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entreajuda e partilha que existiu. Seja nos cafés partilhados nos corredores ou nas

noites a estudar para os EGDs houve sempre um espaço para o humor. Partilhei

muitos momentos bons com amigos, que vou guardar na memória com carinho.
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ABSTRACT

Tradeoffs are one of the essential ingredients that shape the diversity of life on Earth. They
are thought to create ecological niches and restrict the accessible evolutionary pathways in a
nontrivial way. Nevertheless, much is still unknown about the way tradeoffs steer the course
of evolution. Recent studies open a new venue to the empirical exploration of this subject.
The access to the genetic content of life has been revolutionizing the knowledge across the
whole Biology, bringing some answers and raising a lot of new questions. The whole concept
of multicellular life has been extending from the beginning of the 1990’s with the recogni-
tion of multicellular bacteria and numerous behaviors in the now shadowy region between
unicellular and multicellular life. The approach of experimental evolution recently provided
the first experimental insights into the process of transition from unicellular to multicellu-
lar life, by evolving multicellular organisms under controlled conditions in the laboratory.
This current work aims to provide a contribution to the theoretical understanding of the role
of tradeoffs in the transition to multicellularity and complexity development. For that, we
introduce and explore some models tailored to elucidate some of the aspects of these transi-
tions. Each of those models is explored through a combination of analytical and simulational
methods, which allows us to extract further information. A first approach deals with the esta-
blishment of an efficient mode of metabolism within the context of competition with a rapid
and inefficient mode. Usually, high rate inefficient metabolisms tend to dominate, therefore
extra mechanisms are necessary to counteract this. Within a resource-based formulation, we
study the effect of group structure in the population and find that with groups the efficient
mode outcompetes the inefficient one in a broad domain of the parameter space. In the se-
quel, we analyze the contribution of tradeoffs to the evolution of complexity. It is empirically
known that complex networks of tradeoffs are established at the cellular and metabolic level.
In this context, a system with an arbitrary number of tradeoffs over a given number of tasks
is investigated. We carry out a statistical analysis over different sets of parameters in order to
examine the dependence of cell specialization on the number and strength of the tradeoffs. A
concrete application of the model to the carbon-nitrogen fixation tradeoff in cyanobacteria is
provided. At last, we introduce a mechanistic model for the dynamics of multicellular aggre-
gates. We consider the existence of different microscopic mechanisms shaping multicellular
aggregates. Particularly, the model is applied to the study of the size-complexity rule and
interesting results follows from that approach. Depending on the geometry of the aggregates
the size-complexity rule can be followed or not. We found that more fragile aggregates vio-
late the rule and more robust ones obey it. Each of the works addressed here provides some
answers and raises new issues to be explored in the future. For instance, what is the effect
of germ-soma tradeoffs for the outcomes predicted in our models? Or, if the size-complexity
rule can be violated under some circumstances, there exist additional mechanisms that can
also have the same effect? These and other questions are raised and briefly discussed in the
conclusions.

Keywords: Evolutionary dynamics. Tradeoffs. Multicellularity. Biological complexity.



RESUMO

Os tradeoffs1 são um dos ingredientes essenciais na definição da biodiversidade na Terra.
Pensa-se que desempenham um papel crucial na criação de nichos ecológicos e que restrin-
gem o espaço evolucionário acesśıvel de formas complexas. No entanto, muito é ainda des-
conhecido sobre o modo como os tradeoffs guiam o curso da evolução. Estudos recentes
abrem novas perspectivas emṕıricas sobre este assunto. O acesso ao conteúdo genético da
vida tem revolucionado o conhecimento em todas as áreas da Biologia, introduzindo algu-
mas respostas e um sem-número de novas questões. O conceito de vida multicelular tem sido
extendido desde o ińıcio dos anos 1990, com o reconhecimento de bactérias multicelulares
e variados comportamentos ao longo do espectro que se abre entre vida unicelular e mul-
ticelular. A abordagem da evolução experimental providenciou recentemente os primeiros
experimentos onde a transição de unicelular para multicelular pode ser observada directa-
mente, sob condições controladas em laboratório. O trabalho aqui apresentado tem como
objectivo contribuir para a compreensão teórica do papel dos tradeoffs na transição para a
multicelularidade e desenvolvimento da complexidade. Para tal, nós introduzimos e explora-
mos alguns modelos desenhados para elucidar alguns aspectos destas transições. Os modelos
são explorados utilizando uma combinação de métodos anaĺıticos e simulações numéricas,
o que nos permite obter mais informação dos modelos. Uma primeira abordagem lida com
o estabelecimento de um modo eficiente de metabolismo no contexto de competição com
um modo rápido e ineficiente. Geralmente metabolismos rápidos e ineficientes tendem a
dominar, sendo necessária a introdução de outros mecanismos para o contrariar. No con-
texto de uma formulação baseada em recursos, nós estudamos o efeito da estruturação da
população em grupos e obtemos agora que o metabolismo eficiente passa a dominar numa
grande região do espaço de parâmetros. Em seguida, analisamos a contribuição dos tradeoffs
para a evolução da complexidade. Empiricamente, sabe-se que redes complexas de tradeoffs
são estabelecidas a ńıvel celular e metabólico. Neste contexto, investigamos um sistema com
um número arbitrário de tradeoffs incidentes sobre um dado número de tarefas. Realizamos
uma análise estat́ıstica sobre diferentes conjuntos de parâmetros com o objectivo de exami-
nar a forma como a especialização celular depende do número e intensidade dos tradeoffs.
Apresentamos ainda uma aplicação concreta do modelo ao tradeoff existente entre os proces-
sos de fixação de carbono e nitrogênio nas cianobactérias. For fim, introduzimos um modelo
mecańıstico para a dinâmica dos agregados multicelulares. Consideramos a existência de di-
ferentes mecanismos microscópicos que controlam a evolução dos agregados multicelulares.
Em particular, aplicamos o modelo ao estudo da regra do tamanho-complexidade e obte-
mos resultados interessantes. Dependendo da geometria considerada, a regra do tamanho-
complexidade pode ser respeitada ou não. Cada um dos trabalhos desenvolvidos respondem
algumas questões e levantam outras a explorar no futuro. Por exemplo, qual é o efeito do
tradeoff entre funções reprodutivas e somáticas nos resultados obtidos? Ou, se a regra do
tamanho-complexidade pode ser violada sob certas condições, existirão mecanismos adici-
onais que produzem o mesmo efeito? Estas e outras questões são levantadas e discutidas
brevemente nas conclusões.

Palavras-chave: Dinâmica evolucionária. Tradeoffs. Multicelularidade. Complexidade
biológica.

1 Optámos por manter a palavra tradeoff em Inglês mesmo na versão em Português devido à dificuldade
de expressar o conceito de forma concisa em Português.
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1 INTRODUCTION

The evolutionary theory is one of the great breakthroughs in the history of science.

It describes the process through which the organisms diversify over time to give

rise to the incredible complexity we observe around us. The evolutionary theory

provided the cornerstone that unified biology and supplied us a new point of view

of the world where the whole life is deeply integrated. We all know that life is a very

dynamical process at the level of individuals, with individuals being born, dying

and aging constantly, but evolution shows us that this is true also at the level of the

populations themselves, with species regularly appearing, getting extinguished and

modifying over larger time scales.

This thesis aims to provide a theoretical contribution to the study of a specific

aspect of evolution: the evolution of multicellularity and complexity. In this intro-

ductory chapter, we briefly present and discuss some relevant aspects that contex-

tualize the work developed through the following chapters.

1.1 History of Evolutionary Theory

Until XVIII century Biology was mainly seen as static. Several factors contributed

to this, namely the philosophy of Plato and Aristotle where each individual was

regarded as an imperfect instance of an idealized Form. These ideal Forms were

perfect and immutable and, therefore, no evolution could ever be achieved. Also

the biblical view of the creation led many people to remain connected to the idea

of an immutable world. This started to change soon after Carl Linnaeus introdu-

ced his taxonomic classification system in the XVIII century. Although Linnaeus

himself did not propose that the species could be dynamical, the system classified

the organisms according to their morphological characteristics, which led to the
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establishment of genetic1 relationships between species. Besides that, the system

allowed for the inclusion of species from the fossil record, which soon started to be

included side by side with the living organisms. Roughly at the same time, modern

Geology was emerging as a systematic field and showing that the Earth should be

much older than accepted until then. With the new data in hand, especially from

the fossil record, the concepts of variability in species and extinction picked up a

prominent role in the prevalent ideas. In the early XIX century, Lamarck published

the first true evolutionary theory. He believed that simple organisms were continu-

ously created through spontaneous generation. These organisms would then slowly

acquire a higher complexity over time driven by a natural tendency of living matter

to increase in complexity. Adaptation to their environment would come from a pa-

rallel mechanism where more frequently used organs develop more and less used

ones would decline. These changes would then be passed to their offspring and

this continuous process would give origin to new species over long periods of time.

An often cited example, provided by Lamarck himself, is the neck of a giraffe. The

ancestors of the giraffe had shorter necks. Then, as a consequence of stretching

them often to access high leaves in the trees, the neck would have extended over

generations, culminating in the long-necked giraffe we know nowadays.

From a large set of observations and theoretical arguments, Darwin started to

devise an evolutionary theory that would revolutionize our understanding of life.

Darwin studied thoroughly the artificial selection made by animal breeders. He

realized that different varieties arose naturally and the breeders selected them by

carefully controlling the reproduction and survival rates of each variety. Aware of

the work of Malthus, An Essay on the Principle of Population [1], he connected the

idea of limited natural resources to the act of selection by the breeders. The concept

of Natural Selection was born. The most adapted varieties have more successful

offspring, which will dominate the future generations. For twenty years Darwin did

not publish his ideas, prefering to slowly accumulate more evidence to his theory. It

was only when Alfred Russel Wallace arrived independently at the same ideas that

Darwin decided to publish. In 1858, Darwin and Wallace published an article to-

gether2 containing Wallace’s paper and extracts of Darwin’s writing on the subject,

where the authors proposed the basic ideas of natural selection. One year later,

1 Genetic is here used in the sense of common origin, the concept of genes appeared much later.
oxforddictionaries.com defines genetic as relating to origin, or arising from a common
origin.

2 On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and
Species by Natural Means of Selection [2].

oxforddictionaries.com
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Figura 1.1: Charles Darwin’s sketch of an evolutionary tree made in 1837, probably his first
evolutionary tree diagram. It is in from his “First Notebook on Transmutation of Species” on
display at the Museum of Natural History in New York.

Darwin finaly published his highly influential On the Origin of Species3 [3]. Besides

the idea of natural selection Darwin understood that there were other mechanisms

in action, such as migration for example. Darwin defended the common origin of

species, with the species being related to each other in a tree structure. One of such

tree diagrams, probably his first, is reproduced in Fig. 1.1.

In parallel, starting in 1856, Mendel conducted a series of experiments with

different varieties of pea plants which allowed him to correctly infer several of the

laws of inheritance. For these studies, many consider him to be the pioneer of

genetics. However, his conclusions did not have much impact at that time since

most of the scientific community was unaware of his results. It was only in the

beginning of XX century, with the rediscovery of his results, that real recognition

was awarded to his efforts.

It was not until the beginning of XX century that another breakthrough was to

happen in evolutionary theory. Starting with Ronald Fisher’s paper in 1919 [4], a

new integrated evolutionary theory arose from the contributions of several authors

that incorporated Darwin’s natural selection, Mendelian inheritance and the genetic

variation of populations, besides several other mechanisms. The theory was now

3 The full title of the book is On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life.



1.2 Evolutionary mechanisms 14

firmly established in biological and mathematical terms for the first time. Besides

blending the theories for inheritance and selection, Modern Synthesis provided a

common framework for the evolution seen in large time scales, e.g., from the fossil

record, and the population dynamics and ecological aspects, observed in smaller

time scales.

This theory has since been adapting and incorporated new features, specially

since the development of the methods for fast genetic sequencing. Notably, it is now

recognized that lateral gene transfer4 and epigenetics5 play a much more relevant

role than previously thought although the real extent of their importance is still a

subject of debate.

1.2 Evolutionary mechanisms

There are several main mechanisms responsible for evolutionary change. The pri-

mary evolutionary mechanisms are usually identified as mutation, migration, ge-

netic drift and natural selection. For evolution to take place it is essential that the

population displays variation. Selective mechanisms draw upon this variation and

lead to time changes in the population.

Mutation is a source of population variation upon which selection can act. Na-

tural selection is the mechanism Darwin is best known for. Natural selection is

responsible by the adaptation of the organisms to their environment. The best

adapted individuals have a higher chance of producing more offspring that achieve

reproduction age, providing a higher contribution to the genotype and phenotype

of future generations. Although better adapted organisms have a higher chance of

shaping the future generations, biological systems are composed of a finite number

of individuals and, as such, subject to stochastic fluctuations. Sometimes it is not

the most adapted organism that can achieve fixation, especially when the popula-

tion is small or the fitness difference is diminute. These effects are known as genetic

drift and stem from the random nature of the population sampling for reproduction.

Also migration plays an important role on the fate of the populations. Migration

has a direct effect on the composition of the population and can contribute strongly

to the success or failure of a given group.

4 Transfer of genetic information between cells, in contrast with vertical transmission which
happens from the mother cell to the daughter cells. This mechanism is relevant mainly in
prokaryotic cells, which present less barriers to lateral gene transfers.

5 Heritable phenotypical changes that do not involve changes in the genetic sequence of a cell.
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1.3 Brief history of life on Earth

Earth formed together with the Solar System around 4.5×109 years ago [5–7]. The

formation of Earth has been followed by a collision with a planetary body with the

estimated size of Mars that ejected large amounts of material to the orbit of Earth

[8]. This material eventually coalesced to form the Moon, which is relevant to the

life on Earth namely due to the stabilizing effect it has on the orbit and orientation

of our planet [9]. This stability avoids large changes of the climate over time,

which would fluctuate chaotically in the absence of the Moon [9]. The early Earth

is thought to have been an inhospitable place for life, during the first geological

eon, the Hadean [10]. Nevertheless, recent data suggest milder conditions than

initially thought, with some evidence for the existence of continental crust and

oceans early in the evolution of the planet [11]. Also, a magnetic field of magnitude

comparable to the recent one can be inferred from zircon data6 from the period

ranging 3.3 − 4.2 × 109 years ago [12], meaning that the Earth acquired a strong

magnetic field early in its evolution.

Life is thought to have appeared in the Archaean, the following geological eon,

which started 4 × 109 years ago. Exactly how life first arose is not yet known.

Several concurrent theories exist that try to address this important question, but it

is still largely an open topic [10, 13]. Meteoritic data has revealed that the basic

elements of life were already relatively abundant in the accretion disk that gave

origin to the Solar System [14–17]. Besides that, many important simple organic

molecules could be formed under the conditions assumed for early Earth through

abiotic processes only [16,18].

The earliest undisputed records of life appear in the fossil record at around

3.5×109 years ago [19]. These fossils display a significant diversity already at play at

this stage, featuring 11 different taxa, including cyanobacteria-like specimens [19].

Some data seems to imply that life may have appeared significantly sooner than

that. This observation is suggested by older rocks (3.8 × 109 years old) that have

isotopic ratios the carry the characteristic signatures of life [20]. More recently,

even older zircon crystals (4.1 × 109 years old) containing graphite incrustments

6 Zircon crystals are extremely resistant allowing them to survive longer than the rocks they are
incrusted. As a matter of fact, some zircon crystals are older than the oldest rocks known on
Earth and carry very important information from the early history of our planet in the form
of small impurities trapped in the structure of the crystal. They can be dated very rigorously
by measuring the proportions of uranium and lead in their structure.
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that match biological isotopic signatures [21], although it is possible that some

non-biological mechanism is responsible for these signatures instead.

Modern life is believed to have descended from a single ancestor, dubbed the

Last Universal Common Ancestor or LUCA. The debate on how did LUCA exactly

look like or in what environment did it live is still ongoing. An exciting recent study

compared from a database of 6.1 million bacterial genes and identified 355 genes

that are probable to have been present in LUCA [22]. These genes seem to point to

our Last Universal Common Ancestor having been a microorganism inhabiting sea

water thermal vents and having lived around 4× 109 years ago. This interpretation

has been challenged by other researchers [23] that point some flaws in its design

which may partially invalidate the conclusions of the study. They also consider that

the produced data does not support some of their claims, albeit recognizing that

the study is a major step forward towards identifying the genetic mechanisms of

LUCA [23].

In 1990, based on molecular data, Woese and collaborators proposed a revolu-

tionary system of classification of life that divided life into three domains [24]. This

system has been widely confirmed since then, superseding the previous classifica-

tion that classified cellular life in Prokaryota (cell without a nucleus) and Eukaryota

(cell with a nucleus) [24–26]. According to the current view of this theory, life is

believed to have branched first in Bacteria and Archaea, two of the life domains

proposed. The third domain, the Eukarya to which we belong, has branched from

Archaea somewhere around 2 × 109 years ago. The current view of the Eukarya

as branching from Archaea may lead to the inclusion of Eukarya in the latter do-

main, resulting in a system with only two fundamental domains of life [27]. A 2015

paper [28] describes a previously unknown group of Archaea that shares many cha-

racteristics previously associated to Eukarya only. This discovery lends credence to

the theory that Eukarya originated within Archaea and provided valuable insights

on the transitional forms that originated Eukarya.

The currently accepted classification systems leave out the classification of viru-

ses and other possible noncellular forms of life, whose status remains highly deba-

ted [29,30]. The relation of these forms to the remaining life is nebulous, although

some recent studies attribute them a high importance in the horizontal transport

of genes among species [29, 31, 32] and eventually even in the origin of the Eu-

karya [29].

With life development, advanced photosynthesis has eventually appeared in a

group of bacteria called cyanobacteria. These bacteria consumed water and carbon
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dioxide to fix carbon and obtain energy from sunlight. This process releases mo-

lecular oxygen O2 in the environment. At first, the levels of atmospheric oxygen

remained considerably low, since there were large amounts of iron in solution in

the ocean that reacted with the oxygen to form insoluble iron oxides that precipi-

tated to the bottom of the ocean. Rocks originated during that period still display

these iron oxide bands. Eventually, the iron in solution in the oceans dropped be-

low levels that could not react with all the produced oxygen anymore, and the

oxygen started to stockpile in the oceans and atmosphere. As most lifeforms in

this period were not adapted to oxygen, this increase in oxygen levels triggered

one of the largest mass extinctions on the planet. It also provided a new gene-

ralized source of electron acceptors that allowed the development of species that

perform aerobic respiration, a highly efficient form of metabolism. One lineage

of free-living aerobic bacteria (identified recently as closely related to a group of

modern bacteria [33]) was incorporated as an endosymbiont7 in an early eukarya

species, although it is possible that this relationship started as parasitism or pre-

dation. This symbiotic relationship evolved to a stronger relationship in which the

host could not live without the endosymbiont. This endosymbiont became an or-

ganelle8 of the Eukarya cell, the mitochondrion. A similar process has occurred in

plants where the eukarya cell engulfed some form of cyanobacteria that gave ori-

gin to the chloroplasts. More recently, brown algae established such a relationship

with another eukaryotic cell. These phenomena represent a huge step in evolution

history since two types of cells merge to produce a new kind of cell with a more

complex internal structure.

1.4 Major transitions in individuality

Major transitions in individuality are evolutionary events when the individuals

transfer their own fitness to a group in order to increase the group’s fitness, in

such a way that the individual cannot survive or reproduce alone anymore [34–37].

This way the former individual becomes an element of the new emergent individual

corresponding to the group. This new level of organization represents a major tran-

sition where the focus of selection is shifted from the parts of the group to the group

itself [34–37]. This transition plays a major role in the development of complexity

since it is often accompanied by a redistribution of tasks so that the parts specia-

7 An organism living inside another for mutual benefit.
8 Specialized intracellular structure, usually separated from the rest of the cell by a membrane.
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lize in specific functions. There are plenty of examples of this kind of transitions

through the history of life, the first of each probably still happening in a prebio-

tic context. Individual self-reproducing molecules eventually started depending on

each other to reproduce giving origin to the concept of operon9; genes cooperate

in the genome of individuals; individual cells cooperate in colonies that become

individuals themselves, just to name a few. Even social insects, like ants and bees,

specialize to the point that the colony can be considered an individual10 [38,39]. A

worker ant is not able to reproduce and a queen cannot subsist without the support

of the colony. Neither of them can be assigned a fitness on its own.

Another type of these transitions is the permanent embedment of free bacteria

in other organisms [33, 40–42], such as the mitochondria or the chloroplasts in

eukaryotes. These organisms left an independent lifestyle to become an integrated

part of a more complex cell. Less permanent versions of this type of integration can

be found frequently across nature, in situations that stretch the concept of symbiotic

relationship to its limits. Lichens are associations of fungi and algae that depend

strongly on each other. Although tecnically composed of two independent species,

the relationship between the fungus and the alga is so close that they are usually

characterized as a species.

Of particular importance is the transition from unicellular to multicellular life.

This transition is known to have independently occurred several times through the

history of life, with more than 40 of these transitions identified [43, 44]. Until

recently there was a dogma in evolutionary biology assuming that the multicellula-

rity was possible only amongst eukaryotes, being the bacteria and archaea unable

to achieve this stage of complexity [45]. In the early 1990’s, this paradigm star-

ted to be challenged and now there exists abundant observation of multicellular

behavior in bacterial colonies [45–48]. The first unequivocal fossils of multicellular

organisms belong to cyanobacteria-like organisms living as early as 3.0− 3.5× 109

years ago [43]. Modern cyanobacteria can form multicellular aggregates with se-

veral types of differentiated cells, including cells specialized in carbon fixation,

nitrogen fixation, transport and more than one type of cells specialized in group

reproduction, akin to germinative line cells [49]. The cells that perform nitrogen

9 Set of sequential genes transcribed together and subject to common regulation.
10 As soon as 1911, William Morton Wheeler in the interesting article “The ant-colony as an

organism” defended that the ant colonies and other social insects should be regarded as
individuals. He argues that, among other individual characteristics, social insects display
complete germ-soma differentiation [38].
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fixation are unable to undergo cell division, thus being terminally differentiated

and existing only to provide a service to the multicellular organism [49].

In a recent breakthrough, Ratcliff et al. could observe the transition from free

cells to multicellular individuals in an experimental evolution setting [50]. They

showed that simple multicellularity arises quite quickly if organisms are subjected

to the right evolutionary pressures since they were able to drive a unicellular yeast

to evolve to a multicellular form in a few dozen generations only. These indivi-

duals displayed several characteristics of multicellular life, as group reproduction

and apoptosis (programmed cell death) [50]. The latter is a specially strong sign

of multicellularity since a cell sacrifices itself for the success of the group. Also,

these groups were observed to be stable even after removing the selection pressure

for multicellularity from the system, without reversing to unicellular lifestyle [50].

They repeated the feat again using a unicellular alga [51], now witnessing the evo-

lution of an alternate uni and multicellular life cycle, that leads to an appeasement

of competition inside the group, due to high genetic relatedness. The team applied

a selection pressure every 72 hours, by selecting the aggregates in the bottom of the

culture. This gives a selective advantage to heavier cell aggregates. By around 315

generations, a new life cycle had evolved. This cycle started with a 24 hours phase

where the cells actively dispersed, using their flagella to leave the aggregates. This

phase was followed by a period of 48 hours during which the aggregates increased

size through cell replication and almost no free cells could be found [51].

1.4.1 Role of life cycles

Life cycles shape many features of living systems such as the genetic diversity and

reproduction rate. Simple binary fission life cycles are the most common process

for unicellular organisms but once multicellularity comes into play there is a world

of possibilities. The researchers have been puzzled by the ubiquity of certain speci-

fic life cycles within the whole universe of possible ones. The high frequency of life

cycles with a unicellular stage is particularly staggering 11. It has been long propo-

sed that this type of life cycles helps the multicellular organism by ensuring high

genetic uniformity among the constituent cells, therefore reducing genetic conflict.

In a recent work [52], Pichugin and collaborators have extensively studied the

fragmentation modes of aggregates and compared the resultant growth rates. They

have found that the dominant fragmentation modes are characterized either by

11 Consider, for example, the life cycles displayed by most animals, where each organism is
originated from a single egg cell which originates all the cells of the adult organism.
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binary split of the progenitor into two equally sized offspring or by the production of

unicellular propagules12. For fixed fragmentation costs, other fragmentation modes

become relevant too, namely fragmentation of the aggregate in numerous small

aggregates.

1.5 Evolution of cooperation

The multicellularity and the transitions in individuality are part of a broader pro-

blem which is the evolution of cooperative behavior in general. Cooperative beha-

vior is widespread in nature. Whatever the scale we observe life, cooperation se-

ems omnipresent. The evolution of cooperation is a hard problem to deal with

in the context of Darwinian selection since it is intrinsically a competitive pro-

cess. Nevertheless, there are several known mechanisms that lead to cooperation

as a product of natural selection. There exists an extensive literature on this sub-

ject [53–56]. In 1963, Hamilton popularized the concept of kin selection as an

explanation for the emergence of cooperation [53]. Kin selection states that as clo-

sely related organisms share many genetic traces they are more prone to help each

other since their genes can be spread by the reproduction of a relative. Hamilton’s

rule famously states that the relatedness of the organisms should be larger than

the cost imposed by cooperation for kin selection to favor cooperation. In another

highly cited study, Axelrod and Hamilton used game theory and a computer tourn-

ment to show that cooperation could emerge and be stabilized as a consequence

of reciprocity [54], where an organism helps another that reciprocates the deed.

A review on some of these mechanisms is given by Nowak [56], which highlights

five rules to the emergence of cooperation. Besides the kin selection, the review

analyzes three types of reciprocity (direct, indirect and network) and the group or

multilevel selection. Multilevel selection exists when selection acts at more than

one level. For example, if we have groups competing among themselves while the

organisms compete inside the group, say for resources. This can favor the evolution

of cooperation within the group as a means to guarantee the success of the group

and, consequently, of its parts.

12 Cell whose function is to originate a new organism.
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1.6 Tradeoffs

It is worth to dedicate some lines to the concept of tradeoff, which plays a central

role in Biology and in this work in particular. Tradeoffs are situations when to gain

in one aspect implies losing in another. They appear in any area where a decision

should be made, in contexts as diverse as economy and evolution. Tradeoffs fre-

quently arise from limited resources. Let us focus on an example to clarify this

concept. If a bird lays larger eggs they will produce larger offspring with a higher

survival probability. Still, producing smaller eggs allowed the bird to lay more eggs,

increasing the number of offspring per breeding season. This example presents a

tradeoff between size and number of eggs or, equivalently, between survivability

and number of the offspring. Since the number of offspring and their survivability

cannot be simultaneously optimized there should be a choice. In some cases selec-

tion may favor a compromise between these traits, while under different conditions

may choose one of the extreme cases. This way tradeoffs generate variation and

maintain the diversity in our planet. If it was possible to lay simultaneously large

eggs (comparing to progenitor’s size) and in large amounts all birds would probably

do that since they could simultaneously optimize survivability and number of offs-

pring. Thus, nature has kiwis, that lay one single giant egg, and ostrichs, that lays

many small eggs (compared to body size). An extreme example that unconstrained

evolution would lead to no diversity is a Darwinian Demon13. Such an organism

could optimize all traits simultaneously, being able to reproduce very often and

have many offspring with high survival probability as well as live long, indepen-

dently of the environmental conditions. It is clear that if such an organism would

be possible soon it would dominate all environments and eliminate all diversity on

Earth14.

Many types of tradeoffs exist. An often cited one is the generalist-specialist

tradeoff. When an organism specializes in something, probably gets worse at per-

forming other functions. For example, an adaptation that provides a herbivore the

exact shape of mouth to eat a specific plant probably renders it less efficient eating

other plants. In this case the referred herbivore can either be reasonably efficient

at eating a large range of plants or very efficient eating a specific species. The

13 Term introduced by Richard Law in 1979 to illustrate this concept [57].
14 In a personal note, it can be argued that humans are approaching the concept of a Darwinian

Demon. Although Biology does provide us many constraints, we are able to work around many
of them by relying on technology. Technology allows us to colonize almost any environment.
As we expand, the Earth’s biodiversity is under an increased pressure.
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Figura 1.2: Illustration of a tradeoff between two traits, 1 and 2. a) zero curvature tradeoff; b)
convex tradeoff; c) concave tradeoff.

tradeoffs exist in Biology at all scales. We referred some examples of macroscopic

tradeoffs, but they exist also at the cell metabolism level. Frequently, the inter-

mediate products of metabolism are shared among different metabolic pathways.

If we increase the production of a specific metabolite, less resources are available

for competing pathways. Another example is the tradeoff between rate and yield

of ATP production. Fermentation of glucose, for example, is a much faster process

than aerobic respiration, although aerobic respiration can achieve a much higher

yield. It is possible to accelerate the process of respiration, but it implies using

a larger part of the energy produced to this end implying again a smaller yield

(for instance, performing active transport of some of the metabolites against the

concentration gradient). Life is permanently faced with this kind of choices.

Mathematically, tradeoffs can be measured as negative correlations between

traits, i.e., an increase in one trait leads to a decrease in another. The tradeoffs can

display positive or negative curvature, as illustrated in Fig. 1.2. A convex tradeoff,

such as the one displayed at Fig. 1.2b, tends to favor the emergence of specializa-

tion, while a concave tradeoff, like the one in Fig. 1.2c, usually favors a generalist

stance. This happens because when a tradeoff is convex expressing one trait leads

to a very low output of the other, while for concave tradeoffs it is possible to achieve

a reasonable level of simultaneous expression in both traits.

1.7 Outline

After this introductory chapter we present and study some models, tailored to pro-

vide us an insight into several important aspects of multicellularity and comple-

xity evolution. Specifically, chapter 2 deals with the question of the competition

between different metabolic strategies in the context of multicellularity evolution.



1.7 Outline 23

This is an important issue since, while it is believed that multicellularity requires an

efficient mode of metabolism, usually high rate and inefficient metabolism modes

are selectively advantageous. A cell cannot be simultaneously highly efficient in

resource usage and reproduce at a high rate, due to limiting tradeoffs. We address

this problem by considering groups of cells as well as well-mixed populations. We

find that efficient cells can outcompete inefficient cells for a much broader region

of parameter space when grouped. This way, we help to confirm that the appe-

arance of efficient modes of metabolisms is strongly intertwined with the advent

of multicellularity. In chapter 3, we start looking into the role of the tradeoffs in

the evolution of complexity. We develop a model containing generic tradeoffs and

perform a statistical study on how the presence of tradeoffs leads to cell specili-

zation in a simple multicellular organism. As a concrete example, we apply the

model to the well-known system of multicellular cyanobacteria and show that it

can qualitatively reproduce the observations in nature. At last, in chapter 4, we

explore a mechanistic model for the dynamics of multicellular aggregates in terms

of the fundamental processes that shape it. The model naturally includes the ef-

fect of tradeoffs, embedded in the fitness landscape, and allows exploring different

geometries of cell aggregates. We apply the model to the study of the so-called

“size-complexity rule” and obtain some surprising results. Our results reveal that

the compliance of organisms with this rule depends on particular characteristics of

the system, such as the geometry of the aggregate. Our work opens new ways of

looking at this problem and raises a series of questions about exactly which factors

determine the relation between the size and the complexity of an organism.

This ordering corresponds to the time order in which I approached these subjects

during the course of my Doctorate studies and present itself as natural: an initial fo-

cus on multicellularity emergence itself, later shifted to the consequent complexity

increase that follows. The different subjects approached here are further connected

by the role that the tradeoffs represent in both the evolution of multicellularity and

complexity.
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2 COMPETING METABOLIC
STRATEGIES

Highlights

A model for competition between high-rate and high-yield metabolic strategies is developed

Structured and well-mixed populations are considered

In well-mixed populations the high-yield (efficient) strain is prefered only when social conflict is
absent

Structured populations favor the high-yield metabolism over a much larger range of parameters
than the well-mixed populations

Analytical estimates are derived for the limits in parameter space were the efficient strain is
favored, for both well-mixed and structured cases

Previous studies have suggested a link between the metabolism mode and the tran-

sition to multicellularity. In a way, efficient metabolism modes can be seen as coope-

rative, since the cells pay a cost in growth rate to achieve a larger total population.

It is a textbook example that game theoretical models suggest that added structure

favors the establishment of cooperation (for example, [58]). Pfeiffer et al. [59]

studied a spatial resource-based model where similar results were found. Several

observational lines of evidence seem to support this hypothesis [60, 61], including

molecular evolution data [62]. In this context, our goal is to investigate the relati-

onship between the efficiency of metabolism and the multicellularity from a point

of view of a resource-based model that includes group structure since groups of

cells are the basic units of multicellular life.

Heterotrophs are biological entities that process externally obtained resources

to perform their activities. The cell must acquire resources which are then routed



25

to the catabolic activities1 responsible for the production of energy in the cell. This

energy is converted into ATP, the almost universal “energy currency” of the cell,

which in turn fuels whatever tasks the cell needs to fulfill. The efficiency of this

process can vary greatly, from the levels of fermentation that produces around 2

ATP molecules per glucose molecule to the aerobic respiration yielding as much as

32 molecules of ATP.

In such a context, it is important to model the rate at which the cell acquires

resources and the yield achieved in the process of their conversion to ATP. A high

uptake rate implies that the cell can acquire large quantities of resources per time

unit, while a high-yield means that the cell can produce many ATP molecules from

a single glucose molecule. Ideally, an organism would aim at maximizing both yield

and rate, allowing it to grow fast while making an efficient usage of the available

resources. However, a set of tradeoffs exist that prevents these two traits to be

simultaneously optimized. These tradeoffs can be inferred from experimental data

as well as from thermodynamical arguments [59,63–67].

In a different perspective, achieving a high-yield even at a low resource proces-

sing rate allows the total population to grow more, whereas a low-yield high-rate

strategy degrades the environment fast, leading to a lower total population but

allowing the strain to outcompete different strain with a lower rate. This way, a co-
operative individual C, one that makes efficient usage of resources and thus grows

slowly, is outcompeted by a defecting one D, that grows fast at the cost of har-

ming the community as a whole. A C individual displays a slow metabolism, while

D exhibits a fast one. The effect of these strategies on the population dynamics

depicted in Fig. 2.1.

A model focusing on the efficiency and rate of resource conversion enables us to

analyze the importance of the metabolism efficiency to the origin and maintenance

of multicellular life. As we know, a much more efficient form of metabolism has

emerged together with the appearance of free oxygen in the atmosphere, which is

also coincident with some of the first known signs of multicellular life [59, 61, 68–

70].
1 Metabolism is composed of two types of activities: catabolic and anabolic ones. The ca-

tabolism is responsible for the breakdown of complex molecules to obtain energy and raw
materials for the cell. Anabolism uses that energy and raw materials to synthesize complex
molecules.
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Figura 2.1: Illustration of the difference in the time evolution of populations using a high-rate
low-yield strategy (C) and a low-rate high-yield strategy (D). The figure shows the population
size as a function of time for a population adopting a high-rate low-yield strategy (C) and a
low-rate high-yield strategy (D). As can be seen in the figure, the D strategy allows a high
growth rate which saturates at a small equilibrium population, while the C strategy displays a
lower growth rate but achieves a larger equilibrium population.

2.1 Model

We introduce a simple model that allows us to explore different individual beha-

viors by addressing two fundamental aspects of cell activity: resource uptake and

processing. Essentially we model the rate at which the cell produces energy and

the yield achieved. We denote the cells that achieve high-yield and low-rate by C

and the cells that adopt the strategy of high-rate and low-yield by D. In the usual

language of evolutionary game theory, we can describe the C cells as cooperators
since they sacrifice part of their growing rate for the benefit of the group, and the D

cells as defectors that take advantage of the group in order to reach a high growing

rate.

The system is modelled as a discrete time process in four phases: the resource

uptake, the resource processing, cell splitting and cell death. During the resource

uptake phase, the cells compete for the available resources S, while during the pro-

cessing phase they metabolize the captured resource. During the latter period, the

cell accumulates an internal stock of energy Ej, where j is the cell index, in the form

of the necessary proteins and other components required for the cell development.

When the cell’s internal stock of energy Ej surpasses a certain threshold Emax, the

cell divides into two daughter cells, each inheriting half of the parent’s stock. Besi-

des these growing processes, any cell can die randomly with a uniform probability

ν per time step. The details of the described cell life cycle are graphically depicted

in Fig. 2.2.
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Resource acquisition1

Resource processing2

Cell duplication3

Cell death4
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captured resource

Caption

Resource acquisition:1 The cells acquire resources from 
the surrounding medium.

Resource processing:2 The cells process the acquired 
resources into internal energy.

The cells that surpassed the
threshold divide.

Cell duplication:3

Randomly selected cells die with
probability ν.

Cell death:4

Figura 2.2: Illustration of the cell life cycle.

The first two phases correspond to the resource acquisition and processing and

deserve further attention. The assumption of two stages is rooted in mechanistic

models of the cell [71] where the resource is first transported to the interior of the

cell by a set of proteins, then metabolized into a generic form of energy. The rates

of resource uptake and processing are distinct [71] and the resource metabolism

is under the control of multiple regulatory levels [72–74]. Nutrients are used as

substrates for growth but the nutritional state also supplies signals for the cell [75].

For example, cAMP (cyclic adenosine monophosphate), synthetized from ATP, plays

a major role in the regulation of the response of E. coli [76], as well as in eukaryotes

[77], to different nutritional states. The design of the cell is an evolutionary choice

that tunes it to act effectively within its biological niche. Our model assumes only a

high-level effective description of these processes. We abstract out all the details at

the intracellular level, focusing only on the traits that are relevant for our analysis

of competition between metabolic regimes.

The model can then be further refined in two variations. In a basic version of

the model we consider a well-mixed population, where all cells have access to the

full resource supply in the system. We refer to this model as well-mixed, or occasi-

onally homogeneous, population model. We can also add a layer of structure and

organize the cells in groups, version of the model that we refer to as structured

population. With structure, the cells are organized into NG groups with population

P i (i = 1, ..., NG) individuals which split when they surpass a certain population th-

reshold Pmax. Upon group split, the original cells are uniformly distributed among
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Death
Cells are randomly selected to die

Element split
When its internal energy surpasses Emax the cell
divides into two new daughter cells

Group split
Group split occurs when group 
population surpasses Pmax

Examples
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Figura 2.3: A graphical representation of the processes of group splitting, cell division and
death. Figure adapted from [79].

the daughter groups and NG is incremented by one. The groups compete for re-

source, which is evenly distributed among the groups so that each of them obtains

an amount of SG = S/NG resource2. Notice that as NG is a dynamical quantity,

the amount of resource that each group receives depends on the specific number

of groups existing at any given moment. The cells compete for the resource of the

group according to the rules previously introduced. We now denote the energy

stock of cell j of group i by Eij (i = 1, . . . , NG, j = 1, . . . , Pi). When cells repro-

duce they remain in their original group. As cells can die, a group can reach zero

population. When this happens, the corresponding group is removed from the po-

pulation. The rules governing the population dynamics of the structured model are

illustrated in Fig. 2.3. Notice that, in both versions of the model, the total influx of

resource S is a critical parameter of the dynamics, having a significant influence on

the number of groups and as a result in the role of the stochasticity in the system.

As one can realize from the above description, the structured model consists

of a multilevel selection model. The cells compete within the group, while the

groups compete at the population level. It is in the interest of the cell to reproduce

quickly and dominate the group but in the interest of the group that the average

reproduction rate of its cells is high, so that the group reproduces fast. These

two interests are frequently at odds with one another, therefore the two levels are

conflicting. In the well-mixed model, such conflicting interests are absent and the

evolution of the system is driven by the individual interests of each cell only.

2 We could have opted by a more complex resource distribution but we chose to work with the
simplest one. For a work that implements a more complex resource distribution check [78].
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It remains to detail the mechanisms of resource uptake and conversion. We

consider that the resource seized by each cell of type T is given by

SiT (SG) =
AT

ACP i
C + ADP i

D

SG, (2.1)

where T is either C or D, P i
C and P i

D are the number of elements of the group of

type C andD, respectively, and AC and AD characterize the resource uptake of each

cell type. The constants AT are uptake rates and, as such, define the resource per

time unit a cell can acquire. Notice that these definitions imply that P i
C + P i

D = P i

and SG = P i
CS

i
C(SG)+P i

DS
i
D(SG), thus being consistent. The well-mixed population

is treated as one global group, therefore, in this case, SG ≡ S.

The resource captured by the cell is then used to increment its internal stock of

energy Eij by ∆Eij. Considering the cell belongs to type T we have

∆Eij = JT (SiT ). (2.2)

The functions JT (SiT ) describe the efficiency of conversion of resource into energy

usable by the cell. The JT functions should saturate for large values of the input

resource SiT , with a dynamics similar to a Michaelis-Menten kinetics [59,71]. This

way we parametrize these functions as

JT (SiT ) = KT

(
1− exp(−αTSiT )

)
. (2.3)

As one can see, KT stands for the maximum rate of resource conversion achievable

and αT characterizes the efficiency of such process. According to our definitions,

the efficient strain C should process resource in an efficient way at the expense

of a lower consumption rate. On the other hand, D has a high uptake rate and

metabolizes the resource quickly but it is limited to a low-yield. It is clear then

that the parameters cannot take completely arbitrary values and should face some

restrictions that enforce our definition. First, AD must be larger than AC (AD >

AC), in view of the fact that the cells of strain D should be able to capture a higher

fraction of the available resource. Then, since the efficiency of D should be lower

than C, we have that αD < αC . Finally, we consider KD > KC . This choice allows

cells of strain D to achieve a maximum growing rate higher than cells of strain

C, which is typically the case. This possibility is particularly important since it

is known that many cells can use a respiro-fermentive metabolism, concomitantly

using the two alternative pathways of ATP production. Such respiro-fermentative
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metabolism is a typical mode of ATP production in unicellular eukaryotes like yeast

[80, 81]. In such a situation, the yield of the whole process is reduced as the

cell drives more resource to be metabolised inefficiently, a habitual behavior under

the condition of plentiful resource. Of course, the situation KD < KC can also

be considered, but the opposite KD > KC represents the worst scenario for the

efficient strain. If it can thrive in such case, it will naturally be favoured under less

harsh conditions.

We introduce shorthand notation for some dimensionless ratios that will reveal

key quantities to the analysis of the system

ε ≡ AD/AC , (2.4)

∆ ≡ αD/αC , (2.5)

Γ ≡ KD/KC . (2.6)

Tables 2.1 and 2.2 summarize the parameters and main quantities of the model, for

the convenience of the reader.

A model in this line has been introduced by Pfeiffer et al. in 2001 [59]. In that

work, the authors considered a Michaelis-Menten style function for resource acqui-

sition and a linear function for resource processing. Adjusting the parameters, it is

possible to represent different metabolic strategies, namely high-yield low-rate and

low-yield high-rate strategies. They proceed to explore a spatially structured and

time-continuous model, finding that the high-yield low-rate strategy dominates for

low resource influx and low cell diffusion. In our work, we consider a time discrete

model without spatial structure, but with the possibility of group structure. By

focusing on group structure, we aim a more proper representation of the multicel-

lularity. We also rely on different functions for resource acquisition and processing,

namely our resource processing functions present a saturating behavior not present

in the functions used in Ref. [59].

2.1.1 Social dilemma

We are interested in the region where the social dilemma holds, i.e., the parameter

region where, in a pairwise interaction, the strain D outcompetes the strain C.

Outside of this region, we can expect the strain C to be trivially favored since they

have higher efficiency and are favored in a pairwise interaction. On the other hand,

in the region of social dilemma D is favored in a pairwise interaction and, as such,

further mechanisms are necessary if C is to outcompete D.
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Parameter Interpretation Units
ν death rate time-step−1

S total available resource resource
AT rate of resource capture of strain T resource/time-step
KT maximum energy obtainable by strain T in a time

step
time-step−1

αT efficiency of strain T in resource processing resource−1

Emax energy threshold for cell split energy
Pmax threshold size for group split dimensionless
m migration rate (probability of each cell to migrate

to a random group per time-step)
time-step−1

Tabela 2.1: Summary of the parameters of the model.

Quantity Definition Interpretation Units
SG S/NG resource available per group resource
JT (see eq. 2.3) rate of resource processing of strain T energy/time-step
ε AD/AC fraction of the resource acquired by D

in a pairwise interaction
dimensionless

∆ αD/αC relative efficiency of D and C dimensionless
Γ KD/KC ratio between the maximum rates of

resource processing of D and C
dimensionless

r JD/JC relative advantage of D over C in a
pairwise interaction

dimensionless

kT KT/Emax maximum growth rate of strain T time-step−1

∆Eij JT internal energy increase of strain T energy

Tabela 2.2: Summary of the main quantities relevant to the analysis of the model.
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For a certain amount of resource S∗, in a pairwise interaction, the amount of

resource seized by strains C and D are, respectively,

SC =
AC

AC + AD
S∗ (2.7)

and

SD =
AD

AC + AD
S∗. (2.8)

The relevant quantity to analyze the relative advantage of D over C in a pairwise

competition is the ratio between JD and JC , which we will dub r. Therefore

r =
JD
JC

= Γ
1− exp (−αDSD)

1− exp (−αCSC)
. (2.9)

The dilemma holds whenever r > 1. This ratio is a function of the amount of

resource available for the competing pair S∗. We argue that S∗ ∼ S/N , where N

is the population size. As we shall see from the simulations, the system evolves to

a situation where S/N is always small. In this limit, the expression for r simplifies

and one can obtain

r = Γ
1−

(
1− αD AD

AC+AD
S∗
)

1−
(

1− αC AC
AC+AD

S∗
) +O

(
S∗2
)

= Γ
αDAD
αCAC

+O
(
S∗2
)

= Γε∆ +O
(
S∗2
)
. (2.10)

Therefore, in the limit of very small resource per cell, the social dilemma region is

defined by the condition

Γε∆ > 1. (2.11)

Notice that, granted that the resource per cell is small, the result is independent of

the exact value of resource available.

2.1.2 Simulations

We will consider a scenario where the initial population is comprised only of cells

belonging to strain D. This initial homogeneous population is randomly generated

and enough time is waited for it to achieve a stationary regime. At the stationary
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regime a population of Nst cells is achieved which is determined solely by the dy-

namics of the system and the resource provided. Once this regime is established,

a single cell is replaced by a cell of type C. This stems from the assumption that,

in a pool of inefficient individuals, a rare mutation will eventually arise which is

more efficient than the established population. The system is then tracked until the

population of strain C is either lost or fixed3. As we wait enough time for one of

the strains to get extinguished, coexistance is never present in our results.

The fixation probability is the fraction of independent runs at which the efficient

strain gets fixed. Instead of this simple fixation probability, a relative fixation is

considered, dividing the absolute fixation probability by 1/Nst. This allows us to

analyze the probability of fixation of the newly introduced mutant with the fixation

probability of a mutant under neutral selection4, thus being a more meaningful

quantity to analyze. A relative fixation probability larger than one implies the new

cell is selected for, while being smaller than one means it is counterselected.

Therefore, the analysis consists of an evolutionary invasion. Extensive computer

simulations are performed, spanning much of the physically meaningful parameter

space. Analytical approximations are also performed for some special cases that

allow it. Although providing valuable insight, deterministic approaches alone are

oftentimes insufficient to study population dynamics as they disregard the stochas-

tic effects [59]. These effects are frequently crucial to the dynamics, especially

when the population is small.

The structure of the simulation procedure is described in the flowchart in Fig. 2.4.

All the C++ codes used to perform the simulations here presented are publicly

available at Dryad Repository in https://doi.org/10.5061/dryad.q6784 [82].

2.2 Analytical results for well-mixed populations

We first present the results of an analytical approximation of the model. These

analytical results provide an important contribution to evaluate when the stochastic

effects manifest. No population structure will be assumed in this derivation.

3 We say a strain achieves fixation when the whole population is composed of cells of that
strain.

4 Neutral selection occurs when the strains in competition present the same fitness. In this
case, all the cells have the same fixation probability.
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Figura 2.4: Flowchart of the simulation procedure.

Let us start with a population composed by cells of strain T only. The previously

described model can be captured by a time discrete equation as

n(t+ 1) = n(t) + g(n(t), S)− νn(t), (2.12)

where n(t) denotes the size of population at time t, g(n(t), S) stands for the growth

rate of strain T and the remaining parameters take the previously ascribed roles.

As all cells are of type T the resource is evenly distributed. Therefore, the resource

available per cell is simply ST = S/n(t). The growing rate is proportional to the

energy acquired by the cell. Nevertheless, a cell only reproduces after crossing the

threshold Emax. We can incorporate this by dividing the JT function by Emax. More

specifically KT will be replaced by kT ≡ KT/Emax to account for that. Inserting

these aspects into the expression we find

n(t+ 1) = n(t) + kT

[
1− exp

(
−αTS
n(t)

)]
n(t)− νn(t). (2.13)

The system reaches equilibrium when n(t+ 1) = n(t) = n̂. There are two solutions

for this equation

n̂0 = 0 (2.14)
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and

n̂1 = − αTS

ln(1− ν/kT )
. (2.15)

The second solution is only valid when ν < kT which is intuitive as we cannot

expect a nonzero equilibrium population when the death rate is always higher than

the reproduction rate (please recall that kT represents the maximum reproduction

rate achievable).

We should now perform a linear stability analysis of the newfound solutions.

Representing the dynamics of the model as n(t + 1) = f(n(t)), an equilibrium

solution n̂ is stable if |λ| < 1, where λ = df
dn

∣∣∣
n=n̂

. A small perturbation on the

equilibrium will be damped if |λ| < 1 but grows if the condition is not verified,

leading the system out of the equilibrium.

The derivative of f reads

df
dn

= 1 + kT

[
1− exp

(
−αTS

n

)
− αTS

n
exp

(
−αTS

n

)]
− ν. (2.16)

Replacing the solutions previouly found reveals us the stability regions of each so-

lution. For n̂1 one has

df
dn

∣∣∣∣
n=n̂1

= 1 + kT

[
1− exp

(
− αTS

−αTS/ ln(1− ν/kT )

)
− αTS

−αTS/ ln(1− ν/kT )
exp

(
− αTS

−αTS/ ln(1− ν/kT )

)]
− ν

= 1 + kT [1− exp (ln(1− ν/kT )) + ln(1− ν/kT ) exp (ln(1− ν/kT ))]− ν

= 1 + kT [ν/kT + ln(1− ν/kT )(1− ν/kT )]− ν

= 1 + kT (1− ν/kT ) ln(1− ν/kT ). (2.17)

Since solution n̂1 is only valid for ν < kT , the logarithm is always negative and |λ1|
will remain smaller than one for the whole region of validity of the solution. Thus,

the region of stability of n̂1 is ν < kT . Since n appears in the denominator of 2.16,

we should be slightly more careful when dealing with the solution n̂0. For that, one

can take the limit of df
dn when n→ 0

df
dn

= 1 + kT

[
1− exp

(
−αTS

n

)
− αTS

n
exp

(
−αTS

n

)]
− ν. (2.18)
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Figura 2.5: Population size as a function of kT , for ν = 0.01 and 0.1 and αT = 0.2 and 0.8.
The scales are logarithmic.

For the stability of the solution n̂0 one finds

lim
n→0

df
dn

= lim
n→0

{
1 + kT

[
1− exp

(
−αTS

n

)
− αTS

n
exp

(
−αTS

n

)]
− ν
}

= 1 + kT − ν. (2.19)

From this expression one finds that the stability region of n̂0 is kT < ν, exactly

complementary to the stability region of n̂1. Fig. 2.5 shows the population as a

function of kT . Notice that the population drops to zero when kT reaches the

value of ν. The graph also highlights that a higher efficiency αT produces a higher

equilibrium population. This model is a continuous approximation of the system

and thus the population can be nonzero but quite small. In a discrete population

model, a very small population would get extinguished quickly due to the stochastic

effects that cause population to fluctuate and therefore the population would drop

to zero sooner.

2.2.1 Evolutionary invasion analysis

After determining the equilibrium for cells of a single strain T we can analyze what

happens if we introduce a small amount of cells of the opposite strain. For this
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analysis one should generalize equation 2.13 to include both strains. We obtain a

system of coupled equations

nD(t+ 1) = nD(t)

{
1 + kD

[
1− exp

(
−αD

ADS

ACnC(t) + ADnD(t)

)]
− ν
}
,

nC(t+ 1) = nC(t)

{
1 + kC

[
1− exp

(
−αC

ACS

ACnC(t) + ADnD(t)

)]
− ν
}
. (2.20)

As both strains are present we had to reintroduce the full expression for SD and SC ,

which does not simplify anymore to S/n.

Let us consider one of the equilibria of the system 2.20. We want to know if

cells of the strain C can invade the system when we introduce a small amount of

cells C in an established D population. To answer this question, we should look

at the stability of the solution that considers n̂D = − αDS
ln(1−ν/kD)

and n̂C = 0, which

corresponds to a population of cells of type D in equilibrium in the absence of C

cells. The stability is now more complicated to calculate since we are dealing with

a Jacobian matrix of the system instead of a single derivative. One must calculate

the eigenvalues of the Jacobian matrix, if the absolute values of the eigenvalues are

smaller than 1 the solution is stable, otherwise it is unstable. Writing the system in

the form

nD(t+ 1) = fD(nD, nC),

nC(t+ 1) = fC(nD, nC), (2.21)

the Jacobian matrix becomes

J =

(
∂fD
∂nD

∂fD
∂nC

∂fC
∂nD

∂fC
∂nC

)
(2.22)
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which should be evaluated at the equilibrium we want to study. The general form

of entries of the Jacobian matrix for this system are

∂fD
∂nD

= 1 + kD

[
1− exp

(
−αD

ADS

ACnC + ADnD

)]
− ν − nD

αDkDA
2
DS

[ACnC + ADnD]2
exp

(
−αD

ADS

ACnC + ADnD

)
, (2.23)

∂fD
∂nC

= −nDαD
ADACkCS

[ACnC + ADnD]2
exp

(
−αD

ADS

ACnC + ADnD

)
, (2.24)

∂fC
∂nD

= −nCαC
ACADkDS

[ACnC + ADnD]2
exp

(
−αC

ACS

ACnC + ADnD

)
(2.25)

∂fC
∂nC

= 1 + kC

[
1− exp

(
−αC

ACS

ACnC + ADnD

)]
− ν − nC

αCkCA
2
CS

[ACnC + ADnD]2
exp

(
−αC

ACS

ACnC + ADnD

)
. (2.26)

This greatly simplifies when applied to the equilibrium we are interested to study.

After some calculations it is possible to obtain

J =

(
1 + kD(1− ν/kD) ln(1− ν/kD) kD

ε
(1− ν/kD) ln(1− ν/kD)

0 1− ν + kC

[
1− (1− ν/kD)

1
∆ε

] ) . (2.27)

As the entrance for ∂fC
∂nD

is zero the eigenvalues are trivial to calculate, correspon-

ding directly to the diagonal entries of the matrix. They are λ1 = 1 + kD(1 −
ν/kD) ln(1−ν/kD) and λ2 = 1−ν+kC

[
1− (1− ν/kD)

1
∆ε

]
. Since the region of inte-

rest is ν < kD, the logarithm in λ1 is negative and the condition is always respected

for λ1. Let us focus on λ2 instead. We are mostly interested in the limit ν/kD � 1.

From expression 2.15 we can find the value of S/n. Expanding it, it is easy to see

that the limit of small ν/kD � 1 implies also a small S/n

S/n = − ln(1− ν/kD)

αD
=
ν/kD
αD

+O
[
(ν/kD)2

]
. (2.28)

In this limit, the condition for λ2 becomes

λ2 < 1 ⇒ Γ∆ε < 1, (2.29)
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which is exactly the reverse condition 2.11. This shows that, up to terms of or-

der (ν/kD)2, the region that C can invade is the region where there is no social

dilemma. Therefore, without structure, the result is trivial and the strain C cannot

thrive unless they are able to overcome D in a pairwise competition. As we shall

see later on, this result is in excellent agreement with the numerical simulations.

It is a simple exercise to perform an equivalent calculation, now for the invasion

by the strainD of an established population of C cells. In this case, recover a similar

result and conclude that the region where D can invade C is the complement of the

region where C is able to invade D. Therefore, we expect that the curve given by

Γ =
ν/kC

1− (1− ν/kC)
1

∆ε

(2.30)

defines the curve of Pfix = 1, i.e., the relative fixation probability equals 1.

2.2.2 Coexistence solution

Besides the solutions dominated by a single strain, the system 2.20 also contains

coexistence solutions. We can start by dividing the equations by n̂D and n̂C , respec-

tively, given that we are not interested in the solutions that include extinction of

one of the populations

0 = kD

[
1− exp

(
−αD

ADS

AC n̂C + ADn̂D

)]
− ν,

0 = kC

[
1− exp

(
−αC

ACS

AC n̂C + ADn̂D

)]
− ν. (2.31)

With some more manipulations, one can find

1− ν/kD = exp

(
−αD

ADS

AC n̂C + ADn̂D

)
,

1− ν/kC = exp

(
−αC

ACS

AC n̂C + ADn̂D

)
, (2.32)

from which it follows that

AC n̂C + ADn̂D = −αD
ADS

ln (1− ν/kD)
,

AC n̂C + ADn̂D = −αC
ACS

ln (1− ν/kC)
. (2.33)
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Finally, we can divide both equations by AC so that the dependence appears in the

dimensionless parameter ε

n̂C + εn̂D = −αD
εS

ln (1− ν/kD)
,

n̂C + εn̂D = −αC
S

ln (1− ν/kC)
. (2.34)

This system implies not a single solution but rather a family of solutions, shown

in Fig. 2.6. If the population has only a single strain we recover expression 2.15.

Matching both equations we find that the coexistence solution requires an extra
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Figura 2.6: nC and nD population sizes for coexistence solution. All points along the lines
represent coexistence solutions. The parameters are kD = 0.5, ν = 0.01, S = 25, αC = 1,
ε = 10 and Γ = 2.5 and 5.

constraint in the parameters

−αC
S

ln (1− ν/kC)
= −αD

εS

ln (1− ν/kD)
(2.35)

that leads to

∆ε =
ln (1− ν/kD)

ln (1− ν/kC)
. (2.36)

In the small ν/kT regime, we recover once more the expression Γ∆ε = 1. Intuitively,

it shows that the equilibrium exists exactly over the line that separates the region

dominated by C from the region dominated by D.
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We can analize the stability of the solution by calculating the eigenvalues of the

Jacobian. We can eliminate the dependence in AC and AD in favor of ε from the

general Jacobian described by Eqs. 2.23-2.26

∂fD
∂nD

= 1 + kD

[
1− exp

(
−αD

εS

nC + εnD

)]
− ν − nD

αDkDε
2S

[nC + εnD]2
exp

(
−αD

εS

nC + εnD

)
, (2.37)

∂fD
∂nC

= −nDαD
εkCS

[nC + εnD]2
exp

(
−αD

εS

nC + εnD

)
, (2.38)

∂fC
∂nD

= −nCαC
εkDS

[nC + εnD]2
exp

(
−αC

S

nC + εnD

)
(2.39)

∂fC
∂nC

= 1 + kC

[
1− exp

(
−αC

S

nC + εnD

)]
− ν − nC

αCkCS

[nC + εnD]2
exp

(
−αC

S

nC + εnD

)
. (2.40)

Replacing nC + εnD and performing some algebra, this can be further simplified to

J =

(
1− kDLD −1

ε
kCLD

−εkDLC 1− kCLC

)
(2.41)

where LT ≡ nT
SαT

[ln (1− ν/kT )]2 (1− ν/kT ). The eigenvalues of this matrix are λ1 =

1 and λ2 = 1− (kCLC + kDLD). The first eigenvalue is expected, since the solutions

are free to move along the curve defined by equation 2.34. The second eigenvalue

tells us that the solution exists whenever

−1 < λ2 < 1⇒ −1 < 1− (kCLC + kDLD) ∧ 1− (kCLC + kDLD) < 1 (2.42)

⇒ kCLC + kDLD < 2 ∧ kCLC + kDLD > 0 (2.43)

The second condition is always true, so it remains to determine kCLC + kDLD < 2.

In the regime of small ν/kT , LT becomes

LT =
nT
SαT

(ν/kT )2 +O
[
(ν/kT )3

]
(2.44)
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so

kC
nC
SαC

(ν/kC)2 + kD
nD
SαD

(ν/kD)2 < 2. (2.45)

As we saw previously, in the worst case scenario, S/nT ≈ ν/(kTαT ), therefore we

can find ν < 1, which is always satisfied since most of the interesting regimes

consist of ν � 1.

Nevertheless, we cannot expect to find this solution in the simulations. Oscilla-

tions along the line are not supressed and, therefore, the population will eventually

reach the points nC = 0 or nD = 0, where one of the strains extinguishes. Also, the

coexistence is found only for a line in parameter space which makes this solution

too restrictive to be of practical relevance.

2.3 Analytical results for structured populations

Some estimates can be given regarding the invasion of an established population of

one strain by the other, even in the case of structured populations. We will look at

the groups as emergent individuals and consider only pure groups of cooperators

and defectors. This way, we can provide an estimate for the group growth rate as

JGT = Pi kT

[
1− exp

(
−αT

S

NGPi

)]
/Pmax (2.46)

where JGT stands for the reproduction rate of a group constituted by strain T cells,

NG for the number of groups and Pi for the population of the group. As the groups

are considered to be uniform, the resource available per cell is simply S/(NGPi) ∼
S/Ptotal. Furthermore, the Pmax normalization stems from the fact that a group

only splits when its size reaches Pmax cells. With this in mind, one could introduce

a quantity rG, defined as the ratio of reproduction rates of strain D and C groups

rG ≡
JGD
JGC

=

Pi kD
Pmax

[
1− exp

(
−αD S

NGPi

)]
Pi kC
Pmax

[
1− exp

(
−αC S

NGPi

)] = Γ
1− exp

(
−αD S

NGPi

)
1− exp

(
−αC S

NGPi

) . (2.47)
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In the derivation of the previous equation, we compared groups of the same size.

As formerly discussed, the small resource limit is a relevant limit. In this limit the

expression reduces to

rG = Γ
1−

(
1− αD S

Ntotal

)
1−

(
1− αC S

Ntotal

) +O
[
(S/Ntotal)

2] = Γ∆ +O
[
(S/Ntotal)

2] . (2.48)

The curve defined by rG = 1 reveals the limiting value of the region where C groups

have advantage over D groups. This is a very interesting result as it shows us that,

by grouping together, the C cells get rid of a factor ε in their disadvantage over D

and can thrive over a much wider range of parameters.

ΓΔ

1/ε

C D

1

ΓΔ

1

C D

1/ε

Well-mixed population Structured population

Figura 2.7: Representation of the parameter regions expected to be dominated by strategies C
and D, for the cases of well-mixed and structured populations.

Based on the results obtained until now, our analytical estimates of the pro-

cess allow us to expect three regions with qualitatively different behaviors. When

Γ∆ε < 1 there is no social conflict and strain C is expected to be prefered by na-

tural selection in any situation. For the intermediate case, where 1/ε < Γ∆ < 1,

the strain C is predicted to be disadvantageous in well-mixed population but su-

perior while competing in the context of structured populations. Finally, a region

defined by Γ∆ > 1 where D is always selected for, regardless of the existence of

structure. Fig. 2.7 shows a graphical representation of these regions. Interestingly,

the intermediate region is highly relevant since the rate-yield tradeoff guarantees

that increasing Γ should lead to a decrease in ∆, keeping the product relatively

unchanged. One strain can choose to have a high-yield or high-rate strategy, but

not both simultaneously.

2.4 Simulation results

Having presented some analytical calculations, we now turn to the simulations of

the system. Fig. 2.8 depicts the relative fixation probability of a single C cell in a
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Figura 2.8: Relative fixation probability. In the plot the relative fixation probability is shown in
terms of Γ = KD/KC and ∆ = αD/αC . Left panel: structured populations, right panel:
homogeneous populations. The white thick lines denote the isocline where the relative fixation
probability of a single cooperator is equal to one, meaning that its fixation probability is the
same of a random individual under neutral selection. Above the isocline the cooperative
strategy is counter-selected (dark region), whereas under the line it is selected for. Yet, the
green line corresponds to the line delimiting the social dilemma regime, obtained by making
r = 1 in Eq. 2.11. This line overlaps the curve defined by Eq. (2.30). The yellow line in the
structured population denotes the line defined by Eq. (2.48) for rG = 1. The grey region
denotes extinction of D population before the C cell is introduced. The other parameter
values are resource amount S = 25, death rate ν = 0.01, group carrying capacity Pmax = 10,
internal energy for splitting Emax = 10, and AD = 10. The data points correspond to 40
distinct populations and for each population 10 000 independent runs were performed. Figure
adapted from [79].
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previously established population of strain D. This is shown as a function of the

ratios Γ ≡ KD/KC and ∆ ≡ αD/αC . ε ≡ AD/AC is fixed at 10, a typical empirical

value from Saccharomyces cerevisiae populations [81]. Let us first focus on the well-

mixed populations. These populations display two well-defined regions, separated

by the curve defined by Eq. 2.11. Below this curve the relative fixation probability

of strain C is larger than one, while above it is smaller. This reflects the fact that

strain C is only able to outcompete D at the population level in the region where

C already manage to succeed in a pairwise interaction. The isocline that marks

relative fixation probability equal to one, in white, is in excellent agreement with

the analytical expectation, in green. On the other hand, the structured population

exhibits a much larger region with relative fixation probability larger than one. This

region is interesting because, although the social conflict exists and cells of type C

are disfavored in direct competition with D, C still achieves a high relative fixation

probability. This happens due to the conflicting interests of the cell and group. In

the large region of parameters between the green and white lines, the group effect

can overcome the individual cell interests. As estimated analytically, this region

is delimited by the condition Γ∆ = 1. The high degree of consistency between

this line (red curve in the graph) and the isocline that highlights the Pfix = 1 is

noteworthy.

Fig. 2.9 represents two cuts of Fig. 2.8 with constant Γ. It allows a more detailed

view over the behavior of the relative fixation probability. The fixation probability

presents two peaks, whereas the homogeneous case has only one. The peak in

homogeneous population, as well as the first peak in the structured population,

can be attributed to the absence of social dilemma in the region. The second hump,

present only in the structured populations, owes its existence to the group selection,

which favors more efficient constituent cells whenever Γ∆ < 1. For a demonstration

of that, please see the dashed vertical lines denoting ∆ = 1/Γ. After this threshold,

the relative fixation probability abruptly falls to zero and the C cells do not have

a chance of success anymore, even accounting for group structure effects. Our

analytical approximations provide an explanation for the threshold values of the

regions each strain dominates but supply no guidance to explain the details of

the dynamics in between the limiting values. To understand the dynamics here

we need to consider the interplay between the dynamics of group formation with

within-group dynamics. It may seem counterintuitive that, in a first stage, the

relative fixation probability of strain C increases with ∆ since higher ∆ entails more

efficient strain D cells. For explaining this result we need to take into account how
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Figura 2.9: Relative fixation probability as a function of ∆ for fixed values of Γ. The blue
triangles show the simulation outcomes for homogeneous populations, whereas the red dots for
structured population. The data points correspond to 40 distinct populations and for each
population 100 000 independent runs were performed. The black horizontal line denotes
relative fixation probability 1. The vertical dotted blue line marks the limit of the social
conflict region, Eq. 2.30, whereas the vertical dotted red line designates the limit of the region
for the group conflict, Eq. 2.48. The parameter values are S = 25, ν = 0.01, Pmax = 10,
Emax = 10, AD = 10, and AC = 1. Figure adapted from [79].

both local competition for resource and group expansion are affected. On the one

hand, although a more efficient D (larger ∆) leads to an increased strength of local

competition for resource as experienced by C, on the other hand it also allows a

faster expansion of the group containing the invading C cell, thus favoring group

division and spreading the C trait. Thus, the net advantage of the efficient strain

comes from the net outcome of these two competing mechanisms.

2.4.1 Within-group stochastic dynamics

Having analyzed the effects of the relative efficiencies and yields on the population

dynamics, it is important to establish the effect of maximum group size Pmax. The

Pmax size considerably affects the stochastic effects of the within-group dynamics.

The results of the simulation as a function of Pmax and ∆ are presented in Fig. 2.10.

First, there is a maximum value of ∆ beyond which the fixation probability is always

smaller than one. As evinced by the vertical green line in the plot, this corresponds

to the value of ∆ beyond which a pure C group has a smaller growth rate than a

pure D group. Whenever ∆ is not too small there is another limit for the invasion of

D by a C mutant. This is observed as a horizontal line with Pfix = 1 at Pmax,c ≈ 17.
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Figura 2.10: Relative fixation probability as a function of Pmax. The left panel shows the
relative fixation probability in terms of the carrying capacity Pmax and the ratio ∆. The right
panel represents how the relative fixation probability changes with Pmax in a given ∆. The
thick white lines in the left panel correspond to isoclines and the green vertical line denotes
the condition Γ∆ = 1. The red dotted line in the right panel shows a fit to a Moran invasion
process expression. The parameter values are S = 25, ν = 0.01, Emax = 10, AD = 5, and
Γ = 2.5. The data points correspond to 40 distinct populations and for each population
100, 000 independent runs were performed in left panel (right panel). Figure adapted
from [79].



2.4 Simulation results 48

To explain these results we need to include within-group dynamics. Note that the

analytical result for the regions dominated by C orD groups was obtained assuming

no internal group dynamics. For groups larger than the threshold size Pmax,c, the

internal dynamics of the group should dominate over the intergroup dynamics,

leading to the almost certain loss of C before it can control one group. To analyze

this hypothesis we study in more detail a slice of the graph with constant ∆, shown

in the right panel of Fig. 2.10. A coarse grained model can be established to address

this. If the characteristic timescales at which the within- and inter-group dynamics

take place are very different we can separate the fixation probability as the product

of the fixation probability of one C cell inside a group by the fixation probability

of a C-only group in the population. When the group size is small we expect the

timescales associated with these dynamics to be relatively close because a few cell

divisions lead to a group split. The most extreme case is the group of size two,

where each cell division causes the group to split. Following this line of thought,

for relatively large Pmax, we should be able to decompose Pfix as

Pfix ≈ Pfix,w Pfix,p (2.49)

where Pfix,w stands for the probability of fixation of one C cell in a group and Pfix,p

for the probability of fixation of the group in the population. In the parameter re-

gion defined by 1/ε < Γ∆ < 1 we can be certain that Pfix,w < 1 and Pfix,p > 1, i.e.,

the C strain cells are in a disadvantageous position in the within-group competi-

tion but the pure C groups enjoy higher fixation probability at the population level.

From now on, we apply a series of rough approximations that should enable us to

obtain a qualitative idea of what is happening. Pfix,p should not depend strongly on

Pmax since it mainly influences the stochastic dynamics inside the group, so we will

take it as constant. Furthermore, we can approximate the within group dynamics

by a Moran process and assign the probability of the cell achieving fixation to the

corresponding expression (for a description of the Moran process, please see Ap-

pendix B). The fixation probability of a mutant in a Moran process under constant

selection is given by

Pfix,w =
1−R

1−RN
, (2.50)
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where R stands for the relative fitness of the mutant and N is the population size.

Therefore, we can approximate the total relative fixation probability of a C strain

cell as

Pfix ≈ Pfix,p
1−R

1−Rf Pmax
, (2.51)

where Pfix,p was introduced to account for the group fixation and f encodes the

fraction of Pmax that actually exists in a group. The product f Pmax is consequently

an effective population of the group as seen by the invading cell. Note that, in the

real process, the relative fitness of the cell is dependent on the exact composition

of the group. As such, this model provides us an effective view of the process and

the population and relative fitnesses obtained from it should be looked upon in

this perspective. As the group size Pi is usually in the range [Pmax/2, Pmax]5, we

expect to find f between 0.5 and 1. Fitting the above expression to the data we find

R = 0.66, f = 0.77 and Pfix,p = 455.2. This fit is displayed as a red dotted line in the

right panel of Fig. 2.10. As we expected, the fit does not describe well the points

for small Pmax but adjusts naturally to the end of the curve. The parameters that

emerge from the fit are consistent with our intuition of the problem. We expect Pfix,p

to be quite large since for small group size the total fixation probability is large and

Pfix,w does not help, being constrained to less than 1. An effective group population

of 0.77Pmax is quite natural and a fitness ratio R = 0.66 is also acceptable taking into

account that, in this region of ∆, a C cell is always disfavored in direct competition

with a D cell and the relative fitness should therefore be smaller than one. This

study confirms that we can ascribe the fall in fixation probability of the invading

cell to the within-group dynamics. In a larger group, the invading cell faces an

increased difficulty to achieve fixation within the group. Also interesting is the

possibility of testing different lifecycles. A lifecycle that includes a unicellular stage

should greatly promote the fixation of the strain C in the region where C groups

are selected for since this lifecycle promotes the existence of uniform groups and

decreases the internal competition.

2.4.2 Resource consumption rate

The resource consumption rate is characterized by the parameter ε. As the cells par-

tition the entirety of the resource in every time step, ε is the only relevant quantity

and there is no regime where we need to know AD or AC individually. Figure 2.11

5 This happens because the groups grow until they reach Pmax size and then split in two.
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unveils how the resource consumption rate affects the fate of the invading efficient

strain. The relative fixation rate dependence with Γ and ε is probed. Once again

one can see that the line of Pfix = 1 is quite well approximated by the curve Γ∆ = 1.

One can realize that the boundary between the regions dominated by C and D is

almost independent of ε as predicted by that analytical estimation, although the

details of the fixation probability shape a much more complex picture. Intuitively,

lower values of ε entail larger probability of success for the C invader, since more

resources are available to it. Although a very high D consumption rate leads to a

large advantage of D inside the groups, it does not provide any advantage once

uniform groups have been established. For large ε the probability of fixation be-

comes essentially constant: increasing ε above 5 does not lead to any substancial

variation.
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Figura 2.11: The effect of the consumption rate. Heat map of the relative fixation probability
in terms of the ratios Γ and ε. The parameter values are S = 25, ν = 0.01, Pmax = 10,
Emax = 10 and ∆ = 0.2. The thick white lines correspond to isoclines. The horizontal green
line denotes the Γ∆ = 1 curve. The data points correspond to an average over 10 distinct
populations and for each population 10, 000 independent runs. Figure adapted from [79].

2.4.3 Migration between groups

Finally, for the sake of completeness, we analyze the effect of introducing the pos-

sibility of migration of cells between groups. The migration between groups should

disfavor the fixation of the strain C. This happens because it becomes more dif-

ficult to achieve and maintain groups of one single cell type, keeping the internal

group competition high. Now, any cell can move to a randomly chosen group with

a certain probability m per time step. This implements the so-called island model
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of migration [83]. Allowing migration changes the effective population size and in

the high migration rate limit the structured population is expected to behave simi-

larly to its well-mixed counterpart. Fig. 2.12 depicts the effect of migration in the
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Figura 2.12: Effect of migration on the relative fixation probability. The relative fixation
probability is plotted as a function of the migration rate m for three distinct values of carrying
capacity Pmax. The parameter values are S = 25, ν = 0.01, Emax = 10, ε = 10, Γ = 1.5 and
∆ = 0.5 (blue points) and ∆ = 0.04 (red points). Figure adapted from [79].

resultant dynamics. As one can see, there are two different behaviors. When the

parameters are chosen such as the condition Γ∆ε < 1 is valid the result remains

basically unaffected by migration since the strain C is favored both within groups

and between them. On the other hand, when Γ∆ε > 1 the fixation probability

remains roughly constant, until a threshold migration rate is achieved for which

the strain C is not able to invade the population anymore. Beyond this value, the

fixation probability is basically zero. The exact point at which this threshold occurs

depends on the maximum population of a group Pmax, with larger Pmax leading to

the colapse of C at a smaller migration rate. Beyond the transition the result is the

same as obtained in the homogeneous population since for high migration rates the

population becomes effectively a well-mixed population.

2.5 Conclusion

We have proposed and analyzed a model for competition of organisms with dif-

ferent metabolic strategies over a single limiting resource. We parametrize the

fundamental aspects of the metabolism in a simple way, focusing on the rate of

resource acquisition and yield achieved. The model incorporates multilevel selec-

tion in a natural way, making it an adequate tool to study the relation between the

metabolism mode and the evolution of multicellularity.
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Our results evince the importance of group formation for the establishment of

efficient modes of metabolism. In fact, it is known that multicellular organisms pos-

sess efficient modes of metabolism much more often than unicellular ones. When

groups of inefficient cells emerge inside multicellular organisms the organism is

often led to disruption, as in the case of cancer. Cancerous cells possess an ef-

fect, known as Warburg effect [84], where the cells shift from their usual efficient

metabolism to highly inefficient high-rate modes, incompatible with the long term

sustainability of the organism.

This work launches the foundations for an approach that can be extended in

many directions. One such application was studied by our group in [85], with

the study of the coexistence of microorganisms with different metabolic strategies

in a well-mixed environment, where one of the strains produces a toxin as a by-

product of the metabolism. Another promissing line of work is a formalization and

extension of the arguments provided in Sec. 2.4.1 so that an effective population

size could be studied as a function of the metabolic properties. Several other aspects

still remain to be addressed, such as considering groups with a dynamical maximum

size stemming from an underlying evolutionary mechanism, or different lifecycles

or group structures.

The main results presented in this chapter have been published in the article:

• Ref. [79]: Competing metabolic strategies in a multilevel selection model,

André Amado, Lenin Fernández, Weinei Huang, Fernando F. Ferreira, and

Paulo R. A. Campos. Royal Society Open Science (2016), DOI: 10.1098/rsos.160544

The code used to perform the numerical simulations is available online in Dryad

repository at

• Ref. [82]: Data from: Competing metabolic strategies in a multilevel selection

model, André Amado, Lenin Fernández, Weini Huang, Fernando F. Ferreira,

Paulo R. A. Campos, Dryad Digital Repository (2016), DOI: 10.5061/dryad.q6784
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3 EFFECT OF TRADEOFFS IN CELL
DIFFERENTIATION

Highlights

A model for the evolution of specialization under an arbitrary network of tradeoffs is introduced

The statistical properties of the model are studied

An application of the model to a concrete biological system (cyanobacteria) is developed

The concept of tradeoff is a central one in evolutionary biology. Tradeoffs are at

the subject of a very active discussion in scientific community due to their contribu-

tion in shaping life histories and ecological/evolutionary dynamics in nature [86].

Tradeoffs introduce constraints in the evolution process by forcing living organisms

to choose: they cannot optimize all traits simultaneously. This creates room for

the evolution of specialization and diversification of life, generating complexity

and interdependence in the ecosystems. As such, they are believed to play an

essential role in creation and maintenance of diversity in life [87], as well as a

pressure towards the establishment of the division of labor [88]. This issue is ad-

dressed in the context of several distinct frameworks, such as evolutionary game

theory [89–92], resource-based modeling [79, 85, 93, 94], developmental plasti-

city [95,96], and so on.

This chapter is dedicated to the concept of tradeoff itself and its consequences

for the evolution of complexity. Tradeoffs reveal themselves as negative correlations

between traits that prevent simultaneous optimization [97,98]. These correlations

lead to a situation where the living organisms are forced to choose between perfor-

ming the several functions poorly or specializing in one of them.
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Tradeoffs are usually depicted in literature as relations between pairs of vari-

ables. Very few theoretical studies take into consideration that tradeoffs appear

in nature frequently as complex networks of interactions between traits, despite a

growing body experimental evidence for this fact [99–105]. In our view, multidi-

mensional tradeoffs are especially important in the study of the evolution of cell

specialization in multicellular organisms. As such, we are interested in producing a

model that can address this question.

3.1 Model

For the sake of an easier comprehension of the model, let us first introduce an over-

view of the same, with the details postponed to a later stage. The model consists

of an asexually reproducing population of cells organized in colonies. We consider

clonal development1 from a unicellular propagule, giving rise to multicellular orga-

nisms (colonies) as cells undergo binary fission [96]. Clonal development keeps the

genetic variation low among cells within the same organism since it fundamentally

stems from somatic mutations2. This leads to reduced competition within the orga-

nism. It has long been thought that clonal life cycles replaced nonclonal ones, but

recent research suggests the possibility that clonal development has been present

since the beginning of multicellularity and has been preserved instead due to the

significant advantage it provides [106]. In clonal development, each cell in a colony

undergoes several rounds of binary fission, until a maximum size S is reached3. We

assign a mutation probability µ per gene to each cell division, which corresponds

to an effective mutation rate of 2Sµ per life cycle per gene4. When size S is at-

tained, the colony is subjected to viability selection5. The viability selection takes

1 In this context, clonal development is the development of a new organism from a single initial
cell. It does not specify if reproduction is sexual or asexual. It is defined in contrast with
aggregative development, where cells from different origins gather together to originate a new
multicellular organism.

2 A mutation that is not inherited from the parent and happens in cells with somatic function.
3 Alternatively, we could express the size through the number of cell divisions necessary to

achieve it, log2(S).
4 Starting from a single cell we need log2 S binary divisions to achieve S cells. In step n

there are 2n cell divisions, therefore the total number of division per cycle is
∑log2 S

n=1 2n =
2(S − 1) ≈ 2S, for large S. Thus, the mutation rate per cycle is approximately 2Sµ.

5 The fitness of an organism can frequently be decomposed in a product of two main compo-
nents: the viability, which corresponds to the probability of the organism to stay alive until
reproduction age, and the fertility, which is the number of offspring an organism can have.
We introduce two selection phases that directly match these two components.
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Figura 3.1: Illustration of the life cycle of the model. It starts with a stage (a) where the
organisms are unicellular and undifferentiated, constituting a spore/propagule ready to found a
new colony. Each propagule then undergoes cellular division up until the colony reaches size S
and its cells differentiate according to the instructions contained in the regulatory genes. In
each cellular division, each gene can mutate with probability µ. We have now an adult
population (b). The elements of this population compete and the ones that survive viability
selection reach reproductive age (c). The surviving colonies disperse completely producing a
set of unicellular propagules (d). The propagules that endure fertility selection restart the
cycle, producing new colonies. Figure adapted from [107].

into account the competition between the aggregates in a limited environment pos-

sessing a maximum carrying capacity K 6. Then, the surviving colonies disperse,

giving rise to unicellular propagules which will restart the process and form new

colonies7. Not all cells are able to originate new colonies and the unicellular stage

must endure another level of selection, the fertility selection. For the purposes of

the model here proposed, we consider a fixed fertility f but we keep the fertility

selection stage since a varying fertility may be an important ingredient in generali-

zed versions of this work. The life cycle here described is illustrated in Fig. 3.1. A

life cycle akin to this, with a dispersal phase and a growing phase from a unicellu-

lar propagule, has been recently observed in the lab to emerge in the transition to

multicellularity from the previously unicellular alga Chlamydomonas reinhardtii by

Ratcliff et al. [51]. In some systems, like the one described in Ref. [51], a dispersal

phase very close to the one modelled here is realized. However, in most biological

6 Carrying capacity of a system is maximum population the environment of the system can
sustain. We refer to maximum carrying capacity K because in this work the carrying capacity
is smaller or equal to K. Further details are given below.

7 An alternative setting would be to have the groups split in two. This would lead to a higher
genetic diversity within each group since the genetic bottleneck introduced by the unicellular
stage did not exist anymore.
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systems, the fact that only a fraction of the cells of the parent organism give rise

to new individuals can be represented by a combination of a dispersal phase with

fertility selection.

We now must delve into the model and life cycle implementation. The most

relevant phase for our analysis of the life cycle is the viability selection since we will

focus on tradeoffs between somatic functions8. For a colony to survive adulthood,

it must compete with all the other colonies. The aggregates which achieve higher

viability v have a larger probability of survival. Given the corresponding viability,

an organism survives until reproduction age with probability[
1 + (S − 1)

N

Kv

]−1

, (3.1)

where N denotes the total number of colonies, S is the size of the colony imme-

diately before the unicellular stage and K the maximum carrying capacity of the

population. We here refer to the maximum carrying capacity of the system because,

as the viability v changes, the carrying capacity is effectively altered, with the ma-

ximum carrying capacity K being achieved when all colonies have viability equal

to one. A system populated by colonies with a low viability will support a smaller

population compared to colonies with a high viability. This is a modified version

of the Beverton-Holt stock-recruitment model which assumes that the per capita

number of offspring is inversely proportional to a linearly increasing function of

the number of mature colonies [108]. No adult colonies are transported between

generations since they disperse in the transition to the unicellular stage. This way,

there are no overlapping generations in the model.

The viability depends on the organism’s performance of the tasks or biological

functions it should accomplish to survive. As such, the exact form of the viability

should reflect the underlying biology of the organism. We denote the performance

of the organism at task i by ϕi. We will assume all functions to be essential. From

the several possibilities available we consider the geometric mean of the ϕi-values.

Other possibilities could include the harmonic mean or more complex functions

of the ϕi-values. Note that these functions do not need to be symmetric in the

8 Somatic functions are the support functions that keep the organism alive and are hence related
to the viability of the organism. Besides somatic functions, there are germinative functions,
which are responsible by the fertility of the organism.
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arguments and this symmetry is here assumed for simplicity reasons. With this

choice the viability takes the form

v = n

√∏
i

ϕi , (3.2)

where n stands for the number of biological tasks to be carried out. For comparison,

in Ref. [96] a system is discussed where a single somatic function determines the

viability.

As the biological tasks under scrutiny present tradeoffs among them, increasing

the output of one task may have a detrimental effect on others. We introduce the

tradeoff considering that the output of a certain task i is codified by a structural

gene Yi. This gene, in our implementation, can assume continuous values in the

range [0, 1] and represents the investment of the cell in the corresponding task i.

Taking this into account, a simple way of representing the tradeoffs is to assign the

performance ϕi of task i to

ϕi = Y Tii
i

∏
j 6=i

[1− Yj]Tij . (3.3)

Thus, the tradeoffs are encoded in the matrix T = {Tij}. If this matrix is diagonal

no tradeoffs are present since the output of function i reduces to ϕi = Y Tii
i and

receives no penalty from the remaining functions. On the other hand, nondiago-

nal elements of T introduce a decrease in the performance of other functions, for

instance, if Tij 6= 0 the output of function i is atenuated by a multiplicative factor

of [1− Yj]Tij . Therefore, each gene Yi has two effects: a direct effect increasing the

performance of task i and an indirect effect decreasing the output of the remaining

tasks for which Tji is not null. This way, Eq. 3.3 captures the essence of the tra-

deoff concept. If the organism is to increase its fitness, it is required to find ways

of offsetting this effect. One important way available in multicellular organisms’

toolset to deal with this is to segregate incompatible functions into different cells,

thus mitigating the cellular level tradeoff. Though, this does not come without

costs since it involves regulatory genes and different responses to intercellular che-

mical signalling. Nevertheless, differentiated response to complex environmental

and within-colony chemical signalling is already something that all organisms are

prepared to, including unicellular organisms [109]. To take regulation into consi-

deration we must modify the performance function in Eq. 3.3 in order to include

differentiated responses to each stimulus, leading to nonuniform behavior across



3.1 Model 58

the cells of the aggregate. With this in mind, we introduce a set of regulatory genes

{yik}. The gene yik suppresses the activity of the structural gene Yi in a cell subject

to stimulus k. Therefore, the contribution of a cell subject to chemical signal k to

the overall somatic function i, ϕik, of the colony can be codified as

ϕik = [(1− yik)Yi]Tii c(yik)
∏
j 6=i

[1− (1− yjk)Yj]Tij c(yjk), (3.4)

where c(yjk) is a cost function, explained below. After some algebra, this equation

can be equivalently rewritten in a more compact form, as

ϕik =
∏
j

|1− δij − (1− yjk)Yj|Tij c(yjk). (3.5)

The genes yik introduce the possibility of blocking the function i in a cell under sti-

mulus k, eventually reducing the effect of the tradeoff by segregating incompatible

functions to different cells. If a cell is under stimulus k and all of its regulatory

genes yik are close to zero, it will be capable of performing all functions since no

structural gene Yi is suppressed. On the other hand, a cell that has some of its re-

gulatory genes yik close to one will not undertake the corresponding functions and

so it must coexist with other cells within the same organism that can perform those

suppressed functions, as all functions are said to be essential. As the system evolves,

incompatible cellular processes tend to suppress the expression of genes encoding

other functions [110], thus contributing to the formation of aggregates with per-

manently specialized cellular functions. The mechanisms of gene suppression and

developmental plasticity embody a cost in fitness terms which is incorporated into

the estimation of ϕik through the cost function c(yik), as a decreasing function of

the regulation effect yjk. This means that the stronger the suppression is, the more

costly it becomes [96, 111]. In the present implementation, a Gaussian function

c(y) = exp(−1
2
y2

σ2
y
) is considered as cost function.

Due to regulation, the cells have different contributions to the output of each

function. Therefore, we should consider average contribution over the groups of

cells subject to each stimulus k [88], i.e.,

ϕi =
1

S

∑
k

ϕik, (3.6)

where we recall that S stands for the number of cells in each organism.
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This model is partially inspired by the one introduced by Gavrilets in 2010 [96],

where the author models the development of division of labor via evolution of

developmental plasticity. It shows that division of labor could arise fairly quickly

from simple undifferentiated organisms. The model proposed by the author deals

with one tradeoff between somatic and reproductive functions only. Our approach

extends the work done allowing one to probe an arbitrarily complex network of

tradeoffs and study the effect on the evolution of cell differentiation.

As a reference guide to the reader, the parameters of the model are summarized

in the box below.

Notation summary

s (tradeoff strength): In the simplest case, the tradeoff strength, s, is uniform over all the

tradeoffs. Therefore, under the assumption of a uniform tradeoff strength Tij is either

equal to zero (if there is no tradeoff between a given pair of genes) or s. The assumption

of a uniform tradeoff strength will be released later. In such a situation, the strength s

is not a constant but rather taken from a given probability distribution.

v (viability): The viability is a measure of how adapted the organism is to its environment. It

determines the probability of the survival of the organism until reproduction age.

f (fertility): After surviving viability selection, each cell of the colony can give rise to a newly

formed colony with probability f , the fertility of the cell.

µ (mutation probability): During cell division, there exists a uniform probability of mutation

per gene, µ. If a mutation takes place in a given gene j, Yj (in case it is a structural

gene) or yjk (in case it is a regulatory gene) changes to a randomly chosen value from a

uniform distribution [0, 1).

K (maximum carrying capacity): The maximum carrying capacity, K, corresponds to the

population size upon maximum fertility, f = 1 (all cells can successfully establish a new

colony), and maximum viability, v = 1.

n (number of tasks): Number of biological functions or tasks to the performed by the orga-

nism.

t (number of tradeoffs): There are up to n(n−1) tradeoffs, the number of degrees of freedom

of the Tij matrix.
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3.2 Simulation Protocol

We start the simulation with a population of N0 = 100 genetically uniform colonies

at the unicellular stage. The initial cells are ascribed a genotype of Yi = 0.75 and

yik = 0, which corresponds to a population of colonies that do not possess cell diffe-

rentiation. The colonies grow until reaching the adult size of S. During this growth

stage the cells can suffer mutation according to the rules previously introduced,

which correspond to an effective mutation rate of 2Sµ per colony per gene in each

cycle. For instance, values of S = 16 and µ = 10−5 yield an effective mutation rate

of 3.2 × 10−4. We consider that the gene mutates to a uniform value in the range

[0, 1). While this can include large mutations, the effect on the phenotype should

be relatively small since each organism has many genes and only one is affected

per mutation. When the adult size S is achieved, the aggregates undergo viability

selection following Eq. 3.1, using the viability values calculated according to Eqs.

3.2 to 3.6. The environment is assigned a maximum carrying capacity K, which

is taken to be 50, 000 in our simulations unless stated otherwise. The colonies that

survive viability selection then disperse, giving rise to new unicellular propagules.

Each of these propagules originates a new colony with probability given by its fer-

tility f or dies otherwise. In our implementation the fertility is taken to be constant

since we are focusing on somatic tradeoffs, but this is not the case in general. See

the work by Gavrilets [96] for an example of a study that considers a dynamical

fertility rate, based on a tradeoff between one somatic and one germinative task.

The surviving propagules are taken as the founding population of the next genera-

tion. This process is repeated until a stationary population is achieved. Typically,

the system is allowed to evolve for 5× 106 generations, after which measurements

are taken in the following 5× 106 generations.

This process is repeated a number of times, 1000 in our implementation unless

stated otherwise. The results of these runs are used to produce statistical averages.

As we are interested in the general properties of the tradeoffs, as opposed to a

specific system, each run uses a given random realization of the matrix Tij, subject

to some constraints, such as specific number of tradeoffs and tradeoff strength.

A criterion needs to be established as a measure of the differentiation level

among cells. We adopt as metric the distance dij between the response to two

stimuli i and j as

dij =

√∑n
k=1(yki − ykj)2

n
. (3.7)
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If the distance dij is higher than a critical value dc we consider that a differentiated

response to those stimuli is present, meaning that the cells differentiated into spe-

cialized types. Since yij ∈ [0, 1], dij also lies in the range between 0 and 1. Unless

stated otherwise, the threshold dc is set at dc = 0.2, which provides a solid criterion

for determining the differentiation among the cells, as will be shown and discussed

later, in Sec. 3.5.

As previously mentioned, the tradeoff strength between each pair of functions

is described within the context of the present model by the tradeoff matrix Tij

T =


T11 T12 · · · T1M

T21 T22 · · · T2M

...
... . . . ...

TM1 TM2 · · · TMM

 . (3.8)

The diagonal element Tii defines the output of task i as a function of Yi, in the

absence of tradeoffs. On the other hand, the off-diagonal element Tij (i 6= j) quan-

tifies the intensity of the tradeoff interaction between task i and task j. We have t

tradeoffs, where t can takes integer values from 0 to n(n− 1), corresponding to the

number of nonzero off-diagonal entries. In the simulations, we will analyze two

cases: tradeoffs of constant strength and strength drawn from a given probability

distribution.

3.3 Analytical estimation of the number of colonies

A full analytical treatment of the system is rather difficult but some results can be

obtained, such as the estimation of the number of colonies at equilibrium. Analyti-

cal results are always important since they can provide some insight on the model

and help to analyze the simulations.

We define the fitness W of an individual as the product of the survival proba-

bility until adult age with the expected number of offspring an adult can produce.

This is in line with the usual definition of fitness in the context of the study of the

evolution of life history traits. Thus, we have

W (N) =
1

1 + (S − 1) N
Kv

× fS. (3.9)
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Each successful offspring will establish a new colony at the next generation. In a

discrete-time model, the population at the next generation is therefore given by

Nt+1 = G(Nt) = W (Nt)Nt =
fS

1 + (S − 1) Nt
Kv

Nt. (3.10)

To find the equilibrium population we require that Nt+1 = Nt = N̂ , i.e., a stationary

condition. Under this condition, Eq. 3.10 has two equilibria

N̂0 = 0 and N̂1 =
fS − 1

S − 1
Kv. (3.11)

These equilibria correspond, respectively, to the extinction of the population and a

stationary population. The equilibria are guaranteed to be stable if−1 < ∂G
∂Nt

∣∣∣
Nt=N̂

< 1

(check appendix A). Calculating the derivative of the Eq. 3.10 one obtains

∂G

∂N
=

fS

1 + (S − 1) N
Kv

− fS[
1 + (S − 1) N

Kv

]2 N(S − 1)

Kv

=
fS

1 + (S − 1) N
Kv

[
1− N(S − 1)

Kv + (S − 1)N

]
. (3.12)

Therefore, the zero solution is stable if −1 < fS < 1. As fS is always positive only

the second condition needs to be guaranteed and we get fS < 1. The condition

obtained for the second solution is somewhat more complex. Its stability is dictated

by the condition

−1 <
∂G

∂N

∣∣∣∣
N=N̂1

< −1⇒ −1 <
fS

1 + (S − 1)
fS−1
S−1

Kv

Kv

[
1−

fS−1
S−1

Kv(S − 1)

Kv + (S − 1)fS−1
S−1

Kv

]
< −1

⇒ −1 <
fS − (fS − 1)

fS
< 1 ⇒ −1 <

1

fS
< 1 ⇒ −1 > fS > 1. (3.13)

Once more the first inequality is always verified and we are left with the condition

fS > 1. This is an intuitive result since fS represents average number of daugh-

ter colonies that each colony will produce. If each colony produces less than one

offspring in average obviously the population will go extinct. In this analysis the

population is continuous and therefore it can achieve an arbitrarily small size at

equilibrium. For this reason, the stability of the solution does not depend neither

on K nor v since these quantities mainly determine the equilibrium population size.

In the full discrete system, a dependence on the product Kv is expectable. A small

Kv implies a small equilibrium population, that can easily be extinguished due to
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the fluctuations induced by the stochastic nature of the system. This also entails

that the system is more susceptible to extinction in the early stages of the evoluti-

onary dynamics, when division of labor has not evolved yet and the vibility of the

aggregates is low.

For a typical set of parameters, if v ≈ 1 (no tradeoff), the equilibrium population

yields N̂ = 0.5×16−1
16−1

5 × 104 ≈ 2.3 × 104, which perfectly matches the equilibrium

population sizes found in the simulations. When strong tradeoffs are present and

the population overcomes extinction, it evolves to an equilibrium situation where

the tradeoffs are mitigated through division of labor. Even after specialization takes

place, the existence of tradeoffs reduces the population at equilibrium since the

specialization leads to less cells performing each task. Also, as one can see in

Eq. 3.4, the contribution of the specialized cells picks up factors of exp(−1/2σ2
y)

due to the regulation costs.

3.4 One tradeoff case

Let us start by analyzing the simplest case of one tradeoff, before moving on to

the general situation. It turns out that it is possible to provide good analytical

approximations for the viability in this case (for detailed calculations, please refer

to Appendix D). We will consider a tradeoff matrix with diagonal elements Tii = s

and all off-diagonal elements null except one. This nonzero element has value s∗.

In the case when none of the cells specialize and the aggregate is totally generalist,

the viability of such a system takes the form

v =

[
sss∗s

∗

(s+ s∗)s+s
∗

]1/n

. (3.14)

The other limiting case is when the cells subject to tradeoffs specialize completely.

In this limit, the viability can be found to be given by

v =
1

n

[
(n− 1) c(1) [n− 1 + c(1)]n−2]1/n . (3.15)

Notice that, in the case of Eq. 3.14, the viability is a decreasing function of the

tradeoff strength. Conversely, in Eq. 3.15, the viability becomes independent of the

tradeoff strength due to the total specialization of the cells.

Fig. 3.2 depicts the maximum viability achievable in the cases of all cells being

generalists, fully specialized or partially specialized in such a way that fitness is
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Figura 3.2: Maximum viability obtained by a colony as a function of the tradeoff strength s
(s∗ also set to s) for the numerical maximum (yellow line), all cells generalist (blue line), total
specialization (red line) and simulation results (circles). The left panel shows the result for
n = 2 functions and the right panel for n = 4 functions. The remaining parameter, σ2, is 2.

maximized. The partially specialized case is obtained from the numerical study of

the full expression. We can see that in practice the numerical result is very close

to either totally generalist cells or fully specialized cells, whichever provides the

highest fitness. The transition between these two regimes happens very abruptly.

In the simulation results, we can see that the evolutionary mechanisms are very

efficient selecting for the optimum behavior, the result is very close to the theore-

tical maximum a population can reach. Near the transition between regimes, the

simulation result is slightly lower than the maximum achievable. This happens be-

cause the viabilities for both generalist and specialized aggregates are very close

leading to a weaker selection. The system is almost in a neutral selection regime.

As the simulation is initiated with only generalist aggregates, the fixation time of a

specialist mutant is very large.

Fig. 3.3 provides an example of the adaptation process in time. As time advan-

ces, beneficial mutations are fixed in the population, progressively increasing the

population fitness until a configuration close to the maximum is found. Even after

a very long time the genes have some oscillations, which correspond to alternation

between slightly different strains with fitness close to the maximum. In any finite

population, a new variant with very close fitness can get fixed in the population

through neutral drift even if it is slightly deleterious.

3.5 General case

Here we analyze the situation in which tradeoffs of constant strength are in place.

Analytical calculations with more than one tradeoff are of course possible but soon
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Figura 3.3: Top panels: time evolution of the gene expressions for tradeoff strength s = 0.5
(left panel) and s = 1.5 (right panel), for 2 functions. Bottom panels: time evolution of the
corresponding viabilities. The viabilities of a generalist (red) and specialized (green) organism
are shown in dashed lines. The remaining parameter, σ2, is 2.
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Figura 3.4: Panel a: Average number of colonies versus the number of tradeoffs t for four
biological functions (the remaining parameters are s = 2, S = 16, µ = 10−5 and K = 50 000).
Panel b: Average viability of a colony versus the number of tradeoffs t for four biological
functions (the remaining parameters are s = 2, S = 16, µ = 10−5 and K = 50 000). Each
point is an average over 1000 independent configurations. Figure adapted from [107].

become too cumbersome to be presented here. Unless stated otherwise it is assu-

med that number of cells before the unicellular stage is S = 16, mutation probability

µ = 10−5, fertility f = 0.5, tradeoff strength s = 2 and carrying capacityK = 50 000.

The initial number of colonies is 100. As previously stated, we initiate the simulati-

ons with all the structural genes set to Yi = 0.75 and the regulatory genes to yij = 0.

In this situation, the cells are in an undifferentiated state, where all the functions

are active in each cell.

In Fig. 3.4a, one can see that the number of colonies decreases with the number

of tradeoffs, as expected, reflecting the extra costs introduced by the specialization.

In the absence of tradeoffs, the mean viability goes to one, meaning that all traits

can be maximized simultaneously as there are no constraints. As tradeoffs are

added, specialization requires the suppression of the expression of an increasing

number of genes entailing a greater cost in terms of fitness.

Fig. 3.5a explores the effect of the tradeoff strength s on the evolution of the sys-

tem, now for several values of the number of tradeoffs t. We can see that, similarly

to the situation with only one tradeoff, there is a threshold between an initial re-

gion of tradeoff strength where the aggregates adopt a generalist configuration and

another region where a specialized configuration is preferred. In the first region,

the population decreases because the generalist configuration loses viability with

the tradeoff strength. As soon as the aggregates specialize, a plateau is achieved for

the population size since the specialized cells are not directly affected by the tra-

deoff anymore. There is a point beyond which the population cannot be sustained

even under total specialization and goes extinct. Fig. 3.5b shows the probability of

extinction of the population during the timespan of the simulation. One can see
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Figura 3.5: Panel a: Average number of colonies versus the strength of the tradeoff s for three
biological functions and one (dark blue), two (red), three (green) and six (orange) tradeoffs
(the remaining parameters are S = 16, µ = 10−5 and K = 50 000). Panel b: Extinction
probability versus the strength of the tradeoff s for three biological functions and one (dark
blue), two (red), three (green) and six (orange) tradeoffs (the remaining parameters are
S = 16, µ = 10−5 and K = 50 000). Each point is an average over 1000 independent
configurations. Figure adapted from [107].

that there is a steep transition between a regime without extinction to a regime

where the population is doomed to extinction. The higher the number of tradeoffs,

the sooner the extinction regime comes into play. As the number of tradeoffs is

increased, the transition becomes sharper.

For the sake of completeness, we also survey the dependence of the number of

colonies on the size of group just before the unicellular state S and the maximum

carrying capacity K. These two parameters impact the survival probability of a

colony, as can be inferred from Eq. 3.1. We show the average population sizes as

a function of both quantities in Fig. 3.6, for the case of three biological functions

and three and six tradeoffs. The average population size displays an interesting

behavior when S is varied. After an initial growth for small S, the population

saturates and then falls. Notice that the behavior is the same for three and six

tradeoffs, although for three tradeoffs the population decrease starts at a much

larger S. This decrease in the population size is due to a much larger extinction

probability. This outcome shows that the colony size cannot be enlarged without

bound in this life cycle as its increase in size leads to a reduced survival probability.

As expected, in the limit of large K, the continuous model and the discrete

simulations match and we have a linear dependence of the population size on K.

This is evinced by the linear fit shown as a blue line in Fig. 3.6b. Also, there is

a minimum carrying capacity below which the population is doomed to extinction

due to the stochastic fluctuations in the population size. Having a low carrying

capacity has a similar effect on the population dynamics as a small viability.
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Figura 3.6: Panel a: Average number of colonies against its size just before the reproduction
stage (S), for three biological functions and three (blue) and six (red) tradeoffs (the remaining
parameters are s = 2, µ = 10−5 and K = 50 000). Panel b: Average number of colonies
versus the maximum carrying capacity of the system (K) for three biological functions and
three (blue) and six (red) tradeoffs (the remaining parameters are s = 2, S = 16 and
µ = 10−5). The straight line is a linear fit which matches the data well, as expected, in the
limit of large K (please see Eq. 3.11). Each point is an average over 1000 independent
configurations. Figure adapted from [107].

However, if the number of tradeoffs is enlarged (t = 6 in the plot) we already

observe an abrupt drop of the number of colonies at intermediate S, due to the

extinction of the population. Indeed, the fall in the number of colonies is also

found for t = 3 but this effect occurs at much larger S. This outcome also shows

that the colony size S can not be enlarged without bound as its increase in size

reduces the probability of survival. This critical colony size depends on the number

of tradeoffs t.

Having characterized the population sizes, we want now to focus our attention

on the differentiation level attained within the aggregate. The number of diffe-

rentiated types is the number of different cell phenotypes arising as a response to

the different stimuli to which the cells are subject in the organism. In our model,

the maximum number of different cell types is equal to the number of biological

functions or tasks an organism must perform. The information on the cell diffe-

rentiation is encoded in the regulatory genes yik. With this in mind, in Sec. 3.2,

we have introduced a metric to characterize the amount of differentiation between

cell types in an organism. Fig. 3.7 shows the response of our results to the criteria

adopted for dc. For very low values of dc, the definition flags any small fluctuation

in the regulation genes yik as a new cell type, which is not biologically realistic. At

the other end of the spectrum, if dc ≈ 1 all the cells are characterized as of a same

type, even if they present significant differences. At last, another plateau exists in-

between for which an intermediate value of the number of cell types is stable. As

this number remains constant for a large range of dc, roughly dc ∈ [0.003 : 0.7], this
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Figura 3.7: Average number of cell types as a function of the threshold distance dc for three
biological functions and three tradeoffs. The remaining parameters are S = 16, µ = 10−5 and
K = 50 000. Each point is an average over 1000 independent configurations. Figure adapted
from [107].
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Figura 3.8: Panel a: Average number of cell types versus the strength of the tradeoff s for
three biological functions and one (dark blue), two (red), three (green) and six (orange)
tradeoffs (the remaining parameters are S = 16, µ = 10−5 and K = 50 000). Panel b:
Average number of cell types versus the number of tradeoffs t for four biological functions
(the remaining parameters are s = 2, S = 16, µ = 10−5 and K = 50 000). Each point is an
average over 1000 independent configurations. Figure adapted from [107].

method actually provides a robust characterization of the cell differentition in an

aggregate. According to what was mentioned before, we adopt the value dc = 0.2

to characterize the number of independent cell types in the aggregate.

Figure 3.8a shows the average number of cell types obtained for different tra-

deoff strengths, in the case of three biological functions. We can see that, inde-

pendently of the number of tradeoffs involved, the number of different cell types

grows with the tradeoff strength until it reaches a plateau. The ultimate value achi-

eved by the plateau depends on the number of tradeoffs involved. As the number

of tradeoffs rises, the minimum strength necessary to cause differentiation decre-

ases. On the other hand, Fig. 3.8b displays the dependence of the number of cell
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Figura 3.9: Average number of cell types as a function of the number of tradeoffs t for three
biological functions. Here the tradeoff strength is variable and drawn from an uniform
distribution. The blue points correspond to a constant tradeoff s = 2, the red points denote
an uniform distribution with s ∈ [1, 3], whereas the green points also denote an uniform
distribution with s ∈ [0.5, 3.5]. The remaining parameters are S = 16, µ = 10−5 and
K = 50 000. Each point is an average over 1000 independent configurations. Figure adapted
from [107].

types with the number of tradeoffs, while keeping the tradeoff strength constant.

It is clear that an increase in tradeoffs promotes cell differentiation. This can be

achieved by either increasing the number of tradeoffs, i.e. the number of non-null

elements of the tradeoff matrix Tij, or increasing the strength of those tradeoffs.

For four functions, as shown in Fig. 3.8b, the maximum specilization is achieved

for 10 tradeoffs.

Variable tradeoff strength

Here we release the assumption of constant tradeoff strengths. The tradeoff strength

s is now drawn from a uniform distribution s ∈ [sinf , ssup]. The tradeoff strength

varies not only among different Monte Carlo runs but also across different pairs of

genes. To facilitate the comparison with the previous result, we consider sinf and

ssup in such a way that their average is kept at two, i.e. 〈s〉 = 2. Therefore, the only

difference to the previous case is the variance of the distribution, which was zero

in Fig. 3.8b. The result can be seen in Fig. 3.9. One can see that for larger variance

on the tradeoff strength the specialization decreases slightly, although the general

qualitative behavior remains unaltered.

We will analyze the model in a generic form, performing a statistical study over

the possible configurations given certain restrictions on the number of tradeoffs

and/or their strength. Nevertheless, modifications of this model can be applied
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to specific systems in nature. For clarity and increased biological intuition, we

introduce an example in which the model can be applied. In the following, the

model is used as a simplified version of cyanobacteria.

3.6 Concrete example: cyanobacteria system

Until this point we analyzed generic systems, where the tradeoffs were not atta-

ched any concrete biological meaning. In this subsection we study a concrete sys-

tem: the cyanobacteria. Cyanobacteria need both carbon compounds and nitrogen

compounds [112]. For the carbon compounds they rely on photosynthesis, while

the nitrogen can either be obtained from the environment, if available, or through

nitrogen fixation [112]. The gas form of nitrogen is widely available since it is the

main gas in the atmosphere. Nevertheless, it cannot be directly used by living orga-

nisms. It needs to undergo a process of nitrogen fixation, where it is incorporated

in organic molecules and thus usable by organisms. The problem with this process

is that the enzymes reponsible for nitrogen fixation are sensitive to oxygen, basi-

cally rendering photosynthesis and nitrogen fixation incompatible processes since

carbon fixation releases oxygen [49, 112, 113]. This problem can be approached

through several angles. Some species segregate these functions in time, alternating

carbon and nitrogen fixation [113]. The downside of this approach is that it in-

volves replacing a significant part of the enzymatic system periodically, which has

significant costs, besides not allowing simultaneous carbon and nitrogen fixation.

A more efficient solution has been developed in some species, evolving multicellu-

larity and separation of labor, thus overcoming this restriction [49,112,113]. Some

cells, denominated heterocysts, differentiate terminally and specialize in nitrogen

fixation [49, 113]. The multicellularity in cyanobacteria evolved several times in

history and, as far as it is known, represents one of the earliest forms of multicellu-

larity, developed at least two billion years ago [114].

This problem fits nicely in our approach. The system can be described as having

two required functions: carbon and nitrogen fixation. Nitrogen fixation is incompa-

tible with carbon fixation, although the opposite is not true, so the tradeoff matrix

can be represented as

T =

[C N

C 2 0

N 2 2

]
, (3.16)
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where the letters C and N denote, respectively, carbon and nitrogen fixation. The

off-diagonal 2 represents the incompatibility of nitrogen fixation with carbon fixa-

tion. As we are performing a qualitative analysis another value could have been

taken, given that it is large enough to produce a strong tradeoff. We can also gene-

ralize the expression of the viability in Eq. 3.2 since the nitrogen can be provided

either by the activity of the cell or supplied by an external source of biologically

usable nitrogen

v =
√
ϕC (ϕN + n). (3.17)

Both carbon and nitrogen compounds are essential, but the nitrogen can be provi-

ded either by nitrogen fixation in the cell ϕN or, if available, by an external source

n. Under these assumptions we aim to make a faithful reproduction of the sce-

nario observed in nature within the perspective of the present modeling. We can

now examine the effect of different concentrations of external biologically usable

nitrogen, n, on the system.

This can be studied both analytically and through simulations. Adapting Eq. D.10

to this situation is straightforward and yields

v =

√√√√Y 2
C

[
1 + (1− yCN)2 c(yCN)

]
2

[
(1− YC)2 + (1− (1− yCN)YC)2 c(yCN)

2
+ n

]
(3.18)

Here YC and YN are the main genes associated to the fixation of carbon and nitro-

gen, respectively, and yCN and yNC are the corresponding regulatory genes. This is

the result for a generic case, and we can obtain the limits of total specialization

vspec =

√
1

2

[
c(1)

2
+ n

]
, (3.19)

and generalist

vgen =
√
Y 2
C

[
(1− YC)2 + n

]
, (3.20)

which, after optimizing for YC , becomes

vgen =


(3−
√

1−8n)
4

√[
1
4

(√
1− 8n− 3

)
+ 1
]2

+ n, n ≤ 1
2

(
5
√

5− 11
)

√
n, otherwise.

(3.21)
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Figura 3.10: Viability as a function of the external nitrogen supply n. The blue dots
correspond to the simulation results, the green dashed line to the theoretical generalist
maximum and the red dashed line to the theoretical maximum under full specialization.

Comparing the expressions, one finds that the generalist solution acquires a higher

fitness than the specialist when n > c(1)
2
≈ 0.389. Let us now turn to the simulation

results. Figure 3.10 shows the simulational and analytical results for the viability as

a function of the external nitrogen supply n. We see that the simulation results start

quite close to the result for full specialization, when the external nitrogen supply is

very low. As the external supply is increased the result departs from the full spe-

cialization line and moves toward the generalist line. These results are confirmed

when we analyze the average number of cells in Fig. 3.11a. One can see that for

very low n we have always total differentiation. The degree of specialization decre-

ases with n until only one cell type is present, at around n ≈ 0.4. It is interesting

to note that this is the point where the fitness of an organism composed of only

generalist cells surpasses the fitness of an organism whose cells undergo total diffe-

rentiation. The population size, shown in Fig. 3.11b, reveals a picture similar to the

already analyzed viability. As expected, the population grows monotonically with

the external nitrogen supply since it provides benefit without the costs of nitrogen

fixation. The model’s outcomes agree with the observed behavior of cyanobacteria

response to nitrogen supply.

The model here described should be regarded as a toy model when applied

to the study of cyanobacteria, for illustration purposes only, but we believe that

introducing a simpler model improves the clarity. A more complex model could be

considered within this framework, for instance by taking into account the tradeoffs
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Figura 3.11: Panel a: Average number of cell types versus the concentration of external
biological nitrogen. The remaining parameters of the model are S = 16, µ = 10−5 and
K = 50 000. Panel b: Average number of colonies versus the concentration of external
biological nitrogen. The remaining parameters of the model are S = 16, µ = 10−5 and
K = 50 000. Each point is an average of 1000 independent configurations. Figure adapted
from [107].

between the currently described functions and reproductive function, which would

lead to a more faithful representation of the system. Also, more general situations

could be studied, for example, the equilibrium of the system when the external

nitrogen is not fixed but variable on time, or the effect of letting the fraction of cells

dedicated to each function dynamically evolve also.

3.7 Conclusions

We considered a system with tradeoffs between cell functions and analyzed the way

these tradeoffs contribute to cell differentiation and division of labor. The cells are

endowed with the possibility of suppressing the action of certain structural genes,

as regulated by the regulatory genes upon given stimuli. This makes developmental

plasticity possible. Of course developmental plasticity entails costs since it needs

a complex network of regulatory genes and interactions. The system is adaptative

and both structural and regulatory change through random mutation. Since we

considered a constant fertility, our analysis concerns only somatic functions. The

study is performed under different scenarios for the distribution of tradeoffs. We

start the simulations in a situation where all the cells are completely undifferentia-

ted, undertaking all functions regardless of the chemical stimuli the are subject to.

As evolution proceeds they can suppress their contributions to some of the functi-

ons and mostly contribute to one or few tasks through the activation of regulatory

genes that can suppress some of their activities when exposed to a given chemical
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stimulus. Although beneficial from the group perspective, the suppression mecha-

nism produces a cost at the individual level.

The model shows that the tradeoffs affect not only the outcome of the division

of labor but also the viability of the population as a whole. We have found that

as the number of tradeoffs and tradeoffs strengths is increased the probability evol-

ving differentiation increases too. The viability of the population decreases with the

increase of tradeoff strength up to the point that differentiation compensates, since

the tradeoff strength does not have an effect on the differentiated system anymore.

Nevertheless, if the number of tradeoffs the differentiation costs grow significantly

and can lead to an extinction of the population even in the case of total differenti-

ation. Also, when the tradeoff strength is high, the population can be doomed to

extinction in a shorter timescale than the necessary for the system to find a suitable

differentiated state.

In this work, we have focused on generic statistical properties of the model.

Nevertheless, it has the potential to be applied to concrete situations where the

tradeoff relationships are known or suspected. We developed the example of cya-

nobacteria. Interesting generalizations of this work would include more general

situations, namely a fertility which is dependent ϕi-values. This would allow the

scrutiny of systems that include exhibit tradeoffs between reproductive and somatic

functions. This is relevant since it is believed that germ-soma tradeoff is important

in the early stages of multicellularity. It would also allow us to consider the effect

of different selection intensities at the somatic or reproductive level. Generalizati-

ons of the viability functions also allow us to include dependence on environmental

factors, like the external nitrogen concentration in our example. This enables the

study of different types of systems. One interesting application can be the study

of the effect of seasonal external conditions in the differentiation. Returning to

the example of cyanobacteria, does a periodical supply of external nitrogen favor

or oppose specialization? What if the supply is random in time? The only rea-

son for considering here all functions as equally important to the organism was of

practical order. What happens in the case where different functions have different

importances to the organism?

The main results presented in this chapter have been published in the article:

• Ref. [107]: The influence of the composition of tradeoffs on the generation of

differentiated cells, André Amado, Paulo R. A. Campos, Journal of Statistical

Mechanics (2017) DOI: 10.1088/1742-5468/aa71d8
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4 A MECHANISTIC APPROACH TO
TRADEOFFS AND COMPLEXITY

Highlights

A mechanistic model for multicellularity including tradeoffs and division of labor is introduced

Three different geometries for the aggregates are considered: linear, spherical and snowflake-like

The model is applied to the problem of the size-complexity rule and it is found that the validity
of the rule depends on the geometry of the aggregates

The dynamics of group formation and evolution is governed at a microscopical level

by a set of processes, which either increase or decrease group size. As such, it is

useful to have a model description of group formation written directly in terms of

these microscopic mechanisms that dictate group dynamics. Such a model can help

us elucidate the phenomena driving the evolution of group size and complexity.

Some work has been done in this domain. For example, a purely aggregative model

without input generates in the long run one group only, comprising all the cells ini-

tially introduced in the system. A slightly more complex approach, accounting for

aggregation and input processes, is analytically solvable and leads to a power law

for the equilibrium distribution, with the number of groups of size n being propor-

tinal to n−3/2 [115], therefore lacking any characteristic size scale. In a 1995 paper,

Gueron and Levin [116] modelled the dynamics of animal group formation in terms

of density-dependent rates of fusion and fission. They focus on the mathematical

properties of the model. Differently from the previously referred approaches, they

restrict their analysis to continuous populations and do not include the processes

of reproduction and death, employing fixed size populations.

A model aimed at emulating the evolution of cellular aggregates needs to give

a fuller account of the processes involved. This way, our model seeks to provide an
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Figura 4.1: Number of cell types as a function of the number of cells in the organism for a
vast range of species. Figure obtained from [118].

approach that can be used in practice to probe specific problems in the evolution

of multicellular complexity, by incorporating four main processes: aggregation, dis-

sociation, cell reproduction and cell death. Another important ingredient of the

model is the presence of tradeoffs, since they are widely believed to play an es-

sential role in the evolution of complexity [87]. We introduce the tradeoffs at the

reproduction level, by considering that the cells should perform several tasks whose

simultaneous execution brings high costs in terms of fitness.

Although the model can in principle be applied to a variety of problems, here

we primarly intend to address the so called size-complexity rule. As described in

chapter 1, the size-complexity rule consists in the observation that larger organisms

tend to display higher complexity than smaller ones [117,118]. There is no unique

definition of complexity, but the number of cell types is frequently invoked as a

proxy [119]. This rule seems to apply not only to multicellular organisms but also

to other systems [118, 120], such as human societies. Nevertheless, this rule is

not solidly established in theoretical grounds and there are reports of systems that

appear to violate it.

Usually, cells separate completely upon cell reproduction but in situations where

groups of cells are favored, cells may develop mechanisms that produce incomplete

separation. These cells remain in their parent groups rather than dispersing. The

evolution of this mechanism has been experimentally demonstrated in the labo-

ratory, for example in [50]. To simulate this effect, we introduce a parameter σ

dubbed stickiness that handles the probability of cells sticking together. In the limit
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σ → 1 cells always remain attached. Conversely, when σ → 0 cells undergo perfect

separation in every instance of cell reproduction.

We consider different aggregate geometries: a linear geometry, a spherical (or

compact) geometry, and a snowflake geometry. These geometries are motivated

by the ones observed in nature or laboratory experiments. In the linear geometry

cells grow unidirectionally. In spherical geometry cells are considered to grow in

such way that they form spherical cell aggregates, thus possessing a surface area

proportional to N2/3, where N is the number of cells in the aggregate. Finally, the

snowflake geometry presents the highest complexity allowing for structures where

each cell has up to z neighboring cells. The linear geometry can be seen as a particu-

lar case of the snowflake geometry with z = 2. The linear and spherical structures

are simpler than the snowflake and their implementation does not need to keep

track of the internal structure of the aggregate. On the contrary, the implementa-

tion of the snowflake structures needs to keep track of each individual member of

the population, since there are many possible configurations that an aggregate of

size ` can adopt. Examples of possible instances of these structures can be found in

figure 4.2.

linear spherical snowflake

Figura 4.2: Example of structures with the geometries considered in the model.

In the following discussions, we borrow notation from chemical kinetics to re-

present the processes and their respective rates.

Notation summary

N` Number of groups with size `

NT Total number of cells

σ Stickiness

k+ Aggregation base rate
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k− Dissociation base rate

kR Reproduction base rate

kD Death base rate

z Maximum number of neighbors of a cell in snowflake structure

zn Number of neighbors of the cell n in snowflake structure

Aggregation

Groups of cells can merge in larger groups through the process of aggregation. This

process can be described by the following expression

A` + Am
k`,m+−−→ A`+m (4.1)

where an aggregate of size ` and one of size m merge into a new aggregate of size

`+m. For the linear process we adopt as aggregation rate k`,m+

k`,m+ = k+σ
2N`Nm, (4.2)

where k+ is a constant of aggregation and N` the number of aggregates of size `.

As for the spherical model we assume that aggregation only occurs through the

surface of the aggregate, so a factor of `2/3 is included to reflect the surface area of

a spherical aggregate. Also, in the spherical case we only consider aggregation of

single cells and groups of variable sizes `. Therefore we have

k`,1+ = k+σ
2N`N1`

2/3. (4.3)

Dissociation

Aggregates of cells can break into smaller groups. We consider the breakdown of a

chain in case of linear structure or the removal of a cell from a spherical aggregate.

This process can be described by

An
kn−−→ A` + Am (4.4)
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where kn− stands for the rate of the process. In the linear structure this rate is given

by

kn− = k−Nn(n− 1), (4.5)

and in the spherical by

k`− = k−N``
2/3. (4.6)

Again k− represents the base rate of dissociation. The linear structures have a

factor n− 1, representing the number of points where a linear structure can break,

whereas in the spherical model a factor of `2/3 is considered, proportional to the

surface area of the agregate, through which cells can be lost.

Cell reproduction

The cells undergo cell reproduction with a rate k`R, determined by the cells optimal

reproduction rate Ropt. In the process of reproduction an aggregate of size l can

produce an aggregate of size l + 1, with probability σ2, or produce a new free cell

otherwise. This process can be represented by

A`
k`Rσ

2

−−−→ A`+1 (4.7)

or

A`
k`R(1−σ2)
−−−−−→ A` + A1. (4.8)

The rate k`R is related to the number of cells in the aggregate ` as well as to the per

capita reproduction rate Ropt
`

k`R = kRN`R
opt
` `, (4.9)

where kR is a constant used to adjust the general reproduction rate and N` repre-

sents the total number of aggregates of size `. The per capita reproduction rate

functional form will be dealt with in Sec. 4.1 and Sec. 4.2.

In the snowflake structure, we consider that the cell is added as a neighbor of a

cell that currently has less than the maximum number of neighbors z.
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Cell death

Cells can die randomly with a uniform probability, proportional to the total number

of cells in the system NT . As such the death rate of a cell in an aggregate of size `

is simply given by

k`D = kDN``NT . (4.10)

This corresponds to different processes depending on the geometry of the aggre-

gate. When the m-th cell of a linear aggregate dies we have

A`
k`D−→ A`−m + Am−1. (4.11)

When a cell in the spherical aggregate dies we simply have a reduction of the

aggregate size by one

A`
k`D−→ A`−1. (4.12)

The case of snowflake structures is more delicate. In this situation when a central

cell dies the aggregate can produce up to z daughter aggregates depending on

the number of neighbors zn = 1, ..., z possessed by the dying cell. This process is

illustrated in Fig. 4.3.

Examples of snowflake breaking patterns 

Figura 4.3: Example structures formed by breaking parent snowflake structures through cell
death. The red cell is the one signaled to die.
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4.1 Two-functions model

Reproduction rate

We can now include the effect of the tradeoffs in the cells’ reproduction rate. We

start by considering a single cell which needs to perform two essential incompatible

functions, X and Y . To encode this in a mathematical language one can decompose

the reproduction rate in two parts: a benefit B provided by the function and a cost

C associated to it. As both functions are considered essential we choose to consider

the benefit provided as the product of their expression levels. Thus, two functions

with expression levels x and y provide a benefit B(x, y)

B(x, y) = x · y. (4.13)

As we want the total reproduction rate of the cell to be positive and finite, the cost

should start slower but accelerate faster than the benefit, so that they intercept

for some intermediate level of expression. A suitable function is a polynomial of

degree higher than 2, since the benefit is a homogeneous function of degree 2. For

simplicity we choose C(x, y) = x3 + y3. This function is well suited to describe a

situation where no tradeoff is present, since the cost of performing function X is

independent of the expression of function Y and vice-versa. To deal with this we

can introduce a rapidly growing function that raises the costs of function X with

the expression of Y . A simple example of such a function is

C(x, y) = x3ey
2

+ y3ex
2

. (4.14)

Other functions could have been chosen that reproduce the general qualitative

behavior intended. Now clearly the cost increases significantly when both function

are performed simultaneously, while keeping a much lower cost for the situation

where the functions do not occur concurrently since C(0, y) = y3 and C(x, 0) = x3,

which captures the tradeoff we were trying to encode in the function. The total

reproduction rate of such an organism is therefore given by

R(x, y) = x · y − c
(
x3ey

2

+ y3ex
2
)
. (4.15)

The introduction of a parameter c allows us to control the intensity of the cost/benefit

relation.
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This function can be easily generalized for n-cell aggregates where we consider

that the function benefit is shared by all the cells in the aggregate. This way the per

capita reproduction rate is

R(x,y) = x̄ · ȳ − c

n

n∑
i=1

(
x3
i e
y2
i + y3

i e
x2
i

)
, (4.16)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the average contributions of each cell to

the aggregate. A similar model, for the case of single cells and two cell aggregates

only, has been suggested by [109].

Let us now analyze the reproduction rate of an organism produced by such func-

tion. For one cell, the reproduction rate displays a single peak for an intermediate

expression level of each function, which is expectable since both functions are es-

sential (cf. Fig. 4.4 (a)). For two cells it is more difficult to visualize the resulting

landscape, but we can take advantage of the symmetry of the function to unders-

tand that the optimum fitness should have the form x = (x, y) and y = (y, x) . Thus

we can restrict the search to a two dimentional piece of the parameter space. Doing

this one can find that the optimal expression of the functions occurs when each cell

specializes in a given function, instead of each of them performing both functions

(cf. Fig. 4.4 (b)). This assumption of symmetry has been verified by a numerical
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Figura 4.4: Left panel: reproduction rate for a single cell. Right panel: reproduction rate for a
2 cells aggregate. The cost c is 1/25.

study of the whole parameter space in the case of two cells.

It is possible explore in more detail the effect of the tradeoff introducing a para-

meter a in the exponential of the cost function that allows to control the intensity of

the tradeoff C(x, y; a) = x3eay
2

+ y3eax
2. This way it is possible to tune the strength

of the tradeoff by varying a. Fig. 4.5 shows that when a→ 0 (no tradeoff) the values

of x and y that produce the maximum fitness are equal. As the tradeoff is increased
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we achieve a critical value from which it is advantageous to the organism to start

segregating the functions to different cells, leading to cell specialization. Mathema-

tically, the maximum point corresponding to equal x and y becomes a saddle point

and two new maxima arise in symmetrical positions. After total specialization the

cells are not directly affected by the tradeoff anymore.On the other hand, if specia-

lization is not allowed the reproduction rate keeps falling. This difference provides

a strong push towards specialization, since any cell able to specialize will have a

significant advantage in terms of reproduction rate. This allows the definition of

a region of weak tradeoff, with a � 1, and a region of strong tradeoff, correspon-

ding to a & 1. As we are interested in studying the effect of strong tradeoffs in the

evolution of cell aggregates we will consider a = 1 unless specified otherwise.
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Figura 4.5: Left panel: value of the function expression x and y that maximize the
reproduction rate as a function of the tradeoff parameter a. Right panel: reproduction rate as
a function of the tradeoff parameter a. The red curves correspond to the free situation and
the blue curves to a situation where x and y were made equal, preventing cell specialization.
The vertical dotted line corresponds to the critical value of a for which differentiation starts to
be favored (ac ≈ 0.29). The cost c is 1/25.

The dependence of the optimized reproduction rate on the aggregate size is

shown in Fig. 4.6 for cost parameter c equals 0.04, as an example.

4.2 Generalization to p-functions

As a next step in this study it is possible to generalize the model to deal with an arbi-

trary number of functions, lifting the restriction of two functions. This is important

since it allows a clearer study of the relationship between size and complexity, here

measured through the number of different functions an organism should perform.

The simplest way of extending the benefit to a situation with p-functions is

to consider the product of the expression levels of all the p functions. This way
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parameter c is 0.04.

the benefit of a group of n cells performing p functions would consist of B(n,p) =∏p
µ=1 x̄(µ), where again x̄(µ) = 1

n

∑n
i=1 x(µ),i is the average contribution of each of the

n cells to the aggregate. Here x(µ) represents the expression level of the function

X(µ), like x and y previously represented the functions X and Y . However, this

function is not ideal since it is not obvious how to compare the result to the 2-celled

situation or between any different number of functions. We adopt a modification

of this function that allows for a clearer comparison between different number of

functions. The new benefit is defined to be

B(n,p) =

(
p∏

µ=1

x̄µ

)2/p

. (4.17)

This definition guarantees that the benefit function is still a second order homoge-

neous function regardless the number of functions performed by the organism.

The following step is to find a suitable function to represent the cost. We consi-

der that the tradeoffs occur between pairs of functions and thereby a simple gene-

ralization of the cost is

C(n,p) =
cp
n

n∑
i=1

p∑
µ=1

x3
(µ),i exp

(∑
ν 6=µ

x2
(ν),i

)
. (4.18)

With this function all the different functions performed in the same cell contribute

to the tradeoff. We have kept an index p in the constant c because we shall de-

termine later how the costs of different functions relate in such a way that the

maximum performance remains fixed, independently of the number of functions p.
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This benefit and cost functions produce a reproduction rate that reduces to the

previous case of 2 functions when p is set to 2. The reproduction rate is thus

R(n,p) = B(n,p) − C(n,p) =

(
p∏

µ=1

x̄µ

)2/p

− cp
n

n∑
i=1

p∑
µ=1

x3
(µ),i exp

(∑
ν 6=µ

x2
(ν),i

)
. (4.19)

To allow a comparison between different number of functions we consider that

the maximum fitness Rmax
(mp,p) (when there is total specialization) is equal. For that

purpose, the constant cp should be adjusted. Since we are working in a region of

strong tradeoff, the maximum reproduction rate is achieved for total specialization.

Moreover, the maximum is achieved when the number of cells n is a multiple of the

number of functions p. In this case we have

Ropt
(mp,p) =

[(
mχ

mp

)p]2/p

− cp
mp

(
mpχ3

)
=

(
χ

p

)2

− cpχ3 (4.20)

where n = mp is the number of cells, taken to be an integer multiple of p and χ is

the optimal value for the task expression. Notice that, due to total specialization

of the cells, the exponential factors disappear. The value χ which optimizes this

expression is then

dRopt
(mp,p)

dχ

∣∣∣∣∣
χ=χopt

= 0 ⇒ 2χ

p2
− 3cpχ

2 = 0 ⇒ χ = 0 ∨ χ =
2

3

1

p2 cp
(4.21)

The value of χ = 0 is obviously a minimum of the reproduction rate and so χopt =
2
3

1
p cp

is the only interesting value to consider. Replacing χopt in the expression for

the reproduction rate we are left with

Ropt
(mp,p) =

4

9

1

p6 c2
p

− cp
p6

8

27

1

c3
p

=
4

27

1

p6c2
p

. (4.22)

Now, guaranteeing that this rate remains equal for different p implies that

Ropt
(mp,p) = Rmax

(m′p′,p′) ⇒
4

27

1

p6c2
p

=
4

27

1

p′6c2
p′
⇒ cp =

p′3

p3
cp′ (4.23)
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We choose to take p = 2 as a reference (c2 ≡ c) so we have cp = 8
p3 c2 = 8

p3 c. This

normalized reproduction rate is finally

RNormalized
(n,p) =

(
p∏

µ=1

x̄µ

)2/p

− 8c

p3n

n∑
i=1

p∑
µ=1

x3
(µ),i exp

(∑
ν 6=µ

x2
(ν),i

)
. (4.24)

Now that we have introduced the general expression, let us analyze the fitness

optimum values for different number of cells. When the number of cells is a mul-

tiple of the number of functions it is possible to distribute the workload perfectly

among the cells and the fitness can achieve its maximum value. In this case we can

write n = mp and the reproduction rate corresponds to the previously calculated

optimum one

R∗(mp,p) =
4

27p6c2
p

=
1

432c2
(4.25)

where the asterisk is used to specify that it refers to the optimal value of the re-

production rate for the given number of cells and functions. Notice that the value

becomes independent of the number of cells of functions in accordance with our

previous normalization choice.

4.2.1 General n ≥ p

Now let us turn to the situation where the number of cells is not a multiple of p

anymore, rendering a perfect division of labour impossible. We will restrict for the

moment to the situation where n > p. In such a case, we can write n = mp + k

where m is a non-zero integer and k an integer in the range 0 < k < p. An

exaustive analysis of the structure of the expression of the task showed us that, in

the parameter region of interest, the best configuration has the following structure

(m+ 1) cells → perform activity X(1) at a level x ,

(m+ 1) cells → perform activity X(2) at a level x ,
...

...

(m+ 1) cells → perform activity X(k) at a level x ,

m cells → perform activity X(k+1) at a level y ,

m cells → perform activity X(k+2) at a level y ,
...

...

m cells → perform activity X(p) at a level y ,

(4.26)
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i.e., k functions are performed by m+ 1 cells at expression level x, while p−k func-

tions are performed by m cells at level y. This structure results in a reproduction

rate of

R∗(mp+k,p) =

[(
(m+ 1)x

mp+ k

)k (
my

mp+ k

)(p−k)
]2/p

− 8 c

p3 n

[
k(m+ 1)x3 + (p− k)my3

]
(4.27)

for which remains to find the optimal values of x and y. In the optimum, we have

~∇R(x, y)
∣∣∣
x=χ,y=γ

= 0 ⇒ ~∇B(x, y)
∣∣∣
x=χ,y=γ

− ~∇C(x, y)
∣∣∣
x=χ,y=γ

= 0 (4.28)

So we should compute the gradients of B and C

∂B

∂x
=

2k

p

[
(m+ 1)k(my)p−k

np

]2/p

x2k/p−1 =
2k

p

B

x
, (4.29)

∂B

∂y
=

2(p− k)

p

[
((m+ 1)x)kmp−k

np

]2/p

y2(p−k)/p−1 =
2(p− k)

p

B

y
(4.30)

and

∂C

∂x
=

8c

np3
3k(m+ 1)x2, (4.31)

∂C

∂y
=

8c

np3
3(p− k)my2. (4.32)

Therefore, 
2k
n2p

[
((m+ 1)χ)k (mγ)p−k

]2/p

= 8c
np3 3k(m+ 1)χ3,

2(p−k)
n2p

[
((m+ 1)χ)k (mγ)p−k

]2/p

= 8c
np3 3(p− k)mγ3

(4.33)

where we multiplied both sides of the top equation by χ and both sides of bottom

equation by γ. Simplifying leads to 1
n

[
((m+ 1)χ)k(mγ)p−k

]2/p
= 12c

p2 (m+ 1)χ3,

1
n

[
((m+ 1)χ)k(mγ)p−k

]2/p
= 12c

p2 mγ
3.

(4.34)
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As the left hand side of both equation is equal we can find

12c

p2
(m+ 1)χ3 =

12c

p2
mγ3 ⇒ (m+ 1)χ3 = mγ3 . (4.35)

It is now possible to replace this value of χ in the first equation to obtaining[
(m+ 1)k

(
m

m+ 1

)k/3
γkmp−kγp−k

]2/p

=
12nc

p2
mγ3 (4.36)

(4.37)

which leads to

γ =
mp2

12nc

(
m+ 1

m

) 4k
3p

(4.38)

and, consequently,

χ =
mp2

12nc

(
m+ 1

m

) 4k−p
3p

. (4.39)

Knowing χ and γ one can easily find the values of the benefit and cost that optimize

the growing rate by direct substitution

B(χ, γ) =
1

n2

[
((m+ 1)χ)k (mγ)p−k

]2/p

=
1

n2

[
(m+ 1)kmp−kχk

(
m+ 1

m

) p−k
3

χp−k

]2/p

=
(m+ 1)

2(p+2k)
3p m

4(p−k)
3p

n2
χ2

=
(m+ 1)

2(p+2k)
3p m

4(p−k)
3p

n2

[
mp2

12nc

(
m+ 1

m

) 4k−p
3p

]2

=
p4

144n4c2
(m+ 1)4k/pm4(p−k)/p. (4.40)
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and

C(χ, γ) =
8c

np3

[
k(m+ 1)χ3 + (p− k)mγ3

]
=

8c

np3

[
k(m+ 1)χ3 + (p− k)(m+ 1)χ3

]
=

8c

np3
(m+ 1)χ3

=
8c

np3
(m+ 1)

p6m3

123c3n3

(
m+ 1

m

)(4k−p)/p

=
2 p4

432c2n4
(m+ 1)4k/pm4(p−k)/p =

2

3
B(χ, γ). (4.41)

Therefore the total reproduction rate is

R∗(n=mp+k,p)(χ, γ) = B(χ, γ)− C(χ, γ) =
1

3
B(χ, γ) =

p4(m+ 1)4k/pm4(p−k)/p

432c2n4
(4.42)

At the optimum, the cost is two thirds of the benefit. This apparent coincidence

allows us to guarantee that the structure chosen in (4.26), indeed optimizes the

reproduction rate, with the assumption of a total division of labor. This result is

detailed below.

4.2.2 Relation between the benefit and the cost at the optimum

There is an interesting general result that can be shown at the optimum of the

reproduction rate. The maximum of reproduction rate happens when

~∇R(~x) = 0 ⇒ ~∇B(~x)− ~∇C(~x) = 0 ⇒ ~∇B(~x) = ~∇C(~x). (4.43)

The benefit function considered here is a homogeneous function of degree 2, which

will allow us to take advantage of the Euler’s Homogeneous Function Theorem,

which guarantees that

~x · ~∇f(~x) = nf(~x) (4.44)
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given that f(~x) is a homogeneous function of degree n. This way, we can compute

the inner product of equation (4.43) with ~x, producing

~x · ~∇B(~x) = ~x · ~∇C(~x)

2B(~x) = ~x · ~∇C(~x)

B(~x) =
1

2
~x · ~∇C(~x) (4.45)

This result is analogous to the Virial Theorem in physics! The Virial Theorem for

one particle in an arbitrary differentiable potential states that [121]

〈K〉 = −1

2
〈~r · ~F 〉 =

1

2
〈~r · ~∇V 〉 (4.46)

which is exactly what we find in our system. In this analogy, the benefit function

plays the role of kinetic energy and the cost function the role of a potential energy.

This result stems from the fact that kinetic energy is a homogeneous function of

degree 2.

Now, in the special case of total division of labor the cost function becomes a

homogeneous function of degree 3 since the exponentials disappear. As a conse-

quence, we get ~x · ~∇C(~x) = 3C(~x) and, therefore,

C(~x) =
2

3
B(~x). (4.47)

This is the relation we found previously between cost and benefit, which further

confirms that our ansatz captures the maximum of the function, under the assump-

tion of total division of labor. Although the division of labor is probably not perfect,

it is a quite good approximation in the regime of strong tradeoffs, that we are wor-

king on, as shown in Fig. 4.5 and by the exploration done in the parameter space.

4.2.3 n < p

Finally, it remains to analyze the case when the number of cells is smaller than the

number of functions to be performed. In this situation it is not possible to achieve

a total specialization of the cells since some tasks will be missing and the benefit

function will vanish. We have obtained that, except at very low values of the cost

parameter c, the configuration that leads to optimized conditions corresponds to
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the one in which all cells are generalists thus rendering all activities at the same

level γ. This way the reproduction rate becomes

R∗(n,p) =
[(nγ

n

)p]2/p

− 8c

p3n

(
npγ3e(p−1)γ2

)
= γ2 − 8c

p2
γ3e(p−1)γ2

. (4.48)

Notice that in this case the reproduction rate is independent of the number of cells

in the aggregate. When maximizing this function we face a transcendental equa-

tion, that cannot be solved analytically. Therefore, we rely on a numerical solution

in this case. Fig. 4.7 shows the optimal reproduction rate for several values of p. We
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Figura 4.7: Left panel: Optimal reproduction rate for n < p as a function of the cost
parameter c, shown for 5 values of p. Right panel: Optimal reproduction rate for n < p as a
function of the number of tasks p, shown for three values of c.

can see that the reproduction rate monotonically decreases with p, which is expec-

table since there is no division of labor and as such the tradeoffs become stronger as

we increase the number of tasks. Also expected is the decrease of the reproduction

rate as the cost parameter c is increased.

4.2.4 General n

With these results we can finally put together the reproduction rate as a function

of n for different number of tasks. Fig. 4.8 shows the reproduction rate used in the

simulations as a function of n for different sets of parameters. In the right panel

of Fig. 4.8 we can see that, as the cost is reduced, the reproduction rate for n ≥ p

grows fast (proportionally to c−2), enhancing the difference between specialized

and generalist cells, which grow more slowly.
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Figura 4.8: Left panel: Optimal reproduction rate as a function of the aggregate size n, shown
for three values of p and c = 0.04. Right panel: Optimal reproduction rate as a function of
the aggregate size n, shown for three values of c for p = 10.

4.3 Simulation results

Now that we have explored in detail the properties the reproduction rate we can

proceed to the simulation of the model, including all four processes. Let us start

with the two-functions model and later on move to the generalization to arbitrary

p.

The simulation is initiated with a population of 10 000 single cells. This con-

dition does not correspond to the equilibrium of the system. As such, the system

evolves until an equilibrium is reached. Fig. 4.9 shows the evolutionary trajectory

of average and maximum group sizes during the initial 106 iterates. One can see

that, for the set of parameters depicted in the graph, equilibrium is reached after a

transient period of approximately 105 iterates. The group sizes rapidly evolve from

the initial size of 1 to relatively large groups, as cells group together, reproduce and

die.

Once equilibrium is reached the population is characterized by a stationary dis-

tribution of group sizes. Fig. 4.10 displays the probability distribution of finding

a group of a certain size at any moment after the equilibrium has been reached.

Notice that the scale is logarithmic so the figures show a wide range of probabilities

and aggregate sizes. The behavior of both models shares several common features.

The increase in stickiness σ leads to the formation of larger aggregates, as expected.

For large stickiness, the probability distribution of group sizes is nearly flat over a

broad range of size and then abruptly drops when the group size passes a certain

threshold. This cutoff size increases with the stickiness. From the bottom graphs of

Fig. 4.10 we can tell that this drop is exponential and that the onset of the exponen-

tial decay in probability happens sooner in the linear model than in the spherical
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Figura 4.9: Evolutionary trajectories for mean group size (left panel) and largest group size
(right panel) for the p = 2 model. The red lines represent the results for the linear model
whereas the blue lines refer to the spherical model. The parameter values are k+ = 0.01,
k− = 0.01, kR = 0.01, kD = 10−5, σ = 0.5 and c = 0.04. The results correspond to an
average over 100 independent runs. Figure adapted from [122].

one. The dashed line in the top graphs represents the expected result for a model of

pure aggregation with input. A simple model with aggregation and input only has

been solved analytically, yielding a distribution proportional to n−3/2 [115]. Our

result is clearly distinct from the result of aggregation with input. Therefore it is

clear that the remaining mechanisms play an essential role. Whereas the simple

aggregation with input yields a power-law tail, our model produces an exponential

one. This is important since some properties of power-laws, such as average size,

are not well-defined. This does not allow us to define any characteristic sizes of the

aggregates created. On the contrary, our model displays an exponential tail, which

allow us to probe average aggregate sizes and average maximum aggregate sizes.

All these together evince that the increase observed in group size is not solely

determined by the process of aggregation. Indeed, even the process of input, appe-

arance of new cells, is ruled by the dynamics of the system itself. In this context,

there is an interesting feedback between natural selection and growth dynamics of

aggregates, as their size strongly influences the reproductive rate of cells.

For the sake of completeness, in Fig. 4.11 we present the distribution of average

and maximum size at the equilibrium. The average sizes at equilibrium approxi-

mately follow a gaussian distribution, symmetric around the mean value, while the

maximum size display a lognormal behavior, with a longer tail to large sizes.

In order to study the role of division of labor itself we now compare the original

model with a modified version in which cells do not specialize. In this modified
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Figura 4.10: Probability distribution of group sizes for the linear (left) and spherical (right)
models. The top figures are presented in logarithmic scale in both probability and size axes,
while only the probability axis is in logarithmic scale for the bottom figures. The values for
stickiness are from left to right 0.01, 0.05, 0.1, 0.5, 0.9. The remaining parameter values are
k+ = 0.01, k− = 0.01, kR = 0.01, kD = 10−5, and c = 0.04. The results correspond to an
average over 100 independent runs. The straight dashed line serves as an eye-guide describing
a power-law with exponent −3/2, which is expected to describe the tail of the distribution in a
system with only the mechanism of aggregation with input. Figure adapted from [122].
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c = 0.04. The results correspond to an average over 100 independent runs.
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model all cells are regarded as generalists, thus performing both tasks at a constant

rate. More explicitly, we consider the following configuration

x1 = y1 = · · · = xn = yn = λ ⇒ Rn(x,y) = λ2 − 2c λ3eλ
2

. (4.49)

We take the value of λ that maximize the reproduction rate in this generalist

configuration. Since this equation is a transcendental equation we rely on a nume-

rical solution. As one can conclude from equation 4.49, in this generalist form the

reproduction rate becomes independent of the number of cells since they cannot

benefit anymore from the division of labor. The results obtained are summarized

in Fig. 4.12. In the plot we make k+ = k− = k. We can see that the division

of labor leads to a different group structure, which is more obvious in the middle

graphs that show the ratio between the probability values for a given group size.

Division of labor always leads to greater group sizes, specially for low values of k.

As we increase k, the effect of reproduction becomes more diluted by the processes

of aggregation and dissociation and the relevance of division of labor is reduced.

Bottom panels in Fig. 4.49 display a zoom of the middle panels for low group size.

It is interesting to notice that the ratio between probability values with and without

division of labor presents an up-and-down pattern with period two. This behavior

is not due to noise. Instead, it reflects the fact that the reproduction rate for the

specialized cells model oscillates (check Fig. 4.6 for details) while the generalist’s

reproduction rate is constant.

Fig. 4.13 reveals the dependence of the average and largest group sizes on the

stickiness σ and the cost parameter c. We clearly see that a higher cost of perfor-

ming the task yields smaller sized groups. Intuitively, higher stickiness favors larger

groups. For low values of stickiness, the cost parameter c, plays a minor role and

the average group size becomes roughly constant. This is expected to be exact for

σ = 0 since in this limit all groups should be composed of a single cell. Although

the average group sizes are not quite distinct in the two models, in the linear model

the largest groups can be comprised of a relatively higher number of cells, like one

hundred or more cells, as achieved for low cost c and high stickiness σ. One impor-

tant remark is that for low cost c, the formation of groups of a given size requires a

minimal level of stickiness σ that is larger for the spherical model.

The dependence of both average and largest group size on the dissociation pa-

rameter k− and on the aggregation parameter k+ are displayed in Fig. 4.14. In

the linear model (left panel), the variables k+ and k− have opposing effect on each

quantity. While group size grows as the aggregation rate k+ increases, it shrinks
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Figura 4.12: Top panels: Probability distribution of group sizes for the linear (left) and
spherical (right) models. The full lines correspond to results of the original model (specialist
cells), whereas the dashed-lines correspond to the case in which all cells perform both tasks at
the same level (generalist cells). Middle and bottom panels: Ratio between the probabilities of
the generalist cells and specialist cells for the linear (left) and spherical (right) models. The
values for k+ and k− are from left to right k+ = k− = 0, 10−4, 10−3 and 10−2. The
remaining parameter values are σ = 0.9, kR = 0.01, kD = 10−5, and c = 0.04. The results
correspond to an average over 250 independent runs.
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Figura 4.13: Average group size (upper panels) and maximum group size (lower panels) for
the linear (left) and spherical (right) models as a function of σ and c. The remaining
parameter values are k+ = 0.01, k− = 0.01, kR = 0.01 and kD = 10−5. Each point
corresponds to an average over 5× 106 iterates sampled every 1000 iterates after reaching
equilibrium for 16 independent runs. Figure adapted from [122].

with the increase of the dissociation rate k−. For fixed k+, the increase of k− always

results in smaller groups, as we easily notice from the isoclines. For small values of

k+ a change in the rate of dissociation k− has a minor effect since the group size is

anyway quite small. On the other hand, the spherical model exhibits a more coun-

terintuitive behavior. While for small values of the aggregation rate k+, the increase

in the dissociation rate leads to the formation of smaller groups, for intermediate

and large values of k+ the average group size peaks at intermediate values of k−.

This feature is highlighted when analyzing the maximum group size for the sphe-

rical model, which clearly reveals that the increase of k− at large k+ can produce

larger groups. This effect is probably due to the fact that increasing k− leads to a

higher number of free cells that are available to be incorporated in the growth of

other groups.

It remains to analyze the behavior of the number of groups. This study is pre-

sented in Figs. 4.15 and 4.16. Let us first focus on the dependence of the number

of groups with stickiness σ and cost parameter c, presented in Fig. 4.15. In gene-

ral, one can observe that larger stickiness at fixed cost leads to smaller number of

groups. On the other hand, an increased cost c implies a smaller population of ag-
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Figura 4.14: Average group size (upper panels) and maximum group size (lower panels) for
the linear (left) and spherical (right) models as a function of k+ and k−. The remaining
parameter values are kR = 0.01, kD = 10−5, σ = 0.5 and c = 0.04. Each point corresponds to
an average over 5× 106 iterates sampled every 1000 iterates after reaching equilibrium for 16
independent runs. Figure adapted from [122].
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of σ and c. The remaining parameter values are k+ = 0.01, k− = 0.01, kR = 0.01 and
kD = 10−5. Each point corresponds to an average over 5× 106 iterates sampled every 1000
iterates after reaching equilibrium for 16 independent runs. Figure adapted from [122].

gregates at stationarity. A smaller number of groups with increased tradeoff costs is

in agreement with previous studies [96, 107]. Except for small cost c, the number

of aggregates peaks at small stickiness σ. The reader is referred to Fig. 4.16, for

information regarding the dependence of the number of groups on the dissociation

k− and aggregation k+ rates. Linear groups present a relatively straightforward re-

lationship, with the number of groups rising with k− and decreasing with k+. Once

again, the spherical model displays a subtler scenario in comparison to the linear

model. At intermediate and large k+ the number of aggregates attains its minimum

for intermediate values of k−. This is complementary to the outcome presented in

Fig. 4.14, as this region reflects the emergence of larger groups. For both models,

the highest number of groups is found for smaller values of k+. It is worth to stress

that in the graph σ is set to 0.5, leading to a probability of cells staying together

after reproduction of only 0.25. This way, under this conditions, aggregation is

an important mechanism to drive the increase of group size. Therefore, when we

make the aggregation rate k+ very small, the groups will become smaller, leading

to a fragmentation of the population into numerous small groups.

4.3.1 Arbitrary tradeoffs

Having analyzed the case of two tradeoffs we turn our attention to a more general

case, consisting of an arbitrary number of tasks. This situation is quite interesting

since it provides us with a tool to probe the effect of complexity, measured through

the number tasks to perform, on the size of the cellular aggregates. This model

opens a new powerful way for studying the size-complexity rule.
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Figura 4.16: Number of groups for the linear (left) and spherical (right) models as a function
of k+ and k−. The remaining parameter values are kR = 0.01 and kD = 10−5, σ = 0.5 and
c = 0.04. Each point corresponds to an average over 5× 106 iterates sampled every 1000
iterates after reaching equilibrium for 16 independent runs. Figure adapted from [122].

Additionally, here we will also study two distinct life cycles and their roles on the

evolutionary dynamics: the aggregative development and the clonal development.

The aggregative life cycle contains all 4 kinds of processes we introduced. On the

other hand, the clonal development can be approached by making the aggregation

and dissociation rates equal zero, k+ = k− = 0, and restrict the study to high values

of stickiness σ.

4.3.2 Aggregative development

Aggregative development is a mode of development where cells from different sour-

ces group together. This mode of development is also known as “coming together”

in the literature [123]. In this stage we consider nonzero rates of aggregation and

dissociation, k+ and k−. These processes play an important role in the aggregative

mode of development but they are not exclusive, as reproduction and death play

equally an important role in the dynamics. The outcomes of this model clearly

differ from simple models of aggregation and dissociation [115, 122]. Indeed the

processes of “staying together” are highly relevant at high stickiness and the simul-

taneous occurrence of the processes of “coming together” and “staying together” is

allowed [123,124].

As previously stated, we are interested in studying the size-complexity rule in

the context of the model. Therefore we should study the impact of the comple-

xity of the aggregates on their typical sizes. This is displayed in Fig. 4.17. Here,

the average and maximum size of the aggregates are shown as a function of the

number of tasks performed by the cells, p, and the stickiness parameter σ. As one

can see, in both models the group sizes increase with the stickiness. This result is
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expected since a higher stickiness implies a higher probability that the cells stay or

come together, upon reproduction and aggregation. Note that the color gradation

is presented in logarithmic scale as the evolved group sizes can vary significantly

depending on the parameter values. The behavior of the group sizes with the num-

ber of tasks is more subtle. Remarkably, the size of the aggregates decreases with

the number of tasks for the linear model case and increases for the spherical one.

This outcome is observed both for average and maximum sizes. This means that,

in the present model, only the spherical aggregates follow the size complexity rule

and suggests that this rule is not universal but may present exceptions depending

on factors like the life cycle and the aggregate geometry. Fig. 4.18 shows this phe-

nomenon in greater detail, by focusing on the variation with the number of tasks.

The effect of varying the number of tasks p is more pronounced for higher values

of stickiness σ, especially in the case of spherical structures.
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Figura 4.17: Average group size (upper panels) and maximum group size (lower panels) for
the linear (left panels) and spherical models (right panels) in terms of the number of tasks p
and stickiness σ. The remaining parameter values are k+ = 0.01, k− = 0.01, kR = 0.01,
kD = 10−5 and c = 0.04. Each point corresponds to an average over 5× 106 iterates sampled
every 1000 iterates after reaching equilibrium for 8 independent runs. Figure adapted
from [125].

It is important to ensure that this result is not only an artifact of the value

of the cost parameter chosen. As such, we now explore the dependence of the
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Figura 4.19: Maximum group size for the linear (left) and spherical (right) models in terms of
the number of tasks p and cost parameter c. The remaining parameter values are k+ = 0,
k− = 0, kR = 0.01, kD = 10−5, σ = 0.5 (upper panels) and σ = 0.9 (lower panels). Each
point corresponds to an average over 5× 106 iterates sampled every 1000 iterates after
reaching equilibrium for 8 independent runs. Figure adapted from [125].

number of groups on the cost parameter. Fig. 4.19 depicts the dependence of the

maximum aggregate sizes with the cost parameter c and the number of tasks p,

for two distinct values of stickiness σ. In general, one can notice that a higher

cost c leads to smaller groups at equilibrium. The behavior is qualitatively the

same regardless the value of σ, though a higher stickiness leads to larger groups,

in agreement with previous outcomes in Fig. 4.17. These results corroborate our

previous findings. Once again we see that the linear and spherical models display

opposite behaviors as we vary the number of tasks p while keeping c constant, with

the linear presenting a negative correlation between size and complexity p, and the

spherical model showing a positive correlation.

4.3.3 Clonal development

Clonal development is arguably the most common mode of development adopted

by multicellular life [126]. This regime is characterized by groups that are clones

of one cell and do not receive members from other groups, staying together upon
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reproduction. As such, this mode of development can be modelled by suppressing

the aggregation and dissociation mechanisms and restricting our analysis to high

values of stickiness σ. In our analysis we will consider k+ = k− = 0 and set σ

at 0.9, unless specified otherwise. Eliminating aggregation and focusing on deve-

lopment via staying together introduces some crucial advantages in relation to a

“coming together” scheme. As all cells share a recent ancestor the genetic variation

among cells of the organism is greatly reduced, eliminating much of the potential

for evolutionary conflict [43,127].

As Grosberg and Strathmann argue in [127] this is especially true in the case

where a unicellular stage is included, since any genetic variation arising within the

organism is redistributed among the offspring [127]. The distribution of genetic

variation among the offspring provided by the unicellular stage brings two main

types of benefits. First, it decreases the genetic competition between cells within

the aggregate. Second, it provides a mechanism where the daughter groups can

compete and eliminate deleterious mutations, that could otherwise accumulate if

the group were to split without a unicellular stage. The benefits provided by these

mechanisms seem to supersede the negative effects arising from the unicellular

stage, e.g., an increased vulnerability to predation.

As in the clonal development mode we are constrained to a high stickiness re-

gime, Fig. 4.20 displays the maximum aggregate sizes obtained under this regime

in terms of the remaining free parameters, the cost parameter c and the number

of tasks p. The figure exhibits not only the results for the linear and spherical

models, but also for the snowflake-like structures. Snowflake structures present a

much more chalenging computational problem since they require information of

the whole structure to be stored and processed for each group independently. As

such, they were only included in the context of clonal development. Some novel

aspects surface in the analysis of the clonal development which were not included

in the aggregative regime. The linear model, that previously presented negative

correlation between the number of tasks p and the size, now includes a positive

correlation for small p, followed by a negative correlation for large p, in the case of

small values of the cost parameter c. For larger values of c, the previous behavior

is recovered and only a negative correlation is found. Snowflake structures display

a behavior qualitatively equivalent to the linear case, altough significantly larger

structures are achieved. In its turn, the spherical model results repeat the pattern

observed for the aggregative model. Over the full parameter range the aggregate

sizes increase with the number of tasks p to be performed. In the limit of very low c
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the group sizes grow significantly, e.g. larger than 7, 000 cells, rendering it difficult

to explore this domain in detail. For this reason, the plot is constrained to values of

c ≥ 0.015.

Fig. 4.21 exhibits the way in which the morphology of snowflake-like structures

affects the dynamics. The plot shows results for different values of maximum co-

ordination number z, which develops a very important role. In an aggregate with

maximum coordination number z, each cell can have up to z neighbors. This means

that in a process of cell death, the number of new groups ranges from 1 to z. The

sizes of these aggregates cannot be determined a priori since they depend on the

location of the cell in the original aggregate. In the plot the cost c is set at c = 0.03.

The case z = 2 corresponds to the linear model and shown in Fig. 4.20. When the
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maximum coordination z is increased, the peak of the maximum group size is shif-

ted towards higher p, producing a larger region of p with a positive size-complexity

correlation. Nevertheless, the position of the peak saturates around p ≈ 10 and no

appreciable difference is observed as z changes from 5 to 10. Besides producing

a larger region where the size grows with p, a larger coordination number z also

produces larger numbers, as hinted from Fig. 4.20.

4.4 Discussion and Conclusions

The model here proposed emerges from basic principles such as aggregation, disso-

ciation, cell death and reproduction. As the groups can have an arbitrary number

of cells, we need to further specify the group structure. The model can be used

in conjunction with diverse group geometries. We explore linear chains, spherical

aggregates and, in a later stage, include also snowflake-like structures. The repro-

duction rates are determined by a general fitness landscape that we assume to be

maximized by the group at each moment. This fitness landscape results from trade-

offs between the different essential tasks that the organism should execute. A cell

that simultaneously carries out several tasks incurs in a high fitness cost. The group

formation can attenuate these costs by segregation of tasks, avoiding the main tra-

deoff costs while sharing the benefits from the tasks performed by the remaining

cells in the group. The model relies on the assumption that changes in aggregate

size allow the resulting aggregate to find new arrangements and explore new ma-

xima of the fitness landscape, with direct implications on the cells’ reproduction

rates and opening room for the appearance of a division of labor.

Most approaches to the evolution of multicellularity pose the discussion either

as a kin selection or a multilevel selection problem, in which the emergence of

a higher level of biological organization is explained through the integration of

cooperating individuals [88]. These higher level entities are favored by the fitness

transfer from the lower level units to the higher level unit. In the mechanistic

approach here proposed we model the mechanisms underlying the group formation

directly, which allows us to probe their direct effect on the dynamics. This comes

at the cost of losing the possibility of explicitly evaluating the fitness transfer from

the lower level units to the higher level unit. Nevertheless, the resulting effect of

larger group’s fitness as agreggate size grows resembles the outcome of multilevel

selection problems.
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An alternative and elegant approach has been developed by Rueffler et al. [128].

In their approach, a performance is ascribed to each task, then the fitness is writ-

ten as a monotonic increasing function of those performances. The tradeoffs are

embodied in the performance functions. Following those assumptions, the authors

explicitly find proper conditions that must be fulfilled by the system in order for

specialization to evolve. Here the fitness does not only depend on the performance

but also on the costs that arise from this performance, embedding the tradeoff in

the definition of the fitness itself. Therefore, in our case, it is not possible to de-

couple and write the per capita reproductive rate of newly defined performance

functions.

In a first step, we investigated the formation of groups required to perform two

essential but poorly compatible tasks. The problem is addressed by means of ex-

tensive computer simulations that explore the relevant parameter space. All the

processes can be depicted in the form of kinetic chemical reactions which allows

us to define their corresponding reaction rates. This approach opens way to apply

dynamic Monte-Carlo techniques to simulate the system dynamics, in our case the

usage of a standard Gillespie algorithm [129]. Starting from a population compri-

sed of single-celled organisms we observe the continuous formation of intermediate

and large groups of cells, establishing a stable coexistence of aggregates of varying

sizes. In spite of the underlying difference between group shapes, their qualitative

behavior is not quite distinct with respect to the size of the largest groups produced

and the size distribution at stationarity.

We observe that in both models a higher cost result in smaller groups and,

as expected, the increase of stickiness favors the formation of larger aggregates.

Although the cells are assumed to execute only two tasks, we still observe the for-

mation of aggregates with more than two cells, implying an evolutionary advantage

of larger groups. The higher robustness of larger groups, which experience smaller

fitness changes upon variations of group size, probably contributes to this result.

A remarkable difference between the linear and spherical models is found when

we analyze how group sizes evolve in terms of the aggregation and dissociation

rates. For the linear model, the relation between group size and the rates of ag-

gregation k+ and dissociation k− is straightforward: while the increase of k+ favors

increased group sizes, the augment of k− favors smaller groups. Still, for the sphe-

rical model, the dependence of groups sizes on both k+ and k− is more subtle. At

intermediate and large values of the aggregation rate, k+, increased values of k−
can select for larger groups. In a recent paper, Ratcliff et al. found that, after some
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time of evolution, snowflakes structures developed division of labor with some cells

undertaking programmed cell death (apoptosis) [50]. It is claimed that program-

med cell death is evolutionary advantageous since it allows the snowflakes yeast

to increase its fecundity. Indeed, they demonstrated that larger average group size

and larger rates of apoptosis have coevolved [50]. In our model, dissociation plays

the same role as cell death from the perspective of the group. Therefore, the sphe-

rical model, which allows smoother transitions in terms of variation in group size,

seems to capture this feature of the empirical observation of the snowflakes yeast

experiment [50].

We compare the situation where division of work is allowed with a situation

where all the cells in the aggregate remain generalists to ascertain that our results

depend on specialization mechanisms. We find that the division of work has always

a measurable imprint on the system, being the most relevant in the limit of clonal

lifecyle.

Our simulations show that group size evolves until it levels off and the mecha-

nisms that favor group growth like aggregation and reproduction are balanced by

the mechanisms supporting disruption. Particularly, it is worth mentioning that as

time evolves in the linear chain model the average group size first passes through

a peak and then drops to the stationary value. As aforementioned, aggregate si-

zes can grow further than two cells as an outcome of fitness reshaping which, in

its turn, allows the whole organism to explore and find higher levels of fitness, i.e.,

new arrangements are found in which the process of division of labor can turn even

more effective. One may also conjecture that the maximum sizes reached in this

dynamics reflect an upper bound for aggregate sizes, and a further growth in the

number of cells comprising the organisms requires additional elements, such as the

execution of new tasks beneficial to the group, or other strategies that enable the

transfer of fitness from the individual level to the group level. In brief, from this

point on, more division of labor will be required.

After analysing the two tasks model we focused our attention to a more gene-

ral approach which permits higher levels of division of labor. Another essential

characteristic of this new iteration of the model is that it now allows us to tune

the complexity of the system by adjusting the number of functions that should be

performed by the aggregates.

Our findings reveal that the shape and topology of the aggregates play a major

role in the evolutionary dynamics of group formation. The mode of body formation

can also lead to quite distinct outcomes. Compact structures, like the ones genera-
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ted by the spherical model, seem to more strictly follow the size-complexity rule,

which conjectures that aggregate sizes positively correlate with the number of speci-

alized functions performed by the multicellular organism. Surprisingly, we observe

that the linear structure clearly violates this conjecture, especially for the aggrega-

tive mode of formation, where a negative correlation between size and number of

tasks is found in all the domain of the parameter space. For the clonal mode of

development, the scenario is more subtle and one observes a positive correlation

between size and number of tasks at small values of the cost parameter c, and a

less trivial dependence at intermediate values of c. For very large c, the decrease of

aggregate size with number of tasks is recovered.

These outcomes evince how the biological mechanisms interact with the geo-

metric constraints. Particularly, whereas in compact structures the mechanisms of

group division (cell death and dissociation) lead to the removal of a single cell in

the original aggregate, in linear structures those mechanisms can result in aggre-

gates of largely reduced sizes, thus leading to big variation in the mean fitness.

The interplay between cell death (apoptosis) and geometry constraints has been

observed in experiments with yeast populations under gravity selection [50, 130],

where yeast lineages evolved snowflake-like structures. In spite of a poor perfor-

mance with respect to gravity selection, selection for a higher rate of apoptosis was

ascertained.

The snowflake-like structures, as observed in the experiment mentioned above,

are also addressed here. This allows us to better explore the role of structure and

topology. However, its study is restricted to the clonal mode of development mainly

due to modeling limitations. Snowflake-like structures reveal a dual character and

interpolate between the linear model and the spherical model. At small and even

intermediate levels of cost c, a positive correlation between aggregate size and the

number of tasks p is seen, and from intermediate to large costs there is a bell-

shaped dependence of aggregate size on p. Although the augment of the maximum

coordination number z can make the structure tighter, its effect saturates and the

limit of large z does not replicate the outcomes of sphere-like structures. The main

reason is that in a link of snowflake-like structure with coordination number zn,

cell death gives rise to zn − 1 new aggregates of variable sizes which depend on

how those branches developed, a behaviour quite different to the one witnessed

in spherical structures. However, it is important to highlight that if the number

of tasks a cell can develop is limited, then for a wide range of parameter values

the dependence of aggregate size on the number of tasks complies with the size-
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complexity rule, as can be seen in Fig. 5. According to the results presented by

Bell and Bonner in Refs. [117, 118], the set of organisms embraced by this limit

is substantial. In their studies, organisms belonging to different phyla were put

together in order to analyze the relationship between size and complexity.

As future perspectives, we believe that the current approach can open new lines

in the debate about the evolution of complexity and can be extended to become

more realistic. For instance, we have not explicitly addressed the emergence of

germ-soma differentiation, focusing instead on tradeoffs between generic tasks in

the organism. This is a relevant question since the separation between somatic and

germ cell lines is considered to be one of the earlier differentiations in the evolution

of many multicellular lineages [131]. Gavrilets [96] and Solari et al. [132] provide

interesting theoretical approaches to the evolution of this type of differentiation.

Both studies are inspired in the biology of volvocine green algae, which features

compact structures and a positive correlation between the colony size and diffe-

rentiation level [133]. This is in consistent with our own findings since compact

structures follow the size-complexity rule. In Gavrilets model, colony size plays

a minor role on the dynamics, limiting its direct application to the context of the

size-complexity rule. On the other hand, the work of Solari et al. [132] allows

us to assess the effect of aggregate size on differentiation. They assume that the

compact spherical geometry of the aggregates introduces growing costs with size

owing to nutrient influx limitations. These growing costs should then be overcome

either through the appearance of specialized cells or adoption of different geome-

tries, not entailing increased costs with size. Nevertheless, they do not explicitly

model the effect of geometry in group reproduction, that in our approach naturally

appears through group division mechanisms. Since here the topology of the system

plays an important role in the evolution of multicellular aggregates, it is also of

interest to explore in the near future the role of geometry in systems that expli-

citly takes into account the viability-fecundity tradeoff. Other aspects can also be

taken into account, such as size dependent death rates that appear, for instance,

due to preferential predation of smaller organisms. This is though to be a relevant

drive for the emergence of undifferentiated multicellular groups in the first place.

A size dependent death rate is included also in the experimental work by Ratcliff

and collaborators [50,51], where gravity is used to select for larger groups.

In short, the framework here developed enabled us to explore the relationship

between organism size and the number of potential tasks that can be performed by

a cell. Our findings suggest that the size-complexity rule, as proposed by Bell and
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Bonner [117, 118] may not always be valid. A more delicate relationship between

size and complexity arises, that can be affected by aspects such as the topology

of the groups and the developmental mode. Although under certain conditions a

positive correlation between size and complexity appears, we cannot expect this

relation to hold independently of the details of the system under analysis. Particu-

larly, it has been observed that more compact structures, like spherical structures,

are more prone to follow the claim of the size-complexity rule. On the other hand,

less robust structures such as linear chains, which are more vulnerable to dras-

tic changes due to division mechanisms, can, in a broad domain of the parameter

space, violate the size-complexity rule.

The main results presented in this chapter have been published in two articles:

• Ref. [125]: A theoretical approach to the size-complexity rule, André Amado,

Carlos Batista, Paulo R. A. Campos, Evolution (2017)

DOI: 10.1111/evo.13392

• Ref. [122]: A mechanistic model for the evolution of multicellularity, André

Amado, Carlos Batista, Paulo R. A. Campos, Physica A (2018)

DOI: 10.1016/j.physa.2017.11.080

The code used to perform the numerical simulations is available online in Dryad

repository at

• Ref. [134]: Data from: A theoretical approach to the size-complexity rule.

André Amado, Carlos Batista, Paulo R. A. Campos, Dryad Digital Repository

(2017)

DOI: 10.5061/dryad.j26k3
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5 CONCLUSION

In this work, we have proposed and analyzed three models that address the esta-

blishment of multicellularity and the development of biological complexity. This is

an extremely interesting area of work, recently revived by a number of experiments

ranging from the massive genetic mapping of species to the experimental evolution

of multicellularity in laboratorial conditions.

As a first step, we have studied a model that focus on the competition between

strains with different metabolic properties in the context of structured and well-

mixed populations. We explore the fact that there is a tradeoff between the rate of

resource acquisition and the yield of resource processing. The model is a multilevel

model, adequate to the analysis of the transition between the transition from a

unicellular life style to a multicellular one. The results suggest that an association

between the appearance of multicellularity and a more efficient metabolism since

the more efficient strain is favored over a much wider range of parameters in the

case of structured populations comparing with the well-mixed scenario. This is

consistent with the theories about the development of multicellularity that place

the origin of multicellularity at roughly the same time that the oxygen levels rose

in the planet and allowed the generalization of the much more efficient aerobic

respiration method of metabolism. There is a large parameter region where the

social conflict is present and the inneficient strain dominated inside the group, but

a pure group of efficient cells outcompetes a group of inefficient ones, opening a

window for the fixation of the efficient strain in the population.

In the sequence, we investigated a model for a simple multicellular system sub-

ject to tradeoffs. The organism is subject to mutation and two levels of selection,

specifically fertility and viability selection. For the purpose of this work, fertility has

been kept constant, but a generalized situation where it is also subject to mutation

is worth studying, since fertility rate is one essential life history trait. The model

considers essential tasks that are performed by the organism. Viability is defined
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by the performance of the organism in different tasks. The execution of these tasks

is controlled at the levels of structural and regulatory genes. Structural genes are

responsible by defining the output of the function directly, while regulatory genes

control the level of expression of the function. By suppressing some functions in

specific cell types, the organism can isolate incompatible tasks to different cells

effectively curbing the effect of the tradeoff. We studied the cell differentiation

process in terms of different abstract scenarios for the tradeoffs between tasks.

As a concrete illustration, we applied the model to a system of cyanobacteria.

Cyanobacteria need both a carbon and a nitrogen source to survive. Yet, the carbon

and nitrogen fixation processes present a strong tradeoff since the fixation of oxy-

gen produces molecular oxygen O2 which damages the enzyme system responsible

by the fixation of nitrogen. The model reproduced the behavior observe in nature,

where cells with low access to an external source of biologically usable nitrogen

developed cell differentiation between generalist cells and cells specialized in ni-

trogen fixation (called heterocysts). In contrast, in a scenario of abundant nitrogen

supply no specialization took place.

The last chapter is devoted to relationship between size and complexity. This

relationship has been the subject of intense study. Formally introduced in the Bio-

logical context by Bell and Mooers [117], the size-complexity rule claims that there

is a direct relation between the size of an organism and its complexity. For this pur-

pose, the complexity of an organism is measured in terms the number of different

cell types that it displays. We propose and study a mechanistic model for the dy-

namics of multicellular aggregates and finally apply it to this problem. The model

incorporates the mechanisms of cell reproduction, cell death, aggregation and dis-

sociation. We consider three possible aggregate geometries: a compact sphere-like

geometry, a linear geometry and a snowflake-like geometry. The reproduction rate

depends on a number of somatic tasks that display tradeoffs, and are considered

to take their optimal value given the conditions. We conclude that compact aggre-

gates follow the size-complexity rule, whereas more fragile aggregates, like linear

or snowflake-like structures, display a more complex behavior. When the organism

has a number of tasks to perform there is direct relationship between size and com-

plexity. However, for a large number of tasks, this relationship inverts and a higher

number of tasks leads to smaller-sized organisms.

The works here discussed have the potential to be generalized in a number of

interesting ways, as described in their sectorial conclusions.
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APPENDIX A – LINEAR STABILITY OF
EQUILIBRIUM SOLUTIONS

Many time dependent equations allow for equilibrium solutions, where the solution

becomes independent of time. These solutions are important since frequently they

represent the state of the system in the long time limit. Often the system starts

out of the equilibrium and evolves to an equilibrium after an initial transient pe-

riod when the solution depends on time. When an equilibrium solution is found

it should be determine whether this solution is stable or not, i.e., if a small per-

turbation is applied to the system does it remain in the same state or moves out?

The simplest method to determine this is the linear stability analysis. This analysis

determines if an infinitesimal perturbation to the solution will grow or be damped.

The linear stability analysis of equilibrium solutions works differently on con-

tinuous time and discrete time equations. We will start by describing the linear

stability of solutions of continuous time differential equations. Given a set of n

differential equations in the form

dy1

dt
= f1(t, y1, ..., yn)

...

dyn
dt

= fn(t, y1, ..., yn), (A.1)

the equilibrium solution ŷ ≡ (ŷ1, . . . , ŷn) is such that dyi
dt

∣∣∣
y=ŷ

= 0 or, equivalently,

fi(t, ŷ1, ..., ŷn) = 0, for i = 1, ..., n. Notice that this description is valid even for

systems which are more than first order in time since one could break a higher
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derivative equation in several first order equations. For instance, the system given

by

d2y

dt2
= f(t, y, y′), (A.2)

can be rewritten as

dy
dt

= Y

dY
dt

= f(t, y, Y ). (A.3)

Let us now consider a small perturbation around the equilibrium such that yi =

ŷi + εi. We want to know if such small perturbation εi will grow or decay in time.

If it decreases the system is stable under small perturbations, otherwise the system

is deemed unstable. As εi are small perturbations, we can write a first order Taylor

expansion of fi around the equilibrium

fi(t, ŷ1 + ε1, ..., ŷn + εn) ≈ fi(t, ŷ1, ..., ŷn) +
n∑
j=1

dfi
dyj

∣∣∣∣
y=ŷ

εj =
n∑
j=1

dfi
dyj

∣∣∣∣
y=ŷ

εj (A.4)

where the last equality comes from the fact that fi(t, ŷ1, ..., ŷn) = 0 at the equili-

brium. In vector notation this can be rewritten as fi(t, ŷ1+ε1, ..., ŷn+εn) ≈ ~∇fi
∣∣∣
y=ŷ
·~ε.

Putting all the n equation together the system takes the form

d
dt


ε1
...

εn

 =


df1

dy1
· · · df1

dyn
... . . . ...

dfn
dy1

· · · dfn
dyn


∣∣∣∣∣∣∣∣
y=ŷ


ε1
...

εn

 ⇔ d~ε
dt

= J · ~ε , (A.5)

where J is the Jacobian matrix of the system evaluated at the equilibrium. With the

help of a unitary transformation we can diagonalize the Jacobian matrix. Suppose

V a unitary matrix such that V†JV = J ′, where J ′ is the diagonalized Jacobian

matrix. Let us define V†~ε ≡ ~ξ. This way ξi is the projection of ~ε in the i-th eigen-

vector of J . Multiplying by V† and introducing I = V†V we can diagonalize the

system, obtaining

d~ε
dt

= J · ~ε ⇒ V†d~ε
dt

= V†JV†V · ~ε ⇒ d~ξ
dt

= J ′ · ~ξ (A.6)
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This equation has the simple solution

~ξ(t) = exp (J ′t) · ~ξ(0). (A.7)

J ′ is a diagonal matrix, with the eigenvalues λi as elements. Therefore,

exp (J ′t) =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

... . . . ...

0 0 · · · eλnt

 . (A.8)

So the projection of the perturbation in the direction of each eigenvector will grow

independently of the other projections. We should make sure that no component

of any arbitrary perturbation will grow. This can be done by requiring that all real

parts of λi are smaller than 0, yielding the condition

∀i Re(λi) < 0 . (A.9)

This way, any small perturbation will decrease exponentially in time and the system

will return to its original state. If the imaginary part of eigenvalue is nonzero the

system will oscillate while returning to the equilibrium.

Now let us see what happens in a corresponding time discrete system. A time

discrete system can be generally written as

y1(t+ 1) = f1 (t, y1(t), ..., yn(t))

...

yn(t+ 1) = fn (t, y1(t), ..., yn(t)) . (A.10)
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We will consider an equilibrium solution ŷi, such that yi(t+ 1) = yi(t) ≡ ŷi, subject

to a small perturbation εi(t). yi(t) can then be written as yi(t) ≡ ŷi+εi(t). Replacing

this in A.10 and expanding the fi functions around the equilibrium one can find

ŷ1 + εi(t+ 1) = ŷ1 +
n∑
j=1

df1

dyj

∣∣∣∣
y=ŷ

εj(t)

...

ŷn + εi(t+ 1) = ŷn +
n∑
j=1

df1

dyj

∣∣∣∣
y=ŷ

εj(t). (A.11)

Therefore, similarly to before we can write

~ε(t+ 1) = J · ~ε(t) ⇒ ~ξ(t+ 1) = J ′ · ~ξ(t), (A.12)

where the expression on the right corresponds to diagonalized version of the sys-

tem. This system’s solution is

~ξ(t) = (J ′)t · ~ξ(0). (A.13)

The power of matrix a diagonal matrix is simply the matrix with the powers of the

diagonal entries. Thus, one has

(J ′)t =


λt1 0 · · · 0

0 λt2 · · · 0
...

... . . . ...

0 0 · · · λtn

 . (A.14)

As we want to guarantee that the perturbation is damped in time, we should require

that the absolute value of the eigenvalues is smaller than one. So the relevant

condition can be expressed as

∀i |λi| < 1 . (A.15)
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APPENDIX B – MORAN PROCESS

Very large populations can be accounted for by differential equations. Consider, for

simplicity, the growth of a haploid population1. If the population has growing rate

a the evolution of the population size can be described by the differential equation

dx
dt

= a x. (B.1)

Let us now introduce selection in the model. If we have two competing strains with

growing rates a and b the fraction of individuals xa and xb of each strain evolves

according to the system

dxa
dt

= xa(a− φ), (B.2)

dxb
dt

= xb(b− φ). (B.3)

where φ is introduced to guarantee that xa + xb = 1. Simple algebra leads us to the

conclusion that φ = axa + bxb, i.e., φ is the average fitness of the population. Since

we have the condition xa + xb = 1, the system can be reduced to a single equation

dxa
dt

= xa(1− xa)(a− b), (B.4)

which has the solution

xa(t) =
xa,0 e

(a−b)t

1− xa,0(1− e(a−b)t)
(B.5)

1 A haploid organism is an organism that has only one copy of each chromosome per cell.
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where xa,0 is the initial population fraction of strain a. From this expression we

can see that, given that the initial population does not consist of a single strain,

i.e. xa,0 6= 0 and xa,0 6= 1, the evolution of the population depends only on the

growth rates a and b. Namely, for large t, if a > b the strain a will always dominate

and if a < b the population is dominated by the strain b. The ultimate fate of the

population is found deterministically independently of the initial proportions of the

strains.

This approach reveals quite unsatisfactory to deal with finite populations since

it dismisses all stochastic effects and, therefore, it does not capture the population

drift effect. Stochastic effects are an unavoidable ingredient of any finite popula-

tion due to the random sampling of the population for reproduction. This shortco-

ming can be addressed in various ways. Historically, two simple models have been

widely employed to deal with this limitation: the Wright-Fisher process and the

Moran process. Both models consider a constant and finite population with size N .

In the Wright-Fisher model, the population is replaced every time step by a new

population sampled from the parent population. The reproduction probability is

proportional to the parent’s fitness. The Moran process was proposed by Patrick

Moran in the article Random processes in genetics in 1958 [135]. It aimed to change

the Wright-Fisher model by introducing overlapping generations. The reproduction

process is dealt with differently in Moran process. At every time step one indivi-

dual is randomly chosen to reproduce and replaces one individual of the original

population. This way one step of Wright-Fisher corresponds to N steps in Moran

process. Also, in Moran process the number of individuals of a certain strain cannot

change by more than one in a given time step.

Recovering the example of two strains with constant fitness a and b, let us say

strain a has i individuals and, consequently, there are N − i individuals of strain

b. There are three distinct possibilities: i is kept if the individual that reproduces

and the eone that dies are from the same strain, i can increase by one if a strain

a individual reproduces and one from strain b dies and i can decrease by one if an

individual from strain b reproduces and one from strain a dies. As the reproduction

probability is proportional to the fitness of each individual the probability of one

individual of strain a to reproduce is given by

Pr,a =
ia

ia+ (N − i)b
, (B.6)
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and the probability that one individual b reproduces is the complementar, i.e.,

Pr,b =
(N − i)b

ia+ (N − i)b
, (B.7)

such that Pr,a + Pr,b = 1. For the death probabilities, we have

Pd,a =
i

N
, (B.8)

Pd,b =
N − i
N

. (B.9)

Therefore, the probability of the transition i→ i+ 1, Pi→i+1, is given by

Pi→i+1 = Pr,aPd,b =
ia

ia+ (N − i)b
N − i
N

, (B.10)

and the remaining two possibilities are

Pi→i = Pr,aPd,a + Pr,bPd,b =
ia

ia+ (N − i)b
i

N
+

(N − i)b
ia+ (N − i)b

N − i
N

, (B.11)

and

Pi→i−1 = Pr,bPd,a =
(N − i)b

ia+ (N − i)b
i

N
. (B.12)

As expected, Pi→i−1 + Pi→i + Pi→i+1 = 1, therefore Pi→i = 1− Pi→i−1 − Pi→i+1. The

system has two absorbing states2, that correspond to i = 0 and i = N . What is the

probability of reaching the state i = N , i.e., a dominates the population, if we start

from a state with a single a individual? This probability, called fixation probability,

is important to study the evolution of population where a mutant appears since it

tells us whether it is probable that this new mutant will be lost or dominate the

population. Notice that, in the situation described by the differential equation,

this probability was 1 if a > b and 0 if a < b. In a finite population there will

be drift effects that make the fixation probability nonzero even when the strain is

2 An absorbing state is a state that once entered cannot be left. In our example the states
i = 0 and i = N are absorbing states since they correspond to the extinction of strain a and
b, respectively.



135

disadvantageous. Let us introduce the notation xi for the probability of reaching

the state N starting from i. Naturally, we have

x0 = 0,

xi = Pi−1→i xi−1 + Pi→i xi + Pi+1→i xi+1,

xN = 1. (B.13)

Let us now introduce a new set of variables

yi = xi − xi−1, (B.14)

and define an auxiliary quantity R ≡ Pi−1→i
Pi+1→i

= a
b
. It is easy to realize that

N∑
i=1

yi = x1 − x0 + x2 − x1 + · · ·+ xN − xN−1 = xN − x0 = 1. (B.15)

Using the equation B.13 one can find

xi+1 =
−Pi→ixi − Pi−1→ixi−1 + xi

Pi+1→i
=

(Pi−1→i + Pi+1→i − 1)xi − Pi−1→ixi−1 + xi
Pi+1→i

= xi +
Pi−1→i

Pi+1→i
(xi − xi−1) = xi +R (xi − xi−1) . (B.16)

Applying this we obtain

yi+1 = xi+1 − xi = xi +R (xi − xi−1)− xi = Ryi. (B.17)

Since y1 = x1 − x0 = x1, it follows that yk = Rk−1x1. Therefore,

N∑
i=1

yi = 1⇒ x1

N∑
i=1

Ri−1 = 1⇒ x1 =
1∑N

i=1R
i−1

=
1−R

1−RN
. (B.18)

This way, the fixation probability of a mutant with fitness a in a population of

individuals with fitness b is

Pfix =
1−R

1−RN
, (B.19)

where R is the relative fitness R = a/b and N is the population size. We can see

that now the fixation probability depends not only on the fitnesses a and b, but also
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on the population size N . Even a disadventageous mutant has a nonzero fixation

probability.

This appendix only attempts to provide a very simple introduction to the Mo-

ran process and the concept of drift. It does not deal with many aspects that are

highly relevant in the dynamics of finite populations, such as frequency depen-

dent selection, mutation, migration and population structure. For a somewhat dee-

per introduction check, for example, the book Evolutionary dynamics, by Martin A.

Nowak [58].
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APPENDIX C – GILLESPIE
ALGORITHM

Gillespie algorithm is a Monte-Carlo algorithm first introduced mathematically by

Joseph Doob in 1942 [136,137]. It was later reintroduced and popularized by Da-

vid Gillespie in the context of chemical reactions simulations in 1976 [129, 138].

This algorithm allows exact simulations of chemical reactions with arbitrary num-

ber molecules, including low amounts of molecules, that would not be correctly

described by continuum differential equations.

Gillespie algorithm proceeds in two steps: first calculates the time to the next

reaction based on the total reaction rate, or propensity, of the system; then chooses

each reaction has happened based on the relative reaction rate of each reaction,

and returns to the previous step. This provides a simple algorithm capable of accu-

rately describing the time evolution of chemical systems. Each run of the algorithm

provides a possible trajectory of the system in time and performing multiple runs

allows one to know the statistical properties of the system.

Although introduced in the context of chemical reactions, this algorithm can be

used in a variety of contexts, whenever the state of the system can be described by

rates of transition between states that remain constant between changes.

The algorithm assumes that in a given time interval t to t + dt each possible

process µ has an average probability kµdt to happen. Let us call P (τ, µ)dτ the

probability that the next process is µ and happens in the time interval between

t + τ and t + τ + dτ . Then, P (τ, µ)dτ is given by P (τ, µ)dτ = P0(τ)kµdτ , i.e., the

probability that no process occurs during the interval τ times the probability of the

process µ occurs in the interval t+ τ to t+ τ + dτ . One can then divide the interval

τ in n smaller equal time intervals of duration ε = τ/n. As the probability of no
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event happening in an infinitesimal time interval dt is 1 −
∑

ν kνdt (1 minus the

probability of any event occuring) we can write P0(τ) =
(
1−

∑
ν kν

τ
n

+O(τ/n)
)n.

Taking the limit of infinite subintervals we obtain P0(τ) = limn→∞
(
1−

∑
ν kν

τ
n

)n
=

e−
∑
ν kντ . Therefore the probability of the process µ occuring in the given conditions

is P (τ, µ)dτ = e−
∑
ν kντkµdτ .
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APPENDIX D – MAXIMUM VIABILITY
FOR ONE TRADEOFF

Knowing the tradeoff matrix we can estimate the viability under some assumptions.

Let us first analyze the situation with one tradeoff and no specialization. If there is

no specialization all the regulatory genes yik will take null values. This eliminates

the costs of regulation but subjects the organism to tradeoff costs. In order to

achieve a nonzero fitness the organism will have to decrease the activity of some of

its main genes Yi. With this condition Eq. 3.5 reduces to the form

ϕik =
∏
j

|1− δij − Yj|Tij . (D.1)

Note that now that the cells are in an undifferentiated state, ϕik does not depend

on k anymore since all the cells behave the same independently of the stimuli they

are subject to. Thus, in this calculation we drop the index k and take directly ϕi =

ϕik. Assuming only one tradeoff the tradeoff matrix will have only one nonzero

entry outside the diagonal. Let us assume, for simplicity, that the only nonzero off-

diagonal entry of the tradeoff matrix is T12. This does not entail loss of generality

since we are ascribing the same importance to each function, making the model
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symmetric with respect to the position of the nonzero entry in the tradeoff matrix.

So the tradeoff matrix we are considering has the following structure

T =



s s∗ 0 · · · 0

0 s 0 · · · 0

0 0 s · · · 0
...

...
... . . . ...

0 0 0 · · · s


. (D.2)

Therefore we will have the following ϕik values

ϕ1 = Y s
1 (1− Y2)0 . . . (1− Yn)0 = Y s

1 ,

ϕ2 = (1− Y1)s
∗
Y s

2 (1− Y3)0 . . . (1− Yn)0 = (1− Y1)s
∗
Y s

2 ,

ϕi>2 = (1− Y1)0 . . . (1− Yi−1)0 Y s
i (1− Yi+1)0 . . . (1− Yn)0 = Y s

i .

A factor (1 − Y1)s
∗ appears, suppressing the output of the task 2 when performed

concomitantly with the task 1. The viability will be

v =

(∏
i

ϕi

)1/n

=

[
Y s

1 (1− Y1)s
∗
Y s

2

∏
i>2

Y s
i

]1/n

(D.3)

An evolutionary system will search for the maxima of the fitness. As v is a strictly in-

creasing function of the Yi for i > 1 it presents no constraint to fitness maximization

and take their maximum possible value Yi>1 = 1. The same does not happen with

Y1 due to the tradeoff restrictions. We should maximize the viability with respect

to Y1. This corresponds to finding the zero of the derivative

dv
dY1

∣∣∣∣
Y1=Y

= 0

⇒
[
Y
s
(1− Y )s

∗]1/n−1
[
sY

s/n−1
(1− Y )s

∗/n − s∗Y s/n
(1− Y )s

∗/n−1
]

= 0. (D.4)

Taking into account that Y cannot be 0 or 1, owing to the fact that the viability

would become 0, we can simplify this expression to

s(1− Y )− s∗Y = 0 ⇒ Y =
s

s+ s∗
. (D.5)
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This expression can now be replaced in the viability to find the maximum viability

achievable without specilization

v =

[(
s

s+ s∗

)s (
1− s

s+ s∗

)s∗]1/n

=

[
sss∗s

∗

(s+ s∗)s+s
∗

]1/n

. (D.6)

It is interesting to compare the maximum viability without specialization to the

viability obtained with specialization. The full specialization regime should arise

from natural selection in the case of very strong tradeoffs. When the specilization

is in place the tradeoffs no longer reduce the value of Yi. Therefore, we can assume

that it is in the maximum of the viability Yi = 1, for all i. With this condition, the

Eq. 3.5 simplifies to

ϕik =
∏
j

|yjk − δij|Tij c(yjk). (D.7)

We will consider the same tradeoff matrix chosen before, described in Eq. D.2. All

yik’s will be considered zero, unless that leads to a zero fitness, in which case we will

consider them one. This leads to total specialization in the functions that present

tradeoffs. The cells remain generalists regarding the tasks that are not affected by

tradeoffs. In the case of the tradeoff matrix under consideration this means that

y12 = 1 and all the remaining regulatory genes are null. After some analysis one

can find

ϕ11 = |y11 − 1|sc(y11) (y21)0c(y21) . . . (yn1)0c(yn1) = 1,

ϕ12 = |y12 − 1|sc(y12) (y22)0c(y22) . . . (yn2)0c(yn2) = 0,

ϕ21 = (y11)s
∗
c(y11) |y21 − 1|sc(y21) . . . (yn1)0c(yn1) = 0,

ϕ22 = (y12)s
∗
c(y12) |y22 − 1|sc(y22) . . . (yn2)0c(yn2) = c(1),

ϕii>2 = (y1i)
0c(y1i) . . . |yii − 1|sc(yii) . . . (yn2)0c(yn2) = 1,

ϕ1k>2 = |y1k − 1|sc(y1k) . . . (ynk)
0c(ynk) = 1,

ϕ(i>2) 1 = (y11)0c(y11) . . . (yn1)0c(yn1) = 1,

ϕ2k>2 = (y1k)
s∗c(y11)|y2k − 1|sc(y2k) . . . (ynk)

0c(ynk) = 0,

ϕ(i>2) 2 = (y12)0c(y12) . . . (yn2)0c(yn2) = c(1). (D.8)

In the calculation of these expressions the condition c(0) = 1 was used. As we can

see, while in the case of generalists the result did not depend on the stimuli, in
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the limit of fully specialized cells the result becomes independent of the tradeoff

strength. The values of ϕi are given by

ϕ1 =
1

n

∑
k

ϕ1k =
1

n
[1 + 0 + (n− 2)× 1] =

1

n
(n− 1) ,

ϕ2 =
1

n

∑
k

ϕ2k =
1

n
[0 + c(1) + (n− 1)× 0] =

1

n
c(1),

ϕi>2 =
1

n

∑
k

ϕik =
1

n
[c(1) + (n− 1)× 1] =

1

n
[n− 1 + c(1)] .

Therefore, the maximum viability of an organism with total specialization is

v =

(∏
i

ϕi

)1/n

=

[
1

n
(n− 1)

1

n
c(1)

∏
i

1

n
[n− 1 + c(1)]

]1/n

=
1

n

[
(n− 1) c(1) [n− 1 + c(1)]n−2]1/n . (D.9)

The general expression, which does not assume neither pure generalist nor total

specialization, can be found following the same method. After some calculations,

one obtains

v =
1

n
{Y s

1 [n− 1 + (1− y12)s c(y12)]

×
[
(n− 1) (1− Y1)s

∗
+ (1− (1− y12)Y1)s

∗
c(y12)

]
× [n− 1 + c(y12)]n−2}1/n

. (D.10)

This expression includes the possibility of partial specialization. It is an interesting

exercise to verify that the previously discussed expressions are recovered from the

general one when the appropriate limits are considered.


	Introduction
	History of Evolutionary Theory
	Evolutionary mechanisms
	Brief history of life on Earth
	Major transitions in individuality
	Role of life cycles

	Evolution of cooperation
	Tradeoffs
	Outline

	Competing metabolic strategies
	Model
	Social dilemma
	Simulations

	Analytical results for well-mixed populations
	Evolutionary invasion analysis
	Coexistence solution

	Analytical results for structured populations
	Simulation results
	Within-group stochastic dynamics
	Resource consumption rate
	Migration between groups

	Conclusion

	Effect of tradeoffs in cell differentiation
	Model
	Simulation Protocol
	Analytical estimation of the number of colonies
	One tradeoff case
	General case
	Concrete example: cyanobacteria system
	Conclusions

	A mechanistic approach to tradeoffs and complexity
	Two-functions model
	Generalization to p-functions
	General np
	Relation between the benefit and the cost at the optimum
	n<p
	General n

	Simulation results
	Arbitrary tradeoffs
	Aggregative development
	Clonal development

	Discussion and Conclusions

	Conclusion
	References
	Appendix A – Linear stability of equilibrium solutions
	Appendix B – Moran process
	Appendix C – Gillespie Algorithm
	Appendix D – Maximum viability for one tradeoff

