2012). For the sake of
simplicity, in subsections 2.3.1.1 and 2.3.1.2, it is considered the parallel beam projection
setup, i.e., a scanning geometry in which all the projection rays are parallel to each
other for every projection direction. Nevertheless, the theory presented in this section is
extensible to every scanning geometry.

2.3.1.1 Analytical reconstruction methods

The Fourier Slice Theorem states that the one-dimensional Fourier transform of the
projection function 𝑔(𝜌, 𝜃) 6 is equal to the to the slice through the origin at rotation 𝜃 of
the two-dimensional Fourier space 𝐹 (𝜔1, 𝜔2) of the o object function 𝑓(𝑥, 𝑦).
4 for a detailed description of the domains involved in a CT processing, see Appendix A.
5 for a detailed description of Inverse Radon Transform, see Appendix B
6 the notation 𝑔(𝜌, 𝜃𝑘) is introduced in Appendix B.
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Therefore, by sampling projections at angles 𝜃1, 𝜃2, · · · , 𝜃𝐾 , and Fourier transforming
each 𝑔(𝜌, 𝜃𝑘), we can determine the values of 𝐹 (𝜔1, 𝜔2) on radial lines, as shown in Figure 9.
If an infinite number of projections were available, the object function 𝑓(𝑥, 𝑦) would be
restored by using the Inverse Fourier Transform according to the Equation 2.1.

𝑓(𝑥, 𝑦) =
∫︁ ∞

−∞

∫︁ ∞

−∞
𝐹 (𝜔1, 𝜔2)𝑒𝑗2𝜋(𝜔1𝑥+𝜔2𝑦)𝑑𝜔1𝑑𝜔2 (2.1)

such that 𝑓(𝑥, 𝑦) is the reconstructed image.

Figure 9 – According to the Fourier Slice Theorem, it is possible to find out the represen-
tation of the object function 𝑓(𝑥, 𝑦) in the frequency domain by sampling many
projection functions, related to different angles 𝜃𝑘, in the frequency domain.

In practice, only a finite number of projections can be acquired. Moreover, the in-
terpolation error in 𝜔1𝜔2-plane (see Figure 9) becomes larger as the points get further
from the center. It implies that there is a great error on the high-frequency components
interpolated, which would result in some image degradations.

The most popular Analytical Reconstruction Method is the Filtered Back Projection
(FBP). To derive the FBP algorithm based on Equation 2.1, let us first exchange the
rectangular coordinate system in the frequency domain, (𝜔1, 𝜔2), for a polar coordinate
system, (𝜌, 𝜃), by applying the following

𝜔1 = 𝜌 cos 𝜃,

𝜔2 = 𝜌 sin 𝜃,

𝑑𝜔1𝑑𝜔2 = 𝜌𝑑𝜌𝑑𝜃
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the Equation 2.1 then becomes:

𝑓(𝑥, 𝑦) =
∫︁ 2𝜋

0

∫︁ ∞

0
𝐹 (𝜌, 𝜃)𝑒𝑗2𝜋𝜌(𝑥 cos 𝜃+𝑦 sin 𝜃)𝜌𝑑𝜌𝑑𝜃 (2.2)

Since 𝐹 (𝜌, 𝜃 + 𝜋) = 𝐹 (−𝜌, 𝜃), the integration limits are changed and Equation 2.2
becomes:

𝑓(𝑥, 𝑦) =
∫︁ 𝜋

0

[︂∫︁ ∞

−∞
𝐹 (𝜌, 𝜃)|𝜌|𝑒𝑗2𝜋𝜌(𝑥 cos 𝜃+𝑦 sin 𝜃)𝑑𝜌

]︂
𝑑𝜃 (2.3)

According to the Fourier Slice Theorem, 𝐹 (𝜌, 𝜃) is equal to the Fourier transform of
the projection 𝑔(𝜃, 𝜌) at a fixed angle 𝜃, i.e. 𝐺𝜃(𝜌). Therefore, the process on finding out
the reconstructed image 𝑓(𝑥, 𝑦) can be described by:

𝑓(𝑥, 𝑦) =
∫︁ 𝜋

0

[︂∫︁ ∞

−∞
𝐺𝜃(𝜌)|𝜌|𝑒𝑗2𝜋𝜌(𝑥 cos 𝜃+𝑦 sin 𝜃)𝑑𝜌

]︂
𝑑𝜃 (2.4)

By defining the signal 𝑞𝜃(𝑡) as the inverse Fourier transform of 𝐺𝜃(𝜌) weighted by |𝜌|,
as follows

𝑞𝜃(𝑡) = ℱ−1 {𝐺𝜃(𝜌)|𝜌|} =
∫︁ ∞

−∞
𝐺𝜃(𝜌)|𝜌|𝑒𝑗2𝜋𝜌𝑡𝑑𝜌 (2.5)

the Equation 2.4 than becomes:

𝑓(𝑥, 𝑦) =
∫︁ 𝜋

0
𝑞𝜃(𝑥 cos 𝜃 + 𝑦 sin 𝜃)𝑑𝜃 (2.6)

Equation 2.5 describes the first step of FBP algorithm: each projection function 𝑔𝜃(𝜌)
is filtered by multiplying its Fourier transform with |𝜌|; this operation compensates the
lower sampling density in high frequencies of the Fourier domain (see Figure 9). The
second step of FBP algorithm is described in Equation 2.6: the filtered projection data
is then backprojected (or “smeared out") onto the reconstruction grid along the lines
𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃.

2.3.1.2 Iterative Techniques

The Algebraic Reconstruction Techniques (ART) are the subset of the Iterative Tech-
niques most used in the literature. ART states the reconstruction problem as the solving
of a system of linear equations. In such methods the image reconstruction resolution, i.e.,
the number of pixels used to represent the field of view, is determined before the recon-
struction takes place. Therefore, the tomographic image consists of a discrete array of
unknown variables 𝑓𝑗, for 𝑗 = {1, 2, · · · , 𝑁}. Figure 10 illustrates such array for 𝑁 = 9.
Let 𝑝𝑖 be the ray level intensity measured with the 𝑖 − 𝑡ℎ detector, as shown in Figure 10.
The relation between 𝑓𝑗 and 𝑝𝑖 is given by:

𝑝𝑖 =
𝑁∑︁

𝑗=1
𝑎𝑖𝑗𝑓𝑗, 𝑖 = {1, 2, 3, · · · , 𝑀} (2.7)
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such that 𝑀 is the total number of rays and 𝑎𝑖𝑗 is a weighting factor which measures the
contribution of the 𝑗 − 𝑡ℎ image cell to the 𝑖 − 𝑡ℎ ray path. For instance, the value 𝑎𝑖𝑗

may be equal to the length of intersection between the 𝑖 − 𝑡ℎ ray path and the 𝑗 − 𝑡ℎ

image cell, as shown in Figure 10.

Figure 10 – In algebraic methods, the field of view is partitioned into a grid of 𝑁 cells
before the reconstruction takes place. Then, a projection intensity 𝑝𝑖 is mea-
sured by summing proportionally all the image cells which interact to the
𝑖 − 𝑡ℎ ray path.

By expanding Equation 2.7, the following linear system of equations raises:

𝑎1,1𝑓1 + 𝑎1,2𝑓2 + 𝑎1,3𝑓3 + · · · + 𝑎1,𝑁𝑓𝑁 = 𝑝1 (2.8)
𝑎2,1𝑓1 + 𝑎2,2𝑓2 + 𝑎2,3𝑓3 + · · · + 𝑎2,𝑁𝑓𝑁 = 𝑝2

...
𝑎𝑀,1𝑓1 + 𝑎𝑀,2𝑓2 + 𝑎𝑀,3𝑓3 + · · · + 𝑎𝑀,𝑁𝑓𝑁 = 𝑝𝑀

which is simple Af = p. If M and N are equal and also small, there are conventional
matrix theorem methods to invert 𝐴 and find f = A−1p. In practice N is larger than
65, 000 (for 256 × 256 reconstruction images), and M should have the same magnitude
(to achieve an equal number of unknowns and equations in the linear system presented in
2.8). Then, the matrix A is larger than 65, 000 × 65, 000 which makes the direct matrix
inversion approach impracticable. Moreover, when noise is present in the measured data
or when 𝑀 < 𝑁 , that trivial solution becomes undetermined.

One of the ART methods able to find good approximations to the solution of the linear
system of equations presented in 2.8, considering realistic values for 𝑀 and 𝑁 , is the
Simultaneous Iterative Reconstruction Technique (SIRT) (GORDON; BENDER; HERMAN,
1970): starting with an initial solution f (0) (typically f (0) = 0, i.e. a black image), and an
iteration counter 𝑘 = 0, SIRT runs successive iterations. Each of those is composed by
the following steps:



Chapter 2. BACKGROUND ON COMPUTED TOMOGRAPHY 37

1. Computation of the forward projection related to the current reconstruction image:

p(𝑘) = Af (𝑘) (2.9)

2. Computation of the current projection difference in relation to the measured pro-
jection. It is also called as residual sinogram:

r(𝑘) = p − p(𝑘) (2.10)

3. Update the reconstruction image 𝑓 (𝑘) by adding a weighted backprojection of the
residual sinogram:

f (𝑘+1) = f (𝑘) + CA𝑇 Rr(𝑘) (2.11)

in which R is a diagonal matrix of the inverse row sums of A and C is a diagonal
matrix of the inverse column sums of A.

2.3.2 Discrete tomography

These methods assume that the scanned object is composed of only a few homogeneity
materials. In Discrete Tomography, the number and the value of gray levels of the recon-
structed image (i.e., attenuation coefficients in the object) are usually known in advance
(BATENBURG; SIJBERS, 2009).

A recent proposed method is the Discrete Algebraic Reconstruction Technique (DART)
(BATENBURG; SIJBERS, 2011a). DART is based on the interleaving of continuous update
steps and discretization steps. The flow chart of Figure 11 shows the sequence of stages
which compose the DART algorithm. Then, each DART stage is explained in the following
list:

• To compute an initial ART reconstruction: DART starts with an initial recon-
struction of the acquired data 𝑝 obtained with a continuous iterative reconstruction
algorithm, such as SIRT.

• To segment the reconstruction: the reconstruction is segmented according to the
set of gray values (𝜌1, 𝜌2, . . . , 𝜌𝜄) that is expected for the image. In fact, since the gray
values of the reconstructed image are associated with the attenuation coefficients
of the target object in each region, this incorporated prior knowledge is related to
the expected density of the materials of which the object is composed. In this stage,
𝜄 − 1 thresholds (𝜏𝑖) are applied to the image, defined as:

𝜏𝑖 = 𝜌𝑖 + 𝜌𝑖+1

2 (2.12)
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Apply new ART iterations to the 
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Figure 11 – Flow chart of DART algorithm.

• To identify non-fixed pixels U: Let 𝑈 (𝑘) ∈ {1, 2, . . . , 𝑛} be the set of pixels to
be updated in the 𝑘 − 𝑡ℎ iteration of DART. Since experimental results showed that
ART leads to errors near the edges of the reconstructed image, all boundary pixels
of the current segmented image are thus added to 𝑈 (𝑘). For this purpose, every pixel
which value is different from at least one of its neighboring pixels is considered a
boundary pixel. Moreover, each non-boundary pixel is added to 𝑈 (𝑘) with a cer-
tain probability 0 ≤ 𝑟 ≤ 1. In this way, the accuracy of DART reconstruction is
increased in the case of small holes or features which were missed during the initial
reconstruction.

• To identify fixed pixels F: After defining a set of non-fixed pixels 𝑈 (𝑘), the
complementary set of pixels that must not be updated in the 𝑘 − 𝑡ℎ iteration of
DART is defined as 𝐹 (𝑘) = {1, 2, . . . , 𝑛} ∖ 𝑈 (𝑘). In other words, 𝐹 (𝑘) contains all
pixels that will be removed from the reconstruction problem in the next stage of
DART flowchart.

• To apply new ART iterations to the pixels in U while keeping the pixels
in F fixed: Since the linear system of equations presented in Equation 2.8 can be
written as:

𝑝 =

⎛⎜⎜⎜⎜⎝
... ... ...

𝑎1 · · · 𝑎𝑛

... ... ...

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
𝑓1
...

𝑓𝑛

⎞⎟⎟⎟⎟⎠ (2.13)
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where 𝑎𝑗 denotes the 𝑗 − 𝑡ℎ column of the matrix 𝐴, the 𝑓𝑗 pixel can be made fixed
and removed to the reconstruction problem if the Equation 2.13 is converted in the
Equation 2.14.

Then, an ART iteration can be applied for this new linear system which has the
same number of equations of 2.13 and a lower number of variables.

𝑝 − 𝑎𝑗𝑓𝑗 =

⎛⎜⎜⎜⎜⎝
... ... ... ... ... ...

𝑎1 · · · 𝑎𝑗−1 𝑎𝑗+1 · · · 𝑎𝑛

... ... ... ... ... ...

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1
...

𝑓𝑗−1

𝑓𝑗+1
...

𝑓𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.14)

• Stop criterion met: The consecutive iterations of DART are usually stopped based
on a fixed number of iterations.

• Smooth the reconstruction: Reducing the number of variables by selecting a
subset of non-fixed pixels 𝑈 (𝑘) may lead to more noise sensitive ART reconstructions.
Then, a Gaussian smoothing filter is applied to the boundary pixels after applying
the ART.

2.4 The limited data problem
Image errors that may emerge in CT reconstructions due to a variety of reasons are

called artifacts. Two of those reasons are (i) the acquisition of only a few number of X-ray
projections (i.e., low-sampling), and (ii) the acquisition within a non-complete angular
around the object (i.e., partial angular sampling) as illustrated in Figure 12. In the second
case, the non-sampled image views are referred to as missing wedges.

By limiting the acquired X-ray data, the radiation exposure time is reduced. This is
desired for two main reasons: (i) in medical imaging, it can reduce the risk of fatal cancer
in patients (SMITH-BINDMAN et al., 2009); and (ii) in industrial imaging, the scanning
time resolution7 can be highly improved.

7 for a detailed description on time resolution, see Section 1.4.
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source

detector

Figure 12 – Example of an X-ray CT scanning using a limited view angle of 𝛼. The non-
sampled image views are referred as missing wedges.
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3 PROBLEM STATEMENT

This chapter presents the performance of conventional reconstruction techniques in a
simple setup for fast CT scanning comprising a statically positioned pair of X-ray source
and detector for imaging objects passing on a conveyor belt. The analysis of the results is
guided based on both reconstruction quality and time and should be used as a baseline for
comparison purposes with the methods further proposed in this thesis. In Section 3.1, the
inline scanning geometry is described; in Section 3.2, experiments show the performance
of standard techniques operating in that system.

3.1 The inline scanning geometry
The inline setup used in this work is exposed in Figure 13. It comprises a static wide

cone X-ray source (a) and a large detector (b) for imaging objects (c) passing by on a con-
veyor belt (d). Since such setup comprises no moving parts, the data acquisition is cheaper
and faster than in conventional CT systems at which the X-ray source and the detector
rotate around the object. That setup has been widely used with traditional radiographs
for quality assurance in industrial environments (PIERCE et al., 1993; EILBERT; SHI, 2005)
and for luggage inspection in airports (DENNHOVEN; KUNZE; KUEHN, 1977; DENNHOVEN;

KUNZE; KUEHN, 1979). However, due to the expressive missing wedge inherent in such
setup, it is not used for X-ray CT. Recently, Janssens et al. (JANSSENS et al., 2016a) used
a similar scanning setup in their work. However, the system proposed by them was com-
posed of a non-fixed X-ray detector which follows the scanned object trajectory to avoid
the acquisition of truncated projections near detector borders. In this thesis, we suggest
that the use of a static positioned detector is simpler and cheaper. Then, reconstruction
issues related to the existence of truncated projections should be solved via software.

A more precise diagram of the relation between the scanned object and the X-ray
projections in the proposed inline scanning setup is presented in Figure 14. The parameters
of such geometry are described as follows:

• D: the vertical distance between the object and the X-ray source.

• B: the vertical distance between the conveyor belt and the detector.

• 2a: the dimension of the rectangular region to be reconstructed.

• 2L: the detector length.

• 2𝛼: the X-ray fan-beam opening angle.
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a

b

c

d

Figure 13 – Overview of the inline scanning geometry for X-ray CT: a static setup con-
sisting of a wide cone X-ray source and a large detector for imaging object
passing on a conveyor belt.
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Figure 14 – Reference frame of the inline scanning geometry evaluated in this work. The
system is composed by a wide cone X-ray source (a), a conveyor belt (b), and
a large detector (c).

Three main constraints are imposed on the data acquisition in the proposed inline
scanning geometry. This constraints bring a huge challenge to the image reconstruction
process. They are exposed as follows:

• Limited fan-beam angular range: due to physical limitations, the X-ray cone
angle (2𝛼) is limited to 60∘. Therefore, the object is scanned from very limited
angular views.

• Limited number of projections: since the conveyor belt must be totally stopped
for each X-ray projection acquisition, only a few number of projections should be
acquired to allow a great translation velocity in the conveyor belt.

• Truncated projections: some projection information is lost near the detector
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borders. In fact, the object is only complete entailed by the X-ray fan-beam when
the horizontal distance 𝐾 between the object and the X-ray source is no longer than
𝐾𝑚𝑎𝑥. From Figure 14, the value of 𝐾𝑚𝑎𝑥 is calculated as follows:

tan 𝛽 = 𝐷 − 𝑎

𝐾𝑚𝑎𝑥 + 𝑎
= 𝐷 + 𝐵 + 𝐴

𝐿
(3.1)

𝐾𝑚𝑎𝑥 = (𝐷 − 𝑎) · 𝐿

(𝐷 + 𝐵 + 𝑎) − 𝑎

Figure 15 highlights the differences of the projection configurations among (a) the
full-sampled symmetrical case at circular scanning geometry, (b) the low-sampled asym-
metrical case at circular scanning geometry, and (c) the low-sampled inline scanning
geometry used in this thesis.

reconstruction

region

reconstruction

region

(a) (b)

reconstruction

region

(c)

Figure 15 – Differences within the projection configurations among (a) the full-sampled
symmetrical case at circular scanning geometry, (b) the low-sampled asym-
metrical case at circular scanning geometry, and (c) the low-sampled inline
scanning geometry used in this thesis.

An alternative approach that should also be evaluated to deal with the low number
of object’s view in the inline scanning setup consists of allowing some object rotation
while it is linearly translated on the conveyor belt. Figure 16 (a) illustrates such rotation
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along the time, and Figure 16 (b) shows a design of gears that can be used to allow the
proposed movement of objects in the conveyor belt. In this thesis, we describe object’s
angular speed by the arch 𝜃 covered by a fixed point in the object during the scanning
process.

pinion gear
(non-fixed)

rack gear
(fixed)

(a) (b)

Figure 16 – Object rotation of 𝜃 in the conveyor belt during a linear translation (a); and
the devices suggested to promote both rotation and translation of the object
in the conveyor belt (b): a non-fixed pinion gear is attached to a fixed rack
gear, the desired movement is produced as the pinion gear rolls over the rack
gear.

3.2 Simulations
Every simulation in this thesis was made using the ASTRA-Toolbox (AARLE et al.,

2016) that provides a convenient framework for the development of advanced tomographic
reconstruction techniques. Furthermore, real X-ray CT image reconstructions of Jonagold
apples and Bell peppers acquired at BIOSYST-MeBios, KU Leuven, Belgium were used
as phantoms. A phantom models object’s material response to a specific type of radiation.
As a result, phantoms are used in simulations and evaluations of many imaging systems.

3.2.1 Data set

The real CT images were acquired in a conventional circular scanning geometry using
around 500 projections. Conventional FBP was used to reconstruct more than 1600 cross-
section images of apples and peppers. Figure 17 shows four of those images of Jonagold
apples (a-d) and Bell peppers (e-h).

3.2.2 Results and discussion

The phantoms described in Section 3.2.1 were used to simulate acquisition of projec-
tions in the inline scanning geometry introduced in Section 3.1. Thus, such projections
were reconstructed using conventional techniques. Figures 18 and 19 show reconstructed
samples of Jonagold apples using FBP and SIRT, respectively. Image results are shown for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17 – Examples of real X-ray CT reconstruction of Jonagold apples (a-d) and Bell
peppers (f-h) used in this work as phantoms. (Source: image reconstructions
acquired at BIOSYST-MeBios, KU Leuven, Belgium).
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Figure 18 – Reconstructed samples of Jonagold apples reconstructed using FBP and dis-
tinct numbers of X-ray projections: 8 in (a) and (f), 16 in (b) and (g), 32 in
(c) and (h), 64 in (d) and (i), and 128 in (e) and (j). Moreover, the first line
(a-e) shows results obtained with object rotation disable (𝜃 = 0∘) and second
line (f-j) shows results obtained with object rotation enable (𝜃 = 180∘).

experiments using distinct numbers of X-ray projections and turning on and off the mech-
anism responsible for rotating the object in the conveyor belt (described in Figure 16).
Figures 20 and 21 show similar results using the Bell pepper dataset.

The reconstruction images observed in Figures 18 to 21 shows that SIRT is more
suited than FBP to reconstruct CT images from projections acquired in the inline scan-
ning geometry. The choice of using SIRT goes in opposite direction of most of CT systems
that use FBP due its fast processing time. However, it is clear the low-quality level of
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Figure 19 – Reconstructed samples of Jonagold apples reconstructed using SIRT and dis-
tinct numbers of X-ray projections: 8 in (a) and (f), 16 in (b) and (g), 32 in
(c) and (h), 64 in (d) and (i), and 128 in (e) and (j). Moreover, the first line
(a-e) shows results obtained with object rotation disable (𝜃 = 0∘) and second
line (f-j) shows results obtained with object rotation enable (𝜃 = 180∘).
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Figure 20 – Reconstructed samples of Bell peppers reconstructed using FBP and distinct
numbers of X-ray projections: 8 in (a) and (f), 16 in (b) and (g), 32 in (c)
and (h), 64 in (d) and (i), and 128 in (e) and (j). Moreover, the first line (a-e)
shows results obtained with object rotation disable (𝜃 = 0∘) and second line
(f-j) shows results obtained with object rotation enable (𝜃 = 180∘).
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Figure 21 – Reconstructed samples of Bell peppers reconstructed using SIRT and distinct
numbers of X-ray projections: 8 in (a) and (f), 16 in (b) and (g), 32 in (c)
and (h), 64 in (d) and (i), and 128 in (e) and (j). Moreover, the first line (a-e)
shows results obtained with object rotation disable (𝜃 = 0∘) and second line
(f-j) shows results obtained with object rotation enable (𝜃 = 180∘).

FBP reconstructions in the inline scanning geometry. The experimental tests conducted
to elaborate this work showed that the crossed white lines observed in every FBP recon-
struction are due to the existence of truncated projections. However, such limitation is
inherent to the inline scanning geometry presented in this thesis.

Furthermore, although the scanning setup without object rotation is preferable due to
the final system’s cost, the reconstruction results showed that the rotation feature is crucial
to obtain accurate reconstruction results. In fact, the association of SIRT, and at least
32 X-ray projections, and a conveyor belt with object rotation produces reconstructions
of enough quality for object inspection purposes. However, no evaluation of the system’s
throughput has been conducted until this point.

The throughput of the CT imaging setup is determined by both the scanning and
reconstruction time. The scanning time is a function of the number of projections ac-
quired because, in a step-and-shoot mode, the conveyor belt must stop totally for each
X-ray projection acquisition. Simulations to estimate the scanning time were performed
assuming acceleration/deceleration values compatible with the study published by (HE;

PANG; LODEWIJKS, 2016). Moreover, it was considered an X-ray detector composed of 350
cells of 1 𝑚𝑚 each and an acquisition time of 50 𝑚𝑠 per projection. The scanning times
obtained are shown in Figure 22 for conveyor belt’s acceleration/deceleration of 0.1 𝑚/𝑠2,
0.05 𝑚/𝑠2, and 0.025 𝑚/𝑠2. On the other hand, the reconstruction time is a function of the
desired final image resolution and the number of X-ray projections used. Figures 23 and
24 show the reconstruction time measured for creating images of resolution of 128 × 128,
256 × 256, and 512 × 512 using FBP and SIRT, respectively.
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Figure 22 – Scanning time using different numbers of X-ray projections.
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Figure 23 – Reconstruction time using FBP using different numbers of X-ray projections.
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Figure 24 – Reconstruction time using SIRT using different numbers of X-ray projections.

The analysis of Figures 22 to 24 shows that the elapsed time during the reconstruction
phase, using either FBP or SIRT, is less relevant than the time elapsed during the scanning
phase to compose the final system’s processing time. This way, a direct approach that
should guide the development towards a higher throughput inline CT system is to reduce
the number of X-ray projections while keeping the quality of the reconstruction image.
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4 RELATED WORKS

Software-based improvements to the Computed Tomography workflow have been pro-
posed in the state-of-the-art to handle with scenarios at which Low-Dose Computed To-
mography (LDCT) is required due to (i) the X-ray dose must be limited to safe levels1

or (ii) the elapsed time to collect the ideal number of X-ray projections is prohibitively
long. The basic idea behind most of the works which deal with low-dose scenarios is to
incorporate priors into the reconstruction process; they may be incorporated into three
distinct stages of the workflow (see Figure 3): pre-reconstruction, reconstruction, or post-
reconstruction. The next three sections presents distinct approaches proposed along the
latest years to introduce priors at distinct stages of the CT imaging workflow.

4.1 Pre-reconstruction
The techniques which process sinograms using priors before the reconstruction stage

are focusing on solving two distinct problems: (i) sinogram denoising and (ii) sinogram
interpolation or inpainting. Each of these is described as follows:

(i) sinogram denoising aims at suppressing noise that arises in sinogram data due to the
use of some strategies for LDCT, such as: decrease the current and/or the voltage
at the electrical circuit of the X-ray source;

(ii) sinogram interpolation or inpainting aims at generating non-measured projection
samples based on the available projections. In both cases, those methods are usually
succeeded by conventional reconstruction techniques.

In the following subsections, it is shown the evolution of the techniques for sinogram
denoising and sinogram interpolation or inpainting along the latest years. In the end, con-
siderations about the most suitable pre-reconstruction techniques for the inline scanning
system described in this work are summarized.

4.1.1 Sinogram denoising

The methods for sinogram denoising can be categorized into (i) statistical- or (ii)
weighted filtering-based methods. Each of those is described as follows:
1 some of the technical guidelines to develop machines which operate with less radiation are (LEE;

CHHEM, 2010): (i) modulate the electrical current in the X-ray tube, i.e., the current is increased
(decreased) at angles where there are more (less) attenuation because the patient/object thickness is
large (small); and (ii) reduce the number of X-ray projections used.
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(i) the statistical-based methods use measures (e.g., mean and variance) about the noise
observed in the similar sinograms to enhance the data using statistical tools such
as Weighted-Least Squares (WLS), Maximum A Posteriory (MAP), and Maximum
Likelihood (ML);

(ii) the weighted filtering-based methods apply weighted sums to similar sinograms or
distinct parts of the same sinogram to suppress noise and emphasize non-corrupted
areas. In fact, such filtering has strong origins in MAP estimation (MANDUCA et al.,
2009).

In the following subsections, the most significant statistical- and weighted filtering-
based methods developed up to the present date for sinogram denoising are presented.

4.1.1.1 Statistical-based methods

In (LU et al., 2002), it is shown that the noise in the evaluated LDCT projection data
can be regarded as normally distributed with a nonlinear signal-dependent variance. Thus,
it is proposed a Penalized Weighted Least-Square (PWLS) smoothing framework which
incorporates statistical noise properties. In fact, PWLS estimates the ideal projection by
minimizing a specific cost function. A similar approach was discussed later by (LI et al.,
2004) and (WANG et al., 2006).

In (RIVIERE, 2005) and (KARIMI; WARD, 2016), the authors propose the estimation of
noise-free sinograms by maximizing likelihood objective functions. Those works differ on
the algorithm used in the optimization problem, and (KARIMI; WARD, 2016) also uses the
sparsity in the gradient domain as a regularization term.

In (WANG et al., 2008), it is proposed a multiscale approach where a PWLS smoothing
strategy enhances a sinogram data in the wavelet domain. Experimental analysis showed
that the proposed multiscale approach leads to better reconstruction results than the
previous single-scale approaches.

4.1.1.2 Weighted filtering-based methods

In (BORSDORF et al., 2008), the weights used for sinogram filtering are generated
according to the similarity of the Wavelet coefficients in the images generated by the
even and odd numbered projections. More precisely, the closer is the correlation between
the Wavelet coefficients, the higher is the probability that is a true structure in the object
and such composition should remain; the lower is the similarity value between the Wavelet
coefficients, the higher is the probability that the corresponding detail coefficient includes
only noise and should be suppressed. To maintain a Wavelet coefficient, the filter weights
are set as high; to suppress it, the filter weights are set as low.

In (MANDUCA et al., 2009), it is proposed a method for sinogram smoothing based on
bilateral filtering which was initially proposed for additive noise removal (ELAD, 2002).
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The authors claim that such approach can perform noise reduction while preserving struc-
tural details. A similar approach was also proposed by (BALDA; HORNEGGER; HEISMANN,
2012).

4.1.2 Sinogram interpolation or inpainting

The methods for sinogram interpolation or inpainting can be categorized into (i)
gradient-, (ii) image registration-, (iii) dictionary learning-, or (iv) Artificial Neural Net-
work (ANN)-based methods. Each of those is described as follows:

(i) the gradient-based methods aim to estimate variation rules of gray values among
neighbor pixels in under-sampled sinogram images to fill in unmeasured views;

(ii) the image registration-based methods looks up to a set of correct sampled sinograms
acquired at CT scans of similar objects. Therefore, the most similar sinogram is used
to restore the unmeasured views from the under-sampled sinogram;

(iii) the Dictionary Learning-based methods generate a new representation of the sino-
gram data based on atomic signals free of artifacts which were previously learned
from a training set;

(iv) the Artificial Neural Network (ANN)-based methods use a set of under-sampled and
full-sampled sinograms to train mathematical models able to generate a mapping
function from under- to full-sampled sinograms.

In the following subsections, the most significant gradient-, image registration-, dic-
tionary learning- and neural network-based methods developed up to the present date for
sinogram interpolation or inpainting are presented.

4.1.2.1 Gradient-based methods

In (BERTRAM et al., 2004) and (BERTRAM et al., 2009), structure tensors are used to
estimate the orientation of gray value changes in local neighborhoods. That information
is then used to perform a directional interpolation at missing regions of sinogram data.

In (KOSTLER et al., 2006), it is proposed a variational interpolation approach that
consists on minimizing an energy function which involves the under-sampled sinogram
𝑔, the desired sinogram 𝑓 , and a regularization term. Such regularization term often
involves derivative operators to restrict the gray values behavior at neighbor pixels of the
sinogram image. The authors demonstrated that the results obtained using distinct linear
regularizers are superior to the obtained previously in (BERTRAM et al., 2004).

In (LI et al., 2012), each missing measure in the sinogram is considered as a composition
of a group of sinusoid-like curves. The proposed method consists of using a fitting method
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to find the S-curves that go through each unmeasured point in the sinogram. Thus, each
S-curve is responsible for the intensity variation in a different direction at each point.
On the other hand, using the tensor theory, it is possible to measure the largest intensity
variation of the sinogram in the same point. Finally, to fill in each missing pixel, the least-
squares method is used to figure out the interpolated S-curve whose direction is closest
to the largest intensity variation calculated using the tensor theory.

In (KALKE; SILTANEN, 2014), the sinogram is interpolated by solving characteristics
of sine waves in a limited region, the so-called warps. The strategy consists of calculating
the essential features of the warps. From those values, weight factors are defined and the
sinogram unknowns can be estimated by numerical computations.

4.1.2.2 Image registration-based methods

In (HEUSSER et al., 2012) and (HEUSSER et al., 2014), a degraded reconstruction 𝑓 from
a sinogram with missing data is registered2 to a prior artifact-free image 𝑔 from a data
set. Then, 𝑔 is forwarded projected3 to inpaint the missing data at the initial sinogram in
a smooth way.

4.1.2.3 Dictionary Learning-based methods

In (LI et al., 2014), the missing sinogram data is inpainted using the Dictionary Learn-
ing method. The basic idea of such method is to build an over-complete dictionary of
prototype signal-atoms. Thus, any image signal may be represented as a sparse linear
combination of those atoms (AHARON; ELAD; BRUCKSTEIN, 2006). Li et al. used overlap-
ping sinogram patches from a simulated phantom image to train a dictionary. Therefore,
the sparse vector which best matches the corrupted sinogram in the space of signal-atoms
is calculated. Finally, the reverse transformation to the original domain leads to an in-
painted sinogram data.

4.1.2.4 Artificial Neural Network (ANN)-based methods

In (LEEA; LEEA; CHOA, 2017), it is proposed an interpolation method using Convo-
lutional Neural Network (CNN) which is one of the architectures of Artificial Neural
Network (ANN) used in deep-learning strategies. The CNN is built using 20 pairs of con-
volution and activation layers successively. At the proposed architecture, the output and
the input data have the same size. Thus, the CNN is trained to enhance the sinogram
up-sampled obtained by a simple linear interpolation method.
2 image registration refers to the alignment of multiple images according to the similarity of their

features. To overlap images is common to apply rotation, scale and skew to find the best match
between the data.

3 for a detailed description about conversions between in CT domains, see Appendix A.
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4.1.3 Considerations

Since all the previously mentioned methods introduce priors into the sinogram pro-
cessing to compensate the use of low levels of X-ray radiation, they are all related to this
thesis. However, owing to the physical constraints imposed by the inline scanning geome-
try4, there is a subset of such methods that are more suited to be applied in industrial CT
machines. Those methods must (i) generate new sinogram views to allow the acquisition
of the fewest number of X-ray projections possible; and (ii) avoid iterative algorithms to
accelerate the computation time. Table 1 shows whether (or not) such characteristics are
present at each method discussed in this section.

Table 1 – List of representative methods proposed in the literature since 2002 which incor-
porates priors into a sinogram processing to compensate the use of low levels
of X-ray radiation at the acquisition stage. For each method, a ticker shows
whether the method generates new sinogram views and/or it includes iterative
algorithms. The most suited methods for industrial CT machines are highlighted
in gray.

Method Does it generates
new sinogram views?

Does it includes
iterative algorithms?

(LU et al., 2002) 7 3

(BERTRAM et al., 2004) 3 3

(LI et al., 2004) 7 3

(RIVIERE, 2005) 7 3

(WANG et al., 2006) 7 3

(KOSTLER et al., 2006) 3 3

(BORSDORF et al., 2008) 7 7

(MANDUCA et al., 2009) 7 7

(BERTRAM et al., 2009) 3 3

(BALDA; HORNEGGER; HEISMANN, 2012) 7 7

(LI et al., 2012) 3 3

(HEUSSER et al., 2012) 3 7

(LI et al., 2014) 3 3

(HEUSSER et al., 2014) 3 7

(KALKE; SILTANEN, 2014) 3 3

(KARIMI; WARD, 2016) 7 3

(LEEA; LEEA; CHOA, 2017) 3 7

4 for a detailed description of the scanning constraints related to the inline geometry, see Figure 14.
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4.2 Reconstruction
The methods which compute image reconstructions from sinogram data using priors

can be categorized into (i) statistical-, (ii) Projections Onto Convex Sets (POCS)-, (iii)
Discrete Tomography-, (iv) Dictionary Learning- or (v) Artificial Neural Network (ANN)-
based methods. Each of those is described below:

(i) the statistical-based methods are those that incorporate into the reconstruction
process the expected behavior of X-ray measures and/or attenuation coefficients
observed in the reconstruction algorithm;

(ii) the POCS-based methods compute the final image reconstruction by iteratively pro-
jecting solution vectors onto few convex sets that holds different properties derived
from distinct priors. Thus, the desired reconstruction is placed in the intersection
among all convex sets;

(iii) the Discrete Tomography-based methods assume, as a prior, that only a few possible
attenuation coefficients may occur in the scanned object;

(iv) the Dictionary Learning-based methods limit the possible solutions to those that
are possible to be represented by atomic signals from a dictionary previously trained
using a set of images;

(v) the ANN-based methods intend to create a mathematical model of a function which
directly maps the data in the projection domain into the reconstruction domain.

In the following subsections, some of the most relevant techniques developed along
the latest years to incorporate priors into the CT image reconstruction are described. In
the end, considerations about the most suitable reconstruction techniques for the inline
scanning system described in this work are summarized in a final subsection.

4.2.1 Statistical-based methods

Starting in the 1970’s, some works, e.g. (ROCKMORE; MACOVSKI, 1976; SHEPP; VARDI,
1982; LANGE; CARSON et al., 1984), assumed the observed X-ray measurements as sets of
Poisson random variables and - unlike previously proposed reconstruction methods that
ignored the stochastic nature of the data - applied joint probability density functions to
model the X-ray measurements. Thus, the images were reconstructed according to the
Maximum Likelihood (ML) estimation theory using the Expectation Maximization (EM)
algorithm. In (GREEN, 1990), the same technique based on ML was modified to incorporate
priors about smoothness concentration of isotopes in the radiation. Later, (ERDOGAN;

FESSLER, 1999) used Ordered Subsets EM (OSEM) to achieve a faster convergence of the
EM algorithm when computing image reconstructions using the ML estimation theory.
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In (GEMAN; GEMAN, 1984; SAUER; BOUMAN, 1993), prior information about spatially
correlation of adjacent attenuation coefficients at similar objects, i.e. the probability distri-
bution of the pixel values in the reconstructed image, was modeled using Markov Random
Fields (MRF). Therefore, such prior distribution is used to regularize the data-fidelity term
of an objective function defined according to a Maximum A Posteriory (MAP) estima-
tion. Later, Thibault et al. used Generalized Gaussian Markov Random Fields (GGMRF)
(THIBAULT et al., 2007), and Chen et al. used non-local weights (CHEN et al., 2008; CHEN

et al., 2009) to model priors.
In (CANDÈS; ROMBERG; TAO, 2006), the Total Variation (TV), i.e. the sum of all

gradient magnitudes at specific neighbors, is used to regularize the data-fidelity term of
an objective function defined according to a MAP estimation. The authors claim that
the image artifacts tend to have a large TV norm. Thus, a regularization which avoids
solutions associated with large TV norms tends to benefits solutions that maintain fidelity
to the observed data.

In (ZHANG et al., 2014; QI et al., 2016; CHEN et al., 2016), it is proposed Non-Local Means
(NLM)-based approaches to regularize the data-fidelity term of a MAP estimation. NLM
(BUADES; COLL; MOREL, 2005a; BUADES; COLL; MOREL, 2005b) is a non-linear filter which
replaces each pixel value by a weighted average of its neighbors according to the similarity
between them. The regularization terms proposed in those works tend to benefit solutions
where similar regions of the image are associated with the same intensity value.

Distinct statistical-based methods were developed and patented by the largest manu-
factures of tomographic devices: (i) Siemens developed the Image Reconstruction in Im-
age Space (IRIS) (GHETTI; ORTENZIA; SERRELI, 2012), (ii) Philips developed the iDose4

(ARAPAKIS et al., 2014), (iii) GE Healthcare developed the Adaptative Statistical Iterative
Reconstruction (ASIR) (SINGH et al., 2011). Thus, modern CT scanners can operate with
lower radiation doses.

In the 2010’s, the term “model-based” emerged to designate a group of techniques
strongly connected to the statistical-based methods designed by Siemens, Philips, and
GE Healthcare to take place IRIS, iDose4, and ASIR. Such model-based methods go
beyond statistical-based methods in the sense that they also model the system optics, i.e.
the scanning geometry, the path traversed by each X-ray, the size of each detector cell,
and others (KATSURA et al., 2012). The model-based algorithms that integrates the top
CT scanners are (LIU, 2014): (i) SAFIRE (Siemens), (ii) IMR (Philips), and (iii) Veo
(GE Healthcare). Studies show a higher performance of model-based algorithms rather
than previous statistical-based algorithms when operating with setups of lower radiation
exposure (NEROLADAKI et al., 2013; SCHEFFEL et al., 2012).
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4.2.2 Projections Onto Convex Sets (POCS)-based methods

In (OSKOUI; STARK, 1989), the priors applied at each of the four convex sets used
were: (i) the ray sum at each radiation path must be the same previously measured in the
scanned object; (ii) the divergence between the solution and a given reference image must
not exceed a given threshold; (iii) limitation of maximum and minimum attenuation
coefficients in the solution; (iv) delimitation of the effective reconstruction area in the
image plane.

In (SIDKY; KAO; PAN, 2006; SIDKY; PAN, 2008), the Total Variation (TV) of partial
solutions is minimized, using the gradient descend approach, between two sequential ex-
ecutions of POCS steps. The algorithm is referred as adaptative-steepest-descend-POCS
(ASD-POCS). ASD-POCS iterates continously until converge, i.e. significant changes are
not found in the output of two successive POCS steps. Later, Huang et al. in (HUANG et

al., 2011) proposed a variation in ASD-POCS where the TV minimization stage is replaced
by a Non-Local Means (NLM)-based filtering.

4.2.3 Discrete tomography-based methods

Such methods play a key role in this work due to the fact they have been shown promis-
ing reconstruction results from very few projection directions. In fact, the very limited
number of available attenuation coefficients in the reconstructed images - especially fewer
than three or four - strongly reduces the space of valid solutions and, as a consequence,
reduces the need for projections.

In (FRESE; BOUMAN; SAUER, 1999), the proposed technique follows the Bayesian ap-
proach by deriving an objective function according to a Maximum A Posteriory (MAP)
estimation 5. However, in contrast to other works, a discrete Markov Random Fields
(MRF) is used to model the prior distribution of discrete attenuation coefficients in re-
constructed images. Furthermore, they introduced multi-scale algorithms to both reduce
computation and improve convergence to the global minimum.

In (SCHÜLE et al., 2005), a relaxation and convex-concave regularization is proposed to
optimize the objective functions derived from the application of the Bayesian approach.
The innovation of the work of Schüle et al. relies on the application of binary constraints,
into the relaxation and regularization, to the values of the attenuation coefficients in the
image. Another type of relaxation for obtaining discrete solutions, this time based on
linear programming, is proposed in (WEBER; SCHNORR; HORNEGGER, 2003).

In (BATENBURG, 2007), a novel algorithm is proposed for reconstructing binary im-
ages. Several reconstruction steps for solving two-projection problems are applied in se-
quence for each pair of projections individually. Those reconstruction steps use a network
flow approach at which the ray-sum of each projection is seen as one node in a network,
5 for a complete review on Statistical-based methods for CT reconstruction, see Section 4.2.1.
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and the connection weights between each pair of nodes represents a pixel value in the
final image solution.

In (BATENBURG; SIJBERS, 2011b), a novel iterative algorithm for discrete tomography
is proposed: the Discrete Algebraic Reconstruction Technique (DART). DART performs
sucessive executions of conventional ART update steps and discretization steps at which
the prior related to the set of attenuation coefficients presented in the object is incorpo-
rated.

In (GOUILLART et al., 2013), a prior which assumes that neighboring pixels have a
larger probability to take the same value is exploited to generate discrete reconstructions
using Belief Propagation (BP) which can be seen as an extension of Markov Random
Fields (MRF) or Bayesian networks (YEDIDIA; FREEMAN; WEISS, 2003).

4.2.4 Dictionary Learning-based methods

In (ETTER; JOVANOVIC; VETTERLI, 2011), the idea of incorporating dictionaries of
signals into the reconstruction process emerged. Instead of minimizing the cost function
||p − Af ||2 (for more details on Algebraic Reconstruction Techniques (ART), see Section
2.3.1.2), Etter, Jovanovic, and Vettereli proposed the minimization of ||p−AD𝛼||2; where
D is a dictionary of atomic signals learned from a training set of images, and 𝛼 is a vector
of coefficients which weighs the atomic signals of D to represent f . Such approach limits
the structs that may occur in f to those which are possible to be represented by the
atomic signals in D. A similar approach was also discussed in (XU et al., 2012; XU et al.,
2015; SOLTANI; ANDERSEN; HANSEN, 2015; SOLTANI; ANDERSEN; HANSEN, 2017).

In (LU; ZHAO; WANG, 2011), it was proposed the use of a pair of dictionaries: a first
one, D1 is learned from low quality CT images; and a second one, D2 is learned from high
quality CT images. A correspondence between the atoms in D1 and D2 is built in such
way that D1 is initially used to find the best reconstruction representation 𝛼 in a lower
sample scenario; then, D2 is used to represent 𝛼 using the atoms related to high-quality
images.

4.2.5 Artificial Neural Network (ANN)-based methods

In (MA; FUKUHARA; TAKEDA, 2000), it is proposed a direct application of a conven-
tional feed-forward Artificial Neural Network (ANN) whose input neurons are associated
to pixels in the sinogram data, and the output neurons are related to the pixels of the
image in reconstruction domain. Later, Cierniak applied in (CIERNIAK, 2009) a similar
approach using a Hopfield-type neural network. Such approaches results lead to very large
network sizes. Thus, real-world applications of methods like those had not be found (PELT;

BATENBURG, 2013).
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In (PELT; BATENBURG, 2013), the Neural Network Filtered Back Projection (NN-
FBP) method is presented. NN-FBP creates a model which reconstructs each pixel in the
reconstruction individually to avoid large network sizes. Furthermore, it is shown that
NN-FBP is equivalent to a weighted sum of multiples FBP algorithms, each one with a
different filter.

In (WÜRFL et al., 2016), the key idea is similar to the previously presented in (MA;

FUKUHARA; TAKEDA, 2000), i.e. mapping the FBP algorithm into an ANN model. How-
ever, Würfel et al. make use of modern neural architectures which involves deep nets.
Then, they obtained similar results using FBP and deep nets.

4.2.6 Considerations

Since all the above-mentioned methods incorporate priors into the reconstruction pro-
cess, they are - at first sight - closely related to the research presented in this thesis.
Although, the most required aspects of a reconstruction stage that composes a fast in-
line CT system are: (i) the ability of producing high quality reconstructions from a very
limited number of projections to reduce the acquisition time which has mechanical limi-
tations6; and (ii) do not include iterative algorithms to avoid excessive time consuming.
Table 2 shows whether (or not) such characteristics are present at each method discussed
in this section. As highlighted in Table 2, the method presented by Pelt and Batenburg
in (PELT; BATENBURG, 2013) is the unique that meets both of the desired requirements.
Thus, Janssens et al. applied such method in an inline CT inspection system published in
(JANSSENS et al., 2016b). However, as shown in Figures 18 and 20, the FBP-based recon-
structions present crossed white artifacts which are inherent to the truncated projections
generated in the inline scanning geometry. To overcome this issue, Janssens et al. proposed
the use of an X-ray detector which moves along a linear trajectory to follow the scanned
object and therefore avoid truncated projections near the detector borders. In this thesis,
we opted for employing a fixed scanning setup to make the overall system cheaper. Then,
in our approach, any type of artifacts that may occur must be solved via software. This
explains why we will avoid the use of the method proposed in (PELT; BATENBURG, 2013)
along this research.

6 to more details on the limitations of the acquisition times in the inline scanning geometry, see Figure 22.
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Table 2 – List of the representative methods proposed in the literature since the 1970’s
which incorporates priors into the reconstruction stage to compensate the use
of low radiation levels at the acquisition stage. For each method, a ticker shows
whether the paper shows experimental results using less than 32 X-ray pro-
jections and/or it includes iterative algorithms. The most suited methods for
industrial CT machines are highlighted in gray.

Method
Dos it exposes nice

results using less than
32 X-ray projections?

Does it includes
iterative algorithms?

(ROCKMORE; MACOVSKI, 1976) 7 3

(SHEPP; VARDI, 1982) 7 3

(LANGE; CARSON et al., 1984) 7 3

(GEMAN; GEMAN, 1984) 7 3

(OSKOUI; STARK, 1989) 7 3

(GREEN, 1990) 7 3

(SAUER; BOUMAN, 1993) 7 3

(ERDOGAN; FESSLER, 1999) 7 3

(FRESE; BOUMAN; SAUER, 1999) 3 3

(MA; FUKUHARA; TAKEDA, 2000) 7 3

(WEBER; SCHNORR; HORNEGGER, 2003) 3 3

(SCHÜLE et al., 2005) 3 3

(CANDÈS; ROMBERG; TAO, 2006) 3 3

(SIDKY; KAO; PAN, 2006) 3 3

(THIBAULT et al., 2007) 7 3

(BATENBURG, 2007) 3 3

(CHEN et al., 2008) 7 3

(CIERNIAK, 2009) 7 3

(CHEN et al., 2009) 7 3

(HUANG et al., 2011) 3 3

(LU; ZHAO; WANG, 2011) 7 3

(ETTER; JOVANOVIC; VETTERLI, 2011) 7 3

(XU et al., 2012) 7 3

(BATENBURG; SIJBERS, 2011b) 3 3

(GOUILLART et al., 2013) 3 3

(PELT; BATENBURG, 2013) 3 7

(ZHANG et al., 2014) 7 3

(SOLTANI; ANDERSEN; HANSEN, 2015) 7 3

(QI et al., 2016) 3 3

(CHEN et al., 2016) 3 3

(WÜRFL et al., 2016) 7 7

(SOLTANI; ANDERSEN; HANSEN, 2017) 7 3
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4.3 Post-reconstruction
The techniques that incorporate priors into the processing of the reconstruction out-

puts can be categorized into (i) Weighted filtering-, (ii) Image registration-, (iii) Dictio-
nary Learning-, or (iv) ANN-based methods. Each of those is presented below:

(i) the Weighted filtering-based methods apply weighted sums to similar parts of the
same or distinct CT images to suppress artifacts and emphasize non-corrupted areas;

(ii) the image registration-based methods looks up to a set of normal-dose CT images
acquired at conventional scans of similar objects to use those images for suppressing
artifacts that occur in low-dose CT images;

(iii) the Dictionary Learning-based methods enhance the low-dose CT reconstructions by
trying to represent the final reconstructions as a weighted sum of noise-free signals;

(iv) the ANN-based methods intend to create a mathematical model able to learn how
to rearrange the pixel values in an artifact-full CT reconstruction to generate the
pixel values distribution coherent to the expected structures in the scanned object.

In the following subsections, it is described some of the most relevant techniques de-
veloped along the latest years to incorporate priors into the post-reconstruction stage of
the CT imaging workflow. In the end, considerations about the most suitable reconstruc-
tion techniques for the scanning system described in this work are summarized in a final
subsection.

4.3.1 Weighted filtering-based methods

In (MA et al., 2011), the conventional Non-Local Means (NLM) technique is adapted to
utilize redundancy information of previous of normal-dose scans to restore artifacts that
occur in low-dose scans. In this proposed technique, the pixel values of the normal-dose
CT image are weighted summed according to their similarity to the correspondent pixel
values in the low-dose CT image to suppress the artifacts that emerged due the reduced
used of radiation in the acquisition stage. Similar approaches were also proposed in (XU;

MUELLER, 2011; HA; MUELLER, 2013).

4.3.2 Image registration-base methods

In (YU et al., 2009), the Previous Scan Regularized Reconstruction (PSRR) method is
proposed to improve the quality of ultra-low-dose CT image by utilizing previously normal
dose CT scan of the same patient. PSRR aims at recognizing substantially changed parts
in ultra-low-dose scans, and replace them with other parts from the normal dose scan
which share the same corresponding features.
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In (XU; HA; MUELLER, 2013), the input low-dose image is used to query global features
in a database built using normal dose CT. Then, a method based on Non-Local Means
(NLM) is used to enhance the low-dose image from the data acquired from the normal
dose CT images. A similar approach was also discussed in (HA; MUELLER, 2015).

4.3.3 Dictionary Learning-based methods

In (CHEN et al., 2013), it is presented an approach where the small image patches of
a low-dose CT reconstruction is represented using a dictionary of atomic signals learned
from a training set of normal dose CT reconstruction. Similar approach was also discussed
later in (CHEN et al., 2014b).

In (CHEN et al., 2014a), different dictionaries were used to enhance different sub-bands
of the image frequency spectrum. Such band decomposition is obtained using the Wavelet
Transform. After the enhancement of each sub-band, the Inverse Wavelet Transform is
used to map the data into the spatial domain.

4.3.4 Neural Network-based methods

In (CHEN et al., 2017a), it is proposed the training of a deep architecture of an Artificial
Neural Network (ANN) - the auto-encoders - to learn the end-to-end mapping from a low-
dose CT image to its respective normal dose CT image. Similar approach that employs
Convolutional Neural Networks was also discussed in In (CHEN et al., 2017b).

4.3.5 Considerations

Since all the above-mentioned methods incorporate priors into the post-reconstruction
CT imaging process, they are related to the research presented in this thesis. However, the
methods must present two basic characteristics to fit in the inline CT imaging machine
which is the focus of this thesis. Such characteristics are: (i) be able to enhance recon-
structions obtained from a low number of X-ray projections to accelerate the acquisition
stage; and (ii) does not include iterative algorithms to avoid excessive computing time.
Table 3 shows whether (or not) such characteristics are present at each method discussed
in this section.
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Table 3 – List of the representative methods proposed in the literature which incorporates
priors into the post-reconstruction stage to compensate the use of low radiation
levels at the acquisition stage. For each method, a ticker shows whether the
paper shows experimental results using less than 32 X-ray projections and/or
it includes iterative algorithms. The most suited method for industrial CT ma-
chines is highlighted in gray.

Method
Does it report enhancement

results of CT images acquired

using less than 32 X-ray projections?

Does it includes
iterative algorithms?

(YU et al., 2009) 3 7

(MA et al., 2011) 7 7

(HA; MUELLER, 2013) 7 7

(CHEN et al., 2013) 7 3

(CHEN et al., 2014a) 7 3

(XU; HA; MUELLER, 2013) 7 7

(HA; MUELLER, 2015) 7 7

(CHEN et al., 2017a) 7 7

(CHEN et al., 2017b) 7 7
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5 PROPOSED METHODS

This chapter presents software-based solutions able to improve the overall CT system
throughput based on the idea presented in the Chapter 3: to reduce the number of X-ray
projections acquired to the smallest possible, to reduce the scanning time, by exploiting
distinct types of prior knowledge about the scanned object. Thus, two approaches are
discussed. The first one is placed in the standard CT workflow. In fact, two distinct
techniques are proposed for the reconstruction, and post-processing/segmentation stages.
The second approach suggests that, for quality assessment purposes, the reconstruction
stage may be bypassed.

5.1 Conventional CT workflow
The techniques presented in this section are anchored in the conventional CT work-

flow. In Section 5.1.1, prior knowledge about material’s composition and object shape
are injected into the reconstruction stage. In Section 5.1.2, prior knowledge automatically
acquired from a trained set of images is included into the post-processing/segmentation
stage. Figure 25 highlights the stages of the CT workflow at which the methods proposed
are situated.

acquisition
data

preprocessing reconstruction segmentation analysis

Figure 25 – Conventional CT workflow with the reconstruction and segmentation stages
highlighted to indicate where the methods proposed in this section are posi-
tioned into the complete flow.

5.1.1 Using prior knowledge about material’s composition and object shape

Unlike continuous reconstruction techniques such as FBP and SIRT, Discrete Tomog-
raphy can operate with a reduced number of projections because only a few possible
attenuation coefficients may occur within the object. If such coefficients are previously
known, DART1 may be used.

In fact, DART incorporates specific prior knowledge related to the density of the
scanned materials, and it has shown that it can reconstruct high-quality images, reducing
the occurrence of smearing artifacts, even from a limited amount of data. DART has
successfully been applied in conventional CT (DABRAVOLSKI; BATENBURG; SIJBERS, 2014)
1 See Section 2.3.2 for a detailed description of DART.
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and in electron and X-ray diffraction tomography (BATENBURG; SIJBERS, 2009). However,
as illustrated in the scheme presented in Figure 11, there are several ART iterations within
a single DART iteration. As a result, DART is a computationally expensive method and
the elapsed time in the reconstruction process may impact the throughput of the proposed
inline X-ray CT system. Thus, an improvement on DART which can reduce the number
of reconstruction iterations until the convergence of the algorithm is also proposed in this
work.

In ART, reducing the number of pixels to be reconstructed (as described in Equation
2.14) is an interesting approach to reduce the number of unknown pixels while keeping the
number of equations fixed in the linear system presented in Equation 2.13. As a result,
the final reconstruction is improved as a large number of unknowns are replaced by a
priori known values. Thus, if the outer object shape is known in advance, it is possible to
remove the pixels related to the background from the reconstruction domain. This way,
the limited number of projections available in the proposed setup is used to compute
only a subset of the whole set of unknown pixels. To determine an object contour, optical
sensor systems can be incorporated into the proposed inline scanning geometry.

Figure 26 shows an overview of the proposed method at which the reconstruction
domain is limited to the object’s contour by incorporating an Expected Object Domain
(EOD) in the reconstruction process. To create an EOD representation which distinguishes
the object pixels from the background, a simple technique as thresholding is usually
enough.

Identify fixed

pixels F

Identify non-

fixed pixels U

Apply new ART iterations to the 

non-fixed pixels in U while keeping

the pixels in F fixed.

Is it in the 

EOD?

yes

no

EOD

Image

segmentation

Optical

sensor

segmented image reconstruction

partial EOD-DART result

scanned

object

set F set U

Figure 26 – Flow chart proposed for EOD-DART in relation to DART flow chart: the
pixels outer the object’s domain are removed from the set of non-fixed pixels
U at each DART iteration.

The proposed EOD can be incorporated into the process of DART just after identifying
the set of fixed pixels F and the set of non-fixed pixels U from the segmented
reconstruction. The pixels selected to be updated (i.e., which composes the set of non-
fixed pixels U) are evaluated in respect to their position in the EOD matrix: the pixels
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which lie outside the EOD borders can be transposed to the set of fixed pixels F. As
a result, only pixels which lie inside the EOD would be candidates for an update. After
applying new ART iterations to the pixels within the set of non-fixed pixels U, a
partial EOD-DART result would be obtained. If the stop criterion is met, the execution
ends. Otherwise, a new iteration is computed as illustrated in Figure 11.

Finally, it is expected that DART provide high-quality reconstructions by using fewer
X-ray projections, i.e., reducing the system’s scanning time. Furthermore, it is also ex-
pected that the number of DART iterations necessary to the solution convergence would
be reduced by the use of the EOD, i.e. reducing the system’s reconstruction time.

5.1.2 Extracting prior knowledge from a training set of images

An idea to speed up the throughput in the proposed inline X-ray CT system may
consist of improvements on segmentation/post-processing stage of CT workflow instead
of making an effort to improve the reconstruction stage. Such segmentation may be specif-
ically designed for each type of object, and it would recover its natural aspects that were
lost due to the availability of only a limited number of projection data in the inline
scanning setup. Thus, a novel segmentation module based on Machine Learning (ML)
techniques is proposed in this thesis.

If Machine Learning (ML) techniques are used, prior knowledge about the scanned
object can be acquired automatically from a training set at which the data present similar
characteristics to that one that is being scanned. Recently, (SOLTANI; ANDERSEN; HANSEN,
2017) proposed the use of a set of images to train a visual dictionary which is then
used as a regularization term in an algebraic reconstruction method. Once based on
the solution of an optimization problem, such method is computationally expensive and
should be avoided in applications where the processing time is critical. Alternatively,
(JANSSENS et al., 2016a) proposed a successful Neural Network-based Hilbert transform
Filtered Backprojection (NN-hFBP) trained with samples of the scanned object to perform
fast tomography in an inline setup design where the detector moves with the object to
avoid the acquisition of truncated projections. In contrast, the method proposed in this
section operates with a fixed X-ray detector to reduce system’s costs (i.e., acquiring
truncated projections2).

The proposed method consists of two steps: a training stage and an evaluation stage.
Each of those is described in the next two subsections.

5.1.2.1 Training stage

The proposed architecture for the training stage is shown in Figure 27. This setup was
designed to incorporate knowledge from the relationship between the segmented high-
2 Section 3.1 describes the existence of truncated projections in the inline CT setup.
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quality X-ray CT images and the low-quality X-ray CT images produced in a fast inline
setup. For this purpose, a training set is created by scanning objects 𝑂 = {𝑜1, 𝑜2, · · · , 𝑜𝑛}
to form two groups: (i) high quality CT images 𝐻 = {ℎ1, ℎ2, · · · , ℎ𝑛} generated using,
for example, a conventional cone beam acquisition; and (ii) low quality CT images 𝐿 =
{𝑙1, 𝑙2, · · · , 𝑙𝑛} generated from projection data acquired in a fast inline setup. Then, the
operation of each module in Figure 27 is described as following:

• feature extraction: each pixel of every image 𝑘 in the set 𝐿, i.e., 𝑙𝑘(𝑢, 𝑣), 1 ≤ 𝑘 ≤ 𝑛

is linearly transformed into a feature vector 𝑥(𝑖) ∈ R𝑚, where (𝑖) denotes an instance
in the training set.

• conventional segmentation: a label 𝑦(𝑖) is assigned to the feature vector 𝑥(𝑖)

according to 𝑆(ℎ𝑘(𝑢, 𝑣)), where 𝑆(·) is a segmentation technique, such as Otsu, to
compose the training instance (𝑥(𝑖), 𝑦(𝑖)).

• classifier training: a Machine Learning technique is used to train a decision model
𝜆 able to estimate a label 𝑦(𝑖) for a feature vector 𝑥(𝑖) relative to an image pixel of a
new input. Classification techniques such as Multilayer Perceptron (MLP) (RUMEL-

HART; HINTON; WILLIAMS, 1985) or Random Forest (RF) (HO, 1998) would be used
to implement this module.

training set

classifier

training

high quality 

X-ray CT images (H)

conventional 

segmentation

x(i)

y(i)

low quality 

X-ray CT images (L)

feature 

extraction

Figure 27 – The proposed architecture for the system’s training stage: a training set stores
the relationship between the segmented high-quality X-ray CT images and the
low-quality X-ray CT images produced in the inline setup. Then, a classifier
is trained to generate the decision model 𝜆 able to segment pixels of new
input.

The flowchart of the feature extraction module, which generates 𝑥(𝑖), is shown in Fig-
ure 28. The operation of the sub-modules for each image pixel is described as follows:

• positions evaluation: computation of the distance 𝜌 to the object’s center of mass
𝑙𝑘, as illustrated in Figure 29.

• patches extraction: the gray values within a 𝜔 × 𝜔 neighborhood are extracted
to compose the image patch 𝛾.
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• vectors composition: the gray values of the patch 𝛾 and the distance 𝜌 are dis-
posed in a single feature vector 𝑥(𝑖). Thus, the length of the feature vector is 𝜔 ·𝜔 +1
and the number of vectors created is 𝑝 · 𝑞 · 𝑛, at which 𝑝 × 𝑞 is the image dimension
and 𝑛 is the amount of images in 𝐿.

feature extraction

patches

extraction

vectors

composition

[.3,.5, ..., .9]T

[.1,.2, ..., .6]T

...

[.6,.2, ..., .3]T

positions

evaluation

Figure 28 – The proposed architecture for composing the feature vector for each pixel of
the input image: first, the distance between each pixel position and the ob-
ject’s center of mass is computed at the positions evaluation module. Then,
every image patch 𝛾 presented in the image is captured at the patches ex-
traction module. Finally, the gray values of each image patch and its relative
position to the object’s center of mass are distributed in a single feature vector
at the vectors composition module.

ω

ω

ρ

lk

Figure 29 – Schema of the feature extraction module which computes the distance 𝜌 from
an actual pixel position to the center of mass 𝑙𝑘 of the image and the gray
values in a 𝜔 × 𝜔 image grid.

5.1.2.2 Evaluation stage

The proposed architecture for the evaluation stage is shown in Figure 30. First, each
pixel from a low-quality X-ray CT image is transformed into feature vector 𝑥(𝑖) at the
feature extraction module, as described in Figure 28. Then, at the pixel classification
module, the decision model 𝜆 is used to classify each vector 𝑥(𝑖) into one of the possible
labels {𝑦1, 𝑦2, · · · , 𝑦𝑧} which are previously defined in the segmentation of the images in
𝐻. Finally, the output associated to the classification of distinct pixels are arranged into
an image grid at the image composition module to generate the final segmented image.
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To accelerate the evaluation stage, the independence of the feature extraction and pixels
classification modules concerning the pixels position in the image may be exploited, i.e.,
multiple instances of both modules can be used simultaneously to process distinct pixels
of the image.

feature

extraction

pixels

classification
low quality 

X-ray CT image

image

compostion
output

Figure 30 – The proposed architecture for the evaluation stage: first, each pixel in the
input image is transformed into a feature vector 𝑥(𝑖) at the feature extrac-
tion module. Then, the decision module 𝜆 is used to assign a label 𝑦 to the
input vectors at the pixels classification module. Finally, the output of each
classification is arranged into a final image grid at the image composition
module.

As a result, it is expected that such segmentation may recover the natural aspects
of the objects that were lost due to the limited projection data available in the inline
scanning setup.

5.2 Altered CT workflow
The approaches discussed so far in this work, i.e. focused on the standard workflow,

may not be the most suited for an industrial environment. This is because the high-
throughput desired will not allow a human to perform a real-time analysis of the recon-
structed images. Therefore, an algorithm would be developed to automate such stage of
analysis.

If the pre-processing, reconstruction, and segmentation stages of the conventional CT
workflow are bypassed, as illustrated in Figure 31, the reconstruction time is saved. Thus,
the analysis stage may be adapted to receive the input directly from the acquisition stage
and provide a decision based on the object’s quality.

This proposed method is based on the fact that all the information of the reconstructed
image is already present in the sinogram3. For instance, Figure 32 illustrates how the
3 for a detailed description of sinograms, see Appendix B.

acquisition
data

preprocessing reconstruction segmentation analysis

bypass

Figure 31 – Workflow of the proposed method in which the pre-processing, reconstruction,
and segmentation stages are bypassed.
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(a) (b)

(c) (d)

Figure 32 – Two similar objects with distinct internal structures leads to soft differences
in the sinograms.

internal structures of two distinct objects reflects on soft differences in the sinograms.
In the sinogram, the data is organized in a way that does not help human understand-

ing, although a computer vision algorithm can learn such organization. Furthermore, if
only a small amount of data would be enough for the algorithm classify the object, the
number of X-ray projections acquired in the object scanning should be reduced which will
also lead to an inferior scanning time.

To design a novel analysis module able to process the CT raw data as input and
understand it, we apply the Bag-of-Features (BoF) technique which was successfully used
in image classification, categorization, and retrieval tasks (BOSCH; MUñOZ; MARTí, 2007;
CSURKA et al., 2004). In BoF, low-level features are extracted from a training set of images
to compose a vocabulary of visual words. Thus a novel image can be represented by a
vector that represents the number of occurrences of each visual feature in the image. More
specifically, a system based on the BoF technique contains three main stages: vocabulary
construction, attribution of terms, and vector generation. In the present thesis, the design
of each of those stages is proposed as follows:

• vocabulary construction: Scale-Invariant Feature Transform (SIFT) is used to
extract low-level features from sinograms in a training set, as shown in Figure 33
(a); then, all the features are combined in a single vector space, as illustrated in
Figure 33 (b); finally, the 𝐾-means algorithm is used to find 𝐾 clusters in the
feature space and visual words {𝑐1, 𝑐2, · · · , 𝑐𝑘} is assigned to the centroid of each
cluster, as presented in Figure 33 (c);
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Figure 33 – Intermediate steps of the BoF solution proposed in this thesis: vocabulary
construction in (a), (b), and (c), attribution of terms in (d) and (e), and
vector generation in (f).

• attribution of terms: for a new sinogram, SIFT features are extracted, as illus-
trated in Figure 33 (d); then, each feature is assigned to the nearest cluster (or
visual world), as shown in Figure 33 (e);

• vector generation: each dimension of the final feature vector is composed of the
frequency of occurrence of each visual world in the image, as shown in Figure 33
(f).

Then, any Machine Learning technique, such as Multilayer Perceptron (MLP) (RUMEL-

HART; HINTON; WILLIAMS, 1985) or Random Forest (RF) (HO, 1998), can be used to train
a decision model 𝜆 to assign a correct label, e.g. high-quality and low-quality, to each input
sinogram.
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6 EXPERIMENTAL RESULTS

This chapter presents the experimental results obtained in the evaluation of the meth-
ods proposed in Chapter 5. The datasets and the experimental environment used are the
same of the exposed in Section 3.2. Thus, the reconstruction quality and processing time
obtained in the experiments of this chapter are compared with those presented in Section
3.2.2 that, for applying standard techniques such as Filtered Back Projection (FBP) and
Simultaneous Iterative Reconstruction Technique (SIRT), is our baseline.

The content of this chapter is organized following the same structure of the Chapter
5: the first section presents the experimental results of the techniques which are anchored
in the conventional CT workflow; then, the second section shows the experimental results
of the shortened CT workflow.

6.1 Conventional CT workflow
As discussed in Chapter 5, the goal of the methods based on conventional CT workflow

is to reduce the number of projections required in the system’s acquisition stage to improve
the throughput of the inline CT 1. Thus, we are looking for the best trade-off between
reconstruction quality and scanning time.

In the following experiments, two performance measures are used: (i) the rate of pixels
with correct attenuation coefficients in relation to the phantom images segmented by the
multi-level Otsu (LIAO et al., 2001) to measure the reconstruction accuracy; and (ii) the
number of X-ray projections required in the reconstruction process to of the system’s
scanning time2.

6.1.1 Using prior knowledge about material’s composition and object shape

To evaluate the method proposed in Section 5.1.1, the accuracy of DART reconstruc-
tions were compared to the solutions generated by FBP and SIRT in scenarios at which
a small number of X-ray projections is acquired to reduce the scanning time of the in-
line setup. To compare non-discrete solutions (created by FBP and SIRT) with discrete
solutions (created by DART), the output of FBP and SIRT were segmented using the
multi-level Otsu (LIAO et al., 2001) which lead to the Segmented FBP (S-FBP) and the
Segmented SIRT (S-SIRT). Figure 34 shows the box plots of the reconstruction accu-
1 Section 3.2.2 showed that the scanning time predominates over the reconstruction time, when FBP

and SIRT are applied, to compose the overall processing time.
2 a closer relation between the number of X-ray projections acquired and the scanning time in the inline

system used in this work was explored in Figure 22.
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racy provided by (a) S-FBP, (b) S-SIRT, and (c) DART in the Jonagold apple dataset.
Figure 35 shows the same for the Bell pepper dataset.
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Figure 34 – Box plots of the reconstruction accuracy provided by (a) S-FBP, (b) S-SIRT,
and (c) DART in simulations of the inline scanning setup using the Jonagold
apple dataset.

The results shown in Figures 34 and 35 show that by applying DART it is possible
to achieve high quality image reconstructions from a small number of X-ray projections.
This leads to a fast scanning stage, as desired. For illustration purposes, Figures 36 and
37 show examples of the obtained reconstructions and its respective ground truths.

However, the use of a new reconstruction stage affects the overall processing time.
In fact, using 16 X-ray projections, to reconstruct 256 × 256 images, the reconstruction
time is about 30𝑠 if DART is applied against 0.26𝑠 if SIRT is applied. To mitigate such
excessive time consumption, which was already expected3, Section 5.1.1 proposed the
addition of an Expected Object Domain (EOD) into the workflow. Figure 38 shows the
growth of accuracy as many DART iterations are applied with and without EOD. The
results show that, using EOD-DART, it is possible to achieve reconstruction convergence
3 this justification can be seen at Section 5.1.1.
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Figure 35 – Box plots of the reconstruction accuracy provided by (a) S-FBP, (b) S-SIRT,
and (c) DART in simulations of the inline scanning setup using the Bell
pepper dataset.

S-FBP S-SIRT DART ground truth

Figure 36 – Examples of reconstructed images of apples using 15 X-ray projections in the
proposed inline X-ray CT system using a conveyor belt that allows object
rotation.
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S-FBP S-SIRT DART ground truth

Figure 37 – Examples of reconstructed images of peppers using 15 X-ray projections in
the proposed inline X-ray CT system using a conveyor belt that allows object
rotation.

using a reduced number of iterations, i.e. faster. Unfortunately, even EOD-DART is not
fast enough to provide the throughput required in industrial CT systems.
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Figure 38 – Growth of reconstruction accuracy as many as DART iterations are applied
with and without EOD.
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6.1.2 Extracting prior knowledge from a training set of images

To evaluate the method proposed in Section 5.1.2, two scenarios were created at which
the constraints are: (i) a small number of projections to reduce the scanning time; and
(ii) a reduced number of SIRT iterations to check if the reconstruction time can also be
reduced.

6.1.2.1 Reduced number of X-ray projections

Image reconstructions were simulated in the inline scanning setup using 4, 8, 12, 16,
20 and 24 X-rays projections. Figure 39 shows the box plot of the segmentation accuracy
for (a) conventional Otsu and (b) the proposed method in the Jonagold apple dataset.
Figure 40 shows the same in the Bell pepper dataset.
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Figure 39 – Box plot of segmentation accuracy for (a) conventional Otsu and (b) the
proposed method using the dataset of apples. The dotted line represents an
accuracy threshold of 90%.

Assuming that 90% of reconstruction accuracy is enough for the quality assessment, the
proposed method ensures this quality level for all images in both datasets when at least 16
X-ray projections are used. In the bell pepper dataset, 90% of accuracy was only obtained
with 24 X-ray projections using conventional methods. In the apple dataset, such quality
levels could not be achieved using standard methods with less than 24 X-ray projections.
These results combined with the measured times shown in Figure 22 demonstrate that the
proposed approach ensures an accuracy of at least 90% for a scanning of 15 to 29 seconds
depending on the conveyor belt’s acceleration/deceleration. Using conventional technique,
the scanning elapsed time should be 19 to 37 seconds or more. Thus, a reduction of at
least 21% in the scanning time can be achieved.

For illustration purposes, examples of the obtained reconstructions and its correspond-
ing ground truth are shown in Figures 41 and 42.
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Figure 40 – Box plot of the segmentation accuracy for (a) conventional Otsu and the (b)
proposed method using the dataset of bell peppers. The dotted line represents
an accuracy threshold of 90%.

Otsu Proposed Ground Truth

Figure 41 – Examples of reconstruction results of apples using 16 X-ray projections and
128 SIRT iterations.

6.1.2.2 Reduced number of SIRT iterations

Reconstructions were simulated using 16 projections and SIRT iterations varying from
8 to 128. Figures 43 and 44 show the box plot of the segmentation accuracy for (a)
conventional Otsu and (b) the proposed method in the Jonagold apple and Bell pepper
dataset, respectively.

The results show that 32 iterations are enough for both datasets to ensure a recon-
struction accuracy above 90% if the proposed method is used. The reader should notice
that - even using 128 iterations - the conventional method did not ensure an accuracy
index of 90% in both datasets. Based on these experiments and in the time measures pre-
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Otsu Proposed Ground Truth

Figure 42 – Examples of reconstruction results of bell peppers using 16 X-ray projections
and 128 SIRT iterations.

number of SIRT iterations

1

0.75 8 16 32 64 128

se
g
m

en
ta

ti
on

 a
cc

u
ra

cy

0.8

0.85

0.9

0.95

number of SIRT iterations

1

0.75 8 16 32 64 128

se
g
m

en
ta

ti
on

 a
cc

u
ra

cy

0.8

0.85

0.9

0.95

(a) Otsu (b) proposed method

Figure 43 – Box plot of segmentation accuracy for Otsu (a) and (b) the proposed method
using the dataset of Jonagold apples. The dotted line represents an accuracy
threshold of 90%.

sented in Figures 23 and 24, we conclude that, if the proposed method is used, SIRT can
achieve reconstruction times comparable to FBP while keeping a sufficient image accu-
racy. For instance, to generate images of high resolution (1024×1024) with reconstruction
accuracy over 90%, SIRT may takes 1.9003𝑠 (using 32 projections) which is very close to
the 1.8664𝑠 taken by FBP (using 128 projections). This is an important result because, in
the state-of-the-art, FBP is always preferable than SIRT if time resolution is a constraint.

For illustration purposes, examples of the obtained reconstructions and its respective
ground truth are shown in Figures 45 and 46.
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Figure 44 – Box plot of segmentation accuracy for (a) Otsu and (b) the proposed method
using the dataset of Bell peppers. The dotted line represents an accuracy
threshold of 90%.

Otsu Proposed Ground Truth

Figure 45 – Examples of reconstruction results of apples using 16 X-ray projections and
32 SIRT iterations.
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Otsu Proposed Ground Truth

Figure 46 – Examples of reconstruction results of bell peppers using 16 X-ray projections
and 32 SIRT iterations.
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6.2 Altered CT workflow
As discussed in Chapter 5, the goal of the method based on the altered CT workflow is

to reduce the processing time by eliminating the reconstruction stage from the workflow.
Moreover, since no reconstruction algorithm will be executed, a reduced number of X-ray
projections can be enough to classify the input data. It would lead to an inferior scanning
time.

The evaluation of this method starts by assigning labels to all the CT images in the
dataset. For the experiments of this thesis, the label damaged or undamaged was associated
with each image of the Jonagold apple dataset. Figure 47 (a) - (c) illustrates sample of
images from the dataset assigned as undamaged and Figure 47 (d) - (f) illustrates sample
of images from the dataset assigned as damaged. Such categorization into labels was made
by a non-expert in food materials based on the size of holes inside the apples. However,
many distinct categorizations can be made by experts to detect specific features in the
data.

The rate of sinograms correct classified into the classes (damaged or undamaged) was
computed using the 10-fold cross-validation scheme in eight experimental setups where
16, 32, 64, and 128 X-ray projections were acquired twice: initially, the object rotation in
the conveyor belt (see Figure 16) was turned on; then, it was turned off. Figure 48 (a)
shows the classification accuracy in the experimental setups at which the object rotation
was allowed. As can be seen, the classification accuracy tends to grow as many X-ray
projections are used indicating that such approach is more efficient than the evaluation

(a) (b) (c)

(d) (e) (f)

Figure 47 – Samples of images from the dataset assigned as undamaged (a) - (c) and
damaged (d) - (f).
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Figure 48 – Rate of classification accuracy of the samples of Jonagold apple dataset in
the inline scanning setup with (a) and without (b) object rotation.

of conventional radiographs which are widely used at the industry 4. However, the use
of 32 X-ray projections to obtain an acceptable performance (87%) do not represent an
apparent reduction in the scanning time in relation to the previous solutions. Figure 48
(b) shows that, in contrast to the methods proposed earlier which are based on image
reconstruction, the final results are not significantly influenced by the rotation attribute
of the conveyor belt. Such result may give rise to cheaper scanning setups at which the
engines which allow object rotation in the conveyor belt are dismissed.

4 see Section 1.1
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7 CONCLUSION

In this thesis, an inline X-ray Computed Tomography (CT) scanning setup for indus-
trial environments was described. The system comprises a fixed X-ray source and detector,
and a linear translation of the target object in a conveyor belt. Compared to the conven-
tional CT systems in which the X-source rotates around the object, the inline system has
two main advantages: (i) it is more flexible for industrial environments since the object
is imaged during its trajectory in a conveyor belt; (ii) it is cheaper since the mechanical
engines used to rotate the radiation source around the object are dismissed. However, a
huge trade-off between reconstruction quality and system throughput is imposed in such
scenario. In this work, imaging simulations were performed to evaluate and quantify such
trade-off. Thus, the findings enumerated as follows were obtained:

(i) Filtered Back Projection (FBP) algorithms cannot generate - in any way - recon-
structions free of artifacts from the truncated projections acquired in the inline
scanning geometry.

(ii) If object rotation is not applied in the conveyor belt, any conventional reconstruction
technique produces images full of severe smearing artifacts no matter how many X-
ray projections are used in the scanning stage.

(iii) If object rotation is applied to the conveyor belt, Simultaneous Iterative Reconstruc-
tion Technique (SIRT) using at least 32 X-ray projections can produce reconstruc-
tions of enough quality for object inspection purposes.

(iv) To acquired 32 X-ray projections, the scanning time is in between 17 seconds
and 43 seconds for acceleration/deceleration in conveyor belts from 0.2 𝑚/𝑠2 to
0.0025 𝑚/𝑠2.

(v) The reconstruction time is less critical than the acquisition time. In fact, both FBP
and SIRT can reconstruct 512 × 512 images from 32 X-ray projections in less than
a second, which is an order of magnitude lower than the scanning time mentioned
in the previous topic.

Methods were proposed in this thesis to introduce - via software - prior knowledge
about the scanned objects into the CT imaging workflow to compensate the few number
of X-ray projections that must be acquired to reduce the scanning time to the lowest
possible while the quality of the image reconstruction is kept. The proposed methods were
placed in both reconstruction and post-processing stages. In the reconstruction stage, the
main idea was to exploit priors related to the material’s composition and object shape. In
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the post-processing stage, the main idea was to recover natural aspects of the images by
using a training set of inline scanned images correctly segmented. The findings obtained
from the experimental analysis of such methods are described as follows:

(vi) Discrete Algebraic Reconstruction Technique (DART), which incorporates priors
related to the expected material’s composition and its attenuation coefficient, can
generate 90% accurate reconstructions from only 12 X-ray projections acquired in
the inline setup. However, DART can achieve reconstruction times two orders of
magnitude greater than SIRT.

(vii) If the reconstruction domain is constrained by using an Expected Object Domain
(EOD), that requires a prior about the external object shape, into DART algorithm
as proposed in this thesis, it is possible to achieve reconstruction convergences using
a reduced number of iterations and, as a consequence, a reduced reconstruction time.
However, even EOD-DART is not fast enough to provide the throughput required
in industrial CT systems.

(viii) If Simultaneous Iterative Reconstruction Technique (SIRT) is adopted to reconstruct
CT images from projections acquired in the inline scanning geometry, the post-
processing stage based on Artificial Neural Network (ANN) proposed in this thesis
can ensure at least 90% of accuracy to the final image reconstruction using only 16
X-ray projections. It represents a scanning time reduction from 19 − 37 seconds to
15 − 29 seconds, i.e. at least 21%.

(ix) Although the literature highlights the main drawback of SIRT as its computational
cost in relation to FBP, it was shown in this thesis that it is possible to reduce
the number of SIRT iterations until the reconstruction times became comparable
to FBP. Then, to enhance the image artifacts generated by the precipitated end of
SIRT algorithm, the proposed post-processing stage may be used.

Furthermore, to drastically reduces the number of X-ray projections acquired, it was
also proposed a bypass from the acquisition stage to the analysis stage of the workflow. If
correct classifications of the object were made from few X-ray projections, there would be
no need for a reconstruction stage in such Non-destructive Testing (NDT) system. From
initial evaluations of such approach, the following findings were obtained:

(x) As the classification accuracy grows as many X-ray projections are used, we may
conclude that such approach substantially differs from the evaluation of conventional
radiographs which are already widely used in the industry. The method evaluated
in this thesis only obtained acceptable performance of classification using 32 X-ray
projections. Thus, it cannot allow the expected acquisition time for inline industrial
systems.
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(xi) This was the only method evaluated in this thesis that the final results were not
significantly influenced by the rotation of objects in the conveyor belt. A deeper
investigation of such method may give rise to an even cheaper Non-destructive
Testing (NDT) setup where the rotation engines in the conveyor belt are dismissed.

7.1 Contributions
The main contributions of this thesis consist of:

(i) an investigation of a scanning geometry consisting of a single and static
pair of X-ray source and detector. In contrast, previous works - that also
discussed CT solutions for industry - proposed the use of multiple pairs of X-ray
source and detector or a non-stationary trajectory of, at least, one of them;

(ii) the proposal of a Machine Learning-based post-processing stage that can
recovery natural aspect of the objects reconstructed using a smaller number of X-ray
projections. As a consequence, the scanning time can be reduced in at least 21%;

(iii) an improvement into the DART algorithm - the EOD-DART - which con-
straints the reconstruction domain and allows a faster convergence of the algorithm
by using a prior related to the outer object shape;

(iv) a quantification of the trade-off between reconstruction quality and pro-
cessing time in the inline CT system. In fact, the results showed links pro-
cessing time, conveyor belt acceleration/deceleration, number of X-ray projections,
reconstruction accuracy, and image resolution;

(v) introducing the idea of a compressed CT workflow for NDT systems con-
sisting of only an acquisition stage and an analysis stage. Such elimination of
a reconstruction stage would reduce the need for a high number of X-ray projections
and, as a consequence, improve the overall system throughput.

(vi) a broad review of the methods previously proposed in the literature that
exploit priors in distinct stages of the CT workflow. Thus, we believe that
such review will be helpful to any researcher that is going to work with low-dose
and few-view CT;

7.2 Future Works
For future works, the following activities are planned:
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(i) Expansion of Chapter 4 and submission of such material to a Journal as a Survey on
methods for incorporate priors in few-view and low-dose CT systems. The surveys
on dose reduction in CT published up to the present date, such as (KARABULUT;

ARIYÜREK, 2006; LEE; CHHEM, 2010), are focused on (i) guidelines and procedures
to be adopted by radiologists during the patient exam; and/or (ii) hardware-based
solutions; and/or (iii) techniques which incorporate priors into the reconstruction
stage of the CT workflow. To the best of our knowledge, a complete review on
software-based solutions to incorporate priors into the pre-processing, reconstruc-
tion, and post-processing stage of the CT workflow - as showed in Chapter 4 is
missing in the literature;

(ii) To investigate how fast can be an implementation of DART algorithm in a dedicated
hardware device, such as a Field-Programmable Gate Array (FPGA). The main idea
is to process in parallel the required computation for each pixel of the image. The
basic iterative nature of DART algorithm needs to be kept. Even so, we believe that
a drastic time reduction can be obtained by making that the processing of each pixel
takes place in parallel in a dedicated hardware device. Thus, the solution exposed
in Section would become practical to real-world scenarios;

(iii) To investigate how deep Artificial Neural Network (ANN) architectures, specially
autoencoders, can generate new sinogram views from a limited number of projec-
tions. If such pre-processing method, followed by a reconstruction stage using the
conventional Simultaneous Iterative Reconstruction Technique (SIRT), would im-
prove the number of views, for instance, from 8 to 32 in the inline scanning geometry
it would be possible to achieve acceptable reconstruction images using a very re-
duced scanning time;

(iv) To investigate how deep ANN architectures, specially Convolutional Neural Network
(CNN), can improve the segmentation stage proposed in 5.1.2. Such Deep Learning-
based techniques seem to have the potential of improving the results presented in
this thesis;

(v) To investigate how different shape-based regularization methods can be incorpo-
rated together in Algebraic Reconstruction Techniques (ART) for providing better
reconstruction results in the inline CT system;

(vi) To investigate how improvements in pre-reconstruction, reconstruction, and post-
reconstruction stages of the CT workflow can be used simultaneously to improve
the final results of the inline CT system.
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7.3 Summary of publications
The research presented in this thesis led to the following publications:

• Conference proceedings:

– L. F. Alves Pereira, A. Dabravolski, T. I. Ren, G. D. C. Cavalcanti and J.
Sijbers, Conveyor Belt X-ray CT Using Domain Constrained Discrete Tomog-
raphy, Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI
Conference on, Rio de Janeiro, 2014, pp. 290-297. (status: published, Qualis-
CC: B1-2016)

• Journals:

– L. F. Alves Pereira, E. Janssens, G. D. C. Cavalcanti, T. Ing Ren, M. Van
Dael, P. Verboven, B. Nicolai and J. Sijbers, Inline X-ray Computed Tomogra-
phy system based on Discrete Tomography: application to agricultural product
inspection, Computers and Electronics in Agriculture, Volume 138, 2017, pp.
117-126. (status: published, Qualis-CC: A2-2015)

– L. F. Alves Pereira, G. D. C. Cavalcanti, T. Ing Ren, and J. Sijbers, A machine
learning approach for fast tomography. (status: in progress)
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artifacts image errors that may emerge in Computed Tomography (CT) reconstructions
due to a variety of reasons, such as missing projection data. 39, 59, 64, 83, 84

attenuation coefficient indicates how intense is the loss of X-ray photons in the inter-
action of the radiation beam with matter at each object position. In a Computed
Tomography (CT) image reconstruction, the gray level at each pixel represents the
material’s attenuation coefficient on that object’s position. 29, 33, 37, 55–58, 72, 84,
102

missing wedge non-sampled projection angles during an X-ray data acquisition in Com-
puted Tomography (CT). 39

phantom digital images used to model object’s material response to a specif type of radi-
ation in the development and testing of imaging systems such as Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography
(PET). 12, 53, 72, 106

scanning geometry refers to the relative position of the X-ray source, detector, and
target object during the acquisition of X-ray projections. 25, 31, 33, 43, 83–86

sinogram visual representation of the raw data acquired in Computed Tomography (CT)
processing. 22, 50–55, 58, 69–71, 81, 86, 105
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