‘Centro

~;Informaitica

Pés-Graduacdo em Ciéncia da Computacado

PAULO ANSELMO DA MOTA SILVEIRA NETO

ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A
MAINTENANCE ANALYSIS

e
L=
e

15

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/posgraduacao

Recife
2017

PAULO ANSELMO DA MOTA SILVEIRA NETO

ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A
MAINTENANCE ANALYSIS

Tese apresentada ao Centro de Informatica
da Universidade Federal de Pernambuco,
como parte dos requisitos necessarios a
obtencao do titulo de Doutor em Ciéncia da
Computagéo.

Orientador: Vinicius Cardoso Garcia
Coorientador: Eduardo Santana de Almeida

Recife
2017

Catalogacdo na fonte
Bibliotecario Jefferson Luiz Alves Nazareno CRB 4-1758

S587a Silveira Neto, Paulo Anselmo da Mota.
Assessing security in software product lines; a maintenance analysis /
Paulo Anselmo da Mota Silveira Neto — 2017.
176.: fig., tab.

Orientador: Vinicius Cardoso Garcia.
Tese (Doutorado) — Universidade Federal de Pernambuco. Cin. Ciéncia
da Computagédo, Recife, 2017.
Inclui referéncias, apéndice e anexo.

1. Engenharia de software. 2. Seguranga de software. I. Garcia,
Vinicius Cardoso. (Orientador). Il. Titulo.

005.3 CDD (22. ed.) UFPE-MEI 2017-205

Paulo Anselmo da Mota Silveira Neto

Assessing Security in Software Product Lines: A Maintenance Analysis

Tese de Doutorado apresentada ao Programa
de Pos-Graduagdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obteng¢do do titulo de Doutor em Ciéncia da
Computacao

Aprovado em: 02/06/2017.

Orientador: Prof. Dr. Vinicius Cardoso Garcia

BANCA EXAMINADORA

Prof. Dr. Paulo Henrique Monteiro Borba
Centro de Informatica / UFPE

Prof. Dr. Nelson Souto Rosa
Centro de Informatica / UFPE

Prof. Dr. Marco Tulio de Oliveira Valente
Departamento de Ciéncia da Computacao / UFMG

Prof. Dr. Uira Kulesza
Departamento de Informatica e Matematica Aplicada / UFRN

Prof. Dr. Vander Ramos Alves
Departamento de Ciéncia da Computacdo / UnB

| dedicate this work to all my family, friends and professors who gave me the
necessary support to get here. ...

Abstract

Different terms such as "the real-time enterprise", "software infrastructures”,
"service oriented architectures" and "composite software applications" have gained
importance in industry. It brings us the need of information systems that support cross-
application integration, cross-company transactions and end-user access through a
range of channels, including the Internet. In this context, Software Product Line (SPL)
Engineering has gained importance by product oriented companies, as a strategy to
cope with the increasing demand of large-scale product customization, providing an ef-
fective and efficient ways of improving productivity, software quality, and time-to-market.
These benefits combined with the need of most applications interact with other applica-
tions, and the internet access makes critical assets vulnerable to many threats. For most
of the product oriented companies, security requirements are likely to be as varied as for
any other quality. Thus, it is important to supply variants of the same product to satisfy
different needs. Owing to its variability management capabilities, software product line
architectures can satisfy these requirements if carefully designed the resulting system
has a better chance of meeting its expectations. All these requirements should be
achieved at early design phases. Otherwise the cost to design a secure architecture
will increase, which could worsen in SPL context, due to its complexity. In this context,
this thesis evaluates different techniques to implement security tactics for the purpose
of assessing conditional compilation and aspect-oriented programming as variability
mechanisms concerning maintainability by accessing code size, separation of concerns,
coupling and cohesion from software architects in the context of Software Product Lines
projects. Hence, to better support SPL architects during design decisions, a family of
experiments using three different testbeds was performed to analyze different security
techniques regarding to maintainability. We have found that for most of the techniques
conditional compilation had a smaller amount of lines of code when compared with As-
pect Oriented Programming. The separation of concerns attribute had the low impact on
maintainability when implemented with aspect-oriented programming. The analysis also
showed that detect attack techniques are less costly than resist attack techniques. The
results are useful for both researchers and practitioners. On the one hand, researchers
can identify useful research directions and get guidance on how the security techniques
impact on maintainability. On the other hand, practitioners can benefit from this thesis
by identifying the less costly variability implementation mechanism, as well as, learning
concrete techniques to implement security tactics at the code level.

Keywords: Software Engineering. Software Security. Tactics. Design Patterns.
Non functional properties.

Resumo

Diferentes termos como “empresa em tempo real”, “infraestrutura de software”,
“arquiteturas orientadas a servico” e “aplicacdes de software” tem ganhado importancia
na industria. Isso requer sistemas de informacao que suportem a integragcdo com outras
aplicacoes, transacdes entre empresas e acesso ao usuario final por uma variedade de
canais, incluindo internet. Nesse contexto, Linha de Produto de Software (LPS) tem
ganhado importancia por empresas orientadas a produtos de software, como uma es-
tratégia para lidar com a crescente demanda de personalizacao de produtos em grande
escala, proporcionando uma forma eficaz e eficiente de melhorar a produtividade, a
qualidade do software e o tempo de langcamento para o mercado. Esses beneficios
combinados com a necessidade da maioria dos aplicativos precisarem interagir com
outras aplicacdes e 0 acesso a Internet tornam essas aplicacées vulneraveis a mui-
tas ameacas. Para a maioria das empresas orientadas a produto, os requisitos de
seguranca podem variar assim como outro atributo de qualidade do software. Assim, é
importante fornecer variantes do mesmo produto para satisfazer diferentes necessida-
des. Devido as suas capacidades de gerenciamento de variabilidade, arquiteturas de
linha de produtos tém a capacidade de satisfazer esses requisitos, se cuidadosamente
projetada o sistema resultante terd uma melhor chance de satisfazer as expectativas.
Todos esses requisitos devem ser alcancados nas primeiras fases do projeto, caso
contrario, o custo para projetar uma arquitetura segura aumentara, o que poderia
piorar no contexto SPL, devido a sua natureza complexa. Assim, para melhor apoiar
os arquitetos durante as decisdes de projeto. Uma familia de experimentos utilizando
trés SPLs distintas foram utilizadas para analisar diferentes técnicas de seguranca,
implementadas usando compilagédo condicional (CC) e programacao orientada a as-
pectos (AOP). Essa avaliacao teve como objetivo analisar as técnicas e mecanismos
em relacao a: tamanho, “separation of concerns”, coesao e acoplamento. O resultado
nos mostra que para a maioria das técnicas quando implementadas com compilagéo
condicional apresentavam uma menor quantidade de cddigo quando comparadas com
AOP. O atributo de “separation of concerns” teve menor impacto na manutencao quando
implementado com programacao orientada a aspectos. A anélise também mostrou que
técnicas de detecgdo de ataque sdo menos onerosas do que técnicas para resistir
a ataque. Os resultados sao Uteis para pesquisadores e profissionais. Por um lado,
os pesquisadores podem identificar direcbes de pesquisa e obter orientagdo sobre
como as técnicas de seguranga impactam na manutencéao. Por outro lado, os profissio-
nais podem se beneficiar deste estudo, identificando o0 mecanismo de implementagao
da variabilidade menos dispendioso, bem como aprendendo técnicas concretas para
implementar taticas de seguranca a nivel de codigo.

Palavra-Chave: Linha de produto de software. Seguranca de software. Vari-

abilidade. Taticas de seguranca. Técnicas de seguranca. Compilacdo condicional.
Programacéao orientada a aspectos.

Agradecimentos

When you begin to write the acknowledgments of your thesis is when realizing
the size of the journey faced and the number of people who have met in your life. Doubts
and certainties are constant in this period, as well as, the sure that you have to go to
the end. Certainty and Strength guaranteed by the people who have supported you
throughout this time.

Everything gets easier when you have:

| would like to especially thank my co-adviser Eduardo Almeida, for the support
my decisions during my academic life and for always challenging myself with new
barriers and uncertainties to be overcome. | also would like to thank you, my advisor,
Vinicius Cardoso who provided me with this opportunity and all support with academic
and personal decisions. | really admire these guys and thank you for changing my life
and for the teachings.

Thank you, my brothers, Yguarata Cavalcanti and Padraig O’Leary, by the tea-
chings, making difficult moments easier and enjoyable, and giving me the feeling that
| have gained two brothers for life. | would also to thank you Leandro Marques and
Vanilson Buregio for all the advice and strength | have received from them. Last but not
least, my youngest bearded brother, Bruno Melo.

Thank you my research partners from Reuse in Software Engineering group
(RIiSE) for the contributions and inquiries at all meetings and discussions. Also, | would
like to thank you for the valuable moments researching, organizing scientific events and
interacting with the best researchers in the area. Be sure that you are essential in my
academic life.

Thank you to those who made possible all my achievements: my mother, my
father, my sister, my grandmother, uncles, aunts, and cousins. | also would like to thank
you, Giselle Pinho, for the support and patience that were necessary along this journey.
Finally, I would like to thank you for my inspiration which is no longer present in our lives,
but which was and will be essential for all my achievements. | will never forget your love
and lessons, thank you so much, my grandfather.

"Vocé ndo sabe o quanto eu caminhei
Pra chegar até aqui"(Cidade Negra)

Lista de tabelas

Tabela 1 — Execution and Evolution quality attributes (MARI; EILA, 2003) 38
Tabela 2 — Security taxonomy (SCHUMACHER et al., 2005). 42
Tabela 3 — Security Techniques. 62
Tabela 4 — Security Code Percentage in the RISE Event SPL. 63
Tabela 5 — Security Code Percentage in the RISE Store SPL. 64
Tabela 6 — Security Code Percentage in the Office Law SPL. 65
Tabela 7 — A summary of the experiments. 77
Tabela 8 — Security Techniques. 86
Tabela 9 — Measure of the p-value strength of theresults. 92
Tabela 10 — Size comparison between CC vs AOP implementations. 93
Tabela 11 — Power effect for Size Metrics. 94
Tabela 12 — Summary table size. 97
Tabela 13 — Percentual difference among Size metrics. 99
Tabela 14 — Comparison of Size metrics from CC and AOP implementations. . . 101
Tabela 15 — Power Effect, Effect size and magnitude of Size metrics. 101
Tabela 16 — Separation of concerns comparison between CC vs AOP implemen-
tations. 103
Tabela 17 — Power effect for Separation of Concerns Metrics. 104
Tabela 18 — Summary table separation of concerns. 107
Tabela 19 — Comparison of Separation of concern metrics from CC and AOP
implementations. 109
Tabela 20 — Power Effect, Effect size and magnitude of Separation of Concerns
Metrics. e 109
Tabela 21 — Lack of Coheison comparison between CC vs AOP implementations. 111
Tabela 22 — Power effect for Cohesion Metrics. 111
Tabela 23 — Summary table lack of cohesion. 112
Tabela 24 — Comparison of Lack of Cohesion metrics from CC and AOP imple-
mentations. 113
Tabela 25 — Power Effect, Effect size and magnitude of Lack os Cohesion metric. 113
Tabela 26 — Resutls from the comparison between CCvs AOP. 115
Tabela 27 — Power effect for Coupling Metrics. 115
Tabela 28 — Summary table coupling. 117
Tabela 29 — Comparison of Coupling metrics from CC and AOP implementations. 119
Tabela 30 — Power Effect, Effect size and magnitude of Coupling metrics. 119

Tabela 31 — Functional Properties. 133

Tabela 32 — Data set of RiSE Event SPL vs. Security Techniques vs. Conditional

Compilation. 134
Tabela 33 — Data set of RISE Event SPL vs. Security Techniques vs. Aspectd. . 135
Tabela 34 — Functional Properties. 136
Tabela 35 — Data set of RiSE Store SPL vs. Security Techniques vs. Conditional

Compilation. 137
Tabela 36 — Data set of RISE Store SPL vs. Security Techniques vs. AspectJ. . . 138
Tabela 37 — Functional Properties. 139
Tabela 38 — Data set of Law Office SPL vs. Security Techniques vs. Conditional

Compilation. 140
Tabela 39 — Data set of Law Office SPL vs. Security Techniques vs. Aspectd. . . 141
Tabela 40 — Metrics for RiISEEventSPL, 154
Tabela 41 — Difference between AOP and CC considering RiISE Event SPL. . . . 155
Tabela 42 — Metrics for RiISE Store SPL vs. Security Techniques 156
Tabela 43 — Difference between AOP and CC considering RiSE Store SPL. . . . 157
Tabela 44 — Metrics for Law Office SPL vs. Security Techniques 158
Tabela 45 — Difference between AOP and CC considering Law Office SPL. . . . 159
Tabela 46 — Cliff’s (5), magnitude of effect power for size metrics. 159
Tabela 47 — Cohen’s d for effectpower. 159
Tabela 48 — Cliff’s (6), magnitude of effect power for separation of concerns metrics.160
Tabela 49 — Cohen’s d for effect power of separation of concerns metrics. 160
Tabela 50 — Cliff’s (5), magnitude of effect power for cohesion metrics. 161
Tabela 51 — Cohen’s d for effect power of cohesion metrics. 161
Tabela 52 — Cliff’s (5), magnitude of effect power for coupling metrics. 162

Tabela 53 — Cohen’s d for effect power of coupling metrics. 162

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.5
2.6
2.6.1
2.6.2
2.7

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4

Sumario

INTRODUCTION i e e e e e e e e e 15
Motivation 16
Problem Statement 19
ResearchDesign 20
Contributions 22
OutofScope 23
Organization of the Thesis 24
SOFTWARE PRODUCT LINES: ANOVERVIEW 25
Introduction 25
SPL Essential Activities. 26
Core Asset Development, . 26
Product Development 28
Management. 28
SPL Adoption Strategies L. 29
SPL Variability Management 31
Variability Identification and Representation 31
Variability Bindingand Control 33
Software Product Lines Architecture 35
Non Functional Properties 36
Types of Non Functional Properties 37
Maintainability 37
Chapter Summary 39
AN OVERVIEW ON SOFTWARE SECURITY 41
Security Taxonomy 41
Software Security Tactics 43
Detect Attacks 44
Resisting Attacks 45
React from Attacks 50
Recover from Attacks 50
Variability in Software Security 50
Chapter Summary 52
SOFTWARE PRODUCT LINESTESTBED 53

Related Work 53

4.2
421
4.3
4.3.1
4.3.2
4.4
441
442
4.5
451
4.6

5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.6.1
5.6.2
5.6.3
5.7
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.9
5.10
5.11
5.12

RISEEventSPL, 54
Functional Properties 55
RISEStoreSPL 56
Functional Properties, 58
RIiSE Store Refactoring and Evolution 59
Law OfficeSPL 59
Functional Properties, 61
Law Office SPL Refactoring and Evolution 61
Non Functional Properties 62
Security techniques implementation 62
Chapter Summary 65

ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAIN-

TENANCE ANALYSIS it it et e e e 67
Variability Mechanism 68
Conditional Compilation. 68
Aspect-Oriented Programming 69
Software Security 71
The Family of experiments 75
Experiments Definition 0. 76
Planning L 76
Goal e 76
Research Questions (RQs) 77
Metrics e 78
Hypotheses and variables 82
Operation 84
Experiments Material L . 84
Execution 86
Datacollection 86
Analysis procedure 88
Analysis and Interpretation. L. 92
Size . . . e 93
Separationof Concerns L .o 102
Lack of Cohesion 110
Coupling e 114
Feature Interaction 120
Main Findings 120
Threatsto Validity 122
Related Work 124

Conclusion 126

5.13

6.1
6.2
6.3

Chapter Summary 127

CONCLUSION AND FUTUREWORK 128
ConcludingRemarks 129
Main Contributions 130
Future Work 131
TESTBED DATA o i e e e e e e e e e e e e e e e 133
DATA COLLECTION i i s e e e e e e e e e e e e e e 142

Referéncias i i i i i it e e e e e e e e e e e e e e e 163

15

1 INTRODUCTION

Nowadays, the modern world is getting harder and harder to live without software,
since it is a key element in many devices and systems. The manufacture and industrial
are managed by software, as well as the financial systems. They are also used in the
entertainment area, including the music, cinema and games industry (SOMMERVILLE,
2010). This way, software control from small gadgets to the largest civil aircraft build
so far (BURGER; HUMMEL; HEINISCH, 2013). Thus, they are becoming even more
complex, which makes researchers investigate for more cost-effective methods, to cope
with tight deadlines and market pressure.

The Software Product Lines (SPL) approach has proved to be an efficient and
effective strategy to achieve economies of scope and results such as substantial cost
savings, reduction of time to market, and large productivity gains (CLEMENTS; NORTH-
ROP, 2001). The SPL engineering explores the commonalities and manages variabilities
among derived products, allowing the establishment of a common platform (reference ar-
chitecture) on top of which assets can be reused and assembled into different products,
meeting particular customers and market needs (POHL; BOCKLE; LINDEN, 2005).

In order to achieve all of these benefits, a reference architecture is defined to
represent how the requirements, including variability, are implemented. It is a complex
task since it should have the ability to select and configure reusable software artifacts
to enable different combinations, allowing the derivation of different products (POHL,;
BOCKLE; LINDEN, 2005). This architecture is designed with various quality attributes
(such as security, performance, maintainability deployment and availability) and require-
ments in mind. Security is a quality attribute of software systems that must be addressed
by most of the architectures. It is a cross-cutting concern that is affected by a wide
range of architectural decisions (FAEGRI; HALLSTEINSEN, 2006). If the requirements
and design do not encompass security needs, problems may arise, especially if this
system is manipulated by different users in different places. If these considerations are
addressed during the architecture design, a secure structure at a reasonable price is
achieved. On the other hand, a more expensive structure will be designed, since latter
decisions in design entail costly changes (TAYLOR; MEDVIDOVIC; DASHOFY, 2009).

After all, architecture design is all about making sound trade-offs. Make these
trade-offs effectively becomes even more important in a context where a company wants
to deliver multiple product variants to the market (FAEGRI; HALLSTEINSEN, 2006).
As the architectural design is a knowledge intensive task that depends heavily upon
experience to encode and reuse this knowledge, the software architecture community
has created the concepts of architectural tactics and architectural patterns (FAEGRI;

Capitulo 1. INTRODUCTION 16

HALLSTEINSEN, 2006). The most suitable known software architecture approach
for building secure systems is based on tactics, which is basically a design decision
(FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015; RYOO; KAZMAN; ANAND,
2015; CERVANTES et al., 2016). Although the tactics are considered an important
approach to improve system quality factors, there is a lack of studies regarding how to
implement these design decisions, which can lead to misunderstandings (FERNANDEZ;
ASTUDILLO; PEDREZA-GARCIA, 2015). In SPL context, the architectures need to be
stable and flexible enough to support the most varied types of product derivation, as
well as, facilitating its management.

This work investigates the impact on maintainability of different security techni-
ques implemented by Aspect-oriented programming and Conditional compilation. These
variability implementation mechanisms were chosen since it allows the developer to
map variability concerns into core assets represented as features, during compile time,
allowing products to be derived only with the necessary code. Thus, different security
tactics were implemented at the code level, in order to understand how each one influen-
ces the code size, separation of concerns, coupling, and cohesion. We hypothesize that
by generating a body of knowledge, it is possible to better support software architects
to make more conscious design decisions, regarding to which is the most suitable
implementation variability mechanism to implement software security in SPL project.
The study can provide software architects with a means to achieve a more balanced and
secure reference architecture, by avoiding misunderstandings, trade-offs and improving
their ability to make design decisions.

1.1 Motivation

SPL products are distinguished in terms of features, i.e., end-user visible charac-
teristics of products (KANG et al., 1990). Based on the selection of features, stakeholders
can derive tailor-made products satisfying a range of functional (FPs) and nonfuncti-
onal properties (NFPs). Functional properties implement the tasks/functionalities of
a system. On the other hand, nonfunctional properties are those that impose special
conditions and qualities on the system (LOHMANN et al., 2005), usually observable by
end-users. For instance, if a software system runs slower than expected, users may not
be interested in using it, regardless the provided functionalities. Thus, functional and
nonfunctional aspects should be synchronized for a product to be viable in the market.

Nonfunctional properties play important role in SPL engineering. In the SPL
literature, these properties can also be referred to as quality attributes (ZHANG; JARZA-
BEK; YANG, 2003; BASS; CLEMENTS; KAZMAN, 2012), nonfunctional requirements
(AOYAMA; YOSHINO, 2008), extra-functional properties (BENAVIDES; TRINIDAD;
RUIZ-CORTES, 2005) and softgoals (NGUYEN, 2009). In this work, we will interchan-

Capitulo 1. INTRODUCTION 17

geably mention quality attributes (QAs) and non functional properties.

The variability management challenges and proposed solutions are being in-
vestigated for 20 years, focusing on the variability of functional properties, methods,
techniques, and tools (CHEN; BABAR, 2011). However, nonfunctional properties have
not received much attention in the context of variability (GALSTER et al., 2014). Most of
the approaches have spent some effort trying to understand how products in an SPL
differentiate from each other from the functional point of view, and less attention is given
to understand these differences regarding to nonfunctional properties.

Depending on the customers and market segments, different needs related to
quality attributes may arise. For example, a user-adaptive system which takes individual
characteristics of their users into account and adapts their behavior accordingly requires
more stringent user data reliability and security than desktop applications. To address
this customer or market need, two approaches can be used. The first one builds product
variants with a common quality attribute level (FAEGRI; HALLSTEINSEN, 2006), and the
second one builds products with purposefully different levels. All these characteristics
should be achieved at early design phases, otherwise, the cost to design a secure
architecture will increase, which could worsen in SPL context, due to its complex nature
(TAYLOR; MEDVIDOVIC; DASHOFY, 2009).

In addition, there are some aspects which make nonfunctional properties more
challenging than functional properties. Firstly, some nonfunctional properties are con-
tinuous and nonlinear (REGNELL; SVENSSON; OLSSON, 2008), which means that
instead of viewing the quality level as a binary property of "in"or "out"as functional
requirements behave, the quality levels have different shades and sliding scales. This
characteristic allows the derivation of a product which satisfies more than one customer,
with an intermediate nonfunctional property level. For example, if customer A requires a
low level of security and customer B requires a medium level of security, a product with
medium level will satisfy both. However, it is important to mention that, there has to be a
good motivation to purposefully vary nonfunctional properties levels in SPL, due to its
high investments.

Secondly, it may be difficult to the customer to understand the differences
between the products and select a variant that matches their needs, when this choice
involves quality attributes. In many domains, the quality attributes are described in
imprecise and vague terms. This way, it is worthwhile to know how the quality attribute
differences in a product variant can be distinguished to the customers. Using the afo-
rementioned example, it cannot be clear to the customer which is the real difference
between low and medium security. According to (GALSTER, 2015), it is important to
conduct exploratory and descriptive studies to better understand variability in quality
attributes and create approaches for describing, analyzing and implementing variability

Capitulo 1. INTRODUCTION 18

in quality attributes.

Thirdly, some functional properties (i.e., manipulate complex graphical images)
might be inherently complex, making a nonfunctional property (i.e. performance) very
difficult to achieve. But, what is possible is that for any of these functions the architect’s
choices will determine the relative level of quality. Some architectural choices will
lead to higher performance; some will lead in the other direction (BASS; CLEMENTS;
KAZMAN, 2012). In addition, a simple quality attribute may affect many assets in
an SPL architecture, which makes the cost of the nonfunctional property prohibitive
(HALLSTEINSEN et al., 2006).

Fourthly, in order to implement SPL variability a variety of mechanisms can be
used (GACEK; ANASTASOPOULES, 2001; BOSCH; CAPILLA, 2013). In this work, two
mechanisms were considered due to its large application in industry and previous studies
(FIGUEIREDO et al., 2008; GAIA et al., 2014; FERREIRA et al., 2014): conditional
compilation (SCHULZE et al., 2013) and aspect oriented programming, due to its
natural purpose (KICZALES et al., 1997). Both implementations can provide a good
understanding regarding to which is the most suitable mechanism to implement security
at SPL code level.

Fifth, according to (GALSTER et al., 2014) with regard to quality attributes,
performance is addressed most, whereas quality attributes such as security or safety
are rarely a concern of variability handling approaches.

Finally, a well known approach to design different quality attributes at architectural
level is the use of tactics (BASS; CLEMENTS; KAZMAN, 2012; MIRAKHORLI; M4DER;
CLELAND-HUANG, 2012). Although well known, few studies were performed in the
SPL context regarding how to implement these tactics at code level (MIRAKHORLI;
MAaDER; CLELAND-HUANG, 2012; FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA,
2015), which could cause misunderstandings during its implementation.

In summary, based on the requirement or architectural decisions made to use a
quality attribute tactic, the developer should find a way to concretize the tactic in code
level (MIRAKHORLI; MADER; CLELAND-HUANG, 2012). Unfortunately, the variability
points found in individual tactics can make this a challenging task. In addition, secure
coding practices are expensive, requiring not only careful attention to the code, but also
extensive testing, inspections, and scanning (CERVANTES et al., 2016). In this context,
our work aims to avoid misunderstandings regarding to how to code software security
and do not degenerate code modularity and minimize costs on the code maintenance.
In addition, it also focus on how the security tactics should be implemented at code
level, by evaluating different mechanisms to implement it.

Capitulo 1. INTRODUCTION 19

1.2 Problem Statement

The software security is a problem with different perspectives which states from
logical (coding/design), operation and policies areas. However, it is not considered th-
roughout software development life-cycle (RYOO; KAZMAN; ANAND, 2015). Frequently,
software architects and developers focus on functional properties and software security
is developed to "close a hole"after the software development. The code is sent to the
security responsible without any previous analysis or impact about how to implement
security. This generates in most cases inefficient solutions that make the software vulne-
rable to different types of attack. In addition, the secure coding practices are expensive
since it requires extensive code inspection and testing. For this reason, we assess
different ways to implement security and bring important insights to be considered in
early stages of development.

Due to the diversity of quality attributes and their intrinsic characteristics, it is
challenging to propose constructs that are applicable to all quality attribute similarly.
Therefore, this work has made an explicit decision to focus on the security quality
attribute in more detail.

In this context, it is important to consider the security quality attribute since its
initial phases of SPL life-cycle, due to the high complexity inherent to SPL architecture
nature. The sooner the definition of how security will be carried out, the less costly will
be its implementation, testing, and maintenance. In addition, security cannot be directly
tested, instead verification of system security can be performed by testing confidentiality,
auditability, and vulnerability (RIBEIRO; TRAVASSOS, 2016). Recent work in this area
focuses on requirements and design phases (FAEGRI; HALLSTEINSEN, 2006; D.; M.;
C., 2006; MELLADO; FERNANDEZ-MEDINA; PIATTINI, 2009; BASS; CLEMENTS;
KAZMAN, 2012; MYLLARNIEMI; RAATIKAINEN; MaNNIST®, 2015) without explaining
how security will be implemented at code level, neither how this behave regarding
to maintainability (ARVANITOU et al., 2017). It is also important to reduce the gap
between security requirements/design and how it can be implemented, reducing the
chances of wrong interpretations on their implementation (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015). Although it was being studied for the single system it is
interesting to evaluate the software product line context to understand how the variability
impacts/behaves with security implementation.

Encouraged by the motivations presented in the previous section and problem
statement, the goal of this work can be stated as follows:

e [t provides evidence regarding different ways to implement security techniques
by comparing maintainability throughout several internal attributes, such as: code
size, separation of concerns, cohesion, and coupling.

Capitulo 1. INTRODUCTION 20

e To understand the impact on maintainability by using different variability im-
plementation mechanism to implement security techniques. It is achieved by
comparing aspect-oriented programming and conditional compilation implemen-
tation and analyzing their impact on code size, separation of concerns, coupling,
and cohesion.

e [n addition, to be considered an initial attempt to understand the behavior of
security techniques in code, it also reduces the gap between security require-
ments/design and how it can be implemented, reducing the chances of wrong
interpretations and supporting design decisions.

e It also provides three SPL Test Beds considering different domains, without the
interference of any SPL framework in its implementation, which makes easy to
maintain and be explored by nonexperts.

In summary, all aforementioned goals will provide the base to support architecture
design decisions which consider the different maintainability internal attributes, such as:
code size, separation of concerns, coupling and cohesion applied to security techniques
implementations using conditional compilation and aspect oriented programming as
variability mechanisms.

1.3 Research Design

This section describes the research design used as the basis for this work.
Considering the research objectives and problem statement earlier described in this
chapter, we intend to conduct quantitative studies to gain further understanding of the
research problem and enrich our conclusions. Triangulation is important to increase the
precision of empirical research, taking different angles towards the studied object and
thus providing a broader picture (RUNESON; H6ST, 2009). The studies replication and
their data triangulation enhances the conclusions and completeness of the overall study,
bringing more credibility to the research findings (RUNESON; H6ST, 2009).

This research is organized in four successive stages: 1. Background, 2. Infras-
tructure Creation, 3. Evaluation and Proposal. Figure 1 shows a diagram with these
stages and an overview of their activities.

1st Stage. Background

The background of this research was built based on relevant topics from the
Software Engineering area. The studied topics included Software Product Lines (SPL),
its essential activities, the importance, and characteristics of a reference architecture
and examples of how to deal with quality attributes and its peculiarities. In addition, it

Capitulo 1. INTRODUCTION

21

Understanding the foundations of this thesis

Software Product Non Functional . 4 -
Background e Requirements Software Security Security Tactics
Creating the required infrastructure to perform the evaluations
TestBed - RiSE Event SPL
Domain Feature ArchiStFe’.-IEtu - F;:actt:l(r)'gsl Security Tactics
Analysis Modeling 5 ; Implementation
Design Implementation
TestBed - RiSE Store SPL
Infrastructure i i f ;
Creation Dorr|1a|_n Featlil_re Arch?tzléture Flgl:acttlﬁg: | SecLEiny Tact_|cs
Analysis Modeling Design Implementation Implementation
TestBed - Office Law SPL
Domain Feature Archistzlc_:ture F;:a(:ttl:clig:I Security Tactics
Analysis Modeling bear Implementation Implementation
Empirical evaluations of SPL implementations
Original Experiment 2nd e 2 .
(Exp1) r:\ Ili)gperln;entl(E;_(p) 3;d I?xperln;ent I(Ei('pB)
- : z pplying and evaluating pplying and evaluating
Evaluation App_Iylng and_ evaluatlng Security Techniques on RiSE Security Techniques on Office
Security Techniques on RiSE Store SPL Law SPL
Event SPL av
The Ph.D. proposal, built on top of the results from studies
Broposal Design Decision involving SPL Test Bed
P security and maintanability

Figura 1 — Research Design

also describes characteristics which make software safe and how it could be achieved
at architectural level.

2nd Stage. Infrastructure Creation

In this stage, all the environment to perform our study was developed. Thus,
three SPLs were built considering different domains and stakeholders by applying
the following activities: domain analysis, feature modeling, SPL Architecture design,
functional features implementation, security tactics implementation and testing. We
chose to develop this environment due to the following motivations: (i) To implement
each security technique in each SPL; (i) Most of the available SPLs were built with
support of different SPL frameworks which hinders the extraction of the metrics and the
maintenance by other people who do not know the frameworks; (iii) Most of the security
techniques have their code spread over user interface classes, this way all SPLs need to
use the same user interface in order to allow comparison; (iv) The variability mechanism
can only be implemented in . java files which make it impossible to use another type

Capitulo 1. INTRODUCTION 22

of graphical interface, such as: html ; (v) It is important to use real size SPLs in order
to increase the study reliability and generalization.

3rd Stage. Evaluation

Based on the literature review, conditional compilation and aspect-oriented
programming were used to implement different security techniques on all three SPL
test beds. Moreover, a family containing three experiments were performed in order
to evaluate how these security techniques impacts on SPL maintainability considering
conditional compilation and aspect-oriented programming.

4th Stage. Proposal

Based on the findings identified during all previously performed stages, several
design decisions were collected. It will guide software architects who want to implement
security in a product line. Based on this design decisions, architects can select the most
suitable way to implement security considering its impact on code maintainability.

1.4 Contributions

As result of the work presented, the following contributions can be highlighted:

e Empirical Evidence: it presents empirical evidence in the context of the imple-
mentation of security in Software Product Lines architectures, such as:

— It provides empirical evidence regarding to security implementation. As
discussed by (MYLLARNIEMI; RAATIKAINEN; M&ANNIST®, 2012), empiri-
cal evidence is needed regarding to quality attributes, such as: why and
which quality attributes vary, what their variants are, and how they are
realized in the architecture.

— It presents empirical evidence comparing maintainability attributes such
as code size, separation of concerns, cohesion and coupling among the
implementation of different security techniques, as well as classifying
them according to its impact, since depending on the application, one is
more convenient or acceptable than other.

— It also considered during security techniques implementations two diffe-
rent variability implementation mechanisms: Conditional compilation and
Aspect oriented programming. The importance of our study is also reinfor-
ced by (FIGUEIREDO et al., 2008) and (CARVALHO et al., 2016), which
analyzed the impact of changes in functional properties using different
implementation variability mechanisms.

Capitulo 1. INTRODUCTION 23

— It considered the gap between the proposed security approaches and its
implementation at code level (FERNANDEZ; ASTUDILLO; PEDREZA-
GARCIA, 2015) in order to reduce the chances of wrong interpretations on
their implementation, as well as, support software architects during design
decisions. It is important to provide architects with more detailed guidance
based on several concrete examples of complete implementation using
patterns and techniques about how to coding each of the security tactics.

— It provides important information regarding to indicators to metrics and
further define their baselines definition for size, separation of concerns,
cohesion, and coupling in the context of security in software product lines
implementations.

e Test Bed: It contributes by developing a platform for conducting rigorous, trans-

parent and replicable studies on Software Product Lines Engineering.

1.5 Out of Scope

The following topics are considered out of the scope of this thesis:

Analysis of other quality attributes: This work considered security aspects in SPL
architectures. Other important quality attributes such as performance, availability,
and testability are not part of the scope of this work;

Analysis of Trade-offs: Although we have plans to evaluate the impact of different
quality attributes at architecture level considering modularity, complexity, and
scattering, it is out of scope of this work to analyze the existing trade-offs among
performance, availability and testability;

Tool Support: Although we have used some tools (CIDE ', Eclemma 2) and iden-
tified some extension points and improvements, it is out of scope the extension of
such tools and the development of a new tool for supporting the tasks performed;

Database Derivation: During product derivation, the code related to each selected
feature is instantiated in order to assemble the product. This feature selection
could reflect changes on the database relational model. It is out of scope to
understand how the Database should be modeled to fit with specificities of the
products derived from the SPL.

Recover from Attack Tactics: Although we are investigating the impact on the
implementation of different security tactics, an analysis considering SPLs do-
mains was performed which makes some tactics not applicable to our context.

2

<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/>
<http://www.eclemma.org/>

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/
http://www.eclemma.org/

Capitulo 1. INTRODUCTION 24

Besides, the recover from attack tactics are part of another quality attribute called
availability (BASS; CLEMENTS; KAZMAN, 2012).

1.6 Organization of the Thesis

The remainder of this work is organized as follows:

e Chapter 2. This chapter provides the necessary background to understand
the key concepts related to this work. It discusses the software product line
basic concepts and essential activities, besides how the variability is managed
throughout the Software Product Line life-cycle. In addition, it also provides
information regarding to reference architecture, quality attributes and different
SPL adoption strategies.

e Chapter 3. It presents software security concepts, a known taxonomy, as well as,
security tactics which describe several techniques to achieve software security
at architectural level. At the end of this chapter, some studies regarding how to
represent security quality attribute as SPL variability are described.

e Chapter 4. It describes three test beds created using different stakeholders and
domains: store management, event management, and office law management.
They were developed using JAVA language without any support of a specific SPL
development framework. It can be used as basis to the security implementations
and evaluations.

e Chapter 5. It describes the definition, planning, operation, analysis and interpre-
tation and packaging of a quantitative analysis from a family of experiments in
the context of the implementation of different security tactics. It analysis different
techniques to implement security considering maintainability internal attributes:
size, separation of concerns, cohesion, and coupling.

e Chapter 6. It concludes the work by summarizing the findings and proposing
future enhancements to the solution, discussing next steps of this work.

25

2 SOFTWARE PRODUCT LINES: AN OVERVIEW

2.1 Introduction

The concept of software reuse started to be used since 1949, in which the
first subroutine library was proposed (TRACZ, 1988). It gained importance in 1968,
during the NATO Software Engineering Conference, considered the birthplace of the
field. It focused on the software crisis - the problem of building large, reliable software
systems in a controlled, cost-effective way. Firstly, software reuse was pointed as being
the solution to the software crisis. Mcllroy’s paper entitled “Mass Produced Software
Components” (MCILRQY, 1968), ended up being the seminal paper in the software
reuse area. In his words: “the software industry is weakly founded and one aspect of
this weakness is the absence of a software component sub-industry”, it was the basis
to consider and investigate mass-customization in software (ALMEIDA, 2007).

The mass-customization idea was born in 1908, in the automobiles domain,
when Henry Ford the father of assembly-line automation, built the Model T based on
interchangeable parts. It enables the production for mass market more cheaply than
individual product creation. However, the production line reduced the products diver-
sification. Although some customers were satisfied with standardized mass products,
not all people wanted the same kind of car for any purpose. Hence, the industry was
faced with a growth interest for individualized products. However, mass customization
is a “coin” with two distinct faces. In the customer’s face, mass customization means
the ability to have an individualized product, based on specific needs. For the company,
however, it means technological investments, which leads to higher product’s prices
and/or lower profit margins for the company (POHL; BOCKLE; LINDEN, 2005).

Considering the software context, two types of software can be observed: (i)
traditional software engineering usually focused on building individual software systems,
one system at a time (SOMMERVILLE, 2010) and (ii) modern software development
practices which have support for variability and mass customization. While the first
is more expensive to develop since each product is treated as an individual unit and
developed from scratch, the designed assets are not variable enough to be reusable for
different products. The second suffers a lack of diversification.

To avoid higher prices for individualized products and lower profit margins, some
companies introduced the common platform concept for their different types of products,
planning beforehand which parts will be further instantiated in different product types. A
systematic combination between mass-customization and platform-based development
allows us to reuse a common base of technology and, at the same time, to develop

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 26

products in close accordance with customer needs. In this context, arises the concept
of Software Product Lines (SPL) as being“ a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets
in a prescribed way” (CLEMENTS, 2001). Examples of SPL are manifold and can be
found in different successful stories about its application of SPL engineering in their
development process, as in the Product Line Hall of Fame .

In order to achieve the potential benefits of SPL engineering, it is crucial to un-
derstand and control common and distinguishing characteristics between the systems
that are part of the product line. This way, SPL engineering was founded in three main
activities: (i) Core Asset Development (Domain Engineering), (ii) Product Development
(Application Engineering) and (iii) Management. These activities are subject to discus-
sion in the following sections: Section 2.2 introduces the software product lines essential
activities. Some software product line adoption strategies are described in Section
2.3 and Section 2.4 describes the variability management ideas. The SPL product
line architecture and its characteristics are described in Section 2.5. Next, Section 2.6
presents a set of software quality attributes and Section 2.7 summarizes the chapter.

2.2 SPL Essential Activities

Software Product Lines combine three essential and highly iterative activities that
blend business practices and technology. Firstly, the Core Asset Development (CAD)
activity that does not directly aim at developing a product, but rather aims to develop
assets to be further reused in other activities. Secondly, Product Development (PD)
activity which takes advantage of existing reusable assets to build different products.
Finally, Management activity, which includes technical and organizational management
(LINDEN; SCHMID; ROMMES, 2007). Figure 2 shows this triad of essential activities.

2.2.1 Core Asset Development

Core Asset Development comprehends the necessary activities (POHL; BOC-
KLE; LINDEN, 2005) to: (i) define the variability and commonality of the SPL; (ii)
determine the set of product line planned members; (iii) specify and develop reusable
artifacts to accomplish the desired variability and to be further instantiated in product
line members.

It is an iterative activity that influences the way in which the core assets are
produced (see Figure 3). To do so, some inputs are required (NORTHROP, 2002),
such as: Product Constraints: responsible for identifying commonalities and variations

' http:/splc.net/fame.html

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 27

P

> Product
development

Y s\l

Management

\

Figura 2 — Essential product line activities (NORTHROP, 2002).

Core asset A

development

among members that will constitute the product line, including the behavioral features,
the standards they must follow, performance limits and quality requirements imposed
on them. Styles, patterns, and frameworks: it comprehends the existing architectural
build blocks that can be applied to meet the product an production constraints. Product
Constraints: it describes the commercial, military or company-specific standards that
must be applied to the products in the SPL, specifying the infrastructure on which
the products must be built, when the product will be brought to market, what are the
components that could/should be reused. Production Strategy: is the overall approach
to create the core assets, it should decide if the product line will be built by starting
with a set of core assets and spinning products off or starting with a set of product and
generalizing their components to produce product line assets. Inventory of preexisting
assets software and organizational assets (architecture pieces, components, libraries,
frameworks and so on) available at the outset of the product line effort that can be
included in the asset base.

Those aforementioned inputs provide necessary information for each of the
five disciplines that composes the CAD, they are: (i) domain requirements, (ii) domain
design, (iii) domain realization (implementation), (iv) domain testing and (v) evolution
management, all of them administered by the management activity (POHL; BOCKLE;
LINDEN, 2005). These disciplines are responsible for creating the core assets, as well
as, the following outputs (Figure 3) (CLEMENTS; NORTHROP, 2001): Product line
scope the description of the products derived from the product line or that the product
line is capable of including. The scope should be small enough to accommodate future
growth and big enough to accommodate the variability. Core assets comprehend the
basis for production of products in the product line, besides the reference architecture,

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 28

Core assessment development

! } Production line scope
Product constraints Core assets

S“;::?ﬁg\:g:krgs’ Production plan
Production constraints Core asset
Production strategy development

Inventory of

pre-existing assets ' l

Management

Figura 3 — Core Asset Development (NORTHROP, 2002).

that will satisfy the needs of the product line by admitting a set of variation points
required to support the spectrum of products, these assets can also be components
and their documentation. The Production plan describes how the products are produced
from core assets, it also describes how specific tools are to be applied in order to use,
tailor and evolve the core assets.

2.2.2 Product Development

The product development main goal is to create individual (customized) products
by reusing the core assets previously developed. The CAD outputs (product line scope,
core assets, and production plan), in conjunction with the requirements for individual
products, are the main inputs for PD activity (Figure 4).

In possession of the production plan, which details how the core assets will be
used in order to build a product, the software engineer can assemble the product line
members. The product requirements are also important to create a product. Product
engineers have also the responsibility to provide feedback on any problem or deficiency
encountered in the core assets. It is crucial to avoid the product line decay and keep the
core asset base healthy.

2.2.3 Management

The management of both technical and organizational levels are extremely
important to the software product line effort. The former supervises the CAD and
PD activities by certifying that both groups that build core assets and products are
engaged in the activities and to follow the process, the latter must make sure that

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW

29

Product development

& Product

development

Requirements
Product line scope
Core assets

ooa

Production plan

AtATA

{‘»&n H EElaaes

Management

)
5@"

Figura 4 — Product Development (NORTHROP, 2002).

the organizational units receive the right and enough resources. It is, many times,
responsible for the production strategy and the success or failure of the product line.

CORE ASSET DEVELOPMENT
Product
Management t
| Re Duoi:z‘:gnts Domain | | Domain) | Domain \
QUIrMENIS (e Design Implementation Testing
Engineering
\Y 4 V V
App_llcatlon Application Application Application
Requn’ements |— . L] . L] .
]) Design Implemmentation Testing
Engineering
PRODUCT DEVELOPMENT

Figura 5 — SPL Engineering Framework, adapted from (POHL; BOCKLE; LINDEN, 2005).

Figure 5 shows the SPL engineering framework, originally introduced by (POHL;
BOCKLE; LINDEN, 2005), which has an insider view regarding to each SPL essential
activities by encompassing each activity and their associated life-cycle disciplines.

2.3 SPL Adoption Strategies

With the growth of competitiveness, the companies are increasingly seeking
for a way to improve development time, quality and decrease the time-to-market. This

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 30

scenario makes SPL methodology invited to theses companies. In order to introduce
SPL methodology, a company should consider its business goals, the adoption strategy
to be considered and their pros and cons to the organization (POHL; BOCKLE; LINDEN,
2005). Besides, the authors in (BASTOS et al., 2011), also point organizational structure,
technology barriers and organization maturity level as aspects that should be considered
during SPL adoption.

In (POHL; BOCKLE; LINDEN, 2005), four transition strategies are described,
as follows: (i) Incremental Introduction. It starts small and expands incrementally,
it may occur in two ways, expanding organizational scope which starts with a single
group doing SPL engineering and other groups are added incrementally after the first
group succeeds and expanding investment which starts with a small investment that is
incrementally increased, depending on the achieved success. (ii) Tactical Approach
starts introducing partially SPL concepts in sub-process and methods, starting form the
most problematic sub-process. It is often used when architects and engineers drive this
introduction. (iii) Pilot Project Strategy, this strategy may be started using one of the
several alternative ways, such as, starting as a potential first product, starting as a toy
product, starting as a product prototyping. (iv) Big Bang Strategy, the SPL adoption is
done by the organization at once. The core assets and the platform are built, after that,
the product development starts and the products are derived from the platform.

Another point of view is presented by (KRUEGER, 2002a), which advocates three
adoption models: using the proactive approach, the organization analyzes, designs
and implements the overall SPL to support the full scope of products needed on the
foreseeable horizon. In the reactive approach, the organization incrementally grows
their SPL as the demand arises for new products or new requirements on existing
products. Finally, using extractive approach, the organization capitalizes on existing
custom software systems by extracting the common and varying source code into a
single production line.

Nevertheless, the strategies are not necessarily mutually exclusive. It is possible
to startup using the extractive approach, by applying refactoring in existing software
systems (ALVES et al., 2006a), and then move on to a reactive approach to incrementally
evolve the SPL over time (KRUEGER, 2002a).

Independent from the approach used, there are common barriers to be overtaken,
and they may affect different levels into a company (BASTOS et al., 2011), such as:
Project and Customers View: Initial associated cost and time to devote to product line
activities. Organization and Development groups view: Lack of product line vision, lack
of documentation, an absence of an explicitly defined development process, inadequate
organizational structure, and so on. SPL Engineering Community and Resources view:
Lack of tool support, lack of management maturity, lack of SPL experts and a high cost

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 31

of training, etc.

2.4 SPL Variability Management

During Core Asset Development, variability is introduced in all domain enginee-
ring artifacts (requirements, architecture, components, test cases, etc.), to be exploited
during Product Development to derive applications tailored to the specific needs of
different customers. According to (SVAHNBERG; GURP; BOSCH, 2005), variability is
defined as "the ability of a software system or artifact to be efficiently extended, changed,
customized or configured for use in a particular context”. It is described through varia-
tion points and variants. While, the variation point is the representation of a variability
subject (variable item of the real world or a variable property of such an item) within
the core assets, enriched by contextual information; the variant is the representation of
the variability object (a particular instance of a variability subject) within the core assets
(POHL; BOCKLE; LINDEN, 2005).

In the SPL development life-cycle, the assets go through different disciplines.
Each of them has its own way to represent variability, and the development consists of
transformations of these representations (GURP; BOSCH; SVAHNBERG, 2001). For
example, firstly a domain analysis is performed to identify the existing commonality and
variability. Based on that, SPL requirements are specified and can be transformed into a
feature model. Next, the feature model and requirements provide an important basis to
design the SPL architecture. Once the architecture is documented (e.g. styles, patterns),
it will drive the source code development. This code is then compiled, linked and finally
run. This way, the variability contained in the source code must reflect the variability
early defined in each previous artifacts.

The variability management involves issues, such as: variability identification and
representation, variability binding and control (POHL; BOCKLE; LINDEN, 2005). They
are following described.

2.4.1 Variability lIdentification and Representation

Documenting and managing variability is one key property to characterize soft-
ware product line engineering. The explicit definition and management of variability
distinguish software product line engineering from both, single-system development and
software reuse (POHL; BOCKLE; LINDEN, 2005).

Three questions are helpful to variability identification, what vary? the variability
subject, why does it vary? the drivers of the variability need, such as stakeholder needs,
technical reasons, market pressures, etc. The later, how does it vary? the possibilities
of variation, also known as variability objects.

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 32

Once the variabilities are identified, they need to be modeled. In order to achieve
it, several approaches have been proposed (KANG et al., 1990; CZARNECKI; EISE-
NECKER, 2000; GOMAA; SHIN, 2002; DASHOFY; HOEK; TAYLOR, 2002; SCHMID;
JOHN, 2004; GOMAA, 2004; POHL; BOCKLE; LINDEN, 2005; DHUNGANA; GRUNBA-
CHER; RABISER, 2011; CHEN; BABAR, 2011; BERGER et al., 2015). Among them, the
feature modeling (KANG et al., 1990) is perhaps the most popular technique (BERGER
et al., 2015). It is described by using the feature model, which is a hierarchical way
to organize commonalities and variabilities into levels of increasing detail, as well as
their relationship. According to (LISBOA et al., 2011), there are four possible types
of features (see Figure 6), such as: (i) Mandatory: the feature will always be in the
product; (ii) Optional: the feature may or not be present in the product; (iii) Alternative:
From a set of feature, one and only one of them will be present in the product and
(iv) Or: From a set of features, at least one feature of them be present in the product.
Additionally, the feature model also shows the dependencies between features. These
dependencies are: (v) Implication: obligates the inclusion of destination feature in the
product, whenever the first is selected and (vi) Exclusion: Means that it is not possible
to have both features in the relationship in the same product.

Home
Security

7 N

Room Admittance Intrusion Camera
Surveillance Control Detection Type

Camera Indoor

Surveillance | | Motion Detection Colour Black/White

Outdoor Camera
Surveillance

PIN Biometric Cullet
Access Access Detection

Card Outdoor Motion
Access Detection

LEGEND

lMandatory i Optional A Alternative /‘\ OR ===== > Requires < --= Excludes

Figura 6 — Sample Feature Model.

Figure 6 shows a model in which each of those types of features and dependen-
cies are illustrated. It uses a widely used notation (CZARNECKI; EISENECKER, 2000;
KANG et al., 1990) to present the feature tree for a home security system. Besides, the
type of features and relationships described previously it also shows the parent»child
relations.

The root feature describes the application domain under analysis, which has two

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 33

mandatory features (Admittance Control and Intrusion Detection), two optional features
(Room Surveillance and Camera Type), also known as variation point, two OR-group
features (variation point) from which one or more (variant) features may be selected to
compose an SPL member, and two alternative group of features, from which only one
feature must be selected. Representing the requires constraint dependency, whenever
the feature Camera Type is selected, the feature Outdoor Motion Surveillance must be
selected as well. On the other hand, whenever the feature Indoor Motion Detection is
selected, the feature Camera Type»Colour must not be selected, and vice-versa.

From this feature model, a set of valid configurations can be generated. A valid
configuration is one in which all rules are satisfied, or, a valid subtree that satisfies all
cross-tree dependencies is instantiated.

2.4.2 Variability Binding and Control

After all modeling phases, it is important to know how to deal with SPL pro-
duct line assets genericity at code level. A feature implementation is usually spread
across many source files and modules, for this reason, the relation between features
and variabilities (variation points) is 1:N in many cases, except for Aspect-oriented
Programming(AOP) which isolate a crosscutting concerns in one aspect (GACEK;
ANASTASOPOULES, 2001).

Additional assistance in handling variability at the code level can be provided if
the exact binding time of variability is known. The variability binding indicates the life-
cycle milestone that the variants related with a variation point will be realized. According
to (GACEK; ANASTASOPOULES, 2001; SVAHNBERG; GURP; BOSCH, 2005; BOSCH;
CAPILLA, 2013), the binding time can be classified as follows:

e Compile-time: The variability is resolved before the actual program compilation
(for example, using preprocessor directives) or at compile time.

e Link-time: The variability is resolved during module or library linking (for example,
selecting different libraries with different versions of the exported operations).

e RunTime: The variability is resolved during program execution (for example,
depending on user rights functionalities get disabled or enabled with conditions
in the code)

e Update-time or Post-runtime: The variant binding happens during program upda-
tes or after program execution (for example, an update utility adds functionalities
to existing modules).

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 34

The different binding times (e.g., compile-time, link-time, runtime, and post-
runtime) involve different mechanisms (e.g., inheritance, parameterization, conditional
compilation) and are appropriate for different variability implementation schemes (MC-
GREGOR; SODHANI; MADHAVAPEDDI, 2004). These mechanisms encapsulate the
variable parts and provide support for instantiating the variations at code level. In (GA-
CEK; ANASTASOPOULES, 2001), the authors list several variability mechanisms, such
as:

e Aggregation/Delegation: It is an object-oriented technique, used when an object
(Aggregated) cannot satisfy a request, thus it forwards a request to the delegated
object which provides such requested services.

e Inheritance: It assigns base functionalities to super classes and extensions to
subclasses.

e Parameterization: The idea behind it is to represent reusable software as a
library of parameterized components, which has their behavior determined by
the values parameters that were set to.

e Overloading: It uses an existing name, to operate on different types. This name
or symbol can be assigned to functions, procedures or operators.

e Delphi Properties: Considered an attribute of an object, it associates a specific
action with reading or modifying its data. These properties provide control over
access to an object’s attributes, and they allow attributes to be computed.

e Dynamic Class Loading: It is a standard in Java in which classes are loaded
into memory as soon as they are needed. It is interesting in SPL infrastructure
because in that way a product can query its own context and that of its user, and
decide at runtime which class versions to load.

e Static Libraries: It contains a set of external functions that can be linked to an
application after it has been compiled. The functions signature are known to the
compiled code and must remain unchanged. This way, the different libraries can
be selected providing some kind of variability support.

e Dynamic Link Libraries: It can be useful for the selection of variant functionalities
and are loaded when needed into applications at runtime.

e Conditional Compilation: It enables the programmer to control over the code
fragments/segments to be included or excluded from a product version. It uses
directive marks to delimiter the feature code.

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 35

e frames: They are source files equipped with preprocessor-like directives which
allow parents to copy and adapt children. The idea is to provide ways to maximize
code reusability through the definition and use of frames.

e Reflection: Relates to metaprogramming in which objects in higher levels of
abstraction are established to represent entities like operating systems, pro-
gramming languages, processors, object models, etc. It enables access to such
metaobjects and therefore allows architecting flexible systems.

e Aspect Oriented Programming: It enables the programmer in cleanly separating
components and aspects from each other by providing mechanisms that make it
possible to abstract and compose them to produce the overall system.

e Design Patterns: It could be applied on SPL context since many of them identify
system aspects that can vary and provide solutions to manage this variation.

The authors in (GACEK; ANASTASOPOULES, 2001) state that different appro-
aches are needed to support different problems. There is no silver bullet, thus, the
techniques need to be mapped to known problems, and sometimes a combination of
them is the most appropriated approach.

2.5 Software Product Lines Architecture

In the context in which the software complexity is growing at an alarming rate and
the costs of software development and maintenance must be restrained, the Product
Line Architectures (PLAs) is a key aspect since it enables companies to amortize the
effort of software design and development over multiple products, thereby substantially
reducing costs. It is a guideline for design of architectures within a given domain, i.e.,
it provides insights regarding how to build a particular kind of system (NAKAGAWA;
ANTONINO; BECKER, 2011).

The PLA should ideally be flexible enough to support changes in features and
in how they are composed to develop products (NAKAGAWA; ANTONINO; BECKER,
2011), since PLAs have a longer life span and support the development of closely
related products. Thus, it is important to carefully evaluate the design decisions prior to
perform implementation and refactor (ANDRADE; ALMEIDA; CRNKOVIC, 2014).

Through the architecture, the business rules are expressed, and the requirements
(i.e., functional and nonfunctional properties) are projected to be satisfied. It does not
consider details of implementation or algorithms, but rather addresses the interactions
and the behavior of components. All this knowledge intensive art depends on software
architect experience, registered by architectural tactics and architectural patterns, which
are reusable architectural solutions that promise to address specific concerns in software

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 36

architecture (FAEGRI; HALLSTEINSEN, 2006). In summary, they are representation of
knowledge regarding to how to solve recurrent problems (SCHMIDT; BUSCHMANN,
2003).

It is important to highlight that no set of tactics or patterns will create an archi-
tecture that is optimal for all stated requirements since their use can generate various
effects. Making these trade-offs effectively becomes even more important in the SPL
context which aims to deliver multiple product variants to the market (FAEGRI; HALLS-
TEINSEN, 2006).

2.6 Non Functional Properties

According to (SIEGMUND et al., 2008), there is no general agreement regarding
to the nomenclature related to non-functional requirements, instead there are closely
related concepts, such as: quality attribute (IEEE..., 1990; SOFTWARE..., 2001;
BASS; CLEMENTS; KAZMAN, 2012), nonfunctional requirements (MYLOPOULOS;
CHUNG:; NIXON, 1992), quality characteristics (ISO/IEC, 2010), quality factors (IEE,
1998), and quality properties (ROZANSKI; WOODS, 2005; SOARES et al., 2014). In this
work, we will interchangeably mention quality attributes and nonfunctional properties.

The nonfunctional properties are defined as being those properties that do
not describe or influence the principal task / functionality of the software but can be
observed by end users in its runtime behavior (LOHMANN et al., 2005). For instance, if
it is important that a software system runs functionalities related to its business properly,
it may also be interesting that it runs with a certain degree of security, performance,
and availability. This way, functional and nonfunctional properties should work fine for
a product to be viable in the market. In addition, these nonfunctional properties play
a crucial role during system development, serving as selection criteria for choosing
among myriads of decisions (MYLOPOULOS; CHUNG; NIXON, 1992).

There are several nonfunctional properties, which manifest themselves in the
product, whereas some attributes manifest themselves in the interaction when the
product is used (ISO/IEC, 2010). According to (ISO/IEC, 2010; BASS; CLEMENTS;
KAZMAN, 2012), the product nonfunctional property can be divided into those that
are observable or measurable at runtime (i.e., security, availability, performance) and
to those that are not (i.e. modifiability and testability). Many nonfunctional properties
are architectural, which means that the software architecture is critical to their reali-
zation (BASS; CLEMENTS; KAZMAN, 2012). A considerable portion of nonfunctional
properties is determined by the choices done during the architecture design. These
decisions and design tactics encapsulate reusable design strategies and solutions
(BASS; CLEMENTS; KAZMAN, 2012; FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA,
2015).

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 37

According to (MYLLARNIEMI; RAATIKAINEN; MANNISTé, 2012), there are two
explanations for varying nonfunctional properties. There may be differences in the user
or customer needs and differences in the hardware or resources that affect or cons-
train. Configuring it in SPL is still a challenge (SINCERO; SCHRODER-PREIKSCHAT;
SPINCZYK, 2010; MYLLARNIEMI; RAATIKAINEN; MaANNIST6, 2012), and many design
decisions improve one single nonfunctional property at the expense of another, resulting
in trade-offs which are usually resolved by finding a consensus (BARBACCI et al.,
1995).

2.6.1 Types of Non Functional Properties

As mentioned before about the standard nomenclature, there is no common way
to classify nonfunctional properties. One example of such classification is the product
quality model and model of quality in use proposed by ((ISO), 2001 1) which was strongly
influenced by (SOFTWARE. . ., 2001). It defines quality with categories of characteristics
to the software product and computer systems, besides providing a terminology for
specifying, measuring and evaluating system qualities. While the product quality model
defines six categories: Functional Suitability, Maintainability Usability, Performance
Efficiency, Security, Reliability Compatibility, and Portability; the model of quality in use
defines five: Effectiveness, Efficiency, Satisfaction, Safety, Usability. Each one of these
characteristics is still refined in same others sub-characteristics.

According to (WAGNER, 2013), due to the ambiguity among the decomposition
principles used for quality characteristics and the lack of detailed measures, less than
28% of the companies use this standard model and 71% of them have developed their
own variants, which could indicate the need of an update.

(MARI; EILA, 2003) divided the quality attributes into two categories, execution
and evolution quality attributes. The execution qualities are observable at runtime as the
behavior of the system and evolution attributes are observable during the system life-
cycle that characterize different phases in the development and maintenance process
(see Table 1).

In the context, the maintainability is an important quality attribute to be early
addressed during software development life cycle, especially on SPL development due
to its natural complexity. Next Section different categories of maintenance are described.

2.6.2 Maintainability

Characterized by their huge cost and expensive implementation, maintenance
initiates after the product release and aims to correct, keep the software updated, as well
as fit with the environment new needs. According to (PRESSMAN, 2014), around 20% of
all maintenance work is spent fixing mistakes, the remaining 80% is spent adapting the

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW

Tabela 1 — Execution and Evolution quality attributes (MARI; EILA, 2003)

Execution Quality Attributes

Description

Performance

Security

Availability

Usability

Scalability

Reliability

Interoperability

Adaptability

Responsiveness of the system, which means the
time required to respond to stimuli (events) or the
number of events processed in some interval of
the time.

The systems ability to resist unauthorized at-
tempts at usage and denial of service while still
providing its service to legitimate users.
Availability measures the proportion of time the
system is up and running.

The system’s learnability, efficiency, memorability,
error avoidance, error handling and satisfaction
concerning the users’ actions.

The ease with which a system or component can
be modified to fit the problem area.

The ability of the system or component to keep
operating over the time or to perform its required
functions under stated conditions for a specified
period of time.

The ability of a group of parts to exchange infor-
mation and use the one exchanged.

The ability of software to adapt its functionality
according to the current environment or user.

Evolution Quality Attributes

Description

Maintainability

Flexibility

Modifiability
Extensibility

Portability

Reusability
Integrability

Testability

The ease with which a software system or com-
ponent can be modified or adapt to a changed
environment.

The ease with which a system or component can
be modified for use in applications or an environ-
ment other than those for which it was specifically
designed.

The ability to make changes quickly and cost-
effectively.

The systems ability to acquire new components.
The ability of the system to run under different
computing systems: hardware, software or com-
bination of the two.

The system’s structure or some of its components
can be reused again in future applications.

The ability to make the separately developed com-
ponents of the system work correctly together.
The ease with which software can be made to
demonstrate its faults.

38

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 39

system according to the external environment needs, making enhancements requested
by users and reengineering an application for future use.

In (LIENTZ; SWANSON, 1980) and ISO/IEC 14764 (ISO, 2006), four categories
of maintenance are defined, as follows:

e Adaptive Maintenance: Aims to adapt the system in response to data require-
ments or environment changes;

e Perfective Maintenance: Addresses the modifications after product delivery to
handle any enhancements in respect of system performance or maintainability
improvements;

e Corrective Maintenance: It is a reactive modification of a system usually called
“fixes” and performed after delivery. It is responsible for fix discovered problems
(software, implementation and performance failures); and

e Preventive Maintenance: It is concerned to correct and detect faults before it
becomes a fault, preventing problems in the future.

During the adaptive or perfective maintenance, the software specification is mo-
dified to join the improvements or adaptations (WAHL, 1999). In corrective maintenance,
the specification may not be modified or no new modules may not be added. Most of the
changes imply in addition, modification and deletion of instructions (LEUNG; WHITE,
1989). Preventive maintenance is usually performed on critical systems (ABRAN et al.,
2004).

2.7 Chapter Summary

Software Product Lines is an approach to software reuse that during the last years
has proven its applicability in a broad range of situations, producing impressive results
2. In order to achieve all software product lines benefits, three essential activities must
be followed: Core Asset Development, Product Development, and Management. The
assets are created during the core asset development phase to be further instantiated
during product development to derive products, all of it controlled by management
activity.

In this chapter, an SPL overview was presented, discussing its essential acti-
vities, the concepts regarding variability and how to manage it, some SPL adoption
strategies, as well as, how to implement variability considering different binding times
and mechanisms. Finally, it provides important discussion about types of nonfunctional

2

http://splc.net/fame.html

Capitulo 2. SOFTWARE PRODUCT LINES: AN OVERVIEW 40

properties and the ways in which the software maintenance can happen during the
software life-cycle.

Next Chapter presents an overview of the software security area discussing its
fundamental concepts, security taxonomy, tactics and techniques in order to define the
base for the studies performed in this work.

41

3 AN OVERVIEW ON SOFTWARE SECURITY

Security has become an important requirement with the advent of multi-user
computers in the late 1960s (DENNING; DENNING, 1979). With the increased number
of people connected, the web and banks transactions, apps purchasing, it is even more
important to the companies to protect its and customer data against unauthorized access.
This protection can be also due to company secrets, public laws and/or regulations and
to guarantee data and process safety and integrity, for example, planes flown on autopilot
could crash if their process were corrupted. This security can be achieved in two different
ways, the "logical security"addressed by software and "physical security"addressed
by physical countermeasures or barriers. This degree of security needed for every
company will depend on the environment in which the company operates.

To achieve this security, we can consider three logical areas: Procedural Security:
which includes operational, administrative and accountability procedures, Environmental
or Physical Security: it comprehends personnel and physical security, e.g., physical
controls such as door locks, and Technical Security: which consists in security related to
all communications, data, and automated information system security (e.g. protecting the
authenticity and integrity of message traffic, hardware, software and firmware protection,
etc.). In this work, we are considering the technical security logical area since it is
related to software development.

Extensive and philosophical discussions about how to organize these diverse
security elements are available in well-known references accepted in academia and
industry (HUI et al., 2010; VERDON, 2006; HAMED; AL-SHAER, 2006), however, they
are developed for specific purposes which make difficult to define a single unified
taxonomy (SCHUMACHER et al., 2005). Along with this Chapter, we describe the
foundations of software security by emphasizing the elements that are important for this
research.

This chapter is organized as follows: Section 3.1 presents a security taxonomy.
Section 3.2 details how to achieve security at the architecture level, by describing
the following tactics: detect attacks, resisting attacks, react from attacks and recover
from attacks. Section 3.3 discusses how security has been treated by SPL research
community.

3.1 Security Taxonomy

As mentioned before, it is clear that security is spread or should be held by
different company decision levels. (SCHUMACHER et al., 2005) benchmarked existing

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 42

security taxonomies and come up with one containing three major divisions: Secu-
rity Strategy and Policy, Services, and Mechanisms and Implementations. Table 2
summarizes each of them with their respective elements.

Tabela 2 — Security taxonomy (SCHUMACHER et al., 2005).

Security Strategy and Policy

- Deception, disruption, unauthorized disclosure,
usurpation.

- Asset valuation, vulnerability, assessment, th-
reat assessment, risk assessment, risk mitigation
- Prevention, detection, response, planning, dili-
gence, mitigation

Violations
Risk Management

Approaches

Services

- Authorization, system security policy, security
Security support services planning, registration, operational maintenance,
concept of operations, continuity of operations,

- Identification and authentication, deterrence,
Security Services accounting, access control, boundary protection,
non-repudiation, system recovery, and so on

Mechanisms and implementa-
tions

- Information system security policies, training,
Management support mechanismsconfiguration management, disaster recovery,
connection service agreements,
- Encryption, scanners, firewalls, proxies, filters,
packet sniffers, hashing, integrity monitoring, log
Automated mechanisms parsers, making/labeling, logon/off (user ID and
passwords), biometrics, tokens intrusion detec-
tion system, access control lists, RBAC, digital
signatures audit, ...

Physical mechanisms - Human guards, doors, vaults, locks, sensors,
walls, ...
- Sign-ins, backup, restore, removal, incident res-
Procedural mechanisms ponse handling, training, security administration,

personnel, configuration procedures, and so on

It is important to mention that security is concerned with the protection of assets,
ensuring that actions are appropriate, and holding actors responsible for their actions.
However, in order to achieve the simplest security approach in all previously stated
levels, some properties should be achieved, such as (BASS; CLEMENTS; KAZMAN,
2012): Confidentiality: The data or service are protected from unauthorized access,
Integrity: the data or service are not subject to unauthorized manipulation and, finally,
Availability: the system will be available for legitimate use.

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 43

In order to achieve security at the code level, the software architect should un-
derstand how the company conducts its activities in its business, professional, economic,
social and legal environment (DASHOFY; HOEK; TAYLOR, 2002). This information
provides important insights regarding how to apply tactics, which in turn may be realized
using for example security patterns (FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA,
2015). Figure 7 shows the way in which the software architect can decrease the seman-
tic gap between company policies and software code. It is important to mention that the
associations between them (policies, tactics and security patterns) are many-to-many,
since a policy may be applied using several tactics, which in turn can be realized using
several security patterns. On the other hand, a security pattern may realize more than
one tactic, and a tactic may come from several policies. Next Section presents more
details about security tactics and how to achieve them.

Policy
*

applied as
*

Tactic
*

isRealizedBy
*
Security

Pattern

Figura 7 — From policies to security patterns (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015).

3.2 Software Security Tactics

Firstly introduced by (BASS; CLEMENTS; KAZMAN, 2003), architectural tac-
tics are described as "measures”or "decisions"taken to improve some quality factor
or "architectural building blocks from which architectural patterns are created” (BASS;
CLEMENTS; KAZMAN, 2012). The authors in (ROZANSKI; WOODS, 2005; WOODS;
ROZANSKI, 2005) define architectural tactics "as architectural design guidance, strate-
gies, or advices on how to drive a general design issue related to improving required
quality attributes without imposing a particular software systems.". In summary, it cor-
responds to design decisions with respect to a quality attribute.

Since the tactics initial formulations, there have been formalized (BAGHERI;
SULLIVAN, 2011), compared with patterns (RAY et al., 2004), associated to the Common
Criteria (PRESCHERN, 2012) and associated to styles (HARRISON; AVGERIOU, 2010).
Nonetheless, the initial set (BASS; CLEMENTS; KAZMAN, 2003; BASS; CLEMENTS;

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 44

KAZMAN, 2012) has only been refined once (RYOO; LAPLANTE; KAZMAN, 2012).
In this context, a study recently published (FERNANDEZ; ASTUDILLO; PEDREZA-
GARCIA, 2015) presented examination, pruned and reclassified the architectural tactics
for security, considering the previous defined in (RYOO; LAPLANTE; KAZMAN, 2012;
BASS; CLEMENTS; KAZMAN, 2012), since the authors believe that for an effective and
correct use in building security systems, the original set of tactics needed that revision.
Figure 8 shows the result of this refinement.

Recover from

Detect Attacks

Resist Attack

React to Attacks

Attacks

-Verify message integrity
-Verify storage integrity
-Maintain audit trail
-ldentify Intrusions

- By signature

- By behavior

- Authenticate subject

- Authorize subject

- Manage security

information

- Filter data

- Verify origin of the
message

- Establish secure

= Alert Actors
= Apply institution
policies

= Audit actions
= Apply institution
policies

! |

channel i i
- Hide data _ ' [Security Tactics !
- By encryption ! !

- By steganography " i

Figura 8 — Classification of security tactics according to (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015).

It is important to mention that a tactic should not be too general or too specific.
If too general may be confused because of the number of alternatives; if too specific
we have mechanisms or techniques instead of tactics, and it can reduce the number
of possibilities of the software architecture (FERNANDEZ; ASTUDILLO; PEDREZA-
GARCIA, 2015).

3.2.1 Detect Attacks

In this Section, all techniques related to how to detect an attack are described.

e Verify message integrity: It implies techniques such as checksums or hash
values to verify the integrity of messages, resource files, deployment files, and
configuration files. While the former is a validation mechanism in which the
system maintains redundant information for configuration files and messages,
and uses this information to verify the configuration files or message when it
is used. The second generates a unique string by a hash function whose input

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 45

could be configuration files or messages. Even a slight modification in the original
files or messages results in a big change in the hash value.

o \Verify storage integrity: It should define measures and/or functions to make sure
that the database or files have not been modified.

e Maintain audit trail: A system function that can be used to detect attacks and
recover from attacks. An audit trail consists of a copy of each transaction applied
to the data in the system together with identifying information. This audit infor-
mation can be useful to trace the actions of an attacker, support nonrepudiation,
and support system recovery.

e Identify Intrusions: There are two ways to achieve this technique. The first
approach, demands that all users must have a signature in the system, it allows
the security personnel to keep track of all operations of a given user. The second
approach considers the user behavior, in which the system analysis the user
behavior to indicates if that sequence of operations is a suspicious action.

3.2.2 Resisting Attacks

Although it is not always possible to resist an attack, due to the ever-increasing va-
riety of attacks, there are some ways to achieve it. The authentication and authorization
are techniques to ensure confidentiality and integrity, especially, when the system requi-
res different users with different rights (SANDHU; SAMARATI, 1994; SCHUMACHER et
al., 2005). Next, we describe these techniques:

e Authenticate Users: Verifies Who is the user?. Check if a user is a person he/she
should be. It addresses the need to recognize an actor (human, a process or
other entity) that is interacting with the system, ensuring that access is only
granted to authorized people. It can be achieved by different ways, such as: (i)
something user knows, login and password; (i) something the user possesses,
credit-card, smart card; (iii) something user is, biometric signature, fingerprint,
voice-print or the eye iris. The ldentification and authentication service obtains
an identity from the actor, translate the identity to an ID, and authenticates the 1D
using an authenticator. Most of the time, it is used in support to other security
service. For example, the access control depends on authentication to guarantee
that only legitimate users access the system. The individual and group are two
primary categories of identification and authorization. The former determines
the individual actor interacting with a process, for example, a person logging
on to a computer. The second determines whether an actor interacting with a
process is a member of a particular group. For example, checking if a person is
an employee of the financial department, to ensure their proper rights.

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 46

e Authorize Users: It verifies who is authorized to access certain resources in
a system when the access to these resources need to be controlled (SCHU-
MACHER et al., 2005). It ensures that an authenticated actor has the rights to
access and modify either data or services (BASS; CLEMENTS; KAZMAN, 2012).
This access control can be performed using two models: discretionary access
control, in this model, there is no clear separation of user and administration and
users can be owners of data they create and behave as their administrator. On
the other hand, in the mandatory access control, only selected users are allowed
to grant rights, and users cannot transfer them. Users and data are classified
by administrators. Next, we will present a set of patterns that are essential to
understand our study.

In order to describe each of the authorization patterns, we used a short des-
cription of the problem it solves, where the pattern is applicable and a brief
description of how to solve that problem. The main patterns to address this
issue are following described (SCHUMACHER et al., 2005; D.; M.; C., 2006;
FERNANDEZ-BUGLIONI, 2013):

Authorization: It describes who is authorized to access the system functionalities
and resources in any environment where a resource control is required. It is
achieved by explicitly indicating the permissions granted to subjects that have
access to protected functionalities. On the contrary, any subject could access
any functionality. Figure 9 shows the class diagram of the entities involved.
The subject class represents an entity that attempts to access a resource
(Protection Object) in some way. The relationship between subject and
object defines an authorization (Right), which describes the access type (for
example, read, write) the subject has to the object. This class can check the
rights for a given subject or identify who is allowed to access a given object.

Subject * « | ProtectionObject
id isAuhthorizedFor id
name : name
!
Right
accessType
checkRights

Figura 9 — Authorization Pattern.

Role-Based Access Control: It controls the access resources only based on the
subject role. It is used in any environment where access should be controlled
and users can be classified according to their jobs and tasks. It provides ways
to convenient manage authorization rights, otherwise, the number of individual

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 47

rights is just too large, requiring the storing of many authorization rules and
making difficult to the administrators to keep track of all these rules. In addition,
it is hard to associate semantic meanings to the rules. This pattern extends the
idea of the authorization pattern by translating roles as subjects. Figure 10 shows
the class diagram in which the User and Role classes describe registered users
and their predefined roles respectively. Users are assigned to roles, roles are
given rights according to their functions. The right association class defines
types of access that a user within a role is authorized to apply to the protection

object.
User Role ProtectionObject
id memberOf | id isAuhthorizedFor | id
name * x| name * | x| name
:
1
Right
accessType
checkRights

Figura 10 — Role-Based Access Control Pattern.

Multilevel Security Pattern: It is used when the systems need to provide several
security levels, as well as, how to decide on accessing it an environment with
security classifications. This pattern provides a structure that allows us to have
different security levels for both subjects and objects. To implement the structure
of Multilevel security (see Figure 11), there must be an instance of the class
Subiject Classification for each subject and an instance of the class Object
Classification for each object. These instances are used to set security levels
and object security categories to a subject. This pattern can be expensive since
subjects and objects should be classified in security levels.

assignLevel Trusted assignLevel
%x| Process [&

* *

, * *
Subject Data
canAccess ->

? ?

*| |1 *| | 1

Category ClearancelLevel Category ClassificationLevel

Figura 11 — Multilevel Security Pattern.

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 48

Session Pattern: The idea is to provide an environment where a user’s rights can
be restricted and controlled. A subject can be in several sessions at the same
time and it has a limited lifetime. When a session is started a user only activates
a set of authorization contexts assigned to him/her, then, only the necessary
rights are available within this session. To codify the Session security pattern
(Figure 12) there must be a Ssubject class which describes an active entity that
accesses the system and asks for resources. The Execution Context class
describes a set of contexts of execution or active rights that the user has in a
given interaction.

. * hasContext *| Execution
Subject @ 7)) Context
]
1 : *
|
. activelnSession
{subset}
1
. - Session
inSession *

Figura 12 — Session Security Pattern.

Reference Monitor Pattern: It is used in a computational environment in which
users or processes make requests for data or resources. The problem happens if
we do not enforce the authorizations it is the same as not having them, allowing
users and processes to perform all type of illegal actions. The simple definition of
authorization rules is not enough they must be enforced whenever a user makes
a request for a resource. In this context, the Reference monitor pattern (see
Figure 13) defines an abstract process that intercepts all requests for resources
and checks them for compliance with authorizations. The authorization rules
indicate a collection of authorization rules organized as access control lists

(ACLs).
Process MakesRequestTo Reference Exists Authorization
* Monitor [* Rules
Request
resource
access_type l *
Concrete !
Reference Authorization
Monitor

Figura 13 — Reference Monitor Pattern.

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 49

Single Access Point (SAP) and CheckPoint: The use of SAP prevents external
entities from communicating directly with components in the system. All inbound
traffic is routed through one channel, in which monitoring can be easily performed.
It is the appropriate place to capture an information log on the parties currently
accessed in the system. In order to perform a check to distinguish between user
mistakes and malicious attacks, the Checking Point pattern is used to analyze all
petitions and messages. It is important to mention that SAP is predestined to be
combined with Checking Point (see Figure 14) for all messages to be supervised.

SingleAccessPoint
- authorization information

- access log
+ access()
AW
e
[72]
CheckPoint enforces -> SecurityPolicy
. - policy
Countermeasure <- triggers + check(1 1

* * | - triggerAction()

Figura 14 — Single Access Point and CheckPoint.

e Manage Security Information: It includes the management of keys for crypto-
graphy, the secure storage of authorization rules, and other ways to handle
security information. It is a fundamental technique to have a secure system and
should be performed by the system.

e Filter Data: This technique is responsible for avoiding attacks based on abnormal
inputs or coming from untrusted sources.

e Verify Origin of the Message: It is responsible for verifying the data authenticity,
ensuring the legitimacy of the input data.

e Establish Secure Channel: As applied in the distributed system context, it is
responsible to establish a safe channel to data traffic. This channel can be
implemented by a virtual private network (VPN) or by a Secure Sockets Layer

(SSL). Once this secure channel is established the data could be hidden using
the next technique.

e Hide data: It could be achieved by two possible implementations: by Encryption,
an algorithm encodes a message or information in such a way that only authori-
zed parties can read it. By Steganography which is concerned with concealing

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 50

the fact that a secret message is being sent, as well as, concealing the content
of the message.

3.2.3 React from Attacks

These techniques are responsible for responding to a potential attack. Either by
generating an alert for the responsible or by applying internal security policies of the
institution.

e Alert Authors: From the attack occurrence, some system actors (operators, other
personnel or collaborator systems) must be notified in order to provide some
action. These actions may involve from the hiring of new services, functions or
even security equipment.

e Apply Institution Policies: The reality imposes that the company must be prepared
for things to go wrong within the company. This way, contingency plans should
comprehend actions to react from attacks. This involves more administrative
actions and updates in their security policies.

3.2.4 Recover from Attacks

Once a system has detected and attempted to resist an attack, it needs to recover
from it.

e Audit Actions: The system keeps a record of user and system actions and their
effects to help trace the actions of, and to identify, an attacker. This way, the
audit trails are then analyzed to attempt to prosecute attackers or to create better
defenses in the future. It is important to mention that availability tactics make use
of audit trails to restore of services (BASS; CLEMENTS; KAZMAN, 2012).

e Apply Institution Policies: The reality imposes that the company must be prepared
for things to go wrong within the company. This way, contingency plans should
comprehend actions to react from attacks.

The last two set of tactics were generically described since the definition of a
specific function depends on institution policies, type of the application, and should
be performed by the system. For this reason, a general function was not defined
(FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015).

3.3 Variability in Software Security

Most of the studies in the literature consider quality attributes in general, by
proposing a method or a construct to be applicable to all quality attributes (MYLL&RNI-

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 51

EMI; RAATIKAINEN; MaNNIST6, 2012; SOARES et al., 2014). Few of them focused
on security, a cross-cutting concern that should be carefully held during the design
phases and support the decision-making (FAEGRI; HALLSTEINSEN, 2006), since a
given weakness in security can cause problems throughout the products of a product
line.

In this context, the authors in (WANG et al., 2006), proposed a dynamic, privacy-
enabling personalization infrastructure and conceived it as a product line architecture.
The idea behind it is that user-adaptative system applications take individual charac-
teristics of their current users into account and adapt their behavior accordingly. For
doing so, they collect amounts of personal data about users that need to be subject to
privacy laws and regulations. The author’s primary focus was on data processing step
of web personalization where methods can be applied to derive additional information
about users. Based on this personalization point of view, they ask how can personalized
web-based systems maximize their personalization benefits, while being compliant
with privacy laws, industry and company regulations, and privacy preferences of the
current user. Despite implementing the proposed solution at the code level, it is not
directly related to software security issue, instead of the way that identifies the customer
personal data in order to apply different privacy law and regulations. It is critical in
websites with customers from different countries obeying different laws.

The study in (FAEGRI; HALLSTEINSEN, 2006), discusses the viability to repre-
sent security knowledge in a reference architecture and if this architecture is useful
for security architecture design in SPL. Based on that, they presented a reference
architecture which is based on techniques and practices from SPL engineering and
information security, which composes a framework for security architecture design in
SPL. Despite having taken into account and documented the data from three companies,
no evaluation regarding the implementation of these proposed design decisions was
considered.

The authors in (DANIEL; EDUARDO; MARIO, 2008) proposed a security standard
based process for software product line development, which is a set of activities in
the domain engineering. It deals with security requirements from early stages of SPL
life-cycle in a systematic and intuitive way. Additionally, it deals with security artifacts
variability and traceability, providing a security core asset repository. The idea is that
the products generated from this process will conform with the most relevant security
standards with regard to the management of security requirements such as ISO/IEC
15408, ISO/IEC 17799:2005 and ISO/IEC 27001 standards. Despite proposing activities
for each step of the SPL framework, nothing was done in relation to how to implement
such security at the code level, nor to evaluate this implementation.

In (MYLLARNIEMI; RAATIKAINEN; MaNNISTé, 2015), the authors use design

Capitulo 3. AN OVERVIEW ON SOFTWARE SECURITY 52

models to build artifacts and generalize design theory for representing and configuring
security and functional variability from requirements to architecture in a configurable
SPL. They developed and evaluated a configurator tool to find consistent products as
stable models. This study did not evaluate the code related to security issues or any
other related aspect, it focuses on product derivation.

3.4 Chapter Summary

In an SPL, security may need to be varied to meet the different customer’s
wishes. Consequently, security variability must be managed both from customer and
product line architecture point of view (MYLLARNIEMI; RAATIKAINEN; MaNNIST6,
2015). In order to achieve this security at the architecture level, different security tactics
and techniques can be used.

In this chapter, a taxonomy described different levels in which the security
should be held by different company decision levels. It also presented a benchmark
regarding to security taxonomies with three major divisions: Security Strategy and
Policy, Services, and Mechanisms and Implementations. Considering the mechanism
and implementations division, four security tactics were presented each one containing
different techniques to achieve the tactics mains purpose. Finally, an overview about how
software security is being addressed by studies in the SPL area was also discussed.

Next Chapter describes the testbed developed to support all evaluations perfor-
med in our study. It also presents its feature model, architecture and how the security
was implemented in each testbed.

53

4 SOFTWARE PRODUCT LINES TEST BED

Software Product Lines (CLEMENTS; NORTHROP, 2001; POHL; BOCKLE;
LINDEN, 2005) is a contemporary approach to software development that promotes
reuse while reducing overall development time and cost, as well as improving product
quality. All these benefits do not come for free, it demands mature software engineering,
planning and reuse, adequate practices of management and development, and also
the ability to deal with organizational issues and architectural complexity. Thus, it is
important the development of new techniques, tools, and methods to deal with SPL
complexity required by the variability management.

Nevertheless, in order to evaluate new ideas before being used in practice, it is
important to build platforms for conducting rigorous, transparent, and replicable testing
of scientific theories, computational tools, and new technologies.

In this chapter, the results of the development from three SPLs are presented,
serving as the base for a family of experiments (BASILI; SHULL; LANUBILE, 1999)
which enables us to evaluate the impact of security techniques on SPL maintainability. It
is important to mention that all SPLs were built using the proactive approach, in which the
organization analyzes, designs and implements the overall SPL to support the full scope
of products needed on the foreseeable horizon (KRUEGER, 2002b). The remainder of
this chapter is organized as follows: Section 4.1 presents a related work and the main
reason to create new testbeds. Section 4.2, Section 4.3 and Section 4.4 detail how each
SPL was built regarding to activities, tools, stakeholders, code repositories and artifacts.
In addition, some refactoring and code evolution implemented before security technique
implementation were also described. Finally, Section 4.5 describes each of the security
techniques and how they were integrated to SPL architectures.

4.1 Related Work

This section describes some studies found in the literature that also use SPLs to
perform different studies and experiments.

SPL2go' is a catalog of SPLs for which domain implementation (i.e., source code)
and variability model (e.g. feature model) are publicly available. It brings information
such as tool used to automation, languages, number of features, lines of code, classes,
and products. A brief description of the domain is also available.

In (FIGUEIREDO et al., 2008), the MobileMedia SPL was designed with an
academic purpose, but including change scenarios with mandatory and optional features

' http://spl2go.cs.ovgu.de/

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 54

to be further exercised during evolution. It serves also as a reference for aspect-
orientated programming studies.

In (APEL; BEYER, 2011), the authors provided a supplementary material of an
empirical study on forty SPLs of different sizes and domains. They also made available
data collected from these SPLs and some results from the statistical analysis.

A pedagogical product line (MCGREGOR, 2014) developed by Software engi-
neering institute (SEI) provides different artifacts of a conceptual SPL. In addition to
SPL artifacts such as business case, scope, a concept of operations, requirements,
and architecture, they also provide class-tested pedagogical elements and suggested
exercises.

In (GAIA et al., 2014), the authors developed an SPL to represent major features
of an interactive web store system. It was designed for the academic purpose, but
focusing on real features available in typical web store systems. It manages products
and their categories, show products catalog, control access, and payments.

In (VALE; FIGUEIREDO, 2015), authors gathered releases of open-source Java
software systems, often multiple versions. It has 112 systems, 15 systems with 10 or
more versions, and 754 version total. There are two main distributions: the "r"(recent)
release, containing the most recent versions of every system (112 systems) and the
"e"(evolution) release, containing all versions of the 15 systems with 10 or more versions,
a total of 579 versions.

Our Test Beds do not only present the source code but also provides the arti-
facts used during their development. They are: repository with commits and comments,
feature model, relational model, feature code and product map. All of them were deve-
loped using JAVA language without any support of SPL development frameworks. It
is important since most of the existing testbeds require that researchers know how to
develop using a specific SPL tool or framework, which is considered a major barrier to
the adoption of SPL and metrics extraction. As we are interested in evaluating security
techniques, the SPLs needed to be developed in a way that allows the addition of those
techniques to be further compared. Moreover, the SPLs considered in this study have
a considerable size when compared with other such as: MobileMedia (FIGUEIREDO
et al., 2008) and WebStore (GAIA et al., 2014). In summary, the idea is to concentrate
complete updated information to enable other researchers to replicate or perform new
studies.

4.2 RISE Event SPL

The RIiSE Event (SILVEIRA et al., 2016) is an SPL which aims to develop a
product line that comprises the papers submission in conferences, journals, and related

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 55

events, and its management, including the control over the review life-cycle, as well as,
the management of activities (workshop, tutorial, panels), users (speakers, organizers,
reviewers), registrations, payments and certificates. It was built based on the main
features found on largely used conference management systems, such as: EasyChair?,
JEMS? and CyberChair?. It constitutes a core asset base integrating many features
to make it suitable for several conferences. Thus, based on this common base, the
products can be derived.

The SPL was developed using the JAVA language following the MVC architectural
pattern (see Figure 15 °) and a remote instance of MySQL database. The architecture
is composed of four layers, they are: (i) View, composed of 79 graphical user interface
classes responsible for generating outputs to the user based on changes in the model.
(ii) Controller, can send commands to the model in order to update the models’ state
or send commands to its associated view to change the view’s presentation of the
model. This layer is composed of 39 classes. (iii) Interface, 19 interfaces establish a
contract between the controller and its associated model, allowing to use different ways
to store the data. (iv) Model, 19 classes are responsible to store data that is retrieved
according to commands from the controller and displayed in the view. In summary,
the SPL contains 34 functional features totalizing 26.395 lines of code, 1673 methods
and 496 classes. The SPL code, as well as, the security techniques implemented are
available at: <https://github.com/pamsn/RiSEEventSPL>

This TestBed was built considering five phases, as described: (i) the RiISE Event
SPL was coded based on the results from the domain analysis and feature model which
was built using Feature IDE tool®. (ii) Next, conditional compilation tags were inserted in
the code in order to isolate each functional property (feature) code. It was supported by:
Eclemma’ to identify the functional property code during its execution, and CIDE & used
to color the functional property code, as well as, identify their code interactions. The
results were used in a build ® xm1 file used to derivate SPL products.

4.2.1 Functional Properties

Figure 16 presents a simplified view of the RiSE Event SPL feature model
SILVEIRA et al., 2016). Examples of core properties are Submission, Review and

(

2 www.easychair.org/

3 jems.sbc.org.br

4 www.borbala.com/cyberchair/

5 Due to size limitation and to better illustrate the security impact the class diagram was not shown. It is
also important to mention that the boxes located at the view layer are the system screens built using
Swing framework.

<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/>

http://www.eclemma.org/

<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/>

http://www.eclipse.org/eclipse/ant/

© 0o N O

https://github.com/pamsn/RiSEEventSPL
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 56
VIEW RiseEvent
— — — = = — — = 3B Main Screen |~ _
--—-" gid [Event= L _
T1.T2" - ...insert | ..remove K ..update | ...search || ...report|| program = ~T8,T9,T10,T11
T2 ~ || screens || screens screens screens | screens | screen - =" T12,T13,T14
== % \ ==
CONTROLLER ~ ~ 4= a -
P 7 Facade
L—==—" -
A1 _---" P \s
- Event Activity Submission
Controller Controller Controller
Event \ Activity \ \ Submission
1 1 1
INTERFACE—ioy A 1
<<Interface>> | | <<Interface>> <<Interface>>
RepEvents RepActivit RepSubmission _T15
; i ol
MODEL Repository Repository Repository |« -
Events Activit Submission
Figura 15 — RiSE Events SPL Architecture.
RIiSE
Event
Conflict
User
Interest
T T i
| o T
Speaker Reviewer i E I
Reports Submission Ly Review
Organizer Registration Activity List of /O\ Assignment
Authors .
Y Complete | | Partial Simple | | Round
RegUser [=
g Tutorial | | "r€quency .
Activity Workshop per activity | | Event Chair ‘
- Indication Automatic
RooSmeak RegOrganizer
egopeaker Activity Panel Course Important
Activity
Dates Program
MainTrack Frequency
per event
LEGEND

lMandatory (L Optional A Alternative /‘\ OR

----- > Requires <---=> Excludes

Figura 16 — RiSE Events SPL Feature Model.

Assignment and some optional properties are Reports and Conflict of Interest. More
detailed information regarding all functional properties, their type and description can
be seen in Appendix 7, Table 31).

4.3 RISE Store SPL

The RISE Store SPL was developed to support the main features of an interactive
store. It was developed in an academic scenario, as part of M.SC/PH.D course, inspired

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 57

by an application called WebStore (FERREIRA et al., 2014) and Java Pet Store °.
The Rise Store SPL is a desktop SPL which manages products, their categories and
catalog, and control payments, FAQs and Bug reports. It comprehends the main features
required to manage a shop store.

The SPL was developed by eleven post-graduate students as a project in a reuse
course. They used JAVA language, adapting the MVC architectural pattern (see Figure
17 ') and a remote instance of MySQL database with an object-relational mapping fra-
mework for mapping an object-oriented domain model to a relational database. The SPL
architecture was composed of three layers: i View. 23 graphical user interface classes
to interact with potential users. (ii) Controller. composed of a facade class with 20 basic
entities in order to send information from views classes to model layer classes. Different
from the previous SPL, the controller classes were not built, leaving the business rules
to views classes. (iv) Model. It was the layer with the most different structure when com-
pared with the other SPL build. As it was using hibernate framework, to object-relational
mapping, the developers reuse code as much as possible by concentrating common
methods (e.g.: insert, update, remove, search) in one class, sending the variable parts
(e.g.: find all, search by id) to specific classes. It resulted in 40 functional features totali-
zing 5426 lines of code, 443 methods and 74 classes. The SPL code, as well as, the
security techniques implemented are available at: <https://github.com/pamsn/ufbadcc>

R
T1,T12Z - E(éle;tegory User Edit Product Payments | Cupom
=~ d 't screen screen Edit screen screen Edit screen-|
—~— \\l - -

CONTROLLER ‘\ “«=

Facade

T4,T5— — "
™ /
T6,T7 ~
| Category | Status | Product | Payment Cupom
MODEL
Genenc
DAO

Category | | UserStatus Product | | Payment Cupom <—|- Z==T15
DAO DAO DAO DAO DAO

RISE Store
Main Screen

-
-~
-~
-
-~
-

[~ =~ ~T8,T9,T10,T1
~ T12,T13,T14

\

Figura 17 — RiSE Store SPL Architecture.

The RiSE Store SPL was developed based on benchmarking and domain analy-
sis, as well as, the SPL concepts learned during the reuse course (started on Feb-2016

10 http://www.oracle.com/technetwork/java/petstore1-3-1-02-139690.html|

" Due to size limitation and to better illustrate the security impact the class diagram was not shown. It is
also important to mention that the boxes located at the view layer are the system screens built using
Swing framework.

https://github.com/pamsn/ufbadcc

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 58

to Jun-2016). Firstly, the data model was built considering all entities identified during
brainstorm meetings. The professor acted as a client and the students as a software fac-
tory. Next, the feature model draft was built which was further refined using FeaturelDE
tool 12, resulting in 40 functional features. The user interface mockups were build using
Balsamiq'® tool and the conditional compilation directives were placed throughout the
code without any tool support. Each developer responsible to implement that feature
was also responsible to isolate its code. Finally, a xm1 document was build with all
features and applied to ant ' in order to derivate different products. The timesheet,
screen mockups, database script, code commits and xm1s can be seen in the project
repository website °.

4.3.1 Functional Properties

A simplified view of the RIiSE Store SPL is shown in Figure 18. Some of the
SPL features are user management, notification and visualization through product
management and categorization, client communication (e.g., FAQ, contact us and bug
track management) cart management with checkout, promotions, gift cards and so on.
See Appendix 7, Table 34 to detailed information regarding to this SPL.

WebStore
UFBA

User Cart

Notification

Update User
Status Visualization

‘E Visualization Communication
Search Categorization
Product |

Account

Update

Search Insert
Tracking || Insert

Buy

Checkout
Remove

Contact
us

| FAQ | Discounts
Cash

Remove

Remove

Send
Email

Update
. o
Details || sell Remove | Search | | Report

LEGEND

Credit
Card | | Gifts

e
BugTrack

Remove

Gifts

Ticket Cards

lMandalory J) Optional A Alternative /‘\ QR ===== > Requires <---= Excludes

Figura 18 — RiSE Store SPL Feature Model.

—_
N

<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/>
https://balsamig.com/

http://www.eclipse.org/eclipse/ant/
https://github.com/samiacapistrano/ufbadcc

_ a4
a ~ W

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 59

4.3.2 RISE Store Refactoring and Evolution

In order to apply the security concepts and mitigate some experiment thre-
ats during security techniques implementation, the SPL code has undergone some
modifications and corrections, such as:

e As previously mentioned, the RISE Store SPL makes use of hibernate framework
to deal with object-relational mapping. Since the security techniques do not make
use of hibernate framework and they have their code compared among them,
we keep the same implementation as used in the RISE Event SPL. Thus, the
security techniques had their entities stored using JAVA with pure sql code,
while the other entities had their data stored using the hibernate framework.

e During the SPL development, the students implemented an authentication in
order to control the user access. As the authentication is one of the security
techniques evaluated by our study, it needed to be removed. Thus, the user
access code was removed and a refactoring was performed both in the SPL
code and database scripts. In addition, singleton design pattern was added and
the use of Jpanel was changed to Jframe, to enable the interaction among
the security techniques screen with SPL screens.

e The JAVA generics was applied in order to get the buttons names and classes
as used in the RISE Event SPL.

e One of the security techniques needs to execute code when a specific screen is
closed. As the original version of RiSE store SPL did not consider this scenario,
we needed to insert the method responsible to close the screen using the button
located on the top left corner (see Figure 19).

L

®
@
h.'mi

Customer email:

Insert Remove Search Update

Figura 19 — Close button located at top left corner.

4.4 Law Office SPL

The Law Office SPL aims to manage essential activities of different law offices. It
was developed in an academic context, as part of two undergraduate courses, databases

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 60

systems, and object oriented programming. It results in a desktop application which
manages lawyers, trainees, processes, customers, departments, financial and reports.
In addition, to manage a single law office, the SPL can be also used to manage a set of
offices.

The SPL was developed by three students during the two courses. It uses JAVA
language and a remote instance of MySQL database without any support of frameworks.
The SPL architecture was composed of three layers (see Figure 20 '8): (i) View. twenty-
five graphical user interface classes were developed with the purpose to user interaction.
The communication with the top layer is responsibility of (ii) Controller which has only
the facade class with basic entities as found in the SPL Store, leaving the business rules
to view classes. Finally, the (iii) Model layer with only one class which concentrates the
code responsible for data storage of all software entities. It resulted in 34 functional
features totalizing 16665 lines of code, 116 classes and 734 methods.

The Law Office SPL was developed based on domain analysis performed by the
students, and Database and Object-Oriented Programming concepts viewed in both
courses. First, the developers performed a set of interviews with two law offices in order
to identify the main requirements. Based on that, the entities were modeled always with
the supervision of the professor. The same happened in the Database course in which
the relational model was created and transformed to its respective data tables. After
some normalization and improvements, the database was created and finally integrated
with the JAVA code. The SPL code, as well as, the security techniques implemented are
available at: <http://www.paulosilveira.com/Implementa%c3%a7%c3%b5es_TestBed_
SPLOffice.zip>

VIEW Lawyer Office
e —— Main Screen

Ve 7~7 _ _ -~ I~
- 7 =<
_a-" - 4 \ T~< ~
T1,T2C - Lawyer Office Process | | Department| | Schedule | |~ ~T8,T9,T10,T11
=~ d L Screen Screen Screen Screen Screen — - T12,T13,T14
= 1 — » 119,

f — -
CONTROLLER. ~ =, N W & ﬂ,/,—’
7

,.C—————"":; Facade

Ta,15= —/1 ————— / \ \\
s _|--
T6,T7# — “

| Lawyer| Office Process| | Department | | Client| | Schedule |

MODEL

Repository | — o — — — - — — o — = =T15
BD *

Figura 20 — Law Office SPL Architecture.

6 Due to size limitation and to better illustrate the security impact the class diagram was not shown. It is
also important to mention that the boxes located at the view layer are the system screens built using
Swing framework.

http://www.paulosilveira.com/Implementa%c3%a7%c3%b5es_TestBed_SPLOffice.zip
http://www.paulosilveira.com/Implementa%c3%a7%c3%b5es_TestBed_SPLOffice.zip

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 61

4.4.1 Functional Properties

A short version of the feature model is shown in Figure 21. The system can have
two types of customers: companies or a person. In addition, it manages the lawyers, all
documentation and can generate different reports. Each lawyer may have a trainee in
order to support they daily tasks such as opening, editing, and maintenance of legal
processes. The system also manages part of financial functions such as: bills to pay
and receive. See Appendix 7, Table 37 to detailed information regarding to the main
features.

Law Office
SPL
Documentation Client Financial
- Report Schedule
Costumer
Process
Update Reactivate Lawyer o .
° Insert Update
Insert | | Remove Update
Reactivate] Trainee Remove Assign
Enterprise Assign
Insert | | Remove Update Reactivate
Update Reactivate o

Insert | | Remove

Insert | | Remove

LEGEND

lMandatory (L Optional A Alternative /‘\ OR ----- > Requires <---=> Excludes

Figura 21 — Law Office SPL Feature Model.

4.4.2 Law Office SPL Refactoring and Evolution

In order to apply the security concepts and mitigate some threats during the secu-
rity techniques implementation, the SPL code has also undergone some modifications
and corrections. They are:

e A set of sixteen new features were added to the original Law Office SPL code in
order to improve it. The main features added were Input and Output Finantial,
Insert Department. In addition, a test suite was executed in order to locate and

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 62

fix bugs. This way, the SPL original code suffered some modifications regarding
to feature addition and bug fixes.

4.5 Non Functional Properties

In our work, two different security tactics, in which can be achieved by coding,
were implemented throughout fifteen different security techniques. The overall security
tactics are related to how to detect an attack?, how to resist an attack?, how to react to
attack? and how to recovery from attack?.

It is important to mention that all 15 techniques were implemented using conditio-
nal compilation and aspect orientation as variability mechanisms. Table 3 shows a brief
description regarding each security technique implemented and Figures 22, 23 and 24
show how they are distributed over the SPLs architectures. Tables 4, 5 and 6 shows the
percentage of code dedicated for software security when considering each of the security
techniques. For more details regarding each technique and how they were implemented
are described in the next chapter. lts code, relational model, feature model, information
regarding each feature are available at: <https://github.com/pamsn/RiSEEventSPL>,
<https://github.com/samiacapistrano/ufbadcc> and <www.paulosilveira.com/Office>.

Tabela 3 — Security Techniques.

ID Security Technique Security Tactic

T1 CheckSum Detect Attack
T2 Hash Values Detect Attack
T3 Verify Storage Integrity Detect Attack
T4 MainTain Audit Trall Detect Attack
T5 Identify Intrusion by Behavior Detect Attack
T6 Authenticate Subject - Login/PassWord Resist Attack
T7 Authenticate Subject - Login/Password/MachineToken Resist Attack
T8 Authorize Subject - Authorization Pattern Resist Attack
T9 Authorize Subject - Role Based Access Control (RBAC) Pattern Resist Attack
T10 Authorize Subject - Multilevel security Design Pattern Resist Attack
T11 Authorize Subject -Session Pattern Resist Attack
T12 Authorize Subject -Reference Monitor Pattern Resist Attack
T13 Authorize Subject - Single Access Point and CheckPoint Pattern Resist Attack
T14 Manage Security Information Resist Attack
T15 Hide Data by encryption Resist Attack
4.5.1 Security technigues implementation

Once the SPLs were implemented, tested and evolved, the security techniques
were implemented and integrated with them. During this integration, some decisions
needed to be considered, such as: (i) the integration generated modifications in the
SPL base relational model. This way, 45 different SQL scripts were created to hold

https://github.com/pamsn/RiSEEventSPL
https://github.com/samiacapistrano/ufbadcc
www.paulosilveira.com/Office

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 63

VIEW RiseEvent
T3 I R Maln Screen |~ _
e — _ - v —
lo=- / / N \ e
T1.T2= - . = Event = =T8,T9,T10,T11
T2< - < insert || remove update search report program |[_ - T12,T13,T14
— == ?K \\ // — =
CONTROLLER — =~ R — — 4 — ~
Facade
Ve
TaTs—— 35~ " T2 -
’ s l - / \\I \
T6 TT"/’ -1~ Event Activity Submission
’ Controller Controller Controller
Event Activity Submission
\ 1 1
INTERFACE__nferface>> | [<<Interface>> <<Interface>>
Repl?vents RepA}ctivity RepSubmission _T15
/ ; -7
MODEL Repository Repository Repository |4 -
Events Activity Submission

Figura 22 — Security Techniques used in the RiSE Event SPL Architecture.

Tabela 4 — Security Code Percentage in the RiSE Event SPL.

Lines of Code Security Code (%) Lines of Code Security Code (%)
RiSEEvent 26395
TO1 26886 1.86% TO1 27140 2.82%
T02 26843 1.69% T02 27097 2.65%
TO3 26473 0.29% T03 26488 0.35%
T04 27855 5.53% T04 27680 4.86%
TO5 27853 5.52% TO5 27814 5.37%
TO6 27389 3.76% T06 27468 4.06%
T07 27438 3.95% T07 27519 4.25%
CC TO8 28400 7.59% AOP TO08 28371 7.48%
T09 29174 10.52% T09 29146 10.42%
T10 30569 15.81% T10 30534 15.68%
T11 28442 7.75% T11 28489 7.93%
T12 28462 7.83% T12 28446 7.77%
T13 28900 9.49% T13 28656 8.56%
T14 29714 12.57% T14 29684 12.46%
T15 27448 3.98% T15 27518 4.25%

each techniques data, the same script was used to conditional compilation and AspectJ
implementations; (ii) in order to facilitate the data extraction we generated 31 versions of
each SPL, one related to the SPL code base (without security techniques), 15 versions
with security techniques implemented with conditional compilation and 15 versions
with the techniques with AspectJ implementation resulting in 93 versions; (iii) once the
techniques were plugged, some tests were executed in order to evaluate the integration
between the technique and SPL code. It is important to mention that if a bug was found

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 64

VIEW RISE Store
e — - :; Main Screen
T3———__-—_ ——’ N\‘s\
-1 [=~ ~18,T9,T10,T11
T1,T2Z Category . Product Cupom S et it
’ -<4 Edit User Edit Edit Payments Edit L - T12,T13,T14
-~ \\\‘ > ‘u ~ - P
CONTROLLER ~ = =
y 7 Facade
ezl —==- e
T4,T5— — % -- /// \
7 —_ - -
2=
T6,T## User & =
Category Status Product Payment Cupom

I \

a—
/ /
MODEL L\,
Generic
DLAO -

Category UserStatus | | Product | | Payment | | Cupom |g—|— = =T15

Figura 23 — Security Techniques used in the RiSE Store SPL Architecture.

Tabela 5 — Security Code Percentage in the RiSE Store SPL.

Lines of Code Security Code (%) Lines of Code Security Code (%)
RiSE Store 5426
TO1 5884 8.44% TO1 6174 13.78%
T02 5856 7.92% T02 6106 12.53%
TO3 5510 1.54% T03 5525 1.82%
T04 6951 28.10% T04 6608 21.78%
T05 6947 28.03% TO5 6672 22.96%
TO6 6371 17.41% TO6 6392 17.80%
T07 6409 18.11% TO7 6428 18.46%
CcC T08 7251 33.63% AOP TO08 7234 33.32%
T09 8028 47.95% T09 8012 47.65%
T10 9359 72.48% T10 9345 72.22%
T11 7291 34.37% T11 7330 35.09%
T12 7311 34.74% T12 7290 34.35%
T13 7635 40.71% T13 7528 38.73%
T14 8567 57.88% T14 8551 57.59%
T15 6213 14.50% T15 6144 13.23%

in the SPL base code, that fix was propagated over all related releases. The same holds
if the bug was found in the technique code, in which the correction was propagated to
the correspondent techniques code.

A summary regarding to data extracted from all 93 versions implemented can be
viewed in Appendix 7. Tables 32 to 39 show the number of classes, methods, attributes,
and parameters for each security technique using conditional compilation and AspectJ
implemented in each SPL.

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED

65

VIEW Lawyer Office
_ Main Screen

T e e ———— -z -
- V -~
- -~
- = // -~

Schedule | | = ~T8,T9,T10,T11
Screen | | _ - T12,T13,T14

T1,T12Z - Lawyer Office Process Department
=~ 4 Screen Screen Screen Screen
— 1 e =
CONTROLLER. ~=xy N W & = -~
7/
’ e —— ‘ Facade

T4, 15—~ 71 == / \\
s _|--
T6,T7# —

Lawyer -Office Process | | Department | | Client

Schedule

Repository —— -
b | ¥

______ L — — =T15

Figura 24 — Security Techniques used in the Law Office SPL Architecture.

Tabela 6 — Security Code Percentage in the Office Law SPL.

Lines of Code Security Code (%)

Lines of Code Security Code (%)
Office Law 16665
TOA1 17201 3.21% TO1
T02 17149 2.90% T02
TO3 16746 0.48% T03
T04 18245 9.48% T04
TO5 18239 9.44% TO5
T06 17570 5.43% TO6
T07 17612 5.68% TO7
CC T08 18436 10.62% AOP TO08
T09 19214 15.29% T09
T10 20603 23.63% T10
T11 18482 10.90% T11
T12 18496 10.98% T12
T13 18827 12.97% T13
T14 19762 18.58% T14
T15 17882 7.30% T15

17641 5.85%
17560 5.37%
16762 0.58%
17769 6.62%
17835 7.02%
17595 5.58%
17637 5.83%
18470 10.83%
19248 15.49%
20645 23.88%
18569 11.42%
18524 11.15%
18722 12.34%
19796 18.78%
17619 5.72%

4.6 Chapter Summary

An increasing number of software development companies are adopting appro-

aches or strategies which emphasize proactive reuse,

interchangeable components,

and multiproduct planning cycles to develop high-quality products faster and cheaper
(CLEMENTS, 2001). In order to achieve all benefits, it is important to develop new tech-
nigues, approaches, tools and so on. It is increasingly important that these techniques,
tools, and approaches be tested before being used in industry.

In this context, this chapter provides three SPL developed in three different

Capitulo 4. SOFTWARE PRODUCT LINES TEST BED 66

domains in which domain implementation (i.e., source code) and variability model (e.qg,
feature model) are publicly available. These Test Bed helps researchers and practitioners
to find case studies for particular needs by providing data for all product lines.

Next chapter presents an assessment of security tactics and techniques conside-
ring maintainability internal attributes. It also analysis how the techniques are distributed
regarding to its maintenance cost.

67

5 ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A
MAINTENANCE ANALYSIS

The security research community has considered many ways to secure sys-
tem parts to build secure systems or to avoid some attacks. However, few studies
exist regarding to how to make secure a whole system (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015). In addition, several attacks on software systems result in a
process execution deviating from its normal behavior (GAO; REITER; SONG, 2006).
This way is increasingly clear the need to build safe software.

Secure systems are essentially difficult to build and as other quality attribute, they
need to be considered since early phases of the software life-cycle. In (GALSTER, 2015)
the authors reinforced the importance of conduct exploratory and descriptive studies
to better understand variability in quality attributes, as well as, devise approaches for
describing, analyzing and implementing variability in quality attributes. It becomes more
critical in the Software Product Lines context, due to its complex and extensive nature.
The implementation of such security properties must enable the derivation of different
product line members through a Product Line Architecture (PLA), which also supports
SPL maintenance by changes in its design decisions. The quality attributes requirements
specify the answers of the system that, should achieve the goals previously defined.
According to (BASS; CLEMENTS; KAZMAN, 2012) a useful software architecture ap-
proach for build secure systems is based on tactics, defined as being "a design decision
that influences the achievement of quality attribute response — tactics directly affect the
system’s response to some stimulus. "(BASS; CLEMENTS; KAZMAN, 2012). Although
these tactics are largely discussed by different studies (WOODS; ROZANSKI, 2005;
ROZANSKI; WOODS, 2005; TAYLOR; MEDVIDOVIC; DASHOFY, 2009; BAGHERI;
SULLIVAN, 2011; FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015), few of them
discuss how to achieve them. The lack of studies reporting how to implement a tactic
can be a problem since the software architecture should make a decision regarding to
this implementation, which could lead to misinterpretations (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015).

In this context, our study contributes to the research and practice in the following
way: (i) providing information regarding to how to implement different security tactics
and techniques; (ii) comparing two variability implementation mechanism, namely
aspect-oriented programming and conditional compilation. (iii) describing how those
security techniques and variability implementation mechanism may affect software
maintainability throughout the following internal attributes: Code size, Separation of
concerns, cohesion and coupling; and (iv) providing empirical evidence on why security

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS88

nonfunctional properties vary; what are the possible variants and how it is mapped in
the architecture.

The remainder of this chapter is organized as follows: Section 5.1 provides
an overview about conditional compilation as variability implementation mechanism.
Section 5.2 details some ways to achieve security at software architecture level. Section
5.3 describes the family of experiments used. Section 5.5 details how the study was
planned regarding to its context, hypotheses, by defining the goal, research questions
and the metrics. Section 5.6 and Section 5.7 describe the study operation and the
statistical tests and methods used. Section 5.8 presents the results and hypotheses
testing analysis. The main finding are summarized in Section 5.9, Sections 5.10 and
5.11 discuss the threats to validity and related work, respectively. Finally, Section 5.12
draws conclusions about the study.

5.1 Variability Mechanism

In this section, we presented some concepts related to the techniques evaluated
in this study: Conditional Compilation (CC) and Aspect-Oriented Programing (AOP).
The main goal is to evaluate the different composition mechanisms (GACEK; ANASTA-
SOPOULES, 2001) available to understand their strengths and weaknesses regarding
to maintainability (SANT’ANNA et al., 2003; GARCIA et al., 2005; KULESZA et al.,
2006a; GREENWOOD et al., 2007; EADDY et al., 2008; FIGUEIREDO et al., 2008;
FIGUEIREDO et al., 2009; DANTAS; GARCIA, 2010; CARVALHO, 2016; ARVANITOU
et al., 2017) based on the separation of concerns principle and other software attributes
such as: separation of concerns, coupling, cohesion and size.

As the context of this thesis is in the implementation of security in software
product lines, thus we decided to use variability mechanisms that provide support to
map variability concerns into core assets represented as features. The idea of these
mechanisms is to cover security patterns and best practices based on compile time
configuration required in software product lines environment. It allows products to be
derived considering only the code needed for such implementation.

5.1.1 Conditional Compilation

There are several implementation approaches for coding variabilities in product
lines, as characterized and compared in (GACEK; ANASTASOPOULES, 2001; BOSCH,;
CAPILLA, 2013; SVAHNBERG; GURP; BOSCH, 2005). The conditional compilation is
one of them and was used in this study since it is a well-known mechanism to isolate
and identify crosscutting concerns code. It is also commonly used in both scenarios, the
state-of-the-practice in industry (ALVES et al., 2006b; CHEN; BABAR, 2011; FERREIRA
et al., 2014) and also literature (GACEK; ANASTASOPOULES, 2001; LEE; HWANG,

© 00 N O 0o A~ 0N =

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS8S

2014). It is powerful since enables control over code segments to be included or
excluded from a program compilation. The major advantage of this mechanism is the
encapsulation of multiple implementations in a single module. The desired functionality
is selected by defining the appropriate conditional compilation directive marks in different
locations in the code. In addition, the code can be marked at different granularities and
architecture layers, from a single line of code to a whole file. Listing 5.1 shows the use
of conditional compilation mechanism through the addition of #if-defs pre-processing
marks to add code regarding to cryptography. If the cryptography feature is selected to
be part of a product, the code responsible to decrypt password and email information
should be included in that product.

A configuration file composed of #if-defs tags always associated with a boolean
value is defined grouping all features of a given product. These values indicate the
presence of the feature in the product, including the bounded piece of code in the
compiled product.

Caddigo 5.1 — Conditional Compilation pre-processors directives example.

Statement statement = (Statement) pm.getCommunicationChannel();
ResultSet resultset = statement.executeQuery("Select « from
login WHERE idUser =" + idUser);
if (resultset.next()) {
String password = resultset.getString ("password");
String email = resultset .getString("email");
/I #if ${Cryptography} == "T"
try {
password = MyCrypto.decrypt(password);
email = MyCrypto.decrypt(email);
} catch (Exception e) {
e.printStackTrace() ;

/] #endif

login .setldUser(resultset . getint ("idUser")) ;
login . setPassword(password);

login .setEmail(email);

5.1.2 Aspect-Oriented Programming

The basic abstractions of object-oriented software development are classes,
objects, interface, methods, and attributes. However, it may not be enough to separate
crosscutting concerns found in complex systems and naturally cut across the modularity
of other concerns. In this context, the aspect is the main mechanism of modularity,

© 00 N O o A~ W DN =

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

which encapsulates a concern code that would be tangled with and scattered across the
code of other concerns. AspectJ (KICZALES et al., 2001) is a practical aspect-oriented
extension to Java programming language which uses: join points: well-defined points in
the program flow, such as method calls, field sets, and so on. Pointcuts which describes
join points and values at those points and finally the advices which are a method-like
abstraction that define code to be executed when a join point is reached. The AOP
has emerged over the previous decade as the domain of systematic exploration of
crosscutting concerns and corresponding support throughout the software development
process (FILMAN et al., 2004). In addition to the aforementioned qualities, the aspect-
oriented programming is largely used in academy as can be seen in (SANT'ANNA et
al., 2003; GARCIA et al., 2005; GREENWOOQOD et al., 2007; FIGUEIREDO et al., 2008;
KULESZA et al., 2006b; KASTNER; APEL; BATORY, 2007; D’AMORIM; BORBA, 2012;
FERREIRA et al., 2014) and used in security frameworks such as Spring Security’.

Listing 5.2 shows how the aspect can modularize the logging feature. The aspect
usually needs to provide interception point in the base code in order to get the code
adequately waved. Lines 2-4 show an example of intercepting the execution before
any method located at RiSEventFacade class. Lines 6-14 show how and what will be
executed after that interception point (pointcut).

Caddigo 5.2 — Example of variability mechanism with AOP (aspect).

public aspect Logging{
pointcut logging() :
execution(void RiSEventFacade.«(+))) && args();

void around():logging () {
String name = thisEnclosingJoinPointStaticPart
.getSignature().toShortString () ;
DateFormat dateFormat = new SimpleDateFormat
("yyyy/MM/dd HH:mm:ss");
Date date = new Date();
((RiSEventFacade)thisJoinPoint.getThis())
.logs.insert (RiSEEventLoginScreen.getLoggedUser()
.getldUser(),name,dateFormat.format(date));

! projects.spring.io/spring-security

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

5.2 Software Security

Although software architecture is considered the central part and is being wi-
dely discussed (ALMEIDA; OQUENDO, 2013; AMORIM; ALMEIDA; MCGREGOR,
2013; AMORIM et al., 2014; AMORIM; ALMEIDA; MCGREGOR, 2014) by the rese-
arch community, few attention is given to its security (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015), especially involving software product lines. A useful soft-
ware architecture approach for building secure system is based on tactics, which were
originally introduced in 2003 (BASS; CLEMENTS; KAZMAN, 2003). By tactic, we mean
a design decision with respect to a quality factor. Throw these architectural tactics, it
is possible to codify and record best practices for achieving some quality attributes
(FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015).

The research community has spent considerable effort to benchmark, examine
and classify security tactics (FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015;
BASS; CLEMENTS; KAZMAN, 2003; RYOO; LAPLANTE; KAZMAN, 2012). In (FER-
NANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015), the authors made a valuable con-
tribution to this area (see Figure 25), by reclassifying and pruning the existing security
tactics and providing important information in order to perform each of the tactics. It
is important since the tactics do not provide enough guidance to architects in order to
achieve the desired objective.

. Recover from
Detect Attacks Resist Attack React to Attacks Attacks
-VerifyTTessc]a-?_Z integrity | | _ Authenticate subject Alert Actors Audit actions
Veri (tan i)t it (T6 and T7) Apply institution Apply institution
) erlf{Tz)o rage integrity - Authorize subject policies policies
f T80 T13
-Maintain audit trail (T4) | | s ;r::;"e soc iy)
-Identify Intrusions information (T14)
- Bysignature Filter data
. - LEGEND
- By behavior (TS)] | _ Verify origin of the e ST
message : - Quality Attribute i
- Establish secure '] security Tactics :
channel !] !
- Hide data [I Techniques i
- By encryption (T15)
- By steganography

Figura 25 — Security Tactics and Techniques (FERNANDEZ; ASTUDILLO;
PEDREZA-GARCIA, 2015).

Besides the use of tactics, the security can rely on patterns and frameworks
each of which employed during architectural design. There are catalogs of patterns for
specific quality attributes: availability, interoperability, performance, usability, security,

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYST&

and so on (CERVANTES et al., 2016). Regarding to security, they can be classified as
technology-agnostic and technology-specific. A technology-agnostic pattern catalog
describes security patterns for concerns such as identity management, authentication,
access control, secure process management, web services security, and cloud compu-
ting (FERNANDEZ-BUGLIONI, 2013). While a catalog, which is Java specific, describes
23 security patterns associated with different application layers (STEEL; NAGAPPAN;
LAI, 2006). Based on recurring concerns the frameworks provide a generic solution
to be reusable in different contexts (CERVANTES; VELASCO-ELIZONDO; KAZMAN,
2013). Some examples of security frameworks are: Spring Security?, Apache Shiro® and
JGuard*. Once we are interested in evaluating how CC and AOP impact on maintainabi-
lity when used to implement security techniques. We chose not to use any framework
due to: (i) we would like to analyze each solution in detail, (ii) the framework can
hide some implementation details, (iii) may use implementation mechanisms different
from what we would evaluate, and (iv) did not consider the code from basic entities to
graphical user interface.

In this thesis, a subset of tactics refinement performed by (FERNANDEZ; ASTU-
DILLO; PEDREZA-GARCIA, 2015) was selected based on the SPL domain constraints
and technology, such as: (i) the security tactic should be achieved code implementation
and (ii) the implementation should make sense in the domains of the three created SPLs.
Next, we describe each tactic used in our study (from T1 to T15), and detailing how it
was implemented. The implementation of the security techniques was based on class
diagrams (FERNANDEZ-BUGLIONI, 2013; D.; M.; C., 2006, 2006), techniques narrative
description (BASS; CLEMENTS; KAZMAN, 2012) and interview with two developers
with seven years of experience in software for the Brazilian government. In order to
better present and keep track of our results, all techniques to implement a tactic were
identified as T,.

o Verify Message Integrity: It stands to the derived products to have its own way of
applying cryptography. This tactic employs techniques such as a checksum or
hash values to verify the integrity of messages, resource files, deployment files
and configuration files. It allows the software to detect attacks even if a slight
change is performed in the original files or messages. In order to achieve it, we
developed an algorithm in order to generate checksums (T1) and hash values
(T2) for each transaction performed with the database and configuration files. If
the database suffers some attack, the system will detect and signal the attack.

e Verify Storage Integrity (T3): It indicates the need to define measures to make

2 projects.spring.io/spring-security

3 shiro.apache.org
4 jguard.xwiki.com

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

sure that databases have not been modified. In our context, it was performed
by coding a function to compare the current database state with the last valid
database state. If some difference is detected, the system indicates a probable
attack.

e Maintain Audit Trail (T4): It is a system function that can be used to detect attacks.
The system audits, keeps a record of users and system actions and their effects
to help trace the actions of, and to identify, an attacker. If the attack is confirmed,
an appropriate action should be taken to recover from the attack. It can be
achieved by restoring the database to the last valid state.

e [dentify intrusion by behavior (T5): Every time when a user performs some ope-
ration in the system, a weight is assigned to it. Then this behavior is documented
to be further analyzed (GAO; REITER; SONG, 2006), in order to detect a de-
viation from the utilization pattern of that user. This way, based on a sensibility
parameter, the software architect can identify if a certain activity is suspect or
not.

e Authenticate subject: It ensures that an authenticated actor (a user or a remote
computer) has the rights to access and modify either data or services to guaran-
tee that an actor is actually who what is supposed to be. Passwords, on-time
passwords, digital certificates, and biometric identification can be used for the
authentication. This tactic was performed in two different ways, as following:

— Login/Password (T6): the identification and authentication service obtains
an identity from the actor, translates the identity to an ID, and authenticates
the ID using an authenticator. It is the most common log-on scenario for
computer systems (SCHUMACHER et al., 2005).

— Login/Password/Machine Token (T7): one of the alternatives largely used
to increase the system security is the combination of Login/Password
approach with a Machine token. It is achieved by registering a unique
identification of the machine which will be used to access the system. This
way, a machine token is generated and registered with its correspondent
Login/Password, avoiding not allowed access.

e Authorize subject: It describes who is authorized to access the resources of the
system (D.; M.; C., 2006). This mechanism is usually enabled by providing some
access control mechanisms for a system (SCHUMACHER et al., 2005). In order
to achieve it, we implemented six different security patterns (SCHUMACHER et
al., 2005; D.; M.; C., 2006; FERNANDEZ-BUGLIONI, 2013), as following:

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYST8

— Authorization Pattern (T8): The active entities are subjects which interact
with the system in order to access passive resources. This relationship
between subject and object describes which subject is authorized (i.e.
have rights) to access certain objects.

— Role Based Access Control(RBAC) Pattern (T9): Users and Roles are
represented by classes which describe registered users and predefined
roles, respectively. This way, the authorization pattern is represented by
the combination of role, protection object and rights.

— Muiltilevel Security Design Pattern (T10): It is applied when we need
several levels of security classifications to be applied for both subjects,
and objects. This way, the subjects and objects can be categorized into
different levels and then classified. It can be expensive since subjects and
objects need to be classified into certain levels of sensitiveness.

— Session Pattern (T11): A subject can be in several sessions at the same
time and it has a limited lifetime. When we start a session, the subject
only activates a set of authorization contexts assigned to him/her, then,
making only his/her rights available at that session.

— Reference Monitor Pattern (T12): This pattern enforces declared access
restrictions when an active entity requests resources. This way, it descri-
bes how to define an abstract process which intercepts all requests for
resources and checks them for compliance with authorizations. These
authorizations rules indicate a collection of authorization rules organized
as ACLs (Access Control Lists).

— Single Access Point (SAP) and CheckPoint (T13): The application of SAP
avoids external entities from communicating directly with components
in the system. All incoming traffic is routed through one channel, where
monitoring can be easily performed. It enables the capture of information
regarding to the parties (subject) currently accessing the system. In order
to analyze all incoming petitions and messages, the Check Point pattern
was applied. For this reason, SAP is predestined to be combined with
Check Point for all messages to be supervised (D.; M.; C., 2006).

An important framework which also implements security is the Spring Security a
powerful and highly customizable authentication and access-control framework
used in web applications °.

e Manage security information (T14): It includes the management of keys for cryp-
tography, the secure storage of authorization rules, and other ways to manipulate

5 <http://projects.spring.io/spring-security/>

http://projects.spring.io/spring-security/

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

security information (FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015). It
was achieved by encrypting only the security information such as rules, rights,
login, and password.

e Hide Data by encryption (T15): Data should be protected from unauthorized
access. Confidentiality is usually achieved by applying some form of encryption.
According to (FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015), it can be
achieved by cryptography and steganography. In our context, all the data stored
in the database was previously encrypted, except the primary and foreign keys.

5.3 The Family of experiments

It is a consensus that to achieve greater validity and generalization of experimen-
tal results replications are essential. The concept of replication is smoothly extended to
that of "family of experiments"(BASILI; SHULL; LANUBILE, 1999; HADAR et al., 2013).
In (SHULL et al., 2008), the authors identified two types of replications: exact replica-
tions when the procedures of an experiment are followed as closely as possible, and
conceptual replications, in which the same research questions are evaluated by using a
different experimental procedure. Our study reuses the original procedures, e.g., the
study design and steps, but change the subject in order to gain insight into the original
results, which makes it be classified as an exact replication. It is important to mention
that replications which provide similar results to those found in the original experiment
are as useful to the community as a replication that produces results different from those
of the original experiment. The replications with different results are important since can
help the community to understand why the results were different (SHULL et al., 2008).

Figure 26 shows the main characteristics of the family of experiments, including
the context of each experiment, the numbers of each Testbed used, the attributes
evaluated and the order in which it was carried out. It is important to mention that the
testbeds were developed by different developers with different skills and know how, as
well as, different technologies. In addition, the replications are important to avoid any
kind of threat to validity regarding the way in which the testbed or security techniques
were implemented, adding a certain reliability to the results.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

Original Experiment (Exp1l) 2nd Experiment (Exp2) 3rd Experiment (Exp3)

- Assessment of security techniques - Assessment of security techniques - Assessment of security techniques
implementations. implementations. implementations.
- Variability Mechanisms: CC and AOP | | - Variability Mechanisms: CC and AOP | | - Variability Mechanisms: CC and AOP
- TestBed: RiSE Event SPL. - TestBed: RiSE Store SPL. - TestBed: Law Office SPL.
- RiSE Event SPL in numbers: - RiSE Store SPL in numbers: - Law Office SPL in numbers:

- N# of Classes: 496 - N# of Classes: 74 - N# of Classes: 116

- N# of Methods: 1673 - N# of Methods: 443 - N# of Methods: 734

- Lines of Code: 26395 - Lines of Code: 5426 - Lines of Code: 16665

Figura 26 — The family of conducted experiments.

5.4 Experiments Definition

All three experiments were carried out by following the guidelines provided by
(JEDLITSCHKA; PFAHL, 2005; WOHLIN et al., 2012). Section 5.5 details the planning
of the original experiment, while the replications are presented in terms of differences
with respect to the original. All experiment material and results are available at Appendix
7.

5.5 Planning

In order to setup our quantitative analysis, it is important to systematically build its
planning and execution to allow further replications and extensions. This way, controlled
experiments guidelines (IIT; SINGER, 1999; WOHLIN et al., 2012; KITCHENHAM
et al., 2002; JEDLITSCHKA; PFAHL, 2005; JURISTO; MORENO, 2010) applied by
the Software Engineering community were used to support this systematization. Next
Sections describe how the studies were conducted. Table 7 summarizes the main
elements.

5.5.1 Goal

The Goal/Question/Metric (GQM) method proposed by (BASILI; SELBY; HUT-
CHENS, 1986; BASILI; CALDIERA; ROMBACH, 1994) was adopted in order to state
the goal of the quantitative study (WOHLIN et al., 2012), as described following:

The goal of this study is to evaluate different techniques to implement security
tactics for the purpose of assessing conditional compilation and aspect-oriented
programming as variability mechanisms with respect to maintainability through size,
separation of concerns, cohesion and coupling attributes from the point of view
ofsoftware architects in the context of Software Product Lines projects.

Moreover, this study is also important to identify the most suitable security
technique which implies on the reduction on code size, separation of concerns, coupling
and cohesion increasing the benefits of reuse and maintenance activities of components,

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYST3

Tabela 7 — A summary of the experiments.

The goal of this study is to evaluate different techniques to imple-
ment security tactics for the purpose of assessing conditional
Goal compilation and aspect-oriented programming as variability me-
chanisms with respect to maintainability by accessing code size,
separation of concerns, coupling and cohesion from the point of
view of software architects in the context of Software Product
Lines projects.

What is the impact on Maintainability when evaluating security
Question techniques implemented using conditional compilation and aspect-
oriented programming?

- Size

- Separation of Concerns

- Coupling

- Cohesion.

Metrics

beyond the implementation of security. To assess the measurement object, a set of
metrics was defined for both variability mechanisms to attend the following requirements:
(i) measure quality factors (size, separation of concerns, cohesion and coupling), (ii)
identify advantages and drawbacks from the use of aspect in comparison to object-
oriented design and (iii) classify the security techniques regarding their impact on quality
factors.

5.5.2 Research Questions (RQs)

In order to achieve the stated goal, some quantitative questions were defined
and described in the following:

RQ1. What is the impact on Maintainability when evaluating security te-
chniques implemented using conditional compilation and aspect-oriented pro-
gramming? It aims to understand how security techniques impact and how they are
distributed regarding Size, Separation of Concerns, coupling, and Cohesion to support
software architects design decisions. In addition, it provides important insights regarding
the most suitable way to implement the security techniques.

The results reported in this study can be useful for both researchers and practiti-
oners. Researchers can identify useful research directions and get guidance on how
the security techniques impact on maintainability. On the other hand, practitioners can
benefit from this study by identifying the variability implementation mechanism with low
impact on maintainability, as well as, learning concrete techniques to implement security
tactics at the code level.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYST8

5.5.3 Metrics

In order to answer the previously defined research question, a set of metrics must
be computed to understand the size, separation of concerns, coupling and cohesion of
the security techniques when using conditional compilation and aspect-oriented pro-
gramming. According to (JURISTO; MORENO, 2010) a more effective way of software
engineers understand and interpret the collected data is associating the internal and
external attributes with metrics through a measurement framework. Figure 27 shows
the measurement framework used in our research which was adapted based on defini-
tions of quality attributes (IEEE. .., 1990; SOFTWARE..., 2001; BASS; CLEMENTS;
KAZMAN, 2012) and existing quality models (SANT’ANNA et al., 2003; CARVALHO,
2016).

Response - Internal .
Variable Qualities Factors Attributes Metrics
[Loc
] . NOA
C lexit Size
omplexity < WOC
L VS
-
Modularit cDe
odularity
SoC < CDO
Code s CDLOC
Quality Maintainability | Scattering
Understandability
Cohesion LCOO
Flexibilit Couplin CBC
Xibility pling { DIT

Figura 27 — The Quality Model.

Although the literature provides a large number of metrics associated with soft-
ware quality (DEPT, 1998; NUNES et al., 2009; SARAIVA et al., 2015), most of the
assessments of quality attributes is usually performed by a single metric, rather than a
combination of multiple metrics (ARVANITOU et al., 2017). Based on the internal attribu-
tes derived found in the measurement framework, we identified a set of metrics which
captures information about the design and code in terms of coupling, cohesion, size
and separation of concerns. We decided to apply some well-known metrics and already
empirically validated in previous study (SANT'ANNA et al., 2003; GARCIA et al., 2005;
KULESZA et al., 2006a; GREENWOOD et al., 2007; EADDY et al., 2008; FIGUEIREDO

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSTS

et al., 2008; FIGUEIREDO et al., 2009; DANTAS; GARCIA, 2010; CARVALHO, 2016;
ARVANITOU et al., 2017; NUAEZ-VARELA et al., 2017). It is also important to men-
tion that to evaluate modularity factor three internal attributes (separation of concerns,
coupling, and cohesion) were evaluated since cohesion and coupling alone are not
enough to evaluate modularization (CANDELA et al., 2016). They were also adapted
and validated to aspect-oriented programing, allowing us to perform comparative studies
(SANT’ANNA et al., 2003). It is important to mention that some metrics were improved
from the original definition (e.g., CDLOC and CDO) by considering hook methods in
their calculation and other (e.g., Scattering) was added since it brings the number of line
of code perspective for separation of concerns when compared to the metric proposed
in the original quality model. Next, the metrics are described regarding to their definition
and importance (SANT’ANNA et al., 2003).

Separation of Concerns (SoC): it is a fundamental principle related to the
decomposition mechanism used for both software design and implementation. Concerns
are a known way to decompose the software into smaller units, and at the same time
more manageable and comprehensible.

In this study we used three metrics related to the concerns (SANT’ANNA et al.,
2003), they are:

e Concern Diffusion over Components(CDC): it counts the number of classes, in-
terfaces, and aspects whose main purpose is to contribute to the implementation
of a concern. Furthermore, it counts the number of components that access the
primary components by using them in attribute declarations, formal parameters,
return types, throws declarations and local variables, or method calls. It indicates
how much spread is the concerns over the project code. The less scattered the
concern is, the easier it will be to understand it.

e Concern Diffusion over Operations(CDQO): it counts the number of methods
and advices whose main purpose is to contribute to the implementation of a
concern (SANT’ANNA, 2004). In addition, it counts the number of methods
and advices that access any primary component by calling their methods or
using them in formal parameters, return types, throws declarations and local
variables. Constructors and abstract methods also are counted as operations.
As the previously described metric, the CDO also indicates the concern code
scattered degree in terms of operations. This way, as more operations affected
by the concern, as more difficult it will be to understand it. It is important to
mention that this metric suffers an improvement since the hook methods used in
aspect-oriented programming were also computed. Hook methods are empty
methods placed in the base code for later extension. They have no purpose other

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS38

than to provide a join point inside a method that can be extended by an aspect
(KASTNER; APEL; BATORY, 2007).

e Concern Diffusion over LOC (CDLOC) it captures how the code of a concern
is mixed with the code of another concern. It counts the number of transition
points for each concern to another concern through the lines of code. Transition
are points in the code where there is a "concern switch". The more the code
of a concern is mixed and entangled with another concern, the harder will be
to understand it. It is important to mention that this metric suffers an improve-
ment since the hook methods used in aspect-oriented programming were also
computed.

e Scattering: It captures how the code of a concern (security technique) is spread
over the code of another concern (SPL code). It counts the number of lines of
code which does not belong to the security technique class or aspect. It brings a
number of lines of code scattered dimension for CDLOC metric.

Coupling: it is related to how closely connected two components are, it captures
the strength of the relationships among components. The two metrics used to evaluate
this characteristic were defined as follows:

e Coupling Between components(CBC): it measures the number of other com-
ponents with which it is coupled. This metric is an extension of coupling metric
(CBO) defined by (CHIDAMBER; KEMERER, 1994) and adapted by (SANT’ANNA
et al., 2003) to deal with new coupling dimensions in aspect-oriented software
design. The adaptation aims to: (i) access aspect methods and attributes in-
troduced by inter-type declarations; (ii) and the relationships between aspects
and classes or other aspects defined in the pointcuts (SANT’ANNA et al., 2003).
For each component (classes or aspects), it counts the number of other classes
used in attributes declaration, formal parameters, return types and local variables.
In addition, for each aspect, it also counts: the classes in which attributes and
methods are injected by using inter-type declaration, the classes, and aspects
intercepted by the aspect through pointcut definitions and the components in
which their attributes and methods are introduced by inter-type declaration and
accessed by the aspect. In summary, the greater the number of couplings of a
component, the harder it will be for it to be understood. In order to improve code
modularity, the coupling among components should be reduced.

e Depth Inheritance Tree (DIT): it calculates the distance from class object/aspect
in the inheritance hierarchy. This metric originally defined by (CHIDAMBER,;
KEMERER, 1994), and improved by (SANT'ANNA et al., 2003) to consider the

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS3S

inheritance between aspects. It is defined as the maximum length from the node
to the root of the tree, by measuring how many ancestor classes/aspects can
potentially affect this class/aspect. The deeper is the inherit tree the greater com-
plexity design the software has, difficulting the understanding and maintenance.

Cohesion: measures the strength of relationship among pieces of functionality
within a given component. This property is assessed in our study by means of the
following metric:

e Lack of Cohesion over Operations(LCOOQO): Adapted from (CHIDAMBER; KEME-
RER, 1994), LCOO metric measures the lack of cohesion over operations. This
metric deal with aspect advices and methods in the same way as LCOM deals
with methods which belong to a class. Considering all pairs of class’s methods
LCOM measures the lack of cohesion in methods by calculating the difference
between the number of method pairs that do not share a field access with the
number of method pairs that do. In addition to the advices and internal methods
to the aspect, it also considers the methods that the aspect introduces in the
classes affected by inter-type declaration (SANT’ANNA et al., 2003). The lack of
cohesion increases complexity and means that the component should be split in
two or more sub-components.

Size Metrics: These metrics show the different facets of system size. They are
following described:

e Lines of code (LOC): it counts the total lines of code considering non-blank and
non-comment lines in a compilation unit. The greater the number of lines of code
more difficult to maintain and understand the code.

e Number of attributes (NOA): it measures the internal vocabulary of a component,
by counting the number of attributes of each class and aspect. Regarding to
the internal attributes inside an aspect, this metric also considers the attributes
introduced by inter-type declarations. The higher the number of attributes per
component, more difficult to understand the system.

e Weighted Operations per Component(WOC): it measures the complexity of a
component in terms of its operations. The complexity of an operation is given
by the number of parameters of that operation. The complexity of an operation
without parameters is one, an operation with one parameter is two and so on. It
means that operations with more parameters than another are more complex. In
the aspect, in addition to advices and methods inside the aspect, it also counts

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS33

methods injected by the aspect through inter-type declaration. The greater the
number and complexity of operations component, more difficult it is to understand
and maintain it.

e Vocabulary Size (VS): Counts the number of classes, interfaces, and aspects of
the system. Each component name is counted as part of the system vocabulary.
The instances are not considered in this score. The greater the vocabulary size,
more difficult to maintain and understand it.

5.5.4 Hypotheses and variables

The basis for the statistical analysis of an experiment is the hypothesis testing. If
the hypothesis can be rejected, then conclusions can be drawn based on the hypothesis
testing under given risks (WOHLIN et al., 2012). Based on the informal statement of
the hypotheses presented by the research questions, as well as, the metrics previously
presented, we are now able to state them formally and also define what measures we
need to evaluate the hypotheses. Thus, three hypotheses were setup to formed the
basis for the design of this quantitative study. Each hypothesis defined is responsible
to analyze the comparison of internal quality attributes (Size, Separation of concerns,
coupling, and cohesion) regarding to CC vs. AOP, Authorization Techniques and Detect
Attack vs. Resist Attack Techniques respectively. While the Null Hypotheses (Ho,)
define that the experiment did not produce any real trends or patterns (WOHLIN et
al., 2012), the Alternative Hypotheses (Hy,) are those that reject the null hypotheses
(WOHLIN et al., 2012). Due to size limitation, the hypotheses were grouped using the
mathematical module symbol. This way, to the (Hy;) we are interested in evaluating if
the security techniques implementations using CC had no difference compared to AOP
implementation when considering each of the internal attributes (Size, Separation of
Concerns, Cohesion, and Coupling). They are described following:

Null Hypotheses (Hy;): There is no statistical significant difference in size,
separation of concerns, coupling and cohesion when comparing the security techniques
implemented using conditional compilation (CC) and aspect-oriented programing (AOP)
(from T1 to T15).

Sizecc (11..115) Sizeaop (11..115)
Hy; - Separationo f Concernscc (r1..115) _ Separationo f Concernsaop (r1..115)
Cohesioncc (T1..T15) Cohesion aop (T1..T15)
Couplingcc (r1..115) Couplingaop (r1..115)

Alternative Hypotheses (H;;): the alternative hypotheses determine that there
is the statistical significant difference in size, separation of concerns, coupling and cohe-

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS338

sion when comparing security techniques implemented using conditional compilation
(CC) and aspect-oriented programing (AOP).

Sizecc (11..115) Sizeaop (11..115)
Hy, - Separationo f Concernscc (r1..115) " Separationo f Concernsaop (r1..115)
Cohesioncc (r1..115) Cohesionaop (r1..115)
Couplingcc (r1..115) Couplingaop (11..115)

Null Hypotheses (H(,): There is no statistically significant difference on size,
separation of concerns, coupling and cohesion when comparing the authorization
techniques (from T8 to T13).

Sizecc and AopP (T8...T13) Sizecc and AoP (T8...T13)
. Separationo f Concernscc and AOP (T8..T13) 3 Separationo f Concernscc and AOP (18..T13)
= Cohesioncc and Aop (18..713) Cohesioncc and Aop (18..713)
Couplingcc ana A0P (18..T13) Couplingcc and AoP (18..T13)

Alternative Hypotheses (Hy;): There is a statistically significant difference on

size, separation of concerns, coupling and cohesion when comparing the authorization
techniques (from T8 to T13).

Sizecc and AOP (T8..T13) Sizecc and AOP (T8..T13)
oo Separationo f Concernsce and A0P (18..T13) Separationo f Concernscc and AOP (18..T13)
2 Cohesioncc ana aop (T8..T13) Cohesioncc ana aop (T8...T13)
Couplingcc anda A0P (18..T13) Couplingcc and A0P (18..T13)

Null Hypotheses (H(;): There is no statistically significant difference on size,
separation of concerns, coupling and cohesion when comparing the Detect attack tactics
(from T1 to T5) and Resist attack tactics (from T6 to T15).

Sizecc and AOP (T1..T5) Sizecc and AOP (TétoT15)
. Separationo f Concernsce and Aop (11..75) 3 Separationo f Concernscc and AOP (TétoT15)
e Cohesionce and Aop (11..75) Cohesioncc and aop (TétoT15)
Couplingcc and aop (11..75) Couplingcc and AOP (TétoT15)

Alternative Hypotheses (H;;): There is a statistically significant difference on
size, separation of concerns, coupling and cohesion when comparing the Detect attack
tactics (from T1 to T5) and Resist attack tactics (from T6 to T15).

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS38

Sizecc and AOP (T1..T5) SiZecc and AOP (TétoT15)
Hon Separationo f Concernscc and Aop (T1..T5) Separationo f Concernscc and AOP (TétoT15)
B Cohesionec and aop (11..15) Cohesioncc and AoP (T6toT15)
Couplingcc ana Aop (11..T5) Couplingcc and A0P (TétoT15)

A treatment is something that researchers manage to experimental units, while
a factor is a controlled independent variable; a variable whose levels are set by the
experimenter. In this context, our experiment is composed of the conditional compilation
and aspect oriented programming treatments, as well as, the fifteen security techniques
evaluated. The factors are the variability implementation mechanisms and security. The
independent variables are those that can be controlled and changed in the empirical
investigation. Changing the independent variables should produce some effect on the
dependent variables (WOHLIN et al., 2012). In our study, there are two sets of inde-
pendent variables, since we are interested in investigating both the security techniques
(from T1 to T15) and the variability implementation mechanism (CC and AOP). The
dependent variables are the size, separation of concerns, cohesion, and coupling evalu-
ated for security techniques and variability implementation mechanisms. One subject
per experiment was used to analyze the behavior of the dependent variables (metrics
directly related to the response variable).

5.6 Operation

In this section, we described how the operation was conducted detailing the
resources used and insights regarding to how the activities have been carried out. The
execution of the experiment should also be presented and how data was collected
during the experiments. It is essential to facilitate further replications.

5.6.1 Experiments Material

The objects of the experiments are the three SPLs developed, taken from dif-
ferent application domains. They were built using the proactive approach since to
perform the comparison presented in this study, it is fundamental that they support the
implementation of the security techniques under evaluation.

RiSE Event SPL. It was originally developed to be a benchmark for studies on
functional and nonfunctional properties implementations at RISE Labs and to support
the research group activities in order to manage the events organized by RiSE’.

www.rise.com.br
7 The group has organized national and international events such as RiSS, SPLC, VAMOS and ICSR

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS3S

The RIiSE Event SPL (SILVEIRA et al., 2016) comprises the papers submission
in conferences, journals, and related events, and its management, including the control
over the review life-cycle, as well as, the management of activities (workshop, tutorial,
panels), users (speakers, organizers, reviewers), registrations, payments and certificates.
It was built based on the main features found on largely used conference management
systems, such as: EasyChair®, JEMS® and CyberChair'®. It constitutes a core asset
base integrating many features to make it suitable for several conferences. Thus, based
on this common base, the products can be derived.

The SPL was developed by a PH.D. and master students using the JAVA lan-
guage following the MVC architectural pattern and a remote instance of MySQL da-
tabase. The SPL has 34 functional properties totalizing 26.395 lines of code, 1673
methods and 496 classes. A complete view of the collected data can be seen in the
Appendix 7, Table 32 and Table 33.

RiSE Store SPL. Developed to support the major features of an interactive
webstore. It is composed of features to make payment and sales as well as inventory
control, product categories, FAQ and bug reports.

It was developed as part of post-graduation course by a group of eleven post-
graduate students (master and PH.D. students) as part of the reuse course. They used
JAVA language, adapting the MVC architectural pattern (see Figure 17) and a remote
instance of MySQL database with an object-relational mapping framework for mapping
an object-oriented domain model to a relational database (called hibernate'). It resulted
in 40 functional features totalizing 5426 lines of code, 443 methods and 74 classes. A
complete view of the collected data can be seen in the Appendix 7, Table 35 and Table
36.

Law Office SPL. It manages the essential activities involved in law offices
routines, by managing its lawyers and their associated trainees, the process that can be
raised by different costumers and companies. It also manages the office departments,
finance, and several law reports.

The SPL was developed from scratch by three under-graduate students during
Database and Object-Oriented Programming course. They used JAVA language and
a remote instance of MySQL database without any support of frameworks. After a
domain analysis, the requirements and entities were identified and modeled, starting
the development process resulting in 34 functional properties totalizing 16665 lines of
code, 734 methods and 116 classes. A complete view of the collected data can be seen

8 www.easychair.org/

9 jems.sbc.org.br/

10" www.borbala.com/cyberchair/
" htip://hibernate.org/

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS38

in the Appendix 7, Table 38 and Table 39.

It is important to mention that the SPLs were developed by different people con-
taining different expertizes mitigating any possible threat regarding to SPL development
style.

5.6.2 Execution

Once the SPLs were finished, it was necessary to implement the security techni-
ques (see Table 8) using both conditional compilation and aspect-oriented programming.
In order to facilitate the data extraction, ninety-three different releases were created and
had data extracted from all of them. Firstly, the security techniques using conditional
compilation were developed in the RiISE Event SPL resulting in fifteen versions. Next, the
same procedure was undertaken to aspect-oriented mechanism to implement the same
set of security techniques in each SPL. Figure 28 summarizes how the releases were
built. It is important to mention that different database models were created based on
different security techniques needs. In order to ease the analysis and mitigate possible
threats, the security techniques had their code treated as independent portions even if
it shared common lines of code with others techniques. As the development maturity
on security techniques increased and/or some bugs were found in both techniques
code or SPL code without the security techniques, a refactoring and/or correction were
performed and the changes were propagated for all impacted versions. The same
procedure was performed in the Exp2 and Exp3 (Defined in Figure 26).

Tabela 8 — Security Techniques.

ID Security Technique Security Tactic
T1 CheckSum Detect Attack
T2 Hash Values Detect Attack
T3 Verify Storage Integrity Detect Attack
T4 MainTain Audit Trail Detect Attack
T5 Identify Intrusion by Behavior Detect Attack
T6 Authenticate Subject - Login/PassWord Resist Attack
T7 Authenticate Subject - Login/Password/MachineToken Resist Attack
T8 Authorize Subject - Authorization Pattern Resist Attack
T9 Authorize Subject - Role Based Access Control (RBAC) Pattern Resist Attack
T10 Authorize Subject - Multilevel security Design Pattern Resist Attack
T11 Authorize Subject -Session Pattern Resist Attack
T12 Authorize Subject -Reference Monitor Pattern Resist Attack
T13 Authorize Subject - Single Access Point and CheckPoint Pattern Resist Attack
T14 Manage Security Information Resist Attack
T15 Hide Data by encryption Resist Attack

5.6.3 Data collection

Accurate measurement is a prerequisite for all engineering disciplines, and
software engineering is not an exception. A variety of software quality metrics has

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS33

Three SPLs 90 Releases

R1: T1-CC
RIiSE Event R2: T1 - AOP
SPL
R30: T15 - AOP
R1:T1-CC
RISE Store R2:T1-AOP
SPL
R30: T15 - AOP
R1: T1-CC
Law Office R2: T1-AOP
SPL
R30: T15 - AOP

Figura 28 — Number of releases developed during experiments execution.

been developed (SARAIVA et al., 2015), and several tools exist to collect metrics from
software representations (LINCKE; LUNDBERG; LO6WE, 2008). As already known by
the research community, there is a threat due to the inconsistency among the results
when using different metrics tools (LINCKE; LUNDBERG; LO6WE, 2008). In order to
collect our data, we selected two metric tools: Metrics "2 and ckjm '3(SPINELLIS, 2005).
This selection was based on some constraints, such as: (i) the tool must be compatible
with JAVA language and version, (ii) it should extract the metrics previously described
(iii) the tool should be compatible with any technology used in SPLs, (iv) it must provide
its documentation and (v) the tools should be already known by the research community.
Moreover, a total of eleven Python scripts ' were developed to crosscheck the tools
results and facilitate the data extraction.

Once the tools were selected, the data collection process was started. Firstly,
several data must be collected (using Metrics tool) to further compose the metrics used
in our study. These data are: Ne of classes, Ne of interfaces, Ne of methods, Ne of static
methods, Ne of static attributes, Ne of attributes and Ne of parameters. Next, ckjm tool
was used to extract the LCOO metric.Appendix 7 from Table 32 to Table 39 shows these
values for each SPL and security techniques implemented using conditional compilation
and aspect-oriented programming. Finally, the metrics had their values calculated

12 http://metrics.sourceforge.net/
13 http://www.dmst.aueb.gr/dds/sw/ckjm/
14 <https://github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts>

https://github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS38

making use of the preciously extracted data. Since the tools do not hold aspect-oriented
code, all metrics collected from . a5 files were extracted manually or using a python script
<https://github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts>. The Appendix 8,
Table 40, Table 42 and Table 44 show the metrics results for each SPL used in our study.
The Tables show all numerical data for each security technique, as well as, the difference
between the SPL code without techniques (called Base) and the SPL with a given
techniques. It allowed us to understand what is the impact for each security technique
in the SPL under study. In addition, some metrics (e.g., CDC, CDO, CDLOC, CBC, and
Scattering) were extracted using the techniques code, since they are concern related
metrics. All data extracted are available at: <https://github.com/pamsn/RiSEEventSPL/>

5.7 Analysis procedure

The purpose of this Section is to present the appropriate descriptive statistics
and the statistical tests used to analyze the data based on study design and goals
previously established (JEDLITSCHKA; PFAHL, 2005; WOHLIN et al., 2012). When
the study aims to evaluate a quantitative variable, it is important to verify whether it
comes from a population that obeys a normal distribution. This verification has an impact
on both how the distribution is described and which hypotheses tests should be used
(WOHLIN et al., 2012).

To avoid data normalization and standardization, since it could negatively impact
on results, we used the differences between the SPL with the security techniques
and the default SPL (without security techniques code), which represent the security
technique isolated. It was used since some metrics treat/evaluates only techniques
code characteristics, such as CDC, CDO, CBC, CDLOC, and Scattering. This way, the
variable regarding to SPL size was isolated from our analysis.

In this context, the data were analyzed using Shapiro-Wilk normality test to
verify its normality. The test null hypothesis is that the variable to be tested is normally
distributed. Thus, if the p-value is less than the chosen alpha level, then the null
hypothesis is rejected and there is evidence that the data tested are not normally
distributed.

The test results show that our data definitely does not follow a normal distribution.
Indeed, it does not follow a symmetric distribution. Thus, we choose two non-parametric
tests to analyze the results, they are following described:

Kruskal-Wallis. We used the non-parametric Kruskal-Wallis, which does not
require normality assumption (CONOVER, 1999). The Kruskal-Wallis test or analysis of
variance by order numbers ("ranks") can be used in cases where using the parametric
ANOQVA test with only slightly less potent. Furthermore, it should be used in situations

https://github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts
https://github.com/pamsn/RiSEEventSPL/

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS3S

where the parametric ANOVA cannot be used in particular when the k samples do not
come from normal populations, or when the variances are very heterogeneous. When k
= 2, the Kruskal-Wallis test is identical to the Mann-Whitney-Wilcoxon. The hypotheses
test is: Hy: The distributions of the k samples are identical; and Hy: The distributions of
k samples differ in location.

Mann-Whitney-Wilcoxon Test. It is a nonparametric statistical test also known
as M-W-W, applicable when data do not follow a normal distribution (CONOVER, 1999).
This test is nonparametric and an alternative to t-student used to compare means of
two independent samples. The underlying hypotheses test is: Hy: the two samples have
identical distributions; and H;: the two samples have different distributions.

Randomization Test. During the planning of completely randomized experi-
ments, with two independent groups, the sample extractions from well-defined populati-
ons are rare. For example, a politician analysis, who performs an electoral survey, can
enumerate the entire population and extract a random sample, but an investigator in the
areas of Health or even in any other area, does not often have the possibility to randomly
select samples of the population in which he is interested. (COTTON, 1967; KIRK, 1968;
KEPPEL, 1973; SPENCE et al., 1976) advocates the idea that non-random samples
are prevalent in experimental studies. In (SPENCE et al., 2007), the authors state that
the population in which the researcher is interested is almost always a population that
does not allow the extraction of a random sample.

If the samples are not random, it does not seem justifiable to use the statistical
data of the experimental data, such as first choice techniques, which are based on the
random sampling model.

One way to investigate whether or not a certain pattern in the data is a random
effect is through the randomization test (ROBINSON, 2007; VIOLA, 2007). This test is
based on the assumption that if the null hypothesis is true, all possible orders of the data
are equally likely. The randomization test is a procedure in which values of an observed
statistic for the data in the original arrangement are compared with the values of this
statistic after the randomization of the observations.

The randomization tests have a solid theoretical basis initially formulated by
(PITMAN, 1937a; PITMAN, 1937b; PITMAN, 1938; L., 1938) followed by (FISHER,
1936; FISHER, 1971) and developed by a variety of researchers, such as (KALMUS,
1952; KEMPTHORNE, 1955; EDGINGTON, 1969b; EDGINGTON, 1966; EDGINGTON,
1969a; EDGINGTON, 1969; EDGINGTON, 1995).

The advantages of randomization tests are: the data do not need to be a random
sample; The data can come from any population; and extremely versatile, and can be
used to calculate the significance of any test statistic (BRANCO, 2010). Stands out

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS28

the use of small samples and does not present as many constraints as conventional
methods.

The main disadvantage of this test is that the conclusions obtained are restricted
to each set of data and problem, and it is not possible to generalize to the population
(VIOLA, 2007). Therefore, it is not necessary to calculate effect size, nor to calculate
the power of the test.

The null hypothesis says that there is no pattern in the data, or it exists, it is due to
the effect of change when the observations are randomized; the alternative hypotheses
states that the data follow a certain pattern (ROBINSON, 2007). The decision rule is
based on p-value, defined as the ratio of times the test statistic with the randomized
ones is greater than or equal to the test statistic with the original data arrangement. If
the p-value is less than the level of significance, we reject H,. A statistical test is valid if
the probability of rejecting the null hypothesis when it is true is less than or equal to «
and is also valid when that probability is equal to «.

It is important to choose the test statistic appropriately, in this study the means
of two small independent samples were compared and the requirements for the use of
parametric tests were not met, the Wilcoxon-Mann-Whitney non-parametric test was
used. The application of the randomization test considered the Wilcoxon-Mann-Whitney
(or Kruskal-Wallis) test statistic and 10,000 randomizations. (WESTFALL; YOUNG,
1993) state that in order to analyze a real set of data, the number of readings should be
as large as possible (10000 or more). Thus, the data analyzed by different researchers
will show little variation in the results. This process was performed 30 times, storing the
p-value. So the average of these 30 results will be our p-value. This methodology was
adopted to ensure that the result was not always favorable or unfavorable depending on
the seed chosen. In order to perform our analysis, some R project and shell scripts '°
were created and the overall execution spent 23 hours.

Test Power. The power of a statistical test is the probability of rejecting a false
null hypothesis. When a statistical test is performed, correct decisions are made when a
false null hypothesis is rejected or a true null hypothesis is not rejected. But incorrect
decisions can be made when rejecting a true null hypothesis (Type | error) or rejecting a
false null hypothesis (Type Il error). The probability of making a Type | error is designated
by « and the probability of making a Type Il error is designated by 3. Thus, the potency
of atestis 1-p.

The three determinants of the power of a test are: the level of significance; The
sample size n; and the size of the effect 5. The power will be higher the higher the
values of «, of n and of 9.

15 <https://github.com/pamsn/RiSEEventSPL>

https://github.com/pamsn/RiSEEventSPL

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS?S

The power of the test is used to plot the sample size and is also useful for
interpreting inferential statistical analysis results in which the difference found was not
statistically significant. Generally, the power of the test should be greater than or equal
to 80%, that is, an 80% or more probability of finding a statistically significant difference
when it actually exists, although there are no formal standards of test power (ELLIS,
2010). Statistical power is not used as a reference for control of the test, since the control
must be done in relation to the value of «, since committing a type | error (rejecting the
null hypothesis when it is true) in an analysis is very more serious than to make a Type
Il error (do not reject a hypothesis when it is false).

Effect Size. The Cliff delta (5) is the non-parametric measure that allows quan-
tifying the magnitude of the difference between two observation groups that do not meet
the normality assumptions, and its description allows to complement the interpretation
of the p value associated to the corresponding test of Hypotheses used (MACBETH,;
RAZUMIEJCZYK; LEDESMA, 2011). The recommendation regarding the use of the
Cliff delta is linked to cases where the distributions are asymmetric and violate the
homogeneity of the variances or even in cases where outliers are present (SUN; PAN;
WANG, 2010). The CIiff delta does not depend on the mean, but on a concept of
dominance, it considers the ordinal properties rather than the interval properties of the
data (CLIFF, 1993).

The delta ranges from -1 to +1, and can assume any value for this range. A delta
of -1 or +1 indicates an absence of overlap, while a delta of 0.0 indicates that the groups
are completely overlapping (KROMREY; HOGARTY, 1998). In addition, (+1) indicates
that group 1 is greater than group 2, and (-1) means that group 1 is smaller than group
2, whereas (0) is translated as group 1 equal to group 2. The statistic generates an
array of i rows and j columns, assuming three possible values +1, -1 and 0 (MACBETH,;
RAZUMIEJCZYK; LEDESMA, 2011).

As an overall measure of effect size following a significant Kruskal-Wallis test
result, we use a statistic known as epsilon-squared (¢"2) as an appropriate measure
(KING; MINIUM, 2003).

P-value interpretation. The meaning and interpretation of P-values which di-
rectly depends on a given sample attempts to provide a measure of the strength of the
results, in contrast to a simple yes or no decision (H., 1988). In this context, our study
was analyzed based on the following interpretation of p-values (see Table 9):

Finally, the boxplot graph was used to evaluate the distribution of empirical
data. It is composed of the first quartile (Q1), median (Md) and third quartile (Q3). The
lower and upper lines extend, respectively, from the bottom quartile to the lowest value,
not less than the lower limit and the upper quartile to the highest value not greater than
the upper limit. The limits are calculated as follows: lower limit: HQ, - 1,5 (Qs - Q) and

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS28

Tabela 9 — Measure of the p-value strength of the results.

P-value Interpretation

P < 0.01 very strong evidence against HO
0.01 <P<0.05 moderate evidence against HO
0.05<P<0.10 suggestive evidence against HO

0.10<P little or no real evidence against HO

upper limit: Q5 + 1,5(Q; - Q). Appendix 8 (from Figure 34 to Figure 55) shows the
variation among different security techniques using CC and AOP implementations.

In addition, our statistical analysis considered the numeric as well as the variance
among the results of the three experiments. It is important since the test beds have
different size regarding to lines of code and number of entities.

5.8 Analysis and Interpretation

This section reports the data analysis of the family of experiments in order to
understand the data collected to derive conclusions about the relationships between
factors, the aspects that improve the values of the response variables, and the influence
of factors on the response variables (JURISTO; MORENO, 2010). Based on previously
defined quality model (Figure 27), the following rules (KULESZA et al., 2006b; FIGUEI-
REDO et al., 2008) were applied during the analysis procedure: (i) the smaller the value
of the metrics of size (LOC, NOA, WOC, VS), the less complex and easier to understand
will be the technique; (ii) the lower the value of Separation of Concerns (SoC) metrics
(CDC, CDO, CDLOC, Scattering), less widespread will be the code of the technique
making it more modular, easy to understand and with better flexibility; (iii) the lower
the value of Lack of Cohesion over operations (LCOO), the greater the cohesion, thus
reducing the complexity, making the software more modular and increasing its flexibility
and understandability; and (iv) the lower the coupling metrics (CBC, DIT) value, the
less coupled will be the components making the code to be more flexible and modular,
ease to understand and less complex. It is important to mention that the analysis makes
use of three samples which corresponds the metric value for the security technique
implemented in each product line (testbed).

RQ - What is the impact on maintainability when evaluating security te-
chniques implemented using conditional compilation and aspect-oriented pro-
gramming?

The security techniques implementation were compared to identify how they
are distributed regarding to maintainability cost. In addition, we are also interested in
understanding how the variability implementation mechanism affects those factors when

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS?S

implementing security techniques in SPL. This way, we present the engineering point of
view in which the AOP and CC implementations are compared and researcher points of
view in which different security techniques are classified and evaluated.

In the next sections, an analysis is performed considering the different maintai-
nability internal attributes (Size, Separation of Concerns, Coupling, and Cohesion) and
how they behavior for both points of view.

5.8.1 Size

As previously stated in Section 5.5.3, the internal attribute size was assessed
through the following metrics: Lines of Code (LOC), Number of Attributes (NOA), Weigh-
ted Operations per Component (WOC) and Vocabulary Size (VS). Table 10 shows the
p-value results regarding to the statistical analysis performed to compare both AOP
and CC by applying the statistical methods previously mentioned and confirmed by
randomization test p-value. Values less than or equal to 0.05 means that there is a
significant statistical difference between CC and AOP. Table 11 shows the power effect
for each metric. For more details regarding to cliff’s (5), magnitude and Cohen’s d, see
Appendix 8 Tables 46 and 47.

Tabela 10 — Size comparison between CC vs AOP implementations.

Techniques LOC NOA WOC VS
Techniques | w | p-value Rand. p-| p-value Rand. p-1 p-value Rand. p-1 p-value Rand. p-
value value value value
TO1 9 | 0.0495 | 0.0499 | 6 | 0.3173 | 0.4993 | 7 | 0.2752 | 0.2002 | 9 | 0.0253 | 0.0496
T02 9| 0.0495 | 0.0499 | 6 | 0.3173 | 0.4997 | 9 | 0.0495 | 0.0497 | 9 | 0.0253 | 0.0488
TO3 9 | 0.0495 | 0.0493 | 6 | 0.3173 | 0.5004 | 9 | 0.0463 | 0.0499 | 9 | 0.0253 | 0.0496
TO4 9 | 0.0495 0.05 |55|0.6579 | 0.3994 | 7 | 0.2752 | 0.1997 | 9 | 0.0431 | 0.0496
TO5 9 | 0.0495 | 0.0494 | 5.5 | 0.6579 | 0.4001 | 7 | 0.2752 0.2 9 | 0.0431 | 0.0498
TO6 6 | 0.5127 | 0.3491 | 55| 0.6579 | 0.4005 | 7 | 0.2752 | 0.1994 | 9 | 0.0431 | 0.0496
TO7 6 | 0.5127 | 0.3496 | 6 | 0.5002 | 0.399 |7 | 0.2683 | 0.1498 | 9 | 0.0431 0.05
TO8 510.8273 | 0.5003 | 6 | 0.4867 | 0.3492 | 7 | 0.2752 | 0.1989 | 9 | 0.0431 | 0.0499
T09 5 0.8273 | 0.5003 | 5 | 0.8248 | 0.4997 | 5 | 0.8273 | 0.5004 | 9 | 0.0431 | 0.0497
T10 510.8273 | 0.4999 | 55| 0.6579 | 0.3994 | 7 | 0.2752 | 0.1994 | 8 | 0.099 0.15
T11 7 | 0.2683 | 0.2009 | 6 | 0.4867 | 0.3508 | 7 | 0.2752 | 0.2001 | 9 | 0.0431 | 0.0495
T12 510.8273 | 0.5009 | 6 | 0.4867 | 0.3501 | 7 | 0.2752 | 0.2006 | 9 | 0.0431 0.05
T13 7| 02752 | 0.1997 | 5 | 0.8248 | 0.5002 | 7 | 0.2752 | 0.1991 | 9 | 0.0431 | 0.0492
T14 6 | 05127 | 0.3482 | 6 | 0.4867 | 0.3498 | 7 | 0.2752 | 0.2013 | 9 | 0.0431 | 0.0496
T15 6 | 0.5127 | 0.3495 | 45| NaN 1 9 | 0.0463 | 0.0498 | 9 | 0.0253 | 0.0499

Tabela 11 — Power effect for Size Metrics.

Techniques LOC NOA WOC VS
: ; ; Power ; : Power ; ; Power ; ; Power

Techniques | (6) of Cliff | Magnitude Tost (8) of Cliff Magnitude Tost () of Cliff | Magnitude Tost (8) of Cliff | Magnitude Tost
TO1 1 Large 0.8285 0.3333 medium 0.1165 0.5556 large 0.2757 1 large 0.05
T02 1 large 0.8652 0.3333 medium 0.1165 1 large 0.4768 1 large 0.05
TO3 1 large 0.9888 0.3333 medium 0.1165 1 large 0.7067 1 large 0.05
T04 -1 large 0.9552 0.2222 small 0.086 0.5556 large 0.0609 1 large 0.9915
TO5 -1 large 0.5701 0.2222 small 0.086 0.5556 large 0.069 1 large 0.9915
TO6 0.3333 medium 0.0959 0.2222 small 0.086 0.5556 large 0.0647 1 large 0.8495
TO07 0.3333 medium 0.089 -0.3333 medium 0.0764 0.5556 large 0.0645 1 large 0.8495
TO8 -0.1111 | negligible | 0.0501 0.3333 medium | 0.0818 0.5556 large 0.056 1 large 0.8495
T09 -0.1111 negligible | 0.0501 0.1111 negligible | 0.0673 | -0.1111 negligible 0.0711 1 large 0.8495
T10 -0.1111 negligible 0.05 0.2222 small 0.0717 0.5556 large 0.0515 0.7778 large 0.3441
T11 0.5556 large 0.0746 0.3333 medium 0.0818 0.5556 large 0.0579 1 large 0.8495
T12 -0.1111 | negligible | 0.0501 0.3333 medium | 0.0818 0.5556 large 0.0573 1 large 0.8495
T13 -0.5556 large 0.1532 0.1111 negligible | 0.0673 | 0.5556 large 0.057 1 large 0.8495
T14 0.3333 medium | 0.1267 | 0.3333 medium | 0.0818 0.5556 large 0.0522 1 large 0.8495
T15 -0.3333 medium 0.067 0 negligible 0.05 1 large 0.4684 1 large 0.05

BESATYNY JONVYNILNIVA V :SINIT LONAOHd FHYMLAOS NI ALIHNDIS DNISSISSY G ojnyded

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS2S

Security Technique

Size

Verify Message Inte-
grity (T1 and T2)

LOC

There is a suggestive evidence that CC implementation
is better for T1 and T2.

NOA

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T1
and T2.

WOC

There is a suggestive evidence that CC implementation
is better for T2.

VS | There is a suggestive evidence that CC implementation
is better for T1 and T2.
LOC | There is a suggestive evidence that CC implementation
Verify Storage Inte- is better for T3.
grity (T3) NOA | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T3.
WOC | There is a suggestive evidence that CC implementation
is better for T3.
VS | There is a suggestive evidence that CC implementation
is better for T3.
LOC | There is a suggestive evidence that AOP implementa-
Maintain Audit Trail tion is better for T4.
(T4) NOA | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T4.
WOC | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T4.
VS | There is a suggestive evidence that CC implementation
is better for T4.
LOC | There is a suggestive evidence that AOP implementa-
ldentify intrusion by tion is better for T5.
behavior (T5) NOA | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T5.
WOC | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T5.
VS | There is a suggestive evidence that CC implementation
is better for T5.
LOC | There is a suggestive evidence that AOP and CC re-

Authenticate subject
(T6eT7)

sults have no statisticall significant difference for T6
and T7.

Continued on next page

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS28

Tabela 12 — Continued from previous page

Security Technique

Size

NOA

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T6
and T7.

WOC

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T6
and T7.

VS

There is a suggestive evidence that CC is better for T6
and T7.

Authorize subject
(from T8 to T13)

LOC

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference from T8
and T13.

NOA

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference from T8
and T13.

WOC

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference from T8
and T13.

VS

There is a suggestive evidence that CC is better for T8.
There is a suggestive evidence that CC is better for T9.
There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T10.
There is a suggestive evidence that CC is better for
T11.

There is a suggestive evidence that CC is better for
T12.

There is a suggestive evidence that CC is better for
T13.

Manage security in-
formation (T14)

LOC

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T14.

NOA

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T14.

WOC

There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T14.

VS

There is a suggestive evidence that CC is better for
T14.

Continued on next page

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS®3

Tabela 12 — Continued from previous page

Security Technique | Size

LOC | There is a suggestive evidence that AOP and CC re-
Hide Data by encryp- sults have no statisticall significant difference for T15.

tion (T15) NOA | There is a suggestive evidence that AOP and CC re-
sults have no statisticall significant difference for T15.

WOC | There is a suggestive evidence that CC is better for
T15.

VS | There is a suggestive evidence that CC is better for
T15.

Tabela 12 — Summary table size.

AOP vs CC. Based on the data gathered, the investigation of security techniques
implementation can be classified in three groups: (i) represents the security techniques
that the CC solution provide better results; (ii) represents the security techniques
solutions in which AOP have shown as superior and (iii) involves the security techniques
in which the variability implementation mechanism does not impact the results. All three
groups are shown in Table 12.

The null hypotheses H,; was rejected in the following manner: CC techniques
implementation presented better results when compared with AOP implementations,
when considering most of the metrics (LOC, WOC and VS) responsible to evaluate
size internal attribute. The group includes Verify Storage Integrity (T3), Verify Message
Integrity (T2 and T1), Hide Data by encryption (T15), Authenticate subject (T6 e T7),
Identify intrusion by behavior (T5), Maintain Audit Trail (T4) and Authorize subject (T8,
T11, T12, T13 and T14) (Starting from the security technique that presents the best
results for size attribute). In the next paragraphs, we provide an in depth analysis.

Considering AOP implementations, there are some techniques that exhibited
a small value for all size metrics. This group includes the techniques Maintain Audit
Trail (T4) and Identify intrusion by behavior (T5), which presented better results for LOC
metric. It may be due to its code that is spread and repeated over the class when using
CC solution. While T4 keeps a record of users and system actions which are basically
a log implementation, the TS makes use of this log and the user behavior to detect
a deviation from the user utilization pattern. This way, all code responsible for user
execution and behavior analysis, as well as, the crosscutting code can be isolated in
the aspects. It provide insights to reject the null hypotheses H,.

© 00 N O o »~A W N =

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS28

From the results provided from LOC metric, it indicates that if the security
technique requires that a given data should be manipulated in a specific point of a
method, a hook method needs to be created increasing the lines of code in the AOP
solution. It can be viewed in the implementation of techniques T1 and T2 (see Listing
5.3). NOA metric did not present any difference for AOP and CC solutions, it happens
since the implementation of the techniques is the same in both solutions. The difference
is only the code related to the crosscutting concern which was isolated within the aspect.
It did not happen for VS metric, as the aspect solution isolated the crosscutting concern
code inside the aspect, in addition to the classes used in the CC solution, new aspects
were created to isolate this code.

Cébdigo 5.3 — Hook method example.

/1 #if ${ variability2 .8} =="T"
private void technique1_insert(Object object){
try {
hashValues.insert(object);

} catch (CheckSumGenerationException e) {
// TODO Auto—generated catch block
e.printStackTrace() ;

} catch (RepositoryException e) {

// TODO Auto—generated catch block
e.printStackTrace() ;

}

!
/] #endif

public void insertEvent(Event event) throws EventAlreadylnsertedException,
RepositoryException{
this .events.insert (event);
/[#if ${ variability2 .8} =="T"
technique1_insert(event);
/] #endif

An insider view regarding to the security techniques implementation in each
experiment show that SPL code size influences on the results. Table 13 shows the
percentage difference between the techniques implemented when using CC and AOP.
Negative values indicate that CC is less costly then AOP. On the other hand, positive
values indicate that AOP is less costly than CC. From the metric with the greatest
difference, we can extract insights that the lower the SPL LOC, the less costly is the
maintenance when using CC. See Appendix 8 Table 41, Table 43 and Table 45 for more

2

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYS?2S

details. Due to the code techniques are well spread throughout different architecture
layers, the more line of code the SPL has the greater will be the code spread. In this
context, the AOP solution is more appropriated.

Tabela 13 — Percentual difference among Size metrics.

RiSE Event RiSE Store Office Law
CCvsAOP | LOC | NOA |WOC | VS | LOC | NOA | WOC | VS | LOC | NOA | WOC | VS
TO1 -0.94 0 -1.04 | -0.38 | -4.7 | -0.34 | -4.69 | -2.35 | -2.49 0 -4.42 | -1.56
T02 -0.94 0 -1.05 |-0.38 | -4.09|-0.33| 492 |-235|-234| O -455 | -1.56
TO3 -0.06 0 -0.1 | -0.19 | -0.27 | -0.34 | -1.16 | -1.28 | -0.1 0 -0.89 | -0.83
TO4 0.63 |-0.41|-1.17 | -055| 5.19 | -0.3 | -0.68 | -2.94 | 2.68 0 -0.69 | -2.07
TO5 0.14 | -0.41 | -1.27 | -0.55 | 4.12 | -0.31 | -0.91 | -2.94 | 2.27 0 -0.58 | -2.07
TO06 -0.29 | -0.41 | -1.05 | -0.37 | -0.33 | -0.31 | -0.52 | -2.06 | -0.14 | 0 -0.46 | -1.43
TO7 -0.29 | 0.21 | -1.15 | -0.37 | -0.3 0 -0.51 | -2.04 | -0.14| 0 -0.39 | -1.42
TO8 0.1 -0.4 | -0.89 | -0.71 | 0.24 | -0.29 | -2.49 | -3.39 | -0.18 0 -0.91 | -2.48
TO9 01 |-039|-1.12|-0.69| 0.2 |-0.28| -2.1 |-292|-0.18 | 0.12 | 17.77 | -2.22
T10 0.11 | -0.38 | -1.18 | -0.65 | 0.15 | -0.25 | -1.08 | -2.29 | -0.2 0 -1.2 | -1.83
T11 -0.16 | -0.4 | -1.17 | -0.71 | -0.53 | -0.29 | -2.48 | -3.36 | -0.47 | 0 -0.91 | -2.47
T12 0.06 | -0.4 | -1.17 | -0.71 | 0.29 | -0.29 | -2.47 | -3.31 | -0.15 0 -0.9 | -2.44
T13 085 | -04 |-1.28 |-0.71 | 1.42 | -0.28 | -2.64 | -3.23 | 0.56 | 0.12 | -1.08 | -2.4
T14 0.1 |-039]|-1.32|-0.69| 0.19 | -0.26 | -1.75 | -2.88 | -0.17 | O -0.74 | -2.2
T15 -0.25 0 -7.35 | -0.19 | 1.12 0 -3.36 | -1.28 | 1.49 0 -13.65 | -0.83

Authorization. Comparing all authorization patterns considering CC and AOP
implementations, only WOC did not present statistical significant difference at 0.05
level for both AOP and CC (see Table 14). The Table 30 shows the power effect, effect
size and magnitude of each metric. This way, LOC, NOA and VS values rejected the
null hypotheses Hy,. Regarding to LOC, NOA and VS the authorization patterns can
be ordered starting from the best, such as: T8, T11, T12, T13, T14 and T10. While
T8 establishes a relationship between subject and object to evaluate if a subject is
authorized (i.e. have rights) to access certain objects, T10 categorizes subjects and
objects in different levels and then classify it. It is also important to mention that technique
T11 besides the code to control the functionalities access, it also has code to determine
how long time the session will be opened (see Listing 5.4). This way, this technique
can have an increase in size internal attribute if all screens and/or functionalities were
controlled by this timer. A deeper view can show that the main difference among these
patterns was the code responsible to implement their rules since the code spread over
the SPLs are almost the same except for T11. T10 appears to be the most costly since
it needs several levels of security classifications to be applied for both subjects and
objects. Appendix 8 (from Figure 34 to Figure 41) also shows that the same order can
be seen for CC and AOP implementations.

Cadigo 5.4 — Session timeout functionality.

/1#if ${techniquel1} =="T"
private boolean technique11(String functionality) {

N o o b~

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $08

boolean resposta = false;
try {
int idUser = RiSEEventLoginScreen.getLoggedUser().getldUser();
if (RiISEEventLoginScreen.getFacade().checkPermission(idUser, functionality) &&
(Session.checkSessionTime(RiSEEventLoginScreen.getSessionStartHour()) == true)){
resposta = true;
lelse
resposta = false;
} catch (PermissionDeinedException e) {
JOptionPane.showMessageDialog(null, "You do not have permission", "Error",
JOptionPane.ERROR_MESSAGE);
e.printStackTrace() ;
} catch (RepositoryException e) {
// TODO Auto—generated catch block
e.printStackTrace() ;
}

return resposta;

/[#endif

@0Override
public void actionPerformed(ActionEvent e) {

/[#if ${techniquell.4} =="T"
String functionality = new Object(){}.getClass().getEnclosingClass().getSimpleName();
if (technique11(functionality) == true){
/] #endif
dispose();

/1 #if ${techniquell.4} =="T"

}
// #endif

Detect Attack. In the context of detect attack techniques, the results showed that

Verify Storage Integrity (T3) is the less costly regarding to size attribute being followed by
Verify Message Integrity (T1 and T2), Maintain Audit Trail (T4) and Identify intrusion by
behavior (T5). It can be explained by the fact that T3 has a really specific implementation
to verify if the database had their data corrupted (see Listing 5.5). On the other hand,
T5 besides to implement user action by tracking user action and registering their log,
it also evaluates the user behavior. Table 14 shows a significant statistical difference
when comparing detect attack techniques for both CC and AOP implementations.

Caddigo 5.5 — Database dump verification.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$0S

Tabela 14 — Comparison of Size metrics from CC and AOP implementations.

| LOC | NOA WOC VS
CC k p-value Rand p- k p-value Rand p- k p-value Hand p- k p-value Hand p-
! | value value value value
Authorization 15.0585 | 0.0101 0 15.3445 | 0.009 0 9.2844 | 0.0982 | 0.0674 | 16.1677 | 0.0064 0
Detect Attack 12.6333 | 0.0132 | 0.0001 13.5727 | 0.0088 0 13.0567 | 0.011 0 13.3412 | 0.0097 0
Resist Attack 27.5979 | 0.0011 0 28.3262 | 0.0008 0 24.7422 | 0.0033 0 28.5375 | 0.0008 0
CC w p-value Rand p- w p-value Rand p- w p-value Hand p- w p-value Hand p-
O R value value value value
Si:t‘e‘“ BT 5 0 1 475 0 1 48 0 1 765 | 0.0003 | 0.9999
AOP k p-value Rand p- k p-value Rand p- k p-value Hand p- k p-value Hand p-
value value value value
Authorization 15.0038 | 0.0103 0 15.0582 | 0.0101 | 0.0001 | 7.8538 | 0.1645 | 0.1501 | 16.1677 | 0.0064 0
Detect Attack 12.4333 | 0.0144 | 0.0001 13.3187 | 0.0098 0 12.5667 | 0.0136 | 0.0001 | 13.3412 | 0.0097 0
Resist Attack 27.6298 | 0.0011 0 28.056 | 0.0009 0 22.6653 | 0.007 | 0.0001 | 28.5375 | 0.0008 0
AOP w p-value Hand p- w p-value Hand p- w p-value Hand p- w p-value Hand p-
O R value value value value
Si:t‘e‘:t VSRe g0 | 0.0001 1 48 0 1 34 0 1 76.5 | 0.0003 | 0.9999
Tabela 15 — Power Effect, Effect size and magnitude of Size metrics.
LOC NOA WOC VS
Power Effect Power Effect Power Effect Power Effect
cc Effect | Size Mag- | Eftect | Size Mag- | Eftect | Size Mag | Effect | Size Mag.
Authorization 1 0.3422 high 1 0.3487 high 1 0.211 "medium" 1 0.3674 high
Detect 1 0.2871 high 1 0.3085 high 1 0.2967 high 1 0.3032
Resist 1 0.6272 | very high 1 0.6438 | very high 1 0.5623 | very high 1 0.6486 | "very high"
Power Effect Power Effect Power Effect Power Effect
AOP Effect | Size Mag- | Effect | Size Mag- | Effect | Size Mag- | Eftect | Size Mag.
Authorization 1 0.341 high 1 0.3422 high 1 0.1785 | medium 1 0.3674 high
Detect 1 0.2826 high 1 0.3027 high 1 0.2856 high 1 0.3032 "high"
Resist 1 0.628 | very high 1 0.6376 | very high 1 0.5151 | very high 1 0.6486 | very high

public RiISEEventMainScreenP() {
//#if ${techniqued} =="T"
Backup.databaseBackup("Release2.9", "root", "password",
"Workspace/003_RiSEEventSPL_CC_T3/backup_OLD.sql");
String file1 = "Workspace/003_RiSEEventSPL_CC_T3/backup_NEW.sqgl";
String file2 = "Workspace/003_RiSEEventSPL_CC_T3/backup_OLD.sql";
try {
if (Compare.compareFile(file1, file2) == 0){
JOptionPane.showMessageDialog(getContentPane(),

o ©O© 0O N o O,

12
13
14
15
16
17
18

"The system was hacked. Please, Contact Technical Support.”, "Erro",
JOptionPane.INFORMATION_MESSAGE);
}
} catch (Exception e) {
// TODO Auto—generated catch block
e.printStackTrace() ;

}
// #endif

Resist Attack. In addition to the Authorization techniques, the resist attack tactic

is composed of Manage security information (T14) and Hide Data by encryption (T15).

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $08

In this context, the most efficient technique was T15 in which hides all system data using
encryption. As expected, T14 presents values compatible with authorization techniques
since it is composed of authorization control and also code responsible for encrypting
security information. Table 14 shows a significant statistical difference when comparing
resist attack techniques for both CC and AOP implementations.

Detect Attack vs Resist Attack. According to the results shown in Table 14 the
null hypotheses Hy; was not rejected since there is no significant statistical difference
among these tactics. Although the p-values indicate that there is no significant difference,
if we take a look at Appendix 8 (from Figure 34 to Figure 41) due to the values for
techniques T6, T7 and T15, we can see that authorization technique has a higher cost
for maintenance.

Metrics Analysis. Based on the results from Table 10 we saw that NOA metric
may not be a good indicator to evaluate size attribute when comparing CC and AOP
implementations for security techniques since it did not show any significant statistical
difference. It can be explained by the use of intertype declarations used in the AOP
implementations. On the other hand, LOC metric seems to be a good indicator to
compare different implementations for detect attack techniques, for all of the techniques,
the analysis point out that there is a significant statistical difference. In addition, VS
metric shows a significant statistical difference for most of the security techniques except
T10 which presents the largest number of classes to be implemented. A number of
classes to implement impacted the comparison between CC and AOP.

Considering the three experiments and their test beds, the metric which presen-
ted the greater variation was VS, especially when considering authorization techniques.
It happens since the authorization techniques have much of their code spread over
different system screens or functionalities.

5.8.2 Separation of Concerns

The Separation of Concern internal attribute was evaluated through the following
metrics: Concern Diffusion over Components(CDC), Concern Diffusion over Operati-
ons(CDO), Concern Diffusion over LOC (CDLOC) and Code Scattering. It is important to
state that the lower the value of the metric, less costly will be the technique maintenance.
Firstly, the analysis is divided into two parts. It focuses on the analysis of to what extent
the aspect-oriented programming (AOP) and conditional compilation (CC) solutions
provide support for the separation of security techniques concerns. Table 16 shows the
results regarding to the statistical analysis performed to compare both AOP and CC with
respect to separation of concerns metrics by applying the statistical methods previously
mentioned and confirmed by randomization test p-value. The values below 0.05 means
that there is a statistically significant difference between both solutions. Table 17 shows

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$1S

the power effect for each metric. For more details regarding to cliff’s (6), magnitude and
Cohen’s d, see Appendix 8 Tables 48 and 49.

Tabela 16 — Separation of concerns comparison between CC vs AOP implementations.

Techniques CDC CDO CDLOC Scattering
Techniques | w | p-value Rand. p-| p-value Rand. p- |, p-value Rand. p-| p-value Rand. p-
value value value value

TO1 45| NaN 1 9 | 0.0495 0.05 9 | 0.0463 | 0.0495 | 9 | 0.0495 | 0.0494
T02 45| NaN 1 9 | 0.0495 | 0.0499 | 9 | 0.0463 | 0.049 | 9 | 0.0463 | 0.0496
TO3 45| NaN 1 8 | 0.1046 | 0.1491 | 9 | 0.0253 | 0.0499 | 9 | 0.0495 0.05
T04 6 | 0.5002 | 0.3009 | 9 | 0.0495 | 0.0499 | 9 | 0.0463 0.05 9 | 0.0495 0.05
T05 6 | 0.5002 | 0.2994 | 8 | 0.1266 | 0.1001 | 6 | 0.5127 | 0.3505 | 9 | 0.0495 | 0.0498
TO6 5 | 0.7963 | 0.5014 | 6 | 0.5127 | 0.3499 | 7 | 0.2612 | 0.151 | 9 | 0.0495 0.05
T07 5 | 07963 | 0.501 | 6| 0.5127 | 0.3499 | 7 | 0.2612 | 0.1506 | 9 | 0.0495 | 0.0488
T08 6 | 0.5002 | 0.3004 | 5| 0.8273 | 0.4998 | 5| 0.8273 | 0.4992 | 9 | 0.0495 | 0.0497
T09 6 | 0.5002 | 0.3002 | 8 | 0.1266 0.1 5| 0.8273 0.5 9 | 0.0495 | 0.0493
T10 7 | 02612 | 0.1503 | 7 | 0.2752 | 0.1994 | 5 | 0.8273 | 0.4989 | 9 | 0.0495 | 0.0498
T11 6 | 0.5002 | 0.3006 | 5 | 0.8273 | 0.5005 | 5 | 0.8273 | 0.5006 | 9 | 0.0495 | 0.0493
T12 8 | 0.099 | 0.1504 | 5| 0.8273 | 0.5005 | 5 | 0.8273 | 0.5004 | 9 | 0.0495 | 0.0499
T13 7 | 0.2612 | 0.1507 | 9 | 0.0495 | 0.0496 | 9 | 0.0495 | 0.0496 | 9 | 0.0495 | 0.0493
T14 9 | 0.0463 0.05 6 | 0.5127 | 0.3504 | 5 | 0.8273 | 0.4997 | 9 | 0.0495 0.05
T15 75| 0.1213 | 0.1999 | 7 | 0.2752 | 0.1992 | 5 | 0.8273 | 0.4989 | 9 | 0.0495 | 0.0499

Tabela 17 — Power effect for Separation of Concerns Metrics.

Techniques CDC CDO CDLOC Scattering
. . . Power . . Power . . Power : . Power

Techniques | (6) of Cliff | Magnitude Tost (8) of Cliff Magnitude Tost () of Cliff | Magnitude Tost (8) of Cliff | Magnitude Tost
TO1 0 negligible NaN -1 large 0.5359 -1 large 1 -1 large 0.9998
T02 0 negligible NaN -1 large 0.6633 -1 large 1 -1 large 0.9999
TO3 0 negligible NaN 0.7778 large 0.3133 -1 large 0.05 -1 large 1
T04 0.3333 medium 0.0571 -1 large 0.9955 -1 large 0.9492 -1 large 1
TO5 0.3333 medium 0.0571 0.7778 large 0.2787 0.3333 medium 0.0667 -1 large 0.9899
TO6 -0.1111 negligible | 0.0948 | -0.3333 medium 0.05 -0.5556 large 0.1795 -1 large 0.4497
T07 -0.1111 | negligible | 0.0948 | -0.3333 medium | 0.0501 | -0.5556 large 0.1795 -1 large 0.4151
TO8 0.3333 medium 0.055 -0.1111 negligible | 0.0542 0.1111 negligible 0.0535 -1 large 0.6091
T09 0.3333 medium 0.055 -0.7778 large 0.1549 0.1111 negligible 0.0535 -1 large 0.7633
T10 -0.5556 large 0.0937 | -0.5556 large 0.0546 0.1111 negligible 0.0539 -1 large 0.8894
T11 0.3333 medium 0.055 0.1111 negligible | 0.051 0.1111 negligible 0.0535 -1 large 0.6097
T12 -0.7778 large 0.2023 | -0.1111 negligible | 0.0625 0.1111 negligible 0.0535 -1 large 0.6963
T13 -0.5556 large 0.1304 -1 large 0.986 -1 large 0.4146 -1 large 0.8716
T14 -1 large 0.3615 | -0.3333 medium 0.0523 0.1111 negligible 0.0566 -1 large 0.7653
T15 -0.6667 large 0.2592 0.5556 large 0.1502 0.1111 negligible 0.0532 -1 large 0.5828

BISATYNY JONVYNILNIVA V :SINIT LONAOHd FHYMLAOS NI ALIHNDIS DNISSISSY G ojnyded

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $0S

AOP vs CC. Differently, from Size internal attribute, the data gathered revealed
only two groups: (i) represents the security techniques solutions in which AOP has
shown as superior and (ii) involves the security techniques in which the variability
implementation mechanism did not impact on the results. All of them can be visualized

in Table 18.

Security Tech-

Separation of

nique Concerns
. CDC There is a suggestive evidence that AOP and CC
Verify Mes- . . .
. results have no statistical significant difference for
sage Integrity T1 and T2.
(T1 and T2) : - . .
CDO There is a suggestive evidence that AOP imple-
mentation is better for T1 and T2
CDLOC There is a suggestive evidence that AOP imple-
mentation is better for T1 and T2
Scattering There is a suggestive evidence that AOP imple-
mentation is better for T1 and T2
Verify Sto- CDC There is a suggestive evidence that AOP and CC
. results have no statistical significant difference for
rage Integrity
(T3) T3.
CDO There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T3.
CDLOC There is a suggestive evidence that AOP imple-
mentation is better for T3.
Scattering There is a suggestive evidence that AOP imple-
mentation is better for T3.
CDC There is a suggestive evidence that AOP and CC
Maintain Au- results have no statistical significant difference for
dit Trail (T4) T4.
CDO There is a suggestive evidence that AOP imple-
mentation is better for T4.
CDLOC There is a suggestive evidence that AOP imple-
mentation is better for T4.
Scattering There is a suggestive evidence that AOP imple-
mentation is better for T4.
CDC There is a suggestive evidence that AOP and CC

ldentify intru-

sion by beha-
viar (TE)\
\VAAYA] \ T \JI

results have no statistical significant difference for
T5.

Continued on next page

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $08

Tabela 18 — Continued from previous page

Security Tech-
nique

Separation of

Concerns

CDO

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T5.

CDLOC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T5.

Scattering

There is a suggestive evidence that AOP imple-
mentation is better for T5.

Authenticate
subject (T6 e
T7)

CDC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T6 and T7.

CDO

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T6 and T7.

CDLOC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T6 and T7.

Scattering

There is a suggestive evidence that AOP imple-
mentation is better for T6 and T7.

Authorize
subject (from
T8 to T13)

CDC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T8 to T13.

CDO

There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T8 to T12.

There is a suggestive evidence that AOP imple-
mentation is better for T13.

CDLOC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T8 to T12.

There is a suggestive evidence that AOP imple-
mentation is better for T13.

Scattering

There is a suggestive evidence that AOP imple-
mentation is better from T8 to T13.

Continued on next page

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY %03

Tabela 18 — Continued from previous page

Security Tech-| Separation of

hique Concerns

Manage CDC There is a suggestive evidence that AOP imple-

security in- mentation is better for T14.

formation CDO There is a suggestive evidence that AOP and CC

(T14) results have no statistical significant difference
from T14.

CDLOC There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T14.

Scattering There is a suggestive evidence that AOP imple-
mentation is better for T14.

Hide Data by CDC There is a suggestivg elvidenfze t.h.at AOP. and CC
. results have no statistical significant difference

encryption

(T15) from T.1 5. | |

CDO There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T15.

CDLOC There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T15.

Scattering There is a suggestive evidence that AOP imple-
mentation is better for T15.

Tabela 18 — Summary table separation of concerns.

The null hypotheses H,, was rejected by Concern diffusion over Components
(CDC) metric, i.e., to what extent the security technique is isolated through the system
components in both solutions. It happened for Manage security information (T14)
technique since besides the components to implement the data authorization and data
encryption, it also had its code spread over the screens to control authorization. Next,
the Concern Diffusion over Operations (CDO) metric presents a significant difference in
techniques Maintain Audit Trail (T4) and Authorize subject (T13). While the former had
their code spread over all SPL functionalities inside the facade class in order to keep
track of all user actions, the latter besides to keep track of user actions it also controls

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $08

functionalities access. It is important to mention that their values are high dependent of
the number of functionalities available in the system.

Regarding to code scattering, we used two metrics: the Concern diffusion over
lines of code (CDLOC) and Scattering metric. As already expected, AOP solution had
less code spread over the SPL for all security techniques. After a careful analysis, we
noticed that Scattering metric is more sensible then CDLOC metric. It dues to the way
in which they are computed, while CDLOC computes the number of shadowed blocks
of code, the scattering counts the number of lines of crosscutting code.

A deeper analysis regarding to percentage difference between the techniques
implemented using CC and AOP shows that SPL modularization can influence in favor
or against the percentage difference between CC and AOP. The CDC metric shows
that more modularized the SPL code, the greater the advantage of AOP in relation to
CC. On the other hand, the use of the facade design pattern tends to equalize this
percentual difference, since the system functionalities are concentrated in this facade
class. It can be seen in those techniques that implement log or access control to basic
system functionalities. Appendix 8 Table 41, Table 43 and Table 45 show the percentage
difference between the techniques implemented when using CC and AOP for separation
of concerns metrics.

Authorization. Table 19 shows that comparing CC implementations only CDLOC
and Scattering metrics did not show a statistically significant difference, it happens since
the difference among the authorization techniques are their specific rules, instead of
code responsible to apply the authorization over the functionalities which are the same
among them. It is reinforced by the significant difference among them when considering
CDC and CDO metrics. Considering AOP implementations, besides to show the same
behavior as previously explained for metrics CDLOC and Scattering in CC implementa-
tions, CDO also showed the absence of statistically significant difference since AOP
implementation isolates the crosscutting code inside the aspect, standardizing the im-
plementations. In summary, the null hypothesis H, was rejected for CDC, CDO when
considering CC implementations and only CDC when considering AOP implementations.
Table 20 shows the power effect, effect size, and magnitude for each metric.

Detect Attack. Considering the CDC metric, we can identify three groups which
maintained the same ordering for CC and AOP. The groups are composed of (i) Verify
Storage Integrity (T3), (ii) Verify Message Integrity (T1 and T2) and (iii) Maintain Audit
Trail (T4), Identify intrusion by behavior (T5). Starting from the security technique that
presents the best results for separation of concerns. From the CDO point of view, the
techniques T4 and T5 were ordered differently when evaluating AOP and CC. It is
explained since to implement technique T5 all methods from the facade class received
a unique score number, which is further used in the algorithm responsible to analyze the

n

© 00 N o o »~ W

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$0S

Tabela 19 — Comparison of Separation of concern metrics from CC and AOP

implementations.
CDC CDO CDLOC Scattering
CcC k p-value Rand. p- k p-value Hand. p- k p-value Hand. p- k p-value Hand. p-
value value value value
Authorization 14.5385 0.0125 | 0.0002 | 14.4269 | 0.0131 | 0.0002 | 7.5535 | 0.1826 | 0.1728 | 6.0058 | 0.3057 | 0.3296
Detect Tec. 13.3412 0.0097 0 13.0333 | 0.0111 0 12.3122 | 0.0152 | 0.0002 12.3 0.0153 | 0.0002
Resist Tec. 27.7989 0.001 0 26.7893 | 0.0015 0 15.5162 | 0.0777 | 0.041 19.695 | 0.0199 | 0.0024
w p-value Rand. p- w p-value Rand. p- w p-value Rand. p- w p-value Rand. p-
value value value value
Detect vs Resist | 56.5 0 1 80 0.0005 | 0.9999 258 0.4255 | 0.2168 48 0 0.903
AOP k p-value Rand. p- k p-value Rand. p- k p-value Rand. p- k p-value Rand. p-
value value value value
Authorization | 16.1677 0.0064 0 9.2105 | 0.101 0.071 0.8941 | 0.9706 | 0.9803 | 0.3851 | 0.9957 | 0.9973
Detect Tec. 13.3412 0.0097 0 13.0567 | 0.011 0 9.6215 | 0.0473 | 0.0175 | 9.4875 0.05 0.0194
Resist Tec. 28.5375 0.0008 0 25.2323 | 0.0027 0 14.7347 | 0.0985 | 0.0625 | 15.8675 | 0.0697 | 0.0343
w p-value Hand. p- w p-value Rand. p- w p-value Rand. p- w p-value Rand. p-
value value value value
Detect vs Resist | 76.5 0.0003 | 0.9999 51 0 1 109 0.005 0.998 93.5 | 0.0015 | 0.9995
Tabela 20 — Power Effect, Effect size and magnitude of Separation of Concerns metrics.
CDC | CDO | CDLOC Scattering
Power Effect Power Effect Power Effect Power Effect
cC Effect | Size Mag. Eftect | Size Mag. Effect | Size Mag. | Effect | Size Mag.
Authorization 1 0.3304 high 1 0.3279 high 1 0.1717 | medium 1 0.1365 medium
Detect 1 0.3032 high 1 0.2962 high 1 0.2798 "high" 1 0.2795 "high"
Resist 1 0.6318 very high 1 0.6088 | very high 1 0.3526 high 1 0.4476 high
Power Effect Power Effect Power Effect Power Effect
AOP Effect | Size Mag. Effect | Size Mag. Effect | Size Mag. | Effect | Size Mag.
Authorization 1 0.3674 high 1 0.2093 medium 0.3482 | 0.0203 low 0.0927 | 0.0088 "negligible"
Detect 1 0.3032 high 1 0.2967 high 1 0.2187 | medium 1 0.2156 medium
Resist 1 0.6486 very high 1 0.5735 | "very high" 1 0.3349 high 1 0.3606 high

user behavior (see Listing 5.6). This way, it was not possible to isolate in the aspect all
crosscutting code inserted in facade methods. It is reinforced by CDLOC and Scattering
metrics results. All this information can be viewed in Appendix 8 from Figure 44 to Figure
51. In summary, Table 19 shows a statistically significant difference in all separation of
concerns metrics when implementing the techniques using CC and AOP.

Caodigo 5.6 — Portion of the implementation of technique T5.

public void removeLogin(int idUser) throws LoginNotFoundException, RepositoryException,

LoginAlreadylnsertedException{

[/ #if ${technique5} == "T"
Log.getinstance().insert (RiSEEventLoginScreen.getLoggedUser().getldUser(),2);
Log.calcProbabilidade(RiSEEventLoginScreen.getLoggedUser().getldUser(),2);

/] #endif
logins .remove(idUser);

Resist Attack. Table 19 shows statistical significant difference for all metrics
except for CDLOC when considering AOP implementation. It may be due to T15 in

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

which the CDLOC metric shows to be less efficient that Scattering metric, as reinforced
by Table 16. Analyzing CDC and CDO point of views, both metrics preserved the same
behavior (ordination) considering the implementations of the techniques using CC and
AOP which was T15, T8, T11, T12, T13, T9, T14 and T10. Regarding to CDLOC and
Scattering, AOP implementations shows to be more equally distributed, while in CC
implementation, T13 shows different behavior since it implements besides the access
control it also keeps track of user actions.

Detect Attack vs Resist Attack. Although Table 19 shows the absence of
statistically significant difference between detect attack vs resist attack techniques, an
in-depth analysis in Appendix 8 (from Figure 44 to Figure 51) show that detect attack
techniques have less widespread code making it more modular, easy to understand and
maintain. It is important to note that Authentication techniques (T6 and T7) and Hide
Data by encryption (T15) are similar to detect attack techniques. The null hypothesis
Hys was not rejected.

Metrics Analysis. CDC metric may not be a good indicator to evaluate the
separation of concern attribute when comparing CC and AOP implementations since
the main difference between CC and AOP was the crosscutting code which was isolated
inside the aspect. This code difference was only significant for the Manage security
information (T14) technique. The CDLOC metric seems to be less sensible to assess
code scattering since it counts blocks of code instead of lines of code. This way, one
block can have 10 lines of code or 100 lines of code.

5.8.3 Lack of Cohesion

The cohesion indicates whether a class represents a single abstraction or multiple
abstractions. If the class or aspect represents more than one abstraction, it should
be refactored into more than one class or aspect, each of which represents a single
abstraction. In order to investigate these characteristics, the Lack of Cohesion over
operations (LCOO) was used. It is important to state that the high LCOO value means
low cohesion, which results in classes with more than one abstraction, difficulty to
understand the code and difficulty to maintain. Table 21 shows the results from the
statistical analysis performed to compare both AOP and CC with respect to lack of
cohesion by applying the statistical methods previously mentioned and confirmed by
randomization test p-value. Table 22 shows the power effect for each metric. For more
details regarding to cliff’s (6), magnitude and Cohen’s d, see Appendix 8 Tables 50 and
51.

AOP vs CC. Similar to the separation of concern internal attribute, the data
gathered reveals two groups: (i) represents the security techniques solutions in which
the AOP solution had shown as superior and (ii) involves the security techniques in

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY&1S

Tabela 21 — Lack of Coheison comparison between CC vs AOP implementations.

Techniques LCOO

Techniques | w | p-value | Rand. p-value
TO1 8 | 0.1212 0.0998
T02 8 | 0.1212 0.0998
T03 6 | 0.4867 0.3487
TO4 8 | 0.1266 0.1006
T05 7 | 0.2752 0.1996
T06 8 | 0.1266 0.0999
TO7 8 | 0.1266 0.1
T08 8 | 0.1266 0.0996
T09 8 | 0.1266 0.0999
T10 9 | 0.0495 0.049
T11 8 | 0.1266 0.1003
T12 8 | 0.1266 0.0996
T13 8 | 0.1266 0.0991
T14 8 | 0.1266 0.1011
T15 75| 0.1213 0.2004

Tabela 22 — Power effect for Cohesion Metrics.

Techniques LCOO

Techniques | (5) of Cliff | Magnitude Tpgger
TO1 -0.7778 large 0.1681
T02 -0.7778 large 0.1616
TO3 -0.3333 medium 0.0552
T04 -0.7778 large 0.3122
T05 -0.5556 large 0.2417
TO6 -0.7778 large 0.3107
TO7 -0.7778 large 0.3036
TO8 -0.7778 large 0.279
T09 -0.7778 large 0.2937
T10 -1 large 0.3655
T11 -0.7778 large 0.2984
T12 -0.7778 large 0.2758
T13 -0.7778 large 0.2818
T14 -0.7778 large 0.2967
T15 0.6667 large 0.1588

which the variability implementation mechanism had the same effect. The summary is
showed in Table 23.

The null hypothesis Hy; was only rejected by LCOO metric for the Multilevel
Security Design Pattern (T10) technique. It happened because T10 is the technique
with the greatest number of classes, methods, and attributes, and using the AOP
implementation the code of the technique that before was spread in the facade now is
the aspect of the technique. It is reinforced by Appendix 8, Figure 42 and Figure 43.

Authorization. Table 24 shows that there is no significant difference for CC or

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

Tabela 23 — Summary table lack of cohesion.

Security Technique Lack of Cohesion

Verify Message Integrity (T1 and T2) | LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T1and T2.

Verify Storage Integrity (T3) LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T3.

Maintain Audit Trail (T4) LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T4.

Identify intrusion by behavior (T5) LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T5.

Authenticate subject (T6 e T7) LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T6and T7.

LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for

Authorize subject T8.

(from T8 to T13) There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T9.

There is a suggestive evidence that AOP imple-
mentation is better for T10.

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T11.

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T12.

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T13.

Manage security information (T14) LCOO | There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T14.

Hide Data by encryption (T15) LCOO | There is a suggestive evidence that AOP and CC

results have no statistical significant difference for
T15.

AORP, this way the null hypothesis Hj, was not rejected and Table 25 shows the power
effect, effect size, and magnitude of each metric. It was reinforced by the fact that the
authorization techniques have really similar implementations, with classes to implement
their core rules and code spread over the screens and functionalities to control the
access.

Detect Attack. Although Table 24 shows that there is no statistically significant
difference among the detect attack techniques, we can see two extremes. On one
extreme, the Verify Storage Integrity (T3) technique with the lowest LCOO value, since

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

its code really specific. On the other hand, the Identify intrusion by behavior (T5)
technique which besides the code to trace which functionality the user has used, it also
calculates its behavior.

Tabela 24 — Comparison of Lack of Cohesion metrics from CC and AOP

implementations.

LCOO
CC k p-value | Rand p-value
Authorization 4.1345 | 0.5302 0.5805
Detect Tec. 8.0811 | 0.0887 0.0588
Resist Tec. 11.6426 | 0.2342 0.2216
w p-value | Rand p-value
Detect vs Resist 62 0.0001 1
AOP k p-value | Rand p-value
Authorization 9.2807 | 0.0984 0.068
Detect Tec. 7.6607 | 0.1048 0.0789
Resist Tec. 24.6559 | 0.0034 0
w p-value | Rand p-value
Detect vs Resist 41 0 1

Tabela 25 — Power Effect, Effect size and magnitude of Lack os Cohesion metric.

LCOO
Power Effect
cC Effect | Size Mag.
Authorization 1 0.094 medium
Detect 1 0.1837 | medium
Resist 1 0.2646 high
Power Effect
AOP Effect Size Mag.
Authorization 1 0.2109 | medium
Detect 1 0.1741 medium
Resist 1 0.5604 | very high

Resist Attack. Table 24 shows the statistically significant difference only for
AOP implementations. Figures 29 and Figure 30 show that Multilevel Security Design
Pattern (T10) and Manage security information (T14) are contributing to this statistical
difference. The reason why T14 had its median value higher than T10 is that besides it
controls the user access, it also keeps track of user actions.

Detect Attack vs Resist Attack. The null hypotheses Hy; was not rejected,
for either variability implementation mechanism AOP and CC. Despite this, a clear
difference can be noticed having the techniques of detect attack lower values related to
the lack of cohesion metrics which makes the code with high cohesion less costly to be
maintained.

Metric Analysis. The variation regarding to LCOO metric for CC implementation
is greater than AOP implementations. It happens since most of the methods which

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

Lack of Cohesion over Operations(LCOO)

8000

6000
|

4000

B

T}
I
i
+

=" _|

T em—

0
|

I T T T T T T T T T T T T T I
TO1 T02 TO3 TO04 TO5 TOo6é TO7 TO8 T09 T10 Ti11 Ti12 T13 T14 Ti15

Figura 29 — Lack of Cohesion over Operations(LCOO) for CC.

Lack of Cohesion over Operations(LCOO)

1500

1000

500
|
:
HL J-+

T T T T T T T T T T T T T T
TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 Ti11 T12 T13 T14 T15

Figura 30 — Lack of Cohesion over Operations(LCOO) for AOP.

appear in CC implementation are invoked by "call"statement in the aspect pointcut. It
reduced significantly the variation viewed in CC implementations.

5.8.4 Coupling

It is responsible to evaluate how closely connected two components are. In
order to measure it, two metrics were used. The Coupling between components (CBC)
which measures the number of other components with which it is coupled and Depth
Inheritance Tree (DIT) responsible to calculate the distance from class object/aspect in
the inheritance hierarchy. Table 26 summarizes the results from the statistical analysis

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$1S

performed to compare AOP and CC implementations by applying the statistical methods
previously mentioned and confirmed by randomization test p-value. The Table 27 shows
the power effect for each metric. For more details regarding to cliff’s (6), magnitude and
Cohen’s d, see Appendix 8 Tables 52 and 53.

Tabela 26 — Resutls from the comparison between CC vs AOP.

Techniques CBC DIT
Techniques | w | p-value | Rand. p-value | w | p-value | Rand. p-value

TO1 9 | 0.0495 0.0494 7 | 0.2683 0.149

T02 9 | 0.0495 0.0498 7 | 0.2683 0.1494

TO3 9 | 0.0339 0.0499 8 | 0.099 0.1501

T04 9 | 0.0495 0.0497 8| 0.1212 0.1007

TO5 9 | 0.0495 0.0494 8 | 0.1212 0.0994

TO6 9 | 0.0495 0.0491 7 | 0.2612 0.1489

TO7 7 | 0.2752 0.1998 7 | 0.2612 0.1505

T08 9 | 0.0495 0.0499 7 | 0.2612 0.1501

T09 9 | 0.0495 0.05 5| 0.8248 0.5004

T10 9 | 0.0463 0.0496 7 | 0.2612 0.1498

T11 9 | 0.0495 0.0493 7 | 0.2612 0.1498

T12 9 | 0.0495 0.0492 7 | 0.2612 0.1492

T13 9 | 0.0495 0.0493 7 | 0.2612 0.1506

T14 7 | 0.2752 0.2004 7 | 0.2683 0.1504

T15 9 | 0.0495 0.0493 7 | 0.2612 0.1503

Tabela 27 — Power effect for Coupling Metrics.
Techniques CBC DIT
Techniques | (5) of Cliff | Magnitude %’g’;’er (5) of Cliff | Magnitude $e°;’¥er

TO1 1 large 0.8391 0.5556 large 0.0599
T02 1 large 0.8092 0.5556 large 0.0639
T03 1 large 1 0.7778 large 0.3741
T04 1 large 0.6823 0.7778 large 0.1336
TO5 1 large 0.5181 0.7778 large 0.1306
T06 1 large 0.4029 0.5556 large 0.0507
TO7 0.5556 large 0.2 0.5556 large 0.0507
T08 1 large 0.9846 0.5556 large 0.0509
T09 1 large 0.9982 | -0.1111 negligible | 0.0818
T10 1 large 0.9989 0.5556 large 0.0502
T11 1 large 0.9908 0.5556 large 0.0509
T12 1 large 0.9906 0.5556 large 0.0508
T13 1 large 0.9671 0.5556 large 0.0508
T14 0.5556 large 0.0674 0.5556 large 0.0504
T15 1 large 0.5183 0.5556 large 0.1249

AOP vs CC. The data gathered from the analysis revealed two distinct groups:
(i) represents the security techniques solutions in which the CC solution had shown as
superior and (ii) involves the security techniques in which the variability implementation
mechanism had the same effect. All these groups can be viewed in Table 28.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

Security Technique

Coupling

Verify Message Inte-
grity (T1 and T2)

CBC

There is a suggestive evidence that CC imple-
mentation is better for T1 and T2.

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T1and T2.

Verify Storage Inte-
grity (T3)

CBC

There is a suggestive evidence that CC imple-
mentation is better for T3.

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T3.

Maintain Audit Trail
(T4)

CBC

There is a suggestive evidence that CC imple-
mentation is better for T4.

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T4.

Identify intrusion by
behavior (T5)

CBC

There is a suggestive evidence that CC imple-
mentation is better for T5.

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T5.

Authenticate subject
(T6eT7)

CBC

There is a suggestive evidence that CC imple-
mentation is better for T6.

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T7.

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T6eT7.

Authorize subject
(from T8 to T13)

CBC

There is a suggestive evidence that CC imple-
mentation is better from T8 to T13

DIT

There is a suggestive evidence that AOP and CC
results have no statistical significant difference
from T8 to T13.

Manage security in-
formation (T14)

CBC

There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T14.

Continued on next page

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$13

Tabela 28 — Continued from previous page

Security Technique | Coupling

DIT There is a suggestive evidence that AOP and CC
results have no statistical significant difference for

T14.
Hide Data by encryp- CBC There is a suggestive evidence that CC imple-
tion (T15) mentation is better for T15.

DIT There is a suggestive evidence that AOP and CC
results have no statistical significant difference for
T15.

Tabela 28 — Summary table coupling.

The null hypothesis Hy, was rejected considering CBC metric since the CC
implementation showed to be more effective for all studied techniques. It happens since
CC implementation tends to be less coupled than AOP. The coupling in OO solution it is
smaller than AOP implementation since the latter import some classes to implement the
crosscutting concern code.

In the context of DIT metric, there is no difference between AOP and CC im-
plementations. It happened because none of the security techniques implementation
required inheritance during its implementation. It made AOP and CC showed similar
results.

Authorization. Table 29 shows the p-values from the statistical analysis perfor-
med. Based on that, there is a statistically significant difference among the authorization
techniques, which rejects the null hypothesis H, in both AOP and CC implementati-
ons when considering CDC metric. Table 30 shows the power effect, effect size, and
magnitude of each metric. It can be seen in Figure 31 and Figure 32, CC and AOP
implementations had similar results, the only difference is the aspect that now isolates
the code that was scattered. In the context of DIT metric, the authorization techniques
did not show any difference, including maintaining a very similar variation. Regarding to
coupling, the authorization techniques can be ordered as follow, starting from the less
coupled: T8, T11, T13, T12, T9 and T15.

Detect Attack. For both metrics (CBC and DIT), the detect attack techniques
followed the same ordering starting with the lowest CBC for the largest: T03, T02, TO1,
T05, TO4. TO3 had the lowest value, which facilitates the maintenance since its code
are really punctual and its implementation practically does not depend on other classes.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

Coupling Between components (CBC)

200 300 400 500 600
| |

100
|

|
|

TO1 T02 TO3 TO04 TO5 TOo6é TO7 TO8 T09 T10 Ti11 Ti12 T13 T14 Ti15

Figura 31 — Coupling Between components(CBC) for CC.

Coupling Between components (CBC)

100 200 300 400 500 600 700
|

- — -
—_—l—

T T T T T T T T T T T T T T 1
TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 Ti11 T12 T13 T14 T15

0
|

Figura 32 — Coupling Between components(CBC) for AOP.

The techniques T04 and T05 had the highest values in relation to this metric. It happens
since these techniques besides to implement the algorithm responsible for keep track of
user activities (T05), it also evaluates any user change behavior.

Resist Attack. Concerning to CBC metric, the results are similar for both im-
plementations CC and AOP, as well as, they reveled few variation regarding to metric
values. However, T14 shows a different behavior regarding to its variation since, besides
to perform authorization control, it also implements the algorithm responsible to encrypt
security information such as, email, username, and password. This way, depending
on the number of entities to be controlled the higher the number of entities in the SPL

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$18

Tabela 29 — Comparison of Coupling metrics from CC and AOP implementations.

CBC DIT

CC k p-value | Rand p-value k p-value Rand p-value
Among 16.1579 | 0.0064 0 9.3856 | 0.0946 0.0638
Detect Tec. 12.5228 | 0.0139 0.0001 3.4395 | 0.4871 0.5335
Resist Tec. 28.1007 | 0.0009 0 20.3698 | 0.0158 0.0013

w p-value | Rand p-value w p-value Rand p-value

Detect vs Resist | 67.5 0.0001 1 56.5 0 1

AOP k p-value | Rand p-value k p-value Rand p-value
Authorization | 15.7999 | 0.0074 0 8.1062 | 0.1505 0.1319
Detect Tec. 12.7895 | 0.0124 0 12.6799 | 0.013 0.0001
Resist Tec. 27.9692 | 0.001 0 19.8009 | 0.0192 0.0021

w p-value | Rand p-value w p-value Rand p-value
Detect vs Resist | 66.5 0.0001 1 88.5 0.001 0.9997

Tabela 30 — Power Effect, Effect size and magnitude of Coupling metrics.

CBC DIT
Power Effect Power Effect
cC Effect | Size Mag. | eect | Size Mag.
Authorization 1 0.3672 "high" 1 0.2133 | "medium"
Detect 1 0.2846 high 1 0.0782 low
Resist 1 0.6387 | very high 1 0.463 high
Power Effect Power Effect
AP Effect | Size Mag. | Efiect | Size Mag.
Authorization 1 0.3591 high 1 0.1842 | medium
Detect 1 0.2907 "high" 1 0.2882 "high"
Resist 1 0.6357 | very high 1 0.45 high

code the greater the variance. T15 had the lowest values since it only depends on
repository classes. In the context of DIT metric, the results followed the same order
for both solutions CC and AOP starting from T15, T08, T09, T11, T12, T13, T14 and
T10. It happens since the metric calculates the distance from class object/aspect in
the inheritance hierarchy. CC and AOP solutions differ only regarding to crosscutting
concern code. It also explains the variation in the metrics values.

Detect Attack vs Resist Attack. The null hypotheses Hy; was not rejected,
probably influenced by T15 metrics value and T08 and TO9 metric values variation.
Analyzing Appendix 8 from Figures 52 to Figure 55, we can see that detect attack techni-
ques is less costly than resist attack techniques. The classes used to implement detect
attack techniques are less coupled than the classes used in resist attack techniques.

Metrics Analysis. When security techniques do not need inheritance in their
implementations, DIT metrics may not be a good parameter to differentiate these varia-
bility implementation mechanisms since AOP implementation will only differ regarding
to crosscutting concern code. In addition, CBC metric seems to be a good indicator to
differentiate AOP and CC as we can see in the results from Table 28.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $28

5.8.5 Feature Interaction

The feature interaction happens when the behavior of one feature influences
the presence of another feature or a set of features (APEL et al., 2013). In our work,
this interaction can happen between security tactics and techniques, as well as, other
quality attributes (such as, availability) and functional features.

Based on the implementations and the purpose of each security technique
more than one security technique can be used in the same software product except
that techniques which have more than one implementation, such as verify message
integrity (T1 and T2), Authenticate subject (T6 and T7) and Authorize subject(from T8 to
T13). Regarding to feature interaction between security techniques, there is an implicit
relationship between authorize subject and authenticate subject techniques, since to
authorize you need to identify and authenticate a subject (user). This way, the authorize
subject techniques need to interact with one authenticate subject technique.

Considering the interaction between quality attributes there are some scenarios
in which this relation can be observed. In general, recovering security tactics share
many techniques as availability since in both scenarios they involve returning the
system to a consistent state prior to any attack (BASS; CLEMENTS; KAZMAN, 2012).
Another scenario in which some tradeoffs can happen is during the intrusion by behavior
identification (T5), verify message integrity (T1 and T2) and Hide data by encryption
(T15). The algorithm used to identify the intrusion can influence system performance
since it needs to analyze a considerable amount of data or even use an intelligent
algorithm to learn based on the user previously executions. The same happens to
verifying message integrity (T1 and T2) and Hide data by encryption (T15) in which
the cryptography algorithm can influence in system performance, maintainability and
complexity.

5.9 Main Findings

As discussed in the previous section, it is not surprising that there are some diffe-
rences regarding to security techniques and the variability mechanisms implementation.
This was expected, but the results from the analysis illustrated other points that should
be taken into account when implementing security techniques:

e The use of Facade design pattern may facilitate the implementation of security
techniques such as: TO1, T02, T04, T05, T13 and T14. Considering the CC
implementations it facilitates since most of the code will be concentrated inside
the facade class. Regarding to AOP implementation, it facilitates since the
crosscutting technique code will be concentrated inside the aspect.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$23

e SPL code modularity can influence the results of some metrics, such as CDLOC,
Scattering, CDC and CBC. It happens when the security techniques had its
code spread over different classes and packages. The less the code of the line
is modularized the less the code of the technique will be spread by different
classes.

e The Scattering metric shows to be more sensible than CDLOC metric since
CDLOC calculates the scattered code by considering blocks of crosscutting
concerns code, while Scattering counts each line of code.

¢ NOA metric seems to be a bad choice to differentiate AOP and CC implemen-
tations since the use of intertype declarations leaves the code very similar in
relation to AOP and CC solutions.

e The results from the analysis of the three experiments reinforce the advantages
of AOP regarding to Separation of concern metrics.

e The number of screens to be managed by access control has a greater impact
on conditional compilation when implementing authorization techniques. This
may be greater for T11 in which the code should consider timeout on different
system screens.

e The use of encryption on code level on techniques T1, T2, T14 and T15 increases
the implementation complexity. Part of this complexity can be decreased when
the database offer and manages encrypt data.

e The Session Pattern (T11) can be more complex than other authorization techni-
ques as the number of system screens increases since a screen timeout should
be set on each system screen.

e The metrics which had the greatest impact regarding to the different SPL code
were: LCOO, DIT, WOC, Scattering, CDLOC and CDC. It happens due to the
number of different entities used in each SPL. Even with the variation, a pattern
can be found in the results as explained in the previous section.

In order to summarize our main findings to provide a more engineering view about
it, we built the conceptual map presented in Figure 33. We believe that it is a starting
point towards the definition of a decision model. More studies are necessary in order
to identify and confirm the existing difference between the security techniques and the
variability implementation mechanisms and provide a base to define a decision model.
It shows the results regarding to the different between CC and AOP implementations
when exists a statistical difference between them.

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $23

— LOC -> T1(CC); T2(CC); T3(CC); T4(AOP); TS(AOP);

— NOA -> No difference.
SIZE —

— WOC -> T2(cC); T3(CC); T15(CC);
L, ys -> TI(CC); T2(CC); T3(CC); TA(CC); T5(CC); T6(CC); T7(CC);
T8(CC); T9(CC); T11(CC); T12(CC); T13(CC); T14(CC); T15(CC);

— CDC -> T14(AOP);

SoC — CDO -> T1(AOP); T2(AOP); TA(AOP); T13(AOP);
oC —
—— CDLOC -> T1(AOP); T2(AOP); T3(ACP); T4(AOP); T13(AOP);

T1{AOP); T2(AOP); T3(AOP); T4(AOP); TS(AOP); T6(AOP); T7(AOP)
T8(AOP); T9(AOP); T10(AOP); T11(AGP); T12(AOP); T13(AOP); T14(AOP)
T15(AOP);

— Scattering ->

Cohesion — CDLOC -> T10(AOP);

CBC -> T1(CC); T2(CC); T3(CC); T4{CC); T5(CC); T6(CC); T8(CC);
Coupling { T9(CC); T10(CC); T11(CC);T12(CC); T13(CC); T15(CC)
DIT -> Nodifference.

Figura 33 — A conceptual map summarizing the results would be useful for researchers
and practitioners.

5.10 Threats to Validity

There are some threats to the validity of our results, briefly described along with
the mitigation strategy for each are.

Metrics Selection: There are a variety of metrics to analyze maintainability as
stated by (SARAIVA et al., 2015). This large amount of metrics brings many challenges
to researchers and practitioners, such as scattered descriptions, lack of information
regarding to what they measure and how and metrics with the same name but measure
different attributes (SARAIVA et al., 2015). To mitigate these threats we choose a set of
already empirically validated metrics (SANT’ANNA et al., 2003; GARCIA et al., 2005;
KULESZA et al., 2006a; GREENWOOD et al., 2007; FIGUEIREDO et al., 2008; EADDY
et al., 2008; FIGUEIREDO et al., 2009; DANTAS; GARCIA, 2010) to be used in our
study.

Metrics Tools: From a practical point of view, software engineers need to be
aware that the metrics are tool dependent, and that these differences are a threat to the
study results (LINCKE; LUNDBERG; LOWE, 2008). In order to mitigate this threat most
of the metrics were collected by a weel-known metric tools and recommended by other
researchers in their studies.

Metric Extraction: When the metric had to be partially extracted manually
for AOP implementations, they were checked twice, by an M.Sc and Ph.D. student.
Moreover, A metric was collected for all releases so that another metric could be
collected. In this way, we were able to maintain the same pattern and procedure in data
collection to avoid any mistake or extraction errors. Finally, Python scripts'® were also

16 Available at: <https:/github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts>

https://github.com/pamsn/RiSEEventSPL/tree/master/pythonscripts

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$23

used to extract the data, as well as, crosscheck the metric tools outputs. We believe
that these operations were useful to minimize any bias potentially introduced in the data
extraction process.

SPL TestBeds: In order to perform the maintainability analysis and implement
to different security techniques, it was required construction to different TestBeds. Our
work considered three different tests beds being one developed by the author of this
thesis and the other two developed by different students with a different background.
The threat regarding to the development was partially mitigated by asking different
students to implement and the threat regarding to the number of tests beds was partially
mitigated by implementing three test beds.

TestBeds Refactoring: Some code refactoring were necessary to be performed
in order to allow the implementation of the security techniques in all SPL domains. For
example, during the Store SPL development, an authentication mechanism to control
the user access was implemented by the students. As the authentication is one of the
security techniques evaluated by our study, it needed to be removed. Thus, the user
access code was removed, and a refactoring was performed both in the SPL code and
database scripts.

TestBeds Testing: Although the SPL has been tested throughout the develop-
ment process, the code has not undergone a test phase which may have left implemen-
tation errors. These bugs may have been propagated as security techniques have been
implemented.

Architectural and Implementation Style: It happens due to learning and fati-
gue effects experienced by the participants. The learning effect was mitigated adopting
the procedure to spread corrections and refactoring for all already implemented security
techniques. This way, as the maturity level of the developer (researcher) increased,
refactoring was performed in all releases accordingly. In addition, the way in which the
security techniques were developed was checked by another Ph.D. researcher.

Security Technique Implementation: Different security metrics were selected
to be implemented in different SPL domains (TestBeds). As previously mentioned, there
is a semantic gap between the tactics description and the way used to implement it.
In order to mitigate this threat, the class diagram was used to support the tactic and
techniques implementations.

Trade-offs Analysis: Our study was performed considering the security point
of view without analyzing how they impact on different quality attributes, such as
performance and availability.

Statistical Analysis: The statistical analysis was performed using mainly non-
parametric tests that do not assume data normality and are also well-suited for use

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $28

on small samples (HADAR et al., 2013). Moreover, the randomization test was used
in order to confirm the methods precision and reliability. In addition, a strength p-value
scale was used in order to show how strong are the conclusions, the power effect of
statistical methods used in the study was also shown.

Randomization test: Although the randomization test was used to confirm the
statistical methods precision, the main disadvantage of this test is that the conclusions
obtained are restricted to each set of data and type of problem, and it is not possible to
generalize to the population (VIOLA, 2007)

Data Aggregation: Another concern related to the conclusion validity in this
research is the analysis and interpretation of the data aggregated from all three experi-
ments. The motivation for this aggregation is that while each experiment was performed
using one SPL, aggregating data to include results obtained from the implementation
of each security techniques in each SPL, it contributed to the statistical robustness of
the conclusions. However, aggregating data from different security technique imple-
mentation may threat validity due to the way in which the SPLs were developed. This
threat was mitigated in this research by selecting different test beds in different domains.
Moreover, the results obtained in the three experiments were similar in their direction,
and the only difference (if any) was in the metric values, which is to be expected when
using different SPLs.

It is important to mention that although some action was undertaken to miti-
gate the threats they continue to exist to a greater or lesser extent. New studies are
recommended to reinforce our results.

5.11 Related Work

In this section, we provide an overview of some related work.

The authors in (GEORG; FRANCE; RAY, 2002) described how design-level
aspects can be used to encapsulate security concerns that can be woven into models of
software design. The authors limited the study analyzes the impact of security concerns
on other functional concerns. In addition, it was performed at design level using a toy
example, without considering the impact at the code level, how it interferes in quality
attributes or even another variability implementation mechanism.

The authors in (D.; M.; C., 2006), compared several security patterns (Authoriza-
tion and Authentication) following an approach for describing the security degree of the
patterns, and indicating a fulfillment or not of the properties and attributes common to
all security systems. The study evaluated different ways to implement the authorization
patterns and qualitatively assessed the patterns regarding to availability, auditability,
performance, confidentiality, and so on. The study is restricted to a qualitative analysis

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $25

of these patterns regarding to most commonly used attributes and security properties in
the security domain.

In (DANIEL; EDUARDO; MARIO, 2010), the authors defined a security require-
ment framework to support the development of security SPLs and their derived products.
They considered the most relevant security standards with regard to the management of
security requirements. Then, the process was formally specified with SPEM 2.0 and the
repository was specified with an XML grammar. The authors did not consider neither
design nor implementation, as well as, did not evaluate the impact on quality attributes.

(AYED et al., 2013) described how to manage security policies within distributed
systems based on the Aspect-Oriented Approach. The authors showed how the security
policies are modeled and how an interpreter module is able to manage and use the
knowledge derived from the policies. In addition, it also makes the link between the
knowledge defined by the policy interpreter and the aspect generation module which
gives the set of aspects to be defined and then weaved. Although to consider security
and aspect-oriented approach the authors did not performed a qualitative analysis
regarding the impact of such aspect on quality attributes.

In (GAIA et al., 2014), the authors investigated whether the use of aspects and
features, through Aspectual Feature Modules (AFM) approach, facilitates the evolution
of SPLs. They used two SPLs in which four different variability mechanisms were
applied, such as: (i) feature modules aspects and aspects of refinements of AFM,
(ii) aspects of aspect-oriented programming (AOP), (iii) feature modules of feature-
oriented programming (FOP), and (iv) conditional compilation (CC) with object-oriented
programming. Next, metrics for change propagation and modularity were calculated
in the context where the SPL has been evolved with addition and modification of
crosscutting concerns. In (FERREIRA et al., 2014), the authors also investigated how
FOP, conditional compilation and object-oriented design patterns impacts on change
propagation and modularity when used to implement crosscutting concerns in two
different SPLs. Both studies there is no quality attributes assessment, the studies
analyze how different variability implementation mechanisms impact on modularity
throughout functional features evolution.

In (MYLLARNIEMI, 2015), the authors investigated why and how to vary quality
attributes in SPL. Instead of focusing on how to represent quality attribute variabili-
ties, they focused on understanding the phenomenon of how specific quality attributes
vary. Thus, they conducted a systematic literature review (MYLLARNIEMI; RAATIKAI-
NEN; MANNIST6, 2012) on quality attribute variability, and performed two case studies
(MYLLARNIEMI; RAATIKAINEN; M&ANNIST6, 2006; MYLLARNIEMI; RAATIKAINEN;
M&ANNISTS, 2015) on performance variability, and constructed a design theory and
artifacts addressing security variability. Compared to our study, the authors focused on

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY $26

understanding how some attributes of quality vary and based on the results of two case
studies the authors constructed an approach that considers modeling such attributes still
in the design phase. No comparison is made between these different ways of variation
nor how they can impact on the code.

In (RYOO; KAZMAN; ANAND, 2015), the authors combine architectural analy-
sis techniques based on tactics, patterns, and vulnerabilities in order to understand
how to create a secure architecture. They proposed three novel approaches to ar-
chitectural analysis for security: vulnerability-oriented architectural analysis (VoAA),
patterns-oriented architectural analysis (PoAA), and tactic-oriented architectural analy-
sis (ToAA). The authors did not evaluate the impact of such security in the architecture
or code, neither provide evidence or any assessment regarding how to implement (code
level) security.

In (HORCAS; PINTO; FUENTES, 2016), the authors provided means for software
architects to focus only on application functionality, without having to worry about
functional quality attributes. It is achieved by modeling quality attributes separately
from the application functionality using SPL approach. This way, they defined a generic
process to model and automatically inject quality attributes into the application without
breaking the base architecture. It is important to mention that the authors did not provide
any information regarding to how to implement (code level) the quality attributes neither
their quantitative assessment.

(CERVANTES et al., 2016), recognized that the architecture alone is insufficient,
just as coding or process alone is insufficient to ensure secure software. In order to
support the assertion that frameworks are essential to a secure system, they studied
three industrial projects and one open source project to gather empirical evidence about
security practices. The analysis aimed to understand how secure these systems were,
how difficult and costly it was to create the security controls, and how much it would
cost to maintain them in the future. Despite to evaluate the trade-off space between
the costs and benefits of different architectural approaches to security, the study did
not indicate how the tactics were implemented in each case study, as well as did not
evaluate through code metrics the security maintenance.

5.12 Conclusion

In this chapter, we presented the results of a family of experiments regarding to
implementation of security techniques in SPL architectures.

Initially, we provided a way to implement at code level different security tactics
reducing the existing gap between security tactics and their implementation. Next, the
security techniques were assessed and classified regarding to maintainability (size,

Capitulo 5. ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALY$23

separation of concerns, coupling, and cohesion). Finally, the conditional compilation
and aspect-oriented programming were also evaluated in order to understand which
variability mechanism are less costly regarding to maintainability. In addition, to be an
important step in the maturation of the research area, it also provides important design
decision which has its cost decreased the sooner the decision is taken.

According to the analysis performed from the aggregation of the results from
the three experiments, in general, AOP implementation had better results regarding
to separation of concerns, while conditional compilation had better results for size
and cohesion. The coupling internal attribute had similar results for both variability
mechanisms. In the tactics perspective, detect attack techniques are less costly than
resist attack techniques regarding to maintainability. The detect attack techniques
obtained better results for all internal attributes.

Regarding to the implementation the use of facade pattern facilitates the imple-
mentation of techniques to verify message integrity, maintain audit trail and identify
intrusion by behavior since this pattern concentrates most of the system functionalities in
one class. The authentication techniques are less costly than authorization techniques
since besides the user control, the authorization techniques also manage the objects
(functionalities) control. Finally, our results may provide important insights and evidence
towards the choose of the most suitable technique to implement security at SPL archi-
tectures with respect to low impact on maintainability. Although we identified important
evidence, future studies are required to increase the reliability and generalization of this
evidence.

5.13 Chapter Summary

A useful way to achieve secure systems is based on tactics, the design decisi-
ons that influence the achievement of quality attribute response (BASS; CLEMENTS;
KAZMAN, 2012). All these decisions should be considered in early design phases since
wrong decisions can impact on the overall project and increase its cost.

In this Chapter, three experiments were carried out in order to understand
the impact of security techniques on maintainability with respect to size, separation
of concerns, coupling, and cohesion. It described possible ways to implement each
security technique using aspect-oriented programming and conditional compilation.
Moreover, our results also show that some metrics may not be adequate to assess the
maintainability of security techniques. While even these results are not enough to define
a decision model, it might be used as evidence towards its definition.

Next Chapter presents the conclusions and future work of this thesis.

128

6 CONCLUSION AND FUTURE WORK

Software Product Lines practices in industry have decreased implementation
costs, reduced time-to-market and improved product quality (CLEMENTS; NORTHROP,
2001). However, all these benefits do not come for free, they demand planed and mana-
ged reuse, adequate practices for its management and development of commonalities
and variabilities, and being capable of dealing with technical and organizational issues.
The common and variable properties of the SPL are managed into a rational, though and
complex environment. The organization of such properties must enable the derivation
of different products through a Product Line Architecture to enable organizations to
respond quickly to a redefined mission or to new and changing markets (DIKEL et al.,
1997).

Nowadays, with the increasing number of service-oriented applications and a
large amount of user data to be managed remotely, it is even more important that the
SPL architecture holds security requirements. This security is considered a cross-cutting
concern affected by a wide range of architectural decisions, that must be addressed
earlier to avoid costly changes in the future. In this context, the most suitable archi-
tecture approach to address security is based on tactics, basically defined as design
decisions (FERNANDEZ; ASTUDILLO; PEDREZA-GARCIA, 2015). Although design
tactics are considered an important approach to improve system quality factors (BASS;
CLEMENTS; KAZMAN, 2012), there is a lack of studies regarding how to implement
this design decisions and the impact on maintainability. Besides, evidence regarding to
the difference of the most suitable way to implement security techniques.

Hence, this present work is an attempt to fix this gap, by providing insights and
evidence in order to define a decision model to support software architects on design
decisions, based upon architectural design knowledge. It can also be useful for compa-
nies developing product lines in which security is an important quality attribute, since
security aspects should be treated in early phases, otherwise its cost can overcome the
defined budget.

In order to achieve it, three SPL test beds were developed in different domains
using different groups of developers. Next, the security techniques were implemented
using conditional compilation and aspect-oriented programming as variability mecha-
nism resulting in 90 different versions. After that, eleven metrics were used to assess
maintainability through complexity, modularity, understandability, and flexibility. Finally,
a family of experiments was performed in order to evaluate and better understand the
most suitable variability mechanism to implement SPL security, as well as, classify the
existing security tactics and techniques regarding their impact on complexity, modularity,

Capitulo 6. CONCLUSION AND FUTURE WORK 129

understandability, and flexibility.

According to the assessment, the aspect-oriented solution presented better
results for modularity, understandability, and flexibility since it improved separation
of concerns and cohesion. It is important to mention that the difference was not big
enough to justify its use. Although it had better results in separation of concerns and
cohesion, the conditional compilation showed to be less complex and considering size
and coupling easier to understand. Regarding the engineering point of view, these
differences can not justify the use of aspect-oriented programming to implement security
in SPL since the cost to train the developers can overcome its benefits. It is reinforced
by the three experiments results since for all test beds the results followed the same
pattern.

Nonetheless, we understand that other domains with different architecture styles
could be used in order to assess the application of the security techniques in SPL.
It means that other experiments could improve our results and provide more conclu-
sive results. Another aspect to be considered is the maintenance point of view, the
experience gained during the implementation of the techniques and further evaluation
provide important insights regarding the less costly maintenance to aspect-oriented
programming.

The remainder of this chapter is organized as follows: Section 6.1, the concluding
remarks are presented. Section 6.2 we sketch the main contributions achieved so far
with this investigation. Finally, Section 6.3 discusses future research directions.

6.1 Concluding Remarks

The study analyzed different ways to implement software security tactics consi-
dering three SPLs implemented in different domains. It also analyzed how the security
techniques are distributed regarding to maintainability when implemented using con-
ditional compilation and aspect-oriented programming as variability implementation
mechanisms.

The test beds are important to research since it allows the assessment of new
techniques, processes, approaches and so on. It is also essential in studies replica-
tions and generalization. In this context, our test beds did not use any development
framework since its use can be considered a constraint for other researchers especially
when working with metrics extraction. In addition, the test beds developed in our work
considered different domains, technology, and code size.

The SPLs were developed by different students, while the security techniques
were developed by the author of this thesis in order to minimize any threat regarding
to different programming styles. Although some data showed a significant difference,

Capitulo 6. CONCLUSION AND FUTURE WORK 130

this difference cannot be greater enough to advocate or justify the use of conditional
compilation against aspect-oriented programming.

The Mann-Whitney-Wilcoxon and Kruskal-Wallis methods when purely applied
during the hypotheses testing were not sensible enough to show the differences, for
this reason, the randomization test was used. It provided a more sensible comparisons
allowing us to draw concrete conclusions about which solution is better. We believe that
the sample size was a possible reason for the need to apply randomization tests. The
Mann-Whitney Test, for instance, has little power with small samples and will always
give a p-value greater than 0.05 no matter how much the groups differ.

The quantitative analysis showed some differences between authorization sub-
ject techniques, with the Authorization Pattern (T8) technique being the least costly
and Multilevel Security Design Pattern (T10) being the most costly when evaluating
maintainability. When evaluating the maintainability cost between detect a attack and
resist attack for both variability implementation mechanisms, detect attack is less costly
than resist attack.

6.2 Main Contributions

The main contributions of this thesis can be summarized as folllows:

e Test Beds. Three test beds were developed considering the JAVA programming
language and desktop user interface. It is important to mention that none of
them makes use of SPL development frameworks which can allow researchers
to use it without needing to learn about a specific framework. In addition, it also
allows existing metrics tools to extract code parameters with no interference of
frameworks characteristics. These test beds have a considerable size and were
build considering different developers reducing any bias. As consequence, these
test beds are being used by the overall research group and has been essential
to establish external research collaborations.

e Security Techniques implementation. As previously mentioned, it is important to
map the tactics, their respective techniques and the way in which these techni-
ques are realized on software. It is considered an important step to reduce any
misunderstanding regarding to how to implement a security technique providing
support to software architecture decisions. Our study can be considered an initial
attempt in order to reduce this misunderstanding by providing the techniques
and how they can be implemented in SPL code.

e Family of Experiments. We performed three experimental studies considering
the test beds and the application of each security technique. These studies

Capitulo 6. CONCLUSION AND FUTURE WORK 131

yielded important insights regarding to the most suitable way to implement
software security in SPL considering two variability implementation mechanisms,
aspect-oriented programming, and conditional compilation.

Regarding to academic contributions, this thesis generated the following paper:

e RIiSE Events - A Testbed for Software Product Lines Experimentation. Published
at: The First International Workshop on Variability and Complexity in Software
Design.

6.3 Future Work

Due to time constraints and complexity involved to provide the material necessary
to perform the research, this work can be seen as an initial research towards to find the
most suitable way to implement software security in SPL. Thus, the following issues
should be investigated as future work:

e Test Beds. Our study was restricted to three test beds, it is important to perform
the same assessment in a greater variety of test beds, considering different
domains, architecture styles, and sizes. It can provide better insights regarding
to the influence that the SPL code has on the implementation of the security
techniques.

e Software security evolution. The evolution regarding to a new cryptography
algorithm, the change of authentication mechanisms such as: biometric, magnetic
card or even a new way to manage the user authorization in the system can
have a huge impact on the SPL. It is important to understand the impact of those
changes to provide guidelines to the architects responsible for software security.
In addition, it is important to know which variability implementation mechanisms
is most suitable considering the maintenance and evolution costs.

e Security Degree. Even subjective it is important to define a set of criteria to
evaluate the security techniques regarding to its security degree (e.g., Low,
Medium and High). It provides important insights to software architects to decide
the most suitable way to implement software security, considering its impact on
maintenance aspects and security degree (D.; M.; C., 2006).

e Combination of Security Techniques. The combination of security techniques
can also be adopted in order to achieve a better level of security. This way, it is
important to understand how these security techniques can be combined and
how the combination influence on SPL maintenance.

Capitulo 6. CONCLUSION AND FUTURE WORK 132

e Mapping among tactics, techniques and their implementation. Although this work
partially addressed this issue, it is important to define guidelines or patterns for
implementation of security tactics. It can reduce the errors generated by different
interpretations given to each of tactic and technique descriptions.

e Variability Mechanisms. The experiments were restricted to two variability me-
chanisms that are among the most suitable to implement SPL variability. Indeed,
the consideration of other mechanisms such as Object Orientation and Dynamic
class loading would enrich the current results.

e Qualitative Analysis. A survey with experts is an important step to qualitative
analysis the security techniques and the variability implementation mechanisms.

e Dynamic SPL Analysis. The evaluation of security techniques on dynamic SPL
can provide important insights regarding to how the context may influence on
software security options.

133

7 TESTBED DATA

ID

Tabela 31 — Functional Properties.

Description

F1
F2

F3

F4
F5

Fé
F7
F8
F9
F10
F11

F12
F13
F14
F15
F16
F17
F18
F19

F20
F21
F22
F23
F24

F25
F26

F27
F28

F29
F30
F31

F32
F33
F34

Speaker: it aims to describe the people responsible for talks during different activities.

Organizer: It aims to describe the people responsible for organizing the event activities. It can assume different
roles such as: General Chair, Program Chair, Workshop Chair, Tutorial Chair, Proceedings Chair and Panel
Chair.

Reviewer: It describes the people responsible for reviewing the manuscripts submitted to the event main track,
as well as, their workshops.

Event Program: This feature generates the event program, composed of activities and its respective schedules.
Event Important Dates: It generates the event important dates, such as: Abstracts, Full papers, Notifications
and so on.

Activity Workshop: It enables the creation and management of workshop tracks.

Activity Tutorial: It enables the creation and management of tutorials.

Activity Panel: It enables the creation and management of panels.

Activity Course: It enables the creation and management of courses.

Activity Main Track: It enables the creation and management of event main track.

Round of Review: The manuscript review can happens in different rounds (reply and rejoinder), enabling the
interaction between authors and reviewers.

Simple Review: The manuscript only receives one review which is sent to the authors.

Registration - User/Activity: It enables the user registration in event activities.

Registration - Speaker/Activity: it enables the speaker registration in some event activities.

Registration - Organizer/Activity: it enables the organizer registration in some event activities.

Frequency per Event: it generates the list of participants per event.

Frequency per Activity: it generates the list of participants per activity.

List of Authors: it generates the list of authors per event, to enable the proceedings generation.

Checking Copy: it enables the option to print a checking copy to show that a given participant was in a specific
activity.

Certificate: it prints a certificate regarding to presentation, participation, organization and so on.

Payment in Cash: it enables the payment in cash.

Payment Deposit: it enables the deposit payment.

Payment Credit Card: it enables the credit card payment.

Partial Submission: it enables the submission of abstracts and after a defined date, the system enables the
attachment uploading.

Complete Submission: it enables the abstract and attachment submission.

Assignment Chair Indication: it enables the program chair to choose which manuscript will be reviewed by
which reviewer, considering its conflict of interest.

Automatic Assignment: the system automatically assign the manuscripts to their reviewers.

Automatic Conflict of Interest: during the manuscripts assignment, the conflict of interest is automatically
solved. It indicates which reviewers cannot review a specific manuscript, based on the reviewer knowledge
and authors filiation.

Notification Deadline: it notifies the reviewers about the review due date.

Notification Acceptance/Rejection: it notifies the authors about the manuscript reviews results.

Notification Paper Assignment: it notifies the reviewer about which are the manuscripts that they should
review.

Authors: it enables the insertion of authors that are not necessarily registered in the system.

Bugs: it enables the system users to raise change request to the system support.

Receipt: it enables the generation of participants receipts for different event activities.

Tabela 32 — Data set of RiSE Event SPL vs. Security Techniques vs. Conditional Compilation.

RiSE Event SPL Ne of Classes

Ne of Interfaces

Ne of Methods

Ne of Static Methods

Ne of Static Attributes

Ne of Attributes

Ne of Parameters(Value)

Base 496 20 1493 180 199 737 1219
T1 503 21 1514 190 200 743 1247
TO1 503 21 1514 190 200 743 1247
T02 503 21 1509 183 202 743 1234
T03 498 20 1493 182 199 737 1225
T04 519 22 1560 192 207 770 1288
T05 519 22 1550 194 208 765 1279
TO6 516 21 1545 191 206 764 1273
T07 517 21 1547 192 206 766 1277
TO8 534 23 1609 195 211 779 1328
T09 551 25 1678 197 215 795 1378
T10 587 29 1785 207 230 822 1452
T11 535 23 1609 197 212 779 1329
T12 537 28 1614 195 211 780 1328
T13 539 24 1628 198 212 788 1348
T14 553 25 1699 220 226 807 1434
T15 498 20 1514 207 210 749 1279
TO1- BASE 7 1 21 10 1 6 28
T02- BASE 7 1 16 3 3 6 15
T03- BASE 2 0 0 2 0 0 6
T04- BASE 23 2 67 12 8 33 69
T05- BASE 23 2 57 14 9 28 60
T06- BASE 20 1 52 11 7 27 54
T07- BASE 21 1 54 12 7 29 58
T08- BASE 38 3 116 15 12 42 109
T09- BASE 55 5 185 17 16 58 159
T10- BASE 91 9 292 27 31 85 233
T11- BASE 39 3 116 17 13 42 110
T12- BASE 41 3 121 15 12 43 109
T13- BASE 43 4 135 18 13 51 129
T14- BASE 57 5 206 40 27 70 215
T15- BASE 2 0 21 27 11 12 60

vIva d391S31 Z oinyded

Vel

Tabela 33 — Data set of RiSE Event SPL vs. Security Techniques vs. AspectJ.

RiSE Event SPL

Ne of Classes

Ne of Interfaces

Ne of Methods

Ne of Static Methods

Ne of Static Attributes

Ne of Attributes

Ne of Parameters(Value)

Base 496 20 1493 180 199 737 1219
TO1 505 21 1530 190 200 743 1262
T02 505 21 1525 183 202 743 1249
TO3 499 20 1495 182 199 737 1226
TO4 522 22 1578 193 210 771 1305
T05 522 22 1569 195 211 766 1298
TO6 518 21 1561 192 209 765 1288
T07 519 21 1565 193 207 763 1293
T08 538 23 1619 196 214 780 1345
T09 555 25 1697 198 218 796 1395
T10 591 29 1806 208 233 823 1471
T11 539 23 1628 198 215 780 1346
T12 541 23 1633 196 214 781 1345
T13 543 24 1649 199 215 789 1367
T14 557 25 1718 225 229 808 1455
T15 499 20 1584 207 210 749 1447
T01- BASE 9 1 37 10 1 6 43
T02- BASE 9 1 32 3 3 6 30
T03- BASE 3 0 2 2 0 0 7
T04- BASE 26 2 85 13 11 34 86
T05- BASE 26 2 76 15 12 29 79
T06- BASE 22 1 68 12 10 28 69
T07- BASE 23 1 72 13 8 26 74
T08- BASE 42 3 126 16 15 43 126
T09- BASE 59 5 204 18 19 59 176
T10- BASE 95 S 313 28 34 86 252
T11- BASE 43 3 135 18 16 43 127
T12- BASE 45 3 140 16 15 44 126
T13- BASE 47 4 156 19 16 52 148
T14- BASE 61 5 225 45 30 71 236
T15- BASE 3 0 91 27 11 12 228

vIva d391S31 Z oinyded

Gel

Capitulo 7. TESTBED DATA 136

ID

Tabela 34 — Functional Properties.

Description

F1
F2
F3
F4
F5
F6
Fé
F7
F8
F9
F10
F11
F12
F13
F14

F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32
F33
F34
F35
F36
F37
F38
F39
F40

User notification: it aims to notify the users regarding different actions.

Insert User: it aims to insert different users in the system.

Remove User: it aims to remove users from the system.

Update User: it aims to update different users attributes.

Change User Account: it aims to change a user among different users permission groups.
User Status: it shows the user status in the system.

User profile display: it shows the user profile information previously stored in the system.
Insert Product: it aims to add different products in the system.

Remove Product: it aims to remove products from the system.

Update Product: it aims to update different product attributes.

Sell Product: it is responsible to sell the product and all the tasks impacted with the sale of that product.
Product Visualization: it works such as a showcase with all products available to sell.

Buy Product: it is responsible for all functionalities involved to buy products to replenish stock.
Product Search: it is used to search different products in the system store.

Insert suggestion: it is used to the customer or user insert any suggestion to be futher considered by the
company.

Reply suggestion: it is used to send a reply to the customer or user which make a suggestion.
Remove suggestion: once the suggestion is aswered it can be removed from the system.
Shopping Cart: it allows the customer to group different products to make the purchase.
Remove Product from Shopping Cart: it removes the selected product from the shopping cart.
Insert Product from Shopping Cart: it adds the selected product to the shopping cart.

Buy: once the products were inserted in the shopping cart, the users can now proceed to buy all of them.
Payment in cash: it enables the payment in cash.

Debit: it enables the deposit payment.

Credit: it enables the credit card payment.

Receipt: it enables the generation of customer receipts, for different event buys.

Discount it allows the store to generate different discounts.

Tracking it allows the customer to keep track of all products bought in the store.

Insert FAQ: it aims to add different frequent asked questions in the system.

Remove FAQ: it aims to remove frequent asked questions from the system.

Update FAQ: it aims to update different frequent asked questions attributes.

Search FAQ: it aims to search different frequent asked questions.

List FAQ: it list all frequent asked questions already stored in the system.

Insert Bugtrack: it aims to add different bug reports in the system.

Remove Bugtrack: it aims to remove bug reports from the system.

Update Bugtrack: it aims to update different bug reports attributes.

Search Bugtrack: it aims to search different bug reports.

Insert Category: it is used to group the store products in different categories.

Remove Category: it enables the manager to remove product categories.

Update Category: it enables the manager to update product categories attributes.

Search Category: it enables the customers to search different product categories.

Contact us: it works as a communication channel between costumer and system store.

Tabela 35 — Data set of RiSE Store SPL vs. Security Techniques vs. Conditional Compilation.

RiSE Store SPL Ne of Classes Ne of Interfaces Ne of Methods Ne of Static Methods Ne of Static Attributes No of Attributes Ne of Parameters(Value)
Base 74 1 437 6 72 219 318
TO1 81 2 475 16 73 224 363
T02 81 2 465 9 75 224 337
TO3 76 1 436 8 72 218 325
T0o4 96 3 560 19 80 250 438
TO5 96 3 541 20 81 245 420
TO6 93 2 531 17 79 244 408
TO7 94 2 535 18 79 247 415
T08 110 4 646 22 84 258 506
TO9 127 6 774 24 88 274 598
T10 161 10 968 34 103 299 731
T11 111 4 646 24 85 258 508
T12 113 4 657 22 84 259 508
T13 115 5 683 25 85 267 545
T14 129 6 816 47 99 286 711
T15 76 1 479 33 83 231 438
TO1- BASE 7 1 38 10 1 5 45
T02- BASE 7 1 28 3 3 5 19
T03- BASE 2 0 -1 2 0 -1 7
T04- BASE 22 2 123 13 8 31 120
TO5- BASE 22 2 104 14 9 26 102
TO06- BASE 19 1 94 11 7 25 90
TO7- BASE 20 1 98 12 7 28 97
TO08- BASE 36 3 209 16 12 39 188
T09- BASE 53 5 337 18 16 55 280
T10- BASE 87 9 531 28 31 80 413
T11- BASE 37 3 209 18 13 39 190
T12- BASE 39 3 220 16 12 40 190
T13- BASE 41 4 246 19 13 48 227
T14- BASE 55 5 379 41 27 67 393
T15- BASE 2 0 42 27 11 12 120

vIva d391S31 Z oinyded

LEI

Tabela 36 — Data set of RiSE Store SPL vs. Security Techniques vs. AspectJ.

RiSE Store SPL Ne of Classes Ne of Interfaces Ne of Methods Ne of Static Methods Ne of Static Attributes No of Attributes Ne of Parameters(Value)
Base 74 1 437 6 72 219 318
TO1 83 2 497 16 73 225 383
T02 83 2 487 9 75 225 357
TO3 77 1 439 8 72 219 331
T0o4 99 3 565 18 80 251 441
TO5 99 3 546 20 81 246 424
TO6 95 2 534 17 79 245 410
TO7 96 2 538 18 79 247 417
T08 114 4 663 21 84 259 520
TO9 131 6 791 23 88 275 612
T10 165 10 985 33 103 300 734
T11 115 4 663 23 85 259 522
T12 117 4 674 21 84 260 522
T13 119 5 702 24 85 268 561
T14 133 6 833 46 99 287 723
T15 77 1 495 33 83 231 455
TO1- BASE 9 1 60 10 1 6 65
T02- BASE 9 1 50 3 3 6 39
T03- BASE 3 0 2 2 0 0 13
T04- BASE 25 2 128 12 8 32 123
TO5- BASE 25 2 109 14 9 27 106
TO06- BASE 21 1 97 11 7 26 92
TO7- BASE 22 1 101 12 7 28 99
T08- BASE 40 3 226 15 12 40 202
T09- BASE 57 5 354 17 16 56 294
T10- BASE 91 9 548 27 31 81 416
T11- BASE 41 3 226 17 13 40 204
T12- BASE 43 3 237 15 12 41 204
T13- BASE 45 4 265 18 13 49 243
T14- BASE 59 5 396 40 27 68 405
T15- BASE 3 0 58 27 11 12 137

vIva d391S31 Z oinyded

8€l

Capitulo 7. TESTBED DATA 139

ID

Tabela 37 — Functional Properties.

Description

F1

F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
Fa27
F28
F29
F30
F31
F32
F33
F34

Documentation: the lawyers during its activity can search for laws and documents to attach or facilitate the
writting process.

Insert Customer: it aims to insert different customers in the system.

Remove Customer: it aims to remove customers from the system.

Update Customer: it aims to update different customers attributes.

Search Customer: it search for any customer already stored in the system.

Activate/Deactivate Customer: it enables the user to activate/deactivate customers, without losing any data.
Insert Enterprise: it aims to add different companies in the system.

Remove Enterprise: it aims to remove companies from the system.

Update Enterprise: it aims to update different companies attributes.

Activate/Deactivate Enterprise: it enables the user to activate/deactivate companies, without losing any data.
Insert Lawyer: it it aims to insert different lawyers in the system.

Remove Lawyer: it aims to remove lawyers from the system.

Update Lawyer: it aims to update different lawyers attributes.

Lawyer assignment: it is responsible to assign a lawyer to a process/task.

Activate/Deactivate Lawyer: it enables the user to activate/deactivate lawyers, without losing any data.
Report: The user can extract different kind of information by generating reports.

Insert Trainee: it aims to add different trainees in the system and assign it to a lawyer tutor.

Remove Trainee: it aims to remove trainees from the system.

Update Trainee: it aims to update different trainees attributes.

Activate/Deactivate Trainee: it enables the user to activate/deactivate trainees, without losing any data.
Insert Process: it aims to add different process in the system.

Remove Process: it aims to remove process from the system.

Update Process: it aims to update different process attributes.

Process assignment: it is responsible to assign a process to a lawyer and customer.

Schedule it allows the lawyers to build their on agenda/schedule.

Input Finantial it enabels the departament manager to manage input finantials.

Output Finantial: it enabels the departament manager to manage input finantials.

Insert Departament: it aims to insert a new departament/office to be managed by the system.

Send Email: it enables the lawyers to send emails to trainees or customers.

Laws: it generates different reports regarding to law types.

Cash desk: it calculates the finantial based on Input/Output finantials.

Server Configuration: it enables the office to setup its server in different locations.

Backup: it aims to backup all data stored in a specific office.

Restore: it aims to restore all data stored in a specific office.

Tabela 38 — Data set of Law Office SPL vs. Security Techniques vs. Conditional Compilation.

Law Office SPL Ne of Classes No of Interfaces Ne of Methods Ne of Static Methods Ne of Static Attributes Ne of Attributes Ne of Parameters(Value)
Base 116 2 724 10 100 643 595
TO1 123 3 763 20 101 649 645
T02 123 3 753 13 103 649 619
TO3 118 2 722 12 100 643 601
To4 138 4 846 22 108 673 714
TO5 138 4 827 24 109 668 697
TO6 135 3 817 21 107 667 685
To7 136 3 821 22 107 673 692
TO8 152 5 938 25 112 682 783
T09 169 7 1066 27 116 698 875
T10 203 11 1260 37 131 725 1008
T11 153 5 938 27 113 682 785
T12 155 5 949 25 112 683 785
T13 157 6 975 28 113 691 822
T14 171 7 1108 50 127 710 987
T15 118 2 766 37 111 655 715
TO1- BASE 7 1 39 10 1 6 50
T02- BASE 7 1 29 3 3 6 24
TO03- BASE 2 0 -2 2 0 0 6
T04- BASE 22 2 122 12 8 30 119
TO5- BASE 22 2 103 14 9 25 102
T06- BASE 19 1 93 11 7 24 90
TO7- BASE 20 1 97 12 7 30 97
TO8- BASE 36 3 214 15 12 39 188
T09- BASE 53 5 342 17 16 55 280
T10- BASE 87 9 536 27 31 82 413
T11- BASE 37 3 214 17 13 39 190
T12- BASE 39 3 225 15 12 40 190
T13- BASE 41 4 251 18 13 48 227
T14- BASE 55 5 384 40 27 67 392
T15- BASE 2 0 42 27 11 12 120

vIva d391S31 Z oinyded

ovi

Tabela 39 — Data set of Law Office SPL vs. Security Techniques vs. AspectJ.

Law Office SPL Ne of Classes

Ne of Interfaces

Ne of Methods

Ne of Static Methods

Ne of Static Attributes

Ne of Attributes

Ne of Parameters(Value)

Base 116 2 724 10 100 643 595
TO1 125 3 804 20 101 649 670
T02 125 3 794 13 103 649 644
TO3 119 2 727 12 100 643 608
T04 141 4 851 22 108 673 720
T05 141 4 831 24 109 668 702
T06 137 3 820 21 107 667 689
T07 138 3 824 22 107 673 695
T08 156 5 945 25 112 682 792
T09 173 7 897 27 116 697 747
T10 207 11 1271 37 131 725 1025
T11 157 5 945 27 113 682 794
T12 159 5 956 25 112 683 794
T13 161 6 984 28 113 690 833
T14 175 7 1115 50 127 710 996
T15 119 2 799 37 111 655 922
TO1- BASE 9 1 80 10 1 6 75
T02- BASE 9 1 70 3 3 6 49
T03- BASE 3 0 3 2 0 0 13
T04- BASE 25 2 127 12 8 30 125
T05- BASE 25 2 107 14 9 25 107
T06- BASE 21 1 96 11 7 24 94
TO7- BASE 22 1 100 12 7 30 100
T08- BASE 40 3 221 15 12 39 197
T09- BASE 57 5 173 17 16 54 152
T10- BASE 91 9 547 27 31 82 430
T11- BASE 41 3 221 17 13 39 199
T12- BASE 43 3 232 15 12 40 199
T13- BASE 45 4 260 18 13 47 238
T14- BASE 59 5 391 40 27 67 401
T15- BASE 3 0 75 27 11 12 327

vIva d391S31 Z oinyded

34"

142

8 DATA COLLECTION

Capitulo 8. DATA COLLECTION

143

1000 2000 3000 4000

0

1000 2000 3000 4000

0

Lines of Code (LOC)

—
==
== _
(—
— ===
——— —
i — Effﬂ
T ——
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 T08 T09 T10 Ti11 Ti12 T13 T14 Ti5
Figura 34 — Lines of code (LOC) for CC.
Lines of Code (LOC)
=
=
[—
N —
o] —
== _ _
— C==
— = —
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 T08 T09 T10 Ti11 Ti12 T13 T14 Ti5

Figura 35 — Lines of code (LOC) for AOP.

Capitulo 8. DATA COLLECTION 144

Number of Attributes (NOA)

o
‘Cll —
=
o
o —
- —_—
o _]
[ee]
—_—
3 =
—_— —_— —
f —
- —
o | R
(aV}
o —
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti12 T13 T14 Ti15
Figura 36 — Number of attributes (NOA) for CC.
Number of Attributes (NOA)
o
N —_
T —
o
o - -
- m—]
o]
w -
=
S - =
— = =
o _| _ —
¥ = =
o | R
Al

| | | | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 37 — Number of attributes (NOA) for AOP.

Capitulo 8. DATA COLLECTION

145

400 600 800 1000

200

400 600 800 1000

200

Weighted Operations per Component(WOC)

mESm

]
T —

TO2 TO3 T04 TO05 TO6 TO7 TO8 TO9 T10 Ti11 Ti12 T13 T14 Ti5

Figura 38 — Weighted Operations per Compoenent (WOC) for CC.

Weighted Operations per Component(WOC)

TO2 TO3 T04 TO5 TO06 TO7 TO8 TO9 Ti10 Ti11 Ti12 T13 T14 Ti5

Figura 39 — Weighted Operations per Compoenent(WOC) for AOP.

Capitulo 8. DATA COLLECTION

146

40 60 80 100

20

40 60 80 100

20

Vocabulary Size (VS)

TO1

TO2 TO3 T04 TO05 TO6 TO7 TO8 TO9 T10 Ti11 Ti12 T13 T14 Ti5

Figura 40 — Vocabulary Size (VS) for CC.

Vocabulary Size (VS)

TO1

TO2 TO3 T04 TO5 TO06 TO7 TO8 TO9 Ti10 Ti11 Ti12 T13 T14 Ti5

Figura 41 — Vocabulary Size (VS) for AOP.

Capitulo 8. DATA COLLECTION 147

Lack of Cohesion over Operations(LCOO)

o —_
o _| '
o '
@ :
o
o]
o
© e
o)
o |
o T
‘r : -
o E ' E
o _] n ' '
o ' P — 1
« —_ | e
I s e s A B —
== = . . o .
o e—
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 T08 T09 T10 Ti11 Ti12 T13 T14 Ti5
Figura 42 — Lack of Cohesion over Operations(LCOO) for CC.
Lack of Cohesion over Operations(LCOO)
o e
o] Ll
= .
o ;
o]
e
e [—
o I _ I
5] - R —
| HO=
I

| | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 43 — Lack of Cohesion over Operations(LCOO) for AOP.

Capitulo 8. DATA COLLECTION 148

Concern Diffusion over Components(CDC)

o)

o '

« :

o - T T

2 7 - ! : : ! | |

s | o A 5

o ' ' ' ' ' : : - '

o _|] . - — i

U] — —

o
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 T0O7 TO8 T09 T10 T11 Ti12 T13 T14 Ti5
Figura 44 — Concern Diffusion over Components(CDC) for CC.

Concern Diffusion over Components(CDC)

o)

o '

N :

o R — T T T E

SI S — : | : : : !

s | ¢ob T R 5

o ' ' ' ' ' : : N

| . .

T

o

| | | | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 45 — Concern Diffusion over Components(CDC) for AOP.

Capitulo 8. DATA COLLECTION

149

100 200 300 400 500 600

0

200 300 400 500 600

100

Concern Diffusion over Operations(CDO)

—_

= — o | =

—_ _ —_

| | | | | | | | | | | | | | |
TO01 T02 TO3 T04 TO5 T06 TO7 TO8 TO9 T10 T11 T12 T13 Ti14 Ti5

Figura 46 — Concern Diffusion over Operations(CDO) for CC.

Concern Diffusion over Operations(CDO)

| | | | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 47 — Concern Diffusion over Operations(CDO) for AOP.

Capitulo 8. DATA COLLECTION 150

Concern Diffusion over LOC (CDLOC)

o E

o '

<)

o

s |

™ —_ _:_

o —_—

o —]

N I - -
—_— P — - - : I

o

O] 1

_ _ —_ —_ —_ —_ —_ —_

o _— —
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 T08 T09 T10 Ti11 Ti12 T13 T14 Ti5

Figura 48 — Concern Diffusion over LOC (CDLOC) for CC.
Concern Diffusion over LOC (CDLOC)

o .

3

N -

o : .

o '

N o

- T T T T T T

0 — '

o

s |

O | P — —_— P — P — —_— E

Te} '

o = _ =

| | | | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 49 — Concern Diffusion over LOC (CDLOC) for AOP.

Capitulo 8. DATA COLLECTION

151

800

600

400

200

100 150 200 250

50

Scattering

P
1

TO1 T02 TO3 TO04 TO5 TO6 TO7 TO8 TO9 T10 Ti1

Figura 50 — Scattering for CC.

Scattering

T12 T13 T14

T15

—_
|

OO = [

TO1 T02 TO3 TO04 TO5 TO6 TO7 TO8 TO9 T10

T11 T12 T13 T14

Figura 51 — Scattering for AOP.

|
T15

Capitulo 8. DATA COLLECTION 152

Coupling Between components (CBC)

300 400 500 600

100 200

TO1 T02 TO3 T04 TO5 TO6 TO7 TO8 TO9 T10 Ti1 T12 T13 T14 Ti5

0
|

Figura 52 — Coupling Between components(CBC) for CC.

Coupling Between components (CBC)

—_

[=——]

100 200 300 400 500 600 700
|

=
| | | | | | | | | | | | | | |
TO1 T02 TO3 TO04 TO5 To6 TO7 TO8 TO9 Ti10 Ti11 T12 T13 T14 Ti5

0
|

Figura 53 — Coupling Between components(CBC) for AOP.

Capitulo 8. DATA COLLECTION 153

Depth Inheritance Tree (DIT)

o
o —
™
o
LO —]
o .
o '
oS '
Al '
o P —
Lr) —
o — — = T L
Sh - . I
o _|] I ' '
U] . —_
== .
o 4 — _i_ o —
I I I I I I I I I I I I I I I
To1 T02 TO3 T04 TO5 TO6 TO7 TO8 T09 T10 T11 Ti2 T13 Ti4 Ti5
Figura 54 — Depth Inheritance Tree (DIT) for CC.
Depth Inheritance Tree (DIT)
o
o —
™
o
LD —]
Q)
o E
oS — o '
o ' P —
o — '
o . — T 1 L
S - |:|D - L= Do L
o _|] _:_ _i_ ' '
0 - -
) =—
o - — —

| | | | | | | | | | | | | | |
TO01 TO02 TO3 TO4 TO5 TO6 TO7 TO8 TO9 T10 T11 Ti2 T13 Ti14 Ti5

Figura 55 — Depth Inheritance Tree (DIT) for AOP.

Capitulo 8. DATA COLLECTION

154

Tabela 40 — Metrics for RiSE Event SPL

RISEEventSPL LOC NOA WOC VS LCOM CDC CDO CDLOC CBC DIT Scattering
Base 26395 936 2892 516 25335 969
Conditional Compilation
TO1 26886 943 2951 524 25812 0 0 0 0 982 0
T02 26843 945 2926 524 25763 0 0 0 0 980 0
T03 26473 936 2900 518 25337 0 0 0 0 971 0
TO4 27855 977 3040 541 26864 0 0 0 0 1015 0
T05 27853 973 3023 541 26714 0 0 0 0 1018 0
TO6 27389 970 3009 537 26708 0 0 0 0 1012 0
T07 27438 972 3016 538 26722 0 0 0 0 1013 0
TO8 28400 990 3132 557 28656 0 0 0 0 1045 0
T09 29174 1010 3253 576 30260 0 0 0 0 1071 0
T10 30569 1052 3444 616 33666 0 0 0 0 1136 0
T11 28442 991 3135 558 28665 0 0 0 0 1046 0
T12 28462 991 3137 560 28522 0 0 0 0 1049 0
T13 28900 1000 3174 563 28833 0 0 0 0 1050 0
T14 29714 1033 3353 578 31030 0 0 0 0 1073 0
T15 27448 959 3000 518 26123 0 0 0 0 971 0
TO1- BASE 491 7 59 8 477 10 91 126 59 13 147
T02- BASE 448 9 34 8 428 10 79 126 49 11 139
T03- BASE 78 0 8 2 2 3 4 6 3 2 18
T04- BASE 1460 41 148 25 1529 32 224 286 143 46 437
T05- BASE 1458 37 131 25 1379 32 217 288 144 49 404
T06- BASE 994 34 117 21 1373 28 77 30 131 43 108
T07- BASE 1043 36 124 22 1387 29 80 30 141 44 113
T08- BASE 2005 54 240 41 3321 49 234 192 261 76 444
T09- BASE 2779 74 361 60 4925 68 315 192 389 102 491
T10- BASE 4174 116 552 100 8331 110 447 192 578 167 632
T11- BASE 2047 55 243 42 3330 50 236 192 262 77 445
T12- BASE 2067 55 245 44 3187 55 238 192 301 80 475
T13- BASE 2505 64 282 47 3498 57 385 446 286 81 774
T14- BASE 3319 97 461 62 5695 74 359 182 634 104 491
T15- BASE 1053 23 108 2 788 16 117 140 17 2 613
AspectJ
TO1 27140 943 2982 526 25655 0 0 0 0 984 0
T02 27097 945 2957 526 25606 0 0 0 0 982 0
TO3 26488 936 2903 519 25336 0 0 0 0 972 0
T04 27680 981 3076 544 25683 0 0 0 0 1018 0
TO5 27814 977 3062 544 25807 0 0 0 0 1020 0
T06 27468 974 3041 539 25665 0 0 0 0 1014 0
T07 27519 970 3051 540 25706 0 0 0 0 1015 0
T08 28371 994 3160 561 26033 0 0 0 0 1049 0
T09 29146 1014 3290 580 26176 0 0 0 0 1075 0
T10 30534 1056 3485 620 26749 0 0 0 0 1140 0
T11 28489 995 3172 562 25879 0 0 0 0 1050 0
T12 28446 995 3174 564 26038 0 0 0 0 1053 0
T13 28656 1004 3215 567 26064 0 0 0 0 1054 0
T14 29684 1037 3398 582 26965 0 0 0 0 1077 0
T15 27518 959 3238 519 26229 0 0 0 0 972 0
TO1- BASE 745 7 90 10 320 10 62 32 119 15 28
T02- BASE 702 9 65 10 271 10 50 32 107 13 28
T03- BASE 93 0 11 3 1 3 4 2 10 3 -2
T04- BASE 1285 45 184 28 348 28 103 12 199 49 28
T05- BASE 1419 41 170 28 472 28 228 276 177 51 160
T06- BASE 1073 38 149 23 330 23 85 12 158 45 28
T07- BASE 1124 34 159 24 371 24 90 12 169 46 30
T08- BASE 1976 58 268 45 698 45 226 170 315 80 117
T09- BASE 2751 78 398 64 841 64 306 170 455 106 117
T10- BASE 4139 120 593 104 1414 104 426 172 663 171 135
T11- BASE 2094 59 280 46 544 46 237 170 321 81 116
T12- BASE 2051 59 282 48 703 48 240 170 366 84 116
T13- BASE 2261 68 323 51 729 51 259 170 369 85 120
T14- BASE 3289 101 506 66 1630 66 354 170 698 108 116
T15- BASE 1123 23 346 3 894 3 187 144 49 3 259

Capitulo 8. DATA COLLECTION 155
Tabela 41 — Difference between AOP and CC considering RiSE Event SPL.
CCvsAOP LOC NOA WOC VS [LCOO CDC CDO CDLOC CBC DIT Scattering

TO1 -094 0 -1.04 -038 0.61 0 46.77 29375 -50.42 0.2 425
T02 094 0 -1.05 -038 0.61 0 58 293.75 -5421 -0.2 396.43
T03 -0.06 0 0.1 -0.19 0 0 0 200 70 -0.1 800
T04 063 -041 -117 -055 46 1429 11748 2283.33 -28.14 -029 1460.71
TO5 014 -041 -127 -055 351 1429 -4.82 435 -1864 -0.2 152.5
T06 -029 -041 -1.05 -037 406 2174 -9.41 150 -17.09 -0.2 285.71
T07 029 021 -1.15 -037 395 20.83 -11.11 150 -16.57 -0.2 276.67
T08 01 -04 -0.89 -071 10.08 8.89 3.54 1294 -17.14 -0.38 279.49
T09 01 -039 -1.12 -069 156 6.25 2.94 1294 -1451 -0.37 319.66
T10 011 -0.38 -1.18 -0.65 2586 5.77 4.93 11.63 -12.82 -0.35 368.15
T -0.16 -04 -1.17 -071 1077 87 042 1294 -18.38 -0.38 283.62
T12 006 -04 -117 -071 954 1458 -0.83 1294 -17.76 -0.38 309.48
T13 085 -04 -128 -071 1062 11.76 4865 162.35 -2249 -0.38 545
T14 01 -039 -1.32 -069 1508 1212 1.41 7.06 917 -037 32328
T15 025 0 -735 -019 -04 43333 -3743 278 6531 -0.1 136.68

Capitulo 8. DATA COLLECTION 156

Tabela 42 — Metrics for RiSE Store SPL vs. Security Techniques

RiSEStoreSPL LOC NOA WOC VS LCOM CDC CDO CDLOC CBC DIT Scattering

Base 5426 291 761 75 6822 0 0 0 0 214 0
Conditional Compilation
TO1 5884 297 854 83 7207 0 0 0 0 239 0
T02 5856 299 811 83 7138 0 0 0 0 235 0
TO3 5510 290 769 77 6921 0 0 0 0 217 0
T04 6951 330 1017 99 7998 0 0 0 0 204 0
T05 6947 326 981 99 7861 0 0 0 0 208 0
TO6 6371 323 956 95 7855 0 0 0 0 298 0
T07 6409 326 968 96 7871 0 0 0 0 300 0
TO8 7251 342 1174 114 9005 0 0 0 0 362 0
T09 8028 362 1396 133 10439 0 0 0 0 414 0
T10 9359 402 1733 171 12909 0 0 0 0 540 0
T11 7291 343 1178 115 9014 0 0 0 0 364 0
T12 7311 343 1187 117 8888 0 0 0 0 370 0
T13 7635 352 1253 120 9165 0 0 0 0 372 0
T14 8567 385 1574 135 11209 0 0 0 0 419 0
T15 6213 314 950 77 7610 0 0 0 0 218 0
TO1- BASE 458 6 93 8 385 10 124 154 47 25 168
T02- BASE 430 8 50 8 316 10 107 154 37 21 162
T03- BASE 84 -1 8 2 99 3 3 6 3 3 24
T04- BASE 1525 39 256 24 1176 26 221 158 138 -10 477
T05- BASE 1521 35 220 24 1039 26 202 156 139 -6 460
T06- BASE 945 32 195 20 1033 22 114 10 125 84 36
T07- BASE 983 35 207 21 1049 23 119 10 125 86 36
T08- BASE 1825 51 413 39 2183 42 252 28 251 148 247
T09- BASE 2602 71 635 58 3617 61 392 28 377 200 295
T10- BASE 3933 111 972 96 6087 101 613 28 560 326 374
T11- BASE 1865 52 417 40 2192 43 255 28 252 150 246
T12- BASE 1885 52 426 42 2066 48 263 28 291 156 275
T13- BASE 2209 61 492 45 2343 50 386 214 276 158 462
T14- BASE 3141 94 813 60 4387 68 457 28 388 205 295
T15- BASE 787 23 189 2 788 10 82 54 11 4 347
Aspectd
TO1 6174 298 896 85 6879 0 0 0 0 242 0
T02 6106 300 853 85 6830 0 0 0 0 238 0
TO3 5525 291 778 78 6824 0 0 0 0 219 0
T04 6608 331 1024 102 7043 0 0 0 0 307 0
TO5 6672 327 990 102 7146 0 0 0 0 311 0
T06 6392 324 961 97 7024 0 0 0 0 300 0
T07 6428 326 973 98 7038 0 0 0 0 302 0
T08 7234 343 1204 118 7159 0 0 0 0 366 0
T09 8012 363 1426 137 7302 0 0 0 0 418 0
T10 9345 403 1752 175 7872 0 0 0 0 544 0
T11 7330 344 1208 119 7166 0 0 0 0 368 0
T12 7290 344 1217 121 7163 0 0 0 0 374 0
T13 7528 353 1287 124 7189 0 0 0 0 376 0
T14 8551 386 1602 139 7992 0 0 0 0 422 0
T15 6144 314 983 78 7629 0 0 0 0 219 0
TO1- BASE 748 7 135 10 57 10 70 2 86 28 0
T02- BASE 680 9 92 10 8 10 53 2 74 24 0
T03- BASE 99 0 17 3 2 3 4 2 12 5 0
T04- BASE 1182 40 263 27 221 27 142 4 181 93 5
T05- BASE 1246 36 229 27 324 27 240 234 155 97 120
T06- BASE 966 33 200 22 202 22 110 4 137 86 5
TO7- BASE 1002 35 212 23 216 23 115 4 137 88 4
T08- BASE 1808 52 443 43 337 43 255 100 297 152 64
T09- BASE 2586 72 665 62 480 62 385 100 435 204 64
T10- BASE 3919 112 991 100 1050 100 593 102 637 330 64
T11- BASE 1904 53 447 44 344 44 257 100 302 154 64
T12- BASE 1864 53 456 46 341 46 266 100 343 160 65
T13- BASE 2102 62 526 49 367 49 297 98 354 162 64
T14- BASE 3125 95 841 64 1170 64 450 100 446 208 64

T15- BASE 718 23 222 3 807 3 98 36 36 5 43

Capitulo 8. DATA COLLECTION 157
Tabela 43 — Difference between AOP and CC considering RiSE Store SPL.

CCvsAOP LOC NOA WOC VS [LCOO CDC CDO CDLOC CBC DIT Scattering
TO1 -47 034 469 -235 477 0 7714 7600 -4535 -1.24 -
T02 -4.09 -0.33 492 -235 451 0 101.89 7600 50 -1.26 -
TO3 -0.27 -0.34 -1.16 -1.28 1.42 0 -25 200 75 -0.91 0
T04 519 -03 -0.68 -294 1356 -37 5563 3850 -23.76 -33.55 9440
TO5 412 -0.31 -091 -294 1001 -37 -1583 -33.33 -10.32 -33.12 283.33
T06 -0.33 -0.31 -052 -2.06 11.83 0 3.64 150 -8.76 -0.67 620
T07 -0.3 0 -051 -2.04 11.84 0 3.48 150 -8.76 -0.66 800
T08 024 -029 -249 -339 2579 233 -1.18 72 -1549 -1.09 285.94
T09 02 -028 -21 -292 4296 -1.61 1.82 72 -13.33 -0.96 360.94
T10 015 -0.25 -1.08 -2.29 63.99 1 337 -7255 -12.09 -0.74 484.38
T -0.53 -0.29 -248 -3.36 2579 227 -0.78 72 -16.56 -1.09 284.38
T12 029 -029 -247 -331 2408 435 -1.13 72 15116 -1.07 323.08
T13 142 -028 -2.64 -323 2749 204 2997 11837 -22.03 -1.06 621.88
T14 019 -026 -1.75 -2.88 4025 6.25 1.56 72 -3 -0.71 360.94
T15 112 0 -336 -128 -0.25 233.33 -16.33 50 -69.44 -0.46 706.98

Capitulo 8. DATA COLLECTION

158

Tabela 44 — Metrics for Law Office SPL vs. Security Techniques

Law OfficeSPL LOC NOA WOC VS LCOM CDC CDO CDLOC CBC DIT Scattering
Base 16665 743 1329 118 9254 0 0 0 0 369 0
Conditional Compilation
TO1 17201 750 1428 126 9376 0 0 0 0 395 0
T02 17149 752 1385 126 9327 0 0 0 0 391 0
T03 16746 743 1335 120 9256 0 0 0 0 372 0
T04 18245 781 1582 142 9539 0 0 0 0 459 0
T05 18239 777 1548 142 9527 0 0 0 0 463 0
TO6 17570 774 1523 138 9521 0 0 0 0 453 0
T07 17612 780 1535 139 9537 0 0 0 0 455 0
T08 18436 794 1746 157 9776 0 0 0 0 517 0
T09 19214 814 1968 176 9905 0 0 0 0 569 0
T10 20603 856 2305 214 11118 0 0 0 0 695 0
T11 18482 795 1750 158 9785 0 0 0 0 519 0
T12 18496 795 1759 160 9780 0 0 0 0 525 0
T13 18827 804 1825 163 9806 0 0 0 0 527 0
T14 19762 837 2145 178 10675 0 0 0 0 573 0
T15 17882 766 1518 120 10042 0 0 0 0 373 0
TO1- BASE 536 7 99 8 122 10 122 148 46 26 208
T02- BASE 484 9 56 8 73 10 105 148 36 22 191
T03- BASE 81 0 6 2 2 3 2 6 3 3 21
T04- BASE 1580 38 253 24 285 26 233 184 131 90 602
T05- BASE 1574 34 219 24 273 26 212 176 132 94 583
T06- BASE 905 31 194 20 267 22 113 10 119 84 62
TO7- BASE 947 37 206 21 283 23 118 10 119 86 62
T08- BASE 1771 51 417 39 522 42 279 76 245 148 220
T09- BASE 2549 71 639 58 651 61 418 76 373 200 268
T10- BASE 3938 113 976 96 1864 101 638 80 558 326 405
T11- BASE 1817 52 421 40 531 43 281 76 246 150 221
T12- BASE 1831 52 430 42 526 48 289 76 287 156 248
T13- BASE 2162 61 496 45 552 50 403 242 268 158 441
T14- BASE 3097 94 816 60 1421 67 484 76 384 204 268
T15- BASE 1217 23 189 2 788 3 140 180 4 4 777
Aspectd
TO1 17641 750 1494 128 9311 0 0 0 0 397 0
T02 17560 752 1451 128 9262 0 0 0 0 393 0
TO3 16762 743 1347 121 9321 0 0 0 0 374 0
T04 17769 781 1593 145 9439 0 0 0 0 462 0
T05 17835 777 1557 145 9426 0 0 0 0 466 0
T06 17595 774 1530 140 9420 0 0 0 0 455 0
TO7 17637 780 1541 141 9434 0 0 0 0 457 0
T08 18470 794 1762 161 9670 0 0 0 0 521 0
T09 19248 813 1671 180 9813 0 0 0 0 461 0
T10 20645 856 2333 218 10522 0 0 0 0 699 0
T11 18569 795 1766 162 9677 0 0 0 0 523 0
T12 18524 795 1775 164 9674 0 0 0 0 529 0
T13 18722 803 1845 167 9700 0 0 0 0 531 0
T14 19796 837 2161 182 10583 0 0 0 0 577 0
T15 17619 766 1758 121 10042 0 0 0 0 374 0
TO1- BASE 976 7 165 10 57 10 90 2 89 28 2
T02- BASE 895 9 122 10 8 10 73 2 77 24 0
T03- BASE 97 0 18 3 67 3 5 2 10 5 2
T04- BASE 1104 38 264 27 185 27 141 4 158 93 3
T05- BASE 1170 34 228 27 172 27 213 184 153 97 78
T06- BASE 930 31 201 22 166 22 109 4 136 86 3
T0O7- BASE 972 37 212 23 180 23 114 4 136 88 3
T08- BASE 1805 51 433 43 416 43 270 66 293 152 37
T09- BASE 2583 70 342 62 559 62 224 66 433 92 37
T10- BASE 3980 113 1004 100 1268 100 612 68 637 330 43
T11- BASE 1904 52 437 44 423 44 272 66 298 154 37
T12- BASE 1859 52 446 46 420 46 262 66 341 160 37
T13- BASE 2057 60 516 49 446 49 312 66 327 162 37
T14- BASE 3131 94 832 64 1329 64 467 68 444 208 37
T15- BASE 954 23 429 3 788 3 173 240 21 5 172

Capitulo 8. DATA COLLECTION 159

Tabela 45 — Difference between AOP and CC considering Law Office SPL.

CCvsAOP LOC NOA WOC VS LCOO CDC CDO CDLOC CBC DIT Scattering

TO1 -2.49 0 -4.42 -1.56 0.7 0 35.56 7300 -48.31 -0.5 10300
T02 -2.34 0 -455 -1.56 0.7 0 43.84 7300 -63.25 -0.51 =
TO3 -0.1 0 -0.89 -0.83 -0.7 0 -60 200 -70 -0.53 950
T04 2.68 0 -0.69 -2.07 1.06 -3.7 65.25 4500 -17.09 -0.65 19966.67
T05 2.27 0 -0.58 -2.07 1.07 -3.7 -0.47 -4.35 -13.73 -0.64 647.44
T06 -0.14 0 -0.46 -1.43 1.07 0 3.67 150 -125 -0.44 1966.67
T07 -0.14 0 -0.39 -1.42 1.09 0 3.51 150 -125 -0.44 1966.67
TO8 -0.18 0 -0.91 -2.48 1.1 -2.33 3.33 15.15 -16.38 -0.77 494.59
T09 -0.18 0.12 17.77 -222 094 -161 86.61 15.15 -13.86 23.43 624.32
T10 -0.2 0 -1.2 -1.83 5.66 1 4.25 17.65 -124 -0.57 841.86
T11 -0.47 0 -091 -247 112 227 3.31 1515 -17.45 -0.76 497.3
T12 -0.15 0 -0.9 -2.44 1.1 435 10.31 15.15 -15.84 -0.76 570.27
T13 056 0.12 -1.08 2.4 1.09 2.04 2917 266.67 -18.04 -0.75 1091.89
T14 -0.17 0 -0.74 2.2 0.87 4.69 3.64 11.76 -13.51 -0.69 624.32
T15 1.49 0 -13.65 -0.83 0 0 -19.08 -25 -80.95 -0.27 351.74

Tabela 46 — Cliff’s (5), magnitude of effect power for size metrics.

Techniques | LOC NOA WOC | VS
5 de Cliff | Magnitude | 6 de Cliff | Magnitude | & de Cliff | Magnitude & de Cliff | Magnitude
TO1 1 Large 0.3333 medium 0.5556 large 1 large
T02 1 large 0.3333 medium 1 large 1 large
TO3 1 large 0.3333 medium 1 large 1 large
T04 -1 large 0.2222 small 0.5556 large 1 large
T05 =1 large 0.2222 small 0.5556 large 1 large
T06 0.3333 medium 0.2222 small 0.5556 large 1 large
TO7 0.3333 medium -0.3333 medium 0.5556 large 1 large
T08 -0.1111 | negligible | 0.3333 medium 0.5556 large 1 large
T09 -0.1111 | negligible | 0.1111 negligible | -0.1111 | negligible 1 large
T10 -0.1111 | negligible | 0.2222 small 0.5556 large 0.7778 large
T11 0.5556 large 0.3333 medium 0.5556 large 1 large
T12 -0.1111 | negligible | 0.3333 medium 0.5556 large 1 large
T13 -0.5556 large 0.1111 negligible | 0.5556 large 1 large
T14 0.3333 medium 0.3333 medium 0.5556 large 1 large
T15 -0.3333 medium 0 negligible 1 large 1 large

Tabela 47 — Cohen’s d for effect power.

Techniques LOC NOA WOC VS
d of Cohen | d of Cohen | d of Cohen d of Cohen

TO1 -3.3571 -0.8165 -1.5071 -Inf"
T02 -3.5517 -0.8165 -2.1346 -Inf"
TO3 -5.0644 -0.8165 -2.8584 -Inf"
T04 4.3044 -0.6019 -0.3317 -5.1962
TO5 2.4141 -0.6019 -0.4387 -5.1962
TO6 -0.6795 -0.6019 -0.3861 -3.4641
TO7 -0.627 0.5164 -0.383 -3.4641
T08 0.0361 -0.5661 -0.2475 -3.4641
T09 0.0306 -0.4182 0.4615 -3.4641
T10 0.0185 -0.4683 -0.1229 -1.7321
T11 -0.4986 -0.5661 -0.2831 -3.4641
T12 0.0257 -0.5661 -0.2719 -3.4641
T13 1.0015 -0.4182 -0.2673 -3.4641
T14 -0.8764 -0.5661 -0.1501 -3.4641
T15 0.4152 NaN -2.1095 -Inf"

Capitulo 8. DATA COLLECTION 160

Tabela 48 — Cliff’s (5), magnitude of effect power for separation of concerns metrics.

Techniques | CcDC CcDO CDLOC | Scattering
5 de Cliff | Magnitude | 6 de Cliff | Magnitude | & de Cliff | Magnitude & de Cliff | Magnitude
TO1 0 negligible -1 large -1 large -1 large
T02 0 negligible -1 large -1 large -1 large
TO3 0 negligible | 0.7778 large -1 large -1 large
TO4 0.3333 medium -1 large -1 large -1 large
T05 0.3333 medium 0.7778 large 0.3333 medium =] large
T06 -0.1111 | negligible | -0.3333 medium -0.5556 large -1 large
TO7 -0.1111 | negligible | -0.3333 medium -0.5556 large -1 large
T08 0.3333 medium -0.1111 | negligible | 0.1111 negligible -1 large
T09 0.3333 medium | -0.7778 large 0.1111 negligible -1 large
T10 -0.5556 large -0.5556 large 0.1111 negligible -1 large
T11 0.3333 medium 0.1111 negligible | 0.1111 negligible -1 large
T12 -0.7778 large -0.1111 | negligible | 0.1111 negligible -1 large
T13 -0.5556 large -1 large -1 large -1 large
T14 -1 large -0.3333 medium 0.1111 negligible -1 large
T15 -0.6667 large 0.5556 large 0.1111 negligible -1 large

Tabela 49 — Cohen’s d for effect power of separation of concerns metrics.

Techniques CDC CDO CDLOC Scattering

d of Cohen | d of Cohen | d of Cohen d of Cohen
TO1 NaN 2.3109 8.1245 6.6968
T02 NaN 2.7094 8.1245 7.133
TO3 NaN -1.633 Inf 8.2369
T04 0.2685 5.9604 4.2265 8.0022
TO5 0.2685 -1.5172 -0.4116 5.1168
T06 0.6712 0 1.1371 2.0539
T0O7 0.6712 -0.0358 1.1371 1.9504
T08 0.2243 0.2073 -0.1893 2.5349
T09 0.2243 1.0238 -0.1893 3.0709
T10 0.6632 0.2167 -0.1996 3.7013
T11 0.2243 0.0989 -0.1893 2.5368
T12 1.2337 0.3565 -0.1893 2.8217
T13 0.8972 4.9516 1.949 3.5891
T14 1.7865 0.1525 -0.2594 3.0787
T15 1.449 -1.0006 -0.1797 2.4532

Capitulo 8. DATA COLLECTION

161

Tabela 50 — Cliff’s (5), magnitude of effect power for cohesion metrics.

Techniques LCOO
5 de Cliff | Magnitude
TO1 -0.7778 large
T02 -0.7778 large
T03 -0.3333 medium
T04 -0.7778 large
T05 -0.5556 large
T06 -0.7778 large
T07 -0.7778 large
T08 -0.7778 large
T09 -0.7778 large
T10 -1 large
T11 -0.7778 large
T12 -0.7778 large
T13 -0.7778 large
T14 -0.7778 large
T15 0.6667 large

Tabela 51 — Cohen’s d for effect power of cohesion metrics.

Techniques LCOO
d of Cohen

TO1 1.086
T02 1.0559
T03 0.2302
T04 1.6297
T05 1.386
T06 1.6247
T07 1.6012
T08 1.5184
T09 1.5683
T10 1.7989
T11 1.584
T12 1.5073
T13 1.528
T14 1.5784
T15 -1.0426

Capitulo 8. DATA COLLECTION

162

Tabela 52 — Cliff’s (5), magnitude of effect power for coupling metrics.

Techniques CBC | DIT

5 de Cliff Magnitude & de Cliff | Magnitude
TO1 1 large 0.5556 large
T02 1 large 0.5556 large
TO3 1 large 0.7778 large
T04 1 large 0.7778 large
TO5 1 large 0.7778 large
T06 1 large 0.5556 large
T07 0.5556 large 0.5556 large
TO8 1 large 0.5556 large
T09 1 large -0.1111 | negligible
T10 1 large 0.5556 large
T11 1 large 0.5556 large
T12 1 large 0.5556 large
T13 1 large 0.5556 large
T14 0.5556 large 0.5556 large
T15 1 large 0.5556 large

Tabela 53 — Cohen’s d for effect power of coupling metrics.

Techniques CDC DIT
d of Cohen | d of Cohen

TO1 -3.4101 -0.3166
T02 -3.266 -0.3752
TO3 -9.3897 -1.8257
TO4 -2.7734 -0.9145
TO5 -2.2575 -0.8981
TO6 -1.9135 -0.0845
TO7 -1.2243 -0.0825
TO8 -4.9008 -0.0962
T09 -5.8837 0.5665
T10 -6.1018 -0.0436
T11 -5.1601 -0.0949
T12 -5.15 -0.0912
T13 -4.4865 -0.09
T14 -0.4194 -0.0633
T15 -2.258 -0.866

163

Referéncias

ABRAN, A. et al. Guide to the Software Engineering Body of Knowledge - SWEBOK.
2004 version. ed. Piscataway, NJ, USA: IEEE Press, 2004. 1—202 p.

ALMEIDA, E. S. D. RIiDE - The RiSE Process for Domain Engineering. 2007. Tese
(Ph.D thesis) — Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.

ALMEIDA, E. S. de; OQUENDO, F. Software components, architectures and
reusemodeling, customization and evaluation. Journal of Universal Computer Science,
v.19,n. 2, p. 183-185, 2013.

ALVES, V. et al. Refactoring product lines. In: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering. New York,
NY, USA: ACM, 2006. (GPCE ’06), p. 201-210. ISBN 1-59593-237-2. Disponivel em:
<http://doi.acm.org/10.1145/1173706.1173737>.

ALVES, V. et al. From conditional compilation to aspects: a case study in software
product lines migration. In: Proceedings of the First Workshop on Aspect-Oriented
Product Line Engineering. New York, NY, USA: ACM, 2006.

AMORIM, S. da S.; ALMEIDA, E. S. D.; MCGREGOR, J. D. Extensibility in ecosystem
architectures: an initial study. In: The 1st International Workshop on Software
Ecosystem Architectures, WEA 2013, Saint Petersburg, Russian Federation, August 19,
2013.[S.l.: s.n.], 2013. p. 11-15.

AMORIM, S. da S.; ALMEIDA, E. S. de; MCGREGOR, J. D. Scalability of ecosystem
architectures. In: 2014 IEEE/IFIP Conference on Software Architecture, WICSA 2014,
Sydney, Australia, April 7-11, 2014. [S.l.: s.n.], 2014. p. 49-52.

AMORIM, S. da S. et al. Flexibility in ecosystem architectures. In: Proceedings of
the ECSA 2014 Workshops & Tool Demos Track, European Conference on Software
Architecture, 2014, Vienna, Austria. [S.l.: s.n.], 2014. p. 14:1-14:6.

ANDRADE, H. S. de; ALMEIDA, E. S. de; CRNKOVIC, I. Architectural bad smells in
software product lines: an exploratory study. In: Proceedings of the WICSA Companion
Volume, Sydney, NSW, Australia, April 7-11, 2014. [S.l.: s.n.], 2014. p. 12:1-12:6.

AOYAMA, M.; YOSHINO, A. Aore (aspect-oriented requirements engineering)
methodology for automotive software product lines. In: Proceedings of the 2008 15th
Asia-Pacific Software Engineering Conference. Washington, DC, USA: IEEE Computer
Society, 2008. (APSEC ’08), p. 203—210. ISBN 978-0-7695-3446-6. Disponivel em:
<http://dx.doi.org/10.1109/APSEC.2008.59>.

APEL, S.; BEYER, D. Feature cohesion in software product lines: An exploratory
study. In: Proceedings of the 33rd International Conference on Software Engineering.
New York, NY, USA: ACM, 2011. (ICSE ’11), p. 421—430. ISBN 978-1-4503-0445-0.
Disponivel em: <http://doi.acm.org/10.1145/1985793.1985851>.

http://doi.acm.org/10.1145/1173706.1173737
http://dx.doi.org/10.1109/APSEC.2008.59
http://doi.acm.org/10.1145/1985793.1985851

Referéncias 164

APEL, S. et al. Exploring feature interactions in the wild: The new feature-interaction
challenge. In: Proceedings of the 5th International Workshop on Feature-Oriented

Software Development. New York, NY, USA: ACM, 2013. (FOSD ’13), p. 1-8. ISBN
978-1-4503-2168-6. Disponivel em: <http://doi.acm.org/10.1145/2528265.2528267>.

ARVANITOU, E. M. et al. A mapping study on design-time quality attributes and metrics.
Journal of Systems and Software, v. 127, p. 52 — 77, 2017. ISSN 0164-1212. Disponivel
em: <//www.sciencedirect.com/science/article/pii/S016412121730016X>.

AYED, S. et al. Security aspects: A framework for enforcement of security policies using
aop. In: 2013 International Conference on Signal-Image Technology Internet-Based
Systems. [S.l.: s.n.], 2013. p. 301-308.

BAGHERI, H.; SULLIVAN, K. J. A formal approach for incorporating architectural tactics
into the software architecture. In: SEKE. [S.I.: s.n.], 2011. p. 770-775.

BARBACCI, M. et al. Quality Attributes. [S.1.], 1995.

BASILI, V.; CALDIERA, G.; ROMBACH, H. The Goal Question Metric Approach.
Encyclopedia of Software Engineering, v. 1, p. 528-532, 1994.

BASILI, V. R.; SELBY, R.; HUTCHENS, D. Experimentation in Software Engineering.
IEEE Transactions on Software Engineering, v. 12, n. 7, p. 733—743, July 1986.

BASILI, V. R.; SHULL, F; LANUBILE, F. Building knowledge through families
of experiments. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA,
v. 25, n. 4, p. 456-473, jul. 1999. ISSN 0098-5589. Disponivel em: <http:
//dx.doi.org/10.1109/32.799939>.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 2. ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003. ISBN 0321154959.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 3rd. ed. [S.L]:
Addison-Wesley Professional, 2012. ISBN 0321815734, 9780321815736.

BASTOS, J. F. et al. Adopting software product lines: A systematic mapping study. In:
Evaluation Assessment in Software Engineering (EASE 2011), 15th Annual Conference
on. [S.l.: s.n.], 2011. p. 11-20.

BENAVIDES, D.; TRINIDAD, P; RUIZ-CORTES, A. Automated reasoning on
feature models. In: Proceedings of the 17th International Conference on Advanced
Information Systems Engineering. Berlin, Heidelberg: Springer-Verlag, 2005.
(CAISE’05), p. 491-503. ISBN 3-540-26095-1, 978-3-540-26095-0. Disponivel em:
<http://dx.doi.org/10.1007/11431855_34>.

BERGER, T. et al. What is a feature?: a qualitative study of features in industrial
software product lines. In: Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015. [S.l.: s.n.],
2015. p. 16-25.

BOSCH, J.; CAPILLA, R. Variability implementation. In: CAPILLA, R.; BOSCH,
J.; KANG, K.-C. (Ed.). Systems and Software Variability Management. Springer
Berlin Heidelberg, 2013. p. 75-86. ISBN 978-3-642-36582-9. Disponivel em:
<http://dx.doi.org/10.1007/978-3-642-36583-6_5>.

http://doi.acm.org/10.1145/2528265.2528267
//www.sciencedirect.com/science/article/pii/S016412121730016X
http://dx.doi.org/10.1109/32.799939
http://dx.doi.org/10.1109/32.799939
http://dx.doi.org/10.1007/11431855_34
http://dx.doi.org/10.1007/978-3-642-36583-6_5

Referéncias 165

BRANCO, F. Investigacdo Experimental: Poténcia estatistica dos testes de
aleatorizacdo na comparag¢édo de dois grupos independentes. 2010. Tese (Doutorado)
— Universidade Aberta, Lisboa - Portugal.

BURGER, S.; HUMMEL, O.; HEINISCH, M. Airbus cabin software. Software, IEEE,
v. 30, n. 1, p. 21-25, Jan 2013. ISSN 0740-7459.

CANDELA, 1. et al. Using cohesion and coupling for software remodularization:
Is it enough? ACM Trans. Softw. Eng. Methodol., ACM, New York, NY, USA,
v. 25, n. 3, p. 24:1-24:28, jun. 2016. ISSN 1049-331X. Disponivel em: <http:
//doi.acm.org/10.1145/2928268>.

CARVALHO, M. L. L. On the Implementation of Dynamic Software Product Lines: An
Exploratory Study. 2016. Dissertacao (Mestrado) — Programa Multi-Institucional de
Pés-Graduagédo em Ciéncia da Computacao, Salvador, Bahia, Brazil.

CARVALHO, M. L. L. et al. On the implementation of dynamic software product
lines: A preliminary study. In: 2016 X Brazilian Symposium on Software Components,
Architectures and Reuse, SBCARS 2016, Maringa, Brazil, September 19-20, 2016.
[s.n.], 2016. p. 21-30. Disponivel em: <http://dx.doi.org/10.1109/SBCARS.2016.13>.

CERVANTES, H. et al. Architectural approaches to security: Four case studies.
Computer, v. 49, n. 11, p. 60—67, Nov 2016. ISSN 0018-9162.

CERVANTES, H.; VELASCO-ELIZONDO, P.; KAZMAN, R. A principled way to use
frameworks in architecture design. IEEE Software, v. 30, n. 2, p. 46-53, March 2013.
ISSN 0740-7459.

CHEN, L.; BABAR, M. A. A systematic review of evaluation of variability management
approaches in software product lines. Inf. Softw. Technol., Butterworth-Heinemann,
Newton, MA, USA, v. 53, n. 4, p. 344-362, abr. 2011. ISSN 0950-5849. Disponivel em:
<http://dx.doi.org/10.1016/j.infsof.2010.12.006>.

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. IEEE
Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 20, n. 6, p. 476—-493, jun. 1994.
ISSN 0098-5589. Disponivel em: <http://dx.doi.org/10.1109/32.295895>.

CLEMENTS, L. N. P. Software Product Lines: Practices and Patterns. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001. ISBN 0-201-70332-7.

CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2001.

CLIFF, N. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological Bulletin, v. 114, p. 494 — 509, 11 1993.

CONOVER, W. Practical nonparametric statistics. 3. ed. ed. New York, NY [u.a.]: Wiley,
1999. (Wiley series in probability and statistics). ISBN 0471160687.

COTTON, J. W. Elementary statistical theory for behavior scientists. [S.l.]:
Addison-Wesley, 1967.

http://doi.acm.org/10.1145/2928268
http://doi.acm.org/10.1145/2928268
http://dx.doi.org/10.1109/SBCARS.2016.13
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1109/32.295895

Referéncias 166

CZARNECKI, K.; EISENECKER, U. W. Generative Programming: Methods, Tools, and
Applications. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.
ISBN 0-201-30977-7.

D, G.; M., F-M. E. adn P; C., G. Comparison of security patterns. IJCSNS: International
Journal of Computer Science and Network Security, v. 6, n. 2B, p. 139—146, 2006.
ISSN 1738-7906.

DANIEL, M.; EDUARDO, F.-M.; MARIO, P. Towards security requirements management
for software product lines: A security domain requirements engineering process.
Comput. Stand. Interfaces, Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, The Netherlands, v. 30, n. 6, p. 361-371, ago. 2008.

DANIEL, M.; EDUARDO, F.-M.; MARIO, P. Security requirements engineering
framework for software product lines. Inf. Softw. Technol., Butterworth-Heinemann,
Newton, MA, USA, v. 52, n. 10, p. 1094—1117, out. 2010. ISSN 0950-5849.

DANTAS, F.; GARCIA, A. Software reuse versus stability: Evaluating advanced
programming techniques. In: Software Engineering (SBES), 2010 Brazilian Symposium
on. [S.l.: s.n.], 2010. p. 40—49.

DASHOFY, E. M.; HOEK, A. van der; TAYLOR, R. N. An infrastructure for the rapid
development of xml-based architecture description languages. In: Proceedings

of the 24th International Conference on Software Engineering. New York, NY,
USA: ACM, 2002. (ICSE ’'02), p. 266—276. ISBN 1-58113-472-X. Disponivel em:
<http://doi.acm.org/10.1145/581339.581374>.

DENNING, D. E.; DENNING, P. J. Data security. ACM Comput. Surv., ACM, New
York, NY, USA, v. 11, n. 3, p. 227-249, set. 1979. ISSN 0360-0300. Disponivel em:
<http://doi.acm.org/10.1145/356778.356782>.

DEPT, I. S. IEEE Standard for a Software Quality Metrics Methodology. [S.l.], 1998. i+ p.

DHUNGANA, D.; GRUNBACHER, P.; RABISER, R. The dopler meta-tool for
decision-oriented variability modeling: A multiple case study. Automated Software Engg.,
Kluwer Academic Publishers, Hingham, MA, USA, v. 18, n. 1, p. 77—-114, mar. 2011.
ISSN 0928-8910. Disponivel em: <http://dx.doi.org/10.1007/s10515-010-0076-6>.

DIKEL, D. et al. Applying software product-line architecture. Computer, v. 30, n. 8, p.
49-55, Aug 1997. ISSN 0018-9162.

D’AMORIM, F.; BORBA, P. Modularity analysis of use case implementations. Journal of
Systems and Software, v. 85, n. 4, p. 1012 — 1027, 2012. ISSN 0164-1212. Disponivel
em: <http://www.sciencedirect.com/science/article/pii/S0164121211002950>.

EADDY, M. et al. Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng.,
IEEE Press, Piscataway, NJ, USA, v. 34, n. 4, p. 497-515, jul. 2008. ISSN 0098-5589.

EDGINGTON, E. Statistical Inference: The Distribution-Free Approach. McGraw-Hill,
1969. (McGraw-Hill Series in Psychology). Disponivel em: <https://books.google.com.
br/books?id=nXWQAAAAIAAJ>.

EDGINGTON, E. S. Statistical inference and nonrandom samples. Psychological
bulletin, American Psychological Association, v. 66, n. 6, p. 485, 1966.

http://doi.acm.org/10.1145/581339.581374
http://doi.acm.org/10.1145/356778.356782
http://dx.doi.org/10.1007/s10515-010-0076-6
http://www.sciencedirect.com/science/article/pii/S0164121211002950
https://books.google.com.br/books?id=nXWQAAAAIAAJ
https://books.google.com.br/books?id=nXWQAAAAIAAJ

Referéncias 167

EDGINGTON, E. S. Approximate randomization tests. Journal of Psychology, v. 72, p.
143-149, 1969.

EDGINGTON, E. S. Approximative randomization tests. Journal of Psychology, v. 72, p.
143-149, 1969.

EDGINGTON, E. S. Randomization tests. New York: Marcel Dekker, 1995.

ELLIS, P. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis,
and the Interpretation of Research Results. Cambridge University Press, 2010.
ISBN 9780521142465. Disponivel em: <https://books.google.com.br/books?id=
50bZnfK5pbsCs.

FAEGRI, T.; HALLSTEINSEN, S. A Software Product Line Reference Architecture for
Security. In: Software Product Lines. [S.l.: s.n.], 2006. p. 275-326.

FERNANDEZ-BUGLIONI, E. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. 1st. ed. [S.l.]: Wiley Publishing, 2013. ISBN
1119998948, 9781119998945.

FERNANDEZ, E. B.; ASTUDILLO, H.; PEDREZA-GARCIA gilberto. Revisiting
architectural tactics for security. In: European Conference on Software Architecture
(ECSA 2015). [S.l.: s.n.], 2015. p. 85-91.

FERREIRA, G. C. S. et al. On the use of feature-oriented programming for evolving
software product lines - A comparative study. Sci. Comput. Program., v. 93, p. 65—85,
2014.

FIGUEIREDO, E. et al. Evolving software product lines with aspects: An empirical
study on design stability. In: Proceedings of the 30th International Conference on
Software Engineering. New York, NY, USA: ACM, 2008. (ICSE '08), p. 261-270. ISBN
978-1-60558-079-1. Disponivel em: <http://doi.acm.org/10.1145/1368088.1368124>.

FIGUEIREDO, E. et al. Applying and evaluating concern-sensitive design heuristics. In:
Software Engineering, 2009. SBES ’'09. XXIII Brazilian Symposium on. [S.l.: s.n.], 2009.
p. 83-93.

FILMAN, R. et al. Aspect-oriented Software Development. First. [S.l.]: Addison-Wesley
Professional, 2004. ISBN 0321219767.

FISHER, R. A. The coefficient of racial likeness and the future of craniometry. Journal
of the Anthropological Institute, v. 66, p. 57—-63, 1936.

FISHER, R. A. The design of experiments (9e édition). New York: Hafner, 1971.

GACEK, C.; ANASTASOPOULES, M. Implementing product line variabilities. In:

Proceedings of the 2001 Symposium on Software Reusability: Putting Software

Reuse in Context. New York, NY, USA: ACM, 2001. (SSR '01), p. 109-117. ISBN
1-58113-358-8.

GAIA, F. N. et al. A quantitative and qualitative assessment of aspectual feature
modules for evolving software product lines. Sci. Comput. Program., v. 96, p. 230-253,
2014.

https://books.google.com.br/books?id=5obZnfK5pbsC
https://books.google.com.br/books?id=5obZnfK5pbsC
http://doi.acm.org/10.1145/1368088.1368124

Referéncias 168

GALSTER, M. Architecting for variability in quality attributes of software systems. In:
Proceedings of the 2015 European Conference on Software Architecture Workshops.
New York, NY, USA: ACM, 2015. (ECSAW ’15), p. 23:1-23:4. ISBN 978-1-4503-3393-1.
Disponivel em: <http://doi.acm.org/10.1145/2797433.2797456>.

GALSTER, M. et al. Variability in software systems—a systematic
literature review. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA,
v. 40, n. 3, p. 282-306, mar. 2014. ISSN 0098-5589. Disponivel em: <http:
//dx.doi.org/10.1109/TSE.2013.56>.

GAO, D.; REITER, M. K.; SONG, D. Behavioral distance for intrusion detection. In:
Proceedings of the 8th International Conference on Recent Advances in Intrusion
Detection. Berlin, Heidelberg: Springer-Verlag, 2006. (RAID’05), p. 63—-81. ISBN
3-540-31778-3, 978-3-540-31778-4.

GARCIA, A. et al. Modularizing design patterns with aspects: A quantitative
study. In: Proceedings of the 4th International Conference on Aspect-oriented
Software Development. New York, NY, USA: ACM, 2005. (AOSD ’05), p. 3—14. ISBN
1-59593-042-6.

GEORG, G.; FRANCE, R.; RAY, I. An aspect-based approach to modeling security
concerns. In: In Proceedings of the Workshop on Critical Systems Development with
UML. [S.l.: s.n.], 2002. p. 107—120.

GOMAA, H. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 2004. ISBN 0201775956.

GOMAA, H.; SHIN, M. E. Multiple-view meta-modeling of software product lines.
In: Engineering of Complex Computer Systems, 2002. Proceedings. Eighth IEEE
International Conference on. [S.l.: s.n.], 2002. p. 238—246.

GREENWOOQOD, P. et al. Ecoop 2007 — object-oriented programming: 21st european
conference, berlin, germany, july 30 - august 3, 2007. proceedings. In: . Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007. cap. On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study, p. 176—200.

GURP, J. van; BOSCH, J.; SVAHNBERG, M. On the notion of variability in software
product lines. In: Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on. [S.l.: s.n.], 2001. p. 45-54.

H., A. Kuiper’s p-value as a measuring tool and decision procedure for the
goodness-of-fit test. Journal of Applied Statistics, v. 15, n. 3, p. 131 — 135, 1988.

HADAR, I. et al. Comparing the comprehensibility of requirements models expressed
in use case and tropos: Results from a family of experiments. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 55, n. 10, p. 1823—-1843, out. 2013.
ISSN 0950-5849. Disponivel em: <http://dx.doi.org/10.1016/j.infsof.2013.05.003>.

HALLSTEINSEN, S. O. et al. Dealing with architectural variation in product populations.
In: Software Product Lines - Research Issues in Engineering and Management. [s.n.],
2006. p. 245—-273. Disponivel em: <http://dx.doi.org/10.1007/978-3-540-33253-4_7>.

http://doi.acm.org/10.1145/2797433.2797456
http://dx.doi.org/10.1109/TSE.2013.56
http://dx.doi.org/10.1109/TSE.2013.56
http://dx.doi.org/10.1016/j.infsof.2013.05.003
http://dx.doi.org/10.1007/978-3-540-33253-4_7

Referéncias 169

HAMED, H.; AL-SHAER, E. Taxonomy of conflicts in network security policies.
Communications Magazine, IEEE, v. 44, n. 3, p. 134—141, March 2006.

HARRISON, N. B.; AVGERIOU, P. How do architecture patterns and tactics interact?
a model and annotation. J. Syst. Softw., Elsevier Science Inc., New York, NY,
USA, v. 83, n. 10, p. 1735-1758, out. 2010. ISSN 0164-1212. Disponivel em:
<http://dx.doi.org/10.1016/j.jss.2010.04.067>.

HORCAS, J.-M.; PINTO, M.; FUENTES, L. An automatic process for weaving
functional quality attributes using a software product line approach. Journal of
Systems and Software, v. 112, p. 78 — 95, 2016. ISSN 0164-1212. Disponivel em:
<//www.sciencedirect.com/science/article/pii/S016412121500240X>.

HUI, Z. et al. A taxonomy of software security defects for sst. In: Intelligent Computing
and Integrated Systems (ICISS), 2010 International Conference on. [S.l.: s.n.], 2010. p.
99-103.

IEE, E. IEEE Std 1061-1998. IEEE Standard for a Software Quality Metrics
Methodology, 1998.

IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990,
p. 1-84, Dec 1990.

lIT, J. S.; SINGER, J. Using the american psychological association (apa) style
guidelines to report experimental results janice singer. In: In: Proceedings of the Fifth
IEEE Workshop on Empirical Studies of Software Maintenance (WESS99. [S.l.: s.n.],
1999. p. 71-75.

ISO. International standard - ISO/IEC 14764 |IEEE Std 14764-2006. ISO/IEC
14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), p. 1-46, 2006.

(1SO), I. O. for S. ISO/IEC 25000:2005, Software Engineering - Software Product
Quality Requirements and Evaluation (SQuaRE). [S.l.], 20011.

ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models.
[S.l.], 2010.

JEDLITSCHKA, A.; PFAHL, D. Reporting guidelines for controlled experiments in
software engineering. In: Empirical Software Engineering, 2005. 2005 International
Symposium on. [S.l.: s.n.], 2005. p. 10 pp.—

JURISTO, N.; MORENO, A. M. Basics of Software Engineering Experimentation.
1st. ed. [S.1.]: Springer Publishing Company, Incorporated, 2010. ISBN 1441950117,
9781441950116.

KALMUS, H. The design and analysis of experiments. by oscar kempthorne. new
york. Annals of Eugenics, Blackwell Publishing Ltd, v. 17, n. 1, p. 96-97, 1952. ISSN
2050-1439. Disponivel em: <http://dx.doi.org/10.1111/j.1469-1809.1952.tb02500.x>.

KANG, K. C. et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. [S.l.],
1990.

http://dx.doi.org/10.1016/j.jss.2010.04.067
//www.sciencedirect.com/science/article/pii/S016412121500240X
http://dx.doi.org/10.1111/j.1469-1809.1952.tb02500.x

Referéncias 170

KASTNER, C.; APEL, S.; BATORY, D. A case study implementing features using
aspectj. In: Proceedings of the 11th International Software Product Line Conference.
Washington, DC, USA: IEEE Computer Society, 2007. (SPLC '07), p. 223—-232. ISBN
0-7695-2888-0. Disponivel em: <http://dx.doi.org/10.1109/SPLC.2007.5>.

KEMPTHORNE, O. The randomization theory of experimental inference. Journal
of the American Statistical Association, [American Statistical Association, Taylor

Francis, Ltd.], v. 50, n. 271, p. 946-967, 1955. ISSN 01621459. Disponivel em:

<http://www.jstor.org/stable/2281178>.

KEPPEL, T. D. W. G. Design and analysis: A researcher handbook. [S.l.]: Englewood
Cliffs, NJ: Prentice-Hal I., 1973.

KICZALES, G. et al. Getting started with aspectj. Commun. ACM, ACM, New
York, NY, USA, v. 44, n. 10, p. 59-65, out. 2001. ISSN 0001-0782. Disponivel em:
<http://doi.acm.org/10.1145/383845.383858>.

KICZALES, G. et al. Aspect-oriented programming. In: AKsIT, M.; MATSUOKA, S.
(Ed.). ECOOP’97 — Object-Oriented Programming. Springer Berlin Heidelberg, 1997,
(Lecture Notes in Computer Science, v. 1241). p. 220-242. ISBN 978-3-540-63089-0.
Disponivel em: <http://dx.doi.org/10.1007/BFb0053381>.

KING, B.; MINIUM, E. Statistical Reasoning in Psychology and Education. Wiley,
2003. ISBN 9780471211877. Disponivel em: <https://books.google.com.br/books?id=
2V99AAAAMAAI>.

KIRK, R. E. Introductory statistics. [S.l.]: Belmont, CA: Brooks/Cole, 1968.

KITCHENHAM, B. et al. Preliminary guidelines for empirical research in software
engineering. Software Engineering, IEEE Transactions on, v. 28, n. 8, p. 721-734, Aug
2002. ISSN 0098-5589.

KROMREY, J. D.; HOGARTY, K. Y. Analysis options for testing group differences on
ordered categorical variables: An empirical investigation of type i error control and
statistical power. Multiple Linear Regression Viewpoints, v. 25, p. 70 — 82, 1998.

KRUEGER, C. W. Easing the transition to software mass customization. In: Revised
Papers from the 4th International Workshop on Software Product-Family Engineering.
London, UK, UK: Springer-Verlag, 2002. (PFE '01), p. 282—293. ISBN 3-540-43659-6.
Disponivel em: <http://dl.acm.org/citation.cfm?id=648114.748909>.

KRUEGER, C. W. Easing the transition to software mass customization. In: Revised
Papers from the 4th International Workshop on Software Product-Family Engineering.
London, UK, UK: Springer-Verlag, 2002. (PFE '01), p. 282—293. ISBN 3-540-43659-6.
Disponivel em: <http://dl.acm.org/citation.cfm?id=648114.748909>.

KULESZA, U. et al. Quantifying the effects of aspect-oriented programming: A
maintenance study. In: 2006 22nd IEEE International Conference on Software
Maintenance. [S.l.: s.n.], 2006. p. 223—-233. ISSN 1063-6773.

KULESZA, U. et al. Quantifying the effects of aspect-oriented programming: A
maintenance study. In: Proceedings of the 22Nd IEEE International Conference
on Software Maintenance. Washington, DC, USA: IEEE Computer Society,

http://dx.doi.org/10.1109/SPLC.2007.5
http://www.jstor.org/stable/2281178
http://doi.acm.org/10.1145/383845.383858
http://dx.doi.org/10.1007/BFb0053381
https://books.google.com.br/books?id=2V99AAAAMAAJ
https://books.google.com.br/books?id=2V99AAAAMAAJ
http://dl.acm.org/citation.cfm?id=648114.748909
http://dl.acm.org/citation.cfm?id=648114.748909

Referéncias 171

2006. (ICSM ’06), p. 223—233. ISBN 0-7695-2354-4. Disponivel em: <http:
//dx.doi.org/10.1109/ICSM.2006.48>.

L., W. B. The significance of the differences between two means when the population
variations are unequal. Biometrika, v. 29, p. 350-362, 1938.

LEE, J.; HWANG, S. A review on variability mechanisms for product lines. Int. J. Adv.
Media Commun., Inderscience Publishers, v. 5, n. 2/3, p. 172-181, abr. 2014. ISSN
1462-4613.

LEUNG, H. K. N.; WHITE, L. Insights into regression testing. In: ICSM "89: Proceedings
of the International Conference on Software Maintenance. [S.l.: s.n.], 1989. p. 60—69.

LIENTZ, B. P.; SWANSON, E. B. Software Maintenance Management. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1980.

LINCKE, R.; LUNDBERG, J.; LBWE, W. Comparing software metrics tools. In:
Proceedings of the 2008 International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2008. (ISSTA '08), p. 131—-142. ISBN 978-1-60558-050-0.
Disponivel em: <http://doi.acm.org/10.1145/1390630.1390648>.

LINDEN, F. J. v. d.; SCHMID, K.; ROMMES, E. Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

LISBOA, L. B. et al. Toolday: a tool for domain analysis. STTT, v. 13, n. 4, p. 337-353,
2011. Disponivel em: <http://dx.doi.org/10.1007/s10009-010-0174-6>.

LOHMANN, D. et al. On the configuration of nonfunctional properties in operating
system product lines. In: Proceedings of the 4th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software. [S.l.: s.n.], 2005. (AOSD).

MACBETH, G.; RAZUMIEJCZYK, E.; LEDESMA, R. D. Cliff’s delta calculator: A
non-parametric effect size program for two groups of observations. Universitas
Psychologica, scieloco, v. 10, p. 545 — 555, 05 2011. ISSN 1657-9267.

MARI, M.; EILA, N. The impact of maintainability on component-based software
systems. In: Euromicro Conference, 2003. Proceedings. 29th. [S.l.: s.n.], 2003. p.
25-32. ISSN 1089-6503.

MCGREGOR, J.; SODHANI, P.; MADHAVAPEDDI, S. Testing Variability in a Software
Product Line. In: SPLIT '04: Proceedings of the International Workshop on Software
Product Line Testing. Boston, Massachusetts, USA: [s.n.], 2004. p. 45.

MCGREGOR, J. D. Ten years of the arcade game maker pedagogical product

line. In: Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools - Volume 2. New York,
NY, USA: ACM, 2014. (SPLC '14), p. 24-25. ISBN 978-1-4503-2739-8. Disponivel em:
<http://doi.acm.org/10.1145/2647908.2655962>.

MCILROQY, D. Mass-produced software components. In: ICSE '68: Proceedings of
the 1st International Conference on Software Engineering. Garmisch Pattenkirchen,
Germany: [s.n.], 1968. p. 88—98.

http://dx.doi.org/10.1109/ICSM.2006.48
http://dx.doi.org/10.1109/ICSM.2006.48
http://doi.acm.org/10.1145/1390630.1390648
http://dx.doi.org/10.1007/s10009-010-0174-6
http://doi.acm.org/10.1145/2647908.2655962

Referéncias 172

MELLADO, D.; FERNANDEZ-MEDINA, E.; PIATTINI, M. Security requirements
management in software product line engineering. In: FILIPE, J.; OBAIDAT, M. S. (Ed.).
e-Business and Telecommunications: International Conference, ICETE 2008, Porto,
Portugal, July 26-29, 2008, Revised Selected Papers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009. p. 250-263.

MIRAKHORLI, M.; MADER, P.; CLELAND-HUANG, J. Variability points and design
pattern usage in architectural tactics. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering. New York, NY,
USA: ACM, 2012. (FSE ’12), p. 52:1-52:11.

MYLLARNIEMI, V. Quality Attribute Variability in Software Product Lines. 2015. Tese
(Doutorado) — Aalto University, Finland.

MYLLARNIEMI, V.; RAATIKAINEN, M.; MANNISTS, T. A systematically conducted
literature review: Quality attribute variability in software product lines. In: Proceedings of
the 16th International Software Product Line Conference - Volume 1. New York, NY,
USA: ACM, 2012. (SPLC ’'12), p. 41-45. ISBN 978-1-4503-1094-9. Disponivel em:
<http://doi.acm.org/10.1145/2362536.2362546>.

MYLLARNIEMI, V.; RAATIKAINEN, M.; MANNIST®, T. Representing and configuring
security variability in software product lines. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures. New York, NY, USA:
ACM, 2015. (QoSA ’15), p. 1-10.

MYLLARNIEMI, V.; RAATIKAINEN, M.; MANNISTS, T. Inter-organisational approach in
rapid software product family development — a case study. In: MORISIO, M. (Ed.).
Reuse of Off-the-Shelf Components. [S.l.]: Springer Berlin Heidelberg, 2006. (Lecture
Notes in Computer Science, v. 4039), p. 73-86.

MYLOPOULOQOS, J.; CHUNG, L.; NIXON, B. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Trans. Softw. Eng., IEEE Press,
Piscataway, NJ, USA, v. 18, n. 6, p. 488—497, jun. 1992. ISSN 0098-5589. Disponivel
em: <http://dl.acm.org/citation.cfm?id=129962.129966>.

NAKAGAWA, E. Y.; ANTONINO, P. O.; BECKER, M. Reference architecture and product
line architecture: A subtle but critical difference. In: Software Architecture - 5th European
Conference, ECSA 2011, Essen, Germany, September 13-16, 2011. Proceedings. [s.n.],
2011. p. 207-211. Disponivel em: <http://dx.doi.org/10.1007/978-3-642-23798-0_22>.

NGUYEN, Q. L. Non-functional requirements analysis modeling for software product
lines. In: Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2009. (MISE '09), p. 56—61. ISBN

978-1-4244-3722-1. Disponivel em: <http://dx.doi.org/10.1109/MISE.2009.5069898>.

NORTHRORP, L. M. Sei’s software product line tenets. IEEE Software, Los Alamitos, CA,
USA, v. 19, n. 4, p. 32—-40, 2002.

NUNES, C. et al. Assessment of the design modularity and stability of multi-agent
system product lines. J. UCS, v. 15, n. 11, p. 2254-2283, 2009.

http://doi.acm.org/10.1145/2362536.2362546
http://dl.acm.org/citation.cfm?id=129962.129966
http://dx.doi.org/10.1007/978-3-642-23798-0_22
http://dx.doi.org/10.1109/MISE.2009.5069898

Referéncias 173

NUREZ-VARELA, A. S. et al. Source code metrics: A systematic mapping study. Journal
of Systems and Software, v. 128, p. 164 — 197, 2017. ISSN 0164-1212. Disponivel em:
<http://www.sciencedirect.com/science/article/pii/S0164121217300663>.

PITMAN, E. Significance Tests Which May be Applied to Samples from Any Population.
Journal of the Royal Statistical Society, v. 4, n. 1, 1937.

PITMAN, E. J. G. Significance tests which may be applied to samples from any
populations. ii. the correlation coefficient test. Supplement to the Journal of the Royal
Statistical Society, [Wiley, Royal Statistical Society], v. 4, n. 2, p. 225-232, 1937. ISSN
14666162. Disponivel em: <http://www.jstor.org/stable/2983647>.

PITMAN, E. J. G. Significance tests which may be applied to samples from any
population. iii. the analysis of variance test. Biometrika, v. 29, p. 322—-335, 1938.

POHL, K.; BOCKLE, G.; LINDEN, F. J. v. d. Software Product Line Engineering:
Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag, 2005.

PRESCHERN, C. Catalog of security tactics linked to common criteria requirements. In:
19th Conference on Pattern Languages of Programs. [S.l.: s.n.], 2012.

PRESSMAN, R. S. Software Engineering: A Practitioner’s Approach. eigth. [S.L.]:
McGrap-Hill, 2014.

RAY, I. et al. An aspect-based approach to modeling access control concerns.
Information and Software Technology, v. 46, n. 9, p. 575-587, 2004. Disponivel em:
<http://dblp.uni-trier.de/db/journals/infsof/infsof46.html#RayFLG04>.

REGNELL, B.; SVENSSON, R.; OLSSON, T. Supporting roadmapping of quality
requirements. Software, IEEE, v. 25, n. 2, p. 42—47, March 2008. ISSN 0740-7459.

RIBEIRO, V. V.; TRAVASSOS, G. H. Testing non-functional requirements: Lacking of
technologies or researching opportunities? In: XV Braziliam Symposium on Software
Quality. [S.l.: s.n.], 2016. p. 110-119.

ROBINSON, A. Randomization, bootstrap and monte carlo methods in biology.
Journal of the Royal Statistical Society: Series A (Statistics in Society), Blackwell
Publishing Ltd, v. 170, n. 3, p. 856—856, 2007. ISSN 1467-985X. Disponivel em:
<http://dx.doi.org/10.1111/j.1467-985X.2007.00485_5.x>.

ROZANSKI, N.; WOODS, E. Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. [S.l.]: Addison-Wesley Professional, 2005. ISBN
0321112296.

RUNESON, P.; H6ST, M. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, Springer US, v. 14, n. 2, p.
131-164, 2009. ISSN 1382-3256. Disponivel em: <http://dx.doi.org/10.1007/s10664-
008-9102-8>.

RYOO, J.; KAZMAN, R.; ANAND, P. Architectural analysis for security. IEEE
Security and Privacy, |EEE Educational Activities Department, Piscataway,
NJ, USA, v. 13, n. 6, p. 52-59, nov. 2015. ISSN 1540-7993. Disponivel em:
<http://dx.doi.org/10.1109/MSP.2015.126>.

http://www.sciencedirect.com/science/article/pii/S0164121217300663
http://www.jstor.org/stable/2983647
http://dblp.uni-trier.de/db/journals/infsof/infsof46.html#RayFLG04
http://dx.doi.org/10.1111/j.1467-985X.2007.00485_5.x
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1109/MSP.2015.126

Referéncias 174

RYOO, J.; LAPLANTE, P.; KAZMAN, R. Revising a security tactics hierarchy through
decomposition, reclassification, and derivation. In: Software Security and Reliability

Companion (SERE-C), 2012 IEEE Sixth International Conference on. [S.l.: s.n.], 2012.
p. 85-91.

SANDHU, R.; SAMARATI, P. Access control: principle and practice. Communications
Magazine, IEEE, v. 32, n. 9, p. 40—48, Sept 1994. ISSN 0163-6804.

SANT’ANNA, C. et al. On the reuse and maintenance of aspect-oriented software:
An assessment framework. In: Proceedings XVII Brazilian Symposium on Software
Engineering. [s.n.], 2003. Disponivel em: <http://twiki.im.ufba.br/pub/Aside/
NossasPublicacoes/sbes2003-135.PDF>.

SANT’ANNA, C. N. Manutenibilidade e Reusabilidade de Software Orientado a
Aspectos: Um Framework de Avaliagdo. 2004. Tese (Doutorado) — Pontificia
Universidade Catélica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

SARAIVA, J. de A. G. et al. Classifying metrics for assessing object-oriented software
maintainability: A family of metrics’ catalogs. Journal of Systems and Software, v. 103,
p. 85-101, 2015.

SCHMID, K.; JOHN, I. A customizable approach to full lifecycle variability management.
Sci. Comput. Program., Elsevier North-Holland, Inc., Amsterdam, The Netherlands,
The Netherlands, v. 53, n. 3, p. 259-284, dez. 2004. ISSN 0167-6423. Disponivel em:
<http://dx.doi.org/10.1016/j.scico.2003.04.002>.

SCHMIDT, D.; BUSCHMANN, F. Patterns, frameworks, and middleware: their synergistic
relationships. In: Software Engineering, 2003. Proceedings. 25th International
Conference on. [S.l.: s.n.], 2003. p. 694—704. ISSN 0270-5257.

SCHULZE, S. et al. Does the discipline of preprocessor annotations matter?: A
controlled experiment. In: Proceedings of the 12th International Conference on
Generative Programming: Concepts & Experiences. New York, NY, USA:
ACM, 2013. (GPCE ’13), p. 65—74. ISBN 978-1-4503-2373-4. Disponivel em:
<http://doi.acm.org/10.1145/2517208.2517215>.

SCHUMACHER, M. et al. Security Patterns: Integrating Security and Systems
Engineering. [S.l.]: John Wiley & Sons, 2005. ISBN 0470858842.

SHULL, F. J. et al. The role of replications in empirical software engineering. Empirical
Softw. Engg., Kluwer Academic Publishers, Hingham, MA, USA, v. 13, n. 2, p. 211-218,
abr. 2008. ISSN 1382-3256. Disponivel em: <http://dx.doi.org/10.1007/s10664-008-
9060-1>.

SIEGMUND, N. et al. Measuring non-functional properties in software product line
for product derivation. In: Software Engineering Conference, 2008. APSEC '08. 15th
Asia-Pacific. [S.l.: s.n.], 2008. p. 187—194. ISSN 1530-1362.

SILVEIRA, P. et al. Rise events - a testbed for software product lines experimentation.
In: First International Workshop on Variability and Complexity in Software Design. [S..:
s.n.], 2016. p. 40—49.

http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF
http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF
http://dx.doi.org/10.1016/j.scico.2003.04.002
http://doi.acm.org/10.1145/2517208.2517215
http://dx.doi.org/10.1007/s10664-008-9060-1
http://dx.doi.org/10.1007/s10664-008-9060-1

Referéncias 175

SINCERO, J.; SCHRODER-PREIKSCHAT, W.; SPINCZYK, O. Approaching
non-functional properties of software product lines: Learning from products. In: Software
Engineering Conference (APSEC), 2010 17th Asia Pacific. [S.l.: s.n.], 2010. p. 147—-155.
ISSN 1530-1362.

SOARES, L. R. et al. Analysis of non-functional properties in software product lines: A
systematic review. In: Software Engineering and Advanced Applications (SEAA), 2014
40th EUROMICRO Conference on. [S.l.: s.n.], 2014. p. 328—-335.

SOFTWARE Engineering - Product Quality, ISO/IEC 9126-1. [S.l.], 2001.
SOMMERVILLE, |. Software Engineering. 9. ed. Harlow, England: [s.n.], 2010.

SPENCE, J. T. et al. Elementary statistics. [S.l.]: New York: Appleton-Century-Crofts,
1976.

SPENCE, J. T. et al. Randomization tests (4th ed.). [S.l.]: Boca Raton, FL: Chapman
and Hall/CRC., 2007.

SPINELLIS, D. Tool writing: A forgotten art? IEEE Software, v. 22, n. 4, p. 9-11,
July/August 2005. ISSN 0740-7459. Disponivel em: <http://www.dmst.aueb.gr/dds/
pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html>.

STEEL, C.; NAGAPPAN, R.; LAIl, R. Core security patterns: Best practices and
strategies for J2EE, Web services, and identity management. Prentice-Hall, 2006.
(Prentice Hall Core Series). Disponivel em: <http://www.coresecuritypatterns.com/>.

SUN, S.; PAN, W.; WANG, L. L. A comprehensive review of effect size reporting and
interpreting practices in academic journals in education and psychology. Journal of
Educational Psychology, v. 102, p. 989-1004, 11 2010.

SVAHNBERG, M.; GURP, J. van; BOSCH, J. A taxonomy of variability realization
techniques. Software Practice and Experience, New York, NY, USA, v. 35, n. 8, p.
705-754, 2005.

TAYLOR, R. N.; MEDVIDOVIC, N.; DASHOFY, E. M. Software Architecture:
Foundations, Theory, and Practice. [S.l.]: Wiley Publishing, 2009. ISBN 0470167742,
9780470167748.

TRACZ, W. Software reuse myths. ACM SIGSOFT Software Engineering Notes, New
York, NY, USA, v. 13, n. 1, p. 17-21, 1988.

VALE, G. A. D.; FIGUEIREDO, E. M. L. A method to derive metric thresholds for
software product lines. In: 29th Brazilian Symposium on Software Engineering. [S.I.:
s.n.], 2015. p. 110-119.

VERDON, D. Security policies and the software developer. Security Privacy, IEEE, v. 4,
n. 4, p. 42—49, July 2006. ISSN 1540-7993.

VIOLA, D. N. Deteccdo e modelagem de padrdo espacial em dados binarios e de
contagem. 2007. Tese (Doutorado) — USP: Escola Superior de Agricultura “Luiz de
Queiroz”, Piracicaba.

http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html
http://www.coresecuritypatterns.com/

Referéncias 176

WAGNER, S. Software Product Quality Control. Springer, 2013. ISBN 978-3-642-
38570-4. Disponivel em: <http://dx.doi.org/10.1007/978-3-642-38571-1>.

WAHL, N. J. An overview of regression testing. ACM SIGSOFT Software Engineering
Notes, New York, NY, USA, v. 24, n. 1, p. 69-73, 1999. ISSN 0163-5948.

WANG, Y. et al. Pla-based runtime dynamism in support of privacy-enhanced web
personalization. In: Software Product Line Conference, 2006 10th International. [S..:
s.n.], 2006. p. 10 pp.—162.

WESTFALL, P.; YOUNG, S. Resampling-Based Multiple Testing: Examples and

Methods for P-Value Adjustment. Wiley, 1993. (A Wiley-Interscience publication).
ISBN 9780471557616. Disponivel em: <https://books.google.com.br/books?id=

nuQXORVGI1QCs.

WOHLIN, C. et al. Experimentation in Software Engineering: An Introduction. Norwell,
MA, USA: Kluwer Academic Publishers, 2012. ISBN 0-7923-8682-5.

WOODS, E.; ROZANSKI, N. Using architectural perspectives. In: Software Architecture,
2005. WICSA 2005. 5th Working IEEE/IFIP Conference on. [S.l.: s.n.], 2005. p. 25-35.

ZHANG, H.; JARZABEK, S.; YANG, B. Quality prediction and assessment
for product lines. In: Proceedings of the 15th International Conference on
Advanced Information Systems Engineering. Berlin, Heidelberg: Springer-
Verlag, 2003. (CAISE’03), p. 681-695. ISBN 3-540-40442-2. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1758398.1758458>.

http://dx.doi.org/10.1007/978-3-642-38571-1
https://books.google.com.br/books?id=nuQXORVGI1QC
https://books.google.com.br/books?id=nuQXORVGI1QC
http://dl.acm.org/citation.cfm?id=1758398.1758458

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de tabelas
	Sumário
	INTRODUCTION
	Motivation
	Problem Statement
	Research Design
	Contributions
	Out of Scope
	Organization of the Thesis

	SOFTWARE PRODUCT LINES: AN OVERVIEW
	Introduction
	SPL Essential Activities
	Core Asset Development
	Product Development
	Management

	SPL Adoption Strategies
	SPL Variability Management
	Variability Identification and Representation
	Variability Binding and Control

	Software Product Lines Architecture
	Non Functional Properties
	Types of Non Functional Properties
	Maintainability

	Chapter Summary

	AN OVERVIEW ON SOFTWARE SECURITY
	Security Taxonomy
	Software Security Tactics
	Detect Attacks
	Resisting Attacks
	React from Attacks
	Recover from Attacks

	Variability in Software Security
	Chapter Summary

	SOFTWARE PRODUCT LINES TEST BED
	Related Work
	RiSE Event SPL
	Functional Properties

	RiSE Store SPL
	Functional Properties
	RiSE Store Refactoring and Evolution

	Law Office SPL
	Functional Properties
	Law Office SPL Refactoring and Evolution

	Non Functional Properties
	Security techniques implementation

	Chapter Summary

	ASSESSING SECURITY IN SOFTWARE PRODUCT LINES: A MAINTENANCE ANALYSIS
	Variability Mechanism
	Conditional Compilation
	Aspect-Oriented Programming

	Software Security
	The Family of experiments
	Experiments Definition
	Planning
	Goal
	Research Questions (RQs)
	Metrics
	Hypotheses and variables

	Operation
	Experiments Material
	Execution
	Data collection

	Analysis procedure
	Analysis and Interpretation
	Size
	Separation of Concerns
	Lack of Cohesion
	Coupling
	Feature Interaction

	Main Findings
	Threats to Validity
	Related Work
	Conclusion
	Chapter Summary

	CONCLUSION AND FUTURE WORK
	Concluding Remarks
	Main Contributions
	Future Work

	TESTBED DATA
	DATA COLLECTION
	Referências

