. Centro
N;lnformatlca
U:-F+*P-E

Pos-Graduacao em Ciéncia da Computacao

MARCO TULIO CARACIOLO FERREIRA ALBUQUERQUE

Dunas: A framework for Deformable Bézier Surfaces and Curves

V=g
P =

¢
E-P’
T,
Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/ “posgraduacao

5

Recife
2008

MARCO TULIO CARACIOLO FERREIRA ALBUQUERQUE

Dunas: A framework for Deformable Bézier Surfaces and Curves

Dissertacdo de Mestrado apresentado a
Pés-graduacao em Ciéncias da Computa-
cao, como parte dos requisitos necessarios
a obtengéo do titulo de Mestre em Ciéncias
da Computagéo.

Orientador: Silvio de Barros Melo
Coorientador: Co-orientador

Recife
2008

Catalogacgdo na fonte
Bibliotecario Jefferson Luiz Alves Nazareno CRB 4-1758

A345d Albuquerque, Marco Tulio Caraciolo Ferreira.
Dunas: a framework for deformable bézier surfaces and curves / Marco
Tulio Caraciolo Ferreira Albuquerque. — 2008.
86f.: fig., tab.

Orientador: Silvio Barros Melo.
Dissertagdo (Mestrado) — Universidade Federal de Pernambuco. Cin.
Ciéncia da Computagao, Recife, 2008.
Inclui referéncias e apéndice.

1. Computacgéo grafica. 2. Jogos por computador. 3. Modelagem fisica.
I. Melo, Silvio Barros. (Orientador). II. Titulo.

794.8 CDD (22. ed.) UFPE-MEI 2018-09

Dissertacdo de Mestrado apresentada por Marco Tualio Caraciolo Ferreira
Albuquerque a P6s-Graduacdo em Ciéncia da Computacdo do Centro de Informatica da
Universidade Federal de Pernambuco, sob o titulo “Dunas: A framework for
Deformable Bézier Surfaces and Curves”, orientada pelo Prof. Silvio de Barros Melo
e aprovada pela Banca Examinadora formada pelos professores:

Prof. Marcelo Walter
Centro de Informatica / UFPE

Prof. Emerson Alexandre de Oliveira Lima
Departamento de Informatica e Estatistica / UNICAP

Prof. Silvio de Barros Melo
Centro de Informatica / UFPE

Visto e permitida a impresséo.
Recife, 25 de agosto de 2008.

Prof. Francisco de Assis Tendrio de Carvalho
Coordenador da P6s-Graduagdo em Ciéncia da Computacéo do
Centro de Informatica da Universidade Federal de Pernambuco.

Dedico esta dissertacdo, primeiramente a meus pais que me deram todo o apoio
e incentivo possiveis, ndo so durante este trabalho, mas durante toda a minha vida. Ao
Centro de Informatica que frequento ha oito anos, por toda a infraestrutura e suporte
oferecidos. E, por fim, ao Professor Doutor Silvio de Barro Melo cuja valiosa orientacdo
tornou possivel a concretizacao deste trabalho.

AGRADECIMENTOS

Primeiramente a minha mée, Ligia por ter sido sempre tdo compreensiva e dado
todo tipo de apoio necessario durante todos esses anos. Agradecer também ao meu
pai, Marco Tulio, por criar as todas as oportunidades que tive em minha vida e pela
preocupacdo com meu futuro. Sem esquecer os meus irmaos, Adriana e Bruno por
estarem sempre ao meu lado.

A Carol Franga, amiga e namorada por seis anos. Sempre companheira e que
sempre falou 0 que eu precisava ouvir sem se importar como eu iria reagir. Sempre
entendeu, mais do que a maioria, os horarios e a dificuldade de estudar no Centro de
Informatica. Além de ter revisado, jornalista que é, diversos relatérios, textos e artigos
meus.

Agradeco aos Joeys: Felipe, Thiago e Duda. Sempre foram melhor forma de
diversao e distracao de todo tipo de problema que enfrentei, de sempre trazerem alegria
e serem amigos em todos 0s momentos, bons ou ruins. Enfim, por terem dividido todas
as experiéncias que vivemos e rachado todos aqueles churrasquinhos.

A todos os meus amigos de faculdade, principalmente os colegas mais préximos,
0 grupo de projetos: André, Afonso, Vicente, Cabelinho, Vilmar e Ives. Pois afinal foram
as pessoas que estavam comigo nas aulas, nos projetos, nas madrugadas sem dormir,
nos estagios, convivendo quase que diariamente durante toda a graduacao. Agradecer
especialmente a Vicente, amigo desde os tempos de colégio e sécio a mais de trés
anos que nao sé apoiou o trabalho como ajudou em diversos momentos na criacao do
mesmo.

Ao professor e amigo Silvio Melo pelo suporte. Por estar sempre disposto a
ajudar no que for preciso, mesmo quando ainda fazia parte do Departamento de
Matematica. Além de suprir a necessidade de um orientador na area da computacao
grafica deficiente no centro em particular e no estado como um todo.

Gostaria de agradecer a diversos professores do Centro de Informatica, especi-
almente Chico, George e Geber. Pela formacao recebida e pela orientacado nos diversos
projetos durante cadeiras na graduacao e na pés e também iniciagao cientifica.

Gostaria de agradecer a todos aqueles que participaram de forma positiva na
minha formagéao. E todos que fizeram parte da minha vida no CPI, no Centro de Infor-
matica, no CESAR, na Manifesto e na Jynx pela amizade e companheirismo. Desses
gostaria de destacar a especialmente Carol Gondim, grande amiga, principalmente
nesses ultimos meses de trabalho quando deu o apoio necessario em tempos bastante
complicados.

RESUMO

Os poderosos processadores da nova linha de computadores e consoles de
video games fazem da utilizacao de superficies de Bézier uma boa idéia devido a
sua poténcia de processamento, no entanto, a criacao de modelos com superficies de
Bézier ainda parece ser muito mais do campo de projeto auxiliado por computador e
manufatura auxiliada por computador do que no campo de desenvolvimento de jogos
segundo Dave Eberly. Esse trabalho tenciona popularizar o uso das técnicas de mo-
delagem com curvas e superficies de Beézier. Para isso, introduziremos técnicas de
modelagem fisica para a simulagé@o de corpos deformaveis com o intuito de automatizar
a animacao de tais superficies popularizando a abordagem no meio dos desenvolve-
dores de jogos. O método criado torna possivel a utilizacdo de modelagem fisica em
plataformas de baixo poder computacional, como Flash e J2ME, e ao mesmo tempo
possibilita a utilizacdo de cenas mais complexas em plataformas mais poderosas que
utilizam placas gréficas dedicadas.

Palavras-chave: Computacao Grafica. Jogos de Computador. Modelagem Fi-
sica. Curvas de Bézier. Superficies de Bézier.

ABSTRACT

Powerful graphics processors on personal computers and game consoles make
surface representation a good choice due to their processing capabilities. However,
creating surface models still appears to be in the realm of the CAD/CAM and not
game development acoording to Dave Eberly. This work unify both fields, physics and
geometry, exploring the interface between geometry and physically based animation
by incorporating well established physic models into Bézier surfaces for the simulation
of deformable objects. By doing so, we create a simple yet powerful representation of
the model, with Bézier Curves and Surfaces, and incorporate some of the most used
methods of automated shape changing animation. Our approach makes possible to use
real physics simulations in limited platforms, like Desktop Flash and mobile J2ME. At
the same time, enables the use of even more complicated scenes on powerful platforms
that makes use of dedicated graphics cards like Desktop Personal Computers.

Keywords: Computer Graphics. Computer Games,.Physically Based Model-
ing. Bézier Curves. Bézier Surfaces.

LISTA DE FIGURAS

Figura 1 — Cloth Simulation using stringphysics
Figura2 — A portion of a mass-springmodel
Figura3 — SingleModel
Figura4 — Single pieceofcloth
Figura 5 — (a) shows the particles of the simulation. (b) shows the rendered skirt

only . . .
Figura 6 — Two curve mass objects represented as mass-spring systems
Figura 7 — Crazy Penguin Catapult game from Digital Chocolate [36]

Figura 8 — Cloth Simulation using mass-spring system method
Figura9 — Typesof springinaclothmodel
Figura 10 — Blue dress modeled using mass-spring systems
Figura 11 — The Bernstein polynomials of degree 3.
Figura 12 — Quadratic Bézier Curve
Figura 13 — Different Bézier Curves
Figura 14 — Construction of a Bézier Curve using the deCasteljau algorithm. . .
Figura 15 — Convex hulls intersect but curvesdon’t
Figura 16 — Freshwater uses a Bézier patches system with procedural displace-

mentwaves.
Figura 17 — Framework Basic Pipeline
Figura 18 — Integrator methods Strategy pattern
Figura 19 — Particle Physics Component Architecture
Figura 20 — Revolution Engine Scene Class Diagram
Figura 21 — Simplified Architecture of the persistence system.
Figura 22 — Physics Creation Persistence System
Figura 23 — How the MassSpringSystem class is related to Dunas and Revolution

(via Geometry).
Figura 24 — Screenshots of the rope simulation running
Figura 25 — Screenshots of the cloth simulation running
Figura 26 — Rope modeled as a mass-spring system forthegame
Figura 27 — Rope in the game Crazy Penguin Catapult
Figura 28 — Two ropes simulated with and without smoothing
Figura 29 — Smoothing the rope process on the left rope (white)
Figura 30 — Third screenshot of the smooth comparison
Figura 31 — Forth screenshot of the smooth comparison
Figura 32 — Merlin’s Adventures Game
Figura 33 — Mass-spring setup for the Merlin’s Game. All particles are connected

to the first one. They are also connected to the nearest neighbors, as

theusual.

15
17
18
18

28
30
31
32
32
33
37
38
38
40
41

42
45
46
47
50
51
52

55
61
63
65
66
67
68
69
70
71

Figura 34 — Screenshot of the sail simulationrunning 74
Figura 35 — Second screenshot of the sail simulation runnning 75
Figura 36 — Third Screenshot of the sail simulation running 76
Figura 37 — Sails running on the boat of atestgame 77

LISTA DE TABELAS
Tabela 1 — Comparison of regular techniques for cloth simulation and the dunas
approach. e e

LISTA DE ABREVIATURAS E SIGLAS

2D Two dimensions
3D Three dimensions

CAD/CAM Computer Aided Design/ Computer Aided Manufacturing

CPU Central Processing Unit
FEM Finite Element Methods
LOD Level of Detail

PC Personal Computer

RAM Random Access Memory
UML Unified Modeling Language)

XML EXtensible Markup Language

1.1
1.2
1.3
14

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

SUMARIO

INTRODUCTIONttt e e et e e e 14
Motivation 14
Goals and Contributions 19
Challenges 20
Dissertation Organization 20
STATEOF THE ART ittt et e 22
Deformable Bodies 22
Hybrid Methods, 23
Mass-springsystems, 29
Curve Masses e 29
Surface Masses 31
VolumeMasses 34
BEZIER CURVES ANDSURFACESo 36
The deCasteljau Algorithm 39
Convex Hull Property 40
Splines. 41
BézierPatches 42
DUNAS FRAMEWORK i it e e e e et 44
Framework Overview 44
Particle Physics Component 46
Mass-springcomponent 48
Bézier Component 49
Revolution Integration 50
The Application Programming Interface 54
Using the framework 56
RESULTS AND FUTUREWORK 64
Test Framework, 64
Mass-springRope 65

Mass-SpringCloth 72
Future Work 77

REFERENCIAS i ittt e e e e e e e e e e e e e e e 80

APENDICES

APENDICE A - NURBS AND BEZIER POOL

14

1 INTRODUCTION

This chapter presents the main motivation for this work, enumerates a list of
research goals, does a little introduction to the subjects involved and gives a preview of
the whole document and how it is organized.

1.1 Motivation

Historically, deformable models appeared in computer graphics to create and edit
complex curves, surfaces and solids [1]. Today, deformable bodies are used in real time
character animation, especially for computer games, for the realistic simulation of skin
[2], clothing [3], Figure 1, and human or animal characters. Generally speaking, existing
modeling approaches can be categorized, by technique, into one of two major groups:
physically-based techniques and purely geometric techniques [12]. Models based on
solving continuum mechanics problem, under consideration of material properties and
other environmental constraints, are called physically-based techniques. Non-physical
techniques are purely geometric techniques used to deform visual objects. Each of the
technigues has advantages that could be strengthened and disadvantages that could
be weakened by mixing the methods in a smart way.

Capitulo 1. INTRODUCTION 15

Figura 1 — Cloth Simulation using string physics

Source: [3]

To explore the interface between geometry and physically based animation, in a
smart way, we created the Dunas Framework that diminishes the processing needed by
physical methods by using geometric methods. Dunas incorporates a well established

Capitulo 1. INTRODUCTION 16

physics model, mass-spring, into Bézier curves and surfaces [11] for the simulation
of deformable objects in real-time interactive applications, such as video games. The
whole work consists of how these two, at a first glance, antagonic methods can be
mixed together to create a powerful representation of deformable models that can be
effectively used in different scenarios of realtime applications.

Purely geometric deformation techniques are faster and are generally simpler to
implement than their physically based competitors. In such cases, physical accuracy
is sacrificed for computational efficiency and the system has no knowledge about the
material of the object being deformed. Usually, these techniques are computationally
efficient, but rely on the skill of a designer rather than on real physics principles. Created
by the French engineer Paul Bézier, Bézier curves and surfaces are among the most
popular and intuitive geometric methods for deformable models, a whole chapter is
dedicated to the Bézier theory on this work as an introductory text.

Sophisticated physically based models, although necessary for simulating the
dynamics of realistic interactions, are not yet suitable for fully interactive real-time
simulation of multiple objects in virtual environments due to the current limitations of
computational power. MassSpring Damper systems (MSD) appear to be the most widely
used deformable models at present. It is likely that their popularity originally stemmed
from the simplicity of obtaining equations and programming them. MSD models thus
evolved rapidly and implementations for nearly every conceivable type of interaction
have been developed. This, unsurprisingly, only increased their popularity. The main
advantage of the MSD model over its competitors today is its ability to approximate
physical realism at real-time rates. Using MSD, an object is modeled as a collection of
point masses, called particles, connected by springs in a lattice structure - Figure 2.

Capitulo 1. INTRODUCTION 17

Figura 2 — A portion of a mass-spring model

Source: [12]

Dunas dramatically reduces the number of particles used in the simulation
of mass-spring systems to improve performance. However, lowering the number of
particles by itself might lead to models with a very few number of polygons that, when
rendered, leads to very poor images for modern computer games standards. The use of
Bézier models are especially motivated by this fact since it can generate smooth curves
and surfaces with an arbitrary level of detail, thus generating smoother models with any
number of polygons as desired - rendering the best model possible for a given platform.

Despite the popularization of deformation methods in the academic field, very
little is being used in commercial projects, especially casual games. Casual games are
targeted to ordinary people that usually don’t have a powerful computer with dedicated
graphics card. With this in mind, we developed a mechanism that can bring more realism
to this kind of game by using a simplified yet powerful approach to model mass-spring
deformable bodies and at the same time still benefits from high-end machines and is
used on hardcore computer games.

The trial and buy business model is currently used by the most popular casual
game portals around the web [13][14][15]. In this model, the user can play the game for
a limited period of time and then the game is locked until the user pays for it. Usually
the user isn’t willing to download a large piece of software to install. So, a web version
of the game, developed in the Flash platform [16], is usually created to give him a taste

Capitulo 1. INTRODUCTION 18

of the game. This way, the Flash version of the game must maintain the most crucial
game features so the user can fully experience the gameplay involved.

Besides, some of the articles in the field that claims to be real-time can’t be
used in commercial products. Today’s games have a high polygon budget and most
of the images shown in these papers are toy problems. For instance, most of the
scenes presented on articles [17] from the field trespass the real-time frame per second
barrier (at least 30) with a small margin, not more than 32 frames per second. However,
the scenes are very simple with no more than one piece of deformable body being
simulated at real-time like in the Figure 3 and Figure 4. A better configuration is achieved
by Dunas, since it was projected to beat these numbers, as shown in the last chapter of
this document.

Figura 3 — Single Model

Source: [18]

Figura 4 — Single piece of cloth

Source: [17]

Capitulo 1. INTRODUCTION 19

1.2 Goals and Contributions

The main purpose of this research is to create a simple deformable simulation
model, and framework that supports the use of this model, which can be used in
interactive real-time applications for limited platforms, such as Flash and J2ME[20],
and at the same time be scalable enough to take advantage of cutting edge graphics
technology. Such a goal is made concrete by some tasks, including:

» Research of deformable bodies that uses physics methods and could benefit
from the mixture with a geometrical method, like cloth;

* Design and development of a physics framework that supports the most common
formulation of the mass-spring system for real-time simulation of deformable
models;

« Efficient implementation of the Bézier algorithms to create smooth curves and
surfaces from a set of points that can be effectively used in real-time commercial
applications;

* Integration of both methods in a pipeline that simulate a deformable model using
physics rules and Bézier models;

» Evaluation of the framework created regarding the quality of the generated
images, if they are visually good enough for today’s standards, and at the same
time giving the required performance for real-time applications in platforms of
low processing power such as Flash and J2ME

» Improvement of the current state of the art by incorporating a new hybrid method
for the simulation deformable models at real-time frame rates even in limited
platforms.

Each of these tasks was made in this work and is presented in the appropriate
context in the following chapters. In summary, we ended up developing a framework that
uses mass-spring system to simulate real physics for deformable bodies. However, we
can drop the number of particles, or masses, needed on the simulation by smoothing
the resulting model using the deCasteljau algorithm at the price of a small penalty on
the reality of the physics simulation. In other words, we use a Bézier model in which the
control points are not fixed but a function of time that changes the control points based
dynamics theory according to the external forces acting on them.

Capitulo 1. INTRODUCTION 20

1.3 Challenges

The cloth simulation in real-time has to meet several requirements that greatly
limit the development or even the existence of such systems [18]. Among these, we
could mention stability, robustness and, of course, speed. These same requirements
hold true for all kinds of physically simulation of deformable models.

Stability is needed to deal with the fact that whatever are the conditions present
during the simulation the system must behave in a correct and predictable manner.
Unnatural or erratic model appearance and movement must be avoided at all costs. In
other words, we need to use the simplest model possible and avoid numerical instability.

Robustness is an even more difficult requirement, especially when the model is
placed in an interactive environment, i.e. a virtual reality application or a video game,
where interaction or the fast-changing conditions must be handled properly.

Speed is obviously the most important aspect of any real time system. There are
two major obstacles that make these requirements difficult to fulfill: the model itself and
the detection of collisions. Most highly accurate physically based simulation systems are
just too slow to be used in interactive or real time applications. They are computationally
heavy and difficult to optimize to a level that would permit them to be significantly
accelerated. This is especially important for Dunas.

Adding to the challenges of all deformable model articles, in this work the biggest
challenge is to create a way of using deformable bodies in 2D computer games for low
processing power platforms, like Flash and J2ME, and at the same time the technique
must provide good visual results to be used in good machines with dedicated graphics
cards. From one side, we need to create a simple and fast method that can be used in
this kind of platform and on the other side it must be scalable, in terms of performance
and the realism of the simulation, to create good images on better computers.

1.4 Dissertation Organization

The contents of this document are organized in six chapters. Chapter 2 discusses
the state of the art on deformable model with an emphasis in the hybrid methods that mix
geometric methods and physically-based models for deformable bodies. A discussion
about the recent use of massspring system to model ropes and cloth models is also
provided.

Chapter 3 presents an introductory text on geometric methods for deformable
bodies with a special emphasis on the Bézier theory.

Chapter 4 details the Dunas framework architecture using the Unified Modeling
Language (UML) [21] diagrams, the process involved in creating the software component

Capitulo 1. INTRODUCTION 21

and the design decisions that were made along the development.

Chapter 5 presents two complete case studies developed using the proposed
software component and compares the results obtained with the state of art techniques
for the simulation of mass-spring systems. At the end of the chapter there is a section
discussing the results and suggests future works.

22

2 STATE OF THE ART

This chapter introduces the physically-based modeling of deformable bodies’
field and how it is used in modern computer games. Three of the most popular physics
simulation methods are explained and the numerical integration methods used.

2.1 Deformable Bodies

Physics-based animation is a highly-interdisciplinary field, which is based on the-
ories from engineering, from physics, and from mathematics. The field of physics-based
animation was first named in a course in the 1987 ACM SIGGRAPH (the Association
for Computing Machinery’s Special Interest Group on Computer Graphics) conference,
“Topics in Physically-Based Modeling” organized by Alan H. Barr. In recent years the
emphasis in physics-based animation on computationally efficient algorithms has spaw-
ned a new field: plausible simulation.

The plausible simulation term is a primary concept in our work since we are
trying to achieve a result that looks good visually but not necessarily obeying any kind
of physical model based on the real phenomena.

Deformable Objects, or Bodies, covers all object types that are not rigid, and
thus span a wide range of different object types with different physical properties, such
as jelly, cloth, biological tissue, water, wind, and fire. Our work is concerned with certain
types of deformable objects simulations that would benefit from being modeled as Bézier
curves or surfaces such as ropes, clothes, water or terrain. Our basic approach is using
the physics simulation techniques on the control points of the curve or surface rather
than making them act on the object points. This approach, if it yields good visual results,
drops the amount of computation required to achieve the same results and yet uses a
fixed amount of computation even using dynamic LOD techniques, because the number
of control points is fixed at build time.

With that in mind, this chapter presents what we consider to be the state of art
on the field of deformable bodies that has a direct impact on our work. The following
section presents the field of deformable bodies and where this work is placed among
others.

The deformable model field is basically divided into two major groups [15] called
the physics-based technique and geometric methods. Mass-spring system is the most
popular physically-based deformation technique for real-time applications. On the other
hand, Bézier models are one of the most intuitive and popular method for modeling
deformation on curves and surfaces.

The basic idea behind our technique is to make the control points of a Bézier
curve or surface a function of time updating the point position based on physics rules

Capitulo 2. STATE OF THE ART 23

according to the external forces acting on the model. This approach drop the amount
of computation required by traditional methods to achieve similar results, because we
update only the control points instead of object points, and yet uses a fixed amount of
computation even using dynamic Level of Details techniques, because the number of
control points is fixed at build time and the degree of evaluation can go until the desired
resolution is achieved. The use of physics rules is to automate the animation process,
usually done by hand which requires a skilled and experienced artist, and at the same
time get realistic, or at least plausible, results.

An important fact to note is that these hybrid methods, despite the fact that some
good articles can be found in the literature, aren’t yet fully explored neither popular in the
physics simulation field. Also, most of it is used to improve the interaction of the artist
during the modeling phase and not for simulation purposes. This is easily noticed since
most of the surveys on the field [12][23][28] don’t even mention any of these methods
and explicitly split the area in two big groups: geometric methods and physically-based
methods. However, the improvement in performance they can achieve, with a small
degrade on quality, makes them a reasonable solution for computer games since we are
not trying to get realistic results but plausible results that can provide a good experience
for the user while playing the game for a cheaper computational cost.

In this chapter, we present some methods that make the combination of geometric
and physically-based models showing how they approach the problem and how our
technique is based on them and also how our approach differs from theirs. Then we
show popular techniques used to simulate rope and cloth with a physically-based
approach that is modified in the last chapter, to use our method, and show how it can
benefit from a mix with geometrical model, in this case Bézier curves for the rope and
Bézier surfaces for the cloth.

2.2 Hybrid Methods

Many methods combines dynamics simulations and geometric techniques for
deformable bodies to reduce the number of particles involved in simulation thus creating
a new technique that can benefit from both, the realistic models from physically-based
modeling, like mass-spring systems, and the high computational performance of geo-
metrical methods like Free-Form Deformations (FFD)[26] and B-Splines[11]. Some of
these methods and the pros and cons of each are discussed in this section providing the
motivations that made us take a different path using a bit of each. The first two articles
aim to create a better interaction process so the designer can have more flexibility and
better feedback while creating a model, specially animating that model and despite the
fact that they try to mix physically-based method with geometric models, they are not
actually related to our work.

Capitulo 2. STATE OF THE ART 24

Before hand we must say that most of these methods aim an accurate model,
instead of a good trade-off between performance and accuracy, which dramatically
reduces the performance of such methods. Our goal is to create a powerful model that
can at the same time be used in platforms with low computational power, like Flash[16]
and J2ME[20], and at the same time sufficiently scalable to benefit from high-end
machines like modern Personal Computers with dedicated graphics card and video
game consoles like XboX360[7] and PlayStation 3[8]. Besides that, as we discuss along
this chapter, some of the articles claim to get real-time frame rates. However, the scenes
they use as benchmark are pretty simple and not suitable for a commercial game with a
limited triangles budget.

Since there are very few articles using hybrids approaches, the following pages
discuss each one of them individually and how they affect our job. As said in the
introduction of this chapter, [12][23][28] gives no information about hybrids methods, a
sign that, although very effective in some applications these approaches to the field are
not explored as it should be. Unfortunately, this is not an isolated case since [24], also
talks about the benefits from using machine learning in computer graphics that is little
explored because very few people actually have the proper contact with both fields to
fill the gap - physicists usually don’t bother with computer tricks to generated plausible
simulations and computer scientist don’t have the required mathematical background to
actually understand the simulations.

D-NURBS [25] is the first effort to combine geometric and physic methods.
D-NURBS are physics based models that incorporate mass distributions, internal de-
formations energies, forces, and other physical quantities into the NURBS geometric
substrate. The intent is to create an interactive process to sculpt NURBS much in the
same way artists do with mud. The process is intended to be fast and accurate but not
necessarily real-time. Again, their objective is highly different from ours since they aim
to improve the creation process of a model and not animating it during real-time using
physically plausible methods.

The basic idea, same as we use, is to make the control points a function of
time instead of a fixed position tupple. The function updates the control point’s position
according to the laws of dynamics and the external forces acting on them. The Finite
Element Method (FEM) [27] technique is used to update the control points on four
different kinds of NURBS.

Using D-NURBS, during the interactive process, the user must define a large set
of parameters that fits their need of interaction. This conflict can lead the designer to use
parameters that favors the interaction over realistic properties of the real object being
modeled. Which is good for their purposes since would make the creating process easier
and more straightforward. However, our model tries to create a plausible approach for

Capitulo 2. STATE OF THE ART 25

simulations purposes in real-time during runtime and these feature wouldn’t give us
better results. It's important to notice that both works could be used together if the
interaction process is used in a Bézier model instead of a NURBS. Then during runtime,
our method could apply physics rules to change the model according to the external
forces being applied on it.

A curious point in the article it's their comment on the idiosyncrasy generated by
using negative weights. This reveals the author’s lack of familiarity with the theory of
NURBS since this can be easily explained using the projective geometry [11]. This fact
also reveals that the deformable models field could benefit from works like ours with
people that have experience with both of the methods, since Terzopolous, which coined
the term deformable bodies and is recognized as one of the major researchers in the
area, coming from a physics background shows very basic knowledge about geometric
methods. This fact shows how [24] affects the deformable bodies field much in the same
way it does for computer graphics and machine learning.

NURBS have a mathematical theory more flexible, thus much more complex,
then Bézier models. This might be a good property in some applications since it gives
more flexibility of manipulation and therefore the ability to create better models. However,
in game companies artists are not math experts and sometimes don’t even have a good
educational formation to actually comprehend the mathematical background involved
in NURBS. Bézier models, on the other hand, are very intuitive and the deCasteljau
algorithm have a geometric representation [11] that is easy to understand. A simple
pool, but that gives a feeling of what we are saying, made with designers working in
some of the companies in Recife is shown in Appendix A of this document. The main
information we can retrieve is that most designers feel more comfortable using Bézier
models then NURBS when both are available.

D-NURBS uses to calculate the change in positions of the particle, the FEM-
based method. FEM is very accurate and used in lots of realistic simulations from car
security systems [30] to reconstruction of human faces[29]. However, the computational
cost involved makes it prohibitive for real-time interactive applications targeted to plat-
forms like Flash and J2ME and still very limited applications on personal computers and
game consoles. Thus far, FEM techniques have proven to be impractical for real-time
applications [28].

Compared to this D-NURBS’s project, we take a more simplified approach using
techniques that requires less computational power: mass-spring system, as the dynamic
model, and Bézier curves and surfaces instead of NURBS for the geometric model. The
use of rational surfaces instead of polynomials, our case, reveals their concern with a
realistic representation of certain kinds of surfaces, such as quadrics and revolution
surfaces, which is not the case for us that are looking for physically plausible methods

Capitulo 2. STATE OF THE ART 26

especially for ropes and clothes.

Yet, dedicated graphics cards implement interpolation schemes, required by
OpenGL[9], ready to create Bézier curves and surfaces, which improves the perfor-
mance of these methods and makes it extremely simple to implement compared to
NURBS. This usually isn’t an issue in an academic research. However, in commercial
products, the time to implement a new feature is extremely crucial since it can drama-
tically increase the time to market of the game - designers that knows how to model
NURBS, programmers that knows NURBS theory and can implement it efficiently, etc.

Some other methods followed D-NURBS [31] but all of them aiming the same
goal, to provide more flexibility while designing a model using NURBS and never actually
a framework to simulate the deformations of an object. In [32] a method using Splines
and FEM-based methods is presented but also “to improve the efficiency of interactive
design”.

Dunas uses Bézier as the geometric methods in the hybrid approach. A common
question is why use Bézier instead of NURBS and the answer is very simple: Bézier is
good enough to solve the problem being much simpler to implement, understand and
use it. At the same time, Bézier is a simplification of NURBS since it is a NURBS with
weights equals one. That being said, every successful application of Bézier is also a
successful application of NURBS and can be easily extended to be tested with other
weights. So we are using the approach that is simple as possible, however not simpler
than required by the problem.

The most effective and one of the most recent works on the use of geometric
methods and physically-based techniques to give proper feedback in haptic interfa-
ces[33] . Adding haptic feedback in deformable objects is attractive in many applications,
such as computer games, interactive cartoon design, and virtual prototyping. This pa-
per, proposes an interactive haptic deformation approach incorporating the dynamic
simulation of mass-spring systems and flexible control of free-form deformation in the
touch-enabled modeling of soft-object deformation.

Just as D-NURBS, this works focus on giving more flexibility during the creation
process of a model. There is no concern at all on the performance of the method or
how it could be used to handle real-time simulations, such as a game. Imagine that you
can create a fixed preanimated response to a certain force - like wind. However, if you
change the force in real-time during the simulation this new effects won'’t be taken into
account. For collision detection response this is especially awkward, since none of the
collisions wouldn’t be treated effectively.

There aren’t a lot of projects using mass-spring systems as the physics simulation
method when accuracy is necessary. However, it is the usual choice for interactive

Capitulo 2. STATE OF THE ART 27

applications and it is used in this work to create proper feedback for haptic input. The
idea is create the correct behavior of a haptic input system to the user that is interacting
with the applications.

The work uses a cubic Bézier, third degree patch, instead of curves or surfaces.
Since they are providing feedback in a volumetric input device it makes a lot of sense.
However, for our purposes it would be a waste of computation and non-intuitive since
we would need to deform a whole volume to obtain an effect that visually affects only a
surface or curve.

A technique for real-time cloth simulation combines dynamic simulation and
geometric techniques [17] . Only a small number of particles (a few hundred at maximum)
are controlled using dynamic simulation to simulate global cloth behaviors such as
waving and bending.

Cloth can be simulated using mass-spring systems as shown in the last section
of this chapter. A mass-spring system is based on a set of particles, or masses, that are
connected using springs that obeys Hooke’s law. The main problem with this approach
is the huge number of vertices used to model a piece of cloth with the direct translation
of a vertex to a particle. As our method, this one drops the number of particles used
and creates the rendering model using a Bézier method translating control vertices in
particles instead of mesh vertices. This gives us not just the low number of particle but
also a fixed number of particles even when level of detail techniques aren’t necessary.
This is desirable because it's possible to know the number of particles in the simulation
at compile-time. Using level of details technique and using the vertices as particles this
is impossible since we can’t foresee the number of particle that will be used in the scene
for rendering.

Oshita makes use of “only a small number of particles (a few hundred at maxi-
mum) are controlled using dynamic simulation to simulate global cloth behaviors such
as waving and bending. The cloth surface is then smoothed based on the elastic forces
applied to each particle and the distance between each pair of adjacent particles”. We
take the same path lowering the number of particles needed for the simulation but we
don’t use PN Triangles [34] to smooth the surface.

The principle in this method is pretty much the same used in ours. However,
instead of using the particles as control points of a Bézier patch, it uses PN Triangles to
create the subdivision schema resulting in a smoother surface. Smoothing the surface
is desirable since there is drastically reduction on the number of points in the model,
eliminating some of the details. As shown in Figure 5, a cloth modeled using only 66
particles don’t generate a satisfactory result. However, the same 66 particles smoothed,
which leaded to 1944 faces rendered, yields better results.

Capitulo 2. STATE OF THE ART 28

Figura 5 — (a) shows the particles of the simulation. (b) shows the rendered skirt only

Source: [34]

The use of PN Triangles gives us the smoothing feature but on the other hand
brings the problem of shortened edges. The problem is alleviated using more control
points to increase the size of the spring. However, the analog problem of elongated
edges is apparently solved dynamically. The problem is still open since both of the
issues can’t be totally solved by the techniques presented. However, the results are still
very good visually as shown in Figure 4.

For Bézier tensor patches, as we use, we don’t need to calculate the normal of
each triangle for the smoothing process, which eliminates one of the biggest perfor-
mance bottlenecks of this article. The usual way of calculating a triangle’s normal, using
the vector product of two edges of the triangle, is extremely inefficient and unsuitable
for real-time applications. Due to this fact, they have a special, inaccurate method, to
calculate the normal of each of the particles. That partially solves the problem since the
normal is still needed to be calculated.

This method achieves very good results for cloth simulation, but it’s still heavy
for real commercial applications. For a single piece of cloth, in this case a skirt, they
achieved in best cases a little more the 30 frames per second. A naive observer can
think that it's an outstanding result since he can get really interesting animations, which
meets today’s standards for real-time simulation of deformable bodies, but the scene in

Capitulo 2. STATE OF THE ART 29

the paper - as shown in Figure 4 - is very simple with no texture and a very cheap triangle
cost. So, as we can attest, in an application where you need to use let’s say 10 pieces of
cloth we'll get a lower frame rate which is unacceptable for games nowadays. Imagine
a more complicated scene and besides the graphics we still need processing power
for game logic’s, artificial simulation for non-player characters and network processing
[51[6].

Clothes can be animated, in real time, placed over an articulated character
[18][19]. The articulated character is approximated using a hierarchy of ellipsoids. The
cloth, as usual, is represented by a mass-spring particle system simulation. First the
particles move following the ellipsoids; this is followed by the application of dynamic
forces. Finally, penetration of the character’s ellipsoids by any particle is corrected.
This method is fast enough to deliver real-time performance on mid-range PC and
workstations. However, the technique is limited to articulated characters and clothes.
Dunas, on the other hand, can be used in any mass-spring system and even be used in
this method to use fewer particles on the rope simulation and then smooth it using the
deCasteljau algorithm. In fact, one of the improvements suggested in the future works
of the paper is using smoothing techniques. The integration is straight-forward as we
just need to use the deCasteljau algorithm to smooth the model created by the particles
on the mass-spring system after the correction stage.

2.3 Mass-spring systems

Mass-spring systems can be divided into three subcategories: curve masses,
surface masses and volume masses. This section discuss each of one separately since
we will implement two samples of curve mass and one of surface masses.

2.3.1 Curve Masses

Curve Masses or deformable curves, is represented as a polyline of vertices,
open with two end points or closed with no end points. Each vertex of the polyline
represents a mass. Each edge represents a spring connecting the two masses at the
end points of the edge. Figure 6 shows both configurations (open and closed).

Capitulo 2. STATE OF THE ART 30

Figura 6 — Two curve mass objects represented as mass-spring systems

Source: The Author

This is the simplest topology of a mass-spring system. The masses mi are
located at positions Xi for 1 i p; spring i connects mi and mi+1.At an interior point I, two
spring forces are applied, one from the spring shared with point i-1 and one from the
spring shared with point i+1.

Each spring can have its own spring constant and rest length. However, usually
the whole chain represents a single object and it’s desired that the whole set of spring
presents the same properties. The spring constant may use real world object constants.
But the rest length is usually set by an artist and exhaustively changed until the desired
behavior is achieved. Note that is not unique to curve masses but for all mass-spring
systems.

Figure 7 shows how a curve mass can be used as a rope on computer games.
The Crazy Penguin Catapult from Digital Chocolate uses a rope to swing the penguin
that is going to be catapulted to battle against the bears.

Capitulo 2. STATE OF THE ART 31

Figura 7 — Crazy Penguin Catapult game from Digital Chocolate [36]

Source: [35]

2.3.2 Surface Masses

Classically, cloth was modeled by using mass-spring systems [37]. The cloth is
modeled as a regular 2D grid where the grid nodes correspond to particles, or masses.
The cloth can be animated by moving the particles, which will deform the regular grid.
We are going to talk about cloth modeling, as presented in Figure 8, and may extend
the same reasoning to other types of objects that are commonly modeled using the
same 2D grid, such as water surfaces.

Capitulo 2. STATE OF THE ART 32

Figura 8 — Cloth Simulation using mass-spring system method

Source: [37]

Springs are not created at random between the cloth particles, but a certain
structure is used to mimic cloth properties. Three types of springs are commonly used:
structural springs, shearing springs and bending springs. These springs are illustrated
in Figure 9.

Figura 9 — Types of spring in a cloth model

S — Bend Springs

— Structural
Springs
—Sheer Springs

Source: The Author

Capitulo 2. STATE OF THE ART 33

Structural Springs are created between each pair of horizontal and vertical
particle neighbors in the regular 2D springs. The purpose of structural springs is to
resist stretching and compression of the cloth. This kind of spring is usually initialized
with very high spring coefficients and with a rest length equal to the interparticle distance.
Keep in mind that, not only for the structural spring but for all types, the values for spring
coefficient and rest length have no real world meaning or counter-part. This is a huge
simplification from the real cloth physics and the best numbers are the ones that give
the best visual results.

Shearing springs are used to make sure that the cloth does not change shape.
Spring coefficient for this type of spring is usually smaller than the ones for structural
springs. Shearing springs are created between diagonal directions in the regular grid.
Thus a particle at a grid location (i, j) will have shearing springs to particles at grid
locations: (i+1, j+1), (i+1, j-1), (-1, j+1) and (i-1, j-1).

Bending springs are inserted to make sure the cloth will not have sharp ridges
when folded. These springs are usually not very strong, since natural cloth does not
strongly resist bending. These springs are created along horizontal and vertical grid
lines, but only between every second particle. Again, for a particle at a grid location (i, j)
will have bending springs to particles at grid locations: (i+2, j), (i, j+2), (-2, j) and (i, j-2).

Varying spring coefficients can be used to model different types of cloths [38]:
cotton, polyester, etc. Mass-spring system can also be used to create cloth animation
for realtime applications [39] like in Figure 10.

Figura 10 — Blue dress modeled using mass-spring systems

Source: [39]

Capitulo 2. STATE OF THE ART 34

The problem with this approach is that only rectangular pieces of cloth can be
modeled efficiently — like flags. However, these concepts can also be used on non-
regular grids with the generalizations made in [29], which can be applied to unstructured
meshes such as arbitrary triangle meshes. Such as the blue dress in Figure 10.

The generalization is simple and is based that in an unstructured mesh we can
define the type of connection between two points, or masses, based on their neighbor
distance. Every edge in the mesh has a cost of 1 and the connection between two
points is given by the number of edges in the shortest path between them, for instance
1-neighborhood for structural springs, 2neighborhood for shear and bending springs.

Generally speaking, the larger the neighborhood size used, the more rigid the
resulting object appears to be. In fact, if the neighborhood size is large enough, springs
will be created between every pair of particles in the mesh, and if the spring constants
are large, then the object will appear completely rigid. Thus we refer to the neighborhood
size as the rigidity factor. The spring creation method was named surface springs in
[29].

This type of representation is particularly good to use with Bézier surfaces.
Rectangular grids of control points are widely used to represent all kinds of objects,
especially on terrain modeling.

2.3.3 Volume Masses

All the ideas presented before can be extended from surfaces to solids. For
instance, given a 3D rectilinear grid, structural, shearing, and bending springs can be
extended straightforwardly to the 3D case. However, one needs to consider spatial
diagonals as well as shearing diagonals. Shearing diagonals will prevent area loss;
spatial diagonals will counterattack volume loss. Keep in mind that the objects have a
rest state they try to preserve; analog to Newton’s second law of dynamics and any
disturbance on this state will create internal forces to annulated it.

Unfortunately, in practice a rectilinear grid or a volume mesh of the solid is not
always available, but instead a 2D surface mesh of the object is given. To make a solid
mesh, a voxelization of the interior of the surface could be performed and the resulting
voxels could be used as a basis for creating a rectilinear grid structure resembling the
solid object. The surface mesh can be coupled to the grid-structure by initially mapping
each vertex into the grid cube containing it. During deformation, the vertex position
can be updated when the rectilinear grid deforms by using trilinear interpolation of the
deformed positions of the grid nodes of the containing grid cube. The mesh coupling
idea is a well-known technique for deformable objects (17).

Although a lot of work has been done in this area, we decided not to explore it in

Capitulo 2. STATE OF THE ART 35

our work. The use of Bézier surfaces already fits with the use of surface meshes. There
is no straightforward analogy to use Bézier with this kind of simulations and adapting it
would just insert new elements that not necessarily yield better visual results.

36

3 BEZIER CURVES AND SURFACES

Originally conceived to aid in the representation of car body parts, Bézier curves
and surfaces have been widely used in computer graphics applications, including
computer games. In this chapter we will present the basic math needed to understand
these geometric tools and how they will be used in our work. For the sake of simplicity
almost all concepts will be presented using Bézier curves. Keep in mind that all also
apply to Bézier surfaces with little or no effort.

A parametric curve defined in three dimensions is given by three univariate
functions:

Q(u) = (X(u), Y(u), Z(u)), where 0 u 1
A parametric curve in Computer Graphics is usually a polynomial:
Q(u) = pg + P1U + P2U? + ... + p,u”, where p; 3

In computer graphics, especially for interactive real-time applications such as
computer games, we normally use cubic polynomials. For degrees greater than 3 there is
a tradeoff between curve flexibility and descriptions that are more cumbersome to work
with. However, there are a number of ways to overcome the limitations of using higher
degrees on curves by using techniques to connect lower degree curves, B-Splines being
the most used for Bézier curves.

The relationship between the shape of the curve and the polynomial coefficients
are not very intuitive. Instead of having to manipulate these coefficients directly, Bézier
provided us with a very intuitive and efficient way to represent the curve using the notion
of control points and basis functions. Taking into account the parametric equation, the
control points are represented by the coefficients and the basis function represented
by the u factor. In Bézier curves and surfaces we use Bernstein polynomials as basis
functions. Bernstein polynomials are defined as below:

B.. (u) = C;"u’(1 - u)"~*, where C,” = n!/ (i{(n-i)!)

If n=3, this generates the basis function for the quadratic Bézier curve as shown
in Figure 12. Interestingly, when n is 1, this generates the blending functions for the
parametric line equation, so we can think of the Bézier curve as a generalization of a
line to higher orders.

Capitulo 3. BEZIER CURVES AND SURFACES 37

Figura 11 — The Bernstein polynomials of degree 3

0.8} \ B° B / ;
0.6} !
0.4} B3 B3 -

0.2} -

O "
0 0.5 1

https://www.researchgate.net/figure/221612648_fig1_Fig-1-The-Bernstein-polynomials-of-degree-3

For a cubic Bézier curve the basis functions are, shown in Figure 11:
Bo,s (u) = (1-u)?
Bis (u) = 3u(1-u)?

By (u) = 3u%(1-u)

Capitulo 3. BEZIER CURVES AND SURFACES 38

Figura 12 — Quadratic Bézier Curve

Source: The Author

These curves show the influence that each control point has on the final curve
form. When u=0 the basis function B0, 3 = 1 while the others are 0. When u=1 the basis
function B3, 3 = 1 while the others are 0. From this we know that when u=0, pO will
have the most influence and when u=1, p3 will have the most influence. The control
points p1 and p2 have the most effect when u=1/3 and u=2/3 respectively. The manner
in which the basis functions affect the shape of the curve is the reason they are called
blending functions. This leads to a very intuitive description of a curve and is easy for
artists to manipulate them. Figure 13 shows a sequence of Bézier curves so the reader
can attest how intuitive the curve is given the control points.

Figura 13 — Different Bézier Curves

http://www.dankalman.net/AUhome/dofiles/doss_e0512bezier.html

Capitulo 3. BEZIER CURVES AND SURFACES 39

3.1 The deCasteljau Algorithm

The way Bézier defined the curves is really good for mathematical purposes
such as proving properties and getting curve derivatives.On the other hand, they have a
high computational cost and their uses on real-time application are restrictive. To make
Bézier curves and surfaces viable for our goal, computer games, we make extensive
use of the deCasteljau algorithm. Historically, it is with this algorithm that the work of
deCasteljau started in 1959. The only written evidence is two technical reports with
confidential material property of Citroen. deCasteljau’s work went unnoticed until 1975,
when W. Boehm obtained copies of the reports in 1975. To demonstrate the algorithm,
we will use linear interpolation for the quadratic case and show how it extends to high
order curves. For the most of the text we will restrict the discussion to quadratic and
cubic cases, but everything can be extended to higher degree curves, though cubic is
the highest order ever used in practice. Let by, b, b, be any three points in 3, and let t .
Construct

bo'(t) = (1-t) by + tb;

b, (t) = (1-t) by + tb,

bo%(t) = (1-t) by (t) + th, (t)

Inserting the two first equations on the third one, we get
bo%(t) = (1-t)2 by + 2t(1-t)b; + t?b,

This construction consists of repeated linear interpolation and its geometry
illustrated in Figure 14. Parabolas are plane curves. However, many applications require
true space curves. For those purposes, the previous construction for a parabola can be
generalized to generate a polynomial curve of arbitrary degree n: Given n control points
by, by, b, be any three points in 3, and lett set

bzr(t) = (1't)b1r_1(t) + tbi+1r_1 (t) forr = 1, ..., N andi= O, N (R

And b,°(t) = b;. Then b,"(t) is the point with parameter value t on the Bézier
curve b™.

Capitulo 3. BEZIER CURVES AND SURFACES 40

Figura 14 — Construction of a Bézier Curve using the deCasteljau algorithm.

ke- - . _ Bezier from de Casteljau
A) h -
L P\
P=(1-)A+ t'B Q= (1-)*B + t*C

T=(01-)(1-t)*A+ (1-H)t"B + t(1-t)*"B + t*t*C

A= (1-4)*K + t:L B=(1-)*L+t*M C=(1-)*M + t*N
T = (14)3*K+(1-2"L + 2(1-2L+2(1-)2*M + (1-)2*M+t>*N

https://people.eecs.berkeley.edu/~sequin/CS284/LECT09/L3.html

3.2 Convex Hull Property

Among all the Bézier curves and surfaces properties, the property known as
convex hull property is the most valuable for us. The importance of the convex hull
property lies in what is known as interference checking and collision test, needed by
physically-based simulations.

Take for instance the example shown on the previous section, where we cons-
tructed a quadratic Bézier curve. For t between 0 and 1 all points generated by b,%(t) are
contained in the triangle formed by by, b; and b,, see Figure 14.

Instead of actually computing a possible intersection for every single point com-
bination — or try to solve the linear equation to check for solutions — we can perform a
much cheaper test: circumscribe the smallest possible box around the control points of
each curve. Since each box contains the control points, and by the convex hull property
they also contain the whole curve, we can test the boxes for collision (a trivial test) and
assure if the two curves do not intersect each other. The high cost tests then are only

Capitulo 3. BEZIER CURVES AND SURFACES 41

used if the hulls intersect each other, since even if this is true we can'’t say for sure the
curves intersect each other as shown in Figure 15. The possibility for a quick decision of
no interference is extremely important, since in practice there are thousands of objects
in a scene to perform collision tests.

Figura 15 — Convex hulls intersect but curves don’t

Source: The Author

3.3 Splines

Bézier curves provide a powerful tool in curve design, but they have some
limitations if the curve has a complex shape and needs lots of control points. As
previously stated, in practice, we only want to use four control points maximum. To
overcome that limitation we make use of a curve composition technique known as
Spline curves. For the purposes of this work, we will focus on cubic and quadratic Spline
curves[11].

A Spline curve s is the continuous map of a collection of intervals uy < ... <
uy, into 3, where each interval [u;, u,,,] is mapped onto a polynomial curve segment,
a Bézier curve. Each real number u; is called a breakpoint or knot. For each interval
on the knot sequence we can define a local parameter t that varies from 0 to 1 while u
varies from u; to u; ;:

t=u-u; /U -U; =u-u;/Ai

Given the notion of global parameter u and local parameters t we can talk about
the whole curve s in terms of u or about the individual segments of s as Bézier curves in
terms of t. We adopt the definition s; for the ith segment of s, and we write s (u) = s; (t).

Capitulo 3. BEZIER CURVES AND SURFACES 42

Suppose we are given two Bézier curves and, with polygons by, ..., b, and b,,,
..., by, respectively. We can say these two Bézier curves defined over u, u u; and
U; U Uu., are r times continuously differentiable at u = u; if and only if

bn+1 =bn_ii (t),|=0, R

3.4 Bézier Patches

At the previous sections we defined Bézier curves and explored some of their
properties. However, most of the geometric models used in cutting edge computer
games can’t be represented by curves. To create shapes like in Figure 16 can be
created using Bézier patches, which are nothing more than an extension of Bézier
curves.

Figura 16 — Freshwater uses a Bézier patches system with procedural displacement waves.

Source: [40]

We can think Bézier patches as a set of curves created using as control points
the points of another Bézier curve. In other words, what if the curve equation was
dependant on two variables instead of one and looked like the one below shown for
quadratic Bézier curves.

From examining the equation for the surface, it is pretty clear that fixing one of
the parameters to a constant value; we can generate a set of control points that can be
used to generate the points on the surface varying the other parameter.

This leads to some useful properties known about Bézier patches. The most im-
portant of all is that since we are forming the surface from Bézier curves, the convex hull

Capitulo 3. BEZIER CURVES AND SURFACES 43

property, used for coarse collision detection, also applies to surfaces. The intermediate
points that generate the final surface points are inside the convex hull of the original
control points hence the final points are inside the hull.

Another important thing to notice is that we can connect surfaces in much the
same way we did on curves. If the patches share the same control points along the
edges, they will join at the Bézier curve defined by those control points. Continuity on
edges are possible if the control points are adjusted to ensure some kind of smooth
connection [11].

44

4 DUNAS FRAMEWORK

This chapter introduces the Dunas Framework that simulates deformable Bézier
models based on physics principles. The first subsection describes the basic pipeline
of the framework. The second one describes the physics component for mass-spring
systems. The Bézier component, created for the Revolution Engine [4], is described
on the forth subsection of this chapter. Following, a brief explanation of the Revolution
engine and how the integration was made. A small section explains how the Dunas
framework should be integrated into the user’s application. In the last section we explain
how the framework should be used to create a rope and a piece of cloth in the form of a
tutorial on how to use Dunas.

4.1 Framework Overview

The Dunas framework was created on top of the Revolution Engine [4]. The
Revolution Engine was chosen based on the familiarity of the author with it, since |
created it, and also because this would be a real test of the engine’s architecture and
design. During the development of the Dunas framework some of the weaknesses of
the Revolution engine were identified and the engine gained some new features, like
the persistence system.

Regarding the Dunas framework, there is one unique processing pipeline that
handles the physics rules to the control points of a Bézier model, either curve or surface.
The whole architecture is based on this pipeline and each of the sections in this chapters
explains how each one of each works.

Capitulo 4. DUNAS FRAMEWORK 45

Figura 17 — Framework Basic Pipeline

(Lipdate Positions ™\ _

Update Velocity

deCasteljau

gamevear

Source: Author

At the first stage of the pipeline on Figure 18, the model is a set of Bézier control
points loaded from a file. A XML file definition was created to feed the engine. The
control points goes into the physics component — responsible for updating the particle’s
position and velocity at each time step - that processes the model using the shape
shifting algorithms. The modified points are input to the Bézier component that applies
the deCasteljau algorithm and create the final model to be rendered by the rendering
visitor of the Revolution Engine, the last step of the pipeline.

Capitulo 4. DUNAS FRAMEWORK 46

4.2 Particle Physics Component

Both of the physics components, mass-spring and finite element method, uses
some basic concepts from physically based modeling such as: Particles, Integrators,
Impulses and Forces. A base framework, called particle physics component from now
on, is built around these concepts and then evolves to more sophisticated components
for mass-spring and finite element methods. A particle has a position but no orientation.

A particle, in this component, has a set of default properties named: position,
mass, velocity and acceleration. At each time step the physics component updates
the particle’s position based on the current velocity and updates the acceleration and
velocity according to the forces acting on it. To calculate these new values of the
properties we use an Integrator.

The integrator consists of two parts: one to update the position of the particle, and
the other to update its velocity. The position will depend on the velocity and acceleration,
while the velocity will depend only on the acceleration. Integration requires a time
interval over which to update the position and the velocity — the time between two
renders. Revolution engine uses a central timer system that calculates the duration of
each frame.

The Dunas framework implements four different integrators — Euler, Runga
Kutta and Implicit Euler - that can be chosen by the user according to the targeted
application. It is important, as a framework, to give the user options. Especially in
matters of integrators since each one of them works better than others according to the
application. The diagram in Figure 19 shows the hierarchy used to handle the different
methods.

Figura 18 — Integrator methods Strategy pattern

Integrator milntegrator Odesofver
+update() +updatel)
| l
|
OdeEuler OdeMidpoint OdeRungeKuttad OdeImplicitEuler

Source: Author

Euler’s integration method is the prototype for a numerical solver for ordinary
differential equations. The function F is a given. Knowing the input time t, a step size h,

Capitulo 4. DUNAS FRAMEWORK 47

and an input state X (t), the method produces an output time t + h and a corresponding
state X(t+h). The general concept is encapsulated by an abstract base class, OdeSolver.

The integrators obey the Strategy design pattern [22]. The OdeSolver works as
the base strategy class that defines the same interface for the supported algorithms.
Each of the algorithms is implemented by a concrete class that extends the base
OdeSolver class. The Integrator class acts as the Context class. The desired algorithm
has its concrete solver is linked to the context. The Verlet method is used to update the
particle’s position at each time step.

The other concept that comes into play is force. To handle multiple forces acting
on a particle at the same time we use the notion of force generators and a force
accumulator that acts according to the D’Alembert’s Principle' . The force accumulator
acts, as the name implies, accumulating forces by the D’Alembert’s principle and then is
used in the integration step.

Figura 19 — Particle Physics Component Architecture

ParticleForceRegistry

-add{particle, fg)
-remove(particle, fg)
+updateForces(duration)

i mRegistry

ParticleForceRegistration

mForceGenerator mParticle
)
ParticleForceGenerator Particle
-mPosition
-mvass
-mivelocity
-mAcceleration
ParticleGravity | ParticleSpring -integrate(duration)
-miGravity | -mOther: Particle
-m5pringConstant
-mRestLength

Source: Author

A force generator is responsible to deal with a wide range of different forces with
different mechanics for their calculation. Some might be constant, others might apply

1

D’Alembert’s Principle, can be simplified to our needs, states that the resultant force acting on an
object can be calculate by simply adding all forces acting on it.

Capitulo 4. DUNAS FRAMEWORK 48

some function to the current properties of the object, some might require user input,
and others might be time based.

ldeally we would like to be able to abstract away the details of how a force is
calculated and allow the physics engine to simply work with forces in general. This
would allow us to apply any number of forces to an object, without the object knowing
the details of how the force is calculated or how it changes over time.

Using the force generators there can by any force generators as there are types
of forces, but each particle doesn’t necessarily needs to know how a force generator
works. The object simply uses a consistent interface to find the force associated with
each generator: these forces can them be accumulated and applied in the integration
step. The whole architecture is in the UML diagram Figure 20.

4.3 Mass-spring component

As stated in the second chapter, the spring mathematics is ruled by Hooke’s law.
Hook discovered that the force exerted by a spring depends only on the distance the
spring is extended or compressed from its rest position. A spring extended twice as far
will exert twice the force. The formula is therefore

F =-k(|d| - 1lp) d

The spring constant k is a value that gives the stiffness of the spring. The same
force is felt at both ends of the spring. In other words, if two particles are connected
by a spring, then they will each be attracted together by the same force, given by the
preceding equation.

The d vector is from the end of the spring attached to the object we’re generating
a force for, to the other end of the spring. It is given by

d=x,4-Xp

Where is the position of the end of the spring attached to the object under consideration,
and is the position of the other end of the spring. The equation is defined in terms of
one end of the spring only (the end attached to the object we are currently considering),
we can use it unmodified for the other end of the spring, when we come to process the
object attached there. Alternatively because the two ends of the springs always pull
toward each other with the same magnitude of force, we know that if the force on one
end if f, then the force on the other will be —.

The force generator used for mass-spring system takes this information into
account and uses an optimized approach calculating the force once for both ends, using
a cache to save the force calculated to one end to same time recalculating it for the
other.

Capitulo 4. DUNAS FRAMEWORK 49

It's not only a coiled metal spring that can be simulated using Hook’s law. It
applies to a huge range of natural phenomena. Anything that has an elastic property
will usually have some limit of elasticity in which Hook’s law applies. The applications
are limitless.

4.4 Bézier Component

This component is responsible to process the deformed control points and
generate the rendering model using the deCasteljau algorithm. The Bézier patch is im-
plemented by the Geometry node in the Revolution’s Scene Graph, since it is intimately
related to this work this section describes how it works despite the fact that it is actually
part of the Revolution Engine and not the Dunas framework.

The revolution engine scene graph store all geometry information in a Geometry
node — except the vertices that are stored in a unified vertex array for performance and
memory improvements. The geometry node is the lowest level structure, scene graph
diagram in Figure 21, in the scene graph and it can be one of five different types [41]:

1) A large polygon (polygon with n vertices);

2) A Bézier patch (npu x npv vertices defining the control mesh);
3) Triangle ‘soup’ (n vertices defining a mesh of triangles;

4) Triangle strip (tri-strip)

5) Triangle fan (tri-fan)

Obviously Dunas uses the Bézier patch type and create some mechanisms,
described in the next section, to update the control points based on a physics simulation,
described in the previous chapter and sections. Revolution stores an organized vertex
array buffer storing the control points so the Geometry node only needs two integers to
reference it (the vertex index followed by number of vertices) and each geometry node
uses a fixed length structure [41].

To create Geometry nodes of Bézier patch type, two particular integers are
specified: the number of control vertices in each direction u and v (npu, npv). The
vertices of each control point are stored in the vertex array. The product of the npu and
npv gives the number of control points, represented as vertices, in the array.

Capitulo 4. DUNAS FRAMEWORK 50

Figura 20 — Revolution Engine Scene Class Diagram

Tasduie Loght Transformation M atanal

BSFHode BoundingVelumahods

Source: [4]

To draw a patch, we use triangle strips. Bézier patches have the advantage that
they can be used as an easy LOD facility [11].

In order to improve performance, and make sure the component has the best
implementation available, Revolution Engine already uses OpenGLs evaluators [4][9].
Our only real concern while rendering Bézier models is to determine the granularity of the
subdivision. However, this is done empirically and creating an appropriate subdivision
strategy can be quite complicated — too complicated to be in the scope of this work.

4.5 Revolution Integration

We now have two physics component that can get an array of vertices and
update their positions based on physics rules. We also have a Bézier component, part
of the Revolution engine, that can use the deCasteljau algorithm to create Bézier curves
and surfaces based on a set of control points. However, we still need an add-on for the
Revolution engine that actually updates the control point at each frame and how it fits in
the engine architecture smoothly. The approach used here can be used with any other
engine to use the physical components created.

For the revolution engine this step is pretty straight forward. At every rendering
step the force generators are updated which in turn updates the vertices attached to it.
The Geometry nodes already reevaluate the mesh points based on the control points
every frame update.

The usual way to create a scene graph is to load it from a scene definition
file. The first work on the Revolution Engine doesn’t mention anything about scene
definition files. To extend the engine, and make it more useful, a scene definition file

Capitulo 4. DUNAS FRAMEWORK

51

and persistence system was created.

Figura 21 — Simplified Architecture of the persistence system.

BezierFactory BSPFactory

+createGeometny() +createScenshioda()

Loader SceneManager
oot
Mode
NodeFactory
+createGeometny ()
+createScenshiods])
+createDecoraton])

Scenelode Decorator Geometry

<< meates>> [

-

<<rreates=>

Source: Author

The persistence system is built around the Abstract Factory design pattern [34].
While loading the scene XML file, the main persistence class makes use of an Abstract
Factory class that based on the tag name uses the appropriate method and returns
a Node. A simplified class diagram is present in Figure 22. Some of the classes are
missing but the core idea is presented. The BSPFactory creates only BSPNode, an
OctreeFactory also exists, for instance. The Figure 23 presents an analog scheme for

the force generators.

The scene XML is pretty simple. It only needs to hold information about a Bé-
zier curve or surface. The Bézier model is defined by the number of control points in
each direction and the control points. The following code is a sample of a possible scene.

Caddigo 4.1 — Scene XML

<node type="geometry"

name="BezierCloth">

<geometry type="bezier" npv="4" npu="4">
<vertex x="-6.0" y="8.0" z="0.0"/>

<vertex x="-2

.Oll y=|l8.0|l Z="0.0"/>

<vertex x="2.0" y="8.0" z="0.0"/>
<vertex x="6.0" y="8.0" z="0.0"/>
<vertex x="-6.0" y="4.0" z="0.0"/>
<vertex x="-2.0" y="4.0" z="0.0"/>
<vertex x="2.0" y="4.0" z="0.0"/>
<vertex x="6.0" y="4.0" z="0.0"/>
<vertex x="-6.0" y="0.0" z="0.0"/>

Capitulo 4. DUNAS FRAMEWORK

52

<vertex x="-2.0" y="0.0" z="0.0"/>
<vertex x="2.0" y="0.0" z="0.0"/>
<vertex x="6.0" y="0.0" z="0.0"/>
<vertex x="-6.0" y="-4.0" z="0.0"/>
<vertex x="-2.0" y="-4.0" z="0.0"/>
<vertex x="2.0" y="-4.0" z="0.0"/>
<vertex x="6.0" y="-4.0" z="0.0"/>
</geometry>

</node>
</scene>

Figura 22 — Physics Creation Persistence System

Source: Author

Loader SceneManager
miRoot
)
MNode
ModeFactory
+createGeometny()
+createScensMode()
+createDecorator])
SceneMode Decorator Geometry
A
<<ireates>>
BezierFactory BSPFactory BSPhode
+createGeometny() +createscensNoce])
<= createss>
Loader
ParticleForce Registry
ParticleForceRegistration
-add(partick, fg) e
-remove(particle, fg) mRegistry
+updateForces{duration))
mForceGanerator
\L ParticleForceG to
ForceGenFactory € reelenerator
+createForceGensrator) R
ParticleFEM ParticleSpring
-mOther: Particle
MasSpringForceFactory FEMForceFactory -rGpringConstant
El -IrRestlength
A
Sameakessy
<<oeates=>

Capitulo 4. DUNAS FRAMEWORK 53

This definition work perfectly to define a Bézier Model. However, the physics
properties can’t be inferred by this definition only. The XML also needs information
regarding how these points’ turns into particles and how they are attached to each other.
In order to do this we include an id property on the geometry tag referencing another
tag that holds the physics properties. This turns the geometry tag into something like:

<geometry type="bezier’ npv="3" npu="3" physics="01">

The reason to put the information on two different tags is to be able to use two
different factories and each one reads only the part of the XML needed. The referen-
ced physics properties must hold particle’s mass and method specific information. For
mass-spring system the information required is the connections between vertices and
the spring constant. The following code is a sample of a mass-spring XML file:

Codigo 4.2 — A particle system representation in XML for the framework

<mass-spring mass="1.5" gravity="-4.87" damping="0.05"
constant="3.0" restlLength="4.0" geometry="BezierCloth">
<!-- structural -->

<connection nodel="0" node2="1"/> <connection nodel="0"
node2="3"/> <connection nodel="1" node2="2"/> <
connection nodel="1" node2="4"/> <connection nodel="2"
node2="3"/> <connection nodel="2" node2="5"/> <
connection nodel="3" node2="6"/> <connection
nodel="4" node2="8"/> <connection nodel="4" node2="5"/
> <connection nodel="5" node2="6"/> <connection
nodel="5" node2="9"/> <connection nodel="6" node2="7"/
> <connection nodel="6" node2="10"/> <connection

nodel="7" node2="11"/>

<connection nodel="8" node2="9"/> <connection nodel="
8" mnode2="12"/> <connection nodel="9" node2="10"/>
<connection nodel="9" node2="13"/> <
connection nodel="10" node2="11"/> <connection
nodel="10" node2="14"/> <connection nodel="11"

node2="15"/>

<connection nodel="12" node2="13"/> <connection nodel
="13" node2="14"/> <connection nodel="14" node2="
15||/>

<!-- bending --> <connection nodel="0" node2="2"/>
<connection nodel="0" node2="8"/> <connection
nodel="1" node2="3"/> <connection nodel="1" node2=
"gn/> <connection nodel="2" node2="10"/>

<connection nodel="4" node2="6"/> <connection nodel="
4" node2="12"/> <connection nodel="5" node2="7"/>
<connection nodel="5" node2="13"/> <connection
nodel="6" node2="14"/>

Capitulo 4. DUNAS FRAMEWORK 54

<connection nodel="8" node2="10"/> <connection nodel=
"9" node2="11"/>

<!-- shear --> <connection nodel="0" node2="5"/>
<connection nodel="1" node2="4"/> <connection
nodel="1" node2="6"/> <connection nodel="2" node2=
"5 /> <connection nodel="2" node2="7"/> <

connection nodel="3" node2="6"/>

<connection nodel="4" node2="9"/> <connection nodel="
5" node2="8"/> <connection nodel="5" node2="10"/>
<connection nodel="6" node2="9"/> <connection
nodel="6" node2="11"/> <connection nodel="7" node2
=|110u/>

<connection nodel="8" node2="13"/> <connection nodel=
"O" node2="12"/> <connection nodel="9" node2="14"/
> <connection nodel="10" node2="13"/> <
connection nodel="10" node2="15"/> <connection
nodel="11" node2="14"/>

</mass-spring>
</dunas>

The particle-system tag states that it is a mass-spring system, the id of the
system reference by the Bézier model definition tag and the spring constant. A list of
connection nodes defines the topology of the spring mesh connecting neighbor nodes
in this particular case.

4.6 The Application Programming Interface

The whole architecture presented is used to simulate mass-spring system. How
the user actually use it is done via one single class, the interface of Dunas to other
systems, called MassSpringSystem.

The MassSpringSystem class does the whole job of interfacing with the Revolu-
tion engine, as described in the previous section, transparently to the user. The user
can either, use the class alone or extend it to create more functionalities, as described
in the next section.

The following class diagram, Figure 24, describes how the MassSpringSystem
class interacts with the rest of the Dunas framework.

Capitulo 4. DUNAS FRAMEWORK 55

Figura 23 — How the MassSpringSystem class is related to Dunas and Revolution (via

Geometry).
ParticleForceGenerator| * 1 | MassSpringSystem mRender Geometry
|
hnﬁwﬂs
)l
Particle ParticleForceRegistry

Source: Author

At the start, the init() method of the class has to be called and inside it the
createParticles() method too, so the MassSpringSystem already knows the correct
geometry node is assigned and the creation of a list of particles, that will be part of the
particle system can be created.

The next step is creating the connection between the particle which can be done
using the persistence system, loading a file, or by code — both ways are explained
in details on the next section. After initialization, the update() method of the Mass-
SpringSystem class needs to be called so it can properly simulate the mass spring
system involved. This should be done by the user in the main game class that extends
the REngine class — also explained in the next section. The following code shows how
this is done in the MassSpringSystem class update() method.

Codigo 4.3 — MassSpringSystem class update() method

void MassSpringSystem::update(real fTimeSincelastFrame)

{
// update forces

mPhysics ->udpateFoces (fTimeSincelastFrame) ;

// update particles

std::vector<pengine::Particle*>::iterator i = mParticles.
begin () ;

int num = O0;

for(; i '= mParticles.end(); i++)

{
(¥i)->integrate (fTimeSincelLastFrame) ;
revolution::Vector3 pos = (*i)->getPosition();
mRender ->setControlPoint2 (num, pos.x, pos.y, pos.z);
num++;

Capitulo 4. DUNAS FRAMEWORK 56

4.7 Using the framework

This last section presents the code of the application used to create the samples
we analyze in details in the next chapter. The explanation is made on the form of a
step-by-step tutorial so the reader is able to recreate the tests alone.

The first step is downloading the library and setup the environment in your
favorite tool for C++ development. In this tutorial we use the Visual C++ 2008 Express
Edition [42] which is free and can be downloaded from Microsoft's website [43]. You
need to create a project in the Visual C++, if you don’t know how to do it there are plenty
of tutorials in the internet that explain how to do it [44].

The Revolution engine and the Dunas framework are both compiled as static
libraries (.lib files). So, after you have created a new Win32 Application (NOT a console
application) in Visual C++, you will need to link the libraries — for the engines and the
libraries they use. In Visual C++ go to Project, Settings, and then click on the LINK tab.
Under “Object/Library Modules” at the beginning of the line (before kernel32.lib) add
Revolution.lib PEngine.lib openGL32.lib glut32.lib ILUT.lib DevIL.lib ILU.lib. Once you've
done this click on OK. You’re now ready to write an OpenGL Windows program.

There is basically two ways to create a physics simulation using Dunas. One is
using coding only and defining the curves and surfaces and attaching it to the physics
engine. This is done in the first sample of this tutorial. The second way is also very
simple and uses the persistence system created in the work to load a Bézier model
and the mass-spring setup defined in XML files. The principle is the same but using the
persistence model gives us a lot more flexibility to test the application since we don’t
need to recompile it each time we want to change any property of the system being it a
control point rest position or the stiffness constant of the system.

To make a rope simulation, using code only, we start by creating a new class
called Rope that extends the MassSpringSystem class from the Dunas Framework.
The MassSpringSystem class is responsible for the integration between the physics
engine, Dunas, and the rendering engine, Revolution. The MassSpringSystem class
has two methods that can be overwritten by the user to customize the system we are
building. The first one is the init() method, where we are going to put the code for
the initialization of the geometry, control points, and the mass-spring system setup,
connection between the particles. The following code is the simple declaration of a class
that extends MassSpringSytem:

Codigo 4.4 — Extending the MassSpringSystem class

#include "MassSpringSystem.h"

namespace revolution { class Geometry; 17

Capitulo 4. DUNAS FRAMEWORK 57

class Rope : public pengine::MassSpringSystem
{
public:
Rope(revolution::Geometry* render);
virtual ~Rope(void);

// init method, load the physics properties and get ready
to render

// this methods should be replaced if no definition file
was 1indicated

void init () ;

+s

The implementation of these methods is very simple, we just need to set a list of
control points and then attach one to another based on any criteria we think it fits. For
this sample we create a simple rope with eight points, horizontally aligned, each one
connected to two others, or just one for the end points.

Codigo 4.5 — Creating the mass-spring system in C++

#include "pfgen.h"
#include "Particle.h"
#include "Geometry.h"

Rope::Rope(revolution::Geometry* render) : pengine::
MassSpringSystem (render)

{17

// init method, load the physics properties and get ready to
render

// this methods should be replaced if no definition file was
indicated
void Rope::init ()
{
mParticleMass = .5f; mDamping = 0.15f; mGravity = -4.87
f;

// create a simple rope with a set of points vertically
aligned
for (int i = 0; i < 8; i++) A mRender ->
setControlPoint2(i, -16.0f + ix*x2, 12.3f, 0.0f); }

// this methods needs to be called so the MassSpringSystem
class // can create the particles based on the
mControlPoints just set
createParticles () ;

revolution::real restLength = 2.0f;
revolution::real springConstant = 35.f;

// create connectins, springs

Capitulo 4. DUNAS FRAMEWORK 58

pengine::ParticleAnchoredSpring* springBA = new
pengine::ParticleAnchoredSpring/(new revolution::
Vector3(-16.f, 12.3f, 0.f), springConstant, restlLength
)

mPhysics ->add (mParticles [1], springBA);

pengine::ParticleSpring* springBC = new pengine::
ParticleSpring(mParticles [2], springConstant,
restlLength) ;

mPhysics ->add (mParticles [1], springBC);

pengine::ParticleSpring* springCB = new pengine::
ParticleSpring(mParticles [1], springConstant,
restlLength) ;

mPhysics ->add (mParticles [2], springCB);

pengine::ParticleSpring* springCD = new pengine::
ParticleSpring(mParticles [3], springConstant,
restlength) ;

mPhysics ->add (mParticles [2], springCD);

pengine::ParticleSpring* springDC = new pengine::
ParticleSpring(mParticles [2], springConstant,
restlength) ;

mPhysics ->add (mParticles [3], springDC);

pengine::ParticleSpring* springDE = new pengine::
ParticleSpring(mParticles [4], springConstant,
restlength) ;

mPhysics ->add (mParticles [3], springDE);

pengine::ParticleSpring* springED = new pengine::
ParticleSpring(mParticles [3], springConstant,
restlLength) ;

mPhysics ->add (mParticles [4], springED);

pengine::ParticleSpring* springEF = new pengine::
ParticleSpring(mParticles [6], springConstant,
restlLength) ;

mPhysics ->add (mParticles [4], springEF);

pengine::ParticleSpring* springFE = new pengine::
ParticleSpring(mParticles [4], springConstant,
restlLength) ;

mPhysics ->add (mParticles [56], springFE);

pengine::ParticleSpring* springFG = new pengine::
ParticleSpring(mParticles [6], springConstant,
restLength) ;

mPhysics ->add (mParticles [56], springFG);

pengine::ParticleSpring* springGF = new pengine::
ParticleSpring(mParticles [5], springConstant,
restlength) ;

mPhysics ->add (mParticles [6], springGF);

Capitulo 4. DUNAS FRAMEWORK 59

pengine::ParticleSpring* springGH = new pengine::
ParticleSpring(mParticles [7], springConstant,
restlLength) ;

mPhysics ->add (mParticles [6], springGH);

pengine::ParticleSpring* springHG = new pengine::
ParticleSpring(mParticles [6], springConstant,
restlLength) ;

mPhysics ->add (mParticles [7], springHG);

// store springs to correct simulation mSprings.push_back(
springBA); mSprings.push_back(springBC); mSprings.push_
back (springCB); mSprings.push_back(springCD); mSprings.
push_back(springDC); mSprings.push_back(springDE);
mSprings.push_back (springED); mSprings.push_back(springEF
); mSprings.push_back(springFE); mSprings.push_back(
springFG); mSprings.push_back(springGF); mSprings.push_
back (springGH); mSprings.push_back(springHG);

The next part is creating a simple Revolution application and attaches this code
to it so we can see how the system acts. In order to do that, we need to talk a bit
more about the Revolution and how we create an application to use it. Each Revolution
application has to extend the REngine class and override the methods: update() and
init(). Above, the code with the Game class declaration that does this job:

Caddigo 4.6 — Declaring the game class

#include "REngine.h"

// ahead declaration namespace pengine
{
class MassSpringSystem;

}

class Game : public revolution::REngine {

private:

/%% * Rope animation * /
pengine::MassSpringSystem* mRope;

public: Game(void); “Game(void);
/ * % * Start the engine and does all persistence loading
operations * /

void init () ;

/ * % * update * /
void update(revolution::real fTimeSincelLastFrame);

+s

This class overrides the REngine class and has an instance of a mass spring

Capitulo 4. DUNAS FRAMEWORK 60

system from the physics engine (mRope) that does the simulation, as we will describe
earlier.

The init() method is responsible for the whole initialization and it's where we tell
Dunas to load the scene definition and where it should be placed on the Scene Graph.
The update() methods is the main loop of the engine and is called each frame before
rendering. We should tell the Dunas framework to update the simulation every frame
so Revolution can render it correctly, we do this by calling the update() method of the
MassSpringSystem instance we are using. The code, for both methods, is very simple
as the following code shows:

Caodigo 4.7 — Implementing the game class

Game:: " Game (void) { if (mRope) delete mRope; }

/ * % * Start the engine and does all persistence loading
operations */
void Game::init () {
// create the geometry node to hold the bézier curve and
attach it to
// the scene graph so it can be rendered
revolution::Geometry* geo = new revolution::Geometry (
revolution::Geometry::BEZIER_CURVE) ;
getSceneManager () .getRoot () ->addChild (geo) ;

// create the mass-spring system and initialize it
mRope = new Rope(geo); mRope->init();

}

/**x % update */
void Game::update(revolution::real fTimeSincelLastFrame)

{
if (mRope) mRope->update(fTimeSincelLastFrame) ;
}

Now, we just need to compile and run the code and see the OpenGL window
opened and rendering the simulation, Figure 25. Next, we show how we do the same
thing, however, using the persistence system.

Capitulo 4. DUNAS FRAMEWORK 61

Figura 24 — Screenshots of the rope simulation running

I Dunas SamEe

Source: Author

The basic difference in this way is that the init() method have to load the geometry
node, with the Bézier curve, and the mass-spring setup of the physics simulation stored
on XML files. This is done using the persistence function on the SceneManager and
MassSpringSystem classes. In this sample we are going to load a cloth piece, using a
Bézier surface, instead of a rope, using a Bézier curve. We are going to use inheritance
again, this time with a class named Cloth that also extends the MassSpringSystem, as
shown in the following code:

Caodigo 4.8 — Declaration of the cloth class. The implementation would be similar to the rope one
but with a surface.

namespace revolution { class Geometry,; 17

class Cloth : public pengine::MassSpringSystem
{
public:
Cloth(revolution::Geometry* render) ;
virtual “~Cloth(void);

// init method, load the physics properties and get ready to
render
// this methods should be replaced if no definition file was
indicated
void init () ;

}s

After loading the scene, the geometry node containing the Bézier model is
retrieved from the scene in order to be attached to a mass-spring system. Note that the
geometry node can be created by code, without the need to define a file with the curve
control points as we did in the previous sample. However, the file system permits a far

Capitulo 4. DUNAS FRAMEWORK 62

more flexible architecture and the possibility of non-coders to change the control points
without recompiling. After that, we need to attach the geometry node to the mass-spring
system with the proper simulation and load the connections, as shown in the code for
the init() method of the Game class. The Game class is basically the same, as declared
before, but with minor changes as shown in the following code rop

Cddigo 4.9 — Implementation of the Game class for the cloth simulation

#include "Geometry.h"
#include "SceneManager.h"
#include "Cloth.h"

Game:: Game (void) : mCloth(0) { }
Game :: " Game(void) { if (mCloth) delete mCloth; }

/ % * * Start the engine and does all persistence loading
operations */
void Game::init () A

// load the scene from the file
getSceneManager () .loadFromFile("Cloth.xml") ;
// retrieve the geometry node that has the desired system to
simulate
revolution::Geometry* geo = (revolution::Geometryx*)
getSceneManager () .getNode ("BezierCloth") ;

// create the mass-spring system
mCloth = new Cloth(geo);
// load the connections
mCloth->loadFromFile ("ClothPhysicsSystem.xml"); // init it
mCloth->init (); %}

/** *x update */
void Game::update(revolution::real fTimeSincelLastFrame)

{
if (mCloth) mCloth->update(fTimeSincelLastFrame) ;

}

Now, we just need to compile and run the code and see the OpenGL window
opened and rendering the simulation, Figure 26 — the files used were the XML samples
given earlier. Note that this time we just need to change things from the xml files and
run the program again to see the changes.

Capitulo 4. DUNAS FRAMEWORK

63

Figura 25 — Screenshots of the cloth simulation running

Source: Author

64

5 RESULTS AND FUTURE WORK

This chapter presents some final considerations about this work and the main
topics discussed by it, including the results of the study cases made using the framework
and some work that can be done in the future the extend it.

5.1 Test Framework

As previously described in the first chapter, each sample will be evaluated using
the following variables:

Physically-based technique used

Implementation

— for Bézier curves if applicable
— for Bézier surfaces if applicable

— Simple UML static and dynamic models

 Performance of the technique in terms of frames per second and pre-computation
required by the method

» Time to implement the technique and difficulty to integrate a renderer

+ Images with visual results o Using wire-frame rendering o Using real-time illumi-
nation techniques supported by OpenGL 2.0
All the tests were made using

* C++ Programming Language, Visual C++ 2008 Express Edition and OpenGL
and Glut [10] (used by the Revolution Engine)

» Flash CS3 and Action Script 3.0

» Computer ASUS Notebook G1 Series

— Intel® Core™2 Duo CPU T7700 @ 2.40GHz
- 2 GBytes RAM Memory

— Windows Vista Home Premium

Each of the samples is based on an already established application of the
physics model or Bézier model that could be improved by animation. For the mass-
spring physical method three samples were made for ropes, clothes and water. On the
other hand, Bézier surfaces are widely used for smooth terrains and cloth models.

Capitulo 5. RESULTS AND FUTURE WORK 65

The following sections describe a sample each. The description of the sample
discusses the points previously stated to compare the regular implementation with the
implementation used in Dunas. The sections also talks about applications on problems
of the real world that could use the sample — mostly games.

5.2 Mass-spring Rope

The first experiment is a 2D rope simulation. This simulation was motivated by a
real problem on a game from Digital Chocolate [35] named Crazy Penguin Catapult[36].
The game is originally designed for mobile devices, by Digital Chocolate, and was ported
to Flash to be playable on the web.

The Flash version of the game was created by Jynx Playware[45] where | had
the chance to be part of the team that developed the game. The game consists of a war
between penguins, which is controlled by the player, and bears. The bears kidnapped
some of the penguins and now the penguin’s army must rescue them all. The first part
of each level has a catapult that throws the penguins to the fight against the bears. Each
penguin swings attached to a rope and with the click of the mouse, it is catapulted.

A regular rope is easily created using mass-spring systems by just attaching a
series of particles in a chain (the theory is based on the curve masses explained on the
state of the art chapter). Like the following image:

Figura 26 — Rope modeled as a mass-spring system for the game

Source: Author

To create the desired behavior of the rope at least thirty particles were needed
using a regular mass spring system . For a personal computer game, this number of
particles is really low and wouldn’t be a problem to create the simulation according to
the game designer’s requirements. However, the Flash runtime would only render eight
to fifteen frames per second on high-end machine with incredible setups - much higher
then the required by the client. This frame per second rate is unacceptable in modern
games. This problem is even worse in Flash games since most of them are frame
based, which means that players can take advantage of slower machines or even use
intensive applications to purposely influence on the game’s performance. This makes
performance on Flash games crucial to maintain competition and proper gameplay.

Using the Dunas approach, we were able to create a very similar behavior using
only eight particles. Using eight particles in the regular approach would give us a very

Capitulo 5. RESULTS AND FUTURE WORK 66

simple rope and the resulting image unacceptable for today’s standards. However, the
smoothing process of the deCasteljau algorithm creates very good images as shown in
Figure 28.

Figura 27 — Rope in the game Crazy Penguin Catapult

i

Source: [36]

In summary, Dunas not only gives us a realistic dynamic simulation of the rope
using mass spring system but, at the same time, provides very good visual results even
using an inexpensive number of particles in the simulation. The following images, Figure
29 to 32, shows the difference between two ropes simulated using only 8 particles, with
a regular approach (in yellow, on the right) and with Dunas approach (in white, on the
left).

Capitulo 5. RESULTS AND FUTURE WORK 67

Figura 28 — Two ropes simulated with and without smoothing

¢ DunasSample e = et S

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 68

Figura 29 — Smoothing the rope process on the left rope (white)

[

b A

Dunas Sample

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 69

Figura 30 — Third screenshot of the smooth comparison

C DunasSample e o=l e

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 70

Figura 31 — Forth screenshot of the smooth comparison

[&= Dunas Sample s _

Source: Author

A second Flash game developed by Manifesto Game Studio Ltda [47] was named
Merlin’s Adventure 3 [46]. In this game, Merlin is attached by a rope to Santa’s sleigh
that is been stolen by a gang of avocados. The rope in this game must use very few
particles as explained before. The results are outstanding since we end up with a nicely
rendered rope with realistic dynamics simulation as shown in Figure 33.

Capitulo 5. RESULTS AND FUTURE WORK 71

Figura 32 — Merlin’s Adventures Game

QD

Source: [46]

This game is a bit different from the above, the physics simulation is used as
a gameplay factor and the correct behavior doesn’t necessarily imitate a real world

Capitulo 5. RESULTS AND FUTURE WORK 72

rope. However, using the Dunas approach, the game designer was able to create a fun
game and still get a smooth rope with a nice graphical result. The configuration used
is shown in the Figure 33. This configuration is pretty non-intuitive and was achieved
with a lot of extensive tests. This sample is a good example that, even in cases that we
don’t want realistic simulation, the Dunas approach doesn'’t affect the great ability about
mass-spring system.

Figura 33 — Mass-spring setup for the Merlin’s Game. All particles are connected to the first
one. They are also connected to the nearest neighbors, as the usual.

Source: Author

5.3 Mass-Spring Cloth

The first experiment gave us incredible results for 2D objects in low processing
power platforms. On the other hand, we wanted samples that could use the same
approach and solve problems for games on personal computers. One of the most
challenging aspects of today’s games is the simulation of cloth. Some work has been
done in the area and we follow the same approach presented in [39] that uses mass-
spring system. However, we also use the Bézier techniques to smooth the surfaces and
drop the number of particles needed for the simulation.

The whole implementation of this sample was presented in the last section of the
previous chapter. Here we show the results and compare them, in terms of performance
and graphics, to the original approach. The sample uses a rectangular mesh of control
points to simulate physics and can be used as a model of sails in boats. As you can

Capitulo 5. RESULTS AND FUTURE WORK 73

see in Figures 34, 35 and 36, the results can be pretty good using only 64 (an 8x8 grid)
particles. To achieve similar results without the smooth mechanism of the deCasteljau
algorithms we need at least 400 particles (a 20x20 grid). The following table shows a
comparison of the setups.

Tabela 1 — Comparison of regular techniques for cloth simulation and the dunas approach.

Technique Particles Connections
Regular 400 ~3000
Dunas 64 ~512

Source: Author

By the table becomes clear the improvement in performance we achieve using
the Dunas approach. The Dunas framework is up to four times faster then the regular
approach. This means that in a game scene with a ship battles we can have four
times more ships in the sea using the cloth simulation for their ropes. This is a huge
improvement if you think that instead of 25 boats, we can use 100. The Figure 38 shows
a game, named 7Seas developed for the Computer Games course. The game achieves
high frame rates, above 30 fps, with scene with more then 10 boats.

Capitulo 5. RESULTS AND FUTURE WORK 74

Figura 34 — Screenshot of the sail simulation running

C Dunas Sampie R = e]

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 75

Figura 35 — Second screenshot of the sail simulation runnning

&

Dunas Sample

O T (o 5 et

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 76

Figura 36 — Third Screenshot of the sail simulation running

&

Dunas Sample

O T (o 5 et

Source: Author

Capitulo 5. RESULTS AND FUTURE WORK 77

Figura 37 — Sails running on the boat of a test game

 Latitude: 0.000
| Lomgitude: 6.365

b ilocidude: 5.00

Source: Author

5.4 Future Work

During the development of this work there were lots of interesting ideas to
improve the usefulness of the Dunas framework. These ideas are presented here as
suggestion for future works on the area.

Our model provides a simple yet effective method for realistic modeling of ropes
and clothes in real time. The simulations look realistic and were used with success in a
commercial project released to the public with tremendous success.

There is still a lot of room for improvement. The first step would be creating a
good framework for collision detection with other objects and self-collision of rope and
cloth. This would improve the realism for the dynamic simulation and the convex hull
property of Bézier models is extremely helpful to this task.

Another open problem is the collision of objects with the cloth itself and not
just the particles involved in the simulation. This is still an open problem in cloth
simulation. The collision systems usually only take into account the particles involved in
the simulation and small objects can easily pass through the cloth without being noticed.

Capitulo 5. RESULTS AND FUTURE WORK 78

This problem is especially important to our work since the number of particles involved
in the simulation is even low.

Taking a more mathematical approach to the problem and actually adapt the
physics algorithms to work on the control points and the result being the same as if it
were acting on the surface itself. There would result in changing the equations of force
and motion based on Bernstein equations from Bézier theory. This kind of work is being
done for batch application and other computer aided areas using Bézier B-Splines, but
not for real-time interactive applications with significant results yet.

Some issues are specific to the method we use to smooth the model. The Bézier
method is not suitable for surfaces that need details, this is the case for the simulation
of water, for example. To simulate water we need a lot of control points in the Bézier
Surface so the details wouldn‘t be lost by the smoothing process. However, increasing
the number of particles goes against the idea of using Dunas. Some other methods for
surface smoothing could be tested and be used for other kinds of models, other than
cloth and ropes.

Every year the hardware industry creates new pieces of dedicated hardware for
personal computers. Since 1999 Graphics Processing Units have been widely used in
computer games, especially after the introduction of programmable pipelines for these
cards. One of the major players on the industry, nVIDIA, just released Physically Proces-
sing Units and the idea is to improve the support of physics on real-time applications. In
this context, it is necessary to adapt all algorithms that can benefit from this hardware of
specific purpose. So, a good extension to the Dunas framework would be to use GPUs
and PPUs to process some of the algorithms.

The framework created during the course of this work was implemented using
the C++ programming language and the Revolution Engine [4]. However, the techniques
used here can be useful in a handful of platforms that these technologies don’t work
such as Flash Games, J2ME Games, iPhone Games, etc. The port of the framework
to other languages would make possible the physics mechanics it can provide, as
discussed in the previous section.

Dunas is just a little part of a whole game engine. The Revolution Engine started
as a graduation project and still has lots of improvements and coding to be done. Using
the undergraduate students to implements some of the algorithms for both parts of the
engine would be a good way to evaluate the student but to create knowledge inside the
University [6].

New improvements added to Dunas are intended to be reported in the Revolution
project website (www.cin.ufpe.br/~mtcfa/Revolution), which also provides a link to
download the binaries of the engine and sample codes. The 7Seas Games can also be

Capitulo 5. RESULTS AND FUTURE WORK

79

downloaded from the same webpage.

(1,2,3,4,5,6)

80

REFERENCES

[1] KASS, M.; WITKIN, A.; TERZOPOULOS, D. Snakes: Active contour models.
International Journal of Computer Vision, 1, 4, 321-331, 1987.

[2] KAVAN, L, ZARA, J. Real Time Skin Deformation with Bones Blending. In: WINTER
SCHOOL OF COMPUTER GRAPHICS, 2003, Plzen, WSCG SHORT PAPERS
proceedings. Union Agency Science Press, 2003.

[3] BARAFF, D.; WITKIN, A. Large Steps in Cloth Simulation. In: INTERNATIONAL
CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES,
1998, United State, Proceedings of the 25th annual conference on Computer Graphics and
interactive techniques, New York: ACM, 1998.43-54

[4] ALBUQUERQUE, M. Revolution Engine: 3D Game Engine Architecture (in Portuguese),
BS conclusion paper, Federal University of Pernambuco, 2005;

[5] ROCHA, E. Forge 16V: An Isometric Game Development Framework (in Portuguese),
MSc dissertation, Federal University of Pernambuco, 2003;

[6] MADEIRA, C. FORGE V8: A Computer Games and Multimedia Applications
Development Framework (in Portuguese), MSc dissertation, Federal University of
Pernambuco, 2003;

[7] Microsoft.com, The Xbox Console, http://www.microsoft.com/xbox; Visited in:
December, 1st 2008

[8] Playstation.com, PlayStation Console, http://www.us.playstation.com; Visited in:
December, 1st 2008

[9] OpenGL.org, About the OpenGL Architecture Review Board,
http://www.opengl.org/about/arb/overview.html; Visited in: December, 1st 2008.

[10] OpenGL.org, GLUT - The OpenGL Utility Toolkit,
http://www.opengl.org/resources/libraries/glut.html; Visited in: December, 1st 2008.

[11] FARIN, G. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, 1990.

[12] GIBSON, S.; MIRTICH. A survey of deformable modeling in computer graphics.
Technical Report TR97-19, MERL Technical Report, 1997.

[13] Popcap.com, Popcap Games, http://www.popcap.com/; Visited in: December, 1st 2008.

[14] Bigfish.com, Bigfish Games, http://www.bigfishgames.com/; Visited in: December, 1st
2008.

[15] RealArcade.com, Real Arcade,
http://brazil.real.com/games/lIp/?src=realarcade&tps=br_; Visited in: December, 1st 2008.

[16] Adobe.com, Adobe Flash Player, http://www.adobe.com/products/flashplayer/; Visited
in: December, 1st 2008.

[17] OSHITA, M.; MAKINOUCHI, A.; Real-time Cloth Simulation with Sparse Particles
and Curved Faces, Computer Animation 2001, 8 pages, November 2001.

[18] RUDOMIN, I.; CASTILO, J. Real-Time Clothing: Geometry and Physics. In: WINTER
SCHOOL OF COMPUTER GRAPHICS, 2002, Plzen, WSCG SHORT PAPERS
proceedings. Union Agency Science Press, 2002.

[19] RUDOMIN, I., MELON, M.A.: Multi-Layer Garment Using Hybrid Models, Visual
2000 Proceedings, pp.118-128, 2000.

[20] Java.sun.com, The Java ME Platform, http://java.sun.com/javame/index.jsp/; Visited in:
December, 1st 2008.

[21] Uml.org, Object Management Group — UML, http://www.uml.org; Visited in:
December, 1st 2008.

[22] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995;

81

[23] MOORE, P.; MOLLOY, D; A Survey of Computer Based Deformable Models. In:
Machine Vision and Image Processing Conference, 2007. Kildare, IMVIP Proceedings,
5566, 2007.

[24] HERTZMANN, A.. Machine Learning for Computer Graphics: A Manifesto and
Tutorial. Proc. Pacific Graphics 2003. Invited Paper. Banff, Alberta. October, 2003. pp.
2236.

[25] QIN, H.; TERZOPOLOUS, D.; D-NURBS: A Physics-Based Framework for Geometric
Design. In: IEEE Transactions on Visualization and Computer Graphics, VOL. 2, NO. 1,
March 1996.

[26] SEDEBERG, T. W.; PARRY, S. R.; Free-form deformation of solid geometric models.
In: Proceedings of SIGGRAPH 1986, pages 151-160, 1986.

[27] HUNTER, P.; FEM/BEM notes 2005. Available in
http://www.goop.com/schoolbooks/viewpdf.php?pdfurl=http://SchoolLibrary.com/Membe
rs/
Math_eBook_Collection/Finite_Element_Method __Boundary Element_Method.pdf&title
=FEM/BEM+NOTES Visited in: December, 1st 2008.

[28] NEALEN, A.; MULLER, M.; KEISER, R.; BOXERMAN, E.; CARLSON, M.;
Physically Based Deformable Models in Computer Graphics. Journal compilation 2008
The Eurographics Association and Blackwell Publishing Ltd. Volume 25 Issue 4, Pages
809 - 836, 2008.

[29] ROTH, S.; GROSS, M.; TURELLDO, S.; CARLS, F.; A Bernstein-Bézier Approach to
Soft Tissue Simulation. In: EUROGRAPHICS, 1998, Proceedings of Eurographics 98,
Blackwell Publishers, Volume 17, Number 3, 1998.

[30] SCHELKLE, E; REMENSPERGER, R.; Integrated Occupant-Car Crash Simulation
With the Finite Element Method: the Porsche Hybrid lii-Dummy and Airbag Model. In:
International Congress & Exposition, 1991. Detroit, M.

[31]] TERZOPOULOQS, D.; QIN, H.; Dynamic NURBS with geometric constraints for
interactive sculpting. ACM Transactions on Graphics, Volume 13, Issue 2, April 1994.
103136.

[32] QIN, H.; FEM-Based Dynamic Subdivision Splines. In: Pacific Conference on
Computer Graphics and Applications. Proceedings of the 8th Pacific Conference on
Computer Graphics and Applications. 2000, IEEE Computer Society Publisher. 184

[33] HUI, C.; HANQIU, S.; XIAOGANG, J.; Interactive Haptic Deformation of Dynamic
Soft Objects. In: CM International Conference on Virtual Reality Continuum and Its
Applications VRCIA. Proceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications. 2006. 51-57.

[34] VLACHOQOS, A.; PETERS, J.; BOYD, C.; MITCHEL, J.; Curved PN Triangles, Proc. of
the 2001 ACM Symposium on Interactive 3D Graphics, 2001.
(http://alex.vlachos.com/graphics/)

[35] DigitalChocolate.com, Digital Chocolate, http://www.digitalchocolate.com/; Visited in:
December, 1st 2008.

[36] DigitalChocolate.com, Crazy Penguin Catapult,
http://www.digitalchocolate.com/games/pc/crazy-penguin-catapult.html; Visited in:
December, 1st 2008.

[37] PROVOT, X.; Deformation Constraints in a Mass-Spring Model to Describe Rigid
Cloth Behavior, In Proc. Graphics Interface '95, pp 147-154, 1995.

[38] HOUSE, D.; BREEN, D.; Cloth Modeling and Animation. s.l.: A.K. Peters, 2000.

[39] Gamasutra.com. Devil in the Blue-Faceted Dress: Real-Time Cloth Animation. Visited
in: December, 1st 2008.

82

[40] Fresh3D.com. A unique architecture for unique results.
http://www.fresh3d.com/fresh_engine/overview.php. Visited in: December, 1st 2008.

[41] WATT, A.; POLICARPO, F.; 3D Games: Animation and Advanced Real-time
Rendering. Harlow, Addison-Wesley, 2003.

[42] Microsoft.com. Visual C++ 2008 Express Edition,
http://www.microsoft.com/express/vc/. Visited in December, 1st 2008.

[43] Microsoft.com. Visual C++ 2008 Express Edition Download,
http://www.microsoft.com/express/download/. Visited in December, 1st 2008.

[44] MrMoen.com, OpenGL with Visual C++ 2008 Express Edition.
http://www.mrmoen.com/2008/03/30/opengl-with-visual-c-express-edition/. Visited in
November, 24th 2008.

[45] Jynx.com.br. Jynx Playware. http://www.jynx.com.br. Visited in December, 1st 2008.

[46] Manifestogames.com.br. Merlin Adventures.
http://manifestogames.com.br/?page=game&name=merlin3, Visited in December, 1st
2008.

[47] Manifestogames.com.br. Manifesto Game Studio. http://www.manifestogames.com.br/,
Visited in December, 1st 2008

APENDICES

83

84

Appendix A — NURBS AND BEZIER POOL

This appendix shows the pool with professional designers in Recife regarding the
utilization of Bézier curves and surfaces and NURBS. This pool was made with seventeen
designers that work professionally in the area of game development in Recife. The original
pool, in Portuguese, can be found at http://spreadsheets.google.com/viewform?key=p8ohC-
Au_bD-x6geoThYEfA.

1. Do you know the term Bézier Models?

— No 2

2. How comfortable do you feel about using Bézier Models?

g—
Comfortable
—, 2 Little Comfortable

— O Not Comfortable

7 Very Comforable

3. How would you classify Bézier Models?

Very Eazy
Eazv
Neither Easy or Hard
Hard

Very Hard

4. Do you know the term NURBS?

No 7

Yes 10

5. How comfortable do you feel about using NURBS?

—— 4 Not Comfortable

Little Comfortable g— — 0 Very Comfortable

4 Comfortable

85

6. How would you classify NURBS?

Very Easy
Easy
Neither Easy or Hard
Hard

Very Hard

7. Which one would you use more?

Bezier &

—MNURES 2

86

