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RESUMO

Motivados pela recente atenção dada ao estudo das equações que modelam MEMS

eletrostáticos, estudamos as soluções radiais de uma classe de equações com não

linearidade do tipo inverso do quadrado. De acordo com a escolha dos parâmetros

envolvidos no problema, o operador diferencial com o qual lidamos corresponde à forma

radial do p-laplaciano (p > 1) e k-hessiano. Provamos a existência de um parâmetro

extremal λ∗ > 0 tal que, para λ ∈ (0, λ∗), existe uma solução minimal não singular para o

problema. Para λ > λ∗ não há solução de nenhum tipo considerado. Estudamos também

o comportamento do ramo de soluções minimais e exibimos um método para aproximação

numérica destas soluções. No que se refere ao caso λ = λ∗, provamos unicidade de solução

e apresentamos um resultado de regularidade. Além disso, apresentamos condições sobre

as quais é posśıvel garantir a regularidade da solução cŕıtica (λ = λ∗). Provamos também

que sempre que a solução cŕıtica for regular, existe uma outra solução do tipo passo da

montanha para λ perto de λ∗.

Palavras-chave: Não linearidade singular. Modelagem de MEMS. Equação eĺıptica

quasilinear.



ABSTRACT

Motivated by recent works on the study of the equations that model the electrostatic

MEMS devices, we study the radial solutions of some quasilinear elliptic equations with

nonlinearity of inverse square type. According to the choice of the parameters on the

problem, the differential operator which we are dealing with corresponds to the radial

form of p-Laplacian (p > 1) and k-Hessian. We prove the existence of an extremal

parameter λ∗ > 0 such that for λ ∈ (0, λ∗) there exists a minimal solution uλ and for

λ > λ∗ there is no solution of any considered kind. Via Shooting Method, we prove

uniqueness of solutions for λ close to 0. We also study the behavior of the minimal

branch of solutions. Concerning the case λ = λ∗, we prove uniqueness of solutions and

present a regularity result. In addition, we present conditions over which we can assert

regularity for the critical solution with respect to the parameter λ for the existence of

solutions. Moreover, we prove that whenever the critical solution is regular, there exists

other solutions of mountain pass type for λ close to λ∗.

Keywords: Singular nonlinearity. MEMS modeling. Quasilinear elliptic equation.
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1 Introduction

This work is devoted to the study a class of radial quasilinear elliptic differential

equations involving a singular nonlinearity of an inverse square type. The discontinuity

on the nonlinearity brings a difficulty for the application of variational and topological

methods. Recently, this class of problems has received much attention due to its

applicability on the modeling of electrostatic MEMS (Micro Electro Mechanical Systems).

MEMS are micro-devices consisting of electrical and mechanical components

combining together on a chip to produce a system of miniature dimensions (between

1 and 100 micrometers, that is 0,001 and 0,1 millimeters, respectively - less than

the thickness of a human hair). They are essential components of the modern

technology that is currently driving telecommunications, commercial systems, biomedical

engineering and space exploration. For more information on the applications and

development of the fundamental partial differential equations that model those devices,

see [Pelesko e Bernstein 2003, Esposito et al. 2010].

We are motivated by recent works on the study of the equations that model a

special MEMS component - an electrostatically controlled tunable deformable capacitor

- that can be understood as consisting of a thin and deformable microplate whose shape

we are representing by Ω (a bounded domain of RN), fixed along its boundary, coated

with a negligibly thin metallic conducting film and lying above one unit of a parallel rigid

grounded plate as shown in Fig. 1.

The membrane deflects towards the conducting plate when a voltage (represented

here by λ) is applied. It may occur that the membrane touches the plate or gets ripped

due to the loss of stability between the forces acting on the system, thus, creating a

singularity. The modeling is then based on the equilibrium between these forces. On the
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Figure 1.1: Deformable capacitor.

one hand, we have tension due to the stretching (given by the laplacian of the deformation

function) and rigidity (given by the bi-laplacian of the deformation function). On the other

hand, we have the electrostatic force which, according to the Coulomb’s law, is inversely

proportional to the square of the distance between the two charged plates. We can also

consider the elastic and the electric potential energies associated with the deformation.

In the stationary case, a very general model of the deformation u of the membrane is:



α∆2u = S(u)∆u+
λf(x)

D(u)(1− u)2
in Ω,

0 ≤ u < 1 in Ω,

u =
∂u

∂η
= 0 on ∂Ω,

(1.1)

where f is a varying dielectric permittivity profile, η is the unit outward normal to ∂Ω,

the constant α ≥ 0 represents the membrane width and the terms

S(u) = β

∫ 1

0

|∇u|2dx+ γ and D(u) = 1 + χ

∫ 1

0

dx

(1− u)2
with β, γ, χ ≥ 0

represent nonlocal parameters that affect the membrane’s deformation (the elastic and

the electric potentials respectively).

In the limit case of zero plate thickness, hence for a thin membrane (that is α = 0),

with zero rigidity and neglecting inertial effects as well as nonlocal effects, that is, in

dimensionless constants, we set α = β = χ = 0. Then (1.1) reduces to the following
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semilinear elliptic problem: 
∆u =

λf(x)

(1− u)2
, in Ω,

0 < u < 1, in Ω,

u = 0, on ∂Ω,

(Sλ)

where, for simplicity, we have set γ = 1. This problem has been studied in the past

in a very general context as we can see in [Guo e Wei 2006, Ghoussoub e Guo 2006/07,

Dávila 2008, Esposito 2008, Esposito et al. 2007, Guo e Wei 2008, Guo e Wei 2008,

Mignot e Puel 1980].

Recently D. Castorina, Esposito and Sciunzi [Castorina et al. 2009] studied, for

1 < p ≤ 2, the p-MEMS equation (the MEMS equation for the p-Laplacian operator),

that is, 
−∆pu = λh(x)f(u) in Ω,

0 ≤ u < 1 in Ω,

u =
∂u

∂η
= 0 on ∂Ω.

(Sλ,p)

where f is a non-decreasing positive function, defined on [0, 1) with a singularity at u = 1.

They established uniqueness results for semistable solutions and stability (in a strict sense)

of minimal solutions for 1 < p ≤ 2. In [Castorina et al. 2008, Castorina et al. 2009,

Castorina et al. 2011] the authors also prove radial symmetry of the first eigenfunction

for the p-MEMS problem on a ball. The radial form of the p-MEMS equation on a ball

B ∈ Rn (n ≥ 2) is 
−(rn−1|u′(r)|p−2u′(r))′ =

λrn−1f(r)

(1− u(r))2
, r ∈ (0, 1),

0 ≤ u(r) < 1, r ∈ (0, 1),

u′(0) = u(1) = 0.

(1.2)

1.1 Problem formulation

On the spirit of the pioneering work [Crandall e Rabinowitz 1975], we study here

the following more general class of quasilinear elliptic equations which includes (1.2) as
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a particular case, since we consider a continuous variation of the exponents in (1.2),

including the radial case for non-integer-dimensional spaces, that is
−(rα|u′(r)|βu′(r))′ = λrγf(r)

(1− u(r))2
, r ∈ (0, 1),

0 ≤ u(r) < 1, r ∈ (0, 1),

u′(0) = u(1) = 0,

(Pλ)

where

(H.1) α, β and γ are real constants with β > −1;

(H.2) f is a measurable real function on (0, 1);

(H.3)

0 <

∫ r

0

sγ|f(s)| ds < +∞ for every r ∈ (0, 1).

Problems involving the quasilinear operator of the form Lu := −(rα|u′|βu′)′ have been

studied in various contexts and applications. It should be mentioned that the operator

Lu corresponds to the radial form of various operators for a convenient choice of the

parameters α, β and γ namely, We recall that the k-Hessian operator, usually represented

Operator α β γ

p-Laplacian (p > 1) n− 1 p− 2 n− 1

k-Hessian n− k k − 1 n− 1

Table 1.1:

by Sk(D
2u), is defined as the sum of all principal k×k minors of the Hessian matrix D2u.

In particular S1(D2u) = ∆u and SN(D2u) = detD2u, the Monge-Ampère operator.

This class of differential operator has been extensively studied since the papers

of D. Joseph and T. Lundgren [Joseph e Lundgren 1972/73], J. Keener and H. Keller

[Keener e Keller 1974] and M. Crandall and P. Rabinowitz [Crandall e Rabinowitz 1973,

Crandall e Rabinowitz 1975]. In [Mignot e Puel 1980], F. Mignot and J-P. Puel studied

regularity results to certain nonlinearities, namely, g(u) = eu, g(u) = um with m > 1,

g(u) = 1/(1− u)k with k > 0.
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Recently, J. Jacobsen and K. Schmitt [Jacobsen e Schmitt 2002] studied singular

problems involving this class of operators. They determined precise existence and

multiplicity results for radial solutions of the Liouville-Bratu-Gelfand problem associated

with this class of quasilinear radial operators. In 1996, Clement, de Figueiredo and

Mitidieri [Clément et al. 1996] studied Brezis-Nirenberg-type problems for this class of

quasilinear elliptic operators. For related problems on this subject we also refer to

[Dávila 2008, Jacobsen e Schmitt 2004] and the references therein.

1.2 Notations and terminology

Before stating our main results and in order to drive properly the approach we used

to obtain such results, we would like to introduce a function space, the notions of solution

considered and some already know results involving this entities. In our arguments, we

are always assuming the hypotheses items (H.1) to (H.3).

Let X̃ be the set of the L1
loc real functions defined on (0, 1) with distributional

derivative on L1
loc satisfying

‖u‖β+2 :=

∫ 1

0

rα|u(r)|β+2 dr +

∫ 1

0

rα|u′(r)|β+2 dr <∞. (1.3)

If β ≥ −1, equipping X̃ with the usual operations makes it a real vector space and (1.3)

defines a norm on this space. Every u ∈ X̃ is, in particular, absolutely continuous in

(0, 1). Now, consider the subspace X̂ of the elements of X̃ such that

lim
r→1

u(r) = 0

and X, the completion of X̂ with respect to the equivalent norm

‖u‖X :=

(∫ 1

0

rα|u′(r)|β+2 dr

)1/(β+2)

. (1.4)

It is known that α < β + 1 is a sufficient condition in order to have X = X̂. See

A. Kufner and B. Opic [Opic e Kufner 1990, Kufner e Opic 1984] for details concerning

the proprieties remarked in this paragraph.
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Given u ∈ X, we also consider Xu the set of all w ∈ L2((0, 1)) with distributional

derivative w′ ∈ L2((0, 1)) satisfying∫ 1

0

rα|u′(r)|β(w′(r))2 dr <∞.

The set Xu is a weighted Sobolev space with the usual operations, with weight ω(r) =

rα|u′(r)|β and with norm given by

‖w‖u =

(∫ 1

0

rα|u′(r)|β(w′(r))2 dr

)1/2

.

Actually, Xu is a separable Hilbert space with

〈v, w〉u =

∫ 1

0

rα|u′(r)|βv′(r)w′(r) dr.

We refer to M. K. V. Murthy and G. Stampacchia [Murthy e Stampacchia, 1968] for the

properties introduced above.

Now lets establish the concept of solution used in this work. For that consider the

general problem −(rα|u′(r)|βu′(r))′ = h(r, u(r)), r ∈ (0, 1),

u′(0) = u(1) = 0,
(1.5)

where h is a measurable and bounded from below function acting over a set H ⊂ R2

whose projection onto the first variable is (0, 1). We stress that we have focus on the case

h(r, z) =


λrγf(r)

(1− z)2
if z 6= 1

0 if z = 1.

Hereafter, ϕβ will denote a real-valuated function of real variable given by

ϕβ(t) =

|t|
−β/(β+1)t for t 6= 0,

0 for t = 0.

(1.6)

Due to hypothesis (H.1), ϕβ is an homeomorphism.

Definition 1 Notions of solutions for problem (3.1):
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Integral solution We say that u is an integral solution of problem (Pλ) if

u ∈ X (i)∫ 1

0

λrγf(r)

(1− u(r))2
dr <∞ (ii)

− rα/(β+1)u′(r) = ϕβ

(∫ r

0

sγf(s)

(1− u(s))2

)
ds for r ∈ (0, 1) (iii)

We also consider integral sub and supersolutions in analogy with this definition.

For instance, u is an integral subsolution of (Pλ) if u satisfies (i)-(iii) with “ ≤”

instead of “ =” in (iii).

Weak solution We call u a weak solution of (Pλ) whenever

u ∈ X (i)∣∣∣∣∫ 1

0

λrγf(r)

(1− u(r))2
v(r) dr

∣∣∣∣ <∞ for all v ∈ X (ii)∫ 1

0

rα|u′(r)|βu′(r)v′(r) dr =

∫ 1

0

λrγf(r)

(1− u(r))2
v(r) dr for all v ∈ X (iii)

If u satisfies (i)-(iii) with the “ ≤” (respectively ≥) sign instead of “ =” in (iii)

and v ≥ 0, we say that u is a weak supersolution (respectively weak subsolution) of

(Pλ).

Regular and singular solution, subsolution or supersolution A solution, subsolution or

supersolution u ∈ X of (Pλ) in any sense described above is called regular if it

satisfies ‖u‖∞ < 1, and singular otherwise.

Minimal solution We call minimal solution a positive solution (in any sense defined

above) u ∈ X of (Pλ) such that for any other positive solution v ∈ X of (Pλ)

one has 0 ≤ u(r) ≤ v(r) for all r ∈ (0, 1).

It is clear that every classical solution (subsolution, supersolution) is also an

integral and weak solution (subsolution, supersolution respectively). Another important

fact: the definitions of weak solution and integral solution are equivalent (see Proposition

2.1 on page 18).
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Given u ∈ X a regular weak solution of (Pλ), we prove (c.f. Proposition 2.4) that

0 < u(r) < 1 for all r ∈ (0, 1).

Thus,

0 ≤ 1

(1− u(r))3
<

1

(1− u(r))2
for all r ∈ (0, 1).

So it is well defined the operator Ψ : Xu → R as

Ψ(w) = (β + 1)

∫ 1

0

rα|u′|β(w′)2 dr − 2λ

∫ 1

0

rγf(r)

(1− u)3
w2(r) dr.

This endows us to formulate the following definition.

Definition 2 A solution u of (Pλ) is semi-stable if Ψ(w) ≥ 0 for all w ∈ Xu. Consider

µ1(u) := inf{Ψ(w) : w ∈ Xu and ‖w‖u = 1}, (1.7)

we say that a solution u of (Pλ) is stable if µ1(u) > 0 and unstable if µ1(u) < 0.

1.3 Outline

This work is divided in two chapters. In the first chapter, we prove the existence

of a constant λ∗ such that for λ ∈ (0, λ∗) there exists a minimal classical solution uλ and

for λ > λ∗ there are no solutions of any kind. In addition, we provide some estimates for

λ∗. Via Shooting Method, we prove uniqueness of solution for λ close to 0. Concerning

qualitative properties of solutions, we prove that the function λ 7→ uλ is increasing in

the pointwise sense. Furthermore, we provide a way to compute the minimal solutions

by approximation. The main result of this chapter concerns the uniqueness for the

solution of (Pλ∗) ((Pλ)-problem for λ = λ∗) for β > −1, which improves the results in

[Castorina et al. 2008] since our arguments can be also applied to the p-Laplace operator

even for p > 2 and when f(r) is a general function under suitable assumptions.

In Chapter 2, we prove the existence of semi-stable solutions. Actually, we prove

semi-stability as an additional property of the minimal solutions which existence is

guaranteed by Theorem 3.7. The existence of a solution different from the minimal one

depends on the regularity of u∗. By using the Mountain Pass Theorem, we become able

to ensure the existence of unstable solutions.
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2 Early Comments on the solutions

of (Pλ)

First of all, we would like to mention that integral solutions and weak solutions

are the same (Proposition 2.1). Thence we will use just the term weak solution to denote

these functions, aware of, in fact, they satisfy both, the integral solution and the weak

solution conditions.

Proposition 2.1 Given u a weak solution then u is an integral solution and conversely.

Proof. Let u be a weak solution of (Pλ), consider for each r ∈ (0, 1) and ε > 0 the

continuous map

vε(s) =


1 if 0 ≤ s ≤ r,

−s/ε+ r/ε+ 1 if r < s < r + ε,

0 if s ≥ r + ε.

Since vε ∈ X, we can take it as a test function, obtaining:

− 1

ε

∫ r+ε

r

sα|u′(s)|βu′(s) ds =

∫ r

0

λsγf(s)

(1− u(s))2
ds+

∫ r+ε

r

λsγf(s)

(1− u(s))2
vε(s) ds. (2.1)

Observe that ∣∣∣∣ λrγf(r)

(1− u(r))2
vε(r)χ[r,r+ε](r)

∣∣∣∣ ≤ ∣∣∣∣ λrγf(r)

(1− u(r))2

∣∣∣∣ ,
where χ[r,r+ε] is the characteristic function of the set [r, r + ε] on (0, 1). Moreover,

λrγf(r)

(1− u(r))2
vε(r)χ[r,r+ε](r)→ 0
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pointwise almost everywhere as ε → 0. Then we can apply the Dominated Convergence

Theorem with ε→ 0 in (2.1) obtaining

rα|u′(r)|βu′(r) =

∫ r

0

λsγf(s)

(1− u(s))2
ds.

For the converse part, first observe that, as a simple application of the Hölder

inequality, one has ∣∣∣∣∫ 1

0

rα|u′(r)|βu′(r)v′(r) dr

∣∣∣∣ <∞ for all u, v ∈ X.

Thus, if u an integral solution of (Pλ), we can integrate from 0 to 1 the integral solution

condition multiplied by v′(r), where v ∈ X, obtaining

−
∫ 1

0

(∫ r

0

λrγf(s)

(1− u(s))2
ds

)
v′(r) dr =

∫ 1

0

rα|u′(r)|βu′(r)v′(r) dr <∞. (2.2)

Integrating the left hand side of (2.2) by parts we conclude that u is a weak solution of

(Pλ).

2.1 First approach on existence of integral solutions

In this first considerations, we are assuming the hypothesis (H.1) to (H.3). In

addition, we assume

(H.4) η ∈ L1/(β+1)((0, 1)) and η 6= 0,

where η denote the function η : (0, 1] → R given by

η(r) :=
1

rα

∫ r

0

sγ|f(s)| ds. (2.3)

Remark 2.2 Hypothesis (H.2) to (H.4) are verified for instance if

γ > −1, f ∈ C([0, 1]) and α < γ + β + 2. (2.4)

In this case,

|η(r)|1/(β+1) = O(r(γ−α+1)/(β+1)) and
γ − α + 1

β + 1
> −1.

The assumption (2.4) still includes the cases on Table 1.1.
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If u is an integral solution of (Pλ), then it also satisfies

u(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

λtγf(t)

(1− u(t))2
dt

)
ds, (2.5)

where ϕβ denote the function ϕβ : R→ R given by

ϕβ(s) :=

s|s|
−β/(β+1) if s 6= 0,

0 if s = 0.

(N.2)

For β > −1, ϕβ is an increasing homomorphism from R to itself.

Our first approach on Problem (Pλ) is to study the equation (2.5) and then, we

investigate under which assumptions solutions of (2.5) are solutions of (Pλ) in the classical

sense.

Theorem 2.3 Assume the hypothesis (H.1) to (H.4). Consider the set

B =

{
u ∈ C([0, 1]) : ‖u‖∞ <

β + 1

β + 3

}
.

Then, there exists an unique u ∈ B which solves (2.5), provided

|λ| < 1

‖η‖1/β+1

(
β + 1

β + 3

)β+1(
2

β + 3

)2

. (2.6)

Moreover, u is an integral solution of (Pλ) with

u ∈ C([0, 1]) ∩ C1((0, 1]).

If f is continuous and γ > 0, then

u ∈ C([0, 1]) ∩ C2((0, 1]).

If f is continuous, γ > 0 and α < γ + β + 2 then

u ∈ C1([0, 1]) ∩ C2((0, 1]).

Proof. For every δ ∈ (0, 1), it is possible to choose λ small enough with which it is well

defined the function Z : Bδ → Bδ, where

Bδ = {u ∈ C([0, 1]); ‖u‖∞ ≤ δ}
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and

(Z(u))(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

λtγf(t)

(1− u(t))2
dt

)
ds.

In fact, observe that

‖Z(u)‖∞ ≤
(
|λ|‖η‖1/(β+1)

(1− ‖u‖∞)2

)1/(β+1)

.

Then, Z(u) ∈ C([0, 1]). Moreover, for u ∈ Bδ, we have

‖Z(u)‖∞ ≤
(
|λ|‖η‖1/(β+1)

(1− δ)2

)1/(β+1)

. (2.7)

Thus, we have ‖Z(u)‖∞ ≤ δ provided

|λ| ≤ λ1(δ) :=
1

‖η‖1/(β+1)

δβ+1(1− δ)2.

We can choose λ smaller in order to assure that Z is a contraction on Bδ with

respect to the norm ‖ · ‖∞. Indeed, for arbitrary u, v ∈ Bδ, we have

|Z(u)− Z(v)| ≤
(
|λ|‖η‖1/(β+1)

)1/(β+1)

∣∣∣∣ 1

(1− ‖u‖∞)2/(β+1)
− 1

(1 + ‖v‖∞)2/(β+1)

∣∣∣∣ . (2.8)

The real function h(z) := (1− z)−2/(β+1) defined on [−δ, δ] satisfies

|h(z1)− h(z2)| ≤ 2

(β + 1)(1− δ)(β+3)/(β+1)
|z1 − z2| for every z1, z2 ∈ [−δ, δ]. (2.9)

Taking z1 = ‖u‖∞ and z2 = −‖v‖∞ in (2.9) and applying in (2.8), we get

‖Z(u)− Z(v)‖∞ ≤
2

β + 1

(
|λ|‖η‖1/(β+1)

(1− δ)β+3

)1/(β+1)

‖u− v‖∞.

Thus, Z is a contraction on Bδ with respect to the norm ‖ · ‖∞ provided

|λ| < λ2(δ) :=
1

‖η‖1/(β+1)

(
β + 1

2

)β+1

(1− δ)β+3.

The biggest λ for which Z is a contraction is

λ0 = max
δ∈(0,1)

{min{λ1(δ), λ2(δ)}} =
1

‖η‖1/β+1

(
β + 1

β + 3

)β+1(
2

β + 3

)2

,

which is attained for

δ =
β + 1

β + 3
.

We conclude, by the Banach fixed-point Theorem, that Z has a fixed point provided
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Observe that the term

1

sα

∫ s

0

λtγf(t)

(1− u(t))2
dt is continuous for s ∈ (0, 1] .

Thus,

u ∈ C([0, 1]) ∩ C1((0, 1]).

If f is continuous and γ > 0, then the mentioned term is differentiable for s ∈ (0, 1] .

Thus,

u ∈ C([0, 1]) ∩ C2((0, 1]).

If f is continuous, γ > 0 and α < γ + β + 2 then, applying the L’Hôpital’s rule, we get

u ∈ C1([0, 1]) ∩ C2((0, 1]).

�

2.2 First approach on regularity of integral solutions

In this section, we are assuming the hypothesis (H.1) to (H.3). In addition, we

assume

(H.5) f is positive on (0, 1).

Lets look to equation (2.5) rewritten as follows:

u(r) = ϕβ(λ)

∫ 1

r

ϕβ(s−α)G(u, s) ds, (2.10)

and

G(u, r) := ϕβ

(∫ r

0

sγf(s)

(1− u(s))2
ds

)
. (2.11)

Due to (H.5), the term G defines a monotone function on (0, 1) × B with respect to

r ∈ (0, 1) and u with the pointwise order.

The following proposition, among others results, asserts that, if u is an integral

solution of (Pλ), then it can not cross the value 1.
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Proposition 2.4 Suppose (H.1) to (H.3) and (H.5). Then, any integral solution of (Pλ)

is decreasing, precisely,

u′(r) < 0 for r ∈ (0, 1). (2.12)

Moreover,

u ∈ C([0, 1]), u(0) = ‖u‖∞ ≤ 1 and u(r) < 1 for r ∈ (0, 1) (2.13)

and

1. If ‖u‖∞ < 1, then u ∈ C2((0, 1]) ∩ C([0, 1]).

2. If γ > α− 1 and ‖u‖∞ < 1, then u ∈ C2((0, 1]) ∩ C1,µ([0, 1]) and u′(0) = 0.

3. If γ > α + β and ‖u‖∞ < 1, then we can consider u ∈ C2([0, 1]) ∩ C1,µ([0, 1]). In

addition, u′(0) = u′′(0) = 0.

Proof. Looking at (2.10), we can easily see that u ∈ C((0, 1)). Since G(u, r) is positive

for r ∈ (0, 1), it follows that u′(r) < 0 for r ∈ (0, 1), that is, u is decreasing. Now, assume

the existence of r̂ ∈ (0, 1) with u(r̂) = 1. Thus, we can consider

r0 = inf{r ∈ (0, 1) : u(r) = 1}.

Observe that r0 > 0 since u ∈ X. Moreover, it follows by the continuity of u that

u(r0) = 1. Let δ > 0 be such that [r0 − δ, r0 + δ] ⊂ (0, 1). Since u is decreasing, we have

u(r) 6= 0 for all r ∈ [r0 − δ, r0 + δ] \ {r0}. Moreover, since r−α and G(u, r) are bounded

for u fixed and r varying in [r0 − δ, r0 + δ], we have

|1− u(r)| = |u(r0)− u(r)| =
∣∣∣∣∫ r0

r

ϕβ(λs−α)G(u, s)ds

∣∣∣∣ ≤ C|r0 − r|,

where

C := inf{rγf(r) : r ∈ [r0 − δ, r0 + δ]} > 0.

It follows that ∫ r0+δ

r0−δ

rγf(r)

(1− u(r))2
dr ≥ C

∫ r0+δ

r0−δ

1

(r − r0)2
dr = +∞,
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which is in a contradiction with the definition of integral solution once we require∫ 1

0

rγf(r)

(1− u(r))2
dr <∞.

Thus we conclude that (2.13) holds.

To verify item 1 we just have to use (2.13) and the facts that rγf(r)(1 − u(r))−2

is continuous for r ∈ (0, 1] and ϕβ is a diffeomorphism on (0,∞).

In order to prove item 2 , suppose ‖u‖∞ < 1 and denote

g(r) :=

∫ r

0

sγf(s)

(1− u(s))2
ds.

By L’Hôpital’s Rule, we have

lim
r→0

g(r) = lim
r→0

rγf(r)

αrα−1 (1− u(r))2 . (2.14)

We can see that g is a continuous function over [0, 1] with

g(0) = f(0)/α(1− u(0))2 if γ = α− 1 or g(0) = 0 if γ > α− 1.

In both cases we conclude that u ∈ C1([0, 1]). We emphasize that if γ > α − 1, we have

u′(0) = 0.

To prove the Hölder continuity of u′, since ϕβ is Hölder continuous, it is sufficient

to prove that g is Hölder continuous. Since g is differentiable in (0, 1] ,

g(r)− g(s) =

∫ r

s

g′(t) dt for every r, s ∈ (0, 1] .

Using Hölder inequality with p > 1 and 1/p+ 1/q = 1, we have

|g(r)− g(s)| ≤ |r − s|1/p
(∫ r

s

|g′(t)|q dt

)1/q

for every r, s ∈ (0, 1] . (2.15)

Since

g′(r) =
α

rα+1

∫ r

0

λsγf(s)

(1− u(s))2
ds− rγ−α λf(r)

(1− u(r))2
,

using L’Hôpital’s rule we get

lim
r→0

g′(r) = lim
r→0

(
α

α + 1
− 1

)
rγ−α

λf(r)

(1− u(r))2
,
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that is, g′(r) = O(rγ−α) as r → 0 and the integral in (2.15) is bounded if (γ − α)q > −1

or equivalently

γ − α + 1 > 1− 1

q
=

1

p
. (2.16)

Thus, if γ > α− 1, we can find p > 1 satisfying (2.16) and we conclude that u′ is Hölder

continuous on [0, 1] with exponent

µ <


γ − α + 1 if − 1 < β < 0,

γ − α + 1

β + 1
if β ≥ 0.

Now we are going to verify that u′ is differentiable at 0. Note that

lim
r→0

ϕβ (λg(r))

r
= lim

r→0
ϕβ

(
λg(r)

rβ+1

)
= ϕβ

(
λ lim
r→0

g(r)

rβ+1

)
.

Again by the L’Hôpital’s Rule, limr→0 g(r)/rβ+1 exists when γ ≥ α + β and vanishes to

zero when γ > α + β. This completes the proof.

�

2.3 Existence of the Pull-in Voltage

Here, on the light of Proposition 2.4, we prove the existence of a critical parameter

λ∗ for the existence and non-existence of minimal solutions of (Pλ) with respect to the

parameter λ. On the following, we obtain an upper bound for the set of parameters λ for

which (Pλ) possesses solution.

Proposition 2.5 Suppose (H.1) to (H.3) and (H.5). If (Pλ) has an integral solution

u ∈ X, then ∫ 1

0

ϕβ(r−α)G(r, 0) dr <∞

and

λ ≤
(
ϕ−1
β

(∫ 1

0

ϕβ(r−α)G(r, 0) dr

))−1

.
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Proof. The assumption (H.3) implies that g(r) := G(r, 0) is a well defined function on

(0, 1). Suppose that (Pλ) admits an integral solution u ≥ 0. Then, we have

1 ≥ u(0) = ϕβ(λ)

∫ 1

0

ϕβ(r−α)G(r, u) dr

≥ ϕβ(λ)

∫ 1

0

ϕβ(r−α)G(r, 0) dr.

We used in the estimate above that G is an increasing function with respect to its second

variable and u ≥ 0.

�

Remark 2.6 We emphasize that in Proposition 2.5 we have proved that problem (Pλ)

has no solution, even in the integral sense, if

λ >

(
ϕ−1
β

(∫ 1

0

ϕβ(r−α)G(r, 0) dr

))−1

.

Then we can define

λ∗ := sup{λ > 0 : (Pλ) has a classical solution}, (2.17)

where classical means that u ∈ C2 (0, 1] ∩ C([0, 1]) and solves (Pλ). We can also define

λ∗∗ := sup{λ > 0 : (Pλ) has an integral solution}. (2.18)

If follows immediately

λ∗ ≤ λ∗∗ <

(
ϕ−1
β

(∫ 1

0

ϕβ(r−α)G(r, 0) dr

))−1

. (2.19)

Indeed, we prove in the next Section that

λ∗ = λ∗∗.

2.4 A Shooting Method approach

In this section, we are supposing hypothesis from (H.1) to (H.5). Using the

Shooting Method, we prove existence and uniqueness for solution of (Pλ) for every λ

in a neighborhood of 0. We also assert the continuous dependence of the solutions with
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respect to the parameter λ. In other words, there exists a branch of solutions passing

through 0. An immediate consequence of it is that, if the branch of solutions bifurcates

in the line λ = λ∗ then, it stops or bifurcates again before λ = 0.

In order to study problem (Pλ), consider for some τ ∈ (0, 1) the auxiliary problemu
′(r) = −ϕβ(λ)ϕ̃(r)G̃(r, u),

u(0) = τ,

(Pλ,τ )

where

• f̃ : (0,+∞)→ R is the extension of f given by

f̃(r) =

r
γf(r) for 0 ≤ r < 1

0 for r > 1.

(2.20)

• ϕ̃ : (0,+∞)→ R is a C1-function satisfying

ϕ̃(r) =

ϕβ(r−α) for 0 < r < 1

0 for r > 2.

(2.21)

• The nonlocal term G̃ is given by

G̃(r, u) := ϕβ

(∫ r

0

f̃(s)

(1− u(s))2
ds

)
. (2.22)

Observe that assumption (H.3) implies∫ +∞

0

ϕ̃(r)G̃(r, 0) dr <∞. (2.23)

Proposition 2.7 Denote

C̃ :=

(
ϕ−1
β

(
1

2

∫ +∞

0

ϕ̃(r)G̃(r, 0) dr

))−1

> 0.

If 0 < λ < C̃, then problem (Pλ,τ ) possesses a unique classical solution u = uλ,τ such that

u(1) = 0 for some τ ∈ (0, 1).
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Observe that, for τ ∈ (0, 1), a solution u of Problem Pλ,τ satisfying u(1) = 0 is

automatically a solution of Problem Pλ. Writing

C :=

(
ϕ−1
β

(
1

2

∫ 1

0

ϕβ

(
1

rα

∫ r

0

sγf(s)ds

)
dr

))−1

,

despite C < C̃, the constant C̃ can be taken as much close of C as we need for a convenient

choice of the term ϕ̃. Then, we have the following result.

Theorem 2.8 Problem(Pλ) has a unique regular solution provided

λ <

(
ϕ−1
β

(
1

2

∫ 1

0

ϕβ

(
1

rα

∫ r

0

sγf(s)ds

)
dr

))−1

.

It remains to prove Proposition 2.7. In order to do that, we need the following

result.

Lemma 2.9 For any τ ∈ (0, 1) and λ > 0, problem (Pλ,τ ) possesses a unique positive

solution uλ,τ defined on the maximal interval [0, ωτ ) , where ωτ ∈ R ∪ {+∞}. Moreover,

if ωτ ∈ R then

lim
r→ωτ

uτ (r) = 0.

Furthermore, the family of solutions (uλ,τ )τ∈(0,1) is strictly increasing with respect to the

parameter τ , that is, given τ < τ , then ωτ ≤ ωτ and

uτ (r) < uτ (r), for any r ∈ [0, ωτ ) .

Proof. Part I (existence and uniqueness of local solutions). As in the proof of the classical

Picard’s Theorem, we can obtain by Banach Fixed Point Theorem the existence and

uniqueness of a local solution for the following nonlocal ODE problem:u
′(r) = −ϕβ(λ)ϕ̃(r)G̃(r, u),

u(r0) = τ,

(2.24)

where r0 ∈ [0,+∞) . Moreover, the length of the interval where such solution is defined

does not depend on r0.

Ideed, fix ε > 0 such that τ + ε < 1 and choose a constant δ satisfying

0 < δ < min

{
ε

ϕβ(λ)MN
,
(β + 1)(1− (τ + ε))3/(β+1)

2Mϕβ(2Pλ)

}
, (2.25)
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where M,N and P are the following positive constants

M = max
r∈[ 0,+∞)

ϕ̃(r), N = max
r∈[ 0,+∞)

G̃(r, τ + ε) and P :=

∫ +∞

0

f̃(r) dr. (2.26)

Now consider for such δ the Banach space Cδ of the continuous real valuated functions

defined over the interval [r0, r0+δ] endowed with the uniform convergence norm. Consider

also the function I : B → Cδ, where B := {u ∈ Cδ : ‖u‖∞ ≤ τ + ε}, given by

[I(u)](r) := τ −
∫ r

r0

ϕβ(λ)ϕ̃(r)G̃(u, r) dr.

The operator I is well defined due to assumption (2.23).

Endowing Cδ with the pointwise partial order, we see that G̃ is decreasing with

respect to the variable u. Then

G̃(u, r) ≤ G̃(τ + ε, r) for all u ∈ B.

It follows from the triangular inequality and (2.26) that,

‖I(u)‖∞ ≤ τ +

∫ r0+δ

r0

ϕβ(λ)ϕ̃(r)G̃(u, r) dr

≤ τ + δϕβ(λ)MN,

which together with (2.25) becomes

‖I(u)‖∞ < τ + ε

Then I is a well defined application on B into itself.

Given (u, v) ∈ B ×B, consider w : [0, 1]→ B given by

w(θ) = θu+ (1− θ)v

and ξ : [0, 1]× [0, 1]→ R given by

ξ(θ, r) := I(w(θ))(r).

It is easy to see that ξ is differentiable with respect to θ with

∂

∂θ
ξ(θ, r) :=

∫ r

r0

ϕβ(λ)ϕ̃(s)ϕ′β

(∫ s

0

f̃(t)

(1− w(θ)(t))2
dt

)(∫ s

0

2f̃(t)(u(t)− v(t))

(1− w(θ)(t))3
dt

)
ds.
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Observing that

zϕ′β(z) =
1

β + 1
ϕβ(|z|)

and using (2.26), we see that∣∣∣∣ ∂∂θξ(θ, r)
∣∣∣∣ ≤ δ2Mϕβ(Pλ)‖u− v‖∞

(β + 1)(1− (τ + ε))3/(β+1)
.

Since, ξ(0, r) = I(v)(r) and ξ(1, r) = I(u)(r), applying Mean Value Theorem on the

variable θ, we get

|I(u)(r)− I(v)(r)| ≤ δ2Mϕβ(Pλ)

(β + 1)(1− (τ + ε))3/(β+1)
‖u− v‖∞.

It follows from the choice made in (2.25) that I is a contraction. We conclude by the

Banach Fixed Point Theorem that problem (2.24) admits a unique local solution defined

on the interval [r0, r0 + δ] for every r0 ≥ 0.

If r0 > 0, choose δ > 0 satisfying (2.25) and such that 0 < r0 − δ. Observe that

the previous argument can be analogously followed if we change Cδ by the set

C̃δ := {u : [r0 − δ, r0]→ R : u is continuous }.

Then we conclude that in this case there exists also a unique local solution of (2.24)

defined on the interval [r0 − δ, r0].

Part 2 (existence, uniqueness and monotonicity with respect to the parameter τ of

global solutions). Given τ > 0 and using the results in Part I, it follows from standard

continuation argument that (Pλ,τ ) admits a unique positive solution uτ defined on a

maximal interval of the form [0, ωτ ) . It may happen ωτ = +∞ or ωτ < +∞ and

lim
r→ωτ

uτ (r) = 0.

Given 0 < τ < τ , suppose that there exists r0 ∈ [0, ωτ ) such that r0 6∈ [0, ωτ ) .

It follows that ωτ < +∞ and ωτ < ωτ . So we can consider uτ (ωτ ), which is positive.

Since uτ (0) = τ < τ = uτ (0) and uτ is continuous, there exists r0 ∈ (0, ωτ ) such that

uτ (r0) = uτ (r0), that is, the curves uτ and uτ intersect each other. Consider the first

intersection point and still denote it by r0. The existence of such point is in contradiction

with the possibility of applying a continuation argument on the left side of r0 as it is
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asserted on Part I. Thus we conclude that ωτ ≤ ωτ . The analogous argument can be used

to prove that

uτ (r) < uτ (r), for any r ∈ [0, ωτ ) .

�

Now we are able to prove Proposition 2.7.

Proof. [Proof of Proposition 2.7] Consider the following sets

S := {τ ∈ (0, 1) : uτ exists on [0, 1) and satisfies uτ (1) > 0}

S := {τ ∈ (0, 1) : ωτ < 1}.

First we will prove that S is nonempty. Due to ((H.3)), we can choose τ and ε satisfying

2

∫ +∞

0

ϕβ(λ)ϕ̃(r)G̃(r, 0) ds < τ < 1− ε < 1. (2.27)

Suppose that ωτ ∈ (0, 1). Since uτ (0) = τ and uτ (ωτ ) = 0, and using the continuity of

uτ , there exists r1 ∈ (0, ωτ ) ⊂ (0, 1) such that uτ (r1) = τ/2. Observe that G is increasing

with respect to the first variable, namely, and uτ > 0, we have

uτ (r1)− uτ (0) = −
∫ r1

0

ϕβ(λ)ϕ̃(r)G̃(r, uτ ) ds ≥ −
∫ r1

0

ϕβ(λ)ϕ̃(r)G̃(r, 0) ds,

This, together with (2.27) carries

−τ
2

= uτ (r1)− u(0) > −τ
2
,

which is an absurd. Thus, it follows that uτ (r) > τ/2 for all r ∈ (0, 1).

Now we prove that S is nonempty. Assume by contradiction that S = ∅. It

is clear that in this case, we have ωτ ≥ 1. Since we are supposing that f is positive

on (0, 1), it follows that f̃ has the same property and, consequently, G̃ is positive on

(0,+∞)× C([0,+∞)). Choose τ > 0 sufficiently small such that∫ 1/2

0

ϕβ(λ)ϕ̃(r)G̃(r, 0) dr > τ.

In this way, we have that

uτ (1/2)− uτ (0) = −
∫ 1/2

0

ϕβ(λ)ϕ̃(r)G̃(r, uτ ) dr ≤ −
∫ 1/2

0

ϕβ(λ)ϕ̃(r)G̃(r, 0) dr < −τ.
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Finally, we find

uτ (1/2) < τ − τ = 0,

which is a contradiction because uτ (r) > 0 for all r ∈ (0, ωτ ).

We claim that τ ∗ := inf S does not belong to S. Indeed, suppose by contradiction

that τ ∗ ∈ S. Thus ωτ∗ > 1 and ` := uτ∗(1) > 0. Because of the continuous dependence of

the solutions with respect to the parameter τ , there exists τ ∈ (0, τ ∗) sufficiently close to

τ ∗ such that uτ (1) > `/2. Thus, τ ∈ S, which is a contradiction with the definition of τ ∗.

We have also that τ∗ := supS does not belong to S. Suppose by contradiction that

τ∗ ∈ S, that is, ωτ∗ < 1. Take an arbitrary δ > 0 satisfying

δ <

∫ 1

ωτ∗

ϕβ(λ)ϕ̃(r)G̃(r, 0) dr dr.

Due to the continuous dependence of uτ with respect to the parameter τ , we can take

τ > τ∗ such that 0 < uτ (τ∗) < δ. According to de definition of τ∗ we have ωτ > 1 and

ωτ (1) > 0. Thus,

uτ (1) = uτ (ωτ∗)−
∫ 1

ωτ∗

ϕβ(λ)ϕ̃(r)G̃(r, ωτ ) dr

< δ −
∫ 1

ωτ∗

ϕβ(λ)ϕ̃(r)G̃(r, 0) dr

< δ − δ < 0.

Finally we prove that supS = inf S. It follows from Lemma 2.9 that if τ1 ∈ S

and τ2 ∈ S then τ1 < τ2. So we already know that supS ≤ inf S. Suppose

τ := supS < τ := inf S. Since τ , τ belong neither to S nor to S, we find that ωτ = ωτ = 1,

which is a contradiction together with Lemma 2.9, whereby we have ωτ < ωτ .

�



3 The branch of minimal solutions

3.1 A sub- and super-solution argument

Now, we present a suitable sub- and supersolution procedure to approach problem

(Pλ) (Proposition 3.2). Using such a technique we can prove that (Pλ) admits classical

solution whenever λ ∈ (0, λ∗) and no solution, even in the integral sense, for λ > λ∗,

where λ∗ is defined in (2.17). In other words, writing

Λ∗ := {λ > 0 : (Pλ) has a classical solution},

we prove that Λ is a nondegenerate and bounded interval.

On the following we consider the general problem−(rα|u′(r)|βu′(r))′ = h(r, u(r)), r ∈ (0, 1),

u′(0) = u(1) = 0,
(3.1)

where h is a real-valued continuous function acting over a set H ⊂ R2 which projection

over the first variable is (0, 1).

In this case we can also consider the following notions:

Definition 3.1 (Kind of solutions of Problem (3.1))

Integral solution: u ∈ X is an integral solution of problem (3.1) provided that (r, u(r)) ∈

H for every r ∈ (0, 1), h(·, u) ∈ L1((0, 1)) and

− rα|u′(r)|βu′(r) =

∫ r

0

h(s, u(s)) ds a.e. in (0, 1). (3.2)

33
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Integral super-solution: We say that u ∈ X is an integral super-solution of problem (3.1)

when (r, u(r)) ∈ H for every r ∈ (0, 1), h(·, u) ∈ L1((0, 1)) and

−rα|u′(r)|βu′(r) ≥
∫ r

0

h(s, u(s)) ds a.e. in (0, 1).

Integral sub-solution: In the same way, a function u ∈ X is said to be an integral sub-

solution of (3.1) if (r, u(r)) ∈ H for every r ∈ (0, 1), h(·, u) ∈ L1((0, 1)) and

−rα|u′(r)|βu′(r) ≤
∫ r

0

h(s, u(s)) ds a.e. in (0, 1).

Minimal solution: We call minimal solution a positive solution (in any sense defined

above) u ∈ X of (3.1) such that for any other positive solution v ∈ X of (3.1)

one has 0 ≤ u(r) ≤ v(r) for all r ∈ (0, 1).

Before we state the sub- and supersolution method suitable for our study, we point

out some facts about the particular case when h is constant with respect to the second

variable, namely, −(rα|u′(r)|βu′(r))′ = g(r) r ∈ (0, 1),

u′(0) = u(1) = 0,

(3.3)

where α and β are real constants and g is a continuous and integrable real function over

the interval (0, 1) satisfying the following conditions. Consider

g̃(r) :=
1

rα

∫ r

0

g(s) ds,

suppose β > −1 and let

lim
s→0

g̃(s) = 0, (3.4)

which are hypotheses on α and g. In view of this, one can define a function u : [0, 1]→ R

given by

u(r) :=

∫ 1

r

ϕβ

(
1

sα

∫ s

0

g(t) dt

)
ds for r ∈ (0, 1).

In fact, due to (3.4), g̃ is continuous on [0, 1]. Since β > −1 then, ϕβ defines a

homeomorphism from R into itself. Thus ϕβ ◦ g̃ is continuous on [0, 1] and consequently

u is a well defined element of C1[0, 1]. Observe that u satisfies

−rα|u′(r)|βu′(r) =

∫ r

0

g(s) ds pointwise in (0, 1).
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Observe, in particular, that u is an integral solution of (Pλ) for h(r, z) = g(r).

Now we are ready to present the method of sub- and supersolution.

Proposition 3.2 (Method of sub- and supersolution) Suppose that β > −1, that h

is continuous on H and nondecreasing on the second variable, and assume that there exist

u ≤ u, an integral subsolution and an integral supersolution, respectively, of (3.1) with

lim
s→0

1

sα

∫ s

0

h(t, u(t))dt = lim
s→0

1

sα

∫ s

0

h(t, u(t))dt = 0.

Then there exists an integral solution u ∈ X of (3.1) satisfying

u ≤ u ≤ u.

Moreover, u is given by

u(r) := lim
k→∞

uk(r),

where (uk) ⊂ X is a sequence given recursively as follows. We set u0 = u and define uk+1

as the unique solution of the problem−(rα|u′k+1(r)|βu′k+1(r))′ = h(r, uk(r)) in (0, 1),

u′k+1(0) = uk+1(1) = 0,

(3.5)

which can be explicitly written as

uk+1(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, uk(t)) dt

)
ds (3.6)

In particular, uk → u in X.

Proof. We divide the proof into three parts.

Claim 3.3 The sequence (uk) is well defined and

u ≤ uk ≤ u for all k ∈ N.

Suppose that the claim is true for some k ∈ N. Since h(r, u(r)) ∈ L1(0, 1) and

h(r, u(r)) ≤ h(r, uk(r)) ≤ h(r, u(r)),
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it follows that h(r, uk(r)) ∈ L1(0, 1). Observe that,

lim
s→0

1

sα

∫ s

0

h(r, u(r)) dt ≤ lim
s→0

1

sα

∫ s

0

h(r, uk(r)) dt ≤ lim
s→0

1

sα

∫ s

0

h(r, u(r)) dt = 0.

Then, taking g := h(·, uk) in (3.3), since such g is continuous on (0, 1), the conditions on

α, β and g in the beginning of this section are satisfied. So we conclude that uk+1 given

by (3.6) is a well defined element of C1([0, 1]).

Since ϕβ is increasing for β > −1, we have

uk+1(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, uk(t)) dt

)
ds

≤
∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, u(t)) dt

)
ds ≤ u(r)

and analogously,

uk+1(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, uk(t)) dt

)
ds

≥
∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, u(t)) dt

)
ds ≥ u(r).

Whence we conclude that

u ≤ u ≤ u.

Observe also that

u′k+1(r) = −ϕβ
(

1

rα

∫ r

0

h(s, uk(s)) ds

)
≤ −ϕβ

(
1

rα

∫ r

0

h(s, u(s)) ds

)
= u(r)

and

u′k+1(r) = −ϕβ
(

1

rα

∫ r

0

h(s, uk(s)) ds

)
≥ −ϕβ

(
1

rα

∫ r

0

h(s, u(s)) ds

)
≥ u′(r),

that is,

u′ ≤ u′k+1 ≤ u′

pointwise on [0, 1]. Then

rα|u′(r)|β+2 ≤ rα|u′k+1(r)|β+2 ≤ rα|u′(r)|β+2
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pointwise on (0, 1]. Thus we have that uk+1 ∈ X. Since the claim is automatically true

for k = 0, we conclude by an induction argument that (uk) is well defined and u ≤ uk ≤ u

for all k ∈ N.

Claim 3.4 The sequence (uk) is non-decreasing.

We proved above that u1(r) ≥ u(r) = u0(r). Taking k ∈ N such that our claim is true up

to k, we have

uk+1(r) =

∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, uk(t)) dt

)
ds

≥
∫ 1

r

ϕβ

(
1

sα

∫ s

0

h(t, uk−1(t)) dt

)
ds = uk(r).

Then our claim is valid inductively for every k ∈ N.

Claim 3.5 The sequence (uk) converges in X to an integral solution u of (3.1). Moreover,

for any r ∈ (0, 1], we have

u(r) := lim
k→∞

uk(r). (3.7)

Due to the arguments above, the function u : [0, 1]→ R given by (3.7) is well defined. By

the monotone convergence theorem, rα/(β+2)u(r) ∈ Lβ+2((0, 1)) and∫ 1

0

rα|uk(r)|β+2 dr →
∫ 1

0

rα|u(r)|β+2 dr.

Now, using the Brezis-Lieb Lemma (see [Brézis e Lieb 1983]), we have∫ 1

0

rα|uk(r)− u(r)|β+2 → 0.

The monotonicity of (uk) with respect to k implies a monotonicity property for

the sequence of the corresponding derivatives (u′k). In fact, for every k ≥ 1,

u′k+1(r) = −ϕβ
(

1

rα

∫ r

0

h(s, uk(s)) ds

)
≤ −ϕβ

(
1

rα

∫ r

0

h(s, uk−1(s)) ds

)
= u′k(r).

Thus, for almost every r ∈ [0, 1], we can define

v(r) := lim
k→∞

u′k(r).
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Observe that
(
rα|u′k|β+2(r)

)
is a non-decreasing sequence and, as a consequence of the

monotone convergence theorem,∫ 1

0

rα|u′k(r)|β+2 dr →
∫ 1

0

rα|v(r)|β+2 dr, as k →∞.

Furthermore, the sequence
(
rα/(β+2)u′k(r)

)
is bounded in Lβ+2((0, 1)), since∫ 1

0

rα|u′k(r)|β+2 dr ≤
∫ 1

0

rα|u′(r)|β+2 dr <∞.

Then, by Brezis-Lieb lemma [Brézis e Lieb 1983], we have∫ 1

0

rα|u′k(r)− v(r)|β+2 → 0.

Thus (uk) is a Cauchy sequence in the complete space X. Since the norms defined in (1.4)

and (1.3) are equivalent and v(0) = limk→∞ u
′
k(0) = 0, we conclude that∫ r

1

v(s) ds = u(r) ∈ X.

For almost every r ∈ [0, 1], we have

−rα|u′(r)|βu′(r) = − lim
k→∞

rα|u′k+1(r)|βu′k+1(r)

= lim
k→∞

∫ r

0

h(s, uk(s)) ds

=

∫ r

0

h(s, u(s)) ds.

Due to the monotonicity property of h(r, z) for z ∈ I, it follows that∫ 1

0

h(r, u(r)) dr ≤
∫ 1

0

h(r, u(r)) dr <∞.

Then we conclude that u is an integral solution of (3.1).

�

3.2 Describing the branch of minimal solutions

Our description of the branch of minimal solutions is given by means of the three

following results. The first result asserts that there exists a critical value λ∗ > 0 for
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the existence of positive solutions for (Pλ). More precisely, (Pλ) admits classical solution

whenever λ ∈ (0, λ∗) and none, even in the integral sense, for λ > λ∗. In other words, let

Λ := {λ > 0 : (Pλ) has a classical solution}

we have that Λ is a non-degenerate and bounded interval. The boundedness of set Λ was

proved in Section 2.3 (Proposition 2.5). This result can be written as follows.

Theorem 3.6 There exists a finite pull-in voltage λ∗ > 0 such that

1. If 0 ≤ λ < λ∗, there exists at least one regular solution for (Pλ);

2. If λ = λ∗, there exists at least one integral solution for (Pλ);

3. If λ > λ∗, there is no solution of any kind for (Pλ).

Moreover, we have the lower bound

0 <

(
β + 1

β + 3

)β+1(
1− β + 1

β + 3

)2

C ≤ λ∗ ≤ C, (3.8)

where C = C(α, β, γ, f) is the following well defined constant:

C :=

(
ϕ−1
β

(∫ 1

0

ϕβ

(
1

sα

∫ s

0

tγf(t) dt

)
ds

))−1

,

and

ϕβ(s) :=

s|s|
−β/(β+1) if s 6= 0,

0 if s = 0.

We also prove the existence of a branch of minimal solutions. Each minimal

solution can be obtained as the limit of a recursive sequence, which enables one to make

numerical approximation.

Theorem 3.7 (Existence of the minimal branch) For each λ ∈ (0, λ∗), problem

(Pλ) admits a unique positive minimal solution, uλ, which is obtained as the limit of

the following sequence: u0 = 0 and un is the solution of
−r−γ(rα|u′n+1|βu′n+1)′ =

λf

(1− un)2
, r ∈ (0, 1),

u′n+1(0) = un+1(1) = 0

(Pλ(n))
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Moreover, each minimal solution is regular and the function λ 7→ uλ is increasing in

(0, λ∗), that is, if λ1 < λ2 then uλ1 ≤ uλ2 and uλ1 6= uλ2.

On the critical problem with respect to the variable λ, we prove that problem (Pλ∗)

has a unique integral solution that can be considered as the pointwise limit of the family

of solutions (uλ)λ, namely

u∗(r) := lim
λ↗λ∗

uλ(r), r ∈ (0, 1).

Theorem 3.8 The function u∗ is an integral solution of (Pλ) with λ = λ∗. Moreover, if

λ = λ∗ then (Pλ) has a unique integral solution, consequently u∗ is a minimal solution of

(Pλ∗).

3.2.1 Proof of Theorem 3.6, item 1

First of all, we are going to prove the existence of a solution of (Pλ) for λ near

to 0. Let v ∈ C2([0, 1]) be the unique solution of (3.3) for g(r) = rγf , take δ > 0 small

enough to ensure that u := δv satisfies ‖u‖∞ < 1, that is, 0 < δ < ‖v‖−1
∞ . Note that

−(rα|u′|βu′)′ = δβ+1(rα|v′|βv′)′ = δβ+1rγf(r) = δβ+1(1− ‖u‖∞)2 rγf(r)

(1− ‖u‖∞)2
.

Since (1− z)−2 is increasing on (−∞, 0), it follows that

−(rα|u′|βu′)′ ≥ δβ+1(1− ‖u‖∞)2 r
γf(r)

(1− u)2
≥ λ

rγf(r)

(1− u)2
,

whenever

0 < λ ≤ δβ+1(1− ‖u‖∞)2 = δβ+1(1− δ‖v‖∞)2.

So we have found a super-solution of (Pλ). Since zero is a sub-solution of (Pλ), we can

conclude that (Pλ) admits an integral solution u ∈ X (cf. Proposition 3.2) satisfying

0 ≤ u ≤ u.

This implies ‖u‖∞ ≤ ‖u‖∞ < 1. Then, by Proposition 2.4 u is a classical solution for

(Pλ). Finally, observing that(
β + 1

(β + 3)‖v‖∞

)β+1(
1− β + 1

β + 3

)2

= max
0<δ<‖v‖−1

∞

δβ+1(1− δ|v|∞)2,



41

we get (3.8).

Given λ̄ ∈ Λ, a classical solution u of (Pλ̄) is a super-solution of (Pλ) for every

λ ∈ (0, λ̄). By Proposition 3.2 we assert the existence of a classical solution of (Pλ) for

λ ∈ (0, λ̄). Then we conclude that Λ is in fact an interval.

3.2.2 Proof of Theorem 3.6, item 3 and proof of Theorem 3.7

First we need to establish a helpful Lemma which will be used many times in our

upcoming arguments. On the following, we denote

G(u, r) := ϕβ

(∫ r

0

sγf(s)

(1− u(s))2
ds

)
where ϕβ(z) := |z|−β/(β+1)z.

Lemma 3.9 Given two continuous functions u1, u2 : [0, 1]→ R, we consider

ut := (1− t)u1 + tu2.

Suppose

ut(r) < 1 for every (t, r) ∈ [0, 1]× (0, 1)

and G(ut, r) is well defined for the same range of values. Then we have

G(ut, r) ≤ (1− t)G(u1, r) + tG(u2, r) for (t, r) ∈ [0, 1]× [0, 1].

Moreover, if u1(r) < u2(r) strictly on (δ1, δ2) ⊂ [0, 1], then there exists for each t ∈ (0, 1)

a positive constant c = c(t) such that

G(ut, r) + c ≤ (1− t)G(u1, r) + tG(u2, r) for every r ∈ (δ1, 1] .

Proof. For t ∈ [0, 1], consider

ξ(t, r) := G(ut, r)− tG(u2, r)− (1− t)G(u1, r).

Observe that ξ(0, r) ≡ ξ(1, r) ≡ 0. Moreover, since ϕβ is differentiable for β > −1 and

the integrands in the definition of ξ are continuous for every (t, s) ∈ [0, 1] × [0, r] and
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r ∈ (0, 1) as well as its derivative with respect to t, it follows by Leibniz’s rule that ξ is

derivable with respect to t with

d

dt
ξ(t, r) = G(u1, r)−G(u2, r)

+
2

β + 1

∫ r

0

sγf(s)(u2(s)− u1(s))

(1− ut(s))3
ds

∣∣∣∣∫ r

0

sγf(s)

(1− ut(s))2
ds

∣∣∣∣−β/(β+1)

.

Applying again the same argument, we can calculate

d2

dt2
ξ(t, r) =

− 4β

(β + 1)2

∣∣∣∣∫ r

0

sγf(s)

(1− ut(s))2
ds

∣∣∣∣−(2β+1)/(β+1)(∫ r

0

sγf(s)(u2(s)− u1(s))

(1− ut(s))3
ds

)2

+
6

β + 1

∣∣∣∣∫ r

0

sγf(s)

(1− ut(s))2
ds

∣∣∣∣−β/(β+1) ∫ r

0

sγf(s)

(1− ut(s))4
(u2(s)− u1(s))2 ds,

or equivalently,
d2

dt2
ξ(t, r) = ζ(t, r)

(
3η1(t, r)− 2β

β + 1
η2(t, r)

)
, (3.9)

where 

ζ(t, r) :=
2

β + 1

∣∣∣∣∫ r

0

sγf(s)

(1− ut(s))2
ds

∣∣∣∣−(2β+1)/(β+1)

,

η1(t, r) :=

∫ r

0

sγf(s)

(1− ut(s))2
ds

∫ r

0

sγf(s)(u2(s)− u1(s))2

(1− ut(s))4
ds,

η2(t, r) :=

(∫ r

0

sγf(s)(u2(s)− u1(s))

(1− ut(s))3
ds

)2

.

Observe that ζ(t, r) ≥ 0 for all (t, r) ∈ [0, 1]×[0, 1]. In fact, the term inside the parenthesis

in (3.9) is also nonnegative for all β > −1 since

2β

β + 1
> −2,

and, by the Cauchy-Schwarz inequality, we have(∫ r

0

sγf(s)(u2(s)− u1(s))

(1− ut(s))3
ds

)2

=

(∫ r

0

(sγf(s))1/2

1− ut(s)
(sγf(s))1/2 (u2(s)− u1(s))

(1− ut(s))2
ds

)2

≤
∫ r

0

sγf(s)

(1− ut(s))2
ds

∫ r

0

sγf(s)(u2(s)− u1(s))2

(1− ut(s))4
ds. (3.10)
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That is, ξ′′ is non-negative and we conclude that ξ is nonpositive.

If u1(r) < u2(r) strictly on (δ1, δ2) ⊂ [0, 1], then the terms η1 and η2 are strictly

positive on [0, 1]× (δ1, 1] consequently, ξ′′ is strictly positive for (t, r) ∈ [0, 1]× (δ1, 1] and

we finally conclude that, ξ is strictly negative for (t, r) ∈ (0, 1)× (δ1, 1].

�

The first part of Theorem 3.7 is a consequence of the sub- and super-solution

method (cf. Proposition 3.2). For the second part, consider λ1, λ2 ∈ (0, λ∗∗) with λ1 < λ2,

and the respective minimal integral solutions u1, u2 of problems (Pλ1) and (Pλ2). Observe

that u2 ≥ 0, u2 6= 0 and that u2 is a super-solution of (Pλ1). Then, (Pλ1) admits a non-

negative solution u 6= 0 satisfying u ≤ u2. By the definition of minimal solution we must

have u1 ≤ u2. We can not have u1 = u2 because this implies λ1 = λ2.

Now, consider

λ0 = sup{λ ∈ Λ : the associated minimal solution uλ is regular}.

Suppose λ0 < λ∗∗ and take λ1 ∈ (0, λ0) and λ2 ∈ (λ0, λ
∗∗). Consider also the minimal

solutions u1 and u2 associated with (Pλ1) and (Pλ2) respectively. Choose t ∈ (0, 1) such

that

λ
1/(β+1)
1 < λ

1/(β+1)
0 < tλ

1/(β+1)
1 + (1− t)λ1/(β+1)

2 < λ
1/(β+1)
2

and set

λ =
(
tλ

1/(β+1)
1 + (1− t)λ1/(β+1)

2

)β+1

> λ0

and v = tu1 + (1 + t)u2. We see from Lemma 3.9 that

−rα/(β+1)v′ = tλ
1/(β+1)
1 G(u1) + (1− t)λ(β+1)

2 G(u2)

≥ λ1/(β+1)G(v)

Thus, v is a super-solution of (Pλ). Let u be a integral solution of (Pλ), ensured by the

sub- and super-solution method. Since ‖v‖∞ ≤ t‖u1‖∞+(1−t)‖u2‖∞ < 1 and 0 ≤ u ≤ v,

we deduce that u is a regular solution. This is in contradiction with the definition of λ0.

Therefore, we have proved that λ0 = λ∗ = λ∗∗, and consequently we also have proved

item 3 of Theorem 3.6.
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3.2.3 Proof of Theorem 3.6, item 2 and proof of Theorem 3.8

Here the study of the critical problem (Pλ) with λ = λ∗:
−(rα|u′|βu′)′ = λ∗rγf(r)

(1− u)2
, r ∈ (0, 1),

0 ≤ u(r) ≤1, r ∈ (0, 1),

u′(0) = u(1) = 0.

(Pλ∗)

We prove that problem (Pλ∗) has a unique solution for −1 < β, as stated in Theorem 3.8.

Since for each fixed r ∈ [0, 1], the function λ 7→ uλ(r) is nondecreasing (see Theorem 3.7)

and bounded by 1 (see Proposition 2.4), we have that the function u∗ : [0, 1] → R given

by

u∗(r) := lim
λ↗λ∗

uλ(r), r ∈ [0, 1],

is well defined. Then, by using an argument similar to the one in the last part of the

proof of Proposition 3.2, we can conclude, that u∗ is an integral solution of (Pλ∗) and,

consequently, we have proved item (2) of Theorem 3.6. Now, since we have proved the

existence of solution for (Pλ∗), consider an arbitrary solution v. Due to the monotonicity

property of the the term G, we have that v is an integral supersolution of (Pλ) for every

0 < λ < λ∗. Then uλ(r) ≤ v(r) for every r ∈ [0, 1], where uλ is the minimal solution of

(Pλ). In the limit case, it follows that

u∗ ≤ v

in the pointwise sense. Therefore, u∗ is minimal.

For the uniqueness part, suppose that there exists a solution v of (Pλ∗) with v 6≡ u∗.

Since u∗ is minimal and no solution has values larger than 1, we know that

u∗(r) ≤ v(r) < 1 for r ∈ (0, 1).

Denote by (δ1, δ2) ⊂ [0, 1] the open interval on which

u∗(r) < v(r) for r ∈ (δ1, δ2).

Consider

u :=
u∗ + v

2
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and observe that

u(r) < 1 for r ∈ (0, 1).

Applying Lemma 3.9 with t = 1/2, we guarantee the existence of a positive constant c

such that −u
′(r) ≥ ϕβ(λ∗r−α)G(u, r), r ∈ (0, 1),

−u′(r) ≥ ϕβ(λ∗r−α)G(u, r) + c, r ∈ [δ1, 1].

Thus,

−u′(r) ≥ ϕβ(λ∗r−α)G(u, r) + ξ(r) for r ∈ (0, 1),

where ξ is a non zero continuous function supported on [δ1, 1] and satisfying

ξ(r) ≤ c and ξ(1) > 0.

So u is a supersolution for the problem−u
′(r) = ϕβ(λ∗r−α)G(u, r) + ξ(r), r ∈ (0, 1),

u(1) = 0.

(3.11)

Since the zero function is a subsolution of (3.11), we conclude via Proposition 3.2 that

(3.11) has an integral solution u0 satisfying

0 ≤ u0 ≤ u ≤ 1.

Considering

ψ(r) :=

∫ 1

r

ξ(r) dr,

it is easy to see, in particular, that u is a solution of (3.11) if and only if u−ψ is a solution

of (Pλ).

Denote

η(r) :=
u0(r)

ψ(r)
.

Since

lim
r→1

u0(r) = lim
r→1

ψ(r) = 0,

we can apply L’Hôpital’s rule to obtain

lim
r→1

η(r) = lim
r→1

u′0(r)

ψ′(r)
=
ϕβ(λ∗)G(u0, 1) + ξ(1)

ξ(1)
.
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Thus, η defines a continuous function over [0, 1]. Then we can take δ > 0 sufficiently

small such that

δu0 ≤ ψ. (3.12)

Choose ε > 0 sufficiently small such that

ϕβ(λ∗ + ε)

ϕβ(λ∗)
− 1 < δ

and define

wε =
ϕβ(λ∗ + ε)

ϕβ(λ∗)
u0 − ψ.

Due to (3.12) we see that

u0 − wε = ψ +

(
1− ϕβ(λ∗ + ε)

ϕβ(λ∗)

)
u0 > ψ − δu0 ≥ 0,

that is,

wε ≤ u0 ≤ 1.

Since G is monotone on the variable u for u ≤ 1, it follows that

−w′ε(r) =
ϕβ(λ∗ + ε)

ϕβ(λ∗)
ϕβ(λ∗r−α)G(u0, r) +

(
ϕβ(λ∗ + ε)

ϕβ(λ∗)
− 1

)
G0(u0, r)

≥ ϕβ((λ∗ + ε)r−α)G(wε, r).

Thus, wε is a super solution of (Pλ) for λ = λ∗ + ε. Moreover, wε ≥ 0. Then, via

Proposition 3.2 there exists a solution of (Pλ) for λ > λ∗, which contradicts the definition

of λ∗.
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4 Existence of a bifurcation point

4.1 Stability of minimal solutions

Now, in order to get additional properties of solutions of (Pλ), we present a sub-

and supersolution result which enables us to obtain a weak solution of (Pλ) as a minimum

of a functional in an appropriate set.

Hereafter we are using the following notations. For v, u ∈ X with v ≤ u, we define

the interval Mv,u in X setting

Mv,u := {w ∈ X : v ≤ w ≤ u}.

Given u ≤ u, regular sub- and supersolution respectively of (Pλ), we also define the

functional I : Mu,u → R as

I(u) :=
1

β + 2
‖u‖β+2

X −
∫ 1

0

F (u, r) dr,

where

F (u, r) :=

∫ u(r)

u(r)

λrγf(r)

(1− s)2
ds =

λrγf(r)

1− u(r)
− λrγf(r)

1− u(r)
. (4.1)

We omitted the dependence on u and u in order to avoid overburdening the notation.

Note that I is well defined. Indeed, since ‖u‖∞ < 1 for every u ∈ Mu,u and r ∈ (0, 1),

then F is continuous on r. Moreover,

0 ≤
∫ 1

0

λrγf(r)

1− v(r)
dr ≤

∫ 1

0

λrγf(r) max{1, (1− v(r))−2}dr <∞ for v = u, u.

Proposition 4.1 Let u and u be a regular weak subsolution and a regular weak

supersolution respectively for (Pλ), satisfying u ≤ u. Then there exists u0 ∈ Mu,u such
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that

I(u0) = min
u∈Mu,u

I(u).

Moreover, u0 is a weak solution of (Pλ).

Proof. Given u ∈Mu,u, we have

0 ≤ 1

1− u
− 1

1− u
=

u− u
(1− u)(1− u)

≤ u− u
(1− u)2

.

Multiplying the inequality above by λrγf(r) and integrating, we get

0 ≤
∫ 1

0

F (u, r) dr ≤
∫ 1

0

λrγf(r)

(1− u(r))2
(u(r)− u(r)) dr.

Then, by the weak supersolution condition we have

0 ≤
∫ 1

0

F (u, r) dr ≤
∫ 1

0

rα|u′(r)|βu′(r)(u(r)− u(r))′ dr.

Applying Hölder inequality we settle

0 ≤
∫ 1

0

F (u, r) dr ≤ ‖u‖β+1
X ‖u− u‖X .

Finally we conclude

I(u) =
1

β + 2
‖u‖β+2

X −
∫ 1

0

F (u, r) dr ≥ 1

β + 2
‖u‖β+2

X − ‖u‖β+1
X ‖u− u‖X ,

from which we get that I is coercive and bounded from below.

Given un ∈ Mu,u with un ⇀ u, since X is reflexive, un → u almost everywhere

on (0, 1) and F (un, r) is continuous on r ∈ (0, 1). Therefore, we have F (un, r)→ F (u, r)

almost everywhere for r ∈ (0, 1) and consequently,∫ 1

0

F (un, r) dr →
∫ 1

0

F (u, r) dr.

In particular, I is lower weakly semi-continuous. The previous observations and the

weakly compactness of Mu,u make us to conclude that I attains its infimum on Mu,u.

Now we are going to prove that minimizers of I on Mu,u are weak solutions of (Pλ).

Let u ∈Mu,u be a minimizer of I and consider for ε > 0 and v ∈ X

vε = min{u,max{u, u+ εv}} = u+ εv − bε + pε
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with bε = (u+ εv− u)+ and pε = (u+ εv− u)−. Since vε ∈Mu,u and u+ t(vε− u) ∈Mu,u

for all t ∈ [0, 1], we have that I is differentiable at u on the direction vε − u.

Given t ∈ [0, 1] there exists t ∈ [0, t] such that

0 ≤ 1

t

(
I
(
u+ t (vε − u)

)
− I(u)

)
= I ′ (u+ t (vε − u)) (vε − u) .

Then, by the continuity of I ′, taking t→ 0, we have

0 ≤ I ′(u)(vε − u). (4.2)

Since

I ′(u)(vε − u) = εI ′(u)v − I ′(u)bε + I ′(u)pε,

looking at (4.2) we get

I ′(u)v ≥ 1

ε
(I ′(u)bε − I ′(u)pε) . (4.3)

Now, let us verify that lim infε→0 ε
−1I ′(u)bε ≥ 0. Let u be a supersolution of (Pλ).

Since bε ≥ 0, we must have

I ′(u)bε ≥ 0.

It follows that,

I ′(u)bε ≥ (I ′(u)− I ′(u)) bε =

∫ 1

0

rα
(
|u′(r)|βu′(r)− |u′(r)|βu′(r)

)
b′ε(r) dr

−
∫ 1

0

λrγf(r)

[
1

(1− u(r))2
− 1

(1− u(r))2

]
bε(r) dr

≥
∫ 1

0

rγ
(
|u′|βu′ − |u′|βu′

)
b′ε(r) dr,

where the last inequality is a consequence of the monotonicity of 1/(1 − s)2. Therefore,

we get

I ′(u)bε ≥
∫
lε

rγ
(
|u′(r)|βu′(r)− |u′(r)|βu′(r)

)
(u′(r) + εv′(r)− u′(r)) dr (4.4)

with lε = {r ∈ [0, 1] : u(r) < u(r) ≤ u(r) + εv(r)}.

Since the function |s|βs is increasing, given x, y ∈ R with x ≥ y, we have

|x|βx ≥ |y|βy. Thus,

(|x|βx− |y|βy)(x− y) ≥ 0 for all x, y ∈ R.
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Using this inequality in (4.4) with x = u′ and y = v′, we obtain

I ′(u)bε ≥ ε

∫
lε

(
|u′(r)|βu′(r)− |u′(r)|βu′(r)

)
v′(r) dr,

which converges to zero as ε → 0, since the measure of lε goes to zero. Analogously, we

can obtain I(u)pε ≥ 0 and consequently by (4.3) we achieve I(u)v ≤ 0. Since v ∈ X is

arbitrary, we also must have I(u)(−v) ≤ 0. Thus we conclude I(u)v = 0 for every v ∈ X,

that is, u is a weak solution of (Pλ).

�

The assumption ‖u‖∞ < 1 in Proposition 4.1 reveals to us that only regular

solutions can be pointed out by this result. Singular solutions may be considered by a

limiting process. On the following, we use Proposition 4.1 to obtain additional properties

of the minimal solutions.

Proposition 4.2 (Existence of semi-stable solutions) For λ ∈ (0, λ∗), the minimal

solution of (Pλ) is semi-stable.

Proof. Given λ ∈ (0, λ∗) and u the associated minimal weak solution (see Theorem 3.7),

since ‖u‖∞ < 1, we know u ∈Mu,u where u ≡ −1 is a weak subsolution of (Pλ) and u = u

is, in particular, a weak supersolution of the same problem. According to Proposition 4.1,

there exists a solution v of (Pλ) which minimizes the functional I with u and u chosen as

above. In particular

u ≤ v ≤ u = u

and

0 ≤ u ≤ v,

since u is minimal. Thus u = v, that is, u minimizes I on Mu,u where u ≡ −1 and

u = u ≥ 0.

Consider the set

X∞u := {v ∈ Xu : ‖v‖∞ <∞}. (4.5)

X∞u is a dense subspace of X and v ∈ C[0, 1] for every v ∈ X∞u . Given v ∈ X∞u with v ≥ 0,

there exists t0 > 0 such that ‖u+ tv‖∞ < 1 for every t ∈ [−t0, 0]. Thus u+ tv ∈Mu,u for
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every t ∈ [−t0, 0]. Consider function η : [−t0, 0]→ R as

η(t) := I(u+ tv) =
1

β + 2
‖u+ tv‖β+2

X −
∫ 1

0

F (u+ tv, r) dr,

We see by the Leibniz integral rule that η is twice differentiable on [−t0, 0] with

η′(t) =

∫ 1

0

rα|u′(r) + tv′(r)|β(u′(r) + tv′(r))v′(r) dr −
∫ 1

0

λrγf(r)v(r)

(1− (u(r) + tv(r)))2
dr.

and

η′′(t) = (β + 1)

∫ 1

0

rα|u′(r) + tv′(r)|β(v′(r))2 dr −
∫ 1

0

2λrγf(r)v2(r)

(1− (u(r) + tv(r)))3
dr.

Since u is a solution of (Pλ), we have η′(0) = 0. Since u is an absolute minimizer of I in

Mu,u, we have η′′(0) = 0, that is, u satisfies

(β + 1)

∫ 1

0

rα|u′(r)|β(v′(r))2dr −
∫ 1

0

2λrγf(r)v2(r)

(1− u(r))3
dr ≥ 0.

By density argument and due to the arbitrariness of v, we conclude that u is a semi-stable

solution.

�

Proposition 4.3 Calling

Ru(v) =
1

‖v‖u

(
(β + 1)

∫ 1

0

rα|u′(r)|β(v′(r))2 dr − 2λ

∫ 1

0

rγf(r)

(1− u(r))3
v2(r) dr

)
,

we have that

inf
v∈Xu\{0}

Ru(v)

is attained for some φ1 ∈ Xu.

Proof. Consider a minimizing sequence vn of µ1(u), that is, R(vn) → µ1(u) as n → ∞,

with ‖vn‖ = 1. Since u is regular, then the term rγf(r)/(1 − u(r))3 defines a bounded

function on [0, 1] (continuous, in fact). Moreover, the sequence (‖vn‖u)n is bounded since

(R(vn))n is bounded. In fact,

Ru(vn) ≤ C1 ⇒ (β+1)

∫ 1

0

rα|u′(r)|β(v′n(r))2 dr ≤ C+2λ

∫ 1

0

rγf(r)

(1− u(r))3
v2
n(r) dr ≤ C2,
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where C1 and C2 are upper bounds for Ru(vn) and rγf(r)/(1−u(r))3 respectively. Then,

up to a subsequence, we get that

vn ⇀ φ1 weakly in Xu.

Since Xu is compactly embedding in L2, we have that

vn → φ1 strongly in L2((0, 1)).

In particular,

‖φ1‖2 = 1.

Since, ∫ 1

0

rγf(r)

(1− u(r))3
v2(r) dr ≤ C2

∫ 1

0

v2
n(r) dr,

we see that this term is continuous in L2((0, 1)). We also have that ‖ · ‖u is lower semi-

continuous in Xu. Then Ru(φ1) = µ1(u), that is, µ1 is attained at φ1. Moreover, due to

Riesz’s Representation Theorem, φ1 solves the problem
rα|u′|βφ′′1 −

2λrγf(r)

(1− u(r))3
φ1 = µ1φ1 r ∈ (0, 1),

φ′1(0) = φ1(1) = 0.

in the weak sense.

�

Proposition 4.4 (Existence of stable solutions) For λ ∈ (0, λ∗), and β ≥ 0 the

minimal solution of (Pλ) is stable.

Proof. Suppose that for some λ0 ∈ (0, λ∗), µ1(uλ0) = 0. Take λ ∈ (λ0, λ
∗) and consider

u0 := uλ0 and u := uλ the minimal solution associated with λ0 and λ respectively.

Consider also φ0, φ ∈ Xu the minimizers of µ1(u0) and µ1(u) respectively.

We know from Theorem 3.7 that

u0 ≤ u and |u′| ≤ |u′0|.

It follows ∫ 1

0

rα|u′0(r)|β(φ′0(r))2 dr ≥
∫ 1

0

rα|u′(r)|β(φ′0(r))2 dr. (4.6)
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and

(β + 1)

∫ 1

0

rα|u′0(r)|β(φ′0(r))2 dr = 2λ0

∫ 1

0

rγf(r)

(1− u0(r))3
(φ0(r))2 dr

≤ 2λ0

∫ 1

0

rγf(r)

(1− u(r))3
(φ0(r))2 dr

< 2λ

∫ 1

0

rγf(r)

(1− u(r))3
(φ0(r))2 dr.

(4.7)

In other hand

0 ≤ µ1(u) ≤ (β + 1)

∫ 1

0

rα|u′(r)|β(φ′0(r))2 dr − 2λ

∫ 1

0

rγf(r)

(1− u(r))3
(φ0(r))2 dr. (4.8)

Putting together (4.7) and (4.8) we obtain∫ 1

0

rα|u′0(r)|β(φ′0(r))2 dr <

∫ 1

0

rα|u′(r)|β(φ′0(r))2 dr.

This is in contradiction with (4.6).

�

Now we present the main result of this section. This result is a characterization of

the minimal solutions and will be very useful in our upcoming arguments.

Theorem 4.5 The minimal solution of (Pλ) is semi-stable. For β > 0 and λ ∈ (0, λ∗)

it is in fact stable and any stable solution is minimal.

Proof. Let u be a semi-stable solution of (Pλ) and uλ be the minimal solution of the same

problem. Since uλ ≤ u, it follows

−rα|u′λ(r)|βu′λ(r) =

∫ r

0

λsγf(s)

(1− uλ(s))2
ds ≤

∫ r

0

λsγf(s)

(1− u(s))2
ds = −rα|u′(r)|βu′(r),

for all r ∈ (0, 1). Thereby we have

u′ ≤ u′λ.

Suppose uλ(r) < u(r) strictly on (δ1, δ2) ⊂ [0, 1] and set

ut(r) := tu(r) + (1− t)uλ(r) and u′t =
d

dr
ut.

According to Lemma 3.9, we have, for every (t, r) ∈ [0, 1]× (0, 1],

rα/(β+1)u′t(r) +G(ut, r) ≤ rα/(β+1)u′t(r) + (1− t)G(uλ, r) + tG(u)

= rα/(β+1)u′t(r)− (1− t)rα/(β+1)u′λ(r)− trα/(β+1)u′(r) = 0.
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In addition, also from Lemma 3.9, analogously as above, we get

rα/(β+1)u′t(r) +G(ut)(r) < 0 for every (t, r) ∈ [0, 1]× (δ1, 1] .

Therefore,

− rα|u′t(r)|βu′t(r) ≥
∫ r

0

λsγf(s)

(1− ut(s))2
ds for every (t, r) ∈ [0, 1]× (0, 1] (4.9)

and

− rα|u′t(r)|βu′t(r) >
∫ r

0

λsγf(s)

(1− ut(s))2
ds for every (t, r) ∈ (0, 1)× (δ1, 1] . (4.10)

In particular, ut is an integral supersolution of (Pλ) but it is not a solution for any

t ∈ (0, 1). Thus, multiplying (4.9) by u′ − u′λ, which is non-positive, and integrating on

[0, 1] we get, in view of (4.10),∫ 1

0

rα|u′t(r)|βu′t(r)(u(r)−uλ(r))′ dr >
∫ 1

0

λrγf(r)

(1− ut(r))2
(u(r)−uλ(r)) dr for all t ∈ (0, 1).

Consider the function ψ : [0, 1]→ R settled by

ψ(t) :=

∫ 1

0

rα|u′t(r)|βu′t(r)(u(r)− uλ(r))′ dr −
∫ 1

0

λrγf(r)

(1− ut(r))2
(u(r)− uλ(r)) dr,

we have

ψ(t) > 0 for all t ∈ (0, 1) and ψ(0) = ψ(1) = 0. (4.11)

Then,

ψ′(0) ≥ 0 and ψ′(1) ≤ 0. (4.12)

Observe that

ψ′(t) = (β + 1)

∫ 1

0

rα|u′t(r)|β(u′(r)− u′λ(r))2 dr −
∫ 1

0

2λsγf(r)

(1− ut(r))3
(u(r)− uλ(r))2 dr.

Since u is a semi-stable solution, we have ψ′(1) ≥ 0. This, together with (4.12), gives

ψ′(1) = 0. If β > 0, then ψ′(t) is strictly decreasing and consequently, ψ′(t) > 0 for every

t ∈ (0, 1). This is a contradiction with (4.11).

�
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4.2 Regularity of the extremal solution

Let u be a weak solution of (Pλ), that is, u ∈ X satisfying

u′(r) = ϕβ(λr−α)G(r, u) for r ∈ (0, 1).

Let us denote

w := ln

(
1

1− u

)
. (4.13)

We see that

w′ =
u′

1− u
.

Thus, we conclude that w satisfiesw
′(r) = (1− u(r))−1ϕβ(λr−α)G(r, u) for r ∈ (0, 1)

w(1) = 0.

(4.14)

or equivalently
rαϕ−1

β (w′(r)) = λϕ−1
β

(
1

1− u(r)

)∫ r

0

sγf(s)

(1− u(s))2
ds for r ∈ (0, 1)

w(1) = 0.

(4.15)

Observe from (4.13) that w is bounded if and only if ‖u‖∞ < 1. Thus, our task will be to

discuss about under which conditions we can ensure that w is bounded.

In our upcoming arguments we make use of an embedding result on weighted

Lebesgue spaces. Given q ≥ 1, we denote by Lqθ([0, 1]) the Banach space of Lebesgue

measurable functions u : [0, 1]→ R such that

‖u‖Lqθ =

(∫ 1

0

rθ|u(r)|q dr

)1/q

<∞.

With this notation, we invoke the following proposition.

Proposition A (One-dimensional Hardy Inequality) Given u ∈ X then there

exists C > 0 such that(∫ 1

0

rθ|u(r)|q dr

)
≤ C

(∫ 1

0

rα|u′(r)|β+2 dr

)1/(β+2)

provided that
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1. 1 ≤ β + 2 ≤ q <∞ and

(a) α > β + 1, θ ≥ q
α− β − 1

β + 2
− 1, or

(b) α ≤ β, θ > −1,

2. 1 ≤ q < β + 2 <∞ and

(a) α > β + 1, θ > q
α− β − 1

β + 2
− 1, or

(b) α ≤ β, θ > −1.

If β < α− 1 then X is compactly embedding in Lqθ for 1 < q < q∗, where

q∗ =
(γ + 1)(β + 2)

α− β − 1
.

We refer to A. Kufner and B. Opic [Opic e Kufner 1990] for the proprieties remarked here.

Proposition 4.6 Given u ∈ X satisfying

rαϕ−1
β (u′(r)) = rα/(β+2)F (r), (4.16)

if there exist constants δ1, δ2 > 0 and τ > (β + 2)/(β + 1) such that F ∈ Lqθ((0, 1)) for

θ =
1− δ1

τ
and q =

τ(β + 2)2

τ(β + 1)− (β + 2)
+ δ2, (4.17)

then, u is bounded.

Proof. The proof follows the Moser’s iteration argument due to De Giorgi-Nash. Given q

satisfying (4.17), choose θ such that the pair (θ, q) satisfies the conditions on Proposition

A. Now, for k > 0, consider

v(r) :=

sign(u)(|u| − k) if rθ/q|u| > k,

0 it rθ/q|u| ≤ k

(4.18)

and denote

A(k) :=
{
r ∈ (0, 1) : rθ/q|u| > k

}
. (4.19)

Since v′ = u′ in A(k) and v′ ≡ 0 in (0, 1) \ A(k), we see that v ∈ X ′. Multiplying (4.16)

by u′ and integrating on (0, 1), we get∫
A(k)

rα|u′(r)|β+2dr =

∫
A(k)

rα/(β+2)F (r)u′(r) dr. (4.20)
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Applying the Hölder inequality on the right hand side of (4.20) we obtain∫
A(k)

F (r)rα/(β+2)u′(r) dr

≤ C0‖F‖Lqθ

(∫
A(k)

rα|u′(r)|β+2 dr

)1/(β+2)

|A(k)|(β+1)/(β+2)−1/q−1/τ , (4.21)

where

C0 :=

(∫ 1

0

r−θτ dr

)1/τ

.

Observe that C0 is well defined since −θτ > −1. It follows from (4.20) and (4.21) that(∫
A(k)

rα|u′(r)|β+2 dr

)(β+1)/(β+2)

≤ C0‖F‖Lqθ |A(k)|(β+1)/(β+2)−1/q−1/τ . (4.22)

Notice that for 0 < k < h

|A(h)|1/q(h− k) =

(∫
A(h)

(h− k)q dr

)1/q

≤
(∫

A(h)

(
rθ/q|u(r)| − k

)q
dr

)1/q

and then

|A(h)|1/q(h− k) ≤
(∫

A(h)

rθ |sign(u(r)) (|u(r)| − k)|q dr

)1/q

=

(∫
A(h)

rθ|v(r)|qdr
)1/q

.

(4.23)

We know from Proposition A that(∫ 1

0

rθ|v(r)|qdr
)1/q

≤ C

(∫ 1

0

rα|v′(r)|β+2dr

)1/(β+2)

(4.24)

for some constant C > 0. Applying (4.24) in (4.23), we get

|A(h)| ≤ Cq 1

(h− k)q

(∫ 1

0

rα|v′(r)|β+2dr

)q/(β+2)

(4.25)

Now, using (4.22), estimate (4.25) becomes

|A(h)| ≤ Cq
2

1

(h− k)q
‖F‖q/(β+1)

q |A(k)|q/(β+2)−1/(β+1)−q/τ(β+1), (4.26)

with

C2 := CC
1/(β+1)
0 ‖F‖1/(β+1)

q .
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Claim 4.7 Let η : [0,∞) → [0,∞) be a nonincreasing function. If there exist q > 0,

p > 1, k0 ≥ 0 and M > 0 such that

η(h) ≤
(

M

h− k

)q
(η(k))p for h > k > k0. (4.27)

Then there exists k∗ ≥ 0 such that η(k0 + k∗) = 0, where k∗ = M2p/(p−1)(η(k))(p−1)/q.

We can apply Claim 4.7 with η(h) = |A(h)|, k0 = 0, M = C‖F‖1/(β+1)
q and

p =
q

β + 2
− 1

β + 1
− q

τ(β + 1)
> 1.

Observe that η(k0) = 1. Thus we conclude that there exists k∗ > 0 such that η(k∗) = 0

namely

‖u‖∞ ≤ k∗.

To finish the proof, it remains to prove Claim 4.7.

Proof of Claim (4.7). Consider the sequence

kn := k0 +

(
1− 1

2n

)
k∗ (4.28)

where k∗ is a constant to be determined. Observe that kn → k0 + k∗. We can prove by

induction that

η(kn) ≤ η(k0)

rn
for all n ∈ N (4.29)

where r > 1 is a constant to be properly chosen. Letting n → ∞ on (4.29) we get

η(k0 + k∗) = 0 and the claim is proved.

Now, lets us prove estimate (4.29). First, observe that (4.29) is trivially valid for

n = 0. Suppose that (4.29) is valid for a fixed n. We see from (4.28) that

kn − kn−1 =

(
1

2n−1
− 1

2n

)
k0 =

k∗

2n
. (4.30)

It follows from (4.27) together with (4.30) that

η(kn+1) ≤
(
M2n+1

k∗

)q
|η(kn)|p. (4.31)

Applying the induction hypothesis (4.29) in (4.31) we get

η(kn+1) ≤
(
M2n+1

k∗

)q ( |η(k0)|
rn

)p
. (4.32)



59

Observe that(
M2n+1

k∗

)q ( |η(k0)|
rn

)p
=
η(k0)

rn+1

(
M2n+1

k∗

)q
1

rn(p−1)−1
|η(k0)|p−1. (4.33)

Then, choosing r = 2q/(p−1) we get

η(kn+1) ≤ η(k0)

rn−1

(
M

k∗

)q
2pq/(p−1)|η(k0)|p−1.

From this we see that (4.29) is valid substituting n by n+ 1, provided that k∗ satisfies(
M

k∗

)q
2pq/(p−1)|η(k0)|p−1 ≤ 1,

that is,

k∗ ≥M2p/(p−1)|η(k0)|(p−1)/q.

�

In the light of Preposition 4.6, the task of proving the regularity of the critical

solution u∗ comes down to prove some estimate on F .

Proposition 4.8 Given u a semi-stable solution of (Pλ) then,∫ 1

0

rα
∣∣∣∣( 1

(1− u(r))q

)′∣∣∣∣β+2

dr <∞ (4.34)

provided that 
0 < q <

2β

(β − 1)(β + 2)
if β > 1,

0 < q if β ≤ 1.

Proof. Given k ∈ (0, 1), consider Tku the truncation of u on the level 1− k, that is,

Tku(r) =

1− k if u > 1− k,

u(r) if u < 1− k.

For p > 0, we set

v :=
1

(1− Tku(r))p
− 1.
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Observe that v ∈ X. Then we can take v as a test function on the weak formulation of

(Pλ). Since |u′|βu′(Tku)′ = |(Tku)′|β+2, we have that

p

∫ 1

0

rα
|(Tku)′|β+2

(1− Tku(r))p+1
dr =

∫ 1

0

λrγf(r)

(1− u(r))2

(
1

(1− Tku(r))p
− 1

)
dr. (4.35)

Observe also that
1

1− Tku
≤ 1

1− u
.

Then we can see from (4.35) that∫ 1

0

rα
|(Tku)′|β+2

(1− Tku(r))p+1
dr ≤ 1

p

∫ 1

0

λrγf(r)

(1− u(r))3

1

(1− Tku(r))p−1
dr + C1, (4.36)

where

C1 = −1

p

∫ 1

0

λrγf(r)

(1− u(r))2
dr

does not depend on k.

Using

(a+ b)2 ≤ 2(a2 + b2)

with

a =
1

(1− Tku(r))(p−1)/2
− 1 and b = 1

we get∫ 1

0

rα
|(Tku)′|β+2

(1− Tku(r))p+1
dr ≤ 2

p

∫ 1

0

λrγf(r)

(1− u(r))3

(
1

(1− Tku(r))(p−1)/2
− 1

)2

dr + C2,

(4.37)

where

C2 = C1 +
2

p

∫ 1

0

λrγf(r)

(1− u(r))3
dr

is a constant which does not depend on k.

Taking

v :=
1

(1− Tku(r))q
− 1

in the semi-stability condition, we get∫ 1

0

λrγf(r)

(1− u(r))3

(
1

(1− Tku(r))q
− 1

)2

dr ≤ q(β + 1)

2

∫ 1

0

rα
|(Tku)′|β+2

(1− Tku(r))2(q+1)
dr. (4.38)
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It follows, from (4.37) and (4.38) with q = (p− 1)/2, the estimate∫ 1

0

rα|(Tku)′|β+2

(1− Tku(r))p+1
dr ≤ (β + 1)(p− 1)

2p

∫ 1

0

rα|(Tku)′|β+2

(1− Tku(r))p+1
dr + C2. (4.39)

Thus, we can conclude ∫ 1

0

rα|(Tku)′|β+2

(1− Tku(r))p+1
dr < C4 (4.40)

for some positive constant C4 uniformly on the variable k, provided that
0 < p <

β + 1

β − 1
if β > 1,

0 < p if β ≤ 1.

(4.41)

Observe also that∫ 1

0

rα
∣∣∣∣( 1

(1− Tku(r))q

)′∣∣∣∣β+2

dr = qβ+2

∫ 1

0

rα
|(Tku)′(r)|β+2

(1− Tku(r))(q+1)(β+2)
dr.

Thus, for q > 0 and according with (4.40) with p = (q + 1)(β + 2)− 1, we see that∫ 1

0

rα
∣∣∣∣( 1

(1− Tku(r))q

)′∣∣∣∣β+2

dr < C5, (4.42)

where C5 = qβ+2C4 does not depend on k, provided
0 < q <

2β

(β − 1)(β + 2)
if β > 1,

0 < q if β ≤ 1.

(4.43)

Taking the supremum in k on the expression (4.42) we obtain∫ 1

0

rα
∣∣∣∣( 1

(1− u(r))q

)′∣∣∣∣β+2

dr <∞ (4.44)

under condition (4.43).

�

Now we are ready to present the main result of this section.

Theorem 4.9 The critical solution u∗ is regular provided that

α <
2(β + 2)((2β + 1)(β + 2)2 − (β + 1)2)

(β + 1)2 + (β + 2)2 + 1
.
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Proof. Observe that w, defined in (4.13), satisfies (4.16) for

F (r) := r−α/(β+2)

(
1

1− u(r)

)β+1 ∫ r

0

λsγf(s)

(1− u(s))2
ds (4.45)

and

F (r) ≤ r−α/(β+2)

(
1

1− u(r)

)β ∫ r

0

λsγf(s)

(1− u(s))3
ds. (4.46)

According to Proposition 4.6, in order to prove that w is bounded, we need to find

N > 0 such that F ∈ Lp((0, 1)) for

p =
β + 2

β + 1
+ β + 2 +N.

Since ∫ r

0

sγf(s)

(1− u(s))2
ds ≤ (1− u(r))

∫ r

0

sγf(s)

(1− u(s))3
ds,

it is sufficient to prove that ∫ 1

0

rθ
(

1

(1− u(r))p

)q
dr <∞.

for

θ = −α
(
β + 2

β + 1
+

N

β + 2

)
and

pq = β

(
β + 2

β + 1
+ β + 2 +N

)
.

In view of Proposition 4.8, we intend to choose

v(r) =
1

(1− u(r))p

in Proposition A, where

p =
5

(β − 1)(β + 2)
+ 1− β − 1

|β − 1|
δ

for some δ > 0. Then we need to check the conditions of Proposition A for

q =
(2β + 1)(β + 2)2 + (β + 1)(β + 2)N

(β − 1)(β + 2) + 5− δ̃
,

where

δ̃ = |β − 1|(β + 2)δ
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and θ given as above.

First, observe that

(β − 1)(β + 2) + 5 =
(β − 1)2 + (β + 2)2 + 1

2
> 1.

Then, the variable q may assume any value

1 < q <
(2β + 1)(β + 2)2 + (β + 1)(β + 2)N

(β − 1)(β + 2) + 5

provided we choose a suitable N in order to make possible the choice of such q. Setting

N = −β − 1

β + 2

we get θ = 0 and

q =
(β + 1)2 + (β + 2)2 + 1

2((2β + 1)(β + 2)2 − (β + 1)2)
.

Finally, the condition

θ > q
α− β − 1

β + 2
− 1

imposes some restriction over α, namely

α <
2(β + 2)((2β + 1)(β + 2)2 − (β + 1)2)

(β + 1)2 + (β + 2)2 + 1
.

�

4.3 Multiplicity of solutions

In this section we prove the existence of nonminimal solutions for λ close to λ∗ when

u∗ is a regular solution. According with Theorem 4.5, such solutions are automatically

unstable. In the following we are assuming

(H.6) M := maxr∈(0,1){rγf(r)} <∞.

In order to avoid the singularity on (Pλ) for u = 1, we analyze the perturbed

problem
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
−(rα|u′|βu′)′ = λrγf(r)gε(r, u), r ∈ (0, 1),

0 ≤ u(r) ≤ 1, r ∈ (0, 1),

u′(0) = u(1) = 0,

(4.47)

where

gε(r, z) =



1

(1− z)2
, for u ≤ 1− ε,

f(1− ε)
(1− ε)θ−γ

rθ−γ

f(r)

(
1

ε2
− 2(1− ε)

pε2
+

2

pε2(1− ε)p−1
zp
)
, for u ≥ 1− ε

(4.48)

is a continuous function over (0, 1)×R. Moreover, gε is increasing and twice differentiable

on the second variable and satisfies

0 ≤ gε(u) ≤ Cε(1 + rθ|u|p). (4.49)

Choose θ and p satisfying the conditions on Proposition A in order to have X compactly

embedding in Lpθ and ε small in order to have ‖u‖∞ < 1 − ε. This way, solutions u of

(4.47) are automatically solutions of (Pλ) and conversely.

The proof of the existence of a branch of solutions for (4.47) apart from that

induced by (Pλ), the minimal branch, relies on the following standard version of the

Mountain Pass Theorem .

Theorem A (Mountain-Pass Theorem) Let J be a C1-functional defined on a

Banach space E that satisfies the Palais-Smale condition, that is, any sequence (un) ⊂ E

such that J(un) is bounded and J ′(un)→ 0 in E∗ is relatively compact in E. Assume the

following conditions:

1. There exists a neighborhood B of some u ∈ E and a constant σ > 0 such that

J(h) ≥ J(u) + σ for all h ∈ ∂B.

2. There exists w /∈ B such that J(w) ≤ J(u).
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Define

Γ = {γ ∈ C([0, 1], E) : γ(0) = u, γ(1) = w}

then there exists v ∈ E such that J ′(v) = 0 and J(v) = c, where

c = inf
γ∈Γ

max
t∈[0,1]

{J(γ(t))}.

In the following, we prove that the functional Jε,λ : X → R given by

Jε,λ(u) :=
1

β + 2

∫ 1

0

rα|u′(r)|β+2dr −
∫ 1

0

λrγf(r)Gε(r, u)dr, (4.50)

with

Gε(r, u) :=

∫ u

−∞
gε(r, s)ds

for ε > 0 sufficiently small, satisfies the hypothesis of Theorem A. The term in (4.50) is

well defined due to (4.49).

Lemma 4.10 The minimal solution uλ of (Pλ) is a strict local minimum of Jε,λ.

Proof. Since for 0 < ε < 1− ‖uλ‖

(J ′′(uλ)w,w) = Ψ(w) for all w ∈ X,

and uλ is a stable solution of (Pλ). Thus,

(J ′′(uλ)w,w) > 0 for all w ∈ X.

Then, u is a local minimum with respect to the topology of X.

�

Now, we prove that the functional Jε,λ satisfies the the Palais-Smale condition on

X.

Lemma 4.11 If the sequence (wn) ⊂ X satisfies

Jε,λn(wn) ≤ C and J ′ε,λn(wn)→ 0 in X, (4.51)

for λn → λ > 0, then the sequence (wn) admits a convergent subsequence in X.
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Proof. By (4.51) we have as n→ +∞,∫ 1

0

rα|w′n|β+2dr − λn
∫ 1

0

rγf(r)gε(r, wn)wn dr = o(‖wn‖X).

Using the subcritical growth (4.49) of gε and the inequality

θGε(r, u) ≤ ugε(r, u) for u ≥Mε (4.52)

where Mε is sufficiently large and θ = (p+ 3)/2, we obtain

1

β + 2

∫ 1

0

rα|w′n(r)|β+2dr−λn
∫ 1

0

rγf(r)Gε(r, wn) dr =

(
1

β + 2
− 1

θ

)∫ 1

0

rα|w′n(r)|β+2dr

− λn
∫ 1

0

rγf(r)

(
1

θ
wngε(wn)Gε(r, wn)

)
dr + o(‖wε‖).

Furthermore,(
1

β + 2
− 1

θ

)∫ 1

0

rα|w′n(r)|β+2dr − λn
∫ 1

0

rγf(r)

(
1

θ
wngε(wn)Gε(r, wn)

)
dr + o(‖wε‖)

≥
(

1

β + 2
− 1

θ

)∫ 1

0

rα|w′n(r)|β+2dr + o(‖wε‖)− Cε

+ λn

∫
wn≥Mε

rγf(r)

(
1

θ
wngε(r, wε)−Gε(r, wn)

)
dr.

Hence, supn∈N ‖wn‖ < +∞.

Since p is subcritical, the compactness of the embedding X ↪→ Lp+1((0, 1)) provides

that, up to a subsequence, wn → w weakly in in X and strongly in Lp+1((0, 1)) for some

w ∈ X. By (4.51) ∫ 1

0

rα|u′|β+1 dr = λ

∫ 1

0

rγf(r)gε(r, w)w dr,

and by (4.49), we deduce that∫ 1

0

rα|w′n(r)− w′(r)|β+1 dr =

∫ 1

0

rα|w′n(r)|β+1 dr −
∫ 1

0

rα|w′(r)|β+1 dr + o(1)

= λn

∫ 1

0

rγf(r)gε(r, wn)wn dr − λ
∫ 1

0

rγf(r)gε(r, w)w dr + o(1)→ 0

as n→ +∞, and the lemma is proved.

�

It remains to prove that Jε,λ has a mountain pass geometry in X.
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Lemma 4.12 There exists w ∈ X such that

Jε,λ(w) ≤ Jε,λ(uλ)

for every λ on a neighborhood of λ∗.

Proof. Since f 6≡ 0, fix some small interval I ⊂ (0, 1) of radius 2a, a > 0, so that∫
I

rγf(r) dr > 0.

Take a cutoff function χ so that χ = 1 onBa and χ = 0 outsideB2r. Let wε = (1−ε)χ ∈ X.

We have that

Jε,λ(wε) ≤
(1− ε)2

β + 2

∫ 1

0

rα|χ′|β+2dr − λ

ε2

∫ 1

0

rγf(r)dr → −∞

as ε→ 0 and uniformly for λ bounded away from 0. Since

Jε,λ(uλ) =
1

β + 2

∫ 1

0

rα|u′λ(r)′|β+2dr − λ
∫ 1

0

rγf(r)

1− uλ
dr

→ 1

β + 2

∫ 1

0

rα|(u∗)′(r)|β+2dr − λ∗
∫ 1

0

rγf(r)

1− u∗
dr

as λ→ λ∗, we can get for ε > 0 small that the inequality

Jε,λ(wε) ≤ Jε,λ(uλ)

holds for λ close to λ∗.

�

We finish this section with its main result.

Theorem 4.13 If u∗ is regular then there exist δ > 0 such that for any λ ∈ (λ∗ − δ, λ∗)

there exists a classical solution Uλ of (4.47), different from uλ.

Proof. The hypotheses on Theorem A are clearly satisfied. due to Lemmas 4.10, 4.11 and

4.12. Consider

cε,λ = inf
γ∈Γ

max
u∈γ

Jε,λ(u)

where

Γ = {γ : [0, 1]→ X : γ is continuous and γ(0) = uλ, u(1) = wε}.
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We can then use Theorem A to get a solution vε,λ of (4.47) for λ close to λ∗. By Theorem

3.7 we get the uniform convergence of vε,λ as λ↗ λ∗.

On the other hand, the convexity of gε ensures that problem (4.47) has a unique

solution at λ = λ∗, which is nothing but u∗, the extremal solution of (Pλ). This allows us

to deduce that vε,λ → u∗ in C([0, 1]) as λ ↗ λ∗, which also implies that vε,λ ≤ 1 − ε for

λ close to λ∗. Therefore, vε,λ is the second solution for (Pλ) bifurcating from u∗.
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