
INÁCIO DE LOIOLA SOUZA SILVA

Um Modelo Conceitual de Dados e uma Ferramenta CASE para
Aplicações de Persistência Poliglota

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife
2017

INÁCIO DE LOIOLA SOUZA SILVA

Um Modelo Conceitual de Dados e uma Ferramenta CASE para
Aplicações de Persistência Poliglota

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Ciência
da Computação do Centro de Informática
da Universidade Federal de Pernambuco,
como parte dos requisitos necessários à
obtenção do título de Mestre em Ciência da
Computação.

Orientadora: Valéria Cesário Times

Recife
2017

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S586m Silva, Inácio de Loiola Souza

Um modelo conceitual de dados e uma ferramenta CASE para aplicações
de persistência poliglota / Inácio de Loiola Souza Silva. – 2017.

 93 f.: il., fig., tab.

 Orientadora: Valéria Cesário Times.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2017.
 Inclui referências e apêndices.

 1. Banco de dados. 2. Modelagem conceitual. I. Times, Valéria Cesário
(orientadora). II. Título.

 025.04 CDD (23. ed.) UFPE- MEI 2017-240

Inácio de Loiola Souza Silva

Um Modelo Conceitual de Dados e uma Ferramenta CASE para

Aplicações de Persistência Poliglota

Dissertação apresentada ao Programa de Pós-

Graduação em Ciência da Computação da

Universidade Federal de Pernambuco, como

requisito parcial para a obtenção do título de

Mestre Profissional em 28 de agosto de 2017.

Aprovado em: ___/___/_____.

BANCA EXAMINADORA

__

Profº. Fernando da Fonseca de Souza

Centro de Informática / UFPE

__

Profª. Marizete Silva Santos

Universidade Federal Rural de Pernambuco

__

Profª. Valeria Cesário Times

Centro de Informática / UFPE

(Orientadora)

 28/08/2017.

Dedico este trabalho primeiramente a Jesus Cristo, nosso salvador, que nos
mantém livres de todos os males. Em seguida, dedico aos meus pais, Maúricio e Guia,
por serem meus maiores incentivadores e por nunca terem medido esforços para me
oferecer o melhor, sempre me ensinando a tratar todas as pessoas com educação e a
nunca desistir dos meus sonhos.

AGRADECIMENTOS

A Deus, por me manter saudável e em paz espiritual para conseguir concluir
esta dissertação.

À minha esposa, Tatiane, pelo companheirismo, pelo amor e por sempre estar
ao meu lado, apoiando-me em meus projetos de vida.

À minha família — meus pais, minha irmã Verônica — por todo apoio e toda
força que me dão.

Ao apoio do Instituto Federal de Ciência e Tecnologia do Rio Grande do Norte,
especificamente ao Campus Apodi, no qual trabalhei por 6 anos e ao qual pretendo
retornar, um dia, se Deus assim permitir.

À professora Valéria Times, pela compreensão, paciência, orientação e pelo
apoio emocional, que Deus a proteja e zele por todos os seus familiares.

Ao amigo Edson Alves, doutorando no Centro de Informática, pelas dicas e
orientação na implementação da ferramenta CASE.

Por fim, a todos os amigos que me incentivaram e que me ajudaram de alguma
forma ao longo dessa jornada.

“Um dia aprendi que sonhos existem para
tornar-se realidade. E, desde aquele dia, já
não durmo para descansar. Simplesmente

durmo para sonhar.”

(Walt Disney)

RESUMO

A persistência poliglota refere-se ao uso de diversos SGBD com modelos de
dados diferentes em uma mesma aplicação. Uma das motivações para a utilização da
persistência poliglota vem da crescente quantidade de dados de variados tipos (estrutu-
rados, semiestruturados e não estruturados) que são manipulados em aplicações como:
redes sociais, comércio eletrônico, aplicativos móveis. Os SGBD NoSQL (Not Only
SQL) representam um conjunto de sistemas de bancos de dados não relacionais e de
alto desempenho, projetados para manipular vastos volumes de dados, além de possi-
bilitarem o armazenamento de dados semiestruturados e não estruturados. Diversas
pesquisas propõem modelos conceituais para auxiliar o projeto de bancos de dados
NoSQL, entretanto, não foi encontrada qualquer proposta na literatura que aborde o
projeto conceitual de dados de aplicações de persistência poliglota. Portanto, este traba-
lho especifica um modelo conceitual de dados, chamado de ERNoSQL, o qual estende
o modelo Entidade-Relacionamento (ER) adicionando construtores específicos para
possibilitar a modelagem de aplicações de BD com persistência poliglota. Para fornecer
uma visão geral do modelo conceitual proposto, apresenta-se um metamodelo especifi-
cado em UML que fornece um entendimento sobre como os construtores do ERNoSQL
se relacionam. O trabalho também especifica um conjunto de regras de mapeamento
do modelo ERNoSQL para as estruturas lógicas dos modelos NoSQL (documentos,
grafos, chave-valor e família de colunas). Para auxiliar as atividades de modelagem
de esquemas poliglotas, este trabalho propõe, ainda, uma ferramenta CASE para a
construção de esquemas conceituais de dados a partir dos construtores de modela-
gem de ERNoSQL. A ferramenta, intitulada NoSQLCASE, possui um ambiente gráfico
para a construção do esquema conceitual e provê funcionalidades de exportação
para scripts expressos em linguagens de SGBD NoSQL. Finalmente, um estudo de
caso foi realizado para comparação entre esquemas conceituais de dados construídos
por duas ferramentas CASE existentes e baseadas no modelo ER, e esquemas con-
ceituais de dados projetados pela ferramenta NoSQLCASE proposta. Além disso, as
funcionalidades de exportação de NoSQLCASE foram ilustradas pela implementação
de scripts gerados pela ferramenta proposta no SGBD MongoDB.

Palavras-chave: NoSQL. Projeto de banco de dados. Modelagem conceitual.

ABSTRACT

The polyglot persistence refers to the use of several DBMS with different
data models in the same application. One of the motivations for the use of polyglot
persistence comes from the growing amount of data of any types (structured, semi-
structured and unstructured) that are handled in applications such as: social networking,
e-commerce, mobile applications. NoSQL DBMS represent a set of non-relational
database systems of high performance designed to handle vast volumes of data, besides
allowing the storage of semi-structured and unstructured data. Several researches
propose conceptual models to support the design of NoSQL databases. However, no
proposal that addresses the conceptual data design of polyglot persistence applications
was found in the literature. Therefore, this work specifies a conceptual data model, called
ERNoSQL, that extends the Entity-Relationship model by adding specific constructors to
enable the modeling of DB applications with polyglot persistence. To provide an overview
of the proposed conceptual model, a meta-model that provides an understanding of
how ERNoSQL constructors are related was specified in UML. The work also specifies
a set of mapping rules of the ERNoSQL model for the logical structures of the NoSQL
models (documents, graphs, key-value and family of columns). To support the activities
of modeling polyglot schemes, this paper also proposes a CASE tool for the construction
of conceptual data schemas from the ERNoSQL modeling constructors. The tool, called
NoSQLCASE, has a graphical environment for constructing the conceptual schema that
provides export functionality for scripts expressed in NoSQL DBMS languages. Finally,
a case study was conducted to compare conceptual data schemas constructed by two
existing CASE tools that are based on the ER model and conceptual schemas of data
designed by the proposed NoSQLCASE tool. In addition, the export functionality of
NoSQLCASE was illustrated by the implementation of scripts generated by the proposed
tool in the MongoDB DBMS.

Keywords: NoSQL. Database design. Conceptual modeling.

LISTA DE FIGURAS

Figura 1 – Framework proposto . 31
Figura 2 – Exemplo resumido de banco de dados NOAM 33
Figura 3 – Construtores do Modelo ERNoSQL 42
Figura 4 – Exemplo de uso do construtor Entidade Semiestruturada 45
Figura 5 – Exemplo de uso do construtor Relacionamento de Entidades Agregadas 46
Figura 6 – Exemplo de uso do construtor NoSQL Esquema 46
Figura 7 – Exemplo de uso do construtor NoSQL Esquema referenciado para o

modelo de Grafos . 47
Figura 8 – Exemplo de uso do construtor Relacionamento entre esquemas NoSQL 48
Figura 9 – Fragmento do Metamodelo ERNoSQL - Esquema Poliglota 49
Figura 10 – Fragmento do Metamodelo ERNoSQL - Entidades e Relacionamentos 50
Figura 11 – Componentes da Arquitetura de NoSQLCASE 56
Figura 12 – Ambiente Gráfico de Modelagem em NoSQLCASE 58
Figura 13 – Cenário de Casos de Uso em NoSQLCASE 59
Figura 14 – Processo de criação de esquemas em NoSQLCASE 60
Figura 15 – Esquema conceitual modelado em EerCASE 68
Figura 16 – Esquema conceitual modelado em ERDPlus 69
Figura 17 – Código DDL/SQL gerado pela ferramenta a partir do esquema relacional 70
Figura 18 – Esquema Conceitual Poliglota criado em NoSQLCASE 71
Figura 19 – Esquema Conceitual Poliglota com uso de Entidades Agregadas . . 72
Figura 20 – Ilustração da funcionalidade de exportação em NoSQLCASE 73
Figura 21 – Código gerado por NoSQLCASE para o SGBD MongoDB 73
Figura 22 – Código gerado por NoSQLCASE no formato JSON 74
Figura 23 – Demonstração da validade do documento JSON gerado em NoSQL-

CASE . 74
Figura 24 – Execução do script gerado por NoSQLCASE no SGBD MongoDB . 75
Figura 25 –

Metamodelo ERNoSQL . 85
Figura 26 – Resultado da consulta ao banco de dados MongoDB implementado

no estudo de caso . 86

LISTA DE QUADROS

Quadro 1 – Quadro com exemplos para armazenar documentos JSON nos
SGBDs NoSQL Cassandra e Redis 22

Quadro 2 – Análise comparativa entre trabalhos relacionados e ERNoSQL . . 53
Quadro 3 – Quadro demonstrativo da análise das questões do estudo para cada

caso aplicado . 76

LISTA DE ABREVIATURAS E SIGLAS

BD Banco de Dados

EGL Epsilon Generation Language

E-R Entidade e Relacionamento

GUI Graphical User Interface

JSON JavaScript Object Notation

MER Modelo Entidade-Relacionamento

NoSQL Not only SQL

OMG Object Management Group (do português, Grupo de Gerenciamento de
Objetos)

SGBD Sistema de Gerenciamento de Banco de Dados

SQL Structured Query Language

UML Unified Modeling Language

XMI XML Metadata Interchange

SUMÁRIO

1 INTRODUÇÃO . 15
1.1 Contextualização . 15
1.2 Motivação . 16
1.3 Objetivos . 17
1.3.1 Objetivos Gerais . 17
1.3.2 Objetivos Específicos . 17
1.4 Estrutura da Dissertação . 18

2 FUNDAMENTAÇÃO TEÓRICA . 20
2.1 Conceitos Básicos . 20
2.1.1 Sistemas de BD NoSQL . 20
2.1.1.1 SGBD NoSQL Baseado em Documento 22
2.1.1.2 SGBD NoSQL Baseado em Grafos 23
2.1.1.3 SGBD NoSQL Chave-Valor . 24
2.1.1.4 SGBD NoSQL Basedo em Famílias de Colunas 25
2.1.1.5 SGBD NoSQL Multimodelo . 26
2.1.2 Modelagem Conceitual . 27
2.1.3 Persistência Poliglota . 27
2.1.4 Framework de Modelagem Eclipse 28
2.1.4.1 Eclipse Modeling Framework (EMF) 28
2.1.4.2 Epsilon Generation Language (EGL) 29
2.1.4.3 Graphical Modeling Framework (GMF) 30
2.2 Trabalhos Correlatos . 30
2.2.1 Modelos de Dados Conceituais para Aplicações de BD NoSQL . . . 30
2.2.1.1 Um framework para BD NoSQL . 31
2.2.1.2 Projeto de BD para Sistemas NoSQL 32
2.2.1.3 Modelo E-R Estendido para Big Data 35
2.2.2 Projetos de BD NoSQL . 36
2.2.2.1 Modelagem e consulta de dados em bancos NoSQL 36
2.2.2.2 Modelagem de BD NoSQL para monitoramento de veículos 38
2.3 Considerações Finais do Capítulo 39

3 O MODELO DE DADOS CONCEITUAL ERNOSQL 40
3.1 Introdução . 40
3.2 Modelo ERNoSQL . 41
3.3 Construtores de Modelagem do ERNoSQL 41

3.4 Cenário de Exemplo de uso de ERNoSQL 42
3.5 Construindo um Esquema Conceitual com ERNoSQL 44
3.6 O Metamodelo ERNoSQL . 48
3.7 Regras de Mapeamentos para os Modelos NoSQL 50
3.8 Comparação entre Modelos de Dados para BD NoSQL 52
3.9 Considerações Finais do Capítulo 53

4 A FERRAMENTA NOSQLCASE . 55
4.1 Introdução . 55
4.2 Arquitetura de Software . 56
4.3 Ambiente Gráfico . 57
4.4 Cenário de Casos de Uso . 58
4.5 Construção de Esquemas com NoSQLCASE 59
4.6 Considerações Finais do Capítulo 60

5 UM ESTUDO DE CASO COM NOSQLCASE 62
5.1 Introdução . 62
5.2 Planejamento do Estudo de Caso 63
5.2.1 Objetivos . 63
5.2.2 Questões do Estudo . 63
5.2.3 Descrição do Domínio da Aplicação - Contexto de Estudo 64
5.2.4 Protocolo e Instrumentos . 65
5.3 Desenvolvimento do Estudo de Caso 66
5.3.1 Execução na Ferramenta EerCASE 67
5.3.2 Execução na Ferramenta ERDPlus 68
5.3.3 Execução na Ferramenta NoSQLCASE 70
5.3.3.1 Exportando Esquemas Conceituais com NoSQLCASE 72
5.3.3.2 Implementação do Esquema Lógico gerado por NoSQLCASE 75
5.4 Análise e Resultados . 76
5.5 Considerações Finais do Capítulo 77

6 CONCLUSÃO . 78
6.1 Considerações Finais . 78
6.2 Principais Contribuições . 79
6.3 Trabalhos Futuros . 80
6.4 Limitações do Trabalho . 81

REFERÊNCIAS . 82

APÊNDICES 84

Apêndice A - Metamodelo ERNoSQL 85

Apêndice B - Demonstração da execução de consultas realiza-
das no SGBD MongoDB para o banco de dados criado no
estudo de caso a partir do script gerado pela ferramenta
NoSQLCASE. 86

Apêndice C - Algoritmos de conversão implementados em NoSQL-
CASE expressos na linguagem EGL. 87

15

1 INTRODUÇÃO

Este capítulo evidencia os principais conceitos que envolvem a utilização de
persistência poliglota e sua aplicação no projeto de bancos de dados. Ele também dis-
cute a motivação para o desenvolvimento da pesquisa e relata os objetivos gerais e
específicos do trabalho, além de descrever a organização desta dissertação.

1.1 Contextualização

A modelagem conceitual é a primeira fase de um projeto de banco de dados,
na qual se abstrai de qualquer tecnologia e que se interessa pelo levantamento de
informações sobre o domínio da aplicação projetada. Nesta fase, consolidou-se o uso
do Modelo E-R, por sua simplicidade e capacidade de representar conceitos de alto
nível (ELMASRI; NAVATHE, 2010).

As aplicações de software estão aumentando a cada dia, tanto no nível de
complexidade dos algoritmos, quanto na quantidade de dados a serem manipulados.
Além disso, é exigido um nível de escalabilidade maior, tendo em vista requisitos
básicos, como disponibilidade e confiabilidade dos dados. Nesse contexto, surgiram as
tecnologias de BD NoSQL, que proporcionam um ambiente propício para manipular
grandes volumes de dados, além de possivelmente promoverem o armazenamento
de dados em clusters que traz benefícios, como, por exemplo, a tolerância a falhas
na rede de comunicação que permite uma maior disponibilidade de acesso aos dados.

Os sistemas de BD NoSQL surgiram principalmente por iniciativas isoladas de
grandes empresas da área de tecnologia, como Google1 e Amazon2 , que possuíam
problemas na utilização de BD convencionais em suas aplicações e não existiam
opções no mercado para suprir suas necessidades. No ano 2000, ambas publicaram
artigos sobre suas ferramentas, BigTable3 (Google) e Dynamo4 (Amazon) (SADALAGE;
FOWLER, 2013). Essas publicações incentivaram outras empresas e desenvolvedores
de software a explorarem a criação de ferramentas semelhantes para solucionar
dificuldades específicas e existentes nos sistemas de BD relacionais, dentre as quais,
destaca-se a necessidade de esquemas bem definidos impossibilitando a manipulação
de dados não estruturados e semiestruturados.
1 https://www.google.com/intl/pt-BR/about/
2 https://aws.amazon.com/pt/?nc2=h_lg
3 https://cloud.google.com/bigtable/?hl=pt
4 https://aws.amazon.com/pt/dynamodb/

Capítulo 1. Introdução 16

1.2 Motivação

A utilização de BD NoSQL vem aumentando consideravelmente junto com a
evolução das aplicações de software, principalmente nos sistemas construídos para
Internet, os quais devem possuir flexibilidade para escalar de acordo com a demanda de
uso. Isso cria um desafio maior para os projetistas de software, pois, além das escolhas
de linguagens e frameworks de programação, eles devem analisar a persistência dos
dados, selecionando SGBD que mais se adequem aos tipos de dados e aos requisitos
não funcionais — escalabilidade, disponibilidade, de cada projeto.

Persistência poliglota refere-se ao uso de diversos SGBD com modelos de dados
diferentes em uma mesma aplicação (SADALAGE; FOWLER, 2013). Uma aplicação de
persistência poliglota é projetada para se beneficiar das características de cada SGDB
de acordo com os requisitos levantados para o projeto de construção do software. Por
exemplo, no projeto de uma aplicação web que necessita manipular tipos de dados
estruturados, não estruturados e semiestruturados, pode-se utilizar SGBD relacionais
para os dados estruturados e SGBD NoSQL para os outros tipos de dados, por exemplo,
dados temporários que podem ser armazenados em BD NoSQL orientado a chave-
valor.

Os benefícios do uso da persistência poliglota se tornam mais evidentes nos
projetos de sistemas para Internet que são elaborados com foco em atender maiores
fluxos de manipulação de dados, manter tipos de dados complexos e possibilitar
um menor esforço na alteração do esquema do banco de dados.

Diversos trabalhos de pesquisa propõem modelos para a construção de es-
quemas conceituais de BD NoSQL, como o GOOSSDM (BANERJEE et al., 2015) e
NoSQL Abstract Model (BUGIOTTI et al., 2014). Existe também a extensão do E-R para
modelagem de tipos de dados Big Data (VILLARI et al., 2016). No entanto, pouca
atenção tem sido dedicada à seguinte questão: quais construtores de modelagem são
necessários para criar um esquema conceitual que represente aplicações de persis-
tência poliglota? A solução consiste em criar construtores de modelagem conceitual
para representar um único esquema de dados que represente conceitos de diferentes
sistemas de BD NoSQL, além de definir a semântica e as notações diagramáticas
destes construtores.

A dificuldade em criar um esquema conceitual de dados para um projeto de
aplicação de persistência poliglota foi a principal motivação para o desenvolvimento
desta pesquisa. Tendo em vista a importância da fase de modelagem conceitual
de dados, é primordial a existência de um modelo que possibilite a construção de
esquemas conceituais de persistência poliglota, auxilie os projetistas de banco de
dados e facilite a comunicação entre a equipe técnica e usuários requisitantes do

Capítulo 1. Introdução 17

projeto.

1.3 Objetivos

Esta seção discorre sobre os objetivos gerais (Seção 1.2.1) e específicos (Seção
1.2.2) do trabalho detalhado neste documento.

1.3.1 Objetivos Gerais

Esta dissertação propõe um modelo conceitual de dados, intitulado ERNoSQL,
para auxiliar na modelagem de aplicações que utilizem persistência poliglota. O ER-
NoSQL estende o modelo E-R adicionando construtores específicos para possibilitar
a modelagem de esquemas conceituais poliglotas. Para fornecer uma visão geral do
modelo conceitual proposto, este trabalho apresenta um metamodelo especificado em
UML para representar, por meio de um conjunto de classes, os conceitos utilizados na
elaboração do ERNoSQL. O metamodelo fornece um entendimento sobre como os
construtores do ERNoSQL se relacionam entre si.

Além da descrição dos construtores do ERNoSQL com suas respectivas nota-
ções gráficas, o trabalho objetiva, ainda, a elaboração de um conjunto de regras de
mapeamento do modelo ERNoSQL para as estruturas dos SGBD NoSQL baseados
em documentos, grafos, chave-valor e família de colunas.

Com o objetivo de auxiliar as atividades de modelagem de esquemas poliglotas,
este trabalho propõe, também, uma ferramenta CASE para a construção de esquemas
a partir dos construtores de ERNoSQL. A ferramenta, intitulada NoSQLCASE, possui
um ambiente gráfico para a construção do esquema conceitual e para provimento das
funcionalidades de exportação para scripts expressos em linguagens específicas de
sistemas de BD NoSQL.

1.3.2 Objetivos Específicos

Descreve-se abaixo as atividades que compõem os objetivos específicos para
alcançar as contribuições deste trabalho:

I. Especificar os construtores de modelagem com suas respectivas propriedades
e notações gráficas;

II. Especificar as regras de mapeamento para esquemas lógicos de BD NoSQL a
partir do esquema conceitual ERNoSQL;

III. Especificar um metamodelo em UML que representa os construtores de
ERNoSQL e que servirá como base para a implementação da ferramenta CASE;

Capítulo 1. Introdução 18

IV. Desenvolver uma ferramenta CASE baseada na notação gráfica dos constru-
tores de ERNoSQL que possibilita a criação de esquemas conceituais baseados no
modelo ERNoSQL; e

V. Exemplificar a aplicação da ferramenta CASE por meio da construção de
esquemas conceituais de dados, com base em um cenário real de uma organiza-
ção acadêmica. Realizar a modelagem deste cenário em NoSQLCASE e em outras
ferramentas para demonstrar os diferenciais da ferramenta proposta.

1.4 Estrutura da Dissertação

Os capítulos restantes desta dissertação encontram-se estruturados da seguinte
forma:

Capítulo 2: Fundamentação Teórica

Esse capítulo tem como objetivo descrever a fundamentação teórica e os concei-
tos básicos utilizados para a elaboração deste trabalho e exibir um relato sobre estudos
de modelagem conceitual e lógica de BD NoSQL.

Capítulo 3: Modelo ERNoSQL

Esse capítulo detalha o modelo conceitual proposto, definindo seus construtores,
suas notações gráficas e um exemplo de uso, além de representar, por meio de UML5 ,
o metamodelo que retrata conceitos e relacionamentos entre conceitos de ERNoSQL.
Por fim, este capítulo define os grupos de regras de mapeamento criados a partir
das equivalências identificadas entre o ERNoSQL e os modelos de dados lógicos de
SGBD NoSQL existentes. Essas regras são utilizadas para a geração do esquema
lógico de dados em linguagens específicas de definição e manipulação de dados para
implementação de bases de dados NoSQL.

Capítulo 4: A Ferramenta NoSQLCASE

Esse capítulo mostra a arquitetura de software da ferramenta NoSQLCASE e
apresenta sua GUI (Graphical User Interface), juntamente com suas principais fun-
cionalidades e os recursos disponíveis para a criação de esquemas conceituais de
dados de aplicações de persistência poliglota. Além disso, este capítulo discorre sobre
o processo de criação de esquemas conceituais por meio da ferramenta NoSQL-
CASE, especificado em um diagrama de atividades da UML que define os passos para
criar um esquema conceitual na ferramenta.

Capítulo 5: Um Estudo de Caso com NoSQLCASE

Esse capítulo descreve um estudo de caso comparando a ferramenta NoSQL-
CASE e outras ferramentas existentes, por meio da criação de um esquema conceitual
5 http://www.uml.org/

Capítulo 1. Introdução 19

para um domínio de aplicação e da demonstração de uso das funcionalidades de
NoSQLCASE. O esquema conceitual construído para o estudo de caso modela um
cenário real, cujos requisitos de dados fazem parte do cotidiano de uma instituição de
ensino do Estado do Ceará.

Capítulo 6: Conclusão

Esse capítulo discute as principais contribuições desta dissertação e sugere
trabalhos futuros que possivelmente contribuirão para o avanço do estudo realizado.
Além disso, descreve-se as limitações do trabalho.

20

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo contém a fundamentação teórica deste trabalho. Ele exibe concei-
tos básicos de sistemas NoSQL e discorre sobre seus principais modelos de dados
lógicos (Seção 2.1). Finalmente, este capítulo exibe a descrição de trabalhos correlatos
(Seção 2.2), incluindo um relato dos principais estudos realizados pela comunidade
científica sobre projeto conceitual e lógico de BD NoSQL.

2.1 Conceitos Básicos

Esta seção contém os principais conceitos associados ao desenvolvimento
deste trabalho. A Seção 2.1.1 descreve os conceitos básicos e as características de
SGBD NoSQL, além de definir os modelos de dados lógicos utilizados nestes tipos de
sistemas. A Seção 2.1.2 discorre sobre os principais modelos utilizados na construção
de esquemas de dados conceituais, enquanto a Seção 2.1.3 descreve o conceito de
persistência poliglota. Por fim, na seção 2.1.4, é descrito o framework de modelagem
Eclipse1 e seus componentes que são utilizados neste trabalho para o desenvolvimento
da ferramenta NoSQLCASE proposta, a qual é exposta no Capítulo 4.

2.1.1 Sistemas de BD NoSQL

O movimento intitulado “NoSQL”, que significa “Não apenas SQL” (do inglês “Not
Only SQL”), surgiu devido à insatisfação de muitas empresas de tecnologia da informa-
ção com os SGBD relacionais disponíveis no mercado. Grande parte desta insatisfação
deveu-se às limitações dos SGBD relacionais para lidar com dados não estruturados e
à baixa eficiência para processamento em clusters, além de exigir esquemas de dados
rígidos que obrigam uma definição dos tipos e formatos dos dados para possibilitar o
armazenamento. Em vista disso, essas empresas projetaram sistemas de bancos de
dados que eliminassem as limitações existentes nos SGBD relacionais, focalizando
na criação de soluções que permita a escalabilidade horizontal e a possibilidade
de manipular grandes conjuntos de dados, incluindo dados semiestruturados e não
estruturados.

SGBD NoSQL utilizam modelos de dados diferentes do modelo relacional, tais
como: Baseado em Documentos, Baseado em Grafos, Chave-Valor e Famílias de Colu-
nas. Cada um desses modelos utiliza estruturas de dados diferentes para armazenar
e manipular os dados. A decisão sobre qual BD NoSQL utilizar deve ser analisada
de acordo com o domínio envolvido e as necessidades do projeto. Metodologias e
1 https://eclipse.org/epsilon/

Capítulo 2. Fundamentação Teórica 21

ferramentas de apoio ao projeto lógico de BD NoSQL são temas pouco explorados na
literatura de banco de dados (LIMA; MELLO, 2015).

Os SGBD NoSQL ainda não são conhecidos por uma parcela dos profissionais
de tecnologia da informação, mas a popularidade destes SGBD vem crescendo no
mundo. O site db-engines2 mantém uma classificação da popularidade dos SGBD dis-
poníveis e verifica-se o aumento na adoção dos tipos de SGBD NoSQL, de forma
que, o MongoDB3 (Documentos) encontra-se na quinta colocação da lista e os outros
representantes do grupo NoSQL vêm mantendo de forma crescente o nível de popula-
ridade, como por exemplo: o Cassandra4 (Famílias de Colunas) na oitava colocação,
o Redis5 (Chave-valor) em décimo e o Neo4j6 (Grafos) em vigésimo primeiro.

A literatura sobre NoSQL, em sua maioria, não propõe a substituição total dos
SGBD relacionais, mas demonstra que, para determinados tipos de dados, operações
(escrita, leitura) e regras de negócio de aplicação, um SGBD NoSQL terá desempe-
nho mais eficaz (JEON; AN; LEE, 2015). Portanto, os sistemas NoSQL aumentam as
possibilidades de escolha sobre como manter os dados de uma aplicação de BD. Em
alguns casos, pode-se utilizar variados tipos de SGBD para uma mesma aplicação. Isso
acontece devido ao volume e variedade de tipos de dados que podem ser gerencia-
dos. Nessas situações, utiliza-se o termo Persistência Poliglota, que evidencia essa
pluralidade de uso de modelos de dados lógicos em uma única aplicação.

O termo Big Data, comumente usado na academia e indústria, refere-se a um
vasto volume de dados de um determinado domínio de aplicação. Um exemplo de
Big Data são os dados gerados e manipulados a todo instante pelos usuários de
ferramentas de mídias sociais. As características principais de Big Data são: o volume,
que indica a quantidade de dados a ser manipulado; a variedade, que implica na
possibilidade de representação de diversos tipos de dados (estruturados, semiestrutu-
rados e não-estruturados); a velocidade, que se refere à rapidez na qual os dados são
gerados pelas aplicações atuais; e, por último, veracidade — característica indicativa
de que nem todos os dados são precisos e relevantes. Todos esses aspectos criam
desafios quanto à captura, ao armazenamento, à manipulação e à visualização desses
dados (BANERJEE et al., 2015).

SGBD NoSQL permitem a persistência de dados no formato JSON. Por exemplo,
o SGBD Cassandra possui funções para armazenar documentos JSON7 em suas
tabelas através da linguagem de consulta CQL (Cassandra Query Language). Outro
2 https://db-engines.com/en/ranking
3 https://www.mongodb.com/
4 http://cassandra.apache.org/
5 https://redis.io/
6 https://neo4j.com/
7 http://www.json.org/

Capítulo 2. Fundamentação Teórica 22

exemplo é o SGBD Redis, que também disponibiliza a funcionalidade de armaze-
nar diretamente um documento JSON através da sua interface de programação de
aplicativos, a qual é utilizada para comunicação dos aplicativos com o SGBD.

O Quadro 1 mostra o exemplo dos códigos utilizados nos SGBDs NoSQL
Cassandra (Modelo de dados baseado em família de colunas) e Redis (Modelo de
dados baseado em chave-valor) para armazenar um documento no formato JSON.

Quadro 1 – Quadro com exemplos para armazenar documentos JSON nos SGBDs NoSQL Cassandra e
Redis

Fonte: Elaborado pelo Autor (2017)

2.1.1.1 SGBD NoSQL Baseado em Documento

Os sistemas de bancos de dados baseados em documentos compõem a cate-
goria de SGBD NoSQL que utilizam como estrutura de armazenamento uma coleção
de documentos que podem ser XMLhttp://www.xml.org/8 , JSON9, BSON10, entre
outros. Esses documentos são estruturados na forma de árvores hierárquicas e au-
todescritivas (SADALAGE; FOWLER, 2013). Cada documento contém propriedades
especificadas no formato “nome : valor”. O valor dessas propriedades pode ser um
dado escalar, um mapa, uma coleção, entre outros. Um documento representa um re-
gistro armazenado, sendo equivalente a uma linha em um SGBDR, com a diferença de
não possuir esquema fixo definido; ou seja, cada documento pode conter propriedades
diferentes. Dessa forma, se uma propriedade não se aplica a determinado documento,
ela sequer será identificada, evitando-se, assim, a criação de atributos com valores
vazios.

Os documentos pertencem a estruturas nomeadas de coleções, as quais, geral-
mente, agrupam documentos referentes a um mesmo assunto. Por exemplo, pode-se
criar uma coleção chamada Escolas, na qual se armazenem documentos com atri-
8 http://www.xml.org/
9 http://www.json.org/
10 http://bsonspec.org/

Capítulo 2. Fundamentação Teórica 23

butos deste domínio. Cada documento possui um atributo chave único, utilizado para
identificá-lo na coleção correspondente (KAUR; RANI, 2013).

Esse tipo de banco de dados é otimizado para a manipulação de informações
textuais (SRIVASTAVA; GOYAL; KUMAR, 2015), sendo um bom candidato para utiliza-
ção em sistemas de gestão de conteúdo, plataformas de blog, aplicativos de comércio
eletrônico, entre outros (SADALAGE; FOWLER, 2013). Domínios de aplicações que
necessitam de flexibilidade de esquema e com requisitos que passem por atualizações
constantes são adequados ao uso de SGBD baseados em documentos. Nos casos de
transações complexas com necessidade de execução de operações atômicas ou de
consultas complexas envolvendo várias coleções, contudo, não é indicado o uso desse
tipo de SGBD NoSQL. Isto ocorre porque os SGBD de documentos não foram projeta-
dos para processar muitos relacionamentos entre os dados, pois umas das principais
vantagens é utilizar documentos que contenham todas as informações relativas a uma
determinada consulta a base de dados.

Existem duas principais abordagens para inserir os relacionamentos entre os
dados de BD de documentos: a primeira é seguir a utilização do conceito de “agrega-
dos” (SADALAGE; FOWLER, 2013), no qual a intenção é montar documentos com os
objetos relacionados e aninhados, facilitando-se, assim, o acesso e a distribuição dos
dados para utilização em clusters; a segunda forma é utilizar as chaves identificadoras
dos documentos como ligação, relacionando-os. Essa última abordagem deve ser
analisada com cuidado pelo projetista, pois, quanto maior o número de ligações entre
os documentos, maior o custo de processamento e menor a eficiência do SGBD.

Entre os tipos baseados em documentos, o SGBD que possui maior popula-
ridade é o MongoDB (KAUR; RANI, 2013). Na documentação do MongoDB11 existe
uma seção voltada para a modelagem de banco de dados, mas não orienta o uso
de um modelo conceitual — apenas ilustra as estratégias existentes para relacionar
documentos de forma aninhada ou por meio de identificadores.

A persistência de dados baseada em documentos está se popularizando cada
vez mais, fato comprovado pelas iniciativas de SGBDR renomados, como Post-
greSQL12 e MySQL13 que adicionaram suporte ao armazenamento de documentos
em suas ferramentas.

2.1.1.2 SGBD NoSQL Baseado em Grafos

SGBD NoSQL baseados em grafos são constituídos basicamente por duas
estruturas de dados: nós e arestas. Os nós possuem propriedades que armazenam
11 https://docs.mongodb.com
12 https://www.postgresql.org/docs/9.5/static/datatype-json.html
13 https://dev.mysql.com/doc/refman/5.7/en/document-store.html

Capítulo 2. Fundamentação Teórica 24

dados de objetos, enquanto as arestas, por sua vez, representam os relacionamentos
que conectam os nós, podendo ser unidirecionais ou bidirecionais, de acordo com
seus significados. As arestas (relacionamentos) também podem possuir propriedades
específicas. Por exemplo, em um relacionamento Amigos entre dois nós, pode-se
adicionar como propriedade a data de início da amizade. Esses SGBD não necessitam
de esquema definido, o que possibilita sua utilização em domínios que possuem
mudanças frequentes dos requisitos de dados armazenados.

Comparando-se o modelo de dados lógico baseado em grafos com o modelo
conceitual ER, os nós representam as entidades, as propriedades representam os
atributos de entidade e os relacionamentos são representados pelas relações entre
nós (KAUR; RANI, 2013).

No modelo relacional, para consultar e interligar dados de estruturas distin-
tas utilizam-se junções — operações que requerem bastante processamento. Nos
SGBD baseados em grafo, as consultas são executadas com o uso de algoritmos de
busca em grafos, as quais realizam a travessia no grafo e selecionam as informações
desejadas sem a necessidade de qualquer junção, pois os dados já estão naturalmente
interligados no grafo. Dessa forma, o desempenho para processar consultas entre
dados relacionados é superior ao processamento feito sobre outros modelos de per-
sistência de dados (relacional, documentos, família de colunas) Singh e Kaur (2015),
Mathew e Kumar (2015). Outro aspecto importante desses tipos de SGBD é o fato de
permiterem transações ACID, o que garante dados íntegros, disponíveis e confiáveis.

O modelo de grafos é indicado para utilização em domínios de aplicações que
foquem nas relações entre os dados, como redes sociais, roteamento, mecanismos de
recomendação e serviços baseados em localização (SADALAGE; FOWLER, 2013).

2.1.1.3 SGBD NoSQL Chave-Valor

SGBD NoSQL baseados em chave-valor têm um modelo de dados lógico muito
simples. Os dados são organizados como uma matriz associativa de entradas consti-
tuídas por chave e valor (KAUR; RANI, 2013). Cada chave é única e é utilizada nas
consultas para recuperar o valor associado. As chaves podem ser geradas pelo SGBD
ou definidas pelo usuário, e o valor armazenado pode ser um blob, texto, JSON, XML,
entre outros.

Nesses SGBD, as consultas somente são realizadas por meio da chave que
retorna todos os dados armazenados no registro. Não é possível realizar consultas
diretamente ao conteúdo armazenado, tampouco utilizar junções entre valores ou
qualquer análise sobre os dados (por exemplo, somar valores, calcular médias). Essas
restrições tornam os BD chave-valor muito rápidos e eficientes nas operações de leitura
e escrita.

Capítulo 2. Fundamentação Teórica 25

Os relacionamentos entre as estruturas de dados não são definidos por esses
tipos de SGBD, tornando-os apropriados somente para alguns tipos de domínios de
aplicações. Uma iniciativa para tentar relacionar os dados é adicionar identificadores
na composição da chave. Por exemplo, para uma entidade Cliente que se relaciona
com uma entidade Pedido, pode-se ter a chave IdCliente-IdPedido. Essas alternativas
são adaptações para a representação de relacionamentos nos SGBD chave-valor, já
que, eles não foram projetados para possibilitar o uso de relacionamentos. Nesses
casos, todo processamento que envolva algum relacionamento mantém-se sob a
responsabilidade do aplicativo.

Existe uma vantagem desses SGBD: eles não definem limites para o tamanho
das estruturas armazenadas. Assim, uma boa opção para relacionar dados é a utili-
zação de dados agregados. Um agregado contém dados relacionados que formam
uma unidade de acesso e de distribuição, tornando-se possível criar uma chave que
represente um determinado agregado que contém outros dados relacionados.

Vários SGBD chave-valor estão disponíveis para uso, e os mais populares são
o Redis, o Riak14 , o Memchached15 e o Voldemort16 (KAUR; RANI, 2013). Alguns
deles permitem a adição de novas funcionalidades como a possibilidade de consultas
ao conteúdo armazenado, além da tradicional consulta por chaves, equiparando-se a
SGBD baseados em documentos.

Existem vários casos de sucesso no uso destes SGBD para determinados domí-
nios de aplicações. Eles são apropriados, por exemplo, para armazenar informações de
sessão, listas de compras, projetos de software embarcados, chat e serviços de troca
de mensagens (SADALAGE; FOWLER, 2013). A aplicação de microblog pesssoal,
conhecida por Twitter17 , utiliza um BD chave-valor para armazenar os dados das
postagens (tweet). Estas mensagens são rapidamente identificadas através de uma
única chave para cada postagem cadastrada (SRIVASTAVA; GOYAL; KUMAR, 2015).

2.1.1.4 SGBD NoSQL Basedo em Famílias de Colunas

SGBD NoSQL baseados em famílias de colunas são projetados para lidar com
três problemas: grande número de colunas, natureza esparsa de dados e mudanças
frequentes no esquema (KAUR; RANI, 2013). Dessa forma, estes sistemas permi-
tem que se tenha flexibilidade no armazenamento de dados, pois cada linha tem a
quantidade de colunas necessária para cada registro. Por exemplo, para armazenar
dados de professores, pode-se persistir o atributo “instituicao_doutorado” somente para
14 http://basho.com/products/riak-kv/
15 https://memcached.org/
16 http://www.project-voldemort.com/voldemort/
17 https://twitter.com/

Capítulo 2. Fundamentação Teórica 26

os professores que possuam doutorado, enquanto para os demais professores este
atributo não seria criado.

SGBD baseados em famílias de colunas armazenam a coluna inteira de uma ta-
bela em um conjunto e a mapeia para uma única chave. Toda entrada na coluna possui
índice, o que possibilita a execução de pesquisas somente sobre partes específicas.
Uma coluna também pode conter colunas aninhadas, tornando-se uma família de super-
colunas, oferecendo acesso rápido a um agregado de dados relacionados (MATHEW;
KUMAR, 2015).

A maior parte das bases de dados colunares são compatíveis com o MapReduce,
que acelera o processamento de grandes quantidades de dados, fragmentando a carga
de processamento de uma determinada análise de dados em servidores distribuídos.
Os SGBD de famílias de colunas mais populares são o Hypertable18 , o HBase19 e o
Cassandra. O Hypertable e o HBase são derivados do BigTable20; já o Cassandra tem
características do BigTable e do Dynamo (KAUR; RANI, 2013).

Grandes empresas que mantêm sistemas com abrangência mundial utilizam
SGBD colunares. O principal exemplo destas empresas é o Facebook21 , que utiliza
o Cassandra como solução de persistência em sua rede social. Outro exemplo é
a Uber22, empresa que conecta motoristas particulares a clientes por meio de um
aplicativo para dispositivos móveis, e que utiliza o Cassandra como sistema de banco
de dados para o gerenciamento de seus serviços.

2.1.1.5 SGBD NoSQL Multimodelo

Os SGBD NoSQL multimodelo foram criados com intuito de consolidar em
uma única solução mais de um modelo de dados de SGBD NoSQL (documentos,
grafos, chave-valor e famílias de colunas). SGBD multimodelo permitem que os dados
fiquem consolidados num único produto, oferecendo uma linguagem de consulta única
para todos os modelos de dados (OLIVEIRA; CURA, 2016).

Os SGBD NoSQL multimodelo mais conhecidos são o OrientDB23 e o Aran-
goDB24. Esses dois dão suporte aos modelos de dados orientados a documentos,
grafos e chave-valor. Para manipulação dos dados nesses SGBD, o ArangoDB fornece
a linguagem de consulta AQL25 que difere do SQL mas possui uma sintaxe simples e de
18 http://www.hypertable.com/
19 https://hbase.apache.org/
20 https://cloud.google.com/bigtable/
21 https://www.facebook.com/
22 https://eng.uber.com/mysql-migration/
23 http://orientdb.com/orientdb/
24 https://www.arangodb.com/
25 https://docs.arangodb.com/3.1/AQL/

Capítulo 2. Fundamentação Teórica 27

fácil compreensão. Já o OrientDB utiliza a linguagem SQL26 com algumas adaptações
para possibilitar consultas em grafos, mas mantendo a sintaxe do SQL para facilitar a
adaptação dos desenvolvedores.

2.1.2 Modelagem Conceitual

A modelagem conceitual é uma etapa fundamental do projeto de banco de dados.
O artefato gerado pela modelagem conceitual é um esquema conceitual que descreve
os requisitos de dados de um domínio de aplicação. Esse esquema é composto por tipos
de informações, atributos, relacionamentos e restrições, e pode ser representado por
meio de um diagrama gráfico, que facilita o entendimento sobre o domínio do sistema e
a comunicação da equipe técnica com os usuários finais (ELMASRI; NAVATHE, 2010).

O modelo Entidade-Relacionamento (MER) é amplamente utilizado na academia
e na indústria para realizar a etapa de modelagem conceitual de banco de dados. O
MER possui construtores gráficos para a representação de esquemas conceituais por
meio de um diagrama Entidade-Relacionamento. Os principais construtores desse mo-
delo representam tipos de entidades, atributos e os relacionamentos entre as entidades.
Existem, na literatura, diversos trabalhos publicados que utilizam os conceitos do MER
e incluem construtores para modelagem de dados com restrições específicas, como,
por exemplo, dados de aplicações de organizações de saúde (ARAÚJO, 2012).

A Unified Modeling Language (UML) é uma linguagem para especificação de
projetos de software que inclui um conjunto de diagramas, divididos em diagramas es-
truturais e comportamentais. Os diagramas comportamentais especificam os aspectos
dinâmicos, como requisitos funcionais e fluxos de atividades, enquanto os diagramas
estruturais fazem referência à estrutura do sistema, ou seja, à arquitetura da aplica-
ção, representando, assim, as características estáticas de um software. Dentre esses
diagramas, há o diagrama de classes, utilizado para definir estruturas estáticas de
dados e que permite também a definição dos métodos que irão manipular os dados. A
representação abstrata do diagrama de classes sem a definição das operações é utili-
zada para a modelagem conceitual de dados, tornando-se uma opção para representar
conceitualmente os dados de uma aplicação.

2.1.3 Persistência Poliglota

O termo Persistência Poliglota faz referência à utilização de diferentes SGBD em
um único domínio de aplicação. O uso de mais de um SGBD é influenciado pelos tipos
de dados (estruturados, semiestruturados e não estruturados) e os requisitos de negó-
cio do projeto (SADALAGE; FOWLER, 2013). Essa necessidade é bem evidenciada
em aplicações web que geralmente manipulam uma maior quantidade de dados e que
26 http://orientdb.com/docs/last/SQL.html

Capítulo 2. Fundamentação Teórica 28

necessitam de estruturas que permitam escalar (expandir os recursos de hardware e
a distribuição de máquinas em localizações geográficas diferentes) de acordo com o
aumento da demanda. Além disso, as necessidades de manipulação de dados também
devem ser avaliadas. Por exemplo, uma aplicação de comércio eletrônico que necessita
utilizar dados temporários referentes à sessão do usuário e ao carrinho de compras
pode se beneficiar de um SGBD NoSQL do tipo chave-valor que armazena dados
em memória primária (RAM), permitindo uma maior eficiência de leitura/escrita. Nas
páginas de visualização de produtos que envolvem atributos e dados diferentes e
específicos de cada produto, por outro lado, pode ser utilizado um banco de dados ori-
entado a documentos, o qual permite o armazenamento de dados semiestruturados
em documentos (XML, JSON). Neste caso, cada documento é equivalente a um regis-
tro armazenado no SGBD e cada registro mantém os atributos necessários de cada
documento.

Com a popularização dos SGBD NoSQL, os projetistas de banco de dados co-
meçaram a usar modelos de dados diversos em uma única aplicação. Dessa forma, eles
se beneficiam das características de cada SGBD NoSQL para melhor representação
de tipos de dados e necessidades do projeto.

O uso da persistência poliglota acrescenta complexidade ao projeto, pois inclui
mais ferramentas para configurar e gerenciar. Isso pode demandar a contratação
de uma equipe maior ou de profissionais mais qualificados. Mesmo com o aumento
da complexidade, a persistência poliglota se torna viável em aplicações com maior
abragência, pois inclui beneficíos na operação, gerenciamento e evolução do banco
do dados em ambiente de produção devido à capacidade dos SGBD NoSQL para
manipulação de dados volumosos.

2.1.4 Framework de Modelagem Eclipse

Esta seção descreve as principais tecnologias e framework utilizados para
o desenvolvimento da ferramenta CASE que compõe uma das contribuições deste
trabalho. Todas as tecnologias descritas nas próximas seções estão incluídas no pacote
Eclipse Epsilon27 que agrupa linguagens e ferramentas para projetar software baseados
em modelo (do inglês, Model Driven Design). Esta arquitetura utiliza um modelo como
artefato principal para a elaboração de software.

2.1.4.1 Eclipse Modeling Framework (EMF)

O EMF28 é um framework que permite a modelagem e a geração de códigos
para a construção de ferramentas e de outras aplicações baseadas em um modelo de
27 https://eclipse.org/epsilon/
28 http://www.eclipse.org/modeling/emf/

Capítulo 2. Fundamentação Teórica 29

dados. A partir de uma especificação do modelo, o framework EMF fornece ferramentas
que produzem, em tempo de execução, classes Java29 e adaptadores que permitem a
edição visual de instâncias do modelo por meio de um editor gráfico.

O framework inclui um metamodelo intitulado ECore30 , utilizado para descrever
modelos, que serve de base para a geração do código que implementa a ferramenta
de suporte aos modelos representados. O EMF provê persistência com padrão XMI, o
qual possibilita a troca de informações baseada em arquivos XML.

Os principais componentes do Ecore são: 1) EClass: utilizada para representar
uma metaclasse; 2) EAttribute: representa o atributo de uma EClass; e 3) EReference:
usado para definir as associações entre os componentes do tipo EClass. Além desses
componentes, existem outros que podem ser utilizados para detalhar as especificidades
dos modelos. O framework possui um editor para criação do modelo por meio de
diagrama UML, o que facilita a visualização e a construção do modelo em EMF Ecore
(SOUZA, 2011).

O EMF permite três níveis de geração de código: 1) Modelo: fornece interfaces
Java e classes de implementação para todas as classes no modelo; 2) Adaptadores:
geram classes de implementação que se adaptam às classes de modelo para edição e
exibição; e 3) Editor : produz um editor gráfico básico que pode ser personalizado.

O EMF possui a linguagem Emfatic31 , que é uma representação textual do
metamodelo ECore. Emfatic usa uma sintaxe compacta e legível, semelhante ao Java.
Arquivos descritos em Emfatic possuem a extensão (.emf).

2.1.4.2 Epsilon Generation Language (EGL)

EGL32 é uma linguagem para a transformação de modelo para texto (Model
to text - M2T) e pode ser usada para converter modelos em vários tipos de artefatos
textuais, como, por exemplo, código executável Java, relatórios, código HTML33 e
scripts de linguagens específicas geradas a partir de modelos. EGL possui um gerador
de código baseado em modelos e fornece vários recursos para simplificar e permitir a
automatização da representação textual das instâncias do modelo.

Os principais recursos do EGL são 1) um mecanismo de fusão que une as se-
ções estáticas (escritas) às dinâmicas (geradas pelo EGL), criando uma saída em texto;
2) um sistema de template extensível que possibilita a geração de texto para diversas
fontes, como scripts de linguagens de banco de dados, arquivos javascript34 , html,
29 http://www.oracle.com/technetwork/java/javase/downloads/index.html
30 https://wiki.eclipse.org/Ecore
31 http://www.eclipse.org/emfatic/
32 http://www.eclipse.org/epsilon/doc/egl/
33 https://www.w3.org/html/
34 https://js.org/

Capítulo 2. Fundamentação Teórica 30

entre outros; 3) algoritmos de formatação para a produção de textos; e 4) mecanismo de
rastreabilidade que faz a ligação do texto gerado aos modelos relacionados (KOLOVOS
et al., 2017).

2.1.4.3 Graphical Modeling Framework (GMF)

O GMF35 é um framework que provê a implementação de editores gráficos
com base em metamodelos definidos em EMF (Seção 2.1.4.1). O GMF disponibiliza
um conjunto de componentes reutilizáveis para editores gráficos, como impressão,
exportação de imagens, ações, barras de ferramentas, entre outros. Para facilitar a
criação de editores GMF, é disponibilizado um painel (GMF Dashboard) para auxiliar
nas etapas do processo de criação do editor gráfico.

A ferramenta EuGENia36 é útil na criação de editores GMF, pois gera automati-
camente o editor a partir de um metamodelo EMF. EuGENia fornece um conjunto de
anotações de alto nível para configurar a notação gráfica dos construtores, reduzindo a
complexidade e a curva de aprendizagem para a utilização do GMF. A construção dos
objetos que representam a notação gráfica do modelo é realizada por meio de um
conjunto de anotações disponibilizadas pelo framework GMF. As principais anotações
disponíveis são: 1) Gmf.diagram, define o componente raiz do metamodelo que repre-
sentará o esquema do diagrama como um todo e definirá a extensão dos arquivos
do diagrama gerado no editor; 2) Gmf.node, indica que um componente EClass será
representado no diagrama e disponibiliza atributos para formatar a notação gráfica do
componente, como tamanho, formato, bordas e cores; 3) Gmf.link, usado em componen-
tes EReferences para definir as ligações entre os componentes EClass, identificando
origem (source), destino (target) e formato da notação gráfica do link.

2.2 Trabalhos Correlatos

Esta seção contém um relato dos principais estudos realizados pela comunidade
científica sobre a modelagem e sobre projeto conceitual e lógico de BD NoSQL. A
Seção 2.2.1 aborda trabalhos que propõem modelos conceituais para aplicações de
BDs NoSQL, enquanto a Seção 2.2.2 inclui a descrição de trabalhos que realizam a
modelagem de BD NoSQL, e a proposição ou utilização de ferramentas CASE.

2.2.1 Modelos de Dados Conceituais para Aplicações de BD NoSQL

Esta seção apresenta modelos de dados conceituais propostos na literatura
para auxiliar o projeto de BD NoSQL.
35 https://www.eclipse.org/gmf-tooling/
36 http://www.eclipse.org/epsilon/doc/eugenia/

Capítulo 2. Fundamentação Teórica 31

2.2.1.1 Um framework para BD NoSQL

Banerjee et al. (2015) propõem um framework para modelagem conceitual
de BD NoSQL. A Figura 1 mostra a visão geral do framework, na qual verifica-se
que o esquema conceitual é convertido para um esquema lógico, representado em
JSON, tendo em vista que o formato JSON pode ser diretamente armazenado em um
banco NoSQL orientado a documentos. Os autores apresentam um estudo de caso,
inserindo no MongoDB, um documento JSON gerado a partir do modelo conceitual
proposto.

Figura 1 – Framework proposto

Fonte: Adaptado de Banerjee et al. (2015)

Para a fase de modelagem conceitual, o trabalho propõe um modelo de dados
conceitual, intitulado GOOSSDM (Graph Object Oriented Semi Structured Data Model),
no qual são criados objetos gráficos que representam os dados de forma conceitual.
Os objetos criados são: grupo semântico elementar, o qual modela atributos que não
determinam a entidade; grupo semântico determinante, o qual modela atributos identifi-
cadores das entidades; grupo semântico contextual, o qual representa as entidades do
domínio; o objeto anotação, o qual é utilizado quando se pretende adicionar informa-
ções ao modelo; e, por fim, o conector de associação, o qual é utilizado para representar
as conexões entre as entidades. Quanto aos tipos de relacionamentos possíveis, os
principais são: contenção, o qual é o relacionamento utilizado para representar os
atributos contidos nas entidades; associação, é o relacionamento entre os conectores
de associação; e o relacionamento de ligação, o qual possibilita representar a herança
entre os objetos.

O procedimento de conversão da modelagem conceitual definida em GOOSSDM
em um esquema JSON é feito a partir de doze regras de conversão que foram definidas
pelos autores. Cada regra mapeia determinados objetos da notação gráfica para as
respectivas representações do esquema JSON.

A validação da notação gráfica proposta foi realizada por meio do mapeamento
dos construtores do modelo GOOSSDM para o esquema JSON, especificando a
correspondência entre cada elemento conceitual para uma respectiva saída em JSON.

Capítulo 2. Fundamentação Teórica 32

Além disso, foi realizada a comparação da notação proposta com as características
lógicas de sistemas NoSQL, verificando-se a presença de vários aspectos importantes,
como estruturas hierárquicas e não hierárquicas, estruturas heterogêneas e restrições
de participação.

Para validar as regras de conversão propostas, foi realizado um estudo de caso
baseado em um sistema de gestão de projetos, partindo-se da modelagem conceitual
em GOOSSDM, convertida no esquema JSON, o qual representa o nível lógico, e,
posteriormente, implementada fisicamente no MongoDB.

Contudo, o framework proposto não permite a modelagem de sistemas de per-
sistência poliglota. A tendência é a utilização de sistemas híbridos que usem tanto
o modelo relacional quanto diversos modelos lógicos de BD NoSQL (VILLARI et
al., 2016). Dessa forma, a criação de um modelo que estenda o modelo E-R, adicio-
nando construtores específicos para a modelagem de BD NoSQL e de aplicações de
persistência poliglota, constitui o foco da pesquisa descrita neste documento.

2.2.1.2 Projeto de BD para Sistemas NoSQL

Bugiotti et al. (2014) propõem uma metodologia para projetos de bancos de
dados NoSQL. A metodologia baseia-se nas seguintes etapas principais:

• Modelagem conceitual de dados - identificar as entidades e os relacionamentos
de uma aplicação;

• Concepção global - identificar as entidades de grupos de agregados;

• Particionamento de agregados - os agregados são divididos em elementos de
dados menores;

• Projeto conceitual de banco de dados NoSQL - os agregados são mapeados
para o modelo Noam (NoSQL Abstract Model), que tem por objetivo modelar o
projeto de banco de dados NoSQL de forma intermediária, ou seja, independente
da tecnologia de persistência NoSQL que será adotada;

• Implementação - mapear a representação de dados intermediária para o banco
NoSQL específico.

O modelo NOAM se baseia em UML e foi definido da seguinte forma: um
banco de dados Noam é um conjunto de coleções, no qual cada coleção tem um
nome distinto. Uma coleção é um conjunto de blocos e cada bloco é identificado por
um bloco chave, o qual é único no seu conjunto. Um bloco é um conjunto não vazio
de entradas, no qual cada entrada é um par <ek, ev>, em que “ek” é o identificador

Capítulo 2. Fundamentação Teórica 33

da entrada (único dentro do seu bloco) e “ev ” é o seu valor (complexo ou escalar),
chamado de valor de entrada.

A Figura 2.2 mostra o exemplo de um banco de dados modelado em NOAM
no qual as linhas interiores mostram as entradas (chave - valor) e o quadro exterior
denota o bloco. Cada bloco modela uma unidade de acesso e de distribuição de dados,
também chamada de “agregado”, o qual pode ser manipulado individualmente. Um
agregado garante atomicidade e escalabilidade — dois elementos importantes na
persistência de dados. O primeiro garante que, ao fazer uma manipulação em um
determinado conjunto de dados, esta deve ser concluída totalmente ou em caso de
exceções deve retornar para o estado inicial. Já a escalabilidade é a capacidade de
dividir o conjunto de dados em servidores diferentes, sem abdicar da consistência dos
dados.

Figura 2 – Exemplo resumido de banco de dados NOAM

Fonte: Adaptado de Bugiotti et al. (2014)

A modelagem conceitual utilizada faz uso do diagrama de classes da UML
(Unified Modeling Language) para representar os conceitos envolvidos no projeto, defi-
nindo as entidades e os relacionamentos. A utilização de UML é feita seguindo o DDD
(Domain Driven Design) — uma metodologia de desenvolvimento de software orientada
a objetos.

A próxima etapa é a identificação dos “agregados”, que na sequência são ma-
peados para blocos NOAM. Essa etapa também se baseia na metodologia DDD, na
qual cada “agregado” possui uma entidade como sua raiz e pode ter vários objetos de
valor relacionados. A definição dos agregados está diretamente ligada às operações
de acesso aos dados que deverão ser implementadas. Por exemplo, para o exemplo
de BD exibido na Figura 2.2, suponha que o usuário (Jogador) deseja obter todos os
seus dados pessoais e uma visão geral dos jogos em andamento. Quando um jogador
completa uma rodada, o jogo deve ser atualizado. Assim, sugere-se que as classes de
agregados sejam “Jogadores” e “Jogos”.

NOAM possui maneiras de representar os agregados que são especificadas
basicamente de duas formas: entrada por objeto agregado (EAO) e entrada por campos
de nível superior (ETF). EAO representa cada agregado individualmente, utilizando
uma única entrada, na qual a chave fica vazia e o valor são os dados completos do agre-

Capítulo 2. Fundamentação Teórica 34

gado. Na ETF, a representação é feita por meio de múltiplas entradas, utilizando uma
propriedade para cada campo do agregado, sendo a chave representada pelo nome do
campo, e o valor da entrada correspondendo à representação dos dados persistidos.

A principal limitação para a utilização da representação EAO é o fato de repre-
sentar a estrutura do agregado como um todo, além de não levar em consideração as
operações de acesso aos dados — o que gera, em alguns casos, baixo desempenho
do banco de dados, tendo em vista que haverá manipulação de todo o agregado para
cada operação. Dessa forma, os autores sugerem o particionamento de agregados, que
deve ser feito com a utilização da representação ETF, seguindo os conceitos abaixo:

• Se um agregado é pequeno e a maioria dos seus dados são acessados ou
modificados juntos, ele deve ser representado por uma única entrada;

• Um agregado deve ser dividido em várias entradas, se ele for grande e possuir
operações que frequentemente acessam ou modificam apenas partes específi-
cas dele;

• Dois ou mais elementos de dados devem pertencer à mesma entrada, se eles
são geralmente acessados ou modificados juntos;

• Dois ou mais elementos de dados devem pertencer a entradas distintas, se eles
são geralmente acessados ou modificados separadamente.

A implementação do esquema gerado em NOAM foi realizada no Oracle NoSQL37 ,
que é baseado em chave-valor (Seção 2.1.1.3).

Resultados experimentais foram coletados, os quais são baseados nas variá-
veis tempo de execução e tamanho do repositório. Os resultados demonstraram que
operações envolvendo a recuperação de jogos no banco de dados são favorecidas
pela representação EAO, independentemente do tamanho do banco de dados. Na
operação de adição de rodadas aos jogos, a representação ETF produziu um melhor
desempenho. Por fim, em operações com carga de trabalho mista, a representação
ETF tem uma vantagem geral sobre EAO, diminuindo, no entanto, à medida que o
tamanho do banco de dados aumenta.

Resultados dos testes indicaram que o projeto de bancos de dados NoSQL é
uma atividade importante e que deve ser executada com planejamento prévio, pois
afeta consideravelmente o desempenho, a consistência e a eficiência dos bancos de
dados. A orientação a agregados é uma das principais estratégias para a modelagem
de bancos NoSQL, principalmente quando requer um projeto de fragmentação para
tornar as operações atômicas e aumentar a consistência dos dados.
37 http://www.oracle.com/technetwork/database/database-technologies/nosqldb/overview/index.html

Capítulo 2. Fundamentação Teórica 35

2.2.1.3 Modelo E-R Estendido para Big Data

Para Villari et al. (2016), os SGBD NoSQL substituirão as tecnologias de arma-
zenamento relacionais nos próximos anos, mas os SGBD relacionais ainda devem ser
utilizados até uma efetivação total dos SGBD NoSQL. Por isso, a solução é utilizar
formas híbridas que envolvam tanto SGBD relacionais quanto sistemas NoSQL e os
autores partem do princípio de que a modelagem conceitual já deve indicar os dados
que serão manipulados por SGBD relacionais e os que serão guardados por sistemas
NoSQL. Os autores definem dados mantidos em SGBD NoSQL como Big Data que
indica um vasto volume de dados que incluem dados estruturados, não estruturados e
semiestruturados.

Na etapa de modelagem conceitual de um banco de dados, foi escolhido o
Digrama ER, por ser considerado um modelo melhor do que o Diagrama de Classes
da UML, por definir nomes de relacionamentos e representações de participação.
Identifica-se que o modelo ER possui, ainda, algumas limitações para representar
Big Data. Por isso, os autores propõem a adição de elementos gráficos, gerando um
modelo ER estendido capaz de representar aplicações híbridas. Essas aplicações
híbridas utilizam tanto SGBD relacionais quanto BD NoSQL.

Os elementos gráficos propostos são: Entidade Big Data, que representa dados
que devem ser armazenados em algum SGBD NoSQL; Relacionamento Big Data,
que representa relacionamentos entre entidades Big Data; Ligação Big Data, que é
utilizada para conectar as entidades e relacionamentos Big Data às entidades e aos
relacionamentos tradicionais do modelo ER, o que demonstra a interação que deve
existir entre SGBD de diferentes tipos. Por último, tem-se o elemento Ligação Big Data
Prioritária, o qual possui a função de indicar a prioridade de um relacionamento. Esta
prioridade é analisada de acordo com necessidade de processamento das possíveis
operações envolvidas.

O Modelo ER estendido proposto foi usado para modelagem de um sistema
de Informações em saúde. A primeira etapa realizada foi a identificação de entidades
e relacionamentos que devem representar um vasto volume de dados. No estudo
de caso realizado, a entidade Perfil e os relacionamentos Agendamento e Retorno
sobre infraestrutura foram considerados para utilização de SGBD NoSQL, devido às
características dos dados modelados. A segunda etapa foi a identificação das ligações
entre as entidades e os relacionamentos Big Data e as entidades e os relacionamentos
do modelo ER tradicional. Por último, adicionou-se uma ligação prioritária entre o
relacionamento Agendamento e a entidade Profissionais, indicando que a maior parte
das consultas do SGBD serão voltadas à visualização de agendamentos que envolvam
determinados profissionais.

Capítulo 2. Fundamentação Teórica 36

Percebe-se, portanto, que ao contrário de outros trabalhos, os quais propõem
modelos específicos para BD NoSQL propostos por Bugiotti et al. (2014), Banerjee et
al. (2015), Villari et al. (2016). Este propõe a adição de novos elementos gráficos ao
Modelo ER. Entretanto, os construtores propostos não abordam todos os conceitos
que envolvem a representação de dados para Modelos NoSQL, como, por exemplo, a
utilização de dados agregados. Outro fator negativo é que não foram propostas regras
de mapeamento do esquema conceitual para um esquema lógico. Isso deixa o trabalho
relacionado somente ao nível conceitual de dados, não demonstrando uma evolução
para os níveis lógico e físico.

2.2.2 Projetos de BD NoSQL

Esta seção contém relatos de projetos de modelagem de BD NoSQL, nos quais
realiza-se a modelagem conceitual utilizando desde modelos existentes mais genéricos
como UML, até ferramentas especifícas para um determinado SGBD NoSQL como a
Neoclipse que dá suporte ao modelo orientado a Grafos.

2.2.2.1 Modelagem e consulta de dados em bancos NoSQL

Kaur e Rani (2013) descrevem a importância de SGBD NoSQL para as neces-
sidades atuais das aplicações web, sobretudo devido à capacidade de fragmentação
da base de dados e à possibilidade de armazenamento de dados não estruturados ou
semiestruturados.

Os autores fazem uma descrição das abordagens de armazenamento de dados
NoSQL existentes e realizam a comparação entre modelos de armazenamento NoSQL
e o modelo ER, identificando as possíveis semelhanças. Por exemplo, para bancos de
dados orientados a grafos foi visto que cada entidade do modelo ER corresponde a um
nó do grafo, e que os atributos de entidade são equivalentes às propriedades dos nós,
e os relacionamentos seriam as ligações entre os nós.

Na fase de modelagem conceitual representam-se os dados que fazem parte
do domínio do sistema a ser implementado. Essa modelagem faz parte das primeiras
etapas do projeto de banco de dados, ou seja, da etapa de levantamento dos requisitos
de software, que geralmente é realizada junto às pessoas interessadas pelo projeto
(usuários finais, patrocinadores). Os SGBD NoSQL não necessitam que o esquema
de dados seja obrigatoriamente definido, mas a modelagem conceitual é importante
por facilitar a comunicação entre as pessoas envolvidas no projeto. Devido às diversas
opções de SGBD relacionais e NoSQL disponíveis no mercado, os projetistas de
bancos de dados devem avaliar e definir quais ferramentas terão maior eficiência. Os
autores acreditam que a modelagem conceitual de bancos NoSQL representa uma
etapa crucial para o projeto destes bancos de dados, pois representa uma visão inicial

Capítulo 2. Fundamentação Teórica 37

dos dados, facilitando a compreensão dos dados pelas pessoas envolvidas e auxiliando
as decisões de projeto.

No estudo de caso apresentado pelos autores, o MongoDB e o Neo4J foram
usados para implementar um domínio de um site de notícias. Esse domínio também foi
implementado no SGBD relacional PostgreSQL38 .

O esquema conceitual do domínio foi criado para o SGBD MongoDB por meio do
diagrama de classes da UML, no qual, cada classe modelou uma coleção de documen-
tos e os relacionamentos foram representados por meio de referências nos documentos.
No caso de classes diretamente relacionadas, tais como “Postagem” e “Comentários”,
foi utilizada a notação de composição, o que demonstra que essas duas classes são
armazenadas em um mesmo documento de uma coleção no MongoDB. Entende-se
que essa abordagem de utilização da UML seja favorável ao caso demonstrado —
o que não impede que outras abordagens de modelagem conceitual para projetos
de BD NoSQL sejam investigadas.

O esquema conceitual modelado para o domínio do site de notícias foi repre-
sentado utilizando o Neoclipse que é uma ferramenta de apoio à implementação de
bancos de dados no SGBD Neo4J. Os autores apontam que a grande vantagem do
uso dos bancos orientados a grafos é o desempenho na execução das consultas, pois
estes sistemas não realizam junções, como acontece nos bancos relacionais tradici-
onais. Na realidade, suas consultas são realizadas por meio da travessia no grafo,
percorrendo somente os nós que possuem relação com a consulta executada. Outra
característica do Neo4J é a garantia das propriedades ACID em suas transações.

Após a criação dos bancos de dados, os autores realizaram uma carga de
dados em cada instância dos SGBD MongoDB, Neo4J e PostgresSQL. Foram definidas
consultas a serem realizadas nos bancos de dados como forma de demonstrar que cada
SGBD provê uma linguagem de consulta diferente. No estudo de caso, as linguagens de
consulta utilizadas foram respectivamente: Cypher39 para Neo4J, MongoShell40 para
MongoDB, e SQL41 para o PostgresSQL. Os autores chegaram à conclusão que não
existe uma linguagem padrão de consulta para SGBD NoSQL, e que seria difícil
a sua criação, devido às diferenças estruturais entre os tipos de SGBD NoSQL. A
maioria dos desenvolvedores de software adotam a linguagem SQL, que é a mais
comumente encontrada em sistemas de BD relacionais. Por isso, as linguagens criadas
para SGBD NoSQL geralmente utilizam uma sintaxe baseada em SQL, como forma de
facilitar a adaptação dos desenvolvedores.
38 https://www.postgresql.org/
39 https://neo4j.com/developer/cypher-query-language/
40 https://docs.mongodb.com/getting-started/shell/client/
41 http://pgdocptbr.sourceforge.net/pg80/plpgsql.html

Capítulo 2. Fundamentação Teórica 38

2.2.2.2 Modelagem de BD NoSQL para monitoramento de veículos

Jeon, An e Lee (2015) detalham a modelagem e implementação de um BD
NoSQL baseado em documentos para um sistema de monitoramento de reciclagem de
veículos. Foi escolhido o MongoDB como SGBD NoSQL devido à expressividade, pois
ele permite o uso de dados agregados, e também por causa de sua capacidade de
processamento. Os autores consideram que o MongoDB possue os atributos adequa-
dos para a aplicação, pois permite o armazenamento de dados não-estruturados e não
requer um esquema fixo — além de ser escalável, o que possibilita o uso distribuído
em máquinas com menor capacidade de processamento e gerencia automaticamente
a fragmentação através da funcionalidade de auto-fragmentação.

A arquitetura do sistema projetado para desenvolvimento do estudo de caso
utiliza uma camada de infraestrutura composta pelo armazenamento distribuído dos
dados em vários servidores nos locais de reciclagem, e um servidor de configuração
central MongoDB. A camada de serviços compõe a arquitetura e fornece as informações
armazenadas para os clientes.

A modelagem conceitual do BD define coleções de dados a serem armazenados
e relacionamentos entre essas coleções. Para modelar relacionamentos entre coleções,
foram utilizadas referências ($ref), o que possibilitou as conexões conceituais do
domínio modelado. Especificamente na coleção que armazena as peças retiradas
dos veículos desmontados foi utilizado um documento aninhado para persistir dados
referentes a peso e volume. Essa utilização de documentos aninhados é defendida
pelo conceito de orientação agregada que define um agregado de dados como um
conjunto de objetos que formam uma unidade de acesso e de distribuição (SADALAGE;
FOWLER, 2013).

Usando o SGBD Relacional MySQL e o MongoDB foram realizados testes
padronizados com a execução de operações de inserção, consulta, atualização e
consultas com junção. Resultados indicaram que nas operações de inserção e de
atualização, à medida em que a quantidade de dados manipulada aumentava, utilizando
como parâmetro de avaliação o tempo de execução, obteve-se melhor desempenho
com o MongoDB. Nas operações de consultas, por outro lado, o MySQL produziu
um menor tempo de resposta, quando comparado ao MongoDB.

Jeon, An e Lee (2015) mostra que a adoção de BDs NoSQL deve fundamentar-
se na validação de um determinado tipo de persistência de acordo com o modelo de
negócio e requisitos do projeto de BD. Contudo, a análise realizada não considerou
o uso de servidores distribuídos. Por isso, pode-se considerá-la incompleta, já que
aplicações web que envolvem a manipulação de vastos volumes de dados devem
prever a escalabilidade.

Capítulo 2. Fundamentação Teórica 39

2.3 Considerações Finais do Capítulo

Esse capítulo apresentou os principais conceitos relacionados a SGBD NoSQL,
descrevendo modelos de persistência de dados destes SGBD. Foi verificado que a
utilização de SGBD NoSQL tem sido crescente e, dessa forma, percebe-se que a
implementação de novas ferramentas para auxiliar o projeto desses bancos de dados
contribui para o avanço científico e tecnológico.

Além dos conceitos básicos de NoSQL e de persistência poliglota, foram descri-
tas também as principais técnicas de modelagem conceitual encontradas na literatura.
Também foi abordado o Framework de Modelagem Eclipse que agrupa tecnologias
para desenvolver software baseado em modelos. Neste trabalho, o framework citado foi
utilizado no desenvolvimento da ferramenta NoSQLCASE que será descrita no Capítulo
4.

Foram descritos trabalhos encontrados na literatura que utilizam SGBD NoSQL
para gerenciar dados volumosos que geralmente não são estruturados, e os sistemas
NoSQL fornecem o suporte para manipular estes tipos de dados. A persistência poliglota
é utilizada para prover os benefícios de cada modelo de dados de acordo com os tipos
de informações e necessidades de negócio das aplicações. Os dados de aplicações
com persistência poliglota devem ser modelados a fim de facilitar o entendimento entre
a equipe técnica e os usuários, além de auxiliar as etapas de codificação, por se tornar
uma documentação única dos requisitos de dados do projeto, evitando documentos
separados para cada tipo de BD. De acordo com a literatura estudada, não existe um
modelo conceitual que permita a modelagem de sistemas com persistência poliglota.
Por isso, esta pesquisa propõe o Modelo ERNoSQL que será descrito no próximo
capítulo.

40

3 O MODELO DE DADOS CONCEITUAL ERNOSQL

Este capítulo apresenta o modelo proposto e descreve os construtores de mo-
delagem, detalhando suas principais características, notações gráficas e propriedades
básicas, além de exemplificar o uso dos construtores por meio de conceitos do domínio
de uma aplicação de comércio eletrônico. Este capítulo inclui, ainda, a especificação
de um metamodelo utilizando a notação da UML para exibir os relacionamentos entre
os componentes do modelo ERNoSQL. Por fim, as regras de mapeamento do modelo
ERNoSQL para a construção de esquemas lógicos NoSQL são detalhadas.

3.1 Introdução

O uso da persistência poliglota tem aumentado devido à variedade de tipos
de dados, sejam eles estruturados, semiestruturados ou não estruturados que são
mantidos nas aplicações web atuais, e às necessidades de manipulação distintas,
como consultas complexas que envolvem muitos relacionamentos, estruturas com da-
dos esparsos. Outros fatores relevantes para este crescimento é o aumento constante
da quantidade de dados gerados pelas aplicações web, as quais requerem de ferra-
mentas e tecnologias de banco de dados que permitam o armazenamento de dados
não estruturados e a possibilidade de escalabilidade por meio da fragmentação dos
dados em clusters, permitindo o aumento do volume de dados armazenado e evitando
problemas de indisponibilidade de recursos de hardware, melhorando o desempenho e
a operação dos SGBD.

Este trabalho de pesquisa propõe o modelo ERNoSQL para modelagem de
aplicações com persistência poliglota. ERNoSQL se diferencia de outros modelos exis-
tentes, pois permite a representação dos dados, em único esquema, para aplicações
de persistência poliglota que utilizam os sistemas de BD NoSQL (Seção 2.1.1), além
disso, ERNoSQL também possibilita a representação de dados agregados.

Este capítulo está organizado como segue. As Seções 3.2 e 3.3 descrevem
o modelo ERNoSQL e seus construtores de modelagem. A Seção 3.4 detalha um
cenário de exemplo de uso de ERNoSQL, enquanto a Seção 3.5 descreve a construção
de um esquema de dados com ERNoSQL. A Seção 3.6 apresenta um metamodelo
especificado em UML que fornece um entendimento sobre como os construtores do
ERNoSQL se relacionam entre si. A Seção 3.7 descreve as regras de mapeamento
identificadas a partir dos construtores de ERNoSQL para os modelos de sistemas de
BD NoSQL. Por fim, na Seção 3.8, apresenta-se uma comparação entre modelos de
dados para BD NoSQL encontrados na literatura (Seção 2.2) e o modelo ERNoSQL

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 41

proposto nesta dissertação.

3.2 Modelo ERNoSQL

ERNoSQL é um modelo de dados conceitual com propósito de representar
um domínio de aplicação que utilize persistência poliglota, ou seja, aplicações em
que os projetistas tenham pretensão de utilizar diversos modelos de dados. Durante
esta pesquisa foram estudados diversos modelos para representação conceitual de
bancos NoSQL (Seção 2.2), mas nenhum deles possibilita representar esquemas
conceituais poliglotas. O esquema conceitual poliglota é definido neste trabalho pela
representação de diversos modelos de dados NoSQL em um único esquema concei-
tual, e pela possibilidade de representar dados estruturados, semi-estruturados e não
estruturados.

3.3 Construtores de Modelagem do ERNoSQL

Os construtores propostos por ERNoSQL estendem o modelo E-R tradicional
objetivando a modelagem de sistemas que utilizem persistência poliglota, a qual envolve
variados tipos de dados estruturados, semiestruturados e não estruturados. A Figura
3.2 mostra cada construtor e a sua devida representação gráfica. A descrição de cada
um dos construtores é especificada abaixo:

• Entidade Não Estruturada - Este construtor representa uma entidade de dados
não estruturados, ou seja, não se tem uma definição de quais tipos de atributos
serão armazenados por meio dela. Desta forma, este construtor não permite o
uso de atributos, já que supostamente só existe o conhecimento a respeito da
Entidade.

• Entidade Semiestruturada - Este construtor representa dados que possuem
alguma estrutura definida, mas que não definem previamente limites ou tipos
para os dados.

• Entidade Agregada - Representa uma entidade de dados modelada utilizando
os conceitos de dados agregados, estruturas com vasta utilização em bancos
de dados NoSQL.

• Relacionamento de Entidades Agregadas - Construtor utilizado para representar
a conexão entre as entidades agregadas e que denota o sentido da hierarquia
de agregação. Este relacionamento permite as cardinalidades Um-para-Um
(1:1) e Um-para-Muitos (1:N), pois dados agregados referem-se sempre a uma
entidade de dados principal que agrega outras entidades relacionadas.

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 42

• NoSQL Esquema - Encapsula um conjunto de instâncias de entidades e seus
relacionamentos, identificando que estes representam um esquema conceitual
criado para um modelo de persistência de dados NoSQL específico (documentos,
grafos, chave-valor ou família de colunas).

• Relacionamento Poliglota - Este construtor representa o relacionamento entre
instâncias do construtor NoSQL Esquema exibindo a relação semântica entre
os esquemas que formam um esquema conceitual poliglota do tipo ERNoSQL.
Este construtor possui a propriedade descrição, a qual denota uma definição
do relacionamento entre as instâncias de NoSQL Esquema. A única cardina-
lidade possível deste relacionamento é Um-para-Um, pois uma instância de
NoSQL Esquema está sempre relacionada com no máximo outra instância deste
construtor.

Figura 3 – Construtores do Modelo ERNoSQL

Fonte: Elaborada pelo Autor (2017).

3.4 Cenário de Exemplo de uso de ERNoSQL

Para facilitar o entendimento sobre os construtores do ERNoSQL, relata-se,
nesta seção, o cenário hipotético de criação de um fictício site de comércio eletrônico,
intitulado vendas2017.com (domínio inexistente).

O processo de negócio que envolve o site vendas2017.com é descrito nesta
seção e será usado para exemplificar a modelagem conceitual poliglota por meio dos
conceitos do ERNoSQL. Este cenário de exemplo não visa detalhar todos os requisitos

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 43

de dados de um cenário real de uma empresa de comércio eletrônico, mas tem como
objetivo a ilustração dos principais conceitos de ERNoSQL.

A etapa de levantamento e análise de requisitos de um projeto de banco de da-
dos é a fase em que os projetistas utilizam técnicas (entrevistas, reuniões, questionários,
etnografia) para compreensão do domínio da aplicação, descrevendo e documentando
os requisitos de dados. O resultado desta etapa é um conjunto de requisitos que
devem ser especificados da forma mais detalhada e completa possível. Após a fase
de levantamento de requisitos, a próxima etapa é criar um esquema conceitual para o
banco de dados (ELMASRI; NAVATHE, 2010).

No levantamento de requisitos sobre a operacionalização do site de vendas de
produtos identificaram-se as seguintes informações:

• Catálogo de produtos - Lista com todos os produtos disponíveis para venda, a
qual deverá exibir os detalhes de cada produto. Os produtos vendidos possuem
detalhes específicos dependendo da categoria em que estejam inseridos ou
do seu modelo. Por exemplo, no catálogo de televisores existem produtos da
mesma categoria, intitulados Smart TVs que possuem características como:
sistema operacional, quantidade de memória, processador. Essas características
específicas serão diferentes em cada produto ou grupo de produtos.

• Usuários - Pessoas que acessam o site e se cadastram para efetuar compras.

• Carrinho de compras - Lista individual de produtos que um usuário do site está
interessado em adquirir.

• Recomendações - Lista de produtos ofertada a cada usuário cadastrado no site.
A lista de recomendações é baseada nas compras anteriores do usuário e em
compras semelhantes de outros usuários.

• Gestão de pagamentos - Envolve as transações de pagamentos e finalizações
de compras.

Durante a análise sobre o domínio relativo ao site de comércio eletrônico, e
baseando-se nos requisitos levantados, verifica-se que as maiores cargas de acessos
em sites de compras estão nas páginas de visualização dos produtos, pois nem todos
os usuários que acessam o site irão efetuar a compra. A maior parte dos acessos é
feita para buscar, especular e comparar preços de produtos. Então, o fluxo principal
de acesso dos usuários começa na visualização do catálogo de produtos. Caso seja
tomada a decisão de compra, o cliente insere o produto no carrinho. Quando o cliente
insere um item no carrinho, o site recomenda a aquisição de outros itens. Após

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 44

adicionar todos os produtos que deseja comprar, o cliente solicita a finalização da
compra, sendo redirecionado para a página de pagamento.

3.5 Construindo um Esquema Conceitual com ERNoSQL

Para a modelagem conceitual do site vendas2017.com descrito na seção ante-
rior, entende-se que os projetistas possuem todas as informações sobre os requisitos
da aplicação. Considera-se, neste cenário hipotético, que os projetistas envolvidos na
criação do site têm conhecimento sobre modelos NoSQL, e, além disso, entendem os
benefícios da utilização de persistência poliglota (Seção 2.1.3).

Para a construção de um esquema conceitual poliglota, define-se, inicialmente,
quais as possíveis entidades que envolvem o domínio do projeto. Desta forma, foram
elencadas como possíveis entidades: usuário, produto, pedido, item de pedido, carrinho
de compras, pagamento, entrega e recomendação. Após esta etapa, os relaciona-
mentos existentes entre as entidades são definidos. Os relacionamentos identificados
são:

• Usuário seleciona produtos;

• Usuário finaliza pedido;

• Pedido possui pagamento;

• Pedido contém itens de pedido;

• Pedido possui entrega;

• Usuário recebe recomendação; e

• Usuário recomenda produto.

Após o levantamento inicial das possíveis entidades e dos relacionamentos
envolvidos, o projetista deve responder às seguintes perguntas como forma de orientar
a modelagem do esquema em ERNoSQL:

Pergunta 1 - Existem entidades que representam dados não estruturados ou
semiestruturados?

Pergunta 2 - Existem dados que devem ser modelados em forma de agregados?

Com a resposta para os questionamentos acima mencionados, o projetista
deve utilizar os construtores do modelo ERNoSQL na elaboração do seu esquema
conceitual. Nesta fase, deve-se levar em consideração as características de dados não
estruturados (dados que não possuem estrutura definida, geralmente representados

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 45

por textos, imagens, áudios, vídeos) e semiestruturados (dados que possuem estrutura
irregular e mudança frequente de esquema, e considerados de natureza fortemente
evolutiva). Dados não estruturados em ERNoSQL devem ser modelados por meio
do construtor Entidade Não Estruturada que não permite atributos, quando não há
informação sobre os tipos de dados a serem utilizados. Os dados semiestruturados são
representados em ERNoSQL pela Entidade Semiestruturada e permitem a utilização
de atributos, criando-se uma estrutura inicial que é flexível e pode ser alterada sem
restrições.

No cenário do site vendas2017.com a entidade Produto foi definida como uma
entidade semiestruturada, pois cada produto pode possuir atributos específicos. A
Figura 3.2 mostra um exemplo da entidade semiestruturada Produto com dois atributos.

Figura 4 – Exemplo de uso do construtor Entidade Semiestruturada

Fonte: Elaborada pelo Autor (2017)

Os dados agregados são bastante utilizados em BD NoSQL, pois um agregado,
nos esquemas lógico e físico, é visto como uma estrutura única que possui dados
relacionados. Foi decidido que a entidade Pedido deve ser modelada em forma
de um agregado juntamente com as entidades itens pedido e entrega, pois elas
possuem dados relacionados, os quais devem ser considerados como uma estrutura
de dados única para o SGBD NoSQL. Um exemplo de uma estrutura agregada é de
um documento (Seção2.1.1.1) que registra dados referentes a entidades relacionadas.
Essa representação de agregados em ERNoSQL é realizada por meio do construtor
entidade agregada e do relacionamento de entidades agregadas que indica quais
entidades serão incorporadas na entidade de mais alto nível da hierarquia de agregados.
A Figura 3.3 mostra as entidades Itens pedido e Entrega agregadas à entidade Pedido
por meio do uso do construtor de relacionamento de entidades agregadas.

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 46

Figura 5 – Exemplo de uso do construtor Relacionamento de Entidades Agregadas

Fonte: Elaborada pelo Autor (2017)

Um dos princípios da persistência poliglota é se beneficiar dos diversos mo-
delos de dados NoSQL existentes, utilizando os pontos fortes de cada modelo para
determinadas partes do domínio de uma aplicação, como forma de atender melhor aos
requisitos do projeto. Essa diversidade de bancos de dados em uma aplicação gera um
ambiente poliglota. No projeto conceitual de aplicações, nas quais se pretende utilizar
persistência poliglota, os projetistas se deparam com a dificuldade de modelar os
dados, tendo em vista que envolve diversos conceitos que não são abordados pelo
modelo E-R tradicional. Uma dessas dificuldades é o fato de visualizar quais dados
estão sendo moldados para um determinado modelo de dados NoSQL. Com intuito
de solucionar essa problemática, o modelo ERNoSQL propõe o construtor NoSQL
Esquema que agrupa instâncias dos construtores, modeladas para um tipo de modelo
NoSQL. A Figura 3.4 exibe o uso do construtor NoSQL Esquema aplicado ao cenário do
site vendas2017.com. Esta figura mostra um esquema NoSQL definido para o modelo
orientado a Documentos, na qual foram incluídas as entidades agregadas relacionadas
pedido, Itens pedido e Entrega. Na parte superior da representação do construtor, é
especificado o nome do modelo NoSQL que está sendo representado.

Figura 6 – Exemplo de uso do construtor NoSQL Esquema

Fonte: Elaborada pelo Autor (2017)

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 47

Como ERNoSQL é um modelo estendido do E-R tradicional, ele permite o uso
dos construtores básicos do modelo E-R que devem ser utilizados para entidades
que representem dados estruturados, ou seja, aquelas em que já se tem a definição
de atributos representados. Dessa forma, as entidades Usuário e Recomendação
do cenário de exemplo são definidas como tipos de entidades tradicionais do E-R.
Mesmo com o uso de dados estruturados pode-se desejar utilizar um modelo de dados
NoSQL, devido aos possíveis requisitos não funcionais do projeto, como por exemplo o
desempenho nas consultas aos dados. As entidades Usuário e Recomendação estão
vinculadas por meio do relacionamento “usuário recebe recomendação”. Devido às
características desse tipo de relacionamento que modela dados de recomendação, foi
decidido utilizar um modelo de dados orientado a grafos, que é indicado para atender
requisitos de consultas mais eficientes (KAUR; RANI, 2013). A Figura 3.5 mostra uma
instância do construtor NoSQL Esquema referenciada para o modelo de banco de
dados orientado a grafos, onde estão inseridas instâncias dos construtores Entidade e
Relacionamento tradicionais do modelo E-R.

Figura 7 – Exemplo de uso do construtor NoSQL Esquema referenciado para o modelo de
Grafos

Fonte: Elaborada pelo Autor (2017)

A relação entre as instâncias do construtor NoSQL Esquema é dada pelo uso do
construtor “Relacionamento poliglota”, o qual permite o uso da propriedade descrição
como forma de descrever o significado do relacionamento entre os esquemas NoSQL.
A Figura 3.6 mostra um exemplo de relacionamento entre esquemas NoSQL com a
utilização do construtor NoSQL Esquema. Verifica-se que uma instância de NoSQL
Esquema referenciada ao modelo de Documentos se relaciona com outra instância
referenciada para o modelo de Grafos; a descrição desse relacionamento identifica a
relação de significado conceitual entre os esquemas NoSQL. Nesse caso, é definida
na propriedade descrição da instância do construtor Relacionamento poliglota em que
pedidos geram recomendações.

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 48

Figura 8 – Exemplo de uso do construtor Relacionamento entre esquemas NoSQL

Fonte: Elaborada pelo Autor (2017)

3.6 O Metamodelo ERNoSQL

O metamodelo ERNoSQL (E-R NoSQL Metamodel) foi definido a partir do me-
tamodelo ECore (Seção 2.1.4.2). Os construtores que compõem o metamodelo ER-
NoSQL são divididos em: (i) construtores base do MER (Modelo Entidade-Relacionamento) para
os quais foi utilizado como referência o metamodelo ER (SOUZA, 2011); e (ii) cons-
trutores do ERNoSQL (Seção 3.3). O metamodelo fornece uma visão conceitual dos
construtores do ERNoSQL.

O metamodelo ERNoSQL objetiva a representação de entidades e dos relaciona-
mentos envolvidos na construção de um esquema conceitual de dados, e deve fornecer
ao projetista da aplicação uma visão conceitual de como projetar, implementar e manter
sistemas de informação com persistência poliglota. O metamodelo foi especificado
em UML. No Apêndice A mostra-se o metamodelo completo e cada classe dele é
detalhada a seguir.

A classe Esquema (Schema) é o elemento raiz do metamodelo e representa a
composição de objetos NoSQL Esquema. Cada instância de NoSQL Esquema repre-
senta um esquema conceitual de um modelo NoSQL específico. No metamodelo, uma
instância de NoSQL Esquema pode relacionar-se com outra instância deste construtor,
e o relacionamento entre eles é representado pela classe RelacionamentoNoSQLEs-
quema que possui tanto uma associação Fonte (Source) quanto Alvo (Target) para a
classe NoSQL Esquema, indicando que o relacionamento ocorrerá entre instâncias de
NoSQL Esquema.

A Figura 3.7 mostra um fragmento do metamodelo que contém as classes
Schema, NoSQLEsquema e relacionamentoNoSQLEsquema descritas no parágrafo
anterior. Essas classes possibilitam a representação do esquema conceitual poliglota,
tendo em vista a definição de um Esquema (Schema) principal que é composto por
esquemas NoSQL (NoSQLEsquema) e seus relacionamentos (RelacionamentoNoSQ-
LEsquema). Além disso, verifica-se no fragmento exposto que a classe NoSqlEsquema
possui uma propriedade modelo de BD (modelobd) que registra o tipo de BD NoSQL

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 49

associado ao referido esquema NoSQL (NoSQLEsquema). Os valores válidos para
a propriedade modelobd são definidos na classe TiposNosql, que trata-se de uma
enumeração com os seguintes valores possíveis: DOCUMENT para o modelo NoSQL
orientado a Documentos; KEYVALUE para NoSQL Chave-Valor; GRAPH que repre-
senta o modelo de Grafos; e COLUMNS para NoSQL orientado a Famílias de Colunas.
A propriedade descricao da classe RelacionamentoNoSQLEsquema registra a descri-
ção do significado do relacionamento.

A razão de cardinalidade é definida nos objetos que relacionam duas classes
e especifica a quantidade de instâncias de relacionamentos que podem existir entre
as mesmas, sendo representada no metamodelo da seguinte forma: um para um
(1..1); nenhum até muitos (0..*), um para muitos (1..*) e muitos para muitos (*..*). Na
Figura 3.7, mostra-se que a razão de cardinalidade máxima permitida no relacionamento
de associação entre as classes NoSQLEsquema e RelacionamentoNoSQLEsquema é
de um para um.

Figura 9 – Fragmento do Metamodelo ERNoSQL com classes que representam o esquema
poliglota

Fonte: Elaborada pelo Autor (2017)

A Figura 3.8 apresenta outro fragmento do metamodelo, no qual exibe-se o
restante das classes que o compõem e representam as entidades, relacionamentos
e atributos. A classe Elemento generaliza as classes Entidade, Relacionamento e
Atributo que representam os construtores base para a criação do esquema conceitual.

As entidades são definidas no metamodelo por meio do uso da generalização
da classe pai Entidade que possui a propriedade nome. Essa classe Entidade é es-
pecializada em classes específicas para representar os construtores de entidades do
ERNoSQL (Seção 3.3) que são respectivamente as classes EntidadeNãoEstruturada,
EntidadeSemiEstruturada e EntidadeAgregada. As classes EntidadeAgregada e Rela-

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 50

cionamentoEntidadesAgregadasLink se relacionam por meio de associações Fonte
(Source) e Alvo (Target). A ligação entre as classes Entidade e Relacionamento é
realizada por meio da classe RelacionamentoLink, a qual possui uma propriedade que
define a cardinalidade do relacionamento.

A classe Atributo é responsável por representar os atributos e possui as pro-
priedades nome e tipoatributo, onde esta última registra um valor válido da classe
TipoAtributo. O relacionamento entre as classes Atributo e Entidade é definido pela
classe AtributoEntidadeLink, da mesma forma que o relacionamento entre as classes
Atributo e Relacionamento se realiza por meio da classe AtributoRelacionamentoLink.

Todas as classes que representam entidades, atributos e seus relacionamentos
são ligadas à classe NoSQLEsquema por meio do relacionamento de agregação com
cardinalidade zero para muitos (0..*), indicando que podem existir nenhuma ou muitas
instâncias vinculadas a um objeto da classe NoSQLEsquema.

Figura 10 – Fragmento do metamodelo ERNoSQL com classes que representam Entidades,
Relacionamentos e Atributos

Fonte: Elaborada pelo Autor (2017)

3.7 Regras de Mapeamentos para os Modelos NoSQL

Dentre as contribuições desta dissertação, tem-se a proposição de regras de
mapeamento dos construtores do modelo ERNoSQL para modelos de persistência
específicos de sistemas NoSQL (Seção 2.1.1). Essas regras foram definidas por
meio de correspondências existentes entre os construtores conceituais do ERNoSQL e

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 51

os elementos dos modelos de persistência de sistemas NoSQL.

Durante o levantamento das regras definiu-se para cada modelo NoSQL um
grupo específico de regras, expostas a seguir.

As regras de mapeamento de ERNoSQL para sistemas NoSQL orientado a
documento são:

Regra 1 - Cada entidade tradicional do MER, Entidade Não Estruturada ou
Entidade Semiestruturada deve ser mapeada para uma coleção de documentos.

Regra 2 - Um conjunto de Entidades Agregadas relacionadas devem ser mapea-
das para uma mesma coleção utilizando a orientação a agregados, incorporando os
dados das entidades agregadas em um único documento.

Regra 3 - Cada atributo deve ser mapeado para um campo no documento
referente à entidade ao qual está relacionado.

Regra 4 - Atributos identificadores de entidade devem ser mapeados para
campos “_id” nos documentos.

Regra 5 - Os relacionamentos tradicionais do MER devem ser mapeados
para convenções DBREF1.

As regras de mapeamento de ERNoSQL para sistemas NoSQL orientado a
grafo são:

Regra 1 - Cada entidade tradicional do MER, Entidade Não Estruturada ou
Entidade Semiestruturada deve ser mapeada para um rótulo, que identifica um grupo
de nós do grafo.

Regra 2 - Os atributos da entidade são mapeados para as propriedades do nó.

Regra 3 - Atributo identificador é mapeado para a propriedade de identificação
do nó.

Regra 4 - Os relacionamentos entre entidades devem ser mapeados para as
ligações entre os nós.

Regra 5 - Os relacionamentos com cardinalidade N:N devem ser mapeados
como uma ligação entre os nós, inserindo os atributos existentes no relacionamento
como propriedades da ligação.

As regras de mapeamento de ERNoSQL para sistemas NoSQL orientado a
chave-valor são:

Regra 1 – Cada Entidade Tradicional do MER, Entidade Não Estruturada ou
1 https://docs.mongodb.com/v3.2/reference/database-references

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 52

Entidade Semiestruturada deve ser mapeada para a instância chave-valor.

Regra 2 - Um conjunto de Entidades Agregadas relacionadas devem ser ma-
peadas para uma instância chave-valor, sendo a chave representada pelo atributo
identificador da Entidade Agregada principal, e o valor compõe o restante dos dados
agregados.

Regra 3 - O atributo identificador deve ser mapeado para a chave, e os outros
atributos para o valor.

As regras de mapeamento de ERNoSQL para sistemas NoSQL orientado a fa-
mílias de colunas são:

Regra 1 - Cada Entidade Tradicional do MER, Entidade Não Estruturada ou
Entidade Semiestruturada deve ser mapeada para uma tabela.

Regra 2 - Um conjunto de Entidades Agregadas relacionadas deve ser mapeado
para uma tabela, sendo a chave primária representada pelo atributo identificador da
Entidade Agregada principal.

Regra 3 - Os atributos devem ser mapeados para propriedades da tabela.

Regra 4 - Atributos identificadores devem compor a chave primária da tabela.

3.8 Comparação entre Modelos de Dados para BD NoSQL

O Quadro 2 exibe uma análise comparativa entre os modelos conceituais pro-
postos para a modelagem de BDs NoSQL e o modelo ERNoSQL proposto nesta
dissertação. Nesta análise, verificam-se os diferenciais do modelo ERNoSQL, pois
possibilita a modelagem de esquemas conceituais poliglotas. No Quadro 2, também
mostra-se que a modelagem de dados agregados não é possibilitada por todos os
modelos analisados, pois os outros modelos observados não possuem construtores
que permitam a representação de dados agregados. Verifica-se que o ERNoSQL
propõe uma modelagem com diferenciais em relação aos modelos analisados, pois
permite a modelagem de esquemas conceituais poliglotas e a representação de dados
agregados.

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 53

Quadro 2 – Análise comparativa entre trabalhos relacionados e ERNoSQL

Fonte: Elaborada pelo Autor (2017)

3.9 Considerações Finais do Capítulo

Este capítulo apresentou o modelo de dados conceitual ERNoSQL. O ERNoSQL
estende o modelo ER tradicional adicionando construtores que possibilitam a repre-
sentação de dados não estruturados, semiestruturados e o conceito de orientação
a agregados que é relevante na criação de bases de dados NoSQL. O ERNoSQL
também possibilita a representação de um esquema conceitual poliglota (Seção 2.1.3) e
se diferencia dos demais trabalhos citados nesta dissertação por propor um conjunto
de novos construtores capazes de criar um esquema de dados conceitual poliglota.

O objetivo de ERNoSQL é fornecer ao projetista de banco de dados uma abor-

Capítulo 3. O Modelo de Dados Conceitual ERNoSQL 54

dagem de modelagem que inclua os conceitos de dados utilizados no âmbito dos
SGBD NoSQL e que possibilite a representação de diversos modelos de dados NoSQL
em um esquema conceitual único. Para ilustrar os conceitos do ERNoSQL, um meta-
modelo especificado em UML foi descrito neste capítulo mostrando a representação
dos objetos e dos relacionamentos envolvidos na construção de um esquema de dados
conceitual ERNoSQL.

Para gerar um esquema lógico de dados para SGBDs NoSQL, este capítulo
descreveu ainda regras de mapeamento para converter um esquema conceitual ER-
NoSQL em esquemas específicos de SGBDs NoSQL. Assim, além de construir um
esquema conceitual para entendimento do domínio do problema, o projetista de banco
de dados pode implementar o esquema lógico de dados em um SGBD NoSQL. Essa
geração de esquemas lógicos a partir de um esquema ERNoSQL é facilitada pelo uso
da ferramenta NoSQLCASE cujas funcionalidades e detalhes de implementação são
descritos no capítulo seguinte.

55

4 A FERRAMENTA NOSQLCASE

Este capítulo apresenta a ferramenta NoSQLCASE que foi desenvolvida para
dar suporte aos construtores de modelagem do modelo conceitual ERNoSQL. Para isto,
este capítulo exibe uma visão geral da ferramenta CASE proposta, discute a arquitetura
de software usada no seu desenvolvimento, apresenta o ambiente gráfico, detalha
suas funcionalidades que são ilustradas por meio de um diagrama de casos de uso
da UML, e, por fim, descreve o processo de utilização da ferramenta por meio de
um diagrama de atividades da UML.

4.1 Introdução

NoSQLCASE é uma ferramenta computacional com o propósito de permitir a mo-
delagem conceitual de aplicações com persistência poliglota baseada no modelo ER-
NoSQL (Capítulo 3). O download da ferramenta e as instruções iniciais de instalação e
uso estão disponíveis em: https://sites.google.com/a/cin.ufpe.br/nosqlcase/.

Essa ferramenta auxilia os projetistas de software na elaboração de esquemas
conceituais poligotas por meio de um ambiente de desenho gráfico que possibilita o
uso dos construtores de modelagem de ERNoSQL. Além do editor gráfico, NoSQL-
CASE fornece funcionalidades de armazenamento dos esquemas criados em arquivos,
no formato XMI, que é um padrão da OMG, sendo utilizado por diversas ferramentas
de modelagem, além de facilitar integrações com outros esquemas de dados. NoSQL-
CASE também possibilita o mapeamento para esquemas lógicos expressos em scripts
de linguagens especifícas de SGBD NoSQL de acordo com as regras definidas nesta
dissertação (Seção 3.7), implementadas por meio de algoritmos de conversão criados
utilizando a linguagem EGL (Seção 2.1.4.2). Os algoritmos utilizados na conversão de
ERNoSQL para esquemas lógicos de SGBD NoSQL estão disponíveis no apêndice C
e em https://github.com/inacioloy/NoSQLCase.

NoSQLCASE foi desenvolvida a partir da criação de um metamodelo (Seção
3.6) representado textualmente na linguagem Emfatic (Seção 2.1.4.1), a qual faz parte
do Eclipse Epsilon que agrupa um conjunto de linguagens e ferramentas para geração
de código, transformação de modelo para modelo, validação de modelo, comparação,
migração e refatoração. O ambiente gráfico da ferramenta foi construído utilizando
o EuGENia GMF Tool (Seção 2.1.4.3), que gera um editor gráfico a partir de um
metamodelo descrito em Emfatic. Além disso, NoSQLCASE fornece anotações de alto
nível para customização do ambiente gráfico.

Este capítulo está organizado como segue. A Seção 4.2 detalha a arquitetura

Capítulo 4. A Ferramenta NoSQLCASE 56

do software. A Seção 4.3 ilustra e descreve o ambiente gráfico disponibilizado pela
ferramenta, enquanto a Seção 4.4 mostra o cenário de casos de uso, representado em
UML, e descreve cada uma das funcionalidades disponíveis em NoSQLCASE. Por fim,
na Seção 4.5, é descrito o processo de criação de esquemas conceituais de dados em
NoSQLCASE, ilustrado em um diagrama de atividades da UML.

4.2 Arquitetura de Software

A arquitetura de software define os componentes do sistema e como eles se
relacionam. Na ferramenta NoSQLCASE, a arquitetura está dividida em 3 camadas,
sendo: (i) Camada de Dados, que se refere à forma como os dados são armazenados;
(ii) Camada de Mapeamento, referindo-se às regras de negócio da aplicação; e (iii)
Camada de Apresentação que está relacionada à interface gráfica do software. O
desenvolvimento da ferramenta seguiu a abordagem de desenvolvimento orientada a
modelos, a qual baseia-se na criação de modelos como classe principal de artefatos
para o desenvolvimento do software (VARA; MARCOS, 2012).

A Figura 4.1, mostra um diagrama de componentes da UML que exibe uma visão
da arquitetura com as linguagens e framework utilizados. Pode-se visualizar que na
camada de apresentação, utilizou-se o framework GMF para geração do editor gráfico.
Na camada de mapeamento, foram utilizadas classes expressas na linguagem EGL
para realizar a conversão do esquema conceitual projetado em uma saída textual
referente a linguagens específicas dos SGBD NoSQL. Neste componente também
existe um pacote de classes java que implementam a tela de seleção do mapeamento
e a realização da chamada às funcionalidades de conversão. Na camada de armazena-
mento de dados, verifica-se que os esquemas salvos pelo usuário ficam armazenados
em arquivos XMI, que é o padrão utilizado pelo GMF.

Figura 11 – Componentes da Arquitetura de NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

As tecnologias usadas no desenvolvimento da arquitetura de NoSQLCASE con-

Capítulo 4. A Ferramenta NoSQLCASE 57

sistem na linguagem de programação Java, sendo utilizado como IDE (Integrated Deve-
lopment Environment), o Eclipse Epsilon, o qual está disponível para download em http:
//www.eclipse.org/epsilon/download/. Tendo em vista a utilização de desenvolvimento
orientado a modelos por meio do GMF, o artefato principal para o desenvolvimento da
ferramenta foi o metamodelo definido em EMF, que serviu como classe principal para a
geração do projeto da ferramenta CASE.

4.3 Ambiente Gráfico

A interação do usuário com a aplicação é realizada por meio da camada de
apresentação onde encontram-se os componentes e as bibliotecas responsáveis pela
interface gráfica da aplicação. No ambiente gráfico de NoSQLCASE o usuário visuali-
zará: (1) Área de Edição; (2) Menu de Componentes; (3) Menu Superior; e (4) Área
de Saída de Texto. A Figura 4.2 exibe o ambiente gráfico e define cada parte dele de
acordo com a numeração dos itens descritos em sequência.

1) Área de Edição: Corresponde à área disponível para a criação, edição e visu-
alização de esquemas conceituais de dados em consonância com o metamo-
delo ERNOSQL.

2) Menu de Componentes: Inclui os elementos propostos para a criação de esque-
mas conceituais, os quais podem ser adicionados pelo usuário por meio de um
duplo clique ou arrastando o elemento desejado para a Área de Edição.

3) Menu Superior: Fornece funcionalidades de criar, abrir ou salvar arquivos pela
ferramenta, além de disponibilizar os botões de acesso às funcionalidades de
mapeamento do esquema conceitual de dados.

4) Área de Saída de Texto: Representa a área onde são exibidos os códigos
gerados após a execução das funcionalidades de mapeamento.

Capítulo 4. A Ferramenta NoSQLCASE 58

Figura 12 – Ambiente Gráfico de Modelagem em NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

4.4 Cenário de Casos de Uso

As funcionalidades da ferramenta NoSQLCASE foram modeladas por meio
do Diagrama de Casos de Uso da UML. Propõe-se um cenário no qual o “ator”,
representado como um usuário da ferramenta, interage com os “casos de uso” que
correspondem às funcionalidades disponíveis. Os casos de uso da Figura 4.3 são
detalhados a seguir:

Capítulo 4. A Ferramenta NoSQLCASE 59

Figura 13 – Cenário de Casos de Uso em NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

• Criar esquema conceitual - Fornece as funcionalidades de criação de novos
esquemas conceituais. Essa funcionalidade se inicia com a criação de uma
instância do elemento “Schema”, e a partir deste o usuário deve inserir as
instâncias dos construtores do modelo ERNoSQL, com os quais pode elaborar
o seu esquema conceitual poliglota.

• Exportar esquema poliglota - Inclui as funcionalidades para conversão do
esquema conceitual em um script de criação do BD NoSQL expresso por uma
linguagem específica do SGBD NoSQL selecionado. A seleção do SGBD NoSQL
para o qual será realizada a conversão é realizada pelo caso de uso “Selecionar
SGBD NoSQL de destino”. Após a seleção do SGBD de destino, a ferramenta
aplica as regras de mapeamento por meio de algoritmos de conversão e gera o
script, exibido na área de saída de texto da ferramenta.

• Salvar arquivo - Agrupa funções de armazenamento de arquivos, no formato
XMI, para os esquemas conceituais elaborados na ferramenta NoSQLCASE.

4.5 Construção de Esquemas com NoSQLCASE

O processo de construção de esquemas conceituais em NoSQLCASE é ilus-
trado na Figura 4.4. Esse processo se inicia com a criação de uma instância do
construtor NoSQL Esquema, na qual devem ser inseridas as entidades e relacionamen-
tos referentes àquele esquema NoSQL. Em seguida, se necessário, pode-se adicionar

Capítulo 4. A Ferramenta NoSQLCASE 60

outra instância de NoSQL Esquema referente a outro modelo NoSQL. Ao concluir a
modelagem dos esquemas NoSQL que fazem parte do esquema conceitual poliglota,
deve-se relacionar as instâncias de NoSQL Esquema definindo o significado existente
entre esses relacionamentos.

O projetista que utiliza a ferramenta NoSQLCASE, após a elaboração do seu
esquema conceitual poliglota, tanto pode salvar este esquema que representa uma
visão conceitual dos dados para o domínio da aplicação projetada, como também, pode
exportar o esquema para scripts de SGBD NoSQL. Estes scripts devem ser utilizados
na criação das instâncias físicas do banco de dados modelado na ferramenta.

Figura 14 – Processo de criação de esquemas em NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

4.6 Considerações Finais do Capítulo

Este capítulo apresentou a ferramenta NoSQLCASE desenvolvida para dar
suporte ao modelo conceitual proposto nesta dissertação. O objetivo dessa ferramenta
é fornecer ao projetista da aplicação um apoio computacional para auxiliá-lo nas ativi-
dades de modelagem de uma aplicação que use diversos tipos de dados (estruturados,
semiestruturados e não estruturados), além do uso de diferentes modelos lógicos de
sistemas NoSQL (Seção 2.1.1) definidos neste trabalho como aplicação de persistência
poliglota.

Para o desenvolvimento dessa ferramenta, foram utilizados os conceitos da
arquitetura em camadas e a metodologia orientada a modelos. O primeiro conceito
permitiu a separação entre as camadas de apresentação, regras de negócios e a
camada de dados, sendo essa abordagem vital para o isolamento da camada de
dados. O segundo conceito foi utilizado na implementação por meio do desenvolvimento
orientado a modelos que utiliza a criação de modelos como classe principal de artefatos
para o desenvolvimento do software e oferece vantagens como, por exemplo, maior
produtividade, facilidade de manutenção, entre outras.

Dentre as suas principais características, NoSQLCASE permite a criação de um

Capítulo 4. A Ferramenta NoSQLCASE 61

esquema conceitual de dados, no qual as instâncias dos construtores de modelagem
do modelo ERNoSQL representam abstrações dos conceitos referentes à persistência
poliglota de dados que incluem variados tipos de dados e modelos NoSQL. Isso per-
mite que os requisitos de dados de um domínio de aplicação de persistência poliglota
possam ser modelados e compreendidos pelo projetista da aplicação. Após a cons-
trução do esquema conceitual, a ferramenta CASE permite a geração do esquema
lógico, representado por um script de criação do BD NoSQL gerado a partir das regras
de mapeamento especificadas na Seção 3.7. Assim, o script gerado pode ser inter-
pretado em um SGBD NoSQL. Para exemplificar o uso da ferramenta CASE em um
domínio de problema real, o capítulo seguinte descreve a construção de um esquema
conceitual de dados referente a uma aplicação para acompanhamento de indicadores
acadêmicos de uma instituição federal de ensino técnico e superior do Nordeste do
Brasil, e compara o esquema criado em NoSQLCASE com esquemas gerados por
duas outras ferramentas de modelagem conceitual de dados.

62

5 UM ESTUDO DE CASO COM NOSQLCASE

Este capítulo implementa um estudo de caso por meio da construção de um
esquema conceitual de dados por meio de ferramentas de modelagem existentes e
da ferramenta NoSQLCASE proposta, além de demonstrar as funcionalidades espe-
cifícas de NoSQLCASE para modelagem de esquemas conceituais poliglotas. Para
tanto, foi utilizado o domínio de uma aplicação para acompanhamento de indicadores
acadêmicos, que está em processo de desenvolvimento por uma instituição de ensino
técnico e superior do Nordeste brasileiro. Este capítulo está organizado da seguinte
forma. A Seção 5.1 introduz o estudo de caso discutindo sua motivação e as etapas
para sua elaboração. A Seção 5.2 discorre sobre o planejamento do estudo, enquanto
a Seção 5.3 descreve o seu desenvolvimento. A Seção 5.4 discute as análises e os
resultados obtidos com a realização do estudo de caso. Por fim, a Seção 5.5 apresenta
as considerações finais deste capítulo.

5.1 Introdução

Um estudo de caso pode ser aplicado como uma estratégia de pesquisa compa-
rativa, ao relacionar os resultados de usar um método ou tecnologia, com os resultados
de usar outra abordagem. Uma das formas de realizar um estudo de caso é comparar
projetos semelhantes (sister project). Nesse caso, a elaboração do estudo é realizada
por meio da aplicação de projetos similares, sendo que um deles utiliza a tecnologia
ou metódo novo proposto, enquanto os outros utilizam tecnologias ou métodos já
conhecidos (WOHLIN et al., 2012).

As etapas que serão utilizadas na implementação do estudo de caso são: 1)
planejamento (definição de objetivos e organização dos protocolos e dos procedimentos
para o desenvolvimento do estudo); 2) Desenvolvimento (operação do estudo de caso
a partir dos procedimentos definidos na etapa de planejamento); e 3) Análise e os
resultados, que dizem respeito à execução do estudo, identificando os pontos principais
de acordo com as questões definidas também no planejamento.

Como domínio de aplicação para o estudo abordado, utiliza-se os requisitos de
uma aplicação para acompanhamento de indicadores acadêmicos que está sendo
desenvolvida pela Diretoria de Gestão de Tecnologia da Informação do Instituto Federal
de Ciência e Tecnologia do Ceará. Para este estudo de caso, será utilizado o nome
Indicadores Acadêmicos como menção à aplicação utilizada.

As próximas seções estão organizadas como segue: a Seção 5.2 detalha o
planejamento do estudo de caso realizado, definindo os seus objetivos, questões

Capítulo 5. Um Estudo de Caso com NoSQLCASE 63

norteadoras, descrição do domínio de aplicação utilizado, e, por fim, o protocolo com
a lista de atividades que foram aplicadas e os instrumentos que foram utilizados na
operacionalização do estudo. A Seção 5.3 explica o desenvolvimento do estudo de caso
aplicando as atividades planejadas em cada uma das ferramentas CASE correlatas
selecionadas e na ferramenta proposta nesta dissertação. A análise do estudo e
discussão dos resultados são detalhadas na Seção 5.4. Por fim, a Seção 5.5 discorre
sobre as considerações finais a respeito do estudo de caso implementado.

5.2 Planejamento do Estudo de Caso

Esta seção descreve o planejamento do estudo de caso, incluindo seus objetivos
(Seção 5.2.1), questões do estudo (Seção 5.2.2), descrição do caso estudado (Seção
5.2.3) e, por fim, detalha-se o protocolo usado na operacionalização do estudo e os
instrumentos utilizados (5.2.4).

5.2.1 Objetivos

O objetivo principal deste estudo de caso é realizar a comparação de ferramentas
CASE existentes que permitem a modelagem conceitual de dados segundo o modelo
ER, com a ferramenta proposta nesta dissertação. Esta comparação tem como objetivo
investigar a viabilidade da ferramenta NoSQLCASE no auxílio de construções de
esquemas conceituais de dados para aplicações de persistência poligota. Também
objetiva-se demonstrar a utilização das funcionalidades de mapeamento, possibilitadas
por NoSQLCASE, para scripts expressos em linguagens de SGBDs NoSQL.

Tem-se ainda como objetivo deste estudo, demonstrar a viabilidade da mode-
lagem de dados agregados por meio dos construtores do modelo ERNoSQL, com o
auxílio da ferramenta NoSQLCASE.

5.2.2 Questões do Estudo

As seguintes questões norteadoras foram definidas para o estudo de caso aqui
descrito.

Questão 1: Quais ferramentas analisadas permitem a modelagem conceitual
de dados para domínios de aplicações de persistência poliglota?

Questão 2: Quais ferramentas analisadas permitem a modelagem de dados
baseada no conceito de dados agregados?

Questão 3: Quais ferramentas analisadas permitem o mapeamento do esquema
conceitual criado para esquemas lógicos de modelos NoSQL?

Capítulo 5. Um Estudo de Caso com NoSQLCASE 64

5.2.3 Descrição do Domínio da Aplicação - Contexto de Estudo

O Sistema Nacional de Informações da Educação Profissional e Tecnológica
(SISTEC) tem como finalidade promover mecanismos de registro e controle dos dados
da educação profissional e tecnológica no país. SISTEC possibilita o acompanha-
mento de programas e de políticas públicas da educação profissional e tecnológica e
disponibiliza para a sociedade, informações das ofertas de cursos técnicos de nível
médio.

As unidades de ensino da Rede Federal de Educação Profissional, Científica
e Tecnológica (RFEPCT) são responsáveis por cadastrar no SISTEC e manter atu-
alizadas as informações sobre seus cursos, alunos e matrículas, conforme previsto
na Resolução CNE n° 03 de 30/09/2009. SISTEC tem se consolidado em várias
utilizações: estudos estatísticos, geração de indicadores de gestão, planejamento e
monitoramento de políticas públicas e distribuição de recursos para as instituições
na matriz orçamentária. O sistema disponibiliza planilhas com fórmulas estatísticas a
serem utilizadas pelas unidades de ensino no cálculo de indicadores para o acompa-
nhamento das metas e para a elaboração de relatórios de gestão.

Devido ao cálculo dos indicadores não estar automatizado em um sistema
informatizado, gerando retrabalho e suscetibilidade a erros, foi solicitado à Diretoria
de Gestão de Tecnologia da Informação do Instituto Federal de Educação, Ciência
e Tecnologia do Ceará, a implementação de sistema informatizado que importe os
dados do SISTEC e realize o cálculo dos indicadores. O objetivo desta solicitação
é disponibilizar essas informações para acesso pelos departamentos de Estatítica e
Pró-Reitoria de Ensino, auxiliando no controle e gerenciamento das ofertas de vagas
e consequentemente, no cumprimento das metas institucionais planejadas. As infor-
mações detalhadas sobre o cálculo dos indicadores estão disponíveis em um manual
disponibilizado pelo Ministério da Educação, o qual pode ser acessado em: http://sitesi
stec.mec.gov.br/images/arquivos/pdf/manual_de_indicadores_da_rfepct_2016.pdf.

Na etapa de levantamento dos requisitos da aplicação Indicadores Acadêmi-
cos, analisou-se os fluxos de processo relativos ao domínio modelado, chegando-se
à conclusão de que o sistema devia possuir as seguintes entidades:

• Curso - Possui atributos referentes aos cursos ofertados.

• Ciclo de Matrícula - Envolve a oferta de um curso com uma carga horária e um
período de realização definidos, visando englobar um conjunto de matrículas
de alunos para a obtenção de uma mesma certificação ou de um diploma.

• Aluno - Compreende as informações dos alunos que estão vinculados aos
cursos e aos ciclos de matrículas.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 65

• Indicador - Inclui dados referentes aos indicadores calculados para um determi-
nado período e ciclo de matrícula. Esses indicadores devem ser armazenados
para estatísticas e geração de relatórios gerenciais.

Os relacionamentos definidos no domínio analisado são:

• Possui - Relacionamento entre as entidades Curso e Ciclo de Matrícula com
cardinalidade um para muitos (1 - N) indicando que um Curso “possui” muitos
Ciclo de Matrícula, mas um Ciclo de Matrícula é referente a somente um Curso.

• Pertence - Relacionamento entre as entidades Aluno e Ciclo de Matrícula com
cardinalidade muitos para muitos (N - M) indicando que um Aluno pertence a
muitos Ciclos de Matrícula e um Ciclo de Matrícula tem vários Alunos.

• Resulta - Relacionamento entre as entidades Ciclo de Matrícula e Indicador com
cardinalidade um para muitos (1 - N) indicando que um Ciclo de Matrícula pode
resultar em muitos Indicadores, mas um Indicador é referente a somente um
Ciclo de Matrícula.

5.2.4 Protocolo e Instrumentos

O protocolo de um estudo de caso descreve a lista de procedimentos a serem
aplicados para realizar o estudo. Ele serve como um guia para orientar o pesquisador no
desenvolvimento do estudo de caso (WOHLIN et al., 2012). O estudo de caso descrito
nesta dissertação objetiva investigar a viabilidade da ferramenta NoSQLCASE na
construção de esquemas conceituais de dados para aplicações de persistência poliglota.
A seleção das ferramentas CASE utilizadas foi baseada em pesquisas por ferramentas
gratuitas de modelagem conceitual de bancos de dados e fundamentadas no modelo
ER. Para tanto, foram selecionadas as ferramentas EerCASE1 e ERDPlus2 para o
desenvolvimento do estudo de caso por meio da criação de um esquema conceitual
referente ao domínio da aplicação Indicadores Acadêmicos, descrito na seção anterior,
nessas ferramentas e na ferramenta NoSQLCASE proposta. Foram definidos os
seguintes procedimentos a serem realizados em cada ferramenta utilizada neste estudo
de caso:

• Criação do esquema conceitual de dados de acordo com os requisitos do
domínio da aplicação Indicadores Acadêmicos.

• Explorar as funcionalidades de mapeamento e de geração de esquemas lógicos
disponíveis em cada ferramenta CASE.

1 https://sites.google.com/a/cin.ufpe.br/eercase/
2 https://erdplus.com/#/

Capítulo 5. Um Estudo de Caso com NoSQLCASE 66

• Identificar se a ferramenta possibilita a modelagem baseada no conceito de
dados agregados.

• Identificar se a ferramenta permite a modelagem de aplicações de persistência
poliglota.

• Identificar se a ferramenta apresenta erros em tempo de execução ou interrup-
ções que impeçam ou prejudiquem o seu funcionamento e uso.

Quanto à instrumentação utilizada para a execução deste estudo de caso, foram
utilizados os seguintes instrumentos e software:

• Computador portátil com os seguintes recursos: processador Intel(R) Core(TM)
i5 CPU M 480 de 2.67GHz, 6 gibabytes de memória RAM, executando o sistema
operacional Windows 7 na versão de 64 bits.

• Ambiente de execução Java na versão 8. Esse ambiente é necessário para a
execução das ferramentas EerCASE e NoSQLCASE.

• Ferramenta EerCASE para o projeto conceitual de banco de dados, segundo o
modelo E-R (SOUZA, 2011).

• Ferramenta ERDPlus para projeto de banco de dados segundo os modelos E-R
e relacional.

• Ferramenta NoSQLCASE para projeto conceitual de banco de dados para
aplicações de persistência poliglota.

• SGBD MongoDB na versão 3.4.5 gratuita, disponível em: https://www.mongodb
.com/download-center#community. A escolha do MongoDB foi motivada pela
sua popularidade entre os sistemas de BD NoSQL.

• Ferramenta web para validação de documentos JSON, disponível em: https://js
onlint.com/, acesso em: 10/07/2017.

5.3 Desenvolvimento do Estudo de Caso

O desenvolvimento do estudo de caso procedeu de acordo com os procedimen-
tos planejados no protocolo, ou seja, efetuando a modelagem conceitual do domínio da
aplicação Indicadores Acadêmicos em cada uma das ferramentas CASE. Além disso,
foram exploradas as funcionalidades das ferramentas na conversão para esquemas
lógicos e foi investigado se existe a possibilidade da modelagem de aplicações de
persistência poliglota.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 67

As próximas seções estão organizadas como segue. A Seção 5.3.1 descreve
a execução do estudo por meio da ferramenta EerCASE e mostra o esquema concei-
tual criado nela. A Seção 5.3.2 detalha o estudo na ferramenta ERDPlus e discute
as suas funcionalidades. A Seção 5.3.3 descreve o estudo feito com a ferramenta
NoSQLCASE, e detalha, ainda, as funcionalidades de exportação para os esquemas
lógicos considerados por NoSQLCASE.

5.3.1 Execução na Ferramenta EerCASE

A ferramenta EerCASE está disponível para download em: https://sites.google.c
om/a/cin.ufpe.br/eercase/. As principais funcionalidade de EerCASE são:

• Permite a criação e edição de esquemas conceituais E-R.

• Fornece suporte para geração de código e validação do esquema conceitual de
dados de acordo com a notação clássica EER. Para o desenvolvimento deste
estudo de caso, utilizou-se a versão 1.0.7.

A ferramenta EerCASE possibilitou a criação do esquema por meio dos cons-
trutores da notação clássica do modelo EER. A ferramenta possui funcionalidade de
mapeamento do esquema conceitual EER para um script expresso pela linguagem de
definição de dados (Data Definition Language - DDL), que é um dos vocabulários que
compõem a linguagem SQL. Ao aplicar o teste para conversão do esquema conceitual
criado, a ferramenta não conseguiu realizar devidamente a conversão e não exibiu o
script gerado, apresentando somente a área de saída de texto em branco.

No tocante à representação da modelagem de dados agregados, identificou-se
que não foi possível realizar esse tipo de modelagem na ferramenta EerCASE, pois ela
objetiva a criação de esquemas conceituais segundo o modelo EER, e este não possui
construtores que possibilitem a representação de dados agregados. Da mesma forma,
a modelagem de esquemas conceituais de aplicações de persistência poliglota não
pode ser realizada, pois a ferramenta não disponibiliza construtores de modelagem
para essa finalidade. Por fim, no que condiz ao pleno funcionamento da ferramenta,
verificou-se que ela não apresenta erros que prejudiquem a sua utilização.

A Figura 5.1 mostra o esquema conceitual criado com o auxílio da ferramenta
EerCASE, na qual pode-se visualizar entidades, relacionamentos e atributos que
condizem com o domínio de aplicação utilizado neste estudo de caso.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 68

Figura 15 – Esquema conceitual modelado em EerCASE

Fonte: Elaborada pelo Autor (2017)

5.3.2 Execução na Ferramenta ERDPlus

A ferramenta ERDplus está disponível online por meio do endereço: https://erdp
lus.com. Essa ferramenta fornece as seguintes funcionalidades:

• Criação e edição de esquemas conceituais E-R.

• Criação e edição de esquemas relacionais de dados.

• Conversão de um esquema conceitual E-R em um esquema relacional.

• Exportação de esquemas relacionais para a linguagem SQL.

Neste estudo, utilizou-se a versão online de ERDPlus, acesso em: 21/02/2017.
As etapas realizadas no software seguindo o planejamento do estudo de caso foram:

1) Criação do esquema conceitual E-R.

2) Conversão do esquema conceitual E-R para o esquema relacional.

3) Conversão do esquema relacional em código SQL.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 69

4) Análise da possibilidade de modelagem baseada no conceito de dados agre-
gados, além da verificação de alguma forma de modelagem de aplicações de
persistência poliglota.

O uso da ferramenta ERDPlus foi iniciado com a construção do esquema con-
ceitual E-R. Nesse sentido, a ferramenta atendeu ao propósito, possibilitando a criação
do esquema de forma ágil e prática. A Figura 5.2 mostra a interface da ferramenta
ERDPlus com a representação do esquema conceitual utilizado neste estudo de caso.
Nela, pode-se visualizar entidades, relacionamentos e atributos modelados.

Figura 16 – Esquema conceitual modelado em ERDPlus

Fonte: Elaborada pelo Autor (2017)

No que se refere às funcionalidades de conversão do esquema conceitual para
esquemas lógicos, realizou-se a utilização do mecanismo de conversão, disponível em
ERDPlus, para geração de um esquema relacional. Na execução dessa funcionalidade,
verificou-se que a ferramenta consegue realizar a conversão sem apresentar erros. A
Figura 5.3 exibe o esquema relacional gerado pela ferramenta ERDPlus a partir do
esquema conceitual (Figura 5.2). É importante observar que o esquema da Figura 5.2
é igual ao esquema conceitual gerado pela ferramenta EerCASE e mostrado na Figura
5.1.

Dando sequência aos procedimentos do protocolo (Seção 5.2.4), analisou-se a
capacidade da ferramenta para conversão de esquemas lógicos. Em particular, para a

Capítulo 5. Um Estudo de Caso com NoSQLCASE 70

geração de um script expresso na linguagem de definição de dados DDL de SQL. A
Figura 5.4 mostra a tela com o script DDL gerado pela ferramenta ERDPlus a partir do
esquema relacional da Figura 5.3.

Figura 17 – Código DDL/SQL gerado pela ferramenta a partir do esquema relacional

Fonte: Elaborada pelo Autor (2017)

Finalizando o estudo com a ferramenta ERDPlus, investigou-se a sua capacidade
de modelagem de dados agregados e a possibildade de representar aplicações de
persistência poliglota. Verificou-se que a ferramenta não contempla essas formas de
representação de dados. Por fim, durante a execução dos procedimentos deste estudo
não foi encontrado qualquer erro na ferramenta ERDPlus que comprometa sua plena
utilização.

5.3.3 Execução na Ferramenta NoSQLCASE

As seguintes etapas foram realizadas com a ferramenta NoSQLCASE seguindo
o planejamento deste estudo:

1) Criação do esquema conceitual com base no conceito de persistência poliglota
(Seção 2.1.3) e utilizando os construtores do modelo ERNoSQL (Capítulo 3).

2) Edição do esquema conceitual criado para representar dados agregados, usando
os construtores de modelagem definidos no modelo ERNoSQL.

3) Conversão do esquema conceitual para o esquema lógico representado por
um script expresso na linguagem de definição de dados do SGBD MongoDB.
Além do uso da funcionalidade de conversão, também demonstra-se a execução

Capítulo 5. Um Estudo de Caso com NoSQLCASE 71

do script em uma instância do SGBD MongoDB, para mostrar a corretude do
algoritmo de conversão implementado na ferramenta NoSQLCASE.

4) Conversão do esquema conceitual para um esquema lógico genérico, ou seja,
indepente de um SGBD específico, representado no formato de um docu-
mento JSON. JSON é representado em formato de texto e é independente
de linguagem, pois usa convenções que são familiares a maior parte das lingua-
gens de programação, sendo um formato bastante utilizado na troca de dados
entre aplicações.

A criação de esquemas conceituais poliglotas em NoSQLCASE está vinculada
à adição de elementos NoSQLEsquema, como descrito na explicação do processo de
utilização de NoSQLCASE (Seção 4.5). Neste estudo de caso, decidiu-se utilizar duas
instâncias de NoSQLEsquema, sendo um deles relativo ao modelo de dados baseado
em Documentos e o outro, relativo ao modelo baseado em Grafos. A Figura 5.5 exibe
o diagrama que representa o esquema conceitual criado com o auxílio da ferramenta
NoSQLCASE. Visualiza-se que a instância de NoSQLEsquema definida para o modelo
de documentos representa os dados das entidades Aluno, CicloMatrícula e Curso,
enquanto a instância de NoSQLEsquema, que referencia o modelo Grafos, representa
os dados da entidade Indicador.

Figura 18 – Esquema Conceitual Poliglota criado em NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

A representação de dados agregados é possível em NoSQLCASE por meio do
uso dos construtores Entidade Agregada e Relacionamento de Entidades Agregadas
do modelo ERNoSQL (Capítulo 3). A Figura 5.6 exibe uma instância de NoSQLEs-
quema para o tipo de documentos contendo dados agregados. Visualiza-se que a
entidade agregada Curso relaciona-se com as entidades CicloMatricula e Aluno. Esse

Capítulo 5. Um Estudo de Caso com NoSQLCASE 72

relacionamento entre entidades agregadas é visualizado pela notação da linha tra-
cejada com uma seta indicando que uma entidade principal está agregando outra
entidade, como descrito na Seção 3.5.

Figura 19 – Esquema Conceitual Poliglota com uso de Entidades Agregadas

Fonte: Elaborada pelo Autor (2017)

5.3.3.1 Exportando Esquemas Conceituais com NoSQLCASE

A utilização das funções de exportação dos esquemas conceituais está dis-
ponível no menu superior da ferramenta NoSQLCASE, por meio da opção exportar
esquema poliglota. Após acessar a opção, é exibida uma caixa de seleção e o proje-
tista seleciona o SGBD NoSQL para o qual deseja gerar o script, e clica no botão de
confirmação. Após a confirmação, a ferramenta realiza a conversão e exibe o script
na área de saída de texto. As Figuras 5.7 e 5.8, mostradas abaixo, exibem respecti-
vamente a seleção do SGBD (Figura 5.7) para o qual se deseja realizar a conversão
e, após a conversão, é exibido o script (Figura 5.8) na área de saída de texto da
ferramenta.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 73

Figura 20 – Ilustração da funcionalidade de exportação em NoSQLCASE

Fonte: Elaborada pelo Autor (2017)

Figura 21 – Código gerado por NoSQLCASE para o SGBD MongoDB

Fonte: Elaborada pelo Autor (2017)

Para realizar a conversão do esquema conceitual para um formato JSON na
ferramenta NoSQLCASE, o projetista deve utilizar a funcionalidade de exportação
da ferramenta, selecionando a opção de conversão para Javascript Object Notation -
JSON. A Figura 5.7 mostra a tela de NoSQLCASE, onde visualiza-se na área de saída
de texto, o código do documento JSON gerado pela conversão do esquema conceitual
criado para o estudo de caso.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 74

Figura 22 – Código gerado por NoSQLCASE no formato JSON

Fonte: Elaborada pelo Autor (2017)

Para verificar a validade da representação no formato JSON produzida por
NoSQLCASE, realizou-se o acesso ao sítio https://jsonlint.com/, que fornece a funci-
onalidade de validar a sintaxe de documentos JSON. A Figura 5.10 exibe a imagem
da página do sítio, na qual observa-se que o código JSON verificado obteve resultado
positivo, de acordo com a mensagem indicativa gerada de que o documento é válido.

Figura 23 – Demonstração da validade do documento JSON gerado em NoSQLCASE

Fonte: https://jsonlint.com/

Capítulo 5. Um Estudo de Caso com NoSQLCASE 75

5.3.3.2 Implementação do Esquema Lógico gerado por NoSQLCASE

O código produzido pela ferramenta NoSQLCASE exibido na Figura 5.6 foi
executado no SGBD MongoDB. A execução foi realizada em uma instância do SGBD
MongoDB criada no computador especificado na Seção 5.2.4. O código foi copiado
da área de saída de texto da ferramenta NoSQLCASE diretamente para o aplicativo
de gerenciamento do SGBD MongoDB, sendo executado por meio do aplicativo de
prompt de comando do sistema operacional Windows. A Figura 5.11 exibe a tela do
aplicativo com os códigos executados. Como pode ser visto na terceira linha, obteve-se
a resposta “ok : 1” para a execução do comando db.createCollection(“Curso”), que
cria uma nova coleção com o nome Curso no SGBD. As próximas linhas exibidas na
Figura 5.11 são referentes à estrutura do documento que será armazenado no banco
de dados. Na penúltima linha pode-se verificar a mensagem “WriteResult({ ”nInserted“ :
1 })”, a qual significa que um registro foi inserido com sucesso no banco de dados.

Figura 24 – Execução do script gerado por NoSQLCASE no SGBD MongoDB

Fonte: Elaborada pelo Autor (2017)

Por conseguinte, como forma de complementar o estudo de caso, realizou-
se a execução do script alterando o valor dos atributos por dados fictícios. Foram
adicionados dez registros no banco de dados e, em sequência, executou-se o co-
mando db.Curso.find() que realiza a busca por todos os documentos armazenados
na coleção Curso do banco de dados. A consulta foi executada com sucesso e sua
resposta está disponível no Apêndice B desta dissertação.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 76

5.4 Análise e Resultados

Os resultados gerados pelo estudo de caso descrito nesta dissertação foram
analisados de acordo com as questões norteadoras (Seção 5.2.2) definidas na fase de
planejamento. O Quadro 3 mostra cada questão e compara a sua viabilidade para cada
caso aplicado. Verifica-se no quadro que em relação à possibilidade de modelagem de
aplicações de persistência poliglota, somente a ferramenta NoSQLCASE fornece esse
suporte. No tocante à segunda questão que analisa a perspectiva de modelagem de
dados agregados, foi observado que as ferramentas EerCASE e EDRPlus não fornecem
esse apoio, enquanto a ferramenta NoSQLCASE possibilita esse auxílio por meio do
uso dos construtores propostos no modelo ERNoSQL (Capítulo 3). No que se refere ao
intuito principal da terceira questão em verificar a viabilidade de conversão do esquema
conceitual para um esquema lógico de SGBD NoSQL, conclui-se que a ferramenta
NoSQLCASE permitiu a correta conversão do esquema conceitual criado para um
esquema lógico do SGBD MongoDB. Ademais, avaliou-se também a utilidade de
NoSQLCASE na conversão do esquema conceitual para um documento no formato
JSON, que é considerado um esquema lógico genérico para BD NoSQL.

Quadro 3 – Quadro demonstrativo da análise das questões do estudo para cada caso aplicado

Fonte: Elaborada pelo Autor (2017)

Os resultados encontrados no presente estudo sugerem que, em relação às
necessidades de suporte à modelagem de aplicações de persitência poliglota e à
representação do conceito de dados agregados para o projeto de bancos de dados
NoSQL, verificou-se que a ferramenta NoSQLCASE foi a única que possibilitou esse
suporte.

Capítulo 5. Um Estudo de Caso com NoSQLCASE 77

O modelo ERNoSQL e a ferramenta NoSQLCASE representam um avanço para
área de pesquisa sobre projeto conceitual de bancos de dados NoSQL e aplicações
de persistência poliglota, tendo em vista que as ferramentas de suporte à modelagem
conceitual de bancos de dados existentes, representadas nesse estudo por EerCASE
e ERDPlus, não fornecem construtores de modelagem que auxiliem o projetista na
construção de esquemas conceituais de dados de acordo com as necessidades atuais,
que envolvem aplicações que utilizam diversos modelos e tipos de dados, projetadas
no intuito de fornecer a capacidade para manipular vastos volumes de dados, sejam
eles estruturados, semiestruturados ou não estruturados.

5.5 Considerações Finais do Capítulo

Este capítulo apresentou um estudo de caso, que promoveu a construção de
um esquema conceitual de dados nas ferramentas EerCASE, ERDPlus e NoSQLCASE.
Verificou-se que a ferramenta NoSQLCASE se diferencia das demais pelo fato de
possibilitar a modelagem de esquemas conceituais de dados para aplicações de persis-
tência poliglota. Além disso, NoSQLCASE permite o uso dos construtores do modelo
ErNoSQL que representam dados semiestruturados e não estruturados, e também
possibilita a modelagem baseada no conceito de dados agregados que é bastante
utilizada no projeto de BD NoSQL. Outro ponto que diferencia NoSQLCASE das demais
ferramentas é o fato de possibilitar a exportação de um esquema conceitual para um
script de criação de um banco de dados NoSQL. Como foi demonstrado, o script ge-
rado em NoSQLCASE referente ao esquema conceitual modelado no estudo de caso
foi executado com sucesso numa instância do SGBD MongoDB. Isso demonstra que a
ferramenta NoSQLCASE facilita desde o projeto de modelagem de bancos de dados
NoSQL até a própria implementação física do banco de dados.

78

6 CONCLUSÃO

Este capítulo tem como objetivo apresentar as considerações finais sobre os
principais tópicos abordados nesta dissertação, incluindo as principais contribuições
alcançadas, as indicações de trabalhos futuros e as limitações do trabalho.

6.1 Considerações Finais

Diversos trabalhos envolvendo a modelagem de bancos de dados NoSQL
tanto propõem novos modelos conceituais quanto utilizam modelos existentes para
auxiliar o projeto de BD NoSQL. Porém, pouca atenção tem sido dada à investigação
de uma abordagem de modelagem de dados que forneça ao projetista, os construtores
de modelagem capazes de criar um esquema de dados conceitual e poliglota.

Este trabalho propôs um modelo conceitual de dados, chamado ERNoSQL, o
qual visa fornecer ao projetista de banco de dados, a possibilidade de criar um esquema
conceitual de dados para aplicações de persistência poliglota, ou seja, que utilizem
diversos modelos de dados estruturados, semiestruturados e não estruturados em
uma mesma aplicação. A modelagem de um domínio de aplicação de persistência
poliglota por meio do ERNoSQL permite uma visão unificada dos dados e tipos de
sistemas NoSQL utilizados na aplicação, além de facilitar a comunicação entre a
equipe técnica e os usuários finais. Para ilustrar os construtores do ERNoSQL e como
eles se relacionam, este trabalho propôs ainda um metamodelo em notação UML.
Esse metamodelo foi utilizado como artefato principal para a construção de uma
ferramenta CASE, desenvolvida por meio do framework de modelagem Eclipse que
implementa um editor gráfico a partir da especificação de um metamodelo. Por fim,
uma ferramenta de modelagem, chamada NoSQLCASE, foi desenvolvida para dar
suporte aos construtores de modelagem do ERNoSQL e para auxiliar o projetista
nas atividades de modelagem de bancos de dados para aplicações de persistência
poliglota.

O Instituto Federal de Educação, Ciência e Tecnologia do Ceará e as demais
instituições da Rede Federal de Educação Profissional, Cientifíca e Tecnólogica podem
utilizar a Ferramenta NoSQLCASE para auxiliar a modelagem conceitual de bancos
de dados para aplicações de persistência poliglota desenvolvidas para atender as
necessidades acadêmicas e administrativas destas instituições. Ademais, o autor deste
trabalho adquiriu conhecimento sobre diversas tecnologias emergentes e se dispõe a
realizar treinamentos ou capacitações dos servidores de Tecnologia da Informação no
que condiz a utilização destas tecnologias.

Capítulo 6. Conclusão 79

O restante deste capítulo está organizado como segue. Na Seção 6.2 são
abordadas as principais contribuições obtidas pelo desenvolvimento deste trabalho, e
na Seção 6.3 são descritos os trabalhos futuros que podem ser realizados para dar
continuidade ao projeto de pesquisa iniciado nesta dissertação.

6.2 Principais Contribuições

As principais contribuições deste trabalho são detalhadas a seguir de acordo
com os itens elencados como objetivos específicos (Seção 1.2.2).

I. Especificação dos construtores de modelagem com suas respectivas proprie-
dades e notação gráfica.

Neste trabalho, investigou-se a aplicação do conceito de persistência poliglota
na construção de um modelo conceitual de dados. A pesquisa iniciou-se com o le-
vantamento bibliográfico dos modelos existentes para projetos de BD NoSQL. Então,
verificou-se que nenhum dos modelos estudados possibilita a modelagem de aplica-
ções de persistência poliglota. A partir deste ponto, começou o desafio de especificar
construtores de modelagem que pudessem representar a persistência poliglota. Após
estudos, verificou-se que o ideal seria criar um modelo que estenda o modelo E-R, adici-
onando construtores específicos para modelagem de persistência poliglota. Utilizou-se
um domínio hipotético de empresa de comércio eletrônico para analisar o uso dos
construtores de modelagem e como eles se relacionam.

II. Regras de mapeamento para esquemas lógicos de BD NoSQL a partir do es-
quema conceitual ERNoSQL.

Realizou-se a comparação dos construtores do modelo ERNoSQL com os
diferentes formatos de armazenamento equivalentes de tipos de SGBD NoSQL. Foram
definidas regras de mapeamento para cada um dos tipos de sistemas NoSQL existentes.
Essas regras são utilizadas na conversão do esquema conceitual ERNoSQL para
esquemas lógicos expressos em scripts de linguagens de SGBD NoSQL.

III. Especificação do Metamodelo de ERNoSQL.

Um metamodelo especificado na notação UML foi criado para representar os
conceitos do modelo conceitual ERNoSQL. Além disso, o metamodelo serve como ar-
tefato principal para a implementação da ferramenta CASE, pois define os construtores
ERNoSQL e como eles se relacionam.

IV. Desenvolvimento de uma ferramenta CASE baseada na notação gráfica dos
construtores do ERNoSQL

Para auxiliar as atividades de modelagem do projetista de banco de dados, e
no intuito de fornecer uma ferramenta computacional que dê suporte aos construtores

Capítulo 6. Conclusão 80

de modelagem propostos no ERNoSQL, foi desenvolvida uma ferramenta de modela-
gem, chamada NoSQLCASE. Dentre as suas principais funcionalidades, NoSQLCASE
permite a criação de esquemas conceituais de aplicações de persistência poliglota e
possibilita a geração do esquema lógico expresso em scripts de criação dos BD de
SGBD NoSQL. Além disso, ela permite a conversão para JSON, que é um formato de
documento bastante utilizado para transferência de dados entre aplicações, sendo inde-
pendente de uma tecnologia específica, ou seja, diversas linguagens de programação
podem ler ou criar esses documentos.

V. Exemplo da aplicação da ferramenta CASE por meio da construção de es-
quemas conceituais de dados, considerando um cenário real de uma organização
acadêmica. Foi feita a modelagem deste cenário em NoSQLCASE e em outras ferra-
mentas para demonstrar os diferenciais da ferramenta proposta.

Foi realizado um estudo de caso que compara a ferramenta NoSQLCASe com
outras ferramentas de modelagem. Esse estudo demonstrou que somente NoSQLCASE
permite a modelagem de aplicações que utilizem diversos modelos de dados. Além
disso, também foi demonstrado a execução dos scripts gerados por NoSQLCASE para
o SGBD MongoDB, no qual foi executado o script e exibido o resultado que ilustra a
corretude dos algoritmos de conversões implementados na ferramenta.

6.3 Trabalhos Futuros

A persistência poliglota tende a ser cada vez mais utilizada devido à variedade
de tipos de dados e necessidades de manipulação (consultas, análises e processa-
mento de dados volumosos) que são demandadas pelos sistemas de informações
desenvolvidos para Internet, além do crescente uso de dados complexos (não estrutu-
rados e semiestruturados) oriundos de diversas fontes como mídias sociais, redes de
sensores e dispositivos conectados. Esses dispositivos conectados, também nomea-
dos como Internet das Coisas (do inglês, Internet of Things), estão presentes no dia a
dia das pessoas, como por exemplo nos relógios inteligentes que armazenam dados
coletados por sensores e sincronizam com uma aplicação web, de forma a monitorar a
saúde do usuário e enviar notificações e alertas para um aplicativo móvel.

Diante do trabalho exposto nesta dissertação e da tendência crescente da
persistência poliglota, tem-se algumas propostas de contribuições futuras para o avanço
científico no projeto de aplicações de persistência poliglota que utilizem bancos de
dados NoSQL:

• Conversão de um esquema por meio ERNoSQL em uma instância física de
BD NoSQL. Essa conversão pode ser realizada através do refinamento das
regras de mapeamento propostas neste trabalho (Seção 3.7), incluindo detalhes

Capítulo 6. Conclusão 81

específicos de um determinado SGBD NoSQL, e pode ainda incorporar as
funções de criação da instância física na ferramenta NoSQLCASE, investigando
formas de conectar esta ferramenta com instâncias de SGBD NoSQL.

• Criação de um assistente para elaboração de uma interface de programação
de aplicativos (do inglês, API - Application Programming Interface). A API deve
abstrair o acesso direto ao banco de dados e fornecer serviços que serão con-
sumidos por sistemas de informação, como, por exemplo para inserir, manter
e recuperar dados. Muitos SGBD NoSQL fornecem API web de serviços com
operações básicas para inserir, remover e atualizar dados, mas no caso da
proposta apresentada, o assistente para criação da API deve auxiliar na criação
de operações que forneçam serviços específicos ao domínio de aplicação do
esquema conceitual ERNoSQL. Um exemplo seria: dado um esquema con-
ceitual ERNoSQL referente a uma aplicação de comércio eletrônico, após a
implementação física em um SGBD NoSQL pode-se necessitar da criação de
um serviço para consultar produtos que estão há muito tempo no estoque, como
também a utilização de consultas para sugestões de compras, entre outros.

• Utilizar as regras de mapeamento definidas nesta dissertação como princípio
para a implementação de algoritmos de conversão de um esquema de dados
conceitual ERNoSQL para esquemas de dados lógicos de sistemas de BD
NoSQL multi-modelos.

• Uso de técnicas de aprendizagem de máquina para escolha automática do tipo
de SGBD NoSQL na geração do esquema lógico.

6.4 Limitações do Trabalho

Este trabalho também possui algumas limitações, as quais são descritas a
seguir:

• A ferramenta NoSQLCASE não possui interface web, então o usuário sempre
deverá instalar a ferramenta na máquina para utiliza-la.

• A usabilidade da ferramenta não foi avaliada nesta pesquisa, mas pode ser alvo
de avaliação e melhorias.

• O usuário precisa conhecer o modelo ERNoSQL para utilizar a ferramenta,
então é interessante adicionar uma opção de ajuda ou um guia incial na primeira
utilização da ferramenta NoSQLCASe.

82

REFERÊNCIAS

ARAÚJO, A. M. C. de. ArcheER: Um Modelo Conceitual de Dados Arquetipados para
Sistemas de Informação em Saúde. 2012. 112 p. Dissertação (Pós-graduação em
ciência da computação) — Universidade Federal de Pernambuco, Recife.

BANERJEE, S. et al. Towards Logical Level Design of Big Data. In: IEEE 13th
International Conference on Industrial Informatics (INDIN). [S.l.: s.n.], 2015. p. 1665 –
1671.

BUGIOTTI, F. et al. Database Design for NoSQL Systems. In: International Conference
on Conceptual Modeling. [S.l.: s.n.], 2014. p. 223 – 231.

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados. 6. ed. São Paulo:
Pearson Education, 2010.

JEON, J.; AN, M.; LEE, H. NoSQL Database Modeling for End-of-Life Vehicle Monitoring
System. Journal of Software, v. 10, n. 10, p. 1160 – 1169, Outubro 2015.

KAUR, K.; RANI, R. Modeling and Querying Data in NoSQL Databases. In: 2013 IEEE
International Conference on Big Data. [S.l.: s.n.], 2013.

KOLOVOS, D. et al. The Epsilon Book. Eclipse Public Licence, 2017. Disponível em:
<http://www.eclipse.org/epsilon/doc/book/>. Acesso em: 03/05/2017.

LIMA, C. de; MELLO, R. dos S. A Workload-Driven Logical Design Approach for NoSQL
Document Databases. In: iiWAS ’15: Proceedings of the 17th international conference
on information integration and web-based applications & services. [S.l.: s.n.], 2015.

MATHEW, A. B.; KUMAR, S. D. M. Analysis of Data Management and Query Handling
in Social Networks using NoSQL Databases . In: IEEE, 2015. 2015 International
Conference on Advances in Computing, Communications and Informatics (ICACCl).
[S.l.], 2015. p. 800 – 806.

OLIVEIRA, F. R.; CURA, L. del V. Performance Evaluation of NoSQL Multi-Model Data
Stores in Polyglot Persistence Applications. In: ACM (Ed.). Proceedings of the 20th
International Database Engineering & Applications Symposium. [S.l.: s.n.], 2016. p. 230
– 235.

SADALAGE, P. J.; FOWLER, M. NoSQL Distilled - A brief guide to the emerging world
of polyglot persistence. 1. ed. [S.l.]: Pearson Education, 2013.

SINGH, M.; KAUR, K. SQL2Neo : Moving Health-care Data From Relational To Graph
Databases. In: IEEE, 2015. 2015 IEEE International Advance Computing Conference
(IACC). [S.l.], 2015. p. 721 – 725.

SOUZA, C. C. N. Um Metamodelo e uma Ferramenta CASE para Projeto Conceitual de
Banco de Dados segundo o Modelo ER. 2011. 78 p. Dissertação (Mestrado em Ciência
da Computação) — Universidade Federal de Pernambuco, Recife.

http://www.eclipse.org/epsilon/doc/book/

Referências 83

SRIVASTAVA, P. P.; GOYAL, S.; KUMAR, A. Analysis of Various NoSql Database . p.
539 – 544, 2015.

VARA, J. M.; MARCOS, E. A framework for model-driven development of information
systems: Technical decisions and lessons learned. Journal of Systems and Software,
v. 85, n. 10, p. 2368 – 2384, Outubro 2012. ISSN 01641212. Disponível em:
<http://linkinghub.elsevier.com/retrieve/pii/S0164121212001367>.

VILLARI, M. et al. Enriched E-R Model to Design Hybrid Database for Big Data
Solutions. In: 2016 IEEE Symposium on Computers and Communication (ISCC). [S.l.:
s.n.], 2016. p. 163 – 166.

WOHLIN, C. et al. Experimentation in Software Engineering. [S.l.]: Springer, 2012.
ISBN 978-3-642-29043-5.

http://linkinghub.elsevier.com/retrieve/pii/S0164121212001367

APÊNDICES

84

85

APÊNDICE A - METAMODELO ERNOSQL

Figura 25 –
Metamodelo ERNoSQL

Schema

gmf.diagram

Entidade

nome : EString

gmf.node

EntidadeNaoEstruturada

gmf.node

Atributo

nome : EString

tipoatributo : TiposAtributo

obrigatorio : EBoolean

chavedeparticao : EBoolean

gmf.node

TiposAtributo

SIMPLES

COMPOSTO

DERIVADO

MULTIVALORADO

IDENTIFICADOR

DISCRIMINADOR

Relacionamento

nome : EString

gmf.node

RelacionamentoLink

participacao : Participacao

cardinalidade : TiposCardinalidade

role : EString

identi cador : EBoolean

gmf.link

TiposNosql

DOCUMENT

KEYVALUE

GRAPH

COLUMNS

JSON

RELACIONAL

Participacao

TOTAL

PARCIAL

AtributoEntidadeLink

gmf.link

AtributoRelacionamentoLink

gmf.link

TiposCardinalidade

ONE

MANY

NosqlEsquema

modelobd : TiposNosql

gmf.node

Elemento

EntidadeSemiEstruturada

gmf.node

EntidadeAgregada

gmf.node

RelacionamentoEntidadesAgregadasLink

cardinalidade : TiposCardinalidade

gmf.link

RelacionamentoNosqlEsquema

descricao : EString

gmf.link

modelosnosql

0..*

source
1..1

target

1..1
source

1..1

target

1..1

source

1..1
target

1..1

source1..1

elementos

0..*

relacionamentosnosqlesquemas1..1

atributosrelacionamentolink

0..*relacionamentoslink
0..*

atributosentidadelink

0..*

relacionamentosentidadesagregadas

0..*

source

1..1

target

1..*

source

1..1

target 1..1

source 1..1

Fonte: Elaborada pelo Autor (2017)

86

APÊNDICE B - DEMONSTRAÇÃO DA EXECUÇÃO DE CONSULTAS
REALIZADAS NO SGBD MONGODB PARA O BANCO DE DADOS
CRIADO NO ESTUDO DE CASO A PARTIR DO SCRIPT GERADO

PELA FERRAMENTA NOSQLCASE.

Figura 26 – Resultado da consulta ao banco de dados MongoDB implementado no estudo de
caso

Fonte: Elaborada pelo Autor (2017)

87

APÊNDICE C - ALGORITMOS DE CONVERSÃO IMPLEMENTADOS
EM NOSQLCASE EXPRESSOS NA LINGUAGEM EGL.

1 - ERNoSQL para JSON

[%for (schema in Schema) {%]
[%for (nosqlesquema in schema.modelosnosql) {%]
[% if (nosqlesquema.modelobd.value == 4){ %]
[%var elem = null;%]
[%var rel = null;%]
[%for (elemento in nosqlesquema.elementos) {%]
[%if ((elemento.type.name == “Entidade” or elemento.type.name
== “EntidadeNaoEstruturada” or elemento.type.name == “EntidadeSemiEstruturada”))
{%]
[%elem = elemento;%]
{
“[%=elemento.nome%]”: {
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”

[%if (atributo <> nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%]
}
[%} else if (elemento.type.name == “EntidadeAgregada”) {%]
[%if (rel == null) {%]
{
“[%=elemento.nome%]”: {
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”[%if (atributo <>

nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%]
[%for (relacionamentoagregacao in nosqlesquema.

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.88

relacionamentosentidadesagregadas) {%]
[%rel = relacionamentoagregacao.target[0].nome;%]
[%if (relacionamentoagregacao.cardinalidade.value == 1) {%]
“[%=relacionamentoagregacao.target[0].nome%]”: [
{
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (relacionamentoagregacao.target[0] == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”[%if (atributo <>

nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%] },
],
[%} else { %] “[%=relacionamentoagregacao.target[0].nome%]”: {
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (relacionamentoagregacao.target[0] == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”[%if (atributo <>

nosqlesquema.atributosentidadelink.last()){%],
[%}%][%}%][%}%] },
[%}%][%}%]
[%}%]
[%}%]
[%}%]
[%}%]
}
[%}%]
[%}%]

2 - ERNoSQL para SGBD MongoDB

[%for (schema in Schema) {%]
[%for (nosqlesquema in schema.modelosnosql) {%]
[% if (nosqlesquema.modelobd.value == 0){ %]
[%var elem = null;%]
[%var rel = null;%]
[%for (elemento in nosqlesquema.elementos) {%]
[%if ((elemento.type.name == “Entidade” or elemento.type.name ==

“EntidadeNaoEstruturada” or elemento.type.name == “EntidadeSemiEstrutu-
rada”)) {%]
[%elem = elemento;%]

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.89

//Código de criação da coleção [%=elemento.nome%]
db.createCollection(“[%=elemento.nome%]”)
db.[%=elemento.nome%].insert({
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
[%=atributo.target.nome%] : “valor”[%if (atributo <>

nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%]
[%}else if ((elemento.type.name == “Relacionamento”)) {%]
[%var a = 0;
var entidadeid = “”;%]
[%for (relacionamentolink in nosqlesquema.relacionamentoslink) {%]
[%if (elemento == relacionamentolink.target){a = a+1;%]
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%elem = elemento;%]
[%if (relacionamentolink.source == atributo.source) {%]
[%if (a==2){%] [%=elemento.nome%]:

[{[%for (atributo in nosqlesquema.atributosrelacionamentolink)

{%][%if (elemento == atributo.source)

{%][%=atributo.target.nome%]: ’valor’,

[%}%][%}%][%=atributo.source.nome%]_[%=atributo.target.nome%]:

[%=atributo.source.nome%].[%=atributo.target.nome%]}],
[%}%][%}%][%}%][%}%][%}%]
[%} else if (elemento.type.name == “EntidadeAgregada”) {%]
[%if (rel == null) {%]
//Código de criação da coleção [%=elemento.nome%]
db.createCollection(“[%=elemento.nome%]”)
db.[%=elemento.nome%].insert({
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”

[%if (atributo <> nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%]

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.90

[%for (relacionamentoagregacao in nosqlesquema.relacionamentosentidadesagregadas)
{%]
[%rel = relacionamentoagregacao.target[0].nome;%]
[%if (relacionamentoagregacao.cardinalidade.value == 1) {%]
“[%=relacionamentoagregacao.target[0].nome%]”: [
{
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (relacionamentoagregacao.target[0] == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”

[%if (atributo <> nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%] },
],
[%} else { %] “[%=relacionamentoagregacao.target[0].nome%]”: {
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (relacionamentoagregacao.target[0] == atributo.source) {%]
“[%=atributo.target.nome%]” : “valor”

[%if (atributo <> nosqlesquema.atributosentidadelink.last()){%],
[%}%][%}%][%}%] },
[%}%][%}%]
})
[%}%]
[%}%]
[%}%]
[%}%]
[%}%]
[%}%]

3 - ERNoSQL para SGBD Cassandra

[%for (schema in Schema) {%]
[%for (nosqlesquema in schema.modelosnosql) {%]
[%var rel = null;%]
[% if (nosqlesquema.modelobd.value == 3){ %]
[%for (elemento in nosqlesquema.elementos) {%]
[%if ((elemento.type.name == “Entidade” or elemento.type.name ==

“EntidadeNaoEstruturada” or elemento.type.name == “EntidadeSemiestrutu-

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.91

rada”)){%]
//Código CQL de criação da tabela [%=elemento.nome%]
CREATE TABLE [%=elemento.nome%](
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
ADD COLUMN [%=atributo.target.nome%] datatype,
[%}%]
[%}%]
PRIMARY KEY ([%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source and atributo.target.tipoatributo.value == 4){%]
[%if (atributo.target.chavedeparticao = true){%]
([%=atributo.target.nome%]),[%}else {%][%=atributo.target.nome%],[%}%][%}%][%}%]));
[%} else if (elemento.type.name == “EntidadeAgregada”) {%]
[%if (rel == null) {%]
//Código de criação da tabela agregada [%=elemento.nome%]
CREATE TABLE [%=elemento.nome%]
(
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
ADD COLUMN [%=atributo.target.nome%] datatype,
[%}%]
[%}%]
[%for (relacionamentoagregacao in nosqlesquema.relacionamentosentidadesagregadas)
{%]
[%rel = relacionamentoagregacao.target[0].nome;%]
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
ADD COLUMN [%=relacionamentoagregacao.target[0].nome%].

[%=atributo.target.nome%] datatype

[%if (atributo <> nosqlesquema.atributosentidadelink.last()){%],
[%}%]
[%}%]
[%}%]
);
[%}%] [%}%] [%}%] [%}%] [%}%] [%}%]

4 - ERNoSQL para SGBD Neo4J

//Código Cypher de criação dos nós (Entidades)
[%for (schema in Schema) {%]
[%for (nosqlesquema in schema.modelosnosql) {%]

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.92

[% if (nosqlesquema.modelobd.value == 2){ %]
[%for (elemento in nosqlesquema.elementos) {%]
[%if ((elemento.type.name == “Entidade” or elemento.type.name ==

“EntidadeNaoEstruturada” or elemento.type.name == “EntidadeSemiEstruturada”
or

elemento.type.name == “EntidadeAgregada”)){%]
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (elemento == atributo.source) {%]
[%if (atributo.target.tipoatributo.value == 4) {%]

CREATE ([%=atributo.target.nome%]:[%=elemento.nome%] {[%}%]

[%if (atributo.target.tipoatributo.value == 3){%]

[%=atributo.target.nome%]: [’valor’, ’valor’], [%}

else {%][%=atributo.target.nome%]: ’valor’, [%}%] [%}%] [%}%]})
[%}%] [%}%]
[* Fim das entidades*]
//Código Cypher de criação dos relacionamentos
[%for (elemento in nosqlesquema.elementos) {%]
[%if ((elemento.type.name == “Entidade” or elemento.type.name ==

“EntidadeNaoEstruturada” or elemento.type.name ==

“EntidadeSemiEstruturada” or elemento.type.name == “EntidadeAgregada”)) {%]
[%var a = 0;
var entidadeid = “”;%]
[%for (relacionamentolink in nosqlesquema.relacionamentoslink) {%]
[%if (elemento == relacionamentolink.target){a = a+1;%]
[%for (atributo in nosqlesquema.atributosentidadelink) {%]
[%if (relacionamentolink.source == atributo.source) {%]
[%if (atributo.target.tipoatributo.value == 4) {%]
[%if (a==1){%]
CREATE ([%=atributo.source.nome%].[%=atributo.target.nome%])

-[:[%=elemento.nome%]{[%}if (a==2){%][%for

(atributo in nosqlesquema.atributosrelacionamentolink)

{%][%if (elemento == atributo.source) {%][%=atributo.target.nome%]

: ’valor’,[%}%][%}%]}]->([%=atributo.source.nome%]

.[%=atributo.target.nome%])
[%}%][%}%][%}%][%}%][%}%][%}%][%}%][%}%]

Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.93

[%}%] [%}%] [%}%]

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de figuras
	Lista de quadros
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Contextualização
	Motivação
	Objetivos
	Objetivos Gerais
	Objetivos Específicos

	Estrutura da Dissertação

	Fundamentação Teórica
	Conceitos Básicos
	Sistemas de BD NoSQL
	SGBD NoSQL Baseado em Documento
	SGBD NoSQL Baseado em Grafos
	SGBD NoSQL Chave-Valor
	SGBD NoSQL Basedo em Famílias de Colunas
	SGBD NoSQL Multimodelo

	Modelagem Conceitual
	Persistência Poliglota
	Framework de Modelagem Eclipse
	Eclipse Modeling Framework (EMF)
	Epsilon Generation Language (EGL)
	Graphical Modeling Framework (GMF)

	Trabalhos Correlatos
	Modelos de Dados Conceituais para Aplicações de BD NoSQL
	Um framework para BD NoSQL
	Projeto de BD para Sistemas NoSQL
	Modelo E-R Estendido para Big Data

	Projetos de BD NoSQL
	Modelagem e consulta de dados em bancos NoSQL
	Modelagem de BD NoSQL para monitoramento de veículos

	Considerações Finais do Capítulo

	O Modelo de Dados Conceitual ERNoSQL
	Introdução
	Modelo ERNoSQL
	Construtores de Modelagem do ERNoSQL
	Cenário de Exemplo de uso de ERNoSQL
	Construindo um Esquema Conceitual com ERNoSQL
	O Metamodelo ERNoSQL
	Regras de Mapeamentos para os Modelos NoSQL
	Comparação entre Modelos de Dados para BD NoSQL
	Considerações Finais do Capítulo

	A Ferramenta NoSQLCASE
	 Introdução
	Arquitetura de Software
	Ambiente Gráfico
	Cenário de Casos de Uso
	Construção de Esquemas com NoSQLCASE
	Considerações Finais do Capítulo

	Um Estudo de Caso com NoSQLCASE
	Introdução
	Planejamento do Estudo de Caso
	Objetivos
	Questões do Estudo
	Descrição do Domínio da Aplicação - Contexto de Estudo
	Protocolo e Instrumentos

	Desenvolvimento do Estudo de Caso
	 Execução na Ferramenta EerCASE
	Execução na Ferramenta ERDPlus
	Execução na Ferramenta NoSQLCASE
	Exportando Esquemas Conceituais com NoSQLCASE
	Implementação do Esquema Lógico gerado por NoSQLCASE

	Análise e Resultados
	Considerações Finais do Capítulo

	Conclusão
	Considerações Finais
	Principais Contribuições
	Trabalhos Futuros
	Limitações do Trabalho

	Referências
	APÊNDICES
	Apêndice A - Metamodelo ERNoSQL
	Apêndice B - Demonstração da execução de consultas realizadas no SGBD MongoDB para o banco de dados criado no estudo de caso a partir do script gerado pela ferramenta NoSQLCASE.
	Apêndice C - Algoritmos de conversão implementados em NoSQLCASE expressos na linguagem EGL.

