

Pós-Graduação​ ​em​ ​Ciência​ ​da​ ​Computação

THIAGO​ ​DE​ ​OLIVEIRA​ ​CAVALCANTE

SISTEMA​ ​DE​ ​COMUNICAÇÃO​ ​SEGURA​ ​PARA

DISPOSITIVOS​ ​CONECTADOS​ ​À​ ​INTERNET​ ​DAS​ ​COISAS

COM​ ​UTILIZAÇÃO​ ​DE​ ​SMART​ ​CARDS

Universidade​ ​Federal​ ​de​ ​Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2017

Thiago​ ​de​ ​Oliveira​ ​Cavalcante

Sistema​ ​de​ ​Comunicação​ ​Segura​ ​para​ ​Dispositivos​ ​Conectados​ ​à​ ​Internet​ ​das​ ​Coisas
com​ ​Utilização​ ​de​ ​Smart​ ​Cards

 ​ ​​ ​​ ​​ ​​ ​​ ​​ ​ORIENTADOR:​ ​​Prof.​ ​Djamel​ ​Fawzi​ ​Hadj​ ​Sadok

RECIFE
2017

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

C376s Cavalcante, Thiago de Oliveira

Sistema de comunicação segura para dispositivos conectados à Internet
das coisas com utilização de smart cards / Thiago de Oliveira Cavalcante. –
2017.

 104 f.: il., fig., tab.

 Orientador: Djamel Fawzi Hadj Sadok.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2017.
 Inclui referências e apêndice.

 1. Redes de computadores. 2. Internet das coisas. I. Sadok, Djamel Fawzi
Hadj (orientador). II. Título.

 004.6 CDD (23. ed.) UFPE- MEI 2017-247

Thiago de Oliveira Cavalcante

Sistema de Comunicação Segura para Dispositivos Conectados à
Internet das Coisas com Utilização de Smart Cards

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação

Aprovado em: 14/09/2017.

BANCA EXAMINADORA

 __
Prof. Dr. Odilon Maroja da Costa Pereira Filho

Centro de Informática/UFPE

 __
Prof. Dr. Carmelo José Albanez Bastos Filho

Escola Politécnica de Pernambuco / UPE

__
Prof. Dr. Djamel Fawzi Hadj Sadok

Centro de Informática / UFPE
(Orientador)

AGRADECIMENTOS

Agradeço primeiramente aos meus pais, Rúben e Gicelma, e às minhas irmãs, Ana
Letícia e Ana Clara, pelo amor, carinho e suporte incondicionais durante toda minha vida.

Agradeço também à Lidiane por ser minha companheira em todas as horas e por ter me
ajudado em alguns dos momentos mais complicados dessa jornada.

Sou muito grato ao Prof. Djamel e à Profª. Judith por me darem essa oportunidade, pela
paciência, compreensão, preocupação, pelos conselhos e pela confiança que eles depositaram em
mim e em meu trabalho. Agradeço também à Andrea por estar sempre disposta a ajudar e por ter
sido o ponto de partida dessa empreitada. Por fim, agradeço aos meus colegas de trabalho do
GPRT pela amizade e suporte e também pelas piadas, lanchinhos e caronas.

Science is a cooperative enterprise, spanning the generations. It’s the

passing of a torch from teacher, to student, to teacher. A community of minds

reaching back to antiquity and forward to the stars.

—NEIL DEGRASSE TYSON

RESUMO

Este trabalho tem como objetivo proteger a comunicação entre dispositivos conectados à
Internet das Coisas, do inglês Internet of Things (IoT), através da integração entre microcontrola-
dores e Smart Cards (SCs), cartões de plástico nos quais estão embutidos chips criptográficos
invioláveis, atualmente utilizados em aplicações que exigem um alto nível de segurança (e.g.,
bancos). É proposta uma arquitetura, a qual envolve projetos de hardware e software, para um
sistema que estabelece uma comunicação autenticada e criptografada, baseada no Protocolo
Transport Layer Security (TLS), entre dispositivos IoT e um servidor. O foco do trabalho está em
placas de desenvolvimento de baixo custo. Testes foram realizados inicialmente no Arduino UNO

e o dispositivo final possui o microcontrolador ESP8266 (em específico, o módulo ESP-12E),
que possui Wi-Fi integrado, o que facilita a sua inclusão na IoT, e é simples de programar.
Adicionalmente, é utilizado um SC com a tecnologia Java Card, que torna mais simples o
desenvolvimento e a instalação de programas (conhecidos como applets) no cartão. Nele está
instalada uma versão modificada do IsoApplet, um programa open source em desenvolvimento
que permite a execução de tarefas criptográficas, implementado de acordo com os padrões
ISO7816. Assim, a execução de operações essenciais na implementação de uma infra-estrutura
de segurança como geração de chaves, cifragem e decifragem (em ambas criptografias simétrica
e assimétrica), assinatura digital e armazenamento seguro de dados (e.g., chaves secretas, cer-
tificados) é delegada pelo microcontrolador ao cartão, que possui hardware especializado. O
microcontrolador, por sua vez, pode ser ligado a sensores e se conectar de forma autenticada
com um servidor, enviando informações criptografadas. Por fim, demonstra-se que é possível
construir um dispositivo conectado à Internet das Coisas, capaz de enviar mensagens de forma
segura, a partir da integração entre microcontroladores de baixo custo e Smart Cards. Uma
análise de custo do dispositivo construído, mostra que o mesmo pode ter um preço compátivel
com o mercado, se produzido em larga escala. Uma segunda análise, relativa ao consumo de
energia da placa, mostra que, a depender do tipo de aplicação, o dispositivo pode funcionar com
bateria por dias. As contribuições deste trabalho, além da fabricação do próprio dispositivo IoT,
incluem o desenvolvimento de bibliotecas que habilitam a comunicação entre microcontroladores
(compatíveis com Arduino) e Smart Cards e a expansão de um software open-source para Java
Cards com funções criptográficas associadas ao TLS.

Palavras-chave: Internet das Coisas. Segurança. Smart Card. Java Card. Microcontroladores

ABSTRACT

This work aims to secure the communication between devices connected to the Internet

of Things (IoT) by integrating microcontrollers and Smart Cards (SCs), plastic cards in which
are embedded cryptographic tamper-resistant chips, currently used in applications that require
a high level of security (e.g., banks). An architecture, which involves hardware and software
projects, is proposed for a system that establishes an encrypted and authenticated communication,
based on Transport Layer Security (TLS) Protocol, between IoT devices and a server, focusing
on low-cost development boards. Tests were performed initially on Arduino UNO boards and
the final device has an ESP8266 microcontroller (specifically, an ESP-12E module), which
has integrated Wi-Fi capabilities and is simple to program. Additionally, the SC used is Java

Card-based, which simplifies the development and installation of programs (known as applets) on
the card. It contains a modified version of IsoApplet, an open source program under development
that allows the realization of cryptographic tasks, implemented according to ISO7816 standards.
Thus, the execution of essential operations in the implementation of a security infrastructure such
as key generation, encryption and decryption (in both symmetric and asymmetric cryptography),
digital signature and secure data storage (e.g., secret keys, certificates) is delegated by the
microcontroller to the card, which has specialized hardware. The microcontroller, in turn, can
be connected to sensors and connects in an authenticated way to a server, sending encrypted
data. Finally, it is shown that it is possible to build a device connected to the Internet of Things,
which is able to send messages safely, by integrating low-cost microcontrollers and Smart Cards.
A cost analysis of the device shows that it can have a market-compatible price if produced on
a large scale. A second analysis, regarding the power consumption of the board, shows that,
depending on the type of application, the device can run on battery for days. The contributions
of this work, in addition to the manufacture of the IoT device itself, include the development of
libraries that enable communication between microcontrollers (compatible with Arduino) and
Smart Cards and the expansion of open-source software for Java Cards by adding cryptographic
functions associated with TLS.

Keywords: Internet of Things. Security. Smart Card. Java Card. Microcontrollers

LISTA DE FIGURAS

2.1 Protocolo Diffie-Hellman simplificado, onde as chaves são representadas por tintas
e o problema do logaritmo discreto é representado pelo processo de separação das
tintas. Fonte das Entidades A e B: Noun Project, Dirk Rowe 25

2.2 Comparação entre cifragem simétrica (acima) e assimétrica (abaixo). Fontes: Enti-

dades A e B: Noun Project, Dirk Rowe; Chave: Noun Project, Jemis Mali 26
2.3 Comparação entre MAC (acima) e assinatura digital (abaixo). Fonte: Chave: Noun

Project, Jemis Mali . 27
2.4 Arduino UNO (a) e Raspberry Pi 3 Modelo B (b). Fontes: store.arduino.cc e

raspberrypi.org . 29
2.5 Comparação entre os tamanhos de cartão ID-1 e ID-000 30
2.6 Cartão ID-1 com interface de contatos elétricos. Fonte: ic0nstrux.com 30
2.7 Contatos de um Smart Card . 34
2.8 Procedimentos de operação do Smart Card . 34
2.9 Envio de um caractere com paridade correta (a) e incorreta (b) 35
2.10 Estrutura das APDUs de comando (a) e resposta (b) 36
2.11 Estrutura de uma mensagem do Protocolo de Registro com cifragem autenticada . . 40
2.12 Diagrama de funcionamento da função PRF . 42
2.13 Estrutura de uma mensagem do Protocolo de Handshake, encapsulada no Protocolo

de Registro . 42
2.14 Sequência de obtenção das chaves simétricas no Protocolo de Handshake 44
2.15 Diagrama da troca de mensagens entre Servidor e Cliente, durante o Protocolo de

Handshake do TLS . 45
2.16 Representação gráfica do sistema de arquivos PKCS#15 47

3.1 Diagrama das pesquisas de trabalhos relacionados realizadas 51

4.1 Arquitetura geral do sistema proposto neste trabalho 57
4.2 Conexão entre Arduino UNO e Smart Card, evidenciando a conexão fixa entre o

terminal CLK e o pino D9 . 59
4.3 Visão lateral (a) e superior (b) do slot para o Smart Card. Fonte: ckswitches.com . . 59
4.4 Esquemático (a) e layout (b) de uma das placas fabricadas, criados no EAGLE . . . 60
4.5 Primeiras PCIs fabricadas, em ordem cronológica da esquerda para a direita 60
4.6 Modelo da peça de plástico, desenhado no FreeCAD (a) e placa da Figura 4.5c com

a peça de plástico encaixada (b) . 61
4.7 Quarta placa fabricada, projetada no KiCAD (a) e leitor de cartão composto pela

placa e a peça de plástico (b) . 62

4.8 Módulos nRF24L01+ (a) e ESP8266, modelo ESP-01 (b). Fontes: dx.com e instruc-

tables.com . 62
4.9 Diagrama inicial do sistema proposto, com módulo ESP8266 atuando apenas como

adaptador Wi-Fi . 63
4.10 Módulos ESP8266, modelo ESP-201 (a) e modelo ESP-12E (b). Fontes: dx.com e

alibaba.com . 64
4.11 Placa utilizada para gravação do módulo ESP-201, com o adaptador USB/Serial

conectado (à esquerda) . 64
4.12 Diagrama atualizado do sistema proposto, com módulo ESP8266 atuando como

microcontrolador principal do sistema . 65
4.13 Oscilador Pierce . 65
4.14 Funcionamento do chip conversor de tensão para o cartão 66
4.15 Funcionamento do chip conversor de tensão para as GPIOs 66
4.16 Placa individual de um dos chips conversores de tensão (a) e circuito de relógio

externo, montado na protoboard (b) . 66
4.17 Circuito divisor de frequência digital (a) e detalhe do relógio externo na placa (b),

onde podem ser vistos os chips: oscilador, flip-flop e inversor, da esquerda para a
direita . 67

4.18 Primeira placa com o módulo ESP8266, frente (a) e verso (b) 67
4.19 Segunda placa com o módulo ESP8266 e placa final do trabalho, frente (a) e verso (b) 68
4.20 Diagrama final do hardware do sistema proposto 69
4.21 Funcionamento esperado (a) e implementação da biblioteca ArduinoSCLib (b)

durante envio de comandos para o Smart Card . 69
4.22 Gráfico de performance para execução do algoritmo de hash SHA256 com o Smart

Card . 71
4.23 Máquina de estados do Protocolo de Handshake do TLS 85
4.24 Fluxograma de funcionamento do sistema proposto neste trabalho 86

5.1 Gráfico de horas de funcionamento estimadas, obtido com os valores da Tabela 5.3 90

6.1 Falhas na soldagem do chip conversor de tensão para GPIOs 93
6.2 Falhas na soldagem do chip conversor de tensão para Smart Cards 93
6.3 Falhas na soldagem dos chips do circuito de relógio da Figura 4.17 93

LISTA DE TABELAS

2.1 Valores comuns para os bytes SW1 e SW2 . 36
2.2 Condições de acesso em uma estrutura de arquivos PKCS#15 47
2.3 Exemplos de definições escritas na notação ASN.1 48
2.4 Tipos de dados da notação ASN.1 . 49

3.1 Termos de pesquisa utilizados na busca de trabalhos relacionados 50

4.1 Informações do Smart Card utilizado neste trabalho 58
4.2 Comparação entre Arduino UNO e módulos ESP8266 64
4.3 Tabela de suporte a algoritmos gerada pelo JCAlgTest, para algoritmos de hash . . 71
4.4 Applets de segurança para Smart Cards . 72
4.5 Capacidades criptográficas importantes na implementação do sistema 73
4.6 Comparação entre applets de segurança . 73
4.7 Algoritmos implementados no IsoApplet original 75
4.8 Algoritmos implementados no IsoApplet após modificações 76
4.9 Identidade do servidor utilizada nos testes de comunicação entre dispositivo IoT e

servidor . 83
4.10 Estados do handshake e ações de cada entidade 84

5.1 Custo unitário do dispositivo IoT desenvolvido neste trabalho, para diferentes quan-
tidades produzidas . 88

5.2 Correntes típicas de funcionamento para os chips do dispositivo IoT desenvolvido
neste trabalho . 89

5.3 Duração da bateria em horas para os diferentes valores de carga nominal e período
de medição . 90

A.1 Algoritmos de código de autenticação de mensagem 102
A.2 Algoritmos de assinatura digital . 102
A.3 Algoritmos de cifragem simétrica . 103
A.4 Algoritmos de cifragem assimétrica . 103
A.5 Algoritmos de troca de chaves . 103
A.6 Algoritmos de hash . 103
A.7 Algoritmos de geração de chaves assimétricas . 104
A.8 Algoritmos de geração de chave simétrica . 104
A.9 Algoritmos de checksum . 104

LISTA DE ACRÔNIMOS

3DES Triple DES

AES Advanced Encryption Standard

AEAD Authenticated Encryption with Associated Data

AODF Authentication Object Directory File

APDU Application Protocol Data Unit

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

ATR Answer-to-Reset

BER Basic Encoding Rules

BOM Bill of Materials

CA Certificate Authority

CBC Cipher Block Chaining

CDF Certificate Directory File

CI Circuito Integrado

CMAC Cipher-based Message Authentication Code

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRT Control Reference Template

DDoS Distributed Denial-of-service

DES Data Encryption Standard

DF Dedicated File

DH Diffie-Hellman

DODF Data Object Directory File

DSA Digital Signature Algorithm

DTLS Datagram Transport Layer Security

ECAD Electronics Computer-aided Design

ECB Electronic Codebook

ECDSA Elliptic Curve Digital Signature Algorithm

EEPROM Electrically Erasable Programmable Read-only Memory

EF Elementary File

ETU Elementary Time Unit

FCI File Control Information

FIPS Federal Information Processing Standard

GPIO General-purpose Input/Output

HMAC Hash-based Message Authentication Code

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

ISoc Internet Society

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JC Java Card

JCDK Java Card Development Kit

JCRE Java Card Runtime Environment

JCVM Java Card Virtual Machine

MAC Message Authentication Code

MCU Microcontroller Unit

MF Master File

MQTT Message Queue Telemetry Transport

MUSCLE Movement for the Use of Smart Cards in a Linux Environment

NDEF NFC Data Exchange Format

NFC Near-field Communication

NIST National Institute of Standards and Technology

ODF Object Directory File

OS Operating System

OTA Over-the-air

PCI Placa de Circuito Impresso

PGP Pretty Good Privacy

PIC Peripheral Interface Controller

PIN Personal Identification Number

PKCS Public Key Cryptography Standard

PKI Public Key Infrastructure

PRF Pseudorandom Function

PrKDF Private Key Directory File

PUF Physical Unclonable Function

PuKDF Public Key Directory File

RAM Random-access Memory

RF Rádiofrequência

RFC Request for Comments

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RISC Reduced Instruction Set Computer

ROM Read-only Memory

RSA Rivest Shamir Adleman

SC Smart Card

SCP Secure Channel Protocol

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SKDF Secret Key Directory File

SMD Surface-mount Device

SMT Surface-mount Technology

SoC System-on-Chip

SP Special Publication

SPI Serial Peripheral Interface

TCP Transport Control Protocol

TLS Transport Layer Security

TLV Tag-length-value

USB Universal Serial Bus

WDT Watchdog Timer

SUMÁRIO

1 INTRODUÇÃO 17
1.1 Objetivos . 19
1.2 Estrutura do Trabalho . 20

2 FUNDAMENTAÇÃO TEÓRICA 21
2.1 Segurança de Sistemas . 22
2.1.1 Serviços de Segurança . 22
2.1.2 Mecanismos de Segurança . 23
2.2 Ambientes de Desenvolvimento de Baixo Custo 28
2.3 Smart Cards . 29
2.3.1 Segurança dos Smart Cards . 31
2.3.2 Padrão ISO7816 . 32
2.3.3 Java Card . 37
2.3.4 Especificação GlobalPlatform . 38
2.4 Protocolo de Comunicação TLS . 39
2.4.1 Protocolo de Registro . 39
2.4.2 Protocolo de Aperto de Mão . 40
2.5 Padrão PKCS#15 . 45
2.6 Notação ASN.1 . 48
2.7 Considerações Finais . 49

3 TRABALHOS RELACIONADOS 50
3.1 Aplicação de Smart Cards em Protocolos de Segurança 51
3.2 Conexão entre Microcontroladores e Smart Cards 51
3.3 Segurança na Internet das Coisas . 52
3.3.1 Visão Geral . 52
3.3.2 Propostas de Implementação e Verificação . 53
3.3.3 Segurança para Dispositivos IoT de Baixo Custo 54
3.4 Considerações Finais . 54

4 PROPOSTA DE ARQUITETURA 56
4.1 Plataforma de Hardware . 57
4.1.1 Placas leitoras de Smart Cards utilizando Arduino UNO 57
4.1.2 Adição de comunicação sem fio e troca de Arduino por ESP8266 61
4.1.3 Placa Final . 68
4.2 Arquitetura de Software . 68
4.2.1 Protocolo de Comunicação entre Smart Card e Microcontrolador 69

4.2.2 Algoritmos Suportados pelo Smart Card . 70
4.2.3 Applets para Smart Cards . 71
4.2.4 Modificações no IsoApplet . 74
4.2.5 Bibliotecas desenvolvidas para o Microcontrolador 77
4.2.6 Código do Servidor e Funcionamento Geral do Sistema 82
4.3 Considerações Finais . 85

5 RESULTADOS 87
5.1 Avaliação de Custo . 87
5.2 Avaliação de Consumo de Energia . 88

6 CONCLUSÃO 91
6.1 Considerações Finais . 91
6.2 Dificuldades Encontradas . 92
6.3 Trabalhos Futuros . 94

REFERÊNCIAS 96

APÊNDICE A – ALGORITMOS SUPORTADOS PELO SMART CARD 102

171717

1
INTRODUÇÃO

Internet das Coisas (também conhecida por sua sigla em inglês, IoT) é um termo cunhado
em 1999 nas instalações do Massachusetts Institute of Technology (MIT) e refere-se à fusão entre
objetos, sejam eles aparelhos eletrônicos ou não, e sistemas computacionais como processadores,
sensores e, principalmente, módulos de comunicação wireless. Tais objetos, anteriormente
passivos, estão agora conectados à Internet e são capazes de, entre outras coisas, trocar informa-
ções entre si e com outros objetos, coletar dados relativos à sua função, processá-los e tomar
decisões de forma autônoma. Além disso, também podem ser monitorados remotamente através
da Internet.

Existe um impacto massivo associado à IoT atualmente. Infográficos elaborados pelas
empresas Intel (2015) e SAS (2016) mostram o quão grande é a rede da IoT, com bilhões de
dispositivos conectados, e prevêem um crescimento de duas a dez vezes nesse número até o ano
de 2020. Um relatório da Microsoft (EDSON, 2015) lista alguns dos fatores que aceleraram a
adoção da IoT: queda dos custos de componentes de hardware, como chips e sensores, além
de avanços nas suas arquiteturas; valor de aplicações industriais muito maior que o valor de
aplicações para consumidores; progressos na área de software para análise de dados; aumento
da conectividade de dispositivos com a introdução das redes de celular; vantagens dos serviços
na nuvem (essenciais para a IoT), como baixo custo, escalabilidade e flexibilidade; enorme
potencial econômico.

Uma extensa análise de mercado realizada pelo McKinsey Global Institute (MANYIKA

et al., 2015) estima que o impacto econômico da IoT pode ser de US$3,9 a US$11,1 trilhões
por ano em 2025. Segundo o texto, as aplicações com maior valor em potencial estão nas
categorias de Humanos (e.g., monitoramento de doenças, melhoria da qualidade de vida),
Fábricas (e.g., otimização de operações, manutenção preventiva) e Cidades (e.g., segurança e
saúde pública, controle de tráfego). No entanto, o alcance do máximo potencial econômico
depende do desenvolvimento de fatores-chave como tecnologia, interoperabilidade, privacidade
e confidencialidade, segurança, propriedade intelectual, organizações e políticas públicas.

Uma segunda análise produzida pela Gartner (VELOSA; SCHULTE; LHEUREUX, 2015)
identifica tecnologias relevantes utilizando como ferramentas o Ciclo de Expectativas (tradução
livre do termo em inglês, Hype Cycle) e a Matriz de Prioridades, relacionando maturidade,

18

expectativas de mercado, tempo para estabelecimento e benefícios. A própria IoT se encontra
em um lugar de altas expectativas, com um benefício capaz de revolucionar a indústria e uma
previsão de estabelecimento de cinco a dez anos. Tecnologias relacionadas a segurança da IoT,
como Autenticação da IoT, Segurança Digital e Segurança de Sistemas e Softwares Embarcados

são muito recentes e possuem um grande potencial para inovação, com benefícios significativos
para o mercado.

Preocupações com segurança e privacidade são, sem dúvida, alguns dos maiores obstácu-
los relacionados ao desenvolvimento da IoT. A transformação de objetos comuns em pequenos
computadores conectados à Internet significa que esses objetos podem ser hackeados e suas
informações acessadas por pessoas não autorizadas. Existem relatos sobre falhas de segurança
em câmeras (HILL, 2014)(KREBS, 2016), preocupações com wearables, aparelhos médicos, carros
e até mesmo utilização de aparelhos na IoT em ataques DDoS (TAYLOR, 2016)(GALLAGHER,
2015). É possível, inclusive, utilizar um mecanismo de busca especializado para dispositivos
conectados à Internet das Coisas (Shodan) para encontrar e observar a gravação de câmeras
desprotegidas em todo o mundo (PORUP, 2016). Wisniewski (2016) enumera uma série de
medidas de segurança para dispositivos IoT, algumas delas restritivas ao ponto de impedir o
acesso à Internet ou serviços da nuvem. Schneier (2017), especialista em segurança e criptografia
e autor dos livros Applied Cryptography e Cryptography Engineering, lista cinco “obviedades”
sobre a segurança da IoT:

1. Na Internet o ataque é mais fácil que a defesa, dada a grande complexidade dos
sistemas, o que aumenta a chance de vulnerabilidades. Além disso, atacantes não
precisam se preocupar com leis, moral ou ética e fazem uso de novas tecnologias de
maneira mais ágil;

2. A maioria dos softwares no mercado é mal escrita, por ser mais rápido e barato de
produzir. Isso aumenta a quantidade de erros (bugs), os quais podem representar uma
vulnerabilidade no sistema;

3. A conexão entre todas as coisas pode expôr novas vulnerabilidades. Dois sistemas
seguros, se conectados de forma insegura, podem ser atacados;

4. Na Internet, todos os usuários estão ao alcance de todos os atacantes, dos piores aos
melhores;

5. Existem leis que impedem o progresso da pesquisa na área de segurança, por motivos
de quebra de copyright.

Tendo como principais motivações a carência de segurança em dispositivos IoT, bem
como a ausência de dispositivos de baixo custo com segurança integrada e o alto potencial
para inovação nessa área, este trabalho propõe arquiteturas de hardware e software, através da
integração entre um microcontrolador, também conhecido como Microcontroller Unit (MCU), e
um Smart Card (SC), Elemento Seguro capaz de armazenar informações e executar algoritmos
de criptografia. Adicionalmente, dado o potencial econômico da IoT, este trabalho é focado em

1.1. OBJETIVOS 19

sistemas de baixo custo, acessíveis à maioria dos usuários e muito utilizados na prototipação
de projetos, baseados em plataformas conhecidas como Arduino e ESP8266. Suas principais
contribuições estão ligadas à conexão entre o Microcontroller Unit (MCU) e o Smart Card (SC),
entre elas: desenvolvimento e fabricação de circuitos que realizam a conexão física entre os
diversos componentes; elaboração de bibliotecas que habilitam o MCU para requisição de
operações criptográficas, instalação e desinstalação de programas e manipulação de dados
armazenados no cartão; expansão de um software open source para SCs com a implementação
de novas funções criptográficas e funções relativas ao protocolo de comunicação TLS.

1.1 Objetivos

O objetivo principal deste trabalho é a criação de uma arquitetura para IoT, englobando
hardware e software, composta por dispositivos contendo um microcontrolador de baixo custo
conectado à Internet das Coisas e integrado com um Smart Card, os quais se comunicam de
forma criptografada e autenticada com um servidor, a partir da utilização das capacidades
criptográficas deste cartão. Estes dispositivos também são capazes de se conectar com sensores
e enviar seus dados ao servidor. A realização deste objetivo principal envolve a realização de
objetivos específicos. Como será visto no Capítulo 4, a descrição do sistema está dividida em
plataformas de hardware e software, e o mesmo pode ser feito com esses objetivos. Com relação
ao desenvolvimento de hardware, os objetivos específicos são:

� Estabelecer uma conexão física entre um Smart Card e um microcontrolador comum
e realizar a troca de mensagens entre eles com sucesso;

� Projetar e prototipar uma placa com um Smart Card e um módulo de comunicação
sem fio que possa ser acoplada a um microcontrolador, ou que contenha um mi-
crocontrolador, e seja adequada para aplicações em IoT (a partir de critérios como
tamanho, alimentação, conexão com sensores, etc.);

No que diz respeito ao desenvolvimento de software, são definidos os seguintes objetivos
específicos:

� Elaborar um software para o microcontrolador capaz de executar um protocolo de
comunicação segura baseado em requisições de operações criptográficas feitas ao
Smart Card;

� Desenvolver um software para o Smart Card capaz de utilizar suas habilidades
criptográficas e armazenar informações no próprio cartão, em conformidade com os
padrões internacionais vigentes;

� Criar um software que agirá como o servidor do dispositivo IoT, comunicando-se
de forma segura com ele e recebendo suas mensagens relativas à uma determinada
aplicação;

1.2. ESTRUTURA DO TRABALHO 20

� Avaliar o sistema sob diferentes métricas, como consumo de energia, custos de fabri-
cação, performance, entre outras, para verificar sua compatibilidade com aplicações
em IoT.

1.2 Estrutura do Trabalho

O trabalho está organizado em seis capítulos, incluindo este. O Capítulo 2 apresenta
conceitos fundamentais para o entendimento do trabalho, entre eles: segurança de sistemas e
criptografia, placas de desenvolvimento, Smart Cards e padrões internacionais relacionados. O
Capítulo 3 referencia trabalhos que estão relacionados ao tema da dissertação, como propostas
de integração entre Smart Cards e microcontroladores e métodos de segurança para IoT. O Capí-
tulo 4 apresenta a proposta principal do trabalho e descreve todas as etapas do desenvolvimento
de hardware e software do dispositivo IoT. O Capítulo 5 mostra avaliações feitas após a finaliza-
ção do trabalho, com estudos do custo total e do consumo de energia do hardware fabricado. Por
fim, o Capítulo 6 apresenta as conclusões sobre o trabalho, dificuldades encontradas ao longo de
sua elaboração e atividades futuras que podem ser realizadas para melhoria do projeto.

212121

2
FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta conceitos considerados fundamentais para o entendimento do
trabalho realizado. Não é o objetivo deste capítulo, no entanto, se aprofundar excessivamente
em todos os temas escolhidos, mas sim explicar de maneira sucinta (e, em alguns momentos,
simplificada) os pontos importantes que constituem uma base teórica sobre a qual se apóia o
projeto desenvolvido.

Muitos desses conceitos estão definidos em especificações e padrões internacionais de
criptografia e segurança. Stallings (2011) identifica as organizações mais importantes nesse
aspecto:

� National Institute of Standards and Technology (NIST): Agência federal dos Estados
Unidos, responsável pela publicação dos Federal Information Processing Standards

(FIPSs) e das Special Publications (SPs). Apesar de ser uma organização de atuação
em escala nacional, seus padrões tem impacto mundial. Publicou os algoritmos
Secure Hash Algorithm (SHA) e Advanced Encryption Standard (AES);

� Internet Society (ISoc): Organização americana sem fins lucrativos, com mais de
140 membros organizacionais e 80.000 membros individuais, cujo objetivo é liderar
o desenvolvimendo de padrões relacionados à Internet. É a organização-mãe da
Internet Engineering Task Force (IETF), organização que publica especificações
voluntárias conhecidas como Requests for Comments (RFCs). Um desses RFCs
especifica o protocolo TLS, discutido na Seção 2.4;

� ITU Telecommunication Standardization Sector (ITU-T): Setor da International Tele-

communication Union (ITU), agência internacional das Nações Unidas, responsável
por produzir padrões relacionados à área de telecomunicações. Seus padrões são
chamados de Recomendações;

� International Organization for Standardization (ISO): Órgão internacional, inde-
pendente e não-governamental composto por representantes de organizações de
padronização mundiais em mais de 160 países (entre elas, ISoc e ITU), os quais
desenvolvem, em conjunto, os padrões ISO.

Vale a pena ressaltar também a RSA Laboratories, responsável pela criação dos padrões

2.1. SEGURANÇA DE SISTEMAS 22

Public Key Cryptography Standard (PKCS), discutidos na Seção 2.5. Esses padrões, apesar de
serem de uma empresa privada, são importantes no campo da criptografia de chave pública.

2.1 Segurança de Sistemas

Um glossário com definições de termos associados à Segurança na Internet é apresentado
no RFC 2828 (SHIREY, 2000). Entre elas, são dadas três definições para o termo segurança:

1. Providências tomadas para proteger um sistema;
2. Condição de um sistema que resulta do estabelecimento e manutenção de medidas

tomadas para protegê-lo;
3. Condição de recursos de um sistema de estarem isentos de acessos não autorizados e

de mudanças, destruições ou perdas não autorizadas ou acidentais.

A Recomendação X.800 (ITU-T, 1991) estabelece uma arquitetura de segurança de
sistemas baseada na definição de dois tipos de elementos: serviços de segurança e mecanismos

de segurança. Ambos estão definidos no RFC 2828:

� Serviço de segurança

1. Serviço de processamento ou comunicação que é fornecido por um sistema
para dar um tipo específico de proteção a recursos do sistema;

2. Serviço, fornecido por umas das camadas de comunicação de sistemas,
que garante a segurança adequada dos sistemas ou das transferências de
informações;

� Mecanismo de segurança: Processo (ou dispositivo que incorpora tal processo) que
pode ser usado em um sistema para implementar um serviço de segurança que é
fornecido por tal sistema, ou para implementá-lo dentro do próprio sistema.

O serviço de segurança é, portanto, um conceito abstrato que se refere a um objetivo de
segurança do sistema, enquanto que o mecanismo de segurança é o procedimento aplicado na
prática que permite o fornecimento de determinado serviço.

2.1.1 Serviços de Segurança

São definidos os seguintes serviços de segurança na Recomendação X.800:

� Controle de acesso: Proteção contra o uso não autorizado de recursos do sistema;
� Autenticação de Entidade: Garantia de que a entidade com a qual está se comunicando

é quem ela diz ser;
� Autenticação de Mensagem: Garantia de que o remetente da mensagem é autêntico;
� Confidencialidade: A informação é mantida secreta para todas as partes não autoriza-

das a acessá-la;

2.1. SEGURANÇA DE SISTEMAS 23

� Integridade: Garantia de que a informação não foi modificada durante seu trajeto;
� Não-repúdio: Proteção contra a negação de envio/recebimento de mensagens por

uma entidade participante da comunicação.

Paar e Pelzl (2010) classificam os quatro últimos serviços listados acima como os mais
importantes na maioria dos sistemas e citam alguns serviços adicionais:

� Disponibilidade: Garantia de que o sistema está disponível sempre que requisitado;
� Auditoria: Fornecimento de evidências sobre atividades de segurança relevantes do

sistema, a partir da criação de registros de eventos;
� Segurança Física: Proteção contra adulterações físicas no sistema;
� Anonimato: Proteção contra descoberta e mau uso de identidades.

O padrão FIPS 199 (NIST, 2004) utiliza a definição de “segurança da informação” presente
no Código de Leis dos Estados Unidos: “Proteção da informação e de sistemas de informação

de acesso, uso, divulgação, disrupção, modificação ou destruição não autorizados a fim de

prover confidencialidade, integridade e disponibilidade”, onde o serviço de integridade abrange
também autenticação de mensagens e não-repúdio.

É importante ressaltar que diferentes aplicações requerem diferentes serviços de segu-
rança. Para este trabalho, foram considerados indispensáveis os serviços que garantissem a
segurança do transporte de dados entre as partes, dado que dispositivos IoT enviam, em geral,
dados coletados de sensores, os quais podem conter informações sensíveis sobre seus usuários.

2.1.2 Mecanismos de Segurança

A Recomendação X.800 define os seguintes mecanismos de segurança:

� Cifragem: Utilização de algoritmos matemáticos para transformação de uma infor-
mação que se deseja transmitir, também chamada de texto claro ou legível, em uma
informação que só pode ser interpretada mediante a utilização de uma chave, também
conhecida como texto cifrado ou ilegível. Implementa os serviços de confidenciali-
dade, autenticação de entidade, autenticação de mensagem e integridade;

� Assinatura Digital: Informação anexada ao final de uma mensagem que permite ao
recipiente verificar a origem dos dados. Implementa os serviços de autenticação de
entidade, autenticação de mensagem e não-repúdio;

� Mecanismos de Controle de Acesso: Utilização de informações sobre uma entidade
para reforçar os seus diretos de acessos (e.g., identidade e senha). Implementa o
serviço de controle de acesso;

� Mecanismos de Integridade de Dados: Informação anexada ao final de uma men-
sagem que permite ao recipiente verificar que os dados não foram modificados.
Implementa os serviços de autenticação de mensagem e não-repúdio;

2.1. SEGURANÇA DE SISTEMAS 24

� Troca de Autenticação: Maneira de verificar a identidade de uma entidade a partir da
troca de informações. Implementa o serviço de autenticação de entidade;

� Padding de Tráfego: Adição de informações aleatórias ou sem significado a uma
mensagem, com o objetivo de dificultar a análise de tráfego. Implementa o serviço
de confidencialidade;

� Controle de Roteamento: escolha de rotas fisicamente seguras ou com um determi-
nado nível de proteção para troca de informações. Implementa o serviço de confi-
dencialidade, pois garante que a transmissão de dados apenas por rotas consideradas
seguras;

� Notarização: Utilização de uma terceira entidade confiada pelas partes, para garantir
as propriedades de uma troca de informações, como integridade, origem, destino e
tempo. Implementa o serviço de não-repúdio.

Os mecanismos considerados mais importantes para o trabalho são descritos nas próximas
seções. Descrições detalhadas desses mecanismos podem ser encontradas nos livros de Katz e
Lindell (2014), Stallings (2011) e Paar e Pelzl (2010).

Cifragem. A cifragem de informações pode ser feita de duas maneiras: reversível, quando
é possível aplicar uma operação de decifragem sobre o texto cifrado para obter o texto claro
novamente; e irreversível, quando não é possível obter o texto claro a partir do texto cifrado.

A cifragem reversível de dados pode ser dividida em duas categorias, de acordo com o
tipo de chave que é utilizado:

� Simétrica ou de Chave Secreta: quando uma única chave é utilizada tanto para
cifrar quanto para decifrar o texto. Por este motivo, ela precisa ser distribuída de
forma segura para todas as entidades autorizadas a acessar a informação, e também
deve ser armazenada de maneira segura. Algoritmos que realizam esse tipo de
cifragem incluem o Advanced Encryption Standard (AES) e o Data Encryption

Standard (DES);
� Assimétrica ou de Chave Pública: quando é utilizado um par de chaves, onde uma

delas é utilizada para cifrar o texto e outra para decifrar o texto. A chave usada para
cifrar é de acesso público (chave pública) e a chave usada para decifrar o texto é
armazenada de forma segura pelo usuário (chave privada). Dessa forma, qualquer
entidade pode utilizar a chave pública para enviar uma mensagem confidencial ao
proprietário da chave privada e só ele poderá decifrá-la. Essas chaves não precisam
ser distribuídas, pois cada usuário pode gerá-las individualmente. Exemplos de
algoritmos de cifragem com chave pública são o Rivest Shamir Adleman (RSA) e o
Diffie-Hellman (DH);

A Figura 2.2 mostra um diagrama comparando os dois tipos de cifragem. Em geral,
algoritmos de chave secreta oferecem um nível de segurança similar aos algoritmos de chave

2.1. SEGURANÇA DE SISTEMAS 25

pública, mas com chaves bem menores e execução mais rápida. Por este motivo, muitos sistemas
utilizam uma abordagem híbrida, onde a cifragem de chave pública serve apenas para estabelecer
uma chave secreta comum entre as entidades em uma comunicação e, a partir daí, toda troca de
informação é cifrada com a chave secreta (o protocolo TLS é um exemplo disso). A principal
finalidade da cifragem é fornecer confidencialidade dos dados. No entanto, algoritmos de
cifragem com chave secreta também podem ser utilizados em mecanismos de integridade de
dados. Alguns algoritmos de cifragem de chave pública, por sua vez, são usados na criação de
assinaturas digitais e em esquemas de estabelecimento de uma chave secreta, como é o caso do
protocolo Diffie-Hellman. Este algoritmo, ilustrado de maneira simplificada na Figura 2.1, é
baseado no problema do logaritmo discreto e é utilizado exclusivamente para o estabelecimento
de um valor secreto comum entre duas ou mais entidades, o qual geralmente é utilizado como
uma chave simétrica (ou como ponto de partida para a obtenção de uma chave simétrica, como
no Protocolo TLS).

ENTIDADE A

ENTIDADE B

+ = + =

+ = + =

TINTA
COMUM

TINTAS
PRIVADAS

TINTAS
PÚBLICAS

TINTA
SECRETA
COMUM

TRANSPORTE INSEGURO
(Assume-se que a separação de tintas
é um processo caro e complexo)

Figura 2.1: Protocolo Diffie-Hellman simplificado, onde as chaves são representadas por tintas e
o problema do logaritmo discreto é representado pelo processo de separação das tintas. Fonte das

Entidades A e B: Noun Project, Dirk Rowe

A cifragem irreversível de dados é representada pelas funções de hash. Essas funções
recebem uma quantidade arbitrária de dados e produzem uma quantidade fixa e pequena de dados
na saída. Suas principais característas são a dificuldade em se encontrar colisões (duas mensagens
que resultam em um mesmo hash) e a impossibilidade de se obter a mensagem original a partir
do seu hash. Por este motivo, essas funções são utilizadas na criação de assinaturas digitais e no
controle de integridade de dados, com o objetivo de criar dados comprimidos e únicos baseados
em outros dados maiores. Exemplos de algoritmos de hash incluem o SHA e o SHA256.

Assinatura Digital. Esquemas de assinatura digital utilizam algoritmos de criptografia baseados
em chaves assimétricas em conjunto com algoritmos de hash para calcular, a partir de uma
mensagem, uma segunda informação atrelada ao remetente desta mensagem, sua assinatura.
Da mesma forma que assinaturas escritas em um papel, as assinaturas digitais são utilizadas
para identificar a origem de uma determinada informação (autenticação de entidade), e também
impedem o remetente de negar o seu envio (não-repúdio). Adicionalmente, as assinaturas digitais

2.1. SEGURANÇA DE SISTEMAS 26

TEXTO
CLARO

CIFRAGEM
TEXTOTEXTO

CIFRADOCIFRADO
DECIFRAGEM

TEXTO
CLARO

CHAVE SECRETA
COMPARTILHADA

CHAVECHAVE
PÚBLICA DE BPÚBLICA DE B

CHAVECHAVE
PRIVADA DE BPRIVADA DE B

ENTIDADE A ENTIDADE B

Figura 2.2: Comparação entre cifragem simétrica (acima) e assimétrica (abaixo). Fontes:
Entidades A e B: Noun Project, Dirk Rowe; Chave: Noun Project, Jemis Mali

garantem a integridade da informação, pois qualquer alteração nos dados modifica drasticamente
o conteúdo da assinatura.

Nos algoritmos de assinatura digital, a chave privada é utilizada pelo remetente para gerar
a assinatura a partir da informação, visto que só ele tem acesso a essa chave. Qualquer outra
entidade que queira verificar esta assinatura utiliza a chave pública do remetente. É possível gerar
assinaturas digitais com algoritmos de cifragem, como o RSA, mas também existem algoritmos
específicos para criação de assinaturas digitais, como o Digital Signature Algorithm (DSA).

Mecanismos de Integridade de Dados. O principal mecanismo utilizado para garantir inte-
gridade e autenticação de mensagens é o Message Authentication Code (MAC). Os MACs são
análogos às assinaturas digitais, mas utilizam algoritmos com chave secreta. Nesse caso, uma
única chave compartilhada entre as partes serve tanto para calcular o MAC quanto para verificá-
lo. Por ser um código único associado a uma mensagem, o MAC implementa a autenticação e
integridade da mensagem, dado que qualquer alteração na mensagem altera o MAC e só quem
possui a chave secreta é capaz de calculá-lo. No entanto, não implementa a não-repudiação pois
não é possível provar qual das partes em uma comunicação calculou um determinado MAC.
Existem MACs baseados em algoritimos de hash, os HMACs, e em algoritimos de cifragem,
os CMACs. Os primeiros são utilizados no TLS e os segundos são utilizados na especificação
GlobalPlatform (GlobalPlatform, 2003) e, portanto, ambos são utilizados neste trabalho.

Os algoritmos de MAC, assim como os algoritmos de cifragem com chave secreta,
possuem uma execução muito mais rápida e chaves menores do que os algoritmos de assinatura

2.1. SEGURANÇA DE SISTEMAS 27

digital, que utilizam chaves assimétricas. Por esse motivo, uma vez que as assinaturas digitais
são utilizadas em um esquema para estabelecer chaves secretas (como o TLS), as mensagens
subsequentes são “assinadas” com MACs. A Figura 2.3 mostra um diagrama comparando MACs
e assinaturas digitais.

MENSAGEM
MAC /

ASSINAR

MAC /MAC /
ASSINATURAASSINATURA

DIGITALDIGITAL
VERIFICAR

RESULTADO DARESULTADO DA
VERIFICAÇÃOVERIFICAÇÃO

MENSAGEM

CHAVE
SECRETA

CHAVECHAVE
PÚBLICAPÚBLICA

CHAVECHAVE
PRIVADAPRIVADA

Figura 2.3: Comparação entre MAC (acima) e assinatura digital (abaixo). Fonte: Chave: Noun
Project, Jemis Mali

Troca de Autenticação. Uma maneira de realizar a troca de autenticação é através de protocolos
de “aperto de mão”, onde as entidades trocam informações que podem ser utilizadas para
verificar sua autenticidade mutualmente. No TLS, por exemplo, as entidades trocam certificados:
documentos que associam uma identidade (nome, país, estado, endereço, etc.) a uma chave
pública e são assinados digitalmente por uma terceira entidade, na qual as primeiras confiam.
Na Internet, um certificado é assinado por uma determinada entidade, e o certificado dessa
entidade é assinado por outra, e assim sucessivamente formando uma cadeira de certificados,
até se chegar na entidade raíz, a qual não precisa ser certificada por ninguém e na qual todos
confiam. Essas entidades responsáveis pela emissão de certificados são chamadas de Certificate

Authority (CA) ou Autoridades de Certificação. No sistema proposto neste trabalho, o servidor
atua como uma CA e emite certificados para os clientes, os quais se autenticam com o próprio
servidor posteriormente, em um protocolo de aperto de mão.

2.2. AMBIENTES DE DESENVOLVIMENTO DE BAIXO CUSTO 28

2.2 Ambientes de Desenvolvimento de Baixo Custo

A prototipação de aplicações em Internet of Things (IoT) é baseada na utilização de
plataformas de hardware economicamente acessíveis que fornecem uma maneira simples e
rápida de programar um microcontrolador. Tais plataformas são chamadas Ambientes de De-

senvolvimento de Baixo Custo. Em geral, são circuitos eletrônicos que dão ao usuário acesso
a várias interfaces de entrada/saída do MCU, como portas digitais e analógicas e interfaces de
comunicação, e que podem ser conectados a um computador e programados de maneira fácil.
Essas interfaces podem, por sua vez, ser conectadas com os mais diversos tipos de sensores e
módulos de comunicação sem fio para criação de projetos em IoT. Existem desde circuitos mais
simples, com processadores de dezenas de MHz e memórias na ordem de kB (e.g., Arduino
UNO, MSP430 Launchpad), a circuitos que são verdadeiros computadores, com processamento
e memória comparáveis aos de um smartphone, capazes de rodar sistemas operacionais como
Linux e Android (e.g., Raspberry Pi, BeagleBone). A aplicação que se deseja desenvolver
determina qual ambiente deve ser escolhido.

O relatório da Gartner sobre tecnologias em IoT (VELOSA; SCHULTE; LHEUREUX, 2015)
cita os ambientes de desenvolvimento de baixo custo como uma das tecnologias emergentes de
alto benefício para o mercado, principalmente por fomentar a inovação em IoT realizada por
desenvolvedores individuais. Ele destaca ainda algumas vantagens, como:

� Versatilidade, pois estes circuitos podem ser utilizadas por uma vasta gama de
usuários que vai desde de pessoas com pouco conhecimento de eletrônica e/ou
computação elaborando projetos básicos (inclusive com propósitos educacionais) a
profissionais e startups desenvolvendo projetos complexos e, por vezes, comerciais,
como drones e impressoras 3D;

� Flexibilidade, dando ao desenvolvedor a possibilidade de alteração do design original
para se encaixar nos requisitos de seus projetos.

Recursos relacionados a elaboração de projetos com esses ambientes, como bibliotecas,
exemplos e tutoriais, podem ser encontrados nas diversas comunidades online de desenvolvedores
de hardware. Uma survey realizada pelo site Hackster (2016) destaca algumas comunidades
mais acessadas pelos usuários, entre elas: Arduino, Instructables, Adafruit e SparkFun. Essa
mesma pesquisa também aponta as placas Arduino e Raspberry Pi (Figura 2.4) como sendo as
mais utilizadas por desenvolvedores, para prototipação de sistemas.

Este trabalho teve como foco os ambientes de desenvolvimento mais simples. Em
específico, foi utilizada a placa Arduino UNO, no início do projeto, e os módulos do chip

ESP8266, do meio ao final. Os detalhes do desenvolvimento de hardware são especificados na
Seção 4.1.

2.3. SMART CARDS 29

(a) (b)

Figura 2.4: Arduino UNO (a) e Raspberry Pi 3 Modelo B (b). Fontes: store.arduino.cc e
raspberrypi.org

2.3 Smart Cards

Os Smart Cards (SCs) são cartões de plástico nos quais estão embutidos Circuitos
Integrados (CIs), usualmente chamados de chips. Esses cartões podem ser classificados de
acordo com três características principais:

� Tamanho;
� Tipo de chip;
� Método de transmissão de dados.

Nos padrões ISO que especificam as características dos SCs, eles são categorizados
como Cartões de Identificação – Cartões com Circuitos Integrados. O padrão ISO7810 (ISO/IEC,
2003), em particular, especifica as características físicas dos cartões de identificação, entre elas
as suas dimensões. São definidos quatro tamanhos diferentes para os cartões, sendo os mais
relevantes o ID-1 e o ID-000, mostrados na Figura 2.5. O primeiro é o tamanho utilizado em
cartões de crédito e o segundo é o tamanho utilizado em cartões SIM para celular. Inicialmente,
foram utilizados cartões ID-1 no desenvolvimento deste trabalho, os quais foram transformados
em cartões ID-000, para favorecer a portabilidade do sistema.

Quanto ao tipo de chip contido, Rankl e Effing (2010) definem dois tipos de Smart Card:

� Cartões de Memória: Possuem apenas uma memória não-volátil (i.e., que mantém
os dados armazenados, mesmo após ser desligada e ligada novamente), tipicamente
uma EEPROM, e podem conter uma lógica de segurança associada ao acesso dessa
memória. Em geral, são otimizados para aplicações mais simples e específicas e, por
isso, são mais baratos;

� Cartões de Processador: Possuem um processador (ou CPU), uma memória ROM
(apenas leitura) com o seu sistema operacional, uma memória EEPROM onde podem
ser armazenados dados e códigos de aplicações que são executadas pelo cartão e uma

2.3. SMART CARDS 30

ID-1

ID-000

Figura 2.5: Comparação entre os tamanhos de cartão ID-1 e ID-000

memória RAM (volátil, apaga quando é desligada) para armazenar os dados durante
a execução de uma aplicação. Em geral, cartões de processador possuem também um
segundo processador (também chamado de criptoprocessador), cuja função é acelerar
a execução de algoritmos de criptografia. São cartões mais versáteis, pois podem
conter várias aplicações. Foi utilizado um cartão desse tipo no desenvolvimento do
trabalho.

Por fim, a transmissão de dados pode ser feita por contatos elétricos ou sem contatos, por
meio de uma interface de Rádiofrequência, de forma que o cartão não precisa ser inserido em um
leitor, apenas aproximado a uma distância ao alcance da antena. Os cartões podem ser somente
de contato, somente sem contato, de interface dupla (um único chip que suporta os dois métodos
de transmissão) ou híbridos (um cartão com dois chips distintos, cada um suportando um tipo
de transmissão). Como o objetivo do trabalho era conectar um SC a um MCU, foi utilizado um
cartão com interface de contatos, como o da Figura 2.6.

Figura 2.6: Cartão ID-1 com interface de contatos elétricos. Fonte: ic0nstrux.com

2.3. SMART CARDS 31

2.3.1 Segurança dos Smart Cards

Os Smart Cards geralmente são referidos como sistemas invioláveis ou resistentes à
adulteração, capazes de armazenar dados de maneira segura. Rankl e Effing (2010) dedicam
um capítulo inteiro do seu livro à descrição das diferentes estratégias de proteção que são
implementadas em um SC. Os autores atribuem a segurança do cartão a quatro componentes
principais:

� Corpo;
� Hardware do CI;
� Sistema Operacional;
� Aplicação.

A segurança do corpo do cartão é relativa a características que podem ser checadas
visualmente por pessoas, como marcações, impressões e coisas semelhantes. Em aplicações
como a deste trabalho, em que o cartão não passa por nenhuma verificação humana, apenas os
três últimos parâmetros são importantes. São definidas no texto algumas categorias de ataques
que podem ser realizados em Smart Cards:

� Ataques Sociais: Têm como alvo as pessoas que utilizam os cartões, e não os próprios
cartões em si;

� Ataques Físicos: Direcionados ao hardware do cartão, geralmente necessitam de
uma quantidade considerável de recursos técnicos. Podem ser classificados como
estáticos, quando o cartão não precisa estar ligado, ou dinâmicos, quando são feitas
observações sobre o estado físico do cartão durante o seu funcionamento;

� Ataques Lógicos: Baseados em fraquezas do software do cartão, seu sistema operaci-
onal e suas aplicações, e também em criptanálise tradicional (análise de algoritmos
de criptografia em busca de falhas). Podem ser classificados como passivos, quando
apenas são observadas trocas de mensagens e feitas medidas no CI, ou ativos, quando
existe a manipulação da troca de dados e do dispositivo.

São tomadas medidas de proteção em todas as fases da vida de um cartão: no seu
desenvolvimento, produção e utilização, onde de fato se concentra a maior parte dos ataques.
Em específico, a realização de ataques físicos no CI do cartão, segundo Rankl e Effing (2010),
requer diversos equipamentos especializados, tais como: microscópio, cortador a laser, microma-
nipuladores, feixes de íon focalizados, equipamentos de fresagem química e computadores de
alta velocidade. Antes de qualquer ataque, o chip precisa ser removido do cartão. O mesmo é
protegido por uma camada de resina, a qual também deve ser removida sem danificar o circuito.
Com isso, o semicondutor está exposto e pode ser manipulado. No entanto, existe uma série de
medidas de segurança implementadas no hardware que precisam ser transpassadas, entre elas:

2.3. SMART CARDS 32

� O tamanho das estruturas dentro do chip, da ordem de centenas de nm, dificulta a
análise do circuito;

� O design dos CIs é exclusivo para Smart Cards e não é utilizado para outros tipos de
dispositivos, onde segurança não é um fator crítico;

� Presença de estruturas falsas no chip, sem função alguma, apenas para dificultar a
localização das estruturas reais;

� Os barramentos que conectam a CPU às memórias são posicionados em camadas
de difícil acesso dentro do semicondutor e, em alguns casos, são embaralhados para
mascarar sua função;

� Utilização de “escudos” sobre a superfície do chip, que impedem a medição de
tensões em regiões específicas. Alguns desses escudos são usados para alimentar o
cartão e acabam por inutilizá-lo se forem removidos, outros são feitos especificamente
para detecção de ataques físicos;

� Módulos de monitoração de tensão dentro do chip, que impedem que o cartão
funcione fora da sua região de operação, onde podem ocorrer falhas que permitam o
vazamento de dados.

Rankl e Effing (2010) também detalham mecanismos de proteção adicionais associados
a ataques ao software do cartão, como a utilização de controle de acesso para arquivos (presente
na PKCS#15), autenticação entre cartão e entidade externa, troca de mensagens seguras (ambos
presentes na especificação GlobalPlatform), entre outros. Em suma, Smart Cards não são
perfeitamente seguros, mas são desenvolvidos de forma que um ataque direto ao seu sistema seja
uma tarefa árdua e custosa, mesmo para adversários especializados.

2.3.2 Padrão ISO7816

A especificação internacional de todos os parâmetros relacionados aos Smart Cards é
realizada pelo padrão ISO7816. Ele consiste em quatorze partes diferentes (1 a 13 e 15), onde
cinco delas (1 a 3, 10 e 12) são específicas para cartões com contatos elétricos e as restantes
independem do método de transmissão de dados. Apenas algumas partes do padrão foram
utilizadas como referência para este trabalho: 1 a 4, 8 e 9, pois são as partes que tratam das
características físicas, dos protocolos de comunicação e dos comandos que o Smart Card pode
receber.

As partes 1 e 2 tratam de características físicas dos cartões com contatos. A primeira
delas (ISO/IEC, 1998) é mais focada no cartão em si, estendendo o conteúdo da ISO7810 citada
anteriormente com propriedades adicionais que levam em consideração a presença dos contatos,
como proteção à eletricidade estática e interferência eletromagnética, temperatura de operação,
entre outras. A segunda parte (ISO/IEC, 2007) trata especificamente dos contatos elétricos, define
uma quantidade de oito contatos (C1 a C8), suas dimensões e localização em um cartão de
tamanho ID-1.

2.3. SMART CARDS 33

A terceira parte do padrão ISO7816 (ISO/IEC, 2006) define as características elétricas e
os protocolos de transmissão de dados dos Smart Cards (SCs) com contatos. Incialmente, são
especificadas as classes de operação de acordo com a tensão que deve ser aplicada ao cartão para
que ele funcione:

� Classe A: Tensão de operação igual a 5 V;
� Classe B: Tensão de operação igual a 3 V;
� Classe C: Tensão de operação igual a 1,8 V.

Depois, são especificados os contatos elétricos, seus nomes e funções:

� VCC (C1): Usado para alimentar o cartão com a tensão de operação;
� RST (C2): Usado para fornecer o sinal de reset para o cartão, que o faz retornar ao

estado inicial de operação;
� CLK (C3): Usado para fornecer o sinal de relógio (ou de clock) para o cartão. Este

sinal coordena todas as ações executadas pelo cartão e tem como valores mínimo e
máximo 1 MHz e 5 MHz, respectivamente;

� GND (C5): Tensão de referência para o cartão;
� I/O (C7): Usado para envio e recebimento de dados, de forma serial.

A Figura 2.7 mostra uma representação dos contatos em um Smart Card, com seus
respectivos nomes. Os contatos C4 e C8 não possuem funções definidas na Parte 3 da ISO7816
(NC = Not Connected, Não Conectado), mas podem ser usados como os terminais de dados
de uma interface USB para o cartão, de acordo com a Parte 12 da ISO7816 (ISO/IEC, 2005a).
O contato C6, por sua vez, é de aplicação geral (SPU = Standard or Proprietary Use, Uso
Padronizado ou Proprietário), como entrada ou saída, mas não possui função definida na ISO7816
(é reservado para uso futuro). O cartão não possui interface USB, portanto, esses três contatos (C4,
C8 e C6) nunca são utilizados no projeto. A ISO7816-3 especifica, então, quatro procedimentos
que devem ser realizados durante a operação do cartão. Na ordem de execução, os procedimentos
são:

1. Ativação: RST deve ser colocado em nível baixo, VCC deve ser ligado, o I/O do
leitor deve ser colocado em modo de recepção e um sinal de relógio deve ser aplicado
a CLK;

2. Cold Reset: após o sinal de relógio ser aplicado, RST deve permanecer em nível
baixo por pelo menos 400 ciclos do relógio e então ser colocado em nível alto;

3. Troca de informações: após um tempo que varia entre 400 e 40000 ciclos de relógio,
o SC envia o Answer-to-Reset (ATR) (resposta fixa, que contém alguns parâmetros
de comunicação), negocia um protocolo de transmissão e seus parâmetros com o
leitor e a transferência de mensagens entre as partes é iniciada;

2.3. SMART CARDS 34

C1(VCC)

C2(RST)

C3(CLK)

C4(NC) C8(NC)

C7(I/O)

C6(SPU)

C5(GND)

Figura 2.7: Contatos de um Smart Card

I/O

CLK

RST

VCC

INDEFINIDOINDEFINIDO

ATIVAÇÃO COLD RESET TROCA DE INFORMAÇÕES DESATIVAÇÃO

t ≤ 200T

t ≥ 400T

400T ≤ t ≤ 40000T

Figura 2.8: Procedimentos de operação do Smart Card

4. Desativação: RST, CLK e I/O devem ser colocados, nessa ordem, em nível baixo e
VCC deve ser desligado.

A Figura 2.8 detalha o primeiro, segundo e quarto procedimentos. O terceiro procedi-
mento, a troca de informações, é realizado através do envio e recebimento de caracteres. Cada
caractere é formado por 10 bits e cada bit tem duração de 1 Elementary Time Unit (ETU), unidade
básica de tempo na qual o protocolo de transmissão é baseado. O valor padrão do ETU é de 372
ciclos do relógio (e.g., se o relógio tem frequência de 2 MHz, o ETU é 372×0,5 ns = 186 ns) e
pode ser reconfigurado após o recebimento do ATR. Antes do início de qualquer comunicação, o
I/O deve estar em nível alto. O primeiro bit marca o início do caractere e possui valor sempre
igual a “0”. Os próximos 8 bits codificam um byte de dados que se deseja transmitir. O décimo e
último bit é a paridade do caractere, utilizado como uma maneira simples para detecção de erros.
A paridade está correta se existe uma quantidade par de valores “1” entre o segundo e décimo bits

do caractere. Se a paridade estiver correta, existe uma pausa até o envio do próximo caractere e
se estiver errada, o receptor deve enviar um sinal de erro e esperar o reenvio do mesmo caractere.
A Figura 2.9 exemplifica o comportamento do I/O durante o envio de um caractere.

Uma cadeia de caracteres forma um comando. O protocolo mais simples de comunicação
é o T=0, onde o microcontrolador funciona como um dispositivo mestre e envia comandos para
o cartão, que os processa (um por vez) e envia a resposta. Os comandos e respostas são enviados
em um ou mais “pacotes” chamados Application Protocol Data Units (APDUs), os quais são
divididos em:

� APDUs de Comando: possuem um cabeçalho obrigatório de quatro bytes contendo a

2.3. SMART CARDS 35

I/O

1 2 3 4 5 6 7 8 9 10

INÍCIO BYTE PAR. PAUSA

PRÓXIMO
CARACTEREX

(a)

I/O

1 2 3 4 5 6 7 8 9 10

INÍCIO BYTE PAR.
SINAL

DE
ERRO

REENVIO
DE

CARACTERE×

(b)

Figura 2.9: Envio de um caractere com paridade correta (a) e incorreta (b)

classe do comando (CLA), o tipo de instrução (INS) e dois parâmetros relacionados
à instrução (P1 e P2), e um corpo condicional de tamanho variável que pode conter
o número de bytes que estão sendo enviados no comando (Lc) juntamente com os
bytes de dados e/ou o número de bytes esperados na resposta (Le). Caso não seja
necessário enviar nenhuma informação com o comando, nem seja esperada nenhuma
informação na resposta, o corpo não existe;

� APDUs de Resposta: possuem um corpo condicional de tamanho variável que pode
conter os bytes da resposta ao comando (caso sejam necessários) e um rodapé
obrigatório de dois bytes contendo o status do processamento do comando (SW1 e
SW2).

A Figura 2.10 ilustra o formato de cada tipo de APDU. A classe do comando determina
se ele é interindustrial, padronizado de acordo com a ISO7816, ou proprietário, criado pelos
desenvolvedores de uma aplicação específica. A instrução informa ao cartão que comando deve
ser executado, sob as condições especificadas nos parâmetros P1 e P2 (quando necessários). Os
bytes de status SW1 e SW2 informam ao leitor de cartão se o comando foi executado corretamente
ou não. Os valores mais frequentes de SW1 e SW2 durante uma troca de mensagens entre leitor
e SC estão listados na Tabela 2.1.

A parte 4 do padrão ISO7816 (ISO/IEC, 2005b) define os conceitos de organização,
segurança e a maioria dos comandos aceitos pelo SC. A organização diz respeito a:

� Pares de comando/resposta (também definidos na parte 3) e os significados dos bytes
CLA, INS, SW1 e SW2;

� Formato dos objetos armazenados no cartão, de acordo com as regras de codificação
da ASN.1 (Seção 2.6);

� Estrutura dos dados do cartão, baseada em Dedicated Files (DFs) e Elementary

Files (EFs), os quais também são utilizados na especificação PKCS#15 (Seção 2.5);

2.3. SMART CARDS 36

CLA INS P1 P2 Lc DADOS Le

CABEÇALHO CORPO

1 B 1 B 1 B 1 B 1 B 0 - 255 B 1 B

(a)

DADOS SW1 SW2
CORPO RODAPÉ

0 - 256 B 1 B 1 B

(b)

Figura 2.10: Estrutura das APDUs de comando (a) e resposta (b)

SW1/SW2 STATUS

0x9000 Processamento normal.

0x61XX Processamento normal. O byte SW2 codifica a quantidade
de bytes ainda disponíveis para serem recebidos pelo leitor
(entre 1 e 256, onde 0x00 = 256), o qual deve enviar um
comando de recebimento de dados.

0x6CXX Erro de verificação. A quantidade de bytes esperados (Le)
enviada pelo leitor é incorreta. O mesmo comando deve ser
enviado novamente com a quantidade certa, a qual está
codificada em SW2.

Tabela 2.1: Valores comuns para os bytes SW1 e SW2

� Arquitetura de segurança do cartão, onde são definidas, entre outras informações:
status de segurança para aplicações, arquivos e comandos; mecanismos de segurança
utilizados pelo cartão para se autenticar e comunicar de maneira segura com uma
entidade externa; condições de acesso para dados armazenados no cartão. A arqui-
tetura de segurança é complementada com uma especificação de comunicação com
mensagens seguras, construídas a partir dos mecanismos definidos previamente.

A maioria dos comandos definidos na parte 4 é relativa à manipulação de arquivos
no Smart Card. Por exemplo, são definidos os comandos de seleção de arquivos (SELECT),
leitura (READ BINARY) e atualização (UPDATE BINARY) de dados dentro dos arquivos. São
definidos também alguns comandos de segurança básica, como os de autenticação com uma
entidade externa (EXTERNAL AUTHENTICATE), geração de dados aleatórios para utilização
em esquemas de autenticação (GET CHALLENGE) e verificação de uma informação interna do
cartão, como um PIN (VERIFY). É definido ainda o comando utilizado para obtenção dos dados
restantes de uma resposta (GET RESPONSE), necessário no segundo caso da Tabela 2.1. As
definições dos comandos envolvem quais valores devem ser utilizados para CLA, INS, P1, P2,
Lc, Le e o conteúdo do corpo no APDU de comando, bem como o que é esperado no corpo do
APDU de resposta e os possíveis valores para SW1 e SW2.

2.3. SMART CARDS 37

As partes 8 e 9 também definem comandos aceitos pelo cartão. A parte 8 (ISO/IEC, 2004a),
especificamente, define comandos que devem ser usados para operações criptográficas, como
geração de chaves assimétricas (GENERATE ASYMMETRIC KEY PAIR), cifragem, decifragem,
assinatura digital, verificação de assinatura e hash (PERFORM SECURITY OPERATION, va-
riando P1 e P2 de acordo com a operação desejada). A parte 9 (ISO/IEC, 2004b), por sua vez,
define comandos relativos ao gerenciamento dos arquivos no cartão, como os comandos para
criar (CREATE FILE) e remover (DELETE FILE) arquivos.

2.3.3 Java Card

A tecnologia Java Card, desenvolvida pela Sun Microsystems (atualmente uma parte
da Oracle), permite que Smart Cards e outros dispositivos com restrições de processamento e
memória executem programas escritos em um subconjunto da linguagem Java. Tais programas
são chamados de applets. Essa tecnologia é baseada em três elementos principais: a Java Card

Virtual Machine (JCVM), o Java Card Runtime Environment (JCRE) e a Java Card Application

Programming Interface (API).
A máquina virtual (JCVM) e o ambiente de execução (JCRE) possuem todas as ferra-

mentas necessárias para habilitar um processador com a capacidade de rodar applets Java Card.
A API (Sun Microsystems, 2006a), por sua vez, consiste em um conjunto de elementos (e.g., rotinas,
classes, métodos, constantes) utilizados na criação do código Java que será transformado em um
applet para o cartão. O objetivo da API é simplificar o desenvolvimento de software, abstraindo
os detalhes da implementação e fornecendo “blocos de montagem” com aquilo que é necessário
para o desenvolvedor. A API Java Card possui diferentes pacotes com inúmeros recursos, entre
eles:

� Métodos para controle de execução e gerenciamento de recursos de memória;
� Métodos para manipulação de arrays;
� Métodos para envio e recebimento de APDUs;
� Definições de constantes relacionadas ao padrão ISO7816;
� Definições de algoritmos de segurança e criptografia (e.g., cifragem/decifragem, ge-

ração de chaves, hash, geração de números aleatórios, assinatura digital e verificação,
troca de chaves).

Uma vez que o código Java é finalizado, ele precisa ser transformado em um applet

que possa ser executado pelo cartão. As ferramentas necessárias para realizar essa conversão
fazem parte do Java Card Development Kit (JCDK). O kit de desenvolvimendo consiste em
um pacote de softwares e documentos necessários para o desenvolvimento de aplicações Java
Card, incluindo as especificações dos elementos citados no início dessa seção. O guia do usário
do JCDK (Sun Microsystems, 2006b) descreve os passos necessários para criar um arquivo de
applet que será instalado no cartão. Primeiramente, o código-fonte em Java é compilado com a
ferramenta javac, o que resulta em um arquivo de Classe. Esse arquivo de Classe é, por sua

2.3. SMART CARDS 38

vez, convertido para um arquivo CAP (Compiled Applet) com a ferramenta converter, o qual
pode ser instalado no cartão.

Uma datasheet da Oracle (2012) sobre a tecnologia Java Card lista alguns dos seus
principais benefícios:

� Interoperabilidade: Applets desenvolvidos para Java Card são compatíveis com
qualquer cartão que possua essa tecnologia, independentemente do fornecedor e do
hardware;

� Segurança: Tecnologia desenvolvida com um processo aberto, que faz uso de imple-
mentações comprovadas pela indústria e avaliações de segurança de alto nível;

� Capacidade de múltiplas aplicações: Várias aplicações podem coexistir de forma
segura em um cartão com Java Card;

� Natureza dinâmica: Novas aplicações podem ser instaladas no cartão mesmo após a
sua emissão para o cliente;

� Compatibilidade com padrões existentes: A API Java Card é compatível com padrões
como a ISO7816 e GlobalPlatform.

Em um infográfico publicado no site do Java Card Forum (2017), é estimada uma
produção de mais de 3 bilhões de cartões com a tecnologia Java Card por ano desde 2015, nas
mas diversas áreas de aplicação. É antecipada também uma nova versão do Java Card, com
caracteristicas específicas para IoT.

2.3.4 Especificação GlobalPlatform

A GlobalPlatform é uma associação industrial sem fins lucrativos com mais de 100
empresas participantes, cujo objetivo é desenvolver e publicar especificações relacionadas com a
tecnologia de chips seguros (e.g, Smart Cards). A sua especificação para cartões, GlobalPlatform

Card Specification (GlobalPlatform, 2003), estabelece uma arquitetura para a criação de cartões
capazes de conter e executar múltiplas aplicações.

O conteúdo do cartão é separado em diferentes contêineres, chamados de Arquivos de
Carregamento Executáveis (Executable Load Files), os quais contém os códigos executáveis
de cada aplicação, chamados de Módulos Executáveis (Executable Modules). Essas aplicações
rodam em um ambiente de execução de escolha do desenvolvedor, e são criadas com a API
associada à esse ambiente. Por exemplo, o cartão pode funcionar com aplicações que são
executadas no Java Card Runtime Environment (JCRE), e desenvolvidas a partir da Java Card

API (Subseção 2.3.3).
A administração das aplicações no cartão é feita pelo Domínio de Segurança (Security

Domain), uma aplicação com privilégios de acesso superiores que atua como o representante
do desenvolvedor da aplicação dentro do cartão. Através dele é possível instalar e desinstalar
aplicações, com os comandos definidos na especificação. A maioria dos comandos definidos

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 39

na especificação GlobalPlatform é proprietária, ou seja, não está na ISO7816. Os principais
comandos são aqueles utilizados para carregar os dados da aplicação no cartão (LOAD), instalá-
la (INSTALL) e removê-la (DELETE). Também é definido um comando para a extração de
informações sobre o cartão (GET DATA) e também sobre o Domínio de Segurança e as aplicações
instaladas no cartão (GET STATUS).

O Domínio de Segurança também é responsável por criar um canal seguro de comuni-
cação entre o cartão e uma entidade externa. Essa ação é realizada através do Secure Channel

Protocol (SCP). Ele provê os seguintes serviços de segurança:

� Autenticação de Entidade: a entidade externa autentica o cartão e o cartão autentica a
entidade externa;

� Integridade e Autenticação de Mensagens: As mensagens trocadas possuem um
MAC;

� Confidencialidade: As mensagens enviadas para o cartão são cifradas.

Os serviços de segurança que serão utilizados no SCP são escolhidos pela entidade
externa, mas o mínimo requerido na especificação é a autenticação entre entidades e a presença
de MACs nas mensagens enviadas para o cartão. A autenticação das entidades é possível
através do cálculo de dados baseados em uma chave base de 16 B contida no cartão, a qual
só é conhecida pelo desenvolvedor da aplicação. Em geral, essa chave tem um valor padrão
0x40414243444546474849, o qual pode ser alterado. O resultado dessa troca de autenticação
é a geração de chaves simétricas usadas na criação e verificação dos MACs e na cifragem e
decifragem das mensagens. Dessa forma, apenas alguém com conhecimento da chave base é
capaz de alterar o conteúdo do cartão e, caso ocorram muitas tentativas sem sucesso, o cartão
pode ser desabilitado permanentemente, impedindo qualquer comunicação subsequente.

2.4 Protocolo de Comunicação TLS

A comunicação entre o dispositivo e o servidor desenvolvidos nesse trabalho é baseada no
protocolo Transport Layer Security (TLS). Este protocolo, definido na RFC 5246 (ALLEN et al.,
2008), tem como objetivo principal prover privacidade e integridade dos dados transmitidos em
uma comunicação entre duas partes. Ele é composto basicamente de duas camadas: o Protocolo
de Registro (Record Protocol) e o Protocolo de Aperto de Mão (Handshake Protocol).

2.4.1 Protocolo de Registro

Segundo o texto, o protocolo de registro é a camada mais básica, utilizada para encapsular
outros protocolos (entre eles o de handshake), e sua segurança está baseada em dois fatores

� Confidencialidade: as mensagens são criptografadas com criptografia simétrica,
utilizando como chave um segredo compartilhado entre as partes;

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 40

� Integridade e Autenticação de Mensagem: as mensagens incluem um Message

Authentication Code (MAC).

Cada mensagem do protocolo de registro é composta por: um byte contendo o tipo
de mensagem, dois bytes com a versão do TLS que está sendo utilizada, dois bytes com o
tamanho do conteúdo da mensagem e o próprio conteúdo da mensagem. No texto, é utilizada
uma construção de cifragem autenticada conhecida como MAC-then-encrypt, onde é criado
um MAC com o conteúdo em texto claro (não cifrado) da mensagem e ambos, texto claro e
MAC, são cifrados. Essa construção, contudo, é conhecida por possuir alguns problemas, entre
eles: vulnerável ao ataque de oráculo de padding (padding oracle attack) (KATZ; LINDELL,
2014); não é genericamente segura, ou seja, não independe das funções de cifragem e MAC
escolhidas (KRAWCZYK, 2001); insegura quando analisada sob diferentes noções de privacidade
e integridade (BELLARE; NAMPREMPRE, 2000). Para resolver esse problema, foi definida no RFC
7366 (GUTMANN, 2014) uma extensão para o TLS que possibilita a utilização da construção
encrypt-then-MAC, onde o texto claro é cifrado e o MAC é criado com a cifra. Essa construção
não possui os problemas da anterior. Adicionalmente, cada MAC é criado com um número
de sequência, o que garante proteção contra ataques baseados no reenvio de mensagens. A
Figura 2.11 ilustra o formato de uma mensagem.

TIPO VERSÃO DO TLS TAMANHO CONTEÚDO CIFRADO MAC
1 B 2 B 2 B VARIÁVEL VARIÁVEL

+ NÚMERO DE SEQUÊNCIA

Figura 2.11: Estrutura de uma mensagem do Protocolo de Registro com cifragem autenticada

2.4.2 Protocolo de Aperto de Mão

O protocolo de handshake, por sua vez, estabelece uma comunicação mutualmente
autenticada entre servidor e cliente, onde são definidos os algoritmos de criptografia e as chaves
que serão utilizadas. A autenticação das partes é feita através de certificados e os algoritmos são
determinados com a escolha de uma suíte de criptografia. Cada suíte é composta por:

� Um algoritmo de troca de chaves com criptografia assimétrica (e.g., RSA, DH), para
determinação da chave secreta que será utilizada na cifragem dos dados;

� Um algoritmo de cifragem com criptografia simétrica (e.g., AES, 3DES), para cifrar
os dados transmitidos;

� Um algoritmo que será utilizado nos MACs (e.g., HMAC-SHA, HMAC-SHA256),
para garantir a integridade dos dados.

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 41

Função PRF. Antes de descrever como é realizado o handshake, é preciso definir a função
PRF (do inglês, Pseudorandom Function), a qual é utilizada em várias etapas do protocolo em
questão. Ela é uma função que tem como objetivo gerar uma quantidade arbitrária de números
pseudoaleatórios a partir de uma função de hash e três parâmetros: secret, uma informação
secreta; label, uma string em formato ASCII; seed, uma cadeia de bytes que serve como origem
para o cálculo. Ela é dada por:

PRF(secret, label,seed) = HMAC-hash(secret, A(1) ‖ label ‖ seed) ‖

HMAC-hash(secret, A(2) ‖ label ‖ seed) ‖

HMAC-hash(secret, A(3) ‖ label ‖ seed) ‖ . . . ,

com:

A(0) = label ‖ seed

A(i) = HMAC-hash(secret, A(i−1)).

É possível gerar uma quantidade arbitrária de bytes pseudoaleatórios com essa função.
A quantidade de bytes pseudoaleatórios necessários e a quantidade de bytes que resultam da
execução do HMAC (a qual varia com o algoritmo de hash escolhido) definem até que valor
de A(i) a função precisa ser executada, ou seja, definem o critério de parada do algoritmo. No
caso do master_secret, por exemplo, são necessários apenas os 48 primeiros bytes obtidos.
A Figura 2.12 ilustra o algoritmo, onde é possível ver seus diferentes elementos, entre eles: o
conjunto de bytes A(0), que serve como ponto de partida para o algoritmo; os conjuntos de bytes
A(i) seguintes, obtidos a partir da execução iterativa do HMAC em conjunto com o secret; os
blocos de HMAC e concatenação; os blocos de bytes de saída, os quais são concatenados e
utilizados como resultado final, após o alcance do critério de parada do algoritmo.

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 42

HMAC

‖

‖

HMAC

secret

label

seed

secret

label seed

secret HMAC

‖

‖

HMAC

label

seed

secret

secret HMAC

‖

‖

HMAC

label

seed

secret

1º bloco de saída 2º bloco de saída 3º bloco de saída . . .

A(0)

A(1) A(2)

. . .

Figura 2.12: Diagrama de funcionamento da função PRF

Troca de Mensagens durante o Handshake. Cada mensagem do handshake é composta por:
um byte contendo o tipo de mensagem (associado às diferentes etapas do handshake), três
bytes com o tamanho do conteúdo e o próprio conteúdo, que varia de acordo com a etapa do
handshake. Essa mensagem é, então, encapsulada em uma mensagem da Figura 2.11, com o
tipo da mensagem correspondente ao valor definido na RFC 5246 para mensagens de handshake,
igual a 0x16. Quando é iniciada uma nova conexão, nenhuma suíte de criptografia foi decidida,
então o conteúdo das mensagens não é cifrado nem possui MAC. A Figura 2.13 ilustra o formato
de uma mensagem do handshake.

0x16 VERSÃO DO TLS TAMANHO TIPO TAMANHO CONTEÚDO
1 B 3 B VARIÁVEL

PROTOCOLO DE REGISTRO
PROTOCOLO DE HANDSHAKE

Figura 2.13: Estrutura de uma mensagem do Protocolo de Handshake, encapsulada no Protocolo
de Registro

O handshake é iniciado com uma mensagem do cliente para o servidor, a ClientHello.
Essa mensagem contém, entre outros dados: o client_random, valor aleatório de 32 bytes
que será utilizado em alguns cálculos durante o protocolo; uma lista com as suítes de criptografia
suportadas pelo cliente; uma lista com as extensões que o cliente deseja utilizar, como a extensão
do encrypt-then-MAC ou as extensões definidas para o uso do TLS com curvas elípticas (BLAKE-

WILSON et al., 2006).

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 43

O servidor responde esta mensagem com a ServerHello, mensagem contendo também
um valor aleatório de 32 bytes (server_random), a suíte criptográfica e as extensões que
serão utilizadas nessa comunicação, escolhidas das listas enviadas pelo cliente. Após o envio
da ServerHello, o servidor envia a Certificate, mensagem com um certificado (ou cadeia de
certificados) para o cliente realizar sua autenticação. Caso o algoritmo de troca de chaves definido
na suíte seja o DH com Chaves Efêmeras (geradas apenas para aquela conexão), o servidor envia
a ServerKeyExchange, que consiste em uma mensagem com sua chave pública efêmera assinada
digitalmente com a chave privada relativa ao seu certificado. A assinatura é gerada a partir da
concatenação do client_random, do server_random e da própria chave efêmera:

ServerKeyExchange= chave ‖ s(client_random ‖ server_random ‖ chave),

onde ‖ denota concatenação e s é a função de assinatura digital. O servidor pode, opcionalmente,
requisitar a autenticação do cliente enviando a mensagem CertificateRequest. Por fim, o servidor
envia a ServerHelloDone, uma mensagem sem conteúdo, apenas para sinalizar a finalização das
suas mensagens e esperar a resposta do cliente.

O cliente, por sua vez, se tiver recebido uma CertificateRequest, responde com uma
mensagem Certificate, contendo um ou mais certificados que o servidor usará para autenticá-
lo. Esta mensagem é seguida pela ClientKeyExchange, que será utilizada para estabelecer o
pre_master_secret, valor secreto prévio usado no cálculo do master_secret, valor se-
creto final de 48 bytes utilizado no cálculo das chaves simétricas que irão cifrar e assinar os dados.
Caso o algoritmo de troca de chaves seja o RSA, o cliente gera um pre_master_secret com-
posto por sua versão do TLS (dois bytes) e mais 46 bytes aleatórios. O pre_master_secret

é, então, cifrado com a chave pública do servidor e enviado. Caso o algoritmo de troca de chaves
seja o DH com Chaves Efêmeras, o cliente (que já possui a chave pública do servidor) apenas
enviará sua chave pública, de forma que o pre_master_secret será o segredo comum
que resulta da execução do algoritmo. Após o envio da ClientKeyExchange, ambas as partes
possuem o pre_master_secret e o master_secret pode ser obtido através da seguinte
expressão:

master_secret = PRF(pre_master_secret, “master secret”, client_random ‖ server_random).

Caso o cliente tenha enviado a mensagem Certificate, ele agora envia a mensagem
CertificateVerify, a qual contém uma assinatura gerada com a concatenação de todas as mensagens
de handshake trocadas até o momento desde a ClientHello, utilizando a chave privada relativa
ao certificado enviado pelo cliente para o servidor. Segundo o texto, essa mensagem provê
a verificação explicita do certificado do cliente. Após o envio desta mensagem, todos os
parâmetros de segurança da conexão foram estabelecidos. O cliente então envia a mensagem
ChangeCipherSpec, sem nenhum conteúdo, que apenas sinaliza que a troca de mensagens dali
em diante será realizada com os novos parâmetros de segurança definidos. Para finalizar o

2.4. PROTOCOLO DE COMUNICAÇÃO TLS 44

handshake é necessário o envio da mensagem Finished, a qual tem como conteúdo 12 bytes que
precisam ser verificados pelo recipiente, chamados de verify_data. Ele é calculado a partir
da seguinte expressão:

veri f y_data = PRF(master_secret, f inished_label, h(mensagens_handshake)),

onde o finished_label é “client finished” para a mensagem enviada pelo cliente e “server finished”
para a mensagem enviada pelo servidor e o h(mensagens_handshakes) é um hash de todas as
mensagens de handshake trocadas até o momento concatenadas (tal qual no envio da mensagem
CertificateVerify). Essa mensagem é enviada no formato da Figura 2.11, utilizando as chaves
determinadas no handshake. No total, são geradas quatro chaves: duas para o cliente e duas para o
servidor, uma delas para cifrar o texto (write_key) e outra para gerar os MACs (write_MAC_key).
Dessa forma, as mensagens enviadas pelo cliente após o handshake são cifradas apenas com
a write_key do cliente e autenticadas com a write_MAC_key do cliente, e o mesmo acontece
com o servidor. Essas chaves são obtidas de um bloco de dados chamado key_block, o qual é
calculado da seguinte maneira:

key_block = PRF(master_secret, “key expansion”, server_random ‖ client_random),

onde o número de bytes necessários depende dos algoritmos decididos no handshake. Após o
recebimento da mensagem Finished do cliente, o servidor verifica se os dados estão corretos e
responde com uma ChangeCipherSpec e uma Finished também, que será verificada pelo cliente.
Com isso, o handshake é finalizado e podem ser trocadas mensagens relativas à aplicação do
sistema. A Figura 2.14 resume a sequência de valores que são calculados no handshake até
serem obtidas as chaves simétricas e a Figura 2.15 ilustra e sumariza o processo completo do
handshake descrito nesta seção.

ALGORITMO

DE TROCA

DE CHAVES

pre_master_secret master_secret key_block

write_MAC_key Cliente

write_MAC_key Servidor

write_key Cliente

write_key Servidor

PRF PRF

Figura 2.14: Sequência de obtenção das chaves simétricas no Protocolo de Handshake

2.5. PADRÃO PKCS#15 45

CLIENTE SERVIDOR

ClientHelloGera o client_random, escolhe possíveis

suítes criptográficas e extensões

Armazena o client_random e decide qual

suíte e quais extensões serão usadas

ServerHello
Gera o server_random

Armazena o server_random, a suíte

e as extensões escolhidas

CertificateVerifica os certificados e

armazena a chave pública do servidor

ServerKeyExchange Troca de chaves DH: Gera uma

chave pública efêmera e a assinatura

com o client_random e o server_random

Troca de chaves DH:

Verifica a assinatura e armazena a

chave pública efêmera do servidor

CertificateRequest Envia esta mensagem se a autenticação

do cliente for necessária

ServerHelloDone
Espera a resposta do clienteSabe que pode enviar a resposta

CertificateEnvia esta mensagem se recebeu

uma CertificateRequest

Verifica os certificados e

armazena a chave pública do cliente

ClientKeyExchangeTroca de chaves RSA: gera o pre_master_secret

e cifra com a chave pública do servidor

Troca de chaves DH: gera a chave pública efêmera

Troca de chaves RSA: decifra e

armazena o pre_master_secret

Troca de chaves DH: armazena

a chave pública efêmera do cliente
CertificateVerifyGera uma assinatura a partir de todas as

mensagens trocadas no handshake até então Verifica a assinatura

ChangeCipherSpecNotifica o servidor que as próximas mensagens

serão cifradas com os novos parâmetros de segurança

FinishedCalcula o master_secret e o key_block,

determina as chaves, gera o verify_data,

cifra a mensagem e calcula o MAC

Calcula o master_secret e o key_block,

determina as chaves, verifica o MAC,

decifra a mensagem e verifica o verify_data

ChangeCipherSpec Notifica o cliente que as próximas mensagens

serão cifradas com os novos parâmetros de segurança

Finished Gera o verify_data,

cifra a mensagem e

calcula o MAC

Verifica o MAC,

decifra a mensagem e

verifica o verify_data

Figura 2.15: Diagrama da troca de mensagens entre Servidor e Cliente, durante o Protocolo de
Handshake do TLS

2.5 Padrão PKCS#15

Os PKCS são padrões elaborados pela empresa RSA Laboratories em conjunto com
outras entidades relacionadas a segurança de sistemas, com o objetivo de fomentar o desenvol-

2.5. PADRÃO PKCS#15 46

vimento de aplicações na área de Criptografia de Chave Pública. Entre eles, estão definidos os
algoritmos RSA (PKCS#1) e DH (PKCS#3), fundamentais até hoje em aplicações que utilizam
esse tipo de criptografia.

O padrão PKCS#15 (RSA Laboratories, 2000), em particular, especifica um formato para
armazenamento de dados em um token criptográfico (e.g., Smart Card). A estrutura de dados
definida neste padrão se baseia em três tipos de arquivos:

� Master File (MF): Arquivo obrigatório único, representa a raiz de toda a estrutura;
� Dedicated Files (DFs): Arquivos que podem conter outros arquivos, sejam eles outros

DFs ou EFs;
� Elementary Files (EFs): Podem ser arquivos que contem informações e ponteiros

para objetos armazenados no cartão (e.g., chaves, certificados), ou podem ser os
próprios objetos em si. No caso de objetos que se relacionam, como um par de chaves
pública e privada, seus EFs compartilham de um mesmo identificador. Esses arquivos
não podem conter outros arquivos, como os DFs.

Existem quatro tipos de objetos que podem ser armazenados no cartão, de acordo
com o PKCS#15: chaves (as quais podem ser públicas, privadas ou secretas), certificados,
objetos de autenticação (e.g., PINs, senhas e padrões biométricos) e objetos externos genéricos.
A formatação de arquivos segundo o PKCS#15 é análoga à formatação de arquivos em um
computador pessoal, onde o MF é o Disco Local, os DFs são as pastas no disco e os EFs são os
diferentes arquivos dentro de cada pasta.

Em uma estrutura padrão PKCS#15, o ponto de partida é o MF, o DF principal que
contém todos os outros arquivos armazenados no dispositivo. Dentro dele, existe pelo menos um
arquivo, o DF(PKCS#15) (chamado de Diretório da Aplicação PKCS#15), o qual contém todos
os arquivos e objetos relacionados ao PKCS#15. Opcionalmente, podem ser criados outros DFs
relativos a outras aplicações (inclusive outras aplicações PKCS#15) e o EF(DIR), um arquivo
que lista todas as aplicações presentes no dispositivo.

Dentro do DF(PKCS#15), existem os EFs chamados Arquivos de Diretório (Directory

Files), os quais guardam informações e ponteiros para os diferentes tipos de arquivos armazena-
dos no dispositivo. O principal Arquivo de Diretório é o EF(ODF) (obrigatório), o qual guarda
ponteiros para outros Arquivos de Diretório. Os Arquivos de Diretório restantes guardam pontei-
ros para diferentes objetos. São eles: EF(AODF), para objetos de autenticação; EF(PrKDF), para
chaves privadas; EF(PuKDF), para chaves públicas; EF(SKDF), para chaves secretas; EF(CDF),
para certificados; EF(DODF), para objetos externos. Esses EFs são todos opcionais, a depender
do que será armazenado. É importante ressaltar que os Arquivos de Diretório guardam apenas
referências aos objetos, e não os próprios objetos em si, estes ficam armazenados em outros
endereços no dispositivo. Além dos Arquivos de Diretório, existem ainda os EF(TokenInfo)
e EF(UnusedSpace). O primeiro é obrigatório e contém informações gerais sobre o token e o
segundo é opcional e contém informações sobre os espaços livres no token.

2.5. PADRÃO PKCS#15 47

Um ponto importante da especificação PKCS#15 é que todos os arquivos na sua estrutura
possuem condições de acesso, as quais limitam quais arquivos podem ser criados, modificados
ou removidos e quem pode executar tais operações. São definidas quatro condições, sumarizadas
na Tabela 2.2. Dessa forma, arquivos com informações mais sensíveis, como chaves, só podem
ser alterados ou utilizados em operações criptográficas mediante autenticação do usuário.

CONDIÇÃO SIGNIFICADO

NEV A operação nunca é permitida.

ALW A operação sempre é permitida.

CHV A operação só é permitida após autenticação do usuário.

SYS A operação só é permitida com a apresentação de uma chave do sistema,

geralmente disponível apenas para o fornecedor do token.

Tabela 2.2: Condições de acesso em uma estrutura de arquivos PKCS#15

A Figura 2.16 ilustra uma estrutura de arquivos PKCS#15 em um token criptográfico. As
conexões pontilhadas representam arquivos opcionais, as tracejadas representam referências que
um arquivo faz a outro (ou outros) e as cheias, por sua vez, representam os arquivos obrigatórios.

MF

EF(DIR)

DF(PKCS#15)

EF(ODF)

EF(AODF) PIN do usuário

EF(PrKDF) Chave Privada RSA

Chave Privada ECDSA

EF(PuKDF) Chave Pública RSA

Chave Pública ECDSA

EF(SKDF) Chave Secreta AES

Chave Secreta 3DES

EF(CDF) Certificado Cliente

Certificado Servidor

EF(DODF) Objeto externo #1

Objeto externo #2EF(TokenInfo)

EF(UnusedSpace)

Outros DFs/EFs

Figura 2.16: Representação gráfica do sistema de arquivos PKCS#15

2.6. NOTAÇÃO ASN.1 48

2.6 Notação ASN.1

A Abstract Syntax Notation One (ASN.1) é uma maneira de representar diferentes tipos
de dados de forma abstrata, através de regras de escrita bem definidas. Esta notação é especificada
na Recomendação X.680 (ITU-T, 2008) e é utilizada em outros padrões da área de tecnologia
como, por exemplo, o PKCS#15 e o TLS. O padrão X.680 define vários tipos simples de dados,
como inteiros, booleanos, cadeias de bits, cadeias de bytes, sequências de objetos, entre outros, os
quais podem ser utilizados para a criação de tipos mais complexos, relativos a uma determinada
aplicação. Na Tabela 2.3 estão demonstrados alguns exemplos de definições em ASN.1, retirados
do PKCS#15.

EXEMPLO DESCRIÇÃO

pkcs15-ub-reference INTEGER ::= 255 Declaração de uma constante nomeada pkcs15-ub-
reference, com um valor inteiro igual a 255.

Reference ::= INTEGER (0..pkcs15-ub-reference) Declaração de um novo tipo de dado chamado Re-
ference, o qual é um inteiro de valor no intervalo de
0 a pkcs15-ub-reference, a constante definida previa-
mente.

CommonKeyAttributes ::= SEQUENCE {

iD Identifier,

usage KeyUsageFlags,

native BOOLEAN DEFAULT TRUE,

accessFlags KeyAccessFlags OPTIONAL,

keyReference Reference OPTIONAL,

startDate GeneralizedTime OPTIONAL,

endDate [0] GeneralizedTime OPTIONAL,

}

Declaração de um segundo tipo de dado, Common-
KeyAttributes, composto por uma sequência de várias
informações, cada uma de um tipo diferente. Entre
essas informações está a keyReference, que é do
tipo Reference. É possível ver outros tipos de dados
definidos pelo desenvolvedor, como Identifier, KeyU-
sageFlags e KeyAccessFlags, dos quais só é possível
saber o significado olhando sua declaração no docu-
mento, como foi feito com o tipo Reference.

Tabela 2.3: Exemplos de definições escritas na notação ASN.1

Quando esses dados são utilizados em sistemas digitais, eles precisam ser traduzidos
para conjuntos de bytes, os quais podem ser lidos, modificados e transmitidos. O método para
codificar em bytes objetos escritos com a ASN.1 está definido na Recomendação X.690 da ITU
(ITU-T, 2002). Ele define um conjunto de regras principais conhecidas como Basic Encoding

Rules (BER). Essas regras utilizam a construção Tag-length-value (TLV), onde cada objeto é
representado com três campos distintos: tag, comprimento e valor. A tag identifica o tipo do
dado e contém três informações:

� A classe do dado: universal (reservada para os tipos de dados definidos na ASN.1),
aplicação, específico do contexto e privado (escolhidas pelo usuário);

� Se o dado é primitivo, o campo valor representa o dado diretamente, ou construido, o
campo valor representa um conjunto de outros tipos de dados;

� O número identificador relativo ao tipo do dado.

A tag pode ser codificada em um ou mais bytes, dependendo do tamanho do número
identificador. A Tabela 2.4 exemplifica algumas tags de dados definidas no padrão X.680.

2.7. CONSIDERAÇÕES FINAIS 49

TAG CARACTERÍSTICAS TIPO

0x01 Universal, Primitivo, Número 1 Booleano (BOOLEAN)

0x02 Universal, Primitivo, Número 2 Inteiro (INTEGER)

0x03 Universal, Primitivo, Número 3 Cadeia de Bits (BITSTRING)

0x04 Universal, Primitivo, Número 4 Cadeia de Bytes (OCTETSTRING)

0x30 Universal, Construído, Número 16 Sequência de Dados (SEQUENCE)

Tabela 2.4: Tipos de dados da notação ASN.1

O comprimento dos dados representa a quantidade de bytes presentes no campo valor.
Ele pode ser codificado em um ou mais bytes, dependendo do tamanho dos dados. Na sua forma
curta, com apenas um byte, o oitavo bit é sempre igual a 0 e os sete bits restantes guardam
o tamanho, o qual pode variar de 0 a 127. Na sua forma longa, com vários bytes, o primeiro
byte possui o oitavo bit sempre igual a 1 e os sete bits restantes guardam a quantidade de bytes
subsequentes necessários para armazenar o tamanho. Por exemplo, um campo comprimento
dado por 0x08 guarda um tamanho de 8 bytes, enquanto que um campo comprimento dado por
0x820100 guarda um tamanho de 256 bytes.

Para exemplificar a codificação de um determinado dado representado com ASN.1, pode-
se usar a constante pkcs15-ub-reference definida previamente. Ela é um inteiro de valor 255
(0xFF em hexadecimal e 11111111 em binário). Como os inteiros em ASN.1 possuem sinal
(representação em complemento de dois), são necessários dois bytes para representar o valor
255 (um único byte de valor 11111111 representaria o inteiro -1). Sua tag é a que está definida
na Tabela 2.4 para inteiros e o tamanho é igual a 2. Portanto, a representação de acordo com as
BER é dada por 0x020200FF.

Uma ferramenta muito utilizada durante o desenvolvimento deste trabalho para verifica-
ção de dados codificados dessa forma foi a asn1js (LUCHINI, 2017). Este software recebe como
entrada os dados codificados em formato hexadecimal, processa-os e retorna a representação em
ASN.1.

2.7 Considerações Finais

Cada aspecto do desenvolvimento do sistema proposto neste trabalho é especificado em
padrões desenvolvidos e adotados pela indústria e pela academia. Assegurar a conformidade com
tais padrões significa garantir a interoperabilidade do sistema com outros sistemas e projetos
que também estejam de acordo com os mesmos documentos. Outra questão particularmente
importante quando se trata de segurança é a necessidade de se utilizar métodos e algoritmos de
conhecimento publico, os quais estão sob constante averiguação da sua eficácia. Tais métodos e
algoritmos estão, também, detalhados em especificações citadas neste capítulo.

505050

3
TRABALHOS RELACIONADOS

Nesta seção são apresentados trabalhos acadêmicos que se relacionam com o tema deste
trabalho. As pesquisas dos textos foram realizadas nas bibliotecas digitais IEEE Xplore e ACM.
Os termos de busca utilizados foram as palavras-chave definidas no resumo deste trabalho e
termos relacionados (e.g., sinônimos, plurais, diferentes formas de escrever). A Tabela 3.1
sumariza os termos citados.

PALAVRAS-CHAVE E TERMOS RELACIONADOS

Internet of Things, Internet-of-Things

Security, Secure, Privacy, Authentication

Smart Card, Smart Cards, Smartcard, Smartcards

Java Card, Java Cards, Javacard, Javacards

Microcontroller, Microcontrollers, Microprocessor, Microprocessors

Tabela 3.1: Termos de pesquisa utilizados na busca de trabalhos relacionados

As pesquisas consistiram em diferentes combinações dos termos da tabela, de forma
a obter resultados mais específicos ou mais generalizados. As combinações são feitas nas
expressões de busca, as quais permitem a utilização de operações lógicas como AND e OR para
agrupar os termos. Os textos foram selecionados entre os 100 primeiros de cada pesquisa, e
todas as pesquisas foram limitadas a publicações datadas de no máximo 15 anos. É necessário
um intervalo de tempo maior, pois apesar de IoT ser um assunto muito recente, pesquisas com
Smart Cards e Java Cards existem há mais tempo.

A Figura 3.1 mostra diagramas de Venn, os quais destacam as diferentes buscas realizadas.
As diferentes tonalidades representam a quantidade de termos agrupados. É importante ressaltar
que a área de cada região nos diagramas não tem relação com a quantidade de textos encontrados,
é apenas uma representação para visualizar as diferentes combinações de termos que foram
utilizadas. Como os Java Cards fazem parte de um subgrupo dos Smart Cards, eles foram
tratados como sinônimos nas pesquisas. Pode-se observar que as pesquisas se concentraram
principalmente em trabalhos envolvendo Smart Cards e microcontroladores. Também foi feita
uma pesquisa apenas com os termos de IoT e segurança, com o objetivo de ver soluções gerais

3.1. APLICAÇÃO DE SMART CARDS EM PROTOCOLOS DE SEGURANÇA 51

de segurança para IoT, bem como avaliações de segurança e surveys. A maioria dos resultados
encontrados foi relacionada a essa última pesquisa.

Security

Internet of Things Smart Card/Java Card

Microcontroller Security

Internet of Things Smart Card/Java Card

Microcontroller Security

Internet of Things Smart Card/Java Card

Microcontroller

Security

Internet of Things Smart Card/Java Card

Microcontroller Security

Internet of Things Smart Card/Java Card

Microcontroller Security

Internet of Things Smart Card/Java Card

Microcontroller

Figura 3.1: Diagrama das pesquisas de trabalhos relacionados realizadas

3.1 Aplicação de Smart Cards em Protocolos de Segurança

Badra e Urien (2008) apresentam uma proposta de sistema que utiliza Smart Cards para
implementar o Protocolo TLS, aproveitando a segurança física que o cartão fornece. A arquitetura
descrita no texto estabelece que tanto o cliente quanto o servidor possuem um SC, com os quais
eles se comunicam. A aplicação não é específica para IoT, nem detalha o hardware dos clientes
(é descrito um teste com telefones celulares). A principal diferença entre o software do texto e o
que foi desenvolvido neste trabalho é que todos os parâmetros do handshake ficam armazenados
no próprio cartão, e as entidades precisam enviar comandos ao mesmo para obter esses dados.
Pode-se, inclusive, extrair do cartão as chaves negociadas após o handshake, algo que o sistema
proposto neste trabalho não permite.

3.2 Conexão entre Microcontroladores e Smart Cards

A base da segurança do dispositivo IoT proposto neste trabalho consiste na integração
entre seu microcontrolador e um Smart Card com capacidades criptográficas. Foram encontrados
alguns trabalhos acadêmicos que também propõem essa integração.

Kim et al. (2008) descrevem a utilização de um System-on-Chip (SoC) com um proces-
sador RISC de 32 bits e um módulo criptográfico AES em um leitor de SCs para a verificação
de dados biométricos contidos em cartões. Nessa aplicação, o cartão pertence a um usuário e

3.3. SEGURANÇA NA INTERNET DAS COISAS 52

contém informações biométricas do mesmo. Embora esse trabalho possua uma implementação
realizada, seus objetivos são distintos do que é proposto neste trabalho, pois não existe um foco
em IoT e o cartão não é utilizado como um módulo criptográfico para o sistema, apenas como
um objeto para identificação.

Outros trabalhos estão concentrados especificamente na conexão entre microcontrola-
dores e Smart Cards, um dos pontos principais do desenvolvimento deste trabalho. Muji et

al. (2008), por exemplo, apresentam uma simulação de comunicação entre um PIC (família
específica de microcontroladores desenvolvida pela Microchip Technology) e um Smart Card, o
qual é modelado por uma memória EEPROM, para aplicação em segurança de veículos. Nessa
aplicação, o cartão possui uma informação de identificação armazenada previamente em sua
memória por meio de uma interface gráfica em um computador. A informação é reconhecida
pelo microcontrolador (que também está conectado ao carro) e permite ao usuário dar a partida
no veículo. O texto não menciona a utilização das capacidades criptográficas do cartão, apenas
do seu armazenamento seguro de informações, nem a utilização de redes de comunicação. Por
fim, Dichou, Tourtchine e Rahmoune (2015) realizam uma simulação da troca de APDUs entre
um Smart Card, o qual é modelado por um PIC e uma memória EEPROM, e um segundo PIC.
A simulação implementa a recepção do ATR do cartão e o envio de três comandos definidos
na ISO7816: VERIFY, SELECT e UPDATE RECORD. Não existe uma aplicação com o cartão
nesse texto, nem a utilização de suas capacidades criptográficas. Em suma, os trabalhos encon-
trados que relacionam Smart Cards, microncontroladores e segurança não são direcionados para
IoT, e mesmo aqueles que se propõem a integrar cartões e microcontroladores apenas realizam
simulações simples.

3.3 Segurança na Internet das Coisas

3.3.1 Visão Geral

Uma grande parte dos textos encontrados nas pesquisas sobre segurança na IoT analisam
o seu status atual, identificando problemas e desafios e propondo soluções. Kanuparthi, Karri
e Addepalli (2013) identificam quatro desafios existentes na consolidação da IoT e discutem
possíveis soluções de hardware e segurança embarcada. Os desafios são: garantia de origem e
integridade dos dados; gerenciamento de identidades; gerenciamento de confiança; privacidade.
Os três primeiros desafios, segundo os autores, podem ser vencidos com a utilização de Physical

Unclonable Functions (PUFs), dispositivos que são o equivalente em hardware a uma função de
sentido único (one-way function, do inglês): respondem a um estímulo de uma forma difícil de ser
prevista ou replicada, devido à introdução de fatores aleatórios durante seu processo de fabricação.
Herder et al. (2014) apresentam uma extensa análise sobre PUFs, suas implementações e
aplicações. A questão da privacidade, por sua vez, pode ser resolvida com a utilização de
algoritmos leves de cifragem.

Abomhara e Køien (2014) apresentam uma visão geral do estado da IoT, discutindo

3.3. SEGURANÇA NA INTERNET DAS COISAS 53

pontos como arquiteturas existentes, domínios de aplicação, tecnologias, ameaças, desafios
e requerimentos de segurança e privacidade. Os maiores desafios, segundo os autores, são a
privacidade do usuário e proteção de informações; gerenciamento de identidade e autenticação;
gerenciamento de confiança e integração de políticas; controle de acesso e autorização; segurança
fim-a-fim; soluções de segurança resistentes a ataques. Bertino et al. (2016) identificam desafios
já citados previamente, como controle de acesso, segurança de dados, autenticação de dispositivos
e gerenciamento de identidades, e adicionam outros itens, tais como: segurança de middleware,
gerenciamento de patches, descoberta de dispositivos e defesa de perímetro.

Foram publicadas também algumas surveys sobre segurança na IoT. Uma delas, de
autoria de Pawar e Ghumbre (2016), mostra uma visão geral de aplicações e serviços da IoT
voltados para assistência médica. Além disso, também identifica desafios de segurança, de
acordo com os outros trabalhos citados, sumariza trabalhos publicados com propostas de solução
para cada desafio, e sugere a utilização de algoritmos criptográficos em aplicações IoT, como
AES e RSA (ambos aplicados neste trabalho). Outra survey, desenvolvida por Yang et al. (2017),
mais extensa que a anterior, faz referências a trabalhos relacionados a diferentes características,
entre elas: limitações dos dispositivos IoT, como tempo de bateria e restrições de processamento;
classificação dos ataques à IoT; esquemas e arquiteturas para autenticação na IoT; segurança
da IoT em suas diferentes camadas. Essa última análise considera a IoT dividida em quatro
camadas distintas: Camada de Aplicação (e.g., casas inteligentes, sistemas de saúde); Camada
de Transporte (e.g., TLS, DTLS); Camada de Rede (e.g., IP); Camada de Percepção (e.g., redes
de sensores).

3.3.2 Propostas de Implementação e Verificação

Hummen et al. (2013) estudam a viabilidade de se utilizar certificados para autenticação
na IoT, levando em conta as restrições existentes nos dispositivos que fazem parte da rede. O
protocolo considerado na pesquisa é o DTLS, uma versão do TLS para o transporte de dados
através de datagramas (pacotes utlizados em conexões onde entrega, hora de chegada, e a ordem
das informações não são garantidas). Os autores concluem que a utilização de certificados pode
introduzir uma sobrecarga considerável para dispositivos com muitas restrições. O projeto deste
trabalho implementa a autenticação de clientes e servidores com certificados, mas o próprio
servidor é a Autoridade de Certificação raiz (ou CA raiz, definida na Seção 2.1), de forma que
não existem longas cadeias de certificados a serem verificados. Ainda assim, é necessária a
realização de uma avaliação minuciosa de performance para determinar a viabilidade dessa
aplicação. Liu et al. (2016) propõem uma solução para autenticação na IoT através da criação de
uma CA privada. No exemplo descrito no texto, um hotel possui um servidor de CA que emite
certificados para os hóspedes, os quais se autenticam com o sistema de controle automático dos
quartos. A autenticação é realizada com o Protocolo TLS. Este trabalho, como mencionado
anteriormente, propõe uma solução onde o servidor local é a própria CA.

Muitos artigos propõem novos algoritmos e esquemas de autenticação e/ou cifragem de

3.4. CONSIDERAÇÕES FINAIS 54

dados para IoT. Como o propósito deste trabalho não é propor um novo algoritmo, mas sim
implementar um algoritmo existente e amplamente utilizado em aplicações de segurança, esses
textos foram considerados fora de escopo e não são citados.

Tekeoglu e Tosun (2016) desenvolvem uma plataforma de testes para dispositivos co-
nectados à IoT. Com a utilização de hardwares e softwares especializados para captura de
pacotes (incluindo o Wireshark, também utilizado neste trabalho), os autores são capazes de
analisar o tráfego de mensagens de cinco tipos diferentes de dispositivos: dongles HDMI para
streaming de mídia, câmeras, drones, smartbands e smartwatches, os quais se comunicam via
Wi-Fi e Bluetooth. Em posse dos dados de transmissão, são realizados experimentos para avaliar
diferentes aspectos da comunicação, entre eles: testes de vulnerabilidades com softwares especí-
ficos; investigação das suítes de criptografia utilizadas no Protocolo TLS por cada dispositivo;
observação de updates de firmware não criptografados; segurança das senhas, dos aplicativos
para smartphones, da nuvem e dos dados transmitidos. Os autores concluem que os variados
tipos de dispositivos possuem sérias vulnerabilidades e ressaltam a dificuldade de testar cada um
deles.

3.3.3 Segurança para Dispositivos IoT de Baixo Custo

No que diz respeito à implementação de segurança na IoT especificamente com dispo-
sitivos de baixo custo (e.g. Arduino), foram encontrados alguns textos não acadêmicos (fora
da pesquisa descrita no início do capítulo) com propostas de implementação. Ribeiro (2012),
por exemplo, desconsidera a implementação da segurança no próprio dispositivo, por suas
restrições de hardware, algo que pode ser resolvido com a proposta deste trabalho. A solução
do autor envolve a comunicação segura entre dois servidores MQTT: um interno, em uma rede
local em contato direto com cada dispositivo IoT e um externo, conectado à internet. É uma
solução possível, porém não existe uma autenticação para cada dispositivo e a comunicação
local ainda é insegura. Ardiri (2014) propõe algo semelhante ao que se pretende fazer neste
trabalho, um acordo de chave simétrica AES entre cliente (um Arduino UNO) e servidor para
comunicação criptografada utilizando o algoritmo RSA. No entanto, o protocolo proposto não
envolve autenticação de nenhuma das partes.

3.4 Considerações Finais

A segurança da IoT é um tema de extrema importância no contexto atual. Como
mencionado anteriormente, a pesquisa de publicações envolvendo os termos de IoT e segurança
retornou a maior quantidade de resultados. Foi obtido um total de 832 textos, dos quais 452,
mais da metade, foram publicados a partir do ano de 2016. Existem diversas análises do estado
atual da IoT, bem como inúmeras propostas para adicionar segurança à IoT nas suas diversas
camadas de operação. No entanto, a utilização de Smart Cards integrados em dispositivos IoT,
da forma como é feita neste trabalho, é uma solução pouco explorada na literatura, com um total

3.4. CONSIDERAÇÕES FINAIS 55

de 7 resultados encontrados nas pesquisas relacionando os termos de IoT, segurança e Smart

Cards. Embora existam propostas de integração entre SCs e microcontroladores e também um
trabalho utilizando cartões em uma comunicação através do protocolo TLS, não foi encontrado
um trabalho que una essas idéias em um contexto de Internet das Coisas.

565656

4
PROPOSTA DE ARQUITETURA

A arquitetura proposta neste trabalho está ilustrada na Figura 4.1. Ela é composta por
dispositivos IoT, os quais atuam como clientes, e um computador, que atua como servidor. Esses
componentes se comunicam em uma conexão Wi-Fi (Protocolo 802.11) através de um socket

TCP.
O computador roda uma aplicação escrita em Python, TCPServer.py, a qual realiza

a configuração dos clientes previamente à sua utilização e, posteriormente, estabelece uma
comunicação segura com os mesmos através dos protocolos de Handshake e Registro do TLS
descritos nas subseções 2.4.1 e 2.4.2, respectivamente. Essa aplicação é baseada no módulo open

source Cryptography, que implementa funções criptográficas utilizadas na aplicação e também
dá suporte à utilização de certificados.

O dispositivo IoT, por sua vez, é composto por três partes principais: microcontrolador,
Smart Card e sensores. O microcontrolador (MCU) é o “cérebro” do dispositivo. Nele está
instalada a aplicação principal, WifiClient.ino, desenvolvida no Arduino IDE. Esta aplicação é
responsável pela comunicação segura entre o cliente e o servidor, e também pela comunicação
interna entre MCU, Smart Card e sensores. Ela é construída a partir de diferentes bibliotecas, as
quais podem ser visualizadas na Figura 4.1. Com exceção da ArduinoSCLib (que apenas foi
modificada e expandida) e da ArduinoDES, todas as bibliotecas foram criadas e desenvolvidas
durante o trabalho. O Smart Card (SC) é responsável pela realização das operações criptográficas
e cálculos do TLS no cliente, através da API Java Card (Subseção 2.3.3), e por armazenar dados,
como chaves e certificados, de forma segura na sua memória, utilizando uma estrutura de arquivos
PKCS#15 (Seção 2.5). Nele está instalada uma versão modificada e expandida do applet open

source IsoApplet, que dá suporte às atividades citadas. A comunicação entre o MCU e o SC é
feita através de uma interface serial, por onde são trocadas APDUs, descritas na Subseção 2.3.2.
Por fim, os sensores realizam medidas e as enviam para o MCU, o qual as envia para o servidor
em mensagens criptografadas e autenticadas. A conexão dos sensores pode ser feita através de
GPIOs ou por um barramento SPI (um tipo de comunicação serial).

Os detalhes do desenvolvimento da plataforma de hardware dos dispositivos IoT e da
arquitetura de software do sistema são especificados nas seções 4.1 e 4.2.

4.1. PLATAFORMA DE HARDWARE 57

Conexão Wi-Fi
Socket TCP
Troca de Registros TLS

Interfaces GPIO/SPI

Interface UART
Troca de APDUs

Cliente

Java Card

GlobalPlatform

Smart Card Microcontrolador

Sensores

Servidor

Estrutura PKCS#15

Criptografia

Cálculos do TLS

IsoApplet

Biblioteca
ArduinoSCLib

Biblioteca
ASN.1Functions

Biblioteca
ArduinoDES

Biblioteca
SmartCarduino

Biblioteca
GPSecure

Biblioteca
CardTLS

WifiClient

Módulo Cryptography

TCPServer

Figura 4.1: Arquitetura geral do sistema proposto neste trabalho

4.1 Plataforma de Hardware

O objetivo mais básico de hardware era estabelecer uma conexão entre o SC e um
Microcontroller Unit (MCU). Testes iniciais foram realizados com Arduino UNO, uma das
plataformas de desenvolvimento de baixo custo mais utilizadas para rápida prototipação de
projetos eletrônicos (de acordo com pesquisa realizada pelo Hackster (2016)), que possui o
MCU ATmega328P. Esta placa foi escolhida por sua abordagem open source (hardware e
software), simplicidade de programação no Arduino IDE, possibilidade de extensão do código
com bibliotecas escritas em C/C++ e vasta comunidade de usuários (aproximadamente 400.000
no fórum oficial), os quais disponibilizam recursos e informações. As características do SC
utilizado estão sumarizadas na Tabela 4.1. Essas informações foram obtidas com o software

open source GlobalPlatformPro (PALJAK, 2016).

4.1.1 Placas leitoras de Smart Cards utilizando Arduino UNO

A biblioteca open source ArduinoSCLib (BARGSTEDT, 2016), desenvolvida para Ar-
duino e placas compatíveis com Arduino e que foi utilizada no projeto, implementa o envio
e recebimento de informações para o SC, detalhados na Seção 4.2. Ela permite uma ligação
direta entre a placa e o cartão, sem a necessidade de chips adicionais, o que pode ser visto
na Figura 4.2. O VCC do cartão é ligado em um pino digital do Arduino, e não na saída de

4.1. PLATAFORMA DE HARDWARE 58

ATR 3B FE 18 00 00 80 31 FE
45 80 31 80 66 40 90 91
06 2D 10 83 01 90 00 D3

Fabricante do CI Infineon Technologies

GlobalPlatform Versão 2.1.1

Java Card Versão 2.2.2

Tamanho ID-1

Classe A

Tabela 4.1: Informações do Smart Card utilizado neste trabalho

alimentação de 5 V, uma vez que é necessário controlar quando o SC está ligado ou desligado,
como descrito na Seção 4.2. Tanto o VCC quanto os outros terminais do cartão que precisam
ser ligados em pinos digitais do Arduino (RST e I/O) podem ser conectados em qualquer pino
digital, dependendo das necessidades do projeto. O terminal CLK, no entanto, precisa ser ligado
no pino D9, pois o mesmo está atrelado ao módulo de timer do Arduino, o qual gera o sinal de
relógio. A ISO7816-3 (ISO/IEC, 2006) determina que o relógio deve ter frequência entre 1 MHz e
5 MHz, com o valor máximo podendo ser menor de acordo com o que é suportado pelo cartão. O
valor máximo de frequência suportado por cada SC é informado no ATR. No cartão utilizado no
projeto, o valor máximo é de 5 MHz, mas a comunicação sem erros utilizando o Arduino UNO
só foi possível com frequência de 1 MHz. Para valores maiores de frequência, as mensagens
não foram recebidas corretamente (e.g., o ATR, que é um valor fixo, era diferente do esperado).
Possíveis causas para esse problema podem ser: uma limitação de velocidade de leitura da porta
digital da placa, associada à velocidade de processamento do próprio Arduino UNO (limitação
de hardware); implementação de leitura de dados da biblioteca ArduinoSCLib não otimizada,
fazendo com que sejam utilizados mais ciclos de processamento do que a quantidade suficiente
para realizar a leitura dos bytes com uma frequência maior (limitação de software).

O acesso aos terminais do SC é feito com a utilização de um slot para leitor de cartão. O
slot utilizado no projeto possui uma chave normalmente aberta entre os terminais C4 e C8 do
SC, os quais não possuem função no sistema (NC significa Não Conectado). Quando o SC é
inserido, a chave fecha e a presença do cartão pode ser detectada por um pino digital do Arduino
(e.g., pino D5, na Figura 4.2). A Figura 4.3 mostra o formato do slot e como o cartão é inserido
para leitura. É importante ressaltar que apesar de o slot ser feito para SCs de tamanho ID-000,
é possível adaptá-lo para utilização com cartões maiores e isso foi feito nas Placas de Circuito
Impresso (PCIs) iniciais do projeto.

As primeiras placas do projeto foram desenvolvidas no software EAGLE (Easily Appli-

cable Graphical Layout Editor), desenvolvido pela CadSoft Computer, subsidiária da Autodesk
desde 2016. O EAGLE é um programa de Electronics Computer-aided Design (ECAD), ca-
tegoria de softwares que possuem um conjunto de ferramentas para elaboração de sistemas

4.1. PLATAFORMA DE HARDWARE 59

ARDUINO UNO

IOREF

RESET
Vin

A0

A1

A2

A3

A4/SDA

A5/SCL RX/D0

TX/D1

D2

∼D3

D4

∼D5

∼D6

D7

D8

∼D9

SS/∼D10

MOSI/∼D11

MISO/D12

SCK/D13

AREF3.3V 5V

GND

C1(VCC)

C2(RST)

C3(CLK)

C4(NC) C8(NC)

C7(I/O)

C6(SPU)

C5(GND)

100kΩ

100nF

100kΩ

Figura 4.2: Conexão entre Arduino UNO e Smart Card, evidenciando a conexão fixa entre o
terminal CLK e o pino D9

(a) (b)

Figura 4.3: Visão lateral (a) e superior (b) do slot para o Smart Card. Fonte: ckswitches.com

eletrônicos, como CIs e PCIs. Ele foi escolhido inicialmente por ser utilizado pela maioria
das comunidades de projetos eletrônicos mais acessadas pelos usuários (Hackster, 2016). Todas
fornecem os arquivos de projeto das suas placas no formato do EAGLE.

No programa, é possível construir esquemáticos de circuitos (representação abstrata,
para mostrar o funcionamento) e desenhar layouts de Placas de Circuito Impresso. O aplicativo
possui uma vasta coleção de bibliotecas de símbolos (representações gráficas dos componentes,
posicionados no esquemático do circuito) e footprints (representações gráficas das regiões de
cobre onde os componentes serão soldados, posicionados no layout da placa), que pode ser
expandida com outras bibliotecas criadas por terceiros ou pelo próprio usuário. A Figura 4.4
mostra um exemplo de esquemático e layout para uma das primeiras placas construídas durante
o desenvolvimento deste trabalho, onde podem ser vistos o símbolo e footprint para o slot de
Smart Card, além de outros componentes.

4.1. PLATAFORMA DE HARDWARE 60

(a) (b)

Figura 4.4: Esquemático (a) e layout (b) de uma das placas fabricadas, criados no EAGLE

Durante a elaboração das primeiras PCIs, o objetivo era criar um módulo leitor de cartão
para Arduino semelhante a um leitor para computador, onde o cartão pudesse ser encaixado para
leitura. A Figura 4.5 mostra as placas que foram fabricadas e desenvolvidas com a utilização do
EAGLE.

(a) (b) (c)

Figura 4.5: Primeiras PCIs fabricadas, em ordem cronológica da esquerda para a direita

A placa da Figura 4.5a foi feita para ser um módulo separado, conectado com fios ao
Arduino, utilizando os pinos à direita da placa. O posicionamento do cartão no local correto do
slot (para que os terminais do cartão fizessem contato com os terminais do leitor) foi feito com a
instalação de parafusos em posições específicas da placa, marcadas no software. A abordagem
da placa na Figura 4.5b foi um pouco diferente, pois ela foi fabricada para ser um shield, módulo
que é encaixado em cima dos pinos do Arduino e que pode ser “empilhado” juntamente com
outros módulos. Exemplos de shields incluem módulos de comunicação Wi-Fi, Ethernet e GSM
(que poderiam ser usados em conjunto com o leitor, em uma aplicação de IoT), módulos de
cartão SD, entre outros. O posicionamento do cartão nessa placa é feito de maneira semelhante à
anterior.

A terceira placa, na Figura 4.5c, também foi criada para ser um shield, mas foi pos-

4.1. PLATAFORMA DE HARDWARE 61

teriormente modificada para ser um módulo separado (pinos localizados acima da placa). As
principais evoluções dessa placa com relação às anteriores foram a adição de um plano de terra
(facilita o desenho do layout, diminui o tempo de corrosão do cobre, diminui o ruído e melhora a
dissipação de calor), o corte mais preciso e regular da placa, e o posicionamento do cartão, que
foi feito com impressão 3D. Com a utilização do FreeCAD, um software modelador 3D open

source, foi desenhado um modelo de peça para encaixar na PCI. Nela, o cartão seria inserido de
maneira alinhada com os terminais do leitor de uma forma muito mais precisa, tal qual um leitor
para computador. A Figura 4.6 mostra o desenho do modelo e a peça impressa, encaixada na
placa.

(a) (b)

Figura 4.6: Modelo da peça de plástico, desenhado no FreeCAD (a) e placa da Figura 4.5c com a
peça de plástico encaixada (b)

Após a fabricação das PCIs citadas, os desenhos das placas seguintes passaram a ser
feitos no KiCAD, software de ECAD alternativo ao EAGLE. Apesar de ser amplamente adotado
na comunidade de projetos eletrônicos, o EAGLE é um programa comercial com limitações
na sua versão grátis, a qual estava sendo utilizada no projeto. O KiCAD, por sua vez, possui
funções semelhantes ao EAGLE, é livre e open source, sem nenhuma limitação quanto às suas
funcionalidades.

Foi fabricado, então, um segundo módulo de leitor com encaixe de plástico impresso,
com desenho feito no KiCAD. Era interessante ter dois módulos funcionais para a realização de
testes. A PCI, mostrada na Figura 4.7a, foi criada desde o início para ser um módulo de leitor
de cartão avulso e utiliza Surface-mount Technology (SMT): componentes menores, também
chamados de Surface-mount Devices (SMDs), que são soldados diretamente na superfície da
placa, eliminando a necessidade de se fazer furos. O resultado foi uma placa mais compacta que
a da Figura 4.5c.

4.1.2 Adição de comunicação sem fio e troca de Arduino por ESP8266

Para que o sistema fosse adequado para aplicações em IoT era necessário adicionar ao
mesmo a capacidade de comunicação sem fio, o que possibilitaria ao dispositivo se comunicar
remotamente com um servidor ou gateway e trocar informações. Foram consideradas duas
possibilidades: os módulos nRF24L01+ (Nordic Semiconductor, 2008) e ESP8266 (Espressif, 2017),
mostrados na Figura 4.8.

4.1. PLATAFORMA DE HARDWARE 62

(a) (b)

Figura 4.7: Quarta placa fabricada, projetada no KiCAD (a) e leitor de cartão composto pela
placa e a peça de plástico (b)

(a) (b)

Figura 4.8: Módulos nRF24L01+ (a) e ESP8266, modelo ESP-01 (b). Fontes: dx.com e
instructables.com

O nRF24L01+ é um transceptor (i.e., transmissor e receptor em um único chip) de
Rádiofrequência (RF) e de baixa potência que opera na banda ISM (Industrial, Scientific and

Medical) de 2,4 GHz, espectro de frequência para desenvolvimento livre, sem a necessidade
de licenciamento. O chip se conecta a um MCU (e.g., Arduino) através do barramento Serial

Peripheral Interface (SPI) para configuração e operação. Este dispositivo é interessante para
aplicação em projetos eletrônicos por sua simplicidade, preço e disponibilidade de recursos
(como bibliotecas). No entanto, esses módulos não possuem protocolos de rede nem acessam a
Internet, eles apenas criam um canal de conexão RF entre os rádios. A inclusão do nRF24L01+ no
sistema proposto neste trabalho exigiria dois esforços adicionais: a implementação de protocolos
de rede para os dispositivos e o desenvolvimento de um gateway conectado à Internet, o qual
receberia as informações de todos rádios e as tornaria acessíveis a um dispositivo remoto (e.g.,
celular, tablet, computador). Portanto, a utilização do nRF24L01+ foi descartada.

O ESP8266 é um System-on-Chip (SoC) que integra Wi-Fi, um MCU de 32 bits com
clock de 80 MHz e uma memória SRAM (Static random-access memory). Ele pode funcionar
como adaptador Wi-Fi para um MCU rodando uma aplicação (e.g. Arduino) ou, alternativamente,
funcionar como um dispositivo Wi-Fi standalone rodando sua própria aplicação. O CI não possui
uma memória programável integrada, o que faz com que seja necessária uma memória flash

externa (já presente em todos os módulos que são fabricados com esse chip), de até 16 MB. O
ESP8266 fornece ainda a capacidade de atualização Over-the-air (OTA) do firmware (i.e., gravar

4.1. PLATAFORMA DE HARDWARE 63

uma nova aplicação na memória através da rede wireless) e três modos de economia de energia
(modem-sleep, light-sleep e deep-sleep), úteis para prolongar o funcionamento de dispositivos
alimentados por baterias. Diferentemente do nRF24L01+, o ESP8266 já possui protocolos de
rede bem definidos (Padrão IEEE 802.11 e comunicação TCP/IP) e pode acessar a Internet,
facilitando o desenvolvimento de aplicações para Internet of Things (IoT).

Inicialmente, o módulo ESP8266 foi escolhido para atuar apenas como um adaptador
Wi-Fi para o Arduino, como sugerido no parágrafo anterior. De acordo com a Figura 4.9, o
Arduino funcionaria como o MCU principal do sistema, recebendo as leituras de um ou mais
sensores, cifrando-as com o SC e enviando os dados criptografados para o ESP8266, o qual
enviaria os dados para um servidor remoto através da Internet.

ARDUINO

SMART CARD
Criptografia

SENSORES

Leitura de dados

ESP8266 SERVIDOR

Figura 4.9: Diagrama inicial do sistema proposto, com módulo ESP8266 atuando apenas como
adaptador Wi-Fi

Verificou-se, no entanto, que a utilização do módulo ESP8266 standalone ao invés
do Arduino UNO traria algumas vantagens, entre elas uma maior capacidade de memória e
processamento em um formato muito mais compacto e mais compatível com IoT. Alguns
módulos ESP8266 diferentes daquele da Figura 4.8b, como os modelos ESP-201 e ESP-12E
(Figura 4.10), dão ao usuário acesso a uma quantidade muito maior de pinos de entrada/saída,
também chamados de General-purpose Inputs/Outputs (GPIOs), e interfaces de comunicação,
os quais poderiam ser utilizados para conexão com o cartão, sensores e outros dispositivos.
A Tabela 4.2 faz uma comparação de memória, velocidade de clock, quantidade de GPIOs e
tamanho, entre o Arduino UNO e os módulos ESP8266 mencionados no texto. O Arduino UNO
supera os módulos ESP8266 apenas na quantidade de GPIOs disponíveis para uso e fica bem
atrás em todos os outros quesitos. Apesar disso, a quantidade de GPIOs presentes nos módulos
da Figura 4.10 seria mais do que suficiente para o funcionamento do sistema.

Há ainda outro ponto importante, que tornaria mais simples a transição do Arduino UNO
para o módulo ESP8266: a programação do módulo poderia ser feita no próprio Arduino IDE
e com a mesma linguagem, ou seja, o que já tinha sido feito até então para o Arduino UNO
poderia ser aproveitado com pouca ou nenhuma alteração. A diferença é que o Arduino já vem
pronto para ser programado e possui uma porta USB para conexão com o computador, enquanto
que os módulos ESP8266 precisam de uma placa auxiliar, com um botão de reset, um switch

para configurar o módulo no modo de gravação ou de execução do programa e uma porta USB
ou adaptador USB/Serial para permitir a conexão com o computador.

4.1. PLATAFORMA DE HARDWARE 64

MÓDULO GPIOs MEMÓRIA (kB) CLOCK (MHz) ÁREA (cm3)

FLASH EEPROM RAM

Arduino UNO 20 32 1 2 16 3,66

ESP-01 4 1024 4 80 80 0,35

ESP-201 17 1024 4 80 80 0,87

ESP-12E 17 4096 4 80 80 0,38

Tabela 4.2: Comparação entre Arduino UNO e módulos ESP8266

(a) (b)

Figura 4.10: Módulos ESP8266, modelo ESP-201 (a) e modelo ESP-12E (b). Fontes: dx.com e
alibaba.com

O módulo ESP-201 (Figura 4.10a) foi o primeiro escolhido para tomar o lugar do Arduino
UNO no sistema. A placa auxiliar fabricada para possibilitar a gravação do módulo é mostrada
na Figura 4.11. Com isso, o diagrama do sistema foi atualizado, pois o Arduino UNO não
faz mais parte dele e o ESP8266 atua agora como controlador principal, trocando informações
diretamente com o SC e os sensores, como pode ser visto na Figura 4.12.

Figura 4.11: Placa utilizada para gravação do módulo ESP-201, com o adaptador USB/Serial
conectado (à esquerda)

Para utilizar o módulo ESP8266 no lugar do Arduino foi necessário realizar algumas
modificações no sistema. Como mencionado anteriormente, o sinal de relógio utilizado na
comunicação com o SC era gerado pelo próprio Arduino, utilizando o timer. Para o módulo
ESP8266, não foram encontradas informações sobre como utilizar o timer (ou mesmo se ele
existe), tornando impossível a geração do sinal de relógio no próprio módulo. A solução
encontrada foi a criação de um circuito de relógio externo, controlado por uma GPIO do ESP-

4.1. PLATAFORMA DE HARDWARE 65

ESP8266

SMART CARD
Criptografia

SENSORES

Leitura de dados

SERVIDOR

Figura 4.12: Diagrama atualizado do sistema proposto, com módulo ESP8266 atuando como
microcontrolador principal do sistema

201. Foi utilizado, a princípio, o Oscilador Pierce, mostrado na Figura 4.13, por ser um circuito
simples (apenas seis componentes) e de baixo custo. Com isso, foi possível utilizar um sinal de
relógio de 4 MHz, quatro vezes mais rápido do que era possível com o Arduino, e o sistema se
tornou mais flexível por não exigir uma conexão com um pino específico para o CLK do cartão.

Vs

Figura 4.13: Oscilador Pierce

Uma segunda alteração necessária para o funcionamento do sistema com o módulo
ESP8266 está associada às tensões de funcionamento do módulo e do SC. O ESP8266 precisa ser
alimentado com 3,3 V e essa é a tensão de entrada/saída em qualquer um dos seus pinos. O cartão,
por sua vez, funciona com 5 V (como visto na Tabela 4.1), o que impede que ele seja ligado
diretamente ao ESP8266 da mesma forma que o Arduino. Semelhantemente, quaisquer outros
dispositivos conectados ao módulo ESP8266 (e.g. sensores) também devem funcionar com 3,3 V,
mas nem sempre é possível assegurar essa compatibilidade. Para garantir que qualquer cartão e
dispositivo pudesse ser utilizado no sistema, foram adicionados dois chips conversores de nível
de tensão: um para a conexão com o cartão e outro para quatro GPIOs livres do módulo, que
poderiam ser usadas individualmente ou como interface SPI. A Figura 4.14 e a Figura 4.15
ilustram o funcionamento dos chips mencionados, mostrando os níveis de tensão que podem
ser aplicados em cada lado. A adição dos chips aumentou a versatilidade do sistema, que agora
poderia ser utilizado com qualquer classe de SC e com sensores de 3,3 V ou 5 V.

4.1. PLATAFORMA DE HARDWARE 66

LEITOR

VCC

GND

VCCleitor

RSTleitor

CLKleitor

I/Oleitor

VCCcar tão

RSTcar tão

CLKcar tão

I/Ocar tão

GND

CHIP CARTÃO
VCC

RST
CLK
I/O

GND

1,4V ≤ VCCleitor ≤ 5,5V 1,7V ≤ VCCcartão ≤ 5,5V

Figura 4.14: Funcionamento do chip conversor de tensão para o cartão

MCU

VCC

GPIO1
GPIO2
GPIO3
GPIO4

GND

VCCA

A1
A2
A3
A4

VCCB

B1
B2
B3
B4

GND

CHIP DISPOSITIVO

VCC

PINO1
PINO2
PINO3
PINO4

GND

1,2V ≤ VCCA ≤ 3,6V
VCCA ≤ VCCB 1,65V ≤ VCCB ≤ 5,5V

Figura 4.15: Funcionamento do chip conversor de tensão para as GPIOs

Os testes iniciais sem o Arduino foram feitos com as placas das Figuras 4.7b e 4.11
conectadas com fios às placas avulsas dos chips conversores (Figura 4.16a) e ao circuito de
relógio externo, montado em uma protoboard (Figura 4.16b, onde a placa é o inversor e o
encapsulamento metálico é o cristal piezoelétrico de 4 MHz).

(a) (b)

Figura 4.16: Placa individual de um dos chips conversores de tensão (a) e circuito de relógio
externo, montado na protoboard (b)

Com o funcionamento do novo sistema verificado, o próximo passo no projeto de
hardware era fazer uma PCI que integrasse todos os módulos em um único lugar, criando
um dispositivo wireless portátil, com leitor de SC integrado para comunicação segura, sendo,
portanto, adequado para aplicações em IoT. A primeira placa do projeto com ESP8266 foi

4.1. PLATAFORMA DE HARDWARE 67

desenhada no KiCAD e apresentou algumas modificações com relação à montagem de testes. A
primeira delas foi no leitor de cartões. Foi utilizado o slot da Figura 4.3 sem nenhuma adaptação
e o cartão foi cortado com o tamanho ID-000 para encaixar no slot, com o objetivo de manter o
dispositivo compacto. Outra modificação foi realizada no circuito de relógio externo. Como pode
ser visto na Figura 4.16b, o cristal piezoelétrico é um dispositivo que ocupa muito espaço, além
de ser through-hole (i.e., a placa precisa ser furada para soldar o componente). Para contornar
esse problema, foi utilizado um CI oscilador SMD de 8 MHz e 2,5 mm x 2,0 mm em conjunto
com um circuito divisor de frequência digital, mostrado na Figura 4.17.

D Q
OSC.
f = fo

f = fo
2

(a) (b)

Figura 4.17: Circuito divisor de frequência digital (a) e detalhe do relógio externo na placa (b),
onde podem ser vistos os chips: oscilador, flip-flop e inversor, da esquerda para a direita

A placa possui as conexões e switches necessários para gravar a aplicação no módulo
ESP-201 e é ligada através da conexão com um adaptador USB/Serial, da mesma forma que a
placa da Figura 4.11. Ela pode ser alimentada separadamente com 5 V e 3,3 V, ou utilizar apenas
os 5 V do adaptador e obter os 3,3 V de um regulador de tensão. A Figura 4.18 mostra a frente
e o verso da primeira placa fabricada com o módulo ESP8266. É possível ver na Figura 4.18a
o módulo encaixado, o slot de SC (sem cartão), os pinos para as GPIOs livres (acima, do lado
direito) e a entrada para o adaptador USB/Serial (abaixo, do lado direito). Já na Figura 4.18b
estão as indicações de cada terminal e os switches necessários para gravação do módulo. Pode-se
observar que a placa só possui uma face de cobre na qual os componentes estão distribuídos,
o que acaba aumentando as dimensões do dispositivo, que são de aproximadamente 7,8 cm x
6,2 cm.

(a) (b)

Figura 4.18: Primeira placa com o módulo ESP8266, frente (a) e verso (b)

4.2. ARQUITETURA DE SOFTWARE 68

4.1.3 Placa Final

Foi desenvolvida uma segunda placa com o módulo ESP8266, mostrada na Figura 4.19,
tendo em vista as alterações necessárias para tornar o dispositivo o mais adequado possível para
aplicações em IoT. Esta foi também a placa final para este trabalho. Ela possui várias melhorias
com relação à placa anterior:

� O módulo ESP8266 utilizado foi o ESP-12E (Figura 4.10b), que é menor, possui a
mesma quantidade de GPIOs e é SMD;

� Todos os componentes utilizados foram também SMD, incluindo os switches para
programação do módulo;

� O circuito de relógio foi substituído por um único CI oscilador de 4 MHz;
� A placa possui ambas as faces com cobre (também chamada de placa dupla-face),

o que permite que os componentes possam ser distribuídos na frente e no verso,
diminuindo as dimensões da placa para aproximadamente 5,6 cm x 3,9 cm (45% da
área da placa anterior);

� Adição de uma porta mini USB à placa, dispensando a utilização de adaptadores
externos para energizá-la e conectá-la com o computador.

(a) (b)

Figura 4.19: Segunda placa com o módulo ESP8266 e placa final do trabalho, frente (a) e verso
(b)

Após todas as modificações, o diagrama final do hardware do sistema ficou como
mostrado na Figura 4.20.

4.2 Arquitetura de Software

O software do sistema é composto por três programas distintos: um instalado no SC,
um no MCU do dispositivo e um no computador, que atua como servidor do sistema. O
desenvolvimento de cada programa é detalhado nos parágrafos seguintes.

4.2. ARQUITETURA DE SOFTWARE 69

ESP8266RELÓGIO
EXTERNO

CONVERSOR
Criptografia

SMART CARD

CONVERSOR
Leitura de dados

SENSORES

SERVIDOR

1,7 V - 5,5 V

3,3 V

3,3 V - 5,5 V

Figura 4.20: Diagrama final do hardware do sistema proposto

4.2.1 Protocolo de Comunicação entre Smart Card e Microcontrolador

O passo inicial no desenvolvimento do software do sistema era estabelecer a troca de
informações entre SC e MCU. A biblioteca open source ArduinoSCLib (BARGSTEDT, 2016),
desenvolvida para Arduino e placas compatíveis com Arduino, foi utilizada como a base do
projeto de software do MCU. Ela implementa os procedimentos de operação do SC descritos
na Subseção 2.3.2, incluindo a troca de APDUs, sendo portanto a camada mais básica da
comunicação entre o microcontrolador e o cartão. No entanto, apesar de possibilitar a troca de
mensagens entre o cartão e o MCU, testes iniciais de comunicação utilizando a ArduinoSCLib
e o Arduino, monitorados com o auxílio de um analisador lógico, mostraram uma falha na
implementação. O terceiro caso da Tabela 2.1 não era tratado, de forma que muitos comandos
não eram executados corretamente, como é ilustrado na Figura 4.21.

COMANDO ERRADO
ERRO DE

VERIFICAÇÃO COMANDO CORRETO

0x00 0xA4 0x04 0x00 0x00 0x6C 0x67 0x00 0xA4 0x04 0x00 0x67
CLA INS P1 P2 Le SW1 SW2 CLA INS P1 P2 Le

(a)

COMANDO ERRADO
ERRO DE

VERIFICAÇÃO

0x00 0xA4 0x04 0x00 0x00 0x6C 0x67
CLA INS P1 P2 Le SW1 SW2

(b)

Figura 4.21: Funcionamento esperado (a) e implementação da biblioteca ArduinoSCLib (b)
durante envio de comandos para o Smart Card

Uma inspeção posterior do código-fonte também revelou a necessidade de correções
na rotina de envio e recebimento de APDUs, para garantir uma maior conformidade com o

4.2. ARQUITETURA DE SOFTWARE 70

protocolo T=0 especificado na ISO7816-3 e convenientemente representado em uma máquina de
estados no Smart Card Handbook (RANKL; EFFING, 2010).

A migração do Arduino UNO para o ESP8266, descrita na Seção 4.1, também exigiu
algumas alterações no código. Após a substituição das placas, a execução do software no
ESP8266 era frequentemente interrompida por falhas que causavam a reinicialização do sistema.
Após pesquisa, descobriu-se que o Watchdog Timer (WDT) era o causador dessas falhas. Ele
é um módulo presente na maioria dos MCUs, responsável por garantir que o sistema funcione
corretamente. Geralmente, ele possui um timer que é constantemente reiniciado pelo sistema,
para mostrar que a execução está acontecendo de forma correta. Quando, por exemplo, a
execução do programa permanece durante muito tempo dentro de um laço da programação
(e.g., while, for) e esse timer não é reiniciado, o WDT é ativado e reinicia o sistema. Como o
ESP8266 executa constantemente tarefas secundárias relativas ao protocolo de comunicação
Wi-Fi, uma interrupção longa dessas tarefas por causa de um laço é interpretada pelo WDT como
mal funcionamento do sistema. A solução para esse problema foi a adição de delays ao longo do
código, para permitir ao MCU a realização das tarefas em segundo plano mesmo dentro de um
laço.

4.2.2 Algoritmos Suportados pelo Smart Card

Estabelecida a troca de mensagens entre o SC e o MCU, era necessário encontrar uma
forma de utilizar as capacidades criptográficas do cartão para, em conjunto com o microcontrola-
dor, empregá-las na criação de um sistema de comunicação segura para IoT. O cartão usado no
projeto possui a tecnologia Java Card descrita na Subseção 2.3.3, o que significa que nele podem
ser instalados programas desenvolvidos em Java.

A presença de uma determinada funcionalidade no cartão depende da versão do Java
Card presente nele (e.g., o algoritmo de hash SHA256 só foi introduzido na versão 2.2.2) e das
próprias limitações de hardware e software do SC, o que significa que nem toda funcionalidade
de uma dada versão da Application Programming Interface (API) Java Card estará contida no
cartão. As funcionalidades do cartão mais interessantes para este trabalho são os algoritmos
criptográficos que ele é capaz de executar. A maneira utilizada no projeto para descobrir quais
algoritmos de segurança eram suportados pelo cartão foi através do software JCAlgTest (ŠVENDA,
2016). Composto por um applet que é instalado no cartão e dois programas que são executados
no computador (um para comunicação com o SC e outro para tratamento dos resultados),
o JCAlgTest realiza testes automáticos de algoritmos suportados e testes de performance de
execução para cada algoritmo, gerando tabelas e gráficos para melhor visualização dos resultados.

A Tabela 4.3 mostra uma parte dos resultados do JCAlgTest, especificamente para
algoritmos de hash, onde é possível observar que, mesmo possuindo o Java Card na versão 2.2.2,
o cartão não dá suporte a algoritmos introduzidos nessa mesma versão (SHA384 e SHA512).
As tabelas com todos os algoritmos suportados pelo cartão encontram-se no Apêndice A. A
Figura 4.22, por sua vez, mostra um dos gráficos obtidos com os testes de performance na

4.2. ARQUITETURA DE SOFTWARE 71

execução do algoritmo de hash SHA256, com diferentes quantidades de dados de entrada. Os
testes de performance são úteis na comparação entre diferentes SCs e também na visualização
do comportamento dos algoritmos com a variação da quantidade de dados.

ALGORITMO JAVA CARD SUPORTADO

SHA ≤ 2.1 SIM

MD5 ≤ 2.1 SIM

RIPEMD160 ≤ 2.1 SIM

SHA256 2.2.2 SIM

SHA384 2.2.2 NÃO

SHA512 2.2.2 NÃO

SHA224 3.0.1 NÃO

Tabela 4.3: Tabela de suporte a algoritmos gerada pelo JCAlgTest, para algoritmos de hash

0 100 200 300 400 500

100

200

300

400

16

32

64

128

256

512

Quantidade de dados (bytes)

D
ur

aç
ão

da
op

er
aç

ão
(m

s)

SHA256

Figura 4.22: Gráfico de performance para execução do algoritmo de hash SHA256 com o Smart
Card

4.2.3 Applets para Smart Cards

Existem diversos applets open source em desenvolvimento para SCs. Vários deles estão
concentrados no repositório Applet Playground (PALJAK, 2017). Alguns deles são específicos
para aplicações financeiras (e.g., OpenEMV, SatoChipApplet, Ledger Unplugged), outros para
aplicações em documentos de identificação (e.g., eID Applet, GIDS Applet, PLAID, Passport
Applet), outros implementam transmissão de dados para NFC (protocolo NDEF) e o restante
apresenta soluções voltadas para segurança da informação em geral. A Tabela 4.4 lista os applets

4.2. ARQUITETURA DE SOFTWARE 72

tidos como mais relevantes para o desenvolvimento do projeto, as datas em que foram atualizados
e em qual padrão/especificação eles são baseados. Esses applets foram considerados para serem
a base do software que seria instalado no SC.

Tendo em vista que o objetivo do sistema é realizar uma comunicação de forma segura e
autenticada entre o dispositivo IoT e o servidor, foi criada a Tabela 4.5, a qual lista as capacidades
de criptografia do SC consideradas mais importantes para o alcance do objetivo citado. A tabela
também associa um código abreviado a cada capacidade. Após inspeção dos códigos-fonte de
cada applet listado na Tabela 4.4, foi possível determinar quais capacidades da Tabela 4.5 foram
implementadas em cada um deles. A Tabela 4.6 faz uma comparação entre os applets e suas
capacidades.

NOME DATA ESPECIFICAÇÃO

MUSCLE Applet mar/2012 MUSCLE Cryptographic Card Edge Definition

CoolKey Applet jan/2017 MUSCLE Cryptographic Card Edge Definition

SatoChipApplet dez/2015 MUSCLE Cryptographic Card Edge Definition

IsoApplet feb/2017 ISO7816

JC PKI Applet jan/2011 ISO7816

YKNEO OpenPGP jan/2017 OpenPGP application on ISO Smart Card OSs

OpenPGP-Card abr/2015 OpenPGP application on ISO Smart Card OSs

Tabela 4.4: Applets de segurança para Smart Cards

4.2. ARQUITETURA DE SOFTWARE 73

CAPACIDADES CRIPTOGRÁFICAS CÓDIGO

Proteção com PIN ou senha PIN

Geração de chaves assimétricas GER/A

Cifragem com criptografia assimétrica CIF/A

Decifragem com criptografia assimétrica DEC/A

Geração de chaves simétricas GER/S

Cifragem com criptografia simétrica CIF/S

Decifragem com criptografia simétrica DEC/S

Importação de chaves IMP

Assinatura digital SIG

Verificação de assinatura digital VER

Geração de números aleatórios RND

Armazenamento de objetos OBJ

Hash de mensagens HASH

Código de autenticação de mensagem MAC

Troca de chaves KEX

Criptografia de Curvas Elípticas CCE

Tabela 4.5: Capacidades criptográficas importantes na implementação do sistema

APPLET CAPACIDADES CRIPTOGRÁFICAS

PIN GER/A CIF/A DEC/A GER/S CIF/S DEC/S IMP SIG VER RND OBJ HASH MAC KEX CCE

MUSCLE Applet • • • • • • • • • • •

CoolKey Applet • • • • • • •

SatoChipApplet • • • • • • • • • • • • • • • •

IsoApplet • • • • • • • •

JC PKI Applet • • • • • • •

YKNEO OpenPGP • • • • • • •

OpenPGP-Card • • • • • • •

Tabela 4.6: Comparação entre applets de segurança

4.2. ARQUITETURA DE SOFTWARE 74

É possível observar que todos os applets dão suporte a proteção com PIN, geração de
chaves assimétricas (a maioria apenas suporta RSA, somente dois também dão suporte a curvas
elípticas), decifragem com criptografia assimétrica e importação de chaves externas para o cartão,
geração de números aleatórios e armazenamento de objetos na memória do SC. A maioria ainda
suporta assinatura digital. No entanto, poucos applets implementam capacidades fundamentais,
como: criptografia de chave simétrica (geração de chave, cifragem e decifragem), muito impor-
tante na comunicação sigilosa por ser mais rápida; verificação de assinaturas, essencial para
autenticação com certificados; códigos de autenticação de mensagem, que garantem a integridade
dos dados transmitidos; algoritmos de troca de chaves, para estabelecer uma chave secreta entre
duas partes; algoritmos de criptografia com curvas elípticas, que oferecem segurança comparável
ao RSA com chaves muito menores.

O SatoChipApplet é o applet com mais capacidades implementadas na lista, sendo
portanto uma aparente escolha óbvia para o projeto. No entanto, este applet é focado em
aplicações com bitcoins e possui várias funções que fogem do escopo deste trabalho. Além
disso, e o mais importante, ele é baseado na especificação MUSCLE Card Edge (CORCORAN;

CUCINOTTA, 2001)(CUCINOTTA; NATALE; CORCORAN, 2003), assim como o MUSCLE Applet
(que é o segundo applet com mais capacidades na tabela) e o CoolKey Applet. Essa especificação
foi criada independentemente da ISO7816, portanto não possui nenhuma compatibilidade com o
padrão adotado pelo mercado. Além do mais, por ser uma especificação antiga, ela não leva em
consideração algoritmos mais recentes de criptografia. Por este motivo, os três applets citados
foram desconsiderados.

Existem dois applets baseados na especificação do OpenPGP para Smart Cards (PIETIG,
2015): o YKNEO Applet (utilizado comercialmente em dispositivos da empresa Yubico) e o
OpenPGP Card. Essa especificação é construída sobre a ISO7816, porém ela limita o que pode
ser feito com o cartão, como a quantidade de chaves que ele possui e os tipos de operação
criptográficas que pode realizar, diminuindo a versatilidade das aplicações que podem ser
desenvolvidas a partir dela. Sendo assim, estes applets também foram descartados, restando
apenas o IsoApplet e o JC PKI Applet. Este último, apesar de ter praticamente as mesmas
capacidades que o IsoApplet, não implementa criptografia de curvas elípticas e não é atualizado
há alguns anos. Por isso, foi escolhido o IsoApplet para ser instalado no cartão.

4.2.4 Modificações no IsoApplet

Como visto na Tabela 4.6, o IsoApplet não implementa todas as funcionalidades conside-
radas relevantes para o projeto. A Tabela 4.7 especifica os algoritmos que estão implementados
no IsoApplet original.

Durante o desenvolvimento do software, foram realizadas modificações no applet, para
adicionar novas funções necessárias para o sistema. Ao final do trabalho, as funcionalidades do
IsoApplet haviam sido expandidas para aquelas que estão na Tabela 4.8. Todas essas funções
foram implementadas utilizando a API Java Card com exceção das funções de MAC, as quais

4.2. ARQUITETURA DE SOFTWARE 75

CAPACIDADES ALGORITMOS

GER/A NOME BITS

RSA 2048

Curvas Elípticas 192/224/256

DEC/A NOME PADDING

RSA PKCS#1

IMP NOME BITS

RSA 2048

Curvas Elípticas 192/224/256

SIG NOME PADDING HASH

RSA PKCS#1 N/A

ECDSA N/A SHA

Tabela 4.7: Algoritmos implementados no IsoApplet original

foram implementadas manualmente a partir da especificação do HMAC encontrada no RFC
2104 (KRAWCZYK; BELLARE; CANETTI, 1997). Como pode ser visto na Tabela A.1, a API
implementada no cartão só suporta algoritmos de MAC baseados em algoritmos de cifragem
(CMACs), embora algoritmos de HMAC tenham sido introduzidos na versão 2.2.2 do Java Card
(Sun Microsystems, 2006a). Como o protocolo TLS utiliza HMACs, foi necessário fazer uma
implementação manual.

Outras funções relacionadas ao TLS não listadas na Tabela 4.8 também foram imple-
mentadas manualmente no IsoApplet. Visto que vários cálculos realizados durante o handshake

(Subseção 2.4.2) dependem da função PRF, ela foi a primeira a ser implementada, a partir
da função de HMAC citada. Posteriormente, foram implementados também no IsoApplet
comandos para o cálculo dos seguintes valores utilizados no TLS: pre_master_secret,
master_secret, key_block e verify_data. Com exeção do último valor, que precisa
ser enviado para o servidor ao final do handshake, todos os outros valores são calculados dentro
do Smart Card e lá permanecem armazenados de forma segura na memória não volátil do cartão,
de tal maneira que nem o próprio dispositivo IoT tem acesso à informação. Como esses valores
estão intimamente relacionados aos mecanismos de autenticação do protocolo de handshake e
também à confidencialidade, autenticação e integridade das mensagens que serão trocadas após o
handshake, é imprescindível que eles não sejam expostos em um ambiente inseguro. As chaves
simétricas derivadas do key_block também são automaticamente criadas dentro do cartão.
O dispositivo IoT envia ao SC os comandos de cifragem, decifragem e criação de MACs que
utilizam essas chaves, mas nunca tem acesso aos seus valores.

4.2. ARQUITETURA DE SOFTWARE 76

CAPACIDADES ALGORITMOS

GER/A NOME BITS

RSA 2048

Curvas Elípticas 192/224/256

CIF/A NOME PADDING

DEC/A RSA PKCS#1

GER/S NOME BITS

AES 128

3DES 192

CIF/S NOME MODO PADDING

DEC/S AES CBC N/A

3DES CBC N/A

IMP NOME BITS

RSA 2048

Curvas Elípticas 192/224/256

AES 128

3DES 192

SIG NOME PADDING HASH

VER RSA PKCS#1 N/A

RSA PKCS#1 SHA

ECDSA N/A SHA

HASH NOME

SHA

SHA256

MAC NOME

HMAC-SHA

HMAC-SHA256

KEX NOME

DH com Curvas Elípticas

Tabela 4.8: Algoritmos implementados no IsoApplet após modificações

4.2. ARQUITETURA DE SOFTWARE 77

4.2.5 Bibliotecas desenvolvidas para o Microcontrolador

A elaboração do software que seria instalado no MCU, WifiClient, exigiu a criação de
bibliotecas de código específicas, onde estariam compiladas as funções e constantes necessárias
para construir a aplicação principal. Foram criadas quatro bibliotecas: uma relacionada à
manipulação de dados codificados em ASN.1, outra relativa à especificação GlobalPlatform,
outra para comunicação com o Smart Card e outra para implementar o protocolo TLS. As
bibliotecas e suas principais características são detalhadas nas seções subsequentes.

Biblioteca ASN.1Functions. Esta biblioteca possui funções auxiliares necessárias para a mani-
pulação de dados codificados de acordo com as regras da ASN.1, descritas na Seção 2.6. Ela é
necessária, pois informações com esse tipo de notação são extensivamente usadas nos padrões
nos quais este trabalho é baseado. A biblioteca contém poucas funções, com o que é necessário
para se “navegar” entre os diferentes objetos em uma estrutura ASN.1. Por exemplo:

� Busca de tags específicas em um conjunto de dados. Muitos valores possuem tags
padronizadas e uma função que possa encontrá-las diretamente é útil;

� Decodificação de tags e campos de tamanho. Quando se está percorrendo um conjunto
de dados ASN.1, é importante determinar o comprimento dos próprios campos de tag

e tamanho e também o comprimento dos dados. Isso é feito através da decodificação;
� Funções para pular de um objeto para outro, ou de um objeto externo para um objeto

interno, quando existem sequências de objetos.

Além das funções, também são declaradas algumas constantes com valores de tags mais
comuns, como booleanos, inteiros, cadeias de caracteres e sequências.

Biblioteca GPSecure. Esta biblioteca implementa as funções necessárias para criar uma comu-
nicação segura entre o cartão e o MCU através do Secure Channel Protocol e para realizar a
instalação e desinstalação de applets no cartão, de acordo com os procedimentos e comandos
determinados na especificação GlobalPlatform (GlobalPlatform, 2003). É uma biblioteca impor-
tante, pois permite ao servidor atualizar a aplicação no cartão através do envio de comandos
para o MCU. A execução do SCP requer a realização de determinadas tarefas implementadas na
biblioteca, como:

� Geração das chaves de sessão utilizadas na cifragem e autenticação das mensagens,
através da cifragem de um conjunto de dados específico com o algoritmo Triple

DES (3DES) em modo CBC;
� Criação de criptogramas de autenticação, valores calculados a partir da chave base

instalada no cartão e de números aleatórios com o algoritmo de CMAC Full Triple

DES (definido na ISO9797-1), os quais são utilizados pelo MCU e pelo cartão para
se autenticarem mutualmente;

4.2. ARQUITETURA DE SOFTWARE 78

� Cálculo de um código MAC para cada APDU enviada durante a comunicação segura,
com a utilização do algoritmo Retail MAC (também definido na ISO9797-1).

Todos os algoritmos citados acima utilizam como base o algoritmo de cifragem DES.
Como a utilização do SCP é um passo necessário para instalar o applet no cartão, esses algoritmos
devem ser executados pelo próprio MCU. Para isso, foi utilizada a biblioteca open source

ArduinoDES (RIEMANN, 2015), a qual implementa o DES para Arduino e placas compatíveis. É
importante ressaltar que esta é a única situação no sistema na qual algoritmos de criptografia não

são executados pelo Smart Card.
A instalação de applets no cartão, por sua vez, requer a abertura de um canal seguro com

o SCP e o envio de APDUs de comando para carregamento do código do applet e subsequente
instalação. A biblioteca GPSecure implementa a instalação do applet de duas maneiras distintas:

1. Em uma única função, a qual pode ser utilizada quando toda a informação do applet

a ser instalado está disponível para o MCU. Por exemplo, quando o código que é
instalado no MCU já possui os bytes de instalação do applet em uma variável;

2. Em três funções diferentes: uma para iniciar a instalação, outra para enviar os blocos
de bytes de instalação do applet a serem carregados no cartão e outra para finalizar a
instalação. Essa função é útil quando o MCU recebe os bytes de instalação do applet

aos poucos, através da porta serial ou da rede sem fio (enviados pelo servidor, por
exemplo).

Os bytes de instalação do applet são obtidos a partir do arquivo CAP, gerado na compi-
lação e conversão do código Java (Subseção 2.3.3) e definido na especificação da JCVM (Sun

Microsystems, 2006c). Este arquivo é, na verdade, um contêiner para componentes que também
são arquivos CAP, com diferentes informações sobre o applet a ser instalado. No total, são onze
componentes: Header.cap, Directory.cap, Applet.cap, Import.cap, ConstantPool.cap, Class.cap,
Method.cap, StaticField.cap, ReferenceLocation.cap, Export.cap e Descriptor.cap. O conteúdo
de cada componente está fora do escopo deste trabalho. Durante a instalação, esses componentes
devem ser extraídos do arquivo CAP principal e enviados para o cartão.

A descoberta dos APDUs de comando que devem ser enviados durante a instalação, a
forma de extrair os componentes do arquivo CAP principal e a sua ordem de envio foi feita de uma
maneira mais prática, a partir da observação do funcionamento do software GlobalPlatformPro
(PALJAK, 2016). Ele é desenvolvido em Java e possui uma série de comandos que permitem a
interação entre um computador e um Smart Card compatível com a especificação GlobalPlatform.
Entre esses comandos, estão: envio de APDUs (com ou sem SCP), instalação e desinstalação de
applets, listagem de applets no cartão, alteração da chave base do cartão. Todos esses comandos
podem ser executados com as opções verbose e debug. A primeira aumenta a quantidade de
mensagens impressas pelo programa sobre o que está sendo feito e a segunda habilita a impressão
dos APDUs que estão sendo trocados entre o computador e o cartão. Com a observação dessas

4.2. ARQUITETURA DE SOFTWARE 79

informações foi possível implementar as funções da biblioteca GPSecure e um script em Python,
CapFileParser, o qual extrai os bytes necessários do arquivo CAP e os exporta para arquivos que
podem ser usados tanto pelo dispositivo IoT quanto pelo servidor para fazer uma atualização no
software do cartão.

Biblioteca SmartCarduino. Está biblioteca é o núcleo do projeto de software do MCU. Nela
estão implementadas as funções e constantes relativas à criação e administração de uma estrutura
de arquivos PKCS#15 no cartão e também à requisição de operações criptográficas do cartão.

A estrutura de arquivos PKCS#15 (Seção 2.5) é o que dá ao Smart Card a capacidade de
armazenamento sistematizado de objetos como chaves e certificados. O IsoApplet possibilita
a criação dessa estrutura no cartão a partir dos comandos enviados pelo MCU. As funções da
biblioteca SmartCarduino relacionadas ao padrão PKCS#15 incluem:

� Criação da própria estrutura PKCS#15 no cartão, que envolve a criação dos DFs e
EFs obrigatórios e de um PIN para controle de acesso;

� Criação das File Control Informations (FCIs), propriedades de um determinado
arquivo que incluem seu número de identificação, tamanho e condições de acesso.
Todo arquivo que é criado na estrutura PKCS#15 possui um FCI;

� Criação dos Control Reference Templates (CRTs), conjuntos de informações enviados
ao cartão sempre que uma operação criptográfica é solicitada, através do comando
MANAGE SECURITY ENVIRONMENT. Contém informações sobre o algoritmo a ser
utilizado e, se necessário, uma referência de uma chave (pública, privada ou secreta)
para ser usada com o algoritmo em questão;

� Criação dos diferentes objetos que são armazenados nos EFs.

As funções restantes da biblioteca SmartCarduino são associadas às operações cripto-
gráficas que o cartão pode executar. Existem funções para a requisição de cada capacidade
listada na Tabela 4.8, onde os algoritmos e chaves são especificados nos CRTs. Em geral, essas
requisições têm uma construção semelhante: primeiramente, é selecionado o IsoApplet instalado
no cartão com o comando SELECT (seria o equivalente a rodar a aplicação); depois, é enviado
um comando de verificação do PIN (VERIFY) para que o cartão permita que a operação seja exe-
cutada; é enviado, então, o comando MANAGE SECURITY ENVIRONMENT com o CRT relativo
à operação criptográfica; por fim, é enviado o comando PERFORM SECURITY OPERATION
com os parâmetros que indicam ao cartão qual operação será executada. A depender da operação,
o cartão pode responder com um bloco de dados (e.g., cifragem, decifragem, hash, assinatura
digital) ou apenas os bytes SW1 e SW2 informando se a operação foi realizada corretamente ou
não (e.g., verificação de assinatura).

Uma exceção à essa estrutura de comandos é a operação de geração de chaves assimé-
tricas, na qual é enviado um comando específico, GENERATE ASYMMETRIC KEYPAIR, que é
respondido pelo cartão com a chave pública que foi gerada. A chave privada, no entanto, nunca

4.2. ARQUITETURA DE SOFTWARE 80

é revelada para o MCU por motivos de segurança. As operações que, como essa, envolvem a
utilização de chaves possuem alguns comandos a mais onde são verificados os EFs de chaves
(SKDF, PrKDF, PuKDF) em busca das chaves com a mesma referência presente no CRT. Essa
verificação garante que não serão criadas chaves novas com a mesma referência de chaves
existentes ou que não serão realizadas operações com chaves não existentes no Smart Card. No
caso da geração de chaves, os EFs citados ainda são atualizados com os objetos das novas chaves
criadas, através do comando UPDATE BINARY.

O desenvolvimento dessa biblioteca, assim como no caso da GPSecure, foi feito a partir
da observação do funcionamento de um software para computador: o OpenSC (OpenSC Team,
2015). Ele consiste em um conjunto de ferramentas open source para se trabalhar com as
capacidades criptográficas dos Smart Cards. A partir da sua versão 0.15.0, o OpenSC passou a
dar suporte a cartões com o IsoApplet instalado, o que possibilitou a realização de testes. As
ferramentas do OpenSC utilizadas foram as seguintes:

� opensc-explorer: Permite a exploração dos arquivos na estrutura PKCS#15 do
Smart Card de uma forma semelhante à exploração de arquivos no terminal do Linux
ou no Prompt de Comando do Windows;

� pkcs15-init: Possui funções para criação de uma estrutura PKCS#15 no cartão,
armazenamento de objetos como PINs, chaves e certificados e geração de chaves
assimétricas;

� pkcs15-tool: Contém funções para leitura e listagem dos diferentes objetos
armazenados no cartão;

� pkcs15-crypt: Possui funções para requisição de operações criptográficas do car-
tão. Especificamente, apenas suporta as operações de assinatura digital e decifragem.

Ao contrário do GlobalPlatformPro, o OpenSC não fornece opções que permitam a
visualização dos APDUs trocados entre o computador e o cartão. Dessa forma, para conseguir
observar essas informações, foi utilizado o Wireshark. Este software é um analisador de pacotes,
geralmente usado para análise e manutenção de redes. Sua principal característica é a capacidade
de capturar e registrar o tráfego de mensagens em uma interface do computador, como a porta
Ethernet ou as portas USB.

A captura foi feita na porta USB na qual estava ligado um leitor de cartões. Apesar de o
computador possuir várias portas USB, todas elas são administradas por uma mesma interface, a
qual é monitorada pelo Wireshark. Por causa disso, todas as mensagens de todos os dispositivos
que estão conectados a essas portas acabam sendo capturadas, o que gera mais informação que o
necessário. Para resolver esse problema, o Wireshark permite que as mensagens sejam filtradas
por um par de características da interface USB que é único para cada dispositivo conectado:
Endereço de Dipositivo e ID de Barramento, os quais podem ser descobertos facilmente com um
comando no terminal. Com isso, é possível visualizar apenas as mensagens relativas ao leitor
de cartão. Essas mensagens são salvas em um arquivo pcap, próprio do Wireshark, que contém

4.2. ARQUITETURA DE SOFTWARE 81

todas as informações sobre o tráfego. Com a utilização do Tshark, uma versão do Wireshark para
linha de comando, é possível criar um arquivo de texto mais simples, apenas com o conteúdo das
mensagens e a direção de envio (transmitida ou recebida), o que facilita a análise. O resultado da
captura pode ser visto no fragmento a seguir:

0 65:00:00:00:00:00:03:00:00:00

1 81:00:00:00:00:00:03:01:00:01

0 62:00:00:00:00:00:04:00:00:00

1 80:18:00:00:00:00:04:00:00:00:3B:FE:18:00:00:80:31:FE:45:80:31:

80:66:40:90:91:06:2D:10:83:01:90:00:D3

0 6F:11:00:00:00:00:0B:00:00:00:00:A4:04:00:0C:F2:76:A2:88:BC:FB:

A6:9D:34:F3:10:01

1 80:05:00:00:00:00:0B:00:00:00:00:06:06:90:00

0 6F:08:00:00:00:00:0D:00:00:00:00:A4:08:00:02:2F:00:00

1 80:19:00:00:00:00:0D:00:00:00:6F:15:81:02:00:80:82:01:01:83:02:

2F:00:86:08:FF:00:00:00:00:00:00:00:90:00

Nesse fragmento, as mensagens que iniciam com “0” foram enviadas pelo computador e
as que iniciam com “1” foram recebidas pelo computador, portanto enviadas pelo cartão. As
partes das mensagens que estão na cor cinza fazem parte do protocolo USB, o qual está fora do
escopo deste trabalho. A mensagem marrom, por sua vez, é o ATR enviado pelo cartão após
sua ativação e reset, marcando o início da comunicação. As partes azuis são os cabeçalhos dos
APDUs de comando e as partes laranjas são os rodapés dos APDUs de resposta. As partes roxas
representam os corpos de ambos os tipos de APDU. A análise dessas capturas para diferentes
comandos das ferramentas do OpenSC, juntamente com consultas ao código-fonte do IsoApplet
e aos padrões ISO7816 possibilitaram o desenvolvimento da biblioteca SmartCarduino.

Biblioteca CardTLS. Esta biblioteca possui o que é necessário para implementar os Protocolos
de Registro e Handshake do TLS (descritos na Seção 2.4) e, consequentemente, a comunicação
segura e autenticada entre o dispositivo IoT e o servidor. Suas principais funções são:

� Criação de cada uma das mensagens enviadas pelo cliente no protocolo de handshake,
o que envolve diversas requisições de operações criptográficas ao Smart Card, in-
cluindo os cálculos relativos ao TLS mencionados na Subseção 4.2.4;

� Cifragem e cálculo de MAC de mensagens enviadas após o handshake, com as chaves
que estão armazenadas no cartão (Protocolo de Registro);

� Funções utilizadas na pré-configuração do dispositivo IoT, como o recebimento dos
bytes para gravação remota do cartão, a limpeza da memória EEPROM do MCU onde
serão guardados os parâmetros da sessão, a geração e o envio das chaves assimétricas
principais do dispositivo para o servidor e o subsequente recebimento dos certificados
de cada chave assinados pelo servidor.

4.2. ARQUITETURA DE SOFTWARE 82

Além dessas funções, a biblioteca contém grande parte das constantes definidas para
o TLS no RFC 5246 (ALLEN et al., 2008). Também são definidos alguns valores constantes
próprios da aplicação principal, como as referências, rótulos e identificadores das chaves e dos
certificados do dispositivo e do servidor, os quais são fixos.

As principais referências no desenvolvimento dessa biblioteca foram os RFCs: 5246, que
especifica o TLS; 4492 (BLAKE-WILSON et al., 2006), que estabelece suites de criptografia para o
TLS com uso de Curvas Elípticas; 5280 (COOPER et al., 2008), que trata dos certificados X.509
utilizados na aplicação; 7366 (GUTMANN, 2014), que define uma extensão para o TLS onde o
Protocolo de Registro é feito com a construção encrypt-then-MAC.

4.2.6 Código do Servidor e Funcionamento Geral do Sistema

O servidor do sistema é feito com um código em Python, TCPServer. Da mesma forma
que a biblioteca CardTLS, ele também declara diversas constantes relativas ao TLS e define
a função PRF, fundamental para a execução do algoritmo. A base deste código é o pacote
Cryptography (Python Cryptographic Authority, 2017), que implementa todos os algoritmos de
criptografia necessários. A comunicação entre cliente e servidor é feita através de um socket com
o protocolo TCP, em uma rede Wi-Fi.

No início do programa, quando o cliente (dispositivo IoT) e o servidor iniciam a troca
de mensagens, eles podem escolher entre continuar a sessão anterior, quando já foi realizado
o handshake, ou iniciar uma nova sessão. No primeiro caso, o servidor lê os parâmetros de
segurança de um arquivo salvo no computador e o cliente lê os parâmetros da sua memória
EEPROM. No segundo caso, se o cliente está sendo ligado pela primeira vez, ele precisa ser
pré-configurado. Por outro lado, se o cliente já foi pré-configurado, é realizado o protocolo de
handshake e depois acontece a troca de mensagens da aplicação. Durante a pré-configuração do
cliente, são realizados três passos:

1. Reinstalação do IsoApplet no Smart Card e criação de uma nova estrutura PKCS#15.
O cartão envia os blocos de bytes extraídos do arquivo CAP para o MCU, o qual
efetua o processo de instalação. Dessa forma, o software do cartão pode ser atualizado
sempre que necessário;

2. O cliente gera suas chaves assimétricas principais, uma RSA e uma de Curvas
Elípticas, para aumentar a compatibilidade e flexibilidade do sistema. Essas chaves
serão utilizadas para a criação de assinaturas digitais durante o handshake. O cliente,
então, as envia para o servidor;

3. O servidor recebe as chaves públicas do cliente e gera certificados para elas, assinados
com as suas chaves privadas principais e diferentes algoritmos de hash. O servidor,
então, envia os certificados para o cliente, que os armazena no Smart Card.

Durante essa fase de pré-configuração, o servidor atua como uma CA, emitindo certifica-
dos para os clientes. Esses certificados são utilizados por eles, posteriormente, para autenticação

4.2. ARQUITETURA DE SOFTWARE 83

com o servidor. O servidor, por sua vez, possui chaves assimétricas principais que são utilizadas
para assinar os certificados do cliente e seus próprios certificados. Assim como as do cliente,
uma delas é RSA e a outra é de Curvas Elípticas. A depender dos algoritmos de assinatura que o
cliente pode verificar (que são informados durante o handshake), o servidor decide enviar os
certificados assinados com uma ou outra chave. Além de verificar a assinatura do certificado
do servidor, o cliente também verifica a sua identidade que está no certificado e contém alguns
campos com diferentes informações. Nos testes, foi utilizada a identidade representada na
Tabela 4.9.

CAMPO VALOR

ESTADO PE

LOCALIDADE Recife

ORGANIZAÇÃO GPRT

DEPARTAMENTO IoTeam

NOME Servidor

Tabela 4.9: Identidade do servidor utilizada nos testes de comunicação entre dispositivo IoT e
servidor

A fase de handshake é realizada de acordo com o procedimento descrito na Seção 2.4.
As operações criptográficas do cliente são realizadas pelo Smart Card e as do servidor são
implementadas no pacote Cryptography. Os parâmetros de segurança que são determinados após
o handshake são aqueles especificados no RFC 5246:

� Entidade: Servidor ou cliente;
� Algoritmo de PRF: O documento só especifica um, descrito na Seção 2.4;
� Tipo de cifra: De bloco, de fluxo ou AEAD (cifragem e autenticação em um único

protocolo). O Smart Card só dá suporte a algoritmos de bloco (Tabela A.3);
� Tamanho da chave de cifragem (write key): Depende do algoritmo de cifragem;
� Tamanho do bloco cifrado: Depende do algoritmo de cifragem;
� Tamanho do vetor de inicialização: Depende do algoritmo de cifragem. Para as cifras

de bloco, é igual ao tamanho do bloco cifrado;
� Algoritmo de MAC: Algoritmos de HMAC, com diferentes funções de hash;
� Tamanho do MAC: Depende do algoritmo de hash escolhido para o HMAC;
� Tamanho da chave de MAC: Depende do algoritmo de hash escolhido para o HMAC.

Possui o mesmo valor do tamanho do MAC;
� master_secret: Valor pseudoaleatório de tamanho fixo (48 B) calculado durante o

handshake. No dispositivo, ele é gerado e armazenado dentro do Smart Card;
� client_random e server_random: Valores aleatórios de tamanho fixo (32 B).

4.2. ARQUITETURA DE SOFTWARE 84

O fluxo das mensagens durante o handshake é controlado com o auxílio de uma variável
de estado, existente tanto no cliente quanto no servidor, a qual informa a ambas as entidades se
elas devem receber ou enviar uma mensagem, e qual mensagem deve ser enviada. A Tabela 4.10
sumariza os valores da variável de estado e o que deve ser feito por cada entidade.

ESTADO AÇÃO MENSAGEM

CLIENTE SERVIDOR

0 Enviar Receber ClientHello

1 Receber Enviar ServerHello

2 Receber Enviar ServerCertificate

3 Receber Enviar ServerKeyExchange

4 Receber Enviar CertificateRequest

5 Receber Enviar ServerHelloDone

6 Enviar Receber ClientCertificate

7 Enviar Receber ClientKeyExchange

8 Enviar Receber CertificateVerify

9 Enviar Receber ChangeCipherSpec

10 Enviar Receber Finished

11 Receber Enviar ChangeCipherSpec

12 Receber Enviar Finished

Tabela 4.10: Estados do handshake e ações de cada entidade

A transição entre estados é condicional, dependendo da suíte de criptografia escolhida e
do envio de determinadas mensagens, o que significa que nem todos os estados estarão presentes
em todos os handshakes. Especificamente:

� O estado 3 só é executado se o algoritmo da troca de chaves for o DH com Chaves
Efêmeras, pois a chave efêmera é gerada e enviada pelo servidor nesse momento.
Nos outros casos, a chave necessária já está no certificado enviado no estado 2;

� O estado 4 é opcional, o servidor decide se vai ou não requisitar um certificado do
cliente para autenticá-lo;

� O estado 6 só é executado se o estado 4 também for executado, ou seja, o cliente só
envia um certificado para o servidor se isso lhe for requisitado;

� O estado 8 só é executado se: o cliente tiver enviado um certificado, ou seja, se o
estado 6 for executado, e se o algoritmo de troca de chaves não for o DH de Chave
Fixa (quando a chave não é gerada na hora para aquela sessão, e sim já existe em um
certificado). Isso acontece pois a chave desse certificado não pode ser usada para
assinaturas, apenas para o algoritmo de troca de chaves.

4.3. CONSIDERAÇÕES FINAIS 85

A máquina de estados da Figura 4.23 ilustra a transição entre os estados e o fluxograma
na Figura 4.24 sumariza o funcionamento geral do sistema.

0 1 2

4

3

5

6

7

8 9 10 11 12

TROCA DE CHAVE ==
DH COM CHAVE

EFÊMERA

SERVIDOR NÃO
REQUISITA CERT.

SERVIDOR NÃO
REQUISITA CERT.

CERT.
REQUISITADO

CERT. NÃO
REQUISITADO

CERT. ENVIADO
E TROCA DE CHAVE !=
DH COM CHAVE FIXA

CERT. NÃO ENVIADO
OU TROCA DE CHAVE ==

DH COM CHAVE FIXA

SERVIDOR
REQUISITA

CERT.

Figura 4.23: Máquina de estados do Protocolo de Handshake do TLS

4.3 Considerações Finais

A união entre os projetos que foram desenvolvido nas seções 4.1 e 4.2 compõem o sistema
de comunicação segura para IoT proposto neste trabalho. Foram feitos testes de comunicação
entre o dispositivo fabricado e o servidor, compostos pela realização da pré-configuração seguida
da execução do protocolo de handshake (utilizando várias suítes de criptografia definidas no
TLS) e, por fim, o envio de mensagens cifradas e autenticadas do cliente para o servidor. Isso
mostra que é possível construir dispositivos IoT assegurados por Smart Cards e que o objetivo
principal do trabalho foi alcançado.

4.3. CONSIDERAÇÕES FINAIS 86

INÍCIO DA
COMUNICAÇÂO

RETOMAR
SESSÃO?

LEITURA DOS
PARÂMETROS

SALVOS

CLIENTE PRÉ-
CONFIGURADO?

REINSTALAÇÃO
DO APPLET NO
SMART CARD

CLIENTE GERA
E ENVIA CHAVES
PRO SERVIDOR

SERVIDOR CRIA
CERTIFICADOS E

ENVIA PRO CLIENTE

PROTOCOLO DE
HANDSHAKE

TROCA DE
MENSAGENS DA

APLICAÇÃO

SIM

NÃO

NÃO

SIM

Figura 4.24: Fluxograma de funcionamento do sistema proposto neste trabalho

878787

5
RESULTADOS

Esta capítulo apresenta avaliações e análises realizadas sobre o projeto após a sua
finalização.

5.1 Avaliação de Custo

Um dos objetivos deste trabalho é a criação de um dispositivo IoT que seja economica-
mente acessível. O KiCAD permite a exportação da Bill of Materials (BOM) do projeto: uma
lista com todos os componentes que são utilizados na sua fabricação. Com essa lista, é possível
pesquisar os preços de cada componente para obter uma estimativa do custo do dispositivo.

O site Octopart é um mecanismo de busca de componentes eletrônicos que fornece
informações como datasheets e preços, baseados em pesquisas realizadas em centenas de
distribuidores e milhares de fabricantes, segundo a própria página. O Octopart possui também
uma ferramenta para importação de BOMs, a qual realiza uma busca de todos os itens nela
presentes e fornece o preço baseado na quantidade que se deseja produzir. É possível, inclusive,
fazer uma estimativa com os fornecedores que possuem os preços mais baixos. Como a BOM
é gerada a partir dos componentes que são soldados à placa, ficam excluídos dessa pesquisa
automática de preços o Smart Card e a própria placa de cobre dupla face.

O repositório do software GlobalPlatformPro (PALJAK, 2016) possui um guia de compras
para Java Cards no qual são mencionadas algumas lojas de SCs, entre elas a SmartCardSource.
Seu Java Card mais barato, o modelo J2A040 da NXP com EEPROM de 40 kB, custa US$4,99
para uma unidade. Esse preço diminui gradativamente a cada centena de unidades até chegar em
US$3,49 para mil ou mais unidades.

Agregando os preços dos componentes eletrônicos, obtidos no Octopart, com os preços
de Smart Cards, são obtidos os valores da Tabela 5.1. Pode-se observar uma queda considerável
do custo que se tem para fabricar apenas uma unidade para o custo unitário de mil unidades,
de aproximadamente 30%. É importante destacar que, se esse dispositivo fosse fabricado a um
custo de US$18,00 e vendido com um lucro de 100% por US$36, ele ainda estaria na mesma
faixa de preço de várias placas da família Arduino, por exemplo, com a vantagem adicional da
segurança fornecida pelo Smart Card.

5.2. AVALIAÇÃO DE CONSUMO DE ENERGIA 88

PREÇO/UNIDADE

1 Unidade 100 Unidades 1000 Unidades

Componentes Eletrônicos US$21,74 US$15,72 US$14,51

Smart Cards US$4,99 US$4,75 US$3,49

Total US$26,73 US$20,47 US$18,00

Tabela 5.1: Custo unitário do dispositivo IoT desenvolvido neste trabalho, para diferentes
quantidades produzidas

5.2 Avaliação de Consumo de Energia

A análise do consumo de energia do dispositivo IoT é muito importante, pois determina-
das aplicações podem exigir um funcionamento independente da rede elétrica, com a utilização de
baterias. A depender do propósito da aplicação, um dos requerimentos pode ser o funcionamento
durante um tempo considerável com uma única carga, quando não é conveniente recarregar a
bateria frequentemente. Atualmente, o dispositivo proposto é alimentado pela porta USB, mas
uma versão com bateria é uma possibilidade que pode ser realizada.

O dispositivo proposto possui alguns CIs responsáveis pelo consumo de energia da
placa. Em seus respectivos datasheets é possível encontrar valores típicos para correntes de
funcionamento e estimar quanto tempo o dispositivo poderia funcionar com bateria. A Tabela 5.2
lista os chips e suas respectivas correntes de funcionamento. A corrente para o ESP-12E, de
acordo com datasheet (Espressif, 2017), varia de acordo com vários parâmetros como: modo
de comunicação (recebimento ou transmissão), protocolo Wi-Fi (802.11b/g/n) e potência de
transmissão. O texto informa, então, um valor médio de 80 mA, o qual foi utilizado na tabela.
A corrente do Smart Card foi obtida do padrão ISO7816-3, que informa a corrente máxima de
funcionamento permitida pra um cartão classe A.

A carga nominal de uma bateria geralmente é dada em miliampères-hora (mAh). Embora
esse valor dependa de fatores como temperatura e taxa de descarga, ele pode ser utilizado para
fazer estimativas aproximadas de quanto tempo dura a bateria com um determinado padrão de
uso. Uma breve pesquisa em lojas de componentes eletrônicos como Adafruit e Sparkfun mostra
alguns valores típicos de carga para baterias de lítio utilizadas em projetos eletrônicos. Esses
valores variam de 1000 mAh a 6600 mAh.

Considerando os valores de 1000, 2200, 4400 e 6600 mAh, caso o dispositivo IoT
funcionasse continuamente com o valor total de corrente da Tabela 5.2, o tempo de funcionamento
poderia ser calculado dividindo a carga nominal pela corrente do dispositivo. Dessa forma, ele
seria de aproximadamente 5, 12, 25 e 38 horas, respectivamente. Para aplicações que requerem
um tempo de funcionamento de dias até que seja realizada uma manutenção como, por exemplo,
medição de consumo de energia elétrica ou água em residências, essas durações não são aceitáveis.

5.2. AVALIAÇÃO DE CONSUMO DE ENERGIA 89

COMPONENTE CORRENTE (mA)

Oscilador 4 MHz 7

Conversor para o Cartão 0,805

Conversor para as GPIOs 0,01

Conversor para Porta USB 15

Regulador de Tensão 11

Módulo ESP-12E 80

Smart Card 60

Total 173,815

Tabela 5.2: Correntes típicas de funcionamento para os chips do dispositivo IoT desenvolvido
neste trabalho

Uma possível solução seria a utilização de modos de baixo consumo de energia, geralmente
presentes em microcontroladores utilizados em projetos eletrônicos. O ESP8266 possui três
modos de economia de energia:

� Modem-sleep: Apenas o modem Wi-Fi é desligado, mas a conexão é mantida. Cor-
rente de funcionamento de 15 mA;

� Light-sleep: O modem Wi-Fi, o relógio do sistema e a CPU são desligados, mas a
conexão é mantida. Corrente de funcionamento de 0,4 mA;

� Deep-sleep: Todos os módulos do chip são completamente desligados (a conexão não
é mantida) e apenas o Relógio de Tempo Real continua funcionando, para acordar
o microcontrolador em um tempo pré-determinado. Corrente de funcionamento de
0,02 mA.

Para realização das estimativas, pode ser considerada uma aplicação onde o dispositivo
faz medições periódicas em intervalos de x minutos, onde ele passa 1 minuto ligado realizando
diferentes tarefas e utilizando toda sua capacidade, e nos x−1 minutos restantes ele se encontra
no estado de deep-sleep. Nesse caso, durante o estado de espera, todos os chips relacionados ao
Smart Card também estarão desligados, bem como o conversor da porta USB (o qual só é ligado
quando a porta está em uso). Isso reduz o total de corrente para 0,01+11+0,02 = 11,03mA.
A carga em mAh utilizada pelo dispositivo a cada ciclo nessa situação pode ser, então, calculada
a partir da seguinte expressão:

11,03(x−1)+158,815
60

≈ 2,46+0,18x

Multiplicando esse valor pela quantidade de ciclos de x minutos presentes em uma
hora (ou seja, 60/x), é possível descobrir a carga utilizada por hora. Dividindo, então, a carga
nominal da bateria por esse resultado, pode-se encontrar quantas horas a bateria vai durar,

5.2. AVALIAÇÃO DE CONSUMO DE ENERGIA 90

aproximadamente. A expressão para as horas fica dessa forma:

Cnominal

(2,46+0,18x)
(60

x

) =
x ·Cnominal

147,60+10,80x

Considerando diferentes valores para x, a Tabela 5.3 mostra as durações (em horas) da
bateria para os quatro valores de carga nominal citados anteriormente e a Figura 5.1 mostra o
gráfico obtido a partir da tabela.

PERÍODO DE MEDIÇÃO (min)

CARGA (mAh) 15 30 45 60 75 90

1000 48,45 h 63,61 h 71,02 h 75,41 h 78,32 h 79,99 h

2200 106,59 h 139,95 h 156,25 h 165,91 h 172,31 h 175,97 h

4400 213,18 h 279,90 h 312,50 h 331,83 h 344,61 h 351,94 h

6600 319,77 h 419,85 h 468,75 h 497,74 h 516,92 h 527,91 h

Tabela 5.3: Duração da bateria em horas para os diferentes valores de carga nominal e período de
medição

15 30 45 60 75 90

100

200

300

400

500

Período de mediçao (min)

D
ur

aç
ão

da
ba

te
ria

(h
)

ESTIMATIVA DE DURAÇÃO DA BATERIA

1000 mAh
2200 mAh
4400 mAh
6600 mAh

Figura 5.1: Gráfico de horas de funcionamento estimadas, obtido com os valores da Tabela 5.3

É possível observar que mesmo no pior caso, com uma carga de apenas 1000 mAh em
uma aplicação periódica de 15 min, existe um ganho de horas de funcionamento de quase 1000%
(de 5 para 48 horas), relativamente a uma aplicação onde o funcionamento é contínuo. No melhor
caso, com uma bateria de 6600 mAh em uma aplicação com período de 90 min, o dispositivo
pode funcionar por aproximadamente 22 dias. Também pode-se ver que quanto maior a carga
nominal da bateria, mais o aumento do período influencia na quantidade de horas.

919191

6
CONCLUSÃO

6.1 Considerações Finais

A segurança dos dispositivos e a privacidade das informações transmitidas são fatores-
chave no desenvolvimento e adoção da Internet das Coisas. Este trabalho mostrou que é possível
criar um dispositivo IoT seguro a partir de um microcontrolador de baixo custo, com restrições
de memória e processamento, integrando-o a um Smart Card, o qual é especializado em executar
operações de segurança e armazenamento seguro de informaçoes.

Todo o trabalho foi fundamentado em conceitos sólidos de criptografia e segurança discu-
tidos no Capítulo 2 e também nos padrões internacionais criados para especificar o funcionamento
e a interoperabilidade entre os diversos componentes envolvidos neste projeto.

Como visto no Capítulo 4, o projeto foi iniciado com a criação de algo que seria um
módulo de leitor de cartão para um Arduino UNO, um dos microcontroladores mais utilizados
em prototipação de projetos eletrônicos e de IoT. Ao longo do seu desenvolvimento, o projeto
foi alterado para ser uma placa única, incorporando o microcontrolador ESP8266, o qual já
possui capacidades de comunicação sem fio, via Wi-Fi. Paralelamente ao desenvolvimento de
hardware, foram criados softwares para o microcontrolador, o cartão e o servidor a partir de
ferramentas livres e open source. A utilização do cartão no projeto permitiu a implementação do
protocolo TLS, amplamente utilizado na Internet, que garante a privacidade dos dados que são
trocados e a autenticação entre as entidades que estão se comunicando. Adicionalmente, foram
desenvolvidas bibliotecas para Arduino e placas compatíveis, as quais implementam operações
avançadas com o cartão, que vão além da simples troca de mensagens.

Por fim, as análises realizadas no Capítulo 5 mostraram que o dispositivo desenvolvido
pode ter um custo compatível com outros dispositivos no mercado, se produzido em grande
escala. Além disso, foi visto que o dispositivo, apesar de ter sido projetado para operar com
uma conexão USB, é capaz de funcionar por dias com restrições de consumo de energia, sendo
alimentado por uma bateria, em uma aplicação onde são realizadas leituras periódicas de um
determinado sensor.

6.2. DIFICULDADES ENCONTRADAS 92

6.2 Dificuldades Encontradas

Foram encontradas dificuldades tanto na elaboração de hardware, quanto na de software

do projeto. No que diz respeito ao hardware, destacam-se:

� Durante a fabricação das placas que seriam conectadas ao Arduino (Figura 4.5), o
alinhamento do Smart Card com o slot foi complicado de ser realizado, visto que
o slot era feito para cartões ID-000 e foi adaptado para cartões ID-1. A estratégia
utilizada para conseguir posicionar o cartão corretamente foi criar um componente
no próprio ECAD com um contorno do tamanho exato de um cartão, o qual não seria
corroído durante a fabricação, e posicioná-lo de maneira alinhada com o componente
do slot;

� A fixação do cartão no local correto, com o auxílio de parafusos e porcas posicionados
nas bordas, também não era totalmente satisfatória. Por vezes, era necessário pressio-
nar o cartão manualmente para conseguir realizar a conexão. Com a introdução da
peça de plástico feita na impressora 3D (Figura 4.6), esse problema deixou de existir.
No entanto, também foram necessários vários testes e impressões até se chegar a uma
peça que estabelecesse uma conexão entre cartão e slot de forma confiável;

� A utilização do ESP8266 no lugar do Arduino adicionou um trabalho extra, pois
os módulos fabricados com esse chip requerem de uma PCI adicional com alguns
switches para que possam ser gravados, além de um conversor de serial/USB para
conectá-los com o computador;

� Todas as placas citadas neste trabalho foram fabricadas e soldadas de forma manual.
A partir da confecção da primeira placa do sistema englobando o módulo ESP8266 e
o Smart Card (Figura 4.18), surgiram problemas relacionados aos tamanhos dos chips

que faziam parte da placa. Por serem CIs muito pequenos, a resolução da impressão
do layout da placa não era boa o suficiente, de forma que as trilhas de cada “perna”
do chip às vezes se conectavam (Figuras 6.1a, 6.2a e 6.3a). Para não perder a placa
inteira por causa de um chip, foram feitas correções manuais no cobre, com o auxílio
de um estilete. Em algumas ocasiões, isso acabava por destruir completamente a
trilha e inutilizar a placa (Figuras 6.2b e 6.3a). Esses problemas foram resolvidos com
a utilização de footprints com trilhas mais finas, que apesar de não ficarem sempre
perfeitas possuíam uma probabilidade menor de saírem unidas após a corrosão do
cobre (Figuras 6.1c e 6.2c);

� Pelo mesmo motivo do item anterior, a espessura das trilhas, em alguns momentos
durante a soldagem as trilhas se descolavam do substrato (Figuras 6.1b e 6.3b),
também inutilizando a placa.

6.2. DIFICULDADES ENCONTRADAS 93

(a) Trilhas unidas após corrosão (b) Trilhas destruídas durante a
soldagem

(c) Trilhas sem defeito

Figura 6.1: Falhas na soldagem do chip conversor de tensão para GPIOs

(a) Trilhas unidas após corrosão (b) Trilhas destruídas após
tentativa de correção

(c) Trilhas sem defeito

Figura 6.2: Falhas na soldagem do chip conversor de tensão para Smart Cards

(a) Trilhas unidas após corrosão e destruídas após
tentativa de correção

(b) Trilhas destruídas durante a soldagem

Figura 6.3: Falhas na soldagem dos chips do circuito de relógio da Figura 4.17

6.3. TRABALHOS FUTUROS 94

Quanto ao desenvolvimento de software, foram encontrados os seguintes obstáculos:

� O acionamento do Watchdog Timer do ESP8266, como descrito na Subseção 4.2.1.
� A falta de experiência prévia com programação em Java Cards gerou algumas dificul-

dades relacionadas à memória do cartão. A implementação de funções proprietárias
ou não presentes na API como o HMAC, PRF e outras relativas ao TLS geralmente
exigiam a criação de arrays para armazenamento de dados intermediários dos cálcu-
los. O cartão, no entanto, possui um limite de memória destinada a essas variáveis e
quando esse limite é ultrapassado, a execução do applet não é feita da forma correta.
Com o tempo, descobriu-se que esse era o motivo e as funções foram otimizadas para
reduzir o uso da memória. Alguns textos com guias e boas práticas de programação
para Java Card auxiliaram nesse processo (GEMALTO, 2009)(RUIMTOOLS, 2010);

� Durante o protocolo de handshake do TLS (Seção 2.4), é necessário armazenar todas
as mensagens trocadas para criar as mensagens CertificateVerify e Finished, ou então
calcular hashes intermediários que são atualizados a cada nova mensagem. Este
último método é preferível, pois não utiliza tanta memória (nos testes realizados,
as mensagens do handshake chegavam a um tamanho de aproximadamente 5 kB,
enquanto que um hash possui poucas dezenas de bytes). Inicialmente, foram imple-
mentadas funções de hashes intermediários SHA256 no próprio MCU. No entanto,
isso anula o objetivo do sistema de realizar todas as operações criptográficas no Smart

Card. Dessa forma, foi testada a possibilidade de calcular os hashes intermediários
dentro do cartão, através das funções na API. Porém, não era possível extrair os
hashes intermediários do cartão, nem atualizá-los após seu desligamento e religa-
mento. Com isso, foi utilizado o primeiro método, onde todas as mensagens foram
armazenadas em uma variável e, quando necessário, seu hash é calculado dentro do
cartão. Uma das desvantagens desse método é a incompatibilidade com MCUs com
pouca memória.

6.3 Trabalhos Futuros

Há muito que ainda pode ser feito com relação a esse trabalho, incluindo melhorias de
hardware e de software e avaliações e testes do sistema como um todo. A seguir, são citadas
algumas dessas tarefas:

� Diminuição do tamanho dispositivo a partir de algumas modificações, como: uti-
lização de Smart Cards menores (tamanho de nano SIM); soldagem do ESP8266
e componentes necessários diretamente na placa, ao invés do módulo; utilização
de técnicas profissionais de fabricação de PCIs, principalmente para soldagem de
componentes menores, confecção de placas com duas ou mais camadas e criação
de vias (furos que conectam as diferentes camadas de uma placa de circuito). No

6.3. TRABALHOS FUTUROS 95

trabalho realizado, as vias são feitas com fios de cobre que atravessam furos na placa
e são soldados em ambos os lados, o que toma mais espaço do que deveria. Em
um processo de fabricação profissional, os furos são bem menores e revestidos com
material condutor (não têm fios atravessando);

� Utilização de Java Cards com APIs mais recentes (atualmente, está na versão 3.0.5),
que contém operações criptográficas mais modernas e seguras;

� Aumentar a conformidade da implementação do TLS com a especificação do RFC
5246. O código foi escrito com foco nos protocolos centrais do TLS, Registro e
Handshake e a implementação não ficou completa. Um exemplo de algo que deveria
ser adicionado é o Protocolo de Alerta, que define as mensagens de erros que podem
ocorrer ao longo da execução dos outros protocolos;

� Avaliar a performance do dispositivo durante a realização do protocolo de handshake

a partir de métricas como tempo de execução;
� Medir o consumo de corrente em um cenário de aplicação e comparar os resultados

com a estimativa realizada na Seção 5.2;
� Desenvolver maneiras de avaliar a segurança do dispositivo,a partir de diferentes

pontos de vista como: implementação de software, fabricação de hardware etc.;
� Testar os dispositivos em um cenário realista, para que seu funcionamento possa ser

avaliado em uma aplicação que envolva a leitura de diferentes sensores e o envio das
informações de forma segura para o servidor;

� Avaliar o desempenho do dispositivo durante a sua utilização em diferentes aplicações
e estudar sua viabilidade para cada uma delas.

969696
REFERÊNCIAS

ABOMHARA, M.; KøIEN, G. M. Security and privacy in the internet of things: Current status
and open issues. In: 2014 International Conference on Privacy and Security in Mobile Systems
(PRISMS). [S.l.: s.n.], 2014. p. 1–8.

ALLEN, C. et al. The Transport Layer Security (TLS) Protocol Version 1.2. [S.l.], 2008.
Disponível em: <http://www.rfc-editor.org/rfc/rfc5246.txt>.

ARDIRI, A. Is it possible to secure micro-controllers used within IoT? 2014. Online. Disponível
em: <https://evothings.com/is-it-possible-to-secure-micro-controllers-used-within-iot/>.

BADRA, M.; URIEN, P. Tls tandem. In: 2008 New Technologies, Mobility and Security. [S.l.:
s.n.], 2008. p. 1–5. ISSN 2157-4952.

BARGSTEDT, F. ArduinoSCLib: Smart Card Library for Arduino compatible boards. 2016.
Online. Disponível em: <https://sourceforge.net/projects/arduinosclib/>.

BELLARE, M.; NAMPREMPRE, C. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: . Advances in Cryptology —
ASIACRYPT 2000: 6th International Conference on the Theory and Application of Cryptology
and Information Security Kyoto, Japan, December 3–7, 2000 Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000. p. 531–545. ISBN 978-3-540-44448-0. Disponível em:
<https://doi.org/10.1007/3-540-44448-3 41>.

BERTINO, E. et al. Internet of things (iot): Smart and secure service delivery. ACM Trans.
Internet Technol., ACM, New York, NY, USA, v. 16, n. 4, p. 22:1–22:7, dez. 2016. ISSN
1533-5399. Disponível em: <http://doi.acm.org/10.1145/3013520>.

BLAKE-WILSON, S. et al. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS). [S.l.], 2006. Disponível em: <http://www.rfc-editor.org/rfc/rfc4492.txt>.

COOPER, D. et al. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. [S.l.], 2008. Disponível em: <http://www.rfc-editor.org/rfc-
/rfc5280.txt>.

CORCORAN, D.; CUCINOTTA, T. MUSCLE Cryptographic Card Edge Definition for Java
Enabled Smartcards. [S.l.], 2001. Disponível em: <https://pcsclite.alioth.debian.org/musclecard-
.com/musclecard/files/mcardprot-1.2.1.pdf>.

CUCINOTTA, T.; NATALE, M. D.; CORCORAN, D. A protocol for programmable smart
cards. In: 14th International Workshop on Database and Expert Systems Applications, 2003.
Proceedings. [S.l.: s.n.], 2003. p. 369–374. ISSN 1529-4188.

DICHOU, K.; TOURTCHINE, V.; RAHMOUNE, F. Simulation of apdus exchanged between
a microcontroller smart card and a reader. In: 7th International Conference on Modelling,
Identification and Control (ICMIC). [S.l.: s.n.], 2015. p. 1–4.

EDSON, B. Creating the Internet of Your Things. [S.l.], 2015. Disponível em: <http:/-
/download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82-
/Creating the Internet of Your Things.pdf>.

http://www.rfc-editor.org/rfc/rfc5246.txt
https://evothings.com/is-it-possible-to-secure-micro-controllers-used-within-iot/
https://sourceforge.net/projects/arduinosclib/
https://doi.org/10.1007/3-540-44448-3_41
http://doi.acm.org/10.1145/3013520
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://pcsclite.alioth.debian.org/musclecard.com/musclecard/files/mcardprot-1.2.1.pdf
https://pcsclite.alioth.debian.org/musclecard.com/musclecard/files/mcardprot-1.2.1.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf

REFERÊNCIAS 97

Espressif. ESP8266EX Datasheet Version 5.4. [S.l.], 2017. Disponível em: <http://espressif-
.com/sites/default/files/documentation/0a-esp8266ex datasheet en.pdf>.

GALLAGHER, S. The future is the Internet of Things—deal with it. 2015. Online. Disponível
em: <http://arstechnica.com/unite/2015/10/the-future-is-the-internet-of-things-deal-with-it/>.

GEMALTO. Java Card & STK Applet Development Guidelines, Version 2.0. 2009.

GlobalPlatform. Card Specification Version 2.1.1. [S.l.], 2003. Disponível em: <http://www-
.globalplatform.org/specificationscard.asp>.

GUTMANN, P. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS). [S.l.], 2014. Disponível em: <http://www.rfc-editor.org/rfc/rfc7366-
.txt>.

Hackster. The 2016 Hackster.io Maker Survey Official Report. [S.l.], 2016. Disponível em:
<https://www.hackster.io/survey>.

HERDER, C. et al. Physical unclonable functions and applications: A tutorial. Proceedings of
the IEEE, v. 102, n. 8, p. 1126–1141, Aug 2014. ISSN 0018-9219.

HILL, K. The Half-Baked Security Of Our ’Internet Of Things’. 2014. Online. Disponível
em: <http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-
internet-of-things/#313a3c7023dd>.

HUMMEN, R. et al. Towards viable certificate-based authentication for the internet of things. In:
Proceedings of the 2Nd ACM Workshop on Hot Topics on Wireless Network Security and Privacy.
New York, NY, USA: ACM, 2013. (HotWiSec ’13), p. 37–42. ISBN 978-1-4503-2003-0.
Disponível em: <http://doi.acm.org/10.1145/2463183.2463193>.

INTEL. A Guide to the Internet of Things. 2015. Disponível em: <http://www.intel.com/content-
/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png>.

ISO/IEC. ISO/IEC 7816-1: Identification cards – Integrated circuit(s) cards with contacts – Part
1: Physical characteristics. Suíça, 1998. Disponível em: <https://www.iso.org/standard/54089-
.html>.

ISO/IEC. ISO/IEC 7810: Identification cards – Physical characteristics. Suíça, 2003. Disponível
em: <https://www.iso.org/standard/31432.html>.

ISO/IEC. ISO/IEC 7816-8: Identification cards – Integrated circuit cards – Part 8: Commands for
security operations. Suíça, 2004. Disponível em: <https://www.iso.org/standard/37989.html>.

ISO/IEC. ISO/IEC 7816-9: Identification cards – Integrated circuit cards – Part 9: Commands
for card management. Suíça, 2004. Disponível em: <https://www.iso.org/standard/37990.html>.

ISO/IEC. ISO/IEC 7816-12: Identification cards – Integrated circuit cards – Part 12: Cards
with contacts – USB electrical interface and operating procedures. Suíça, 2005. Disponível em:
<https://www.iso.org/standard/40604.html>.

ISO/IEC. ISO/IEC 7816-4: Identification cards – Integrated circuit cards – Part 4:
Organization, security and commands for interchange. Suíça, 2005. Disponível em:
<https://www.iso.org/standard/36134.html>.

http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://arstechnica.com/unite/2015/10/the-future-is-the-internet-of-things-deal-with-it/
http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://www.rfc-editor.org/rfc/rfc7366.txt
http://www.rfc-editor.org/rfc/rfc7366.txt
https://www.hackster.io/survey
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/#313a3c7023dd
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/#313a3c7023dd
http://doi.acm.org/10.1145/2463183.2463193
http://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
http://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
https://www.iso.org/standard/54089.html
https://www.iso.org/standard/54089.html
https://www.iso.org/standard/31432.html
https://www.iso.org/standard/37989.html
https://www.iso.org/standard/37990.html
https://www.iso.org/standard/40604.html
https://www.iso.org/standard/36134.html

REFERÊNCIAS 98

ISO/IEC. ISO/IEC 7816-3: Identification cards – Integrated circuit cards – Part 3: Cards
with contacts – Electrical interface and transmission protocols. Suíça, 2006. Disponível em:
<https://www.iso.org/standard/38770.html>.

ISO/IEC. ISO/IEC 7816-2: Identification cards – Integrated circuit cards – Part 2: Cards
with contacts – Dimensions and location of the contacts. Suíça, 2007. Disponível em:
<https://www.iso.org/standard/45989.html>.

ITU-T. Recommendation X.800: Data Communication Networks; Open Systems
Interconnection (OSI); Security, Structure and Applications – Security Architecture for
Open Systems Interconnection for CCITT Applications. Geneva, 1991. Disponível em:
<http://www.itu.int/rec/T-REC-X.800/en>.

ITU-T. ITU-T Recommendation X.690: Information technology – ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER). [S.l.], 2002. Disponível em: <http://www.itu.int/rec/T-
REC-X.690/en>.

ITU-T. ITU-T Recommendation X.680: Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation. [S.l.], 2008. Disponível em:
<http://www.itu.int/rec/T-REC-X.680/en>.

Java Card Forum. 20 Years of the Java Card Forum. 2017. Disponível em: <https:/-
/javacardforum.files.wordpress.com/2017/03/jcf 20infographic final 1.jpg>.

KANUPARTHI, A.; KARRI, R.; ADDEPALLI, S. Hardware and embedded security in the
context of internet of things. In: Proceedings of the 2013 ACM Workshop on Security, Privacy
& Dependability for Cyber Vehicles. New York, NY, USA: ACM, 2013. (CyCAR ’13),
p. 61–64. ISBN 978-1-4503-2487-8. Disponível em: <http://doi.acm.org/10.1145/2517968-
.2517976>.

KATZ, J.; LINDELL, Y. Introduction to Modern Cryptography. 2nd. ed. Boca Raton,
Florida, USA: Chapman & Hall/CRC, 2014. (Cryptography and Network Security). ISBN
9781466570276.

KIM, D. S. et al. On the design of an embedded biometric smart card reader. IEEE Transactions
on Consumer Electronics, v. 54, n. 2, p. 573–577, maio 2008. ISSN 0098-3063.

KRAWCZYK, H. The order of encryption and authentication for protecting communications
(or: How secure is ssl?). In: . Advances in Cryptology — CRYPTO 2001: 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. p. 310–331. ISBN
978-3-540-44647-7. Disponível em: <https://doi.org/10.1007/3-540-44647-8 19>.

KRAWCZYK, H.; BELLARE, M.; CANETTI, R. HMAC: Keyed-Hashing for Message
Authentication. [S.l.], 1997. Disponível em: <http://www.rfc-editor.org/rfc/rfc2104.txt>.

KREBS, B. This is Why People Fear the ‘Internet of Things’. 2016. Online. Disponível em:
<http://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/>.

LIU, Y. et al. An efficient privacy protection solution for smart home application platform. In:
2016 2nd IEEE International Conference on Computer and Communications (ICCC). [S.l.: s.n.],
2016. p. 2281–2285.

https://www.iso.org/standard/38770.html
https://www.iso.org/standard/45989.html
http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.690/en
http://www.itu.int/rec/T-REC-X.690/en
http://www.itu.int/rec/T-REC-X.680/en
https://javacardforum.files.wordpress.com/2017/03/jcf_20infographic_final_1.jpg
https://javacardforum.files.wordpress.com/2017/03/jcf_20infographic_final_1.jpg
http://doi.acm.org/10.1145/2517968.2517976
http://doi.acm.org/10.1145/2517968.2517976
https://doi.org/10.1007/3-540-44647-8_19
http://www.rfc-editor.org/rfc/rfc2104.txt
http://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/

REFERÊNCIAS 99

LUCHINI, L. asn1js: JavaScript Generic ASN.1 Parser/Decoder. 2017. Online. Disponível em:
<https://github.com/lapo-luchini/asn1js>.

MANYIKA, J. et al. The Internet of Things: Mapping the Value Beyond the Hype. [S.l.],
2015. Disponível em: <http://www.mckinsey.com/business-functions/business-technology/our-
insights/the-internet-of-things-the-value-of-digitizing-the-physical-world>.

MUJI, S. Z. M. et al. Simulation of smart card interface with pic for vehicle security system. In:
2008 International Conference on Computer and Communication Engineering. [S.l.: s.n.], 2008.
p. 878–882.

NIST. FIPS PUB 199: Standards for Security Categorization of Federal Information and
Information Systems. Gaithersburg, Maryland, USA, 2004. Disponível em: <http://csrc.nist.gov-
/publications/fips/fips199/FIPS-PUB-199-final.pdf>.

Nordic Semiconductor. nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0.
Noruega, 2008. Disponível em: <http://www.nordicsemi.com/eng/nordic/download resource-
/8765/2/50113066/2726>.

OpenSC Team. OpenSC: Open source Smart Card tools and middleware. 2015. Online.
Disponível em: <https://github.com/OpenSC/OpenSC>.

Oracle. Java Card Technology: Providing a Secure and Ubiquitous Platform for Smart Cards.
[S.l.], 2012. Disponível em: <http://www.oracle.com/technetwork/java/embedded/javacard-
/documentation/datasheet-149940.pdf>.

PAAR, C.; PELZL, J. Understanding Cryptography: A Textbook for Students and Practitioners.
1st. ed. [S.l.]: Springer, 2010. ISBN 9783642041006, 9783642041013.

PALJAK, M. GlobalPlatformPro: Load and manage applets on compatible JavaCards from
command line or from your Java project. 2016. Online. Disponível em: <https://github.com-
/martinpaljak/GlobalPlatformPro/>.

PALJAK, M. Applet Playground: Educational repository for getting to know JavaCard
development by learning from existing open source software. 2017. Online. Disponível em:
<https://github.com/martinpaljak/AppletPlayground>.

PAWAR, A. B.; GHUMBRE, S. A survey on iot applications, security challenges and counter
measures. In: 2016 International Conference on Computing, Analytics and Security Trends
(CAST). [S.l.: s.n.], 2016. p. 294–299.

PIETIG, A. Functional Specification of the OpenPGP application on ISO Smart Card Operating
Systems. Detmold, Alemanha, 2015. Disponível em: <http://www.g10code.com/docs/openpgp-
card-3.0.pdf>.

PORUP, J. M. "Internet of Things"security is hilariously broken and getting worse. 2016. Online.
Disponível em: <https://arstechnica.com/information-technology/2016/01/how-to-search-the-
internet-of-things-for-photos-of-sleeping-babies/>.

Python Cryptographic Authority. Cryptography: Package Designed to Expose Cryptographic
Primitives and Recipes to Python Developers. 2017. Online. Disponível em: <https://github-
.com/pyca/cryptography>.

https://github.com/lapo-luchini/asn1js
http://www.mckinsey.com/business-functions/business-technology/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/business-technology/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://www.nordicsemi.com/eng/nordic/download_resource/8765/2/50113066/2726
http://www.nordicsemi.com/eng/nordic/download_resource/8765/2/50113066/2726
https://github.com/OpenSC/OpenSC
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/martinpaljak/AppletPlayground
http://www.g10code.com/docs/openpgp-card-3.0.pdf
http://www.g10code.com/docs/openpgp-card-3.0.pdf
https://arstechnica.com/information-technology/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
https://arstechnica.com/information-technology/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography

REFERÊNCIAS 100

RANKL, W.; EFFING, W. Smart Card Handbook. 4th. ed. [S.l.]: Wiley, 2010. ISBN
9780470743676.

RIBEIRO, J. Securing MQTT communication between Ardruino and Mosquitto. 2012.
Online. Disponível em: <https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-
communication-between-ardruino-and-mosquitto/>.

RIEMANN, T. ArduinoDES: DES and Triples DES Encryption and Decryption for the
Arduino Microcontroller Platform. 2015. Online. Disponível em: <https://github.com/Octoate-
/ArduinoDES>.

RSA Laboratories. PKCS #15: Cryptographic Token Information Format Standard, Version 1.1.
Bedford, Massachusetts, USA, 2000. Disponível em: <http://www.emc.com/emc-plus/rsa-labs-
/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm>.

RUIMTOOLS. Java Card: Programming Guidelines and Best Practise. 2010. Online.
Disponível em: <http://www.ruimtools.com/doc.php?doc=jc best>.

SAS. The Internet of Things: Get in on the next big thing. 2016. Disponível em:
<https://www.sas.com/content/sascom/en us/insights/big-data/internet-of-things/the-
internet-of-things-infographic/ jcr content/par/styledcontainer 59e5/par/image 9900.img.png-
/1448314822621.png>.

SCHNEIER, B. Click Here to Kill Everyone: With the Internet of Things, we’re building a
world-size robot. How are we going to control it? 2017. Online. Disponível em: <http://nymag-
.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html>.

SHIREY, R. W. Internet Security Glossary. [S.l.], 2000. Disponível em: <http://www.rfc-editor-
.org/rfc/rfc2828.txt>.

STALLINGS, W. Cryptography and Network Security: Principles and Practice. 5th. ed. [S.l.]:
Prentice Hall, 2011. ISBN 9780136097044.

Sun Microsystems. Application Programming Interface, Java Card Platform, Version 2.2.2.
Santa Clara, California, USA, 2006. Disponível em: <http://download.oracle.com/otndocs/jcp-
/java card kit-2.2.2-fr-oth-JSpec/>.

Sun Microsystems. Development Kit User’s Guide For the Binary Release with Cryptography
Extensions, Java Card Platform, Version 2.2.2. Santa Clara, California, USA, 2006. Disponível
em: <http://download.oracle.com/otndocs/jcp/java card kit-2.2.2-fr-oth-JSpec/>.

Sun Microsystems. Virtual Machine Specification, Java Card Platform, Version 2.2.2. Santa
Clara, California, USA, 2006. Disponível em: <http://download.oracle.com/otndocs/jcp-
/java card kit-2.2.2-fr-oth-JSpec/>.

TAYLOR, H. How the ’Internet of Things’ could be fatal. 2016. Online. Disponível em:
<http://www.cnbc.com/2016/03/04/how-the-internet-of-things-could-be-fatal.html>.

TEKEOGLU, A.; TOSUN, A. S. A testbed for security and privacy analysis of iot devices. In:
2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). [S.l.:
s.n.], 2016. p. 343–348.

https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-communication-between-ardruino-and-mosquitto/
https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-communication-between-ardruino-and-mosquitto/
https://github.com/Octoate/ArduinoDES
https://github.com/Octoate/ArduinoDES
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm
http://www.ruimtools.com/doc.php?doc=jc_best
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://www.rfc-editor.org/rfc/rfc2828.txt
http://www.rfc-editor.org/rfc/rfc2828.txt
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://www.cnbc.com/2016/03/04/how-the-internet-of-things-could-be-fatal.html

REFERÊNCIAS 101

VELOSA, A.; SCHULTE, W. R.; LHEUREUX, B. J. Hype Cycle for the Internet of Things.
[S.l.], 2015. Disponível em: <https://info.microsoft.com/CO-AAIoT-CNTNT-FY16-07Dec15-
Gartner-HypeCycle-IoT-Register.html?ls=Website>.

WISNIEWSKI, C. 7 tips for securing the Internet of Things. 2016. Online. Disponível em:
<https://nakedsecurity.sophos.com/2016/03/07/7-tips-for-securing-the-internet-of-things/>.

YANG, Y. et al. A survey on security and privacy issues in internet-of-things. IEEE Internet of
Things Journal, PP, n. 99, p. 1–1, 2017. ISSN 2327-4662.

ŠVENDA, P. JCAlgTest: Automated testing tool for algorithms from Java Card API supported
by a particular Smart Card. 2016. Online. Disponível em: <https://github.com/crocs-muni-
/JCAlgTest>.

https://info.microsoft.com/CO-AAIoT-CNTNT-FY16-07Dec15-Gartner-HypeCycle-IoT-Register.html?ls=Website
https://info.microsoft.com/CO-AAIoT-CNTNT-FY16-07Dec15-Gartner-HypeCycle-IoT-Register.html?ls=Website
https://nakedsecurity.sophos.com/2016/03/07/7-tips-for-securing-the-internet-of-things/
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

102102102
APÊNDICE A – ALGORITMOS SUPORTADOS PELO SMART CARD

ALGORITMO JAVA CARD

NOME BYTES PADDING

DES CBC-MAC 4 N/A ≤ 2.1

DES CBC-MAC 8 N/A ≤ 2.1

DES CBC-MAC 4 Método 1 (ISO9797-1) ≤ 2.1

DES CBC-MAC 8 Método 1 (ISO9797-1) ≤ 2.1

DES CBC-MAC 4 Método 2 (ISO9797-1) ≤ 2.1

DES CBC-MAC 8 Método 2 (ISO9797-1) ≤ 2.1

AES128 CBC-MAC 16 N/A 2.2.0

DES Retail MAC (ISO9797-1) 4 Método 2 (ISO9797-1) 2.2.0

DES Retail MAC (ISO9797-1) 8 Método 2 (ISO9797-1) 2.2.0

SEED CBC-MAC 16 N/A 2.2.2

Tabela A.1: Algoritmos de código de autenticação de mensagem

ALGORITMO JAVA CARD

NOME HASH PADDING

RSA SHA ISO9796 ≤ 2.1

RSA SHA PKCS#1 ≤ 2.1

RSA MD5 PKCS#1 ≤ 2.1

RSA RIPEMD160 ISO9796 ≤ 2.1

RSA RIPEMD160 PKCS#1 ≤ 2.1

ECDSA SHA N/A 2.2.0

Tabela A.2: Algoritmos de assinatura digital

103

ALGORITMO JAVA CARD

NOME MODO PADDING

DES CBC N/A ≤ 2.1

DES CBC Método 1 (ISO9797-1) ≤ 2.1

DES CBC Método 2 (ISO9797-1) ≤ 2.1

DES ECB N/A ≤ 2.1

DES ECB Método 1 (ISO9797-1) ≤ 2.1

DES ECB Método 2 (ISO9797-1) ≤ 2.1

AES128 CBC N/A 2.2.0

AES128 ECB N/A 2.2.0

SEED CBC N/A 2.2.2

SEED ECB N/A 2.2.2

Tabela A.3: Algoritmos de cifragem simétrica

ALGORITMO JAVA CARD

NOME PADDING

RSA PKCS#1 ≤ 2.1

RSA ISO9796 ≤ 2.1

RSA N/A 2.1.1

Tabela A.4: Algoritmos de cifragem assimétrica

ALGORITMO JAVA CARD

DH 2.2.1

DH (multiplicação de cofator) 2.2.1

Tabela A.5: Algoritmos de troca de chaves

ALGORITMO JAVA CARD

SHA ≤ 2.1

MD5 ≤ 2.1

RIPEMD160 ≤ 2.1

SHA256 2.2.2

Tabela A.6: Algoritmos de hash

104

ALGORITMO JAVA CARD

NOME BITS

RSA 512 ≤ 2.1

RSA 736 2.2.0

RSA 768 2.2.0

RSA 896 2.2.0

RSA 1024 ≤ 2.1

RSA 1280 2.2.0

RSA 1536 2.2.0

RSA 1984 2.2.0

RSA 2048 ≤ 2.1

Curvas Elípticas em Fp 160 2.2.0

Curvas Elípticas em Fp 192 2.2.0

Curvas Elípticas em Fp 224 3.0.1

Curvas Elípticas em Fp 256 3.0.1

Tabela A.7: Algoritmos de geração de chaves assimétricas

ALGORITMO JAVA CARD

NOME BITS

DES 64 ≤ 2.1

3DES, 2 Chaves 128 ≤ 2.1

3DES, 3 Chaves 192 ≤ 2.1

AES128 128 2.2.0

SEED 128 2.2.2

Tabela A.8: Algoritmos de geração de chave simétrica

ALGORITMO JAVA CARD

CRC16 (ISO3309) 2.2.1

CRC32 (ISO3309) 2.2.1

Tabela A.9: Algoritmos de checksum

	Introdução
	Objetivos
	Estrutura do Trabalho

	Fundamentação Teórica
	Segurança de Sistemas
	Serviços de Segurança
	Mecanismos de Segurança

	Ambientes de Desenvolvimento de Baixo Custo
	Smart Cards
	Segurança dos Smart Cards
	Padrão ISO7816
	Java Card
	Especificação GlobalPlatform

	Protocolo de Comunicação TLS
	Protocolo de Registro
	Protocolo de Aperto de Mão

	Padrão PKCS#15
	Notação ASN.1
	Considerações Finais

	Trabalhos Relacionados
	Aplicação de Smart Cards em Protocolos de Segurança
	Conexão entre Microcontroladores e Smart Cards
	Segurança na Internet das Coisas
	Visão Geral
	Propostas de Implementação e Verificação
	Segurança para Dispositivos IoT de Baixo Custo

	Considerações Finais

	Proposta de Arquitetura
	Plataforma de Hardware
	Placas leitoras de Smart Cards utilizando Arduino UNO
	Adição de comunicação sem fio e troca de Arduino por ESP8266
	Placa Final

	Arquitetura de Software
	Protocolo de Comunicação entre Smart Card e Microcontrolador
	Algoritmos Suportados pelo Smart Card
	Applets para Smart Cards
	Modificações no IsoApplet
	Bibliotecas desenvolvidas para o Microcontrolador
	Código do Servidor e Funcionamento Geral do Sistema

	Considerações Finais

	Resultados
	Avaliação de Custo
	Avaliação de Consumo de Energia

	Conclusão
	Considerações Finais
	Dificuldades Encontradas
	Trabalhos Futuros

	Referências
	Apêndice A – Algoritmos Suportados pelo Smart Card

