‘Centro

~delnformétic

Poés-Graduacao em Ciéncia da Computacao

THIAGO DE OLIVEIRA CAVALCANTE

SISTEMA DE COMUNICAGCAO SEGURA PARA
DISPOSITIVOS CONECTADOS A INTERNET DAS COISAS
COM UTILIZACAO DE SMART CARDS

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE
2017

Thiago de Oliveira Cavalcante

Sistema de Comunicac¢io Segura para Dispositivos Conectados a Internet das Coisas
com Utilizacdo de Smart Cards

Este trabalho foi apresentado a Pos-Graduagdo em
Ciéncia da Computagido do Centro de Informatica da
Universidade Federal de Pernambuco como requisito
parcial para obtenc¢io do grau de Mestre Profissional em
Ciéncia da Computagio.

ORIENTADOR: Prof. Djamel Fawzi Hadj Sadok

RECIFE
2017

Catalogacéo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

C376s

Cavalcante, Thiago de Oliveira
Sistema de comunicacdo segura para dispositivos conectados a Internet

das coisas com utilizacdo de smart cards / Thiago de Oliveira Cavalcante. —
2017.

104 f.: il., fig., tab.

Orientador: Djamel Fawzi Hadj Sadok.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Clin,
Ciéncia da Computacéo, Recife, 2017.
Inclui referéncias e apéndice.

1. Redes de computadores. 2. Internet das coisas. |. Sadok, Djamel Fawzi
Hadj (orientador). Il. Titulo.

004.6 CDD (23. ed.) UFPE- MEI 2017-247

Thiago de Oliveira Cavalcante

Sistema de Comunicagao Segura para Dispositivos Conectados a
Internet das Coisas com Utilizagao de Smart Cards

Dissertagdo de Mestrado apresentada ao
Programa de Po6s-Graduag¢dao em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Mestre em Ciéncia da
Computagdo

Aprovado em: 14/09/2017.

BANCA EXAMINADORA

Prof. Dr. Odilon Maroja da Costa Pereira Filho
Centro de Informatica/UFPE

Prof. Dr. Carmelo José Albanez Bastos Filho
Escola Politécnica de Pernambuco / UPE

Prof. Dr. Djamel Fawzi Hadj Sadok
Centro de Informatica / UFPE
(Orientador)

AGRADECIMENTOS

Agradeco primeiramente aos meus pais, Riben e Gicelma, e as minhas irmas, Ana
Leticia e Ana Clara, pelo amor, carinho e suporte incondicionais durante toda minha vida.

Agradeco também a Lidiane por ser minha companheira em todas as horas e por ter me
ajudado em alguns dos momentos mais complicados dessa jornada.

Sou muito grato ao Prof. Djamel e a Prof*. Judith por me darem essa oportunidade, pela
paciéncia, compreensdo, preocupacao, pelos conselhos e pela confianca que eles depositaram em
mim e em meu trabalho. Agradeco também a Andrea por estar sempre disposta a ajudar e por ter
sido o ponto de partida dessa empreitada. Por fim, agradeco aos meus colegas de trabalho do

GPRT pela amizade e suporte e também pelas piadas, lanchinhos e caronas.

Science is a cooperative enterprise, spanning the generations. It’s the
passing of a torch from teacher, to student, to teacher. A community of minds

reaching back to antiquity and forward to the stars.

—NEIL DEGRASSE TYSON

RESUMO

Este trabalho tem como objetivo proteger a comunicagdo entre dispositivos conectados a
Internet das Coisas, do inglés Internet of Things (10T), através da integracdo entre microcontrola-
dores e Smart Cards (SCs), cartdes de plastico nos quais estdo embutidos chips criptograficos
inviolaveis, atualmente utilizados em aplica¢cdes que exigem um alto nivel de seguranca (e.g.,
bancos). E proposta uma arquitetura, a qual envolve projetos de hardware e software, para um
sistema que estabelece uma comunicagdo autenticada e criptografada, baseada no Protocolo
Transport Layer Security (TLS), entre dispositivos IoT e um servidor. O foco do trabalho estd em
placas de desenvolvimento de baixo custo. Testes foram realizados inicialmente no Arduino UNO
e o dispositivo final possui o microcontrolador ESP8266 (em especifico, o médulo ESP-12E),
que possui Wi-Fi integrado, o que facilita a sua inclusdo na IoT, e € simples de programar.
Adicionalmente, é utilizado um SC com a tecnologia Java Card, que torna mais simples o
desenvolvimento e a instalacdo de programas (conhecidos como applets) no cartdo. Nele esta
instalada uma versdao modificada do IsoApplet, um programa open source em desenvolvimento
que permite a execucgdo de tarefas criptograficas, implementado de acordo com os padrdes
ISO7816. Assim, a execugdo de operagdes essenciais na implementacio de uma infra-estrutura
de seguranca como geracdo de chaves, cifragem e decifragem (em ambas criptografias simétrica
e assimétrica), assinatura digital e armazenamento seguro de dados (e.g., chaves secretas, cer-
tificados) € delegada pelo microcontrolador ao cartdo, que possui hardware especializado. O
microcontrolador, por sua vez, pode ser ligado a sensores e se conectar de forma autenticada
com um servidor, enviando informacodes criptografadas. Por fim, demonstra-se que € possivel
construir um dispositivo conectado a Internet das Coisas, capaz de enviar mensagens de forma
segura, a partir da integracdo entre microcontroladores de baixo custo e Smart Cards. Uma
andlise de custo do dispositivo construido, mostra que 0 mesmo pode ter um preco compativel
com o mercado, se produzido em larga escala. Uma segunda andlise, relativa ao consumo de
energia da placa, mostra que, a depender do tipo de aplicacdo, o dispositivo pode funcionar com
bateria por dias. As contribuicdes deste trabalho, além da fabricacio do préprio dispositivo [oT,
incluem o desenvolvimento de bibliotecas que habilitam a comunica¢do entre microcontroladores
(compativeis com Arduino) e Smart Cards e a expansdao de um software open-source para Java

Cards com funcdes criptograficas associadas ao TLS.

Palavras-chave: Internet das Coisas. Seguranca. Smart Card. Java Card. Microcontroladores

ABSTRACT

This work aims to secure the communication between devices connected to the Internet
of Things (10T) by integrating microcontrollers and Smart Cards (SCs), plastic cards in which
are embedded cryptographic tamper-resistant chips, currently used in applications that require
a high level of security (e.g., banks). An architecture, which involves hardware and software
projects, is proposed for a system that establishes an encrypted and authenticated communication,
based on Transport Layer Security (TLS) Protocol, between IoT devices and a server, focusing
on low-cost development boards. Tests were performed initially on Arduino UNO boards and
the final device has an ESP8266 microcontroller (specifically, an ESP-12E module), which
has integrated Wi-Fi capabilities and is simple to program. Additionally, the SC used is Java
Card-based, which simplifies the development and installation of programs (known as applets) on
the card. It contains a modified version of IsoApplet, an open source program under development
that allows the realization of cryptographic tasks, implemented according to ISO7816 standards.
Thus, the execution of essential operations in the implementation of a security infrastructure such
as key generation, encryption and decryption (in both symmetric and asymmetric cryptography),
digital signature and secure data storage (e.g., secret keys, certificates) is delegated by the
microcontroller to the card, which has specialized hardware. The microcontroller, in turn, can
be connected to sensors and connects in an authenticated way to a server, sending encrypted
data. Finally, it is shown that it is possible to build a device connected to the Internet of Things,
which is able to send messages safely, by integrating low-cost microcontrollers and Smart Cards.
A cost analysis of the device shows that it can have a market-compatible price if produced on
a large scale. A second analysis, regarding the power consumption of the board, shows that,
depending on the type of application, the device can run on battery for days. The contributions
of this work, in addition to the manufacture of the IoT device itself, include the development of
libraries that enable communication between microcontrollers (compatible with Arduino) and
Smart Cards and the expansion of open-source software for Java Cards by adding cryptographic

functions associated with TLS.

Keywords: Internet of Things. Security. Smart Card. Java Card. Microcontrollers

2.1

2.2

2.3

24

2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

2.14
2.15

2.16

3.1

4.1
4.2

4.3
4.4
4.5
4.6

4.7

LISTA DE FIGURAS

Protocolo Diffie-Hellman simplificado, onde as chaves sdo representadas por tintas

e o problema do logaritmo discreto € representado pelo processo de separacao das

tintas. Fonte das Entidades A e B: Noun Project, Dirk Rowe
Comparacdo entre cifragem simétrica (acima) e assimétrica (abaixo). Fontes: Enti-
dades A e B: Noun Project, Dirk Rowe; Chave: Noun Project, Jemis Mali
Comparacao entre MAC (acima) e assinatura digital (abaixo). Fonte: Chave: Noun

Project, Jemis Mali e
Arduino UNO (a) e Raspberry Pi 3 Modelo B (b). Fontes: store.arduino.cc e

raspberrypi.org e e e e e e e e
Comparacdo entre os tamanhos de cartdao ID-1eID-000
Cartao ID-1 com interface de contatos elétricos. Fonte: icOnstrux.com
Contatosde um Smart Card
Procedimentos de operacdo do Smart Card
Envio de um caractere com paridade correta (a) e incorreta(b)
Estrutura das APDUs de comando (a) eresposta(b)
Estrutura de uma mensagem do Protocolo de Registro com cifragem autenticada . .
Diagrama de funcionamento da funcafoPRFo
Estrutura de uma mensagem do Protocolo de Handshake, encapsulada no Protocolo

de Registro e
Sequéncia de obten¢do das chaves simétricas no Protocolo de Handshake
Diagrama da troca de mensagens entre Servidor e Cliente, durante o Protocolo de

Handshake do TLS e

Representagado gréfica do sistema de arquivos PKCS#15
Diagrama das pesquisas de trabalhos relacionados realizadas

Arquitetura geral do sistema proposto neste trabalhoo
Conexio entre Arduino UNO e Smart Card, evidenciando a conexao fixa entre o
terminal CLK eopinoD9o
Visao lateral (a) e superior (b) do slot para o Smart Card. Fonte: ckswitches.com . .
Esquematico (a) e layout (b) de uma das placas fabricadas, criados no EAGLE . . .
Primeiras PCls fabricadas, em ordem cronoldgica da esquerda para a direita
Modelo da pega de pléstico, desenhado no FreeCAD (a) e placa da Figura 4.5¢ com
apecade plasticoencaixada(b). Lo o
Quarta placa fabricada, projetada no KiCAD (a) e leitor de cartdo composto pela

placaeapecadepldstico(b) Lo

4.8 Modulos nRF241L.01+ (a) e ESP8266, modelo ESP-01 (b). Fontes: dx.com e instruc-
tables.com e e e e e e e
4.9 Diagrama inicial do sistema proposto, com moédulo ESP8266 atuando apenas como
adaptador Wi-Fi
4.10 Modulos ESP8266, modelo ESP-201 (a) e modelo ESP-12E (b). Fontes: dx.com e
alibaba.com e e e e
4.11 Placa utilizada para gravacdo do médulo ESP-201, com o adaptador USB/Serial
conectado (aesquerda)
4.12 Diagrama atualizado do sistema proposto, com médulo ESP8266 atuando como
microcontrolador principal dosistema Lo oL L
4.13 Oscilador Pierce
4.14 Funcionamento do chip conversor de tensdo paraocartdo
4.15 Funcionamento do chip conversor de tensdo paraas GPIOs
4.16 Placa individual de um dos chips conversores de tensdo (a) e circuito de relégio
externo, montado na protoboard (b)
4.17 Circuito divisor de frequéncia digital (a) e detalhe do relogio externo na placa (b),
onde podem ser vistos os chips: oscilador, flip-flop e inversor, da esquerda para a
direita L. e e
4.18 Primeira placa com o médulo ESP8266, frente (a)e verso(b)

67

4.19 Segunda placa com o médulo ESP8266 e placa final do trabalho, frente (a) e verso (b) 68

4.20 Diagrama final do hardware do sistema proposto
4.21 Funcionamento esperado (a) e implementacdo da biblioteca ArduinoSCLib (b)
durante envio de comandos para o Smart Card

4.22 Gréfico de performance para execugdo do algoritmo de hash SHA256 com o Smart

4.23 Midquina de estados do Protocolo de Handshake do TLS
4.24 Fluxograma de funcionamento do sistema proposto neste trabalho

5.1 Grafico de horas de funcionamento estimadas, obtido com os valores da Tabela 5.3

6.1 Falhas na soldagem do chip conversor de tensdo para GPIOs
6.2 Falhas na soldagem do chip conversor de tensdo para Smart Cards

6.3 Falhas na soldagem dos chips do circuito de relégio da Figura4.17

69

90

2.1
2.2
2.3
24

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

5.1

5.2

53

A.l
A2
A3
A4
AS
A.6
A7
A8
A9

LISTA DE TABELAS

Valores comuns paraos bytes SW1eSW2
CondigOes de acesso em uma estrutura de arquivos PKCS#15
Exemplos de defini¢cdes escritas na notagdo ASN.1
Tipos de dados da notacdo ASN.1

Termos de pesquisa utilizados na busca de trabalhos relacionados

Informagdes do Smart Card utilizado neste trabalho
Comparacgdo entre Arduino UNO e médulos ESP8266
Tabela de suporte a algoritmos gerada pelo JCAlgTest, para algoritmos de hash
Applets de seguranga para Smart Cards
Capacidades criptograficas importantes na implementacao do sistema
Comparacgdo entre applets de seguranca L.
Algoritmos implementados no IsoApplet original
Algoritmos implementados no IsoApplet apés modificagdes
Identidade do servidor utilizada nos testes de comunicagao entre dispositivo [oT e
servidor e

Estados do handshake e acdes de cadaentidade

Custo unitério do dispositivo IoT desenvolvido neste trabalho, para diferentes quan-
tidades produzidas L
Correntes tipicas de funcionamento para os chips do dispositivo [oT desenvolvido
nestetrabalhoo
Duracgao da bateria em horas para os diferentes valores de carga nominal e periodo
demedicdo

Algoritmos de cédigo de autenticagdo de mensagem
Algoritmos de assinatura digital oL oL
Algoritmos de cifragem simétricao
Algoritmos de cifragem assimétrica L.
Algoritmos de trocade chaves oL L oL
Algoritmosde hash
Algoritmos de geracdo de chaves assimétricas
Algoritmos de geracdo de chave simétrica

Algoritmos de checksum

LISTA DE ACRONIMOS

3DES Triple DES

AES Advanced Encryption Standard

AEAD Authenticated Encryption with Associated Data
AODF Authentication Object Directory File

APDU Application Protocol Data Unit

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

ATR Answer-to-Reset

BER Basic Encoding Rules
BOM Bill of Materials

CA Certificate Authority
CBC Cipher Block Chaining
CDF Certificate Directory File
CI Circuito Integrado

CMAC Cipher-based Message Authentication Code

CPU Central Processing Unit
CRC Cyclic Redundancy Check
CRT Control Reference Template
DDoS Distributed Denial-of-service
DES Data Encryption Standard
DF Dedicated File

DH Diffie-Hellman

DODF Data Object Directory File

DSA
DTLS
ECAD
ECB
ECDSA
EEPROM
EF
ETU
FCI
FIPS
GPIO
HMAC
IDE
IETF
IoT

1P

ISO
ISoc
ITU
ITU-T
JC
JCDK
JCRE
JCVM

MAC

Digital Signature Algorithm

Datagram Transport Layer Security
Electronics Computer-aided Design

Electronic Codebook

Elliptic Curve Digital Signature Algorithm
Electrically Erasable Programmable Read-only Memory
Elementary File

Elementary Time Unit

File Control Information

Federal Information Processing Standard
General-purpose Input/Output

Hash-based Message Authentication Code
Integrated Development Environment

Internet Engineering Task Force

Internet of Things

Internet Protocol

International Organization for Standardization
Internet Society

International Telecommunication Union

ITU Telecommunication Standardization Sector
Java Card

Java Card Development Kit

Java Card Runtime Environment

Java Card Virtual Machine

Message Authentication Code

MCU
MF
MQTT
MUSCLE
NDEF
NFC
NIST
ODF
oS
OTA
PCI
PGP
PIC
PIN
PKCS
PKI
PRF
PrKDF
PUF
PuKDF
RAM
RF
RFC
RIPEMD

RISC

Microcontroller Unit
Master File

Message Queue Telemetry Transport

Movement for the Use of Smart Cards in a Linux Environment

NFC Data Exchange Format

Near-field Communication

National Institute of Standards and Technology

Object Directory File
Operating System

Over-the-air

Placa de Circuito Impresso
Pretty Good Privacy
Peripheral Interface Controller
Personal Identification Number
Public Key Cryptography Standard
Public Key Infrastructure
Pseudorandom Function
Private Key Directory File
Physical Unclonable Function
Public Key Directory File
Random-access Memory
Radiofrequéncia

Request for Comments

RACE Integrity Primitives Evaluation Message Digest

Reduced Instruction Set Computer

ROM

RSA

SC

SCP

SHA

SIM

SKDF

SMD

SMT

SoC

SP

SPI

TCP

TLS

TLV

USB

WDT

Read-only Memory

Rivest Shamir Adleman
Smart Card

Secure Channel Protocol
Secure Hash Algorithm
Subscriber Identity Module
Secret Key Directory File
Surface-mount Device
Surface-mount Technology
System-on-Chip

Special Publication

Serial Peripheral Interface
Transport Control Protocol
Transport Layer Security
Tag-length-value

Universal Serial Bus

Watchdog Timer

1.1
1.2

2.1
2.1.1
2.1.2
2.2
23
2.3.1
232
233
234
24
24.1
24.2
2.5
2.6
2.7

3.1
3.2
3.3
3.3.1
3.3.2
333
34

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1

SUMARIO

INTRODUCAO
Objetivos e
Estruturado Trabalho

FUNDAMENTACAO TEORICA

Segurancade Sistemas
Servicos de Seguranca Lo e e e
Mecanismos de Seguranga L e
Ambientes de Desenvolvimento de BaixoCusto
Smart Cards
Seguranca dos Smart Cards
Padrao ISO7816
JavaCard e
Especificagdo GlobalPlatform
Protocolo de Comunicacao TLS
Protocolode Registro L
Protocolode Apertode Mao
Padrao PKCS#15
Notacdo ASN.1. e

Consideracoes Finais L oL

TRABALHOS RELACIONADOS

Aplicacao de Smart Cards em Protocolos de Seguranca
Conexao entre Microcontroladores e Smart Cards
Seguranca na Internetdas Coisas
VisdoGeral e
Propostas de Implementagdo e Verificacdo
Seguranca para Dispositivos [oT de BaixoCusto
Consideracoes Finais L oL

PROPOSTA DE ARQUITETURA

Plataforma de Hardware
Placas leitoras de Smart Cards utilizando Arduino UNO
Adi¢do de comunicagdo sem fio e troca de Arduino por ESP8266
PlacaFinal e
Arquitetura de Software L

Protocolo de Comunicagao entre Smart Card e Microcontrolador

17
19
20

21
22
22
23
28
29
31
32
37
38
39
39
40
45
48
49

50
51
51
52
52
33
54
54

4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3

5.1
5.2

6.1
6.2
6.3

Algoritmos Suportados pelo SmartCard, .
Applets para Smart Cards Lo
Modificacdes no IsoApplet
Bibliotecas desenvolvidas para o Microcontrolador
Cédigo do Servidor e Funcionamento Geral do Sistema

Consideracoes Finais

RESULTADOS
Avaliacdode Custo

Avaliacdo de Consumo de Energia

CONCLUSAO

Consideracoes Finais
Dificuldades Encontradas
Trabalhos Futuros

REFERENCIAS

APENDICE A - ALGORITMOS SUPORTADOS PELO SMART CARD

87
87
88

91
91
92
94

96

102

17

INTRODUCAO

Internet das Coisas (também conhecida por sua sigla em inglés, IoT) é um termo cunhado
em 1999 nas instalacdes do Massachusetts Institute of Technology (MIT) e refere-se a fusdo entre
objetos, sejam eles aparelhos eletronicos ou ndo, e sistemas computacionais como processadores,
sensores e, principalmente, médulos de comunicacao wireless. Tais objetos, anteriormente
passivos, estdo agora conectados a Internet e sdo capazes de, entre outras coisas, trocar informa-
coOes entre si € com outros objetos, coletar dados relativos a sua fung¢do, processa-los e tomar
decisdes de forma autdbnoma. Além disso, também podem ser monitorados remotamente através
da Internet.

Existe um impacto massivo associado a IoT atualmente. Infograficos elaborados pelas
empresas Intel (2015) e SAS (2016) mostram o quao grande € a rede da 0T, com bilhdes de
dispositivos conectados, e prevéem um crescimento de duas a dez vezes nesse nimero até o ano
de 2020. Um relatério da Microsoft (EDSON, 2015) lista alguns dos fatores que aceleraram a
adocao da IoT: queda dos custos de componentes de hardware, como chips e sensores, além
de avangos nas suas arquiteturas; valor de aplica¢des industriais muito maior que o valor de
aplica¢des para consumidores; progressos na area de software para andlise de dados; aumento
da conectividade de dispositivos com a introdug¢do das redes de celular; vantagens dos servigcos
na nuvem (essenciais para a IoT), como baixo custo, escalabilidade e flexibilidade; enorme
potencial econdmico.

Uma extensa andlise de mercado realizada pelo McKinsey Global Institute (MANYIKA
et al., 2015) estima que o impacto econdmico da IoT pode ser de US$3,9 a US$11,1 trilhdes
por ano em 2025. Segundo o texto, as aplicacdes com maior valor em potencial estdo nas
categorias de Humanos (e.g., monitoramento de doengas, melhoria da qualidade de vida),
Fabricas (e.g., otimizacdo de operagdes, manutengao preventiva) e Cidades (e.g., seguranca e
saide publica, controle de trifego). No entanto, o alcance do méximo potencial econdmico
depende do desenvolvimento de fatores-chave como tecnologia, interoperabilidade, privacidade
e confidencialidade, seguranca, propriedade intelectual, organizagdes e politicas publicas.

Uma segunda andlise produzida pela Gartner (VELOSA; SCHULTE; LHEUREUX, 2015)
identifica tecnologias relevantes utilizando como ferramentas o Ciclo de Expectativas (traducio

livre do termo em inglés, Hype Cycle) e a Matriz de Prioridades, relacionando maturidade,

18

expectativas de mercado, tempo para estabelecimento e beneficios. A prépria [oT se encontra
em um lugar de altas expectativas, com um beneficio capaz de revolucionar a industria e uma
previsdo de estabelecimento de cinco a dez anos. Tecnologias relacionadas a segurancga da [oT,
como Autenticacdo da loT, Seguranca Digital e Seguranca de Sistemas e Softwares Embarcados
sdo muito recentes e possuem um grande potencial para inovagdo, com beneficios significativos
para o mercado.

Preocupacgdes com seguranga e privacidade sdo, sem divida, alguns dos maiores obstacu-
los relacionados ao desenvolvimento da [oT. A transformacdo de objetos comuns em pequenos
computadores conectados a Internet significa que esses objetos podem ser hackeados e suas
informagdes acessadas por pessoas nao autorizadas. Existem relatos sobre falhas de seguranca
em cameras (HILL, 2014)(KREBS, 2016), preocupacdes com wearables, aparelhos médicos, carros
e até mesmo utilizacdo de aparelhos na [oT em ataques DDoS (TAYLOR, 2016)(GALLAGHER,
2015). E possivel, inclusive, utilizar um mecanismo de busca especializado para dispositivos
conectados a Internet das Coisas (Shodan) para encontrar e observar a gravacdo de cameras
desprotegidas em todo o mundo (PORUP, 2016). Wisniewski (2016) enumera uma série de
medidas de seguranga para dispositivos IoT, algumas delas restritivas ao ponto de impedir o
acesso a Internet ou servigos da nuvem. Schneier (2017), especialista em seguranga e criptografia
e autor dos livros Applied Cryptography e Cryptography Engineering, lista cinco “obviedades”

sobre a seguranca da [oT:

1. Na Internet o ataque € mais facil que a defesa, dada a grande complexidade dos
sistemas, o que aumenta a chance de vulnerabilidades. Além disso, atacantes ndo
precisam se preocupar com leis, moral ou ética e fazem uso de novas tecnologias de
maneira mais agil;

2. A maioria dos softwares no mercado € mal escrita, por ser mais rapido e barato de
produzir. Isso aumenta a quantidade de erros (bugs), os quais podem representar uma
vulnerabilidade no sistema;

3. A conexao entre todas as coisas pode expOr novas vulnerabilidades. Dois sistemas
seguros, se conectados de forma insegura, podem ser atacados;

4. Na Internet, todos os usudrios estdo ao alcance de todos os atacantes, dos piores aos
melhores;

5. Existem leis que impedem o progresso da pesquisa na drea de seguranga, por motivos

de quebra de copyright.

Tendo como principais motivagdes a caréncia de seguranca em dispositivos [oT, bem
como a auséncia de dispositivos de baixo custo com seguranca integrada e o alto potencial
para inovagao nessa drea, este trabalho propde arquiteturas de hardware e software, através da
integragdo entre um microcontrolador, também conhecido como Microcontroller Unit (MCU), e
um Smart Card (SC), Elemento Seguro capaz de armazenar informacdes e executar algoritmos

de criptografia. Adicionalmente, dado o potencial econdmico da [oT, este trabalho € focado em

1.1. OBJETIVOS 19

sistemas de baixo custo, acessiveis a maioria dos usudrios e muito utilizados na prototipacao
de projetos, baseados em plataformas conhecidas como Arduino e ESP8266. Suas principais
contribui¢des estdo ligadas a conexado entre o Microcontroller Unit (MCU) e o Smart Card (SC),
entre elas: desenvolvimento e fabricacdo de circuitos que realizam a conexao fisica entre os
diversos componentes; elaboracdo de bibliotecas que habilitam o MCU para requisi¢do de
operagOes criptograficas, instalagdo e desinstalagdo de programas e manipulacdo de dados
armazenados no cartdo; expansao de um software open source para SCs com a implementacao

de novas fungdes criptograficas e fungdes relativas ao protocolo de comunicagdo TLS.

1.1 Objetivos

O objetivo principal deste trabalho € a criagdo de uma arquitetura para IoT, englobando
hardware e software, composta por dispositivos contendo um microcontrolador de baixo custo
conectado a Internet das Coisas e integrado com um Smart Card, os quais se comunicam de
forma criptografada e autenticada com um servidor, a partir da utilizacdo das capacidades
criptogréficas deste cartdo. Estes dispositivos também sdo capazes de se conectar com sensores
e enviar seus dados ao servidor. A realizacdo deste objetivo principal envolve a realizacao de
objetivos especificos. Como sera visto no Capitulo 4, a descri¢do do sistema esta dividida em
plataformas de hardware € software, € 0 mesmo pode ser feito com esses objetivos. Com relacio

ao desenvolvimento de hardware, os objetivos especificos sdo:

» Estabelecer uma conexao fisica entre um Smart Card e um microcontrolador comum
e realizar a troca de mensagens entre eles com sucesso;

= Projetar e prototipar uma placa com um Smart Card e um médulo de comunicagdo
sem fio que possa ser acoplada a um microcontrolador, ou que contenha um mi-
crocontrolador, e seja adequada para aplicagdes em 10T (a partir de critérios como

tamanho, alimenta¢do, conexdao com sensores, etc.);

No que diz respeito ao desenvolvimento de software, sdo definidos os seguintes objetivos

especificos:

s Elaborar um software para o microcontrolador capaz de executar um protocolo de
comunicacdo segura baseado em requisi¢des de operacdes criptograficas feitas ao
Smart Card,

s Desenvolver um software para o Smart Card capaz de utilizar suas habilidades
criptograficas e armazenar informacdes no proprio cartdo, em conformidade com os
padrdes internacionais vigentes;

» Criar um software que agird como o servidor do dispositivo IoT, comunicando-se
de forma segura com ele e recebendo suas mensagens relativas a uma determinada

aplicacao;

1.2. ESTRUTURA DO TRABALHO 20

= Avaliar o sistema sob diferentes métricas, como consumo de energia, custos de fabri-
cacdo, performance, entre outras, para verificar sua compatibilidade com aplicac¢des

em loT.

1.2 Estrutura do Trabalho

O trabalho estd organizado em seis capitulos, incluindo este. O Capitulo 2 apresenta
conceitos fundamentais para o entendimento do trabalho, entre eles: seguranca de sistemas e
criptografia, placas de desenvolvimento, Smart Cards e padroes internacionais relacionados. O
Capitulo 3 referencia trabalhos que estio relacionados ao tema da dissertacdo, como propostas
de integracdo entre Smart Cards e microcontroladores e métodos de seguranca para [oT. O Capi-
tulo 4 apresenta a proposta principal do trabalho e descreve todas as etapas do desenvolvimento
de hardware e software do dispositivo [oT. O Capitulo 5 mostra avaliacdes feitas ap6s a finaliza-
cao do trabalho, com estudos do custo total e do consumo de energia do hardware fabricado. Por
fim, o Capitulo 6 apresenta as conclusdes sobre o trabalho, dificuldades encontradas ao longo de

sua elaboracao e atividades futuras que podem ser realizadas para melhoria do projeto.

21

FUNDAMENTACAO TEORICA

Este capitulo apresenta conceitos considerados fundamentais para o entendimento do
trabalho realizado. Nao € o objetivo deste capitulo, no entanto, se aprofundar excessivamente
em todos os temas escolhidos, mas sim explicar de maneira sucinta (e, em alguns momentos,
simplificada) os pontos importantes que constituem uma base tedrica sobre a qual se apdia o
projeto desenvolvido.

Muitos desses conceitos estdo definidos em especificagcdes e padrdes internacionais de
criptografia e seguranca. Stallings (2011) identifica as organiza¢des mais importantes nesse

aspecto:

» National Institute of Standards and Technology (NIST): Agéncia federal dos Estados
Unidos, responsavel pela publicacdo dos Federal Information Processing Standards
(FIPSs) e das Special Publications (SPs). Apesar de ser uma organiza¢do de atuagcao
em escala nacional, seus padrdes tem impacto mundial. Publicou os algoritmos
Secure Hash Algorithm (SHA) e Advanced Encryption Standard (AES);

n Internet Society (ISoc): Organizacdo americana sem fins lucrativos, com mais de
140 membros organizacionais € 80.000 membros individuais, cujo objetivo € liderar
o desenvolvimendo de padrdes relacionados a Internet. E a organizacdo-mée da
Internet Engineering Task Force (IETF), organizacdo que publica especificacdes
voluntérias conhecidas como Requests for Comments (RFCs). Um desses RFCs
especifica o protocolo TLS, discutido na Se¢do 2.4;

n [TU Telecommunication Standardization Sector (ITU-T): Setor da International Tele-
communication Union (ITU), agéncia internacional das Nac¢oes Unidas, responsével
por produzir padrdes relacionados a drea de telecomunicacdes. Seus padroes sdo
chamados de Recomendacdes;

a International Organization for Standardization (ISO): Orgdo internacional, inde-
pendente e ndo-governamental composto por representantes de organizacdes de
padronizacdo mundiais em mais de 160 paises (entre elas, ISoc e ITU), os quais

desenvolvem, em conjunto, os padrdes ISO.

Vale a pena ressaltar também a RSA Laboratories, responsédvel pela criacao dos padrdes

2.1. SEGURANCA DE SISTEMAS 22

Public Key Cryptography Standard (PKCS), discutidos na Secao 2.5. Esses padrdes, apesar de

serem de uma empresa privada, sdo importantes no campo da criptografia de chave publica.

2.1 Seguranca de Sistemas

Um glossario com defini¢des de termos associados a Seguranca na Internet € apresentado
no RFC 2828 (SHIREY, 2000). Entre elas, sdo dadas trés defini¢des para o termo seguranga:

1. Providéncias tomadas para proteger um sistema;

2. Condicao de um sistema que resulta do estabelecimento e manutencao de medidas
tomadas para protegé-lo;

3. Condicao de recursos de um sistema de estarem isentos de acessos ndo autorizados e

de mudangas, destruicdes ou perdas ndo autorizadas ou acidentais.

A Recomendacdo X.800 (ITU-T, 1991) estabelece uma arquitetura de seguranca de
sistemas baseada na defini¢@o de dois tipos de elementos: servigos de seguranga e mecanismos

de seguranca. Ambos estao definidos no RFC 2828:

n Servigo de seguranga

1. Servigo de processamento ou comunica¢do que € fornecido por um sistema
para dar um tipo especifico de protecdo a recursos do sistema;

2. Servigo, fornecido por umas das camadas de comunicacao de sistemas,
que garante a seguran¢a adequada dos sistemas ou das transferéncias de

informacdes;

n Mecanismo de seguranga: Processo (ou dispositivo que incorpora tal processo) que
pode ser usado em um sistema para implementar um servigo de seguranca que €

fornecido por tal sistema, ou para implementé-lo dentro do préprio sistema.

O servico de seguranga é, portanto, um conceito abstrato que se refere a um objetivo de
seguranca do sistema, enquanto que o mecanismo de seguranca € o procedimento aplicado na

pratica que permite o fornecimento de determinado servigo.

2.1.1 Servicos de Seguranca

Sao definidos os seguintes servigos de seguranga na Recomendacdo X.800:

n Controle de acesso: Protecdo contra o uso ndo autorizado de recursos do sistema;

» Autenticagdo de Entidade: Garantia de que a entidade com a qual estd se comunicando
€ quem ela diz ser;

» Autenticacdo de Mensagem: Garantia de que o remetente da mensagem € auténtico;

» Confidencialidade: A informacdo é mantida secreta para todas as partes ndo autoriza-

das a acessa-la;

2.1. SEGURANCA DE SISTEMAS 23

» Integridade: Garantia de que a informac¢do ndo foi modificada durante seu trajeto;
» Ndo-repiidio: Protegdo contra a negacdo de envio/recebimento de mensagens por

uma entidade participante da comunicagao.

Paar e Pelzl (2010) classificam os quatro dltimos servicos listados acima como os mais

importantes na maioria dos sistemas e citam alguns servigcos adicionais:

» Disponibilidade: Garantia de que o sistema estd disponivel sempre que requisitado;

s Auditoria: Fornecimento de evidéncias sobre atividades de seguranca relevantes do
sistema, a partir da criacdo de registros de eventos;

» Seguranca Fisica: Protecdo contra adulteracOes fisicas no sistema;

s Anonimato: Protecao contra descoberta e mau uso de identidades.

O padrao FIPS 199 (NIST, 2004) utiliza a defini¢do de “seguranca da informagao” presente
no Codigo de Leis dos Estados Unidos: “Protecdo da informagdo e de sistemas de informagdo
de acesso, uso, divulgacdo, disrupcdo, modificacdo ou destruicdo ndo autorizados a fim de
prover confidencialidade, integridade e disponibilidade”, onde o servigo de integridade abrange
também autenticacdo de mensagens e nao-repudio.

E importante ressaltar que diferentes aplicacdes requerem diferentes servicos de segu-
ranca. Para este trabalho, foram considerados indispensdveis 0s servigos que garantissem a
seguranga do transporte de dados entre as partes, dado que dispositivos IoT enviam, em geral,

dados coletados de sensores, os quais podem conter informacdes sensiveis sobre seus usuarios.

2.1.2 Mecanismos de Seguranca

A Recomendacdo X.800 define os seguintes mecanismos de seguranga:

» Cifragem: Utilizacao de algoritmos matematicos para transformag¢ao de uma infor-
macao que se deseja transmitir, também chamada de texto claro ou legivel, em uma
informacao que s6 pode ser interpretada mediante a utilizagdo de uma chave, também
conhecida como texto cifrado ou ilegivel. Implementa os servicos de confidenciali-
dade, autenticacao de entidade, autenticacdo de mensagem e integridade;

» Assinatura Digital: Informagdo anexada ao final de uma mensagem que permite ao
recipiente verificar a origem dos dados. Implementa os servicos de autenticacdo de
entidade, autenticacdo de mensagem e nao-repudio;

n Mecanismos de Controle de Acesso: Utilizacdo de informagdes sobre uma entidade
para reforcar os seus diretos de acessos (e.g., identidade e senha). Implementa o
servi¢o de controle de acesso;

n Mecanismos de Integridade de Dados: Informacdo anexada ao final de uma men-
sagem que permite ao recipiente verificar que os dados ndao foram modificados.

Implementa os servigos de autenticacdo de mensagem e ndo-repudio;

2.1. SEGURANCA DE SISTEMAS 24

» Troca de Autenticacdo: Maneira de verificar a identidade de uma entidade a partir da
troca de informacdes. Implementa o servigo de autenticacao de entidade;

» Padding de Trdfego: Adicao de informagdes aleatérias ou sem significado a uma
mensagem, com o objetivo de dificultar a andlise de trafego. Implementa o servico
de confidencialidade;

n Controle de Roteamento: escolha de rotas fisicamente seguras ou com um determi-
nado nivel de protecdo para troca de informacgdes. Implementa o servico de confi-
dencialidade, pois garante que a transmissdo de dados apenas por rotas consideradas
seguras;

» Notariza¢do: Utilizacdo de uma terceira entidade confiada pelas partes, para garantir
as propriedades de uma troca de informacdes, como integridade, origem, destino e

tempo. Implementa o servi¢o de ndo-repudio.

Os mecanismos considerados mais importantes para o trabalho sdo descritos nas proximas
secoes. Descri¢des detalhadas desses mecanismos podem ser encontradas nos livros de Katz e
Lindell (2014), Stallings (2011) e Paar e Pelzl (2010).

Cifragem. A cifragem de informacdes pode ser feita de duas maneiras: reversivel, quando
€ possivel aplicar uma operagdo de decifragem sobre o texto cifrado para obter o texto claro
novamente; e irreversivel, quando nao € possivel obter o texto claro a partir do texto cifrado.

A cifragem reversivel de dados pode ser dividida em duas categorias, de acordo com o

tipo de chave que € utilizado:

n Simétrica ou de Chave Secreta: quando uma unica chave € utilizada tanto para
cifrar quanto para decifrar o texto. Por este motivo, ela precisa ser distribuida de
forma segura para todas as entidades autorizadas a acessar a informacao, e também
deve ser armazenada de maneira segura. Algoritmos que realizam esse tipo de
cifragem incluem o Advanced Encryption Standard (AES) e o Data Encryption
Standard (DES);

n Assimétrica ou de Chave Publica: quando € utilizado um par de chaves, onde uma
delas € utilizada para cifrar o texto e outra para decifrar o texto. A chave usada para
cifrar é de acesso publico (chave publica) e a chave usada para decifrar o texto é
armazenada de forma segura pelo usudrio (chave privada). Dessa forma, qualquer
entidade pode utilizar a chave publica para enviar uma mensagem confidencial ao
proprietéario da chave privada e sé ele podera decifra-la. Essas chaves ndo precisam
ser distribuidas, pois cada usudrio pode geré-las individualmente. Exemplos de
algoritmos de cifragem com chave ptblica sdo o Rivest Shamir Adleman (RSA) e o
Diffie-Hellman (DH);

A Figura 2.2 mostra um diagrama comparando os dois tipos de cifragem. Em geral,

algoritmos de chave secreta oferecem um nivel de seguranca similar aos algoritmos de chave

2.1. SEGURANCA DE SISTEMAS 25

publica, mas com chaves bem menores e execucao mais rapida. Por este motivo, muitos sistemas
utilizam uma abordagem hibrida, onde a cifragem de chave publica serve apenas para estabelecer
uma chave secreta comum entre as entidades em uma comunicagao e, a partir dai, toda troca de
informacao € cifrada com a chave secreta (o protocolo TLS € um exemplo disso). A principal
finalidade da cifragem € fornecer confidencialidade dos dados. No entanto, algoritmos de
cifragem com chave secreta também podem ser utilizados em mecanismos de integridade de
dados. Alguns algoritmos de cifragem de chave publica, por sua vez, sdo usados na criagdo de
assinaturas digitais e em esquemas de estabelecimento de uma chave secreta, como € o caso do
protocolo Diffie-Hellman. Este algoritmo, ilustrado de maneira simplificada na Figura 2.1, é
baseado no problema do logaritmo discreto e € utilizado exclusivamente para o estabelecimento
de um valor secreto comum entre duas ou mais entidades, o qual geralmente € utilizado como
uma chave simétrica (ou como ponto de partida para a obtencao de uma chave simétrica, como
no Protocolo TLS).

[A

. +
TRANSPORTE INSEGURO TINTA
COMUM PRIVADAS PUBLICAS (Assume-se que a separagao de tintas SECRETA

é um processo caro e complexo) COMUM
c +

+

Figura 2.1: Protocolo Diffie-Hellman simplificado, onde as chaves sdo representadas por tintas e
o problema do logaritmo discreto é representado pelo processo de separag@o das tintas. Fonte das
Entidades A e B: Noun Project, Dirk Rowe

TINTA TINTAS TINTAS

A cifragem irreversivel de dados € representada pelas funcdes de hash. Essas funcoes
recebem uma quantidade arbitraria de dados e produzem uma quantidade fixa e pequena de dados
na saida. Suas principais caracteristas sdo a dificuldade em se encontrar colisdoes (duas mensagens
que resultam em um mesmo hash) e a impossibilidade de se obter a mensagem original a partir
do seu hash. Por este motivo, essas fungdes sdo utilizadas na criacdo de assinaturas digitais e no
controle de integridade de dados, com o objetivo de criar dados comprimidos e unicos baseados

em outros dados maiores. Exemplos de algoritmos de hash incluem o SHA e o SHA256.

Assinatura Digital. Esquemas de assinatura digital utilizam algoritmos de criptografia baseados
em chaves assimétricas em conjunto com algoritmos de hash para calcular, a partir de uma
mensagem, uma segunda informacao atrelada ao remetente desta mensagem, sua assinatura.
Da mesma forma que assinaturas escritas em um papel, as assinaturas digitais sao utilizadas
para identificar a origem de uma determinada informagao (autenticacdo de entidade), e também

impedem o remetente de negar o seu envio (ndo-reptidio). Adicionalmente, as assinaturas digitais

2.1. SEGURANCA DE SISTEMAS 26

CHAVE SECRETA
COMPARTILHADA

ENTIDADE A ENTIDADE B

a‘ TEXTO - | ‘TEXTO - | TEXTO
M CLARO > CIFRAGEM > CiFRADG | PECIFRAGEM > S ARG

i,

J\
A SN
2 CHAVE CHAVE
PUBLICA DE B PRIVADA DE B

Figura 2.2: Comparagao entre cifragem simétrica (acima) e assimétrica (abaixo). Fontes:
Entidades A e B: Noun Project, Dirk Rowe; Chave: Noun Project, Jemis Mali

garantem a integridade da informacao, pois qualquer alteracdo nos dados modifica drasticamente
o conteudo da assinatura.

Nos algoritmos de assinatura digital, a chave privada € utilizada pelo remetente para gerar
a assinatura a partir da informacao, visto que sé ele tem acesso a essa chave. Qualquer outra
entidade que queira verificar esta assinatura utiliza a chave ptblica do remetente. E possivel gerar
assinaturas digitais com algoritmos de cifragem, como o RSA, mas também existem algoritmos

especificos para criagdo de assinaturas digitais, como o Digital Signature Algorithm (DSA).

Mecanismos de Integridade de Dados. O principal mecanismo utilizado para garantir inte-
gridade e autenticagcdo de mensagens € o Message Authentication Code (MAC). Os MACs sao
andlogos as assinaturas digitais, mas utilizam algoritmos com chave secreta. Nesse caso, uma
tinica chave compartilhada entre as partes serve tanto para calcular o MAC quanto para verifica-
lo. Por ser um c6digo tnico associado a uma mensagem, o MAC implementa a autenticagcdo e
integridade da mensagem, dado que qualquer alteracao na mensagem altera o MAC e s6 quem
possui a chave secreta é capaz de calculd-lo. No entanto, ndo implementa a ndo-repudiacdo pois
nao € possivel provar qual das partes em uma comunicagdo calculou um determinado MAC.
Existem MACs baseados em algoritimos de hash, os HMACs, e em algoritimos de cifragem,
0s CMACs. Os primeiros sdo utilizados no TLS e os segundos sdo utilizados na especificacdo
GlobalPlatform (GlobalPlatform, 2003) e, portanto, ambos sdo utilizados neste trabalho.

Os algoritmos de MAC, assim como os algoritmos de cifragem com chave secreta,

possuem uma execucdo muito mais rapida e chaves menores do que os algoritmos de assinatura

2.1. SEGURANCA DE SISTEMAS 27

digital, que utilizam chaves assimétricas. Por esse motivo, uma vez que as assinaturas digitais
sdo utilizadas em um esquema para estabelecer chaves secretas (como o TLS), as mensagens
subsequentes sdo “assinadas” com MACs. A Figura 2.3 mostra um diagrama comparando MACs
e assinaturas digitais.

CHAVE
SECRETA

&

Y Y
> MENSAGEM —>
MAC /
MAC / o - RESULTADO DA
MENSAGEM PSSR > 'ASSINATURA >| VERIFICAR = '\ cniricACAO
DIGITAL
L
CHAVE CHAVE
PRIVADA PUBLICA

Figura 2.3: Comparagao entre MAC (acima) e assinatura digital (abaixo). Fonte: Chave: Noun
Project, Jemis Mali

Troca de Autenticacdo. Uma maneira de realizar a troca de autenticacdo € através de protocolos
de “aperto de mao”, onde as entidades trocam informac¢des que podem ser utilizadas para
verificar sua autenticidade mutualmente. No TLS, por exemplo, as entidades trocam certificados:
documentos que associam uma identidade (nome, pais, estado, endereco, etc.) a uma chave
publica e sdo assinados digitalmente por uma terceira entidade, na qual as primeiras confiam.
Na Internet, um certificado é assinado por uma determinada entidade, e o certificado dessa
entidade € assinado por outra, e assim sucessivamente formando uma cadeira de certificados,
até se chegar na entidade raiz, a qual nao precisa ser certificada por ninguém e na qual todos
conflam. Essas entidades responsaveis pela emissdo de certificados sdo chamadas de Certificate
Authority (CA) ou Autoridades de Certificacdo. No sistema proposto neste trabalho, o servidor
atua como uma CA e emite certificados para os clientes, 0s quais se autenticam com o proprio

servidor posteriormente, em um protocolo de aperto de mao.

2.2. AMBIENTES DE DESENVOLVIMENTO DE BAIXO CUSTO 28

2.2 Ambientes de Desenvolvimento de Baixo Custo

A prototipagdo de aplicacdes em Internet of Things (10T) € baseada na utilizacao de
plataformas de hardware economicamente acessiveis que fornecem uma maneira simples e
rapida de programar um microcontrolador. Tais plataformas sdo chamadas Ambientes de De-
senvolvimento de Baixo Custo. Em geral, sdo circuitos eletronicos que dao ao usuario acesso
a vdrias interfaces de entrada/saida do MCU, como portas digitais e analdgicas e interfaces de
comunicac¢ao, e que podem ser conectados a um computador e programados de maneira fécil.
Essas interfaces podem, por sua vez, ser conectadas com os mais diversos tipos de sensores e
moddulos de comunicagdo sem fio para criagao de projetos em IoT. Existem desde circuitos mais
simples, com processadores de dezenas de MHz e memorias na ordem de kB (e.g., Arduino
UNO, MSP430 Launchpad), a circuitos que sdo verdadeiros computadores, com processamento
e memoria comparaveis aos de um smartphone, capazes de rodar sistemas operacionais como
Linux e Android (e.g., Raspberry Pi, BeagleBone). A aplicacdo que se deseja desenvolver
determina qual ambiente deve ser escolhido.

O relatorio da Gartner sobre tecnologias em [oT (VELOSA; SCHULTE; LHEUREUX, 2015)
cita os ambientes de desenvolvimento de baixo custo como uma das tecnologias emergentes de
alto beneficio para o mercado, principalmente por fomentar a inovagdo em IoT realizada por

desenvolvedores individuais. Ele destaca ainda algumas vantagens, como:

= Versatilidade, pois estes circuitos podem ser utilizadas por uma vasta gama de
usudrios que vai desde de pessoas com pouco conhecimento de eletronica e/ou
computacgdo elaborando projetos bésicos (inclusive com propdsitos educacionais) a
profissionais e startups desenvolvendo projetos complexos e, por vezes, comerciais,
como drones e impressoras 3D;

» Flexibilidade, dando ao desenvolvedor a possibilidade de alteragdo do design original

para se encaixar nos requisitos de seus projetos.

Recursos relacionados a elaboracao de projetos com esses ambientes, como bibliotecas,
exemplos e tutoriais, podem ser encontrados nas diversas comunidades online de desenvolvedores
de hardware. Uma survey realizada pelo site Hackster (2016) destaca algumas comunidades
mais acessadas pelos usudrios, entre elas: Arduino, Instructables, Adafruit e SparkFun. Essa
mesma pesquisa também aponta as placas Arduino e Raspberry Pi (Figura 2.4) como sendo as
mais utilizadas por desenvolvedores, para prototipacdo de sistemas.

Este trabalho teve como foco os ambientes de desenvolvimento mais simples. Em
especifico, foi utilizada a placa Arduino UNO, no inicio do projeto, e os médulos do chip
ESP8266, do meio ao final. Os detalhes do desenvolvimento de hardware sdo especificados na

Secao 4.1.

2.3. SMART CARDS 29

(a) (b)

Figura 2.4: Arduino UNO (a) e Raspberry Pi 3 Modelo B (b). Fontes: store.arduino.cc e
raspberrypi.org

2.3 Smart Cards

Os Smart Cards (SCs) sdo cartdes de pldstico nos quais estdo embutidos Circuitos
Integrados (ClIs), usualmente chamados de chips. Esses cartdes podem ser classificados de

acordo com trés caracteristicas principais:

s Tamanho;
= Tipo de chip;
s Método de transmissio de dados.

Nos padroes ISO que especificam as caracteristicas dos SCs, eles sdo categorizados
como Cartoes de Identificacdo — Cartoes com Circuitos Integrados. O padrao ISO7810 (ISO/IEC,
2003), em particular, especifica as caracteristicas fisicas dos cartdes de identificacdo, entre elas
as suas dimensdes. Sdo definidos quatro tamanhos diferentes para os cartdes, sendo os mais
relevantes o ID-1 e o ID-000, mostrados na Figura 2.5. O primeiro € o tamanho utilizado em
cartdes de crédito e o segundo é o tamanho utilizado em cartdes SIM para celular. Inicialmente,
foram utilizados cartdes ID-1 no desenvolvimento deste trabalho, os quais foram transformados
em cartdes ID-000, para favorecer a portabilidade do sistema.

Quanto ao tipo de chip contido, Rankl e Effing (2010) definem dois tipos de Smart Card:

n Cartoes de Memdria: Possuem apenas uma memoria ndo-volatil (i.e., que mantém
os dados armazenados, mesmo ap0s ser desligada e ligada novamente), tipicamente
uma EEPROM, e podem conter uma légica de segurancga associada ao acesso dessa
memoria. Em geral, sdo otimizados para aplicacdes mais simples e especificas e, por
18s0, sd0 mais baratos;

n Cartoes de Processador: Possuem um processador (ou CPU), uma memoéria ROM
(apenas leitura) com o seu sistema operacional, uma memdéria EEPROM onde podem

ser armazenados dados e codigos de aplicacdes que sdo executadas pelo cartdo e uma

2.3. SMART CARDS 30

ID-1

ID-000

Figura 2.5: Comparagao entre os tamanhos de cartdo ID-1 e ID-000

memoria RAM (volatil, apaga quando € desligada) para armazenar os dados durante
a execucdo de uma aplicagdo. Em geral, cartdes de processador possuem também um
segundo processador (também chamado de criptoprocessador), cuja fungado € acelerar
a execucao de algoritmos de criptografia. Sao cartdes mais versdteis, pois podem
conter vdrias aplicacdes. Foi utilizado um cartdo desse tipo no desenvolvimento do
trabalho.

Por fim, a transmissao de dados pode ser feita por contatos elétricos ou sem contatos, por
meio de uma interface de Radiofrequéncia, de forma que o cartdo ndo precisa ser inserido em um
leitor, apenas aproximado a uma distancia ao alcance da antena. Os cartdes podem ser somente
de contato, somente sem contato, de interface dupla (um tnico chip que suporta os dois métodos
de transmissdo) ou hibridos (um cartdo com dois chips distintos, cada um suportando um tipo
de transmissao). Como o objetivo do trabalho era conectar um SC a um MCU, foi utilizado um

cartdo com interface de contatos, como o da Figura 2.6.

Figura 2.6: Cartdo ID-1 com interface de contatos elétricos. Fonte: icOnstrux.com

2.3. SMART CARDS 31

2.3.1 Seguranca dos Smart Cards

Os Smart Cards geralmente sdo referidos como sistemas invioldveis ou resistentes a
adulteracdo, capazes de armazenar dados de maneira segura. Rankl e Effing (2010) dedicam
um capitulo inteiro do seu livro a descri¢cao das diferentes estratégias de protecdo que sdo
implementadas em um SC. Os autores atribuem a seguranca do cartdo a quatro componentes

principais:

» Corpo;
n Hardware do CI;
= Sistema Operacional;

= Aplicacdo.

A seguranca do corpo do cartdo € relativa a caracteristicas que podem ser checadas
visualmente por pessoas, como marcagdes, impressoes e coisas semelhantes. Em aplicacoes
como a deste trabalho, em que o cartdo nao passa por nenhuma verificagdo humana, apenas os
trés ultimos parametros sdo importantes. Sao definidas no texto algumas categorias de ataques

que podem ser realizados em Smart Cards:

» Ataques Sociais: Tém como alvo as pessoas que utilizam os cartdes, € nao os proprios
cartdes em Si;

» Ataques Fisicos: Direcionados ao hardware do cartdo, geralmente necessitam de
uma quantidade consideravel de recursos técnicos. Podem ser classificados como
estdticos, quando o cartdo ndo precisa estar ligado, ou dindmicos, quando sdo feitas
observagdes sobre o estado fisico do cartdo durante o seu funcionamento;

» Ataques Logicos: Baseados em fraquezas do software do cartdo, seu sistema operaci-
onal e suas aplicacdes, e também em criptandlise tradicional (andlise de algoritmos
de criptografia em busca de falhas). Podem ser classificados como passivos, quando
apenas sao observadas trocas de mensagens e feitas medidas no CI, ou ativos, quando

existe a manipulacao da troca de dados e do dispositivo.

Sdo tomadas medidas de protecao em todas as fases da vida de um cartdo: no seu
desenvolvimento, producao e utiliza¢ao, onde de fato se concentra a maior parte dos ataques.
Em especifico, a realizacdo de ataques fisicos no CI do cartdo, segundo Rankl e Effing (2010),
requer diversos equipamentos especializados, tais como: microscépio, cortador a laser, microma-
nipuladores, feixes de ion focalizados, equipamentos de fresagem quimica e computadores de
alta velocidade. Antes de qualquer ataque, o chip precisa ser removido do cartdo. O mesmo é
protegido por uma camada de resina, a qual também deve ser removida sem danificar o circuito.
Com isso, o semicondutor estd exposto e pode ser manipulado. No entanto, existe uma série de

medidas de seguranca implementadas no hardware que precisam ser transpassadas, entre elas:

2.3. SMART CARDS 32

s O tamanho das estruturas dentro do chip, da ordem de centenas de nm, dificulta a
analise do circuito;

n O design dos ClIs € exclusivo para Smart Cards e ndo € utilizado para outros tipos de
dispositivos, onde seguranca nao € um fator critico;

» Presenca de estruturas falsas no chip, sem funcdo alguma, apenas para dificultar a
localizacdo das estruturas reais;

= Os barramentos que conectam a CPU as memdrias sdo posicionados em camadas
de dificil acesso dentro do semicondutor e, em alguns casos, sdo embaralhados para
mascarar sua funcao;

s Utilizagcdo de “escudos” sobre a superficie do chip, que impedem a medi¢ao de
tensOes em regides especificas. Alguns desses escudos sdo usados para alimentar o
cartdo e acabam por inutiliza-lo se forem removidos, outros sdo feitos especificamente
para deteccao de ataques fisicos;

s Modulos de monitoracdo de tensdo dentro do chip, que impedem que o cartio
funcione fora da sua regido de operacdo, onde podem ocorrer falhas que permitam o

vazamento de dados.

Rankl e Effing (2010) também detalham mecanismos de protecdo adicionais associados
a ataques ao software do cartdo, como a utilizagdo de controle de acesso para arquivos (presente
na PKCS#15), autenticagdo entre cartdo e entidade externa, troca de mensagens seguras (ambos
presentes na especificacdo GlobalPlatform), entre outros. Em suma, Smart Cards nao sao
perfeitamente seguros, mas sao desenvolvidos de forma que um ataque direto ao seu sistema seja

uma tarefa drdua e custosa, mesmo para adversarios especializados.

2.3.2 Padrio ISO7816

A especificacdo internacional de todos os parametros relacionados aos Smart Cards é
realizada pelo padrdo ISO7816. Ele consiste em quatorze partes diferentes (1 a 13 e 15), onde
cinco delas (1 a 3, 10 e 12) sdo especificas para cartdes com contatos elétricos e as restantes
independem do método de transmissdo de dados. Apenas algumas partes do padrdo foram
utilizadas como referéncia para este trabalho: 1 a 4, 8 e 9, pois sdo as partes que tratam das
caracteristicas fisicas, dos protocolos de comunicagdo e dos comandos que o Smart Card pode
receber.

As partes 1 e 2 tratam de caracteristicas fisicas dos cartdes com contatos. A primeira
delas (ISO/IEC, 1998) € mais focada no cartdo em si, estendendo o contetido da ISO7810 citada
anteriormente com propriedades adicionais que levam em consideracdo a presencga dos contatos,
como protecdo a eletricidade estética e interferéncia eletromagnética, temperatura de operacao,
entre outras. A segunda parte (ISO/IEC, 2007) trata especificamente dos contatos elétricos, define
uma quantidade de oito contatos (C1 a C8), suas dimensdes e localizacdo em um cartiao de
tamanho ID-1.

2.3. SMART CARDS 33

A terceira parte do padrao ISO7816 (ISO/IEC, 2006) define as caracteristicas elétricas e
os protocolos de transmissao de dados dos Smart Cards (SCs) com contatos. Incialmente, sdo
especificadas as classes de operacdo de acordo com a tensdo que deve ser aplicada ao cartio para

que ele funcione:

n Classe A: Tensao de operagdo igual a 5S'V;
n Classe B: Tensao de operacao igual a3 V;

a Classe C: Tensdo de operacdo igual a 1,8 V.
Depois, s@o especificados os contatos elétricos, seus nomes e fungdes:

s VCC (C1): Usado para alimentar o cartdo com a tensdao de operagao;

» RST (C2): Usado para fornecer o sinal de reset para o cartdo, que o faz retornar ao
estado inicial de operagdo;

s CLK (C3): Usado para fornecer o sinal de relégio (ou de clock) para o cartido. Este
sinal coordena todas as acdes executadas pelo cartdo e tem como valores minimo e
maximo 1 MHz e 5 MHz, respectivamente;

s GND (C5): Tensdo de referéncia para o cartdo;

= [/O (C7): Usado para envio e recebimento de dados, de forma serial.

A Figura 2.7 mostra uma representacdo dos contatos em um Smart Card, com seus
respectivos nomes. Os contatos C4 e C8 ndo possuem fungdes definidas na Parte 3 da ISO7816
(NC = Not Connected, Nao Conectado), mas podem ser usados como os terminais de dados
de uma interface USB para o cartdo, de acordo com a Parte 12 da ISO7816 (ISO/IEC, 2005a).
O contato C6, por sua vez, é de aplicagdo geral (SPU = Standard or Proprietary Use, Uso
Padronizado ou Proprietdrio), como entrada ou saida, mas ndo possui fun¢do definida na ISO7816
(é reservado para uso futuro). O cartio nao possui interface USB, portanto, esses trés contatos (C4,
C8 e C6) nunca sao utilizados no projeto. A ISO7816-3 especifica, entdo, quatro procedimentos
que devem ser realizados durante a operacdo do cartdo. Na ordem de execucio, os procedimentos

Sa0:

1. Ativacdo: RST deve ser colocado em nivel baixo, VCC deve ser ligado, o I/0 do
leitor deve ser colocado em modo de recep¢do e um sinal de reldgio deve ser aplicado
a CLK;

2. Cold Reset: ap6és o sinal de reldgio ser aplicado, RST deve permanecer em nivel
baixo por pelo menos 400 ciclos do relégio e entdo ser colocado em nivel alto;

3. Troca de informacdes: apés um tempo que varia entre 400 e 40000 ciclos de relégio,
o SC envia o Answer-to-Reset (ATR) (resposta fixa, que contém alguns parametros
de comunicag¢do), negocia um protocolo de transmissdo e seus parametros com o

leitor e a transferéncia de mensagens entre as partes € iniciada;

2.3. SMART CARDS 34

/01(vco) C5(GND))
C2(RST) C6(SPU)
C3(CLK) C7(1/0)
C4(NC C8(NC

\° (NC) (NC))

Figura 2.7: Contatos de um Smart Card

ATIVACAO DESATIVACAO

ve | L
SRR R]

e t>400T ———>]

G | |

COLD RESET TROCA DE INFORMAGOES

%ISZOOT»{ ‘4 4007 <t < 400007 >

| i
s
22222777
022222257

I/0

AAAAa 000N DA
?????iilNDEFINIDO???????
20000000 s rre000000))

T
|

Figura 2.8: Procedimentos de operacdo do Smart Card

4. Desativagcdo: RST, CLK e I/O devem ser colocados, nessa ordem, em nivel baixo e
VCC deve ser desligado.

A Figura 2.8 detalha o primeiro, segundo e quarto procedimentos. O terceiro procedi-
mento, a troca de informagdes, € realizado através do envio e recebimento de caracteres. Cada
caractere € formado por 10 bits e cada bit tem duracdo de 1 Elementary Time Unit (ETU), unidade
bésica de tempo na qual o protocolo de transmissdo é baseado. O valor padrao do ETU € de 372
ciclos do reldgio (e.g., se o relégio tem frequéncia de 2 MHz, o ETU € 372x0,5ns = 186 ns) e
pode ser reconfigurado apds o recebimento do ATR. Antes do inicio de qualquer comunicacdo, o
I/0 deve estar em nivel alto. O primeiro bit marca o inicio do caractere e possui valor sempre
igual a “0”. Os proximos 8 bits codificam um byte de dados que se deseja transmitir. O décimo e
ultimo bit é a paridade do caractere, utilizado como uma maneira simples para detecc¢do de erros.
A paridade esté correta se existe uma quantidade par de valores “1” entre o segundo e décimo bits
do caractere. Se a paridade estiver correta, existe uma pausa até o envio do préximo caractere e
se estiver errada, o receptor deve enviar um sinal de erro e esperar o reenvio do mesmo caractere.
A Figura 2.9 exemplifica o comportamento do I/O durante o envio de um caractere.

Uma cadeia de caracteres forma um comando. O protocolo mais simples de comunicac¢io
¢ o T=0, onde o microcontrolador funciona como um dispositivo mestre e envia comandos para
o0 cartdo, que os processa (um por vez) e envia a resposta. Os comandos e respostas sdo enviados
em um ou mais “pacotes” chamados Application Protocol Data Units (APDUs), os quais sdo
divididos em:

n APDUs de Comando: possuem um cabecalho obrigatério de quatro bytes contendo a

2.3. SMART CARDS 35

l<inicio >} BYTE l< PAR. > PAUSA —>]
l l l l l l l l l l l l
|
|
I PROXIMO
/0 ! / CARACTERE
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ; 10 ! |
| | | | | | | | | | | |
(a)
SINAL
[<inicio>] BYTE |<PAR. > |« DE >
| | | | | | | | | | | | ERRO | |
| | | | | | | | | | | | | |
o) : REENVIO
DE
X : CARACTERE
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 10 : | ; ;
| | | | | | | | | | | | | |
(b)

Figura 2.9: Envio de um caractere com paridade correta (a) e incorreta (b)

classe do comando (CLA), o tipo de instrucdo (INS) e dois pardmetros relacionados
a instrucdo (P1 e P2), e um corpo condicional de tamanho varidvel que pode conter
o nimero de bytes que estdo sendo enviados no comando (L.) juntamente com os
bytes de dados e/ou o nimero de bytes esperados na resposta (L.). Caso ndo seja
necessdrio enviar nenhuma informac¢ao com o comando, nem seja esperada nenhuma
informacao na resposta, 0 corpo ndo existe;

n APDUs de Resposta: possuem um corpo condicional de tamanho varidvel que pode
conter os bytes da resposta ao comando (caso sejam necessarios) € um rodapé
obrigatdrio de dois bytes contendo o status do processamento do comando (SW1 e
SW2).

A Figura 2.10 ilustra o formato de cada tipo de APDU. A classe do comando determina
se ele € interindustrial, padronizado de acordo com a ISO7816, ou proprietario, criado pelos
desenvolvedores de uma aplicacio especifica. A instrucdo informa ao cartdo que comando deve
ser executado, sob as condicdes especificadas nos parametros P1 e P2 (quando necessérios). Os
bytes de status SW1 e SW2 informam ao leitor de cartio se o comando foi executado corretamente
ou ndo. Os valores mais frequentes de SW1 e SW2 durante uma troca de mensagens entre leitor
e SC estdo listados na Tabela 2.1.

A parte 4 do padrdao ISO7816 (ISO/IEC, 2005b) define os conceitos de organizacao,

seguranca € a maioria dos comandos aceitos pelo SC. A organizacdo diz respeito a:

= Pares de comando/resposta (também definidos na parte 3) e os significados dos bytes
CLA, INS, SW1 e SW2;

» Formato dos objetos armazenados no cartdao, de acordo com as regras de codificacdo
da ASN.1 (Sec¢do 2.6);

s Estrutura dos dados do cartdo, baseada em Dedicated Files (DFs) e Elementary
Files (EFs), os quais também sao utilizados na especificacio PKCS#15 (Sec¢do 2.5);

2.3. SMART CARDS 36

j«— CABEGALHO | CORPO !
[CLA[INS[P1 [P2 L | DADOS | L |
1B 1B 1B 1B 1B 0-255B 1B
(a)

1 CORPO t<— RODAPE —>
DADOS |SW1[sw2)]
0-256B 1B 1B

(b)

Figura 2.10: Estrutura das APDUs de comando (a) e resposta (b)

SW1/SW2 STATUS
0x9000 Processamento normal.
0x61XX Processamento normal. O byte SW2 codifica a quantidade

de bytes ainda disponiveis para serem recebidos pelo leitor
(entre 1 e 256, onde 0x00 = 256), o qual deve enviar um
comando de recebimento de dados.

0x6CXX Erro de verificagdo. A quantidade de bytes esperados (L.)
enviada pelo leitor é incorreta. O mesmo comando deve ser
enviado novamente com a quantidade certa, a qual esta
codificada em SW2.

Tabela 2.1: Valores comuns para os bytes SW1 e SW2

» Arquitetura de seguranca do cartdo, onde sdo definidas, entre outras informagdes:
status de seguranca para aplicacoes, arquivos e comandos; mecanismos de seguranca
utilizados pelo cartdo para se autenticar e comunicar de maneira segura com uma
entidade externa; condi¢des de acesso para dados armazenados no cartdo. A arqui-
tetura de seguranga é complementada com uma especificagdo de comunicagdo com

mensagens seguras, construidas a partir dos mecanismos definidos previamente.

A maioria dos comandos definidos na parte 4 € relativa a manipulagdo de arquivos
no Smart Card. Por exemplo, sdo definidos os comandos de sele¢do de arquivos (SELECT),
leitura (READ BINARY) e atualizacdo (UPDATE BINARY) de dados dentro dos arquivos. Sao
definidos também alguns comandos de seguranca bdsica, como os de autenticacio com uma
entidade externa (EXTERNAL AUTHENTICATE), geracdo de dados aleatdrios para utilizagao
em esquemas de autenticacdo (GET CHALLENGE) e verificacdo de uma informacao interna do
cartdo, como um PIN (VERIFY). E definido ainda o comando utilizado para obtencio dos dados
restantes de uma resposta (GET RESPONSE), necessdrio no segundo caso da Tabela 2.1. As
defini¢des dos comandos envolvem quais valores devem ser utilizados para CLA, INS, P1, P2,
L., L. e o contetido do corpo no APDU de comando, bem como o que é esperado no corpo do
APDU de resposta e os possiveis valores para SW1 e SW2.

2.3. SMART CARDS 37

As partes 8 e 9 também definem comandos aceitos pelo cartdo. A parte 8 (ISO/IEC, 2004a),
especificamente, define comandos que devem ser usados para operacdes criptogrificas, como
geracdo de chaves assimétricas (GENERATE ASYMMETRIC KEY PAIR), cifragem, decifragem,
assinatura digital, verificacdo de assinatura e hash (PERFORM SECURITY OPERATION, va-
riando P1 e P2 de acordo com a operacdo desejada). A parte 9 (ISO/IEC, 2004b), por sua vez,
define comandos relativos ao gerenciamento dos arquivos no cartdo, como os comandos para
criar (CREATE FILE) e remover (DELETE FILE) arquivos.

2.3.3 Java Card

A tecnologia Java Card, desenvolvida pela Sun Microsystems (atualmente uma parte
da Oracle), permite que Smart Cards e outros dispositivos com restricdes de processamento e
memoria executem programas escritos em um subconjunto da linguagem Java. Tais programas
sdo chamados de applets. Essa tecnologia € baseada em trés elementos principais: a Java Card
Virtual Machine (JCVM), o Java Card Runtime Environment (JCRE) e a Java Card Application
Programming Interface (API).

A mdéquina virtual (JCVM) e o ambiente de execugdo (JCRE) possuem todas as ferra-
mentas necessdrias para habilitar um processador com a capacidade de rodar applets Java Card.
A API (Sun Microsystems, 2006a), por sua vez, consiste em um conjunto de elementos (e.g., rotinas,
classes, métodos, constantes) utilizados na criagdo do codigo Java que serd transformado em um
applet para o cartdo. O objetivo da API é simplificar o desenvolvimento de software, abstraindo
os detalhes da implementacao e fornecendo “blocos de montagem” com aquilo que € necessério
para o desenvolvedor. A API Java Card possui diferentes pacotes com indmeros recursos, entre

eles:

Meétodos para controle de execucao e gerenciamento de recursos de memdria;

Métodos para manipulacao de arrays;

Meétodos para envio e recebimento de APDUs;

» Definicdes de constantes relacionadas ao padrao ISO7816;

Defini¢des de algoritmos de seguranga e criptografia (e.g., cifragem/decifragem, ge-

racdo de chaves, hash, geracao de nimeros aleatorios, assinatura digital e verificagdo,

troca de chaves).

Uma vez que o cédigo Java € finalizado, ele precisa ser transformado em um applet
que possa ser executado pelo cartdo. As ferramentas necessdrias para realizar essa conversiao
fazem parte do Java Card Development Kit (JCDK). O kit de desenvolvimendo consiste em
um pacote de softwares e documentos necessarios para o desenvolvimento de aplicacdes Java
Card, incluindo as especificacdes dos elementos citados no inicio dessa secdo. O guia do usério
do JCDK (Sun Microsystems, 2006b) descreve os passos necessdrios para criar um arquivo de
applet que serd instalado no cartdo. Primeiramente, o codigo-fonte em Java é compilado com a

ferramenta javac, o que resulta em um arquivo de Classe. Esse arquivo de Classe €, por sua

2.3. SMART CARDS 38

vez, convertido para um arquivo CAP (Compiled Applet) com a ferramenta converter, o qual
pode ser instalado no cartdo.
Uma datasheet da Oracle (2012) sobre a tecnologia Java Card lista alguns dos seus

principais beneficios:

n Interoperabilidade: Applets desenvolvidos para Java Card sdao compativeis com
qualquer cartdo que possua essa tecnologia, independentemente do fornecedor e do
hardware;

» Seguranga: Tecnologia desenvolvida com um processo aberto, que faz uso de imple-
mentacoes comprovadas pela industria e avaliagdes de seguranga de alto nivel;

» Capacidade de miiltiplas aplicacoes: Varias aplicacdes podem coexistir de forma
segura em um cartdo com Java Card;

» Natureza dindmica: Novas aplicacdes podem ser instaladas no cartio mesmo apos a
sua emissao para o cliente;

n Compatibilidade com padraes existentes: A API Java Card é compativel com padrdes
como a [ISO7816 e GlobalPlatform.

Em um infogréafico publicado no site do Java Card Forum (2017), € estimada uma
producgdo de mais de 3 bilhdes de cartdes com a tecnologia Java Card por ano desde 2015, nas
mas diversas 4reas de aplicagdo. E antecipada também uma nova versio do Java Card, com

caracteristicas especificas para [oT.

2.3.4 Especifica¢do GlobalPlatform

A GlobalPlatform € uma associacdo industrial sem fins lucrativos com mais de 100
empresas participantes, cujo objetivo é desenvolver e publicar especificagdes relacionadas com a
tecnologia de chips seguros (e.g, Smart Cards). A sua especificacdo para cartdes, GlobalPlatform
Card Specification (GlobalPlatform, 2003), estabelece uma arquitetura para a criagdo de cartdes
capazes de conter e executar multiplas aplicacdes.

O contetdo do cartao € separado em diferentes contéineres, chamados de Arquivos de
Carregamento Executaveis (Executable Load Files), os quais contém os c6digos executdveis
de cada aplicacdo, chamados de Modulos Executaveis (Executable Modules). Essas aplicacdes
rodam em um ambiente de execugdo de escolha do desenvolvedor, e sdo criadas com a API
associada a esse ambiente. Por exemplo, o cartdo pode funcionar com aplicagdes que sao
executadas no Java Card Runtime Environment (JCRE), e desenvolvidas a partir da Java Card
API (Subsecao 2.3.3).

A administracdo das aplicagdes no cartio € feita pelo Dominio de Seguranca (Security
Domain), uma aplicacdo com privilégios de acesso superiores que atua como o representante
do desenvolvedor da aplicagdo dentro do cartdo. Através dele € possivel instalar e desinstalar

aplicacdes, com os comandos definidos na especificacdo. A maioria dos comandos definidos

2.4. PROTOCOLO DE COMUNICACAO TLS 39

na especificacdo GlobalPlatform € proprietaria, ou seja, ndo estd na ISO7816. Os principais
comandos sdo aqueles utilizados para carregar os dados da aplicacdo no cartdo (LOAD), instala-
la (INSTALL) e remové-la (DELETE). Também € definido um comando para a extragao de
informacdes sobre o cartdo (GET DATA) e também sobre o Dominio de Seguranca e as aplicagdes
instaladas no cartdo (GET STATUS).

O Dominio de Seguranca também € responsdvel por criar um canal seguro de comuni-
cacgdo entre o cartdo e uma entidade externa. Essa acao € realizada através do Secure Channel

Protocol (SCP). Ele prové os seguintes servigos de seguranga:

= Autenticacdo de Entidade: a entidade externa autentica o cartdo e o cartdo autentica a
entidade externa;

» Integridade e Autenticacdo de Mensagens: As mensagens trocadas possuem um
MAC;

» Confidencialidade: As mensagens enviadas para o cartio sdo cifradas.

Os servicos de seguranga que serdo utilizados no SCP sao escolhidos pela entidade
externa, mas o minimo requerido na especificacdo € a autenticacdo entre entidades e a presenca
de MACs nas mensagens enviadas para o cartdo. A autenticacdo das entidades é possivel
através do célculo de dados baseados em uma chave base de 16 B contida no cartdo, a qual
s6 € conhecida pelo desenvolvedor da aplicagdao. Em geral, essa chave tem um valor padrao
0x40414243444546474849, o qual pode ser alterado. O resultado dessa troca de autenticacdo
€ a geracdo de chaves simétricas usadas na criacdo e verificagdo dos MACs e na cifragem e
decifragem das mensagens. Dessa forma, apenas alguém com conhecimento da chave base é
capaz de alterar o conteudo do cartdo e, caso ocorram muitas tentativas sem sucesso, 0 cartao

pode ser desabilitado permanentemente, impedindo qualquer comunicagao subsequente.

2.4 Protocolo de Comunicaciao TLS

A comunicagdo entre o dispositivo e o servidor desenvolvidos nesse trabalho é baseada no
protocolo Transport Layer Security (TLS). Este protocolo, definido na RFC 5246 (ALLEN et al.,
2008), tem como objetivo principal prover privacidade e integridade dos dados transmitidos em
uma comunicagdo entre duas partes. Ele € composto basicamente de duas camadas: o Protocolo
de Registro (Record Protocol) e o Protocolo de Aperto de Mao (Handshake Protocol).

2.4.1 Protocolo de Registro

Segundo o texto, o protocolo de registro € a camada mais bdsica, utilizada para encapsular

outros protocolos (entre eles o de handshake), € sua seguranca esta baseada em dois fatores

= Confidencialidade: as mensagens sao criptografadas com criptografia simétrica,

utilizando como chave um segredo compartilhado entre as partes;

2.4. PROTOCOLO DE COMUNICACAO TLS 40

» Integridade e Autenticacdo de Mensagem: as mensagens incluem um Message
Authentication Code (MAC).

Cada mensagem do protocolo de registro € composta por: um byte contendo o tipo
de mensagem, dois bytes com a versdo do TLS que estd sendo utilizada, dois bytes com o
tamanho do contetido da mensagem e o proprio conteiido da mensagem. No texto, € utilizada
uma construcdo de cifragem autenticada conhecida como MAC-then-encrypt, onde € criado
um MAC com o conteido em texto claro (ndo cifrado) da mensagem e ambos, texto claro e
MAC, sao cifrados. Essa constru¢do, contudo, é conhecida por possuir alguns problemas, entre
eles: vulnerdvel ao ataque de ordculo de padding (padding oracle attack) (KATZ; LINDELL,
2014); nao é genericamente segura, ou seja, nao independe das funcdes de cifragem e MAC
escolhidas (KRAWCZYK, 2001); insegura quando analisada sob diferentes no¢des de privacidade
e integridade (BELLARE; NAMPREMPRE, 2000). Para resolver esse problema, foi definida no RFC
7366 (GUTMANN, 2014) uma extensao para o TLS que possibilita a utilizagdo da construgao
encrypt-then-MAC, onde o texto claro € cifrado e o MAC € criado com a cifra. Essa constru¢do
nao possui os problemas da anterior. Adicionalmente, cada MAC € criado com um numero
de sequéncia, o que garante protecdo contra ataques baseados no reenvio de mensagens. A

Figura 2.11 ilustra o formato de uma mensagem.

+ NUMERO DE SEQUENCIA

\ \
[TIPO [VERSAO DO TLS | TAMANHO [CONTEUDO CIFRADO | MAC |

1B 2B 2B VARIAVEL VARIAVEL

Figura 2.11: Estrutura de uma mensagem do Protocolo de Registro com cifragem autenticada

2.4.2 Protocolo de Aperto de Mao

O protocolo de handshake, por sua vez, estabelece uma comunicacdo mutualmente
autenticada entre servidor e cliente, onde sao definidos os algoritmos de criptografia e as chaves
que serdo utilizadas. A autenticagdo das partes € feita através de certificados e os algoritmos sdo

determinados com a escolha de uma suite de criptografia. Cada suite é composta por:

s Um algoritmo de troca de chaves com criptografia assimétrica (e.g., RSA, DH), para
determinagdo da chave secreta que serd utilizada na cifragem dos dados;

= Um algoritmo de cifragem com criptografia simétrica (e.g., AES, 3DES), para cifrar
os dados transmitidos;

s Um algoritmo que serd utilizado nos MACs (e.g., HMAC-SHA, HMAC-SHA256),

para garantir a integridade dos dados.

2.4. PROTOCOLO DE COMUNICACAO TLS 41

Funcao PRF. Antes de descrever como € realizado o handshake, é preciso definir a fungdo
PRF (do inglés, Pseudorandom Function), a qual € utilizada em vérias etapas do protocolo em
questdo. Ela € uma fun¢ao que tem como objetivo gerar uma quantidade arbitraria de nimeros
pseudoaleatdrios a partir de uma fungdo de hash e trés parametros: secret, uma informacgao
secreta; label, uma string em formato ASCII; seed, uma cadeia de bytes que serve como origem

para o calculo. Ela é dada por:

PRF (secret,label,seed) = HMAC-hash(secret, A(1) || label || seed) ||
HMAC-hash(secret, A(2) || label || seed) ||
HMAC-hash(secret, A(3) || label || seed) || ...,

com:

A(0) = label || seed
A(i) = HMAC-hash(secret, A(i—1)).

E possivel gerar uma quantidade arbitraria de bytes pseudoaleatérios com essa fungio.
A quantidade de bytes pseudoaleatdrios necessdrios e a quantidade de bytes que resultam da
execucdo do HMAC (a qual varia com o algoritmo de hash escolhido) definem até que valor
de A(7) a funcdo precisa ser executada, ou seja, definem o critério de parada do algoritmo. No
caso do master_secret, por exemplo, sdo necessdrios apenas os 48 primeiros bytes obtidos.
A Figura 2.12 ilustra o algoritmo, onde € possivel ver seus diferentes elementos, entre eles: o
conjunto de bytes A(0), que serve como ponto de partida para o algoritmo; os conjuntos de bytes
A(i) seguintes, obtidos a partir da execucdo iterativa do HMAC em conjunto com o secret; 0s
blocos de HMAC e concatenacgdo; os blocos de bytes de saida, os quais sdo concatenados e

utilizados como resultado final, apds o alcance do critério de parada do algoritmo.

2.4. PROTOCOLO DE COMUNICACAO TLS 42

A(0)
label | seed
A(l) A(2)
A l l
secret — HMAC secret — HMAC secret — HMAC
Y Y Y
label | label I label I
seed seed seed
secret — HMAC secret — HMAC secret — HMAC
Y
12 bloco de saida 2° bloco de saida 32 bloco de saida

Figura 2.12: Diagrama de funcionamento da fun¢do PRF

Troca de Mensagens durante o Handshake. Cada mensagem do handshake é composta por:
um byte contendo o tipo de mensagem (associado as diferentes etapas do handshake), trés
bytes com o tamanho do contetddo e o préprio contetido, que varia de acordo com a etapa do
handshake. Essa mensagem &, entdo, encapsulada em uma mensagem da Figura 2.11, com o
tipo da mensagem correspondente ao valor definido na RFC 5246 para mensagens de handshake,
igual a 0x16. Quando € iniciada uma nova conexdo, nenhuma suite de criptografia foi decidida,

entdo o conteddo das mensagens nao € cifrado nem possui MAC. A Figura 2.13 ilustra o formato
de uma mensagem do handshake.

I PROTOCOLO DE REGISTRO |

f«—— PROTOCOLO DE HANDSHAKE ———— >
|0x16] VERSAO DO TLS | TAMANHO | TIPO | TAMANHO | CONTEUDO |

1B 3B VARIAVEL

Figura 2.13: Estrutura de uma mensagem do Protocolo de Handshake, encapsulada no Protocolo
de Registro

O handshake € iniciado com uma mensagem do cliente para o servidor, a ClientHello.
Essa mensagem contém, entre outros dados: o client_random, valor aleatdrio de 32 bytes
que sera utilizado em alguns célculos durante o protocolo; uma lista com as suites de criptografia
suportadas pelo cliente; uma lista com as extensdes que o cliente deseja utilizar, como a extensao

do encrypt-then-MAC ou as extensOes definidas para o uso do TLS com curvas elipticas (BLAKE-
WILSON et al., 2006).

2.4. PROTOCOLO DE COMUNICACAO TLS 43

O servidor responde esta mensagem com a ServerHello, mensagem contendo também
um valor aleatdrio de 32 bytes (server_random), a suite criptografica e as extensoes que
serdo utilizadas nessa comunicacgdo, escolhidas das listas enviadas pelo cliente. Apds o envio
da ServerHello, o servidor envia a Certificate, mensagem com um certificado (ou cadeia de
certificados) para o cliente realizar sua autenticag¢do. Caso o algoritmo de troca de chaves definido
na suite seja o DH com Chaves Efémeras (geradas apenas para aquela conexao), o servidor envia
a ServerKeyExchange, que consiste em uma mensagem com sua chave publica efémera assinada
digitalmente com a chave privada relativa ao seu certificado. A assinatura é gerada a partir da

concatenacdo do client_random, do server_random e da propria chave efémera:
ServerKeyExchange = chave || s(client_random || server_random || chave),

onde || denota concatenagio e s é a funcdo de assinatura digital. O servidor pode, opcionalmente,
requisitar a autenticagdo do cliente enviando a mensagem CertificateRequest. Por fim, o servidor
envia a ServerHelloDone, uma mensagem sem contetido, apenas para sinalizar a finalizag¢do das
suas mensagens e esperar a resposta do cliente.

O cliente, por sua vez, se tiver recebido uma CertificateRequest, responde com uma
mensagem Certificate, contendo um ou mais certificados que o servidor usara para autentica-
lo. Esta mensagem € seguida pela ClientKeyExchange, que serd utilizada para estabelecer o
pre_master_secret, valor secreto prévio usado no cdlculo domaster_secret, valor se-
creto final de 48 bytes utilizado no célculo das chaves simétricas que irdo cifrar e assinar os dados.
Caso o algoritmo de troca de chaves seja 0 RSA, o cliente geraum pre_master_secret com-
posto por sua versdo do TLS (dois bytes) e mais 46 bytes aleatorios. O pre_master_secret
€, entdo, cifrado com a chave ptblica do servidor e enviado. Caso o algoritmo de troca de chaves
seja o DH com Chaves Efémeras, o cliente (que ja possui a chave publica do servidor) apenas
enviard sua chave publica, de forma que o pre_master_secret serd o segredo comum
que resulta da execucao do algoritmo. Ap6s o envio da ClientKeyExchange, ambas as partes
possuem o0 pre_master_secret eomaster_secret pode ser obtido através da seguinte

expressao:
master_secret = PRF(pre_master_secret, “master secret”, client_random || server_random).

Caso o cliente tenha enviado a mensagem Certificate, ele agora envia a mensagem
CertificateVerify, a qual contém uma assinatura gerada com a concatenacao de todas as mensagens
de handshake trocadas até o momento desde a ClientHello, utilizando a chave privada relativa
ao certificado enviado pelo cliente para o servidor. Segundo o texto, essa mensagem prové
a verificacdo explicita do certificado do cliente. Apds o envio desta mensagem, todos os
parametros de seguranca da conexao foram estabelecidos. O cliente entdo envia a mensagem
ChangeCipherSpec, sem nenhum contetido, que apenas sinaliza que a troca de mensagens dali

em diante serd realizada com os novos parametros de seguranca definidos. Para finalizar o

2.4. PROTOCOLO DE COMUNICACAO TLS 44

handshake é necessério o envio da mensagem Finished, a qual tem como conteido 12 bytes que
precisam ser verificados pelo recipiente, chamados de verify_data. Ele € calculado a partir

da seguinte expressao:
verify_data = PRF(master_secret, finished_label, h(mensagens_handshake)),

onde o finished_label € “client finished” para a mensagem enviada pelo cliente e “server finished”
para a mensagem enviada pelo servidor e o h(mensagens_handshakes) € um hash de todas as
mensagens de handshake trocadas até o momento concatenadas (tal qual no envio da mensagem
CertificateVerify). Essa mensagem € enviada no formato da Figura 2.11, utilizando as chaves
determinadas no handshake. No total, sdo geradas quatro chaves: duas para o cliente e duas para o
servidor, uma delas para cifrar o texto (write_key) e outra para gerar os MACs (write_MAC _key).
Dessa forma, as mensagens enviadas pelo cliente apds o handshake sdo cifradas apenas com
a write_key do cliente e autenticadas com a write_ MAC_key do cliente, € 0 mesmo acontece
com o servidor. Essas chaves sdo obtidas de um bloco de dados chamado key_block, o qual é

calculado da seguinte maneira:
key_block = PRF (master_secret, “key expansion”, server_random || client_random),

onde o nimero de bytes necessarios depende dos algoritmos decididos no handshake. Apos o
recebimento da mensagem Finished do cliente, o servidor verifica se os dados estdo corretos e
responde com uma ChangeCipherSpec e uma Finished também, que serd verificada pelo cliente.
Com isso, o handshake € finalizado e podem ser trocadas mensagens relativas a aplicacao do
sistema. A Figura 2.14 resume a sequéncia de valores que sdo calculados no handshake até
serem obtidas as chaves simétricas e a Figura 2.15 ilustra e sumariza o processo completo do

handshake descrito nesta sec¢ao.

write_ MAC_key Cliente

ALGORITMO o - write_ MAC_key Servidor
DE TROCA — pre_master_secret —— master_secret —— key_block
DE CHAVES write_key Cliente

write_key Servidor

Figura 2.14: Sequéncia de obten¢do das chaves simétricas no Protocolo de Handshake

2.5. PADRAO PKCS#15

45

CLIENTE

Gera o client_random, escolhe possiveis
suites criptogréaficas e extensdes

Armazena o server_random, a suite
e as extensdes escolhidas

Verifica os certificados e
armazena a chave publica do servidor

Troca de chaves DH:
Verifica a assinatura e armazena a
chave publica efémera do servidor

Sabe que pode enviar a resposta

Envia esta mensagem se recebeu
uma CertificateRequest

Troca de chaves RSA: gera o pre_master_secret

e cifra com a chave publica do servidor

Troca de chaves DH: gera a chave publica efémera
Gera uma assinatura a partir de todas as
mensagens trocadas no handshake até entao

Notifica o servidor que as préximas mensagens
serdo cifradas com os novos parametros de seguranca

Calcula o master_secret e o key_block,
determina as chaves, gera o verify_data,
cifra a mensagem e calcula o MAC

Verifica o MAC,
decifra a mensagem e
verifica o verify_data

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate

ClientkeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SERVIDOR |

Armazena o client_random e decide qual
suite e quais extensdes serdo usadas

Gera o server_random

Troca de chaves DH: Gera uma
chave publica efémera e a assinatura
com o client_random e o server_random

Envia esta mensagem se a autenticagao
do cliente for necessaria

Espera a resposta do cliente

Verifica os certificados e

armazena a chave publica do cliente
Troca de chaves RSA: decifra e
armazena o pre_master_secret
Troca de chaves DH: armazena

a chave publica efémera do cliente

Verifica a assinatura

Calcula o master_secret e o key_block,
determina as chaves, verifica o MAC,
decifra a mensagem e verifica o verify_data

Notifica o cliente que as préximas mensagens
serdo cifradas com os novos parametros de seguranga

Gera o verify_data,
cifra a mensagem e
calcula o MAC

Figura 2.15: Diagrama da troca de mensagens entre Servidor e Cliente, durante o Protocolo de

2.5 Padrao PKCS#15

Handshake do TLS

Os PKCS sdo padrdes elaborados pela empresa RSA Laboratories em conjunto com

outras entidades relacionadas a seguranca de sistemas, com o objetivo de fomentar o desenvol-

2.5. PADRAO PKCS#15 46

vimento de aplica¢des na drea de Criptografia de Chave Publica. Entre eles, estdo definidos os
algoritmos RSA (PKCS#1) e DH (PKCS#3), fundamentais até hoje em aplicacdes que utilizam
esse tipo de criptografia.

O padrao PKCS#15 (RSA Laboratories, 2000), em particular, especifica um formato para
armazenamento de dados em um foken criptografico (e.g., Smart Card). A estrutura de dados

definida neste padrdo se baseia em trés tipos de arquivos:

» Master File (MF): Arquivo obrigatdrio tnico, representa a raiz de toda a estrutura;

» Dedicated Files (DFs): Arquivos que podem conter outros arquivos, sejam eles outros
DFs ou EFs;

n Elementary Files (EFs): Podem ser arquivos que contem informagdes e ponteiros
para objetos armazenados no cartdo (e.g., chaves, certificados), ou podem ser os
proprios objetos em si. No caso de objetos que se relacionam, como um par de chaves
publica e privada, seus EFs compartilham de um mesmo identificador. Esses arquivos

nao podem conter outros arquivos, como os DFs.

Existem quatro tipos de objetos que podem ser armazenados no cartdo, de acordo
com o PKCS#15: chaves (as quais podem ser publicas, privadas ou secretas), certificados,
objetos de autenticagdo (e.g., PINs, senhas e padrdes biométricos) e objetos externos genéricos.
A formatacdo de arquivos segundo o PKCS#15 € andloga a formatacdo de arquivos em um
computador pessoal, onde o MF € o Disco Local, os DFs sdo as pastas no disco e os EFs sdo os
diferentes arquivos dentro de cada pasta.

Em uma estrutura padrao PKCS#15, o ponto de partida é o MF, o DF principal que
contém todos os outros arquivos armazenados no dispositivo. Dentro dele, existe pelo menos um
arquivo, o DF(PKCS#15) (chamado de Diretério da Aplicacdo PKCS#15), o qual contém todos
os arquivos e objetos relacionados ao PKCS#15. Opcionalmente, podem ser criados outros DFs
relativos a outras aplicagdes (inclusive outras aplicacdes PKCS#15) e o EF(DIR), um arquivo
que lista todas as aplica¢des presentes no dispositivo.

Dentro do DF(PKCS#15), existem os EFs chamados Arquivos de Diretério (Directory
Files), os quais guardam informagdes e ponteiros para os diferentes tipos de arquivos armazena-
dos no dispositivo. O principal Arquivo de Diretério é o EF(ODF) (obrigatério), o qual guarda
ponteiros para outros Arquivos de Diretério. Os Arquivos de Diretdrio restantes guardam pontei-
ros para diferentes objetos. S@o eles: EF(AODF), para objetos de autenticacdo; EF(PrKDF), para
chaves privadas; EF(PuKDF), para chaves publicas; EF(SKDF), para chaves secretas; EF(CDF),
para certificados; EF(DODF), para objetos externos. Esses EFs sdo todos opcionais, a depender
do que serd armazenado. E importante ressaltar que os Arquivos de Diretério guardam apenas
referéncias aos objetos, € ndo os proprios objetos em si, estes ficam armazenados em outros
enderecos no dispositivo. Além dos Arquivos de Diretério, existem ainda os EF(TokenInfo)
e EF(UnusedSpace). O primeiro € obrigatdrio e contém informagdes gerais sobre o foken € o

segundo € opcional e contém informacdes sobre os espacos livres no token.

47

2.5. PADRAO PKCS#15
Um ponto importante da especificacio PKCS#15 € que todos os arquivos na sua estrutura

possuem condicdes de acesso, as quais limitam quais arquivos podem ser criados, modificados
ou removidos e quem pode executar tais operagdes. Sao definidas quatro condicdes, sumarizadas

na Tabela 2.2. Dessa forma, arquivos com informacdes mais sensiveis, como chaves, s6 podem

ser alterados ou utilizados em operacdes criptogréaficas mediante autenticacdo do usudrio.

CONDICAO SIGNIFICADO
NEV A operagao nunca € permitida.
ALW A operacao sempre é permitida.
CHV A operacao so é permitida ap6s autentica¢do do usuério.
SYS A operagéao s6 € permitida com a apresentacao de uma chave do sistema,
geralmente disponivel apenas para o fornecedor do token.
Tabela 2.2: Condicdes de acesso em uma estrutura de arquivos PKCS#15

A Figura 2.16 ilustra uma estrutura de arquivos PKCS#15 em um foken criptogréfico. As

conexoes pontilhadas representam arquivos opcionais, as tracejadas representam referéncias que
um arquivo faz a outro (ou outros) e as cheias, por sua vez, representam os arquivos obrigatorios

EF(ODF)
-
> EF(PIKDF) }------ ~(Chave Privada RSA |
:
i -~ Chave Privada ECDSA |
{~»{ EF(PUKDF) }------~(Chave Publica RSA
EF(DIR) i --»{ Chave Publica ECDSA |
,’I:‘[\\\\W——T——»{Chave Secreta AESJ
L~>[Chave Secreta 3DES]

DF(PKCS#15)
*[Certificado Cliente]

Outros DFs/EFs [N
i e EF(CDF) Fmmpme-

1‘1 \ "*f{Certificado Servidor}
L A== EF(DODF) ————‘——{Objeto externo #1]

\\\\\‘ ’[EF(UnusedSpace)]

Figura 2.16: Representagio grafica do sistema de arquivos PKCS#15

2.6. NOTACAO ASN.1 48

2.6 Notacao ASN.1

A Abstract Syntax Notation One (ASN.1) € uma maneira de representar diferentes tipos
de dados de forma abstrata, através de regras de escrita bem definidas. Esta notacdo € especificada
na Recomendagdo X.680 (ITU-T, 2008) e € utilizada em outros padrdes da drea de tecnologia
como, por exemplo, 0 PKCS#15 e o TLS. O padrao X.680 define varios tipos simples de dados,
como inteiros, booleanos, cadeias de bits, cadeias de bytes, sequéncias de objetos, entre outros, os
quais podem ser utilizados para a criagdo de tipos mais complexos, relativos a uma determinada
aplicacdo. Na Tabela 2.3 estdo demonstrados alguns exemplos de definicGes em ASN.1, retirados
do PKCS#15.

EXEMPLO DESCRICAO

pkcsl5-ub-reference INTEGER ::= 255 Declaragdo de uma constante nomeada pkcs15-ub-
reference, com um valor inteiro igual a 255.

Reference ::= INTEGER (0..pkcsl5-ub-reference) Declaragdo de um novo tipo de dado chamado Re-
ference, o qual € um inteiro de valor no intervalo de
0 a pkcs15-ub-reference, a constante definida previa-

mente.

CommonKeyAttributes ::= SEQUENCE { Declaragdo de um segundo tipo de dado, Common-
iD Tdentifier, KeyAttributes, composto por uma sequéncia de varias
usage KeyUsageFlags, informacgdes, cada uma de um tipo diferente. Entre
native BOOLEAN DEFAULT TRUE, essas informacoes estd a keyReference, que é do
accessFlags KeyAccessFlags OPTIONAL, tipo Reference. E possivel ver outros tipos de dados
keyReference Reference OPTIONAL, definidos pelo desenvolvedor, como Identifier, KeyU-
startDate GeneralizedTime OPTIONAL, sageFlags e KeyAccessFlags, dos quais s6 é possivel
endDate [0] GeneralizedTime OPTIONAL, saber o significado olhando sua declaragdo no docu-

} mento, como foi feito com o tipo Reference.

Tabela 2.3: Exemplos de definicdes escritas na notacdo ASN.1

Quando esses dados sao utilizados em sistemas digitais, eles precisam ser traduzidos
para conjuntos de bytes, os quais podem ser lidos, modificados e transmitidos. O método para
codificar em bytes objetos escritos com a ASN.1 estd definido na Recomendacao X.690 da ITU
(ITU-T, 2002). Ele define um conjunto de regras principais conhecidas como Basic Encoding
Rules (BER). Essas regras utilizam a construc¢ao Tag-length-value (TLV), onde cada objeto é
representado com trés campos distintos: fag, comprimento e valor. A tag identifica o tipo do

dado e contém trés informagdes:

= A classe do dado: universal (reservada para os tipos de dados definidos na ASN.1),
aplicagdo, especifico do contexto e privado (escolhidas pelo usudrio);

= Se o dado € primitivo, o campo valor representa o dado diretamente, ou construido, o
campo valor representa um conjunto de outros tipos de dados;

= O ndmero identificador relativo ao tipo do dado.

A tag pode ser codificada em um ou mais bytes, dependendo do tamanho do niimero

identificador. A Tabela 2.4 exemplifica algumas fags de dados definidas no padrao X.680.

2.7. CONSIDERACOES FINAIS 49

TAG CARACTERISTICAS TIPO

0x01 Universal, Primitivo, NUumero 1 Booleano (RBOOLEAN)

0x02 Universal, Primitivo, Numero 2 Inteiro (INTEGER)

0x03 Universal, Primitivo, NUmero 3 Cadeia de Bits (BITSTRING)
0x04 Universal, Primitivo, Numero 4 Cadeia de Bytes (OCTETSTRING)

0x30 Universal, Construido, Numero 16 Sequéncia de Dados (SEQUENCE)

Tabela 2.4: Tipos de dados da notagdo ASN.1

O comprimento dos dados representa a quantidade de bytes presentes no campo valor.
Ele pode ser codificado em um ou mais bytes, dependendo do tamanho dos dados. Na sua forma
curta, com apenas um byte, o oitavo bit € sempre igual a 0 e os sete bits restantes guardam
o tamanho, o qual pode variar de 0 a 127. Na sua forma longa, com vérios bytes, o primeiro
byte possui o oitavo bit sempre igual a 1 e os sete bits restantes guardam a quantidade de bytes
subsequentes necessdrios para armazenar o tamanho. Por exemplo, um campo comprimento
dado por 0x08 guarda um tamanho de 8 bytes, enquanto que um campo comprimento dado por
0x820100 guarda um tamanho de 256 bytes.

Para exemplificar a codificagdao de um determinado dado representado com ASN.1, pode-
se usar a constante pkcsl5-ub-reference definida previamente. Ela € um inteiro de valor 255
(OxFF em hexadecimal e 11111111 em bindrio). Como os inteiros em ASN.1 possuem sinal
(representacao em complemento de dois), sdo necessarios dois bytes para representar o valor
255 (um tnico byte de valor 11111111 representaria o inteiro -1). Sua tag é a que estd definida
na Tabela 2.4 para inteiros e o tamanho € igual a 2. Portanto, a representacdo de acordo com as
BER ¢ dada por 0x020200FF.

Uma ferramenta muito utilizada durante o desenvolvimento deste trabalho para verifica-
cdo de dados codificados dessa forma foi a asnljs (LUCHINI, 2017). Este software recebe como
entrada os dados codificados em formato hexadecimal, processa-os e retorna a representacao em
ASN.1.

2.7 Consideracoes Finais

Cada aspecto do desenvolvimento do sistema proposto neste trabalho é especificado em
padrdes desenvolvidos e adotados pela industria e pela academia. Assegurar a conformidade com
tais padrOes significa garantir a interoperabilidade do sistema com outros sistemas e projetos
que também estejam de acordo com os mesmos documentos. Outra questdo particularmente
importante quando se trata de seguranca € a necessidade de se utilizar métodos e algoritmos de
conhecimento publico, os quais estdo sob constante averiguacdo da sua eficicia. Tais métodos e

algoritmos estdo, também, detalhados em especificacdes citadas neste capitulo.

50

TRABALHOS RELACIONADOS

Nesta sec¢do s@o apresentados trabalhos académicos que se relacionam com o tema deste
trabalho. As pesquisas dos textos foram realizadas nas bibliotecas digitais IEEE Xplore e ACM.
Os termos de busca utilizados foram as palavras-chave definidas no resumo deste trabalho e
termos relacionados (e.g., sindbnimos, plurais, diferentes formas de escrever). A Tabela 3.1

sumariza os termos citados.

PALAVRAS-CHAVE E TERMOS RELACIONADOS

Internet of Things, Internet-of-Things

Security, Secure, Privacy, Authentication

Smart Card, Smart Cards, Smartcard, Smartcards

Java Card, Java Cards, Javacard, Javacards

Microcontroller, Microcontrollers, Microprocessor, Microprocessors

Tabela 3.1: Termos de pesquisa utilizados na busca de trabalhos relacionados

As pesquisas consistiram em diferentes combinacdes dos termos da tabela, de forma
a obter resultados mais especificos ou mais generalizados. As combinac¢des sdo feitas nas
expressoes de busca, as quais permitem a utilizacdo de operacdes 16gicas como AND e OR para
agrupar os termos. Os textos foram selecionados entre os 100 primeiros de cada pesquisa, e
todas as pesquisas foram limitadas a publica¢des datadas de no méximo 15 anos. E necessério
um intervalo de tempo maior, pois apesar de IoT ser um assunto muito recente, pesquisas com
Smart Cards e Java Cards existem hd mais tempo.

A Figura 3.1 mostra diagramas de Venn, os quais destacam as diferentes buscas realizadas.
As diferentes tonalidades representam a quantidade de termos agrupados. E importante ressaltar
que a drea de cada regido nos diagramas ndo tem relagdo com a quantidade de textos encontrados,
¢ apenas uma representacdo para visualizar as diferentes combinacdes de termos que foram
utilizadas. Como os Java Cards fazem parte de um subgrupo dos Smart Cards, eles foram
tratados como sindnimos nas pesquisas. Pode-se observar que as pesquisas se concentraram
principalmente em trabalhos envolvendo Smart Cards e microcontroladores. Também foi feita

uma pesquisa apenas com os termos de 10T e seguranga, com o objetivo de ver solucdes gerais

3.1. APLICACAO DE SMART CARDS EM PROTOCOLOS DE SEGURANCA 51

de seguranca para [oT, bem como avaliagdes de seguranca e surveys. A maioria dos resultados

encontrados foi relacionada a essa tltima pesquisa.

Internet of Things Internet of Things Smart Card/Java Card Smart Card/Java Card

e ©

Security Microcontroller

Internet of Things Smart Card/Java Card Smart Card/Java Card Internet of Things Smart Card/Java Card

~» @

Security Security Microcontroller Security Microcontroller

Figura 3.1: Diagrama das pesquisas de trabalhos relacionados realizadas

3.1 Aplicacao de Smart Cards em Protocolos de Seguranca

Badra e Urien (2008) apresentam uma proposta de sistema que utiliza Smart Cards para
implementar o Protocolo TLS, aproveitando a seguranga fisica que o cartdo fornece. A arquitetura
descrita no texto estabelece que tanto o cliente quanto o servidor possuem um SC, com 0s quais
eles se comunicam. A aplica¢@o ndo € especifica para [oT, nem detalha o hardware dos clientes
(€ descrito um teste com telefones celulares). A principal diferenga entre o software do texto e o
que foi desenvolvido neste trabalho é que todos os parametros do handshake ficam armazenados
no préprio cartdo, e as entidades precisam enviar comandos ao mesmo para obter esses dados.
Pode-se, inclusive, extrair do cartdo as chaves negociadas apds o handshake, algo que o sistema

proposto neste trabalho ndo permite.

3.2 Conexao entre Microcontroladores e Smart Cards

A base da seguranca do dispositivo IoT proposto neste trabalho consiste na integragao
entre seu microcontrolador e um Smart Card com capacidades criptograficas. Foram encontrados
alguns trabalhos académicos que também propdem essa integracao.

Kim et al. (2008) descrevem a utilizacdo de um System-on-Chip (SoC) com um proces-
sador RISC de 32 bits e um moédulo criptografico AES em um leitor de SCs para a verificagio

de dados biométricos contidos em cartdes. Nessa aplicacdo, o cartdo pertence a um usudrio e

3.3. SEGURANCA NA INTERNET DAS COISAS 52

contém informagdes biométricas do mesmo. Embora esse trabalho possua uma implementacdo
realizada, seus objetivos sdo distintos do que é proposto neste trabalho, pois nao existe um foco
em IoT e o cartdo nao é utilizado como um médulo criptografico para o sistema, apenas como
um objeto para identificacdo.

Outros trabalhos estdo concentrados especificamente na conexdo entre microcontrola-
dores e Smart Cards, um dos pontos principais do desenvolvimento deste trabalho. Muji ef
al. (2008), por exemplo, apresentam uma simulacdo de comunicagdo entre um PIC (familia
especifica de microcontroladores desenvolvida pela Microchip Technology) e um Smart Card, o
qual € modelado por uma memoéria EEPROM, para aplicacdo em seguranca de veiculos. Nessa
aplicacdo, o cartdo possui uma informacdo de identificagdo armazenada previamente em sua
memoria por meio de uma interface grafica em um computador. A informagao € reconhecida
pelo microcontrolador (que também estd conectado ao carro) e permite ao usudrio dar a partida
no veiculo. O texto ndo menciona a utilizacao das capacidades criptogréficas do cartdo, apenas
do seu armazenamento seguro de informag¢des, nem a utilizacao de redes de comunicagdo. Por
fim, Dichou, Tourtchine e Rahmoune (2015) realizam uma simulacio da troca de APDUs entre
um Smart Card, o qual é modelado por um PIC e uma meméria EEPROM, e um segundo PIC.
A simulacdo implementa a recep¢do do ATR do cartdo e o envio de trés comandos definidos
na ISO7816: VERIFY, SELECT e UPDATE RECORD. Nio existe uma aplicacdo com o cartdo
nesse texto, nem a utilizagcdo de suas capacidades criptograficas. Em suma, os trabalhos encon-
trados que relacionam Smart Cards, microncontroladores e segurancga ndo sao direcionados para
IoT, e mesmo aqueles que se propdem a integrar cartdes e microcontroladores apenas realizam

simulacdes simples.

3.3 Seguranca na Internet das Coisas

3.3.1 Visao Geral

Uma grande parte dos textos encontrados nas pesquisas sobre seguranca na [oT analisam
o0 seu status atual, identificando problemas e desafios e propondo solu¢des. Kanuparthi, Karri
e Addepalli (2013) identificam quatro desafios existentes na consolidagdo da IoT e discutem
possiveis solucdes de hardware e seguranga embarcada. Os desafios sdo: garantia de origem e
integridade dos dados; gerenciamento de identidades; gerenciamento de confianga; privacidade.
Os trés primeiros desafios, segundo os autores, podem ser vencidos com a utiliza¢do de Physical
Unclonable Functions (PUFs), dispositivos que sdo o equivalente em hardware a uma funcio de
sentido tnico (one-way function, do inglés): respondem a um estimulo de uma forma dificil de ser
prevista ou replicada, devido a introdugao de fatores aleatérios durante seu processo de fabricagao.
Herder et al. (2014) apresentam uma extensa andlise sobre PUFs, suas implementacdes e
aplicagdes. A questdo da privacidade, por sua vez, pode ser resolvida com a utilizacao de
algoritmos leves de cifragem.

Abomhara e Kgien (2014) apresentam uma visdo geral do estado da IoT, discutindo

3.3. SEGURANCA NA INTERNET DAS COISAS 53

pontos como arquiteturas existentes, dominios de aplicacdo, tecnologias, ameacas, desafios
e requerimentos de seguranca e privacidade. Os maiores desafios, segundo os autores, sdo a
privacidade do usudrio e protecdo de informagdes; gerenciamento de identidade e autenticagao;
gerenciamento de confianca e integracdo de politicas; controle de acesso e autorizacio; seguranca
fim-a-fim; solu¢des de seguranca resistentes a ataques. Bertino et al. (2016) identificam desafios
Jja citados previamente, como controle de acesso, seguranca de dados, autenticagdo de dispositivos
e gerenciamento de identidades, e adicionam outros itens, tais como: seguranca de middleware,
gerenciamento de patches, descoberta de dispositivos e defesa de perimetro.

Foram publicadas também algumas surveys sobre seguranca na [oT. Uma delas, de
autoria de Pawar e Ghumbre (2016), mostra uma visao geral de aplicagdes e servigos da [oT
voltados para assisténcia médica. Além disso, também identifica desafios de seguranca, de
acordo com os outros trabalhos citados, sumariza trabalhos publicados com propostas de solug¢dao
para cada desafio, e sugere a utilizacdo de algoritmos criptograficos em aplicagdes IoT, como
AES e RSA (ambos aplicados neste trabalho). Outra survey, desenvolvida por Yang et al. (2017),
mais extensa que a anterior, faz referéncias a trabalhos relacionados a diferentes caracteristicas,
entre elas: limita¢des dos dispositivos IoT, como tempo de bateria e restricdes de processamento;
classificacdo dos ataques a [oT; esquemas e arquiteturas para autenticacdo na [oT; seguranca
da IoT em suas diferentes camadas. Essa tltima andlise considera a [oT dividida em quatro
camadas distintas: Camada de Aplicacdo (e.g., casas inteligentes, sistemas de saide); Camada
de Transporte (e.g., TLS, DTLS); Camada de Rede (e.g., IP); Camada de Percepcao (e.g., redes

de sensores).

3.3.2 Propostas de Implementacao e Verificagio

Hummen et al. (2013) estudam a viabilidade de se utilizar certificados para autentica¢io
na [oT, levando em conta as restri¢des existentes nos dispositivos que fazem parte da rede. O
protocolo considerado na pesquisa é o DTLS, uma versdo do TLS para o transporte de dados
através de datagramas (pacotes utlizados em conexdes onde entrega, hora de chegada, e a ordem
das informagdes ndo sdo garantidas). Os autores concluem que a utilizacao de certificados pode
introduzir uma sobrecarga considerdvel para dispositivos com muitas restri¢des. O projeto deste
trabalho implementa a autenticac@o de clientes e servidores com certificados, mas o proprio
servidor € a Autoridade de Certificacdo raiz (ou CA raiz, definida na Secao 2.1), de forma que
ndo existem longas cadeias de certificados a serem verificados. Ainda assim, € necessdria a
realizacdo de uma avaliacdo minuciosa de performance para determinar a viabilidade dessa
aplicacdo. Liu et al. (2016) propdem uma solug@o para autenticag@o na IoT através da criac@o de
uma CA privada. No exemplo descrito no texto, um hotel possui um servidor de CA que emite
certificados para os hdspedes, os quais se autenticam com o sistema de controle automédtico dos
quartos. A autenticacdo € realizada com o Protocolo TLS. Este trabalho, como mencionado
anteriormente, propde uma solu¢do onde o servidor local é a prépria CA.

Muitos artigos propdem novos algoritmos e esquemas de autenticacdo e/ou cifragem de

3.4. CONSIDERACOES FINAIS 54

dados para [oT. Como o propésito deste trabalho ndo € propor um novo algoritmo, mas sim
implementar um algoritmo existente e amplamente utilizado em aplicacdes de segurancga, esses
textos foram considerados fora de escopo e ndo sdo citados.

Tekeoglu e Tosun (2016) desenvolvem uma plataforma de testes para dispositivos co-
nectados a IoT. Com a utilizacdo de hardwares e softwares especializados para captura de
pacotes (incluindo o Wireshark, também utilizado neste trabalho), os autores sdo capazes de
analisar o trafego de mensagens de cinco tipos diferentes de dispositivos: dongles HDMI para
streaming de midia, cAmeras, drones, smartbands e smartwatches, os quais se comunicam via
Wi-Fi e Bluetooth. Em posse dos dados de transmissdo, sdo realizados experimentos para avaliar
diferentes aspectos da comunicacdo, entre eles: testes de vulnerabilidades com softwares especi-
ficos; investigagdo das suites de criptografia utilizadas no Protocolo TLS por cada dispositivo;
observacao de updates de firmware ndo criptografados; seguranca das senhas, dos aplicativos
para smartphones, da nuvem e dos dados transmitidos. Os autores concluem que os variados
tipos de dispositivos possuem sérias vulnerabilidades e ressaltam a dificuldade de testar cada um

deles.

3.3.3 Seguranca para Dispositivos [oT de Baixo Custo

No que diz respeito a implementacdo de seguranca na IoT especificamente com dispo-
sitivos de baixo custo (e.g. Arduino), foram encontrados alguns textos ndo académicos (fora
da pesquisa descrita no inicio do capitulo) com propostas de implementacdo. Ribeiro (2012),
por exemplo, desconsidera a implementacdo da seguranca no proprio dispositivo, por suas
restrigdes de hardware, algo que pode ser resolvido com a proposta deste trabalho. A solugdo
do autor envolve a comunicagdo segura entre dois servidores MQTT: um interno, em uma rede
local em contato direto com cada dispositivo IoT e um externo, conectado a internet. E uma
solucdo possivel, porém nio existe uma autenticacio para cada dispositivo € a comunicagao
local ainda € insegura. Ardiri (2014) propde algo semelhante ao que se pretende fazer neste
trabalho, um acordo de chave simétrica AES entre cliente (um Arduino UNO) e servidor para
comunicacdo criptografada utilizando o algoritmo RSA. No entanto, o protocolo proposto ndo

envolve autenticagdo de nenhuma das partes.

3.4 Consideracoes Finais

A seguranca da IoT é um tema de extrema importancia no contexto atual. Como
mencionado anteriormente, a pesquisa de publicagdes envolvendo os termos de 10T e seguranca
retornou a maior quantidade de resultados. Foi obtido um total de 832 textos, dos quais 452,
mais da metade, foram publicados a partir do ano de 2016. Existem diversas andlises do estado
atual da IoT, bem como indmeras propostas para adicionar seguranca a [oT nas suas diversas
camadas de operacdo. No entanto, a utilizacao de Smart Cards integrados em dispositivos [oT,

da forma como € feita neste trabalho, € uma solucio pouco explorada na literatura, com um total

3.4. CONSIDERACOES FINAIS 55

de 7 resultados encontrados nas pesquisas relacionando os termos de IoT, seguranca e Smart
Cards. Embora existam propostas de integracao entre SCs e microcontroladores e também um
trabalho utilizando cartdes em uma comunicacdo através do protocolo TLS, nao foi encontrado

um trabalho que una essas idéias em um contexto de Internet das Coisas.

56

PROPOSTA DE ARQUITETURA

A arquitetura proposta neste trabalho estd ilustrada na Figura 4.1. Ela é composta por
dispositivos IoT, os quais atuam como clientes, e um computador, que atua como servidor. Esses
componentes se comunicam em uma conexao Wi-Fi (Protocolo 802.11) através de um socket
TCP.

O computador roda uma aplicacdo escrita em Python, TCPServer.py, a qual realiza
a configuracdo dos clientes previamente a sua utilizacdo e, posteriormente, estabelece uma
comunicagdo segura com os mesmos através dos protocolos de Handshake e Registro do TLS
descritos nas subsecdes 2.4.1 e 2.4.2, respectivamente. Essa aplicacio é baseada no médulo open
source Cryptography, que implementa fungdes criptograficas utilizadas na aplica¢do e também
da suporte a utilizacdo de certificados.

O dispositivo 10T, por sua vez, é composto por trés partes principais: microcontrolador,
Smart Card e sensores. O microcontrolador (MCU) € o “cérebro” do dispositivo. Nele esta
instalada a aplicacao principal, WifiClient.ino, desenvolvida no Arduino IDE. Esta aplicagdo €
responsavel pela comunicagdo segura entre o cliente e o servidor, e também pela comunicagao
interna entre MCU, Smart Card e sensores. Ela € construida a partir de diferentes bibliotecas, as
quais podem ser visualizadas na Figura 4.1. Com excec¢io da ArduinoSCLib (que apenas foi
modificada e expandida) e da ArduinoDES, todas as bibliotecas foram criadas e desenvolvidas
durante o trabalho. O Smart Card (SC) € responsavel pela realizacio das operagdes criptogréficas
e célculos do TLS no cliente, através da API Java Card (Subsecdo 2.3.3), e por armazenar dados,
como chaves e certificados, de forma segura na sua memoria, utilizando uma estrutura de arquivos
PKCS#15 (Secdo 2.5). Nele estd instalada uma versao modificada e expandida do applet open
source IsoApplet, que da suporte as atividades citadas. A comunicagdo entre o MCU e 0 SC é
feita através de uma interface serial, por onde sdo trocadas APDUs, descritas na Subsecado 2.3.2.
Por fim, os sensores realizam medidas e as enviam para o MCU, o qual as envia para o servidor
em mensagens criptografadas e autenticadas. A conexdo dos sensores pode ser feita através de
GPIOs ou por um barramento SPI (um tipo de comunicagdo serial).

Os detalhes do desenvolvimento da plataforma de hardware dos dispositivos IoT e da

arquitetura de software do sistema sdo especificados nas secdes 4.1 e 4.2.

4.1. PLATAFORMA DE HARDWARE 57

GlobalPlatform

IsoApplet

WifiClient

Biblioteca Biblioteca Biblioteca
ASN.1Functions ArduinoSCLib ArduinoDES

Estrutura PKCS#15

Biblioteca
GPSecure

Biblioteca
SmartCarduino

Criptografia

Calculos do TLS

Biblioteca
CardTLS

Interfaces GPIO/SPI

Conexao Wi-Fi
Socket TCP
Troca de Registros TLS

TCPServer

Moédulo Cryptography

Figura 4.1: Arquitetura geral do sistema proposto neste trabalho

4.1 Plataforma de Hardware

O objetivo mais basico de hardware era estabelecer uma conexao entre o SC e um
Microcontroller Unit (MCU). Testes iniciais foram realizados com Arduino UNO, uma das
plataformas de desenvolvimento de baixo custo mais utilizadas para rdpida prototipacio de
projetos eletronicos (de acordo com pesquisa realizada pelo Hackster (2016)), que possui o
MCU ATmega328P. Esta placa foi escolhida por sua abordagem open source (hardware e
software), simplicidade de programac¢do no Arduino IDE, possibilidade de extensdo do c6digo
com bibliotecas escritas em C/C++ e vasta comunidade de usudrios (aproximadamente 400.000
no férum oficial), os quais disponibilizam recursos e informagdes. As caracteristicas do SC
utilizado estdo sumarizadas na Tabela 4.1. Essas informacdes foram obtidas com o software
open source GlobalPlatformPro (PALJAK, 2016).

4.1.1 Placas leitoras de Smart Cards utilizando Arduino UNO

A biblioteca open source ArduinoSCLib (BARGSTEDT, 2016), desenvolvida para Ar-
duino e placas compativeis com Arduino e que foi utilizada no projeto, implementa o envio
e recebimento de informagdes para o SC, detalhados na Secdo 4.2. Ela permite uma ligacao
direta entre a placa e o cartdo, sem a necessidade de chips adicionais, o que pode ser visto

na Figura 4.2. O VCC do cartdo € ligado em um pino digital do Arduino, e ndo na saida de

4.1. PLATAFORMA DE HARDWARE 58

ATR 3B FE 18 00 00 80 31 FE
45 80 31 80 66 40 90 91
06 2D 1083 01 90 00 D3

Fabricante do Cl Infineon Technologies
GlobalPlatform Versdo 2.1.1

Java Card Versao 2.2.2
Tamanho ID-1
Classe A

Tabela 4.1: Informacdes do Smart Card utilizado neste trabalho

alimentagdo de 5V, uma vez que € necessario controlar quando o SC estd ligado ou desligado,
como descrito na Se¢do 4.2. Tanto o VCC quanto os outros terminais do cartdo que precisam
ser ligados em pinos digitais do Arduino (RST e I/O) podem ser conectados em qualquer pino
digital, dependendo das necessidades do projeto. O terminal CLK, no entanto, precisa ser ligado
no pino DY, pois o mesmo estd atrelado ao médulo de timer do Arduino, o qual gera o sinal de
relogio. A ISO7816-3 (ISO/IEC, 2006) determina que o relogio deve ter frequéncia entre 1 MHz e
5 MHz, com o valor mdximo podendo ser menor de acordo com o que € suportado pelo cartao. O
valor médximo de frequéncia suportado por cada SC € informado no ATR. No cartdo utilizado no
projeto, o valor méximo € de 5 MHz, mas a comunicagdo sem erros utilizando o Arduino UNO
s6 foi possivel com frequéncia de 1 MHz. Para valores maiores de frequéncia, as mensagens
ndo foram recebidas corretamente (e.g., 0 ATR, que € um valor fixo, era diferente do esperado).
Possiveis causas para esse problema podem ser: uma limitacao de velocidade de leitura da porta
digital da placa, associada a velocidade de processamento do préprio Arduino UNO (limitagcdo
de hardware); implementagdo de leitura de dados da biblioteca ArduinoSCLib ndo otimizada,
fazendo com que sejam utilizados mais ciclos de processamento do que a quantidade suficiente
para realizar a leitura dos bytes com uma frequéncia maior (limitacdo de software).

O acesso aos terminais do SC ¢ feito com a utilizagdo de um slot para leitor de cartao. O
slot utilizado no projeto possui uma chave normalmente aberta entre os terminais C4 e C8 do
SC, os quais nao possuem func¢do no sistema (NC significa Ndo Conectado). Quando o SC é
inserido, a chave fecha e a presenca do cartdo pode ser detectada por um pino digital do Arduino
(e.g., pino D5, na Figura 4.2). A Figura 4.3 mostra o formato do slot e como o cartio € inserido
para leitura. E importante ressaltar que apesar de o slot ser feito para SCs de tamanho ID-000,
€ possivel adaptd-lo para utilizacdo com cartdes maiores e isso foi feito nas Placas de Circuito
Impresso (PCls) iniciais do projeto.

As primeiras placas do projeto foram desenvolvidas no software EAGLE (Easily Appli-
cable Graphical Layout Editor), desenvolvido pela CadSoft Computer, subsidiaria da Autodesk
desde 2016. O EAGLE € um programa de Electronics Computer-aided Design (ECAD), ca-

tegoria de softwares que possuem um conjunto de ferramentas para elaboracdo de sistemas

4.1. PLATAFORMA DE HARDWARE 59

33V 5V AREF 100kQ
SCK/D13 AN
MISO/D12
MOSI/~D11 100nF
IOREF SS/~D10 { }
slisET NB: L_€1rvce)l c5(GND)
GC2(RST) C6(SPU)
ARDUINO UNO C3(CLK) C7(1/0) L
~D6 C4(NC) C8(NC) /
A0 ~D5 X W
Al D4
A2 ~D3
A3 D2
A4/SDA TX/D1 § 100k
A5/SCL GND RX/DO

Figura 4.2: Conex@o entre Arduino UNO e Smart Card, evidenciando a conexdo fixa entre o
terminal CLK e o pino D9

(a) (b)

Figura 4.3: Visdo lateral (a) e superior (b) do slot para o Smart Card. Fonte: ckswitches.com

eletronicos, como Cls e PClIs. Ele foi escolhido inicialmente por ser utilizado pela maioria
das comunidades de projetos eletronicos mais acessadas pelos usudrios (Hackster, 2016). Todas
fornecem os arquivos de projeto das suas placas no formato do EAGLE.

No programa, € possivel construir esquemadticos de circuitos (representacdo abstrata,
para mostrar o funcionamento) e desenhar layouts de Placas de Circuito Impresso. O aplicativo
possui uma vasta cole¢c@o de bibliotecas de simbolos (representagcdes graficas dos componentes,
posicionados no esquematico do circuito) e footprints (representacdes graficas das regides de
cobre onde os componentes serdo soldados, posicionados no layout da placa), que pode ser
expandida com outras bibliotecas criadas por terceiros ou pelo proprio usudrio. A Figura 4.4
mostra um exemplo de esquematico e layout para uma das primeiras placas construidas durante
o desenvolvimento deste trabalho, onde podem ser vistos o simbolo e footprint para o slot de

Smart Card, além de outros componentes.

4.1. PLATAFORMA DE HARDWARE 60

— A0 RX f—
— A1 X —MWW——m o
— A2 o
— A3 D2 |— »——|H o
— A4 ‘D3 |— o,
— A5 D4
D5 |—— O, o
“D6 VCC GND |—
— IOREF D7 RST VPP [— o
— RES D8 |— CLK 110
— VIN *D9 c4 c8 o
— sV D10 |— o / ¢
— 3.3v D11 |— o | o
— AREF D12 |[— o o
— GND D13 |— o o
GND SDA |[— (o] o
— GND sCcL |—

(a) (b)

Figura 4.4: Esquematico (a) e layout (b) de uma das placas fabricadas, criados no EAGLE

Durante a elaboragdo das primeiras PCls, o objetivo era criar um modulo leitor de cartdo
para Arduino semelhante a um leitor para computador, onde o cartdo pudesse ser encaixado para
leitura. A Figura 4.5 mostra as placas que foram fabricadas e desenvolvidas com a utiliza¢do do
EAGLE.

PRI () () Ut k)) ()
. Q&.‘.;. o

(a) (b) (c)

Figura 4.5: Primeiras PCIs fabricadas, em ordem cronolégica da esquerda para a direita

A placa da Figura 4.5a foi feita para ser um médulo separado, conectado com fios ao
Arduino, utilizando os pinos a direita da placa. O posicionamento do cartdo no local correto do
slot (para que os terminais do cartdo fizessem contato com os terminais do leitor) foi feito com a
instalacao de parafusos em posicoes especificas da placa, marcadas no software. A abordagem
da placa na Figura 4.5b foi um pouco diferente, pois ela foi fabricada para ser um shield, médulo
que € encaixado em cima dos pinos do Arduino e que pode ser “empilhado” juntamente com
outros modulos. Exemplos de shields incluem médulos de comunica¢do Wi-Fi, Ethernet e GSM
(que poderiam ser usados em conjunto com o leitor, em uma aplicacdo de IoT), médulos de
cartdo SD, entre outros. O posicionamento do cartdo nessa placa € feito de maneira semelhante a
anterior.

A terceira placa, na Figura 4.5¢, também foi criada para ser um shield, mas foi pos-

4.1. PLATAFORMA DE HARDWARE 61

teriormente modificada para ser um mdédulo separado (pinos localizados acima da placa). As
principais evolucdes dessa placa com relacdo as anteriores foram a adi¢do de um plano de terra
(facilita o desenho do layout, diminui o tempo de corrosdo do cobre, diminui o ruido e melhora a
dissipagdo de calor), o corte mais preciso e regular da placa, e o posicionamento do cartdo, que
foi feito com impressdo 3D. Com a utilizacdo do FreeCAD, um software modelador 3D open
source, foi desenhado um modelo de peca para encaixar na PCI. Nela, o cartdo seria inserido de
maneira alinhada com os terminais do leitor de uma forma muito mais precisa, tal qual um leitor
para computador. A Figura 4.6 mostra o desenho do modelo e a peca impressa, encaixada na

placa.

(a) (b)

Figura 4.6: Modelo da peca de plastico, desenhado no FreeCAD (a) e placa da Figura 4.5¢c com a
peca de pléstico encaixada (b)

Apb6s a fabricagdo das PClIs citadas, os desenhos das placas seguintes passaram a ser
feitos no KiCAD, software de ECAD alternativo ao EAGLE. Apesar de ser amplamente adotado
na comunidade de projetos eletronicos, 0 EAGLE é um programa comercial com limitacdes
na sua versao grétis, a qual estava sendo utilizada no projeto. O KiCAD, por sua vez, possui
fun¢des semelhantes ao EAGLE, € livre e open source, sem nenhuma limitacdo quanto as suas
funcionalidades.

Foi fabricado, entdo, um segundo médulo de leitor com encaixe de pldstico impresso,
com desenho feito no KiCAD. Era interessante ter dois médulos funcionais para a realizacao de
testes. A PCI, mostrada na Figura 4.7a, foi criada desde o inicio para ser um médulo de leitor
de cartdo avulso e utiliza Surface-mount Technology (SMT): componentes menores, também
chamados de Surface-mount Devices (SMDs), que sao soldados diretamente na superficie da
placa, eliminando a necessidade de se fazer furos. O resultado foi uma placa mais compacta que

a da Figura 4.5c.

4.1.2 Adi¢ao de comunicac¢do sem fio e troca de Arduino por ESP8266

Para que o sistema fosse adequado para aplicacdes em IoT era necessdrio adicionar ao
mesmo a capacidade de comunicagdo sem fio, o que possibilitaria ao dispositivo se comunicar
remotamente com um servidor ou gateway e trocar informagdes. Foram consideradas duas
possibilidades: os médulos nRF24L.01+ (Nordic Semiconductor, 2008) e ESP8266 (Espressif, 2017),

mostrados na Figura 4.8.

4.1. PLATAFORMA DE HARDWARE 62

(b)

Figura 4.7: Quarta placa fabricada, projetada no KiCAD (a) e leitor de cartdo composto pela
placa e a peca de plastico (b)

(a) (b)

Figura 4.8: Mdédulos nRF241L.01+ (a) e ESP8266, modelo ESP-01 (b). Fontes: dx.com e
instructables.com

O nRF24L01+ € um transceptor (i.e., transmissor e receptor em um unico chip) de
Radiofrequéncia (RF) e de baixa poténcia que opera na banda ISM (Industrial, Scientific and
Medical) de 2,4 GHz, espectro de frequéncia para desenvolvimento livre, sem a necessidade
de licenciamento. O chip se conecta a um MCU (e.g., Arduino) através do barramento Serial
Peripheral Interface (SPI) para configuracio e operagdo. Este dispositivo € interessante para
aplicacdo em projetos eletronicos por sua simplicidade, preco e disponibilidade de recursos
(como bibliotecas). No entanto, esses mddulos ndo possuem protocolos de rede nem acessam a
Internet, eles apenas criam um canal de conexao RF entre os rddios. A inclusdo do nRF24L.01+ no
sistema proposto neste trabalho exigiria dois esforcos adicionais: a implementacdo de protocolos
de rede para os dispositivos e o desenvolvimento de um gateway conectado a Internet, o qual
receberia as informacdes de todos radios e as tornaria acessiveis a um dispositivo remoto (e.g.,
celular, rablet, computador). Portanto, a utilizacdo do nRF24L.01+ foi descartada.

O ESP8266 € um System-on-Chip (SoC) que integra Wi-Fi, um MCU de 32 bits com
clock de 80 MHz e uma memoria SRAM (Static random-access memory). Ele pode funcionar
como adaptador Wi-Fi para um MCU rodando uma aplicacdo (e.g. Arduino) ou, alternativamente,
funcionar como um dispositivo Wi-Fi standalone rodando sua prépria aplicacdo. O CI nao possui
uma memoria programdvel integrada, o que faz com que seja necessdria uma memoria flash
externa (ja presente em todos os médulos que sdo fabricados com esse chip), de até 16 MB. O

ESP8266 fornece ainda a capacidade de atualizacdo Over-the-air (OTA) do firmware (i.e., gravar

4.1. PLATAFORMA DE HARDWARE 63

uma nova aplicacdo na memoria através da rede wireless) e trés modos de economia de energia
(modem-sleep, light-sleep e deep-sleep), tteis para prolongar o funcionamento de dispositivos
alimentados por baterias. Diferentemente do nRF24L.01+, o ESP8266 ja possui protocolos de
rede bem definidos (Padrao IEEE 802.11 e comunicacao TCP/IP) e pode acessar a Internet,
facilitando o desenvolvimento de aplicacOes para Internet of Things (10T).

Inicialmente, o médulo ESP8266 foi escolhido para atuar apenas como um adaptador
Wi-Fi para o Arduino, como sugerido no parigrafo anterior. De acordo com a Figura 4.9, o
Arduino funcionaria como o MCU principal do sistema, recebendo as leituras de um ou mais
sensores, cifrando-as com o SC e enviando os dados criptografados para o ESP8266, o qual

enviaria os dados para um servidor remoto através da Internet.

[SMART CARDJ))>>>
i Criptografia
(ARDUINO }—{ ESP8266 SERVIDOR}

Leitura de dados

[SENSORES }

Figura 4.9: Diagrama inicial do sistema proposto, com médulo ESP8266 atuando apenas como
adaptador Wi-Fi

Verificou-se, no entanto, que a utilizagdo do médulo ESP8266 standalone ao invés
do Arduino UNO traria algumas vantagens, entre elas uma maior capacidade de memdria e
processamento em um formato muito mais compacto e mais compativel com IoT. Alguns
modulos ESP8266 diferentes daquele da Figura 4.8b, como os modelos ESP-201 e ESP-12E
(Figura 4.10), dao ao usudrio acesso a uma quantidade muito maior de pinos de entrada/saida,
também chamados de General-purpose Inputs/Outputs (GPIOs), e interfaces de comunicagao,
os quais poderiam ser utilizados para conexao com o cartdo, sensores € outros dispositivos.
A Tabela 4.2 faz uma comparacdo de memdria, velocidade de clock, quantidade de GPIOs e
tamanho, entre o Arduino UNO e os médulos ESP8266 mencionados no texto. O Arduino UNO
supera os modulos ESP8266 apenas na quantidade de GPIOs disponiveis para uso e fica bem
atrds em todos os outros quesitos. Apesar disso, a quantidade de GPIOs presentes nos médulos
da Figura 4.10 seria mais do que suficiente para o funcionamento do sistema.

Ha ainda outro ponto importante, que tornaria mais simples a transi¢do do Arduino UNO
para o modulo ESP8266: a programacgao do médulo poderia ser feita no préprio Arduino IDE
e com a mesma linguagem, ou seja, o que ja tinha sido feito até entdo para o Arduino UNO
poderia ser aproveitado com pouca ou nenhuma alteragdo. A diferenca € que o Arduino ja vem
pronto para ser programado e possui uma porta USB para conexdo com o computador, enquanto
que os médulos ESP8266 precisam de uma placa auxiliar, com um botao de reset, um switch
para configurar o médulo no modo de gravacdo ou de execucdo do programa e uma porta USB

ou adaptador USB/Serial para permitir a conexao com o computador.

4.1. PLATAFORMA DE HARDWARE 64

MODULO GPIOs MEMORIA (kB) CLOCK (MHz) AREA (cm?)
FLASH EEPROM RAM

Arduino UNO 20 32 1 2 16 3,66
ESP-01 4 1024 4 80 80 0,35
ESP-201 17 1024 4 80 80 0,87
ESP-12E 17 4096 4 80 80 0,38

Tabela 4.2: Comparacio entre Arduino UNO e médulos ESP8266

Eecoe®ee o0 t

e '; !
&3 Z S

) &8 o2
,:'Inrﬁ;ij g E = |OR
e e L& |9]3

Eoo000000000
(@) (b)

Figura 4.10: Médulos ESP8266, modelo ESP-201 (a) e modelo ESP-12E (b). Fontes: dx.com e
alibaba.com

O moédulo ESP-201 (Figura 4.10a) foi o primeiro escolhido para tomar o lugar do Arduino
UNO no sistema. A placa auxiliar fabricada para possibilitar a gravacdo do médulo € mostrada
na Figura 4.11. Com isso, o diagrama do sistema foi atualizado, pois o Arduino UNO nao
faz mais parte dele e o ESP8266 atua agora como controlador principal, trocando informagdes

diretamente com o SC e os sensores, como pode ser visto na Figura 4.12.

Figura 4.11: Placa utilizada para gravagdo do médulo ESP-201, com o adaptador USB/Serial
conectado (a esquerda)

Para utilizar o médulo ESP8266 no lugar do Arduino foi necessario realizar algumas
modificagdes no sistema. Como mencionado anteriormente, o sinal de relogio utilizado na
comunicac¢ao com o SC era gerado pelo préprio Arduino, utilizando o timer. Para o médulo
ESP8266, nao foram encontradas informagdes sobre como utilizar o timer (ou mesmo se ele
existe), tornando impossivel a geracdo do sinal de relégio no proprio médulo. A solucdo

encontrada foi a criacdo de um circuito de relégio externo, controlado por uma GPIO do ESP-

4.1. PLATAFORMA DE HARDWARE 65

{SMART CARD
i Criptografia
[ESP8266 SERVIDOR }

Leltura de dados

{ SENSORES

Figura 4.12: Diagrama atualizado do sistema proposto, com médulo ESP8266 atuando como
microcontrolador principal do sistema

201. Foi utilizado, a principio, o Oscilador Pierce, mostrado na Figura 4.13, por ser um circuito
simples (apenas seis componentes) e de baixo custo. Com isso, foi possivel utilizar um sinal de
relégio de 4 MHz, quatro vezes mais rapido do que era possivel com o Arduino, € o sistema se

tornou mais flexivel por ndo exigir uma conexao com um pino especifico para o CLK do cartdo.

Y 3
l=

il
b

\M}—'

Figura 4.13: Oscilador Pierce

Uma segunda alteragdo necessdria para o funcionamento do sistema com o mdédulo
ESP8266 esta associada as tensdes de funcionamento do médulo e do SC. O ESP8266 precisa ser
alimentado com 3,3 V e essa € a tensdo de entrada/saida em qualquer um dos seus pinos. O cartdo,
por sua vez, funciona com 5V (como visto na Tabela 4.1), o que impede que ele seja ligado
diretamente ao ESP8266 da mesma forma que o Arduino. Semelhantemente, quaisquer outros
dispositivos conectados ao médulo ESP8266 (e.g. sensores) também devem funcionar com 3,3V,
mas nem sempre € possivel assegurar essa compatibilidade. Para garantir que qualquer cartio e
dispositivo pudesse ser utilizado no sistema, foram adicionados dois chips conversores de nivel
de tensdo: um para a conexao com o cartio e outro para quatro GPIOs livres do médulo, que
poderiam ser usadas individualmente ou como interface SPI. A Figura 4.14 e a Figura 4.15
ilustram o funcionamento dos chips mencionados, mostrando os niveis de tensdo que podem

ser aplicados em cada lado. A adi¢do dos chips aumentou a versatilidade do sistema, que agora

poderia ser utilizado com qualquer classe de SC e com sensores de 3,3V ou 5 V.

4.1. PLATAFORMA DE HARDWARE 66

1,4V S VCCIeitor S 595V 1,7V S VCCcartéo S 5.5V

VCC I VCCIeftor VCCcartéo 1 VCC
LEITOR CHIP CARTAO
RSTleitor RSTcartéo RST
CI-Kleitor CLKcartéo CLK
1/Ojeitor I/ ocartéo 110
GND GND GND
L L L

Figura 4.14: Funcionamento do chip conversor de tensdo para o cartao

1,2V <VCCx <3,6V

VCCs < VCCp 1,65V < VCCp <55V
VCC 1 VCCp VCCpg 1 VCC
MCU CHIP DISPOSITIVO
GPIO1 Al B1 PINO1
GPIO2 A2 B2 PINO2
GPIO3 A3 B3 PINO3
GPIO4 A4 B4 PINO4
GND GND GND

Figura 4.15: Funcionamento do chip conversor de tensdo para as GPIOs

Os testes iniciais sem o Arduino foram feitos com as placas das Figuras 4.7b e 4.11
conectadas com fios as placas avulsas dos chips conversores (Figura 4.16a) e ao circuito de
relégio externo, montado em uma protoboard (Figura 4.16b, onde a placa € o inversor e o

encapsulamento metdlico € o cristal piezoelétrico de 4 MHz).

(b)

Figura 4.16: Placa individual de um dos chips conversores de tensfo (a) e circuito de relégio
externo, montado na protoboard (b)

Com o funcionamento do novo sistema verificado, o préximo passo no projeto de
hardware era fazer uma PCI que integrasse todos os médulos em um unico lugar, criando
um dispositivo wireless portatil, com leitor de SC integrado para comunicacado segura, sendo,

portanto, adequado para aplicagdes em [oT. A primeira placa do projeto com ESP8266 foi

4.1. PLATAFORMA DE HARDWARE 67

desenhada no KiCAD e apresentou algumas modificacdes com relacdo a montagem de testes. A
primeira delas foi no leitor de cartdes. Foi utilizado o slot da Figura 4.3 sem nenhuma adaptacio
e o cartdo foi cortado com o tamanho ID-000 para encaixar no slot, com o objetivo de manter o
dispositivo compacto. Outra modificacao foi realizada no circuito de relégio externo. Como pode
ser visto na Figura 4.16b, o cristal piezoelétrico é um dispositivo que ocupa muito espago, além
de ser through-hole (i.e., a placa precisa ser furada para soldar o componente). Para contornar
esse problema, foi utilizado um CI oscilador SMD de 8 MHz e 2,5 mm x 2,0 mm em conjunto

com um circuito divisor de frequéncia digital, mostrado na Figura 4.17.

OSC. 2
f= fo

(a) (b)

Figura 4.17: Circuito divisor de frequéncia digital (a) e detalhe do relégio externo na placa (b),
onde podem ser vistos os chips: oscilador, flip-flop e inversor, da esquerda para a direita

A placa possui as conexdes e switches necessarios para gravar a aplicacdo no moédulo
ESP-201 e € ligada através da conexao com um adaptador USB/Serial, da mesma forma que a
placa da Figura 4.11. Ela pode ser alimentada separadamente com 5V e 3,3 V, ou utilizar apenas
0s 5V do adaptador e obter os 3,3 V de um regulador de tensdao. A Figura 4.18 mostra a frente
e o verso da primeira placa fabricada com o médulo ESP8266. E possivel ver na Figura 4.18a
o mdédulo encaixado, o slot de SC (sem cart@o), os pinos para as GPIOs livres (acima, do lado
direito) e a entrada para o adaptador USB/Serial (abaixo, do lado direito). Ja na Figura 4.18b
estdo as indicagdes de cada terminal e os switches necessdrios para gravagao do médulo. Pode-se
observar que a placa s6 possui uma face de cobre na qual os componentes estdo distribuidos,
0 que acaba aumentando as dimensdes do dispositivo, que sdo de aproximadamente 7,8 cm x
6,2 cm.

(a) (b)

Figura 4.18: Primeira placa com o médulo ESP8266, frente (a) e verso (b)

4.2. ARQUITETURA DE SOFTWARE 68

4.1.3 Placa Final

Foi desenvolvida uma segunda placa com o médulo ESP8266, mostrada na Figura 4.19,
tendo em vista as alteracdes necessdrias para tornar o dispositivo o mais adequado possivel para

aplicacdes em loT. Esta foi também a placa final para este trabalho. Ela possui varias melhorias
com relacdo a placa anterior:

s O médulo ESP8266 utilizado foi o ESP-12E (Figura 4.10b), que € menor, possui a
mesma quantidade de GPIOs e é SMD;

s Todos os componentes utilizados foram também SMD, incluindo os swiftches para
programacdo do médulo;

» O circuito de relégio foi substituido por um tnico CI oscilador de 4 MHz;

A placa possui ambas as faces com cobre (também chamada de placa dupla-face),

0 que permite que os componentes possam ser distribuidos na frente e no verso,

diminuindo as dimensdes da placa para aproximadamente 5,6 cm x 3,9 cm (45% da
area da placa anterior);

Adi¢do de uma porta mini USB a placa, dispensando a utilizacao de adaptadores

externos para energizd-la e conectd-la com o computador.

s 4330 d

»
-
o
s
>
=
-
.
e
T~

-
—
-
-

-
- o
-
=

L")

73

(a) (b)

Figura 4.19: Segunda placa com o médulo ESP8266 e placa final do trabalho, frente (a) e verso
(b)

Apo6s todas as modificagdes, o diagrama final do hardware do sistema ficou como
mostrado na Figura 4.20.

4.2 Arquitetura de Software

O software do sistema é composto por trés programas distintos: um instalado no SC,
um no MCU do dispositivo e um no computador, que atua como servidor do sistema. O

desenvolvimento de cada programa € detalhado nos pardgrafos seguintes.

4.2. ARQUITETURA DE SOFTWARE 69

[SMART CARD

,,,,,,,,,,,,, — CONVERSOR | >>>
i Criptografia
RELOGIO
sav | RELOGIO <—[ESP8266 SERVIDOR J

T Leitura de dados

7777777777777777777 | CONVERSOR |

3,3V-55V T

[SENSORES }

Figura 4.20: Diagrama final do hardware do sistema proposto

4.2.1 Protocolo de Comunicag¢do entre Smart Card e Microcontrolador

O passo inicial no desenvolvimento do software do sistema era estabelecer a troca de
informacgdes entre SC e MCU. A biblioteca open source ArduinoSCLib (BARGSTEDT, 2016),
desenvolvida para Arduino e placas compativeis com Arduino, foi utilizada como a base do
projeto de software do MCU. Ela implementa os procedimentos de operacao do SC descritos
na Subsecdo 2.3.2, incluindo a troca de APDUs, sendo portanto a camada mais bdésica da
comunicagdo entre o microcontrolador e o cartdo. No entanto, apesar de possibilitar a troca de
mensagens entre o cartdo e 0 MCU, testes iniciais de comunicac¢do utilizando a ArduinoSCLib
e o Arduino, monitorados com o auxilio de um analisador 16gico, mostraram uma falha na
implementacdo. O terceiro caso da Tabela 2.1 ndo era tratado, de forma que muitos comandos

nao eram executados corretamente, como € ilustrado na Figura 4.21.

ERRO DE
e COMANDO ERRADO ————————>{ <~ pipcacio —> [COMANDO CORRETO ———————>
| clA INS P1 P2 L | swi sw2 | | CLA INS P1 P2 Lo
| 0x00 11 OxA4 11 Ox04 11 0x00 1 Ox00 | | Ox6C ! ! Ox67 | | Ox00 | ! OxA4 11 OxO4 11 Ox00 | I Ox67 |
| | | |
| | : | | :
		: :		
: 11 11 11 11 : : 11 : : 11 11 11 11 :				
(a)				
ERRO DE				
[« COMANDO ERRADO —————————>		<— \rpiricacio >		
clLA INS P1 P2 L}	swi sw2			
; O0x00 1 1 OxA4 11 0x04 1+ 1 0x00 I 1 0x00 ‘ ‘ 0x6C ' 1 O0x67				
T				
: 11 11 11 11 : : 11 :				

Figura 4.21: Funcionamento esperado (a) e implementagdo da biblioteca ArduinoSCLib (b)
durante envio de comandos para o Smart Card

Uma inspecdo posterior do cddigo-fonte também revelou a necessidade de correcdes

na rotina de envio e recebimento de APDUs, para garantir uma maior conformidade com o

4.2. ARQUITETURA DE SOFTWARE 70

protocolo T=0 especificado na ISO7816-3 e convenientemente representado em uma méquina de
estados no Smart Card Handbook (RANKL; EFFING, 2010).

A migragao do Arduino UNO para o ESP8266, descrita na Se¢ao 4.1, também exigiu
algumas alteracdes no codigo. Apods a substituicdo das placas, a execugdo do software no
ESP8266 era frequentemente interrompida por falhas que causavam a reinicializacio do sistema.
ApOs pesquisa, descobriu-se que o Watchdog Timer (WDT) era o causador dessas falhas. Ele
€ um modulo presente na maioria dos MCUs, responsavel por garantir que o sistema funcione
corretamente. Geralmente, ele possui um timer que é constantemente reiniciado pelo sistema,
para mostrar que a execucgdo estd acontecendo de forma correta. Quando, por exemplo, a
execugdo do programa permanece durante muito tempo dentro de um lago da programacao
(e.g., while, for) e esse timer ndo € reiniciado, o WDT ¢€ ativado e reinicia o sistema. Como o
ESP8266 executa constantemente tarefas secundarias relativas ao protocolo de comunicagdo
Wi-Fi, uma interrupc¢ao longa dessas tarefas por causa de um laco € interpretada pelo WDT como
mal funcionamento do sistema. A solugdo para esse problema foi a adi¢do de delays ao longo do
codigo, para permitir ao MCU a realizacdo das tarefas em segundo plano mesmo dentro de um

laco.

4.2.2 Algoritmos Suportados pelo Smart Card

Estabelecida a troca de mensagens entre o SC e o MCU, era necessario encontrar uma
forma de utilizar as capacidades criptograficas do cartdo para, em conjunto com o microcontrola-
dor, emprega-las na criacdo de um sistema de comunicacao segura para [oT. O cartdo usado no
projeto possui a tecnologia Java Card descrita na Subse¢do 2.3.3, o que significa que nele podem
ser instalados programas desenvolvidos em Java.

A presenca de uma determinada funcionalidade no cartdo depende da versdo do Java
Card presente nele (e.g., o algoritmo de hash SHA256 s6 foi introduzido na versdo 2.2.2) e das
proprias limitacOes de hardware e software do SC, o que significa que nem toda funcionalidade
de uma dada versao da Application Programming Interface (API) Java Card estard contida no
cartdo. As funcionalidades do cartdo mais interessantes para este trabalho sao os algoritmos
criptograficos que ele € capaz de executar. A maneira utilizada no projeto para descobrir quais
algoritmos de seguranga eram suportados pelo cartio foi através do software JCAlgTest (SVENDA,
2016). Composto por um applet que € instalado no cartdo e dois programas que siao executados
no computador (um para comunicacdo com o SC e outro para tratamento dos resultados),
o JCAlgTest realiza testes automadticos de algoritmos suportados e testes de performance de
execugdo para cada algoritmo, gerando tabelas e graficos para melhor visualizag¢do dos resultados.

A Tabela 4.3 mostra uma parte dos resultados do JCAlgTest, especificamente para
algoritmos de hash, onde € possivel observar que, mesmo possuindo o Java Card na versdo 2.2.2,
o cartdo nao dé suporte a algoritmos introduzidos nessa mesma versao (SHA384 e SHAS512).
As tabelas com todos os algoritmos suportados pelo cartdo encontram-se no Apéndice A. A

Figura 4.22, por sua vez, mostra um dos gréificos obtidos com os testes de performance na

4.2. ARQUITETURA DE SOFTWARE 71

execucdo do algoritmo de hash SHA256, com diferentes quantidades de dados de entrada. Os
testes de performance sdo uteis na comparacao entre diferentes SCs e também na visualizacdo

do comportamento dos algoritmos com a varia¢ao da quantidade de dados.

ALGORITMO JAVA CARD SUPORTADO

SHA < 2.1 SIM
MD5 < 2.1 SIM
RIPEMD160 < 2.1 SIM
SHA256 222 SIM
SHA384 222 NAO
SHA512 222 NAO
SHA224 3.0.1 NAO

Tabela 4.3: Tabela de suporte a algoritmos gerada pelo JCAlgTest, para algoritmos de hash

SHA256

‘ ‘ 512
2 400 |
o
ey
g 300 :
o 256
o
© B |
© 200 128
o
S 64
©
g 100 - ¢)

| 32 | | | | |

0 100 200 300 400 500
Quantidade de dados (bytes)

Figura 4.22: Grafico de performance para execugdo do algoritmo de hash SHA256 com o Smart
Card

4.2.3 Applets para Smart Cards

Existem diversos applets open source em desenvolvimento para SCs. Vdrios deles estdo
concentrados no repositorio Applet Playground (PALJAK, 2017). Alguns deles sdo especificos
para aplicagdes financeiras (e.g., OpenEMYV, SatoChipApplet, Ledger Unplugged), outros para
aplicagdes em documentos de identificacao (e.g., eID Applet, GIDS Applet, PLAID, Passport
Applet), outros implementam transmissao de dados para NFC (protocolo NDEF) e o restante

apresenta solucdes voltadas para seguranca da informacio em geral. A Tabela 4.4 lista os applets

4.2. ARQUITETURA DE SOFTWARE 72

tidos como mais relevantes para o desenvolvimento do projeto, as datas em que foram atualizados
e em qual padrio/especificagdo eles sdo baseados. Esses applets foram considerados para serem
a base do software que seria instalado no SC.

Tendo em vista que o objetivo do sistema € realizar uma comunicacdo de forma segura e
autenticada entre o dispositivo IoT e o servidor, foi criada a Tabela 4.5, a qual lista as capacidades
de criptografia do SC consideradas mais importantes para o alcance do objetivo citado. A tabela
também associa um codigo abreviado a cada capacidade. Apds inspe¢ao dos cddigos-fonte de
cada applet listado na Tabela 4.4, foi possivel determinar quais capacidades da Tabela 4.5 foram
implementadas em cada um deles. A Tabela 4.6 faz uma comparacgdo entre os applets e suas

capacidades.

NOME DATA ESPECIFICACAO

MUSCLE Applet mar/2012 MUSCLE Cryptographic Card Edge Definition
CoolKey Applet jan/2017 MUSCLE Cryptographic Card Edge Definition
SatoChipApplet dez/2015 MUSCLE Cryptographic Card Edge Definition
IsoApplet feb/2017 1SO7816

JC PKI Applet jan/2011 1ISO7816

YKNEO OpenPGP jan/2017 OpenPGP application on ISO Smart Card OSs
OpenPGP-Card abr/2015 OpenPGP application on ISO Smart Card OSs

Tabela 4.4: Applets de seguranca para Smart Cards

4.2. ARQUITETURA DE SOFTWARE

73

Tabela 4.5: Capacidades criptograficas importantes na implementacao do sistema

CAPACIDADES CRIPTOGRAFICAS CcODIGO
Protegdo com PIN ou senha PIN
Geracao de chaves assimétricas GER/A
Cifragem com criptografia assimétrica CIF/A
Decifragem com criptografia assimétrica DEC/A
Geragao de chaves simétricas GER/S
Cifragem com criptografia simétrica CIF/S
Decifragem com criptografia simétrica DEC/S
Importacao de chaves IMP
Assinatura digital SIG
Verificagao de assinatura digital VER
Geragao de numeros aleatérios RND
Armazenamento de objetos OoBJ
Hash de mensagens HASH
Cédigo de autenticagdo de mensagem MAC
Troca de chaves KEX
Criptografia de Curvas Elipticas CCE

APPLET CAPACIDADES CRIPTOGRAFICAS
PIN GER/A CIF/A DEC/A GER/S CIF/S DEC/S IMP SIG VER RND OBJ HASH MAC KEX CCE
MUSCLE Applet o o ° ° ° e o o o o o
CoolKey Applet e o ° . . o o
SatoChipApplet e o ° ° ° ° e o o o o o
IsoApplet e o ° o o o o
JC PKI Applet e o . o o e o
YKNEO OpenPGP e ° ° e o e o
OpenPGP-Card e o . o o o o

Tabela 4.6: Comparacio entre applets de seguranca

4.2. ARQUITETURA DE SOFTWARE 74

E possivel observar que todos os applets ddo suporte a protecdo com PIN, geracdo de
chaves assimétricas (a maioria apenas suporta RSA, somente dois também dao suporte a curvas
elipticas), decifragem com criptografia assimétrica e importagao de chaves externas para o cartao,
geracdo de nimeros aleatdrios e armazenamento de objetos na memoria do SC. A maioria ainda
suporta assinatura digital. No entanto, poucos applets implementam capacidades fundamentais,
como: criptografia de chave simétrica (geracao de chave, cifragem e decifragem), muito impor-
tante na comunicacao sigilosa por ser mais rapida; verificagdo de assinaturas, essencial para
autenticacao com certificados; cddigos de autenticagdo de mensagem, que garantem a integridade
dos dados transmitidos; algoritmos de troca de chaves, para estabelecer uma chave secreta entre
duas partes; algoritmos de criptografia com curvas elipticas, que oferecem seguranca comparavel
ao RSA com chaves muito menores.

O SatoChipApplet é o applet com mais capacidades implementadas na lista, sendo
portanto uma aparente escolha ébvia para o projeto. No entanto, este applet é focado em
aplicagdes com bitcoins e possui varias fungdes que fogem do escopo deste trabalho. Além
disso, e o mais importante, ele é baseado na especificagio MUSCLE Card Edge (CORCORAN;
CUCINOTTA, 2001)(CUCINOTTA; NATALE; CORCORAN, 2003), assim como o MUSCLE Applet
(que € o segundo applet com mais capacidades na tabela) e o0 CoolKey Applet. Essa especificacio
foi criada independentemente da ISO7816, portanto ndo possui nenhuma compatibilidade com o
padrdo adotado pelo mercado. Além do mais, por ser uma especificagdo antiga, ela ndo leva em
consideracao algoritmos mais recentes de criptografia. Por este motivo, os trés applets citados
foram desconsiderados.

Existem dois applets baseados na especificagdo do OpenPGP para Smart Cards (PIETIG,
2015): o YKNEO Applet (utilizado comercialmente em dispositivos da empresa Yubico) e o
OpenPGP Card. Essa especificacdo é construida sobre a ISO7816, porém ela limita o que pode
ser feito com o cartdo, como a quantidade de chaves que ele possui e os tipos de operagao
criptogréficas que pode realizar, diminuindo a versatilidade das aplicacdes que podem ser
desenvolvidas a partir dela. Sendo assim, estes applets também foram descartados, restando
apenas o IsoApplet e o JC PKI Applet. Este ultimo, apesar de ter praticamente as mesmas
capacidades que o IsoApplet, ndo implementa criptografia de curvas elipticas e nio € atualizado

ha alguns anos. Por isso, foi escolhido o IsoApplet para ser instalado no cartdo.

4.2.4 Modificagdes no IsoApplet

Como visto na Tabela 4.6, o IsoApplet ndo implementa todas as funcionalidades conside-
radas relevantes para o projeto. A Tabela 4.7 especifica os algoritmos que estdo implementados
no IsoApplet original.

Durante o desenvolvimento do software, foram realizadas modificacdes no applet, para
adicionar novas fungdes necessdrias para o sistema. Ao final do trabalho, as funcionalidades do
IsoApplet haviam sido expandidas para aquelas que estao na Tabela 4.8. Todas essas func¢des

foram implementadas utilizando a API Java Card com exce¢do das funcdes de MAC, as quais

4.2. ARQUITETURA DE SOFTWARE 75

CAPACIDADES ALGORITMOS
GER/A NOME BITS
RSA 2048

Curvas Elipticas 192/224/256

DEC/A NOME PADDING
RSA PKCS#1

IMP NOME BITS
RSA 2048

Curvas Elipticas 192/224/256

SIG NOME PADDING HASH
RSA PKCS#1 N/A
ECDSA N/A SHA

Tabela 4.7: Algoritmos implementados no IsoApplet original

foram implementadas manualmente a partir da especificagdo do HMAC encontrada no RFC
2104 (KRAWCZYK; BELLARE; CANETTI, 1997). Como pode ser visto na Tabela A.1, a API
implementada no cartdo s6 suporta algoritmos de MAC baseados em algoritmos de cifragem
(CMAC:s), embora algoritmos de HMAC tenham sido introduzidos na versao 2.2.2 do Java Card
(Sun Microsystems, 2006a). Como o protocolo TLS utiliza HMACs, foi necessério fazer uma
implementa¢do manual.

Outras fungdes relacionadas ao TLS ndo listadas na Tabela 4.8 também foram imple-
mentadas manualmente no IsoApplet. Visto que varios cdlculos realizados durante o handshake
(Subsecdo 2.4.2) dependem da funcdo PRF, ela foi a primeira a ser implementada, a partir
da funcdo de HMAC citada. Posteriormente, foram implementados também no IsoApplet
comandos para o cdlculo dos seguintes valores utilizados no TLS: pre_master_secret,
master_secret, key_blockeverify data. Com exegdo do ultimo valor, que precisa
ser enviado para o servidor ao final do handshake, todos os outros valores sio calculados dentro
do Smart Card e 14 permanecem armazenados de forma segura na memoria nao volatil do cartdo,
de tal maneira que nem o préprio dispositivo 10T tem acesso a informagdo. Como esses valores
estdo intimamente relacionados aos mecanismos de autenticagdo do protocolo de handshake e
também a confidencialidade, autenticagao e integridade das mensagens que serdo trocadas apos o
handshake, € imprescindivel que eles ndo sejam expostos em um ambiente inseguro. As chaves
simétricas derivadas do key_block também sdo automaticamente criadas dentro do cartao.
O dispositivo [oT envia ao SC os comandos de cifragem, decifragem e criacdo de MACs que

utilizam essas chaves, mas nunca tem acesso aos seus valores.

4.2. ARQUITETURA DE SOFTWARE

CAPACIDADES ALGORITMOS
GER/A NOME BITS
RSA 2048

Curvas Elipticas 192/224/256

CIF/A NOME PADDING
DEC/A RSA PKCS#1
GER/S NOME BITS
AES 128
3DES 192
CIF/S NOME MODO PADDING
DEC/S AES CBC N/A
3DES CBC N/A
IMP NOME BITS
RSA 2048
Curvas Elipticas 192/224/256
AES 128
3DES 192
SIG NOME PADDING HASH
VER RSA PKCS#1 N/A
RSA PKCS#1 SHA
ECDSA N/A SHA
HASH NOME
SHA
SHA256
MAC NOME
HMAC-SHA

HMAC-SHA256

KEX NOME

DH com Curvas Elipticas

Tabela 4.8: Algoritmos implementados no IsoApplet apés modificagbes

4.2. ARQUITETURA DE SOFTWARE 77

4.2.5 Bibliotecas desenvolvidas para o Microcontrolador

A elaboracao do software que seria instalado no MCU, WifiClient, exigiu a criagdo de
bibliotecas de cddigo especificas, onde estariam compiladas as funcdes e constantes necessarias
para construir a aplicagdo principal. Foram criadas quatro bibliotecas: uma relacionada a
manipulacdo de dados codificados em ASN.1, outra relativa a especificagao GlobalPlatform,
outra para comunicac¢do com o Smart Card e outra para implementar o protocolo TLS. As

bibliotecas e suas principais caracteristicas sdo detalhadas nas se¢des subsequentes.

Biblioteca ASN.1Functions. Esta biblioteca possui fun¢des auxiliares necessdrias para a mani-
pulacao de dados codificados de acordo com as regras da ASN.1, descritas na Secdo 2.6. Ela é
necessdria, pois informagdes com esse tipo de notacdo sao extensivamente usadas nos padrdes
nos quais este trabalho € baseado. A biblioteca contém poucas fungdes, com o que € necessario

para se “navegar” entre os diferentes objetos em uma estrutura ASN.1. Por exemplo:

» Busca de rags especificas em um conjunto de dados. Muitos valores possuem tags
padronizadas e uma fun¢do que possa encontra-las diretamente € util;

= Decodificacdo de rags e campos de tamanho. Quando se estd percorrendo um conjunto
de dados ASN.1, ¢ importante determinar o comprimento dos proprios campos de tag
e tamanho e também o comprimento dos dados. Isso € feito através da decodificacdo;

s Funcdes para pular de um objeto para outro, ou de um objeto externo para um objeto

interno, quando existem sequéncias de objetos.

Além das func¢des, também sdo declaradas algumas constantes com valores de fags mais

comuns, como booleanos, inteiros, cadeias de caracteres e sequéncias.

Biblioteca GPSecure. Esta biblioteca implementa as fun¢des necessdrias para criar uma comu-
nicacdo segura entre o cartdo e o MCU através do Secure Channel Protocol e para realizar a
instalagdo e desinstalacdo de applets no cartio, de acordo com os procedimentos e comandos
determinados na especificagiio GlobalPlatform (GlobalPlatform, 2003). E uma biblioteca impor-
tante, pois permite ao servidor atualizar a aplicagdo no cartdo através do envio de comandos
para o MCU. A execucdo do SCP requer a realizacdo de determinadas tarefas implementadas na

biblioteca, como:

» Geracdo das chaves de sessdo utilizadas na cifragem e autenticacao das mensagens,
através da cifragem de um conjunto de dados especifico com o algoritmo Triple
DES (3DES) em modo CBC;

» Criacdo de criptogramas de autenticagdo, valores calculados a partir da chave base
instalada no cartdo e de nimeros aleatérios com o algoritmo de CMAC Full Triple
DES (definido na ISO9797-1), os quais sdo utilizados pelo MCU e pelo cartio para

se autenticarem mutualmente;

4.2. ARQUITETURA DE SOFTWARE 78

» Célculo de um cédigo MAC para cada APDU enviada durante a comunicagdo segura,
com a utilizag@o do algoritmo Retail MAC (também definido na ISO9797-1).

Todos os algoritmos citados acima utilizam como base o algoritmo de cifragem DES.
Como a utilizacdo do SCP € um passo necessdrio para instalar o applet no cartio, esses algoritmos
devem ser executados pelo proprio MCU. Para isso, foi utilizada a biblioteca open source
ArduinoDES (RIEMANN, 2015), a qual implementa o DES para Arduino e placas compativeis. E
importante ressaltar que esta € a Unica situacio no sistema na qual algoritmos de criptografia ndo
sdo executados pelo Smart Card.

A instalacdo de applets no cartdo, por sua vez, requer a abertura de um canal seguro com
0 SCP e o envio de APDUs de comando para carregamento do cédigo do applet e subsequente

instalac@o. A biblioteca GPSecure implementa a instalagdo do applet de duas maneiras distintas:

1. Em uma unica fung¢do, a qual pode ser utilizada quando toda a informagao do applet
a ser instalado estd disponivel para o MCU. Por exemplo, quando o cédigo que é
instalado no MCU j4 possui os bytes de instalacdo do applet em uma varidvel;

2. Em trés funcdes diferentes: uma para iniciar a instalagcdo, outra para enviar os blocos
de bytes de instalacdo do applet a serem carregados no cartio e outra para finalizar a
instalacdo. Essa func¢do € util quando o MCU recebe os bytes de instalacdo do applet
aos poucos, através da porta serial ou da rede sem fio (enviados pelo servidor, por

exemplo).

Os bytes de instalacdo do applet sdo obtidos a partir do arquivo CAP, gerado na compi-
lagdo e conversao do cddigo Java (Subsecdo 2.3.3) e definido na especificagdo da JCVM (Sun
Microsystems, 2006¢). Este arquivo €, na verdade, um cont€iner para componentes que também
sdo arquivos CAP, com diferentes informacdes sobre o applet a ser instalado. No total, sdo onze
componentes: Header.cap, Directory.cap, Applet.cap, Import.cap, ConstantPool.cap, Class.cap,
Method.cap, StaticField.cap, ReferenceLocation.cap, Export.cap e Descriptor.cap. O conteido
de cada componente esta fora do escopo deste trabalho. Durante a instalacdo, esses componentes
devem ser extraidos do arquivo CAP principal e enviados para o cartao.

A descoberta dos APDUs de comando que devem ser enviados durante a instalagdo, a
forma de extrair os componentes do arquivo CAP principal e a sua ordem de envio foi feita de uma
maneira mais prética, a partir da observacio do funcionamento do software GlobalPlatformPro
(PALJAK, 2016). Ele é desenvolvido em Java e possui uma série de comandos que permitem a
interacdo entre um computador e um Smart Card compativel com a especificagdo GlobalPlatform.
Entre esses comandos, estdo: envio de APDUs (com ou sem SCP), instalacdo e desinstalagcao de
applets, listagem de applets no cartdo, alteracao da chave base do cartdo. Todos esses comandos
podem ser executados com as op¢oes verbose e debug. A primeira aumenta a quantidade de
mensagens impressas pelo programa sobre o que estd sendo feito e a segunda habilita a impressao

dos APDUs que estdo sendo trocados entre o computador e o cartdo. Com a observagdo dessas

4.2. ARQUITETURA DE SOFTWARE 79

informacdes foi possivel implementar as fun¢des da biblioteca GPSecure e um script em Python,
CapFileParser, o qual extrai os bytes necessdrios do arquivo CAP e os exporta para arquivos que
podem ser usados tanto pelo dispositivo IoT quanto pelo servidor para fazer uma atualiza¢do no

software do cartao.

Biblioteca SmartCarduino. Estd biblioteca € o nicleo do projeto de software do MCU. Nela
estdo implementadas as funcdes e constantes relativas a criacdo e administragdo de uma estrutura
de arquivos PKCS#15 no cartdo e também a requisi¢do de operagdes criptograficas do cartdo.
A estrutura de arquivos PKCS#15 (Sec¢do 2.5) € o que da ao Smart Card a capacidade de
armazenamento sistematizado de objetos como chaves e certificados. O IsoApplet possibilita
a criagdo dessa estrutura no cartdo a partir dos comandos enviados pelo MCU. As fungdes da

biblioteca SmartCarduino relacionadas ao padrao PKCS#15 incluem:

s Criacao da propria estrutura PKCS#15 no cartio, que envolve a criacao dos DFs e
EFs obrigatdrios e de um PIN para controle de acesso;

» Criacdo das File Control Informations (FCls), propriedades de um determinado
arquivo que incluem seu nimero de identificagdo, tamanho e condi¢des de acesso.
Todo arquivo que € criado na estrutura PKCS#15 possui um FCI;

» Criacdo dos Control Reference Templates (CRTs), conjuntos de informagdes enviados
ao cartdo sempre que uma operacao criptografica € solicitada, através do comando
MANAGE SECURITY ENVIRONMENT. Contém informagdes sobre o algoritmo a ser
utilizado e, se necessario, uma referéncia de uma chave (ptblica, privada ou secreta)
para ser usada com o algoritmo em questio;

» Criagao dos diferentes objetos que sdo armazenados nos EFs.

As fungdes restantes da biblioteca SmartCarduino sdo associadas as operacgdes cripto-
graficas que o cartdo pode executar. Existem fun¢des para a requisicdo de cada capacidade
listada na Tabela 4.8, onde os algoritmos e chaves sao especificados nos CRTs. Em geral, essas
requisicdes t€ém uma constru¢do semelhante: primeiramente, € selecionado o IsoApplet instalado
no cartdo com o comando SELECT (seria o equivalente a rodar a aplicacdo); depois, € enviado
um comando de verificacdo do PIN (VERIFY) para que o cartdo permita que a operagao seja exe-
cutada; € enviado, entdo, o comando MANAGE SECURITY ENVIRONMENT com o CRT relativo
a operacdo criptografica; por fim, é enviado o comando PERFORM SECURITY OPERATION
com os parametros que indicam ao cartdo qual operagdo serd executada. A depender da operagao,
o cartdo pode responder com um bloco de dados (e.g., cifragem, decifragem, hash, assinatura
digital) ou apenas os bytes SW1 e SW2 informando se a operacdo foi realizada corretamente ou
nao (e.g., verificacdo de assinatura).

Uma excecao a essa estrutura de comandos € a operacdo de geracao de chaves assimé-
tricas, na qual € enviado um comando especifico, GENERATE ASYMMETRIC KEYPAIR, que é

respondido pelo cartdo com a chave publica que foi gerada. A chave privada, no entanto, nunca

4.2. ARQUITETURA DE SOFTWARE 80

€ revelada para o MCU por motivos de seguranca. As operagdes que, como essa, envolvem a
utilizac@o de chaves possuem alguns comandos a mais onde sdo verificados os EFs de chaves
(SKDF, PrKDF, PuKDF) em busca das chaves com a mesma referéncia presente no CRT. Essa
verificacdo garante que ndo serdo criadas chaves novas com a mesma referéncia de chaves
existentes ou que nao serdo realizadas operagcdes com chaves nao existentes no Smart Card. No
caso da geragdo de chaves, os EFs citados ainda sdo atualizados com os objetos das novas chaves
criadas, através do comando UPDATE BINARY.

O desenvolvimento dessa biblioteca, assim como no caso da GPSecure, foi feito a partir
da observacdo do funcionamento de um software para computador: o OpenSC (OpenSC Team,
2015). Ele consiste em um conjunto de ferramentas open source para se trabalhar com as
capacidades criptogréficas dos Smart Cards. A partir da sua versao 0.15.0, o OpenSC passou a
dar suporte a cartdes com o IsoApplet instalado, o que possibilitou a realizacio de testes. As

ferramentas do OpenSC utilizadas foram as seguintes:

m opensc-explorer: Permite a exploracdo dos arquivos na estrutura PKCS#15 do
Smart Card de uma forma semelhante a exploracdo de arquivos no terminal do Linux
ou no Prompt de Comando do Windows;

m pkcsl5-init: Possui funcdes para criacdo de uma estrutura PKCS#15 no cartao,
armazenamento de objetos como PINs, chaves e certificados e geracdo de chaves
assimétricas;

m pkcsl5-tool: Contém fungdes para leitura e listagem dos diferentes objetos
armazenados no cartdo;

» pkcsl5-crypt: Possui fungdes para requisi¢do de operacdes criptograficas do car-

tao. Especificamente, apenas suporta as operacdes de assinatura digital e decifragem.

Ao contrario do GlobalPlatformPro, o OpenSC nao fornece op¢des que permitam a
visualizacdo dos APDUs trocados entre o computador e o cartdo. Dessa forma, para conseguir
observar essas informacdes, foi utilizado o Wireshark. Este software € um analisador de pacotes,
geralmente usado para andlise e manutencio de redes. Sua principal caracteristica é a capacidade
de capturar e registrar o trafego de mensagens em uma interface do computador, como a porta
Ethernet ou as portas USB.

A captura foi feita na porta USB na qual estava ligado um leitor de cartdes. Apesar de o
computador possuir varias portas USB, todas elas sdo administradas por uma mesma interface, a
qual € monitorada pelo Wireshark. Por causa disso, todas as mensagens de todos os dispositivos
que estdo conectados a essas portas acabam sendo capturadas, o que gera mais informagdo que o
necessdrio. Para resolver esse problema, o Wireshark permite que as mensagens sejam filtradas
por um par de caracteristicas da interface USB que € unico para cada dispositivo conectado:
Endereco de Dipositivo e ID de Barramento, os quais podem ser descobertos facilmente com um
comando no terminal. Com isso, € possivel visualizar apenas as mensagens relativas ao leitor

de cartdo. Essas mensagens sdo salvas em um arquivo pcap, proprio do Wireshark, que contém

4.2. ARQUITETURA DE SOFTWARE 81

todas as informacdes sobre o trafego. Com a utiliza¢ao do Tshark, uma versao do Wireshark para
linha de comando, € possivel criar um arquivo de texto mais simples, apenas com o contetido das
mensagens e a dire¢ao de envio (transmitida ou recebida), o que facilita a andlise. O resultado da

captura pode ser visto no fragmento a seguir:

5:00:00:00:00:00:03:00:00:00

:00:00:00:00:00:03:01:00:01
62:00:00:00:00:00:04:00:00:00
80:18:00:00:00:00:04:00:00:00:3B:FE:18:00:00:80:31:FE:45:80:31:
80:66:40:90:91:06:2D:10:83:01:90:00:D3

0 6F:11:00:00:00:00:0B:00:00:00:00:A4:04:00:0C:F2:76:A2:88:BC:FB:
A6:9D:34:F3:10:01

1 80:05:00:00:00:00:0B:00:00:00:00:06:06:

0 6F:08:00:00:00:00:0D:00:00:00:00:A4:08:00:02:2F:00:00

1 80:19:00:00:00:00:0D:00:00:00:6F:15:81:02:00:80:82:01:01:83:02:
2F:00:86:08:FF:00:00:00:00:00:00:00:

= O = O
(00] o
=

Nesse fragmento, as mensagens que iniciam com “0” foram enviadas pelo computador e
as que iniciam com “1” foram recebidas pelo computador, portanto enviadas pelo cartdao. As
partes das mensagens que estdo na cor cinza fazem parte do protocolo USB, o qual esté fora do
escopo deste trabalho. A mensagem marrom, por sua vez, ¢ o0 ATR enviado pelo cartdo apds
sua ativagdo e reset, marcando o inicio da comunicac@o. As partes azuis sdo os cabecalhos dos
APDUs de comando e as partes laranjas sdo os rodapés dos APDUs de resposta. As partes roxas
representam os corpos de ambos os tipos de APDU. A andlise dessas capturas para diferentes
comandos das ferramentas do OpenSC, juntamente com consultas ao cédigo-fonte do IsoApplet

e aos padroes ISO7816 possibilitaram o desenvolvimento da biblioteca SmartCarduino.

Biblioteca CardTLS. Esta biblioteca possui o que € necessario para implementar os Protocolos
de Registro e Handshake do TLS (descritos na Se¢do 2.4) e, consequentemente, a comunicagao

segura e autenticada entre o dispositivo 10T e o servidor. Suas principais funcdes sao:

» Criagdo de cada uma das mensagens enviadas pelo cliente no protocolo de handshake,
o que envolve diversas requisi¢coes de operacOes criptograficas ao Smart Card, in-
cluindo os cdlculos relativos ao TLS mencionados na Subsecdo 4.2.4;

» Cifragem e célculo de MAC de mensagens enviadas apds o handshake, com as chaves
que estdo armazenadas no cartdo (Protocolo de Registro);

» Fungdes utilizadas na pré-configuracdo do dispositivo [oT, como o recebimento dos
bytes para gravacdo remota do cartdo, a limpeza da meméria EEPROM do MCU onde
serdo guardados os pardmetros da sessdo, a geracdo e o envio das chaves assimétricas
principais do dispositivo para o servidor e o subsequente recebimento dos certificados

de cada chave assinados pelo servidor.

4.2. ARQUITETURA DE SOFTWARE 82

Além dessas funcdes, a biblioteca contém grande parte das constantes definidas para
o TLS no RFC 5246 (ALLEN et al., 2008). Também sdo definidos alguns valores constantes
proprios da aplicagdo principal, como as referéncias, rétulos e identificadores das chaves e dos
certificados do dispositivo e do servidor, os quais sdo fixos.

As principais referéncias no desenvolvimento dessa biblioteca foram os RFCs: 5246, que
especifica o TLS; 4492 (BLAKE-WILSON et al., 2006), que estabelece suites de criptografia para o
TLS com uso de Curvas Elipticas; 5280 (COOPER et al., 2008), que trata dos certificados X.509
utilizados na aplicacdo; 7366 (GUTMANN, 2014), que define uma extensao para o TLS onde o

Protocolo de Registro € feito com a construcao encrypt-then-MAC.

4.2.6 Cddigo do Servidor e Funcionamento Geral do Sistema

O servidor do sistema € feito com um c6digo em Python, TCPServer. Da mesma forma
que a biblioteca CardTLS, ele também declara diversas constantes relativas ao TLS e define
a funcdo PRF, fundamental para a execucao do algoritmo. A base deste codigo é o pacote
Cryptography (Python Cryptographic Authority, 2017), que implementa todos os algoritmos de
criptografia necessdrios. A comunicacao entre cliente e servidor € feita através de um socket com
o protocolo TCP, em uma rede Wi-Fi.

No inicio do programa, quando o cliente (dispositivo 10T) e o servidor iniciam a troca
de mensagens, eles podem escolher entre continuar a sessao anterior, quando ja foi realizado
0 handshake, ou iniciar uma nova sessao. No primeiro caso, o servidor 1€ os parametros de
seguranca de um arquivo salvo no computador e o cliente 1€ os parametros da sua memoria
EEPROM. No segundo caso, se o cliente estd sendo ligado pela primeira vez, ele precisa ser
pré-configurado. Por outro lado, se o cliente ja foi pré-configurado, € realizado o protocolo de
handshake e depois acontece a troca de mensagens da aplicagdo. Durante a pré-configuracio do

cliente, sdo realizados trés passos:

1. Reinstalac@o do IsoApplet no Smart Card e criagdo de uma nova estrutura PKCS#15.
O cartao envia os blocos de bytes extraidos do arquivo CAP para o MCU, o qual
efetua o processo de instalacdo. Dessa forma, o software do cartdo pode ser atualizado
sempre que necessario;

2. O cliente gera suas chaves assimétricas principais, uma RSA e uma de Curvas
Elipticas, para aumentar a compatibilidade e flexibilidade do sistema. Essas chaves
serdo utilizadas para a criacdo de assinaturas digitais durante o handshake. O cliente,
entdo, as envia para o servidor;

3. O servidor recebe as chaves publicas do cliente e gera certificados para elas, assinados
com as suas chaves privadas principais e diferentes algoritmos de hash. O servidor,

entdo, envia os certificados para o cliente, que os armazena no Smart Card.

Durante essa fase de pré-configuragdo, o servidor atua como uma CA, emitindo certifica-

dos para os clientes. Esses certificados sdo utilizados por eles, posteriormente, para autenticagao

4.2. ARQUITETURA DE SOFTWARE 83

com o servidor. O servidor, por sua vez, possui chaves assimétricas principais que sao utilizadas
para assinar os certificados do cliente e seus proprios certificados. Assim como as do cliente,
uma delas € RSA e a outra é de Curvas Elipticas. A depender dos algoritmos de assinatura que o
cliente pode verificar (que s@o informados durante o handshake), o servidor decide enviar os
certificados assinados com uma ou outra chave. Além de verificar a assinatura do certificado
do servidor, o cliente também verifica a sua identidade que estd no certificado e contém alguns
campos com diferentes informacdes. Nos testes, foi utilizada a identidade representada na
Tabela 4.9.

CAMPO VALOR

ESTADO PE
LOCALIDADE Recife
ORGANIZACAO GPRT
DEPARTAMENTO loTeam
NOME Servidor

Tabela 4.9: Identidade do servidor utilizada nos testes de comunicagdo entre dispositivo IoT e
servidor

A fase de handshake € realizada de acordo com o procedimento descrito na Secado 2.4.
As operagOes criptograficas do cliente sdo realizadas pelo Smart Card e as do servidor sao
implementadas no pacote Cryptography. Os parametros de seguranca que sdo determinados apds

0 handshake sdo aqueles especificados no RFC 5246:

s Entidade: Servidor ou cliente;

» Algoritmo de PRF: O documento s6 especifica um, descrito na Se¢do 2.4;

= Tipo de cifra: De bloco, de fluxo ou AEAD (cifragem e autenticacdo em um tinico
protocolo). O Smart Card sé d4 suporte a algoritmos de bloco (Tabela A.3);

» Tamanho da chave de cifragem (write key): Depende do algoritmo de cifragem:;

= Tamanho do bloco cifrado: Depende do algoritmo de cifragem;

s Tamanho do vetor de inicializacdo: Depende do algoritmo de cifragem. Para as cifras
de bloco, € igual ao tamanho do bloco cifrado;

s Algoritmo de MAC: Algoritmos de HMAC, com diferentes fun¢des de hash;

s Tamanho do MAC: Depende do algoritmo de hash escolhido para o HMAC;

s Tamanho da chave de MAC: Depende do algoritmo de hash escolhido para o HMAC.
Possui 0 mesmo valor do tamanho do MAC;

» master_secret: Valor pseudoaleatdrio de tamanho fixo (48 B) calculado durante o
handshake. No dispositivo, ele € gerado e armazenado dentro do Smart Card,

m client_random e server_random: Valores aleatérios de tamanho fixo (32 B).

4.2. ARQUITETURA DE SOFTWARE 84

O fluxo das mensagens durante o handshake é controlado com o auxilio de uma varidvel
de estado, existente tanto no cliente quanto no servidor, a qual informa a ambas as entidades se
elas devem receber ou enviar uma mensagem, € qual mensagem deve ser enviada. A Tabela 4.10

sumariza os valores da varidvel de estado e o que deve ser feito por cada entidade.

ESTADO ACAO MENSAGEM
CLIENTE SERVIDOR

0 Enviar Receber ClientHello

1 Receber Enviar ServerHello

2 Receber Enviar ServerCertificate

3 Receber Enviar ServerKeyExchange
4 Receber Enviar CertificateRequest
5 Receber Enviar ServerHelloDone

6 Enviar Receber ClientCertificate

7 Enviar Receber ClientKeyExchange
8 Enviar Receber CertificateVerify

9 Enviar Receber ChangeCipherSpec
10 Enviar Receber Finished

11 Receber Enviar ChangeCipherSpec
12 Receber Enviar Finished

Tabela 4.10: Estados do handshake e acdes de cada entidade

A transicdo entre estados € condicional, dependendo da suite de criptografia escolhida e
do envio de determinadas mensagens, o que significa que nem todos os estados estardo presentes

em todos os handshakes. Especificamente:

» O estado 3 s6 € executado se o algoritmo da troca de chaves for o DH com Chaves
Efémeras, pois a chave efémera € gerada e enviada pelo servidor nesse momento.
Nos outros casos, a chave necessdria ja estd no certificado enviado no estado 2;

= O estado 4 € opcional, o servidor decide se vai ou ndo requisitar um certificado do
cliente para autenticé-lo;

= O estado 6 s6 € executado se o estado 4 também for executado, ou seja, o cliente s6
envia um certificado para o servidor se isso lhe for requisitado;

» O estado 8 s6 € executado se: o cliente tiver enviado um certificado, ou seja, se o
estado 6 for executado, e se o algoritmo de troca de chaves nao for o DH de Chave
Fixa (quando a chave ndo é gerada na hora para aquela sessdo, e sim ja existe em um
certificado). Isso acontece pois a chave desse certificado ndo pode ser usada para

assinaturas, apenas para o algoritmo de troca de chaves.

4.3. CONSIDERACOES FINAIS 85

A madquina de estados da Figura 4.23 ilustra a transi¢do entre os estados e o fluxograma

na Figura 4.24 sumariza o funcionamento geral do sistema.

TROCA DE CHAVE ==

: I H DH COM CHAVE

EFEMERA
SERVIDOR NAO
REQUISITA CERT.

SERVIDOR
REQUISITA
CERT.

SERVIDOR NAO
REQUISITA CERT.

CERT.
REQUISITADO
1

CERT. NAO
REQUISITADO

CERT. E_NVIADO CERT. NAO ENVIADO
E TROCA DE CHAVE = OU TROCA DE CHAVE ==
DH COM CHAVE FIXA DH COM CHAVE FIXA

O O O

Figura 4.23: Maquina de estados do Protocolo de Handshake do TLS

4.3 Consideracoes Finais

A unido entre os projetos que foram desenvolvido nas se¢des 4.1 e 4.2 compdem o sistema
de comunicagdo segura para [oT proposto neste trabalho. Foram feitos testes de comunicacao
entre o dispositivo fabricado e o servidor, compostos pela realiza¢ao da pré-configuracdo seguida
da execucdo do protocolo de handshake (utilizando vérias suites de criptografia definidas no
TLS) e, por fim, o envio de mensagens cifradas e autenticadas do cliente para o servidor. Isso
mostra que € possivel construir dispositivos IoT assegurados por Smart Cards e que o objetivo

principal do trabalho foi alcangado.

4.3. CONSIDERACOES FINAIS

86

LEITURA DOS
PARAMETROS
SALVOS

INiCIO DA
COMUNICACAO

RETOMAR
SESSAO?

CLIENTE PRE-
CONFIGURADO?

SIM

A

PROTOCOLO DE
HANDSHAKE

A

/ TROCA DE
» MENSAGENS DA

APLICACAO

NAO

REINSTALAGAO
DO APPLET NO
SMART CARD

Y

CLIENTE GERA
E ENVIA CHAVES
PRO SERVIDOR

Y

SERVIDOR CRIA
CERTIFICADOS E
ENVIA PRO CLIENTE

Figura 4.24: Fluxograma de funcionamento do sistema proposto neste trabalho

87

RESULTADOS

Esta capitulo apresenta avaliacdes e andlises realizadas sobre o projeto apds a sua

finalizacgdo.

5.1 Avaliacao de Custo

Um dos objetivos deste trabalho € a criacdo de um dispositivo [oT que seja economica-
mente acessivel. O KiCAD permite a exportacao da Bill of Materials (BOM) do projeto: uma
lista com todos os componentes que sao utilizados na sua fabricagdo. Com essa lista, é possivel
pesquisar os precos de cada componente para obter uma estimativa do custo do dispositivo.

O site Octopart € um mecanismo de busca de componentes eletronicos que fornece
informagdes como datasheets e precos, baseados em pesquisas realizadas em centenas de
distribuidores e milhares de fabricantes, segundo a propria pagina. O Octopart possui também
uma ferramenta para importacdo de BOMs, a qual realiza uma busca de todos os itens nela
presentes e fornece o preco baseado na quantidade que se deseja produzir. E possivel, inclusive,
fazer uma estimativa com os fornecedores que possuem os precos mais baixos. Como a BOM
€ gerada a partir dos componentes que sdo soldados a placa, ficam excluidos dessa pesquisa
automadtica de precos o Smart Card e a propria placa de cobre dupla face.

O repositorio do software GlobalPlatformPro (PALJAK, 2016) possui um guia de compras
para Java Cards no qual sdo mencionadas algumas lojas de SCs, entre elas a SmartCardSource.
Seu Java Card mais barato, o modelo J2A040 da NXP com EEPROM de 40 kB, custa US$4,99
para uma unidade. Esse preco diminui gradativamente a cada centena de unidades até chegar em
US$3,49 para mil ou mais unidades.

Agregando os precos dos componentes eletronicos, obtidos no Octopart, com 0s precos
de Smart Cards, sdo obtidos os valores da Tabela 5.1. Pode-se observar uma queda considerdvel
do custo que se tem para fabricar apenas uma unidade para o custo unitario de mil unidades,
de aproximadamente 30%. E importante destacar que, se esse dispositivo fosse fabricado a um
custo de US$18,00 e vendido com um lucro de 100% por US$36, ele ainda estaria na mesma
faixa de preco de varias placas da familia Arduino, por exemplo, com a vantagem adicional da

seguranca fornecida pelo Smart Card.

5.2. AVALIACAO DE CONSUMO DE ENERGIA 88

PRECO/UNIDADE

1 Unidade 100 Unidades 1000 Unidades

Componentes Eletrénicos US$21,74 US$15,72 uUS$14,51
Smart Cards US$4,99 US$4,75 US$3,49
Total US$26,73 US$20,47 US$18,00

Tabela 5.1: Custo unitario do dispositivo IoT desenvolvido neste trabalho, para diferentes
quantidades produzidas

5.2 Avaliacao de Consumo de Energia

A andlise do consumo de energia do dispositivo [IoT é muito importante, pois determina-
das aplicagdes podem exigir um funcionamento independente da rede elétrica, com a utiliza¢do de
baterias. A depender do propdsito da aplicagdo, um dos requerimentos pode ser o funcionamento
durante um tempo considerdvel com uma Unica carga, quando nao € conveniente recarregar a
bateria frequentemente. Atualmente, o dispositivo proposto € alimentado pela porta USB, mas
uma versdo com bateria € uma possibilidade que pode ser realizada.

O dispositivo proposto possui alguns Cls responsaveis pelo consumo de energia da
placa. Em seus respectivos datasheets € possivel encontrar valores tipicos para correntes de
funcionamento e estimar quanto tempo o dispositivo poderia funcionar com bateria. A Tabela 5.2
lista os chips e suas respectivas correntes de funcionamento. A corrente para o ESP-12E, de
acordo com datasheet (Espressif, 2017), varia de acordo com vdrios pardmetros como: modo
de comunicacdo (recebimento ou transmissao), protocolo Wi-Fi (802.11b/g/n) e poténcia de
transmissao. O texto informa, entdo, um valor médio de 80 mA, o qual foi utilizado na tabela.
A corrente do Smart Card foi obtida do padrao ISO7816-3, que informa a corrente méxima de
funcionamento permitida pra um cartdo classe A.

A carga nominal de uma bateria geralmente ¢ dada em miliamperes-hora (mAh). Embora
esse valor dependa de fatores como temperatura e taxa de descarga, ele pode ser utilizado para
fazer estimativas aproximadas de quanto tempo dura a bateria com um determinado padrao de
uso. Uma breve pesquisa em lojas de componentes eletronicos como Adafruit e Sparkfun mostra
alguns valores tipicos de carga para baterias de litio utilizadas em projetos eletronicos. Esses
valores variam de 1000 mAh a 6600 mAbh.

Considerando os valores de 1000, 2200, 4400 e 6600 mAh, caso o dispositivo 1oT
funcionasse continuamente com o valor total de corrente da Tabela 5.2, o tempo de funcionamento
poderia ser calculado dividindo a carga nominal pela corrente do dispositivo. Dessa forma, ele
seria de aproximadamente 5, 12, 25 e 38 horas, respectivamente. Para aplicagdes que requerem
um tempo de funcionamento de dias até que seja realizada uma manuten¢do como, por exemplo,

medi¢do de consumo de energia elétrica ou 4gua em residéncias, essas duracdes ndo sao aceitaveis.

5.2. AVALIACAO DE CONSUMO DE ENERGIA 89

COMPONENTE CORRENTE (mA)

Oscilador 4 MHz 7
Conversor para o Cartao 0,805
Conversor para as GPIOs 0,01
Conversor para Porta USB 15

Regulador de Tenséo 11
Modulo ESP-12E 80
Smart Card 60
Total 173,815

Tabela 5.2: Correntes tipicas de funcionamento para os chips do dispositivo IoT desenvolvido
neste trabalho

Uma possivel solugdo seria a utilizagdo de modos de baixo consumo de energia, geralmente
presentes em microcontroladores utilizados em projetos eletronicos. O ESP8266 possui trés

modos de economia de energia:

n Modem-sleep: Apenas o modem Wi-Fi € desligado, mas a conexdo € mantida. Cor-
rente de funcionamento de 15 mA;

n Light-sleep: O modem Wi-Fi, o relogio do sistema e a CPU sao desligados, mas a
conexao € mantida. Corrente de funcionamento de 0,4 mA;

n Deep-sleep: Todos os mddulos do chip sdo completamente desligados (a conexao nao
€ mantida) e apenas o Reldgio de Tempo Real continua funcionando, para acordar
o microcontrolador em um tempo pré-determinado. Corrente de funcionamento de
0,02 mA.

Para realizacdo das estimativas, pode ser considerada uma aplicagdo onde o dispositivo
faz medig¢des periddicas em intervalos de x minutos, onde ele passa 1 minuto ligado realizando
diferentes tarefas e utilizando toda sua capacidade, e nos x — 1 minutos restantes ele se encontra
no estado de deep-sleep. Nesse caso, durante o estado de espera, todos os chips relacionados ao
Smart Card também estardo desligados, bem como o conversor da porta USB (o qual s6 € ligado
quando a porta estd em uso). Isso reduz o total de corrente para 0,01 + 114 0,02 = 11,03 mA.
A carga em mAh utilizada pelo dispositivo a cada ciclo nessa situagao pode ser, entdo, calculada

a partir da seguinte expressao:

11,03(x— 1)+ 158,815
60

~2,4640,18x

Multiplicando esse valor pela quantidade de ciclos de x minutos presentes em uma
hora (ou seja, 60/x), é possivel descobrir a carga utilizada por hora. Dividindo, entdo, a carga

nominal da bateria por esse resultado, pode-se encontrar quantas horas a bateria vai durar,

5.2. AVALIACAO DE CONSUMO DE ENERGIA 90

aproximadamente. A expressdo para as horas fica dessa forma:

Cnominal X Cnominal

(2,46 +0,18x) (%) ~ 147,60+ 10,80x

X

Considerando diferentes valores para x, a Tabela 5.3 mostra as duragdes (em horas) da
bateria para os quatro valores de carga nominal citados anteriormente e a Figura 5.1 mostra o

gréafico obtido a partir da tabela.

PERIODO DE MEDICAO (min)

CARGA (mAh) 15 30 45 60 75 90

1000 48,45h 63,61h 71,02h 7541h 7832h 79,99h
2200 106,59h 139,95h 156,25h 16591h 172,31h 175,97h
4400 213,18h 279,90h 312,50h 331,83h 344,61h 351,94h
6600 319,77h 419,85h 468,75h 497,74h 516,92h 527,91h

Tabela 5.3: Duragio da bateria em horas para os diferentes valores de carga nominal e periodo de
medi¢ao

ESTIMATIVA DE DURAGAO DA BATERIA

‘ —e—1000 mAh
500 | —=-2200mAh
< —e— 4400 mAh
g 400 - 1 ——6600mAh
5
o 300 y
©
o)
S 200 | i
[0}
= -/I/'/k/./.
A 100} i
././k_*——b——.
| | | | | |

Periodo de medigao (min)
Figura 5.1: Grifico de horas de funcionamento estimadas, obtido com os valores da Tabela 5.3

E possivel observar que mesmo no pior caso, com uma carga de apenas 1000 mAh em
uma aplica¢do periddica de 15 min, existe um ganho de horas de funcionamento de quase 1000%
(de 5 para 48 horas), relativamente a uma aplicacdo onde o funcionamento € continuo. No melhor
caso, com uma bateria de 6600 mAh em uma aplicacdo com periodo de 90 min, o dispositivo
pode funcionar por aproximadamente 22 dias. Também pode-se ver que quanto maior a carga

nominal da bateria, mais o aumento do periodo influencia na quantidade de horas.

91

CONCLUSAO

6.1 Consideracoes Finais

A seguranca dos dispositivos e a privacidade das informacdes transmitidas sdo fatores-
chave no desenvolvimento e ado¢do da Internet das Coisas. Este trabalho mostrou que é possivel
criar um dispositivo 10T seguro a partir de um microcontrolador de baixo custo, com restri¢cdes
de memoria e processamento, integrando-o a um Smart Card, o qual € especializado em executar
operacoes de seguranga e armazenamento seguro de informacoes.

Todo o trabalho foi fundamentado em conceitos sélidos de criptografia e seguranga discu-
tidos no Capitulo 2 e também nos padrdes internacionais criados para especificar o funcionamento
e a interoperabilidade entre os diversos componentes envolvidos neste projeto.

Como visto no Capitulo 4, o projeto foi iniciado com a criacdo de algo que seria um
modulo de leitor de cartdo para um Arduino UNO, um dos microcontroladores mais utilizados
em prototipacao de projetos eletronicos e de IoT. Ao longo do seu desenvolvimento, o projeto
foi alterado para ser uma placa tunica, incorporando o microcontrolador ESP8266, o qual ja
possui capacidades de comunicagdo sem fio, via Wi-Fi. Paralelamente ao desenvolvimento de
hardware, foram criados softwares para o microcontrolador, o cartdo e o servidor a partir de
ferramentas livres e open source. A utilizagdao do cartdo no projeto permitiu a implementacao do
protocolo TLS, amplamente utilizado na Internet, que garante a privacidade dos dados que sdo
trocados e a autenticacdo entre as entidades que estdo se comunicando. Adicionalmente, foram
desenvolvidas bibliotecas para Arduino e placas compativeis, as quais implementam operacdes
avancadas com o cartdo, que vao além da simples troca de mensagens.

Por fim, as anélises realizadas no Capitulo 5 mostraram que o dispositivo desenvolvido
pode ter um custo compativel com outros dispositivos no mercado, se produzido em grande
escala. Além disso, foi visto que o dispositivo, apesar de ter sido projetado para operar com
uma conexao USB, € capaz de funcionar por dias com restri¢cdes de consumo de energia, sendo
alimentado por uma bateria, em uma aplicagdo onde sdo realizadas leituras periédicas de um

determinado sensor.

6.2. DIFICULDADES ENCONTRADAS 92

6.2 Dificuldades Encontradas

Foram encontradas dificuldades tanto na elaboracdo de hardware, quanto na de software

do projeto. No que diz respeito ao hardware, destacam-se:

» Durante a fabricacdo das placas que seriam conectadas ao Arduino (Figura 4.5), o
alinhamento do Smart Card com o slot foi complicado de ser realizado, visto que
o slot era feito para cartdes ID-000 e foi adaptado para cartdes ID-1. A estratégia
utilizada para conseguir posicionar o cartdo corretamente foi criar um componente
no proprio ECAD com um contorno do tamanho exato de um cartdo, o qual no seria
corroido durante a fabricacdo, e posiciona-lo de maneira alinhada com o componente
do slot;

» A fixacdo do cartdo no local correto, com o auxilio de parafusos e porcas posicionados
nas bordas, também ndo era totalmente satisfatoria. Por vezes, era necessario pressio-
nar o cartdo manualmente para conseguir realizar a conexao. Com a introducdo da
peca de pléstico feita na impressora 3D (Figura 4.6), esse problema deixou de existir.
No entanto, também foram necessdrios varios testes e impressoes até se chegar a uma
peca que estabelecesse uma conexao entre cartio e slot de forma confidvel,

» A utilizagdo do ESP8266 no lugar do Arduino adicionou um trabalho extra, pois
os moédulos fabricados com esse chip requerem de uma PCI adicional com alguns
switches para que possam ser gravados, além de um conversor de serial/USB para
conectd-los com o computador;

» Todas as placas citadas neste trabalho foram fabricadas e soldadas de forma manual.
A partir da confec¢ao da primeira placa do sistema englobando o médulo ESP8266 e
o Smart Card (Figura 4.18), surgiram problemas relacionados aos tamanhos dos chips
que faziam parte da placa. Por serem CIs muito pequenos, a resolucido da impressao
do layout da placa ndo era boa o suficiente, de forma que as trilhas de cada “perna”
do chip as vezes se conectavam (Figuras 6.1a, 6.2a e 6.3a). Para ndo perder a placa
inteira por causa de um chip, foram feitas corre¢des manuais no cobre, com o auxilio
de um estilete. Em algumas ocasides, isso acabava por destruir completamente a
trilha e inutilizar a placa (Figuras 6.2b e 6.3a). Esses problemas foram resolvidos com
a utilizacdo de footprints com trilhas mais finas, que apesar de ndo ficarem sempre
perfeitas possuiam uma probabilidade menor de sairem unidas apds a corrosdao do
cobre (Figuras 6.1c e 6.2¢);

= Pelo mesmo motivo do item anterior, a espessura das trilhas, em alguns momentos
durante a soldagem as trilhas se descolavam do substrato (Figuras 6.1b e 6.3b),

também inutilizando a placa.

6.2. DIFICULDADES ENCONTRADAS 93

(a) Trilhas unidas apds corrosdo (b) Trilhas destruidas durante a (¢) Trilhas sem defeito
soldagem

Figura 6.1: Falhas na soldagem do chip conversor de tensdo para GPIOs

(a) Trilhas unidas ap6s corrosdo (b) Trilhas destruidas apds (¢) Trilhas sem defeito
tentativa de correcéo

Figura 6.2: Falhas na soldagem do chip conversor de tensdo para Smart Cards

(a) Trilhas unidas ap6s corrosdo e destruidas ap6s (b) Trilhas destruidas durante a soldagem
tentativa de correcdo

Figura 6.3: Falhas na soldagem dos chips do circuito de relégio da Figura 4.17

6.3. TRABALHOS FUTUROS 94

Quanto ao desenvolvimento de software, foram encontrados os seguintes obstaculos:

» O acionamento do Watchdog Timer do ESP8266, como descrito na Subse¢do 4.2.1.

= A falta de experiéncia prévia com programacdo em Java Cards gerou algumas dificul-
dades relacionadas a memoria do cartdo. A implementacdo de funcgdes proprietérias
ou ndo presentes na API como o HMAC, PRF e outras relativas ao TLS geralmente
exigiam a cria¢ao de arrays para armazenamento de dados intermedidrios dos calcu-
los. O cartao, no entanto, possui um limite de memoria destinada a essas varidveis e
quando esse limite € ultrapassado, a execu¢@o do applet ndo ¢ feita da forma correta.
Com o tempo, descobriu-se que esse era o motivo e as funcdes foram otimizadas para
reduzir o uso da memoria. Alguns textos com guias e boas praticas de programacao
para Java Card auxiliaram nesse processo (GEMALTO, 2009)(RUIMTOOLS, 2010);

» Durante o protocolo de handshake do TLS (Se¢ado 2.4), € necessario armazenar todas
as mensagens trocadas para criar as mensagens CertificateVerify e Finished, ou entdo
calcular hashes intermedidrios que sdo atualizados a cada nova mensagem. Este
ultimo método € preferivel, pois ndo utiliza tanta memoria (nos testes realizados,
as mensagens do handshake chegavam a um tamanho de aproximadamente 5 kB,
enquanto que um hash possui poucas dezenas de bytes). Inicialmente, foram imple-
mentadas funcdes de hashes intermediarios SHA256 no préprio MCU. No entanto,
1sso anula o objetivo do sistema de realizar todas as operagdes criptograficas no Smart
Card. Dessa forma, foi testada a possibilidade de calcular os hashes intermedidrios
dentro do cartdo, através das funcdes na API. Porém, ndo era possivel extrair os
hashes intermedidarios do cartdo, nem atualizd-los apds seu desligamento e religa-
mento. Com isso, foi utilizado o primeiro método, onde todas as mensagens foram
armazenadas em uma varidvel e, quando necessario, seu hash é calculado dentro do
cartdo. Uma das desvantagens desse método € a incompatibilidade com MCUs com

pouca memoria.

6.3 Trabalhos Futuros

H4 muito que ainda pode ser feito com relacdo a esse trabalho, incluindo melhorias de
hardware e de software e avaliacdes e testes do sistema como um todo. A seguir, sdo citadas

algumas dessas tarefas:

s Diminui¢do do tamanho dispositivo a partir de algumas modificagdes, como: uti-
lizacao de Smart Cards menores (tamanho de nano SIM); soldagem do ESP8266
e componentes necessdrios diretamente na placa, ao invés do médulo; utilizacao
de técnicas profissionais de fabricacao de PCls, principalmente para soldagem de
componentes menores, confeccdo de placas com duas ou mais camadas e criacao

de vias (furos que conectam as diferentes camadas de uma placa de circuito). No

6.3. TRABALHOS FUTUROS 95

trabalho realizado, as vias sdo feitas com fios de cobre que atravessam furos na placa
e sdo soldados em ambos os lados, o que toma mais espaco do que deveria. Em
um processo de fabricagdo profissional, os furos sao bem menores e revestidos com
material condutor (ndo tém fios atravessando);

» Utilizacdo de Java Cards com APIs mais recentes (atualmente, estd na versao 3.0.5),
que contém operagdes criptograficas mais modernas e seguras;

= Aumentar a conformidade da implementacdo do TLS com a especificacao do RFC
5246. O cdédigo foi escrito com foco nos protocolos centrais do TLS, Registro e
Handshake e a implementac¢do ndo ficou completa. Um exemplo de algo que deveria
ser adicionado € o Protocolo de Alerta, que define as mensagens de erros que podem
ocorrer ao longo da execucao dos outros protocolos;

= Avaliar a performance do dispositivo durante a realizacdo do protocolo de handshake
a partir de métricas como tempo de execu¢ao;

= Medir o consumo de corrente em um cendrio de aplicacdo e comparar os resultados
com a estimativa realizada na Se¢ado 5.2;

s Desenvolver maneiras de avaliar a seguranga do dispositivo,a partir de diferentes
pontos de vista como: implementacao de software, fabricacdo de hardware etc.;

» Testar os dispositivos em um cendrio realista, para que seu funcionamento possa ser
avaliado em uma aplicacio que envolva a leitura de diferentes sensores € o envio das
informacdes de forma segura para o servidor;

= Avaliar o desempenho do dispositivo durante a sua utilizacdo em diferentes aplicacdes

e estudar sua viabilidade para cada uma delas.

96
REFERENCIAS

ABOMHARA, M.; KgIEN, G. M. Security and privacy in the internet of things: Current status
and open issues. In: 2014 International Conference on Privacy and Security in Mobile Systems
(PRISMS). [S.1.: s.n.], 2014. p. 1-8.

ALLEN, C. et al. The Transport Layer Security (TLS) Protocol Version 1.2. [S.1.], 2008.
Disponivel em: <http://www.rfc-editor.org/rfc/rfc5246.txt>.

ARDIRI, A. Is it possible to secure micro-controllers used within IoT? 2014. Online. Disponivel
em: <https://evothings.com/is-it-possible-to-secure-micro-controllers-used-within-iot/>.

BADRA, M.; URIEN, P. Tls tandem. In: 2008 New Technologies, Mobility and Security. [S.1.:
s.n.], 2008. p. 1-5. ISSN 2157-4952.

BARGSTEDT, F. ArduinoSCLib: Smart Card Library for Arduino compatible boards. 2016.
Online. Disponivel em: <https://sourceforge.net/projects/arduinosclib/>.

BELLARE, M.; NAMPREMPRE, C. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: _ . Advances in Cryptology —
ASIACRYPT 2000: 6th International Conference on the Theory and Application of Cryptology
and Information Security Kyoto, Japan, December 3—7, 2000 Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000. p. 531-545. ISBN 978-3-540-44448-0. Disponivel em:
<https://doi.org/10.1007/3-540-44448-3 41 >.

BERTINO, E. et al. Internet of things (iot): Smart and secure service delivery. ACM Trans.
Internet Technol., ACM, New York, NY, USA, v. 16, n. 4, p. 22:1-22:7, dez. 2016. ISSN
1533-5399. Disponivel em: <http://doi.acm.org/10.1145/3013520>.

BLAKE-WILSON, S. et al. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS). [S.1.], 2006. Disponivel em: <http://www.rfc-editor.org/rfc/rfc4492.txt>.

COOPER, D. et al. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. [S.1.], 2008. Disponivel em: <http://www.rfc-editor.org/rfc-
/rfc5280.txt>.

CORCORAN, D.; CUCINOTTA, T. MUSCLE Cryptographic Card Edge Definition for Java
Enabled Smartcards. [S.1.], 2001. Disponivel em: <https://pcsclite.alioth.debian.org/musclecard-
.com/musclecard/files/mcardprot-1.2.1.pdf>.

CUCINOTTA, T.; NATALE, M. D.; CORCORAN, D. A protocol for programmable smart
cards. In: 14th International Workshop on Database and Expert Systems Applications, 2003.
Proceedings. [S.1.: s.n.], 2003. p. 369-374. ISSN 1529-4188.

DICHOU, K.; TOURTCHINE, V.; RAHMOUNE, F. Simulation of apdus exchanged between
a microcontroller smart card and a reader. In: 7th International Conference on Modelling,
Identification and Control (ICMIC). [S.1.: s.n.], 2015. p. 1-4.

EDSON, B. Creating the Internet of Your Things. [S.1.], 2015. Disponivel em: <http:/-
/download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFAS82-
/Creating the Internet of Your Things.pdf>.

http://www.rfc-editor.org/rfc/rfc5246.txt
https://evothings.com/is-it-possible-to-secure-micro-controllers-used-within-iot/
https://sourceforge.net/projects/arduinosclib/
https://doi.org/10.1007/3-540-44448-3_41
http://doi.acm.org/10.1145/3013520
http://www.rfc-editor.org/rfc/rfc4492.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://pcsclite.alioth.debian.org/musclecard.com/musclecard/files/mcardprot-1.2.1.pdf
https://pcsclite.alioth.debian.org/musclecard.com/musclecard/files/mcardprot-1.2.1.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf
http://download.microsoft.com/download/C/F/7/CF78575B-711E-4E1B-8BAB-3ED1657DFA82/Creating_the_Internet_of_Your_Things.pdf

REFERENCIAS 97

Espressif. ESP8266EX Datasheet Version 5.4. [S.1.], 2017. Disponivel em: <http://espressif-
.com/sites/default/files/documentation/Oa-esp8266ex_datasheet en.pdf>.

GALLAGHER, S. The future is the Internet of Things—deal with it. 2015. Online. Disponivel
em: <http://arstechnica.com/unite/2015/10/the-future-is-the-internet-of-things-deal-with-it/>.

GEMALTO. Java Card & STK Applet Development Guidelines, Version 2.0. 2009.

GlobalPlatform. Card Specification Version 2.1.1. [S.1.], 2003. Disponivel em: <http://www-
.globalplatform.org/specificationscard.asp>.

GUTMANN, P. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS). [S.1.], 2014. Disponivel em: <http://www.rfc-editor.org/rfc/rfc7366-
AXt>.

Hackster. The 2016 Hackster.io Maker Survey Official Report. [S.1.], 2016. Disponivel em:
<https://www.hackster.io/survey>.

HERDER, C. et al. Physical unclonable functions and applications: A tutorial. Proceedings of
the IEEE, v. 102, n. 8, p. 1126-1141, Aug 2014. ISSN 0018-9219.

HILL, K. The Half-Baked Security Of Our ’Internet Of Things’. 2014. Online. Disponivel
em: <http://www.forbes.com/sites/kashmirhill/2014/05/277/article-may-scare-you-away-from-
internet-of-things/#313a3c7023dd>.

HUMMEN, R. et al. Towards viable certificate-based authentication for the internet of things. In:
Proceedings of the 2Nd ACM Workshop on Hot Topics on Wireless Network Security and Privacy.
New York, NY, USA: ACM, 2013. (HotWiSec ’13), p. 37-42. ISBN 978-1-4503-2003-0.
Disponivel em: <http://doi.acm.org/10.1145/2463183.2463193>.

INTEL. A Guide to the Internet of Things. 2015. Disponivel em: <http://www.intel.com/content-
/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png>.

ISO/IEC. ISO/IEC 7816-1: Identification cards — Integrated circuit(s) cards with contacts — Part
1: Physical characteristics. Suiga, 1998. Disponivel em: <https://www.iso.org/standard/54089-
html>.

ISO/IEC. ISO/IEC 7810: Identification cards — Physical characteristics. Suica, 2003. Disponivel
em: <https://www.iso.org/standard/31432.html>.

ISO/IEC. ISO/IEC 7816-8: Identification cards — Integrated circuit cards — Part 8: Commands for
security operations. Suiga, 2004. Disponivel em: <https://www.iso.org/standard/37989.html>.

ISO/IEC. ISO/IEC 7816-9: Identification cards — Integrated circuit cards — Part 9: Commands
for card management. Suica, 2004. Disponivel em: <https://www.iso.org/standard/37990.html>.

ISO/IEC. ISO/IEC 7816-12: Identification cards — Integrated circuit cards — Part 12: Cards
with contacts — USB electrical interface and operating procedures. Suiga, 2005. Disponivel em:
<https://www.iso.org/standard/40604.html>.

ISO/IEC. ISO/IEC 7816-4: Identification cards — Integrated circuit cards — Part 4:

Organization, security and commands for interchange. Suica, 2005. Disponivel em:
<https://www.iso.org/standard/36134.html>.

http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://arstechnica.com/unite/2015/10/the-future-is-the-internet-of-things-deal-with-it/
http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://www.rfc-editor.org/rfc/rfc7366.txt
http://www.rfc-editor.org/rfc/rfc7366.txt
https://www.hackster.io/survey
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/#313a3c7023dd
http://www.forbes.com/sites/kashmirhill/2014/05/27/article-may-scare-you-away-from-internet-of-things/#313a3c7023dd
http://doi.acm.org/10.1145/2463183.2463193
http://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
http://www.intel.com/content/dam/www/public/us/en/images/iot/guide-to-iot-infographic.png
https://www.iso.org/standard/54089.html
https://www.iso.org/standard/54089.html
https://www.iso.org/standard/31432.html
https://www.iso.org/standard/37989.html
https://www.iso.org/standard/37990.html
https://www.iso.org/standard/40604.html
https://www.iso.org/standard/36134.html

REFERENCIAS 98

ISO/IEC. ISO/IEC 7816-3: Identification cards — Integrated circuit cards — Part 3: Cards
with contacts — Electrical interface and transmission protocols. Suica, 2006. Disponivel em:

<https://www.iso.org/standard/38770.html>.

ISO/IEC. ISO/IEC 7816-2: Identification cards — Integrated circuit cards — Part 2: Cards
with contacts — Dimensions and location of the contacts. Suica, 2007. Disponivel em:
<https://www.iso.org/standard/45989.html>.

ITU-T. Recommendation X.800: Data Communication Networks, Open Systems
Interconnection (OSI); Security, Structure and Applications — Security Architecture for
Open Systems Interconnection for CCITT Applications. Geneva, 1991. Disponivel em:
<http://www.itu.int/rec/T-REC-X.800/en>.

ITU-T. ITU-T Recommendation X.690: Information technology — ASN.I encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER). [S.1.], 2002. Disponivel em: <http://www.itu.int/rec/T-
REC-X.690/en>.

ITU-T. ITU-T Recommendation X.680: Information technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation. [S.1.], 2008. Disponivel em:
<http://www.itu.int/rec/T-REC-X.680/en>.

Java Card Forum. 20 Years of the Java Card Forum. 2017. Disponivel em: <https:/-
/javacardforum.files.wordpress.com/2017/03/jcf 20infographic final 1.jpg>.

KANUPARTHI, A.; KARRI, R.; ADDEPALLLI, S. Hardware and embedded security in the
context of internet of things. In: Proceedings of the 2013 ACM Workshop on Security, Privacy
& Dependability for Cyber Vehicles. New York, NY, USA: ACM, 2013. (CyCAR ’13),
p. 61-64. ISBN 978-1-4503-2487-8. Disponivel em: <http://doi.acm.org/10.1145/2517968-
2517976>.

KATZ, J.; LINDELL, Y. Introduction to Modern Cryptography. 2nd. ed. Boca Raton,
Florida, USA: Chapman & Hall/CRC, 2014. (Cryptography and Network Security). ISBN
9781466570276.

KIM, D. S. et al. On the design of an embedded biometric smart card reader. IEEE Transactions
on Consumer Electronics, v. 54, n. 2, p. 573-577, maio 2008. ISSN 0098-3063.

KRAWCZYK, H. The order of encryption and authentication for protecting communications
(or: How secure is ssl?). In: . Advances in Cryptology — CRYPTO 2001: 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. p. 310-331. ISBN
978-3-540-44647-7. Disponivel em: <https://doi.org/10.1007/3-540-44647-8_19>.

KRAWCZYK, H.; BELLARE, M.; CANETTI, R. HMAC: Keyed-Hashing for Message
Authentication. [S.1.], 1997. Disponivel em: <http://www.rfc-editor.org/rfc/rfc2104.txt>.

KREBS, B. This is Why People Fear the ‘Internet of Things’. 2016. Online. Disponivel em:
<http://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/>.

LIU, Y. et al. An efficient privacy protection solution for smart home application platform. In:
2016 2nd IEEE International Conference on Computer and Communications (ICCC). [S.1.: s.n.],
2016. p. 2281-2285.

https://www.iso.org/standard/38770.html
https://www.iso.org/standard/45989.html
http://www.itu.int/rec/T-REC-X.800/en
http://www.itu.int/rec/T-REC-X.690/en
http://www.itu.int/rec/T-REC-X.690/en
http://www.itu.int/rec/T-REC-X.680/en
https://javacardforum.files.wordpress.com/2017/03/jcf_20infographic_final_1.jpg
https://javacardforum.files.wordpress.com/2017/03/jcf_20infographic_final_1.jpg
http://doi.acm.org/10.1145/2517968.2517976
http://doi.acm.org/10.1145/2517968.2517976
https://doi.org/10.1007/3-540-44647-8_19
http://www.rfc-editor.org/rfc/rfc2104.txt
http://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/

REFERENCIAS 99

LUCHINI, L. asnljs: JavaScript Generic ASN.1 Parser/Decoder. 2017. Online. Disponivel em:
<https://github.com/lapo-luchini/asn1js>.

MANYIKA, J. et al. The Internet of Things: Mapping the Value Beyond the Hype. [S.1.],
2015. Disponivel em: <http://www.mckinsey.com/business-functions/business-technology/our-
insights/the-internet-of-things-the-value-of-digitizing-the-physical-world>.

MUIJIL, S. Z. M. et al. Simulation of smart card interface with pic for vehicle security system. In:
2008 International Conference on Computer and Communication Engineering. [S.l.: s.n.], 2008.
p. 878-882.

NIST. FIPS PUB 199: Standards for Security Categorization of Federal Information and
Information Systems. Gaithersburg, Maryland, USA, 2004. Disponivel em: <http://csrc.nist.gov-
/publications/fips/fips199/FIPS-PUB-199-final.pdf>.

Nordic Semiconductor. nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0.

Noruega, 2008. Disponivel em: <http://www.nordicsemi.com/eng/nordic/download resource-
/8765/2/50113066/2726>.

OpenSC Team. OpenSC: Open source Smart Card tools and middleware. 2015. Online.
Disponivel em: <https://github.com/OpenSC/OpenSC>.

Oracle. Java Card Technology: Providing a Secure and Ubiquitous Platform for Smart Cards.
[S.1.], 2012. Disponivel em: <http://www.oracle.com/technetwork/java/embedded/javacard-
/documentation/datasheet-149940.pdf>.

PAAR, C.; PELZL, J. Understanding Cryptography: A Textbook for Students and Practitioners.
Ist. ed. [S.L.]: Springer, 2010. ISBN 9783642041006, 9783642041013.

PALJAK, M. GlobalPlatformPro: Load and manage applets on compatible JavaCards from
command line or from your Java project. 2016. Online. Disponivel em: <https://github.com-
/martinpaljak/GlobalPlatformPro/>.

PALJAK, M. Applet Playground: Educational repository for getting to know JavaCard
development by learning from existing open source software. 2017. Online. Disponivel em:
<https://github.com/martinpaljak/AppletPlayground>.

PAWAR, A. B.; GHUMBRE, S. A survey on iot applications, security challenges and counter

measures. In: 2016 International Conference on Computing, Analytics and Security Trends
(CAST). [S.L.: s.n.], 2016. p. 294-299.

PIETIG, A. Functional Specification of the OpenPGP application on I1SO Smart Card Operating
Systems. Detmold, Alemanha, 2015. Disponivel em: <http://www.gl0code.com/docs/openpgp-
card-3.0.pdf>.

PORUP, J. M. "Internet of Things"security is hilariously broken and getting worse. 2016. Online.
Disponivel em: <https://arstechnica.com/information-technology/2016/01/how-to-search-the-
internet-of-things-for-photos-of-sleeping-babies/>.

Python Cryptographic Authority. Cryptography: Package Designed to Expose Cryptographic
Primitives and Recipes to Python Developers. 2017. Online. Disponivel em: <https://github-
.com/pyca/cryptography>.

https://github.com/lapo-luchini/asn1js
http://www.mckinsey.com/business-functions/business-technology/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/business-technology/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://www.nordicsemi.com/eng/nordic/download_resource/8765/2/50113066/2726
http://www.nordicsemi.com/eng/nordic/download_resource/8765/2/50113066/2726
https://github.com/OpenSC/OpenSC
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/datasheet-149940.pdf
https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/martinpaljak/GlobalPlatformPro/
https://github.com/martinpaljak/AppletPlayground
http://www.g10code.com/docs/openpgp-card-3.0.pdf
http://www.g10code.com/docs/openpgp-card-3.0.pdf
https://arstechnica.com/information-technology/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
https://arstechnica.com/information-technology/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography

REFERENCIAS 100

RANKL, W.; EFFING, W. Smart Card Handbook. 4th. ed. [S.1.]: Wiley, 2010. ISBN
9780470743676.

RIBEIRO, J. Securing MQTT communication between Ardruino and Mosquitto. 2012.
Online. Disponivel em: <https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-
communication-between-ardruino-and-mosquitto/>.

RIEMANN, T. ArduinoDES: DES and Triples DES Encryption and Decryption for the
Arduino Microcontroller Platform. 2015. Online. Disponivel em: <https://github.com/Octoate-
/ArduinoDES>.

RSA Laboratories. PKCS #15: Cryptographic Token Information Format Standard, Version 1.1.
Bedford, Massachusetts, USA, 2000. Disponivel em: <http://www.emc.com/emc-plus/rsa-labs-
/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm>.

RUIMTOOLS. Java Card: Programming Guidelines and Best Practise. 2010. Online.
Disponivel em: <http://www.ruimtools.com/doc.php?doc=jc_best>.

SAS. The Internet of Things: Get in on the next big thing. 2016. Disponivel em:
<https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-
internet-of-things-infographic/ jcr content/par/styledcontainer 59e5/par/image 9900.img.png-
/1448314822621 .png>.

SCHNEIER, B. Click Here to Kill Everyone: With the Internet of Things, we’re building a
world-size robot. How are we going to control it? 2017. Online. Disponivel em: <http://nymag-
.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html>.

SHIREY, R. W. Internet Security Glossary. [S.1.], 2000. Disponivel em: <http://www.rfc-editor-
.org/rfc/rfc2828.txt>.

STALLINGS, W. Cryptography and Network Security: Principles and Practice. Sth. ed. [S.L.]:
Prentice Hall, 2011. ISBN 9780136097044.

Sun Microsystems. Application Programming Interface, Java Card Platform, Version 2.2.2.
Santa Clara, California, USA, 2006. Disponivel em: <http://download.oracle.com/otndocs/jcp-
/java_card kit-2.2.2-fr-oth-JSpec/>.

Sun Microsystems. Development Kit User’s Guide For the Binary Release with Cryptography
Extensions, Java Card Platform, Version 2.2.2. Santa Clara, California, USA, 2006. Disponivel
em: <http://download.oracle.com/otndocs/jcp/java_card kit-2.2.2-fr-oth-JSpec/>.

Sun Microsystems. Virtual Machine Specification, Java Card Platform, Version 2.2.2. Santa
Clara, California, USA, 2006. Disponivel em: <http://download.oracle.com/otndocs/jcp-
/java_card kit-2.2.2-fr-oth-JSpec/>.

TAYLOR, H. How the ’Internet of Things’ could be fatal. 2016. Online. Disponivel em:
<http://www.cnbc.com/2016/03/04/how-the-internet-of-things-could-be-fatal.html>.

TEKEOGLU, A.; TOSUN, A. S. A testbed for security and privacy analysis of iot devices. In:
2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). [S.1.:
s.n.], 2016. p. 343-348.

https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-communication-between-ardruino-and-mosquitto/
https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-communication-between-ardruino-and-mosquitto/
https://github.com/Octoate/ArduinoDES
https://github.com/Octoate/ArduinoDES
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-15-cryptographic-token-information-format.htm
http://www.ruimtools.com/doc.php?doc=jc_best
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
https://www.sas.com/content/sascom/en_us/insights/big-data/internet-of-things/the-internet-of-things-infographic/_jcr_content/par/styledcontainer_59e5/par/image_9900.img.png/1448314822621.png
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html
http://www.rfc-editor.org/rfc/rfc2828.txt
http://www.rfc-editor.org/rfc/rfc2828.txt
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://www.cnbc.com/2016/03/04/how-the-internet-of-things-could-be-fatal.html

REFERENCIAS 101

VELOSA, A.; SCHULTE, W. R.; LHEUREUX, B. J. Hype Cycle for the Internet of Things.
[S.L], 2015. Disponivel em: <https://info.microsoft.com/CO-AAIoT-CNTNT-FY 16-07Dec15-
Gartner-HypeCycle-lIoT-Register.html?1s=Website >.

WISNIEWSKI, C. 7 tips for securing the Internet of Things. 2016. Online. Disponivel em:
<https://nakedsecurity.sophos.com/2016/03/07/7-tips-for-securing-the-internet-of-things/>.

YANG, Y. et al. A survey on security and privacy issues in internet-of-things. IEEE Internet of
Things Journal, PP, n. 99, p. 1-1, 2017. ISSN 2327-4662.

SVENDA, P. JCAlgTest: Automated testing tool for algorithms from Java Card API supported
by a particular Smart Card. 2016. Online. Disponivel em: <https://github.com/crocs-muni-
/JCAlgTest>.

https://info.microsoft.com/CO-AAIoT-CNTNT-FY16-07Dec15-Gartner-HypeCycle-IoT-Register.html?ls=Website
https://info.microsoft.com/CO-AAIoT-CNTNT-FY16-07Dec15-Gartner-HypeCycle-IoT-Register.html?ls=Website
https://nakedsecurity.sophos.com/2016/03/07/7-tips-for-securing-the-internet-of-things/
https://github.com/crocs-muni/JCAlgTest
https://github.com/crocs-muni/JCAlgTest

APENDICE A - ALGORITMOS SUPORTADOS PELO SMART CARD

ALGORITMO JAVA CARD

NOME BYTES PADDING

DES CBC-MAC 4 N/A <21
DES CBC-MAC 8 N/A <21
DES CBC-MAC 4 Método 1 (1IS09797-1) < 2.1
DES CBC-MAC 8 Método 1 (1IS09797-1) < 2.1
DES CBC-MAC 4 Método 2 (1IS09797-1) < 2.1
DES CBC-MAC 8 Método 2 (1IS09797-1) < 2.1
AES128 CBC-MAC 16 N/A 220
DES Retail MAC (ISO9797-1) 4 Método 2 (1IS09797-1) 2.2.0
DES Retail MAC (ISO9797-1) 8 Método 2 (1IS09797-1) 2.2.0
SEED CBC-MAC 16 N/A 222

Tabela A.1: Algoritmos de cédigo de autenticacdo de mensagem

ALGORITMO JAVA CARD
NOME HASH PADDING
RSA SHA ISO9796 < 2.1
RSA SHA PKCS#1 < 2.1
RSA MD5 PKCS#1 < 2.1

RSA RIPEMD160 1S0O9796 < 2.1
RSA RIPEMD160 PKCS#1 < 2.1
ECDSA SHA N/A 2.2.0

Tabela A.2: Algoritmos de assinatura digital

102

103

ALGORITMO JAVA CARD

NOME MODO PADDING

DES CBC N/A <21
DES CBC Método 1 (ISO09797-1) < 2.1
DES CBC Método 2 (IS09797-1) < 2.1
DES ECB NA <21
DES ECB Método 1 (1ISO9797-1) < 2.1
DES ECB Método 2 (1ISO9797-1) < 2.1
AES128 CBC N/A 2.2.0
AES128 ECB N/A 2.2.0
SEED CBC N/A 222
SEED ECB N/A 222

Tabela A.3: Algoritmos de cifragem simétrica

ALGORITMO JAVA CARD
NOME PADDING
RSA PKCS#1 <21
RSA ISO9796 < 2.1
RSA N/A 2.1.1

Tabela A.4: Algoritmos de cifragem assimétrica

ALGORITMO JAVA CARD
DH 2.2.1
DH (multiplicagao de cofator) 2.2.1

Tabela A.5: Algoritmos de troca de chaves

ALGORITMO JAVA CARD

SHA
MD5

<21
<21

RIPEMD160 < 2.1
SHA256 2.2.2

Tabela A.6: Algoritmos de hash

104

ALGORITMO JAVA CARD

NOME BITS

RSA 512 < 2.1
RSA 736 2.2.0
RSA 768 2.2.0
RSA 896 2.2.0
RSA 1024 < 2.1
RSA 1280 2.2.0
RSA 1536 2.2.0
RSA 1984 2.2.0
RSA 2048 < 2.1

Curvas Elipticasem F, 160 2.2.0
Curvas Elipticasem F, 192 2.2.0
Curvas Elipticasem F, 224 3.0.1
Curvas Elipticasem F, 256 3.0.1

Tabela A.7: Algoritmos de geracdo de chaves assimétricas

ALGORITMO JAVA CARD
NOME BITS
DES 64 <241

3DES, 2 Chaves 128 <21
3DES, 3 Chaves 192 <21
AES128 128 2.2.0
SEED 128 2.2.2

Tabela A.8: Algoritmos de geragdo de chave simétrica

ALGORITMO JAVA CARD

CRC16 (1ISO3309) 2.2.1
CRC32 (IS03309) 2.2.1

Tabela A.9: Algoritmos de checksum

	Introdução
	Objetivos
	Estrutura do Trabalho

	Fundamentação Teórica
	Segurança de Sistemas
	Serviços de Segurança
	Mecanismos de Segurança

	Ambientes de Desenvolvimento de Baixo Custo
	Smart Cards
	Segurança dos Smart Cards
	Padrão ISO7816
	Java Card
	Especificação GlobalPlatform

	Protocolo de Comunicação TLS
	Protocolo de Registro
	Protocolo de Aperto de Mão

	Padrão PKCS#15
	Notação ASN.1
	Considerações Finais

	Trabalhos Relacionados
	Aplicação de Smart Cards em Protocolos de Segurança
	Conexão entre Microcontroladores e Smart Cards
	Segurança na Internet das Coisas
	Visão Geral
	Propostas de Implementação e Verificação
	Segurança para Dispositivos IoT de Baixo Custo

	Considerações Finais

	Proposta de Arquitetura
	Plataforma de Hardware
	Placas leitoras de Smart Cards utilizando Arduino UNO
	Adição de comunicação sem fio e troca de Arduino por ESP8266
	Placa Final

	Arquitetura de Software
	Protocolo de Comunicação entre Smart Card e Microcontrolador
	Algoritmos Suportados pelo Smart Card
	Applets para Smart Cards
	Modificações no IsoApplet
	Bibliotecas desenvolvidas para o Microcontrolador
	Código do Servidor e Funcionamento Geral do Sistema

	Considerações Finais

	Resultados
	Avaliação de Custo
	Avaliação de Consumo de Energia

	Conclusão
	Considerações Finais
	Dificuldades Encontradas
	Trabalhos Futuros

	Referências
	Apêndice A – Algoritmos Suportados pelo Smart Card

