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Abstract
Mobile Cloud Computing (MCC) enables resource-constrained smartphones to run

computation-intensive applications through code/data offloading to resourceful servers.
Nevertheless, this technique can be disadvantageous if the offloading decision does not
consider contextual information. Another MCC challenge is related to the change of ac-
cess point during an on-going offloading process, since it impacts on or is impacted by
resource scarcity, finite energy, and low connectivity in a wireless environment. This PhD
research has developed a context-sensitive offloading system that takes advantage of the
machine-learning reasoning techniques and robust profilers to provide offloading decisions
with the best levels of accuracy as compared to state-of-the-art solutions. In addition,
this work proposes a way to support seamless offloading operations during user mobility
through the software-defined networking (SDN) paradigm and remote caching technique
to speed up the offloading response time. Firstly, in order to address the offloading decision
issue, the approach evaluates the main classifiers under a database comprised of cloud,
smartphone, application, and networks parameters. Secondly, it transforms raw context
parameters to high-level context information at runtime and evaluates the proposed sys-
tem under real scenarios, where context information changes from one experiment to
another. Under these conditions, system makes correct decisions as well as ensuring per-
formance gains and energy efficiency, achieving decisions with 95% of accuracy. With
regards SDN-based mobility support, the results have shown that it is energy efficient,
especially considering the low-cost smartphone category, while remote caching proved to
be an attractive alternative for reducing the offloading response time.

Key-words: Mobile cloud computing. Context-sensitive. Machine-learning. Classification
algorithms. Software-defined networking. Mobility management



Resumo
A computação em nuvem móvel (MCC) permite que smartphones com recursos limi-

tados executem aplicações intensivas de computação através do offloading de código/dados
para servidores potentes. No entanto, esta técnica pode ser desvantajosa se a decisão de
offloading não considera informações contextuais. Outro desafio da MCC está relacionado
à mudança de ponto de acesso durante um processo de offloading contínuo, uma vez que
impacta ou é impactado pela escassez de recursos, energia finita e baixa conectividade
em um ambiente sem fio. Esta pesquisa de doutorado desenvolveu um sistema de offload-
ing sensível ao contexto que tira proveito das técnicas de raciocínio de aprendizagem de
máquina e perfiladores robustos para prover decisões de offloading com os melhores níveis
de acurácia em comparação com soluções do estado da arte. Além disso, este trabalho
propõe uma maneira de suportar operações de offloading contínuas durante a mobilidade
do usuário através do paradigma de redes definidas por software (SDN) e técnica de cache
remoto para acelerar o tempo de resposta do offloading. Primeiramente, para resolver o
problema da decisão de offloading, a abordagem avalia os principais classificadores sob
uma base de dados composta de parâmetros relacionados a nuvem, smartphone, aplica-
tivos e rede. Em segundo lugar, ela transforma parâmetros de contexto bruto em infor-
mações de contexto de alto nível em tempo de execução e avalia o sistema proposto em
cenários reais, aonde as informações de contexto mudam de um experimento para outro.
Nessas condições, o sistema toma decisões corretas, bem como garante ganhos de desem-
penho e eficiência energética, alcançando decisões com 95% de acurácia. Com relação ao
suporte à mobilidade baseado em SDN, os resultados mostram que o sistema é eficiente
em termos energéticos, especialmente considerando a categoria de smartphones de baixo
custo, enquanto o cache remoto provou ser uma alternativa atrativa para reduzir o tempo
de resposta de offloading.

Palavras-chaves: Computação em nuvem móvel. Sensibilidade ao contexto. Aprendiza-
gem de máquina. Algoritmos de classificação. Redes definidas por software. Gerenciamento
de mobilidade
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1 INTRODUCTION

This chapter introduces the PhD research with regard to the context and motivation,
including the use of the offloading technique in Mobile Cloud Computing, followed by main
challenges involved in this technique. Next, we describe the key issues that are addressed
by this work and list specific objectives that make up the purpose of this research. Finally,
the published papers and thesis structure are presented.

1.1 Context and Motivation
Cloud computing has taken the world by storm. In this category of utility com-

puting, a collection of computing resources (e.g., network, servers, storage) are pooled to
serve multiple consumers, using a multi-tenant model. These resources are available over
a network, and accessed through standard mechanisms (ROMAN; LOPEZ; MAMBO, 2016).
The cloud computing paradigm provides a variety of deployment models and service mod-
els, from public clouds (organizations provide cloud computing services to any customer)
to private clouds (organizations deploy their own private cloud computing platform), and
from Infrastructure as a Service models (IaaS, where fundamental computing resources
are offered as a capability) to Software as a Service models (SaaS, where applications are
offered as a capability), among other things. The benefits of cloud computing – minimal
management effort, convenience, rapid elasticity, pay per use, ubiquity – have given birth
to a multi-billion industry that is growing worldwide (ROMAN; LOPEZ; MAMBO, 2016).

Meanwhile, the latest developments in mobile device technologies and demand for
sophisticated mobile applications have changed user trends towards computing. Mobile
devices are expected to provide complicated and ubiquitous services instead of simple
telephony and computation. Applications such as m-commerce, mobile telemedicine, mul-
tiplayer mobile gamming, natural language processing, augmented reality service and in-
teractive service make mobile devices an important part of everyday life (GANI et al., 2014;
SATYANARAYANAN et al., 2015). Unfortunately, the advances in smartphone hardware and
battery life have been slow to respond to the computational demands of applications
evolved over the years. Therefore, many applications are still unsuitable for smartphones
due to constraints, such as low processing power, limited memory, unpredictable network
connectivity, and limited battery life (KHAN et al., 2014).

In general, to make the smartphones energy efficient and computationally capable,
major hardware and software level changes are needed, which requires the developers and
manufacturers to work together (BARBA; MACINTYRE; MYNATT, 2012; MASCOLO, 2010).
Due to size-constraints, hardware level changes alone may not enable smartphones to
achieve true unlimited computational power. Therefore, software-level changes are more
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effective, where computation is performed on remote resources with partial support of a
smartphone’s hardware (KEMP et al., 2009).

In order to provide mobile users with a similar experience to using powerful desktop
computers, an adequate infrastructure to enable the storage and processing of resource-
intensive mobile applications on remote resource servers has been developed, termed Mo-
bile Cloud Computing (MCC) (GAO; GRUHN; ROUSSOS, 2013). MCC is defined by the
availability of Cloud Computing services in a mobile ecosystem. It extends computational
resources from mobile devices to cloud providers in order to increase service availability,
speed and reliability while saving the device’s energy (FERNANDO; LOKE; RAHAYU, 2013).
Offloading operations may ensure these benefits by enabling code and data migration from
a mobile device to resource-rich cloud servers (ENZAI; TANG, 2014).

According to (FLORES et al., 2017), computational offloading is the opportunistic
process that relies on external infrastructure to execute a computational task outsourced
by a low-power device. Moving a computational task from one device to another is not a
trivial endeavor. Network bandwidth, received signal strength, input data size, and cloud
capabilities, amongst others, play a critical role in deciding whether or not to offload a
task, since these parameters can change suddenly over time. Therefore, the effectiveness
of an offloading operation is determined by its ability to infer where the execution of
code/data (local or remote) will result in less computational effort for the mobile device.
The evaluation of the code/data requires consideration of different perspectives, for in-
stance, what code to offload (e.g., method name); when to offload (e.g., round-trip times
thresholds); where to offload (e.g., cloudlet server, edge computing or remote cloud); how
to offload (e.g., split code into n processes, methods or components); and so on (FLORES

et al., 2015).
This problem introduces the necessity of computational offloading systems that can

adapt themselves based on the information regarding the resources that are being pro-
vided, to decide where and when to perform offloading, as well as to infer the contextual
information of mobile devices. In other words, it refers to a system’s awareness of its
surrounding environment, how it is able to monitor, collect, select, process, and share
an entity’s context information and how this is involved in decision-making and the exe-
cution of computational offloading. Context information is any kind of information that
characterizes an entity in a specific domain; an entity in this regard can be a person,
mobile device, application, remote cloud, or network element (BETTINI et al., 2010).

On the other hand, the mobility feature is a critical issue concerning MCC envi-
ronments once it impacts on or is impacted by resource scarcity, finite energy, and low
connectivity in a wireless environment (LI et al., 2015). These problems have emerged be-
cause during the execution of an application in the cloud, a mobile user may move from
one network to another, where unmanaged mobility in a wireless environment causes com-
munication disruption when the mobile device moves across two different communication
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coverage areas (ZEKRI; JOUABER; ZEGHLACHE, 2012). Moving between different attach-
ment points and concomitantly performing offloading continuously is an unfilled gap in
the MCC literature. Hence, mobile applications that demand Quality of Service (QoS)
requirements are prone to handovers (i.e., the change of access point serving mobile device
during ongoing sessions), remote cloud service unavailability, insufficient network band-
width, and long-latency periods (JUNIOR et al., 2017). So, due to the nature of distributed
computing, MCC necessitates an uninterrupted and unobtrusive communication medium
between the remote cloud and the mobile device, as well as cooperation between clouds.
This has stimulated a new concept of “seamless” connectivity and service, i.e., it refers
to the seamless service provisioning across different wireless access networks and optimal
service delivery via the most appropriate cloud resource (GANI et al., 2014).

Traditional handover management techniques based solely on network and device
contexts (e.g., bandwidth availability and residual battery) do not fulfill the requirements
of MCC applications, since these applications are part of different domains (e.g., Internet
of Things, mobile healthcare, mobile crowdsourcing), which involve concerns related to
energy, runtime, costs, scalability, and flexibility. For instance, in mobile e-health envi-
ronment, an energy-poor smartphone can offload human vital signs from wearable sensors
to be processed continuously while the user is moving in a car. However, simply choosing
another access point on the street may not suffice to provide seamless execution of cloud
application. This is because the service provided by co-located cloud resource can be ex-
hausted or yet, in case of service migration from one cloud to another, the delay should be
prohibitive to re-instantiate the service in another location. In addition, the surrounding
environment is also important, such as vehicular traffic at that moment, which could be
taken into account in handover decision. Thus, mobility management mechanisms and
techniques suitable for MCC are two very important elements to maintain seamless con-
nectivity and services.

What code/data 

to offload

When to 

offload

Where to 

offload

How to 

offload

Scalability

Costs

Security
Context

Elasticity

Flexibility

Mobility

Energy

Runtime

PhD Scope

Offloading Perspectives Offloading Concerns

Figure 1 – PhD research scope.

As illustrated in Figure 1, this PhD research has focused mainly on the “When"
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perspective due to its challenging and important features. The offloading system should
decide whether it is counterproductive or not to execute the tasks remotely. Thus, it does
not make sense, for example, to offload one application through a very low quality wireless
connection or when the application does not need much resources. Several parameters
(such as connectivity and remote cloud capacity) should be considered when offloading,
otherwise the application may loose performance.

In terms of offloading concerns, this PhD research has focused on context-awareness,
mobility, runtime, and energy. The last two have always been users’ requirements and
consequently a mobile industry interest. The runtime or total execution time is the most
common metric to assess mobile applications performance (SILVA et al., 2016). Great im-
portance is given to this factor because it influences directly on the user experience.
For example, if one automobile in a cohort hits a pothole or swerves to avoid a fallen
tree branch, the coordinates of the hazard can be rapidly offloaded within the cell tower
cloudlet and then used for avoidance by the other automobiles in that cohort (SATYA-

NARAYANAN et al., 2015).
On the other hand, it has long been recognized that mobile hardware is necessarily

resource-poor. Since the smartphone has limited resources (i.e., processor, battery, wireless
interface, etc.), is infeasible to finish some computational-intensive tasks (e.g., real-time
image processing for video games, augmented reality, and location-based service). Com-
puting speeds of these mobile devices, however, will not grow at the same pace as servers’
performance. This is due to several constraints, including: hardware constraints, weight
and heat dissipation limit the computational resources of the device; user preferences, as
users want devices that are smaller and thinner and yet with more computational capa-
bility; low connectivity, end-to-end latency increases the remote processing response time,
and consequently also increase the per-operation energy consumption on the mobile device
(CHEN et al., 2015); power consumption, insofar the current battery technology constrains
the clock speed of processors, doubling the clock speed approximately octuples the power
consumption. It becomes difficult to offer long battery lifetimes with high clock speeds
(SILVA et al., 2016). Therefore, context, mobility, runtime, and energy will continue being
an MCC concern in a long term, motivating further research of these topics.

1.2 Problem Statement
Consider the scenario where a mobile user is walking in an urban area and needs

to run heavy tasks from a mobile application. Offloading these tasks to a remote cloud
may improve the application performance. One problem is that the latency in the com-
munication, CPU (smartphone) and vCPU (cloud) usage, and input data size can change
abruptly. Thus, the opportunistic moments to offload a task in a remote cloud system
are sporadic. In addition, remote cloud offloading is sensitive to the multiple parameters
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of the system (the context of the device, the application, and the network), which means
that it is challenging to pinpoint an opportunistic moment to offload. An other problem
is related to mobility, because during offloading operations the mobile user may move
from one network to another, which consequently causes communication disruptions and
application crashes.

In this context, two questions arise:

• When to offload tasks considering context information in an MCC environment?

• How to ensure the smoothing of offloading operations while the user moves between
Point-of-Attachment (PoA)s?

1.3 Objectives
The main objective of this research is to design and develop new strategies in MCC

that can improve the performance and energy saving in mobile devices, as well as ensure
seamless offloading in mobility scenarios.

Among the specific goals of the research, we can list:

1. Propose a object-oriented middleware designed for MCC.

2. Propose a SDN-based mobility management application for locating a mobile device,
initializing handover, selecting a new network, and registering the mobile device with
the new network.

3. Create and implement an algorithm for context-sensitive offloading decision, as well
as a set of machine-learning classifiers for assisting the decision algorithm.

4. Building a testbed environment which includes dynamic and mobile scenarios.

1.4 Publications
Following, a list with the published papers related to this research is presented.
As main author:

• Warley Junior, Adriano França, Kelvin Dias. Avaliação de Desempenho da Técnica
de Offloading Computacional em Nuvens Móveis. WPerformance. 2015.

• Warley Junior, Adriano França, Kelvin Dias. Supporting mobility-aware computa-
tional offloading in mobile cloud environment. Journal of Network and Computer
Applications. 2017.
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• Warley Junior, Bruno Roberto, Kelvin Dias. A systematic mapping study on mobil-
ity mechanisms for cloud service provisioning in mobile cloud ecosystem. Computers
and Electrical Engineering. 2018.

As co-author:

• Bruno Roberto, Atrícia Sabino, Warley Junior, Eduardo Oliveira, Francisco Junior,
Kelvin Dias. Performance Evaluation of Cryptography on Middleware-Based Com-
putational Offloading. VII Brazilian Symposium on Computing Systems Engineering
(SBESC). 2017.

1.5 Thesis Structure
This thesis is structured as follows. Chapter 2 clarifies some relevant background

themes that the reader should know for properly understanding this document. Chapter 3
discusses noteworthy works found in literature that have some topics in common to those
addressed in this thesis. Chapter 4 details the core contribution of this thesis. The Chapter
describes an approach that evaluate machine-learning classifiers and presents a context-
sensitive offloading system based on classification algorithms and robust profilers. Chapter
5 presents an extension to the context-sensitive offloading system by applying mobility-
specific features, such as mobility management and remote caching. Finally, Chapter 6
traces some conclusions and future work.
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2 BACKGROUND

This chapter discusses the basic concepts of mobile cloud, offloading mechanisms,
software-defined networking, context-aware, and machine learning. The background pre-
sented here shall provide the necessary knowledge for a clear comprehension of the chap-
ters ahead, including the aspects surrounding the proposed methodology and subsequent
case studies.

2.1 Mobile Cloud Computing
There are several existing definitions of Mobile Cloud Computing, and different

research alludes to different concepts of the ’mobile cloud’. To avoid the exhaustion of these
definitions, we can highlight the work referenced in (KHAN et al., 2014), which defines MCC
as "an integration of cloud computing technology with mobile computing in order to make
mobile devices resource-full in terms of computational power, memory, storage, energy,
and context awareness".

According to (GAO; GRUHN; ROUSSOS, 2013), MCC often involves three foundations,
namely cloud computing, mobile computing, and networking. Thus defined MCC as "an
emergent mobile cloud paradigm which leverage mobile computing, networking, and cloud
computing to study mobile service models, develop mobile cloud infrastructures, platforms,
and service applications for mobile clients".

Therefore, the communication between mobile device and remote server plays an
important role in the successful execution of cloud-based applications. For better under-
standing and maturation of MCC concepts, we will describe below, the four MCC models
widely studied in the state-of-the-art.

2.1.1 Mobile Cloud Models

The MCC paradigm can be categorized into four different models: public cloud,
small cell cloud, cloudlet server, and ad-hoc cloudlet. They are described in detail below.

2.1.1.1 Public Cloud

The mobile device that uses the public cloud to augment resources acts as a thin
client while connecting through any of the wireless technologies to a remote cloud server.
A public cloud is formed from computational resources that are located in centralized
data centers and maintained by cloud service providers, as shown in Figure 2. Therefore,
mobile users can access public cloud services in two ways: base stations or access point.
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Access point are equipments that are used to establish connectivity between mobile devices
and the Internet through Wireless Local Area Network (WLAN). They use the Wireless
Fidelity (WiFi) which has recently made use of 802.11n and 802.11ac standards. On
the other hand, base stations are fixed locations for telecommunications networks used to
establish connection between the smartphone and the phone provider through the Wireless
Wireless Wide Area Network (WWAN). These make use of the Wide-Band Code-Division
Multiple Access (WCDMA) and Long Term Evolution (LTE) standards also called 3G
and 4G, respectively.

Mobile users

Internet

Cloud datacenter

Base station

Access 

point

Figure 2 – Public cloud.

The application that leverages on the cloud is required to exchange the data between
two ends, the mobile device and the cloud, using the wireless Internet resources, such as
wireless backbone networks. The communication across the Internet is affected because
of the high WWAN latency, interoperability among the underlying different networking
technologies, non-guaranteed bandwidth reservation, bursty losses and excessive delay
due to congestion, and non-deterministic traffic load along the path. The increase in the
mobile communication traffic in the wireless backbone network may cause congestion that
increases the data transfer time from a mobile device to the cloud and vice versa. The
use of congested backbone links and non-guaranteed access to these backbone networks
increase the probability of disruption during the access of services provided by the public
cloud.

2.1.1.2 Small Cell Cloud

In common cellular networks, the closest place for deployment of computing re-
sources is a base station. With increasing density of deployed cells, the small cells are
seen as a mean to provide cloud computing services to users in proximity (see Figure 3).



Chapter 2. BACKGROUND 25

This concept is known as Small Cell Cloud (SCC) (BECVAR; PLACHY; MACH, 2014). In
the SCC, the Small Cells (SCeNB) are empowered by additional computing and storage
resources in order to enable efficient exploitation of delay sensitive and computation de-
manding applications, such as augmented reality or virus scanning. To satisfy even high
demands of the devices on computation, the computing power distributed over nearby
cloud-enhanced SCeNBs can be virtually merged together under one Virtual Machine
(VM).

SCeNB #1

SCeNB #3

SCeNB #2

Small Cell 

Cloud

Figure 3 – Small cell cloud.

The application is then offloaded from the device to the SCeNBs if it is profitable
from energy or delay point of view. The VMs are deployed at SCeNBs with respect to
their communication and computation capabilities (LOBILLO et al., 2014).

2.1.1.3 Cloudlet Server

A Cloudlet server is a desktop or a cluster of low-cost multicore computers located
in the same WLAN as the mobile device; it can provide cloud services on a small scale
and is commonly found in domestic, corporate, and public environments (JUNIOR et al.,
2017). Unlike the Public cloud, a Cloudlet server exists at physical proximity to the mobile
device, usually at a 1-hop distance and is accessible using a high speed wireless link such
as WiFi (SHAUKAT et al., 2016). Also referred to as a “data center in a box”, a Cloudlet
server is self-managing, requiring little power, Internet connectivity and access control
(SATYANARAYANAN et al., 2009).



Chapter 2. BACKGROUND 26

In a MCC paradigm, a cloudlet-based approach offers the following advantages over
a cloud-based approach: low latency, higher bandwidth, offline availability, cost effective-
ness, and decentralized (SHAUKAT et al., 2016).

Cloudlet Server Ad Hoc Cloudlet

Figure 4 – Cloudlet server and Ad-hoc cloudlet.

Figure 4 illustrates the Cloudlet server on the left. The server performs management,
resource monitoring, and task scheduling. Moreover, the server is considered as a secure
and trustful resource-rich device. Although the Cloudlet server reduces the response time
of the application execution in the MCC by mitigating the Wide Area Network (WAN)
latency, this technology suffers from the compute-intensive and delay-inducing processes
of cloudlet discovery, VM creation and deployment, application partitioning, authentica-
tion, and authorization. The local network service provider also hesitates in deploying the
Cloudlet server and providing access to outside users for accessing the private networks.
There is a need to provide incentives, such as charge per-resource-usage, to provoke the
local network service providers to allow the outside users for accessing and utilizing the
network resources. Security and authorization of local network resources are the big chal-
lenges in Cloudlet server deployment to prevent outside users from accessing the private
resources (SHAUKAT et al., 2016).

2.1.1.4 Ad-Hoc Cloudlet

A Ad-hoc cloudlet is a group of mobile devices with more powerful processing and
autonomous energy that shares its resources with local neighbors (e.g., resource-poor mo-
bile devices) (JUNIOR et al., 2017). It is an alternative solution to the Cloudlet server that
mitigates several WAN bottlenecks, such as low throughput and longer delay. The Ad-hoc
cloudlet provides the resources to mobile devices when either no or weak wireless Internet
connections are available to the cloud or the device is unable to find the nearby avail-
able resources. In the Ad-hoc cloudlet, the mobile devices have to perform management
functions, authentication, resource monitoring, and task scheduling by themselves in a
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distributed manner that consumes mobile device energy and processor cycles (AHMED et

al., 2015). Figure 4 illustrates the Ad-hoc cloudlet on the right.
This model makes use of Device-to-Device (D2D) communication, which is provided

by technologies such as WiFi-Direct and Bluetooth Low Energy. The limitation of D2D
communication is the strict requirement on the contact duration between a producer
device and a consumer device to guarantee enough processing time for the offloaded
computational task. Once a producer device and a consumer device are disconnected due
to mobility or other network dynamics while the offloaded computational task is not
finished, the computation execution is failed (CHEN et al., 2015).

Finally, the Table 1 makes a comparison of the main cloud models on three perspec-
tives: applicability, advantages and disadvantages.

Table 1 – Comparison of the main mobile cloud models.

Resource Applicability Pros Cons
Public
Cloud

Can be used for delay-
tolerant applications
(e.g., e-commerce, social
network) and when
there is little or great
demand for computing
power.

- Centralized Datacen-
ters and administered
by professionals
- Wide availability and
scalability
- Able to support thou-
sands of users simulta-
neously

- Makes use of the Inter-
net and therefore routing
occurs through multiple
hops, which may result in
unpredictable delays
- Incurs additional costs
for contracting cloud ser-
vices and Internet access
providers.

Cloudlet
Server

Can be used for delay-
sensitive applications
(e.g., video, audio,
image processing) and
when there is a great
demand for computing
power.

- Makes use of WiFi to
obtain high throughput
and low latency
- Better quality of ser-
vice (QoS) to meet the
needs of few users in a
local network
- Low cost and decen-
tralized architecture

- Does not have manage-
ment and security poli-
cies
- Not scalable
- Are not always available
- Service coverage area
restricted to that of
WLAN

Ad-Hoc
Cloudlet

Can be used when there
is no access to the In-
ternet and in the neigh-
borhood there is a group
of mobile devices with
greater energy auton-
omy and computational
power

- Lower communication
cost and short trans-
mission delay
- Does not depend on
a wired network infras-
tructure
- Mobile devices are
producers and con-
sumers of services

- Does not have manage-
ment and security poli-
cies
- Local D2D connectivity
might be unavailable due
to network dynamics
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2.1.2 Computation Offloading

According to (ENZAI; TANG, 2014), computation offloading is a mechanism where
resource-intensive computations are migrated from a mobile device to the resource-rich
cloud or server or nearby infrastructure. Computation offloading evolves from serving
client-server paradigm to mobile systems and cloud computing. Client-server paradigm is
still part of a cloud. However, cloud computing implies business, data stores, and other
resources which are remotely hosted. Nonetheless, simply adopting the migration concept
of client-server to cloud computing is not straightforward. Characteristics which are unique
to cloud computing such as virtualization and elasticity of cloud resources need to be taken
into consideration.

C

OC

C

public class image {   

void method1(){  

//...  

}   

void method2(){  

// Offloading Candidate   

}   

void method3(){  

//...  

}   

main(){  

       method1();  

       method2();   

       method3();  
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}
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Figure 5 – Mobile cloud offloading.

The computational offloading architecture adapted from (FLORES et al., 2015) is
shown in Figure 5. The architecture consists of two parts: a clients cluster and a servers
cluster. In this approach, any mobile entity (connected cars, smartphone, smartwatch,
smartglasses, tablet, and others) can outsource a computational task to any available
cloud model, e.g. cloudlet server, remote cloud or ad-hoc cloudlet. This is also called
D2D in other studies. Therefore, portions (C) of code (e.g. Method, Thread, or Class)
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are identified as Offloading Candidates (OCs) by a software programmer, indicating that
part of the code should be offloaded.

2.1.3 Offloading Mechanisms

The computational offloading technique can be categorized into static and dynamic,
depending on when the offloading decision occurs.

The static offloading approach makes use of performance prediction models or offline
profiling to estimate the performance. The application is then partitioned into client and
server partitions which may subsequently be executed (KHAN, 2015). Static partitioning is
done during development, i.e. the software developer explicitly select the code that should
be offloaded using special static annotations (e.g., @Offloadable, @Remote) (FLORES et

al., 2015).
The dynamic offloading strategy initially perform static analysis of the code and

instrumentation in order to perform dynamic/online profiling during execution. Based
on the information obtained from dynamic profiling, the application is partitioned into
client and server partitions. The execution then continues with the updated configuration
(KHAN, 2015). Dynamic partitioning is conducted during execution, i.e. an automated
mechanism analyzes the code implicitly during runtime. Thus, once the application is
installed in the device, the mechanism selects the code to be offloaded.

Table 2 – Static offloading VS Dynamic offloading.

Offloading strategy Advantage Disadvantage

Static Low overhead
during execution

Beneficial only when the parameters
can be accurately predicted in advance

Dynamic Adapt to different
runtime conditions

High overhead during execution

The pros and cons between static and dynamic partitioning are highlighted in Table
2. Static partitioning could not adapt to varying network conditions efficiently and also
places more responsibility on programmers. A partitioning mechanism which automati-
cally computes estimated partitioning solution is more suitable. However, extra computing
cost for dynamic partitioning is still an issue. Nonetheless, dynamic partitioning is a com-
mon method to incorporate adaptive feature in computation offloading framework (ENZAI;

TANG, 2014).

2.1.4 Mobility Techniques used in MCC

A significant amount of research has been performed on MCC connectivity. Aim-
ing to conduct these studies, most of the researchers have adopted mobility techniques
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to provide seamless connectivity and service, i.e., it refers to the uninterrupted service
provisioning across different wireless access networks and optimal service delivery via
the most appropriate cloud resource. However, there is no common list of which mobil-
ity techniques could be used in MCC research and a Systematic Mapping Study (SMS)
could give important directions in this sense. A SMS is a type of investigation that has
an evidence-based nature, applied in order to provide an overview of a research area by
characterizing it (PETERSEN et al., 2008). Before presenting any mobility strategy that
could solve the pursued objective of this thesis, we have applied a SMS, aiming to iden-
tify mobility techniques used in MCC. We have executed a SMS by means of analyzing
four mobility’s facets in MCC (mobility strategy, decision criteria, network technology,
and cloud model). We synthesized implications for practicing, identifying research trends,
open issues, and areas for improvement.

Starting from 736 papers, we filtered 36 studies that used mobility techniques for
their proposals. Given the current state of MCC research, we judge that there are few
studies with controlled experiments using real solutions. In our study, only 36 papers
used mobility techniques in the their proposals, probably because this field is still rela-
tively recent, with the first effectively primary study dating from 2012 (BIFULCO et al.,
2012a). Following, we used circular bar charts to report the percentage of studies (i.e.,
number of papers) considering the corresponding facets. For instance, in Figure 6a the
value "Handover Algorithm, 59%" means that means that 21 studies out of 36 use a han-
dover algorithm as the mobility strategy, corresponding to 59%. Figure 6 summarizes our
findings.

Mobility strategy, illustrated in Figure 6a, is characterized by identify the mobil-
ity mechanisms, models, and algorithms used to support seamless mobility and smart
decision-making. We have observed that the majority of the solutions have adopted algo-
rithms for the handover decision, followed by mobility management. Handover algorithm
is characterized as steps/strategy with the aim of guiding the decision about triggering (or
not) the handover from one PoA to another, taking into account many decision param-
eters, while mobility management is responsible for locating a mobile device, initializing
handover, selecting a new network, registering the mobile device with the new network in
the case of different vendors, access network or domain and executing the handover. Fig-
ure 6b shows that the most utilized decision criteria are network and device related, such
as the Received Signal Strength Indication (RSSI), Round Trip Time (RTT), bandwidth,
delay, cost/price, packet loss, battery power, location, and velocity. Among the network
technologies used (Figure 6c), as expected, WiFi is the most envisioned technology, since
among other motivations its high bandwidth and low latency are important features for
delay-sensitive applications that require QoS. Regarding cloud model (Figure 6d), public
cloud was the most employed model in MCC, with 28 studies. The decisions related to
mobility strategy in this PhD research shall take into account these results, aiming to



Chapter 2. BACKGROUND 31

adopt similar test-beds and then make it possible to compare results with related studies.

Handover Algorithm, 59%

Mobility Management, 37%

QoS Support, 23%

Multimodal Support, 12%

Proxy Support,.9%

Mobility Model, 6%
10

20

30

0/40

(a) Mobility strategy.

Network−related, 62%

Device−related, 56%

Service−related, 20%

User−related, 3%
10

20

30

0/40

(b) Decision criteria.

WiFi, 67%

3G, 39%

4G, 20%

WiMAX, 17%

Bluetooth, 6%
10

20

30

0/40

(c) Network technology.

Public cloud, 78%

Cloudlet server, 34%

Small Cell Cloud, 6%

Ad−hoc cloudlet, 6%
10

20

30

0/40

(d) Cloud model.

Figure 6 – Mapping by Quantity of Occurrences.

2.2 Software-Defined Networking
Modern Internet infrastructure consists of a set of networking devices with Application-

Specific Integrated Circuits (ASICs) and chips that are used to achieve high throughput,
thus realizing hardware-centric networking. However, the current hardware-centric Inter-
net infrastructure suffers from several shortcomings, such as manageability, flexibility,
and extensibility. Networking devices usually support a handful of commands and config-
urations based on a specific embedded Operating System (OS) or firmware. As a result,
network administrators are limited to a set of pre-defined commands, even though it would
be easier, simpler,and more efficient to support more protocols and applications if it were
possible to program network controls in ways that are more responsive and flexible. In
addition, researchers usually have to make their own testbeds or take advantage of sim-
ulations rather than real world implementation scenarios to realize their ideas. In other
words, innovation and research is costly under the current condition of hardware-centric
networking (FARHADY; LEE; NAKAO, 2015).
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To overcome such limitations, the Software-Defined Networking (SDN) concept has
been proposed. SDN can be defined as “an emerging architecture that is dynamic, manage-
able, cost-effective, and adaptable, making it ideal for the high-bandwidth, dynamic nature
of today’s applications. This architecture decouples the network control and forwarding
functions enabling the network control to become directly programmable and the under-
lying infrastructure to be abstracted for applications and network services" (FUNDATION,
2012). This definition is quite comprehensive, making it clear that the main advantage of
the SDN paradigm is to allow different policies to be dynamically applied to the network
by means of a logically centralized controller, which has a global view of the network and,
thus, can quickly adapt the network configuration in response to changes (KIM; FEAM-

STER, 2013). At the same time, it enables independent innovations in the now decoupled
control and data planes, besides facilitating the network state visualization and the con-
solidation of several dedicated network appliances into a single software implementation
(KREUTZ et al., 2015).

2.2.1 Control and Data Plane

Given that the separation between data and control planes is at the core of the SDN
technology, it is important to discuss them in some detail. Figure 7 shows a simplified
SDN architecture and its main components, showing that the data and control planes are
connected via a well-defined programming interface between the switches and the SDN
controller.

Security
Network 

management

Northbound Interface

Controller

Southbound Interface

Switches

Apps

Control 

plane

Data 

plane

E.g., OpenFlow

Figure 7 – Components of SDN.

The data plane corresponds to the switching circuitry that interconnects all devices
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composing the network infrastructure, together with a set of rules that define which
actions should be taken as soon as a packet arrives at one of the device’s ports. Examples
of common actions are to forward the packet to another port, rewrite (part of) its header,
or even to discard the packet (FARHADY; LEE; NAKAO, 2015).

The control plane is the part that manipulates forwarding devices through a con-
troller to achieve the specific goal of the target application. The controller uses the south-
bound interface of the SDN-enabled switch to connect to the data plane. This inter-
face can be implemented using protocols such as OpenFlow 1.0 and 1.3 (OPENFLOW,
2009)(OPENFLOW, 2012), OVSDB (PFAFF; DAVIE, 2013), and NETCONF (ENNS; BJORK-

LUND; SCHOENWAELDER, 2011). The control plane concentrates, thus, the intelligence of
the network, using information provided by the forwarding elements (e.g., traffic statis-
tics and packet headers) to decide which actions should be taken by them (KREUTZ et al.,
2015).

Finally, developers can take advantage of the protocols provided by the control plane
through the northbound interfaces, which abstracts the low-level operations for controlling
the hardware devices similarly to what is done by operating systems in computing devices
such as desktops. These interfaces can be provided by Remote Procedure Calls (RPC),
restful services and other cross-application interface models. This greatly facilitates the
construction of different network applications that, by interacting with the control plane,
can control and monitor the underlying network. This allows them to customize the
behavior of the forwarding elements, defining policies for implementing functions such as
firewalls, load balancers, intrusion detection, among others (MEDEIROS et al., 2015).

2.2.2 OpenFlow Protocol

The OpenFlow protocol is one of the most commonly used southbound interfaces,
being widely supported both in software and hardware, and standardized by the Open
Networking Foundation (ONF). It works with the concept of flows, defined as groups of
packets matching a specific (albeit non-standard) header (MCKEOWN et al., 2008), which
receive may be treated differently depending how the network is programmed. The con-
troller manipulates the flow tables of the switch by adding, updating, and deleting flow
entries. This happens reactively (when the controller receives a packet from the switch)
or proactively according to the OpenFlow controller implementation. The controller com-
municates with the switches via a secure channel (see Figure 8). The OpenFlow switch
supports the flow-based forwarding by keeping one or more flow tables. Flow tables are
used to determine how the given packets are handled. Each flow table entry contains a set
of packet fields to match (e.g., Ethernet addresses and IP addresses), and a set of actions
to be applied upon a match (e.g., send-out-port, modify-field, or drop). Flow entries also
maintain counters to collect statistics for particular types of flow (e.g., the number of
transmitted bytes) (FARHADY; LEE; NAKAO, 2015).
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Figure 8 – OpenFlow switch.

When the switch receives a packet that causes a miss in the forwarding table match-
ing process, the action to be taken depends on the table-miss flow entry. That packet can
be forwarded to the controller, passed to the next flow table, or dropped. When the packet
is forwarded to the controller, the controller then decides how to handle this packet. The
controller can drop the packet, or it can add a flow entry that gives the switch direction
on how to forward similar packets in the future (FARHADY; LEE; NAKAO, 2015).

2.3 Computational Context
The term context has been defined by many researchers. An example of context def-

inition in the ubiquitous computing view was proposed by Abowd and Mynatt (ABOWD;

MYNATT, 2000) which identified the five W’s (Who, What, Where, When, Why) as the
minimum information that is necessary to understand context. Schilit et al. (SCHILIT;

ADAMS; WANT, 1994) and Pascoe (PASCOE, 1998) have also defined the term context.
Dey claimed that these definitions were too specific and cannot be used to identify con-
text in a broader sense and provided a definition for context as follows:

“Context is any information that can be used to characterize the situation of an en-
tity. An entity is a person, place, or object that is considered relevant to the interaction be-
tween a user and an application, including the user and applications themselves”(ABOWD

et al., 1999).
In addition, Sanchez et al. (SANCHEZ et al., 2006) explained the distinction between

raw data and context information as follows: Raw data is unprocessed and retrieved di-
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rectly from the data source, such as physical or logical sensors, while context information
is generated by processing raw sensor data. For example, the logical monitor tracks the
smartphone’s CPU usage and the acquired values can be considered as raw data. Once
we use logical monitor to produce statistical information about the health of smartphone
hardware, we call it context information. Therefore in general, the raw data values pro-
duced by sensors can be considered as data. If this data can be used to generate context
information, we identify these data as context. Therefore, mostly what we capture from
sensors are data not the context information.

Context 

Acquisition

Context 

Modelling

Context 

Reasoning

Context 

Dissemination

Figure 9 – Context life cycle.

A context life cycle shows how data moves from phase to phase in software systems
(e.g. application, middleware). Specifically, it explains where the data is generated and
where the data is consumed. According to Figure 9, this context life cycle consists of four
phases. First, context needs to be acquired from various sources. The sources could be
physical or virtual (context acquisition). Second, the collected data needs to be modelled
and represented according to a meaningful manner (context modelling). Third, modelled
data needs to be processed to derive high-level context information from low-level raw data
(context reasoning). Finally, both high-level and low-level context needs to be distributed
to the consumers who are interested in context (context dissemination) (PERERA et al.,
2014).
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2.3.1 Context-Aware Features

The term context-aware, also called sentient, refers to a system’s awareness of its sur-
rounding environment and it uses context to provide relevant information and/or services
to the user, where relevancy depends on the user’s task (BETTINI et al., 2010)

With this definition we can easily identify whether this system is a context-aware
system or not. Context-awareness systems typically should support acquisition, represen-
tation, delivery, and reaction (DEY; ABOWD; SALBER, 2001). In addition, there are three
main approaches that we can follow to build context-aware applications (HU; INDULSKA;

ROBINSON, 2008).

• No application-level context model: Applications perform all the actions, such
as context acquisition, pre-processing, storing, and reasoning within the application
boundaries.

• Implicit context model: Applications uses libraries, frameworks, and toolkits to
perform context acquisition, pre-processing, storing, and reasoning tasks. It provides
a standard design to follow that makes it easier to build the applications quickly.

• Explicit context model: Applications use a context management infrastructure or
middleware solution. Therefore, actions such as context acquisition, pre-processing,
storing, and reasoning lie outside the application boundaries. Context management
and application are clearly separated and can be developed and extend indepen-
dently.

2.3.2 Context in Mobile Cloud

In MCC, a context-aware offloading system is one that is able to monitor, collect,
select, process and share entity’s context information, and which is involved in decision-
making and the execution of computational offloading. It is used extensively in environ-
ments where an energy source or computing power is scarce. The aim of this kind of system
is to be aware of all context information to thus offload only when cloud processing is
better than local processing.

The offloading process could be improved by using contextual information to enable
dynamic decision-making, in order to offload only when the context is advantageous, since
static offloading is not beneficial in all contexts (HUANG; WANG; NIYATO, 2012). In MCC,
an advantageous context is defined as a context where the set of information makes the
offload processing cost less than the local execution of a task.

An example in a mobile healthcare environment is smart-band technology (WANG et

al., 2013), which has numerous sensors whose function is monitoring a range of indicators,
such as heart beats, the insulin level in blood, body temperature, besides others features.
These smart-bands do not have enough battery or computational power to deal with
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all kinds of tasks, considering there are tasks that requires high computational power
and cannot be done locally. So, a context-aware offloading system is used in this case
to analyze the context, with the system being aware of local processing capability, the
number of sensors that the band has, the data size to be transfered, network bandwidth,
and cloud capacity, with the purpose of choosing the best place to process all the raw
data. Therefore, the smart-band will process data locally or in the cloud only when the
context is advantageous for this to be done.

This kind of system can be also used in Vehicular Ad-Hoc Networks (VANETs) that
aim to facilitate a more comfortable driving experience and a more enjoyable journey
(WANG et al., 2017) (MERSHAD, 2012) through providing travel assistance and vehicle
infotainment. In this way, cars and Roadside Units (RSUs) can share processing power -
termed resource Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) respectively
- since cars now have a lot of sensors that are used together to provide information about
the vehicle, its immediate environment, and media content for the driver’s and passengers’
comfort. In VANETs, context informations can change abruptly and the connection to
other vehicles or infrastructure can be intermittent(WANG et al., 2017). This means that
all content (e.g., audio, picture or video) requested by the passengers, or data collected by
sensors, has to be processed sometimes in VANETs and sometimes locally, according to
data size, complexity of task, network bandwidth, the distance between cars/RSUs and
the velocity of vehicle. It makes a context-aware offloading system necessary to decide
when and where is the best place to process data periodically.

Another example is Mobile Social Networking (MSN). The MSN involves the inter-
action between users who have the same interests and/or objectives through their mobile
devices within virtual social networks (HU et al., 2015). In this way, users’ devices can share
processing resources to be able to process data together, with the same objective. In one
instance, for example, it could be an image processing or a text translation that is re-
quired, and the image size or text length are the features to consider in order to determine
whether to offload to another device(s) if the task cannot be done by one device.

2.4 Machine Learning
Machine Learning (ML) can be considered as a subfield of Artificial Intelligence since

those algorithms can be seen as building blocks to make computers learn to behave more
intelligently by somehow generalizing rather that just storing and retrieving data items
like a database system and other applications would do. ML is defined, among others
by (KOTSIANTIS, 2007), as a system or an algorithm that can learn automatically based
on past experience, which means determining a set of rules from instances (examples in
a training set) (DOMINGOS, 2012) without any external assistance from a human (DAS;

BEHERA, 2017). The core function of ML attempts is to tell computers how to automat-
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ically find a good predictor based on past experiences and this job is done by a good
classifier. Classification is the process of using a model to predict unknown values (output
variables), using a number of known values (input variables).

In ML algorithms every instance of a particular dataset is represented by using the
same set of features. The nature of these features could be continuous, categorical or
binary. If instances are given with known labels (i.e., the corresponding correct outputs)
then the learning scheme is known as supervised, while in unsupervised learning approach
the instances are unlabeled. In this research, we will focus our attention on the methods
which are being used for supervised learning, because the proposed system uses Supervised
Machine Learning (SML) approaches.

2.4.1 Supervised Learning

A subdomain of the ML field is supervised learning. In this subdomain, the training
is undertaken with labeled data, with inputs and desired outputs (ROKACH; MAIMON,
2005). In this way, classification algorithms whose function is to classify an instance based
on its training set, can decide which output label the input belongs to. The process of
applying SML to a real-world problem is described in below Figure 10.
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Figure 10 – Supervised Machine Learning Model.

In supervised learning the first step is dealing with dataset. In order to perform a
better training on data set an appropriate expert could suggest better selection of features.
If concerned expert is not in reach, then the other approach is “brute-force”, which means
measuring everything available in the hope that the right (informative, relevant) features
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can be isolated. However, a dataset collected by the “brute-force” method is not directly
suitable for induction. Ultimately, in most cases it contains noise and missing feature
values, and therefore requires significant preprocessing. In the next step, data preparation
and preprocessing is a key function of researcher in SML (KOTSIANTIS, 2007).

Decision tree, k-nearest neighbor, rule-based, and naive bayes are ML reasoning
techniques collectively called classification algorithms. They are important and widely
used in pervasive and ubiquitous computing mainly due to their accuracy and relatively
inexpensive computational cost. These four algorithms are described below (MUHAMMAD;

YAN, 2015).

2.4.2 Decision Tree

A ’Decision Tree’ is a supervised learning technique where the system builds a
tree from a dataset that can be used to classify data. The tree is built using a top-
down strategy, where the root is the feature that has the greatest information gain and
the process continues recursively until all instances of the subset belong to the same
label/class. The information gain of a feature is a score that indicates how important it
is. The closer to the root, the more important is the attribute. It is made this way in
order to produce the lowest quantity of rules.

In Artificial Intelligence field, Quinlan has contributed through his ID3 and C4.5
algorithms (QUINLAN, 2014). C4.5 is one of the most popular and the efficient method
in decision tree-based approach (WU et al., 2008). It constructs the decision tree with a
"divide and conquer" strategy. In C4.5, each node in a tree is associated with a set of cases.
Also, cases are assigned weights to take into account unknown attribute values. At the
beginning, only the root is present and associated with the whole training set and with all
case weights equal to 1.0. At each node, the following "divide and conquer" algorithm (see
Algorithm 1) is executed, trying to exploit the locally best choice, with no backtracking
allowed.

Let 𝑇 be the set of cases associated at the node. The weighted frequency 𝑓𝑟𝑒𝑞(𝐶𝑖, 𝑇 )
is computed (Line 2) of cases in 𝑇 whose class is 𝐶𝑖 for 𝑖 ∈ [1, 𝑁𝐶𝑙𝑎𝑠𝑠] (RUGGIERI, 2002).

If all cases (Line 3) in 𝑇 belong to a same class 𝐶𝑗 (or the number of cases in T is
less than a certain value), then the node is a leaf, with associated class 𝐶𝑗 (respectively,
the most frequent class). The classification error of the leaf is the weighted sum of the
cases in 𝑇 whose class is not 𝐶𝑗 (respectively, the most frequent class) (RUGGIERI, 2002)
(KOTSIANTIS, 2013).

If 𝑇 contains cases belonging to two or more classes (Line 7), then the information
gain of each attribute is calculated. For discrete attributes, the information gain is relative
to the splitting of cases in 𝑇 into sets with distinct attribute values. For continuous
attributes, the information gain is relative to the splitting of 𝑇 into two subsets, namely,
cases with an attribute value not greater than and cases with an attribute value greater
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than a certain local threshold, which is determined during information gain calculation
(RUGGIERI, 2002) (KOTSIANTIS, 2013).

Algorithm 1 Pseudocode of the C4.5 Tree-Construction Algorithm
1: procedure FormTree(T)
2: ComputeClassFrequency(T)
3: if 𝑂𝑛𝑒𝐶𝑙𝑎𝑠𝑠 ∨ 𝐹𝑒𝑤𝐶𝑎𝑠𝑒𝑠 then
4: return a leaf
5: end if
6: create a decision node N
7: for Attribute A do
8: ComputeGain(A)
9: end for

10: N.test = AttributeWithBestGain
11: if N.test is continuous then
12: find Threshold
13: end if
14: for T’ in the splitting of T do
15: if T’ is Empty then
16: Child of N is a leaf
17: else
18: Child of N = FormTree(T’)
19: end if
20: end for
21: ComputeErros of N
22: return N
23: end procedure

The attribute with the highest information gain (Line 10) is selected for the test at
the node. Moreover, in case a continuous attribute is selected, the threshold is computed
(Line 11) as the greatest value of the whole training set that is below the local threshold
(KOTSIANTIS, 2013).

A decision node has s children if 𝑇1, ..., 𝑇𝑠 are the sets of the splitting produced by
the test on the selected attribute (Line 14). Obviously, 𝑠 = 2 when the selected attribute
is continuous, and 𝑠 = ℎ for discrete attributes with h known values. For 𝑖 = [1, 𝑠], if
𝑇𝑖 is empty, (Line 15) the child node is directly set to be a leaf, with associated class
the most frequent class at the parent node and classification error 0 (RUGGIERI, 2002)
(KOTSIANTIS, 2013).

If 𝑇𝑖 is not empty, the "divide and conquer" approach consists of recursively applying
the same operations (Line 18) on the set consisting of 𝑇𝑖 plus those cases in 𝑇 with
an unknown value of the selected attribute. Note that cases with an unknown value of
the selected attribute are replicated in each child with their weights proportional to the
proportion of cases in 𝑇𝑖 over cases in 𝑇 with a known value of the selected attribute
(KOTSIANTIS, 2013).
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Finally, the classification error (Line 21) of the node is calculated as the sum of the
errors of the child nodes. If the result is greater than the error of classifying all cases in
𝑇 as belonging to the most frequent class in 𝑇 , then the node is set to be a leaf and all
subtrees are removed (RUGGIERI, 2002).

The information gain of an attribute a for a set of cases 𝑇 is calculated as follows:
If a is discrete, and 𝑇1, ..., 𝑇𝑠 are the subsets of 𝑇 consisting of cases with distinct known
value for attribute 𝑎, then:

𝑔𝑎𝑖𝑛 = 𝑖𝑛𝑓𝑜(𝑇 )−
𝑠∑︁

𝑖=1

|𝑇𝑖|
|𝑇 |
× 𝑖𝑛𝑓𝑜(𝑇𝑖), (2.1)

Where

𝑖𝑛𝑓𝑜(𝑇 ) = −
𝑁𝐶𝑙𝑎𝑠𝑠∑︁

𝑗=1

𝑓𝑟𝑒𝑞(𝐶𝑗, 𝑇 )
|𝑇 |

× 𝑙𝑜𝑔2

(︃
𝑓𝑟𝑒𝑞(𝐶𝑗, 𝑇 )

[𝑇 ]

)︃
(2.2)

is the entropy function. While having an option to select information gain, by default,
however, C4.5 considers the information gain ratio of the splitting 𝑇1, ..., 𝑇𝑠, which is the
ratio of information gain to its split information:

𝑆𝑝𝑙𝑖𝑡(𝑇 ) = −
𝑠∑︁

𝑖=1

|𝑇𝑖|
|𝑇 |
× 𝑙𝑜𝑔2

(︃
𝑃
|𝑇𝑖|
|𝑇 |

)︃
(2.3)

It is easy to see that if a discrete attribute has been selected at an ancestor node,
then its gain and gain ratio are zero. Thus, C4.5 does not even compute the information
gain of those attributes. If a is a continuous attribute, cases in 𝑇 with a known attribute
value are first ordered using a Quicksort ordering algorithm. Assume that the ordered
values are 𝑣1, ..., 𝑣𝑚. Consider for 𝑖 ∈ [1, 𝑚 − 1] the value 𝑣 = (𝑣𝑖 + 𝑣𝑖+1)/2 and the
splitting:

𝑇 𝑣
1 = {𝑣𝑗|𝑣𝑗 ≤ 𝑣} 𝑇 𝑣

2 = {𝑣𝑗|𝑣𝑗 > 𝑣} (2.4)

For each value 𝑣, the information gain 𝑔𝑎𝑖𝑛𝑣 is computed by considering the splitting
above. The value 𝑣′ for which 𝑔𝑎𝑖𝑛𝑣′ is maximum is set to be the local threshold and the
information gain for the attribute 𝑎 is defined as 𝑔𝑎𝑖𝑛𝑣′ . By default, again, C4.5 considers
(QUINLAN, 1996) the information gain ratio of the splitting 𝑇 𝑣′

1 , 𝑇 𝑣′
2 . Finally, note that, in

case the attribute is selected at the node, the threshold is calculated (Line 11) by means
of a linear search in the whole training set of the attribute value that best approximates
the local threshold 𝑣′ from below (i.e., which is not greater than 𝑣′). Such a value is set
to be the threshold at the node.

Several advantages of using C4.5 are, amongst others: ease of viewing and under-
standing; the fact that a tree can be converted into a set of rules; that it is capable of
handling both nominal or numerical (discrete) dataset input features together; and that
it is able to handle instances of missing values from the database. On the other hand,
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C4.5 requires that the target feature/attribute contains only discrete values. As decision
trees use a "divide and conquer" methodology, C4.5 tends to perform well if a few highly
relevant features are present, but less so if many complex interactions are present, caus-
ing replication problems where two or more subtrees are exactly the same (PAGALLO;

HAUSSLER, 1990).

2.4.3 Rules

’Rule-Based’ is the simplest and most straightforward method of reasoning. Rule-
based reasoning are usually structure in an IF-THEN-ELSE format. It allows the gener-
ation of high level context information using low level context (PERERA et al., 2014) and
represent each class by Disjunctive Normal Form (DNF). A statement is in DNF if it is
a disjunction (sequence of ORs) consisting of one or more disjuncts, each of which is a
conjunction (AND) of one or more literals. Below is an example of disjunctive normal
forms.

A k-DNF expression is of the form: ((𝐴1 ∧ 𝐴2 ∧ ...𝐴𝑛) ∨ (𝐴𝑛+1 ∧ 𝐴𝑛+2 ∧ ...𝐴2𝑛) ∨
...∨)(𝐴(𝑘−1)𝑛+1∧𝐴(𝑘−1)𝑛+2∧...∧𝐴𝑘𝑛), where 𝑘 is the number of disjunctions, 𝑛 is the number
of conjunctions in each disjunction, and 𝐴𝑛 is defined over the alphabet 𝐴1, 𝐴2, ..., 𝐴𝑗.
Here the objective is to build the smallest rule-set that is consistent with the training
data (KOTSIANTIS, 2007). A good number of learned rules is usually a positive sign that
the learning algorithm is attempting to remember the training set, instead of discovering
the assumptions that govern it. A "separate-and-conquer" algorithm search for a rule that
explains a part of its training instances, separates these instances and recursively conquers
the remaining instances by learning more rules, until no instances remain (KOTSIANTIS,
2007). In below algorithm 2, a general pseudo-code for rule learners is presented.

Algorithm 2 General pseudo-code for rule learners
1: Initialize rule set to a default
2: Initialize examples to either all available examples or all examples not correctly han-

dled by rule set
3: repeat
4: Find the best rule with respect to examples
5: if such a rule can be found then
6: Add best to rule set
7: Set examples to all examples not handled correctly by rule set
8: end if
9: until no rule best can be found

The core difference between heuristics for rule-based algorithms and heuristics for
decision trees algorithms is that the latter evaluate the average quality of a number of
disjointed sets, while rule-based only evaluate the quality of the set of instances that is
covered by the candidate rule (KOTSIANTIS, 2007). One of the most useful characteristic
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of rule-based classifiers is their comprehensibility. In order to achieve better performance,
even though some rule-based classifiers can deal with numerical features, some experts
propose these features should be discredited before induction, so as to reduce training
time and increase classification accuracy (MUHAMMAD; YAN, 2015).

The Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algo-
rithm (COHEN, 1995) works based on a set of rules. It builds a rule set by repeatedly
adding rules to an empty dataset until all positive or negative examples converge to the
same class (ENGG; SCIENCE, 2014). It also applies the reduced-error pruning method to
determine whether a rule needs to be pruned. The reduced-error pruning method uses a
validation set to estimate the generalization error of a classifier. To determine whether a
rule should be pruned, RIPPER computes the following measure:

𝑣𝑅𝐼𝑃 𝑃 𝐸𝑅 = 𝑝− 𝑛

𝑝 + 𝑛
(2.5)

where 𝑝 is the number of positive examples in the validation set covered by the rule,
and 𝑛 is the number of negative examples in the validation set covered by the rule.

The advantages of this classifier are flexibility, easy to extend, ability to add or
modify new rules for new data, easily interpretable, and require for less resources (e.g.,
processing, storage) (LORENA et al., 2011). The disadvantages are that it is computation-
ally expensive for large datasets, no validation or quality checking, and does not properly
work in the presence of missing values (DUMA et al., 2010).

2.4.4 K-Nearest Neighbour

The K-Nearest Neighbor (K-NN) is a classification algorithm that also identifies
the category of unknown instances based on the nearest neighbor whose class is already
known. The choice of the best K changes depending on the dataset. The nearest neighbor
is calculated on the basis of the value of K, i.e. how many neighbors are to be considered.
The similarity is measured according to the distance from the K to the nearest instance.
When given an unknown sample, a K-NN classifier searches the pattern space for the K
training samples that are closest to the unknown sample. "Closeness" is defined in terms of
Euclidean distance, where the Euclidean distance between two points, 𝑋 = (𝑥1, 𝑥2, ...., 𝑥𝑛)
and 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) is:

𝑑(𝑥, 𝑦) =
⎯⎸⎸⎷ 𝑛∑︁

𝑘=1
(𝑥𝑘 − 𝑦𝑘)2 (2.6)

The unknown sample is assigned the most common class among its K nearest neigh-
bors. When K=1, the unknown sample is assigned the class of the training sample that
is closest to it in pattern space.

K-NN classifiers are instance-based or lazy learners in that they store all of the
training samples and do not build a classifier until a new(unlabeled) sample needs to be
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classified. This contrasts with eager learning methods, such a decision tree and backprop-
agation, which construct a generalization model before receiving new samples to classify.

The K-NN’ algorithm (see Algorithm 3) is amongst the simplest of all machine
learning algorithms. An object is classified by a majority vote of its neighbors, with the
object being assigned to the class most common amongst its K nearest neighbors. K is a
positive integer, typically small. If K=1, then the object is simply assigned to the class of
its nearest neighbor. In binary (two class) classification problems, it is helpful to choose
K to be an odd number as this avoids tied votes (PHYU, 2009).

Algorithm 3 Pseudo-code for instance-based learners
1: procedure InstanceBaseLearner(Testing Instances)
2: for testing instance do
3: Find the k most nearest instances of the training set according to a
4: distance metric
5: Resulting Class: most frequent class label of the k nearest instances
6: end for
7: end procedure

It is clear, however, that K-NN has high computational complexity and memory
requirements. Combined with these disadvantages, K-NN is easily fooled by irrelevant
attributes. In contrast, K-NN training is very fast and can be effective depending on
training data size, the algorithm is simple and easy to learn, and it is robust to noisy data
(BHATIA; AUTHOR, 2010).

2.4.5 Naive Bayes

In a ’Naive Bayes’ classifier, a probability function is used to define the class/label
to which a given instance belongs (WU et al., 2008). It can predict class membership
probabilities, such as the probability that a given sample belongs to a particular class.
Bayesian classifier is based on Bayes’ theorem, and assume that the effect of an attribute
value on a given class is independent of the values of the other attributes. This assumption
is called class conditional independence. It is made to simplify the computation involved
and, in this sense, is considered "naive" (KANTARDZIC, 2011).

The probability is calculated using the following: the probability of a given instance
belongs to one of the possible classes according to its measurement vector (features) and
a function that means the conditional distribution of a given instance. The final probabil-
ity is thus calculated by using these probabilities and functions distributed between the
target classes. According to Bayes’ theorem, the formula for calculating the conditional
probability is expressed as

𝑃 (𝐻|𝑋) = 𝑃 (𝑋|𝐻)𝑃 (𝐻)
𝑃 (𝑋) (2.7)
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Where, 𝑃 (𝐻) is the probability of hypothesis 𝐻 being true. This is known as the
prior probability. 𝑃 (𝑋) is the probability of the evidence(regardless of the hypothesis).
𝑃 (𝑋|𝐻) is the probability of the evidence given that hypothesis is true, and 𝑃 (𝐻|𝑋) is
the probability of the hypothesis given that the evidence is there. These probabilities may
be estimated from the given data (HAN; PEI; KAMBER, 2011).

The Naive Bayes classifier works as follows:

1. Let 𝑇 be a training set of samples, each with their class labels. There are 𝑘 classes,
𝐶1, 𝐶2, ..., 𝐶𝑘. Each sample is represented by an 𝑛-dimensional vector, 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛,
depicting 𝑛 measured values of the 𝑛 attributes, 𝐴1, 𝐴2, ..., 𝐴𝑛, respectively.

2. Given a sample 𝑋, the classifier will predict that 𝑋 belongs to the class having the
highest a posteriori probability, conditioned on 𝑋. That is 𝑋 is predicted to belong
to the class 𝐶𝑖 if and only if

𝑃 (𝐶𝑖|𝑋) > 𝑃 (𝐶𝑗|𝑋) for 1 ≤ 𝑗 ≤ 𝑚, 𝑗 ̸= 𝑖. (2.8)

Thus we find the class that maximizes 𝑃 (𝐶𝑖|𝑋). The class 𝐶𝑖 for which 𝑃 (𝐶𝑖|𝑋) is
maximized is called the maximum posteriori hypothesis. By Bayes’ theorem

𝑃 (𝐶𝑖|𝑋) = 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖)
𝑃 (𝑋) (2.9)

3. As 𝑃 (𝑋) is the same for all classes, only 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖) need be maximized. If the
class a priori probabilities, 𝑃 (𝐶𝑖), are not known, then it is commonly assumed that
the classes are equally likely, that is, 𝑃 (𝐶1) = 𝑃 (𝐶2) = ... = 𝑃 (𝐶𝑘), and we would
therefore maximize 𝑃 (𝑋|𝐶𝑖). Otherwise we maximize 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖). Note that the
class a priori probabilities may be estimated by 𝑃 (𝐶𝑖) = 𝑓𝑟𝑒𝑞(𝐶𝑖, 𝑇 )/|𝑇 |.

4. Given data sets with many attributes, it would be computationally expensive to
compute 𝑃 (𝑋|𝐶𝑖). In order to reduce computation in evaluating 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖),
the naive assumption of class conditional independence is made. This presumes
that the values of the attributes are conditionally independent of one another, given
the class label of the sample. Mathematically this means that

𝑃 (𝑋|𝐶𝑖) ≈
𝑛∏︁

𝑘=1
𝑃 (𝑥𝑘|𝐶𝑖) (2.10)

The probabilities 𝑃 (𝑥1|𝐶𝑖), 𝑃 (𝑥2|𝐶𝑖), ..., 𝑃 (𝑥𝑛|𝐶𝑖) can easily be estimated from the
training set. Recall that here 𝑥𝑘 refers to the value of attribute 𝐴𝑘 for sample 𝑋.

a) If 𝐴𝑘 is categorical, then 𝑃 (𝑥𝑘|𝐶𝑖) is the number of samples of class 𝐶𝑖 in 𝑇

having the value 𝑥𝑘 for attribute 𝐴𝑘, divided by 𝑓𝑟𝑒𝑞(𝐶𝑖, 𝑇 ), the number of
sample of class 𝐶𝑖 in 𝑇 .
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b) If 𝐴𝑘 is continuous-valued, then we typically assume that the values have a
Gaussian distribution with a mean 𝜇 and standard deviation 𝜎 defined by

𝑔(𝑥, 𝜇, 𝜎) = 1√
2𝜇𝜎

𝑒𝑥𝑝− (𝑥− 𝜇)2

2𝜎2 , (2.11)

so that

𝑝(𝑥𝑘|𝐶𝑖) = 𝑔(𝑥𝑘, 𝜇𝐶𝑖
, 𝜎𝐶𝑖

) (2.12)

We need to compute 𝜇𝐶𝑖
and 𝜎𝐶𝑖

, which are the mean and standard deviation
of values of attribute 𝐴𝑘 for training samples of class 𝐶𝑖.

5. In order to predict the class label of 𝑋, 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖) is evaluated for each class
𝐶𝑖. The classifier predicts that the class label of 𝑋 is 𝐶𝑖 if and only if it is the class
that maximizes 𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖).

The advantages of using Naive Bayes are that: it is a simple way of calculating
probability; it has fast training and testing; it can deal with numerical or nominal values;
it requires low memory; irrelevant features are not considered; and it is short in computa-
tional time (ARCHANA; ELANGOVAN, 2014) (KEOGH, 2006). The disadvantages are that
it requires strong feature independence assumptions to be made, which causes a loss of
accuracy, and requires a huge number of records in the training dataset.

2.5 Summary
This chapter presented the theoretical fundamentals so that the reader can under-

stand on the main topics that make up this thesis. The background about mobile cloud
models and computational offloading, as well as software defined networking, allows the
understanding of the application of such concepts in the design and development of mobile
cloud infrastructures. Other topics covered in this chapter such as, computational context
and machine learning guided the development of this work, and allowed the establishment
of connections of these concepts with those applied in this research.
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3 RELATED WORK

The related work is presented in two sections, which references the two core contribu-
tions of this thesis: context-aware offloading and mobile offloading system. The following
analysis does not intend to provide an exhaustive view of published works on those topics,
but rather to point out significant advances which go towards a similar direction as this
research do, or give basis for future extensions.

3.1 Context-Aware Computational Offloading
Table 3 synthesizes the contributions of the most prominent works related to this

part of the thesis. The references are categorized by tree aspects: (i) profiling sources, (ii)
decision support, and (iii) accuracy.

Context sources refers to the physical and logical entities that provides relevant
context information. The Application delivers data related to its components, methods,
instructions, and input/output data, while Device is a information source about the local
hardware, i.e., CPU and memory utilization, battery level, Global Positioning System
(GPS), accelerometer and other sensors. Wireless Network delivers data related to the
state and performance of the main components of a wireless network infrastructure, such
as RTT, throughput, signal strength and connection status. Lastly, Cloud/Cloudlet deliv-
ers data related to access policies, availability, performance, and service cost. Information
that can be monitored and captured are Virtual Central Processing Unit (vCPU) usage,
virtual disk access time, and number of answered requests. According to Table 3, our
proposal is the only one that implements all the context sources (details related to the
profilers see the Section 4.1).

Decision support refers to technique that is used to assist the offloading decision, as
well as to infer when offloading will improve performance. ThinkAir (KOSTA et al., 2012),
MobiByte (KHAN et al., 2015), CADA (Ting-Yi Lin et al., 2013), and OMMC (GHASEMI-

FALAVARJANI; NEMATBAKHSH; Shahgholi Ghahfarokhi, 2015) make offloading decisions con-
sidering the energy involved in computation and communication through reliable energy
estimation models. On the other hand, MAUI (CUERVO et al., 2010) solves a 0-1 integer
linear programming problem on the remote server to decide where each method must be
executed and periodically updates the mobile device partition information. A primary re-
quirement of linear programming is that the objective function and every constraint must
be linear. However, in real world situations - just like in MCC environments - several
heterogeneity and mobility problems are non-linear in nature.

Other solutions including EMCO (FLORES; SRIRAMA, 2013), MALMOS (EOM et al.,
2015) and Majeed et al. (MAJEED et al., 2016) handle offloading decisions based on context
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reasoning decision techniques, such as Fuzzy Logic, Instance-Based Learning (IBL), Per-
ceptron, Naive Bayes, and Support Vector Machine (SVM). EMCO proposes the use of a
fuzzy logic system to aggregate the profiling metrics and uses historical data for building
an inference system that can be used by the mobile device to classify where the threads
must be executed. The problem is that EMCO’s results show only a few input param-
eters segregated by the fuzzy logic engine and consequently this ignores more complex
scenarios.

Table 3 – Related work comparison - context-aware offloading.

Solutions
Context Sources Features

App Device
Wireless
Network

Cloud/
Cloudlet

Decision
Support

Accuracy
(%)

MAUI 3 3 3 7
Integer linear
programming

None

ThinkAir 3 3 3 7 Energy model None
Mobibyte 3 3 3 7 Energy model None
ARC 7 3 3 7 Naïve Bayes None

Kwon et al. 3 3 7 7
Sparse Polynomial

Regression
None

OMMC 3 3 3 7
TOPSIS and
Energy model

None

mCloud 3 3 3 7
TOPSIS and
Cost model

None

EMCO 3 7 3 3 Fuzzy logic None
Rego et al. 3 3 3 7 Decision tree None

MALMOS 3 7 3 7
IBL, Perceptron,
and Naïve Bayes

86~93

CADA 7 3 3 7 Energy model 90
Majeed et al. 3 3 3 7 SVM 92

This Work 3 3 3 3

(K-NN, Rules,
Naïve Bayes,

and Decision Tree)
95

On the other hand, MALMOS provides an online training mechanism for the ma-
chine learning-based runtime scheduler such that it supports a policy that dynamically
adapts scheduling decisions at runtime based upon the observation of previous offloading
decisions and their correctness. The authors measured the scheduling accuracy of MAL-
MOS by offloading each application to four different remote servers, while varying the
network bandwidth and the input size. The system proposed by Majeed et al. uses SVM
for accurately scheduling the component remotely or locally. The SVM classifier adapts its
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decision according to external context (network bandwidth) and internal environmental
data (e.g. memory usage, execution time and CPU utilization). Nevertheless, the solu-
tions mentioned executes all the complex operations of the training and testing at regular
intervals inside the mobile device, which can contribute to the overheads imposed on the
system. Furthermore, the solutions completely fails to address the important aspect of
the amount of energy used by the online training mechanisms.

Similar to our system, Rego et al. (REGO et al., 2017) uses a decision tree-based
approach for handling offloading decisions through adaptive monitoring and historical
data, while in the AnyRun Computing (ARC) system (FERRARI; GIORDANO; PUCCINELLI,
2016), the ’stup’ component uses an inference engine based on a Naive Bayes decision
model to assess the probability that offloading is advantageous compared to local execu-
tion. However, the first solution depends on the decision tree creation and concepts of
entropy and information gain to identify the most relevant metrics for the offloading deci-
sion, which generates a high cost in terms of communication and computing. In addition,
these two approaches do not evaluate their reasoning with regard to the perspective of
energy consumption and application performance, unlike our work.

Knwon et al. (KWON et al., 2016) and mCloud (ZHOU et al., 2015) use other prediction
techniques for beneficial offloading. For instance, mCloud is a code offloading framework
that proposes a context-aware offloading decision algorithm aiming at providing code
offloading decisions at runtime on the selection of wireless medium and appropriate cloud
resources. The authors apply Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) (HWANG; LAI; LIU, 1993) for wireless medium selection by considering
multiple criteria (e.g. wireless medium availability, network congestion, cost energy of
the channel) and by using a cost estimation model that calculates the execution cost
for each offloading request. Knwon et al. propose a feature-based prediction technique
to overcome the input-sensitivity problem of mobile application performance. It is called
fMantis, which generates a performance predictor for a mobile application that predicts
whether or not a certain method will be executed according performance metrics including
execution time, energy consumption, memory usage and state size.

Accuracy defines the percentage of the test dataset records that are correctly clas-
sified by the machine-learning classifier. Our work reached 95% accuracy with decision
tree, rules-based, and K-NN algorithms (more details see Section 4.3.2).

Our proposal is the first offloading system developed and designed to handle raw
context and transform them into appropriate context representation without human inter-
vention. To the best of our knowledge, until now there has been no work in the literature
that uses and evaluates multiple classifiers from experimental databases. The system is
equipped with a decision engine that works with the main ML classification algorithms. Its
historical database was built from experimental data, i.e. we first collected training exam-
ples (tasks execution locally and remotely by varying the context), then we labeled them
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according to the processing time results (offloading or not). In sum, our work adopts a
history-based prediction approach where we utilize the past profiled information as a basis
for performance inference for future tasks. Unlike previous work, the system extrapolates
features and experimental tests from benchmark applications that are easily configurable
by the programmer to allow interaction with proposed middleware. It also improves the
applications’ performance as the offloading operations occur only in favorable contexts.

3.2 Mobility Mechanisms for Cloud-Based Application
Table 4 lists and classifies mobile offloading systems according to three aspects: (i)

objective, (ii) data caching, and (iii) mobility management.
The objective defines the real benefit of using the associated solution. Ryu et al. (RYU;

LEE; MUN, 2012), Qi et al. (QI et al., 2016), and DTSHM (YANG et al., 2014) are designed
to achieve handover delay reduction, for instance. Ryu et al. is one of the first works
to support the seamless handover for various wireless technologies in cloud computing.
Its handover mechanism is based on the Fast Mobile IPv6 (FMIPv6), which considers
the Probability Predictive Mode Failure (PPMF) to optimize the handover control in
the IP layer. The Qi et al. mechanism supports multi-service soft handover, i.e., keeps
multiple active cloud services and meets the QoS requirements, when mobile users roam.
These benefits are ensured by the use of the Session Initial Protocol (SIP) to make all
active services execute handover together. Lastly, DTSHM is a proactive service handover
mechanism that uses the delaunay triangulation to build all the Access Point (AP) into a
delaunay triangulation topology. In mobility scenarios, the cloud in advance authenticates
and buffers the required data packets of a mobile device in standby APs, so it can quickly
handover its service from a source to a target AP, when the handover process is triggered.

Similar to our work, Ravi et al. (RAVI; PEDDOJU, 2015), EMCO (FLORES; SRIRAMA,
2013), Cloudlet+Clone (MAGURAWALAGE et al., 2014), and StreamCloud (BACCARELLI

et al., 2016) focuses on the mobile device’s energy saving. Ravi et al. relies on a fuzzy ver-
tical handover algorithm to trigger handover from a cloud resource to another when the
device’s energy consumption increases or the connection time with the resource decreases.
In the Cloudlet+Clone system architecture, the offloading algorithm uses an energy model
to estimate the energy consumption before offloading for a cloud; while, in the EMCO
framework, the cloud side evidence analyzer is in charge of evaluating both mobile device
and cloud variables so as to support the fuzzy decision engine for code offloading. The
StreamCloud prototype relies on the CDroid module (BARBERA et al., 2014) in order to
efficiently offload computation tasks. This module has a communication handling com-
ponent that attains maximization of the per-client offloaded traffic rate at the minimum
computing-plus-communication energy cost, by allowing each client to opportunistically
select the more energy-efficient Radio Access Network (RAN) technology. The studies
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EMCO, Cloudlet+Clone, and StreamCloud were not designed for supporting mobility
in the MCC environment, unlike to our system, which addresses multiple goals (ensures
performance and energy-efficiency simultaneously) and supports mobility for offloading
operations.

Table 4 – Related work comparison - mobility-aware offloading.

Solutions Objetive Data
Caching

Mobility
Management

Ryu et al. Reduce handover delay None FMIPv6 protocol
Qi et al. Multi-service handover,

Reduce handover delay
None M-MIP protocol

𝑀2𝐶2 Multi-homing, Select
best network and cloud

None M-MIP protocol

Felemban et al. Distributed cloud
architecture

None Active session record
(ASR)

FMC Transparent migration
of services

None OpenFlow rules

Cloudlet+Clone Energy saving, Improve
performance

Cloud None

EMCO Energy saving,
Scalability

(Multi-tenancy)

Mobile Device
and Cloud

None

StreamCloud Energy saving at both
the mobile devices and

data centers

Cloud None

DTSHM Reduce handover delay Access Point Delaunay triangulation
and Master-Standby

model
Ravi et al. Energy saving, Service

availability
None Many Cloudlets/Clouds

This Work Energy saving, Improve
performance, Seamless

offloading

Cloudlet and
Cloud

OpenFlow rules and
Network application

𝑀2𝐶2 (MITRA et al., 2015), Felemban et al. (FELEMBAN; BASALAMAH; GHAFOOR,
2013), and FMC (BIFULCO et al., 2012b) designed solutions for other purposes. For in-
stance, 𝑀2𝐶2 system supports multi-homing and establishes multi-paths between mobile
devices and the cloud, while Felemban et al. propose distributed cloud architecture for
multimedia services with integrated cloudlet and base station, which uses the cloudlet
server to provide a proxy functionality and performs dynamic resource allocation. In the
FMC, the OpenFlow protocol provides mobility features in a TCP/IP network for both
users and services at the edge of the network. This technology provides both the ability to
migrate network end-points and relatively relocate network services depending on users’
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locations in order to guarantee adequate performance for the client-server communication.
Unlike the FMC that uses global mobility and rewrite Internet Protocol (IP) address, our
approach provides localized mobility, fewer signaling messages after handover, and keeps
the same IP address.

Data caching is utilized to cache the results calculated by the remote cloud. This
technique enables mobile data traffic reduction and improves the application response
time. Cloudlet+Clone (MAGURAWALAGE et al., 2014), EMCO (FLORES; SRIRAMA, 2013),
and StreamCloud (BACCARELLI et al., 2016) are examples of such technique, which usu-
ally involves identifying reusable results of generic code invocations that can be used to
answer repeated requests from other applications. Similarly, Cloudlet+Clone introduces
a data caching mechanism at the cloud, but the simulation environment does not allow
understanding the real benefits of this mechanism according to the application’s nature
and input/output data size. In contrast to previous solutions, the DTSHM (YANG et al.,
2014) mechanism adopts a cache scheme at the AP. The cloud service caches the device’s
required data packets in the target AP before handover occurs, and therefore, avoids
retransmitting data packets from the source to the target AP. The remote caching tech-
nology in our system works on both at the network-edge with cloudlets and network-core
in the public cloud, since that it is embedded in the middleware and it is capable of
data caching for any mobile application. This technique makes the previous computation
offloading available for a newly connected user that has not received the results due to a
PoA handover.

Mobility management in wireless networks aims at seamlessly switching ongoing
sessions between the network’s PoA. In MCC, it ensures a seamless offloading operation
while the mobile device changes its PoA, which means that ideally no delay in receiving
results from the cloud should be perceived by the mobile applications’ user. Solutions like
DTSHM (YANG et al., 2014) and Ravi et al. (RAVI; PEDDOJU, 2015) supports handover
for cloud service by adopting different techniques. DTSHM provides a proactive service
handover mechanism using the delaunay triangulation. Thus, the authors developed a
master-standby service model, which can accurately obtain the mobile device’s target
WiFi AP and minimize the handover delay. On the other hand, Ravi et al. relies on
cloudlet and cloud interconnection to provide a seamless service to mobile users when they
are moving from different APs. In the proposed work, the device’s mobility is ensured with
the discovery and communication modules on the cloudlet side and connection module
on the device side. Felemban et al. (FELEMBAN; BASALAMAH; GHAFOOR, 2013) presented
the connection handover mechanisms such as active session record and dynamic buffer
allocation among cloudlets to manage handover calls and multimedia sessions. These
mechanisms can reduce the impact of jitter delay on the multimedia services caused by
the handover operation.

Qi et al. (QI et al., 2016) and 𝑀2𝐶2 (MITRA et al., 2015) utilize the Multi-homed
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Mobile IP (M-MIP) (ÅHLUND; BRÄNNSTRÖM; ZASLAVSKY, 2005) protocol to support
seamless handover. M-MIP enables a mobile device to connect to several access networks
simultaneously before initiating the handover process, i.e., a mobile device performs net-
work discovery, network configuration, and network registration in advance for all available
wireless networks. The mobile device periodically probes the registered network interfaces
to select a target network for handover without disconnecting from the previous network
interface, thereby minimizing network delay and packet losses during the handover pro-
cess, but with the significant drawback of having high energy consumption. Ryu et al.
(RYU; LEE; MUN, 2012) optimized the FMIPv6 in order to consider the PPMF that com-
bines two operation modes (predictive and reactive) and is affected by the device’s velocity,
cell radius and the layer 2 trigger time. The proposed scheme reduces the overhead of the
traditional FMIPv6 protocol.

Most of the aforementioned works focus on reducing the handover impacts on cloud
services (e.g., Youtube, Twitter and Facebook). However, as far as we are concerned, no
author has addressed computational offloading service continuity when users are connect-
ing to different APs. Ravid et al. and FMC are the only solutions that tried to address
the issue of cloud service discontinuation through mobility. Nevertheless, these proposals
rely on a set of cloudlets and clouds to ensure service continuity for each access network.
In the real world, these requirements would be expensive to deploy and maintain, since
they need a significant amount of signaling messages in inter-cloud scenarios. Besides,
DTSHM solution is adaptable to the high-speed movement environment, but more buffer
space is required for AP caching thus increasing packet storage costs. Therefore, to the
best of our knowledge, our system is the only one that was developed for supporting
seamless offloading operations, allied to the high performance at a low cost, to improve
both performance and energy saving.

3.3 Summary
This chapter highlighted the main related works that were found during the liter-

ature review on the topics mentioned. Although, it is important to emphasize that this
is not an exhaustive view of published papers and related research papers. There may be
other papers and theses which have made significant progress in this field, but to the best
of our knowledge the combination of the features described in Tables 3 and 4 is one of
the main factors that distinguish this work from the state-of-the-art.
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4 CONTEXT-SENSITIVE SYSTEM

In this chapter, we first describe in detail our Context-Sensitive Offloading System
(CSOS), its components and interactions (Section 4.1). Next, we discuss the system’s
development process and the implementation details (Section 4.2). Finally, we evaluate
the proposed system in Sections 4.3 and 4.4.

4.1 Design Goals and Architecture
CSOS follows the standard client-server model. The CSOS Client components are

located on the mobile device, while the CSOS Server components are located on the
cloud or cloudlet. Figure 11 presents the overall architecture and provides the connections
between the main components.

Within middleware, the architecture consists of three main components: a Decision
Engine, Profilers, and a Proxy Handler. These components interact with each other to
execute context-sensitive offloading. When a user initiates an application to process a task
(e.g., an image), what are acquired are the most recent results of the profilers from the
database for assisting the decision engine in making the correct inference. It can decide
to execute the task locally or remotely based on the classification algorithm used (e.g.,
J48, JRIP). We define CSOS components as the following:

Device
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Applica�on
Classi�er

Decision Engine  

Proxy HandlerPro�lers
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Figure 11 – CSOS Architecture.

• Application: this represents the three possible benchmarking applications (image
editor, face detection, and an online game) that undertake resource-intensive com-
puting. In the application interface, the users can choose the classification algorithm
that they wish to use with CSOS.
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• Network Profiler: this aims to capture wireless network information at runtime.
The monitoring of network quality is critical in MCC environments since a poor
network can cause packet loss and a delay in communication between device and
cloud. We calculate the throughput by sending packets to the cloudlet server, which
in turn estimates the device’s upload rate. The server then sends packets to the
smartphone to calculate the device’s download rate.

• Cloud/cloudlet profiler: This is responsible for monitoring and collecting cloud/-
cloudlet performance data in order to ensure that the cloud has larger processing
capacity than the mobile device at a particular instant. This profiler calculates the
vCPU load every second. The server’s vCPU load is then encapsulated in the net-
work profile to be sent back to the device.

• App and device profiler: this service monitors and collects application/hardware
context data asynchronously at runtime. From the smartphone we gather the hard-
ware values, more specifically the device’s RAM, number of cores, and the maximum
clock of each core. Beyond that, the smartphone’s CPU load is also calculated from
the application. We also capture the application name and calculate the data size
to be processed. The data size is calculated by the Proxy Handler in the moments
before the decision.

• Context Database: the profiling system runs every 35 seconds to gather raw
context (such as application name, data size, smartphone CPU usage, cloud/cloudlet
vCPU usage, upload/download rate, and smartphone hardware) and transforms it
to high-level contextual information at runtime (for more details see Section 4.2).
This information is saved in a database that always returns the most recent instance
when asked to by the decision engine.

• Decision Engine: this component has three functions: (1) it is responsible for
loading a context reasoning decision model (e.g., J48, JRIP, IBK) that is based on
a training set to classify new instances; (2) it analyzes each attribute of the most
recent instance in the database to collect information, such as the name, type, and
possible values; (3) it uses the Weka library1 to classify (local or remote) the latest
instance stored in the database and sends the result to the proxy handler.

• Proxy Handler: its role is to intercept methods identified as offloading candidates
with the @remotable markup. If the annotation is marked as static, the proxy handler
sends the request for the method directly to the cloudlet or cloud, ignoring the
decision engine. Otherwise, if it is marked as dynamic, it is responsible for calculating
the current application data size and sends the corresponding value along with the

1 Weka is a collection of ML algorithms. It permits the exportation of classification models to use them
in personal Java code. http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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classification algorithm name to the decision engine. After that, it receives the result
of the decision engine and runs either locally or remotely.

4.2 Configuration Process and Components Details
This section provides an overview of the steps a developer must follow to configure

an application to use CSOS as well as providing more detailed information regarding the
operation of its components.

4.2.1 Configuration Process

The configuration process is illustrated as follows in Figure 12. Each step is described
below.

In the first step (i), the developer must define those factors that are important to
be analyzed as relevant information for the offloading decision. Based on empirical eval-
uations, we identified six factors: network throughput, smartphone hardware, application
category, data size, smartphone CPU, and cloudlet vCPU. Each one of these metrics can
change independently of the others. In addition to some that periodically change over
time, while others remain static. For example, a smartphone CPU usage can change ev-
ery second, while the smartphone hardware retains the same configuration. Moreover,
the combination of each metric value represents a profiler. For example, network band-
width can assume congested, median, or free values, while the cloudlet vCPU can assume
stressed, normal load, or relaxed values. Therefore, these various combinations can lead
the decision engine to make different decisions based on the contextual information.

Figure 12 – CSOS configuration process.

The second step (ii) is the filling of a database with context information. In this
phase, experiments are undertaken that change the contextual information and analyze
the total processing time of each task between two configurations: static local, where the
whole task is processed on smartphone; and static cloudlet, in which only the computing-
intensive task is processed remotely in the cloudlet. At the end of this phase, the developer
must compare the total runtime of each task (local and cloudlet) in each context, then
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label with a "Yes" value those ones whose total runtime is shorter, and with a "No" value
those whose total runtime is longer.

The next step (iii) covers the classifiers evaluation process. We developed a Java
program2 to automate the training and testing of classification algorithms. This program
measures the performance of each classifier by means of its accuracy and others metrics
(for more details see Section 4.3.1) in the test data by using 30 repetitions of a 10-fold
cross-validation and varying the seed value in the range from 1 to 30. The results must
be analyzed and compared by suitable statistical techniques such as a confusion matrix
and performance metrics (e.g., specificity, sensitivity, precision, and accuracy).

Finally, in the last step (iv) the developer must generate the trained classifiers’
models corresponding to those that obtained the highest accuracy. In addition, the files
corresponding to the generated models must be saved in the CSOS project to allow the
decision engine to load them at runtime. The next activity is to configure the remotable
markup with a dynamic value in the methods identified as an offloading candidate. After
that, the developer must specify which classifier to use on the same markup (for more
details see section 5.3). All classifiers to be used by the developer must be declared in an
enumeration class. Thus, each classifier is translated into the respective generated model.

After following the four steps of the development process, the mobile application is
ready to use CSOS to enable the context-sensitive offloading of their methods/data.

4.2.2 Implementation Details

Next, we describe the technical details of how CSOS operates the decision engine,
the remotable markup, and the transformation from the raw context to the high-level
context.

In Algorithm 4, we present the pseudocode of the decision engine developed to
handle the context data and classify the most recent instance in the database. The is-
RemoteAdvantage procedure (line 1) receives as arguments the application’s data size
and classifier name, respectively. Naturally, the data size metric must be captured by the
app profiler. However, the value of this metric can only be known at the instant of time
that the application’s user selects the desired image resolution for processing. Since the
profiling system runs every 35 seconds, it would be impracticable to accurately capture
the value of this metric. Therefore, the proxy handler captures this value at runtime and
passes it to the decision engine. Between lines 3 and 5, we check whether the object of the
classification model corresponds to the specified classifier. If false, it instantiates a new
object of the requested classification algorithm. Next, we check each attribute of the most
recent record in the database to collect information, such as name, type, and possible
values (between lines 6 and 9).
2 An automation program for training and testing using a 10-fold cross-validation is available to the

community at the following website: https://github.com/ehammo/algorithmCompare
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Algorithm 4 Procedure for offloading decision with classifiers
1: procedure isRemoteAdvantage(𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒, 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟)
2: response← false
3: if classifierModel ̸= Classifier ∨ classifierModel = Null then
4: loadClassifier(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟)
5: end if
6: for all attribute A ∈ 𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 do
7: Attributes[] atts ← getAttribute(𝐴)
8: Values[] values ← getValue(𝐴)
9: end for

10: 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒← 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑎𝑡𝑡𝑠, 𝑎𝑡𝑡𝑠.𝑞𝑡𝑑𝑒)
11: for 𝑖← 0, 𝑎𝑡𝑡𝑠.𝑞𝑡𝑑𝑒 do
12: if atts.getName[i] = ’DataSize’ then
13: 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑠𝑒𝑡𝑉 𝑎𝑙𝑢𝑒[𝑖]← 𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒
14: else
15: 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑠𝑒𝑡𝑉 𝑎𝑙𝑢𝑒[𝑖]← 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]
16: end if
17: end for
18: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
19: if result ≥ 0.7 then
20: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒← 𝑡𝑟𝑢𝑒
21: return response
22: else
23: return response
24: end if
25: end procedure

To enable classification from the Weka library, the instance object needs to be cre-
ated (line 10) along with the set of attributes and their quantity. After that, the instance
receives the value corresponding to the input size if the attribute name is equal to ’Data-
Size’; otherwise it receives the other values (lines 11-17). ClassifyInstance (line 18) clas-
sifies an instance with probabilistic values. Thus, when the instance is rated above 70%,
the procedure returns a "true" value, indicating that offloading is favorable; otherwise it
returns a "false" value, indicating that it is unfavorable. The rate of 70% refers to prob-
ability for the "Yes" class, corresponding to remote processing. We define this threshold
to reduce the impact on application execution due to a wrong decision by the algorithm,
since in this case the application will be executed locally.

The following code examples illustrate the development of a face detection applica-
tion that has two methods: detectFaces() and getFaces(). Firstly, we created an enumer-
ation to list the possible classifiers to be used by the decision engine, and a variable to
save the classifier that is going to be used to decide if this method is going to be offloaded
or not. Second, we modified the @remotable markup to receive the J48 classifier (line 2 in
Listing 4.1). When the detectFaces method execution (line 3) is intercepted by the proxy
handler, the decision engine will decide whether the method must be executed locally or
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outside of the mobile device, based on the J48 classifier.
When the CSOS is running, the user of the benchmarking application can choose

which classifier to use. Therefore, our solution supports one interface for each classifier to
allow the proxy handler to interpret the classifier specified by the user through markups
(or Java annotation).

1 public interface DynamicDetectFacesJ48 extends DetectFaces {
2 @Remotable ( va lue=Remotable . Of f load .DYNAMIC, s t a tu s=true , c l a s s i f i e r=

Remotable . C l a s s i f i e r . J48 )
3 Proper t i e sFace detec tFaces ( S t r ing c a s c a d e C l a s s i f i e r , byte [ ]

o r i g ina l Image ) ;
4 [ . . . ]
5 }

Listing 4.1 – Android markup code for specifing the classifier.

To accurately decide whether to offload or not, we need profilers. We therefore made
a task to run every 35 seconds, as a network profiler takes a long time to measure precisely
the upload and download rate. This task gathers low-level context information or raw
context, converts it to high-level context, and then saves it on a context database. The
following is an example of this conversion. We can see in Listing 4.2 that the getCPULabel
method receives the raw value of CPU usage in a percentage (line 1). If the o value is
between 45 and 75, the variable "ret" receives the value "Normal_Load", indicating that
the CPU is processing normally (lines 5 and 6).

1 public ResultTypes . ResultTypesCpu getCPULabel ( f loat t o t a l ) {
2 ResultTypes . ResultTypesCpu r e t ;
3 i f ( t o t a l < 45) {
4 r e t = ResultTypes . ResultTypesCpu . Relax ;
5 } else i f ( t o t a l >= 45 && t o t a l < 75) {
6 r e t = ResultTypes . ResultTypesCpu . Normal_Load ;
7 } else i f ( t o t a l == (−1) ) {
8 r e t = ResultTypes . ResultTypesCpu . Unknown ;
9 } else {

10 r e t = ResultTypes . ResultTypesCpu . S t r e s s ed ;
11 }
12 return r e t ;
13 }

Listing 4.2 – Transformation of low-level context to high-level context.

Table 5 shows the mapping of each low-level context to a high-level one. We per-
formed several exploratory tests to define the range of values (low-level context) for the
attributes of numbers 1,3, and 5; while the range of values of the attributes correspond-
ing to the numbers 2 and 4 were the results of research by the authors. For instance, to
define thresholds with respect to RAM memory and the clock speed of the Phone(Hdw)
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attribute, we used a library that analyzes an Android device’s specifications (RAM, CPU
cores, and clock speed). This allowed the authors to modify its behavior based on the
capabilities of the smartphone’s hardware.

Regarding the Data size attribute, more specifically for the BenchImage and Bench-
Face applications, we calculated the size in Kilobyte (KB) of each picture and converted
it to a megapixel (MP) unit. As can be seen in Table 5, we mapped the values 708KB to
2MP, 1186KB to 4MP, and 4413KB to 8MP. The calculation for CollisionBalls is a bit
different. Since each ball has 44KB, our strategy is to calculate this value by the amount
of balls. So, we mapped the first value of 649KB to 250 balls, 1938KB to 750 balls, and
so on.

Table 5 – Attributes and contextual values.

No Attribute name Low-level context High-level context

1 Bdw: Bandwidth
[up/down>20] Free
[2<up/down<=20] Moderate
[up/down<=2] Congested

2 App/Data size
BenchImage [708-1186-4413] 2MP-4MP-8MP
BenchFace [2075-3758-4717] 3MP-6MP-8MP
CollisionBalls [649-1938-2583] 250-750-1500 Balls

3 Phone(CPU)
[CPU>=75] Stressed
[40<CPU<=74] Normal Load
[CPU<=40] Relaxed

4 Phone(Hdw)
[2.3<RAM<=3 and FREQ<=1.8] Advanced-intermediate
[1.5<RAM<=2.3] Intermediate
[RAM<=1 and FREQ<1.3] Weak

5 Cloud(vCPU)
[CPU>=75] Stressed
[40<CPU<74] Normal Load
[CPU<=40] Relaxed

4.3 Performance analysis of classifiers
In this section, we present the evaluation and the experiment using CSOS. We

evaluate and analyze two different aspects of the solution: (i) the performance analysis of
the classification algorithms in section 4.3.2; (ii) mobile application runtime and energy
consumption (lab testbed) in section 4.4.
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4.3.1 Evaluation Setup

For this evaluation, four classification algorithms (C4.5, Rules, K-NN, and Naive
Bayes) were compared to each other, considering the main evaluation metrics. The (Java)
implementation of C4.5 in Weka (WITTEN et al., 2016) is referred to as J48, while the
K-NN and Rules-Based are respectively referred to as IBK and JRIP. We have used these
classifiers because they require less resource (e.g., processing, storage) than artificial neural
networks, and are fairly accurate (PERERA et al., 2014). These features are relevant to the
offloading decision in order to discover hidden knowledge in our own context database.
In this regard, we benefited from the Weka library to develop a Java program and thus
evaluate the algorithms.

A 10-fold cross-validation has been made for testing and evaluation of the results.
For our purpose, the database is divided into two groups: training and testing, where 90%
is for training and 10% is for testing. We have run each algorithm 30 times, varying the
seed value in the range from 1 to 30, in order to obtain a sample of 120 results, which
have been averaged for the data set. Thus the results, which will be further analyzed by
the statistical techniques, correspond to the average accuracies in test data.

To investigate the performance of the four classification algorithms more accurately,
we used the confusion matrix that can be seen in Table 6. With this matrix the amount
of each indicator is calculated and then results are compared. The confusion matrix is a
useful tool for analyzing how well a classifier can recognize multiples of classes different.
The ideal situation is when the most relevant data are on the main diameter matrix and
the rest matrix values are zero or near zero (ALIZADEH; GHAZANFARI; TEIMORPOUR,
2011).

Table 6 – Confusion matrix in our study.

Actual Predicted
Offloading (Positive) No-Offloading (Negative)

Positive TP FN
Negative FP TN

Various evaluation metrics - such as true negative rate (Specificity), true positive rate
(Recall or Sensitivity), False Positive Rate (FPR), False Negative Rate (FNR), Precision
and Accuracy (ACC) of assessment categories - are calculated according to the formulas
(4.1)-(4.7). Each one is described below.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4.1)

𝐹1 = 2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (4.2)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.3)
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(4.4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.5)

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1− 𝑇𝑁𝑅 (4.6)

𝐹𝑁𝑅 = 𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 1− 𝑇𝑃𝑅 (4.7)

Where:

TP = the number of positive examples correctly classified.
TN = the number of negative examples correctly classified.
FP = the number of positive examples misclassified as negative.
FN = the number of negative examples misclassified as positive.

The accuracy of a classifier for a given test dataset is indicated by the percentage
of the test dataset records that are correctly classified by the classifier. The sensitivity
(or recall) measures the fraction of positive examples correctly predicted by the classifier,
while specificity is the proportion of negative records that are correctly identified. Precision
determines the fraction of records that actually turn out to be positive in the group
where the classifier has been declared to be a positive class. Sensitivity and precision
are summarized into another metric known as the 𝐹1 measure (see formula (4.2)). The
classification error (4.6) is referred to as FPR, the proportion of negative records that are
not correctly identified. The classification error (4.7) is referred to as FNR, the proportion
of positive records that are not correctly identified (WENG; HUANG; HAN, 2016).

4.3.2 Classifiers Performance

Before evaluating the aforementioned classifiers, we have chosen the best K to K-NN
algorithm (IBK), i.e. the K value with the most expressive accuracy. We decided to start
with the value K=1 and increase it up to the total number of records in our database
(300 records). To do that, we have tested all possible combinations between Ks and seeds,
then we have made an average of the accuracy to each K value with each seed aiming to
choose the combination to obtain the best accuracy. The result is show in Figure 13. The
best K is equal to 5, with seed equal to 12, and an accuracy rate of 96.35%.

By using the confusion matrix and the above formulas, the values of the aforemen-
tioned metrics for four algorithms can be specified. The results with the average are shown
in Table 7. Figure 14b shows the comparative analysis of four classifiers in terms of speci-
ficity, sensitivity, precision, FPR, FNR and F1. From the graph, we can observe that the
specificity is highest and similar for IBK and J48 i.e. 93.45% and 93.43% respectively,
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and lowest for Naive Bayes with 89.27%. The sensitivity is maximum for JRIP with a
rate of 98.08% and minimum for Naive Bayes at 93.89%. In summary, JRIP was the al-
gorithm that most correctly predicted positive records (offloading favorable) as well as
outperforming J48 by 0.74%. The precision with the J48 algorithm was 94.69%, slightly
higher than IBK with a difference of 0.03%, and 0.48% compared to JRIP.
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Figure 13 – Accuracy for different values of K.

The FPR and FNR are referred to as the types of errors. Therefore, the first type
of error is more important to mobile cloud solutions for determining the drawbacks of
code offloading than the second one. According to Table 7, IBK and J48 have lower FPR
(6.54% and 6.56%) compared to JRIP and Naive Bayes algorithms, while FNR is lowest
for JRIP with a difference of 27.65% compared to J48 and 46.79% compared to IBK.

Table 7 – Average of each measured metric for algorithms (%).

Algorithm Specificity Sensitivity Precision FPR FNR F1 ACC
Naive Bayes 89.27 93.89 91.33 10.72 6.10 92.59 91.79
IBK 93.45 96.40 94.66 6.54 3.59 95.52 95.06
J48 93.43 97.35 94.69 6.56 2.64 96.00 95.57
JRIP 92.77 98.08 94.23 7.22 1.91 96.11 95.67

Sensitivity and precision are two metrics widely employed in applications where the
successful detection of one of the classes is considered more significant than that of the
other classes. Unfortunately, they are in conflict with each other due trade-off between
them, since if we want retrieve more relevant records (i.e., for increasing the sensitivity
rate), consequently more non-relevant records will be retrieved as well (i.e., it will decrease
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the precision rate). Therefore, 𝐹1 is proposed to be means to achieve harmony between
sensitivity and precision (WITTEN et al., 2016). Figure 14b clearly shows that the JRIP
and J48 techniques have 𝐹1 greater than the IBK and Naive Bayes with rates of 96.11%
and 96.00%, respectively.
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Figure 14 – Comparison between the classifiers using different indicators.

Figure 14a shows the comparative analysis in terms of accuracy. In MCC the high
accuracy is very important due the adaptive and dynamic nature of mobile systems, which
leads to an inaccurate decision that in turn leads to high energy consumption and degrades
performance. Our results show that the rules generated by the JRIP algorithm have
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an accuracy slightly higher compared to J48 and IBK amongst the contextual dataset.
The accuracy of the JRIP algorithm is 95.67% comparable to the J48 algorithm, which
achieves 95.57%. The Naive Bayes had the worst accuracy with 91.79% of records correctly
classified.

The good classifiers noted from the above results are JRIP, J48, and IBK. It can be
seen that in all cases, the Naive Bayes algorithm has shown to have the worst performance
over our context database.

According to our evaluation results, the J48, JRIP, and IBK classifiers had ac-
ceptable and similar performance. To determine whether the differences between these
algorithms in terms of accuracy are significant, we use the Friedman test with a con-
fidence interval of 95% (FRIEDMAN, 1937; FRIEDMAN, 1940). The Friedman test is a
non-parametric equivalent of the repeated-measures ANOVA (DEMŠAR, 2006). It ranks
the algorithms for each cross-validation fold separately, with the top algorithm receiving
the rank of 1, the second best receiving the rank of 2, and so on. Thus, the worst perform-
ing algorithm receives a rank equal to the number of algorithms (in our case 4). Average
ranks are assigned in case of ties. The Friedman statistic is defined as:

𝑋2
𝐹 = 12𝑁

𝑘(𝐾 + 1)

⎡⎣∑︁
𝑗

𝑅2
𝑗

𝑘(𝑘 + 1)2

4

⎤⎦ (4.8)

where N is the number of folds (10 in our case), k is the number of algorithms (4
in our case), and 𝑅𝑗 is the average rank of the jth of k algorithms. The average rank is
defined as 𝑅𝑗 − 1

𝑁

∑︀𝑁
𝑖 𝑟𝑗

𝑖 where 𝑟𝑗
𝑖 is the rank of the jth of k algorithms on the ith of N

folds.
When the null hypothesis (all classifiers are equivalent) of the Friedman test is

rejected we perform the Nemenyi post-hoc test to determine which classifiers are sig-
nificantly different (NEMENYI, 1963). The performance of two classifiers is significantly
different if the corresponding average ranks differ by at least the critical difference:

𝐶𝐷 = 𝑞𝛼

√︃
𝑘(𝑘 + 1)

6𝑁
(4.9)

where the critical values 𝑞𝛼 are based on the Studentized range statistic divided by
√

2, N is the number of folds and k is the number of algorithms to be compared (DEMŠAR,
2006). If the difference between the mean rankings of 2 classifiers is bigger than the Critical
Difference (CD) of 0.8563, then the performance of these algorithms differs significantly.

Figure 15 shows the results for Multiple Comparison with Best (MCB) statistical
test. The "Ha:Different" label means that at least one algorithm is different. Consequently,
the null hypothesis was rejected, indicating that there is a significant difference between
the accuracy of the classifiers. Thus the Nemenyi post-hoc test was performed to outline
the algorithms rankings.

Table 8 displays the mean ranking of the classification algorithms along with the
critical difference to clearly show any algorithms that are significantly different. It is
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possible to note that the J48 has the best overall ranking position with 1.68. However,
the difference between J48 and JRIP is less than the CD value (equivalent to 0.02),
indicating that theses classifiers are not statistically different. On the other hand, both
J48 and JRIP are significantly different from the IBK with 0.94 and 0.92, respectively.
In a nutshell, the Friedman and Nemenyi statistical tests show that the J48 and JRIP
classifiers outperform the IBK and Naive Bayes classifiers from our context database. Once
that these classification algorithms obtained similar performance results, we implemented
both in CSOS and used them in our real-world experiments (for more details see section
4.4).
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Figure 15 – Friedman and Nemenyi tests for comparisons between algorithms.

One of the key points in the rules generated by J48 and JRIP algorithms is that
the rules are very simple. Therefore these rules can be used very easily by resource-
constrained mobile devices, a critical issue in the MCC environment. The J48 algorithm
uses a statistical property derived from information theory, called the information gain,
that measures how well a given attribute separates the training instances according to
their target classification.

Table 8 – Mean ranking of each classifier.

Prediction algorithm
J48 JRIP IBK NAIVE Nemenyi critical distance

Position 1 2 3 4 -
Value 1.68 1.70 2.62 4.00 0.8563
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Therefore, according to Figure 16, predictor importance for bandwidth, application,
smartphone’s hardware, smartphone’s CPU, and cloud’s vCPU are 0.4348073, 0.1538575,
0.0256408, 0.0060328 and 0.0000928, respectively. These data reveal how much the wireless
network quality impacts on offloading operations.
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Figure 16 – Importance of the factors in the prediction of offloading by using info gain.

The rules generated by this algorithm are shown in Table 9. The depth of trees pro-
duced by this algorithm was 19, which is very different compared to the JRIP algorithm.
It is also clear that nine rules have been generated for class No (class No is devoted to ’no
offloading’) and ten rules for class Yes (class Yes is devoted to ’do offloading’). The rules
generated by the J48 algorithm shows that this algorithm is suitable for the offloading
decisions, due to the balance in the class values (Yes/No).

According to Table 10, it can be seen that eight rules have been produced by the
JRIP algorithm. It is also clear that seven rules have been generated for class No and
only one rule for class Yes. With regard to the results and some rules, it can be deduced
that JRIP can make incorrect decisions due to the omission of some rules for class Yes.
Generally, by comparing our results and the Tables, it can be said that J48 and JRIP
are more successful in identifying the right time to undertake offloading. But it should be
noted that the rules produced by J48 have provided more detail about both classes.
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Table 9 – Rules generated by the J48 algorithm.

Num Rules
1 IF Bdw = Free AND App = BenchFace THEN class Yes
2 IF Bdw = Free AND App = BenchImage THEN class Yes

3 IF Bdw = Free AND App = CollisionBalls AND Phone(Hdw) = Adv. Interm.
THEN class No

4 IF Bdw = Free AND App = CollisionBalls AND Phone(Hdw) = Weak
AND DataSize <= 1186 THEN class No

5 IF Bdw = Free AND App = CollisionBalls AND Phone(Hdw) = Weak
AND DataSize >1186 THEN class Yes

6 IF Bdw = Free AND App = CollisionBalls AND Phone(Hdw) = Intermediate
THEN class No

7 IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Relaxed
THEN class Yes

8
IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Stressed
AND Phone(Hdw) = Adv. Interm. AND Phone(CPU) = Relaxed
THEN class No

9
IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Stressed
AND Phone(Hdw) = Adv. Interm. AND Phone(CPU) = Normal Load
THEN class Yes

10
IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Stressed
AND Phone(Hdw) = Adv. Interm. AND Phone(CPU) = Stressed
THEN class Yes

11 IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Stressed
AND Phone(Hdw) = Weak THEN class Yes

12 IF Bdw = Mdt AND App = BenchFace AND Cloudlet(vCPU) = Stressed
AND Phone(Hdw) = Intermediate THEN class Yes

13 IF Bdw = Mdt AND App = BenchImage THEN class Yes

14 IF Bdw = Mdt AND App = CollisionBalls AND Phone(Hdw) = Adv. Interm.
THEN class No

15 IF Bdw = Mdt AND App = CollisionBalls AND Phone(Hdw) = Weak
AND DataSize <= 1186 THEN class No

16 IF Bdw = Mdt AND App = CollisionBalls AND Phone(Hdw) = Weak
AND DataSize >1186 AND DataSize <= 2583 THEN class Yes

17 IF Bdw = Mdt AND App = CollisionBalls AND Phone(Hdw) = Weak
AND DataSize >1186 AND DataSize >2583 THEN class No

18 IF Bdw = Mdt AND App = CollisionBalls AND Phone(Hdw) = Intermediate
THEN class No

19 IF Bdw = Cong THEN class No
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The rules in Tables 9 and 10 are simple and understandable for researchers and
developers, meaning that these findings can be useful as an appropriate solution to identify
an opportunist offloading event in the real environment. In other words, by using the
results of this study, more effective rules for beneficial computational offloading can be
achieved.

Table 10 – Rules generated by the JRIP algorithm.

Num Rules
1 IF Bdw = Cong THEN class No
2 IF App = CollisionBalls AND Phone(Hdw) = Adv. Interm. THEN class No
3 IF App = CollisionBalls AND DataSize <= 649 THEN class No

4 IF App = CollisionBalls AND DataSize >= 3871 AND Bdw = Mdt
AND Phone(CPU) = Stressed THEN class No

5 IF Bdw = Mdt AND Cloudlet(vCPU) = Stressed AND DataSize >= 4717
AND Phone(Hdw) = Adv. Interm. THEN class No

6 IF App = CollisionBalls AND Cloudlet(vCPU) = Stressed AND
DataSize >= 3871 AND Phone(CPU) = Relaxed THEN class No

7
IF Bdw = Mdt AND App = BenchFace AND Phone(CPU) = Relaxed
AND Phone(Hdw) = Adv. Interm. AND Cloudlet(vCPU) = Stressed
AND DataSize <= 3758 THEN class No

8 ELSE class Yes

4.4 Evaluation and Validation
In this section, we conducted several experiments to evaluate the two classifiers with

better performance: JRIP and J48. Section 4.4.1 describes the experimental environment,
while the other sections (4.4.2, 4.4.3, 4.4.4) discuss the results.

4.4.1 Experimental Setup

Table 11 shows all the parameters used in the experiment. We benchmarked the
three different computation-intensive applications, named BenchFace, BenchImage and
CollisionBalls.

The BenchFace3 application was developed by the author for face detection and
uses Haar features based on cascading classifiers, a method proposed by the researchers
in (VIOLA; JONES, 2001). The algorithm for face detection uses a ML approach. It trains
cascade functions with a set of positive images (images containing faces) and negative
images (images that do not have faces). The application consists of a single image with 78
3 Android implementation of BenchFace, available in https://github.com/ehammo/HideTheFaceAndroid.
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faces at different angles (see Figure 17a). The user can change the same image to different
resolutions and cascading classifier algorithms.

According to (REGO et al., 2015), BenchImage is an image processing application that
allows users to apply filters on pictures with different resolutions (see Figure 17b). The
application provides the filters Sharpen, Cartoonizer, and Red Tone, which have different
computation requirements and therefore different execution times. In addition, BenchIm-
age provides an option to execute a benchmark procedure, in which the Cartoonizer filter
is executed for each picture resolution (8MP, 4MP, and 2MP).

Rego et al. (REGO et al., 2015) define CollisionBalls4 as an application that simulates
several balls bouncing around the screen of the mobile device. The application detects
when the balls touch the edge of the screen or when the balls touch each other, and
then calculates the new direction of the balls (see Figure 17c). The amount of balls can
be defined by the user as well as the type of serialization used: built-in Java and C#
serialization or manual serialization. It is a real-time application.

(a) BenchFace application. (b) BenchImage application. (c) CollisionBalls application.

Figure 17 – Benchmark applications.

For BenchFace and BenchImage we varied the data size every 10 tasks. But we
didn’t vary the CollisionBall’s data size, since the amount of balls couldn’t be changed
dynamically. The other big difference is in the amount of decisions. If the real time ap-
plication asked the decision engine about the context after every new frame, it would be
4 Android implementation of BenchImage and CollisionBalls, available in https://github.com/ufc-

great/mpos/tree/master/android.
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very detrimental to the application, since this delay would lower the frame per second
rate. So, the decision was made once every 10 seconds, and its result will apply to all
marked methods until the next decision.

Regarding smartphone power consumption metering, this work will focus on software-
based power measurement. Trepn Profiler is an Android application that can display the
real-time power consumption on a smartphone or tablet. According to (HOQUE et al.,
2015), it is the only application that reports accurate real-time power consumption.

Table 11 – Parameters used in the context-sensitive experiment.

Apps Parameters Value

BenchFace

Detection algorithm Alt_tree
Size (MP) 3, 6, and 8
Number of faces 77
Tasks number 30

BenchImage

Filter Cartoonizer
Size (MP) 2, 4, and 8
Image SkyLine
Tasks number 30

CollisionBalls

Serialization Java built-in
Size (Kb) 1938
Number of balls 750
Tasks number 10

We used the equipments described in Table 12. We have used three smartphones
from different manufacturers and with different hardware. In our experiment, the Moto
X Style, Galaxy S4, and LG K3 are mapped to advanced intermediate, intermediate, and
weak smartphones, respectively. The communication between mobile device and cloudlet
was performed using a wireless network (devices directly connected to the WiFi access
point attached to the cloudlet), with one TP-LINK AC1200 (802.11ac) access point.

Table 12 – Technical specification of the devices in the context-sensitive experiment.

Units, equipment, and platform CPU (GHz) RAM (GB)
1, Moto X Style, Android Hexa-core 1.6 3
1, Samsung Galaxy S4, Android Quad-core 1.9 2
1, LG K3, Android Quad-core 1.1 1
1, Laptop cloudlet, Openstack Kilo
(Ubuntu 14.04 LTS)

Quad-core 2.7 8

In contexts where the bandwidth must be moderate (Mdt) or congested (Cong), we
generate UDP background traffic from the Iperf (IPERF, 2017) tool for 2000 seconds and
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report the result every 3 seconds. Besides that, we configure the CpuRun (CPURUN, 2017)
and CpuBurn (CPUBURN, 2017) tools to utilize all available cores of the smartphone’s CPU
and cloudlet’s vCPU respectively, aiming to achieve the context information, stressed and
normal load for our lab testbed. To properly test we first picked which contexts are going
to be used in the tests. As shown in Table 13 we picked five favorable contexts, where the
cloudlet is going to be a better option than local execution, and five unfavorable contexts
where the opposite is true. Last, we selected five unknown (Unkn) contexts, which means
that these contexts represent new instances of the our database that have not participated
in the training and testing process during the performance evaluation of the classification
algorithms.

Table 13 – Context dataset for the experiments.

Decis. Id Bdw App Cloud(vCPU) Phone(CPU) Phone(Hdw)

Yes

C1 Free BenchImage Relaxed Relaxed Adv. Interm.
C2 Free BenchFace Relaxed Relaxed Adv. Interm.
C3 Mdt BenchFace Relaxed Stressed Adv. Interm.
C4 Mdt BenchFace Stressed Relaxed Weak
C5 Free CollisionBalls Relaxed Normal Load Weak

No

C6 Free CollisionBalls Relaxed Relaxed Adv. Interm.
C7 Cong BenchImage Relaxed Normal Load Weak
C8 Cong BenchImage Relaxed Stressed Intermediate
C9 Mdt BenchFace Stressed Relaxed Adv. Interm.
C10 Mdt CollisionBalls Relaxed Relaxed Adv. Interm.

Unkn

C11 Mdt BenchFace Stressed Normal Load Adv. Interm.
C12 Mdt BenchFace Stressed Relaxed Intermediate
C13 Mdt BenchFace Normal Load Relaxed Adv. Interm.
C14 Free CollisionBalls Relaxed Normal Load Intermediate
C15 Mdt CollisionBalls Relaxed Normal Load Intermediate

The objective of the experiments’ related favorable and unfavorable contexts is to
evaluate the performance of the proposed CSOS and the classifiers implemented upon it,
and upon prior knowledge that our system must decide correctly. On the other hand, the
aim of the experiments with related unknown context, is to know if our system can decide
correctly or not in real time, and what the consequences are in terms of performance and
energy.

All experiments utilized four strategies:

• Dynamic J48 (labeled as J48): this provides the entire CSOS system, such as the
decision engine, the Weka library, discovery/deployment services and profilers. The
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application relies on CSOS’s decision engine to decide where to process offloading
candidates methods (locally or remotely) based on the J48 classifier.

• Dynamic JRIP (labeled as JRIP): this provides the entire CSOS system, i.e. it
includes the decision engine, Weka library, discovery/deployment services and pro-
filers. The application relies on CSOS’s decision engine to decide where to process
offloading candidates methods (locally or remotely) based on the JRIP classifier.

• Static Cloudlet (labeled as Cloudlet): this provides the partial CSOS system, i.e. it
includes discovery/deployment services and profilers. All applications are executed
remotely on the cloudlet server to acquire a performance baseline.

• Static Local (labeled as Local): this does not use the CSOS system, and all pro-
cessing is done on the smartphone, i.e. all applications must be executed locally to
acquire a performance baseline.

Finally, to enhance the reader’s comprehension, only 9 contexts are going to be
plotted instead of all 15. From each situation we obtained 3 graphs, showing runtime,
energy and context. The runtime graph represents the amount of time spent on each task,
while the energy graph represents how much energy the smartphone consumed over the
whole 30 tasks. The context graph shows the frequency of values for the current context’s
attributes. This configuration remains true for the BenchFace and BenchImage applica-
tions, but for CollisionBalls there is a little difference since it is a real-time application.
The runtime graph is exchanged for a Frame Per Second (FPS) graph, which represents
the amount of FPS the application has at the moment of the decision.

4.4.2 Results - Favorable Context

Figure 18 (a)-(i) shows the results of the three set of favorable contexts chosen: C1,
C4, and C5. Each line on the graph shows a different metric for the same context, e.g.
for the context labeled C1, we show the results corresponding to the runtime, consumed
energy, and frequency of the context data (smartphone’s CPU, cloudlet’s vCPU, and
throughput). With regard to the context graph, it is possible to identify the CPU usage
by smartphone and cloudlet (both on the left y-axis). The network profiling between
smartphone and cloudlet through the throughput (right y-axis) is also depicted.

Specifically for the BenchImage and BenchFace applications, the runtime and en-
ergy metrics were measured during the execution of a total of 30 tasks (see x-axis). The
smartphone executed the first 10 tasks with the same image size (e.g., 2MP), and the
next 10 tasks for a higher image size (e.g., 4MP), and so on.

Figure 18a presents the runtime in seconds for C1 context with the four strategies:
Local, J48, JRIP, and Cloudlet. The results using the last three show that the runtime
remained mostly below 13 seconds, even with the variation of the images size, indicating
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that the device did not perform substantial processing, since the dynamic strategies, J48
and JRip, had a similar result to the cloudlet strategy. Therefore, the result using the
local strategy presented runtime equal to 15 seconds with 2MP, 30 seconds with 4MP,
and 62 seconds with 8MP, due local processing capacity being less than the cloudlet’s.
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Figure 18 – Results with favorable offloading: C1, C4, and C5.

Figure 18b illustrates the distribution of the energy consumption in Miliwatts (mW)
of the BenchImage application on Moto X Style corresponding to the C1 context, while
Table 14 offers a comparison of the mean, median, minimum, and maximum for each
context. The results indicate that the local strategy drains more energy than all other
strategies, which means that processing efforts of the Moto X Style are higher due to
the overhead caused by the intensive processing of the filters in the images. The energy
consumption corresponding to the JRIP strategy is 47.80% and 71.46% more efficient
than the cloudlet and J48 strategies, respectively. The J48 consumed more energy than
cloudlet and JRIP because it has a greater number of rules regarding JRIP, and thus
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demands a longer processing time for decision-making.

Table 14 – Comparative energy consumption to contexts C1, C4, and C5.

Context Strategy Min. 1st. Qu. Median Mean 3rd Qu. Max.

C1

J48 20.99 60.84 217.70 392.20 626.20 1731
JRIP 14.03 42.77 82.40 111.90 144.50 487.30
Cloudlet 21.64 55.16 110.50 214.40 270.40 1128
Local 62.39 988.30 990.90 978.10 996.20 1926

C4

J48 3.779 197.80 294.70 374.90 518.40 1199
JRIP 4.638 235.60 347.70 413.50 604.50 1124
Cloudlet 10.22 201.70 381.10 467.00 640.20 1611
Local 24.06 818.70 915.30 1068 1505 1630

C5

J48 23.64 147.20 280.00 319.40 459.10 692.50
JRIP 24.92 195.60 360.60 328.00 451.10 688.40
Cloudlet 30.07 216.80 386.70 343.40 447.10 660.30
Local 5.496 340.70 471.20 534 704.50 1360

The main difference between the C4 and C1 contexts are the cloudlet’s vCPU,
the smartphone’s hardware, the network bandwidth, and the benchmarking application
(see Table 13). The results of Figure 18d, corresponding to the J48, JRIP, and cloudlet
strategies, show that the runtime suffers large variations as the image size increases, due
to values assigned to the C4 context (see Figure 18f), but remained below 6 seconds with
a 3MP image, 12 seconds with 6MP, and 17 seconds with 8MP, while the local strategy
peaks up to 18.40 seconds in the runtime values with 8MP images. Figure 18e presents
the distribution of the energy consumption for the same context. It is notable that the
local strategy drains 56.27%, 61.28%, and 64.89% more energy than cloudlet, JRIP and
J48 strategies, respectively, while the three last had similar energy drains.

Figure 18g shows the strategies performance by the FPS metric, since the C5 context
makes use of CollisionBalls, a real-time application. The value of this metric depends on
the time spent in calculating the new position of the balls. According to (HUGHES; FOLEY,
2014), a graphic computing application should run above 30 FPS, i.e. taking a maximum
of 33.34 milliseconds (ms) to produce each frame, so that animation can run seamlessly
from the application user’s perspective. The results indicate that for the 750 balls scenario
the local execution presents a lower FPS than computational offloading using any strategy,
which means that given the amount of computation needed a resource-poor smartphone
requires the use of offloading. Besides that, for the JRIP, J48 and cloudlet strategies, the
offloading improves CollisionBalls’ performance by 1.65, 1.74, and 1.67 times, respectively.
This explains the fact that CSOS - even using decision-making and running profilers before
offloading to cloudlet - does not impair the FPS quality, because the lowest values of FPS
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with CSOS are similar to those in the local strategy (see 3 and 9 tasks). Regarding the
results of Figure 18h we can see that local processing provides the largest battery discharge
when compared to other strategies. This is due to the low processing capacity of the LG
K3 (categorized as weak hardware) to perform a lot of computing locally.

4.4.3 Results - Unfavorable context

Figure 19 (a)-(i) shows the results of the three sets of unfavorable contexts chosen:
C7, C9, and C10. Regarding Figure 19a, the results show a mean runtime equal to 45
seconds with 2MP, 87 seconds with 4MP, and 176 seconds with 8MP, indicating that the
device performed substantial processing, once the dynamic strategies, J48 and JRIP, had
a similar result to the local strategy. On the other hand, the cloudlet strategy couldn’t be
completed, because the network was so congested that the connection between smartphone
and cloudlet was lost, causing the application to crash. Thus, the result using the cloudlet
strategy was worse. Figure 19b has similar results to the three strategies that executed
locally and presented a high number of outliers (lower and upper), justified by the high
energy drain. Cloudlet didn’t have any energy results to show since it couldn’t reach the
30 tasks.

According to Figure 19f, the cloudlet’s vCPU in a stressed state has a direct influence
on the runtime when we use the cloudlet strategy (see Figure 19d), since it will always run
the application remotely, even when wireless network quality is not good. Consequently,
the runtime with cloudlet is approximately 1.37, 1.22, and 1.02 times greater than the
other strategies for 2MP, 4MP, and 8MP images, respectively. It is important to highlight
the last four tasks for runtime corresponding to cloudlet with values below the other
strategies. This situation occurs because the download and upload rate of the background
traffic reaches the value near the maximum threshold (e.g., 18 Mbps) for a moderate
bandwidth. This is why the runtime considers network fluctuations when an application’s
methods are executed remotely.

Figure 19g presents the FPS for the C10 context with the four strategies: J48,
JRIP, cloudlet, and local. The results for cloudlet were the worst in this context. The
wireless network in a moderate state decreases the FPS quality of the application (see
Figure 19i). The mean FPS in the cloudlet was 68.48% and 77.67% lower than the local
strategy and dynamic strategies, respectively. The J48 and JRIP strategies maintained
good FPS quality by deciding that the best choice was to process locally. As we can see
in Figure 19h, the cloudlet strategy saved approximately 70.85% of the mobile device’s
energy when compared to JRIP. In this context, even with the cloudlet spending less of
a device’s energy, it had a loss of FPS quality with an average of 5.31 frames per second.
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Figure 19 – Results with unfavorable offloading: C7, C9, and C10.

Table 15 presents the mean and median values related to energy consumption for
the four strategies. In the C9 context, mean energy reveals low power consumption by
the JRIP strategy, despite concentrating a high number of outliers (see Figure 19e). It
consumes 1344 milliwatts while the cloudlet strategy consumes 1438 milliwatts, a differ-
ence of 6.53%, which means that both processing and connectivity efforts of the Moto
X Style are higher due to the overhead caused by background traffic (in the C9 context
the bandwidth must be moderate) and the offloading operations. In contrast, the energy
draining with J48 strategy is 1.36 times higher than the cloudlet. In general, the JRIP
and J48 strategies classify the C9 context with the ’No’ value, i.e. it is better to run it
locally. As a result, CSOS ensures a lower runtime as well as delivering an energy drain
similar to the cloudlet strategy.
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Table 15 – Comparative energy consumption to contexts C7, C9, and C10.

Context Strategy Min. 1st. Qu. Median Mean 3rd Qu. Max.

C7

J48 4.208 412.40 424.50 437.60 444.60 1413
JRIP 4.208 412.40 424.50 417.80 440.60 1338
Cloudlet - - - - - -
Local 5.067 408.40 412.40 409.10 420.40 903.20

C9

J48 33.19 1175 1838 1956 2364 5430
JRIP 20.12 963.50 1056 1344 1571 5083
Cloudlet 31.44 1106 1615 1438 1791 3003
Local 31.44 1564 1826 2001 2284 5176

C10

J48 42.15 760.80 908.30 960.30 1151 2392
JRIP 69.76 864.40 1003 1210 1387 3857
Cloudlet 52.46 187.60 302.10 352.60 389.90 1581
Local 76.69 879 975.70 1040 1158 2182

4.4.4 Results - Unknown context

Figure 20 (a)-(i) shows the results of the three set of unknown contexts chosen: C12,
C13, and C14. Figure 20a presents the runtime in seconds for the C12 context with the
four strategies: local, J48, JRIP and cloudlet. We can see that the two algorithms classified
the C12 context correctly, since the offloading operations reduced the runtime by 29.24%
for both J48 and JRIP strategies, even when the cloudlet’s vCPU was stressed, i.e. 100%
vCPU usage with a frequency of 71 times in Figure 20c. Such a performance gain of the
cloudlet server compared to intermediate smartphone (corresponding to Galaxy S4) may
be explained by the increase of computational overhead on the smartphone in terms of
the runtime of the BenchFace application. Figure 20b illustrates the distribution of the
energy consumption for C12 context. The results show that the energy consumption with
cloudlet, JRIP and J48 strategies is 40.34% lower than when using the local strategy,
since they require less computational effort, which leads the smartphone to save energy.

According to Figure 20d the results show that by using computation offloading with
the JRIP strategy, it is possible to reduce method execution time by up to 1.57 times
when compared to J48. Additionally, we can see that energy consumption using a JRIP
strategy is 30% lower than using J48 and 29.43% lower than a local strategy (see Fig 20e).
In a nutshell, the best choice is to offload, i.e. JRIP classified the C13 context correctly,
while the J48 classified it incorrectly.
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Figure 20 – Results with unknown offloading: C12, C13, and C14.

The Figure 20g presents the FPS during CollisionBalls’ execution for the C14 Con-
text. The results show that for the 750 balls scenario the local execution related J48
strategy presents a higher FPS than offloading to a cloudlet server using the JRIP strat-
egy. For instance, the local execution runs with approximately 69.14% more FPS than the
cloudlet server. Such a result indicates that depending on the context (more specifically the
smartphone’s hardware), computational offloading cannot improve CollisionBalls’ perfor-
mance. Regarding the energy, Figure 20h and Table 16 show that the JRIP strategy saves
38.96% more energy than the J48 strategy by using offloading operations with bandwidth
free and cloudlet’s vCPU relaxed (see Table 13). Even when the application is executed
locally using a J48 strategy, the smartphone consumes 2.12 times less energy than the lo-
cal strategy. This situation is justified because the workload generated to stress the CPU
reaches a value near the minimum threshold (i.e. 45%) for smartphone’s CPU attribute
mapped as the normal load (see Figure 20i).
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Table 16 – Comparative energy consumption to contexts C12, C13, and C14

Context Strategy Min. 1st. Qu. Median Mean 3rd Qu. Max.

C12

J48 18.61 727.30 923.90 950 1220 2246
JRIP 14.26 736.60 932 936 1135 4076
Cloudlet 25.58 728.30 915.30 931.30 1191 2720
Local 30.21 1059 1371 1574 1634 4615

C13

J48 30.57 1115 1901 1984 2518 4793
JRIP 32.32 1009 1525 1388 1762 3218
Cloudlet 30.57 977.30 1568 1407 1790 3457
Local 30.57 1454 1823 1967 2196 4910

C14

J48 65.92 576.80 816.40 821.60 1040 2086
JRIP 246.8 292.0 427.6 501.5 626.4 1723
Cloudlet 247.6 363.5 506.6 555.4 712.1 1835
Local 650.3 1482 1713 1748 1971 4062

In summary, the set of experiments to unknown contexts provided insights to the
benefits of using the offloading technique only when beneficial with the J48 and JRIP
strategies of the CSOS. The J48 classifier in particular is a promising solution to handle
different application categories, since the rules produced by it are more detailed and the
set of classes are balanced.

These results show that the proposed CSOS outperforms the baseline in all cases. In
some contexts (e.g., C4 and C12 contexts), the CSOS achieves performance and energy
efficiency at the same time with a fair tradeoff between required objectives. Nonetheless,
there are contexts (e.g., C7 and C10 contexts) where CSOS achieves a single objective
and may sacrifice energy efficiency or performance.

4.5 Summary
This chapter presented CSOS, a system able to perform context-sensitive computa-

tional offloading that uses machine-learning classifiers to ensure high accuracy in offload-
ing decisions. The proposed solution relies on our context database for the training and
testing of four classification algorithms previously selected. These are J48, JRIP, IBK and
Naive Bayes, of which two are chosen for implementation in CSOS - J48 and JRIP - since
they had the best performance over our database.

In order to evaluate the proposed solution, we developed a decision engine that
adopts the J48 and JRIP classifiers for decision-making and profilers that transforms raw
context elements to high-level context information at runtime. We then conducted experi-
ments using three benchmarking applications that perform intensive computing. The first
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experiment compared the runtime, FPS, and energy consumption with the CSOS enabled
and disabled for favorable contexts, where the remote execution will be a better option
than local execution. The second experiment is similar to the first, with the difference that
it uses unfavorable contexts, where the opposite is true. The last experiment is similar to
previous two, with the difference that it uses unknown contexts, i.e. the author does not
know where the execution of code/data will require less computational effort (remote or
local).

The results show that CSOS proves to be more effective compared to related works
and baselines. CSOS achieved an accuracy of 95%, which in turn helped in taking the
right offloading decision, thus saving energy consumption and improving runtime.
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5 MOBILITY-AWARE OFFLOADING

This chapter presents the Mobile Context-Sensitive Offloading System (mCSOS)
architecture as well as the interaction between its components (section 5.1). In addition,
we present a step-by-step signaling overview (section 5.2) and describe the implementation
details (section 5.3). Finally, the system is evaluated in the test-bed scenario with three
different experimental environments (section 5.4).

5.1 Design Goals and Architecture
By applying a set of mobility-specific extensions, the CSOS becomes "mobility

CSOS" or mCSOS. These extensions are related to the network controller that consists of
a mobility management application, able to maintain the device’s IP network address and
track their location, and a remote caching technique to speeds up the offloading response
time between PoAs.

The mCSOS is divided into three layers (see Figure 21). The ’mobile environ-
ment’ layer consists of constrained-resource devices (e.g., smartphones and smartwatches),
whether in processing or energy autonomy. When running heavy processing due to some
demanding computational power application, those devices may not perform as expected,
harming the user experience.
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Figure 21 – mCSOS Architecture.

The ’network infrastructure’ layer consists of network elements (e.g., switch, router,
access point). Our mobility management application that run on top of the OpenFlow con-
troller, programmatically controls these elements. It keeps handover execution transparent
to the offloading operations. Hence, the device state is maintained regardless the cloud-
side running service. For instance, the acquired IP address in the first wireless router
by the mobile device is not changed, even if it switches to a nearby wireless network.
Thus, it avoids network layer reconfiguration. The OpenFlow controller can be deployed
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on low-cost commodity hardware and provides a global view of the network elements.
Lastly, the ’cloud infrastructure’ layer represents public cloud providers (e.g., Amazon
AWS, RackSpace, Windows Azure) with its Service Level Agreement (SLA) and cloudlet
servers that contain, for instance, a virtualized environment with VM.

There are two types of interactions regarding the proposed architecture. The first set
relates to the communication between the mobile device and OpenFlow controller. When
the mobile device is within a wireless coverage, it requests connection to the AP and such
action, together with the controller, creates routing rules to assist the packet forwarding
process towards cloudlet/cloud resources. Then, the middleware on mobile device side
executes the cloud discovery and application deployment services. The objective of the
discovery service is to discover a remote execution environment of the application that
is running on the same wireless network that the mobile device is connected to (e.g.,
cloudlet). On the other hand, the deployment service is responsible to deploy application
services on the cloud resource. When the discovery service does not detect an application
service for a specific application running on the cloud, the deployment service is used to
send all dependencies (e.g., binaries, libs, data) from the mobile application to the cloud in
order to start the application service for such application. These services use UDP-based
multicast in order to advertise mobile device presence within the same wireless coverage
where the cloud resource is located. After the association between the mobile device
and cloud resource, a profiling service (application, device, network, and cloud) captures
context data at runtime to assist the decision engine that decides if the annotated method
should be offloaded or not, as described in the previous chapter.

The second interaction entities are the OpenFlow controller and cloud resource. In
the discovery and deployment services, middleware server listens to the announcement
of the mobile device on the wireless network and responds indicating that it is available
to receive requests. As mentioned, if there is no corresponding service to the application,
it will be deployed. The profiler service monitors and collects data from the network
and cloud, while the remote execution environment of the application (on cloud-side)
receives code/data from the mobile device, then it execute them, and sends the result to
mobile device continue the execution flow of the application. At last, the unidirectional
interaction is the data caching, considering the previous processing at the same cloud
resource, the remote caching technique only returns the processing result to the requester
mobile device.

Since all the components of the mobile device and cloud/cloudlet were described
in the previous chapter (see Chapter 4, Section 4.1), we will describe only the network
controller components, as well as remote cache component.

• Remote Caching: It is responsible for storing and retrieving application data
received by cloud resource. After data is processed, a copy is temporarily stored
in the cache, and if an application requests the same data, the cache returns the
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result of the offloaded execution, thus avoiding extra processing time in the cloud
and speeding up response time.

• OFMAG: The OpenFlow Mobility Access Gateway (OFMAG) represents the wire-
less routers, which aims to monitor the user’s mobility and to request an IPv4 prefix
to the network controller. If any mobile device comes out of its coverage, it must
notify the OFLMA by informing the occurrence of this event. The OFMAG sends a
Proxy Binding Update (PBU) message to the OFLMA, to associate its address with
a mobile device identification, e.g., the Media Access Control (MAC). Then it re-
ceives a Proxy Binding Ack (PBA) message from OFLMA, which contains network
prefix to be allocated to the mobile device.

• OFLMA: The OpenFlow Local Mobility Anchor (OFLMA) represents the routers
or switches. OFLMA has functions such as: creating rules on OpenFlow switches to
meet the mobility needs of OFMAG’s clients, receiving and handling PBU messages,
and sending PBA messages to the mobile device. Besides, it manages the OFMAGs,
i.e., controls all traffic coming out of the mobile device and arriving at the cloud
resource. Furthermore, it maintains data structures that allow knowing if the user is
moving between different OFMAGs (handover) and creates a Binding Cache Entry
(BCE) to register device’s information (e.g., device identifier).

Both OFMAG and OFLMA components were inspired by the Proxy Mobile IPv6
(PMIPv6) protocol (GUNDAVELLI et al., 2008). It allows the mobile device to be exempt
from any signaling during mobility session while other entities, such as MAG and LMA,
undertakes the signaling on behalf of the mobile device.

5.2 Signaling Details
This section presents the mCSOS’s signaling, as well as a more detailed description

regarding the messaging between its components. The two signaling processes will be
described below and are only possible with the use of the infrastructure composed by
OFMAGs, OFLMA, OpenFlow Controller (in Figure 22 and Figure 23 is represented by
the acronym OF-C), and cloudlet server. The signaling procedure described in Figure 24
utilizes conventional network infrastructure and cloudlet server.

5.2.1 Signaling with Mobility Management

Figure 22 shows a scenario where the mobile device is connecting to the OFMAG1
router, then obtaining an IP address, and with the established connection, identifies the
presence of a cloudlet server, hence performing the cloud discovery and application de-
ployment.
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Figure 22 – Connection signaling with mobility management.

The Mobile Device (MD) initiates the admission process requesting a connection to
OFMAG1, which immediately informs the OF-C to register the MD’s profile on the MN-
PolicyProfile 1 . The MD requests an IP address by sending a DHCP DISCOVER packet
2 . OFMAG1 forwards the request to the OF-C and sends a PBU message requesting

the assignment of an address interface 3 . At the OF-C (instance that represents the
OFLMA class), an BCE is created for registering MD information (Event A). The OF-C
responds with a PBA message creating forwarding rules for the OFMAG1 router for fur-
ther defining the new path for the following mobile device packets in order to receive an
IP address 4 . The OF-C also has the DHCP server and thereby offers an IP address to
the MD 5 , which responds to accept the offered IP address 6 , and the OF-C confirms
the IP allocation, concluding the IP assignment process 7 . Then, specific routing and
forwarding rules to the IP and MD’s interface are created in the OFLMA and OFMAG1
8 . Upon connection, the cloudlet discovery service starts. Differently, the MD’s discovery

service announces its presence using User Datagram Protocol (UDP) multicast 9 . After
detecting this announcement, the same service on the cloudlet-side responds by sending
its IP through the UDP unicast 10 . As this is the first access to the cloudlet, the cor-
responding service for the application does not exist yet. Therefore, the service sends all
dependencies (binary files and libraries) following the pattern of the first file: name, file
size, and finally its content 11 . After receiving all the files, the service on cloudlet-side
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sends the port number where the application service is running 12 . From this moment
on, the proxy handler can trigger the offloading operations.

The signaling scenario described in Figure 23 depicts offloading operation (to the
cloudlet server) being performed by the proxy handler through OFMAG1 when the MD
moves into the OFMAG2’s coverage area, enabling handover and then receiving the pro-
cessing result.
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Figure 23 – Handover signaling with mobility management.

Once the connection is established and the middleware services finished, the proxy
handler triggers offloading operations by sending the class and method names, as well as
the parameter values for remote processing, being followed by a handover operation 1 .
Due to network change, the MD requests a new connection to the OFMAG2 router, which
redirects to the OF-C. Upon receiving the request, OF-C checks the registered profiles
and detects a handover. Therefore, it updates the MNPolicyProfile with the new MD
location 2 . The MD sends an IP request to the DHCP server 3 and therefore the OF-C
becomes aware of the handover, providing the same device’s IP 4 . The MD accepts the
offered IP, and the OF-C confirms, finishing IP address assignment 5 6 . The OFLMA
receives the new rules to update the device’s location and defines new routes 7 . Then, the
OF-C configures the new forwarding rules on OFMAG1 and OFMAG2 using OpenFlow
protocol, redirecting the traffic to the new MD’s location 8 . With the reestablished
communication, the remote execution environment of the application returns the result
to the MD 9 .
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5.2.2 Signaling with Remote Caching

This scenario aims to illustrate unavailability of an SDN network infrastructure con-
trolled by a mobility management application, leaving the remote caching responsibility
to speed up delivery of the results to the mobile device when it suffers handover. It is
similar to the previous handover situation, differing only by the OFMAGs, OFLMA and
OF-C infrastructures, which are not utilized. On the contrary, only the device’s proxy
handler and cloudlet server’s remote caching inside a default network infrastructure are
implemented.
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Figure 24 – Handover signaling with remote caching.

In Figure 24, the MD requests the establishment of a new connection with the wire-
less router 1 (WR1) 1 . Next, the MD requests an IP address to the DHCP server in
WR1, which offers a new IP address to the MD (Event A). The device accepts the ad-
dress while WR1 confirms its reservation. Upon connection, the discovery and deployment
services are executed and finalized 2 3 . The offloading operations for cloudlet are then
triggered 4 . The remote caching logic checks if the requested data has been processed.
Since this is the first entry, the cloudlet processes, stores a copy of the resulting data in
a cache and returns the processed data to the MD. However, before returning a result, a
handover occurs. The cloudlet will try to deliver the result by up to three times, without
success. After the handover operation, the MD requests again the establishment of a new
connection with WR2 5 , then it requests a new IP address to the DHCP server in WR2
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(Event B). After establishing the connection, only the discovery service is activated, be-
cause the corresponding service has been deployed earlier in the same cloudlet server 6 .
The offloading operation is performed again for the same data 7 and as it was processed
previously, the cloudlet recovers it from the cache and returns the result 8 .

5.3 Implementation of the System
mCSOS is written in Java (middleware, mobility management application, and

benchmark applications) and works in any cloud resource with Android/Java platform.
The mobility management application was deployed with the Model-Driven Service Ab-
straction Layer (MD-SAL) together with Open Services Gateway Initiative (OSGI) frame-
work (OSGI, 2016). This application runs on OpenDaylight (Matthieu Lemay and Luis Gomez,
2015) SDN controller that uses the Maven (MAVEN, 2016) for easier build automation.

Figure 25 – Web-dashboard ODL with smartphones connected to the network.

OpenDaylight (ODL) uses Link Layer Discovery Protocol (LLDP) messages to dis-
cover the topology of the devices connected to the OpenFlow network. The ODL topology
Web-dashboard (see Figure 25) provides a holistic view of the links between hosts and
switches. The two OFMAGs routers are represented by switches, in contrast, the OFLMA
is depicted as a host rather than a switch, physically being a switch but with the gateway
function. The OFLMA is seen as the central connection point to the other networks and
not as a network switch. Thus, each OFMAG has its wireless network, i.e., different IP
ranges, but works both as a gateway and as a switch to mobile devices. Each OFMAG
has an IP linked to one port so that the hosts connected to each network can also com-
municate with other networks, being named GW-network in Figure 25. Finally, MD1
and MD2 hosts representing the mobile device connected to the wireless network.

As illustrated in Figure 26, the OFLMA and OFMAG classes extend the Thread class,
which allows managing more than one physical element of a wireless network infrastruc-
ture. We deploy our own DHCP server through the DHCPServer class in the controller.
Therefore, the DHCP server exchanges messages with the mobile device through the



Chapter 5. MOBILITY-AWARE OFFLOADING 89

sendOfferMessage and sendAckMessage methods for IP address assignment by the OFMAG

class.

Figure 26 – Class diagram of the OFLMA and OFMAG.

The getOMAGProfile() feeds the OFMAG profile (i.e., status, port, identifier) that is
transferred to the MNPolicyProfile class instance, which creates a profile for each mobile
device connected to the corresponding OFMAG. Therefore, it is possible to know if the
connection deals with a handover or not. If handover occurs, the run() method from
OFLMA class checks the identifier (ID) used in the first connection of the mobile device
and authorizes its migration. During the handover operation, the IP address is the same
utilized by the previous network, which maintains the connection in the upper layers.
Finally, the installMobileNodeRule() method is responsible for installing the routing
and forwarding Openflow rules in OFMAGs to restore the communication between device
and application service in the cloudlet.

In mCSOS, the developer needs to initiate the client middleware inside the OnCreate()
from the MainActivity. The OnCreate() is usually the first function to be executed in-
side an activity, and it is responsible for loading XML files and other initial operations.
It’s also necessary to label a method candidate to be offloaded as @Offloadable, which
indicates a computation-intensive method of a specific application.

Figure 27 illustrates the class diagram of the Math application that was developed to
evaluate the mCSOS. It has two methods that apply different sorting algorithms (selection
sort and insertion sort) and one method that uses the Fibonacci recursive algorithm. In
the experiments of section 5.4, they are marked with the @Offloadable, since they require
intensive processing. These marked methods must receive one or more parameters, and
they must return some result.
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Figure 27 – Class diagram of the Math application with remote caching.

The recordArray() and recoveryArray() methods respectively stores and retrieves
cache-processed data, considering that it is out of the storage directory. As there are many
data types and each application may have its own remote caching mechanism, it is neces-
sary to perform the conversion to accelerate the recovery process. For instance, to speed
up the registration process, the toByteArray() is called before of the recordArray(),
so as to convert the result of the numbered list in byte chain, and after to store in the
cloudlet. In the case of recovery of number list (processing result), the toDoubleArray()

is invoked after the recoveryArray(), to convert the byte chain back to the number list.
This list is the result that must be sent to the corresponding application on the mobile
device.

5.4 Performance Evaluation
In order to evaluate the proposed solution, the author has developed a benchmark

application called ’Math’ and employed the BenchImage application, both running on
Android platform. These will be used as proof of concept to demonstrate our system’s
seamless mobility offloading feature.

Math application sorts a list of numeric values using two sorting algorithms, selection
sort and insertion sort. The user sets both the value of list size and the algorithm to be
used. The proxy handler sends the values that correspond to the list size to the application
service on the cloud/cloudlet. Then, the application service sorts a list of unordered
numbers. Finally, on the device side, the cloud/cloudlet returns the ordered list.

In all experiments, the Trepn Profiler5 application monitors the device’s battery
consumption, so it is possible to collect statistics from its database.
5 Available in https://developer.qualcomm.com/software/trepn-power-profiler.
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5.4.1 Experimental Setup

Figure 28 shows an indoor mobility scenario for evaluating offloading operations
with continuous handovers. Each action is described below.

OFLMA

OpenStack 

Cloudlet Server

ODL 

Controller

App App

OpenDayLight

App

Figure 28 – Testbed scenario.

A smartphone moves linearly between two access points (OFMAGs). Initially, the
proxy handler running on the mobile device sends data (e.g., images or numerical values)
to the cloudlet server using the OFMAG1 router. Next, the mobile device starts moving
towards OFMAG2 router’s coverage area, which forces the device to execute a handover.
So, there are two possible outcomes: if mobility management is supported, the device will
wait for the processing response at the new access point; otherwise, the proxy handler
must resend data to the cloudlet from the new access point. In both cases, after receiving
the processing result, a new trip starts activating the proxy handler to send data to the
cloudlet server through the OFMAG2 router. Then, the mobile device moves back to the
OFMAG1 router’s coverage area, and the aforementioned outcomes may occur depending
on the adopted strategy. This scenario is repeated 30 times, i.e., 15 times in the OMAG1
and OMAG2 routers’ coverage, respectively.

Table 17 presents the configuration (hardware and software) of all equipment used
in our experiments. We have used three smartphones from different manufacturers and
with hardware differences. In our experiment, the Handset A, Handset B, and Handset C
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are high, medium, and low cost smartphones, respectively.

Table 17 – Summary of hardware and software configurations.

Equipament Configuration
Mobile Device Handset A/Android 5.1.1, Dual-core 1.8 GHz Cortex-

A57+Quad-core 1.44 GHz Cortex-A53, 3GB RAM and 3000
mAh
Handset B/Android 4.3, Quad-core 1.4 GHz ARM Cortex-A9,
2GB RAM and 2100 mAh
Handset C/Android 4.4.2, Dual-core 1.3 GHz ARM Cortex-
A7, 512 MB RAM, 1900 mAh

Cloudlet Server Controller node/CentOS 7.1, Quad-core Intel® Xeon® E5649
2.53GHz, 6GB RAM
Computer node/CentOS 7.1, Hexa-Core Intel® Xeon® E5649
2.53GHz, 12 GB RAM/Instance with Ubuntu 14.04 LTS, 6
vCPUS and 6 GB RAM

OpenFlow Controller Ubuntu 14.04 LTS, OpenDaylight Lithium 0.3.1 SR1/Quad-
core Intel i7 and 8GB RAM

Wireless Router TP-LINK AC1200/OpenWRT Chaos Calmer 15.05, Open-
VSwitch 2.3.9, 300Mbps, 2.4GHz and 802.11ac Standard

OpenFlow Switch Switch Extreme X440-24p-10G/ExtremeXOS Release 15.7

The configuration steps of the hardware and software mentioned in Table 17 are
described below: (i) cloudlet server installation: OpenStack kilo (OpenStack Kilo, 2016)
was configured on two servers (node controller and node computer) with the CentOS 7.1
operating system, being one of the servers only for hosting the VMs (called instances);
(ii) OpenFlow controller installation: OpenDaylight Lithium (OPENDAYLIGHT, 2016)
was configured on a desktop with the Ubuntu 14.04 operating system. Then, mobility
management application was configured to work with OpenDaylight; (iii) OpenFlow
switch installation: SDN support has been enabled on the Switch Extreme X440-24p-
10G and it was configured to receive rules from the OpenFlow controller; (iv) wireless
routers installation: TP-LINK AC1200 equipment’s had the default firmware replaced
by OpenWRT and they was configured to receive rules from the OpenFlow controller; (v)
setting up a VM in cloudlet: an instance was created from the Ubuntu 14.04 image, in
which the server-side middleware was deployed; and (vi) setting up a mobile device:
benchmark applications have been installed and the client-side middleware was deployed.

Table 18 shows all the parameters used in the experiment. We execute the BenchIm-
age application 30 times for each image size (4MP and 8MP), applying the Red Ton filter.
Math application is also executed 30 times for each sorting algorithm (Insertion Sort and
Selection Sort) taking as input, the numerical list size 50000 and 40000, respectively.
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Table 18 – Parameters used in the experiment

Strategies Parameters Value

Mobility Management

Remote Caching

Default Mobility

BenchImage

Filter Red Ton
Size 4MP and 8 MP
Image FAB Show
Executions Number 30 times

Math

Calculation Type Numerical Sorting
Sorting Algorithm Insertion and Selection
List Size 50000 and 40000
Executions Number 30 times

All experiments utilized computational offloading operations with three strategies:

• Mobility management (labeled as Mobility): provides the entire mCSOS infrastruc-
ture (i.e., wireless router as OFMAG, switch OpenFlow as OFLMA, and OpenDay-
light controller), mobility management application, discovery/deployment services
and proxy handler.

• Remote caching (labeled as Caching):provides common network infrastructure (i.e.,
wireless router with DHCP server and simple switch), discovery/deployment ser-
vices, proxy handler, and remote caching.

• Default mobility (labeled as Default):provides common network infrastructure (sim-
ilar to Caching but without remote caching support), discovery/deployment ser-
vices, and proxy handler.

Finally, to enhance the reader’s comprehension, only six images will be shown (re-
sults from the 8MP image and SEL algorithm) instead of all twelve images that corre-
spond instance vCPU and smartphone CPU for each image (4MP and 8MP) and sorting
algorithm (INS and SEL).

5.4.2 Calculation Methodology of the Metrics

Processing time and energy consumption are important metrics to be considered in
any mobile cloud scenario. These metrics have been carefully designed, as they have direct
impact in measuring the behavior of mobile hardware. While energy required for process-
ing and communication with cloudlet have direct relation with energy consumption, the
total execution time is related to the wireless link quality and remote processing capa-
bility. Subsequent subsections describe the calculation methodology for above mentioned
metrics.



Chapter 5. MOBILITY-AWARE OFFLOADING 94

5.4.2.1 Total Execution Time

The Total Execution Time (TET) metric is computed to estimate the total time for
offloading computing during mobility. The TET comprises of transmitting, processing,
and receiving time at the cloud. The metric is computed as follows:

𝑇𝑡𝑖
= 𝑇𝑡1𝑖

+ 𝐾𝑖 * (𝑇𝑝𝑖
+ 𝑇𝑟𝑖

) + (1−𝐾𝑖) * (𝑇𝑡2𝑖
+ 𝑇𝑝𝑖

+ 𝑇𝑟𝑖
) (5.1)

𝐾𝑖 ∈ {0, 1} =

⎧⎪⎨⎪⎩𝐾𝑖 = 0 if first transmission failed

𝐾𝑖 = 1 if first transmission is successful

where, 𝑇𝑡𝑖
is the total execution time of the i-th execution up to 30 repetitions,

which is a summation of transmitting time (𝑇𝑡1𝑖
), processing time (𝑇𝑝𝑖

), and receiving time
(𝑇𝑟𝑖

). Since there is a possibility of retransmit data due to handover with the adoption of
remote caching and default mobility strategies, the variable 𝐾𝑖 was added. The variable
𝐾𝑖 receives the value "0" when the first attempt to transmit the data fails, requiring its
retransmission. On the other hand, when the first transmission is successful (with the
adoption of mobility management), 𝐾𝑖 receives the value "1".

The mean time is computed through of the summation of the 𝑇𝑡𝑖
values divided by

the total number of repetitions. This metric is highest when the default mobility strategy
is adopted.

𝑇𝑚 =
∑︀𝑛

𝑖 𝑇𝑡𝑖

𝑛
(5.2)

where, 𝑇𝑚 represents the mean of the total execution time, and 𝑛 denotes the total
number of repetitions.

5.4.2.2 Energy Consumption

The energy consumption metric represents the energy consumed by mobile device
for computational offloading. This metric depends of the total execution time used for
calculate speed of remote computing. Power estimation takes into account the frequency
and load of every CPU core, Graphics Processing Unit (GPU), and brightness of the
screen. Since it was not published the model that Trepn Profiler uses to estimate power,
the mathematical representation is out of scope of the paper.

𝐸𝑐𝑖
= 𝑃𝑒𝑖

* 𝑇𝑡𝑖
(5.3)

𝑃𝑒𝑖
= 𝑉 𝑜𝑙𝑡𝑎𝑔𝑒𝑖 * 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖 (5.4)

where, 𝐸𝑐𝑖
represents the energy consumption for the mobile device perform a com-

putational offloading to cloud on the i-th execution up to 30 repetitions, which is a product
of electric power (𝑃𝑒𝑖

) and total execution time (𝑇𝑡𝑖
) required to process.
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The mean energy is computed through of the summation of the 𝐸𝑐𝑖
values divided

by the total number of repetitions. This metric is highest when the remote caching and
default mobility strategies are adopted.

𝐸𝑚 =
∑︀𝑛

𝑖 𝐸𝑐𝑖

𝑛
(5.5)

where, 𝐸𝑚 represents the mean of the energy consumption, and 𝑛 denotes the total
number of repetitions. In the following sections, we present and discuss the results of the
experiments for the three strategies.

5.4.3 Case Study One - Handset A

Figure 29 (a)-(f) shows results obtained in the experiment using the Handset A de-
vice. Each graph shows only the first five results of up to 30 executions. A black line circle
identifies the first five handovers for each evaluated environment. It is possible to identify
the amount of CPU processing consumed by the Handset A and the vCPU usage by a
cloudlet’s instance (both at left y-axis). Besides, the network profiling between Handset A
and cloudlet through the RTT (right y-axis) is depicted (red lines). The network profiler
works in background and was configured to send an Internet Control Message Protocol
(ICMP) packet (echo request) every one second and await the response (echo reply) by
one-second timeout.
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Figure 29 – Behavior of the Instance (VM) and Moto X Style CPU with five handovers.

For both applications, the RTT is kept low when using SDN-based mobility man-
agement, (see Figure 29a and 29d) while it increases and becomes highly unstable for
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remote caching and default mobility scenarios. This behavior occurs due to low priority
ICMP packets that suffer delay by increased network traffic during TCP packets exchange,
required to repeat offloading operations and cloudlet discovery service since handover im-
plies broken connections.

The results show that the smartphone’s CPU remained mostly below 90%, indicating
that the device did not perform substantial processing. However, the two results using
the default strategy presented few CPU utilization peaks (see Figure 29c and 29f), due
to the need to establish a new connection with the cloudlet and resend data (images or
numerical values) to be processed by the cloudlet. Moreover, the instance’s vCPU remains
at 200% of usage in most of the time, indicating that the server is processing both first
and second image (or first and second unsorted list) simultaneously; as a consequence of
the device resending data due to handover. The instance can deliver to the smartphone
only the second processed data, since the first data was discarded due to application port
change and IP address renewal. Consequently, this may have caused an unnecessary use
of instance’s vCPU.

Regarding the mobility strategy, handover occurs during the data processing by
cloud instance, i.e., the device requests the filter application (or algorithm processing) to
the instance, next the handover occurs, and with a short extra time, the instance delivers
the result to the device. In the caching strategy, instance’s vCPU goes up to 100% on
the first offloading. From the second offloading, the caching logic just compares the image
(or the sorting result) and returns it processed from the cache. During this comparison,
the handover happens and becomes necessary to carry out the second offloading, which
is answered quickly by the cloudlet (see Figure 29b and 29e). The fact of not having to
process the same data allows shortening the time between the second and fifth handovers.
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Figure 30 – Total time and battery consumption in Handset A.

Figure 30 (a)-(b) illustrates the total execution time and energy consumption of the
BenchImage (4MP and 8MP) and Math (INS and SEL) applications on Handset A, while
Table 19 offers a comparison of the mean and median with 95% confidence intervals. The
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total time is comprised by sending data to the cloudlet, execute remote processing and
return the result to the mobile device, when we use the mobility strategy (more details
read Section 5.4.2). The handover also directly influences in the default strategy total
time, since after the handover, the mobile device needs to reallocate a new IP (DHCP
service), enable the discovery service and perform the three aforementioned steps. This
leads to the results illustrated in Figure 30a, where the total execution time is longer in
all four experiments.

The total time considering the mobility strategy is 60.13% and 57.64% smaller than
the default strategy to the 4MP and 8MP images respectively, and approximately 32.22%
and 54.8% greater than the caching strategy to the same images. Similar to the default
strategy, the caching strategy needs to execute the same procedures after a handover,
except to reprocess the same data, that is, it only needs to return the processing result;
thus, the caching strategy seems to be appropriate for large amounts of data (4MP and
8MP images). The result corresponding to the INS algorithm shows that the mobility
and caching strategies obtained a 13 second median time. Moreover, the caching strategy
presented a high number of outliers in all experiments, justified by the instability of the
first offloading that has a longer time than the following offloads.

Table 19 – Comparative total time and battery consumption in Handset A.

Strategies Param. Mean time Med. time Mean energy Med. energy

Mobility
Management

4 MP 29.70 ± 0.30 29.00 0.3805 ± 0.09 0.0726
8 MP 52.73 ± 0.62 52.00 0.4589 ± 0.06 0.18110
INS 13.63 ± 0.46 13.00 0.6675 ± 0.11 0.4571
SEL 20.17 ± 1.49 18.00 0.3453 ± 0.08 0.03126

Remote
Caching

4 MP 20.13 ± 2.80 18.50 2.4000 ± 0.55 1.036
8 MP 23.83 ± 4.18 20.00 0.8569 ± 0.82 0.2601
INS 14.20 ± 2.39 13.00 3.3190 ± 0.76 1.08700
SEL 13.83 ± 1.46 13.00 1.9030 ± 0.43 0.63980

Default
Mobility

4 MP 74.50 ± 7.48 75.00 5.0710 ± 0.61 3.7330
8 MP 124.5 ± 8.24 120.50 0.4710 ± 0.14 0.0000
INS 32.63 ± 2.95 33.50 1.2920 ± 0.43 0.1505
SEL 47.43 ± 3.66 47.00 2.9570 ± 0.57 1.3490

On the Figure 30b, the results indicate that the default and caching strategies drain
more energy on all four experiments, which means that both processing and connectivity
efforts of the Handset A are higher due to the overhead caused by signaling and offload-
ing operations. The energy consumption corresponding to the 4MP image shows that
the mobility strategy is 84.14% and 92.49% more efficient than the caching and default
strategies, respectively. The corresponding results for SEL algorithm show that the energy
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consumption in mobility strategy is 81.85% and 88.32% smaller than caching and default
strategies, respectively. Regarding the 8MP image results, the mean energy consumption
in the mobility strategy is equal to 0.4589W/h, which is smaller compared with the caching
and default strategies. Such difference between the three strategies occurred because the
waiting time for receiving the results is much greater in the 8MP image experiment.

5.4.4 Case Study Two - Handset B

In the second case study, a Handset B smartphone was used to evaluate the mCSOS
performance on the same testbed scenario. Figure 31a and 31d presents a more stable CPU
usage in the mobility strategy when compared with the caching and default strategies.
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Figure 31 – Behavior of the Instance (VM) and Galaxy S3 CPU with five handovers.

We can observe many RTT variations in both remote caching and default mobility
strategies due to the low priority ICMP packets when there is a significant number of
offloading operations and discovery service messages in a short period. In both results
corresponding to default mobility, the smartphone’s CPU processes with more intensity,
because data amounts affect the processing duration as a whole. The time of the first
five handovers with the 8MP image reaches 600 seconds with default strategy, while that
the mobility strategy reaches below 300 seconds, i.e., it is less than half the time. The
long time of the default strategy occurs because the instance is processing two offloading
requests at the same time, since only the second result is delivered to the smartphone.
On the other hand, the short period in the mobility strategy occurs because the instance
processes only one offloading request for each handover.
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Figure 32 – Total time and battery consumption in Handset B.

Figure 32 presents the total time (on the left) and energy consumption (on the
right) on Handset B. For the 8MP image, the total execution time with default strategy
is approximately 2.2 times greater than the mobility strategy and 4.46 times greater
than the caching strategy. Table 20 shows that the default strategy has the worst result
towards the execution time with constant handovers as it requires double processing in
the cloudlet, double DHCP signaling, and discovery services.

Table 20 – Comparative total time and battery consumption in Handset B.

Strategies Param. Mean time Med. time Mean energy Med. energy

Mobility
Management

4 MP 29.80 ± 0.40 30.00 0.1784 ± 0.03 0.04696
8 MP 53.27 ± 0.84 52.50 0.4357 ± 0.04 0.28490
INS 15.90 ± 1.70 13.00 0.4785 ± 0.05 0.42940
SEL 24.63 ± 3.13 19.50 0.2613 ± 0.04 0.17490

Remote
Caching

4 MP 26.80 ± 2.04 26.00 2.0570 ± 0.45 1.4230
8 MP 27.60 ± 3.37 26.00 1.7270 ± 0.28 1.4310
INS 21.20 ± 7.61 16.00 0.3336 ± 0.04 0.23570
SEL 22.07 ± 7.65 17.00 1.305 ± 0.28 1.051

Default
Mobility

4 MP 66.83 ± 2.49 67.00 2.5470 ± 0.56 1.4400
8 MP 116.7 ± 4.72 116.0 1.4170 ± 0.31 0.8079
INS 41.93 ± 1.67 41.50 0.9582 ± 0.17 0.5344
SEL 55.37 ± 4.65 54.50 1.3130 ± 0.23 0.76650

Besides that, for the INS and SEL algorithms and 4MP image, the performance dif-
ference between the mobility and caching strategies is relatively small. This result shows
that although the caching strategy accelerates the result delivery, it requires higher smart-
phone processing and network signaling. Nevertheless, the caching strategy is 10.06% and
10.39% faster than mobility strategy to the 4MP image and SEL algorithm, respectively.
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Regarding energy consumption, the results indicate that the mobility strategy sig-
nificantly reduces the energy consumption to the 4MP/8MP images and SEL algorithm,
which proves to be a promising solution concerning energy saving environments with con-
stant handovers and offloading operations. Although the mobility strategy has the lowest
execution time for the INS algorithm, it consumes more energy than the caching strategy
(see Figure 32b), i.e., the energy consumption with caching strategy is 30.28% lower than
when using the mobility strategy and 65.18% lower than default strategy. This solution
can be a good option for energy saving with applications that use small number of I/O
operations, such as Math application.

5.4.5 Case Study Three - Handset C

Figure 33 (a)-(f) shows the results for the Handset C device, which is classified as
a low-cost smartphone. Similarly to the Handset A and Handset B results, the Handset
C has a significant gain with the mobility strategy. The CPU usage remains close to
50% when the device is inside the mobility management environment, but remains at
100% usage when in the remote caching and default mobility environments. Unlike other
smartphones, the Handset C requires more processing because it has very limited hardware
(see Table 17).

0 50 100 150 200 250

Time [seconds]

0

50

100

150

200

250

300

350

C
P

U
 u

s
a
g
e
 [
%

]

0

50

100

150

200

250

300

350

400

450

R
T

T
 [
m

s
]

Mobility Management - 8MP

(a)

0 20 40 60 80 100 120 140 160 180 200 220

Time [seconds]

0

50

100

150

200

250

300

C
P

U
 u

s
a
g
e
 [
%

]

0

100

200

300

400

500

600

R
T

T
 [
m

s
]

Remote Caching - 8MP

vCPU (Instance)

CPU (LG L50)

RTT (Net. Profiler)

(b)

0 100 200 300 400 500

Time [seconds]

0

50

100

150

200

250

300

350

400

450

C
P

U
 u

s
a
g
e
 [
%

]

0

50

100

150

200

250

300

350

400

450

500

R
T

T
 [
m

s
]

Default Mobility - 8MP

(c)

0 50 100 150

Time [seconds]

0

50

100

150

200

250

C
P

U
 u

s
a
g
e
 [
%

]

0

100

200

300

400

500

600

R
T

T
 [
m

s
]

Mobility Management - SEL

(d)

0 10 20 30 40 50 60 70 80 90 100 110

Time [seconds]

0

50

100

150

200

250

C
P

U
 u

s
a
g
e
 [
%

]

0

50

100

150

200

250

300

350

400

450

500

R
T

T
 [
m

s
]

Remote Caching - SEL

(e)

0 50 100 150 200

Time [seconds]

0

50

100

150

200

250

C
P

U
 u

s
a
g
e
 [
%

]

0

100

200

300

400

500

600

R
T

T
 [
m

s
]

Default Mobility - SEL

(f)

Figure 33 – Behavior of the Instance (VM) and LG L50 CPU with five handovers.

Another mobility strategy feature is to ensure the loss of only a few packets. Both
results for the 8MP image and SEL algorithm present peaks in the RTT values during
handover. However, even with few breaks in the RTT line, the handover was conducted
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in less than one second. On the other hand, the caching strategy takes a greater time
compared to other strategies, since before returning the result, the middleware needs to
process and cache data. Therefore, in all results with 8MP images (Handset A, Handset
B, and Handset C), the first processing happens at intervals of 10 up to 80 seconds in the
caching strategy, while the mobility strategy takes of 5 up to 60 seconds.

Figure 34 illustrates the results of the total execution time and energy consumption
on Handset C smartphone. The mobility strategy slightly outperforms the caching strategy
with INS and SEL algorithms. For instance, it is just 12.05% faster than caching strategy
to the SEL algorithm. However, the caching strategy is just 1.39 times faster than mobility
strategy concerning the 8MP image. The key difference between results from mobility and
caching strategies is the mobile application’s category, where the mobility strategy reduces
the runtime for mathematical operations (e.g., Math application), and caching strategy
also reduces the runtime for image operations (e.g., BenchImage application).
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Figure 34 – Total time and battery consumption in Handset C.

Table 21 presents the mean and median values for the three strategies, where the
median energy reveals the single favorable result when we apply the caching strategy to
the 4MP image, i.e., it consumes 0.11W/h while the mobility strategy consumes 0.56W/h.
Differently, the mobility strategy provides better results in most experiments, for instance,
the difference between the mobility and caching strategies is 87.14% for the 8MP image.

In general, the Handset C has lower battery consumption when using the mobility
management environment, since it does not require to offload twice and therefore is the
most efficient using the mCSOS together with the mobility management application.



Chapter 5. MOBILITY-AWARE OFFLOADING 102

Table 21 – Comparative total time and battery consumption in Handset C.

Strategies Param. Mean time Med. time Mean energy Med. energy

Mobility
Management

4 MP 30.30 ± 1.24 29.00 0.5371 ± 0.014 0.55670
8 MP 52.77 ± 0.81 52.00 0.0663 ± 0.007 0.048500
INS 13.83 ± 0.81 13.00 0.0398 ± 0.003 0.04157
SEL 20.20 ± 1.64 18.00 0.1974 ± 0.011 0.2119

Remote
Caching

4 MP 31.50 ± 2.07 30.50 0.1037 ± 0.006 0.1102
8 MP 37.73 ± 6.90 34.00 0.5158 ± 0.012 0.54420
INS 23.13 ± 2.87 22.00 0.1045 ± 0.004 0.10390
SEL 22.97 ± 3.17 21.00 0.2501 ± 0.005 0.2553

Default
Mobility

4 MP 64.30 ± 1.92 63.50 0.9809 ± 0.016 1.0150
8 MP 113.8 ± 5.47 113.00 0.7520 ± 0.033 0.8112
INS 44.70 ± 7.60 41.00 0.0972 ± 0.002 0.10190
SEL 55.87 ± 6.09 47.00 0.5169 ± 0.018 0.5341

5.4.6 Hypothesis Testing with ANOVA

In experimental environments with one or more treatments, one of the most widely
used statistical methods is Analysis of Variance (ANOVA). The ANOVA involves the
analysis of data sampled from more then one population or data from experiments with
more than two treatments.

When we are conducting an analysis of variance, the null hypothesis considered is
that there is no difference in treatments mean, so once rejected the null hypothesis, the
question is what treatment differ. In the case of the experiments described previously,
we have two treatments. The first refers to the strategy (mobility management, remote
caching, and default mobility) and the second to the mobile device (Handset A, Handset
B, and Handset C). Consequently we have two factors, the strategy and the mobile device.

The first objective is to verify if the tested strategies have significant differences in
the improvements related to the total execution time and battery consumption, since in
some cases the strategy with remote caching presented better results and in others the
mobility management was superior, which leads us to believe that there may be similarity
in the performance of both, i.e., the hypothesis that there is a difference between them
is null. The second objective is to verify if the hardware configuration of mobile devices
presents differences in total execution time and battery consumption when applied in the
three strategies.

Table 22 corresponding to analysis of variance shows the P-value for the strategies
and devices. The P-value is the probability of effect (or difference) observed between the
treatments/categories be due to chance, and not to the factors being studied. In other
words, it is the probability of equality of performance between strategies and devices. The
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closer this value is to 1, probability of similarity between factors is high, and the closer
to zero, lower the probability of two or more factors being equal.

Table 22 – Comparison of P-value with ANOVA.

Analysis of Variance
P-value (Total Time) P-value (Battery Consumption)

Strategy <2e-16 <2.2e-16
Device 1.97e-05 <2.2e-16

Tukey’s Test
P-value (Total Time) P-value (Battery Consumption)

Mobility-Caching 0.0057065 0
Default-Caching 0 0.0051504
Default-Mobility 0 0
MotoX-L50 0.0000554 0
S3-L50 0.8509157 0
S3-MotoX 0.0004911 0

Thus, the P-value for the strategy and device is <2e-16 and 1.97e-05 corresponding
to total time, respectively, and the same value <2.2e-16 corresponding to battery con-
sumption. The results indicate that there is significant difference between strategies, as
well as between mobile devices.

Once ANOVA identified a difference between treatments, the Tukey’s test verifies
where there are differences, comparing one with the other in the peer-to-peer format.
According to the same Table 22 related to the Tukey’s test, the P-value (total time) cor-
responding to the strategies, indicates that the differences Default-Caching and Default-
Mobility are highly significant, while the difference Mobility-Caching is significant. On
the other hand, the P-value (total time) corresponding to the devices, indicates that the
differences MotoX-L50 and S3-MotoX are significant, while the difference S3-L50 is not
significant.

A more easy way to interpret these outputs is visualizing the confidence intervals
for the mean differences. Figure 35 shows the confidence interval for the means differences
in relation to the total execution time. One can see that only the confidence interval
for S3-L50 contain 0. Thus, it appears that the smartphones Handset B and Handset C
do not differ among themselves, but are different from Handset A (see Figure 35b), i.e.,
when considering a significance level of 5%, we do not reject the equality hypothesis in
the influence that strategies have on the performance of the Handset B and Handset C
smartphones. This result is acceptable, since these smartphones are able to achieve similar
performance for different strategies.
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(b) Mean differences for device.

Figure 35 – Confidence level for total execution time.

Regarding strategies (see Figure 35a), remote caching and mobility management are
very different from default mobility, confirming significant improvements in application
performance. These two strategies are also different, but with near performance, which
allows the use of one, in case of unavailability of the other.

The P-value (battery consumption) corresponding to the strategies (see Table 22),
indicates that the differences Mobility-Caching and Default-Mobility are highly signifi-
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cant, while the difference Default-Caching is significant. On the other hand, the P-value
(battery consumption) corresponding to the devices, indicates that the differences MotoX-
L50, S3-L50, and S3-MotoX are highly significant.
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Figure 36 – Confidence level for battery consumption.

Figure 36 shows the confidence interval for the means differences in relation to
the battery consumption. Mobility management proved to be very different from remote
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caching and default mobility, which proves its superiority against the other strategies when
it is wanted to save energy. Regarding the devices, there is a difference in the influence that
the three strategies have on the battery consumption of the three smartphones. This result
is desirable, since mobility management is expected to provide specific improvements in
energy savings for different hardware configurations.

5.4.7 Results Discussion

The set of experiments provided insights on the benefits of using the offloading
technique with mobility and caching strategies. Particularly, the caching strategy is a
promising solution for processing large data amounts, which can be applied to different
smartphone categories. It is also effective when applied to situations where a user may
switch to an off-line mode for a time, but resumes communication requesting an offloading
operation.

On the contrary, the mobility strategy is efficient for energy saving especially consid-
ering low-cost smartphones. It also improves the performance of applications that require a
small amount of data, such as Math application. mCSOS’ mobility strategy implemented
through a mobility management application in an OpenFlow controller saves signaling
from both mobile device and mCSOS’ offloading middleware, since neither smartphone
has to use its air interface to execute handover signaling, nor the middleware has to repeat
discovery and offloading operations upon each handover.

Besides, the mobility management ensures seamless offloading even in scenarios with
frequent handovers and saves energy without affecting the performance of the mobile
device. The remote caching speeds up result delivery for mobile devices that triggers the
handover, however, it consumes more energy due to additional offloading operations and
resources discovery signaling.

The hypothesis testing with ANOVA showed that there are significant differences
between the three strategies in both application’s performance and device’s battery con-
sumption. This result proves that mobility management and remote caching have im-
provements to be added that justify their use in real environments.

In summary, during the mobility experiments, it was noticeable that network switch-
ing was impacted from the benchmark application perspective, especially when we use
strategies with remote caching and default mobility. This is because after the first remote
execution made on the current wireless network and subsequent switch to the new net-
work, the application terminated unexpectedly, due to the change of IP and access port,
which consequently broke the TCP connection. So, the user must start the application
again to obtain a new IP/Port and then it is able to perform offloading successfully in the
new network. With the mCSOS’ mobility management strategy, the benchmark applica-
tion does not break during handover, because the mobility manager provides the same IP
acquired in the first wireless network, allowing server-side middleware to deliver the result
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without having to reprocess unnecessarily. Hence, the mCSOS reduces the signaling and
computational overhead to achieve seamless offloading in MCC.

5.5 Summary
This chapter presented mCSOS, a system able to perform mobility-aware offloading

that uses the network controller to ensure seamless offloading so as to soften the result
delivery of processed data. We introduced the mCSOS architecture, described its compo-
nents, and signaling between its entities. In addition, we presented details of the mCSOS’
implementation through the BenchMath and mobility manager application class diagram.

In order to evaluate mCSOS, we performed experiments in different evaluation envi-
ronments, using three different smartphones and two benchmark applications. The results
have demonstrated that the mobility management in WLANs may improve the perfor-
mance of mobile applications, as well as save energy of low-cost smartphones, which
represent a great market share. Nevertheless, remote caching in cloudlets proved to be an
attractive alternative to achieve the best application performance when a network infras-
tructure with mobility management is not available. Besides that, the results showed that
mCSOS reduces the overhead of the connection and handover signaling, once it avoids
many useless duplicate packets and delay due to handover.
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6 CONCLUSIONS AND FUTURE
WORK

This PhD research achieved a number of results in the areas that it has explored so
far. The major contributions are the new insights of how to save energy and time of MCC
applications with high accuracy and seamless mobility. We believe that context-sensitive
offloading system and mobility management scheme have provided meaningful success,
despite these mechanisms may still evolve and conquer further improvements.

First, this research introduced the results of a systematic mapping study about mo-
bility mechanisms for cloud-based service by investigating scientific literature production.
Given the current state of MCC research, we judge that there are few studies with con-
trolled experiments using real solutions. We believe that this mapping study generated
state-of-the-art information about the main issues because the studied subject can be un-
derstood through the provided answers. In future work, more systematic mappings should
be conducted to acquire further experience to aid new experiments.This part of the thesis
was published by one journal (JUNIOR; SILVA; DIAS, 2018).

Next, this research designed and developed a mobility-aware offloading system to en-
sure seamless offloading so as to soften the result delivery of processed data when the user
is moving between PoAs. The proposed system provides SDN-based network controller,
mobility management application, and remote caching. To the best of our knowledge,
this is the first work to use SDN solutions in the field of MCC to provide mobility. It
was evaluated using one cloudlet server, two benchmark applications, three smartphones,
two wireless routers, and one OpenFlow switch. The results have demonstrated that the
proposed mobility management may improve the applications’ runtime, as well as save
energy of low-cost smartphones. Besides that, the remote caching proved to be an attrac-
tive alternative to achieve the best application performance when a network infrastructure
with mobility management is not available. This part of the thesis was published by one
journal (JUNIOR et al., 2017).

Other original contribution in this work is a context-sensitive offloading technique
that offload tasks of mobile applications to the cloudlet server only in favorable situa-
tions. The approach intends to minimize runtime of mobile applications and save energy
of smartphones by using decision engine along with machine-learning classifiers against
fluctuations in the wireless communication throughput, hardware configuration, and pro-
cessing availability. We evaluated the dynamic approach by experimenting face detection
and image processing applications on Android devices. To the best of our knowledge, this
is the first work showing such an strategy, comprising multiple classifiers and real time
profilers. The proposed system, called CSOS, integrates middleware, machine-learning
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classification algorithms, and a robust profiling system, as well as transforms raw context
elements to high level context information at runtime. We first evaluate the main classifi-
cation algorithms under our database and the results show that JRIP and J48 classifiers
achieves 95% accuracy. Secondly, we evaluate our system under controlled and real scenar-
ios, where context information changes from one experiment to another. The experiments
evidenced that CSOS makes correct decisions as well as ensuring performance gains and
energy efficiency. This part of the thesis is currently under review in a journal.

Finally, this research has provided one more step in the maturation of MCC, but
mobile and dynamic environment will continue being a hard research challenge.

6.1 Future Work
Following, we list some possible future work:

• Multiple Classifier Systems (MCS): This work focuses on the binary classifi-
cation of where is better to process offloading candidates codes, locally or remotely
(Yes and No classes). Our engine decision does not consider different cloud models
when the remote execution is better than local execution. Thus, further work consists
on increasing the spectrum of offloading opportunities considering hybrid systems
with cloudlet, D2D, and remote cloud (FLORES et al., 2017). Additionally, we intend
to investigate a MCS (CRUZ; SABOURIN; CAVALCANTI, 2018) approach to evolve our
system and solve many real-world problems, such as ensuring the predictability of
application performance, the management of multi-tasking environments, and the
adaptation of workload to multiple cloud models (BHATTACHARYA; DE, 2017).

• Distributed Mobility Management (DMM): This research uses only one cen-
tralized controller to manage its network infrastructure and does not handles the
mobility in heterogeneous networks (e.g., WiFi, LTE-A). The centralized approach
represents a single point of failure, therefore poses scalability issues. According to
(GIUST; COMINARDI; BERNARDOS, 2015), the DMM has recently emerged as a new
paradigm to design a flat and flexible mobility architecture, exploiting the use of dif-
ferent networks devices (controllers, switches, routers, APs, and EnodeB) for traffic
with different connectivity and mobility requirements. Hence, distributed controller
and mobility management schemes are required to evolve our system so as to be
aligned to fault tolerant, dense, and heterogeneous 5G networks. Also, we intend to
evaluate the above-mentioned issues, as well as to investigate new resource manage-
ment mechanisms to ensure QoS for delay-sensitive applications running on mobile
clouds.

• Follow Me Edge (FME): Although in this work we mention MCC environment
in general, in practice we only focused on cloudlets.Mobile Edge Computing (MEC)
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pushes computing resources in the proximity of mobile users (i.e. at the mobile net-
work edge). This highly distributed computing environment can be used to provide
ultra-low latency, precise positional awareness and agile applications, which could
significantly improve the user experience. Its overall objective is to demonstrate how
high QoS can be maintained regardless of the mobility of users through the use of
MEC, more particularly through the concept of FME. The FME ensures that the
service constantly follows the user and that the user is always serviced from the
closest edge (TALEB et al., 2017). However, this concept is hard to achieve, because
there are no adequate techniques to efficiently migrate a service from one edge to
another. Thus, further proposals could benefit from SDN and Network Functions
Virtualization (NFV) in order to orchestrate the joint mobility of both device and
virtual machines.

• QoS mapping between networks/clouds: Content-rich and resource-intensive
applications such as video streaming, image processing, online games, and those us-
ing augmented reality, require QoS guarantees from the mobile network and remote
cloud. These applications are delay-sensitive, and the change of location and speed
of the mobile device is a non-trivial challenge to ensure a better user experience,
since both access network and cloud resources may float while the user is handed
over across PoAs. Thus, the proliferation of mobile devices with multi-interface sup-
port, as well as the increased demand for mobile applications, require techniques
for providing computational offloading continuity and QoS to mobile users while
they change their PoAs (e.g. from LTE to WiFi network and vice versa) and remote
clouds (e.g. from public cloud to cloudlet server and vice versa). Besides that, ef-
fective resource management frameworks with mobility in mind must be devised in
current and also in future dense 5G networks.

• Context-aware handover decision: The context-aware handover concept is based
on the knowledge of the relevant context information of the mobile device, wireless
networks, and remote clouds in order to take intelligent and accurate decisions.
Thus, a context-aware handover decision strategy manages this information and
evaluates context changes to come to a decision on whether the handover is neces-
sary (or not) and on the best target access network/cloud. Contextual information
such as user preferences, device location, network coverage, application input data,
and cloud availability can be more relevant for one application category than for
another. This requires an adaptive monitoring scheme that allows the monitor-
ing of only the metrics that are relevant to the handover decision. For example,
computation-intensive applications (e.g. face detection, mathematical operations)
may require monitoring cloud-related metrics, such as the processing capacity of
virtual machines, while communication-intensive applications (e.g. video streaming,
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online games) may require the monitoring of network-related metrics, such as down-
load/upload rate and RTT. Since the context information varies from application to
application, and comprises network, cloud, device, and even human behavior infor-
mation, a detailed study is required. Besides that, machine-learning techniques could
be applied with regard to its appropriateness and accuracy to assist the handover
decision.
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