
ÉRIKA SPENCER DE ALBUQUERQUE

DESENVOLVIMENTO DE UM MÓDULO PARA TEMPLATE MATCHING
BASEADO EM ZNCC COM PROTOTIPAÇÃO EM FPGA.

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2017

www.cin.ufpe.br/~posgraduacao

ÉRIKA SPENCER DE ALBUQUERQUE

"DESENVOLVIMENTO DE UM MÓDULO PARA TEMPLATE MATCHING BASEADO EM
ZNCC COM PROTOTIPAÇÃO EM FPGA."

Trabalho apresentado ao Programa de Pós-graduação em

Ciência da Computação do Centro de Informática da Univer-

sidade Federal de Pernambuco como requisito parcial para

obtenção do grau de Mestre em Ciência da Computação.

Orientadora: Edna Natividade da Silva Barros

RECIFE
2017

Érika Spencer de Albuquerque

Desenvolvimento de um Módulo para Template Matching Baseado em

ZNCC com Prototipação em FPGA

 Dissertação apresentada ao Programa de Pós-

Graduação em Ciência da Computação da

Universidade Federal de Pernambuco, como

requisito parcial para a obtenção do título de

Mestre em Ciência da Computação.

Aprovado em: 30/06/2017

BANCA EXAMINADORA

 __

Prof. Dr. Carlos Alexandre Barros de Mello

Centro de Informática / UFPE

__

Prof. Dr. Elmar Uwe Kurt Melcher

Centro de Engenharia Elétrica e Informática / UFCG

Profa. Dra. Edna Natividade da Silva Barros

Centro de Informática / UFPE

(Orientadora)

Dedico essa dissertação à minha mãe, que sempre apoiou

os meus projetos.

Agradecimentos

Esse projeto não teria sido possível sem o apoio incondicional da minha família, devo
agradecimentos especiais a minha mãe, Taciana, ao meu irmão, Henrique, e ao meu marido
Roberto, obrigada por me apoiarem sempre, por sonharem junto comigo e também por suportarem
as minhas ausências, a carga foi mais leve graças a vocês.

Agradeço a todo o suporte recebido da minha família pernambucana, obrigada por me
apoiarem do início ao fim desse projeto, Adriana, Raul, Carolina, Márcio, Marcelo e Maria.

Agradeço a gerência e os conselhos valiosos de Antonyus Pyetro e João Paulo. Também
não posso deixar de agradecer as pessoas que contribuíram diretamente para esse projeto, João
Gabriel, Josivan, Severivo José, Djeefther, obrigada por enriquecerem esse trabalho.

Quero também agradecer as amizades que o LINCS me presenteou e que também
contribuíram nessa jornada, Cecil, Rodrigo, Henrique, Hugo, Maria, Igor, Vanessa, Jefferson,
Lucas, obrigada.

Finalmente quero agradecer aos mestres, essenciais a minha formação, em especial a
minha orientadora a professora Edna por todos os conselhos e oportunidades que recebi, por ser
um grande exemplo de professora pesquisadora e por cuidar tão bem dos alunos e do LINCS.
Devo ainda um agradecimento aos professores do centro de Informática que tanto contribuíram
na minha formação. Obrigada Professores Manuel, Abel, Carlos e Edna por todas as lições
passadas.

"A essência do conhecimento consiste em aplicá-lo, uma vez possuído."

—CONFÚCIO

Resumo

Template matching ou casamento de padrões é um problema clássico de visão compu-
tacional, soluções para esse problema se aplicam a reconhecimento, detecção e rastreamento
de objetos. O casamento de padrões consiste em buscar regiões de uma imagem fonte que
mais se assemelham a uma imagem menor de referência (template). Uma abordagem para
realizar essa busca baseia-se em comparar, através de uma medida de similaridade, a imagem de
referencia com cada janela de mesma dimensão da imagem fonte. A métrica Correlação Cruzada
Normalizada de Média Zero (ZNCC) é uma medida de similaridade amplamente utilizada em
problemas de casamento de padrões devido a sua robustez a variações lineares de brilho e
contraste. O principal desafio para o casamento de padrões, especialmente usando a métrica
ZNCC é o alto custo computacional de calcular os valores de ZNCC referentes a cada janela
de imagem. Há ainda, aplicações que requerem o casamento de padrões para múltiplos padrões
(templates), como por exemplo, o rastreio de múltiplos objetos independentes ou de múltiplas
poses do mesmo objeto , isso multiplica o custo computacional da operação, tornando difícil
a obtenção de uma solução em tempo real. Esse trabalho propõe uma arquitetura de módulo
em hardware com prototipação em FPGA que explora conceitos de paralelismo e pipeline para
acelerar o cálculo da ZNCC entre uma imagem e múltiplos padrões. Resultados experimentais
mostram que o módulo proposto chega a acelerar em 3x o tempo de processamento comparado
às implementações em GPU e CPU. Além disso, o acelerador proposto alcança um dempenho de
tempo real (32.13FPS) para o processamento de até 10 templates (Imagem 432x432 e template
72x144) (ALBUQUERQUE et al., 2016).

Palavras-chave: FPGA. Rastreamento de Objetos. ZNCC. Template Matching. Visão Compu-
tacional.

Abstract

Template matching is a well known computer vision problem. Its solutions can be
aplied in object recognition, detection and tracking applications. An algorithm to solve template
matching problem consists in looking for areas of an image that more closely resemble a smaller
image of reference (template). Its operation is based on calculating the similarity or dissimilarity
between the template and each region of image that it can overlay (image window). The metric
Zero Mean Normalized Cross correlation (ZNCC) is a measure of similarity widely used in
template matching problems due to its robustness to linear variations of brightness and contrast.
The main disadvantage of the template matching technique, especially using ZNCC metric is
the high computational cost of the calculation. Some applications, such as screening of multiple
independent objects or multiple poses of the same subject require finding the best matching
positions with multiple templates, which increases the computational cost of operation. A real
time solution for multiple template matching is hard to be obtained. This paper proposes a
coprocessor prototyped in FPGA that explores concepts of parallelism and pipeline to speed up
the calculation of ZNCC between an image and multiple templates. Experimental results shows
a 3x speedup comparing FPGA performance to implementations on GPU and CPU. Furthermore,
the proposed accelerator achieves real-time performance (32.13FPS) for processing templates up
to 10 (Image 432x432 and template 72x144) (ALBUQUERQUE et al., 2016).

Keywords: FPGA. Object Tracking. Computer Vision. Template Matching. Embedded
Systems.

Lista de Figuras

2.1 Rastreamento em vídeo . 21
2.2 Ilustração de execução de Template matching: Imagem teplate e janela de imagem 22
2.3 (a) Exemplo de template (canto esquerdo superior) e imagem. (b) Gráfico mos-

trando valores de similaridade em cada posição da imagem. 23
2.4 Template binário 3x3 . 24
2.5 Imagem binária 10x10 . 25
2.6 Cálculo da primeira posição da matriz de resultados 25
2.7 Cálculo da trigésima terceira posição da matriz de resultados 26
2.8 Resultado de SSD 7x7 em escala de cinza (escala entre 0 e 9) 26
2.9 Exemplo de resultado de SSD entre imagem e template com 8 bits por pixel (bpp) 27
2.10 Exemplo de resultado de CC entre imagem e template 27
2.11 Exemplo de resultado de CC entre imagem e template quando a representação

usa 8 bpp . 28
2.12 Imagem de entrada modificada para exemplificar o problema com regiões claras

da correlação cruzada . 28
2.13 Exemplo de resultado de CC entre imagem e template quando a imagem possui

uma região muito clara . 29
2.14 Exemplo de resultado da métrica NCC entre imagem e template com 1 bpp . . . 29
2.15 Exemplo de resultado da métrica NCC entre imagem e template com 8 bpp . . . 30
2.16 Resultado de NCC entre imagem e template quando a imagem possui uma região

muito clara . 30
2.17 Template com menor contraste 3x3 . 31
2.18 Resultado de NCC entre imagem e template quando a imagem possui uma região

muito clara e há uma diferença de iluminação e contraste entre imagem e template 31
2.19 Exemplo de resultado de ZCC entre imagem e template quando a imagem pos-

sui uma região muito clara e há uma diferença de iluminação e contraste entre
imagem e template . 32

2.20 Exemplo de resultado de ZCC entre imagem e template quando a imagem pos-
sui uma região muito clara e o template e a imagem tem os mesmos níveis de
iluminação e contraste . 32

2.21 Exemplos da invariância da Correlação Cruzada Normalizada com Média Zero
(ZNCC) a mudanças de quantidades de bpp e mudanças de iluminação e contraste 33

2.22 Exemplo da ZNCC quando a imagem possui uma região muito clara 34
2.23 Rastreamento mostrandoframe , Região de Interesse (ROI) etemplate. 34
2.24 Rastreamento de pedestre usando 6templates. 36
2.25 Arquitetura genérica de FPGA. 37

2.26 Exemplo de bloco lógico contido na FPGA Stratix IV. 37
2.27 Bloco DSP contido na FPGA Stratix IV. 38

3.1 (a) Valor do ponto IIs(x,y) da imagem integral, corresponde à soma das intensida-
des dos pixels da imagem original localizados a partir desta posição até a origem,
região em destaque. (b) A soma da janela destacada pode ser calculada como:
S = IIs(D)+ IIs(A)− IIs(B)− IIs(C), onde IIs(A) é o valor da imagem integral na
posição ‘A’. 42

3.2 Arquitetura proposta por CHEN et al. (2012) para template matching. 45
3.3 Arquitetura de processamento de template matching proposta por HASHIMOTO;

ITO; NAKANO (2013). 46
3.4 Ilustração das multiplicações parciais que permitem a configuração pós síntese

da quantidade de templates e resultados da operação. 47
3.5 Ilustração das multiplicações parciais que permitem a configuração pós síntese

da quantidade de templates e resultados da operação. 48

4.1 Ilustração do cáculo da ZNCC multitemplate. 51
4.2 Casamento de padrões: Ordem do cálculo, dimensões das entradas e da saída . . 52
4.3 Mapeamento do cáculo da ZNCC multitemplate. 56
4.4 Ilustração do deslocamento da seleção de linha na imagem. 58
4.5 Visão geral do coprocessador ZNCC multitemplate. 58
4.6 Ilustração dos pixels armazenados na FIFO de imagem do módulo buffers de

entrada, durante o cálculo da ZNCC. 60
4.7 As somas são computadas por linha e esses resultados são acumulados para obter

os valores por janela de imagem . 61
4.8 Diagrama de blocos do módulo template datapath. 63
4.9 Exemplo reduzido: Somas e correlações da primeira linha da imagem. 63
4.10 Linha de correlação para ‘m’ templates de largura ‘O’. 64
4.11 Exemplo de linha de correlação em funcionamento. 64
4.12 Exemplo de linha de correlação em funcionamento do ponto de vista de um vetor

sistólico . 65
4.13 Célula de correlação para ’m’ templates. 66
4.14 Somador em árvore com ‘O’ entradas. 67
4.15 Acumulador FIFO para cálculo de somas em uma janela de correlação. 67
4.16 Estrutura interna do módulo acumuladores de linhas. 68
4.17 Exemplo: módulo acumuladores de linhas em funcionamento. 68
4.18 Mapeamento da equação em diagrama de blocos de implementação. 69
4.19 Passo a passo de cada valor do exemplo dentro do módulo de reduções aritméticas 70
4.20 Unidade de controle . 71
4.21 Fluxograma da unidade de controle. 72

4.22 FSM da unidade de controle. 73
4.23 pixels de imagem para etapas de preenchimento de linha de correlação 73

5.1 Fluxo de desenvolvimento de projeto . 77
5.2 Visão geral do sistema para rastreamento de objetos acelerado por Field Pro-

grammable Gate Array (FPGA). 78
5.3 Uso de recursos do FPGA, por quantidade de templates, usado multiplicadores

escolhidos na síntese padrão construídos usando blocos DSP 80
5.4 Uso de recursos do FPGA por tipo de multiplicador usado(DSP ou ALUTs) e por

quantidade de templates . 81
5.5 Uso de recursos do FPGA por tipo de multiplicador usado(DSP ou ALUTs) e por

quantidade de templates . 82

6.1 Comparação de performance em FPS variando a quantidade de templates de 1 a
10 para as implementações CPU, GPU e FPGA. 86

6.2 Comparação de performances em FPS por MHz variando a quantidade de tem-

plates de 1 a 10 para as implementações CPU, GPU e FPGA. 87
6.3 Medida de precisão do algoritmo de rastreamento multitemplate. 88
6.4 Medida de sucesso de sobreposição do algoritmo de rastreamento usando de 1 a

10 templates. 89

Lista de Tabelas

3.1 Quadro comparativo com os principais trabalhos do estado da arte. 49

4.1 Exemplo imagem 3x3 pixels . 55
4.2 Exemplo template 2x2 pixels . 55
4.3 Tabela com os parâmetros da arquitetura . 59

5.1 Uso de recursos do FPGA apenas para o PROCmegaFIFO. 79

6.1 Precisão numérica dos resultados por vídeo . 85

Lista de Acrônimos

ASIC Circuito integrado de aplicação específica . 38

ATR Reconhecimento Automático de Alvos . 47

bpp Bits por pixel . 26

CC Correlação Cruzada . 26

CI Circuito Integrado . 47

CPU Unidade Central de Processamento. .19

DSP processamento digital de sinais . 37

FSM Máquina de Estados Finita . 70

FPGA Field Programmable Gate Array . 18

fps frames por segundo. .79

GPU Unidade Gráfica de Processamento. .19

HDL Linguagem de Descrição de Hardware . 76

HPC High Performance Computing . 39

IP Propriedade Intelectual . 78

LUT Look up Table . 37

NCC Correlação Cruzada Normalizada . 28

PE Elementos de Processamento . 62

ROI Região de Interesse . 18

SNR Relação Sinal Ruído . 84

SSD Soma dos Quadrados das Diferenças . 24

ZCC Correlação Cruzada com Média Zero . 31

ZNCC Correlação Cruzada Normalizada com Média Zero . 16

Sumário

1 INTRODUÇÃO . 16
1.1 Motivação . 17
1.2 Objetivos do trabalho . 18
1.3 Organização da dissertação . 19

2 FUNDAMENTAÇÃO TEÓRICA . 20
2.1 Rastreamento de objetos em vídeo . 21
2.2 Casamento de padrões utilizando análise de similaridade por janela deslizante 22
2.3 Métricas para comparação . 23
2.3.1 Soma dos Quadrados das Diferenças (SSD) 24
2.3.2 Correlação Cruzada (CC) . 26
2.3.3 Correlação Cruzada Normalizada (NCC) . 28
2.3.4 Correlação Cruzada com Média Zero (ZCC) 31
2.3.5 Correlação cruzada normalizada com média zero (ZNCC) 32
2.4 Aplicação: Rastreamento baseado em ZNCC multitemplate 34
2.5 FPGA . 36
2.6 Conclusões . 39

3 TRABALHOS RELACIONADOS . 40
3.1 Fast normalized cross-correlation . 41
3.2 Real-time FPGA-based template matching module for visual inspection appli-

cation . 42
3.3 Template matching using DSP slices on the FPGA 45
3.4 VLSI implementation of multiple large template-based image matching for

automatic target recognition . 47
3.5 Análise comparativa . 48

4 ARQUITETURA PROPOSTA PARA CÁLCULO DE ZNCC MULTITEMPLATE . 50
4.1 Estratégia de cálculo proposta . 52
4.2 Visão geral da arquitetura . 58
4.3 Buffers de entrada . 60
4.4 Somas . 61
4.4.1 Somas e correlações por linha . 62
4.4.1.1 Linha de correlação . 63
4.4.1.2 Célula de correlação . 65
4.4.1.3 Somadores em árvore . 66
4.4.2 Acumuladores de linhas . 67

4.5 Módulo de reduções aritméticas . 69
4.6 Unidade de controle . 70
4.7 Módulo de seleção dos máximos . 74
4.8 Conclusões . 74

5 IMPLEMENTAÇÃO FPGA . 75
5.1 Dispositivos . 76
5.2 Metodologia de projeto . 76
5.3 MegaFifo e a integração hardware software 78
5.4 Sínteses e resultados . 79
5.4.1 Síntese padrão . 79
5.4.2 Síntese priorizando o uso de lógica combinacional 80
5.4.3 Tipo de multiplicador via parâmetro de síntese 81

6 EXPERIMENTOS E RESULTADOS . 83
6.1 Teste de corretude . 84
6.2 Avaliação de desempenho . 85
6.3 Estudo de caso . 87
6.3.1 Precisão . 88
6.3.2 Sobreposição . 88
6.4 Conclusões . 90

7 CONCLUSÕES E TRABALHOS FUTUROS . 91
7.1 Trabalhos Futuros . 93

REFERÊNCIAS . 95

161616

1
INTRODUÇÃO

Esta dissertação tem como objetivo o desenvolvimento de um módulo em hardware
descrito em System Verilog e prototipado em FPGA capaz de executar o cálculo da métrica
Correlação Cruzada Normalizada com Média Zero (ZNCC) Multitemplate de forma eficiente,
quando comparada a outras implementações. A motivação principal deste trabalho é disponi-
bilizar o módulo em System Verilog para ser usado em diversas aplicações no campo da visão
computacional, dentre essas aplicações o estudo de caso deste trabalho foi executar um algoritmo
de rastreamento de objetos baseado em busca por multiplos templates, de forma eficiente, usando
um sistema híbrido formado por CPU e FPGA. Este capítulo apresenta de uma forma geral os
conceitos relacionados ao tema, template matching, a motivação do trabalho, os objetivos, os
principais resultados e a organização do texto.

1.1. MOTIVAÇÃO 17

1.1 Motivação

Ver é descobrir através de imagens o que existe ao redor e onde cada coisa está (MART,

1982). O processo de percepção visual que nos permite assimilar e interpretar o ambiente por
meio de informações visuais é um processo complexo que envolve estruturas fisiológicas e
habilidades cognitivas.

A emulação desse processo de percepção por sistemas computacionais é o campo de
estudo da visão computacional. Essa área de pesquisa trouxe grandes avanços aos sistemas
computacionais permitindo que estes extraiam informações a partir de imagens ou vídeos.

Extrair informações de imagens ou vídeo é uma importante etapa do processamento
na análise de imagens médicas (CHEN, 2014), de imagens espaciais (HUMENBERGER et al.,

2010), no auxílio à navegação em veículos autônomos (BRISTEAU et al., 2011), além de ser
fundamental em sistemas de segurança complexos (JONES; PARAGIOS; REGAZZONI, 2012) e
em diversas outras aplicações.

Uma etapa recorrente na análise de imagens e vídeos estudada no campo da visão
computacional, é a busca de um objeto conhecido em uma imagem. O casamento de padrões ou
Template matching é o problema de localizar um objeto representado por uma imagem menor
(Template) em uma cena, imagem maior.

Uma maneira de solucionar esse problema fazer uma aálise de similaridade por janela
deslizante. Isto é, eleger uma métrica que quantifique a semelhança entre o padrão (template)
e cada região da imagem com dimensões iguais as do template. Assim é possível escolher,
quantitativamente, a janela de imagem mais parecida com o template.

Um problema comum com o uso dessa técnica é uma variação de iluminação e contraste
entre a imagem de referência (template) e a imagem onde este está sendo buscado. Felizmente,
para solucionar esse tipo de problema existem métricas de similaridade robustas a variações
lineares de iluminação e contraste como a correlação normalizada com média zero (ZNCC)
(NARASIMHAN; NAYAR, 2003). O principal contraponto de escolher essa métrica é o alto custo
computacional de calculá-la (GHARAVI-ALKHANSARI, 2001).

O casamento de padrões por análise de similaridade é usado em sistemas de visão
computacional em geral, dentre as aplicações de maior destaque tem-se o reconhecimento de
digitais (LINDOSO; ENTRENA, 2007), a detecção de objetos (BENNAMOUN; MAMIC, 2012),
o reconhecimento facial (BRUNELLI; POGGIO, 1993), a detecção de defeitos em linha de
produção (TSAI; LIN, 2003), a visão estereoscópica (QAYYUMA et al., 2015) e o rastreamento
de objetos(MISHRA et al., 2013).

A detecção ou rastreamento de múltiplos objetos independentes, como a realizada por
YANG; DURAISWAMI; DAVIS (2005) exige a busca simultânea por múltiplos templates . Essa
busca por múltiplos templates também é usada para solucionar o problema de mudança de
aparência durante o rastreamento, (TATE; NORTHERN III, 2008), (SANG; LIAO; YUAN, 2011),
(MAHMOOD; KHAN, 2010), (CUI et al., 2007).

1.2. OBJETIVOS DO TRABALHO 18

Sistemas de rastreamento ou de detecção de objetos em tempo real devem combinar alta
precisão e baixo tempo de processamento (KURUPPU et al., 2013). Erros de posição podem
gerar um deslocamento da câmera ou da Região de Interesse (ROI) que podem ocasionar na
perda do objeto procurado. Um processamento lento pode inviabilizar o rastreamento de objetos
em movimento rápido.

A principal dificuldade de implementar algoritmos que necessitam de múltiplos resultados
de template matching baseado em ZNCC é o tempo de processamento. O casamento de padrões
baseado em ZNCC, com um padrão (template) já é considerado de alto custo computacional.
Quando a abordagem é multitemplate, o tempo de processamento pode se tornar inviável para
aplicações de tempo real.

Implementações paralelas usando hardware reconfigurável podem apresentar um de-
sempenho semelhante ou até mesmo superior aos sistemas computacionais convencionais para
aplicações específicas com a vantagem de serem mais facilmente embarcados em outros sistemas,
muitas vezes com menor custo e menor consumo de energia.

Os trabalhos de (CHEN et al., 2012), (HASHIMOTO; ITO; NAKANO, 2013), (SANG;

LIAO; YUAN, 2011), (TATE; NORTHERN III, 2008) apresentam diferentes abordagens para
o casamento de padrões usando tecnologias de Field Programmable Gate Array (FPGA) para
prototipação. Os dois primeiros apresentam soluções para um único template e os dois últimos
para múltiplos templates. Esse trabalhos indicam a viabilidade de acelerar a execução desse
cálculo através da implementação em hardware com prototipação em FPGA. Contudo, nenhum
desses trabalhos apresentou uma implementação eficiente para executar da métrica ZNCC de
forma precisa para múltiplos templates.

1.2 Objetivos do trabalho

O objetivo deste trabalho foi desenvolver e implementar uma arquitetura de um mó-
dulo de hardware prototipada em FPGA para acelerar o casamento de padrões, com análise
de similaridade por janela deslizante e mutiplus templates em paralelo, usando a métrica de
correlação cruzada normalizada de média zero (ZNCC). Esse módulo deve permitir a execução
em tempo real (acima de 30FPS) do cálculo das matrizes de resultados, sem diminuir a precisão
dos resultados.

O objetivo principal deste trabalho foi alcançado através de alguns objetivos secundários
essenciais ao desenvolvimento do projeto:

� Desenvolvimento de uma arquitetura para o cálculo da ZNCC, explorando paralelismo
no processamento de cada frame.

� Implementação de um módulo em hardware para o cálculo da ZNCC entre múltiplos
templates e uma imagem.

� Realização da verificação funcional módulo proposto.

1.3. ORGANIZAÇÃO DA DISSERTAÇÃO 19

� Execução de testes com o módulo proposto prototipado em FPGA e integrado com
um micro processador em uma plataforma de prototipação.

� Comparação entre os tempos de processamento da arquitetura proposta com ou-
tras implementações do cálculo da ZNCC executadas em processador de propósito
geral Unidade Central de Processamento (CPU) ou em uma Unidade Gráfica de
Processamento (GPU) .

1.3 Organização da dissertação

Essa dissertação está organizada em sete capítulos. O segundo capítulo apresenta a
fundamentação teórica necessária para compreensão do trabalho descrito neste documento. O
terceiro capítulo apresenta os principais trabalhos relacionados da área, os trabalhos de base e os
do estado da arte, que foram mais importantes para o projeto. O texto destaca, ainda, os aspectos
mais relevantes de cada trabalho e faz uma comparação entre eles.

O quarto capítulo, descreve a arquitetura proposta por esse trabalho para o cálculo das
matrizes de ZNCC multitemplate com a descrição interna de cada módulo e explicação detalhada
do seu funcionamento. O quinto capítulo aborda aspectos práticos da implementação em FPGA.

O sexto capítulo apresenta os experimentos feitos usando a arquitetura aqui desenvolvida
e os resultados obtidos, este capítulo apresenta os testes de qualidade e desempenho da arquitetura
proposta. Finalmente, o sétimo capítulo elenca algumas conclusões e sugere trabalhos futuros
que darão continuidade ao projeto.

202020

2
FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são apresentadas as bases teóricas que deram origem ao trabalho. A
compreensão dos conceitos detalhados neste capítulo facilita a leitura dos próximos capítulos.
Inicialmente é apresentada uma visão geral do rastreamento de objetos em vídeo, em seguida
há uma explicação sobre template matching por janela deslizante, as medidas de comparação
entre imagens serão analisadas justificando a escolha da ZNCC neste projeto e finalmente é
apresentada uma visão superficial do algoritmo de rastreamento que motivou a realização deste
trabalho.

2.1. RASTREAMENTO DE OBJETOS EM VÍDEO 21

2.1 Rastreamento de objetos em vídeo

O rastreamento de objetos em vídeo é uma área importante da visão computacional,
com aumento na disponibilidade de câmeras de vídeo de boa qualidade e baixo custo, cresceu a
demanda por algoritmos de processamento automático de vídeo. Os algoritmos de rastreamento
de objetos em vídeo atraem uma atenção especial devido a vasta gama de aplicações onde eles
são necessários.

O Rastreamento por vídeo é o problema de estimar a trajetória de um objeto no plano da
imagem enquanto ele se move ao redor da cena. A trajetória é o conjunto das coordenadas ao
longo do tempo (YILMAZ; JAVED; SHAH, 2006).

Figura 2.1: Rastreamento em vídeo

Fonte: (WU; LIM; YANG, 2013)

Algumas das aplicações mais populares do rastreamento em vídeo são: monitoramento
de vídeos de segurança, monitoramento de tráfico com rastreamento de veículos, rastreamento de
pedestres em ambientes externos, interação homem máquina por gestos, navegação automática
de veículos com desvio de obstáculos.

O rastreamento em vídeo também pode ser visto como a tarefa de localizar um ou mais
objetos em cada frame do vídeo, pelas coordenadas dos pixels no frame. Neste trabalho o
casamento de padrões foi abordado urilizando a análise de similaridade por janela deslizante para
localizar o objeto, template, em cada frame , a aplicação alvo desse trabalho é o rastreamento de
pedestres em ambientes externos.

Os principais desafios do rastreamento de pedestres em ambientes externos são as
mudanças de iluminação e contraste, as quais os ambientes externos estão sujeitos, e as mudanças
de pose do pedestre.

2.2. CASAMENTO DE PADRÕES UTILIZANDO ANÁLISE DE SIMILARIDADE POR
JANELA DESLIZANTE 22
2.2 Casamento de padrões utilizando análise de similaridade por janela deslizante

A análise de similaridade por janela deslizante é muito usada em aplicações de visão
computacional para encontrar a posição de um modelo, o template, em uma imagem maior. A
busca consiste em deslizar o template sobre a imagem e encontrar a posição da imagem que o
template mais se assemelha à janela de imagem sobreposta (Figura 2.2). Para cada posição do
template sobre a imagem é calculada um resultado de métrica de comparação entre os pixels do
template e os da janela de imagem, que este sobrepõe.

Figura 2.2: Ilustração de execução de Template matching: Imagem teplate e janela de imagem

Imagem

Template

Janela de imagem

A Figura 2.3 mostra um exemplo de resultado de análise de similaridade. O template

destacado no canto superior esquerdo é deslizado, pixel a pixel, da direita para a esquerda e
de cima para baixo, cobrindo todas as posições da imagem. A cada posição é calculado um
resultado de similaridade entre o template e a janela de imagem que este sobrepõe. O conjunto
desses resultados de similaridade é mostrado no gráfico do lado esquerdo. Cada ponto do gráfico
(Rx,y) foi obtido por uma relação entre os pixels do template e os pixels da janela de imagem que
tem origem nas coordenadas do ponto (x,y) e com dimensões iguais as do template.

No gráfico está destacado o ponto de máximo, os valores de x e y indicam as coordenadas
da origem da janela de imagem que mais se assemelha com o template, o valor ‘z’ indica o grau
de similaridade entre a janela de imagem e o template em uma escala de -1 a 1.

A busca pelo objeto em cada frame é feita com base em um modelo do objeto, o template,
mas a aparência do objeto muda ao longo do tempo e isso pode atrapalhar o rastreamento.

O rastreamento deve funcionar mesmo com mudança de iluminação o que é um desafio,
principalmente se a métrica usada, para comparar o template com a janela de imagem, for muito
sensível às variações de iluminação e contraste.

Outro obstáculo ao bom funcionamento do rastreamento é que o objeto é tridimensional,
se move em um espaço tridimensional, e o vídeo é uma representação bidimensional da cena,
assim o objeto pode mudar sua aparência mudando de pose. Considerar múltiplas representações
bidimensionais do objeto pode aumentar a robustez do rastreamento.

2.3. MÉTRICAS PARA COMPARAÇÃO 23

Figura 2.3: (a) Exemplo de template (canto esquerdo superior) e imagem. (b) Gráfico mostrando
valores de similaridade em cada posição da imagem.

A escolha de um limiar numérico na métrica de comparação para determinar se o template

buscado se encontra na cena também é uma dificuldade de projeto. Um limiar muito restritivo
pode resultar em muitos falsos negativos, quando o objeto está na cena e o rastreador considera
que ela não está. Um limiar muito abrangente pode aumentar os falsos positivos, quando o objeto
não está na cena, ou está sob oclusão, e o rastreamento passa a seguir um outro objeto da cena
com algum grau de similaridade com o objeto buscado.

2.3 Métricas para comparação

A análise comparativa por janela deslizante gera uma matriz de resultados que é composta
por valores quantitativos que representam a comparação entre os pixels do template e os da
janela de imagem. As métricas para comparação podem ser dadas por medidas de similaridade
ou de dissimilaridade. As métricas mais comuns para esse propósito são baseadas na soma das
diferenças (dissimilaridade) ou na correlação cruzada (similaridade).

Esta seção apresenta as principais formas de calcular as métricas de comparação. Essas
métricas foram analisadas para a escolha da métrica mais adequada a este trabalho. As fórmulas,
aqui apresentadas, usam variáveis da imagem e do template, dessa forma vamos esclarecer a
notação usada para facilitar a leitura.

Cada valor na matriz de resultados é um R(x,y), sendo ‘x’ o número da linha e ‘y’ o
número da coluna, na matriz. O valor de cada pixel na imagem é dado por I(x,y), e no template

é dado por T(x,y). Cada janela de imagem é uma região da imagem com origem na posição
(x,y) e dimensões iguais às do template, como mostrado na Figura 4.2. As variáveis ‘i’ e ‘j’ são
usadas para percorrer, respectivamente, as linhas e colunas, tanto no template como na janela de
imagem. ‘N’ é o número total de pixels do template (N=i.j).

2.3. MÉTRICAS PARA COMPARAÇÃO 24

2.3.1 SOMA DOS QUADRADOS DAS DIFERENÇAS (SSD)

Uma das formas mais intuitivas de comparar duas imagens é subtrair uma imagem da
outra, já que imagens iguais geram resultados nulos. A métrica SSD, mostrada na Equação 2.1,
se baseia nesse conceito para calcular valores de dissimilaridade entre o template e cada janela
de imagem, com a mesma dimensão do template, contidas na imagem fonte. Para calcular um
resultado dessa matriz basta selecionar a janela de imagem na posição correspondente e subtrair,
dos pixels dessa janela de imagem os respectivos pixels dotemplate. Depois da subtração, eleva-
se o erro obtido ao quadrado para que os valores sempre sejam positivos. O acumulado desses
erros quadráticos é o resultado SSD na posição correspondente. Conforme exemplo mostrado na
Figura 2.6.

Quanto mais parecida for a janela de imagem com o template menor será o valor do
resultado SSD, dado por R(x,y) na Equação 2.1.

R(x,y) =
N

∑
i, j
(I(x+ i,y+ j)−T (i, j))2

�
 �	2.1

Um exemplo com imagens binárias (intensidade dos pixels é ‘0’ ou ‘1’) de pequenas
dimensões, será usado para entender melhor como as matrizes de resultado são obtidas. Nesse
exemplo vamos buscar o template 3x3 mostrado na Figura 2.4. A busca será feita sobre a imagem
10x10 mostrada na Figura 2.5.

Usando imagens binárias há duas possibilidades de resultados para cada erro quadrático
entre dois pixels, ‘0’ se os pixels forem iguais e ‘1’ se eles forem diferentes. Assim o valor de
cada posição da matriz de resultados, dado pelo somatório dos erros, pode variar de ‘0’ a ‘N’,
sendo ‘N’ a quantidade de pixels do template. No exemplo ‘N’ é igual a 9. Os resultados ‘0’
e ‘N’ correspondem, respectivamente, a uma janela de imagem exatamente igual ao template

(dissimilaridade nula) e a janela de imagem completamente oposta ao template (dissimilaridade
máxima).

Figura 2.4: Template binário 3x3

(a) Template: visualização gráfica (b) Template: Matriz de pixels correspondentes

A Figura 2.6 mostra o cálculo de SSD entre a primeira janela de imagem e o template,
correspondente a primeira posição da matriz de resultados. Seguindo o cálculo da direita para a
esquerda e de cima para baixo até o trigésimo terceiro resultado (posição 5,5) encontramos a
posição que possui a maior semelhança entre o template e a janela de imagem, como mostrado
na figura 2.7

2.3. MÉTRICAS PARA COMPARAÇÃO 25

Figura 2.5: Imagem binária 10x10

(a) Imagem: visualização gráfica (b) Imagem: Matriz de pixels correspondentes

Figura 2.6: Cálculo da primeira posição da matriz de resultados

Imagem

Template

Resultado

Janela de imagem

Na Figura 2.8 pode-se ver a matriz de resultados completa e sua representação gráfica
em escala de cinza, onde ‘0’ é representado pela cor preta e 9 pela cor branca. Uma vez obtida
a matriz de resultados, basta localizar o mínimo da matriz para encontrar a posição da região
da imagem que mais se assemelha ao template. O valor numérico de cada elemento da matriz
representa o quão desigual a janela de imagem é do template em uma escala de ‘0’ a ‘N’.

O principal problema da métrica de comparação SSD é a grande variação na escala dos
resultados. No caso de imagens binárias, essa escala depende apenas da quantidade de pixels do
template. Quando as operações são feitas com imagens em escala de cinza, onde a intensidade
de cada pixel é representada por um número inteiro de ‘d’ pixels, a escala dos resultados também

2.3. MÉTRICAS PARA COMPARAÇÃO 26

Figura 2.7: Cálculo da trigésima terceira posição da matriz de resultados

Imagem

Template

Resultado
Janela de imagem

Figura 2.8: Resultado de SSD 7x7 em escala de cinza (escala entre 0 e 9)

(a) Resultado: visualização gráfica (b) Resultado: Matriz numérica

é proporcional a (2d−1)2. A Figura 2.9 mostra o resultado da métrica SSD para o caso em que
imagem e template são representados com 8 Bits por pixel (bpp).

2.3.2 CORRELAÇÃO CRUZADA (CC)

A Equação 2.1, pode ser vista como:

R(x,y) =
N

∑
i, j
(I(x+ i,y+ j))2−2

N

∑
i, j
(I(x+ i,y+ j)T (i, j))+

N

∑
i, j
(T (x+ i,y+ j))2

�
 �	2.2

Esse ponto de vista evidencia o termo da equação que realmente depende da relação
entre imagem e template: ∑

N
i, j(I(x+ i,y+ j)T (i, j)). Esse termo é uma métrica de similaridade

conhecida como CC, mostrada na Equação 2.3.
Essa medida estatística é obtida pelo acumulado dos produtos entre cada pixel de template

2.3. MÉTRICAS PARA COMPARAÇÃO 27

Figura 2.9: Exemplo de resultado de SSD entre imagem e template com 8 bits por pixel (bpp)

Imagem

Template

Resultado SSD

e o seu respectivo pixel na janela de imagem. Sendo uma medida de similaridade, quanto maior
o resultado mais parecido é otemplate com a janela de imagem naquela posição.

R(x,y) =
N

∑
i, j

I(x+ i,y+ j).T (i, j)
�
 �	2.3

A Figura 2.10 mostra o cálculo da correlação cruzada entre a imagem da Figura 2.5 e o
template da Figura 2.4. Observe que a posição onde o resultado de correlação cruzada é máximo
(R=5) coincide com a posição onde a janela de imagem é igual ao template (quinta linha e quinta
coluna).

Figura 2.10: Exemplo de resultado de CC entre imagem e template

Imagem

Template

Resultado CC

A métrica CC apresenta problemas de escala semelhantes aos apresentados pela métrica
SSD. A Figura 2.11 mostra o que acontece com a matriz de resultados quando as imagens de
entrada são de 8 bpp.

A correlação cruzada também apresenta problemas de falso positivo em regiões muito
iluminadas da imagem. Estas regiões tendem a produzir altos valores de correlação cruzada para

2.3. MÉTRICAS PARA COMPARAÇÃO 28

Figura 2.11: Exemplo de resultado de CC entre imagem e template quando a representação usa 8
bpp

Imagem

Template

Resultado CC

qualquer template confundindo o algoritmo de rastreamento. Para ilustrar esse problema, na
imagem que vinha sendo usada como exemplo (Figura 2.5) foi trocado um pixel para que ela
tivesse uma janela de imagem completamente branca (Figura 2.12).

Figura 2.12: Imagem de entrada modificada para exemplificar o problema com regiões claras da
correlação cruzada

A Figura 2.13 mostra o que acontece com a matriz de resultados quando a imagem de
entrada possui uma janela de imagem completamente branca, observe que a matriz de resultados
apresenta dois máximos, um que a localização corresponde à localização do modelo buscado na
imagem e o outro máximo na localização que corresponde à região clara da imagem.

Apesar desses problemas, vale a pena entender como essa métrica funciona para entender
as métricas que derivam da correlação cruzada, as quais são descritas nas próximas subseções.

2.3.3 CORRELAÇÃO CRUZADA NORMALIZADA (NCC)

A grande variação na escala dos resultados é indesejável na hora de escolher um limiar
de similaridade a partir do qual considera-se a janela de imagem suficientemente semelhante
ao template. Isso faz da correlação cruzada normalizada uma métrica mais interessante nas
aplicações de rastreamento que a métrica de correlação cruzada simples.

2.3. MÉTRICAS PARA COMPARAÇÃO 29

Figura 2.13: Exemplo de resultado de CC entre imagem e template quando a imagem possui uma
região muito clara

Imagem

Template

Resultado CC

A forma de calcular os resultados da métrica NCC é muito parecida com a da métrica CC,
mas os resultados são normalizados pela média geométrica entre os somatórios dos quadrados
dos pixels do template e da imagem, como mostrado na Equação 2.4. A normalização poderia
trazer um problema de divisão por zero caso todos os pixels da janela de imagem fossem nulos,
mas convencionou-se que nesse caso o resultado recebe o valor zero.

R(x,y) =
∑

N
i, j I(x+ i,y+ j).T (i, j)√

∑
N
i, j(I2(x+ i,y+ j)).∑N

i, j(T 2(i, j))

�
 �	2.4

As Figuras 2.14 e 2.15 mostram resultados da métrica NCC para imagens de entrada
com 1 e 8 bits por pixel (bpp) respectivamente. Nesse exemplo foram usados o template da
Figura 2.4 e a imagem da Figura 2.5. Observe que os valores numéricos dos resultados de NCC
são independentes da quantidade de bpp das imagens de entrada.

Figura 2.14: Exemplo de resultado da métrica NCC entre imagem e template com 1 bpp

Imagem

Template

Resultado NCC

A métrica NCC resolve o problema de escala uma vez que os resultados de NCC variam
entre ‘-1’ e ‘1’ independente do tamanho do template e da quantidade de bpp da imagem e
template. Isso possibilita a escolha de limiares fixos de similaridade genéricos, um determinado

2.3. MÉTRICAS PARA COMPARAÇÃO 30

Figura 2.15: Exemplo de resultado da métrica NCC entre imagem e template com 8 bpp

Imagem

Template

Resultado NCC

valor de similaridade tem o mesmo significado para qualquer tamanho de template (N) e qualquer
valor de profundidade de cor considerado (bpp). A NCC também é um pouco mais robusta para
regiões muito iluminadas na imagem. No exemplo da Figura 2.16 a métrica NCC calculada na
região totalmente branca tem um valor alto mas não chega a se confundir com o valor máximo
da matriz de resultado, que é igual a 1.

Figura 2.16: Resultado de NCC entre imagem e template quando a imagem possui uma região
muito clara

Imagem

Template

Resultado NCC

No contexto de rastreamento em ambientes externos, a cena está suscetível a variações
de iluminação e contraste ao longo do tempo, a métrica NCC não é robusta a estas variações, o
que pode ter efeitos negativos no algoritmo de rastreamento.

A Figura 2.18 ilustra o efeito da mudança de contraste na cena. Para exemplificar esse
problema, o contraste do template usado nos exemplos anteriores (Figura 2.4) com 8bpp foi
modificado até obter o template da Figura 2.17. A NCC foi calculada entre a imagem da Figura
2.13 e esse novo template com mudança de iluminação e contraste, perceba que neste exemplo
a matriz de NCC indica que a janela de imagem branca é mais parecida com o template que a
janela de imagem onde se encontra o template sem modificação.

2.3. MÉTRICAS PARA COMPARAÇÃO 31

Figura 2.17: Template com menor contraste 3x3

(a) Template: visualização
gráfica

(b) Template: Matriz de pixels
correspondentes

Figura 2.18: Resultado de NCC entre imagem e template quando a imagem possui uma região
muito clara e há uma diferença de iluminação e contraste entre imagem e template

Imagem

Template

Resultado NCC

2.3.4 CORRELAÇÃO CRUZADA COM MÉDIA ZERO (ZCC)

A métrica conhecida como Correlação Cruzada com Média Zero (ZCC) se baseia na CC

mas não usa diretamente o valor de intensidade dos pixels e sim o valor da diferença entre a
intensidade do pixel e a média de valores na janela. Essa subtração evita que janelas de imagem
muito claras resultem em valores de similaridade altos quando elas não são parecidas com o
template.

A forma de calcular cada posição da matriz de resultados usando a métrica ZCC pode ser
vista na Equação 2.5. O termo I(x,y) é a média da janela de imagem com origem na posição
(x,y) (canto esquerdo superior), o termo T é a média de todos os pixels dotemplate.

R(x,y) =
N

∑
i, j
(I(x+ i,y+ j)− I(x,y)).(T (i, j)−T)

�
 �	2.5

A Figura 2.19 mostra o resultado da métrica ZCC entre uma imagem que contém uma
janela totalmente branca e um template com mudança de iluminação e contraste. Observe que a
região branca não gera um alto valor de ZCC e que o template buscado é encontrado mesmo com
a mudança de iluminação e contraste. Apesar dessas vantagens, a métrica ZCC ainda apresenta a

2.3. MÉTRICAS PARA COMPARAÇÃO 32

desvantagem da grande variação na escala dos valores dos resultados.

Figura 2.19: Exemplo de resultado de ZCC entre imagem e template quando a imagem possui
uma região muito clara e há uma diferença de iluminação e contraste entre imagem e template

Imagem

Template

Resultado ZCC

Além das mudanças na escala dos resultados a métrica ZCC ainda é sensível a variações
de iluminação e contraste. Observe a diferença entre os resultados da métrica ZCC na Figura
2.19 e os resultados da métrica ZCC na Figura 2.20, onde a única diferença entre as duas são os
níveis de iluminação e contraste do template.

Figura 2.20: Exemplo de resultado de ZCC entre imagem e template quando a imagem possui
uma região muito clara e o template e a imagem tem os mesmos níveis de iluminação e contraste

Imagem

Template

Resultado ZCC

2.3.5 CORRELAÇÃO CRUZADA NORMALIZADA COM MÉDIA ZERO (ZNCC)

A métrica denominada Correlação Cruzada Normalizada de Média Zero (ZNCC) é
mostrada na Equação 2.6. Esta combina as principais vantagens das métricas anteriores: é
robusta às regiões muito claras da imagem, é robusta às variações lineares de brilho e contraste
(DI STEFANO; MATTOCCIA; TOMBARI, 2005) e apresenta resultados normalizados.

Os resultados da métrica são obtidos de acordo com a Equação 2.6, a qual se baseia na
correlação cruzada, é normalizada entre -1 e 1 como a métrica NCC, e usa a diferença entre a
intensidade de cada pixel e a média na janela de imagem como a métrica ZCC. Esta equação

2.3. MÉTRICAS PARA COMPARAÇÃO 33

também pode apresentar um problema de divisão por zero em regiões perfeitamente uniformes
(desvio padrão nulo), nesse caso foi convencionado que o resultado recebe zero.

R(x,y) =
∑

N
i, j(I(x+ i,y+ j)− I(x,y)).(T (i, j)−T)√

∑
N
i, j(I(x+ i,y+ j)− I(x,y))2.∑N

i, j(T (i, j)−T)2

�
 �	2.6

As Figuras 2.22(a), 2.22(b) e 2.22(a) mostram resultados da métrica ZNCC para imagem
e template, variando a quantidade de bpp ou a iluminação e contraste, note que para essa
mudanças os resultados se mantêm exatamente iguais, já que essa métrica é robusta a esse tipo
de variação.

Figura 2.21: Exemplos da invariância da ZNCC a mudanças de quantidades de bpp e mudanças
de iluminação e contraste

Imagem

Template

Resultado ZNCC

(a) Resultado de ZNCC entre imagem e template binários

Imagem

Template

Resultado ZNCC

(b) Resultado de ZNCC entre imagem e template com 8 bpp

Imagem

Template

Resultado ZNCC

(c) Resultado de ZNCC entre imagem e template com diferença de iluminação e contraste
entre a imagem e o template

A Figura 2.22 mostra como se comporta o resultado da ZNCC quando existe uma região

2.4. APLICAÇÃO: RASTREAMENTO BASEADO EM ZNCC! (ZNCC!)
MULTITEMPLATE 34
muito clara na imagem, note que usando esta métrica, tal região não gera falsos positivos.

Figura 2.22: Exemplo da ZNCC quando a imagem possui uma região muito clara

Imagem

Template

Resultado ZCC

A métrica ZNCC foi a escolhida para este trabalho por apresentar os melhores resultados
para o casamento de padrões por análise de similaridade por janela deslisante. No entanto,
esta métrica possui alto custo computacional para ser calculada. Assim parte do objetivo desse
trabalho é encontrar uma forma mais eficiente para calcular resultados da métrica ZNCC para
aplicações de rastreamento.

2.4 Aplicação: Rastreamento baseado em ZNCC multitemplate

O algoritmo de rastreamento de streams de vídeo baseado em templatematching consiste
em buscar, a cada novoframe , otemplate (estático) do objeto rastreado.

A busca é feita na região de interesse de cada frame , do inglês, Region of interest (ROI),
esta engloba a posição dotemplate no últimoframe e possíveis deslocamentos, para cima, para
baixo, para a esquerda e para a direita. A Figura 2.23 mostra um exemplo de rastreamento
comframe , ROI e template. Para a aplicação de rastreamento de pedestres foi considerada uma
região de interesse com seis vezes a largura e três vezes a altura do template.

Figura 2.23: Rastreamento mostrandoframe , ROI etemplate.

2.4. APLICAÇÃO: RASTREAMENTO BASEADO EM ZNCC! MULTITEMPLATE 35

O Algoritmo 1 mostra o pseudocódigo de uma aplicação de rastreamento contínuo com
o casamento de padrões que usa a métrica ZNCC para analisar a similaridade.

Algoritmo 1 Rastreamento contínuo de objetos, baseado em ZNCC
Passo 1: Receber umframe .
Passo 2: Usuário escolhe o objeto a ser rastreado.
Passo 3: Inicializar otemplate com a imagem escolhida pelo usuário.
Passo 4: Selecionar a ROI ao redor da última posição dotemplate.
Passo 6: Converter a ROI para escala de cinza.
Passo 7: Calcular a matriz de resultado ZNCC entre a ROI e o template.
Passo 8: Obter o valor máximo na matriz dos resultados e sua posição.
Passo 9: Comparar o valor máximo com o limiar de aceitação, se for maior: atualizar a posição
do objeto.
Passo 10: Voltar ao passo 4

Durante o rastreamento de um pedestre em ambiente externo podem ocorrer mudanças
de iluminação, contraste e de pose. Mudanças de iluminação e contraste não têm grande
impacto sobre os resultados da métrica ZNCC e portanto não causam problemas no Algoritmo
de rastreamento, mas mudanças de pose podem gerar valores de similaridade cada vez menores
e ocasionar a perda do pedestre que está sendo rastreado.

O algoritmo de rastreamento baseado em ZNCC multitemplate foi desenvolvido para
contornar esse problema de mudança de pose. Ele utiliza um banco de templates com poses
ligeiramente diferentes do pedestre sendo rastreado. Estes templates são simultaneamente
buscados na imagem, diminuindo as chances de se perder a posição do pedestre por mudança de
pose.

Uma política de substituição dos templates no banco, mantém o banco detemplates

atualizado à medida que o pedestre se movimenta.
Essa solução é adequada quando se considera que a posição e a aparência do pedestre

não mudam abruptamente. Assim, é feita uma busca por ‘m’templates do mesmo pedestre. O
pseudocódigo deste algoritmo pode ser visto no Algoritmo 2.

Algoritmo 2 Rastreamento contínuo de objetos, usando ZNCC multitemplate
Passo 1: Receber umframe .
Passo 2: Usuário escolhe o objeto a ser rastreado.
Passo 3: Inicializar todos ostemplates do banco com uma cópia do indicado pelo usuário.
Passo 4: Selecionar a ROI ao redor da última posição dotemplate.
Passo 6: Converter a ROI para escala de cinza.
Passo 7: Calcular as matrizes de resultados ZNCC entre a imagem da ROI e cada template.
Passo 8: Obter o valor máximo dentre os máximos das matrizes dos resultados e sua posição.
Passo 9: Comparar o valor máximo com o limiar de aceitação, se for maior: atualizar a posição
do objeto e usar a política de substituição para substituir ou não umtemplate do banco pela janela
de imagem encontrada.
Passo 10: Voltar ao passo 4

As matrizes de resultados da métrica ZNCC contém valores normalizados entre -1 e 1.

2.5. FPGA 36

Um limiar de aceitação foi configurado, para determinar se o objeto foi encontrado na cena. Se o
maior valor dentre os resultados não ultrapassar esse limiar, é considerado que o objeto está sob
oclusão, a última posição encontrada é mantida, e ostemplates permanecem inalterados.

Quando existe pelo menos um resultado que é maior que o limiar de aceitação, a posição
do maior resultado é tomada como sendo a nova posição do objeto.

A janela de imagem pode ser adicionada ao banco de templates de acordo com a política
de substituição. Essa política não é relevante para este trabalho, mas, em geral, o primeiro
template do banco nunca é substituído. Para escolher o template a ser substituído se leva em
conta o tempo passado desde a última substituição e os valores dos resultados para cada template

.
A Figura 2.24, mostra o rastreamento em funcionamento usando 6 templates, o primeiro

template do banco é o template original, enquanto os outros 5 templates foram obtidos ao longo
do rastreamento e são atualizados com o tempo.

Figura 2.24: Rastreamento de pedestre usando 6templates.

A etapa com o maior custo computacional do rastreamento é a etapa 7, que consiste em
calcular a métrica ZNCC entre cada um dos templates do banco e a ROI, cada template gera uma
matriz de resultados. Testes feitos no software de referencia mostram que essa etapa consome de
97% a 99% do tempo total de processamento.

Considerando o alto custo computacional e sua importância no rastreamento de pedestre,
o objetivo desse trabalho é acelerar esta etapa através da implementação em hardware do módulo
que calcula a similaridade de acordo com a ZNCC entre múltiplos templates e uma imagem.

2.5 FPGA

Os FPGAs, do inglês,Field-Programmable Gate Arrays, são assim chamados por serem
um hardware passível de reconfiguração em campo. FPGAs são matrizes de blocos lógicos com
conexões programáveis, como mostra a Figura 2.25.

2.5. FPGA 37

Figura 2.25: Arquitetura genérica de FPGA.

Fonte: Digital Systems Design with FPGAs and CPLDs (GROUT, 2011).

Além dos blocos lógicos, de diversos tipos, elementos de roteamento e blocos de entrada
e saída, mostrados na Figura 2.25, FPGAs modernos incluem blocos de memória e blocos
dedicados de processamento digital de sinais (DSP). A Figura 2.26 mostra a estrutura interna de
um bloco lógico com as funções lógicas implementadas por Look up Table (LUT) e registradores
desempenhando o papel de elementos sequenciais.

Figura 2.26: Exemplo de bloco lógico contido na FPGA Stratix IV.

Fonte: Stratix IV Device Handbook ALTERA (2015).

Os blocos DSP desempenham funções de multiplicadores e acumuladores, permitindo

2.5. FPGA 38

diversas configurações. As funções implementadas por estes blocos podem ser realizadas por
outros blocos lógicos, sem prejuízo de funcionalidade, mas em geral, de forma menos eficiente
(uso de mais blocos e maior caminho crítico). A Figura 2.27 mostra um bloco DSP na FPGA
Stratix IV.

Figura 2.27: Bloco DSP contido na FPGA Stratix IV.

Fonte: Stratix IV Device Handbook ALTERA (2015).

No contexto de sistemas computacionais baseados em FPGAs, o estudo de (DIMOND;

RACANIERE; PELL, 2011) mostra que estes sistemas podem atingir desempenho de 31 a 37
vezes maiores e consumo de energia de 39 vezes menores, quando comparados a sistemas
baseados em processadores de propósito geral (CPUs) de tamanho equivalente.

Os dispositivos FPGAs têm ganhado grande destaque no desenvolvimento de novas
tecnologias. Eles são, em geral, a primeira solução de implementação no projeto de circuitos
digitais (KUON; TESSIER; ROSE, 2008). Adicionalmente FPGAs são muito usados para validar
um circuito que será implementado como um Circuito integrado de aplicação específica (ASIC).

De forma geral, os circuitos integrados dedicados, do inglês, Application Specific Integra-
ted Circuits (ASICs), quando comparados à implementações FPGA, atingem maiores frequências

2.6. CONCLUSÕES 39

de operação, com menor dissipação de potência e podem apresentar um custo unitário reduzido
para grandes escalas de produção.

Apesar disso, em alguns nichos com menor demanda de unidades e exigência de alguma
flexibilidade do circuito, implementações em FPGA podem ser mais vantajosas. A computação
de alta performance, ou High Performance Computing (HPC) tira grandes vantagens do uso de
FPGAs, isto justifica a inclusão destes dispositivos em supercomputadores (AWAD, 2009).

Dentre estes nichos destacamos os setores aeroespacial, médico, científico, financeiro, de
bioinformática e de visão computacional (ALTERA, 2016) (XILINX, 2016).

2.6 Conclusões

O objetivo deste capítulo foi apresentar os conceitos fundamentais para o entendimento do
módulo desenvolvido nesta dissertação. Inicialmente foi apresentado o problema de rastreamento
de objetos, o casamento de padrões aplicado ao rastreamento, o funcionamento da análise de
similaridade por janela deslizante e algumas métricas de similaridade. Em seguida as principais
métricas de comparação entre imagens foram analisadas com exemplos para identificar as
vantagens e desvantagens de cada métrica, evidenciando a escolha da ZNCC para esse projeto.
Por último foram apresentados os conceitos básicos do algoritmo de rastreamento baseado em
ZNCC multitemplate, que motivou este trabalho.

404040

3
TRABALHOS RELACIONADOS

Neste capítulo são apresentados os principais trabalhos que estão relacionados ao tema
desta dissertação. Inicialmente, é apresentado o trabalho de (LEWIS, 1995), que é um dos
primeiros trabalhos para aceleração do cálculo da ZNCC e é o algoritmo implementado na
função do Matlab. Em seguida, são apresentados os trabalhos que fazem a aceleração do cálculo
da ZNCC via hardware (CHEN et al., 2012), (HASHIMOTO; ITO; NAKANO, 2013), (SANG;

LIAO; YUAN, 2011). No final do capítulo, alguns critérios qualitativos são usados para uma
análise comparativa entre os trabalhos de estado da arte. A partir dessa análise são explicitadas
as inspirações vindas de cada trabalho e possibilidades de melhoramento.

3.1. FAST NORMALIZED CROSS-CORRELATION 41

A literatura científica disponibiliza diversos trabalhos que tratam da aceleração do cálculo
da ZNCC, neste capítulo são expostas algumas estratégias de implementação para realizar esse
cálculo.

3.1 Fast normalized cross-correlation

O trabalho de (LEWIS, 1995) foi um dos primeiros trabalhos com o objetivo de acelerar
o cálculo da ZNCC. Este trabalho é a base da função normxcorr2, do MATLAB.

O trabalho propõe acelerar as operações mais custosas para obter um resultado de ZNCC,
isto é, a correlação, para obter o numerador, e o somatório da janela de imagem, usado para
obter o denominador (Equação 3.1). No trabalho, o cálculo da correlação, foi feito no domínio
da frequência, e o somatório da janela de imagem foi feito utilizando uma imagem integral da
imagem original, procedimentos detalhados a seguir.

R(x,y) =
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)).(T (i, j)−T

)√
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)2
.∑N

i, j
(
T (i, j)−T

)2

�
 �	3.1

O cálculo de uma correlação no domínio espacial (?) é equivalente a uma multiplicação
(∗) no domínio da frequência, como mostra a Equação 3.2. Assim para obter a matriz com
todos os resultados de correlação cruzada (cc) entre a imagem e o template , basta fazer o
preenchimento das bordas do template com zeros para que ele fique com o mesmo tamanho da
imagem, fazer a transformada de Fourier (F) do template e da imagem, multiplicar os resultados
e em seguida fazer a transformada de Fourier inversa para obter o resultado no domínio espacial.

A correlação cruzada entre uma imagem I com R.S pixels e um template T com O.P
pixels produz uma matriz de resultados matR com (R-O+1).(S-P+1) elementos. No domínio
espacial, a obtenção de cada elemento da matriz de resultados envolve O.P multiplicações, assim a
complexidade computacional da correlação cruzada no domínio espacial é O.P.(R-O+1).(S-P+1).

O uso dessa propriedade para calcular a correlação cruzada no domínio da frequência,
muda a complexidade de uma correlação de o(O ·P · (R−O+ 1) · (S−P+ 1)) para o(R.S ·
log(R.S)).

F{ f ?g}= F{ f}∗F{g}
�
 �	3.2

Imagem integral é uma matriz que permite o cálculo do somatório dos pixels de qualquer
subconjunto da imagem original com apenas três operações, (Figura 3.1).

A partir de uma imagem original, calcula-se a imagem integral fazendo com que cada
elemento desta (IIs(x,y)) seja a soma dos pixels de uma janela da imagem original que vai da
origem (1,1) as coordenadas deste elemento (x,y) (CROW, 1984).

Uma vez que a imagem integral está calculada, qualquer somatório dos pixels de uma
região retangular da imagem original pode ser obtido com três operações sobre os quatro

3.2. REAL-TIME FPGA-BASED TEMPLATE MATCHING MODULE FOR VISUAL
INSPECTION APPLICATION 42
elementos da imagem integral, localizados nas posições equivalentes aos cantos da região
retangular (A, B, C e D): S = IIs(D)+ IIs(A)− IIs(B)− IIs(C).

Figura 3.1: (a) Valor do ponto IIs(x,y) da imagem integral, corresponde à soma das intensidades
dos pixels da imagem original localizados a partir desta posição até a origem, região em destaque.
(b) A soma da janela destacada pode ser calculada como: S = IIs(D)+ IIs(A)− IIs(B)− IIs(C),

onde IIs(A) é o valor da imagem integral na posição ‘A’.

(a) (b)

Fonte: (JUNG et al., 2010)

O algoritmo apresentado nesse trabalho requer um pré-processamento para obter as
imagens integrais e as imagens no domínio da frequência, e um pós processamento para obter o
resultado no domínio espacial. Mesmo com os tempos de pré e pós processamento, dependendo
das dimensões da imagem e do template, essa técnica reduz o tempo total de processamento para
o cálculo da métrica ZNCC em software.

Pensando em uma abordagem para hardware, as transformadas de Fourier direta e inversa
necessárias ao processamento usam muitas unidades funcionais complexas (BARBOSA et al.,

2015). Fazendo com que o cálculo da correlação no domínio espacial seja mais vantajoso para
esse tipo de implementação. Além disso, por exigir um pré-processamento, essa estratégia de
cálculo dificuta a exploração de paralelismo no hardware.

Assim o uso de imagens integrais é desnecessário já que as somas podem ser obtidas
paralelamente ao cálculo da correlação, o uso de imagens integrais, em uma implementação
paralela, restringiria o paralelismo já que exigiria o pré-processamento da imagem original.

3.2 Real-time FPGA-based template matching module for visual inspection application

O trabalho de (CHEN et al., 2012) propõe uma arquitetura baseada em FPGA, que
explora paralelismo e pipeline para calcular uma métrica simplificada, inspirada na ZNCC.

A partir da Equação 2.6, que é a equação original da ZNCC, os autores observaram
que uma parte do denominador depende apenas dos valores dos pixels do template, assim esse
termo é uma constante em relação a (x,y). Multiplicar a métrica por um termo constante altera
os valores de cada elemento da matriz mas não altera a ordem dos elementos entre si, o valor
máximo continua na mesma posição da matriz

3.2. REAL-TIME FPGA-BASED TEMPLATE MATCHING MODULE FOR VISUAL
INSPECTION APPLICATION 43

R(x,y) =
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)
.
(
T (i, j)−T

)√
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)2
.
�����������√

∑
N
i, j
(
T (i, j)−T

)2
.�����������√

∑
N
i, j
(
T (i, j)−T

)2 �
 �	3.3

A raiz quadrada no denominador foi eliminada, para simplificar o hardware, elevando
ao quadrado o numerador e o denominador da fração, mais uma vez essa operação modifica os
valores de cada elemento da matriz mas não a ordem dos elementos entre si. Essa operação é
mostrada nas equações 3.4 3.5.

R(x,y) =

(
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)
.
(
T (i, j)−T)

)2√
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)2

)2 �
 �	3.4

R(x,y) =

(
∑

N
i, j
(
I(x+ i,y+ j)− I(x,y)

)
.
(
T (i, j)−T)

)2
)2

∑
N
i, j
(
I(x+ i,y+ j)− I(x,y)

)2

�
 �	3.5

Além dessas modificações na fórmula, foram feitas manipulações algébricas para en-
contrar uma fórmula equivalente melhor adaptada a uma implementação em hardware, vamos
acompanhar o passo a passo dessa manipulação nas equações abaixo:

Expandindo os produtos, tem-se:

R(x,y) =

(
∑

N
i, j
(
T (i, j) · I(x+ i,y+ j)−T · I(x+ i,y+ j)−T (i, j) · I(x,y)+T · I(x,y)

))2

∑
N
i, j

(
I2(x+ i,y+ j)−2 · I(x+ i,y+ j)I(x,y)+

(
I(x,y)

)2
)

�
 �	3.6
Os somatórios são distribuídos para obter:

R(x,y)=

(
∑

N
i, j T (i, j) · I(x+ i,y+ j)−∑

N
i, j T · I(x+ i,y+ j)−∑

N
i, j T (i, j) · I(x,y)+∑

N
i, j T · I(x,y)

)2

∑
N
i, j I2(x+ i,y+ j)−∑

N
i, j 2 · I(x+ i,y+ j) · I(x,y)+∑

N
i, j
(
I(x,y)

)2 �
 �	3.7
termos constantes podem ficar fora dos somatórios:

R(x,y)=

(
∑

N
i, j T (i, j) · I(x+ i,y+ j)−T ·∑N

i, j I(x+ i,y+ j)− I(x,y) ·∑N
i, j T (i, j)+N ·T · I(x,y)

)2

∑
N
i, j I2(x+ i,y+ j)−2 · I(x,y) ·∑N

i, j I(x+ i,y+ j)+N ·
(
I(x,y)

)2 �
 �	3.8
Relembrando a definição de média, na janela de imagem,

3.2. REAL-TIME FPGA-BASED TEMPLATE MATCHING MODULE FOR VISUAL
INSPECTION APPLICATION 44

I(x,y) =
1
N

N

∑
i, j

I(x+ i,y+ j)
�
 �	3.9

e no template,

T =
1
N

N

∑
i, j

T (i, j)
�
 �	3.10

Na Equação 3.8 vamos substituir o termo ∑
N
i, j T (i, j) por N ·T , os termos ∑

N
i, j I(x+ i,y+ j)

por N · I(x,y):

R(x,y) =

(
∑

N
i, j T (i, j) · I(x+ i,y+ j)−N ·T · I(x,y)−N ·T · I(x,y)+N ·T · I(x,y)

)2

∑
N
i, j I2(x+ i,y+ j)−2 ·N ·

(
I(x,y)

)2
+N ·

(
I(x,y)

)2

�
 �	3.11

Simplificando os termos iguais, tem-se:

R(x,y) =

(
∑

N
i, j T (i, j) · I(x+ i,y+ j)−NT · I(x,y)

)2

∑
N
i, j I2(x+ i,y+ j)−NI2

(x,y)
.

�
 �	3.12

A equação 3.12 mostra a fórmula baseada na ZNCC usada por (CHEN et al., 2012)

como métrica de similaridade. As modificações feitas na fórmula original da ZNCC ajudam a
simplificar o hardware necessário para calcular a matriz de resultados. Os resultados obtidos com
essa fórmula são diferentes dos resultados de ZNCC mas a ordem entre os resultados da matriz é
igual. Assim, a posição de maior similaridade na imagem é a mesma para as duas métricas.

As modificações feitas na fórmula implicam que os valores dos resultados não são
normalizados entre -1 e 1, e podem mudar com variações de contraste no template, isso dificulta
a escolha de limiares de aceitação em algoritmos de busca, como foi mostrado no Capítulo 2.

Além da simplificação da fórmula foi executada uma subamostragem, de 1 pixel amos-
trado para 4 pixels de tamanho original, na imagem e no template, isso foi feito para reduzir a
complexidade do problema. Usando essa proporção de 1 para 4, a quantidade de operações é
reduzida em 16x. A subamostragem melhora o desempenho mas reduz a qualidade das imagens
e pode introduzir erros no resultado.

O diagrama de blocos da arquitetura pode ser visto na Figura 3.2. Para reduzir o uso de
banda na comunicação, blocos de memória interna foram instanciados facilitando o reuso de
dados. O principal destaque dessa arquitetura é fazer o processamento totalmente em pipeline
usando buffers circulares para a acumulação dos resultados parciais e obtenção do resultado
final.

A Figura 3.2 mostra a arquitetura proposta para calcular os resultados da Equação 3.12 e
selecionar o resultado máximo. Os primeiros três estágios do pipeline calculam e acumulam,
sobre a janela de imagem, os resultados de correlação (∑ IT), de somatório dos pixels de

3.3. TEMPLATE MATCHING USING DSP SLICES ON THE FPGA 45

Figura 3.2: Arquitetura proposta por CHEN et al. (2012) para template matching.

Fonte: (CHEN et al., 2012)

imagem(∑ I) e de somatório dos quadrados do pixels de imagem (∑ I2). O quarto estágio
computa o numerador e o denominador a partir dos resultados dos estágios anteriores. o Divider

bank calcular os resultados R(x,y) e a Comparison unit seleciona o resultado máximo.
Os resultados do artigo mostram que a arquitetura proposta conseguiu um speedup que

chega a 80x comparando com o mesmo cálculo sendo computado por software e atinge os
requisitos mínimos para a aplicação.

3.3 Template matching using DSP slices on the FPGA

Em HASHIMOTO; ITO; NAKANO (2013) é apresentada uma arquitetura de hardware
com prototipação em FPGA para acelerar o cálculo da ZNCC em imagens de baixa resolução.
Esse trabalho conseguiu acelerar o algoritmo de busca em multiresolução proposto por (UCHIDA;

ITO; NAKANO, 2011) em 3.66x comparando ao tempo de execução da mesma implementação
na GPU, a taxa obtida foi 4273FPS para um template de 4x4 pixels.

Os autores analisaram o algoritmo proposto por (UCHIDA; ITO; NAKANO, 2011) e
perceberam que a etapa crítica para o tempo de execução deste é a busca em baixa resolução,
assim o coprocessador foi pensado para acelerar essa etapa e selecionar as janelas de imagem
candidatas a gerar os maiores resultados de ZNCC. O tamanho da janela de imagem utilizado no
trabalho é 4x4.

A Figura 3.3 mostra um esboço da arquitetura implementada. O trabalho fornece boas
ideias de arquitetura dedicada ao casamento de padrões por análise comparativa. Os valores
que dependem apenas do template são constantes para todas as janelas de imagem, por isso são
calculados um vez por software e armazenados em registradores do hardware.

Os produtos da correlação cruzada entre todos os pixels do template e de uma janela

3.3. TEMPLATE MATCHING USING DSP SLICES ON THE FPGA 46

de imagem são feitos em paralelo usando blocos DSP no módulo Product-sum module, os
somatórios são calculados usando somadores em árvore. A computação das janelas de imagem é
feita em pipeline usando registradores de deslocamento. Um buffer de entrada fornece todas as
linhas da janela de imagem em paralelo para as unidades de processamento.

A matriz de resultados não é calculada por essa arquitetura, o módulo comparator seleci-
ona os resultados candidatos a gerar maior similaridade com base no numerador e denominador
de cada resultado.

Figura 3.3: Arquitetura de processamento de template matching proposta por HASHIMOTO; ITO;
NAKANO (2013).

Fonte: (HASHIMOTO; ITO; NAKANO, 2013)

O trabalho faz uso dos blocos DSP da FPGA, para realizar as multiplicações de forma

3.4. VLSI IMPLEMENTATION OF MULTIPLE LARGE TEMPLATE-BASED IMAGE
MATCHING FOR AUTOMATIC TARGET RECOGNITION 47
eficiente. A restrição ao uso de blocos DSP na síntese dos multiplicadores aumenta a frequência
de operação mas pode limitar o tamanho do template e o tipo de FPGA, no qual a arquitetura será
implementada. O ideal é que a arquitetura possa ser igualmente implementada usando blocos
DSP ou blocos lógicos (ALUTs).

A limitação a templates pequenos não chega a ser negativa no trabalho de (HASHIMOTO;

ITO; NAKANO, 2013) porque a aplicação alvo dele é acelerar por hardware apenas a etapa de
busca em baixa resolução do algoritmo proposto por (UCHIDA; ITO; NAKANO, 2011), as outras
etapas do algoritmo utilizam templates de maiores resoluções mas são executadas em software.

Pensando em implementações mais gerais para serem usadas em outras aplicações,
a arquitetura deve suportar templates de maiores resoluções, algumas modificações seriam
necessárias para fazer parte do cálculo de forma serial e adequar a arquitetura às limitações de
recursos do FPGA.

3.4 VLSI implementation of multiple large template-based image matching for automatic

target recognition

Figura 3.4: Ilustração das multiplicações parciais que permitem a configuração pós síntese da
quantidade de templates e resultados da operação.

Fonte: (SANG; LIAO; YUAN, 2011)

No trabalho proposto por (SANG; LIAO; YUAN, 2011) foi desenvolvido um módulo
implementado como ASIC para acelerar o cálculo da NCC multitemplate aplicada a acelerar
a execução do algoritmo de Reconhecimento Automático de Alvos (ATR). Essa arquitetura,
mostrada na Figura 3.4, pode ser configurada para calcular a NCC com apenas 1 template de 8
bits, com 2 templates de 4 bits, 4 templates de 2 bits ou 8 templates de 1 bit. Essa flexibilidade
foi atingida usando multiplicações parciais, mostradas na 3.5.

Os autores conseguiram um speedup que chega a 31x comparado à implementação do
mesmo cálculo em software. Com o intuito de deixar o Circuito Integrado (CI) configurável os

3.5. ANÁLISE COMPARATIVA 48

Figura 3.5: Ilustração das multiplicações parciais que permitem a configuração pós síntese da
quantidade de templates e resultados da operação.

Fonte: (SANG; LIAO; YUAN, 2011)

elementos de processamento não podem ser construídos usando DSP, apenas blocos lógicos, na
prática todas as operações são realizadas com 1 bit e os resultados são deslocados e adicionados
no casos de 2,4 ou 8 bits.

3.5 Análise comparativa

Neste capítulo exploramos os principais trabalhos do estado da arte que solucionam o
template matching com implementação em hardware.

Estes trabalhos foram selecionados por serem os que mais se aproximam de solucionar o
problema de implementar um módulo para cálculo de ZNCC multitemplate em hardware.

Alguns aspectos devem ser destacados na comparação entre esses trabalhos. Nessa seção
faremos uma breve análise comparativa entre os trabalhos baseada em oito aspectos mostrados
na tabela 5.1.

O primeiro aspecto a ser destacado é o tipo de plataforma usada na implementação, no
caso dos trabalhos elencados aqui dois deles usaram FPGA (HASHIMOTO; ITO; NAKANO,

2013) e (CHEN et al., 2012) e um (SANG; LIAO; YUAN, 2011) projetou um ASIC.
ASICs tendem a ser mais adaptados ao problema, em geral apresentam menor consumo e

melhor performance quando comparados ao mesmo design implementado em FPGA. Por outro
lado designs implementados em ASIC são menos flexíveis. Um ASIC que execute a análise
de similaridade por janela deslizante dificilmente será configurável em relação a dimensões de
imagem e templates e quantidade de templates.

No trabalho proposto por (SANG; LIAO; YUAN, 2011) a quantidade de templates é um
parâmetro configurável por software, para contornar o problema da flexibilidade, foram usadas
multiplicações parciais para deixar a seleção escolher se a saída será um resultado de 16bits, ou
dois resultados de 8bits, ou quatro resultados de 4bits ou oito resultados de 2bits.

Implementações em FPGA normalmente apresentam um custo por unidade mais alto e
são mais ineficientes em consumo e performance mas possuem a grande vantagem de serem
reconfiguráveis via síntese e apresentarem um baixo custo não retornável.

O segundo aspecto destacado na tabela 5.1 é se o design consegue uma taxa de proces-
samento superior a 30FPS. Essa é a taxa de streaming vídeo considerada neste trabalho, se o

3.5. ANÁLISE COMPARATIVA 49

design consegue uma taxa superior a 30FPS podemos dizer que o processamento em streaming é
sem perdas. Os três trabalhos expostos neste capítulo atingem taxas de processamento iguais ou
superiores a 30FPS e por isso podem ser usados em aplicações streaming.

O terceiro aspecto destacado é se o design é capaz de processar múltiplos templates

em paralelo. Este é um dos objetivos da arquitetura proposta por essa dissertação, processar
múltiplos templates pode melhorar a acurácia do algoritmo ou permitir o rastreio de múltiplos
objetos. Dentre os trabalhos estudados aqui, apenas o de (SANG; LIAO; YUAN, 2011) suporta
múltiplos templates .

A quarta característica analisada é a métrica calculada, algumas métricas e suas particu-
laridades foram expostas na seção 2 do capítulo de fundamentação teórica (Cap. 2). A escolha
da métrica além de modificar a complexidade do cálculo, influencia na qualidade dos resultados,
avaliada pela robustez a ruído e a variação de contraste. Os trabalhos de (CHEN et al., 2012)

e (HASHIMOTO; ITO; NAKANO, 2013) apresentam melhor robustez a ruído e variação de
contraste que o design proposto por (SANG; LIAO; YUAN, 2011).

O sétimo ponto observado é se a métrica implementada entrega resultados normalizados
entre -1 e 1, essa característica dos resultados é desejável para algoritmos de rastreio pois facilita
a escolha de limiares de similaridade no algoritmo. As simplificações feitas no trabalho de
(CHEN et al., 2012) deixam os resultados não normalizados e isso é uma desvantagem na
comparação com os outros trabalhos.

O oitavo e último aspecto é o tamanho máximo de template suportado pelo design. O
design de (HASHIMOTO; ITO; NAKANO, 2013) consegue processar uma janela de imagem
completa em paralelo, e por isso consegue uma taxa de frames por segundo altíssima(4273FPS)
porém o tamanho máximo de template suportado é 4x4 (16 pixels), que é muito pequeno para a
maioria das aplicações.

Tabela 3.1: Quadro comparativo com os principais trabalhos do estado da arte.

Característica CHEN HASHIMOTO SANG
Tipo do Acelerador FPGA FPGA ASIC
Processamento do Streaming (>30FPS) Sim(33,5FPS) Sim(4273FPS) Sim(75,5FPS)
Suporte a múltiplos templates Não Não Sim
Métrica Calculada Baseada em ZNCC ZNCC NCC
Robusto a variação de contraste e iluminação Sim Sim Não
Resultados normalizados entre [-1 1] Não Sim Sim
Tamanho de template suportado 80x80 4x4 120x160

505050

4
ARQUITETURA PROPOSTA PARA CÁLCULO DE ZNCC MULTITEMPLATE

O cálculo da métrica ZNCC entre uma imagem e múltiplos templates é uma operação de
alto custo computacional. Considerando o algoritmo de rastreamento de objetos, estudo de caso
deste trabalho, o cálculo da ZNCC representa 97% do tempo total de execução. Este capítulo
propõe uma arquitetura implementada em FPGA para executar o cálculo da métrica ZNCC entre
uma imagem e múltiplos templates. Essa arquitetura explora conceitos de paralelismo e pipeline
para acelerar o cálculo.

51

No Capítulo de fundamentação teórica, vimos a fórmula matemática para calcular a
ZNCC entre uma imagem e um template (Equação 4.1). O objetivo deste trabalho é acelerar o
cálculo de múltiplas ZNCCs, obtidas a partir de uma imagem e múltiplos templates (Figura 4.3).

R(x,y) =
∑

N
i, j(I(x+ i,y+ j)− I(x,y)).(T (i, j)−T)√

∑
N
i, j(I(x+ i,y+ j)− I(x,y))2.∑N

i, j(T (i, j)−T)2

�
 �	4.1

Figura 4.1: Ilustração do cáculo da ZNCC multitemplate.

Nesse cálculo, todos os templates são simultaneamente comparados com a mesma
imagem. Vejamos um passo a passo algorítmico para calcular as ZNCCs entre múltiplos
templates e uma imagem:

O primeiro passo é calcular as constantes relativas aos templates, esse valores não
dependem da posição (x,y) da janela de imagem, assim eles são calculados apenas uma vez e
usados no cálculo de todos os elementos da matriz de resultados. Eles são dados pelas médias
(T) e pelos desvios padrão (

√
∑

N
i, j(T (i, j)−T)2) de cada template.

O segundo passo é selecionar a janela de imagem que será usada para calcular as
posições (1,1) de todas as matrizes de resultados, essa primeira janela de imagem tem as mesmas
dimensões do template (OxP) e canto esquerdo superior na posição (1,1).

A partir da janela de imagem selecionada calcula-se a média dessa janela I e o desvio
padrão (

√
∑

N
i, j(I(i, j)− I)2).

O produto entre o desvio padrão do template e o desvio padrão da janela de imagem,
é o denominador da Equação 4.1. Assim, para cada template e seu respectivo desvio padrão,
obtemos o denominador de cada resultado.

O numerador de cada resultado é a correlação cruzada de média zero entre a imagem
e o template correspondente ao resultado. Para obtê-lo vamos fazer o produto entre cada pixel
da janela de imagem, subtraído da média I, e cada pixel do template, subtraído da média T . O

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 52

acumulado desses produtos é o numerador da Equação 4.1, calculamos o numerador referente a
cada template.

Nesse ponto temos todos os numeradores e denominadores necessários para calcular os
elementos das posições (1,1) de cada resultado. Efetuando as divisões, começamos o preenchi-
mento das matrizes de resultados.

O próximo passo é deslocar a seleção da janela de imagem de ’1’ pixel à direita, na
imagem. A nova janela de imagem continua tendo as mesmas dimensões (OxP), e canto esquerdo
superior na posição (1,2) da imagem.

Fazendo os cálculos descritos acima, usando os pixels da nova janela de imagem obtere-
mos os elementos (1,2) das matrizes de resultados.

A seleção da janela de imagem é deslocada de um pixel à direita até atingir o limite da
imagem à direita, como mostra a Figura 4.2, então, a seleção volta à primeira coluna, deslocada
de um pixel para baixo. Ao se atingir o limite inferior direito da imagem, obtemos os elementos
do canto direito inferior nas matrizes de resultados e finalizamos o cálculo.

Figura 4.2: Casamento de padrões: Ordem do cálculo, dimensões das entradas e da saída

4.1 Estratégia de cálculo proposta

O passo a passo apresentado acima para calcular as matrizes de resultados da métrica
ZNCC entre imagem e templates, não é o mais adequado para explorar os recursos do hardware
e obter um bom desempenho. A necessidade de calcular a média da janela de imagem antes
de calcular o numerador dos resultados, nos obriga a fazer duas iterações sobre cada janela de
imagem, uma para calcular a média e outra para calcular a correlação cruzada de média zero.

Assim, a Equação 4.1 foi manipulada algebricamente, para obter uma fórmula mais
adequada para uma implementação em hardware, a seguir descrevemos o passo a passo para a
obtenção dessa fórmula:

Expandindo o numerador e fazendo a distribuição das somas na Equação 4.1, tem-se:

N

∑
i, j

T (i, j) · I(x+ i,y+ j)−
N

∑
i, j

T · I(x+ i,y+ j)−
N

∑
i, j

T (i, j) · I(x,y)+
N

∑
i, j

T · I(x,y)

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 53

Retirando os termos constantes, em relação a ‘i’ e ‘j’, de dentro dos somatórios, ficamos
com a expressão:

N

∑
i, j

T (i, j) · I(x+ i,y+ j)−T ·
N

∑
i, j

I(x+ i,y+ j)− I(x,y) ·
N

∑
i, j

T (i, j)+T · I(x,y) ·
N

∑
i, j

1

Sabendo-se que o somatório dos pixels de uma região de ‘N’ pixels é ‘N’ vezes o valor
médio dos pixels nessa região (Equação 4.2), ou seja,

N

∑
i, j

T (i, j) = NT
�
 �	4.2

ficamos com,

N

∑
i, j

T (i, j) · I(x+ i,y+ j)−T ·N · I(x,y)− I(x,y) ·N ·T +T ·N · I(x,y)

Somando os termos semelhantes na expressão, obtemos

N

∑
i, j
(T (i, j) · I(x+ i,y+ j))−NT · I(x,y) .

�
 �	4.3

Agora que o numerador foi simplificado, faremos algo semelhante com o denominador
da Equação 4.1. Expandindo os quadrados no denominador:

√√√√ N

∑
i, j
(T 2(i, j)−2 ·T ·T (i, j)+T 2

) ·
N

∑
i, j
(I2(x+ i,y+ j)−2 · I(x+ i,y+ j)I(x,y)+ I2

(x,y))�
 �	4.4
Distribuindo as somas,

√√√√(
N

∑
i, j

T 2(i, j)−
N

∑
i, j

2T T (i, j)+
N

∑
i, j

T 2
) · (

N

∑
i, j
(I2(x+ i,y+ j)−

N

∑
i, j

2I(x+ i,y+ j)I(x,y)+
N

∑
i, j

I2
(x,y))

Retirando as constantes para fora dos somatórios,

√√√√ N

∑
i, j

T 2(i, j)−2T
N

∑
i, j

T (i, j)+T 2
N

∑
i, j

1)(
N

∑
i, j

I2(x+ i,y+ j)−2I(x,y)
N

∑
i, j

I(x+ i,y+ j)+ I2
(x,y)

N

∑
i, j

1)

Como foi feito no numerador, vamos substituir a soma dos pixels ao longo de uma região
de ‘N’ pontos por ‘N’ vezes a o valor médio dos pixels da região.

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 54

√√√√ N

∑
i, j

T 2(i, j)−2NT T +T 2N)(
N

∑
i, j
(I2(x+ i,y+ j)−2NI(x,y)I(x,y)+ I2

(x,y)N)

Segue, √√√√ N

∑
i, j

T 2(i, j)−NT 2·

√√√√ N

∑
i, j

I2(x+ i,y+ j)−NI2
(x,y)

�
 �	4.5

Combinando o numerador (4.3) e o denominador (4.5):

∑
N
i, j(T (i, j) · I(x+ i,y+ j))−NT · I(x,y)√

∑
N
i, j T 2(i, j)−NT 2·

√
∑

N
i, j I2(x+ i,y+ j)−NI2

(x,y)
.

�
 �	4.6

Para deixar a implementação do sistema mais clara, vamos substituir os valores médios,
I(x,y) e T , por suas expressões em função de somatórios, 1

N ∑
N
i, j I(x+ i,y+ j) e 1

N ∑
N
i, j T (i, j),

respectivamente, resultando na Equação 4.7.

R(x,y) =
N ∑

N
i, j(T (i, j) · I(x+ i,y+ j))−∑

N
i, j T (i, j) ·∑N

i, j I(x+ i,y+ j)√
N ∑

N
i, j T (i, j)2− (∑N

i, j T (i, j))2·
√

N ∑
N
i, j I(x+ i,y+ j)2− (∑N

i, j I(x+ i,y+ j))2�
 �	4.7
Uma manipulação algébrica semelhante a esta pode ser vista no trabalho de (CHEN et al.,

2012), ela foi mostrada no Capítulo 3. A principal diferença entre a Equação 3.12 e a Equação
4.7 é que esta mantém os resultados numericamente iguais aos resultados da ZNCC, enquanto
aquela mantém apenas a ordem dos resultados.

Comparando a métrica proposta por (CHEN et al., 2012), o cálculo da métrica de
similaridade usando a equação 4.7 demanda uma operação de raiz quadrada que aumenta o
esforço computacional, no entanto esta equação fornece resultados normalizados e com média
zero. Vimos nos capítulos precedentes que essa característica dos resultados facilita a escolha de
limiares de aceitação no algoritmos que utilizam a ZNCC para identificação.

Essa é a forma da ZNCC implementada neste trabalho. Deve-se observar que esta
fórmula (4.6) é mais adequada a uma implementação em hardware que a fórmula original da
ZNCC 2.6, já que esta não exige o cálculo prévio das médias das janelas de imagem, esses
valores podem ser calculados paralelamente à correlação.

A Equação 4.7 mostra que para obter cada resultado R(x,y) são necessários três re-
sultados de somatórios de valores de pixels, esses somatórios variam com (x,y) e portanto
devem ser computados para cada posição, são eles: ∑

N
i, j I(x+ i,y+ j) , ∑

N
i, j I(x+ i,y+ j)2 e

∑
N
i, j T (i, j) · I(x+ i,y+ j).

Além desses somatórios, a fórmula para calcular cada resultado usa o tamanho do

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 55

template N, a soma dos pixels do template ∑
N
i, j T (i, j) e o desvio padrão entre os pixels do

template
√

N ∑
N
i, j T (i, j)2− (∑N

i, j T (i, j))2. Estas são constantes do template, invariantes com
(x,y) e por isso podem ser calculadas uma única vez pelo software sem atrapalhar o tempo de
execução do algoritmo.

Ao analisar a equação 4.7 obtemos um novo passo a passo para obter as matrizes de
resultados de ZNCC. Aplicaremos esse passo a passo ao seguite exemplo numérico para facilitar
o entendimento do leitor:

Tabela 4.1: Exemplo imagem 3x3 pixels

1 0 3
4 5 2
4 5 1

Tabela 4.2: Exemplo template 2x2 pixels

5 2
5 1

O primeiro passo é calcular as constantes relativas aos templates, elas serão calculadas
pelo software e disponibilizadas ao hardware. Usando como exemplo o template mostrado na
tabela 4.2, temos:

1,1

∑
i=0, j=0

T (i, j) = 5+2+5+1 = 13
�
 �	4.8

√√√√N ·
1,1

∑
i=0, j=0

(T (i, j))2− (
1,1

∑
i=0, j=0

T (i, j))2 =
√

4 · (25+4+25+1)− (13)2 =
√

51 = 7,14�
 �	4.9
O segundo passo é, para cada posição (x,y), calcular os somatórios relativos a janela de

imagem, ou seja,
(

∑
N
i, j I(x+ i,y+ j) e ∑

N
i, j I(x+ i,y+ j)2)

)
, e os valores das correlações cruza-

das, dados pela expressão:
(
∑

N
i, j T (i, j) · I(x+ i,y+ j)

)
, para cada template. Esses somatórios

são independentes e podem ser calculados em paralelo.
No exemplo, façamos os cálculos dos somatórios e da correlação na posição (x=0,y=0):

1,1

∑
i=0, j=0

I(0+ i,0+ j) = 1+0+4+5 = 10
�
 �	4.10

1,1

∑
i=0, j=0

(I(0+ i,0+ j))2 = 1+0+16+25 = 42
�
 �	4.11

1,1

∑
i=0, j=0

1,1T (i, j) · I(0+ i,0+ j) = 5+0+20+5 = 30
�
 �	4.12

Na imagem exemplo da tabela 4.1 existem quatro janelas de imagem, com origem nas
posições: (0,0), (0,1), (1,0) e (1,1). Os resultados do segundo passo para todas as posições,
geram as seguintes tabelas:

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 56

∑
1,1
i=0, j=0 I(x+ i,y+ j) =

10 10
18 13

∑
1,1
i=0, j=0 (I(x+ i,y+ j))2 =

42 38
82 55

∑
1,1
i=0, j=0 I(x+ i,y+ j) ·T (i, j) =

30 33
55 55

O terceiro e último passo é aplicar as constantes relativas aos templates e os resul-
tados parciais obtidos na etapa anterior à equação 4.7 para obter os resultados finais R(x,y).
Chamaremos essa etapa de reduções aritméticas.

Aplicando as reduções aritméticas ao exemplo, temos:

R =

4·

[
30 33
55 55

]
−13·

[
10 10
18 13

]

7,14·

√√√√4·

[
42 38
82 55

]
−

[
102 102

182 132

] = -0,17 0,04
-0,98 1

A Figura 4.3 mostra uma estratégia para o cálculo de matrizes de resultados da métrica
ZNCC multitemplate, entre uma imagem e múltiplos templates. As entradas do sistema são
a imagem e o conjunto de templates. A partir do conjunto de templates, são calculadas, em
software, as constantes que servem para o cálculo de todos os resultados Rl(x,y).

Figura 4.3: Mapeamento do cáculo da ZNCC multitemplate.

Resta ao hardware computar, para cada posição (x,y), as somas não constantes (soma
de I, soma de I2), as correlações (somas de IT) e realizar reduções aritméticas de acordo com a

4.1. ESTRATÉGIA DE CÁLCULO PROPOSTA 57

Equação 4.7 para obter os resultados R(x,y). Observe que as etapas que envolvem valores dos
templates são paralelizadas para o processamento de múltiplos templates.

No exemplo mostrado as dimensões da imagem e do template são muito pequenas
quando comparadas as dimensões de imagens utilizadas em aplicações reais. Imagens com
dimensões geram matrizes de resultados parciais muito extensas para serem armazenadas na
memória interna do FPGA.

A estratégia para calcular os resultados de ZNCC de forma eficiente, objetivando ma-
ximizar o reuso de dados e minimizar a ocupação da memória interna, é calcular os resultados
linha por linha. Quando uma linha de resultados é calculada, esses valores são enviados para a
saída, liberando espaço na memória interna para processar a próxima linha.

O cálculo de uma linha da matriz de resultados é feito utilizando todos os pixels do
template e os pixels de uma faixa da imagem, com largura igual à largura da imagem e altura
igual à altura do template, como as faixas mostradas em destaque na Figura 4.4.

O processamento é feito na sequência das linhas da imagem, os pixels da imagem vão
sendo processados da direita para a esquerda gerando resultados por pixel (I, I2 e IT), quando
uma quantidade de pixels igual a largura do template é processada, esses resultados por pixel são
somados, gerando resultados por linha (∑ I/linha, ∑ I2/linha e ∑ IT/linha).

A seleção se desloca, gerando os resultados por linha da janela de imagem vizinha à
direita. Quando a seleção atinge o final da linha de imagem, o próximo pixel a ser processado é
o primeiro da linha imediatamente abaixo. O processo recomeça, mas dessa vez os resultados
por linha serão acumulados aos resultados da linha anterior.

Quando a seleção atinge a última linha da faixa de resultados, começam a ser gerados
resultados por janela de imagem, que já podem ser aplicado a Equação 4.7 para gerar a primeira
linha de resultados de ZNCC.

Então, a próxima faixa da imagem, deslocada de um pixel para baixo em relação a
anterior é processada para gerar a próxima linha de resultados. O processo se repete até que a
matriz completa de resultados esteja calculada.

A Figura 4.4 ilustra o deslocamento da seleção de linha ao longo da imagem. Cada quadro
mostra uma faixa de imagem selecionada, com os deslocamentos da esquerda para a direita
e de cima para baixo até obter os somatórios de todas as janelas de imagem horizontalmente
vizinhas. O processo é repetido para as janelas de imagem posicionadas em cada linha até o final
da imagem.

Essa seção mostrou o passo a passo para calcular a ZNCC multitemplate, um exemplo
reduzido foi mostrado para esclarecer as etapas de cálculo da ZNCC. Nas próximas sessões
vamos compreender a arquitetura do hardware para realizar essa tarefa, e o funcionamento de
cada módulo, o exemplo apresentado nessa seção será reutilizado para explicar o funcionamento
desses módulos.

4.2. VISÃO GERAL DA ARQUITETURA 58

Figura 4.4: Ilustração do deslocamento da seleção de linha na imagem.

Imagem

Linha selecionada

...

4.2 Visão geral da arquitetura

Esta seção mostra uma visão geral da arquitetura do coprocessador, e uma explica-
ção sucinta sobre cada módulo que a compõe. A estrutura e uma explicação detalhada do
funcionamento de cada módulo estão descritas nas próximas seções deste capítulo.

A Figura 4.5 mostra o diagrama de blocos da arquitetura do coprocessador dedicado ao
cálculo da ZNCC multitemplate.

Figura 4.5: Visão geral do coprocessador ZNCC multitemplate.

M
eg

aF
ifo

B
uf

fe
rs

de

E
nt

ra
da

S
om

as
 e

co
rr

el
aç

õe
s

R
ed

uç
õe

s

A
rit

m
ét

ic
as

I

T1

T2

Tm

...

Unidade de controle

...

S_linha (I2)

S_linha (I)

S_linha (I.T1)

S_linha (I.Tm) A
cu

m
ul

ad
or

es
 d

e

lin
ha

s

...

Soma (I2)

Soma (I)

Soma (I.T1)

Soma (I.Tm)

...

R(T1)

R(T2)

R(Tm)

Seleção de

máximos

..
.

Max Coordenada X

Max Coordenada Y

Max Coordenada Z

read_i_b

w
rite_i_b

read_t

write

Max output valid

output valid

input valid
Sum enable

Valid

linha

Valid

janela

va
lid

read_i

read_t_b

w
rite_t_b

O módulo MegaFifo, é específico para placas da fabricante GIDEL e é mostrado em
mais detalhes no próximo capítulo, por enquanto, basta saber que ele é gerado usando o software
procWizard GIDEL e serve para gerenciar a comunicação entre o host CPU e o FPGA, usando o

4.2. VISÃO GERAL DA ARQUITETURA 59

barramento PCIexpress.
O módulo Buffers de entrada é formado por FIFOs circulares, e tem a função de armazenar

entradas (pixels de imagem e dos templates) que são reutilizadas ao longo do processamento
pelo coprocessador ZNCC.

A computação das somas (soma de I , soma de I2) e das correlações (soma de ITx) é
realizada pela interação entre dois blocos de processamento, o módulo denominado somas e
correlações realiza a soma dos valores ao longo de uma linha, o módulo denominado acumulado-
res de linhas acumula os resultados das linhas para obter os somatórios por janela de imagem.
Esses somatórios por janela de imagem serão utilizados pelo módulo de reduções aritméticas
para obter os resultados R(x,y).

O módulo de reduções aritméticas usa as somas armazenadas no acumuladores de linhas
para calcular os resultados finais de ZNCC, de acordo com a Equação 4.7.

O módulo seleção de máximos, foi construído usando comparadores, ele calcula e
armazena os valores e posições dos máximos em cada matriz de resultados. Esse módulo é útil
para otimizar a comunicação. Se o algoritmo do host só usa os valores e posições dos máximos
da cada matriz de resultados, o tempo de comunicação pode ser reduzido fazendo a leitura desses
valores máximos e evitando a leitura de todos os valores das matrizes de resultados.

A unidade de controle gerencia as leituras e escritas no módulo megaFifo e o processa-
mento através do caminho de dados no FPGA.

A arquitetura desenvolvida nesse trabalho é parametrizada, os parâmetros podem ser
configurados em uma etapa pré síntese pelo usuário.

Os parâmetros da arquitetura são tratados de forma simbólica neste capítulo, essa aborda-
gem deixa a arquitetura mais genérica que a abordagem numérica, para facilitar a compreensão
do leitor, vamos esclarecer quais são os parâmetros da arquitetura. A Tabela 4.3 mostra todos os
parâmetros da arquitetura. Alguns valores são função de outros parâmetros, como o tamanho
total de cada template ou a largura das matrizes de resultados. Outro valores nem aparecem na
lista por serem exatamente iguais a um parâmetro já listado, como as dimensões da janela de
imagem, que são exatamente iguais as dimensões dos templates

Tabela 4.3: Tabela com os parâmetros da arquitetura

Parâmetro Nome
m Quantidade de templates
O Largura dos templates
P Altura dos templates
N Quantidade total de pixels de cada template(OxP)
R Largura da imagem
S Atura da imagem
U Largura das matrizes de resultados (R-O+1)
V Altura das matrizes de resultados (S-P+1)
L Quantidade total de pixels de cada Matriz de resultados (UxV)

4.3. BUFFERS DE ENTRADA 60

As seções seguintes contém descrições mais detalhadas de estrutura e funcionamento de
cada módulo.

4.3 Buffers de entrada

Os resultados de ZNCC são calculados na mesma ordem dos pixels de imagem, da
esquerda para a direita nas linhas e de cima para baixo nas colunas. Quando a primeira linha
dos resultados está sendo calculada todos os pixels da imagem e dos templates estão vindo
diretamente da entrada. A partir da segunda linha dos resultados, os valores usados para calcular
a primeira linha de resultado são reaproveitados.

O módulo Buffers de entrada instancia FIFOs realimentadas para armazenar esses dados
a serem reaproveitados. As FIFOs utilizadas para armazenar os templates possuem um controle
simples, uma vez preenchida com os pixels dos templates vindos da megaFIFO, elas são
continuamente realimentadas com os dados da saída, já que todos os pixels dos templates

são reutilizados do inicio ao fim do processamento.
A FIFO usada para armazenar os pixels de imagem, sempre descarta a primeira linha dos

pixels de saída, pois esses pixels não são reutilizados no processamento.

Figura 4.6: Ilustração dos pixels armazenados na FIFO de imagem do módulo buffers de entrada,
durante o cálculo da ZNCC.

A Figura 4.6 ilustra os dados armazenados na FIFO de imagem do buffer de entrada
enquanto as linhas de número 52 dos resultados estão sendo calculadas. Os pixels da linha 52 da

4.4. SOMAS 61

imagem são lidos da FIFO, mas não realimentam essa FIFO já que esses pixels não são mais
necessários. Os pixels das linhas 53 e 54 são lidos e realimentados na FIFO, pois eles ainda
serão reutilizados no cálculo da próxima linha de resultados (linha 53). Os da linha 55 são lidos
da entrada e escritos na FIFO para serem reutilizados. Dessa forma, cada pixel só é lido uma vez,
da entrada do módulo, e não é necessário armazenar a imagem completa no buffer de entrada,
isso otimiza o uso de memória na FPGA.

As FIFOs de templates do buffer de entrada podem ser vistas como buffers circulares,
cada linha é lida e realimentada nessas FIFOs.

4.4 Somas

A computação das somas é uma etapa crítica do cálculo, para calcular ‘m’ matrizes
de ZNCC de tamanho ‘L’ entre a imagem e os ‘m’ templates de tamanho ‘N’, são realizadas
L(mN + 2N) operações de acumulação. Essa é a etapa de maior impacto no tempo total de
processamento.

O cálculo das somas envolve disponibilizar os dados a serem somados, que são os valores
dos pixels da imagem (I), os quadrados destes (I2) e os produtos imagem vs template (IT1, ..., ITm),
o que demanda recursos lógicos e de armazenamento. Considerando que as dimensões dos
templates podem ser grandes e que os recursos disponíveis em FPGA são limitados, fazer todo
o processamento de uma janela de imagem em paralelo pode limitar muito as dimensões de
imagem e template suportadas. Para contornar esse problema, o processamento é feito por linha
e esses resultados são acumulados para obter os resultados por janela de imagem. A Figura 4.7
mostra os dois módulos envolvidos para a obtenção das somas por janela de imagem.

Figura 4.7: As somas são computadas por linha e esses resultados são acumulados para obter os
valores por janela de imagem

Somas e correlações

/ linha

S_linha (I2)

S_linha (I)

S_linha (I.Tm)

Acumuladores

de linhas

Somas/janela
...

In
pu

t v
al

id

S
um

 e
na

bl
e

valid

Soma (I2)

Soma (I)

Soma (I.T1)

Soma (I.Tm)

...

valid

S_linha (I.T1)
...
T1

Tm

I

Os valores dos pixels são disponibilizados sequencialmente pelo módulo buffers de
entrada para a etapa de somas. A partir dos pixels de entrada, os dados a serem somados devem

4.4. SOMAS 62

ser disponibilizados aos somadores em árvore. A estratégia para disponibilizar todos os valores
relativos a uma linha da janela de imagem, e em seguida todos os valores relativos a uma linha da
janela de imagem vizinha é aproveitar a ordem de cálculo da janela deslizante, que naturalmente
se encaixa em um vetor sistólico (GUPTA; GUPTA, 2007).

Vetor sistólico é uma estrutura de processamento escalável, bem adaptada a implemen-
tações em hardware, que permite paralelizar operações mesmo quando as entradas chegam
serialmente (BRENT; KUNG, 1984). Um vetor sistólico é composto por Elementos de Proces-
samento (PE)s que calculam e armazenam resultados parciais e em seguida propagam alguns
desses resultados no vetor de PEs.

O vetor sistólico para calcular todos os valores de uma linha a serem somados é um
vetor com ‘O’ células de processamento, cada célula corresponde a uma coluna ‘j‘ da janela de
imagem de largura O. Os valores dos pixels de imagem são propagados na estrutura e os valores
a serem somados são disponibilizados para os somadores em árvore.

No início do processamento de uma linha, pixels da imagem e dos templates são simulta-
neamente carregados no vetor de processamento, quando esse vetor está preenchido, os pixels de
template ficam estáticos e apenas os pixels de imagem vão sendo deslocados até que o último
pixel da linha da imagem seja processado.

Os pixels de imagem que entram sequencialmente, vão passando pelo vetor de células
de processamento, cada célula gera os resultados da sua respectiva posição ‘j‘, otimizando a
geração de resultados por ciclo.

Nas subseções a seguir, vemos como os resultados parciais são gerados, somados e
acumulados. Inicialmente, vamos explorar o módulo que realiza as somas e correlações nas
linhas, entendendo como funcionam os somadores em árvore e a linha de correlação composta
por células de correlação. Em seguida, vamos ver como os acumuladores de linhas funcionam
para obter as somas e correlações por janela de imagem.

4.4.1 SOMAS E CORRELAÇÕES POR LINHA

A etapa de somas e correlações por linha é realizada por uma instância de um módulo
linha de correlação e m+2 instâncias de somadores em árvore, como mostra a Figura 4.8. Essa
é a estrutura necessária para calcular: soma de I, soma de I2 e as correlações cruzadas entre
imagem e templates, soma de IT1 a soma de ITm, valores por linha em uma aplicação com m
templates.

A Figura 4.9 retoma o exemplo mostrado nas tabelas 4.1 e 4.2 mostrando a passagem
da primeira linha de imagem pelo módulo de somas e correlações. Observe que nesse exemplo
os somadores em árvore são simples somadores de duas entradas e uma saída com um ciclo de
latência, a vantagem de utilizar somadores em árvore em relação a somadores em cascata só será
percebida para templates com largura maior ou igual a 4 pixels.

4.4. SOMAS 63

Figura 4.8: Diagrama de blocos do módulo template datapath.

Figura 4.9: Exemplo reduzido: Somas e correlações da primeira linha da imagem.

4.4.1.1 Linha de correlação

A linha de correlação é um vetor sistólico que serve para disponibilizar em paralelo todos
os resultados parciais de uma linha a serem somados.

As unidades de processamento são as células de correlação. O valor parâmetro ‘O’
(largura do template/janela de imagem) é a quantidade de unidades de processamento necessárias
em uma linha. Esse parâmetro pré síntese é usado para gerar as células de correlação instanciadas
em uma linha de correlação.

Quando o processamento de uma linha da imagem se inicia, a linha de correlação vai
sendo preenchida com os valores dos pixels da imagem e dos templates vindos da entrada,
quando ‘O’ pixels de imagem entram no módulo, todos os valores necessários para calcular as
somas parciais, relativas a primeira linha de imagem para a posição (1,1) dos resultados (I, I2

and IT1 to ITm), ficam simultaneamente disponíveis na saída, como mostra a Figura 4.10. A
partir desse ciclo, apenas os pixels de imagem continuam a se propagar pela linha de correlação.

A Figura 4.10 mostra um diagrama esquemático de uma linha de correlação; observe que
uma linha de correlação contém ‘O’ células de correlação, e cada célula de correlação calcula

4.4. SOMAS 64

‘m’ produtos imagem template.

Figura 4.10: Linha de correlação para ‘m’ templates de largura ‘O’.

Em regime de funcionamento cada novo pixel de imagem na entrada(I(x,y+1)), gera
um novo conjunto de resultados parciais que serve para calcular as somas parciais da janela de
imagem na posição (x,y+1). O deslocamento dos pixels de imagem entre as células da linha de
correlação faz com que resultados parciais vizinhos sejam disponibilizados, a cada ciclo, em
sequência.

Figura 4.11: Exemplo de linha de correlação em funcionamento.

No exemplo da Figura 4.11, uma linha de correlação tem apenas duas células (O=2).
Quando o circuito for ativado, as primeiras entradas da primeira célula de correlação são os
pixels I(1,1) e T(1,1), a linha de correlação começa a ser preenchida. No segundo ciclo de
relógio, as entradas da primeira célula de correlação seriam os pixels da primeira linha e segunda
coluna: I(1,2)=0 e T(1,2)=2, as entradas da segunda célula de correlação seriam as saídas da
primeira, I=1 e T=5. Depois de um ciclo de relógio as saídas da linha seriam: I2 = 0, I1 = 2,
(I2)

2 = 0, (I1)
2 = 1 e I2T2 = 0, I2T2 = 5. Esse primeiro conjunto de resultados parciais teve uma

latência de dois ciclos, mas o o próximo conjunto de resultados parciais fica pronto no terceiro
ciclo, I2 = 3, I1 = 0, (I2)

2 = 9, (I1)
2 = 0 e I2T2 = 6, I2T2 = 0. A linha de correlação tem latência

‘O’ throughput ‘1’.

4.4. SOMAS 65

A Figura 4.12 mostra o exemplo da Figura 4.11 deixando mais claro o seu funcionamento
como vetor sistólico. O primeiro e o último resultados não são resultados válidos, pois a linha
de correlação está incompleta. Os elementos das células na primeira diagonal são os primeiros
resultados válidos e são obtidos simultaneamente. Em seguida são calculados os elementos das
células destacadas na segunda diagonal.

Figura 4.12: Exemplo de linha de correlação em funcionamento do ponto de vista de um vetor
sistólico

4.4.1.2 Célula de correlação

A célula de correlação é a unidade básica deste processamento, ela está representada na
Figura 4.13. As entradas desta célula são: um pixel de imagem (I) e um vetor de m pixels de
template (T1 ... Tm). As saídas desta célula são: o pixel de imagem (I), o quadrado do pixel de
imagem (I2), o vetor de templates (IT1 ... ITm) e o vetor de correlações (IT1 ... ITm). Os valores
das saídas são atualizados um ciclo depois dos valores das entradas.

Observe que os valores I, I2 e IT1 ... ITm são resultados parciais para calcular as somas da
Equação 4.7. Os valores I e T1 ... Tm são usados para alimentar a próxima célula de correlação.

No exemplo das tabelas 4.1 e 4.2, as primeiras entradas de uma célula de correlação
seriam os pixels da primeira posição, I(1,1)=1 e T(1,1)=5, depois de um ciclo as saídas da célula
seriam: I=1, I²=1, T=5 e IT=5.

Além dos sinais de dados, mostrados na Figura, a célula de correlação possui um sinal
de entrada valid_in e um sinal de saída valid_out, estes são sinais de controle, propagados entre
células de correlação.

4.4. SOMAS 66

Figura 4.13: Célula de correlação para ’m’ templates.

4.4.1.3 Somadores em árvore

Os resultados da linha de correlação precisam ser somados. Somadores em árvore são
usadas para realizar essa tarefa de forma eficiente. A estrutura de árvore segue a estratégia dividir
para conquistar (CORMEN, 2009).

A vantagem de utilizar somadores em árvores é que a latência de processamento é log2

da quantidade de entradas a serem somadas, enquanto a latência de um somador em cascata é
igual a quantidade de entradas menos um.

A Figura 4.14 ilustra um somador em árvore com ‘O’ entradas (e), uma saída (S) e log2O

camadas de somadores.
O funcionamento dos somadores em árvore é baseado em fatorar recursivamente a soma

de ‘O’ fatores em uma soma de O
2 resultados de somas de dois fatores. A soma dos O

2 resultados
é a soma de O

4 somas de dois fatores e assim sucessivamente até que restem apenas dois fatores a
serem somados.

A quantidade de entradas de cada somador, instanciado aqui, é igual a largura do
template dada pelo parâmetro ‘O’. A geração dos somadores é feita utilizando recursão, isto é,
cada somador em árvore de n entradas instancia uma camada de n/2 somadores e um somador
em árvore com n/2 entradas, a condição de parada da recursão é quando o somador em árvore
tem apenas duas entradas, nesse caso ele é um somador simples.

A latência para obter o resultado é função da quantidade de entradas (log2O), um sinal
de valid é propagado pela árvore, com a mesma latência do resultado.

Para integrar as saídas da linha de correlação com as entradas da árvore de soma os dados
são reorganizados em vetores, e cada vetor de dados será a entrada de uma árvore de soma como
mostra a Figura 4.8.

4.4. SOMAS 67

Figura 4.14: Somador em árvore com ‘O’ entradas.

4.4.2 ACUMULADORES DE LINHAS

As saídas do módulo denominado somas e correlações são todas as somas parciais, por
linha, necessárias para calcular a ZNCC. As somas completas, por janela de imagem, podem ser
obtidas com o acumulado de uma série de ‘P’ de somas por linha. As somas parciais de cada
uma das ‘P’ linhas da janela de imagem vão sendo acumulados em um módulo acc_FIFO.

A Figura 4.15 mostra o diagrama de blocos do módulo acc_FIFO, responsável por
acumular os resultados das somas das linhas até obter os resultado de uma janela de imagem.

Figura 4.15: Acumulador FIFO para cálculo de somas em uma janela de correlação.

acc_FIFo

F
IF

O

write req.

read req.

data in

+

0

Sum enable

Valid

Line sum

Acc. line sum

O módulo acc_FIFO é instanciado ‘m+2’ vezes no acumuladores de linhas, um para
acumular os resultados da soma de I por linha, um para acumular os resultados da soma de I2

por linha e m para acumular os resultados das m correlações, ou seja, as somas de IT1 por linha,
de IT2 por linha até a soma de ITm por linha, como mostra a Figura 4.16.

O módulo acumuladores de linhas representa o módulo com maior impacto no uso de
memória interna do FPGA, para otimizar este uso os resultados são calculados linha a linha,
desta forma a FIFO interna só precisa armazenar uma linha de somas parciais por vez, assim o

4.4. SOMAS 68

Figura 4.16: Estrutura interna do módulo acumuladores de linhas.

FIFOs accumulators

acc_FIFO
I

acc_FIFO
I
2

acc_FIFO
IT1

acc_FIFO
ITm

.

.

.

Valid

Sum enable

Sum(I)/line

Sum(I)/line2

Sum(IT1)/line

Sum(ITm)/line

Sum(I)/window

2

Sum(IT1)/window

Sum(ITm)/window

Sum(I)/window

tamanho de cada FIFO é igual a largura das matrizes de resultados ‘R-O+1’.
Quando a última linha de uma janela de imagem está passando pela última linha dos

templates, os resultados que estão sendo acumulados são liberados, pelo controle, para o módulo
de reduções aritméticas, assim ao final do cálculo de uma linha de resultados, o modulo acumu-
ladores de linhas reusa os espaços das FIFOs para acumular as somas parciais para calcular a
próxima linha de resultados.

Figura 4.17: Exemplo: módulo acumuladores de linhas em funcionamento.

A Figura 4.17 mostra o preenchimento das FIFOs para o exemplo trabalhado neste
capítulo (tabelas 4.1 e 4.2). A primeira coluna, mostra as três FIFOs preenchidas com os valores
das somas da primeira linha, calculados na Figura 4.9. Nesse passo, o valor da primeira posição

4.5. MÓDULO DE REDUÇÕES ARITMÉTICAS 69

da FIFO foi lida e somada com o resultado da linha atual.
A segunda coluna da Figura 4.18 mostra que o valor calculado no passo anterior foi

escrito na FIFO e o segundo valor está sendo processado. A terceira coluna destaca a primeira
linha de somas por janela de imagem, valores que estarão armazenados no acumuladores de
linhas para o cálculo da primeira linha de resultados pelo módulo de reduções aritméticas.

No exemplo, cada FIFO só tem duas posições, já que para essa imagem só existem duas
janelas de imagem horizontalmente vizinhas.

4.5 Módulo de reduções aritméticas

O módulo de reduções aritméticas recebe os resultados das somas (∑ I, ∑ I2 e ∑T1I a

∑TmI) e a partir deles calcula o resultado final da ZNCC R(x,y). Os cálculos foram implementa-
dos em um pipeline de 6 grandes estágios: multiplicações, subtrações, conversões inteiro em
ponto flutuante, radiciação, multiplicação e divisão, esses módulo operacionais são gerados
utilizando a plataforma MegaWizard da Altera. A Figura 4.18 mostra a estratégia de cálculo das
reduções aritméticas.

Figura 4.18: Mapeamento da equação em diagrama de blocos de implementação.

Cada módulo operacional tem estágios internos de pipeline. A latência total dos módulos
funcionais do numerador é menor que a latência total do denominador, por isso existem barreiras
de sincronização de dados antes do módulo de divisão. Além de barreiras temporais para
sincronizar o numerador com o denominador, um sinal de valid é propagado junto com os dados
pelo pipeline para garantir a validade dos resultados.

4.6. UNIDADE DE CONTROLE 70

Os valores ‘A’, ‘B’ e ‘D’ da Figura 4.18 são, na prática, vetores de valores quando se trata
do cálculo com múltiplos templates. Em uma arquitetura configurada para ‘m’ templates temos
‘m’ valores distintos de ‘A’ dados por ∑

N
i, j T1(i, j) · I(x+ i,y+ j), ∑

N
i, j T2(i, j) · I(x+ i,y+ j), ...,

∑
N
i, j Tm(i, j) · I(x+ i,y+ j), ‘m’ valores de ‘B’ dados por ∑

N
i, j T1(i, j), ∑

N
i, j T2(i, j), ..., ∑

N
i, j Tm(i, j)

e ‘m’ valores de ‘D’ dados por
√

N ∑
N
i, j T 2

1 (i, j)− (∑N
i, j T1(i, j))2,

√
N ∑

N
i, j T 2

2 (i, j)− (∑N
i, j T2(i, j))2,

...,
√

N ∑
N
i, j T 2

m(i, j)− (∑N
i, j Tm(i, j))2. Assim, cada operação que envolve um desses valores veto-

riais é composta por ’m’ instancias do mesmo operador.
A Figura 4.19, retoma o exemplo trabalhado ao longo deste capítulo (tabelas 4.1 e 4.2)

com as etapas de cálculo dentro deste módulo. Na figura a cada passo é mostrada a matriz
completa de resultados apenas para o leitor acompanhar o passo a passo do módulo de reduções
aritméticas no hardware. As posições de cada matriz não estão sendo calculadas em paralelo,
como a figura pode deixar entender, mas em sequência como foi explicado no texto. O módulo de
reduções aritméticas utiliza resultados de somas calculados em um passo anterior e armazenados
em FIFOs. Nesse exemplo, o símbolo de igualdade (=) está sendo usado para representar uma
barreira temporal que garante que o numerador e o denominador cheguem simultaneamente no
módulo de divisão.

Figura 4.19: Passo a passo de cada valor do exemplo dentro do módulo de reduções aritméticas

4.6 Unidade de controle

A unidade de controle centraliza as funções de leitura e escrita no megaFifo e nos
buffers de entrada, e gerencia do processamento de dados, desencadeando as operações de soma,
habilitando a acumulação dos resultados parciais e o envio dos resultados finais para o host. A
Figura 4.20 mostra as entradas e saídas desse módulo.

Esta unidade foi implementada usando uma Máquina de Estados Finita (FSM) do tipo
Moore de 14 estados. A simplicidade dessa máquina de estados só é possível graças ao uso do
sinal de valid que caminha junto com os dados facilitando o controle (Figura 4.5). A unidade de

4.6. UNIDADE DE CONTROLE 71

Figura 4.20: Unidade de controle

Unidade de controle

read_i_b

w
rite_i_b

read_t

write

Max output valid

output valid

input valid

S
um

 enable

read_i

read_t_b

w
rite_t_b

controle desencadeia uma série de ações que vão ocorrer com os dados válidos caminhando pelo
pipeline.

Dos 14 estados mencionados, três são dedicados à comunicação com o PROCmegaFIFO.
Considerando o controle do processamento dos dados, essa unidade comanda basicamente três
ações: Ler imagem, ler templates e escrever resultados.

Os pixels de imagem são lidos quase o tempo todo de processamento, enquanto ocorre
o processamento das primeiras janelas de imagem, aquelas que geram a primeira linha de
resultados, os pixels são lidos diretamente da entrada. Nas janelas de imagem seguintes, a maior
parte dos pixels já está armazenada em buffers, e são lidos dos buffers de entrada, exceto os da
última linha de cada janela de imagem.

Os pixels de templates são lidos da entrada durante o processamento da primeira linha de
resultados, no processamento das próximas janelas todos os templates já estão armazenados e são
lidos dos buffers. Diferente dos pixels de imagem, os pixels dos templates não são lidos durante
boa parte do tempo de processamento, pois eles ficam fixos na linha de correlação enquanto os
pixels de imagem são deslocados.

Os pixels dos resultados são escritos na saída. Uma linha de pixels de resultados é obtida
a cada ‘P’ linhas de imagem processadas.

A Figura 4.22 contém o diagrama de estado da unidade de controle, as tarefas desem-
penhadas pelo controle podem ser resumidas no fluxograma da Figura 4.21, para facilitar a
compreensão as cores usadas na Figura 4.21 indicam os estados da FSM representada na Figura
4.22.

O preenchimento da linha de correlação ocorre no início do processamento de cada linha
da imagem, essa etapa corresponde aos ‘O’ ciclos necessários para preencher todas as células
da linha de correlação com valores da imagem e do template. Existem 3 estados onde ocorre o
preenchimento da linha de correlação.

No início do processamento, quando a primeira linha de resultados está sendo calculada,
a linha de correlação é preenchida a partir dos dados imagem e template vindos diretamente do

4.6. UNIDADE DE CONTROLE 72

Figura 4.21: Fluxograma da unidade de controle.

Linha de

correlação

preenchida?

imagem e

templates da

entrada

Deslocament

o da imagem

pela linha de

Fim da linha

da imagem?

Nova linha

Deslocament

o da imagem

pela linha de

Deslocament

o da imagem

pela linha de

imagem da

entrada

Deslocament

o da imagem

pela linha de

correlação

imagem da

entrada

Deslocament

o imagem

pela linha de

correlação

(última linha

da janela)

Última linha

da janela?

 Escrever

resultado na

saída

Última

coluna da

imagem?

Última linha

de

resultados?

Processament

o Feito

imagem e

templates do

buffer

Preenchiment

o da linha de

correlação

Linha de

correlação

preenchida?

imagem da

entrada

Deslocament

o da imagem

pela linha de

correlação

Fim da linha

da imagem?

Nova linha

imagem da

entrada

imagem do

buffer

Finalizar a

comunicação

Nova

Iteração

Última

coluna da

imagem?

imagem da

entrada e dos

templates do

buffer

Preenchiment

o da linha de

correlação

Linha de

correlação

preenchida?

SimNão

Sim

Não

Sim

Não

Sim

Não

Sim

Não

Sim

NãoNão

Sim

Sim

Não

Preenchiment

o da linha de

correlação

InícioInício

Sim

Não

Ler pixels de

Ler pixels de

Ler pixels de

pixels de

Ler pixels de

Ler pixels de

Ler pixels de

host através do módulo megaFifo, esse estado corresponde ao processamento pela primeira vez,
dos pixels da região de imagem destacada na Figura 4.23(a).

A partir da segunda linha de resultados, todos os pixels de template e parte dos pixels da
imagem já estão armazenados nos buffers de entrada, nesse caso eles são lidos desses buffers e não
da megaFifo. Os pixels de imagem da região destacada na Figura 4.23(b) já estão armazenados
nos buffers de entrada durante o processamento da segunda linha de resultados.

Durante o preenchimento da linha de correlação da última linha de uma janela de
imagem, os pixels de imagem não estão armazenados nos buffers de entrada já que eles não

4.6. UNIDADE DE CONTROLE 73

Figura 4.22: FSM da unidade de controle.

InitialInitial
Load_shif

t

Load_shif
t_buffer

Load_shif
t_tmplt_
buffer

First_ima
ge_shift

Image_s
hift

New_iter
ation

First_ne
w_line

new_line

Result_i
mage_shi

ft

Wait_en
d

Comp_co
municati

on

Last_stat
e

Done

foram processados na iteração anterior, esses pixels estão em destaque na Figura 4.23(c) e
são lidos diretamente da entrada megaFifo. Enquanto isso, os pixels de template já estão
armazenados nos buffers de entrada.

Figura 4.23: pixels de imagem para etapas de preenchimento de linha de correlação

Imagem
O

(a) 1a iteração

O
Imagem

(b) 2a iteração, pixels armazenados

O
Imagem

(c) 2a iteração, pixels não armazena-
dos

Após o preenchimento de uma linha de correlação os pixels de template ficam congelados
enquanto os pixels de imagem são deslocados até o final da linha de correlação.

Existem três estados onde ocorre o deslocamento da imagem pela linha de correlação. Na
primeira iteração, não há pixels de imagem armazenados, todos são lidos do megaFifo. Quando a
linha deslocada é a última linha de uma iteração, também não há pixels de imagem armazenados.
Nesse caso, existe a particularidade de que ao final dessa etapa inicia-se uma nova iteração. O
terceiro tipo de deslocamento de imagem ocorre a a partir da segunda iteração em linha que já
foram processadas, nesse caso os pixels de imagem são lidos do buffer de entrada.

Ao fim do deslocamento da última linha de imagem pela linha de correlação, os últimos
resultados do frame são calculados.

4.7. MÓDULO DE SELEÇÃO DOS MÁXIMOS 74

4.7 Módulo de seleção dos máximos

O módulo seleção de máximos, é construído por comparadores, ele calcula e armazena
os valores e posições dos máximos em cada matriz resultados. As saídas produzidas por esse
módulo podem servir para otimizar o uso da banda de comunicação. Caso o algoritmo do host só
use os valores de máximo e não a matriz completa de resultados, a quantidade de leituras feitas
pelo host é reduzida em ‘L’ vezes.

Esse design foi pensado para uma aplicação stream, assim a unidade de controle só para
se o host parar de demandar ZNCCs, nesse caso a máquina fica parada no estado inicial, ou se
ocorrer falta de dados, nesse segundo caso todas as variáveis de estado congelam e uma bolha é
inserida no pipeline dos dados, até o fim da falta de dados ou a solicitação de reinicialização.

4.8 Conclusões

Este capítulo apresentou a organização interna do módulo ZNCC multitemplate. Cada
bloco constitutivo foi apresentado, bem como seu funcionamento e a interação entre blocos. A
arquitetura apresentada nesse capítulo é genérica para qualquer tipo de FPGA.

O quinto capítulo deste trabalho apresenta aspectos práticos e específicos da implementa-
ção FPGA, realizada nesse trabalho. Ele contém detalhes sobre a geração do megaFifo, uso de
recursos da placa e integração hardware/software.

757575

5
IMPLEMENTAÇÃO FPGA

Este capítulo aborda os aspectos práticos da construção do sistema para rastreamento
de objetos. Os principais tópicos explorados são: a metodologia utilizada no desenvolvimento
do projeto, os dispositivos utilizados, a comunicação hardware/software, as configurações pré
síntese e resultados de síntese.

5.1. DISPOSITIVOS 76

5.1 Dispositivos

Esse trabalho foi implementado no kit de desenvolvimento Gidel Proc-Star IV. Essa
plataforma possui quatro FPGAs Stratix IV (EP4SE530H35C2) disponíveis com uma memória
DDR2 512MB conectada a cada FPGA, o sistema desenvolvido neste trabalho utiliza apenas um
FPGA.

A CPU utilizada para rodar a aplicação foi um core i7, 3.3Ghz, 16GB de memória RAM,
essa CPU poderia ser substituída por um processador embarcado sem perdas significativas para a
performance do sistema, a única condição é que o processador tenha uma porta PCI-express para
a comunicação hardware/software.

A comunicação entre CPU e FPGA acontece via barramento PCI-express usando a
memoria DDR2 conectadas ao FPGA para sincronizar os dados.

5.2 Metodologia de projeto

Durante este trabalho de mestrado foi empregado o fluxo de desenvolvimento de projetos
hardware mostrado na Figura 5.1.

O Primeiro passo é o estudo do algoritmo para planejar como o sistema irá funcionar.
Nesse caso, a equação foi simplificada e os termos contantes referentes unicamente ao template

foram isolados para serem calculados via software.
Em seguida foi elaborado um projeto de arquitetura de fluxo de dados. Nessa etapa foi

decidida a ordem que os cálculos seriam feitos; o que seria executado em paralelo, pipeline ou
em sequência; como seria a organização dos dados intermediários e como os dados de entrada
poderiam ser reaproveitados.

Um modelo de referência foi elaborado e implementado em Matlab, seguindo o mesmo
fluxo de dados pensado na etapa anterior, para testar a viabilidade do projeto. A partir desse pro-
jeto foi elaborada a arquitetura estrutural, com descrições de entradas e saídas e funcionalidades
de cada módulo do design.

Baseando-se nessa especificação, cada módulo foi descrito em Linguagem de Descrição
de Hardware (HDL) Verilog. Paralelamente a isso, foi elaborado um ambiente de verificação
para cada módulo isolado e uma abordagem bottom-up foi usada para o design e verificação dos
módulos integrados.

Cada módulo foi testado isoladamente, e a cada etapa de integração, um novo teste geral
era executado. A verificação foi feita usando o ModelSim.

O teste final foi feito com sequências de 1000 frames, gerados aleatoriamente comparando
os resultados da arquitetura aos do modelo de referência.

A cada etapa do desenvolvimento, o design foi verificado e sintetizado, usando o Quartus
II, para verificar o uso de recursos do FPGA e os caminhos críticos do design. Algumas voltas a
passos anteriores foram necessárias, seja para ajustar funcionalidades, seja para reduzir o uso de

5.2. METODOLOGIA DE PROJETO 77

Estudo da
equação

Início

Projeto do
fluxo de
dados

Modelo de
referencia
(software)

Arquitetura
estrutural

Arquitetura
estrutural

Implementação
dos módulos

(HDL)

Implementação
do ambiente de

verificação

Testes
unitários

Ok?
Não

Sim

Integração

Síntese

Teste

Ok?

Design
Completo?

Ok?

Uso de
recursos

Ok?
Sim

Sim

Não

Não

Não

Ok?

Funcionali
dade
Ok?

Verificação
Integral

Design
Validado?

Sim

Não

Desenvolvim
ento da

aplicação

Síntese de
projeto

Testes de
sistema

CPU+FPGA
Ok?

Fim

Sim

Não

Não

Sim

Sim

Figura 5.1: Fluxo de desenvolvimento de projeto

recursos.
A abordagem bottom up usada para o desenvolvimento e a verificação dos módulos

permitiu encontrar grande parte dos erros em escalas menores do desenvolvimento, quando é
mais fácil isolá-los e repará-los.

5.3. MEGAFIFO E A INTEGRAÇÃO HARDWARE SOFTWARE 78

Tendo o design completo e verificado a aplicação do host foi desenvolvida em OpenCV
e o design implementado na FPGA. Nesta etapa, foram feitos os testes completos do sistema, já
com o host CPU e o acelerador FPGA, para esses testes foram utilizados vídeos com tamanhos
de 300 e 10000 frames. A arquitetura também foi testada variando os parâmetros pré síntese,a
quantidade de templates foi variada de 1 a 10, e as dimensões de imagem testadas foram 432x432
e 216x216.

5.3 MegaFifo e a integração hardware software

A biblioteca Gidel PROCWizard GIDEL (2010) disponibiliza alguns módulos Propriedade
Intelectual (IP) para para facilitar a integração hardware/software: PROCMegaFIFO, PROC-
MegaDelay e PROCMultiPort. O PROCMegaFIFO IP foi projetado para aplicações em stream,
assim ele é adequado para a aplicação de rastreamento em tempo real deste trabalho.

O PROCMegaFIFO usa o barramento PCIexpress para comunicação e a memória DDR2
para sincronizar os dados vindos da CPU para o FPGA e do FPGA para a CPU, já que os dois
dispositivos trabalham em frequências diferentes. A Figura 5.2 mostra um diagrama de blocos
do sistema.

Figura 5.2: Visão geral do sistema para rastreamento de objetos acelerado por FPGA.

Neste projeto, foram sintetizadas três instâncias do IP core PROCMegaFIFO (GIDEL,
2008). Uma SimpleFIFO para os pixels de imagem, uma para o vetor de pixels dos templates e
uma para o vetor de pixels dos resultados. Cada simpleFIFO tem o tamanho de dados limitado a
256 bits, assim uma única porta pode enviar até 32 templates de 8bits ou 8 resultados de 32bits.
Quando o design usa mais de 8 templates, deve-se acrescentar uma simpleFIFO para transmitir
os resultados extras.

Muitas vezes, as aplicações do casamento de padrões só utilizam as informações do ponto
de melhor casamento, sua posição e o valor de similaridade. Assim, o módulo desenvolvido neste

5.4. SÍNTESES E RESULTADOS 79

trabalho também envia os valores e as coordenadas do máximo de cada matriz de resultados.
Essa porta é útil para reduzir a quantidade de dados transmitidos e consequentemente o tempo
de comunicação.

Tabela 5.1: Uso de recursos do FPGA apenas para o PROCmegaFIFO.

Combinational ALUTs 8,302 / 424,960 (2 %)
Dedicated logic registers 9,299 / 424,960 (2 %)
Total pins 726 / 744 (98 %)
Total block memory bits 464,912 / 21,233,664 (2 %)

A Tabela 5.1 mostra o uso de recursos apenas das instâncias do PROCmegaFIFO usadas
neste projeto. É sempre um ponto de discussão saber quando vale a pena o uso desse tipo
de IP core, já que ele utilizada recursos do FPGA que podem ser críticos em alguns projetos.
Neste projeto, o uso deste IP foi vantajoso, ele permitiu que os esforços fossem concentrados no
processamento dos dados facilitando a leitura e escrita das entradas e dos resultados.

5.4 Sínteses e resultados

Para validar a implementação do módulo proposto foi usada como estudo de caso a
aplicação de rastreamento de pedestres, conforme discutido na Seção 2.4 deste trabalho. Nessa
aplicação, a imagem é a região onde se busca o template (ROI): essa região tem 432x432 pixels,
a dimensão dos templates é adaptada à busca de pedestres e é 72x144 pixels. A quantidade de
templates foi variada de um a dez templates para a análise da taxa frames por segundo (fps)
obtida em cada caso.

Os multiplicadores são operadores com várias instanciações nessa arquitetura, já que
cada célula de correlação instancia pelo menos dois multiplicadores. Em um módulo sintetizado
para um template cada célula de correlação instancia um multiplicador para calcular o quadrado
do pixel de imagem (I) e um multiplicador para calcular o produto entre o pixel de imagem
e o pixel do template (IT), de forma mais genérica cada célula de correlação instancia um
multiplicador para calcular I² e ’m´ multiplicadores para calcular IT.

5.4.1 SÍNTESE PADRÃO

A síntese padrão do Quartus Prime 15.1 usa um bloco DSP 18 bits para construir cada um
desses multiplicadores. Aumentando o parâmetro quantidade de templates, mais multiplicadores
são instanciados por cada célula de correlação, isso se reflete no uso de blocos DSP mostrado no
relatório de síntese.

A Figura 5.3 mostra o uso dos principais recursos disponíveis no FPGA de acordo com
a quantidade de templates configurada. Observe que quando o design é parametrizado para
suportar 10 templates 98% dos DSPs disponíveis são utilizados, nesse caso a ferramenta não

5.4. SÍNTESES E RESULTADOS 80

Figura 5.3: Uso de recursos do FPGA, por quantidade de templates, usado multiplicadores
escolhidos na síntese padrão construídos usando blocos DSP

consegue realizar a etapa de roteamento da síntese, essa etapa se torna cada vez mais complexa
com o aumento da ocupação no FPGA.

5.4.2 SÍNTESE PRIORIZANDO O USO DE LÓGICA COMBINACIONAL

Para deixar o design mais flexível em relação a quantidade de templates uma nova
célula de correlação foi implementada, forçando a escolha blocos de lógica combinacional
(ALUTs) para construir os multiplicadores, nesse caso, cada multiplicador IT utiliza 80 desses
blocos, enquanto os multiplicadores com duas entradas iguais (I²) utilizando 40 desses blocos. A
principal diferença é que blocos de lógica combinacional são mais abundantes nas placas que os
blocos DSP, assim o o módulo que usa blocos combinacionais na construção dos multiplicadores
é sintetizado com folga no FPGA stratix IV mesmo quando configurado para processar 10
templates. A Figura 5.5 mostra o uso de recursos o uso dos principais recursos disponíveis no
FPGA de acordo com a quantidade de templates, quando se força o uso de blocos ALUTs para
construir os multiplicadores.

5.4. SÍNTESES E RESULTADOS 81

Figura 5.4: Uso de recursos do FPGA por tipo de multiplicador usado(DSP ou ALUTs) e por
quantidade de templates

5.4.3 TIPO DE MULTIPLICADOR VIA PARÂMETRO DE SÍNTESE

Durante o desenvolvimento do projeto, foi percebido que a quantidade de blocos DSP
disponíveis no FPGA poderia ser um fator limitante, tanto para aumentar a quantidade de tem-

plates, quanto para portar o design para outras plataformas com menos blocos DSP disponíveis.
Ao mesmo tempo, dependendo do tipo de FPGA e da quantidade de templates escolhida pelo
usuário, pode ser vantajoso o uso de blocos DSP na construção dos multiplicadores. Assim, o
tipo dos multiplicadores das células de correlação foram modificados para ter duas opções de
síntese: o usando blocos DSP, cada multiplicador usa um bloco DSP 18bits ou usando blocos
lógicos (ALUTs), cada multiplicador usa 80 blocos lógicos, no caso dos multiplicadores com
duas entradas iguais (quadrado) esse uso cai para 40 blocos lógicos.

A Figure 5.3 mostra o uso de recursos FPGA para cada opção de síntese, multiplicadores
construídos usando DSP ou ALUT, e para quantidades de templates que variam de 1 a 10. Note
que o recurso DSP chega ao limite quando o design que usa esse recurso nos multiplicadores é
sintetizado para 10 templates.

5.4. SÍNTESES E RESULTADOS 82

Figura 5.5: Uso de recursos do FPGA por tipo de multiplicador usado(DSP ou ALUTs) e por
quantidade de templates

838383

6
EXPERIMENTOS E RESULTADOS

Neste capítulo são apresentados os experimentos feitos com a arquitetura em FPGA para
o cálculo da ZNCC multitemplate. Foram feitos testes para atestar a qualidade dos resultados,
comparando os valores fornecidos pelo FPGA com aqueles obtidos pelo software de referência.
Em seguida, são mostrados os testes de desempenho, comparando o tempo de execução usando a
plataforma baseada em FPGA com os tempos do mesmo algoritmo sendo executado apenas na
CPU ou na CPU com GPU.

6.1. TESTE DE CORRETUDE 84

Nessa etapa de desenvolvimento do projeto, foram realizados tanto testes para avaliar o
desempenho quanto para validar a precisão dos resultados de ZNCC obtidos com a arquitetura
proposta, apresentada no Capítulo 4.

Primeiro foram realizados os testes de corretude. Eles foram feitos para garantir que os
resultados obtidos usando o módulo proposto não se desviam muito dos resultados obtidos por
um software largamente testado, para isso foi usada a métrica de Relação Sinal Ruído (SNR).

O testes de desempenho foram feitos medindo a taxa fps média, obtida com a execução
de 1000 frames, utilizando a implementação do módulo proposto em FPGA e implementações
do cálculo da ZNCC em CPU e GPU. As implementações em CPU e GPU são usadas para
comparar o desempenho obtido com a arquitetura proposta e implementada em FPGA.

Valores de precisão e sobreposição foram medidos usando o algoritmo de rastreamento,
aplicado ao benchmark desenvolvido por WU; LIM; YANG (2013) para tentar encontrar a
quantidade ótima de templates.

Os testes feitos nesta seção consideram o estudo de caso de rastreamento de pedestres
para configurar o conjunto de parâmetros do hardware:

� Número de colunas da imagem: R=432.

� Número de linhas da imagem: S=432.

� Número de colunas do template: O=72.

� Número de linhas do template: P=144.

A quantidade de templates foi variada de 1 a 10 para todos os testes.

6.1 Teste de corretude

Testes funcionais foram feitos com o módulo proposto para avaliar a precisão numérica
dos resultados. Os resultados de ZNCC calculados no FPGA foram comparados aos resultados
produzidos pelo software de referência utilizando as mesmas entradas de imagens e templates.

A avaliação da precisão dos resultados foi feita através da relação sinal ruído (SNR)
mostrada na Equação 6.1.

SNR = 10log10
Psinal

Pruído
(dB)

�
 �	6.1

Na equação 6.1, Psinal é a potência do resultado de referência produzido pelo software e
Pruído é a potência da diferença entre os resultados gerados por um módulo de hardware a sua
referência em software.

6.2. AVALIAÇÃO DE DESEMPENHO 85

O termo potência é usado aqui para indicar que o valor da amplitude é elevado ao
quadrado, como é feito para calcular potência de sinais elétricos.

A Tabela 6.1 mostra os resultados relativos a precisão numérica dos resultados quando o
cálculo de ZNCC é executado sobre um conjunto de vídeos do benchmark (WU; LIM; YANG,
2013).

Para cada Vídeo analisado destacamos a relação sinal ruído mínima e máxima e as
medidas estatísticas de média e desvio padrão.

Esses resultados mostram que, no pior caso analisado, a taxa SNR é maior que 151dB
o que, de acordo com a Equação 6.1, significa que, mesmo no pior caso, a amplitude do sinal
ainda é muito maior que a amplitude do ruído.

Tabela 6.1: Precisão numérica dos resultados por vídeo

Vídeo SNR médio Desvio padrão SNR SNR mínimo SNR máximo
Jogging 263,7573 13,5191 185,9035 318,6646
Basketball 284,8956 14,3957 200,0000 319,0908
BlurBody 247,5114 12,9246 151,3806 311,7282
BlurFace 256,2436 10,7929 201,2090 311,8979
Bolt2 270,3936 16,3726 151,4707 312,0357
Boy 268,6749 14,2540 168,9043 311,8479
CarDark 278,0822 13,5107 192,9669 312,0522
Crowds 287,8422 18,2189 184,9447 312,0896
Deer 265,9956 14,9130 176,8533 311,9644
Gym 286,4469 14,8780 202,0466 312,0744
Human2 272,8098 13,3531 210,1415 311,7508
Human8 279,7999 9,3439 205,8981 312,0559
Human9 283,7874 14,2997 189,0932 312,0777
Singer1 281,2374 14,9284 206,9845 311,9358
Skater2 276,1292 15,0146 196,7276 312,0321
Subway 279,6314 14,0191 193,4933 312,0756
Woman 281,7562 11,2130 196,9517 312,0582

6.2 Avaliação de desempenho

A avaliação de desempenho foi feita usando a média da taxa frames por segundo (fps) para
a execução de uma aplicação com uma sequencia de 1000 frames. Foi feita uma implementação
puramente em software executando em um processador (CPU) e uma implementação acelerada
por uma GPU para comparar com o desempenho do módulo proposto, prototipado em FPGA.

Os testes com CPU foram feitos usando OpenCV executando em um processador core
i7, com frequência 3.3GHz e 16GB de memória RAM.

A implementação acelerada pela GPU foi feita usando CUDA, executando em uma
GTX760 com frequência de 1GHz e 2GB de memória de vídeo dedicada GDDR5.

O FPGA utilizado foi uma stratix IV, executando a 200MHz de frequência.

6.2. AVALIAÇÃO DE DESEMPENHO 86

O gráfico da Figura 6.1 mostra medidas de desempenho dos três sistemas em FPS fazendo
a quantidade de templates variar de 1 a 10.

Figura 6.1: Comparação de performance em FPS variando a quantidade de templates de 1 a 10
para as implementações CPU, GPU e FPGA.

O gráfico mostra que na escala de 1 a 10 templates a implementacão em FPGA mantém
uma taxa de processamento constante de 32,12 FPS. Os templates são processados em paralelo
na arquitetura, por isso não há acréscimo no tempo de processamento. Além disso, o tempo de
comunicação também não muda porque e a largura de banda do barramento PCIe não está sendo
completamente utilizada.

Pode ser observado que para uma quantidade pequena de templates, a CPU tenha uma
performance superior a do FPGA, considerando que a esta CPU opera a uma frequência 16,5
vezes maior que a frequência de operação do FPGA. A partir de quatro templates a performance
do FPGA é superior a da CPU chegando a um speedup de 3x quando se usa 10 templates.

O gráfico da Figura 6.2 mostra um outro tipo de medida de desempenho de sistemas,
essa medida é obtida quando se considera a frequência de operação de cada sistema, fazendo a
divisão entre a taxa de processamento em fps pela frequência de operação em MHz (fps/MHZ).
Essa métrica evidencia que arquiteturas com mais níveis de paralelismo podem impactar tanto
no desempenho do sistema, quanto na possibilidade de reduzir a frequência de operação deste. A

6.3. ESTUDO DE CASO 87

redução da frequência de operação de um sistema é desejável já que ela tem impacto na potência
dinâmica dissipada (KLUMPERINK et al., 2000).

Figura 6.2: Comparação de performances em FPS por MHz variando a quantidade de templates
de 1 a 10 para as implementações CPU, GPU e FPGA.

6.3 Estudo de caso

A validação do módulo ZNCC proposto no estudo de caso de rastreamento tem como
objetivo validar os resultados de um sistema que utiliza o módulo proposto, em uma aplicação
real. O estudo de caso deste trabalho foi o algoritmo de rastreamento de pedestres apresentado
na Seção 2.4.

A quantidade de templates usada no algoritmo de rastreamento de pedestres deve ser esco-
lhida para maximizar os acertos e minimizar os erros do rastreamento. Assim, para demonstrar a
viabilidade de um sistema de rastreamento utilizando o módulo proposto para o cálculo da ZNCC
multitemplate, o vídeo Jogging do benchmark (WU; LIM; YANG, 2013) foi processado pela
aplicação em 10 versões de configuração, cada configuração com uma quantidade de templates

(1 a 10).
As métricas de qualidade do rastreamento usadas foram precisão e sobreposição, sugeri-

das no artigo WU; LIM; YANG (2013). Elas foram medidas usando o ground truth marcado a
mão disponibilizado na página do benchmark (WU; LIM; YANG, 2017).

6.3. ESTUDO DE CASO 88

6.3.1 PRECISÃO

A precisão é uma taxa de acertos calculada com base na distância euclidiana entre a
posição do centro de massa do objeto na imagem referência, marcada manualmente, e a posição
do centro de massa do objeto marcado pelo algoritmo de rastreamento usando o módulo proposto.

A determinação se houve um acerto ou um erro em determinado frame é feita com base
em um valor limiar. Se a distância calculada for menor que esse limiar, é computado um acerto,
se não, computa-se um erro.

O limiar de distância para contagem de acertos do algoritmo é variado entre 0 e 50 pixels,
para cada limiar tem-se um percentual de acerto do algoritmo, esse é o valor da precisão. O
gráfico da Figura 6.3 mostra 10 curvas de medidas de precisão do rastreador usando o módulo
proposto. Cada curva corresponde a uma quantidade de templates (1 a 10).

Figura 6.3: Medida de precisão do algoritmo de rastreamento multitemplate.

Estudos da literatura (WU; LIM; YANG, 2013) recomendam considerar o limiar de 20
pixels para ordenar a qualidade dos rastreadores usando a métrica de precisão. Para esse limiar a
quantidade de templates que maximiza a precisão do algoritmo de rastreamento nesse vídeo é 9
templates com taxa de precisão acima de 95%.

6.3.2 SOBREPOSIÇÃO

A métrica de sobreposição considera a taxa de sobreposição entre o retângulo que
contém o objeto, marcado manualmente (ground truth) e o que foi marcado pelo algoritmo
de rastreamento implementado com o módulo proposto. Seja o retângulo de referencia rt e o
retângulo resposta do algoritmo ra, a sobreposição (S) pode ser calculada usando a Equação 6.2

6.3. ESTUDO DE CASO 89

S =
rt ∩ ra

rt ∪ ra

�
 �	6.2

O resultado da Equação 6.2 é um valor correspondente ao percentual de sobreposição
entre os retângulos, sendo 0, quando o retângulo dado pelo algoritmo não tiver nenhum ponto
em comum com o retângulo marcado no ground truth e 1, quando eles tiverem todos os pixels
sobrepostos.

A partir da sobreposição a taxa de sucesso pode ser calculada, comparando a sobreposição
obtida a um limiar de sobreposição (t0), esse limiar é variado entre 0 e 1 para construir o gráfico
da figura 6.4.

No gráfico de taxa de sucesso baseada em sobreposição o a literatura (WU; LIM; YANG,
2013) recomenda o uso da área abaixo da curva (AUC) para avaliar os algoritmos. Usando essa
métrica, a melhor curva é a que corresponde ao uso de 6 templates, com uma AUC que cobre
75,89% da área total do gráfico.

Figura 6.4: Medida de sucesso de sobreposição do algoritmo de rastreamento usando de 1 a 10
templates.

Os resultados de precisão e sobreposição medidos nesta seção apontam a boa qualidade
do rastreamento executado pelo sistema, quando comparado aos resultados disponíveis em WU;
LIM; YANG (2017), para melhor avaliar o algoritmo de rastreamento seriam necessários mais
testes com outras métricas e outros vídeos, como o foco do trabalho é o desenvolvimento do
módulo ZNCC multitemplate, nos limitamos a esse estudo de caso.

6.4. CONCLUSÕES 90

6.4 Conclusões

Neste capítulo foram apresentados Experimentos e resultados que comprovam a uma
boa relação sinal ruído entre os resultados obtidos com o módulo proposto e os resultados de
referência de ZNCC.

Também foi avaliada a eficiência temporal da arquitetura desenvolvida neste trabalho,
atestando a adequação do desempenho do módulo proposto a aplicações em tempo real (30FPS).

O estudo de caso desse projeto foi utilizar o módulo proposto em uma aplicação de
rastreamento. Os resultados de precisão e sobreposição mostrados nesse capítulo atestam a
viabilidade do uso do módulo proposto nesse tipo de aplicação, demonstrando que a relação sinal
ruído medida na seção 6.1 resulta em bons resultados de precisão e sobreposição.

919191

7
CONCLUSÕES E TRABALHOS FUTUROS

Neste capítulo são feitas as considerações finais do trabalho, as conclusões que podem ser
obtidas do que foi exposto nessa dissertação, as principais contribuições do trabalho e algumas
ideias de trabalhos futuros.

92

Esta dissertação apresentou o desenvolvimento de uma arquitetura configurável que
explora conceitos de paralelismo e pipeline para resolver, de forma eficiente, o casamento de
padrões com múltiplos padrões e por análise de similaridade dada pela métrica ZNCC.

Como mostrado no primeiro capítulo deste trabalho, algoritmos para solucionar o pro-
blema de template matching são usados em uma vasta gama de aplicações que vão desde buscas
em imagens estáticas a rastreamento em vídeo. Muitas vezes essas aplicações são executadas em
tempo real.

Template matching é o problema de encontrar um objeto em uma cena. Quando se trata
da busca por múltiplos objetos independentes ou de uma coleção de representações do mesmo
objeto, faz-se necessária a busca por múltiplos templates, o que aumenta o custo computacional
da busca por análise de similaridade.

No segundo capítulo deste trabalho, foram analisadas algumas das métricas de simila-
ridade ou dissimilaridade mais utilizadas na abordagem de análise de similaridade por janela
deslizante para solucionar o casamento de padrões. A escolha da métrica ZNCC foi justificada
por entregar resultados normalizados e com média zero e invariantes a mudanças lineares de
iluminação e contraste.

Para contornar o alto custo computacional do cálculo da ZNCC multitemplate foi proposta
uma implementação em hardware.

A arquitetura proposta nesse projeto executa a fórmula da equação 4.7, que é equivalente
a fórmula original da métrica ZNCC apresentada na equação 2.6, sendo mais adequada a uma
lógica de cálculo em hardware. Essa arquitetura explora conceitos de paralelismo e pipeline para
realizar o cálculo da métrica ZNCC entre um frame e múltiplos templates de forma eficiente.

O módulo desenvolvido foi implementado em FPGA (stratix IV) e permite a execução
do cálculo da ZNCC multitemplate em tempo real com 32,12 FPS, utilizando uma frequência de
operação de 200MHz.

Existiam algumas soluções semelhantes na literatura, como mostra o o capítulo 3, no
entanto esse trabalho preencheu a lacuna de uma arquitetura que processa múltiplos templates

como a que foi proposta por SANG; LIAO; YUAN (2011), com o diferencial de manter a precisão
dos dados de entrada em 8bits independente da quantidade de templates utilizada, e utilizando a
métrica ZNCC que é robusta a variações de iluminação e contraste.

O trabalho de CHEN et al. (2012) realizou modificações na fórmula original da ZNCC
para deixá-la mais adequada a uma implementação em hardware, essas modificações tiraram a
característica dos resultados de serem normalizados, com média zero e invariantes a variações
de iluminação e contraste. Este trabalho também manipulou a fórmula original para deixá-la
mais adequada a uma implementação em hardware, mas sabendo que algumas características
dos resultados da ZNCC importantes para as aplicações que os utilizam, tomou-se o cuidado de
manter a a fórmula implementada equivalente à fórmula original.

Para suportar múltiplos templates a arquitetura proposta explora técnicas de paralelismo
no processamento de cada linha mas mantém parte do processamento das janelas de imagem

7.1. TRABALHOS FUTUROS 93

em sequência. Desta forma a implementação multitemplate foi possível, com desempenho de
tempo real, sem reduzir as dimensões dos templates. Ao contrário da implementação proposta
porHASHIMOTO; ITO; NAKANO (2013), que limita as dimensões suportadas a valores muito
pequenos.

A maior contribuição deste trabalho foi propor uma arquitetura em hardware capaz de
calcular resultados ZNCC entre uma imagem e múltiplos templates mantendo um desempenho
compatível com aplicações de tempo real (30fps). As técnicas de pipeline e paralelismo usadas
nessa arquitetura podem ser vistas no capítulo 4 deste trabalho. Na sequência, o capítulo 5
mostra os detalhes da implementação dessa arquitetura em FPGA. Finalmente o capítulo 6 expõe
alguns resultados obtidos a partir dessa implementação.

A precisão numérica dos resultados gerados pelo módulo foi medida em relação aos
resultados de referência gerados por software utilizando vídeos do benchmark (WU; LIM; YANG,

2013) e foram obtidas as relações sinal ruído mostradas na tabela 6.1, essa tabela mostra que o
valor SNR mínimo dentre todos os resultados dos vídeos analisados foi 151,38dB, significando
que mesmo no pior caso o valor do sinal ainda é muito maior de o valor do ruído.

O gráfico da Figura 6.1 mostra que o desempenho da arquitetura proposta para as
quantidades de templates de 1 a 10 se mantém em 32,12FPS, viabilizando sua execução em em
aplicações com vídeos de 30FPS.

O módulo proposto também foi validado no contexto de uma aplicação de rastreamento
de pedestres. Neste caso, o vídeo Jogging do conjunto disponibilizado por WU; LIM; YANG

(2013) foi utilizado. As medidas de precisão e sobreposição foram analisadas para o algoritmo
de rastreamento multitemplate apresentado na Seção 2.4 deste trabalho, com a quantidade de
templates variando entre 1 e 10. Nesse estudo de caso foram obtidas as medidas de precisão a
20 pixels de 96% utilizando 9 templates; e de AUC no gráfico de sobreposição maior que 75%
utilizando 6 templates. Um resultado satisfatório de acordo com WU; LIM; YANG (2013).

7.1 Trabalhos Futuros

Trabalhos futuros podem explorar a integração do módulo proposto com um sistema
HTTP com infraestrutura Ethernet para controlar a posição da câmera enquanto é feito o
rastreamento.

A arquitetura proposta também pode ser integrada com outras arquiteturas de processa-
mento de vídeo no mesmo FPGA, como a arquitetura de segmentação de vídeos proposta por
(BARBOSA et al., 2015). Uma plataforma como essa poderia executar algoritmos de rastreamento
baseados em movimento como o proposto por (NAYAK; PUJARI, 2015), de forma mais eficiente
e precisa.

Aplicações com Deep learning (LECUN; BENGIO; HINTON, 2015) (SCHMIDHUBER,

2015), também podem se beneficiar de execuções paralelas de múltiplas correlações, em cada
camada. Um trabalho futuro interessante seria reutilizar os módulos da arquitetura que calculam

7.1. TRABALHOS FUTUROS 94

as correlações para acelerar algoritmos de deep learning.

959595
REFERÊNCIAS

ALBUQUERQUE, E. S. et al. An FPGA-based accelerator for multiple real-time template
matching. In: INTEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI), 2016 29TH
SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2016. p.1–6.

ALTERA. Stratix IV Device Handbook Altera. Accessed: 2015-12-21,
https://www.altera.com/content/dam/altera-www/global/en_US/
pdfs/literature/hb/stratix-iv/stratix4_handbook.pd.

ALTERA. Industry Solutions. Disponivel em:
<https://www.altera.com/solutions/industry.html>. Acesso em: 09 de julho de 2016.

AWAD, M. FPGA supercomputing platforms: a survey. In: INTERNATIONAL CONFERENCE
ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009. Anais. . . [S.l.: s.n.],
2009. p.564–568.

BARBOSA, J. P. et al. A high performance hardware accelerator for dynamic texture
segmentation. Journal of Systems Architecture, [S.l.], v.61, n.10, p.639–645, 2015.

BENNAMOUN, M.; MAMIC, G. J. Object recognition: fundamentals and case studies. [S.l.]:
Springer Science & Business Media, 2012.

BRENT, R. P.; KUNG, H. Systolic VLSI arrays for polynomial GCD computation. IEEE
Transactions on Computers, [S.l.], v.33, n.8, p.731–736, 1984.

BRISTEAU, P.-J. et al. The navigation and control technology inside the ar. drone micro uav.
IFAC Proceedings Volumes, [S.l.], v.44, n.1, p.1477–1484, 2011.

BRUNELLI, R.; POGGIO, T. Face recognition: features versus templates. IEEE Transactions
on Pattern Analysis & Machine Intelligence, [S.l.], n.10, p.1042–1052, 1993.

CHEN, C.-h. Computer vision in medical imaging. [S.l.]: World scientific, 2014. v.2.

CHEN, J.-Y. et al. Real-time FPGA-based template matching module for visual inspection
application. In: IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED
INTELLIGENT MECHATRONICS (AIM), 2012. Anais. . . [S.l.: s.n.], 2012. p.1072–1076.

CORMEN, T. H. Introduction to algorithms. [S.l.]: MIT press, 2009.

CROW, F. C. Summed-area tables for texture mapping. ACM SIGGRAPH computer
graphics, [S.l.], v.18, n.3, p.207–212, 1984.

CUI, Y. et al. Multiple template-based fluoroscopic tracking of lung tumor mass without
implanted fiducial markers. Physics in medicine and biology, [S.l.], v.52, n.20, p.6229, 2007.

DI STEFANO, L.; MATTOCCIA, S.; TOMBARI, F. ZNCC-based template matching using
bounded partial correlation. Pattern recognition letters, [S.l.], v.26, n.14, p.2129–2134, 2005.

DIMOND, R.; RACANIERE, S.; PELL, O. Accelerating large-scale HPC Applications using
FPGAs. In: COMPUTER ARITHMETIC (ARITH), 2011 20TH IEEE SYMPOSIUM ON.
Anais. . . [S.l.: s.n.], 2011. p.191–192.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stratix4_handbook.pd
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-iv/stratix4_handbook.pd

REFERÊNCIAS 96

GHARAVI-ALKHANSARI, M. A fast globally optimal algorithm for template matching using
low-resolution pruning. IEEE Transactions on Image Processing, [S.l.], v.10, n.4, p.526–533,
2001.

GIDEL. PROCmegaFIFO. Disponivel em: <http://www.maxxvision.com/fileadmin/content/
Produkte/FPGA_Plattformen/Downloads/Gidel_FPGA_Plattformen_PROCMegaFIFOIP.pdf>.
Acesso em: 29 de junho de 2016.

GIDEL. ProcWizard. Disponivel em: <http://http://www.gidel.com/procwizard.htm>. Acesso
em: 29 de junho de 2016.

GROUT, I. Digital systems design with FPGAs and CPLDs. [S.l.]: Newnes, 2011.

GUPTA, N.; GUPTA, N. A VLSI architecture for image registration in real time. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, [S.l.], v.15, n.9, p.981–989,
2007.

HASHIMOTO, K.; ITO, Y.; NAKANO, K. Template Matching using DSP slices on the FPGA.
In: COMPUTING AND NETWORKING (CANDAR), 2013 FIRST INTERNATIONAL
SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2013. p.338–344.

HUMENBERGER, M. et al. A fast stereo matching algorithm suitable for embedded real-time
systems. Computer Vision and Image Understanding, [S.l.], v.114, n.11, p.1180–1202, 2010.

JONES, G. A.; PARAGIOS, N.; REGAZZONI, C. S. Video-based surveillance systems:
computer vision and distributed processing. [S.l.]: Springer Science & Business Media, 2012.

JUNG, J.-H. et al. A novel template matching scheme for fast full-search boosted by an integral
image. IEEE Signal Processing Letters, [S.l.], v.17, n.1, p.107–110, 2010.

KLUMPERINK, E. A. et al. Reducing MOSFET 1/f noise and power consumption by switched
biasing. IEEE Journal of Solid-State Circuits, [S.l.], v.35, n.7, p.994–1001, 2000.

KUON, I.; TESSIER, R.; ROSE, J. FPGA architecture: survey and challenges. Foundations
and Trends in Electronic Design Automation, [S.l.], v.2, n.2, p.135–253, 2008.

KURUPPU, G. et al. Comparison of different template matching algorithms in high speed sports
motion tracking. In: INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2013 8TH IEEE
INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.445–448.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, [S.l.], v.521, n.7553,
p.436–444, 2015.

LEWIS, J. Fast normalized cross-correlation. In: VISION INTERFACE. Anais. . . [S.l.: s.n.],
1995. v.10, n.1, p.120–123.

LINDOSO, A.; ENTRENA, L. High performance FPGA-based image correlation. J. Real-Time
Image Processing, [S.l.], v.2, n.4, p.223–233, 2007.

MAHMOOD, A.; KHAN, S. Exploiting transitivity of correlation for fast template matching.
IEEE Transactions on Image Processing, [S.l.], v.19, n.8, p.2190–2200, 2010.

MART, D. A computational investigation into the human representation and processing of visual
information. Free-man, San Francisco, CA, [S.l.], 1982.

REFERÊNCIAS 97

MISHRA, P. et al. Robust template matching based obstacle tracking for autonomous rovers. In:
ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES (CONECCT),
2013 IEEE INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.1–5.

NARASIMHAN, S. G.; NAYAR, S. K. Contrast restoration of weather degraded images. IEEE
transactions on pattern analysis and machine intelligence, [S.l.], v.25, n.6, p.713–724, 2003.

NAYAK, S.; PUJARI, S. S. Moving Object Tracking Application: fpga and model based
implementation using image processing algorithms. In: COMPUTING COMMUNICATION
CONTROL AND AUTOMATION (ICCUBEA), 2015 INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2015. p.932–936.

QAYYUMA, A. et al. Vegetation height estimation near power transmission poles via satellite
stereo images using 3d depth estimation algorithms. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences, [S.l.], 2015.

SANG, H.; LIAO, D.; YUAN, Y. VLSI implementation of multiple large template-based image
matching for automatic target recognition. In: SEVENTH INTERNATIONAL SYMPOSIUM
ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION
(MIPPR2011). Anais. . . [S.l.: s.n.], 2011. p.80050A–80050A.

SCHMIDHUBER, J. Deep learning in neural networks: an overview. Neural Networks, [S.l.],
v.61, p.85–117, 2015.

TATE, R.; NORTHERN III, J. Fast template matching system using VHDL. In: REGION 5
CONFERENCE, 2008 IEEE. Anais. . . [S.l.: s.n.], 2008. p.1–5.

TSAI, D.-M.; LIN, C.-T. Fast normalized cross correlation for defect detection. Pattern
Recognition Letters, [S.l.], v.24, n.15, p.2625–2631, 2003.

UCHIDA, A.; ITO, Y.; NAKANO, K. Fast and accurate template matching using pixel
rearrangement on the GPU. In: NETWORKING AND COMPUTING (ICNC), 2011 SECOND
INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2011. p.153–159.

WU, Y.; LIM, J.; YANG, M.-H. Online Object Tracking: a benchmark. In: IEEE
CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR).
Anais. . . [S.l.: s.n.], 2013.

WU, Y.; LIM, J.; YANG, M.-H. Visual Tracker Benchmark. Disponivel em:
<http://www.visual-tracking.net>. Acesso em: 02 de junho de 2017.

XILINX. Aplications. Disponivel em: <http://www.xilinx.com/applications.html>. Acesso em:
09 de julho de 2016.

YANG, C.; DURAISWAMI, R.; DAVIS, L. Fast multiple object tracking via a hierarchical
particle filter. In: COMPUTER VISION, 2005. ICCV 2005. TENTH IEEE INTERNATIONAL
CONFERENCE ON. Anais. . . [S.l.: s.n.], 2005. v.1, p.212–219.

YILMAZ, A.; JAVED, O.; SHAH, M. Object tracking: a survey. Acm computing surveys
(CSUR), [S.l.], v.38, n.4, p.13, 2006.

	Introdução
	Motivação
	Objetivos do trabalho
	Organização da dissertação

	Fundamentação teórica
	Rastreamento de objetos em vídeo
	Casamento de padrões utilizando análise de similaridade por janela deslizante
	Métricas para comparação
	SSD
	CC
	NCC
	ZCC
	Correlação cruzada normalizada com média zero (ZNCC)

	Aplicação: Rastreamento baseado em ZNCC multitemplate
	FPGA
	Conclusões

	Trabalhos Relacionados
	 Fast normalized cross-correlation
	 Real-time FPGA-based template matching module for visual inspection application
	 Template matching using DSP slices on the FPGA
	 VLSI implementation of multiple large template-based image matching for automatic target recognition
	Análise comparativa

	Arquitetura proposta para cálculo de ZNCC multitemplate
	Estratégia de cálculo proposta
	Visão geral da arquitetura
	Buffers de entrada
	Somas
	Somas e correlações por linha
	Linha de correlação
	Célula de correlação
	Somadores em árvore

	Acumuladores de linhas

	Módulo de reduções aritméticas
	Unidade de controle
	Módulo de seleção dos máximos
	Conclusões

	Implementação FPGA
	Dispositivos
	Metodologia de projeto
	MegaFifo e a integração hardware software
	Sínteses e resultados
	Síntese padrão
	Síntese priorizando o uso de lógica combinacional
	Tipo de multiplicador via parâmetro de síntese

	Experimentos e Resultados
	Teste de corretude
	Avaliação de desempenho
	Estudo de caso
	Precisão
	Sobreposição

	Conclusões

	Conclusões e trabalhos futuros
	Trabalhos Futuros

	 Referências

