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RESUMO 

 

Os sistemas de medição instantânea de frequência (IFM, do inglês Instantaneous Frequency 

Measurement) são amplamente utilizados para fins militares em sistemas eletrônicos de 

inteligência para a detecção de sinais desconhecidos com velocidade e precisão sem a 

necessidade de uma varredura de frequência. Além disso, o aumento da quantidade de 

dispositivos para a comunicação sem fio faz crescer a importância da identificação da 

frequência de sinais desconhecidos. Receptores convencionais de IFM contêm um 

amplificador limitador, um divisor de potência, interferômetros, detectores e um conversor 

analógico-digital. Os interferômetros fornecem diferentes atrasos que criam um padrão de 

interferência construtivo-destrutiva para a medição instantânea da frequência. A resolução do 

sistema de IFM depende do comprimento das linhas de atrasos, o que torna, na prática, o 

principal elemento desse subsistema. Devido a sua propriedade de preenchimento do espaço, 

a curva fractal de Hilbert é apresentada neste trabalho para a implementação de 

interferômetros com tamanhos reduzidos. Os interferômetros consistem em dois 

divisores/combinadores de Wilkinson conectados a duas linhas de microfita com diferentes 

atrasos; uma linha é uma linha reta (referência) e a outra é a curva de Hilbert em alguma 

iteração.  Quatro interferômetros utilizando essa configuração são aqui propostos para compor 

um sistema IFM 4 bits, e resultados teóricos, de simulação e práticos são comparados. 

 

Palavras-chave: Dispositivos de micro-ondas. Microfita. Interferômetro. IFM. Fractal de 

Hilbert. Miniaturização. 
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ABSTRACT 

 

Instantaneous Frequency Measurement (IFM) systems are widely used in electronic warfare 

and electronic intelligence systems for determinate, at the same time, all the frequencies of the 

band for which it was designed without the need of spectrum scanning, instantly detecting the 

unknown signals. Furthermore, the increased amount of wireless devices increases the 

importance of devices to identify unknown signals. The interferometers provide different time 

delay intervals, where the delay signals are compared with the original ones for measuring the 

instantaneous frequency. The frequency resolution of the instantaneous frequency 

measurement (IFM) depends on the length of the delays, which become, in practice, the main 

elements of the subsystem. The fractal Hilbert is a space filling curve with being self-similar 

and simple geometry, because of this feature it is used in this work to design compact   

interferometers. The interferometers use two-way Wilkinson power dividers connected to two 

microstrip line with different signal delays, where one of these microstrip lines is based on 

some Hilbert fractal curve iteration. Four interferometer with this configuration are presented 

here. A full wave EM simulator is used to obtain the frequency response. Mesured results are 

compared to theoretical and simulated results. 

 

 

Keywords: Microwave devices. Microstrip line. Interferometer. IFM. Hilbert Fractal. 

Miniaturization. 
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1 INTRODUÇÃO 

Sistemas de medição instantânea de frequências (do inglês, Instantaneous Frequency 

Measurement - IFM) são amplamente utilizados em sistemas eletrônicos para fins militares 

(Electronic Warfare – EW), em sistemas de comunicações por radar e em sistemas eletrônicos 

de inteligência para determinar instantaneamente a frequência de um sinal desconhecido sem 

a necessidade de uma varredura na frequência [1]. Ele também é utilizado em sistemas de 

comunicação onde é necessário a identificação da fonte emissora, sintonia da portadora, 

multiplexação e separação de sinais [2]. 

Nos últimos 50 anos, esses sistemas têm se aprimorado, e atualmente são capazes de 

medir amplitude, largura do pulso, tempo de chegada, direção e distância da fonte emissora 

para sinais RF (Rádio Frequência) pulsados e CW (Continuos Wave) [1], [3]. O 

desenvolvimento de circuitos com frequência de clock na casa dos GHz, de conversores 

analógicos-digitais (AD) e da tecnologia de amostragem também tem possibilitado o uso de 

técnicas digitais para a identificação de frequências [3].  Técnicas de Microwave Photonics 

também têm sido utilizadas para essa finalidade. Discriminadores de frequência que utilizam 

essas técnicas apresentam resolução menor que os sistemas comerciais e têm alto consumo de 

energia, como vantagem eles apresentam maior largura de banda e imunidade a interferências 

eletromagnéticas [4], [5], [6].  

Receptores convencionais de IFM contêm um amplificador limitador, um divisor de 

potência, interferômetros, detectores e um conversor analógico-digital. Os interferômetros 

fornecem diferentes atrasos que criam um padrão de interferência construtivo-destrutiva para 

a medição da frequência instantânea. A resolução do sistema de IFM depende do 

comprimento das linhas de atrasos, o que torna, na prática, o principal elemento desse 

subsistema. Para se obter uma conversão digital das frequências analógicas, vários 

interferômetros em paralelos são utilizados e um nível de tensão no detector é escolhido para 

cada interferômetro que corresponde a um bit para a conversão AD. Se as bandas de transição 

são escolhidas corretamente, a saída digital será um conjunto de n bits, e o sistema poderá 

identificar 2
n
 sub-bandas distintas. 

Em [7], um interferômetro baseado em linhas coplanares (CPS) foi estudado para 

aplicação em sistema IFM. Este interferômetro utiliza uma linha de meandro simples em 

diferentes comprimentos para obter os atrasos desejados. Assim, as dimensões dos 

dispositivos aumentam quando o número de bits aumenta. Outros dispositivos 
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discriminadores planares em microfita também foram apresentados na literatura recentemente: 

[8] e [9] que utilizam múltiplos filtros rejeita-banda, e, [10] e [11] que utilizam linhas de 

atrasos e técnicas de sistemas reconfiguráveis. 

A geometria fractal tem as propriedades de autossemelhança e preenchimento do 

espaço, por causa disso, elas vem sendo amplamente aplicadas no projeto de antenas com o 

objetivo de redução de tamanho e comportamento multibanda. Existe uma variedade de 

antenas com geometrias fractais, como o monopolo de Koch e de Sierpinski, Minkowski e 

Hilbert [12], [13]. E mais recentemente, a geometria fractal vem sendo aplicada a outros 

dispositivos de micro-ondas como filtros, superfícies seletivas em frequência, capacitores, etc. 

Em [14], por exemplo, a propriedade de autopreenchimento da curva fractal é utilizada para 

miniaturizar acopladores. Nesse artigo, uma redução de 87,4 % foi obtida em relação ao 

acoplador original.  

Devido a sua propriedade de preenchimento do espaço, a curva fractal de Hilbert é 

apresentada neste trabalho para a implementação de interferômetros com tamanhos reduzidos. 

Quatro interferômetros utilizando essa geometria são aqui propostos para compor um sistema 

IFM 4 bits. Eles consistem em dois divisores/combinadores de Wilkinson conectados a duas 

linhas de microfita com diferentes atrasos; uma linha é uma linha reta (referência) e a outra é 

alguma iteração da curva fractal de Hilbert.  

1.1 ESTRUTURA DA DISSERTAÇÃO 

O Capítulo 2 aborda os conceitos fundamentais de linhas de transmissão, do casador de 

impedância de um quarto de onda, como implementar linhas de transmissão em microfita e 

definição de algumas propriedades dos parâmetros de espalhamento. Mostra os cálculos dos 

parâmetros para o divisor de Wilkinson, e dá uma visão geral sobre detectores de micro-

ondas. Esses são os circuitos e dispositivos básicos para o entendimento e projeto dos 

dispositivos propostos nesta dissertação. Este capítulo aborda ainda, de uma forma geral, os 

softwares de simulação eletromagnética. 

O Capítulo 3 apresenta a definição e as principais características da geometria fractal. 

Três geometrias fractais diferentes são analisadas, incluindo a curva fractal de Hilbert, que é a 

curva escolhida para projeto dos interferômetros. Por último, algumas aplicações da geometria 

fractal tanto no campo das ciências como em dispositivos de micro-ondas são citadas. 

O Capítulo 4 apresenta como funciona um discriminador digital de frequências 

simples, e como implementar os padrões requeridos com interferômetros.  
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No Capítulo 5 é feito o projeto dos interferômetros propostos. Primeiramente, o divisor 

é projetado. Faz-se uma modificação no divisor de Wilkinson para que ele possa ser 

conectado às trilhas de largura menores sem precisar de mais uma seção de casamento. Em 

seguida, é realizado o projeto dos interferômetros formados pelos divisores, linhas de 

referência e alguma iteração do Fractal de Hilbert. 

Por fim, o Capítulo 6 apresenta os resultados das simulações realizadas no software CST 

Microwave Studio, como foi feita a fabricação e medida dos dispositivos, a discussão dos 

resultados e sugestões de trabalhos futuros. 
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2 CIRCUITOS E DISPOSITIVOS DE MICRO-ONDAS 

Os dispositivos de micro-ondas vêm sendo amplamente aplicados em redes sem fio, 

sistemas de comunicações, sistema de segurança sem fio, radar, sensoriamento remoto e 

sistemas médicos, e continuam exercendo um papel muito importante no desenvolvimento de 

tecnologias de RF e micro-ondas. Avanços nas áreas de dispositivos de estado sólido e de 

linhas de transmissão planares, levaram ao desenvolvimento dos circuitos integrados de mico-

ondas (MICs, do inglês Microwave Integrated Circuits) e a inúmeros métodos de análise de 

estruturas passivas e ativas. 

O termo micro-ondas tem sido aplicado tipicamente para técnicas e dispositivos que 

operam entre as frequências de 3 e 300 GHz, cujo comprimento de onda está entre 10 cm e 1 

mm. Ao contrário dos dispositivos de baixa frequência, cujas dimensões dos condutores não 

apresentam uma influência significativa à resposta elétrica, em dispositivos de micro-ondas 

esse comprimento influencia de forma significativa e, por isso, a teoria padrão de circuitos 

não pode ser aplicada diretamente a eles. Neste capítulo é dada uma breve revisão dos 

conceitos básicos dos principais circuitos de micro-ondas envolvidos no desenvolvimento dos 

dispositivos aqui abordados.  

2.1 LINHAS DE TRANSMISSÃO 

Linhas de transmissão são estruturas que transmitem energia eletromagnética de uma 

forma guiada de um ponto a outro em um circuito. Como exemplos mais simples de linhas de 

transmissão pode-se citar dois fios paralelos, o cabo coaxial e a linha de microfita.   

Uma linha de transmissão, para o modo de propagação transversal (TEM), é 

representada por no mínimo dois fios paralelos como mostrado na Figura 2.1 (a), onde as 

tensões e correntes podem variar a magnitude e a fase em função do comprimento. Um trecho 

longitudinal de uma linha de transmissão de comprimento infinitesimal ∆z pode ser modelado 

por elementos discretos como mostrado na Figura 2.1 (b). 

A capacitância e a indutância são os elementos que representam o armazenamento de 

energia elétrica e magnética, e os resistores, as perdas do circuito. Mais especificamente, o 

capacitor em paralelo e o indutor em série representam respectivamente a capacitância e 

autoindutância entres os dois fios condutores. O resistor em série representa as perdas nos 

condutores, e o resistor em paralelo representa as perdas envolvidas no material dielétrico. 

Esses elementos discretos, R, L, G, C  são definidos como: 
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 R=Resistência série por unidade de comprimento para ambos os condutores [Ω/m] 

 L=Indutância série por unidade de comprimento para ambos os condutores [H/m] 

 G=condutância paralela por unidade de comprimento para ambos os condutores [S/m] 

 C=capacitância paralela por unidade de comprimento para ambos os condutores [F/m] 

Figura 2.1: (a) Representação do caso mais simples de uma linha de transmissão.  

(b) Modelamento de um trecho infinitesimal (∆z) de uma linha de transmissão. 

 

(a) 

 

(b) 

Fonte: [15] 

 

 Aplicando as leis de Kirchhoff de tensão e corrente no circuito da Figura 2.1 (b) tem-

se respectivamente: 

 𝑣(𝑧, 𝑡) − 𝑅∆𝑧𝑖(𝑧, 𝑡) − 𝐿∆𝑧
𝜕𝑖(𝑧, 𝑡)

𝜕𝑡
− 𝑣(𝑧 + ∆𝑧, 𝑡) = 0 (1) 

   

 𝑖(𝑧, 𝑡) − 𝐺∆𝑧𝑖𝑣(𝑧 + ∆𝑧, 𝑡) − 𝐶∆𝑧
𝜕𝑣(𝑧 + ∆𝑧, 𝑡)

𝜕𝑡
− 𝑖(𝑧 + ∆𝑧, 𝑡) = 0 (2) 

 

 Após algumas manipulações nas Equações (1) e (2) e admitindo o regime harmônico 

senoidal para a tensão e a corrente tem-se: 
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𝑑2𝑉(𝑧)

𝑑𝑧
− 𝛾2𝑉(𝑧) = 0 (3) 

   

 
𝑑2𝐼(𝑧)

𝑑𝑧
− 𝛾2𝐼(𝑧) = 0 (4) 

 

Onde 𝛾 é a constante de propagação da linha: 

 

 𝛾 = 𝛼 + 𝑗𝛽 = √(𝑅 + 𝑗𝜔𝐿)/(𝐺 + 𝑗𝜔𝐶). (5) 

 

Assim, as soluções para as Equações (3) e (4) são dadas por: 

 

 𝑉(𝑧) = 𝑉0
+𝑒−𝛾𝑧 + 𝑉0

−𝑒𝛾𝑧 (6) 

   

 𝐼(𝑧) =
1

𝑍0
(𝑉0

+𝑒−𝛾𝑧 − 𝑉0
−𝑒𝛾𝑧) (7) 

 

Z0 é a impedância característica da  linha que tem o comprimento de onda dado pela Equação 

(9) e a velocidade de fase pela Equação (10). 

 

 𝑍0 =
𝑉0

+

𝐼0
+ =

−𝑉0
−

𝐼0
− = √

𝑅 + 𝑗𝜔𝑙

𝐺 + 𝑗𝜔𝐶
 (8) 

   

 𝜆 =
2𝜋

𝛽
 (9) 

   

 𝑣𝑝 =
𝜔

𝛽
= 𝜆𝑓 (10) 

 

As soluçãos encontradas acima são para o caso geral de linha de transmissão. Para o 

caso de uma linha de transmissão sem perdas, R e G são iguais a zero e assim as Equações de 

(5) a (10) podem ser reescritas da seguinte maneira: 
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  𝛾 = 𝛼 + 𝑗𝛽 = 𝑗𝜔√𝐿𝐶 (11) 

 

  𝑉(𝑧) = 𝑉0
+𝑒−𝛽𝑧 + 𝑉0

−𝑒𝛽𝑧 (12) 

 

  𝐼(𝑧) =
1

𝑍0
(𝑉0

+𝑒−𝛽𝑧 − 𝑉0
−𝑒𝛽𝑧) (13) 

 

  𝑍0 = √𝐿 𝐶⁄  (14) 

 

  𝜆 =
2𝜋

𝛽
=

2𝜋

𝜔√𝐿𝐶
 (15) 

 

  𝑣𝑝 =
𝜔

𝛽
=

1

√𝐿𝐶
 (16) 

 

A relação entre a corrente e a tensão em uma linha de transmissão infinita é igual a sua 

impedância característica Z0. Quando essa linha é terminada por uma carga ZL ≠ Z0 (Figura 

2.2), a relação entre tensão e a corrente na carga é ZL, assim, existe uma onda refletida para 

satisfazer essa condição em z = 0. A relação entre a amplitude da tensão refletida e da 

incidente nesse ponto é definida como coeficiente de reflexão, Γ: 

 

  Γ =
𝑉0

−

𝑉0
+ =

𝑍𝐿 − 𝑍0

𝑍𝐿 + 𝑍0
 (17) 

 

A impedância de entrada vista na linha de transmissão da Figura 2.2 pode ser calculada a 

partir das Esquações (12), (13) e (17): 

 

  𝑍𝑖𝑛 = 𝑍0

𝑍𝐿 + 𝑗𝑍0𝑡𝑎𝑛𝛽𝑙

𝑍0 + 𝑗𝑍𝐿𝑡𝑎𝑛𝛽𝑙
 (18) 
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Figura 2.2: Linha de transmissão terminada em uma carga ZL. 

 

Fonte: Modificada de [15]. 

2.1.1 Transformador de impedância de um quarto de onda (λ/4) 

             Um transformador de impedância de um quarto de onda é um circuito simples 

utilizado basicamente como uma seção intermediária para prover o casamento de impedância 

entre dois pontos de um circuito. Um circuito de casamento de impedância utilizando esse 

transformador de λ/4 de apenas uma seção é mostrado na Figura 2.3. A impedância de 

entrada, Zin, vista a partir da seção de casamento é calculada pela Equação (18): 

 

  𝑍𝑖𝑛 = 𝑍1

𝑍𝐿 + 𝑗𝑍1𝑡𝑎𝑛𝛽1𝑙1

𝑍1 + 𝑗𝑍𝐿𝑡𝑎𝑛𝛽1𝑙1
 (19) 

 

onde β1 = 2π/λ1, sendo λ1 o comprimento de onda da frequência central de projeto, f1. Fazendo 

o comprimento da linha ter o valor de um quarto de onda, l1 = λ1/4, tem-se que  β1l1 = π/2. 

Como tan(β1l1) → ∞ quando β1l1 → π/2, divide-se o numerador e denominador de (19) por 

tan(β1l1) e toma-se o limite quando  β1l1 → π/2, tem-se: 

 

  𝑍𝑖𝑛 = 𝑍1

𝑗𝑍1

𝑗𝑍𝐿
=

𝑍1
2

𝑍𝐿
 (20) 

 

Para que haja casamento de impedância, Zin = Z0, assim a impedância da linha de 

casamento será: 

  𝑍1 = √𝑍𝐿𝑍𝑖𝑛 (21) 
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O comprimento elétrico da seção de casamento é λ1/4 apenas para a frequência central 

de projeto f1, mas é diferente para outras frequências próximas à ela, causando um 

descasamento dado pela Equação (22), onde θ ⋍ π/2, [15]. Em [15] demonstra-se ainda que 

pode se determinar a banda fracionária em que o casador funciona abaixo de um coeficiente 

de reflexão máximo, Γm, escolhido como aceitável para o projeto. Essa banda fracionária é 

dada pela Equação (23). Para aplicações com banda larga, pode-se projetar um casador de 

múltiplas seções. 

 

 |Γ| ⋍
|𝑍𝐿 − 𝑍0|

2√𝑍0𝑍𝐿

| cos 𝜃 | (22) 

 

  
∆𝑓

𝑓0
= 2 −

4

𝜋
cos−1 (

𝛤𝑚

√1 − 𝛤𝑚
2

2√𝑍0𝑍𝐿

|𝑍𝐿 − 𝑍0|
) (23) 

 

Esses resultados são estritamente válidos para linhas de transmissão TEM, e, os efeitos 

das reatâncias associadas às descontinuidades entre as dimensões das duas linhas de 

transmissão adjuntas são desconsiderados. Esses efeitos podem ser compensados através de 

um pequeno ajuste no comprimento da seção de casamento. 

 

Figura 2.3: Circuito de um transformador de impedância de uma seção. 

 

Fonte: Acervo do autor. 

2.2 ANÁLISE DE REDES DE MICRO-ONDAS 

Um circuito de micro-ondas pode ser modelado por uma rede de N portas onde são 

analisados, corrente, tensão e ondas incidentes, refletidas ou transmitidas, sem a necessidade 

direta da aplicação das Equações de Maxwell. O circuito então é visto como uma “caixa 

preta” onde as respostas em suas portas são conhecidas. As matrizes de 
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impedância/admitância, ABCD e parâmetros de espalhamento são normalmente utilizadas 

para modelar esses circuitos. As duas primeiras mostram uma relação entre tensão e corrente 

nas portas, enquanto a última mostra as relações entre de ondas de tensão. 

Em frequência de micro-ondas, o equipamento amplamente usado para a 

caracterização de um dispositivo é o Analisador vetorial de redes. Ele é utilizado para medir 

modulo e fase dos parâmetros de espalhamento. Matrizes de impedância, admitância e ABCD 

podem ser obtidas a partir desse parâmetro. 

Nesta seção, a definição e algumas propriedades da matriz de espalhamento serão 

apresentadas.  

2.2.1 Parâmetros de espalhamento em uma rede de micro-ondas 

Os parâmetros de espalhamento são normalmente apresentados em forma de matriz 

(Matriz S - do inglês Scattering), eles quantificam como um sinal RF se propaga através de 

uma rede multiportas. A matriz S para uma rede de N portas, que contém N
2
 coeficientes, é 

mostrada na Equação (24). 

 

  [

𝑉1
−

𝑉2
−

⋮
𝑉𝑁

−

] = [
𝑆11 ⋯ 𝑆1𝑁

⋮ ⋱ ⋮
𝑆𝑁1 ⋯ 𝑆𝑁𝑁

] [

𝑉1
+

𝑉2
+

⋮
𝑉𝑁

+

] (24.a) 

Ou 

  [𝑉−] = [𝑆][𝑉+] (24.b) 

 

Mais especificamente, cada elemento da matriz é dado por: 

 

  𝑆𝑖𝑗 =
𝑉𝑖

−

𝑉𝑗
+|

𝑉𝑘 
+=0 𝑝𝑎𝑟𝑎 𝑘≠𝑗

 (25) 

 

em que Sij é a relação entre a tensão da onda refletida na porta i quando as ondas incidentes 

em todas as portas são iguais a zero, exceto na porta j. Isso significa que todas as portas k ≠ j 

são terminadas em uma carga casada para evitar reflexões. Sob essas condições, Sii fornece o 

coeficiente de reflexão na porta i, e Sij o coeficiente de transmissão da porta j para a porta i.  

 Os parâmetros S são geralmente complexos e pode ser mais conveniente expressá-los 

em função da magnitude e fase: 
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  𝑆𝑖𝑗 = |𝑆𝑖𝑗|𝑒𝑗∅𝑖𝑗 . (26) 

 

Pode-se ainda expressar a magnitude de Sij em decibéis (dB): 

 

  |𝑆𝑖𝑗|
𝑑𝐵

= 20 log|𝑆𝑖𝑗|. (27) 

 

Para i = j, a Equação (27) nos fornece a perda de retorno, e para i ≠ j, a perda por 

inserção.  

Uma rede é dita recíproca quando ela é constituída apenas de materiais isotrópicos - 

materiais que mantém suas propriedades elétricas independente da direção. Em termos da 

matriz S, uma rede recíproca tem uma matriz simétrica, ou seja, Sij = Sji (S = S
T
). Assim, a 

mesma resposta é esperada se porta i ou j for excitada. Isso não acontece para dispositivos 

ativos ou constituídos de materiais ferromagnéticos como a ferrite.  

2.3 DIVISORES E COMBINADORES DE POTÊNCIA 

Divisores de potência são dispositivos passivos de micro-ondas de três ou mais portas 

que dividem a potência em dois ou mais sinais. Comumente, essas potências são divididas 

igualmente (3 dB para cada saída, no caso de um dispositivo de 3 portas), mas elas também 

podem ser divididas em diferentes proporções como ilustrado na Figura 2.4 (a), onde αn é 

menor que 1, e o somatório dos αn é igual a 1.  

Os divisores de potência mais simples são o resistivo e a Junção T. O resistivo, como o 

próprio nome demonstra, é constituído apenas de resistores. Ele é de fácil projeto e 

implementação, e apresenta todas as portas casadas, porém há perda de potência que é 

dissipada nos resistores (3 dB de perda de potência, no caso de um dispositivo de 3 portas) e 

baixa isolação entre as portas de saídas. A Junção T é apenas a conexão de três linhas de 

transmissão com impedâncias específicas. Esse tipo de dispositivo pode ser implementado em 

praticamente qualquer tipo de estrutura guiante como guias de onda, microfita, stripline, etc. 

Por não ter elementos resistivos essa configuração não apresenta perda de potência, mas ela 

não fornece isolação entre as portas de saídas e casamento de impedância analisando cada 

porta de saída individualmente.   

O divisor de Wilkinson apresenta-se como um dispositivo sem perdas quando as portas 

de saída se encontram casadas e que tem alta isolação entre as portas de saídas. Ele será 
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utilizado aqui neste trabalho por apresentar essas vantagens em relação aos dispositivos 

mencionados anteriormente.  

Todos os divisores abordados dividem o sinal de entrada mantendo a fase constante. 

Existem outros tipos de divisores que dividem o sinal mudando a sua fase em 90º ou 180º, 

eles são chamados de acopladores híbridos. 

Se um divisor de potência for uma rede recíproca e possuir alta isolação entre as 

portas, ele também será chamado de combinador. Por apresentar essas características, os 

sinais podem ser inseridos nas portas de saídas e aparecem como uma combinação linear na 

porta de entrada. Esta propriedade é essencial para a construção de importantes dispositivos 

de micro-ondas em diversas aplicações, como o interferômetro. A Figura 2.1 (b) mostra o 

esquema do combinador, e assim como no divisor, αn é menor que 1, e o somatório dos αn é 

igual a 1. 

 

Figura 2.4: Esquema de bloco de divisores e combinadores de potência. 

 

Fonte: Acervo do autor. 

2.3.1 Divisor de potência de Wilkinson 

Nesta seção, serão calculados os parâmetros para um divisor de Wilkinson de três portas 

que divide igualmente a potência do sinal. Esse divisor é normalmente projetado em microfita 

ou stripline. O circuito do divisor correspondente a uma linha de transmissão é mostrado na 

Figura 2.5. Esse circuito será dividido em dois circuitos mais simples alimentados com fontes 

simétricas e assimétricas (Técnica de analise nos modos ímpar e par). Quer se demostrar que 

para que o divisor se comporte como desejado r = 2Z0 e Z1 = √2 Z0. 

A Figura 2.6 mostra o divisor de Wilkinson da Figura 2.5 em sua forma simétrica e com 

as impedâncias normalizadas. Observe que as impedâncias em paralelo conectadas ao nó da 

porta 1, tem como impedância normalizada resultante (2x2)/(2+2) = 1. Agora, define-se dois 

modos de excitação:  
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i) o modo par com Vg2 = Vg3 = 2 V, e 

ii) o modo ímpar com Vg2 = 2 V, Vg3 = - 2 V, 

em que a superposição desses dois modos leva a  Vg2 = 4 V e Vg3 = 0 V. 

 

Figura 2.5: Circuito equivalente de um divisor de Wilkinson em uma linha de transmissão. 

 

                                 

Fonte: Modificado de [15] . 

 

Figura 2.6: O divisor de Wilkinson com as impedâncias normalizadas em sua forma simétrica. 

 

Fonte: Modificado de [15]. 

 

Analisando o circuito no modo ímpar: Neste modo, +V2 = +V3 e assim nenhuma corrente flui 

pelo resistor r/2 ou pelo curto circuito existente na Porta 1. Desse modo, o circuito pode ser 

simplificado pelo circuito da Figura 2.7. O índice e que aparece nas tensões vem do inglês 

even e indica que as tensões nesse ponto estão sendo analisadas no modo ímpar. Mais à frente, 

o índice o, do inglês odd, indicará que a tensão é analisada no modo par.  

r

Porta 2

Porta 3

Porta 1

1

Eixo de simetria



28 

 

___________________________________________________________________________ 

 

A impedância de entrada no modo ímpar vista na Porta 2 pode ser calculada pela Equação 

(20): 

  𝑍𝑖𝑛
𝑒 =

𝑍2

2
 (28) 

 

Para que a Porta 2 esteja casada no modo ímpar  𝑍𝑖𝑛
𝑒 = 1, desse modo, 𝑍 = √2. Agora, 𝑉1

𝑒 

precisa ser definido. Utilizando as Equações (6) e (17), tem-se: 

 

  𝑉(𝑧) = 𝑉+(𝑒−𝑗𝛽𝑧 + Γ𝑒𝑗𝛽𝑧) (29) 

 

Escolhendo z = 0 na Porta 1 e z = - λ/4 na Porta 2, tem-se que a tensão na porta 2 e 1 no modo 

ímpar é dado pelas Equações (30) e (31). 

 

  𝑉2
𝑒 = 𝑉(−𝜆 4⁄ ) = 𝑗𝑉+(1 −  Γ) = V (30) 

 

  𝑉1
𝑒 = 𝑉(0) = 𝑉+(1 +  Γ) = jV

Γ + 1

Γ − 1
 (31) 

 

O coeficiente de reflexão na Porta 1 olhando a partir do resistor normalizado de valor 2 é 

Γ = (2 − √2) (2 + √2)⁄ . Substituindo esse valor em (31), obtém-se: 

 

  𝑉1
𝑒 = −𝑗𝑉√2 (32) 

 

Figura 2.7: Divisor de Wilkinson com as impedâncias normalizadas em sua forma simétrica no modo 

ímpar. 

  

Fonte: [16] 
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Analisando o circuito no modo par: Para esse modo, V2 = - V3, e assim, existe um terra 

no meio do circuito da Figura 2.6. O circuito no modo par pode ser redesenhado conforme 

mostrado na Figura 2.8. 

Para finalizar a análise, a impedância de entrada a partir da Porta 1 será calculada para o 

caso das Portas 2 e 3 estarem casadas. O circuito resultante é mostrado na Figura 2.9 (a). 

Como a tensão na Porta 2 e 3 são iguais, nenhuma corrente passa através do resistor e ele 

pode ser desconsiderado na análise, resultando no circuito da Figura 2.9 (b). Desse modo, Zin1 

é dado pelo paralelo da impedância dos dois transformadores de λ/4 como mostra a Equação 

(33). Como a porta 1 está conecta a uma linha de impedância que também tem impedância 

normalizada igual a 1, a porta 1 está casada e portanto não há reflexões. 

 

  𝑍𝑖𝑛1 = (
(√2)

2

1
) // (

(√2)
2

1
) = 1 (33) 

 

Figura 2.8: Divisor de Wilkinson com as impedâncias normalizadas em sua forma simétrica no modo 

par. 

 

Fonte: [16] 

 

Figura 2.9: Análise para encontrar a impedância de entrada na Porta 1. (a) Divisor terminado em 

cargas casadas. (b) Circuito equivalente de (a). 

 

(a) 
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(b) 

Fonte: [16] 

A partir dos dados encontrados na análise acima é possível obter os parâmetros S para o 

divisor de Wilkinson: 

 

𝑆11 = 0  (Zin=1 na porta 1, porta casada) 

𝑆22 = 𝑆33 = 0 (Portas 2 e 3 casadas para os modos par e ímpar) 

𝑆12 = 𝑆21 =
𝑉1

𝑒+𝑉1
𝑜

𝑉2
𝑒+𝑉2

𝑜 = −𝑗/√2 (Rede recíproca) 

𝑆13 = 𝑆31 = −𝑗/√2 (Simetria das portas 2 e 3) 

𝑆23 = 𝑆32 = 0 (Devido ao curto circuito ou circuito aberto no modo par e 

ímpar) 

 

Ainda sobre os resultados acima, pode-se comentar que se as saídas estão conectadas à 

cargas casadas e o divisor é alimentado pela porta 1, nenhuma potência é dissipada no 

resistor. O resistor dissipa apenas a potência refletida nas Portas 2 e 3. Desse modo, pode-se 

dizer que o divisor é sem perdas. Como S32 = S32 = 0, as portas 2 e 3 estão isoladas.  

Como os divisores de potência de Wilkinson utilizam um casador de impedância de um 

quarto de onda, eles apresentam um largura de banda limitada. Para aplicações em banda 

larga, um divisor com múltiplas seções deve ser utilizado. 

2.4 LINHAS DE TRANSMISSÃO EM MICROFITA 

Os primeiros dispositivos de RF e micro-ondas eram baseados em guias de ondas, fios 

paralelos e cabos coaxiais. Guias de ondas podem transportar sinais de alta potência e 

apresentam baixas perdas, mas são volumosos e caros, especialmente em baixa frequência. 

Fios paralelos tem baixo custo, mas não fornecem blindagem contra os efeitos 

eletromagnéticos do meio. Já o cabo coaxial é blindado, mas é um meio difícil para o projeto 

de dispositivos mais complexos. As linhas de transmissão planares fornecem uma alternativa 
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vantajosa para o projeto de circuitos de micro-ondas, pois são compactas, tem baixo custo de 

fabricação e podem ser facilmente integradas a outros circuitos ou a dispositivos discretos 

(diodos, resistores, capacitores...) [15]. Existe uma variedade de estruturas planares na 

literatura: stripline, slotines, guia de onda coplanar e a microfita que será utilizada aqui neste 

trabalho. Uma linha de transmissão em microfita é mostrada na Figura 2.10. 

Se o dielétrico não está presente, a estrutura consiste apenas de dois fios, uma trilha 

plana sobre um plano de terra, no mesmo meio, ar cuja permissividade elétrica relativa é 1. 

Nesse caso, as ondas se propagam no modo TEM puro, não existem componentes do campo 

na direção longitudinal de propagação, e a impedância característica é dada pela Equação (14) 

e a velocidade de fase da onda pela Equação (17) e só dependem das características do meio 

(ε, μ). É possível ainda escrever a impedância em função velocidade de fase como mostra a 

Equação (34). 

  𝑍0 = 𝑣𝑝𝐿 =
1

𝑣𝑝𝐶
 (34) 

  

No caso da microfita, a presença do dielétrico cria um meio não homogêneo, e o modo 

de propagação não é puramente TEM. A amplitude da componente longitudinal pode ser 

desprezada quando ela é muito menor que a amplitude das componentes transversais, e assim, 

a teoria de análise para as linhas de transmissão em modo TEM pode ser aplicada à linha de 

transmissão em microfita. Esta aproximação é chamada de quase-estática e é adequada para 

linhas de microfita que operam até 8 GHz , onde w e h são muito menores que o comprimento 

de onda do meio [17].  

Substituindo o dielétrico por ar em uma microfita, tem-se uma linha de transmissão 

em que a onda se propaga com a velocidade da luz, c ≈ 3 x 10
8
 m/s. Pode-se escrever a 

impedância característica das seguintes maneiras: 

 

  𝑍0𝑎 = √
𝐿

𝐶𝑎
= 𝑐𝐿 =

1

𝑐𝐶𝑎
, (35) 

 

L não varia porque depende apenas das propriedades magnéticas do meio que permanecem 

constantes, e Ca é a capacitância da linha preenchida por ar por unidade de comprimento. A 

partir das Equações (34) e (35) chega-se a  
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  𝑍0 =
1

𝑐√𝐶𝐶𝑎

. (36) 

 

Essa expressão mostra que se for possível calcular a capacitância por unidade de comprimento 

na linha de microfita com e sem ar, pode-se calcular também o valor da impedância 

característica. 

Na aproximação quase-estática, o substrato e o ar são substituídos por um meio 

homogêneo de permissividade efetiva 𝜀𝑟𝑒𝑓𝑓 como mostra Figura 2.11. Pode-se relacionar essa 

permissividade efetiva com a impedância característica da linha de microfita. Para uma linha 

preenchida com ar, a velocidade de propagação da onda é pode ser reescrita de (35): 

 

  𝑐 =
1

√𝐿𝐶𝑎

. (37) 

 

A permissividade efetiva é definida como sendo o primeiro membro da divisão de  (37) por 

(16) elevada ao quadrado e assim pode-se escrever, 

 

  𝜀𝑟𝑒𝑓𝑓 =
𝐶

𝐶𝑎
= (

𝑐

𝑣𝑝
)

2

, (38) 

 

e obter a impedância em função de 𝜀𝑟𝑒𝑓𝑓 através das Equações (34), (35) e (38): 

 

  𝑍0 =
𝑍0𝑎

√𝜀𝑟𝑒𝑓𝑓

. (39) 

 

A permissividade efetiva da linha varia entre 𝜀𝑟 e 
1

2
(𝜀𝑟 − 1) dependendo da largura da 

fita. Se a fita é larga, o campo fica mais concentrado no substrato e  𝜀𝑟𝑒𝑓𝑓 ≈ 𝜀𝑟; se a fita é 

fina, o campo se divide quase que igualmente entre o substrato e o ar e 𝜀𝑟𝑒𝑓𝑓 ≈
1

2
(𝜀𝑟 − 1) 

[17]. 

É possível obter através da análise quase-estática expressões analíticas para a 

permissividade efetiva e a impedância característica de uma linha de microfita que tenha a 
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espessura da trilha muito fina (t → 0) com precisão melhor que 1% [2]. Essas expressões 

estão em função das dimensões da linha e do material do substrato. 

 

Para W/h ≤ 1: 

 

  𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
+

𝜀𝑟 − 1

2
[(1 + 12

ℎ

𝑊
)

−1/2

+ 0,04 (1 −
𝑊

ℎ
)

2

] (40) 

 

  𝑍0 =
60

√𝜀𝑟𝑒𝑓𝑓

ln (8
ℎ

𝑊
+ 0,25

𝑊

ℎ
) (41) 

 

Para W/h > 1: 

 

  𝜀𝑟𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
+

𝜀𝑟 − 1

2
(1 + 12

ℎ

𝑊
)

−1/2

 (42) 

 

  𝑍0 =
120𝜋

√𝜀𝑟𝑒𝑓𝑓

[
𝑊

ℎ
+ 1,393 + 0,677 ln (

𝑊

ℎ
− 1,444)]

−1

 (43) 

 

O comprimento de onda guiado na linha de microfita, a constante de propagação e a 

velocidade de fase podem ser escritas em função da permissividade elétrica efetiva como 

mostrado nas Equações (44), (45) e (46): 

 

  𝜆𝑔 =
𝜆0

√𝜀𝑟𝑒𝑓𝑓

, (44) 

 

  𝛽 =
2𝜋

𝜆𝑔
, (45) 

 

  𝑣𝑓 =
𝜔

𝛽
=

𝑐

√𝜀𝑟𝑒𝑓𝑓

, (46) 

 

em que λ0 é o comprimento de onda referente a frequência f0. É possível determinar o atraso 

de propagação (τf) que um sinal que atravessa uma linha de microfita de comprimento l sofre 
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utilizando a Equação (47). Esse é um parâmetro fundamental no projeto de interferômetros 

como poderá ser visto na seção 4.2. 

 

  𝜏𝑓 = 𝑙 𝑣𝑓⁄  (47) 

 

Figura 2.10: Linha de transmissão em microfita. 

 

Fonte: [17] 

 

Figura 2.11: Linha de microfita com o ar e o substrato substituído por um meio homogêneo (εreff). 

 

Fonte: [17] 

2.5 DETECTORES DE MICRO-ONDAS 

Diodos retificadores têm sido amplamente utilizados como detectores e para a medida 

da potência relativa em frequências de micro-ondas. Os diodos de junção p-n de silício tem 

uma grande barreira de potencial e funcionam em uma largura de banda limitada. Já os diodos 

de junção metal-semicondutor (low-barrier Schottky – LBS) têm uma menor barreira de 
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potencial e apresentam um comportamento superior para a faixa de RF e micro-ondas do que 

os diodos de junção p-n, tendo se tornado muito populares nas últimas décadas. Eles foram 

introduzidos como sensores de potência em 1974, e podem detectar e medir potências abaixo 

de – 70 dBm (100 pW) até +20 dBm em frequências que chegam até 26,5 GHz. 

A Figura 2.12 apresenta um circuito com um diodo detector conectado a uma fonte de sinal es. 

A impedância do diodo para pequenos sinais é menor que 50 Ω, então é necessário uma resistência 

(Rmatching) para o casamento de impedância. O capacitor, Cb, tem a função de eliminar os sinais de 

frequência alta. 

O diodo converte potências de sinais de alta frequência em sinais DC pelas suas 

propriedades não lineares de tensão e corrente.  Uma curva típica de resposta detectores de 

micro-ondas é mostrada na Figura 2.13. [18] 

 Neste trabalho nenhum detector será utilizado, mas entender um pouco seu 

funcionamento e ter uma ideia de sua curva característica é fundamental para compreender 

melhor o funcionamento do sistema IFM digital e em que implica a escolha do nível limite de 

potência na saída dos interferômetros. 

Figura 2.12: Circuito com um diodo detector e um resistor de casamento. 

 

Fonte: [18] 

Figura 2.13: Curva característica de detecção usando diodos. 

 

Fonte: [18] 
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2.6 SIMULAÇÃO ELETROMAGNÉTICA 

Existem vários softwares comerciais para o projeto de circuitos de RF/micro-ondas que 

utilizando ferramentas gráficas chamadas de CAD (do inglês, Computer-Aided Design) que 

permitem desenhar a estrutura dos circuitos em 2D ou 3D e realizam a simulação 

eletromagnética (EM) de onda completa. 

 A simulação EM de onda completa resolve as Equações de Maxwell dentro das 

condições de contorno impostas para a estrutura de RF/micro-ondas a ser analisada. Alguns 

métodos numéricos são utilizados nos simuladores comerciais como o Método dos Momentos 

(MoM, do inglês Method of Moments), Método do Elemento Finito (FEM, do inglês Finite-

Element Method), Método da Diferença Finita no Domínio do Tempo (FDTD, do inglês 

Finite-Difference Time-Domain) e Método da Equação Integral (IE, do inglês Integral 

Equation). 

 Esses simuladores dividem a estrutura em pedaços (células) menores 2D ou 3D e 

aplicam as Equações de Maxwell em cada uma dessas subdivisões. Os resultados EM da 

estrutura toda é a superposição dos resultados em cada célula individual. Essas subdivisões 

formam a malha de simulação do software, e quanto mais fina essa malha (células menores) 

for, mais exatos serão os resultados, mais demorados os tempos de simulação e maior a 

memória computacional exigida.  

De modo geral, a exatidão dos resultados simulados depende diretamente da malha de 

simulação, que influencia no ponto de convergência da técnica numérica empregada pelo 

simulador EM. Muitos simuladores indicam qual a melhor malha a ser utilizada, mas 

permitem que o usuário possa alterá-las para fazer o refinamento dos resultados da estrutura. 

Por isso, torna-se muito importante considerar o quão pequeno deve ser o tamanho da célula 

para que se obtenham soluções mais precisas de um simulador EM a um tempo de simulação 

hábil.  

 Simuladores de onda completa apresentam outra dificuldade ao que se concerne a 

processamento e disponibilidade de memória. Alguns softwares como o HFSS da ANSYS, 

por exemplo, podem gerar dezenas de giga bytes durante a simulação de um dispositivo [17].  

Na prática, se a estrutura for simétrica é possível subdividi-la em partes, e apenas 

simular uma dessas partes, diminuindo assim, a velocidade de simulação sem perder precisão 

nos resultados. O resultado final é baseado nos resultados das partes individuais reagrupadas. 

Note que, essa subdivisão é diferente daquele que é aplicada para formar a malha de 

simulação. Aqui, se uma estrutura for simétrica apenas em relação ao eixo x, o software irá 
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apenas aplicar a malha de simulação na metade da estrutura, e depois de finalizar a simulação, 

estender o resultado para a segunda metade. 

O simulador de onda completa utilizado nessa dissertação é o CST Microwave Studio, da 

Computer Simulation Technology. É um software bastante completo com várias ferramentas 

que auxiliam o projeto de dispositivos de micro-ondas, como por exemplo, a disponibilidade 

de vários modelos pré-configurados com as condições de contorno e a malha de simulação 

necessária às estruturas mais comumente utilizadas, ferramentas para cálculo de impedância, 

comprimento de onda, biblioteca que contendo uma variedade enorme de substratos 

comercias para aplicações em micro-ondas, entre outras. 
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3 GEOMETRIA FRACTAL 

 O termo fractal foi primeiramente apresentado pelo matemático frânces Benoît 

Mandelbrot em 1975 e deriva do latim fractus, adjetivo do verbo frangere, que significa 

quebrar: criar fragmentos irregulares, fragmentar. Um fractal é uma forma cujas partes se 

assemelham ao todo, ou seja, à medida que se aumenta ou se diminui a escala de visualização, 

a sua forma não é alterada, se mantendo idêntica ou muito similar a original. Isto não ocorre, 

por exemplo, com uma circunferência, que se torna uma reta à medida que é ampliada. 

Portanto, a geometria fractal descreve certos fenômenos da natureza ou objetos intricados, 

onde a geometria euclidiana (pontos, retas e círculos...) não é capaz de descrever devido à 

simplicidade de suas formas. [19] 

A Figura 3.1 ilustra melhor o conceito de fractal. Observe que cada ramo (quadrado 

em marrom) é muito similar à folha inteira. Diminuindo ainda mais a escala, nota-se que os 

ramos são constituídos de vários elementos (quadrado em azul) que também tem a mesma 

forma da folha. 

As principais propriedades que caracterizam os fractais são a autossemelhança, a 

complexidade infinita e a sua dimensão.  

A autossemelhança ou autossimilaridade é a principal característica dos fractais. Uma 

figura é autossemlhante quando uma porção dela pode ser vista como uma réplica da figura 

completa em escala reduzida. Existem três tipos de autossimilaridade: a exata, a quase-

autossimilaridade e a estatística.  

Na exata, os fractais apresentam uma cópia exata de si mesmo em diferentes escalas. 

Essa característica pode ser observada, geralmente, em fractais gerados por funções 

interativas. Vejamos o exemplo do triângulo de Sierpinski mostrado na Figura 3.2. Ele é 

gerado pela iteração da mesma regra de construção indefinidamente. A interação 0 é o 

elemento iniciador, a interação 1 é o elemento gerador. Para se construir a iteração 2, basta 

aplicar o elemento gerador reduzido pela metade nos triângulos da figura. O processo é 

repetido (iterado) indefinidamente obtendo-se a figura limite a que chamamos de Triângulo de 

Sierpinski.  

A quase-autossimilaridade é uma forma mais solta de autossimilaridade. O fractal 

apresenta ser aproximadamente, mas não exatamente idêntico em escalas diferentes.  Já na 

autossimilaridade estatística, o fractal possui medidas numéricas ou estatísticas que são 

preservadas em diferentes escalas. É a forma menos evidente de autossimilaridade. O 

Triângulo de Sierpinski (autossimilaridade exata), o Conjunto de Mandelbrot (quase-
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autossimilaridade) e o Voo de Lévy (autossimilaridade estatística) são exemplos dessas três 

formas de autossimilaridades. 

A complexidade infinita é a característica que se refere ao fato de que o processo de 

geração de uma geometria fractal é feito por meio de sucessivas interações que tendem ao 

infinito. À medida que as interações são aplicadas, mais detalhes serão acrescentados à figura 

e assim nunca se consegue representar o objeto completamente, obtendo-se uma figura 

infinitamente complexa. 

 

Figura 3.1: Ilustração do conceito da geometria fractal. 

 

Fonte: [20] 

 

Figura 3.2: Triângulo de Sierpinski. 

 

Fonte: Modificado do Google Images. 

 

(a)                                                          (b)                                                         (c)

Iteração 0 Iteração 1

Iteração 2 Iteração 3
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A dimensão fractal adquire um sentido mais amplo do que a dimensão Euclidiana. A 

dimensão Euclidiana representa o número de coordenadas necessárias para descrever uma 

forma. Assim, um ponto tem dimensão 0, uma reta, dimensão 1, um plano, dimensão 2 e um 

sólido, dimensão 3. Pode-se ampliar esse raciocínio até n dimensões. Dimensões associadas à 

geometria Euclidiana são sempre números inteiros. Já na geometria fractal, o conceito de 

dimensão está ligado a como a geometria ocupa o espaço, medindo seu grau de irregularidade 

e caracterizando a superfície de contato entre o objeto e o meio. O cálculo da atual dimensão 

fractal foi desenvolvida pelos matemáticos Hausdorff e Besicovith e ela é dada pela Equação 

(48) onde n é o número de cópias da estrutura reduzidas por um fator de escala s [21]. D pode 

ser um número fracionário. No limite quando n tende ao infinito, obtém-se um fractal ideal. 

 

  𝐷 =
log 𝑛

log(1
𝑠⁄ )

 (48) 

 

Utilizando (48) pode-se calcular, como exemplo, a dimensão fractal do Triângulo de 

Sierpinski mostrado na Figura 3.2: 𝐷 =
log 3

log(2)
≅ 1,584. A cada interação, surgem mais três 

novos triângulos (n = 3) no lugar de um triângulo anterior e esses triângulos estão reduzidos 

pela metade (s = 1/2). 

3.1 EXEMPLOS DE CURVAS FRACTAIS 

Nesta seção serão mostrados alguns exemplos de geometrias fractais com 

autossimilaridade exata: Curva de Peano, o fractal de Koch, e a curva fractal de Hilbert que 

será utilizada neste trabalho para a construção das linhas de atraso. 

3.1.1 Fractal de Koch 

A Figura 3.3 mostra as quatro primeiras interações do fractal de Koch. O algoritmo de 

formação dessa geometria consiste nas seguintes etapas:  

Etapa 1: Considere um segmento de comprimento l. 

Etapa 2: Divida o segmento em três partes iguais e substitua o segmento do meio por um 

triângulo equilátero sem a base. [22] 

Para se obter as próximas iterações, repete-se a Etapa 2 em cada novo segmento gerado.  

A Tabela 3.1 mostra a quantidade e o comprimento dos segmentos gerados em cada 

iteração e o comprimento total da curva. Note que o comprimento em cada iteração é maior 
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que o comprimento da iteração anterior (33% maior) e que quando k → ∞, l → ∞. A 

dimensão fractal calculada por (48) é 1,26, onde n = 4 e s = 1/3. 

 

Figura 3.3: As quatro iterações do Fractal de Koch. 

 

Fonte: Modificado do Google imagens. 

 

Tabela 3.1: Características das curvas geradas nas iterações do Fractal de Koch [22]. 

Iteração 
Quant. de sub-

segmentos 

Comprimento de 

cada segmento 

Comprimento da 

curva 

0 (inicializador) L l l 

1 4 = 41 
1

3
𝑙 =  (

1

3
)

1

𝑙 
4

3
𝑙 =  (

4

3
)

1

𝑙 

2 16 = 42 
1

9
𝑙 =  (

1

3
)

2

𝑙 
16

3
𝑙 =  (

4

3
)

2

𝑙 

⋮ ⋮ ⋮ ⋮ 

k 4k (
1

3
)

𝑘

𝑙 (
4

3
)

𝑘

𝑙 

3.1.2 Curva de Peano 

A curva de Peano, assim como a curva de Hilbert que será vista na subseção seguinte, 

é uma curva que preenche todo o plano, percorrendo todos os pontos de uma superfície plana, 

preenchendo-a completamente. A sua construção segue uma substituição geométrica de 

acordo com as seguintes etapas:  

Etapa 1: Considere um segmento de reta de comprimento l. 

l
Iteração 0

Iteração 1

Iteração 2

Iteração 3

Iteração 4
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Etapa 2: Esse segmento é substituído por 9 segmentos com comprimentos l/3 como mostra a 

Figura 3.4, e assim se obtém a iteração 1. 

Para se obter as demais iterações, cada seguimento de comprimento l’ é substituído 9 

segmentos de comprimentos l’/3, seguindo o mesmo padrão da Figura 3.4. [22] 

A Tabela 3.2 resume as propriedades das curvas criadas em cada iteração e a Figura 

3.5 mostra as primeiras iterações desse fractal. A dimensão fractal calculada por (48) é 2, a 

mesma dimensão do plano, onde n = 9 e s = 1/3. 

 

Figura 3.4: Iteração 1 da Curva de Peano. 

 

Fonte: Acervo do autor. 

 

 

Figura 3.5: Iterações sucessivas da Curva de Peano. 

 

Fonte: Modificado de [22]. 

 

 

 

 

 

l/3

l/3

l/3 l/3

l/3

l/3 l/3

l/3

Inicializador Iteração 1 Iteração 2 Iteração 3
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Tabela 3.2: As características das curvas geradas nas iterações da Curva de Peano [22]. 

Iteração 
Quant. de sub-

segmentos 

Comprimento de cada 

segmento 
Comprimento da curva 

0 1 = 9
0
 

1

30 𝑙 90.
1

30
𝑙 

1 9 = 9
1
 

1

31 𝑙 91.
1

31
𝑙 

⋮ ⋮ ⋮ ⋮ 

k 9
k 

1

3𝑘 𝑙 9𝑘 .
1

3𝑘
𝑙 

3.1.3 Curva de Hilbert 

A curva de Hilbert foi apresentada em 1981 pelo matemático alemão David Hilbert 

como uma curva contínua que preenche todo o plano sem se interceptar. O algoritmo de 

formação dessa geometria consiste nas seguintes etapas:  

Etapa 1: Considere um quadrado imaginário de lado l dividido em quatros quadrados iguais. 

Agora conecte os centros deles por um seguimento de reta conforme mostra a Figura 3.6 (a). 

Etapa 2: Considere agora que cada quadrado imaginário gerado na etapa anterior dividido é 

formado por quatro quadrados. Os centros desses novos quadrados são conectados como é 

feito na etapa anterior (Figura 3.6 (b)). Note que os centros dos quadrados são interligados de 

tal forma que não haja auto-intersecção da curva. 

Este processo é repetido indefinidamente para obtenção do Fractal de Hilbert. As 

etapas não são dependentes, elas dependem apenas dos quadrados gerados nas iterações (4
k
 

subquadrados são gerados na interação k). A Tabela 2 sumariza as características das curvas 

criadas em cada iteração do Fractal de Hilbert [22]. Assim como na curva de Koch, os 

comprimentos das sucessivas iterações são maiores que as anteriores. Para k grande, a relação 

do comprimento entre duas iterações é o dobro. Para k → ∞, l → ∞. 

A dimensão do Fractal de Hilbert calculado por (48) é 2, sendo n = 4 e s = 1/2.   

Pela sua característica de preenchimento do espaço, essa geometria se torna atraente 

para o desenvolvimento de linhas de atraso para aplicações em interferômetros como ficará 

mais claro nos próximos capítulos. 
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Figura 3.6: (a) Etapa 1 e (b) Etapa 2 da construção do Fractal de Hilbert. 

 

Fonte: [22] 

Figura 3.7: As seis primeiras iterações do Fractal de Hilbert. 

 

Fonte: Modificado do Google imagens. 

 

 

 

 

 

 

(a)                                                         (b)

Iteração 1 Iteração 2 Iteração 3

Iteração 4 Iteração 5 Iteração 6
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Tabela 3.3: As características das curvas geradas nas iterações do Fractal de Hilbert [22]. 

Iteração 
Quant. de sub-

segmentos 

Comprimento de cada 

segmento 
Comprimento da curva 

1 3 = 4
1 

- 1 
𝑙

2
=

𝑙

21
 

3𝑙

2
=

(41 − 1)𝑙

2
 

2 15 = 4
2
 - 1 

𝑙

4
=

𝑙

22
 

15𝑙

2
=

(42 − 1)𝑙

22
 

⋮ ⋮ ⋮ ⋮ 

k 4
k
 - 1 

𝑙

2𝑘
 

(4𝑘 − 1)𝑙

2𝑘
 

 

3.2 APLICAÇÃO DAS CURVAS FRACTAIS 

Atualmente, o estudo dos fractais tem uma larga aplicação em diversos campos da 

ciência e tecnologia. Nas ciências médicas, a análise fractal é utilizada para caracterizar a 

irregularidade dos contornos de tumores e do seu núcleo. Em [23], um algoritmo é utilizado 

para calcular a dimensão fractal de displasias em um tecido epitelial cervical. Resultados 

mostraram que a dimensão fractal é proporcional ao grau de displasia, e que ela pode ser 

utilizada como ferramenta para detectar irregularidades nesses tecidos. A dimensão fractal é 

utilizada na geografia para caracterizar as geometrias complexas dos rios [24] e das 

superfícies terrestres [25]. A geometria fractal é utilizada também na codificação, compressão 

e tratamento de imagens [26], [27], [28]. 

A geometria fractal também pode ser combinada com a teoria eletromagnética a fim de 

investigar novas formas de radiação e propagação.  Pode-se se citar como alguns exemplos da 

utilização da geometria fractal em dispositivos de micro-ondas: 

 

 Utilização da geometria fractal para miniaturização de antenas [29], [30]; 

 

 Utilização da geometria fractal para se obter múltiplas frequências de ressonâncias em 

antenas [12], [31]; 

 

 Miniaturização de filtros através de ressoadores com geometrias fractais [32]; 

 

 Projeto de capacitores com maior capacitância e autorressonância [33], [34]; 
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 Projeto de FSS multibandas [35] e com respostas estáveis em relação ao ângulo de 

incidência da onda eletromagnética [36]; 

 

 Miniaturização de acopladores híbridos e branch-lines utilizando a propriedade de 

preenchimento do espaço da geometria fractal [14];  

 

 Entre outros. 
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4 MEDIÇÃO INSTANTÂNEA DE FREQUÊNCIA 

Os sistemas de medição instantânea de frequência têm sido principalmente 

incorporados a sistemas avançados de EW, do inglês Eletronic Warfare, para detectar sinais 

de ameaça e fornecer informações para aviões, navios, misseis e forças terrestres. Esses 

sistemas oferecem alta probabilidade de interceptar instantaneamente sinais em uma larga 

faixa do espectro com boa sensibilidade e precisão, e a um custo relativamente baixo. 

Receptores IFM começaram como uma técnica simples para extrair, em tempo real, a 

frequência da portadora de um sinal RF principalmente para sinais de RF pulsados [1]. Uma 

desvantagem do sistema é falta de capacidade de processar sinais simultâneos. Os primeiros 

receptores IFMs podiam gerar resultados errôneos quando as amplitudes de dois sinais de 

entrada que tinham uma diferença de 20 dB. Receptores modernos conseguem processar a 

informação mesmo quando os sinais têm uma diferença menor que 3 dB [37].   

O elemento principal desses sistemas são os discriminadores de frequência que têm como 

função determinar a frequência do sinal de entrada a partir da correlação entre uma amostra 

do sinal original, e outra amostra do sinal original atrasada de uma determinada quantidade de 

tempo. O discriminador de frequências é normalmente encontrado em receptores de 

equipamentos de detecção de sinais de micro-ondas. Tais equipamentos são utilizados tanto 

para aplicações civis quanto para aplicações militares, como por exemplo, em receptores 

Bluetooth, em satélites, em radares anti-colisão (Collision Avoidance Radar), etc [38]. 

Há dois tipos de discriminadores de frequência: os analógicos e os digitais. Um 

discriminador analógico de frequência (DAF) foi apresentado pela primeira vez por Earp em 

1948 [39]. Esse discriminador fornecia duas saídas, uma sen wt e a outra cos wt, que eram 

mostradas como componentes do eixo X e Y em um osciloscópio. A amplitude exibida é 

proporcional à potência do sinal, e o ângulo do vetor proporcional à frequência [3]. Em geral, 

DAFs fornecem uma saída analógica que é proporcional à frequência sinal de entrada.  Já os 

discriminadores digitais de frequência (DDF) apresentam as informações sobre os sinais de 

entrada em formato digital, mas especificamente, através de uma palavra digital binária 

(PDW, do inglês Pulse Descriptor Word). Embora os DDFs apresentem saída digital, o 

processamento analógico do sinal RF de entrada é necessário para a operação banda larga em 

micro-ondas. 

Discriminadores digitais de frequências comerciais operam normalmente na faixa de 

0,5 a 40 GHz, apresentam uma saída digital de até 14 bits, resolução de frequência melhor que 
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1,25 MHz e dimensões de 200 mm x 150 mm x 40 mm; e progressos foram feitos para 

adicionar capacidade de identificar e analisar sinais simultâneos [2]. 

4.1 ARQUITETURA DE UM DISCRIMINADOR DIGITAL DE FREQUÊNCIAS 

SIMPLES 

Um discriminador digital de frequências simples é composto basicamente de um 

amplificador limitador, um divisor de potências, interferômetros, detectores e conversores 

AD. Um diagrama de blocos de um discriminador digital de N bits é mostrado na Figura 4.1.  

O amplificador limitador é um filtro passa-faixa ativo sintonizado na banda de 

operação. Ele proporciona um ganho alto ao sinal, o que contribui para o aumento da 

sensibilidade do receptor, além de minimizar o efeito da entrada simultânea de sinais com 

frequências diferentes daquelas para qual o dispositivo foi projetado. Pelo fato de o 

amplificador de entrada limitar a um nível constante o sinal de RF, a informação de amplitude 

do sinal original é perdida. Isso pode ser resolvido colocando-se um divisor de potências antes 

do amplificador, onde uma das saídas do divisor é conectada ao amplificador e a outra a um 

detector como pode ser observado na Figura 4.2. Esse detector também é importante para 

indicar quando o sinal chega ao sistema e a leitura do DDF é válida. 

 O divisor divide o sinal vindo do amplificador em N partes iguais e os transmite para o 

estágio seguinte. O divisor normalmente utilizado para esse estágio é o de Wilkinson. Ele é 

escolhido devido às vantagens já citadas na seção 2.3. 

O próximo estágio é composto de n interferômetros. Os interferômetros são formados 

por divisores e duas linhas de atrasos com diferentes comprimentos o que gera diferentes 

tempos de atraso do sinal (τ1 e τn). Isso causa interferências destrutivas-construtivas 

fornecendo um sinal periódico com a frequência que apresenta uma alternância entre as 

bandas atenuadas e não atenuadas dentro da faixa de operação (Ver Figura 4.3).  

Os detectores são responsáveis pela detecção quadrática desses sinais. Esse estágio do 

sistema fornece uma tensão DC, na faixa dos mV, que está relacionada com a potência do 

sinal periódico vindo dos interferômetros.  

Na Figura 4.1, amplificadores operacionais foram utilizados como exemplo de um 

conversor AD de um bit. Ele compara o nível de tensão vindo dos detectores com um nível de 

referência Vrefn, e fornece uma tensão DC compatível com a família TTL (Transistor-

Transistor Logic), ou seja, nível lógico “0” é representado por 0 V na saída (quando a tensão 

do detector é menor Vrefn ), e nível lógico “1” é representado pela tensão de saída 5 V (quando 
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a tensão do detector é maior Vrefn). Na prática, as tensões de referência não precisam ser 

iguais.  

 

Figura 4.1: Diagrama de blocos de um discriminador digital de frequência com N bits. 

 

 

Fonte: Acervo do autor 

 

Figura 4.2: Diagrama de blocos de um sistema IFM com detecção de amplitude e sistema de controle 

e aquisição de dados. 

 

Fonte: Acervo do autor 

 

 A resolução dos DDFs depende dos comprimentos das linhas de atraso dos 

interferômetros, o que os torna, na prática, o elemento mais importante do sistema. A linha de 

atraso maior define a resolução do sistema, a menor define a banda de operação, enquanto as 
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outras linhas resolvem as ambiguidades do sistema. A maior linha de atraso do sistema 

também define a duração de um sinal pulsado que o sistema é capaz de identificar, ou seja, o 

sistema tem capacidade para identificar sinais com duração maiores que o tempo de retardo da 

maior linha de atraso.  

Para se obter uma conversão digital, vários interferômetros são colocados em paralelo 

e um nível limite (NL) de potência é escolhido para a conversão digital. Cada interferômetro é 

responsável por um bit da PDW. Um sistema com N bits, ou seja, com N interferômetros, é 

capaz de identificar 2
N
 sub-bandas, dentro da banda de projeto. A frequência de resolução (fR) 

é dada por [11]: 

  𝑓𝑅 =
𝐵𝑊

2𝑁
, (49) 

 

em que BW (= fmáx  - fmín) é largura de banda do sistema. 

A Figura 4.3 mostra as curvas de respostas características da saída dos 

interferômetros, dos conversores AD e as PDWs geradas por um DDF de 4 bits. Os 

interferômetros Ii dividem a banda em sub-bandas, as quais são atribuídas os bit 0 ou 1 

dependo do nível limite escolhido. B1 é o bit menos significativo da PDW, e B4 o mais 

significativo. Quando um sistema fornece uma PDW igual a “0011”, por exemplo, significa 

que a frequência do sinal de entrada está na primeira sub-banda do sistema. 

 

4.2 IMPLEMENTAÇÃO DE DISCRIMINADORES COM INTERFERÔMETROS 

Como mencionado anteriormente, os interferômetros fornecem dois atrasos diferentes 

para o mesmo sinal, o que gera uma diferença de fase entre eles. Quando esse sinal é 

recombinado, interferências destrutivas e construtivas acontecem criando um padrão 

periódico semelhante aquele mostrado na Figura 4.3. Aqui nesta seção, essa interferência será 

mais bem entendida. A Figura 4.4 mostra o diagrama de blocos de um interferômetro típico 

usado em um sistema IFM. 
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Figura 4.3: Curvas de saída características dos interferômetros.

 

Fonte: Modificado de [7]. 

 

Figura 4.4: Diagrama de blocos de um interferômetro usado em um sistema IFM. 

 

Fonte: Acervo do autor. 
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 Um sinal x(t) é dividido em dois sinais, x1(t) e x2(t).  Esses sinais sofrem um atraso de 

tempo τ1 e τ2, gerando os sinais s1(t) e s2(t), que por sua vez são combinados resultando em 

s(t). Supondo que x(t) é uma senoide com uma amplitude arbitrária (A) tem-se que: 

 

  𝑥1(𝑡) = 𝑥2(𝑡) =
𝐴

2
𝑠𝑒𝑛(𝜔𝑡) (50) 

  

Onde ω = 2πf. Os sinais depois de atrasado de certa quantidade de tempo se tornam: 

 

  𝑠1(𝑡) =
𝐴

2
𝑠𝑒𝑛(𝜔𝑡 − 𝜔𝜏1) (51) 

 

  𝑠2(𝑡) =
𝐴

2
𝑠𝑒𝑛(𝜔𝑡 − 𝜔𝜏2) (52) 

 

Os sinais s1(t) e s2(t) passam por um combinador de potências e o sinal é dado por: 

 

  𝑠(𝑡) =  𝑠1(𝑡) + 𝑠2(𝑡) =
𝐴

2
𝑠𝑒𝑛(𝜔𝑡 − 𝜔𝜏1) +

𝐴

2
𝑠𝑒𝑛(𝜔𝑡 − 𝜔𝜏2) (53) 

 

Usando uma identidade trigonométrica, a Equação (53) se torna: 

 

  𝑠(𝑡) =
𝐴

2
𝑐𝑜𝑠 (

𝜔(𝜏2 − 𝜏1)

2
) 𝑠𝑒𝑛 (

2𝜔𝑡 − 𝜔(𝜏1 + 𝜏2)

2
) (54) 

 

A parte em cosseno da Equação (54) contribuí apenas para amplitude do sinal, 

enquanto a parte em seno corresponde à parte harmônica. Analisando o argumento da função 

cosseno pode se determinar as frequências onde ocorrem os máximos e mínimos de s(t): 

 

  𝑓𝑚á𝑥,𝑛 = |
𝑛

∆𝜏2,1
|, (55) 

 

  𝑓𝑚í𝑛,𝑛 = |
𝑛 − 1 2⁄

∆𝜏2,1
|, (56) 
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onde n é um número inteiro positivo diferente de zero, e ∆𝜏2,1 =  𝜏2 − 𝜏1. τ2 pode ser menor 

que τ1, porém o que realmente importa é a diferença de fase, por isso o módulo nas Equações 

(55) e (56). Nessas duas últimas equações, observa-se que a distância entre dois máximos ou 

mínimos consecutivos é  

 

  ∆𝑓𝑚á𝑥 = ∆𝑓𝑚í𝑛 = |
1

∆𝜏2,1
|. (57) 

 

Para se obter um padrão de interferência para a detecção de frequências como 

mostrado na Figura 4.3, as distâncias entre as frequências dos máximos e mínimos do 

interferômetro I2, por exemplo, tem que ser a metade do interferômetro I3. Desse modo, pode-

se generalizar que o atraso requerido para o interferômetro n+1 é duas vezes maior que o 

atraso do interferômetro n: 

 

  ∆𝜏2,1
𝑛+1 = 2∆𝜏2,1

𝑛, (58) 

 

e, para que não haja ambiguidade, a largura de banda (LB) de um sistema IFM simples é 

definida como sendo a metade do maior Δf do sistema, assim, 

 

  𝐿𝐵 =
∆𝑓1

2
= |

1

2∆𝜏2,1
1 | (59) 

 

em que ∆𝑓1 é a diferença entre dois máximos ou mínimos do primeiro interferômetro 

escolhido para o projeto, e ∆𝜏2,1
1  é a menor diferença de atraso, referente a esse primeiro 

interferômetro. 

  Pelas Equações (47), (49) e (58) percebe-se que para sistemas com alta resolução, 

vários interferômetros são requeridos com tempos de atrasos cada vez maiores, o que leva, 

por sua vez, a linhas de atrasos também cada vez maiores, aumentando assim o tamanho do 

sistema.  

Na prática, para se alcançar a resolução desejada, tais linhas são geralmente projetadas 

com um alto número de curvas. Entretanto, essas curvas aumentam as reflexões múltiplas ao 

longo da linha, acarretando em degradação do sinal [16].  
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Nesse trabalho, mostra-se que é possível o projeto de 4 interferômetros para compor 

um DFD de 4 bits, utilizando a geometria fractal de Hilbert. Uma geometria simples, com alto 

número de curvas, à medida que aumentamos as interações, onde os comprimentos de cada 

iteração são maiores que a iteração anterior enquanto a área permanece constante.  

Todos os circuitos projetados nessa dissertação serão em linhas de microfita.  Existem 

na literatura algumas técnicas de miniaturização aplicáveis a diversos circuitos de microfita. 

Uma delas faz uso de substratos dielétricos com alta constante de permissividade elétrica 

relativa, onde a redução do tamanho vem do fato de que a onda eletromagnética tem um 

comprimento menor nesses meios [15], [40]. Uma outra técnica consiste em utilizar circuitos 

de microfita em duas ou mais camadas de dielétricos, não exatamente iguais, separadas por 

um plano terra que contém aberturas devidamente localizadas de maneira que elas sejam 

acopladas a certos trechos das geometrias fazendo com que seus comprimentos efetivos sejam 

maiores [41], [42], [40]. Essas técnicas apresentam algumas limitações. No primeiro caso, 

substratos dielétricos com alta permissividade (acima de 10, por exemplo) são mais caros. No 

segundo caso, a dificuldade reside na necessidade de se ter o projeto e acoplamento das 

multicamadas, e também se torna mais caro por causa da necessidade de várias camadas de 

substratos [40]. Portanto, nesta dissertação, utilizaremos a geometria fractal proposta como 

uma alternativa simples e de fácil implementação para a miniaturização da estrutura. 
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5  PROJETO DOS INTERFERÔMETROS PROPOSTOS 

Este trabalho propõe o projeto de quatro interferômetros utilizando as quatro primeiras 

sucessivas interações da curva fractal de Hilbert para constituir um sistema DDF de 4 bit, e 

portanto, com identificação de 16 sub-bandas. O sistema foi projetado para operar na faixa 

entre 4,8 a 6,4 GHz, ou seja, com uma largura de banda de 1,6 GHz. A Tabela 5.1 mostra 

alguns das aplicações dessa faixa de frequências no Brasil regulamentadas pela ANATEL 

(Agência Nacional de Telecomunicações).  

Todos os dispositivos foram projetados e simulados considerando o uso de microfitas 

fabricadas em placas especiais para micro-ondas. Essas placas tem boa estabilidade elétrica e 

mecânica com substrato de baixas perdas dielétricas. A placa escolhida foi a RO3010 da 

Rogers Corporation®, com constante dielétrica relativa de 10,2, tangente de perdas de 0,0022 

e espessura de 1,27 mm [43]. 

Nesta seção, o projeto do divisor e dos interferômetros serão apresentados.   

 

Tabela 5.1: Aplicações regulamentadas pela ANATEL no Brasil para a faixa de 4,8 a 6,4 GHz [44]. 

Frequência (GHz) Aplicação 

4,800-4,990 Fixo; Móvel e Radioastronomia 

4,990-5,000 
Fixo; Móvel, Radioastronomia e Pesquisa 

espacial 

5,000-5,010; 5,010-5,030 
Radio navegação aeronáutica e Radio 

navegação por satélite 

5,030-5,091 Radio navegação aeronáutica 

5,091-5,150 
Móvel aeronáutico e Radio navegação 

aeronáutica 

5,150-5,250 
Fixo por satélite, Móvel e Radio navegação 

aeronáutica 

5,250-5,255; 5,255-5,350 
Exploração da terra por satélite; 

Pesquisa espacial; Radio localização 

5,350-5,460 

Exploração da terra por satélite; 

Pesquisa espacial; Radio localização Radio 

navegação aeronáutica 

5,460-5,470 
Exploração da terra por satélite; 

Pesquisa espacial; Radio localização; Radio 
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navegação 

5,470-5,570 

Exploração da terra por satélite; 

Pesquisa espacial; Radio localização; 

Móvel 

5,570-5,650 
Radio localização; Móvel 

Radio navegação aeronáutica 

5,650-5725 
Móvel; Radio localização; Pesquisa espacial 

(espaço distante); Radioamador 

5,725-5,830 
Radio localização 

Radioamador 

5,830-5,850 
Radio localização; Radioamador; 

Radioamador por satélite (espaço para terra) 

5,850-5,925 
Fixo; Fixo por satélite (terra para espaço); 

Móvel; Radioamador; Radio localização 

5,925-6,700 
Fixo; Fixo por satélite (terra para espaço); 

Móvel 

5.1 PROJETO DO DIVISOR DE WILKINSON MODIFICADO 

O divisor tradicional de Wilkinson estudado na seção 2.3.1 foi inicialmente utilizado para 

o projeto do divisor dos interferômetros propostos. Para se ter uma impedância característica 

Z0 de 50 Ω, a linha de transmissão de microfita, com o substrato escolhido nessa dissertação, 

teria que ter uma largura de 1,1 mm em todas as portas. Isso tornaria quase impraticável a 

construção das quatro iterações em uma área reduzida. Uma alternativa seria diminuir a 

largura das trilhas das linhas de atraso e conectá-las ao divisor por um casador de λ0/4, ou 

colocar esse casador entre a alimentação e a porta 1. 

Aqui, no entanto, usaremos o próprio casador do divisor de Wilkinson para fazer isso, 

dispensando o uso de mais um trecho de linha de transmissão.  

Para se calcular qual deve ser a impedância do casador e do resistor, toma-se novamente 

o circuito da Figura 2.5, porém com as impedâncias características da porta 1 (Z1) diferente 

das impedâncias das portas 2 e 3 (Z2) como mostra a Figura 5.1(a). A Figura 5.1 (b) mostra o 

circuito da Figura 5.1 (a) com as impedâncias normalizadas em relação a Z2. 

Analisando a bissecção do circuito no modo ímpar analogamente ao que foi feita na seção 

2.3.1, tem-se o circuito equivalente da Figura 5.2. E, olhando a impedância de entrada na 

porta 2 tem-se: 
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  𝑍𝑖𝑛2
𝑒 =

(𝑍/𝑍2)2

2 𝑍1 𝑍2⁄
 (60) 

 

Para porta 2 estar casada, 𝑍𝑖𝑛2
𝑒 = 1. Então, a impedância característica do casador do divisor 

modificado é: 

 

  𝑍 = √2𝑍1𝑍2 (61) 

 

 

 

Figura 5.1: (a) Divisor de Wilkinson modificado. (b) Divisor de Wilkinson modificado com as 

impedâncias normalizadas em relação a Z2. 

    

                                            (a)                                                              (b) 

Fonte: Modificado de [15]. 

 

Figura 5.2: Bissecção do divisor de Wilkinson modificado na análise do modo ímpar. 

 

Fonte: Modificado de [16]. 
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Agora, analisando impedância de entrada na porta no circuito da bissecção no modo 

par do divisor de Wilkinson modificado (Figura 5.3), tem-se: 

 

  𝑍𝑖𝑛2
𝑜 =

𝑟 𝑍2⁄

2
 (62) 

 

Assim, para que a porta 2 esteja casada, 𝑍𝑖𝑛2
𝑜 = 1 e 𝑟 = 2𝑍2. A porta 1 também está casada. 

Isso pode ser comprovado analisando a impedância de entrada do circuito do divisor de 

Wilkinson modificado com as portas 2 e 3 casadas (Figura 5.4). Zin1 é dada por: 

 

  𝑍𝑖𝑛1 = (
(√2𝑍1𝑍2)

2

1
) // (

(√2𝑍1𝑍2)
2

1
) = 𝑍1 𝑍2⁄  (63) 

 

Figura 5.3: Bissecção do divisor de Wilkinson modificado na análise do modo par. 

 

Fonte: Modificado de [16]. 

 

Figura 5.4: Análise para encontrar a impedância de entrada na Porta 1 do divisor de Wilkinson 

modificado. 

 

Fonte: Modificado de [16]. 

 

Em resumo, foi obtido um divisor de Wilkinson modificado onde a impedância da 

porta 1 (Z1) é diferente das impedância da  porta 2 e 3 (Z2). A impedância do casador é agora 

𝑍 = √2𝑍1𝑍2 e o resistor é 𝑟 = 2𝑍2. Essas impedâncias foram calculadas seguindo os mesmos 
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passos para se calcular as impedâncias do divisor de Wilkinson tradicional na seção 2.3.1. 

Pela simetria do circuito, a potência é dividida igualmente entres as duas portas de saída do 

divisor. 

A largura de trilha escolhida para se projetar as linhas de atraso dos interferômetros foi 

de 0,3 mm, o que corresponde a uma linha de microfita com impedância de 84 Ω. Assim, a 

impedância do casador que conecta essa linha a de 50 Ω (≈ 1,1 mm) é de 91,65 Ω 

correspondendo a uma linha de largura 0,22 mm. Essa trilha foi aumentada para 0,25 mm, 

pois essa era uma largura de trilha que já tinha sido fabricada com sucesso pela máquina de 

prototipagem do Laboratório. Essa trilha corresponde a uma impedância de 88,6 Ω, 3,3% 

menor que a de projeto. O circuito foi projetado para operar numa frequência central de 5,6 

GHz o que corresponde a um casador de comprimento (λg/4) 5,33 mm. 

  A distância entre os braços do divisor é de 3,55 mm e foi escolhida de modo que fosse 

possível conectar um resistor SMD com encapsulamento 1206 (3,2 x 1,6 mm). O resistor calculado 

tem o valor de 168 Ω, mas decidiu-se realizar as simulações com o resistor de 180 Ω (valor 

comercial). A Figura 5.5 mostra o desenho do divisor projetado no software CST Microwave Studio e 

a Figura 5.6  mostra os parâmetros de espalhamentos para esse divisor. Por esses resultados, nota-se 

que 𝑆2,1 e 𝑆3,1 é aproximadamente -3 dB (-3,2 dB), todas as portas (𝑆1,1, 𝑆2,2 e 𝑆3,3) apresentam perda 

de retorno abaixo de -15 dB e o divisor apresenta boa isolação entre as portas de saída (𝑆3,2 <

−15 𝑑𝐵).    

Figura 5.5: Esquema do divisor projetado em microfita. 

 

Fonte: Acervo do autor. 
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Figura 5.6: Resultado de simulação do divisor de Wilkinson modificado.  

 

Fonte: Acervo do autor. 

5.2 PROJETO DOS INTERFERÔMETROS COM AS LINHAS DE ATRASO 

BASEADAS NA CURVA DE HILBERT 

Os interferômetros aqui propostos consistem em dois divisores de Wilkinson 

modificados que atuam como divisor e combinador. Esse divisor já foi calculado na seção 

anterior. Uma das saídas do divisor é conectada a uma linha de referência de 20 mm de 

comprimento (escolhida arbitrariamente), enquanto a outra saída é conectada a alguma 

interação do Fractal de Hilbert. Todas as interações foram projetadas de maneira que ocupem 

a mesma área de 400 mm
2
 (20 x 20 mm).  

Os quatro bits desse sistema são mostrados nas Figura 5.7, Figura 5.8, Figura 5.9 e 

Figura 5.10. Os bits 2, 3 e 4 foram projetados em função de dois parâmetros, cdente e ldente, 

os quais têm a função de fazer um ajuste fino nos comprimentos das geometrias fractais para 

se alcançar a resposta desejada. O sistema com 4 bits tem uma banda de resolução de 100 

MHz. Dessa maneira, a banda de operação do circuito é dividida em 16 bandas iguais com 

largura de 100 MHz e escolhe-se um nível limite (NL) para cada Bit de modo a se alcançar as 

respostas esperadas para os interferômetros de acordo com a Figura 4.3 (Ver ANEXO 1). Um 

otimizador do software CST foi utilizado para variar cdente e ldente e alcançar à resposta 

mais próxima da ideal. 
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A Tabela 5.2 mostra as características das iterações fractais para o melhor caso 

encontrado pelo otimizador. A última coluna da tabela mostra a diferença de tempo de atraso 

entre a interação fractal e a linha de referência que tem um tempo de atraso de 17 ns (Ver 

ANEXO 2). Observa-se que ∆τi,1
𝑛+1 ≈ 2∆τi,1

𝑛
 como requerido pela Equação (58).  

 

Figura 5.7: Interferômetro 1 com a primeira iteração da curva de Hilbert – Bit 1. 

  

Fonte: Acervo do autor. 

   

 

Figura 5.8: Interferômetro 2 com a segunda iteração da curva de Hilbert – Bit 2. 

 

Fonte: Acervo do autor. 
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Figura 5.9: Interferômetro 3 com a terceira iteração da curva de Hilbert – Bit 3. 

 

Fonte: Acervo do autor. 

 

Figura 5.10: Interferômetro 4 com a quarta iteração da curva de Hilbert – Bit 4. 

 

Fonte: Acervo do autor. 

 Tabela 5.2: Características das iterações fractais de Hilbert.  

Interações - i 
Ldente 

(mm) 

Cdente 

(mm) 

Comprimento 

total (mm) 

Tempo de 

atraso (ns) 
∆𝜏𝑖,1 (ns) 

1 - - 60,00 0,50 0,34 

2 8,10 8,20 109,40 0,91 0,74 

3 8,80 8,00 182,50 1,53 1,36 

4 9,20 9,30 357,20 3,00 2,83 
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6 RESULTADOS E DISCUSSÕES 

Neste capítulo serão mostrados os resultados obtidos com o CST Microwave Studio para 

os quatro interferômetros fractais aqui projetados. Em seguida, será mostrado como os 

interferômetros foram fabricados e medidos, e por fim, a comparação entre os resultados 

medidos e simulados. 

6.1 RESULTADOS DE SIMULAÇÃO 

O software CST Microwave Studio foi utilizado para o desenho e simulação das 

estruturas. Um otimizador foi empregado para variar os parâmetros ldente e cdente, que são 

os únicos parâmetros que são variados em todo o processo. O Anexo 2 mostra os critérios 

utilizados nessa otimização. As curvas com os melhores resultados encontrados estão 

mostradas nas Figura 6.1 a Figura 6.4. O nível escolhido para todos os interferômetros foi de 

NL = - 5 dB, exceto para o interferômetro 1 que foi de NL = - 2,2 dB.  

O interferômetro 1 foi primeiramente projetado para ter a frequência de transição em 

5,6 GHz em um nível de -5 dB, curva pontilhada na Figura 6.1.  Para isso a linha de atraso 

teria que ser levemente menor, 57,48 mm, correspondente a um ∆τ2,1 = 0,31 ns, o que 

forneceria uma largura de banda de aproximadamente 1,6 GHz. Para que todas as linhas de 

atrasos fractais ocupassem a mesma área, o comprimento dessa linha de atraso foi aumentado 

para 60 mm e NL para - 2,2 dB. 

Na prática, para um sinal RF de amplitude 0 dBm, NL = - 5 dBm, por exemplo. A parte 

em azul nos gráficos indica a banda de frequências em que os interferômetros fornecem o 

nível lógico “1” para o sistema.  

 Os interferômetros 1 e 2 apresentaram resultados de simulação igual ao resultado 

esperado pela teoria. No interferômetro 1, S21 está abaixo de NL para frequências abaixo de 

5,6 GHz, e acima de NL para o resto da banda. No interferômetro 2, a curva de S21 intercepta 

NL nas frequências de 5,2 e 6 GHz, estando abaixo de NL para frequências fora dessa faixa. 

 Já o melhor resultado para o interferômetro 3, ainda apresentou um deslocamento de 

43,5 MHz para a primeira frequência de transição, o que corresponde a 43,5 % da banda 

detectável e pode interferir no desempenho final do sistema. 

 O melhor resultado para o interferômetro 4 também apresentou deslocamentos nas 

frequências de transição. Os casos mais críticos são nas frequências de 5,14 GHz, 5,77 GHz e 

6,25 GHz, que apresentaram um deslocamento de 40, 70 e 50 MHz, respectivamente. 
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A Tabela 6.1 mostra as sub-bandas identificadas baseadas nas respostas de simulação do 

sistema formado pelos os quatros interferômetros propostos. Observa-se que apesar dos 

deslocamentos sofridos pelas frequências de transição nos interferômetros 3 e 4, o sistema é 

capaz de identificar 16 sub-bandas distintas. A maior parte das sub-bandas tem uma largura de 

aproximadamente 100 MHz, mas por causa dos deslocamentos, algumas sub-bandas foram 

prejudicadas, como as sub-bandas 4, 10 e 15 que têm uma largura de respectivamente 57, 32 e 

60 MHz, e a sub-banda 16 com largura de 148 MHz. E por apresentar, em geral, esses bons 

resultados, se decidiu construir os dispositivos. 

 

Figura 6.1: Resultado simulado para o interferômetro 1. 

 

Fonte: Acervo do autor. 

 

Figura 6.2: Resultado simulado para o interferômetro 2. 

 

Fonte: Acervo do autor. 

 

 

NL = -2,2 dB

Nível lógico 1Nível lógico 0Frequência [GHz]

Magnitude Parâmetro S [dB]  

NL = - 5 dB

Nível lógico 1Nível lógico 0Frequência [GHz]

Magnitude Parâmetro S [dB]  
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Figura 6.3: Resultado simulado para o interferômetro 3. 

 

Fonte: Acervo do autor. 

 

Figura 6.4: Resultado simulado para o interferômetro 4. 

 

Fonte: Acervo do autor. 

 
Tabela 6.1: Sub-bandas identificadas e PDWs dos quatros interferômetros fractais propostos obtidos a 

partir dos resultados simulados.  

Sub-banda fmin (GHz) fmáx (GHz) 
Largura de 

Banda (GHz) 
PDW 

1 4,800 4,910 0,110 0011 

2 4,910 5,045 0,135 0010 

3 5,045 5,143 0,098 0000 

4 5,143 5,200 0,057 0001 

5 5,200 5,296 0,096 0101 

6 5,296 5,395 0,099 0100 

NL = - 5 dB

Nível lógico 1Nível lógico 0Frequência [GHz]

Magnitude Parâmetro S [dB]  

NL = - 5 dB

Nível lógico 1Nível lógico 0Frequência [GHz]

Magnitude Parâmetro S [dB]  
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7 5,395 5,522 0,127 0110 

8 5,522 5,600 0,078 0111 

9 5,600 5,768 0,168 1111 

10 5,768 5,800 0,032 1110 

11 5,800 5,906 0,106 1100 

12 5,906 6,000 0,094 1101 

13 6,000 6,091 0,091 1001 

14 6,091 6,191 0,100 1000 

15 6,1908 6,252 0,0613 1010 

16 6,2521 6,400 0,1479 1011 

 

6.2 FABRICAÇÃO DOS INTERFERÔMETROS FRACTAIS 

Os interferômetros foram confeccionados usando a máquina de protótipo de placa de 

circuito impresso (PCB Prototype Machine) modelo EP2006H do fabricante Everprecision 

mostrada na Figura 6.5. Essa máquina é um dos equipamentos integrantes do Laboratório de 

Micro-ondas do Departamento de Eletrônica e Sistemas da UFPE. 

A versão final do arquivo CAD do CST Microwave Studio é exportado no formato 

DXF. Esse arquivo é aberto no SONNET e exportado na versão GERBER para o programa 

PCAM v. 5.2.6 que se comunica com a máquina. A máquina de prototipagem consegue fazer 

trilhas com espessuras iguais ou maiores que 0,25 mm. Ela retira o cobre por um processo de 

fresagem. Durante o processo, três tipos diferentes de brocas são usados: a primeira faz o 

desenho do contorno da estrutura, a segunda retira a maior parte de cobre, e a terceira retira o 

cobre próximo aos detalhes da estrutura. Essa técnica de fabricação apresenta a desvantagem 

de também retirar uma porcentagem do substrato. Além disso, por serem muito delicadas, as 

brocas se desgastam rápido e a qualidade do trabalho final tende a cair se o mesmo conjunto 

de fresas for usado constantemente. Um aspirador suga a maior parte dos resíduos de cobre do 

circuito, mas algumas trilhas de cobre ainda ficaram grudadas nas placas dos dispositivos e 

precisaram ser retiradas com o auxílio de ferramentas adequadas e um microscópio como 

mostra a Figura 6.6.  

A Figura 6.7 mostra os quatro interferômetros fabricados, todos eles têm as mesmas 

dimensões, 25,25 x 49,60 mm. Cada interferômetro foi conectado a dois conectores SMA, e, 

dois resistores SMD foram cuidadosamente soldados.   
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Figura 6.5: Máquina de prototipagem utilizada na fabricação dos dispositivos. 

 

Fonte: Acervo do autor. 

 

Figura 6.6: Retirada de resíduos de cobre e de substrato do interferômetro 4 com auxílio de um 

microscópio. 

 

Fonte: Acervo do autor. 

 

Figura 6.7: Interferômetros 1, 2, 3 e 4 fabricados e montados. 
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Fonte: Acervo do autor. 

6.3 CONFIGURAÇÃO EXPERIMENTAL PARA MEDIÇÃO 

O analisador de rede vetorial (Network Analyzer) modelo E5071B do fabricante Agilent 

Technologies, também disponível no laboratório de Microondas da UFPE, foi utilizado para 

medir os quatros interferômetros fabricados. Com esse equipamento é possível medir 

diretamente módulo e fase dos parâmetros de espalhamentos numa faixa que vai de 300 kHz a 

8,5 GHz. Antes do processo de medição, o analisador é calibrado utilizando o método SOLT 

(Short-Open-Load-Thru) onde uma carga em curto, em aberto, e casada, e um pedaço de linha 

transmissão são conectados aos cabos a fim de trazer a referência de medição para a entrada 

do conector. Essa calibração é feita dentro da faixa de frequências que se deseja medir o 

Interferômetro 1

Interferômetro 2

Interferômetro 3

Interferômetro 4
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dispositivo; para essa dissertação, a faixa escolhida foi a de 4 a 7 GHz. A Figura 6.8 mostra o 

analisador utilizado, e dois cabos coaxais conectados ao interferômetro 4. O display mostra a 

magnitude do parâmetro S21 para esse dispositivo. A mesma configuração é utilizada para 

medir os demais interferômetros. O sinal de entrada gerado pelo analisador tem uma potência 

de 0 dBm. 

 

 
Figura 6.8: Medição experimental do interferômetro 4 utilizando o analisador de redes vetorial. 

 
Fonte: Acervo do autor. 

6.4 RESULTADOS EXPERIMENTAIS 

As Figuras de 6.10 a 6.13 mostram os resultados experimentais dos quatros 

interferômetros em comparação com os resultados simulados com o valor do resistor igual a 

180 e 220 Ω. Na prática, os resistores soldados nos interferômetros foram resistores SMD de 

220 Ω. Simulações foram realizadas em todos os interferômetros mudando apenas o valor do 

resistor, e praticamente não houve alteração no resultado. 

Observe que o Interferômetro 1 apresenta boa concordância entre o resultado simulado e 

medido, tendo um deslocamento de apenas 50 MHz em relação à frequência central de projeto 

(f0 = 5,6 GHz) ou 0,9%. O Interferômetro 2 apresentou deslocamento de 70 MHz em relação à 

frequência central ou 1,25%, enquanto os interferômetros 3 e 4, um deslocamento de 90 MHz 

(1,61%) e 65 MHz (1,16%), respectivamente.  
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Figura 6.9: Comparação entre os resultados medidos e simulados do Interferômetro 1.  

 

Fonte: Acervo do autor. 

Figura 6.10: Comparação entre os resultados medidos e simulados do Interferômetro 2. 

 

Fonte: Acervo do autor. 
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Figura 6.11: Comparação entre os resultados medidos e simulados do Interferômetro 3. 

 

Fonte: Acervo do autor. 

Figura 6.12: Comparação entre os resultados medidos e simulados do Interferômetro 4. 

 

Fonte: Acervo do autor. 
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              Uma possível causa para esses deslocamentos é a soldagem dos resistores SMDs. Os 

resistores utilizados na simulação são ideias e ocupam um comprimento infinitesimal na linha, 

enquanto os resistores empregados têm dimensões de 3,2 x 1,6 mm. Em alta frequência, esses 

resistores apresentam características indutivas e capacitivas, e a sua soldagem na placa pode 

inserir mais elementos capacitivos na linha alterando os parâmetros RLC das linhas de 

microfitas próximas a ele.  A soldagem do conector SMA também pode introduzir 

componentes indutivas e capacitivas nas portas de entrada do sistema.  

                Erros provenientes da variação da constante dielétrica com a frequência não estão 

sendo levados em consideração, pois o substrato utilizado apresenta constante dielétrica 

estável até a frequência de 50 GHz [43], e o software CST Microwave Studio leva em 

consideração a dispersão e as perdas no dispositivo. O processo de fabricação retirou uma 

parte do substrato dielétrico, porém retiradas de pequenas porcentagens do dielétrico não 

contribuem significativamente para a variação da permissividade efetiva e consequentemente 

no deslocamento da frequência como pode ser visto no segundo gráfico do Anexo 2, 

fornecendo um deslocamento na frequência de apenas 8 MHz quando 0,1 mm de substrato é 

retirado.  

 Porém, de acordo com [43], a constante dielétrica tem uma faixa de tolerância de 

±0,3, o que quer dizer que o seu valor pode estar entre 9,9 e 10,5. Calculando o deslocamento 

para o caso em que εr é 10,5, o deslocamento de frequência é 76 MHz. Levando agora em 

consideração que 0,1 mm de substrato é retirado, esse deslocamento passa a ser a 85 MHz. 

Desse modo, há possibilidade que os deslocamentos possam também ter sido ocasionados 

pelo valor da constante dielétrica da placa. 

Propagações de modos de ordens superiores e de ondas de superfície acontecem em 

uma frequência bem maior que a de projeto. Modos de ordens superiores ocorrem em 

frequências maiores que 29,2 GHz e ondas de superfícies, em frequências maiores que 17,9 

GHz, e não contribui para os erros encontrados. 

O interferômetro 4 foi o que apresentou um resultado mais dissonante em relação à 

simulação. Isso pode significar que ele precisaria de uma malha de simulação mais fina do 

que a que foi empregada, o que também aumentaria consideravelmente o tempo de simulação. 

  

As Figuras de 6.10 a 6.13 mostraram as respostas analógicas para os interferômetros 

propostos. Agora, níveis para conversão AD serão escolhidos de maneira que o resultado 

fique mais parecido com o resultado esperado pela simulação levando em consideração o 
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deslocamento na frequência sofrido pelos interferômetros. Para o Interferômetro 1, que 

fornece o bit menos significativo da PDW, foi escolhido um nível de - 3,7 dB. Para o 

Interferômetro 2, o nível foi de - 9,5 dB, para o Interferômetro 3, - 7 dB, e para o 

Interferômetro 4, - 5 dB.  

Para um nível de - 3,7 dB, a frequência de transição do Interferômetro 1 é de 5,6 GHz. 

Para um nível de - 9,5 dB, as frequências de transição do Interferômetro 2 são 5,03 e 6 GHz. 

Para um nível de -7 dB, as frequências de transição do Interferômetro 3 são 5,15, 5,48, 5,95 e 

6,26 GHz. E, para um nível de -7,5 dB, as frequências de transição do Interferômetro 4 são 

4,95, 5,12, 5,39, 5,5, 5,6, 5,86, 6, 6,26 e 6,36 GHz. 

A Tabela 6.2 mostra as sub-bandas identificadas e as PDWs dos quatro 

interferômetros fractais propostos obtidos a partir dos resultados medidos. Observa-se que 

apesar dos deslocamentos de frequências apresentados nos resultados medidos, o sistema com 

os quatro interferômetros consegue identificar dez sub-bandas distintas que correspondem a 

1,36 GHz de banda detectável, 85% da banda para qual o interferômetro foi projetado. 240 

MHz do sistema tem ambiguidades de leitura. A palavra “0110” identifica tanto as 

frequências dentro da faixa de 5,03 – 5,12 GHz quanto na faixa de 5,48 – 5,5 GHz, já a 

palavra “0110”, identifica frequências entre 5,12 – 5,15 GHz e 5,5 – 5,6 GHz .  

Os deslocamentos nas frequências podem ser minimizados com a utilização de 

estações e técnicas de soldagem para resistores SMD e conectores de alta frequência. 

Também é possível, obter os resultados desejados, reprojetando o sistema levando em 

consideração esse deslocamento, com maior número de células de simulação, para se obter 

resultados mais precisos. 

Observe que na Figura 6.12, por causa dos deslocamentos de frequências, a última 

frequência de máximo do projeto está na frequência de 6,5 GHz. Levando isso em 

consideração, e utilizando os mesmos interferômetros, mas agora aumentando a banda para 

1,7 GHz, de 4,8 a 6,5 GHz, e definindo como níveis de conversão AD, -4 dB, -5 dB, -7 dB e -

8 dB, para o interferômetro 1, 2, 3 e 4, respectivamente, se obtém os resultados da Tabela 6.3. 

Doze sub-bandas que correspondem a 1,59 GHz, 90,6% da nova banda de funcionamento do 

interferômetro, são identificadas. As sub-bandas 8 e 10 são identificadas pela mesma palavra, 

“1110”; o mesmo acontece com as sub-bandas 12 e 14 identificadas pela palavra “1000”, 

totalizando 160 MHz comprometidos pela ambiguidade. Esse sistema se mostrou ligeiramente 

melhor do que o apresentado anteriormente. 
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As respostas analógicas dos interferômetros apresentaram boa concordância com os 

resultados simulados, e que apesar dos deslocamentos nas frequências, foi possível identificar 

85% da banda para o qual o dispositivo foi projetado. Aumentando ligeiramente a banda de 

100 MHz, o sistema passa a identificar 90,6 % da banda. Algumas soluções para os erros 

devido aos deslocamentos também foram apresentadas. 

 

Tabela 6.2: Sub-bandas identificadas e PDWs dos quatro interferômetros fractais propostos obtidos a 

partir dos resultados medidos, analisando entre as frequências de 4,8 e 6,4 GHz, e com os níveis de 

conversão de -3,7 dB, -9,5 dB, -7 dB e -7,5 dB, para os interferômetros de 1 a 4, respectivamente. 

Sub-banda fmin (GHz) fmáx (GHz) 
Largura de 

Banda (GHz) 
PDW 

1 4,80 4,95 0,15 0011 

2 4,95 5,03 0,08 0010 

3 5,03 5,12 0,09 0110 

4 5,12 5,15 0,03 0111 

5 5,15 5,39 0,24 0101 

6 5,39 5,48 0,09 0100 

7 5,48 5,50 0,02 0110 

8 5,50 5,60 0,10 0111 

9 5,60 5,86 0,26 1111 

10 5,86 5,95 0,09 1110 

11 5,95 6,00 0,05 1100 

12 6,00 6,26 0,26 1001 

13 6,26 6,36 0,10 1010 

14 6,36 6,40 0,04 1011 
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Tabela 6.3: Sub-bandas identificadas e PDWs dos quatro interferômetros fractais propostos obtidos a 

partir dos resultados medidos, analisando entre as frequências de 4,8 e 6,5 GHz, e com os níveis de 

conversão de -4 dB, -5 dB, -7 dB e -8 dB, para os interferômetros de 1 a 4, respectivamente. 

Sub-banda fmin (GHz) fmáx (GHz) 
Largura de 

Banda (GHz) 
PDW 

1 4,8 4,95 0,15 0011 

2 4,95 5,11 0,16 0010 

3 5,11 5,14 0,03 0011 

4 5,14 5,16 0,02 0001 

5 5,16 5,39 0,23 0101 

6 5,39 5,49 0,10 0100 

7 5,49 5,50 0,01 0110 

8 5,50 5,55 0,05 1110 

9 5,55 5,87 0,32 1111 

10 5,87 5,89 0,02 1110 

11 5,89 5,92 0,03 1100 

12 5,92 6,00 0,08 1000 

13 6,00 6,27 0,27 1001 

14 6,27 6,28 0,01 1000 

15 6,28 6,35 0,07 1010 

16 6,35 6,50 0,15 1011 
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7 CONCLUSÕES E TRABALHOS FUTUROS 

Este trabalho apresentou o desenvolvimento de quatro interferômetros que utilizam 

sucessivas iterações da geometria fractal de Hilbert para alcançar os atrasos desejados para a 

identificação da frequência. A curva de Hilbert tem a propriedade de preencher o espaço, 

assim é possível aumentar o comprimento da linha sem aumentar a área ocupada por ela. 

O divisor de Wilkinson foi utilizado como divisor e combinador. Ele foi modificado para 

casar com uma trilha de largura mais fina que a de impedância Z0 sem a necessidade de mais 

um casador de um quarto de onda.  

Os interferômetros foram projetados para compor um sistema digital de identificação de 

frequências entre a faixa de 4,8 e 6,4 GHz com resolução de 100 MHz. Todos os 

interferômetros têm as mesmas dimensões de 25,25 x 49,60 mm. Os dispositivos foram 

fabricados, montados e caracterizados experimentalmente no Laboratório de Micro-ondas da 

UFPE.   

Os resultados experimentais apresentaram um deslocamento em relação à frequência 

central, isso pode ser ocasionado pela soldagem dos resistores SMDs e dos conectores SMA. 

Apesar dos deslocamentos encontrados, escolhendo apropriadamente os níveis de conversão 

AD, foi possível identificar 10 sub-bandas distintas, que correspondem a 1,36 GHz (85% da 

banda de projeto) de banda detectável. Aumentando ligeiramente a banda de projeto de 100 

MHz, o sistema passa a identificar 90,6 % da banda. 

Esta dissertação resultou na publicação do artigo New Compact Interferometer Based on 

Fractal Concept na IEEE MTT-S International Microwave and Optoelectronics Conference 

(IMOC), 2015. 

Trabalhos futuros consistem em melhorar o desempenho dos interferômetros e integrá-los 

em uma mesma placa, juntamente com os componentes ativos. Utilizar a geometria fractal de 

Hilbert para construir interferômetros reconfiguráveis com tamanhos ainda mais reduzidos. 

Fabricar e medir o divisor modificado. 

 

 

 

 

  

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363713
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363713
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ANEXO 1 

Tabela com os resultados usados para otimização dos interferômetros. O otimizador utilizado 

foi o Trust Region Framework contifdo no CST Microwave Studio. 

 

Tabela 0.1: Resultado teórico dos quatros interferômetros usados para compor um DDF de 4 bits com 

uma largura de banda de 1,6 GHz.  

Interferômetro Faixa de frequência (GHz) S21 

BIT 1 4,8 – 5,6 < NL 

BIT 1 5,6 – 6,4 > NL 

BIT 2 4,8 – 5,2 < NL 

BIT 2 5,2 – 6,0 > NL 

BIT 2 6,0 – 6,4 < NL 

BIT 3 4,8 – 5,0 > NL 

BIT 3 5,0 – 5,4 < NL 

BIT 3 5,4 – 5,8 > NL 

BIT 3 5,8 – 6,2 < NL 

BIT 3 6,2 – 6,4 > NL 

BIT 4 4,8 – 4,9 > NL 

BIT 4 4,9 – 5,1 < NL 

BIT 4 5,1 – 5,3 > NL 

BIT 4 5,3 – 5,5 < NL 

BIT 4 5,5 – 5,7 > NL 

BIT 4 5,7 – 5,9 < NL 

BIT 4 5,9 – 6,1 > NL 

BIT 4 6,1 – 6,3 < NL 

BIT 4 6,3 – 6,4 > NL 

 

NL é o nível limite mencionado na seção 4.2. 
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ANEXO 2 
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