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RESUMO 

 

A estratégia metabonômica é uma ferramenta que utiliza dados 

analíticos, submetidos à análise estatística multivariada a fim de identificar 

mudanças na concentração dos metabólitos endógenos em um biofluido 

quando o organismo sofre alguma perturbação, como uma doença, por 

exemplo. A Espectroscopia de Ressonância Magnética Nuclear de Hidrogênio-

1 (RMN de 1H) é geralmente o instrumento analítico utilizado. Para a 

interpretação dos dados espectrais resultantes são utilizadas ferramentas de 

estatística multivariada. Neste trabalho, foram construídos, a partir de amostras 

de soro sanguíneo de pacientes atendidos no Hospital das Clínicas da UFPE e 

de três hospitais privados da Região Metropolitana do Recife, modelos 

metabonômicos capazes de: 1) discriminar entre pacientes portadores de 

esteatose e portadores de esteatohepatite; e 2) discriminar pacientes 

monoinfectados com hepatite viral B (HBV) ou C (HCV) de pacientes 

coinfectados com HBV/HCV e esquistossomose mansônica. Foram construídos 

modelos usando os formalismos PLS-DA e OPLS-DA. Para o primeiro modelo, 

foram utilizadas 39 amostras, sendo obtidos valores de exatidão, R2, 

sensibilidade e especificidade iguais a 81,1%, 75,0%, 71,4% e 83,3%, 

respectivamente. Estes resultados foram semelhantes ao do citoqueratina-18, o 

marcador sérico para esteatohepatite considerado mais eficiente. O segundo 

modelo usou 40 amostras, sendo obtidos valores de exatidão, R2 e Q2 iguais a 

100%, 98,1% e 97,5%. Sendo assim, este estudo propõe que a estratégia 

metabonômica é uma alternativa, minimamente invasiva, para o diagnóstico 

diferencial de doenças hepáticas. 

 

Palavras-chave: Metabolômica. RMN. Esteatohepatite. Hepatite. 

Esquistossomose. 
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ABSTRACT 

 

Metabonomics can be defined as a tool that associates analytical data 

and multivariate statistics analysis to identify changes in the concentration of 

endogenous metabolites in biofluids when there is a disturbance in the 

organism caused by a disease, for example. 1H Nuclear Magnetic Resonance 

spectroscopy (1H-NMR) is usually the analytical instrument used in the 

experiments. It is also necessary to use chemometrics techniques to extract the 

information of the spectra. Herein, we used blood serum samples from patients 

of Clinics Hospital of UFPE and from three hospitals of Recife city to built 

metabonomics models able to: 1) distinguish between steatosis and 

steatohepatitis; and 2) distinguish between monoinfected patients with viral 

hepatitis B (HBV) or C (HCV) and coinfected patients with HBV/HCV and 

schistosomiasis. These models were built using PLS-DA and OPLS-DA 

formalisms. The first model contains 39 samples and achieved values of 

accuracy, R2, sensitivity and specificity of 81.1%, 75.0%, 71.4% and 83.3%, 

respectively. This result was similar to the one obtained by cytokeratin-18, an 

efficient noninvasive biomarker for steatohepatitis. The second model contains 

40 samples and achieved values of accuracy, R2 and Q2 equal to 100.0%, 

98.1% and 97.5%, respectively. The metabonomics strategy, a minimally 

invasive strategy, showed potential to assess the presence of hepatic lesions. 

 

Keywords: Metabolomics. NMR. Steatohepatitis. Hepatitis. Schistosomiasis. 
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1 INTRODUÇÃO 

 

O direito à saúde, por estar interligado ao direito à vida e à existência 

digna, representa um dos fundamentos da República Federativa do Brasil, 

sendo plenamente assegurado pela Constituição Federal de 1988. In verbis: 

“Art. 196. A saúde é direito de todos e dever do Estado, garantido 

mediante políticas sociais e econômicas que visem à redução dos riscos de 

doença e de outros agravos e o acesso universal e igualitário às ações e 

serviços para sua promoção, proteção e recuperação.” 

Entretanto, os serviços de saúde prestados, seja pelo estado ou pela 

iniciativa privada, muitas vezes não satisfazem as necessidades da população. 

É comum haver reclamações devido à demora no atendimento, longas filas de 

espera, serviços de baixa qualidade, instalações precárias, falta de 

humanização, falta de profissionais especializados, deficiência de recursos 

físicos e materiais, entre outros motivos. (Lima et al. 2014)  

Em muitos casos, a espera demorada para conseguir atendimento 

dificulta um diagnóstico precoce de doenças que rapidamente podem evoluir 

para um estado clínico grave, podendo levar à morte. Por exemplo, o Instituto 

Nacional de Câncer José Alencar Gomes da Silva (INCA) atribui a taxa de 

mortalidade do câncer de colo de útero ao diagnóstico em estágios avançados 

da doença, algo que acontece devido à dificuldade de acesso da população 

aos serviços e programas de saúde. (Panobianco et al. 2012) 

A dificuldade de diagnosticar rapidamente numerosas doenças não é 

algo que acontece apenas no Brasil. Esta incapacidade está mais presente nos 

países em desenvolvimento em comparação aos já desenvolvidos, devido a 

inúmeros fatores, entre eles a falta de infraestrutura dos laboratórios e a falta 

de pessoal qualificado para atender às demandas da população. Segundo a 

Organização Mundial da Saúde (OMS), a maioria dos casos clínicos pode ser 

solucionada em um primeiro atendimento se ele for rápido e eficiente, pois 

quando isso não acontece, eles evoluem para casos mais complicados. Sendo 

assim, os países desenvolvidos investem mais no atendimento primário do que 

os países em desenvolvimento, o que acarreta em uma melhoria na saúde da 

população do primeiro grupo de países. (Sharma et al. 2015; Walt 2004) 
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Uma situação ideal seria o paciente chegar ao hospital e a partir de 

exames de rotina, como sangue e urina, serem realizados testes de screening 

de diversas doenças. Assim, dependendo do resultado, o paciente seria 

encaminhado ao médico especialista para fazer os exames necessários para a 

confirmação do diagnóstico. Apesar de isso parecer uma situação hipotética, 

através do desenvolvimento das tecnologias ômicas, incluindo a 

metabonômica, isso tem se tornado cada vez mais próximo da realidade. 

As doenças hepáticas, por exemplo, são problemas mundiais de saúde 

pública que necessitam de marcadores específicos de diagnóstico clínico, e os 

diagnósticos possuem alta subjetividade, imprecisão e limitação. Com o 

desenvolvimento da metabonômica, o campo de pesquisa das doenças 

hepáticas se tornou bastante atraente e cada vez mais estudos vêm sendo 

realizados a fim de utilizar a metabonômica para auxiliar no diagnóstico dessas 

doenças. (Yu et al. 2017) 

Em 2010, Godoy e colaboradores construíram um modelo 

metabonômico baseado em RMN de 1H capaz de diagnosticar a hepatite C a 

partir de amostras de urina dos pacientes. Esse modelo obteve 94% de 

sensibilidade e 97% de especificidade. (Godoy et al. 2010) Um estudo 

publicado em 2015 mostra que, através da metabonômica baseada em RMN 

de 1H de amostras de urina, é possível diagnosticar depressão em pacientes 

com hepatite B, com sensibilidade de 82,1% e especificidade de 90,7%. (Hou 

et al. 2015) 

Em 2016, Hou Q et al. publicaram um artigo de revisão que inclui 11 

estudos metabonômicos envolvendo soro e urina de pacientes com hepatite B 

para analisar a possibilidade desses pacientes desenvolverem hepatite B 

crônica, cirrose e carcinoma hepatocelular. Esses estudos mostraram que 

existem diferenças metabólicas significativas entre as doenças relacionadas 

com a hepatite B, o que torna possível detectar e elucidar os marcadores 

específicos dessas doenças, proporcionando assim um diagnóstico precoce. 

(Hou & Duan 2016) 

Além das doenças hepáticas, a metabonômica também é utilizada para 

o diagnóstico de outras doenças, como doença de Parkinson (Öhman & 

Forsgren 2015), câncer de tireóide (Tian et al. 2015), diabetes tipo 2 (Yang et 

al. 2004), doença pulmonar obstrutiva crônica (Wang et al. 2013), doença de 
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Crohn (Fathi et al. 2013), câncer urológico (Araújo et al. 2017), entre outras. 

Em todos esses estudos, é enfatizado o potencial que a metabonômica possui 

para auxiliar os médicos na obtenção de um diagnóstico precoce a partir de 

estratégias não invasivas e de rotina, como coleta de sangue e/ou urina. 

O câncer é uma doença que quanto mais cedo for diagnosticada, maior 

a chance de o paciente ter sucesso no tratamento. Portanto, a metabonômica 

também tem sido estudada para diagnosticar vários tipos de câncer. Em 2008, 

Frickenschmidt et al. publicaram um estudo metabonômico onde examinaram 

amostras de urina de pacientes com câncer de mama e de voluntários 

saudáveis, obtendo sensibilidade e especificidade de 87,67% e 89,90%, 

respectivamente. (Frickenschmidt et al. 2008) Um estudo piloto visando o 

diagnóstico de câncer urológico pela metabonômica foi publicado em 2017, 

onde a partir de amostras de urina foram obtidas sensibilidade e especificidade 

de 90,9% e 100%, respectivamente. (Araújo et al. 2017) Além desses dois tipos 

de câncer, também foram construídos modelos metabonômicos para os 

diagnósticos de câncer no ovário (Garcia et al. 2012), câncer colorretal (Ni et al. 

2014), câncer de pulmão (Yang et al. 2010), entre outros. 

O potencial da metabonômica tem sido estudado não somente para o 

diagnóstico de doenças, como também na área farmacêutica. Pode-se citar 

como exemplo o estudo de antidepressivos realizado por Jia et al., onde o 

objetivo foi descobrir os componentes químicos que contribuem para o efeito 

antidepressivo de tradicionais remédios chineses (Jia et al. 2013). Além disso, 

a indústria alimentícia também tem utilizado a metabonômica, onde temos 

como exemplos a identificação de grãos de soja submetidos à radiação gama 

(Ribeiro et al. 2014), e a discriminação entre vinhos do tipo tinto provenientes 

de uvas orgânicas e biodinâmicas (Laghi et al. 2014). 
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2 OBJETIVOS GERAIS 

 

Os objetivos deste trabalho foram construir modelos metabonômicos a 

partir de amostras de soro sanguíneo que sejam capazes de: 

1) Diferenciar entre os seguintes grupos: 

a. Pacientes portadores de esteatose; 

b. Pacientes portadores de esteatohepatite. 

2) Diferenciar entre os seguintes grupos: 

a. Pacientes monoinfectados com hepatite viral B ou C; 

b. Pacientes coinfectados com esquistossomose mansônica e 

hepatite viral B ou C. 

A Figura 1 ilustra esquematicamente os objetivos deste trabalho. É 

importante ressaltar que as doenças hepáticas não se restringem apenas às 

apresentadas na Figura 1. Nesta figura foram apresentadas apenas as 

doenças de interesse deste estudo. 

Figura 1. Esquema dos objetivos deste trabalho. 

 

Autoria própria. 
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3 FUNDAMENTAÇÃO TEÓRICA 

  

Este estudo tem um caráter multidisciplinar, sendo de interesse de 

profissionais da Química, mas também de médicos, biomédicos, biólogos, entre 

outros. Sendo assim, a Fundamentação Teórica está estruturada de forma que 

os conceitos, as ferramentas e os objetos de estudo envolvidos sejam 

apresentados de maneira clara, concisa e acessível aos profissionais dos 

diferentes campos do conhecimento. Apesar de alguns conceitos utilizados 

neste estudo estarem bastante difundidos na literatura (especialmente RMN), 

como se trata de um trabalho multidisciplinar, eles foram detalhados a fim de 

que uma pessoa que está iniciando os estudos sobre esses assuntos possa 

entender de uma forma clara. 

 

3.1 Metabonômica 

 

 É comum o uso dos termos metabonômica e metabolômica como 

sinônimos, gerando certa confusão entre aqueles que pretendem estudar o 

tema. Sendo assim, antes de iniciar a discussão sobre a metabonômica, é 

importante esclarecer isso. A questão é que, por definição, são estratégias 

diferentes. A metabonômica é definida como “a medida quantitativa da resposta 

metabólica multiparamétrica dinâmica de sistemas vivos a estímulos 

fisiopatológicos ou modificação genética” (Nicholson et al. 1999). Este termo foi 

proposto por Jeremy Nicholson, Elaine Holmes e John Lindon, a partir das 

raízes gregas “meta” (alteração) e “nomos” (regras ou leis) em referência aos 

modelos quimiométricos capazes de classificar as mudanças no metabolismo. 

A parte “ômica” significa uma abordagem capaz de gerar um conjunto de dados 

de tudo que está sendo medido, seja transcrições (transcriptômica), proteínas 

(proteômica), ou metabólitos (metabonômica). A origem do termo 

metabolômica, por sua vez, é misteriosa. O conceito de metaboloma só foi 

utilizado rotineiramente em publicações a partir do final dos anos 90. Fiehn, em 

2001, indicou o termo metabolômica como sendo “uma análise compreensiva e 

quantitativa de todos os metabólitos...”. (Fiehn 2001; Robertson 2005) 

 Sendo assim, enquanto a metabolômica visa identificar e quantificar os 

metabólitos endógenos que sofrem mudanças em suas concentrações após 

interferência de agentes externos (Keun 2006), a metabonômica busca o perfil 
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sistemático dos metabólitos presentes nos biofluidos e tecidos de organismos e 

suas mudanças temporais causadas por diversos fatores, como tratamento 

médico, nutrição, estilo de vida, efeitos genéticos ou doenças (Walker 2011; 

Ribeiro et al. 2014; Godoy et al. 2010). Neste estudo, o enfoque foi 

especificamente a estratégia metabonômica. 

 A metabonômica é reconhecida como a mais nova das tecnologias 

“ômicas”. Isto acontece porque o interesse no perfil sistemático dos metabólitos 

só cresceu largamente durante a última década. (Walker 2011) A fim de obter 

dados confiáveis e válidos, é importante usar técnicas com alta sensibilidade e 

especificidade, que sejam capazes de detectar a maioria dos metabólitos em 

uma determinada amostra biológica, e também de proporcionar alta 

reprodutibilidade, de preferência a baixo custo. Nenhuma das ferramentas 

analíticas disponíveis atualmente possui todas essas características, mas a 

Espectroscopia de Ressonância Magnética Nuclear e a Espectrometria de 

Massa acoplada à cromatografia gasosa, cromatografia líquida ou eletroforese 

capilar aproximam-se dessas características ideais e são as técnicas mais 

amplamente aplicadas. (Editor & Walker 2015) 

 A espectroscopia de RMN é bastante utilizada pela metabonômica, e 

essa parceria tornou-se uma ferramenta bastante útil para diagnósticos 

clínicos. A espectrometria de massa, por sua vez, é utilizada tradicionalmente 

pela estratégia metabolômica. (Keun 2006) Isso acontece porque há diferenças 

consideráveis entre as duas técnicas analíticas: a espectroscopia de RMN é 

não destrutiva, não seletiva, rápida e exige intervenções mínimas na 

preparação da amostra, adequando-se melhor à estratégia metabonômica; por 

outro lado, a espectrometria de massa é muito mais sensível e normalmente 

está associada a uma técnica cromatográfica, sendo essa associação indicada 

para o isolamento, a identificação e a quantificação dos metabólitos, como 

requer a estratégia metabolômica. (Goldsmith et al. 2010)  

 O tratamento dos dados espectrais é feito frequentemente por técnicas 

quimiométricas, pois elas são capazes de identificar padrões e classificar as 

amostras. Sendo assim, é possível observar as diferenças entre as amostras 

de pacientes saudáveis e pacientes doentes ou entre pacientes com diferentes 

tipos de doenças. (Jian-fei et al. 2009) 
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 As próximas sessões abordarão os princípios da espectroscopia de 

ressonância magnética nuclear e de quimiometria, para que seja possível uma 

melhor compreensão da estratégia metabonômica. Além disso, haverá uma 

sessão sobre fígado e as doenças hepáticas envolvidas nesse estudo. 

 

3.2 Espectroscopia de Ressonância Magnética Nuclear 

 

 3.2.1 Princípios Básicos 

 

 A espectroscopia de Ressonância Magnética Nuclear é uma técnica 

baseada na interação entre a radiação eletromagnética e a matéria, sendo isso 

a definição de uma técnica espectroscópica. (Ross et al. 2007) O fenômero de 

RMN foi descoberto em 1946 por Purcell e Bloch (Mlynarik 2016), e desde 

então se tornou uma ferramenta de análise bastante útil para a ciência (Ross et 

al. 2007). 

 Essa ferramenta baseia-se na interação entre os momentos magnéticos 

dos núcleos de vários átomos e um campo magnético externo. O momento 

magnético dos núcleos está associado a um spin nuclear (I). Quando o núcleo 

atômico tem um número par de prótons e nêutrons, I é igual a zero; quando há 

um número ímpar de prótons ou nêutrons, I é diferente de zero e, dessa forma, 

o núcleo possui um momento magnético  (Equação 1) proporcional ao spin e 

à constante magnetogírica (), uma constante física característica de cada 

núcleo que é definida como a razão entre o momento magnético nuclear e o 

seu momento angular. (Mlynarik 2016) 

Equação 1.      µ =
ℎ𝐼𝛾

2𝜋
 

onde h é a constante de Planck. 

Há 2I + 1 estados de spin permitidos com diferenças inteiras que vão de 

+I a –I. Portanto, se o I for igual a zero, apenas um estado é permitido e não é 

possível falar em espectroscopia nesse caso. A Tabela 1 apresenta alguns 

núcleos importantes para a RMN, assim como os seus respectivos números 

quânticos de spin e suas abundâncias isotópicas. (Mlynarik 2016) 
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Tabela 1. Alguns núcleos importantes para a RMN. 

Núcleo 1H 2H 13C 15N 17O 19F 31P 23Na 
I 1/2 1 1/2 1/2 5/2 1/2 1/2 3/2 
Abund 99,9% 0,015% 1,1% 0,37% 0,04% 100% 100% 100% 

Fonte: (Veeman 1997). 

Na espectroscopia de RMN, os núcleos são submetidos a um campo 

magnético externo homogêneo denominado B0, e se I for igual a 1/2, por 

exemplo, dois estados de spin são observados, normalmente identificados por 

 e . Um desses estados está paralelo ao campo magnético B0 e o outro tem 

uma orientação antiparalela em relação ao campo magnético B0. Esses dois 

estados têm energias diferentes, sendo o de menor energia o que está paralelo 

ao campo magnético externo. É importante ressaltar que os núcleos não estão 

restritos aos estados  e , podendo estar em uma combinação desses 

estados. (Keeler 2002; Mlynarik 2016) 

 A diferença de energia entre os estados de spin possíveis é dependente 

do campo externo aplicado, B0. Quanto maior a força do campo magnético, 

maior é a diferença de energia entre os estados de spin. 

Equação 2    𝛥𝐸~𝐵0 

 A relação entre a diferença de energia e a constante magnetogírica é 

Equação 3    𝛥𝐸 = 𝛾
ℎ

2𝜋
𝐵0 = ℎ𝜈 

 Em um experimento de RMN, não se observa apenas um núcleo, mas 

sim um enorme número deles, podendo chegar a 1020. Se o momento 

magnético de todos esses núcleos apontarem em direções aleatórias, 

inevitavelmente um cancelará o outro; entretanto, o que se observa no 

equilíbrio é uma organização tal que há uma magnetização paralela à direção 

do campo magnético aplicado B0. (Keeler 2002) 

 A ideia por trás da espectroscopia de RMN baseia-se no seguinte: 

quando é aplicado um pulso de radiofrequência (RF) cuja energia corresponde 

à diferença de energia entre os estados de spin  e , ocorre a transição do 

núcleo no estado de spin  para o estado de spin . Ao retornarem aos seus 

estados de origem, os núcleos emitem sinais eletromagnéticos cuja frequência 

depende da diferença de energia entre os estados de spin. Esses sinais são 

detectados pelo espectrômetro de RMN e são apresentados como um registro 
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da frequência do sinal versus sua intensidade, o espectro de RMN. A seguir, 

será explicado detalhadamente todo o processo que ocorre para que seja 

possível a obtenção de um espectro de RMN. 

 A magnetização de todos os núcleos pode ser representada por um 

vetor - chamado de vetor de magnetização - que é a soma vetorial de todos os 

momentos magnéticos individuais e aponta na direção do campo magnético 

aplicado (por convenção, eixo z), como mostra a Figura 2. (Keeler 2002) 

Figura 2. No equilíbrio, a amostra possui um vetor de magnetização total paralelo ao campo 

magnético aplicado. 

 

Fonte: Adaptado (Keeler 2002). 

A aplicação do pulso de radiofrequência ao sistema resulta em uma 

corrente que cria um campo magnético oscilante ao longo do eixo x. Este 

campo magnético oscila em uma frequência próxima ou igual à frequência de 

Larmor, ou seja, é ressonante com essa frequência. A frequência de Larmor 

depende da constante magnetogírica do núcleo, do deslocamento químico e do 

campo magnético aplicado B0. Isso é capaz de transferir a rotação do vetor de 

magnetização para um pouco longe do eixo z, mesmo na presença de um 

campo magnético aplicado muito forte (B0) (Figura 3), e isso é chamado de 

“Efeito Zeeman”, porque foi descoberto pelo físico holandês Peter Zeeman em 

1897. (Keeler 2002) 
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Figura 3. Se o campo magnético ao longo do eixo z for substituído rapidamente por um ao 
longo do eixo x, a magnetização precessará em relação ao eixo x e se moverá para o plano 
transversal. 

 

Fonte: Adaptado (Keeler 2002). 

 Uma vez que o vetor de magnetização é afastado do eixo z, o seu 

movimento de rotação agora é no formato de um cone com um ângulo 

constante (Figura 4). Esse movimento é chamado de precessão de Larmor. 

(Keeler 2002) 

Figura 4. Ilustração da precessão de Larmor. 

 

Fonte: Adaptado (Keeler 2002). 

 Se o campo magnético é B0, a frequência da precessão de Larmor é 

em rad/s):

Equação 4    𝜔0 = 𝛾𝐵0 

ou se a frequência for em Hz 

Equação 5    𝑣0 =
1

2𝜋
𝛾𝐵0    (Keeler 2002). 

 Em um experimento de RMN, o que é detectado é a precessão do vetor 

de magnetização. Tudo que precisa ser feito é colocar uma bobina ao redor da 

amostra com o eixo da bobina alinhado no plano xy (Figura 5). (Keeler 2002) 
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Figura 5. Ilustração da bobina no plano xy (o desenho só a mostra em uma parte do eixo x). 

 

Fonte: (Keeler 2002). 

 À medida que o vetor de magnetização se aproxima da bobina, uma 

corrente é induzida, podendo ser amplificada e registrada – o resultado é 

chamado de decaimento livre de indução (FID, do inglês, free induction decay), 

o sinal de RMN que é detectado. (Keeler 2002) 

 Basicamente, a bobina detecta a componente x da magnetização. 

Supondo que o vetor de magnetização no equilíbrio é M0; se esse vetor for 

inclinado por um ângulo  na direção do eixo x, a componente x é 

M0sen(Figura 6). É possível visualizar o que acontece com as componentes x 

e y fazendo a projeção no plano xy (Figura 7). (Keeler 2002) 

Figura 6. Ilustração da componente x do vetor de magnetização. 

 

Fonte: (Keeler 2002). 

Figura 7. Ilustração da precessão do vetor de magnetização no plano xy. 

 

Fonte: (Keeler 2002) 

 No tempo zero, assume-se que há somente a componente x. Após um 

tempo 1, o vetor de magnetização rotacionou de um certo ângulo chamado 1. 
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Como o vetor rotaciona a uma velocidade de 0 radianos por segundo, no 

tempo 1 o vetor se moveu através de (0 x 1) radianos; então 1 = 01. Após 

mais algum tempo, diga-se 2, o vetor teve mais tempo para precessar, e o 

ângulo 2 será 02. No geral, pode-se dizer que após um tempo t, o ângulo é  

= 0t. (Keeler 2002) 

 A componente x é proporcional ao cose a componente y é negativa (ao 

longo de –y) e proporcional ao sen Relembrando que no tempo inicial o vetor 

de magnetização é M0sen, pode-se deduzir que as componentes x e y, Mx e 

My, respectivamente, são: 

Equação 6   𝑀𝑥 = 𝑀0𝑠𝑒𝑛𝛽𝑐𝑜𝑠 (𝜔0𝑡) 

Equação 7   𝑀𝑦 = −𝑀0𝑠𝑒𝑛𝛽𝑠𝑒𝑛(𝜔0𝑡). 

 Mx e My são oscilações simples da frequência de Larmor (Figura 8). 

Aplicando-se a transformação de Fourier nesses sinais, obtem-se o espectro 

de RMN. (Keeler 2002) 

Figura 8. Ilustração dos sinais das componentes x e y da magnetização. 

 

Fonte: Adaptado (Keeler 2002). 

 Para entender como o pulso de radiofrequência pode rotacionar a 

magnetização, é necessário introduzir a ideia de rotating frame, que é 

basicamente rotacionar o sistema para que seja possível observar o que 

acontece no plano xy. Quando o pulso de RF é aplicado na bobina ao longo do 

eixo x, o resultado é um campo magnético oscilando ao longo desse eixo. Este 

campo magnético se movimenta ao longo do eixo x, indo de +x a –x e 

passando pelo zero. Assume-se que a frequência da oscilação é RF (em rad/s) 

e o campo magnético é 2B1 (em Tesla); a razão para ser 2B1 é que para 

entender o que está acontecendo é mais fácil substituir, em nossas mentes, o 

campo que está oscilando linearmente por dois campos oscilando em direções 

contrárias (Figura 9). Esses dois campos tem a mesma magnitude B1. 𝐵1
+ 
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rotaciona no sentido positivo (de x a y), e 𝐵1
− rotaciona no sentido negativo. 

(Keeler 2002) 

Figura 9. Ilustração dos dois campos magnéticos 𝐵1
+

+ e 𝐵1
− se unindo para formar o campo 

magnético que oscila ao longo do eixo x. 

 

Fonte: Adaptado (Keeler 2002). 

 No tempo inicial, os dois campos estão alinhados no eixo x resultando 

em um campo total de 2B1 nesse eixo. Enquanto o tempo passa, os vetores se 

afastam do eixo x em direções opostas. Como os dois vetores têm a mesma 

magnitude e rotacionam na mesma frequência, as componentes y sempre se 

cancelam. Entretanto, as componentes x se aproximam de zero à medida que 

esses vetores se aproximam de rotacionar 90o. Como o ângulo cresce depois 

desse ponto, a componente x cresce mais uma vez, mas na parte negativa do 

eixo x, alcançando um máximo quando o ângulo de rotação é 180o. (Keeler 

2002) 

 Chama-se de offset (Ω) a diferença entre a frequência 0 citada 

anteriormente e a frequência presente no rotating frame 

Equação 8   𝛺 = 𝜔0 − 𝜔𝑟𝑜𝑡.𝑓𝑟𝑎𝑚. 

 Sendo assim, o campo magnético no rotating frame também deve ser 

diferente do que é aplicado. Usando a relação existente entre o campo 

magnético e a frequência de precessão: 

Equação 9    𝜔 = 𝛾𝐵 

então pode-se calcular o campo magnético aparente, ΔB, a partir da frequência 

de Larmor aparente, Ω: 

Equação 10    𝛥𝐵 =
𝛺

𝛾
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sendo ΔB geralmente chamado de campo reduzido. (Keeler 2002) 

 Quando um pulso de RF é aplicado, há dois campos magnéticos 

presentes: o de magnitude B1 produzido pelo pulso de RF (o deixaremos 

estático colocando a frequência igual a -RF), e o campo reduzido, ΔB, dado 

por Ω/γ. Sabendo que Ω = 0 – rot.fram. e rot.fram. = -RF, segue-se que o offset 

é: 

Equação 11   𝛺 = 𝜔0 − (−𝜔𝑅𝐹) = 𝜔0 + 𝜔𝑅𝐹 

 No rotating frame, o campo reduzido (eixo z) e o campo B1 do pulso de 

RF (eixo x) se adicionam vetorialmente resultando no campo efetivo Beff (Figura 

10). (Keeler 2002) 

Equação 12    𝐵𝑒𝑓𝑓 = √𝐵1
2 + 𝛥𝐵2 

Figura 10. Ilustração do campo magnético efetivo como a soma vetorial do campo reduzido ΔB 

e do campo B1. 

 

Fonte: (Keeler 2002). 

 Quando o offset é pequeno ou igual a zero, o campo efetivo se aproxima 

do plano xy e a magnetização rotaciona do eixo z para esse plano, sendo isso 

o esperado no experimento de RMN. Apesar de B0 ser muito maior que B1, 

pode-se afetar a magnetização com B1 o fazendo oscilar próximo à frequência 

de Larmor. Isso é o chamado fenômeno de ressonância. (Keeler 2002) 

 Basicamente, o experimento de RMN pode ser dividido em 3 partes 

(Figura 11): 

1) Espera-se que a amostra chegue ao equilíbrio; 

2) O(s) pulso(s) de RF é(são) aplicado(s) por tempo suficiente para 

rotacionar a magnetização (por exemplo, 90o); 

3) Após a aplicação do(s) pulso(s) de RF, é possível detectar o sinal que 

surge da magnetização à medida que ela rotaciona no plano transversal. 
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Figura 11. Ilustração das 3 partes de um experimento simples de RMN. 

 

Fonte: (Keeler 2002). 

 Durante a parte 1, a magnetização em equilíbrio encontra-se ao longo do 

eixo z. Em seguida, aplica-se um pulso de RF de, por exemplo, 90o no eixo x, 

que rotaciona a magnetização para o eixo –y, caracterizando o fim da parte 2. 

Na parte 3, a magnetização precessa no plano transversal a uma frequência 

chamada de offset, que já foi descrita anteriormente. Observando a Figura 12, 

podemos deduzir como as componentes x e y da magnetização variam com o 

tempo. O offset é Ω e após certo tempo t, o vetor precessou através de um 

ângulo Ωt. Sendo assim, a componente y é proporcional a cos Ωt e a 

componente x à senΩt. (Keeler 2002) 

Equação 13    𝑀𝑦 = −𝑀0𝑐𝑜𝑠 (𝜔𝑡) 

Equação 14    𝑀𝑥 = 𝑀0𝑠𝑒𝑛(𝜔𝑡) 

Figura 12. A magnetização começa ao longo do eixo –y e rotaciona através de um ângulo Ωt 

após um tempo t. 

 

Fonte: (Keeler 2002). 

 A magnetização tem a tendência de retornar ao seu estado de equilíbrio 

(M0 ao longo do eixo z sem magnetização transversal no plano xy) através de 

um processo chamado relaxação. Então, com o passar do tempo, a relaxação 

faz com que a magnetização transversal decaia para zero. O FID, sinal 

produzido pela precessão da magnetização no plano xy também diminui em 

amplitude. Essa perda de intensidade das componentes x e y da magnetização 

é chamada de relaxação transversal. A componente z também tende a retornar 
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à sua posição inicial de equilíbrio, e esse processo é chamado de relaxação 

longitudinal. (Keeler 2002)  

A relaxação longitudinal é designada pelo tempo T1, e envolve a 

transferência de energia dos spins “excitados” para aqueles que estão com a 

frequência apropriada. A Figura 13 mostra a perda da componente xy pelo 

processo de relaxação longitudinal enquanto a magnetização retorna para o 

eixo z. (Robert M. Silverstein, Francis X. Webster 2005) 

Figura 13. Relaxação longitudinal de M para M0. 

 

Fonte: (Keeler 2002). 

 A relaxação transversal, caracterizada pelo tempo T2, envolve a 

transferência de energia entre os núcleos que estão precessando, o que 

provoca defasagem, alargamento dos picos e a perda do sinal (Figura 14).  

Figura 14. Ilustração da relaxação transversal que ocorre com a magnetização no decorrer do 

tempo. 

 

Fonte: Adaptado (Keeler 2002). 

Tipicamente, em moléculas pequenas, T1 e T2 são similares em 

magnitude; a relação entre essas duas grandezas está ilustrada na Figura 15. 

(Robert M. Silverstein, Francis X. Webster 2005) 
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Figura 15. Ilustração da relação entre T1 e T2 para moléculas pequenas. 

 

Fonte: (Keeler 2002). 

 Enquanto a relaxação transversal ocorre, a magnetização diminui no 

plano xy ao transferir energia para o eixo z. Para moléculas maiores (ou outros 

núcleos além de 1H), a relaxação longitudinal demora mais tempo do que a 

transversal. 

 O FID, o sinal obtido pela precessão da magnetização, é apresentado 

numa escala de tempo. Aplicando a transformada de Fourier, obtêm-se os 

dados apresentados numa escala de frequência, o espectro propriamente dito. 

(Figura 16). (Keeler 2002) 

Figura 16. A transformada de Fourier é uma operação matemática que transforma uma função 
dependente do tempo – como o FID – em uma função dependente da frequência – como o 
espectro. 

 

Fonte: Adaptado (Keeler 2002). 

 De acordo com a equação  = (/2π)B0, apenas um pico seria esperado 

no espectro de RMN. Porém, a situação não é assim tão simples. 

Considerando os núcleos de 1H presentes numa estrutura química, eles 

encontram-se blindados pelas nuvens de elétrons, e essa densidade eletrônica 

varia de acordo com o ambiente químico. Essa variação é o que promove as 

diferenças nas posições dos deslocamentos químicos. Sendo assim, agora a 

equação fundamental da espectroscopia de RMN é modificada para os núcleos 

equivalentes de uma espécie: 

Equação 15    𝜈𝑒𝑓𝑓 =
𝛾

2𝜋
𝐵0(1 − 𝜎) 
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onde σ é a constante de blindagem, cujo valor é proporcional ao grau de 

blindagem da nuvem eletrônica. (Robert M. Silverstein, Francis X. Webster 

2005) 

 Para um determinado valor de B0, a frequência efetiva, 𝜈𝑒𝑓𝑓, durante a 

ressonância é menor do que a frequência aplicada, 𝜈1. Os elétrons que estão 

sob a influência do campo magnético produzem o seu próprio campo 

magnético oposto ao campo magnético aplicado, sendo isso o “efeito 

blindagem” (Figura 17). Este efeito é responsável pelo diamagnetismo 

observado por todos os materiais orgânicos. No caso dos materiais com elétron 

desemparelhado, o paramagnetismo associado a esse elétron substitui o 

diamagnetismo dos elétrons emparelhados. (Robert M. Silverstein, Francis X. 

Webster 2005) 

Figura 17. Ilustração da blindagem diamagnética do núcleo pelos elétrons circulando ao seu 

redor. 

 

Fonte: Adaptado (Keeler 2002). 

 O grau de blindagem depende da densidade eletrônica e o grau de 

blindagem de um núcleo de 1H ligado a um átomo de carbono depende 

também do efeito indutivo de outros grupos ligados ao carbono. Por exemplo, 

quanto mais eletronegativo for o grupo ligado ao carbono, menor a blindagem 

eletrônica e, dessa forma, maior o deslocamento químico (Figura 18). A 

diferença entre a posição de absorção de um determinado núcleo e a posição 

de absorção de um núcleo de referência é o que chamamos de deslocamento 

químico daquele núcleo. Dessa forma, núcleos de hidrogênio em diferentes 

ambientes químicos possuem diferentes deslocamentos químicos, e, 

consequentemente, aqueles em um mesmo ambiente químico possuem o 

mesmo deslocamento químico. (Robert M. Silverstein, Francis X. Webster 

2005)  
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Figura 18. Deslocamentos químicos no espectro de RMN de 1H dos tipos mais comuns de 

funções orgânicas. 

 

Fonte: (Lampman et al. 2009). 

 A frequência depende do campo aplicado, sendo assim, ao indicar a 

posição de um determinado núcleo no espectro, sempre seria necessário 

indicar em qual campo o espectro foi obtido. Porém, para solucionar esse 

problema, foi criada uma escala de referência que independe do campo, . 

(Keeler 2002) 

Equação 16    𝛿 =
𝜈𝐴−𝜈𝑅

𝑣0
 

sendo 𝜈𝐴, 𝜈𝑅 e 𝑣0 as frequências do núcleo na amostra, na referência e a 

frequência do espectrômetro, respectivamente, dadas por 

Equação 17 

𝜈𝐴 = 𝐵0(1 − 𝜎𝐴)
𝛾

2𝜋
,   𝜈𝑅 = 𝐵0(1 − 𝜎𝑅)

𝛾

2𝜋
,   e  𝜈0 = 𝐵0(1 − 𝜎0)

𝛾

2𝜋
 

 A unidade de δ é ppm (partes por milhão), porque o numerador está em 

Hz e o denominador em MHz. 

 No caso da espectroscopia de RMN de 1H, a referência utilizada é o 

TMS (Figura 19a) para solventes orgânicos, e o TSP (Figura 19b) quando o 

sistema é aquoso. Por definição, os spins desses materiais tem deslocamento 

químico igual a zero e a escala de δ sempre aumenta da direita para esquerda 

no espectro. (Keeler 2002; Robert M. Silverstein, Francis X. Webster 2005)  
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Figura 19. Ilustrações das estruturas de Lewis do a) tetrametilsilano (TMS) e do b) ácido 3-

trimetilsilil propiônico (TSP). 

a) b)  

Autoria própria. 

A espectroscopia de RMN é uma poderosa ferramenta utilizada para 

elucidação estrutural, amplamente empregada na química, sobretudo a 

Química Orgânica. Mas, ela também se constitui em poderosa ferramenta para 

identificar mudanças no perfil metabólico como resultado de mudanças no 

status bioquímico, pois oferece uma análise não-invasiva, que é capaz de 

apresentar os metabólitos e as suas concentrações relativas com precisão 

(Godoy et al. 2010; Araújo et al. 2017). 

Entretanto, a identificação de biomarcadores e dos metabólitos 

responsáveis pela discriminação entre os grupos de amostras não é algo trivial. 

Há, na literatura, algumas revisões sobre como fazer essa identificação através 

da espectroscopia de RMN. Sabe-se que um grande número de informações é 

proporcionado através do espectro de RMN de 1H unidimensional, incluindo: 1) 

deslocamentos químicos; 2) multiplicidade dos sinais; 3) constantes de 

acoplamento homonuclear; 4) constantes de acoplamento heteronuclear ; 5) a 

integral do sinal e 6) a estabilidade do sinal (variação da integral com o tempo). 

 Uma grande vantagem da espectroscopia de RMN é que os 

deslocamentos químicos são muito sensíveis à mudanças na estrutura e no 

ambiente químico. A sensibilidade dos deslocamentos químicos às mudanças 

no pH pode ser utilizada para distinguir ou identificar metabólitos, 

especialmente aqueles contendo grupos funcionais ionizáveis. Essa 

sensibilidade diminui a probabilidade de duas moléculas similares terem 

espectros de RMN idênticos.  

 A análise da multiplicidade dos sinais também é importante para a 

identificação dos metabólitos. Através de certos tipos de experimentos de spin-

echo é possível distinguir sinais com diferentes multiplicidades, o que permite 

identificar metabólitos. 

 A detecção da presença de acoplamento entre dois hidrogênios não 

equivalentes é muito importante na identificação de metabólitos, uma vez que 
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as magnitudes das constantes de acoplamento são características da 

densidade eletrônica entre os dois tipos de hidrogênio. 

 Os metabólitos que estão presentes em concentrações relativamente 

altas ou que apresentam sinais distintos na região espectral podem ser 

identificados pela inspeção visual de um único espectro unidimensional de 

RMN de 1H. Isto pode ser feito baseando-se na base de dados metabolômicos 

HMDB. A identificação de metabólitos que estão presentes em níveis 

relativamente baixos, ou que tem sinais parcialmente ou completamente 

superpostos, é difícil através de métodos de RMN unidimensional. Sendo 

assim, é necessário utilizar a espectroscopia de RMN bidimensional. 

 O experimento de RMN bidimensional consiste em obter duas 

dimensões de tempo e, consequentemente, duas frequências. Sendo assim, é 

construído um gráfico com dois eixos dos sinais nas respectivas frequências, e 

eles são ortogonais entre si. Na Figura 20 observa-se um exemplo de como o 

espectro de RMN bidimensional é apresentado. 

Figura 20. Exemplo de espectro de RMN bidimensional. 

 

 Alguns exemplos de experimentos de RMN bidimensionais são: JRES 

(do inglês, J-Resolved), COSY (do inglês, Chemical Shift Correlation 

Spectroscopy), TOCSY (do inglês, Total Correlation Spectroscopy), HSQC (do 

inglês, Heteronuclear Single Quantum Correlation), HMBC (do inglês, 

Heteronuclear Multiple Bond Correlation). Através deles, é possível observar a 

correlação entre os spins, o que proporciona mais informação a respeito dos 

metabólitos presentes.  

 O STOCSY (do inglês, Statistical Correlation Spectroscopy) é uma 

técnica utilizada para a identificação de metabólitos que se baseia na 
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espectroscopia de correlação bidimensional e é tradicionalmente aplicada ao 

experimento de RMN de 1H unidimensional. Ele analisa a covariância das 

variáveis de intensidade e produz uma matriz de correlação, que se apresenta 

na forma de um espectro de RMN, revelando o grau de correlação entre cada 

variável no espectro (unidimensional ou bidimensional). Dependendo da força 

da correlação, as variáveis correlacionadas podem pertencer à mesma espécie 

(forte correlação) ou a espécies da mesma via metabólica (correlação mais 

fraca). Para a metabonômica, esta técnica é bastante útil na análise de 

misturas complexas, como urina, onde a identificação dos metabólitos pode ser 

difícil. A eficiência do STOCSY para detectar corretamente as correlações 

depende do grau de sobreposição entre as ressonâncias, assim como de 

baixas concentrações. Uma sobreposição significativa dos picos distorce a 

covariância de diferentes ressonâncias pertencentes à mesma espécie em um 

espectro, e as ressonâncias que estão mais próximas dos ruídos são mais 

difíceis de analisar. Estes problemas levaram ao desenvolvimento de outras 

técnicas, incluindo STORM (do inglês, SubseT Optimization by Reference 

Matching) que utiliza um método interativo para calcular as correlações e é 

mais adequado para lidar com possíveis sobreposições ou baixas 

concentrações. (Dona et al. 2016) 

 

 3.2.2 PRESAT 

 

 A supressão do solvente é necessária quando o solvente contem 

prótons não deuterados, porque o sinal do solvente pode ser muito superior em 

comparação aos sinais de interesse. Há algumas sequências de pulsos que 

podem ser utilizadas a fim de fazer a supressão do solvente: Watergate, 

Double PFG spin echo e PRESAT, que foi a sequência utilizada neste trabalho. 

PRESAT é uma sequência de dois pulsos de RF: um pulso relativamente longo 

e de baixa potência para saturar seletivamente uma frequência específica, 

geralmente a frequência atribuída ao sinal da água, e outro pulso não seletivo 

de 45o ou 90o para excitar as frequências de interesse. Em seguida, o sinal é 

adquirido (Figura 21). Antes da aplicação dos pulsos de RF, tem-se um tempo 

de espera (d1) para que o equilíbrio seja estabelecido. (Keeler 2002) 
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Figura 21. Ilustração da sequência de pulsos de RF utilizada para supressão do sinal da água. 

 

Fonte: (Costa 2016). 

 Esta sequência de pulsos é particularmente útil para amostras aquosas 

ou para aquelas que apresentam o sinal do solvente muito intenso. Com a 

devida otimização do experimento, é possível obter um espectro praticamente 

livre do sinal do solvente e também obter uma melhoria na relação sinal/ruído. 

(Keeler 2002) 

 

 3.2.3 CPMG 

 

 Moléculas mais pesadas, como os lipídios, possuem um menor tempo 

de relaxação transversal (T2), fazendo com que seus sinais no espectro se 

apresentem de forma alargada. Isso dificulta, muitas vezes, a visualização de 

sinais menos intensos. Porém, é possível eliminar esses sinais alargados 

utilizando a sequência de pulsos CPMG (Carr-Pucell-Meiboom-Gill), como um 

filtro de T2. Essa sequência de pulsos foi descrita pela primeira vez em 1958 

por Meiboom e Gill, sendo uma adaptação da sequência proposta por Carr e 

Pucell, por isso é chamada de Carr-Pucell-Meiboom-Gill. (Meiboom & Gill 1958) 

Ela consiste em um pulso de 90o aplicado no eixo x e sucessivos pulsos de 

180o entre intervalos de tempo t = (2n + 1)com n = 0,1,2...(Figura 22) 

Figura 22. Sequência de pulsos CPMG. 

 

Autoria própria. 

 Esta sequência consiste em um pulso de 90o aplicado no eixo x e 

sucessivos pulsos de 180o entre intervalos de tempo t = (2n + 1)com n = 

0,1,2...(Figura 22)Durante o intervalo  entre o pulso de 90º (Figura 23a) e o 
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primeiro pulso de 180º, o vetor de magnetização precessa por um ângulo 𝜃 =

𝜏(𝛾𝐵𝑒𝑓𝑓 − 𝜔). Uma vez que 𝐵𝑒𝑓𝑓 não é homogêneo, os vetores pertencentes 

aos diferentes elementos de volume da mesma amostra precessam em 

velocidades diferentes. O resultado disto está indicado na Figura 23b pelo vetor 

sombreado. A Figura 23c ilustra o efeito do primeiro pulso de 180º. Durante o 

próximo intervalo, os vetores continuam a precessar, Figura 23d, cada um na 

sua própria velocidade, e ao final deste intervalo todos eles alcançam o eixo y 

negativo simultaneamente, produzindo o eco (Figura 23e). A Figura 23f ilustra a 

situação após o eco, enquanto a Figura 23g ilustra o efeito do segundo pulso 

de 180º, a Figura 23h a magnetização após esse pulso, e a Figura 23i o 

segundo eco. O processo então se repete com um período igual a 4. 

(Meiboom & Gill 1958) 

Figura 23. Ilustração do comportamento do vetor de magnetização durante a sequência de 

pulsos CPMG. 

 

 

Autoria própria. 
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 Nesse experimento, o intervalo entre os pulsos é ajustado de tal forma 

que se torna maior do que o tempo T2 dos spins cujos sinais não são de 

interesse e menor do que o T2 daqueles de interesse. Sendo assim, o espectro 

apresenta-se mais definido. Isso facilita a análise quimiométrica, que será 

discutida na próxima seção deste trabalho. 
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3.3 Quimiometria 

 

 A quimiometria é uma área da química que vem se desenvolvendo por 

mais de 40 anos a fim de suprir a necessidade de métodos estatísticos e 

matemáticos avançados que surgiu devido à crescente sofisticação dos 

processos e da instrumentação química. (Hopke 2003; Wold & Sjöström 1998) 

 Massart et al. definiram a quimiometria como “uma disciplina química 

que usa matemática, estatística e lógica (a) para desenhar ou selecionar 

procedimentos experimentais adequados; (b) para fornecer as informações 

químicas relevantes a partir da análise dos dados químicos; e (c) para obter 

conhecimento a respeito dos sistemas químicos.”. (Slutsky 1998) A 

quimiometria possui três campos de atuação: planejamento de experimentos, 

reconhecimento de padrões e calibração multivariada (Neto et al. 2002). Uma 

ilustração que representa a quimiometria é a Figura 24, onde coloca essa 

disciplina como a intersecção entre química, matemática e estatística. 

Figura 24. Interdisciplinaridade da quimiometria. 

 

Fonte: (Ferreira 2015). 

 A Sociedade Internacional de Quimiometria (International Chemometrics 

Society) foi fundada em 1974 para auxiliar o desenvolvimento desta área. 

(Hopke 2003) O primeiro artigo com o nome “quimiometria” no título foi 

publicado em 1975 (Kowalski 1975), escrito por Bruce Kowalski. Neste 

trabalho, ele sugere que a quimiometria se desenvolveu a um ponto que agora 

funcionava como uma área de pesquisa dentro da ciência da química. Porém, 

durante esta época havia impedimentos na publicação de artigos sobre 

quimiometria, pois a comunidade de cientistas analíticos ainda estava cética 

quanto à necessidade de ferramentas complexas para a análise dos dados. Na 

visão de muitos químicos, a necessidade dessas “complicadas” ferramentas 

era um sinal de que os experimentos apropriados não eram realizados, ao 
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invés de compreenderem que uma análise avançada dos dados é uma parte 

integrante da utilização das novas tecnologias em evolução. (Ferreira 2015) 

 Em 1977, a introdução da seção “Computer Techniques and 

Optimization” na revista Analytica Chimica Acta foi a primeira seção de uma 

revista claramente dedicada à essa área em desenvolvimento. Em 1980, a 

Analytical Chemistry mudou o nome da seção de revisão “Statistical and 

Mathematical Methods in Analytical Chemistry” para “Chemometrics”. Em 1982, 

uma seção separada na Analytica Chimica Acta foi finalizada porque a 

quimiometria se tornou aceita o suficiente para não precisar dessa atenção 

especial. Subsequentemente, foram lançadas duas revistas dedicadas a 

quimiometria: Chemometrics and Intelligent Laboratory Systems e Journal of 

Chemometrics. (Ferreira 2015) Assim, a quimiometria continuou se 

desenvolvendo e com o passar dos anos passou a ter um papel importante 

dentro da química analítica. (Hopke 2003) 

 Em muitos estudos químicos, a concentração de uma ou mais espécies 

é estimada baseando-se nas propriedades medidas do sistema. Um exemplo 

clássico é a absorção da radiação eletromagnética em um comprimento de 

onda específico, que está relacionada com a concentração através da lei de 

Beer-Lambert. 

Equação 18    
𝐼(𝜆)

𝐼0(𝜆)
= 𝑒−𝜀𝜆𝑐𝑙 

Onde 𝐼(𝜆) é a intensidade da luz no comprimento de onda 𝜆 passando através 

de uma amostra de comprimento 𝑙, 𝐼0(𝜆) é a intensidade da luz incidente na 

amostra, 𝜀𝜆 é a absortividade molar, e 𝑐 é a concentração.  

 Tipicamente, devido aos coeficientes de absortividade molar não serem 

bem caracterizados, é necessário fazer uma calibração do sistema medindo a 

absorção da luz de uma série de amostras em que as concentrações das 

espécies de interesse são conhecidas.  

 Entretanto, para as amostras que contem múltiplas espécies, o problema 

se torna mais complicado porque podem ocorrer muitas componentes no 

sistema que absorvem em diferentes comprimentos de onda. Isso gera uma 

variedade de problemas que podem ser solucionados utilizando métodos de 

regressão, pois podem proporcionar uma melhor predição dos componentes na 

mistura. Tais métodos são comumente chamados de métodos de calibração 
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multivariada, e são amplamente aplicados porque permitem um estudo com 

várias espécies presentes ao mesmo tempo. (Hopke 2003; Ferreira et al. 1999) 

 Dessa forma, ficou claro que a tradicional estatística univariada não era 

mais suficiente para descrever todos os modelos químicos, uma vez que 

sistemas multivariados são muito comuns na química. Sendo assim, a 

quimiometria se coloca como alternativa, pois ela supera os limites da 

estatística univariada ao fazer uso de técnicas de análise multivariada, mesmo 

quando muitas variáveis são correlacionadas entre si. (Geladi 2003) 

 O campo da quimiometria utilizado neste trabalho foram as técnicas de 

reconhecimento de padrões, que são divididas em dois grupos: supervisionado 

e não supervisionado. O não supervisionado não utiliza a informação de classe 

das amostras na construção do modelo, buscando encontrar padrões naturais 

de agrupamento. Um exemplo é a Análise de Componentes Principais (PCA). 

O supervisionado, por sua vez, utiliza a informação de classe das amostras 

para construir modelos de classificação capazes de predizer a que classe uma 

amostra desconhecida pertence. Dois exemplos de análise supervisionada são 

Análise Discriminante por Mínimos Quadrados Parciais (PLS-DA) e Soft 

Independent Modelling by Class Analogy (SIMCA). 

 Entretanto, a utilização de ferramentas de estatística multivariada não 

dispensa o uso de estatística univariada. Os postulados desta continuam 

válidos e a abordagem multivariada se diferencia por ser mais avançada. Neste 

estudo, foi necessário utilizar alguns testes estatísticos univariados a fim de 

identificar se existiam diferenças significativas entre os grupos para algumas 

variáveis de interesse, como idade, sexo, colesterol, triglicerídeos, entre outras. 

Os testes estatísticos utilizados foram: teste t de Student não pareado, teste U 

de Mann-Whitney e teste exato de Fisher.  

O teste t de Student não pareado é o teste t utilizado para amostras de 

populações (grupos) distintas com distribuição normal quando há interesse em 

verificar se há diferença significativa entre as médias das populações. O teste 

exato de Fisher é utilizado quando é necessário aplicar um teste de 

independência em uma tabela 2x2, onde as amostras são classificadas de 

duas maneiras diferentes, e é necessário avaliar a significância da associação 

entre as duas classificações. (Beiguelman 2006) O teste U de Mann-Whitney é 

utilizado quando a variável numérica não apresenta uma distribuição normal e 
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o teste t não pode ser utilizado. Ele é utilizado para amostras independentes e 

o requisito é que os grupos tenham a mesma distribuição. Ao contrário do teste 

t, que testa a igualdade das médias, o teste U testa a igualdade das medianas. 

(Callegari-Jacques 2003) 

  

 3.3.1 Pré-processamento dos dados 

 

 Uma vez que os dados foram coletados e organizados da forma 

apropriada, eles devem, se necessário, ser pré-tratados antes da análise 

quimiométrica a fim de reduzir as variações indesejáveis que podem influenciar 

no resultado da análise. 

 Há dois tipos de pré-processamento: um deles é aplicado às amostras, e 

o outro, às variáveis. O pré-processamento escolhido depende da técnica 

analítica utilizada e também do tipo de amostra que foi analisada. Existem dois 

tipos de contribuições dos sinais registrados por um instrumento analítico: 

contribuição determinística do sinal, que contem o sinal verdadeiro, e 

contribuição estocástica, que corresponde às variações indesejadas (ruído). O 

ruído não pode ser eliminado, mas pode ser reduzido quando se adicionam 

medidas repetidas. Na espectroscopia de RMN, que utiliza transformada de 

Fourier, os espectros são registrados rapidamente e então adicionados a fim de 

reduzir o ruído. (Ferreira 2015) 

 Além do ruído, também podem estar presentes informações sistemáticas 

que não estão relacionadas com o objeto de estudo. Por exemplo, o 

deslocamento na linha de base de um espectro (no eixo das ordenadas), 

causado pelo equipamento ou pela própria amostra, é uma variação 

sistemática indesejável. (Ferreira 2015) 

 Um método de alinhamento geralmente utilizado nos espectros de RMN 

é o binning ou bucketing, que consiste em dividir o espectro em janelas, o que 

permite alinhar os espectros e também filtrar ruídos. (Ferreira 2015) 

Neste trabalho, as amostras foram soro de sangue (biofluido), e é natural 

que haja diferenças de diluição entre essas amostras. Neste caso, há vários 

tipos de pré-processamento para impedir que as amostras mais concentradas 

tenham uma maior importância na construção do modelo. Os dois tipos de pré-
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processamento nas amostras utilizados neste trabalho foram normalização pela 

soma e Standard Normal Variate (SNV). 

 A normalização pela soma é quando cada bin (𝑥𝑖𝑗) é dividido pela soma 

de todos os bins da amostra (Equação 19). 

Equação 19    𝑥𝑖𝑗
′ =

𝑥𝑖𝑗

∑ |𝑥𝑖𝑗|
𝐽
𝑗=1

 

Onde 𝑥𝑖𝑗
′  é o valor obtido após a normalização, 𝑥𝑖𝑗 é o valor da amostra 𝑖 na 

variável 𝑗, e |xij| é o módulo do valor da amostra 𝑖 na variável 𝑗. (Ferreira 2015) 

 Essa normalização iguala a magnitude de cada amostra, pois remove a 

informação da distância de cada amostra à origem dos dados, preservando a 

direção. Geralmente utiliza-se a normalização pela soma quando o objetivo é 

manter a informação que distingue qualitativamente uma amostra da outra e 

remover toda a informação que poderia discriminar duas amostras de 

composição idêntica, mas com concentrações diferentes. (Ferreira 2015) 

 SNV, por sua vez, subtrai do valor da amostra em cada variável o valor 

da média de todos os valores da determinada amostra em todas as variáveis e 

divide esse valor pelo desvio padrão (Equação 20). 

Equação 20    𝑥𝑖𝑗 𝑠𝑛𝑣 =
𝑥𝑖𝑗−𝑥𝑖̅

𝑠𝑖
  onde 

𝑥𝑖̅ =
1

𝐽
∑ 𝑥𝑖𝑗

𝐽
𝑗=1   e  𝑠𝑖 = √∑ (𝑥𝑖𝑗 − 𝑥𝑖̅)2𝐽

𝑗=1 . 

Onde xij snv é o valor obtido após o SNV, xi̅ é o valor médio dos bins de cada 

amostra e 𝑠𝑖 é o desvio padrão dos bins de cada amostra. (Ferreira 2015) 

Quanto às variáveis (colunas dos dados), também há vários tipos de pré-

processamento que podem ser utilizados para evitar que as diferenças entre 

elas influenciem na construção do modelo. Neste estudo, foram utilizados a 

centragem dos dados na média e o autoescalamento. 

Para centrar os dados na média, calcula-se o valor médio de cada 

coluna da matriz de dados e, a seguir, esse valor é subtraído de cada um dos 

valores da respectiva coluna (Equação 21). 

Equação 21    𝑥𝑖𝑗(𝑐𝑚) = 𝑥𝑖𝑗 − 𝑥𝑗̅ 
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Onde xij(cm) é o valor obtido após a centragem dos dados na média, e xj̅ é o 

valor médio dos bins de cada coluna: 𝑥𝑗̅ =
1

𝐼
∑ 𝑥𝑖𝑗

𝐼
𝑖=1 . (Ferreira 2015) 

 O autoescalamento, por sua vez, consiste em subtrair de cada elemento 

de uma coluna o valor médio da respectiva coluna e dividir o resultado pelo 

desvio padrão dessa coluna (Equação 22). 

Equação 22    𝑥𝑖𝑗(𝑎) =
𝑥𝑖𝑗−𝑥𝑗̅̅ ̅

𝑠𝑗
 

Onde xij(a) é o valor obtido após o autoescalamento, e sj é o desvio padrão dos 

bins de cada coluna: 𝑠𝑗 = √∑ (𝑥𝑖𝑗 − 𝑥𝑗̅)2𝐼
𝑖=1 . (Ferreira 2015) 

Observa-se que o autoescalamento torna os dados adimensionais, ou 

seja, com valores invariantes com respeito à unidade utilizada originalmente. 

(Ferreira, 2015) A seguir, serão apresentadas as técnicas de reconhecimento 

de padrões utilizadas neste estudo. 

 

3.3.2 Análise de Componentes Principais 
 

 A Análise de Componentes Principais (do inglês, Principal Component 

Analysis) é uma análise não supervisionada, e é frequentemente o primeiro 

passo na análise de dados, pois funciona como uma análise exploratória ao 

detectar padrões no conjunto de dados. (Berrueta et al. 2007) A primeira 

publicação na literatura sobre PCA foi de Karl Pearson em 1901, mas o 

tratamento formal do método é devido ao trabalho de Hotelling em 1933, que 

causou uma revolução no uso de métodos multivariados na área da psicologia. 

Porém, apenas décadas depois, quando os computadores eletrônicos se 

tornaram acessíveis, que foi computacionalmente possível usar a PCA em 

conjuntos de dados que não fossem trivialmente pequenos. (Jolliffe & Cadima 

2016) 

A ideia por trás da PCA é simples: reduzir a dimensionalidade do 

conjunto de dados enquanto preserva o máximo de variabilidade (informação 

estatística) possível. O que se entende por “preservar o máximo de 

variabilidade possível” é encontrar novas variáveis que são funções lineares 

das variáveis originais, que maximizam a variância sucessivamente e que não 
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se correlacionam umas com as outras. Essas novas variáveis são chamadas 

de componentes principais (PC), e elas são eixos ortogonais entre si que 

representam as direções da maior variância de dados (Figura 25). (Ferreira 

2015) 

Figura 25. Rotação das variáveis originais para obtenção das componentes principais. 

 

Autoria própria. 

A primeira componente principal (PC1) explica a maior variância dos 

dados, a segunda componente principal (PC2) não é correlacionada com a 

primeira e explica o máximo da variância residual, e assim sucessivamente até 

que toda a variância dos dados seja explicada. (Jolliffe & Cadima 2016; 

Berrueta et al. 2007) 

 A Figura 24 ilustra um conjunto de amostras no espaço tridimensional 

definido pelas três variáveis e as respectivas componentes principais, PC1 e 

PC2. É possível observar que as amostras estão agrupadas em dois grupos 

distintos. Como são necessárias duas componentes principais para descrever 

todas as amostras, é possível dizer que a dimensionalidade intrínseca desse 

conjunto de dados é dois. Neste caso, a primeira componente, PC1, discrimina 

os grupos, enquanto a PC2 descreve alguma outra fonte de variabilidade dos 

dados. 

 Os novos eixos se relacionam com as amostras através dos escores e 

com as variáveis originais através dos pesos (loadings). O escore é o valor que 

representa a amostra no espaço definido entre ela e a respectiva componente 

principal (Figura 26). O peso corresponde ao cosseno do ângulo entre os eixos 

da PC e da variável original (Figura 27). (Ferreira 2015) 
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Figura 26. Ilustração gráfica do escore de uma amostra. 

 

Autoria própria. 

Figura 27. Ilustração gráfica do peso de uma variável. 

 

Autoria própria. 

 Após a PCA, a matriz de dados X (IxJ) se divide em duas submatrizes, 

escores e pesos, que dependem do número de PCs (Figura 28). Sendo assim, 

pode-se representar matematicamente a PCA a partir da Equação 23. (Ferreira 

2015) 

Figura 28. Representação esquemática das matrizes presentes na PCA. 

 

Autoria própria. 

Equação 23    𝑿 = 𝑻𝑷𝑡 + 𝑬 

Onde A é o número de PCs, X é matriz dos dados pré-processados, P é a 

matriz de pesos, T é a matriz de escores e E é a matriz dos resíduos, que 

corresponde a parte não explicada pelo modelo. 

 Através da PCA, além de ser possível observar os agrupamentos das 

amostras quando projetadas nas componentes principais, também é possível 

observar a presença de amostras anômalas (outliers), que são aquelas que 

não se encontram dentro do padrão observado pelas outras amostras. Com a 
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PCA também são removidos as informações redundantes e os ruídos, fazendo 

com que a dimensionalidade dos dados seja reduzida. (Ferreira 2015) 

 

3.3.3 Análise Discriminante por Mínimos Quadrados Parciais 

 

 A Análise Discriminante por Mínimos Quadrados Parciais (do inglês 

Partial Least Squares Discriminant Analysis, PLS-DA) faz parte dos métodos de 

classificação multivariada, ou seja, é uma técnica supervisionada de 

reconhecimento de padrões. A primeira vez que a PLS-DA surgiu na literatura 

foi em 2003 (Barker & Rayens 2003), mas ela vem sendo utilizada desde 

aproximadamente 20 anos atrás. (Brereton & Lloyd 2014) 

 Na PLS-DA busca-se a relação entre as variáveis dependentes (Y) e as 

variáveis independentes (X). A matriz X consiste nos dados originais pré-

processados. A matriz Y contém a informação de classe das amostras, sendo 

um vetor para cada classe. Então, se temos L classes envolvidas, a matriz Y 

tem dimensões (I x L), onde I é o número de amostras. Para a classe 

observada, é atribuído o número um (1) para as amostras dessa classe, e o 

número zero (0) é atribuído a todas as outras amostras não pertencentes a 

essa classe. A Figura 29 ilustra as matrizes X e Y da PLS-DA para um conjunto 

de amostras com duas classes, A e B. (Ballabio & Consonni 2013) 

Figura 29. Ilustração das matrizes X e Y da PLS-DA. 

 

Fonte: Adaptado (Costa 2016). 

 A PLS-DA se baseia em encontrar as variáveis latentes (LVs), que são 

combinações lineares das variáveis originais e representam as direções que 

melhor discriminam as classes. Ou seja, as LVs explicam a máxima correlação 
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entre as matrizes X e Y, e através de pequenas rotações dessas variáveis é 

possível obter a melhor relação entre essas duas matrizes. Similarmente à 

PCA, é possível construir um sistema de coordenadas com as variáveis 

latentes e, se for o caso, visualizar diferentes padrões nos dados, como 

também as relações com os escores e os pesos dessas variáveis latentes. 

(Brereton & Lloyd 2014) 

Assim como na PCA, os pesos são os coeficientes das variáveis nas 

combinações lineares que determinam as LVs, e portanto pode ser interpretado 

como a influência de cada variável em cada LV, enquanto os escores 

representam as coordenadas das amostras na projeção da LV. (Ballabio & 

Consonni 2013) 

Os valores da variável dependente estimados pelo modelo final não 

necessariamente são os números inteiros zero (0) e um (1), mas sim valores 

que estão próximos desses números. Por isso estabelece-se um valor de corte 

entre zero e um para delimitar as duas classes, como, por exemplo, 0,5. 

(Ballabio & Consonni 2013) 

 Para a metabonômica, é importante a matriz P, pois nela é possível 

identificar as variáveis que indicam as regiões do espectro mais importantes 

para a classificação e, assim, associar essas regiões aos metabólitos 

discriminantes. 

 A utilização da informação de classe na PLS-DA permite uma melhor 

separação entre os grupos. Entretanto, a variação não correlacionada 

diretamente com Y pode complicar a interpretação do modelo PLS-DA 

construído, uma vez que ela está presente nos escores. Este problema pode 

ser solucionado aplicando um filtro de correção de sinal ortogonal (OSC, do 

inglês Orthogonal Signal Correction) no modelo PLS. Ele atua utilizando a 

informação contida na matriz Y para decompor a matriz X em dois conjuntos: 

variância correlacionada com Y e variância ortogonal a Y: 

Equação 24   𝑿 = 𝑻𝑷𝑡 + 𝑻0𝑷0
𝑡 + 𝑬 

Onde T0 e P0 são os escores e os pesos, respectivamente, para a variação não 

correlacionada com Y identificada pelo filtro OSC.  

Os escores preditivos da OPLS-DA e os pesos usados para estimar Y 

são então compostos de variâncias diretamente correlacionadas com Y. A 
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OPLS-DA fornece uma melhor interpretação dos dados quando comparada 

com a PLS-DA porque a OPLS-DA separa a variância preditiva da não preditiva 

(ortogonal). Por exemplo, na PLS-DA tem-se as componentes t1 e t2 

responsáveis pela discriminação entre as classes (Figura 30a). Os 

correspondentes vetores dos pesos p1 e p2 contem uma mistura de 

propriedades discriminantes e não discriminantes que são principalmente 

confundidas na direção de t2. No mesmo exemplo, a OPLS-DA separa 

efetivamente a direção discriminatória em tp,1 da direção ortogonal a Y (to,1) 

tornando o vetor do peso preditivo correspondente (pp,1) fácil de interpretar 

(Figura 30b). As regiões do espectro responsáveis pela variância 

remanescente podem ser identificadas através do vetor ortogonal po,1, que está 

relacionado à variância presente dentro de uma das classes. Quando em X não 

há variância não correlacionada com Y, o modelo OPLS-DA obtido é idêntico 

ao PLS-DA. (Worley & Powers 2015; Bylesjö et al. 2007) 

Figura 30. Demonstração das principais diferenças entre a) PLS-DA e b) OPLS-DA. 

 

Fonte: (Bylesjö et al. 2007). 

 O passo seguinte é a validação do modelo, cujo objetivo é determinar o 

número de variáveis necessárias para a modelagem do conjunto de dados, 

avaliar a representatividade dos dados utilizados na construção do modelo, e 

apresentar a capacidade do modelo de classificar corretamente novas 

amostras. A situação ideal é quando há amostras suficientes para construir 

dois conjuntos: de treinamento, usado na construção do modelo, e de teste, 

usado para avaliar o modelo. Quando isso não é possível, a validação cruzada 

pode ser aplicada. (Westad & Marini 2015) 
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A validação cruzada LOOCV (do inglês leave-one-out-cross-validation) 

calcula o erro do modelo utilizando n-1 amostras (onde n é o número de 

amostras), e testando a amostra restante. Este processo é repetido para todos 

os n subconjuntos de tamanho n-1. LOOCV também é utilizada para determinar 

o número de variáveis latentes para o modelo PLS-DA, fornecendo os valores 

da capacidade preditiva (Q2), do coeficiente de determinação (R2) e da precisão 

do modelo. (Berrueta et al. 2007) 

 Neste trabalho, foi utilizada a validação cruzada LOOCV e também o 

teste de permutação, que consiste em permutar as classificações das amostras 

muitas vezes para verificar se o modelo permutado é mais preciso ou não do 

que o modelo original. (Berrueta et al. 2007) 

 Outra ferramenta utilizada pela PLS-DA é o VIP (do inglês, Variable 

Importance Projection), um método proposto em 1993 por Wold et al.. Os 

escores VIP apresentam a influência das variáveis no modelo. Esses escores 

fornecem uma forma útil de selecionar quais são as variáveis que mais 

contribuem para a explicação da variância nos dados. Para certo conjunto de 

dados e um dado modelo, haverá sempre somente um vetor de escores VIP, 

resumindo todas as componentes e variáveis. Sendo assim, sabendo a 

importância de cada variável na projeção do modelo, é possível identificar 

quais as variáveis mais importantes para a discriminação das amostras. (Farrés 

et al. 2015) 

 

3.3.4 Figuras de Mérito 

 

 Os erros cometidos pelos modelos classificatórios são organizados em 

uma tabela de contingência, também chamada de matriz de classificação ou 

matriz de confusão (Figura 31). Nas colunas dessa tabela estão as classes 

verdadeiras das amostras, enquanto nas linhas estão as classes estimadas 

pelo modelo classificatório. Os elementos internos indicam o número de 

amostras de cada classe e onde elas foram classificadas. Por exemplo, AA é o 

número de amostras que são verdadeiramente da classe A e que foram 

corretamente classificadas. BA é o número de amostras da classe B que foram 

incorretamente classificadas em A. A soma a seguir, AA + BA, é o número total 

de amostras previstas pelo modelo na classe A. Na linha seguinte estão as 
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amostras previstas como sendo da classe B, em que AB são amostras de A 

incorretamente classificadas em B, e BB são as amostras da classe B 

corretamente classificadas. A soma AB + BB é o número total de amostras 

previstas pelo modelo na classe B. A soma AA + AB é o número total de 

amostras da classe A, enquanto a soma BA + BB é o número total de amostras 

da classe B. As amostras corretamente classificadas encontram-se na diagonal 

principal, e tudo que aparece fora da diagonal representa os insucessos 

obtidos no modelo. (Ferreira 2015) 

Figura 31. Tabela de contingência dos resultados de uma classificação. 

 

Fonte: Adaptado (Ferreira 2015). 

As figuras de mérito são calculadas a partir das hipóteses consideradas 

na análise dos dados. Por exemplo, considerando que a classe A representa 

pacientes acometidos por alguma doença e a classe B representa os pacientes 

saudáveis, temos 2 hipóteses: 

H0: a amostra é de um paciente saudável (classe B) e 

H1: a amostra é de um paciente doente (classe A). 

 Um erro designado de falso positivo (FP) acontece quando a hipótese H0 

é verdadeira e rejeitada, ou seja, quando uma amostra da classe B é 

classificada erroneamente como sendo da classe A. Porém, se uma amostra 

da classe B é classificada corretamente, tem-se um verdadeiro negativo (VN). 

Se a hipótese H0 é falsa e é aceita, ou seja, se a hipótese H1 é verdadeira e é 

rejeitada, tem-se um erro designado de falso negativo (FN). E se H1 é 

verdadeira e é aceita, não há erro e tem-se um verdadeiro positivo (VP). 

(Ferreira 2015) 

 As cinco figuras de mérito que podem ser calculadas utilizando a tabela 

de contingência são: exatidão, sensibilidade, especificidade, valor preditivo 
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positivo e valor preditivo negativo. Elas são expressas em porcentagem e estão 

definidas nas equações abaixo. (Kawamura 2002) 

 A exatidão é a probabilidade de acerto do modelo: 

Equação 25   𝐸𝑋𝐴𝑇 =
𝐴𝐴+𝐵𝐵

𝐴𝐴+𝐴𝐵+𝐵𝐴+𝐵𝐵
100 

 A sensibilidade é a capacidade que o modelo apresenta de detectar os 

verdadeiros positivos: 

Equação 26   𝑆𝐸𝑁 =
𝐴𝐴

𝐴𝐴+𝐴𝐵
100 

 A especificidade é a capacidade que o modelo apresenta de detectar os 

verdadeiros negativos: 

Equação 27   𝐸𝑆𝑃 =
𝐵𝐵

𝐵𝐴+𝐵𝐵
100 

 O valor preditivo positivo é a probabilidade de um verdadeiro positivo ser 

realmente positivo: 

Equação 28   𝑉𝑃𝑃 =
𝐴𝐴

𝐴𝐴+𝐵𝐴
 

 O valor preditivo negativo é a probabilidade de um verdadeiro negativo 

ser realmente negativo: 

Equação 29   𝑉𝑃𝑁 =
𝐵𝐵

𝐵𝐵+𝐴𝐵
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3.4 Fígado 

 

 O fígado é o segundo maior órgão do corpo humano (o maior é a pele), 

e a maior glândula, funcionando como glândula exócrina (liberando secreções) 

e endócrina (liberando substâncias no sangue e no sistema linfático). Em um 

adulto normal, pesa de 1200 a 1600 g, constituindo aproximadamente 2,5% do 

peso corporal. Ele se encontra no lado direito da região abdominal, logo abaixo 

do diafragma, e é dividido em duas regiões principais: o lobo direito e o lobo 

esquerdo, que são separados por ligamentos (Figura 32). O direito é cerca de 

seis vezes maior que o esquerdo, e é subdividido em segmentos menores: os 

lóbulos caudado e quadrado, que estão nas partes posterior e inferior, 

respectivamente. (Junqueira & Carneiro 2013; Kumar et al. 2010; McCormick 

2011) 

Figura 32. Face diafragmática do fígado. 

 

Fonte: (Kumar et al. 2010) 

 Este órgão funciona como uma ponte entre o sistema digestório e o 

sangue, pois é nele que os nutrientes absorvidos no trato digestório são 

processados e armazenados para serem utilizados por outros órgãos. O fígado 

capta, transforma e acumula metabólitos para a neutralização e eliminação de 

substâncias tóxicas. Atuando como uma glândula exócrina, ele elimina a bile, 

uma secreção importante para a digestão de lipídios. Além disso, o fígado 

também exerce uma função muito importante na produção de proteínas 

plasmáticas, como a albumina e outras proteínas carreadoras. (Junqueira & 

Carneiro 2013) 

 A veia porta fornece uma grande parte do sangue para o fígado (cerca 

de 70 a 80%), enquanto a menor percentagem é suprida pela artéria hepática. 

A primeira traz sangue venoso dos intestinos e do baço; e a segunda supre o 
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fígado com sangue proveniente do tronco celíaco da aorta abdominal. Todos os 

nutrientes absorvidos pelo intestino chegam ao fígado pela veia porta, exceto 

os lipídios complexos, que chegam pela artéria hepática. (Junqueira & Carneiro 

2013; Kumar et al. 2010; McCormick 2011) 

 As células hepáticas (hepatócitos) compreendem aproximadamente 60% 

do fígado. Elas são poliédricas, com seis ou mais superfícies, com diâmetro de 

20 a 30 mm. Agrupam-se em placas interconectadas por capilares, os 

sinusoides hepáticos. Existem aproximadamente 202 x 103 células em cada 

miligrama do fígado de um ser humano normal. Unidades estruturais 

denominadas lóbulos hepáticos podem ser observadas, e o fígado humano, por 

exemplo, contém de 3 a 6 espaços porta por lóbulo, cada um contendo um 

ramo da veia porta, um ramo da artéria hepática, um ducto (parte do sistema 

de ductos biliares) e vasos linfáticos (Figura 33). (Junqueira & Carneiro 2013; 

McCormick 2011) 

Figura 33. Ilustração dos lóbulos hepáticos do fígado. 

 

Fonte: (Junqueira & Carneiro 2013). 

 Os hepatócitos geralmente contem glicogênio, que é um depósito de 

glicose, sendo mobilizado quando a glicose sanguínea cai abaixo do nível 

adequado. Desta maneira, as células hepáticas contribuem para manter a 

glicemia estável, representando uma das principais fontes de energia para 

utilização pelo organismo. Além disso, os perixossomos (organelas que contém 

enzimas) são abundantes nos hepatócitos, e algumas das suas funções são: 
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oxidação de ácidos graxos em excesso, quebra do peróxido de hidrogênio 

gerado por esta oxidação, quebra de purinas em excesso com consequente 

formação de ácido úrico e participação na síntese do colesterol, ácidos biliares 

e alguns lipídios utilizados para a síntese de mielina. O complexo de Golgi no 

hepatócito é responsável pela formação de lisossomos e pela secreção de 

proteínas plasmáticas, glicoproteínas e lipoproteínas. Dessa forma, o 

hepatócito é, provavelmente, a célula mais versátil do organismo, pois além de 

ter funções endócrinas e exócrinas, também acumula, detoxifica e transporta 

diversas substâncias. (Junqueira & Carneiro 2013) 

 O fígado armazena lipídios e carboidratos na forma de triglicerídeos e 

glicogênio, respectivamente, suprindo o organismo da energia necessária entre 

as refeições. Além disso, também armazena algumas vitaminas, especialmente 

a vitamina A. No hepatócito, acontece a conversão de aminoácidos em glicose, 

sendo também o principal sítio de desaminação de aminoácidos, processo que 

resulta na produção de ureia. Após isso, a ureia é transportada para os rins 

pelo sangue, sendo excretada na urina. (Junqueira & Carneiro 2013) 

 Em humanos, o fígado apresenta uma capacidade de regeneração 

consideravelmente restrita, mas sua importância reside no fato de que podem 

ser usadas partes deste órgão em transplantes cirúrgicos. (Junqueira & 

Carneiro 2013) 

 As principais doenças que acometem o fígado são as hepatites virais, a 

doença hepática alcoolica, a doença hepática gordurosa não alcoolica 

(DHGNA) e o carcinoma hepatocelular (CHC). Além disso, doenças como 

insuficiência cardíaca descompensada, câncer disseminado e infecções extra-

hepáticas podem fazer a lesão hepática ocorrer secundariamente. Apesar de o 

fígado ser vulnerável a uma grande quantidade de metabólitos tóxicos, 

microbianos, circulatórios e neoplásicos, ele possui uma enorme reserva 

funcional que mascara o impacto clínico quando a lesão hepática é leve, 

porém, com a progressão da doença, as consequências são severas e podem 

levar à morte. (Kumar et al. 2010) 
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3.4.1 Esquistossomose 

 

 A esquistossomose é uma doença infecciosa tropical comum 

principalmente na África, Ásia e América do Sul. A Organização Mundial da 

Saúde (OMS) a considera como a segunda doença socioeconomicamente mais 

importante (a primeira é malária), e a terceira doença parasitária mais 

frequente na saúde pública, afetando aproximadamente 200 milhões de 

pessoas em 74 países, com uma taxa de infecção de 1 em cada 30 indivíduos 

nessa população. (Sah et al. 2015; Gasim et al. 2015; Elbaz & Esmat 2013) 

 Esta doença é causada por parasitas do gênero Schistosoma, 

pertencente à classe Trematoda. Entre 25 espécies conhecidas desse gênero, 

as com importância epidemiológica na medicina humana são apenas cinco: 

Schistosoma haematobium, Schistosoma mansoni, Schistosoma japonicum, 

Schistosoma mekongi e Schistosoma intercalatum. Entre elas, Schistosoma 

mansoni, Schistosoma japonicum e Schistosoma intercalatum são os principais 

parasitas causadores de doenças em humanos. (Sah et al. 2015). Schistosoma 

mansoni é a espécie mais dominante em certas áreas tropicais e sub-tropicais 

da África subsariana, do Oriente Médio, da América do Sul e do Caribe. A 

infecção por Schistosoma haematobium é adquirida no norte da África, na 

África subsariana, no Oriente Médio e na Índia. Schistosoma japonicum ocorre 

somente na Ásia. Schistosoma intercalatum ocorre na África central e 

ocidental, enquanto Schistosoma mekongi é restrita a Laos e Camboja. 

Atualmente, o maior número de casos de esquistossomose ocorre no Egito, 

Iémen e Argélia. (Elbaz & Esmat 2013) 

 Apesar de esta doença ter sido reconhecida apenas em 1851, por 

Theodore Bilharz, que confirmou a presença do verme conhecido hoje como 

Schistosoma haematobium em vasos mesentéricos de um camponês egípcio 

autopsiado, os ovos do Schistosoma foram encontrados em múmias egpípcias 

que datam de 3500 a.C.. Entretanto, a síndrome de Katayama, uma forma 

aguda da infecção pelo Schistosoma japonicum, foi descoberta por Fuji em 

1847, 4 anos antes da descoberta de Bilharz. Mas, somente em 1914 que os 

moluscos do gênero Oncomelamia foram identificados como os hospedeiros 

intermediários do Schistosoma japonicum. Em 1902, Manson encontrou ovos 

em Antilhas, indicando uma nova espécie de Schistosoma, que foi classificada 
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como Schistosoma mansoni em 1907 por Sambon. No Brasil, esta mesma 

espécie teve sua presença confirmada em 1908 através da descrição de quatro 

casos registrados por Pirajá da Silva, na Bahia. (Coura & Amaral 2004)  

 No Brasil, a esquistossomose foi provavelmente introduzida logo após a 

chegada dos europeus ao país, com a vinda dos escravos africanos. Na 

sequência, através dos fluxos migratórios, a doença se disseminou no interior. 

A Figura 34 ilustra como a esquistossomose se espalhou para todo o país, 

assim como a distribuição dos hospedeiros intermediários Biomphalaria 

glabrata, B. straminea e B. temagophila. (Coura & Amaral 2004)  

Figura 34. Fluxos migratórios da esquistossomose e distribuição dos hospedeiros 

intermediários do Schistosoma mansoni no Brasil. 

 

Fonte: (Coura & Amaral 2004) 

 Atualmente, a doença é detectada em todas as regiões do país, mas os 

estados das regiões Nordeste e Sudeste são os mais afetados. As áreas 

endêmicas compreendem os estados de Alagoas, Bahia, Pernambuco, Rio 

Grande do Norte (faixa litorânea), Paraíba, Sergipe, Espírito Santo e Minas 

Gerais (predominantemente no norte e nordeste do estado). No Pará, 

Maranhão, Piauí, Ceará, Rio de Janeiro, São Paulo, Santa Catarina, Paraná, 

Rio Grande do Sul, Goiás e no Distrito Federal, a transmissão é focal, não 

atingindo grandes áreas. Esses dados estão ilustrados na Figura 35 (Da 

Martins et al. 2015) 
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Figura 35. Distribuição da esquistossomose, de acordo com a faixa de positividade, por 

município brasileiro entre 2010 e 2015. 

 

Fonte: Ministério da Saúde. 

A transmissão da esquistossomose ocorre amplamente em todo o Brasil, 

atingindo aproximadamente 6 milhões de pessoas com formas avançadas da 

doença, e estima-se que 25 milhões de pessoas vivam em áreas onde existe o 

risco de transmissão. Apesar disso, a incidência e a morbidade da doença 

diminuíram em alguns estados devido a políticas governamentais. (Da Martins 

et al. 2015) 

 A esquistossomose hepática é a forma mais comum dessa doença e 

usualmente resulta da infecção pelo Schistosoma mansoni. (Elbaz & Esmat 

2013). O ciclo de vida desse parasita possui dois hospedeiros: um 

intermediário e um definitivo. O principal hospedeiro é o homem, sendo a partir 

de suas fezes que os ovos são disseminados na natureza (fontes de água 

doce, como rios, riachos e cachoeiras). Na água, os ovos se transformam em 

miracídeos, que invadem o tecido do hospedeiro intermediário (caramujo, 

caracol ou lesma). Neste hospedeiro, o parasita modifica-se de miracídio para 

uma larva denominada cercária. Este ciclo está ilustrado na Figura 36. 

(Barsoum et al. 2013) 
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Figura 36. Ciclo de vida do Schistosoma. 

 

Fonte: (Barsoum et al. 2013). 

Uma vez que as cercárias penetram na epiderme, elas atingem a 

corrente sanguínea, por onde são transportadas até o intestino e o fígado, 

fixando-se por meio de ventosas e reproduzindo-se assexuadamente. As 

fêmeas produzem ovos por volta da sexta semana, e estes são depositados em 

vários tecidos, principalmente no fígado. Trata-se de uma doença inicialmente 

assintomática que pode evoluir para formas clínicas extremamente graves, e 

levar o paciente a morte. Aproximadamente 40% dos pacientes infectados são 

assintomáticos e apenas 10% apresentam a forma mais grave da doença 

(Barsoum et al. 2013).  

Os sintomas na fase inicial incluem febre, tosse, diarreia, coceiras, 

vômitos e emagrecimento. Enquanto na fase avançada os sintomas mais 

comuns são diarreia, aumento do fígado e do baço, hemorragias e “barriga 

d’água”. (Garcia-Perez et al. 2010; Sah et al. 2015) No fígado, a patogênese da 

esquistossomose está relacionada à formação de granuloma ao redor dos 

ovos, levando à fibrose periportal e subsequente hipertensão portal, 

esplenomegalia e varizes esofágicas. (Elbaz & Esmat 2013) 

O diagnóstico da esquistossomose é feito tradicionalmente através da 

detecção dos ovos do parasita nas fezes do paciente. Este método é baseado 

em microscopia e é simples e barato, porém, devido à distribuição desigual dos 

ovos em fezes sólidas e à considerável variação diária da produção dos ovos, 

não é um método preciso o suficiente. Alternativamente, a detecção de 

anticorpos é um método sensível e específico, porém, os resultados são 
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difíceis de interpretar nos pacientes que tem um histórico de infecção prévia. 

(Balog et al. 2011) 

 A ultrassonografia (US) é considerada a principal modalidade de escolha 

e desempenha um papel fundamental no diagnóstico do comprometimento 

hepático na esquistossomose, uma vez que permite a identificação de fibrose, 

esplenomegalia, dimensões aumentadas da veia porta e a presença de vasos 

colaterais (Elbaz & Esmat 2013; Guimarães Cavalcanti et al. 2015). Entretanto, 

a US é um procedimento subjetivo, dependente do examinador, e a 

heterogeneidade do parênquima hepático resultante da infecção viral pode 

dificultar a visualização da fibrose periportal em alguns pacientes (Lambertucci 

2014). 

  

3.4.2 Hepatites B e C 

 

 As hepatites virais são doenças infecciosas que afetam o fígado através 

de um grupo de vírus conhecidos como vírus hepatotrópicos, que são os vírus 

das hepatites A, B, C, D e E. (Kumar et al. 2010) Nesta seção serão discutidas 

especificamente as hepatites B e C, os objetos de estudo deste trabalho. 

 

 Hepatite B 

 

 Em 1963, o vírus da hepatite B (HBV) foi descoberto por Baruch 

Blumberg durante sua pesquisa sobre o antígeno Australia, que posteriormente 

ficou conhecido como o antígeno de superfície do vírus da hepatite B (HBsAg). 

Esse vírus pertence à família Hepadnaviridae, e possui uma molécula de DNA 

circular de fita parcialmente dupla, que possui 3200 nucleotídeos. O HBV é o 

menor vírus DNA fita dupla conhecido, apresentando forma esférica com 42 nm 

de diâmetro. (Kumar et al. 2010; Saeed et al. 2014) 

O vírion de HBV maduro, também conhecido como “partícula de Dane”, 

é responsável por infeccionar aproximadamente 5% da população mundial, 

atingindo um total de 2 bilhões de pessoas infectadas com o vírus e cerca de 

350 milhões apresentam infecção crônica. Este vírus é responsável por 600 mil 

mortes a cada ano, e é reconhecido mundialmente como um problema de 

saúde pública (Saeed et al. 2014). A transmissão se dá fundamentalmente 
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através das vias parenteral e sexual, e o vírus atua nas células do fígado, onde 

replica o seu DNA. (Dény & Zoulim 2010) 

As formas de manifestação e evolução clínica da infecção pelo HBV são 

as seguintes: 

1) Hepatite aguda com recuperação e eliminação do vírus; 

2) Hepatite crônica não progressiva; 

3) Doença crônica progressiva terminando em cirrose; 

4) Hepatite fulminante com necrose hepática maciça; e 

5) Estado de portador assintomático. (Kumar et al. 2010) 

A Figura 37 ilustra as frequências aproximadas das evoluções clínicas 

da infecção por HBV. 

Figura 37. Possíveis evoluções da infecção por HBV em adultos. 

 

*Recuperação completa. **Recuperação indicada por um teste negativo para HBsAg. 

***Indicado por HBsAg positivo por > 6 meses; HBeAg negativo; HBV-DNA sérico < 105 

cópias/mL; níveis persistentes normais  das enzimas hepáticas AST e ALT; ausência de 

inflamação significativa e necrose na biópsia hepática.  

Fonte: Adaptado (Kumar et al. 2010). 

 

 O período de incubação do HBV é prolongado, durando cerca de 4 a 26 

semanas. A maioria dos pacientes infectados (70%) apresentam sintomas 

inespecíficos ou até mesmo nenhum, e não desenvolvem icterícia. Os outros 

30%, além de manifestarem sintomas inespecíficos, como anorexia, febre, 

fadiga, e dor no quadrante superior direito do abdômen, apresentam icterícia. 
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Na maioria dos casos, a infecção desaparece sem a necessidade de 

tratamento. (Kumar et al. 2010) 

As pessoas que desenvolvem hepatite B crônica, morrem, em média, 22 

anos mais cedo do que aquelas que não possuem HBV. Isso acontece devido 

a complicações da doença, como cirrose, carcinoma hepatocelular e 

insuficiência hepática. (Rajbhandari & Chung 2016) 

Na fase inicial da doença, antes mesmo do início dos sintomas, o HBsAg 

aparece. Ele atinge seu pico durante a fase evidente da doença e então diminui 

até níveis indetectáveis em 3 a 6 meses. Após o desaparecimento do HBsAg, 

que é quando a fase aguda acaba, o anticorpo anti-HBs aumenta e passa a ser 

detectável no sangue. Esses anticorpos podem permanecer no corpo humano 

durante toda a vida, funcionando como uma forma de proteção. A intensa 

replicação do vírus também é manifestada através da presença de HBeAg, 

HBV-DNA e DNA polimerase, que aparecem logo após HBsAg. O período de 

duração do HBeAg é curto, então quando ele permanece além de três meses 

no sangue pode indicar a evolução do quadro clínico para hepatite crônica. 

Quando isto não acontece, o antígeno HBeAg é substituído pelo anticorpo anti-

HBe, que indica que uma infecção aguda atingiu seu pico e está declinando. 

(Kumar et al. 2010; Dény & Zoulim 2010) 

O anti-HBc IgM também é um indicativo da fase aguda, e torna-se 

detectável no soro pouco antes do início dos sintomas, simultaneamente ao 

aumento das aminotransferases AST (aspartato aminotransferase) e ALT 

(alanina aminotransferase), cujo aumento é um indicativo da ocorrência de 

destruição celular no indivíduo. O anti-HBc IgG aparece na fase aguda a partir 

do declínio do anti-HBc IgM, e pode permanecer em menor quantidade mesmo 

após a cura do paciente. (Kumar et al. 2010; Dény & Zoulim 2010) 

O marcador epidemiológico mais importante na infecção pelo HBV é o 

anti-HBc. A detecção do HBsAg, anti-HBc (IgM e IgG) e HBeAg/anti-HBe se faz 

atualmente através de técnicas imunoenzimáticas (ELISA) e de 

quimioluminescência. (Kumar et al. 2010; Dény & Zoulim 2010; Brasil. 

Ministério da Saúde. Secretaria de Vigilância em Saúde. 2015) 

Os casos de hepatite B mais graves, em que o HBsAg desaparece 

rapidamente (cerca de 4 semanas após a infecção), possuem o seu 

diagnóstico baseado na presença do anti-HBc IgM. Devido à intensa replicação 
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viral que ocorre no início da doença, sempre deve ser solicitado o exame de 

reação em cadeia da polimerase (PCR) para a detecção do DNA viral. Se 

ocorre a progressão para a hepatite crônica e a replicação viral ainda estiver 

acontecendo, os resultados para HBeAg e HBV-DNA são positivos, caso 

contrário, o resultado para HBV-DNA é negativo. Além disso, a biópsia 

hepática, apesar de ser invasiva, auxilia no diagnóstico, pois permite avaliar a 

evolução da doença. (Ferreira 2000) 

A vacina de prevenção à hepatite B é preparada a partir de HBsAg 

purificado produzido em levedura e induz uma resposta protetora de anticorpos 

anti-HBs em mais de 95% dos casos. (Kumar et al. 2010) 

 

 Hepatite C 

 

 O vírus da hepatite C (HCV) foi descoberto em 1989 como um membro 

da família Flaviridae. Diferentemente do HBV, é um vírus de RNA pequeno, 

envelopado e de fita única. O HCV é inerentemente instável, originando 

múltiplos genótipos e subtipos. Esta instabilidade genômica e a variabilidade 

antigênica são os fatores que impedem o desenvolvimento de uma vacina de 

prevenção ao HCV. Esse vírus afeta aproximadamente 170 milhões de 

pessoas ao redor do mundo, sendo relacionado ao desenvolvimento de câncer 

de fígado (carcinoma hepatocelular) em vários países. Dos mais de 500 mil 

casos que ocorrem todo ano de carcinoma hepatocelular, 22% decorrem da 

infecção por HCV. Sendo assim, essa doença é de importância global que 

requer eficientes métodos de prevenção e controle. (Kumar et al. 2010; 

Lavanchy 2011) 

 Os fatores de risco mais comuns para infecção por HCV são: 

1) Abuso de drogas intravenosas; 

2) Múltiplos parceiros sexuais; 

3) Realização de cirurgia nos últimos 6 meses; 

4) Acidente com material biológico; 

5) Atividade profissional na área médica ou odontológica. (Kumar et al. 

2010) 

Ao contrário do HBV, o HCV não gera uma resposta adequada do 

organismo, o que ocasiona menos sintomas na fase aguda, mas também faz 
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com que a doença evolua mais facilmente para a fase crônica. Cerca de 80% 

dos casos evoluem para hepatite crônica, 10 a 20% desenvolvem 

complicações como cirrose ao longo de duas a três décadas após a infecção, e 

1 a 5% desenvolvem carcinoma hepatocelular. (Conry-Cantilena 1997; Kumar 

et al. 2010; Lavanchy 2011) 

Similarmente ao HBV, o HCV também possui um período de incubação 

relativamente longo, que varia de 2 a 26 semanas. Na grande maioria dos 

indivíduos afetados (85%), o quadro clínico da fase aguda é assintomático e 

facilmente ignorado ou apresenta sintomas muito inespecíficos, como letargia, 

dores musculares e articulares. (Conry-Cantilena 1997; Kumar et al. 2010) 

Na fase inicial da doença, ocorrem elevações dos níveis das 

aminotransferases séricas (ALT e AST), e o HCV-RNA é detectável no sangue 

por 1 a 3 semanas. Os anticorpos são detectados na fase aguda em apenas 50 

a 70% dos casos; nos demais, os anticorpos anti-HCV surgem após 3 a 6 

semanas. Apesar de infecção persistente e hepatite crônica serem as marcas 

registradas da infecção por HCV, a fase aguda do HCV é mais leve do que a 

do HBV. Os fatores que levam a infecção por HCV à cronicidade ainda não são 

bem compreendidos, mas se sabe que o vírus desenvolveu uma resistência à 

imunidade antiviral do hospedeiro. (Kumar et al. 2010) 

Na infecção crônica, o HCV-RNA persiste em mais de 90% dos casos, 

apesar da presença de anticorpos neutralizantes. Sendo assim, para avaliar a 

replicação viral e confirmar o diagnóstico, deve ser realizado o teste de HCV-

RNA. A insuficiência hepática fulminante raramente ocorre nas infecções por 

HCV. (Kumar et al. 2010) 

O diagnóstico da hepatite C é frequentemente realizado por meio de 

imunoensaios empregados em laboratório e de testes rápidos que detectam o 

anticorpo anti-HCV, indicando contato prévio com o vírus. Além dos 

imunoensaios e dos testes rápidos, o teste molecular para detectação do HCV-

RNA oferece uma alternativa para a detecção cada vez mais precoce da 

infecção pelo HCV e também para a confirmação dos casos anti-HCV 

reagentes. (Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. 

2015) 

 



66 
 

 

3.4.3 Coinfecção Esquistossomose e Hepatites Virais B e C 

 

Os dados sobre a coinfecção entre a esquistossomose e a hepatite B ou 

hepatite C são inconsistentes (Van-Lume et al. 2013).  

Quando o paciente apresenta esquistossomose e hepatite B ou C, a 

progressão da fibrose hepática para cirrose e carcinoma hepatocelular pode 

ocorrer mais rapidamente do que quando só a hepatite viral está presente, e 

essa coinfecção é observada frequentemente em áreas endêmicas, como Egito 

e Brasil (Van-Lume et al. 2013; Kamal et al. 2004). Em Pernambuco, por 

exemplo, a prevalência da coinfecção varia de 3% para HBV a 7,4% para HCV 

entre pacientes ambulatoriais com esquistossomose do Hospital das Clínicas 

da UFPE (Silva et al. 2011). 

Em alguns casos, a esquistossomose pode se apresentar assintomática, 

o que torna difícil o diagnóstico, muitas vezes descoberto por causa da 

infecção com HBV ou HCV. Como essa coinfecção agrava consideravelmente 

o estado do paciente, isto indica a urgente necessidade de um diagnóstico 

mais preciso e sensível.  

 

3.4.4 Doença Hepática Gordurosa Não Alcoólica 
 

 A doença hepática gordurosa não alcoólica (DHGNA) é uma condição 

clínico-patológica caracterizada por acúmulo de lipídios no interior dos 

hepatócitos e ausência de consumo excessivo de álcool, definido como > 210 g 

de etanol/semana para homem e > 140 g de etanol/semana para mulher. 

DHGNA abrange um amplo leque de doenças hepáticas, variando de simples 

esteatose macrovesicular a esteatohepatite, fibrose avançada e cirrose. (Sass 

et al. 2005; Hassan et al. 2014) 

 O enfoque deste estudo foi esteatose e esteatohepatite. Esteatose é a 

presença de lipídios dentro do citoplasma dos hepatócitos. Esteatohepatite, por 

sua vez, é definida como esteatose na presença de danos nos hepatócitos, 

inflamação e/ou subsequentes cicatrizes e substituição do tecido com colágeno 

tipo 1. Aproximadamente 10 a 29% dos pacientes com esteatohepatite 

desenvolverão cirrose em um período de 10 anos. (Hassan et al. 2014) 
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 É possível ter essa doença em qualquer idade, etnia ou país, apesar de 

ser mais comum entre americanos descendentes de hispânicos e europeus do 

que americanos descendentes de africanos (essas diferenças podem estar 

relacionadas aos diferentes metabolismos de lipídios). (J.K. & J.W. 2011) 

Encontra-se usualmente associada com a obesidade e resistência à insulina, 

incluindo diabetes, e com outras características do metabolismo, como altos 

níveis de triglicerídeos e baixos níveis de colesterol HDL. A DHGNA é uma 

doença mais comum em homens, aumentando com a idade e após a 

menopausa das mulheres. (Cotrim et al. 2011) 

 Devido ao problema da obesidade ter se tornado uma epidemia entre os 

séculos XX e XXI, a DHGNA se tornou uma das doenças mais comuns e 

conhecidas mundialmente. Por exemplo, nos Estados Unidos, a DHGNA é a 

causa mais comum de doença hepática, representando mais de 75% das 

doenças hepáticas crônicas. Além disso, por poder evoluir para cirrose e 

carcinoma hepatocelular, é um indicativo da necessidade de transplante de 

fígado, contribuindo para a morbidade e a mortalidade desse país. (Hassan et 

al. 2014)  

 Helma et al. relataram que a DHGNA é comum na América Latina e não 

é uma doença exclusiva da população ocidental, uma vez que atingiu 

proporções epidêmicas entre japoneses adultos saudáveis ao redor do mundo. 

(Cotrim et al. 2011) No Brasil, segundo dados da Organização Mundial de 

Saúde (OMS), o sobrepeso em adultos passou de 51,1% em 2010 para 54,1% 

em 2014. Em 2010, 17,8% da população era obesa; em 2014, o índice chegou 

aos 20%, sendo a maior prevalência entre as mulheres, 22,7%. Estes dados 

devem alertar a sociedade e o governo devido aos impactos importantes na 

saúde, necessitando ser um tema prioritário. 

 O diagnóstico da DHGNA é altamente provável na presença de 

características como obesidade, diabetes e apneia obstrutiva do sono. Como a 

maioria dos pacientes são assintomáticos, a suspeita desse diagnóstico ocorre 

principalmente quando os níveis de atividade das aminotransferases 

encontram-se alterados nos exames de rotina. As aminotransferases são as 

enzimas que em condições normais residem dentro dos hepatócitos. Porém, 

quando há lesão hepática, essas células liberam as enzimas na corrente 
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sanguínea, elevando os níveis das aminotransferases no sangue, as quais 

podem ser detectadas facilmente. (J.K. & J.W. 2011)  

A esteatose hepática é frequentemente diagnosticada através do exame 

de ultrassonografia. Quando apresenta sintomais, os mais comuns são 

desconforto no quadrante superior direito e fadiga, apesar deste último também 

ser causado por apneia obstrutiva do sono, que é tipicamente observada na 

população obesa com DHGNA. Hepatomegalia é o achado clínico mais 

comum, e os sinais de doença hepática crônica raramente estão presentes na 

ausência de cirrose. (J.K. & J.W. 2011) Apesar da ultrassonografia ser um teste 

comumente usado em pacientes com suspeita da DHGNA, a presença de 

obesidade mórbida reduz consideravelmente a sensibilidade e a especifidade 

do resultado. Isto acontece porque o ultrassom não é capaz de determinar 

acuradamente a quantidade de gordura presente ou fornecer o estágio da 

doença. Além disso, é um exame que depende do operador, fato que aumenta 

a variabilidade dos resultados. (J.K. & J.W. 2011) 

 Após o diagnóstico de DHGNA, o próximo passo é determinar a 

gravidade da doença, pois isso é importante para o prognóstico. Apesar dos 

avanços promissores no surgimento de métodos não invasivos, a biópsia 

hepática ainda é considerada o “padrão-ouro” no diagnóstico, com 

determinação da atividade necroinflamatória, localização e grau da fibrose. 

(Nalbantoglu & Brunt 2014) Basicamente, há dois aspectos que devem ser 

considerados: (i) o nível de fibrose e (ii) o nível de inflamação. Como já foi dito 

anteriormente, esteatose é o acúmulo de triglicerídeos nos hepatócitos, 

enquanto esteatohepatite inclui lesão hepatocelular, caracterizada por 

hepatócitos balonizados, com inflamação e presença ou não de fibrose. 

Anormalidades mitocondriais podem estar presentes na esteatohepatite, mas 

raramente na esteatose. (J.K. & J.W. 2011) O escore de atividade baseado na 

diretriz NASH Clinical Research Network é bem estabelecido e foi o método 

utilizado neste estudo. Ele baseia-se no grau de esteatose (0 a 3), inflamação 

lobular (0 a 3), balonização (0 a 2), e fibrose (0 a 4). Uma soma ≥ 5 sugere ou 

define a presença de esteatohepatite, e <3 indica que esteatohepatite não está 

presente. (Nishida et al. 2012). Assim, uma soma entre 3 e 4 constitui uma 

zona cinza que necessita ser melhor definida usando outras ferramentas 

diagnósticas. Além disso, apesar da biópsia hepática ser o “padrão ouro” para 
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o diagnóstico de esteatohepatite, é um método invasivo, de alto custo, sujeito a 

erros de amostragem e de variação do observador (Alkhouri & McCullough 

2012). 

 Devido à alta incidência de DHGNA ao redor do mundo, muitos estudos 

vêm sendo realizados a fim de desenvolver métodos não invasivos (potenciais 

biomarcadores), confiáveis e que possam assegurar precisamente a presença 

de esteatohepatite sem a necessidade de biópsia hepática. (Alkhouri & 

McCullough 2012) Há diversas abordagens para a identificação de 

biomarcadores: (i) o uso de marcadores clínicos ou bioquímicos derivados de 

grandes estudos de associação, como índice de massa corpórea e resistência 

à insulina; (ii) o uso de algoritmos, incluindo marcadores de inflamação/morte 

celular gerados pelo conhecimento da fisiopatologia da doença; (iii) a terceira e 

última abordagem é baseada nas novas tecnologias “ômicas”, como genômica, 

proteômica e metabonômica, que são investigações imparciais das mudanças 

nas vias metabólicas em doenças complexas como DHGNA. (Fitzpatrick & 

Dhawan 2014; Alkhouri & McCullough 2012) 

 

3.4.5 Fibrose Hepática 

 

 A fibrose pode ser definida como o acúmulo excessivo ou anormal da 

matriz extracelular, particularmente de colágenos fibrilares, sendo um dos 

principais componentes de muitas doenças inflamatórias e metabólicas, 

incluindo doença hepática avançada. Após a lesão, os tecidos danificados 

induzem a produção excessiva da matriz extracelular ao invés dos processos 

reparadores homeostáticos que restauraram a integridade, a estrutura e a 

função do órgão lesionado. (Nanthakumar et al. 2015) 

 A fibrose é uma característica comum da maioria das doenças crônicas, 

sendo especialmente importante nas doenças do pulmão, fígado, coração, rins 

e pele (Nanthakumar et al. 2015). 

 No fígado, acredita-se que a fibrose é uma resposta à lesão hepática 

crônica (Figura 38). O fígado possui uma elevada capacidade de regeneração, 

porém, a fibrose hepática pode resultar em cirrose e consequente falha de 

regeneração do órgão, que pode requerer transplante. (Nanthakumar et al. 

2015) 
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Figura 38. Mudanças no fígado pela fibrose após doença hepática crônica. 

 

Fonte: (Bataller & Brenner 2005). 

 O conhecimento da presença e do estágio da fibrose hepática é de 

crucial importância para as decisões terapêuticas e para prever os resultados 

clínicos. Historicamente, a biópsia hepática é o exame de referência na 

avaliação do estágio de fibrose, sendo geralmente classificado pela escala 

METAVIR, que vai de F0 (sem fibrose) a F4 (cirrose). A histologia de um 

fragmento hepático permite obter informação diagnóstica não somente sobre 

fibrose, mas também sobre inflamação, necrose, esteatose, e depósitos de 

ferro ou cobre. Entretanto, a biópsia é um procedimento invasivo, podendo 

ocasionar dor e maiores complicações, como sangramento. Além disso, possui 

um pequeno, porém significante risco de mortalidade: 0,009-0,12%. Erros de 

amostragem podem ocorrer, principalmente quando são analisados pequenos 

fragmentos de tecido hepático. Portanto, há uma necessidade de métodos não 

invasivos confiáveis e simples para a avaliação do grau de fibrose. (Bataller & 

Brenner 2005; Papastergiou et al. 2012) 

 Os métodos não invasivos para detectar e quantificar fibrose hepática 

podem ser divididos em dois grupos: marcadores sorológicos e técnicas de 

imagem. Os marcadores sorológicos estão em constante evolução e são 

classificados como diretos, onde representam os componentes da matriz 

extracelular (refletindo a fisiopatologia da fibrogênese); e indiretos, onde 

utilizam dados laboratoriais de rotina (mostrando as consequências dos danos 

no fígado). (Papastergiou et al. 2012) 

 Devido à má precisão dos marcadores individuais para avaliar fibrose 

hepática, foram desenvolvidos e amplamente validados algoritmos ou índices 

que combinam marcadores. Entre eles estão os índices APRI (do inglês, ALT to 
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Platelet Ratio Index) e FIB-4 (do inglês, Fibrosis-4), que são calculados a partir 

das Equações 32 e 33, respectivamente. 

Equação 30   𝐴𝑃𝑅𝐼 =
𝐴𝑆𝑇

𝑃𝑙𝑎𝑞𝑢𝑒𝑡𝑎𝑠
𝑥100  

Equação 31   𝐹𝐼𝐵 − 4 =
𝑖𝑑𝑎𝑑𝑒 𝑥 𝐴𝑆𝑇

𝑃𝑙𝑎𝑞𝑢𝑒𝑡𝑎𝑠  𝑥 √𝐴𝐿𝑇
 

onde AST é o nível sérico de aspartato aminotransferase em unidades 

normalizadas por litro, dividido pela contagem de plaquetas em 109 unidades 

por litro, e ALT é o nível sérico de alanina aminotransferase em unidades 

normalizadas por litro. O APRI e o FIB-4 se relacionam com a escala METAVIR 

através dos seguintes pontos de corte: APRI acima de 1,25 indica fibrose 

significativa (F2-F4) e o FIB-4 acima de 3,25 indica fibrose avançada (F3-F4). 

(Papastergiou et al. 2012) 

 A fibrose hepática também pode ser determinada por técnicas de 

imagem, como ultrassonografia, tomografia computadorizada, e MRI (do inglês, 

Magnetic Resonance Imaging), que podem detectar mudanças no parênquima 

hepático causadas por fibrose moderada a avançada. Devido ao seu baixo 

custo, a ultrassonografia é uma técnica muito utilizada. Ela é capaz de detectar 

cirrose hepática com base nas mudanças na ecogenicidade e na nodularidade 

do fígado, bem como sinais de hipertensão portal. Entretanto, a 

ultrassonografia é totalmente dependente do operador, e a presença de um 

aumento na ecogenicidade hepática não diferencia de forma confiável a 

esteatose hepática da fibrose, por exemplo. (Bataller & Brenner 2005; 

Papastergiou et al. 2012) 
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4 DISCRIMINAÇÃO ENTRE ESTEATOSE E ESTEATOHEPATITE 

 

4.1 Objetivos Específicos 

 

 Construir modelos metabonômicos a partir da análise de RMN de 1H de 

amostras de soro sanguíneo com a finalidade de diferenciar entre pacientes 

portadores de esteatose e pacientes portadores de esteatohepatite; 

 

4.2 Metodologia 

 

4.2.1 Amostras 
 

 Foram estudados pacientes obesos com DHGNA submetidos à cirurgia 

bariátrica no Hospital das Clínicas da UFPE e em três hospitais particulares do 

Recife, no período de novembro de 2015 a maio de 2016. Todos os pacientes 

concordaram em participar e assinaram o termo de consentimento livre e 

esclarecido (TCLE). Este estudo foi aprovado pelo Comitê de Ética em 

Pesquisa Envolvendo Humanos do Centro de Ciências da Saúde da UFPE 

(número do parecer: 815.390). 

 Para participarem do estudo, os voluntários preencheram os seguintes 

critérios: 

1. Idade maior que 18 anos; 

2. Consumo de álcool ≤ 20 g/dia para mulheres e ≤ 30 g/dia para homens; 

3. Não possuir outras formas de doença hepática; 

4. Não usar qualquer medicação que cause esteatose. 

A amostra de sangue foi coletada em jejum, antes da indução 

anestésica, no dia em que o paciente se submeteu ao procedimento cirúrgico. 

O material coletado foi centrifugado e estocado a -20 oC no Hospital das 

Clínicas até a análise de RMN de 1H na Central Analítica do Departamento de 

Química Fundamental da UFPE. Dessa forma, evitou-se ciclos desnecessários 

de congelamento e descongelamento, reduzindo assim a possibilidade de 

degradação de metabólitos e a introdução de erros sistemáticos no perfil 

metabólico. Na biópsia, por sua vez, o material coletado foi fixado em formol e 

encaminhado para análise histopatológica para determinar a gravidade da 
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doença segundo Escore de Atividade da Doença Hepática Gordurosa Não 

Alcoólica. 

4.2.2 Aquisição dos espectros de RMN de 1H 
 

 Os espectros de RMN de 1H foram obtidos na Central Analítica do DQF-

UFPE, utilizando um espectrômetro Varian Unity Plus operando a 300 MHz e 

tubos com 5 mm de diâmetro. As amostras continham 400 l de soro e 200 l 

de clorofórmio deuterado (D2O). O sinal atribuído à metila do lactato ( 1,33 

ppm) foi utilizado como referência de deslocamento químico. 

 Após a homogeneização, foi utilizada a sequência de pulsos 

PRESAT/CPMG para a supressão do sinal da água e como filtro de relaxação 

transversal (T2) para eliminar os sinais de alta massa molar. Os seguintes 

parâmetros foram empregados: janela espectral de 4,8 kHz, tempo de espera 

(delay) de 2 segundos, tempo de aquisição de 1,704 s, pulso de RF de 90o, 

temperatura de 25oC, 88 ciclos, tau igual a 0,0004 s, bigtau igual a 0,07 s e 128 

repetições. Os espectros foram processados usando line broadening igual a 0,3 

Hz. A linha de base e a fase foram corrigidas manualmente. 

 Com o software MestreNova 9.0, foi realizada a divisão da região 

espectral entre  8,00 e 0,04 ppm em 185 bins com largura de 0,04 ppm (a 

região entre  5,20 e 4,56 ppm foi excluída). 

Foi construída uma matriz linha para cada amostra. As matrizes linhas 

das amostras foram todas agrupadas em uma única matriz com 39 linhas 

(casos) e 186 variáveis (185 bins mais a variável de classe), e esta matriz foi 

submetida à análise multivariada (Figura 39). 

Figura 39. Matriz de bins para construção dos modelos metabonômicos, onde E é esteatose e 

EH é esteatohepatite. 
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4.2.3 Análise estatística multivariada 

 

Na etapa de pré-processamento, foi utilizado SNV nas amostras e 

autoescalamento nas variáveis, ambos realizados pelo programa MATLAB 

R2015b através da PLS-Toolbox versão 8.2.1. Os formalismos PCA, PLS-DA e 

OPLS-DA foram realizados também através da PLS-Toolbox, sendo utilizada a 

validação cruzada LOOCV para validar os modelos. 

 

4.3 Resultados e Discussão 

 

 A Tabela 2 mostra as características clínicas e laboratoriais dos dois 

grupos (esteatose e esteatohepatite). Não foram observadas diferenças 

significativas (p < 0,05) entre os grupos. 

Tabela 2. Níveis séricos das enzimas hepáticas, ferritina, glicose e insulina dos pacientes com 
esteatose (n=31) e esteatohepatite (n=8). 

Características Esteatose  

(n = 31) 

Esteatohepatite  

(n = 8) 

Valor de p 

ALT (UI/L) 32,21  (23,00-41,42) 22,11 (1,51-42,71) 0,102 

AST (UI/L) 45,52 (27,41-63,62) 37,00 (15,29-58,71) 0,991 

Ferritina (ng/mL) 287,40 (167,66-497,14) 160,60 (62,62-258,58) 0,552 

Glicose (mg/dL) 113,39 (98,52-128,27) 108,67 (91,75-125,59) 0,827 

Insulina (UI/mL) 15,69 (11,31-20,27) 20,48 (5,99-34,97) 0,881 

Os dados foram apresentados como os valores medianos e os intervalos interquartílicos (entre 

parênteses). O valor de p foi obtido através do Teste de Mann-Whitney. 

 

Serão apresentados os modelos construídos com amostras de soro 

sanguíneo para a discriminação entre esteatose e esteatohepatite. O mérito 

desta abordagem é devido ao fato de que a partir de uma única amostra de 

sangue do paciente com DHGNA é possível diferenciar quem possui apenas 

esteatose de quem tem esteatohepatite. 

 Na Figura 40, pode-se ver um exemplo de espectro de RMN de 1H de 

soro sanguíneo de um paciente com esteatose. Visualmente, não é possível 

diferenciar entre as amostras de esteatose e de esteatohepatite, pois os 

espectros são bem similares.  
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Figura 40. Espectro de RMN (300 MHz) de 1H de soro sanguíneo após as sequências de 

pulsos PRESAT e CPMG. 

 

A partir da análise exploratória PCA, não foi possível identificar uma 

distinção entre as classes, porém, foram identificadas duas amostras anômalas 

(uma de cada grupo) e elas foram excluídas da análise. 

 Foram construídos modelos PLS-DA e OPLS-DA, porém, os resultados 

da OPLS-DA foram mais satisfatórios. 

A Tabela 3 apresenta a tabela de contingência fornecida pelo MATLAB 

após a validação cruzada. 

Tabela 3. Tabela de contingência para o modelo esteatose versus esteatohepatite. 

 

Apesar dos dois grupos serem constituídos de pacientes com DHGNA, 

neste estudo optou-se por calcular os valores de sensibilidade e especificidade 

considerando o estágio mais avançado, a esteatohepatite. Sendo assim, a 

partir dessa tabela foi possível obter valores de exatidão, sensibilidade e 

especificidade iguais a 81,1%, 71,4% e 83,3%, respectivamente. 
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Atualmente, o marcador citoqueratina-18 é considerado como uma das 

estratégias minimamente invasivas mais eficientes na discriminação entre 

esteatose e esteatohepatite (Shen et al. 2012). Em um estudo com 83 

pacientes, a primeira forma deste marcador (antígeno-M30) apresentou 

sensibilidade e especificidade iguais a 60,0% e 97,4%, respectivamente, 

enquanto os valores da segunda forma (antígeno-M65) foram 68,9% e 81,6%, 

respectivamente, para o diagnóstico de esteatohepatite (Yilmaz et al. 2007). 

Enquanto que os resultados obtidos pelo modelo metabonômico neste estudo 

foram: 71,4% de sensibilidade e 83,3% de especificidade para o diagnóstico de 

esteatohepatite. Na Figura 41, observa-se que, apesar de ser um estudo piloto, 

o modelo metabonômico aqui construído mostrou resultados próximos aos 

observados usando citoqueratina-18 (nos dois antígenos considerados pelos 

autores) e que possui, portanto, potencial para ser utilizado como ferramenta 

de diagnóstico diferencial para esteatohepatite. 

Figura 41. Comparação das figuras de mérito do modelo proposto por Shen et al (2012) com o 

estudo piloto que estamos propondo. 

 

 Há, na literatura, outros relatos de investigações para identificar 

biomarcadores para esteatohepatite. Li et al. realizaram um estudo a fim de 

descobrirem biomarcadores para um diagnóstico precoce não invasivo da 

DHGNA envolvendo pacientes saudáveis (controle), com esteatose e com 

esteatohepatite, e encontraram quatro potenciais biomarcadores: glicose, 

lactato, glutamato/glutamina e taurina. (H. Li et al. 2011) 
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 Klein et al., em um estudo utilizando camundongos como modelo animal 

para discriminar entre esteatose e esteatohepatite, relataram que a quantidade 

de lipídios encontrada estava elevada nos dois grupos, não sendo o fator 

responsável pela discriminação entre eles. Os metabólitos identificados como 

discriminantes foram: betaína, glicose, taurina, isoleucina, lactato, leucina e 

valina. Segundo este estudo, a taurina é um metabólito interessante uma vez 

que provou ser eficaz no tratamento para gordura no fígado de camundongos e 

crianças. Os seus níveis foram encontrados elevados no grupo de esteatose. 

Os autores também relataram que as concentrações de lactato foram 

significativamente menores no grupo de esteatohepatite quando comparadas 

às observadas em camundongos com esteatose, indicando que a quantidade 

de glicose nas células estava acima do normal no último grupo. (Klein et al. 

2011) 

 De acordo com a literatura, a regulação da glicose depende de uma 

variedade de fatores e pode ser modificada à medida que a doença progride. 

Há estudos indicando uma alta associação de DHGNA com resistência à 

insulina e, consequentemente, com um metabolismo anormal da glicose. 

(Gaggini et al. 2013) 

O glutamato, por exemplo, está associado com a obesidade, pois ele 

danifica a regulação hipotalâmica do apetite. (Hermanussen et al. 2006) Sabe-

se que a obesidade e o sobrepreso estão relacionados às doenças hepáticas 

gordurosas não alcoólicas. Como a esteatohepatite é a progressão da 

esteatose dentro da DHGNA, é esperado que os pacientes com esteatohepatite 

apresentem níveis mais elevados de glutamato que os com esteatose.  

Estudos relatam que a presença de níveis elevados de creatinina no 

sangue configura diminuição da função renal ou até mesmo insuficiência renal. 

Sabe-se que a doença renal crônica é uma condição que frequentemente está 

associada com a insuficiência renal. Em um estudo realizado por Musso et al., 

constatou-se que a presença de DHGNA está associada com um aumento do 

risco e da gravidade da doença renal crônica. (Musso et al. 2014) 

A partir desses relatos, temos potenciais biomarcadores para diferenciar 

esteatose de esteatohepatite. As estruturas, com o deslocamento químico, são 

apresentadas na Figura 42. Os sinais foram atribuídos de acordo com a base 

de dados do HMDB (Human Metabolome Database). (Wishart et al. 2009) 
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Figura 42. Estrutura química dos principais candidatos a biomarcadores para o diagnóstico 
diferencial de esteatose e esteatohepatite. Em destaque, o deslocamento químico. a) lactato; b) 
glutamato; c) creatinina; d) glicose e e) taurina. 

 

Autoria própria. 

 

 De acordo com os diferentes relatos apresentados, devem-se observar 

níveis mais elevados de glutamato e creatinina entre aqueles com quadro de 

esteatohepatite, enquanto os níveis séricos de lactato, glicose e taurina devem 

ser menores neste grupo. 

 A Figura 43 apresenta os escores e os pesos obtidos a partir do 

formalismo OPLS-DA. Esse modelo foi validado por LOOCV, sendo indicado 

que o número ideal de variáveis latentes a ser utilizado é igual a 3 (variância 

acumulada de 63,16%), e foi obtido um valor de R2 igual a 0,75. Observa-se, 

na Figura 43a, que a componente 1 é a responsável pela separação entre os 

grupos. 

Figura 43. Resultados da OPLS-DA. a) Escores discriminando entre os pacientes com 
esteatose e os com esteatohepatite; b) Gráfico de pesos (loadings) da primeira variável latente. 

a) b)  
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 No gráfico de escores (Figura 43a), observa-se uma dispersão maior 

entre os portadores de esteatohepatite, enquanto os portadores de esteatose 

estão mais próximos e, em sua maioria, com escores negativos. No gráfico de 

pesos (Figura 43b), a região espectral que contém os sinais atribuídos ao 

grupo metila da creatinina (δ 3,03 ppm), metilenos e metinos dos candidatos a 

biomarcadores tem pesos positivos. Por outro lado, a região que contém os 

sinais atribuídos ao lactato (metila δ 1,33 ppm e metino δ 4,10 ppm) e à taurina 

(δ 3,25 e 3,42 ppm) tem peso negativo. Os escores negativos observados para 

os portadores de esteatose são devidos aos níveis séricos mais intensos de 

lactato e taurina para este grupo. Além disso, o vetor de regressão da OPLS-

DA indica contribuição relevante para a discriminação vinda a partir dos bins 

centrados em δ 3,42; 3,03; 1,90; 1,25; e 0,70 ppm, de forma semelhante à 

descrita anteriormente. (Figura 44) Esses resultados são congruentes com os 

estudos relatados por Klein e colaboradores (2011) e Li e colaboradores 

(2011), e estão resumidos na Tabela 4. 

Figura 44. Gráfico obtido a partir do vetor de regressão do modelo OPLS-DA. 

 

 

Tabela 4. Possíveis metabólitos responsáveis pela discriminação entre os grupos. 

 Lactato Glutamato Creatinina Glicose Taurina 

Esteatose      
Esteatohepatite      
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4.4 Conclusão 

 

 O objetivo desta etapa do trabalho foi construir um modelo 

metabonômico capaz de diferenciar pacientes com esteatose de pacientes com 

esteatohepatite. 

Uma vez que o diagnóstico de esteatohepatite é feito a partir de biópsia 

hepática, uma estratégia invasiva, o modelo metabonômico construído nesse 

estudo se mostrou relevante, pois a partir de uma estratégia não invasiva 

obteve valores de sensibilidade e especificidade de 71,4% e 83,3%, 

respectivamente. Comparando com o marcador citoqueratina 18, que é 

considerado uma das estratégias não invasivas mais eficientes na 

discriminação entre esteatose e esteatohepatite, os resultados obtidos neste 

estudo são semelhantes. Isso mostra o potencial que a metabonômica possui 

de discriminar entre esteatose e esteatohepatite a partir de uma única amostra 

de sangue do paciente. 

É importante ressaltar que este modelo fez parte de um estudo piloto 

realizado para avaliar a possibilidade de utilizar a estratégia metabonômica na 

diferenciação entre esteatose e esteatohepatite, uma vez que o tradicional 

método utilizado (biópsia) é bastante invasivo e há um interesse crescente em 

substituí-lo. 

 

4.5 Perspectivas 

 

 Ampliar o número de amostras, visando ter um grupo de calibração e 

outro de teste, para consolidar os resultados obtidos no estudo 

preliminar; 

 Construir modelos metabonômicos capazes de diferenciar entre os 

diferentes graus de fibrose dos pacientes com DHGNA. 
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5 DIAGNÓSTICO DE ESQUISTOSSOMOSE MANSÔNICA 

 

5.1 Objetivos Específicos 

 

 Construir modelos metabonômicos a partir de dados espectrais de RMN 

de 1H de amostras de soro sanguíneo para discriminar pacientes com hepatite 

viral B ou C de pacientes coinfectados com esquistossomose. 

 

5.2 Metodologia 

 

5.2.1 Características dos Pacientes 
 

 Este estudo incluiu 40 pacientes na faixa etária entre 21 e 82 anos 

atendidos no ambulatório de Hepatologia do Hospital das Clínicas da UFPE de 

Outubro/2012 a Maio/2016. Eles foram divididos em dois grupos: 18 pacientes 

coinfectados com esquistossomose hepática e hepatite B ou C e 22 pacientes 

monoinfectados com HBV ou HCV.  

No grupo dos coinfectados, 7 pacientes apresentavam infecção crônica 

pelo HBV (38,9%) e 11 pelo HCV (61,1%); enquanto no grupo dos 

monoinfectados, 17 eram infectados crônicos pelo HBV (77,3%) e 5 pelo HCV 

(22,7%). Este estudo foi aprovado pelo Comitê de Ética em Pesquisa 

Envolvendo Humanos do Centro de Ciências da Saúde da UFPE (número do 

parecer: 1.782.771), e todos os pacientes concordaram em participar após 

leitura e assinatura do termo de consentimento livre e esclarecido (TCLE). 

 O diagnóstico da esquistossomose foi baseado na história clínica de 

contato com fonte de água doce de áreas endêmicas e/ou relatos de 

tratamento prévio da esquistossomose e fibrose periportal, que, por sua vez, foi 

confirmada através de ultrassonografia. Os exames de ultrassonografia foram 

realizados pelo mesmo operador experiente, utilizando um equipamento 

Siemens Acuson X150® com um transdutor convexo de 3,5 MHz.  

 A infecção crônica por hepatite foi diagnosticada pela positividade do 

antígeno de superfície da hepatite B (HBsAg), e anticorpo do core da hepatite B 

(anti-HBc), ou pela presença de anticorpos anti-HCV, por mais de 6 meses. A 

técnica de detecção utilizada foi quimioluminescência (CMIA – Architect/Abbott 
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Diagnostics, Wiesbaden, Alemanha), realizada no Laboratório Central do 

Hospital das Clínicas da UFPE. 

 Os pacientes com esteatose, esteatohepatite, síndrome de 

imunodeficiência adquirida, hepatite autoimune, hepatopatia metabólica, 

neoplasia, alcoolismo (consumo de etanol > 210 g/semana em homens e 140 

g/semana em mulheres) e recebendo qualquer tratamento antiviral foram 

excluídos deste estudo. 

 

5.2.2 Coleta das amostras e análise laboratorial 

 

 O soro do sangue de todos os pacientes foi coletado e foram 

determinados os níveis séricos de alanina e aspartato aminotransferase (ALT e 

AST), gama-glutamil transferase (GGT), fosfatase alcalina (ALP), e o perfil 

lipídico (colesterol total, colesterol HDL e LDL, e triglicerídeos). Uma alíquota 

do soro foi armazenada a –20oC até a análise de RMN ser realizada. 

 

5.2.3 Análise estatística univariada 

 

 A fim de investigar a distribuição de dados laboratoriais, demográficos e 

clínicos entre os grupos, foram realizados testes de estatística univariada 

utilizando o software GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, 

CA) como o teste t de Student não pareado, teste de Mann-Whitney e o teste 

exato de Fisher. Um valor de p < 0,05 foi definido como o nível de significância 

estatística. 

 

5.2.4 Aquisição dos espectros de RMN de 1H 

 

 As amostras de soro foram preparadas com 400 l de soro e 200 l de 

D2O, utilizando o sinal atribuído à metila do lactato ( 1,33 ppm) como sinal de 

referência. Todos os espectros de RMN de 1H foram obtidos em um 

espectrômetro Varian Unity Plus operando a 300 MHz, utilizando tubos de RMN 

com 5 mm. Após a homogeneização, o espectro de RMN de 1H foi obtido 

utilizando a sequência de pulsos PRESAT-CPMG, para a supressão do sinal 
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da água e uso de filtro de relaxação transversal (T2) para eliminar os sinais das 

espécies de alta massa molar.  

Os seguintes parâmetros foram empregados: janela espectral de 4,8 

kHz, tempo de espera (delay) de 2 segundos, tempo de aquisição de 1,704 s, 

pulso de RF de 90o, temperatura de 25oC, 88 ciclos, tau igual a 0,0004 s, bigtau 

igual a 0,07 s e 128 repetições. Os espectros foram processados usando line 

broadening (lb) igual a 0,3 Hz. A linha de base e a fase foram corrigidas 

manualmente. 

 Com o software MestreNova 9.0, foi realizada a divisão da região 

espectral entre  4,20 e 0,04 ppm em 104 bins com largura de 0,04 ppm. Desta 

forma, foi construída uma matriz linha para cada amostra. As matrizes linhas 

das amostras foram todas agrupadas em uma única matriz com 40 linhas 

(casos) e 105 variáveis (104 bins mais a variável de classe), e esta matriz foi 

submetida à análise multivariada. A Figura 45 ilustra uma parte dessa matriz. 

Figura 45. Matriz de bins para construção dos modelos metabonômicos, onde V é o grupo 

mono-infectado e VE é o grupo coinfectado. 

 

 

5.2.5 Análise estatística multivariada 
 

 O pré-processamento utilizado antes de submeter os dados à análise 

estatística foi a normalização pela soma e a centragem dos dados na média, 

ambos realizados pela plataforma para estudos metabonômicos MetaboAnalyst 

3.0. (Xia et al. 2015) Os modelos PCA e PLS-DA também foram construídos 

através dessa plataforma. 

 A validação do modelo PLS-DA foi realizada por dois métodos: (i) 

LOOCV, onde foi determinado o número ideal de variáveis latentes, e os 
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valores de Q2 (capacidade preditiva), R2 (coeficiente de determinação) e 

acurácia do modelo foram calculados; (ii) teste de permutação, com 2000 

permutações da variável de classe para verificar a acurácia do modelo PLS-

DA. 

 O modelo PLS-DA forneceu uma medida quantitativa do poder de 

discriminação de cada bin. Foi utilizado o escore VIP para identificar as 

variáveis mais importantes na discriminação entre os grupos. 

 

5.3 Resultados e Discussão 

 

 A Tabela 4 mostra as características clínicas e laboratoriais dos dois 

grupos (pacientes coinfectados e mono-infectados). Não houve diferenças 

significativas (p < 0,05) entre os grupos, exceto pelos níveis de colesterol, que 

foram um pouco mais altos no grupo de monoinfectados (p = 0,0421), e de 

fosfatase alcalina, que foram um pouco mais altos no grupo dos coinfectados. 

Tabela 5. Características clínicas e laboratoriais dos grupos de coinfectados (n=18) e 

moninfectados (n=22). 

Características 

Pacientes  
Coinfectados 

Pacientes  
Monoinfectados Valor de p 

(n=18) (n=22) 

Idade (anos) 53,7 ± 13,7 45,6 ± 15,2 0,0856a 

Sexo (n, %)      

Masculino 13 (72,2%) 10 (45,5%) 0,1159b 

Feminino 5 (27,8%) 12 (54,5%)  

ALT (/ULN)* 1,13 (0,70-1,70) 0,82 (0,61-0,82) 0,2595c 

AST (/ULN)* 0,96 (0,63-1,60) 0,72 (0,52-1,39) 0,3348c 

GGT(/ULN)* 1,87 (0,61-4,23) 1,01 (0,66-1,41) 0,2162c 

ALP (/ULN)* 1,57 (1,09-2,20) 1,22 (0,95-1,35) 0,0464c 

Colesterol total (mg/dL) 155 ± 30,29 179,2 ± 35,66 0,0421a 

HDL (mg/dL) 47,67 ± 9,67 55,79 ± 14,85 0,0718a 

LDL (mg/dL) 86,44 ± 33,17 100,7 ± 31,74 0,2094a 

Triglicerídeos (mg/dL)* 93,35 (71,9-134,9) 84,45 
(62,1-
152,1) 0,7655c 

APRI* 0,68 (0,63-2,59) 0,42 (0,27-0,56) 0,0536c 
aTeste t de Student não pareado; bTeste exato de Fisher; cTeste de Mann-Whitney. ULN: do inglês, upper 
limits of normal. Os dados foram apresentados como a média ± desvio padrão, exceto aqueles marcados 
com um asterisco (*), que são apresentados como os valores medianos (intervalo interquartílico entre 
parênteses).  
 O processo inflamatório da esquistossomose não invade o lóbulo 

hepático e, portanto, preserva funcionalmente os hepatócitos; porém, a 

inflamação envolve os espaços portais, dando origem ao espessamento fibroso 
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periportal. (Machado et al. 2002) A esquistossomose é a principal causa de 

fibrose periportal em todo o mundo. (Raiza et al. 2007)  

A respeito dos padrões de ultrassonografia da fibrose periportal no 

parênquima hepático devido à esquistossomose, 9 pacientes apresentaram 

padrões leves (50%) e 4 moderados (22,2%), enquanto 5 apresentaram fibrose 

avançada (27,8%). 

Após uma lesão hepática como a hepatite viral, as células 

parenquimatosas se regeneram e substituem as células necróticas. Porém, se 

a lesão persiste e esse processo falha, os hepatócitos são substituídos por um 

excesso de matriz extracelular, caracterizando a fibrose parenquimatosa. 

(Bataller & Brenner 2005). Nos dois grupos houve uma predominância de 

fibrose parenquimatosa não significativa causada por hepatite viral crônica 

(METAVIR < F2). 

 Nos pacientes coinfectados e que possuem fibrose periportal leve ou 

moderada, o diagnóstico do dano no fígado devido à esquistossomose 

apresenta mais desafios. Isto acontece porque, comparando com os pacientes 

coinfectados cujo estágio da fibrose periportal é avançado, a avaliação pelos 

exames de US é mais difícil devido à presença de fibrose parenquimatosa 

induzida pelos vírus das hepatites. No presente estudo, apenas um terço dos 

pacientes coinfectados apresentaram fibrose periportal avançada, tornando 

esse diagnóstico muito necessário. Na prática clínica, estes dados mostram a 

importância dos modelos metabonômicos desenvolvidos neste estudo. 

A Figura 46 ilustra um espectro de RMN de 1H de soro de uma das 

amostras com a atribuição de alguns sinais. As amostras dos dois grupos 

apresentam o mesmo padrão nos espectros, sendo assim, com apenas a 

inspeção visual não é possível diferenciar entre elas. 
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Figura 46. Espectro de RMN de 1H (300 MHz) de uma amostra de soro sanguíneo após 

aplicação das sequências de pulsos PRESAT e CPMG. 

 

 Os resultados obtidos pela PCA estão apresentados na Figura 47. As 

duas primeiras componentes principais (PC1 e PC2) explicam 80,7% da 

variância dos dados, e com elas foi possível obter claramente um agrupamento 

das amostras nas classes de interesse. Na Figura 47a, observa-se que a 

componente responsável pela separação entre os grupos é a PC1, que 

inclusive é a que explica a maior parte da variância dos dados. Através da 

análise do gráfico dos pesos (Figura 47b), constata-se que provavelmente os 

bins mais importantes na discriminação entre os grupos são 1,20 e 1,32 ppm. 

O primeiro está relacionado ao grupo dos monoinfectados e o segundo ao 

grupo dos coinfectados. 

Figura 47. Resultados da PCA. a) Escores das 2 primeiras componentes (PC1 e PC2) da PCA 
dos pacientes coinfectados e dos pacientes monoinfectados; (b) Gráfico dos pesos (loadings) 
das 2 primeiras componentes da PCA. 

  

(a) (b) 



87 
 

 

 

A fase de modelagem para os dois grupos foi baseada no formalismo 

PLS-DA (Figura 48). A Figura 48a mostra uma clara separação entre os 

grupos, um resultado já esperado após a discriminação obtida na análise 

exploratória. Esse modelo foi validado por LOOCV, resultando em valores de 

exatidão, R2 e Q2 iguais a 100%, 98,1% e 97,5%, respectivamente (Figura 

48b). O asterisco vermelho na Figura 48b indica o melhor número de 

componentes com base na acurácia, que neste caso foi igual a dois. Além da 

LOOCV, outro método de validação também foi realizado: teste de permutação. 

Este teste envolveu 2000 permutações da variável de classe a fim de verificar 

se o modelo seria preciso, e o resultado foi satisfatório, com p < 0,0005 (Figura 

49b). 

Figura 48. Resultados da PLS-DA. a) Escores discriminando entre os pacientes 
monoinfectados e os coinfectados; b) O número ideal de componentes da PLS-DA de acordo 
com o R2, o Q2 e a acurácia do modelo. 

(a) (b)  

 No gráfico VIP (Figura 49a), os dois bins que melhor discriminaram as 

amostras foram  1,20 e 1,32 ppm. Estes deslocamentos químicos foram 

previamente identificados pela inspeção visual dos pesos da PCA (Figura 47b). 

Considerando apenas os valores do escore VIP maiores que 2,5, identificam-se 

três regiões espectrais responsáveis pela discriminação: (1)  1,28 – 1,36 ppm; 

(2)  1,16 – 1,24 ppm, atribuído aos grupos metileno do colesterol HDL; (3)  

0,76 – 0,80 ppm, atribuído aos grupos metil do colesterol HDL (Pinto et al. 

2015). De acordo com o gráfico VIP, os níveis de lactato no soro foram maiores 

no grupo coinfectado, enquanto os sinais atribuídos ao colesterol HDL foram 

mais intensos no grupo monoinfectado. Além disto, o gráfico obtido a partir do 
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vetor de regressão (Figura 50) também apresentou os sinais relacionados com 

o lactato e o colesterol, além de apresentar sinais nas regiões  2,5 – 2,0 ppm 

e  4,0 – 3,0 ppm. Provavelmente, estes sinais estão relacionados a 

aminoácidos e carboidratos. 

Figura 49. Resultados da PLS-DA. a) Escores VIP utilizando duas componentes. Os 
quadrados posicionados à direita representam a importância dos bins em cada grupo 
(monoinfectados e coinfectados); b) Teste de permutação envolvendo 2000 permutações com 
p < 0,0005. 

(a) (b)  

Figura 50. Gráfico obtido a partir do vetor de regressão do modelo PLS-DA. 

 

A Figura 51 apresenta o espectro de RMN de 1H das amostras de soro 

dos dois grupos após os pulsos PRESAT-CPMG, indicando as regiões 
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espectrais correspondentes ao lactato e aos grupos metileno e metil do 

colesterol HDL, os sinais responsáveis pela separação entre os grupos. 

Figura 51. Espectro de RMN de 1H (PRESAT-CPMG, 300 MHz) do soro, com atribuição dos 

sinais responsáveis pela separação entre os grupos. 

 

 As alterações observadas nas concentrações relativas dos metabólitos 

identificados podem ser consideradas assinaturas metabólicas da infecção por 

S. mansoni, a qual é caracterizada por níveis reduzidos dos intermediários do 

ciclo do ácido tricarboxílico, incluindo citrato, succinato e 2-oxoglutarato, e 

níveis elevados de piruvato, sugerindo estímulo da glicólise (Githui et al., 2006), 

ainda que as consequências da redução de glicose e a elevação dos níveis de 

lactato na corrente sanguínea dependem da gravidade da infecção e do estado 

nutricional do hospedeiro. (Balog et al. 2011) Estudos indicam que o acúmulo 

de lactato na corrente sanguínea eventualmente reduz o pH intracelular. (Githui 

et al. 2006) Sendo assim, apesar do parasita não estar mais presente, esses 

pacientes possuem uma marca da infecção que um dia sofreram. Isso alterou o 

funcionamento normal do fígado, apresentando uma elevada importância no 

quadro clínico atual. 

 Neste estudo, por exemplo, os níveis de lactato no sangue foram 

significantes o suficiente para discriminar entre os pacientes coinfectados e os 

monoinfectados. Em um estudo realizado por Wang et al., onde utilizaram 
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camundongos infectados pelo Schistosoma mansoni para construir um modelo 

baseado em espectroscopia de RMN de 1H, a concentração de lactato variou 

entre os animais mas não foi significante na discriminação entre os dois grupos 

(controle e infectados). De acordo com Wang et al., o Schistosoma mansoni 

também é responsável por uma perturbação no metabolismo dos aminoácidos 

e por distúrbios na microbiota intestinal. (Wang et al. 2004; Githui et al. 2006).  

Li et al. realizaram um estudo quimiométrico para diferenciar entre 

camundongos infectados pelo Schistosoma mansoni e não infectados, e 

identificaram o lactato como um dos principais metabólitos responsáveis pela 

separação entre os dois grupos. Além disso, relataram mudanças na energia 

da homeostase metabólica, como os níveis relativamente mais elevados de 

lipídeos e uma diminuição dos níveis de glicose. (J. V Li et al. 2011) 

 Há relatos na literatura que associam fibrose avançada (Sands et al. 

2015) e cirrose (Embade et al. 2016) com os níveis baixos de LDL e HDL. Da 

Fonseca et al. relataram que os pacientes com esquistossomose apresentam 

redução do colesterol total, LDL e triglicerídeos quando comparados com os 

indivíduos saudáveis. Eles indicaram que isto acontece porque a infecção pelo 

Schistosoma mansoni causa mudanças nos níveis plasmáticos de lipídeos e 

lipoproteínas devido às diferentes formas do gene APOE. (Da Fonseca et al. 

2014).  

Por outro lado, há estudos relatando que as infecções crônicas pelas 

hepatites B e C causam uma redução significativa nos níveis de HDL, LDL e de 

colesterol total nos pacientes, e que isto indica a gravidade da lesão hepática. 

Os autores sugerem que a enzima envolvida na biotransformação dessas 

moléculas se encontra em menores quantidades nos pacientes com doença 

hepática crônica avançada ou cirrose, provavelmente devido ao 

enfraquecimento da síntese hepática. (Su et al. 2004; Nashaat 2010) 

Como discutido acima, encontra-se na literatura que a dislipidemia é 

uma característica presente na esquistossomose e na hepatite, porém, neste 

estudo foi observado que os níveis do colesterol total no soro foram menores 

nos pacientes coinfectados (esquistossomose e hepatite B ou C) quando 

comparados com o grupo monoinfectado (hepatite B ou C). Apesar de não ser 

estatisticamente significante, houve uma tendência para menores valores de 

HDL e LDL e maiores valores de triglicerídeos no grupo coinfectado, o que 
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pode explicar a importância dos sinais atribuídos a HDL na discriminação entre 

as amostras.  

 É interessante notar que os modelos metabonômicos indicaram 

diferenças entre os grupos a respeito dos níveis de triglicerídeos e HDL apesar 

dessas diferenças serem mínimas e não ser possível observá-las nos níveis 

séricos medidos por ensaios convencionais. 

  

5.4 Conclusão 

 

 O objetivo desta etapa do trabalho foi construir modelos metabonômicos 

capazes de discriminar as amostras dos pacientes portadores de HBV/HCV 

das amostras dos pacientes portadores de coinfecção de esquistossomose 

mansônica com HBV/HCV. Analisando os resultados obtidos, pode-se 

considerar que o objetivo foi alcançado com sucesso. Pois, a partir de 40 

amostras de soro sanguíneo (18 pacientes coinfectados com esquistossomose 

e hepatite B ou C e 22 pacientes monoinfectados com HBV ou HCV), obteve-se 

na análise exploratória PCA uma clara separação entre os grupos (Figura 45) e 

na análise supervisionada PLS-DA obteve-se uma exatidão de 100% na 

validação cruzada (Figura 46). Além disso, através do gráfico VIP (Figura 47a) 

foi possível observar as variáveis responsáveis pela discriminação entre os 

grupos, sugerindo que os níveis de lactato foram maiores no grupo coinfectado, 

enquanto que os sinais atribuídos ao colesterol HDL foram mais intensos no 

grupo de monoinfectados. 

 

5.5 Perspectivas 

 

 Obter um número maior de amostras a fim de ser possível dividi-las 

em dois grupos: calibração e validação; 

 Construir um modelo metabonômico com três grupos: pacientes 

apenas com esquistossomose mansônica, pacientes com coinfecção 

de esquistossomose mansônica e hepatite viral, e pacientes apenas 

com hepatite viral; 
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 Construir um modelo metabonômico que diferencie entre pacientes 

coinfectados e pacientes com esquistossomose mansônica ativa. 
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6 CONCLUSÕES GERAIS 

 

 Neste estudo, a estratégia metabonômica se apresentou como uma 

ferramenta com potencial para discriminar algumas doenças hepáticas: 

esteatose de esteatohepatite e monoinfecção por HBV/HCV de coinfecção por 

HBV/HCV e esquistossomose mansônica. Ambos os modelos metabonômicos 

foram desenvolvidos a partir de amostras de sangue dos pacientes, uma 

estratégia minimamente invasiva. 

No caso da esteatohepatite, a biópsia é bastante invasiva, enquanto o 

estudo piloto, aqui apresentado, demonstrou o potencial que a estratégia 

metabonômica possui como método alternativo. Além disso, o modelo 

metabonômico construído para diferenciar entre pacientes coinfectados com 

esquistossomose mansônica e HBV/HCV e pacientes monoinfectados com 

HBV/HCV apresentou 100% de exatidão na validação cruzada.  

 

7 PERSPECTIVAS GERAIS 

 

 Ampliar o número de amostras a fim de ser possível dividi-las em dois 

grupos: conjunto de treinamento e de teste, com amostras 

representativas em cada classe; 

 Identificar, através de RMN bidimensional, os metabólitos responsáveis 

pelas discriminações entre os grupos e associar às respectivas rotas 

metabólicas; e 

 Avaliar o potencial da estratégia metabonômica para o diagnóstico e 

estadiamento de diferentes agressões hepáticas, usando amostra única 

e diferentes modelos metabonômicos. 
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