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RESUMO

Nesta dissertação de mestrado, nós aplicamos a técnica de Microscopia Confocal (MC) para

caracterização óptica de nanocristais (NCs) individuais de Beta-Borato de bário (BBO). A

MC é capaz de produzir imagens por reflexão e fluorescência com elevada relação sinal-

ruído. Nosso aparato experimental permite que a medida da resposta de polarização seja

registrada e que os resultados sejam usados para determinar a orientação dos NCs bem como

obter informações sobre o tensor de susceptibilidade NL, permitindo uma caracterização

detalhada da amostra.NCs de BBO de síntese própria foram previamente caracterizados

por diversas técnicas como difração de raio-X (DRX), microscopia eletrônica de transmissão

de alta resolução (METAR), difração de elétrons de área selecionada (DEAS) e refletância

difusa (RD), garantindo que foi obtida uma fase cristalina única e não centrossimétrica.

Os NCs têm um tamanho médio de 150 nm×15 nm×15 nm e essas agulhas são orientadas

na direção do eixo cristalográfico c. Por outro lado, a METAR e a DEAS mostraram a

presença de defeitos nas agulhas compostos por cristalitos de cerca de 10 nm de diâmetro

que são formados durante o crescimento pela rotação dos planos cristalográficos em torno

do eixo c. Devido à propriedades simétricas do BBO, a técnica empregada neste trabalho

não é capaz de distinguir tais rotações, logo, os defeitos são efetivamente invisíveis à MC

assim como às medidas de polarização. O arranjo experimental usa um laser de Ti:Sa

(120 fs, 76 MHz, 820 nm) como a fonte luminosa para um microscópio confocal invertido

manufaturado, que emprega uma objetiva posicionada num módulo piezo para varredura

da amostra com relação à posição focal do laser. Um espelho dicroico atua como um divisor

de feixe, garantindo a incidência do laser na amostra e a transmissão do sinal de SH. O

aspecto confocal é obtido usando um pinhole de 10 µm no caminho de detecção. Informação

espectral é obtida com um monocromador equipado com uma fotomultiplicadora. Uma

placa de meia onda colocada antes do espelho dicroico permite medidas do sinal de SH como

função da orientação de polarização do laser. Diversas imagens de NCs individuais foram

feitas por raster scan da amostra em 2 e 3 dimensões, mostrando uma boa concordância

com a teoria de formação de imagens correspondente. A dependência de polarização do

sinal de SH permitiu a distinção entre partículas individuais e agregados e os dados foram

ajustados com um modelo que leva em consideração as simetrias do BBO e os elementos

ópticos do setup. O modelo considera: i) a aproximação eletrostática; ii) os efeitos da

objetiva de microscópio usada para focalizar a luz na amostra em configuração de reflexão

e iii) as propriedades de χ(2) para os NCs de β–BBO. Os resultados constituem uma

prova de conceito para MC de alta resolução de emissores individuais NL bem como uma

caracterização óptica de NCs de BBO até então não descrita na literatura.

Palavras-chave: Microscopia confocal. Beta-borato de bário. Nano-óptica. Geração de

segundo harmônico.



ABSTRACT

In this M. Sc. thesis, we apply the Confocal Microscopy (CM) technique for optical

characterization of single β–barium-borate (BBO) nanocrystals (NCs). CM can produce

images by reflection and fluorescence with high signal-to-noise ratio. Our experimental

setup allows the measurement of the SH polarization response to be recorded and the

results can be used to determine the NCs orientation as well as to obtain information

about the NL susceptibility tensor, allowing a detailed characterization of the sample.

Home-synthesized BBO NCs were previously characterized by several techniques such as

X-ray diffraction (XRD), High-Resolution Transmission Electronic Microscopy (HRTEM),

Selected Area Electron Diffraction (SAED) and Diffuse Reflectance (DR), assuring that

non-centrosymmetric and single crystalline phase have been synthesized. The NCs have

average dimensions of 150 nm×15 nm×15 nm, and these needles are oriented in the

direction of the crystallographic c-axis. On the other hand, the HRTEM and SAED showed

the presence of defects in the needles composed of crystallites about 10 nm in size that

are formed during the growth by the rotation of crystallographic planes around the c-axis.

Due to symmetry properties of BBO, the technique employed in this work cannot discern

rotations along the c-axis and thus, the defects are effectively irrelevant to SH CM as

well to polarization dependent measurements. The experimental setup uses a mode-locked

Ti:Sapphire laser (120 fs, 76 MHz, 820 nm) as a light source for a home-made inverted

optical confocal microscope employing a 100X NA=1.25 objective, set under a piezo module

for scanning the sample in relation to the laser focal region. A dichroic mirror serves as a

beam splitter, ensuring the incidence of the laser on the sample and the transmission of the

SH signal. The confocal aspect is obtained by using a 10 µm pinhole in the detection path.

Spectral information is obtained with a monochromator equipped with a photomultiplier.

A half-wave plate placed right before the dichroic mirror allows measurements of the SH

signal as a function of the laser polarization orientation. Several images of single NCs were

made by raster scanning of the sample in 2 and 3 dimensions, showing a good agreement

with the corresponding imaging theory. The polarization dependence of the SH signal

allowed the identification of individual particles from aggregates and the data was fitted

using a model that takes into account the BBO symmetries and the optical elements in

the setup. The model considers: i) the electrostatic approximation; ii) the effects of the

microscope’s objective used to focus the light on the sample in epi-geometry configuration

and iii) the properties of χ(2) for the β–BBO NCs. The results constitute a proof of concept

for high resolution CM of single NL emitters as well an optical characterization for BBO

NCs not hitherto described in the literature.

Keywords: Confocal microscopy. Beta-barium-borate. Nano-optics. Second harmonic

generation.
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1 INTRODUCTION

Confocal microscopy (CM) is a well-known technique for biological applications, since

it is able to generate high resolution images of structures as large as a couple micrometers

with high signal-to-noise ratio. This gain in resolution is attributed to a spatial filter

which allows only the sample’s portions in the perifocal region to be detected. It is ideal

for studying biological systems such as membranes, tissues and cells (KADOUCH et al.,

2017; KYMIONIS et al., 2014; VILLANI et al., 2014; HOOVER; SQUIER, 2013; RAJAD-

HYAKSHA et al., 2017). On the other hand, conventional microscopy (i.e., performed

without the spatial filter) can be significantly improved if the imaging process is nonlinear.

In order to do so, imaging probes can be used when the structures themselves are not

able to generate an appreciable nonlinear signal (THEODOSSIOU et al., 2006; ADUR et

al., 2014; LIU et al., 2014; LIU et al., 2015). Optical conversion to the ultraviolet range

can also have therapeutic applications, since the DNA absorption of UV light can lead to

photodamage and eventually apoptosis (WOLF, 2017).

The so-called second-harmonic radiating imaging probes (SHRIMPs) are of special

interest for microscopy because they combine an infrared laser source, which has a

greater penetration depth in biological tissues, thus especially promising for in vivo

applications and a shorter emission wavelength, thus increasing the intrinsic resolution of

the apparatus, allowing pinholeless optical sectioning, as shall be discussed in the next

chapter (MAZUMDER et al., 2017; WEIGELIN; BAKKER; FRIEDL, 2016; WOLF, 2017).

In principle, SHRIMPs can be tuned for a large spectral range because their sizes are much

smaller than the coherence length, but for longer wavelengths the multiple harmonics are

easier to be detected. Moreover, most SHRIMPs have a good transmittance in the visible

and near-infrared, due to the wide band-gap.

SHRIMPs do not suffer the effects of photobleaching neither emission intermittency,

due to the second harmonic generation (SHG) nature. SHG is a coherent, lossless and

ultrafast process involving only a virtual electron energy transition, typically lasting less

than a few femtoseconds (BOYD, 2008; POWERS; HAUS, 2017). Since SHG only occurs in

materials without an inversion center, a sharp contrast is formed between the signal coming

from non-centrosymmetric crystalline structures and other species. It is also possible that

some biological samples that lack inversion symmetry are capable of an appreciable SHG

without the use of SHRIMPs.

In terms of wavelength conversion and pump power dependence, SHG is similar to two-

photon fluorescence (TPF). On the other hand, the physical nature of SHG and TPF are

completely different. TPF is a lossy and incoherent process, leaving some of the excitation

energy in the sample, resulting in a gradual loss of emission intensity, so that the emitted

photons will have less than twice the energy of the input ones. Photothermal microscopy
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can be achieved with TPF because the relaxation process creates a temperature profile

around the particle (BIJEESH et al., 2017). Both processes can be expressed considering

the dipole approximation as:

W
(2ω)
0 = σ2pI2

ω, (1.1)

where W0 is the total power irradiated, σ2p is a two-photon cross-section (in Göppert-Mayer

units, where 1 GM=1×10−50 cm4 s
γ

and γ is a photon) and I2
ω is the square of the excitation

intensity. In Equation 1.1, for SHG in spherical particles, we have: σ2p ∝ d2r6, where d

is an effective second-order susceptibility and r is the particle’s radius. The sixth-order

dependence of the cross-section on the particle size leads to a severe sensitivity problem

when the particle is smaller than 100 nm in diameter. At such small sizes, deviations from

bulk properties are expected since the material is strongly confined and surface instead of

volume effects are dominant (KIM et al., 2013). For spherical BaTiO3 nanocrystals (NCs)

smaller than 30 nm in diameter, surface effects start to play a stronger role, so polarization

dependence measurements are compromised (KIM et al., 2013).

A variety of NCs of inorganic materials have been tested for SHG as well for biological

compatibility, including: ZnO (CHAN et al., 2006; GEREN et al., 2009; DANTEC et al.,

2011; URBAN et al., 2011), LiNbO3 (GRANGE et al., 2009; DUTTO et al., 2011), KNbO3

(DUTTO et al., 2011; NAKAYAMA et al., 2007; WANG et al., 2012), NaNbO3 (XIAO

et al., 2015), KTiOPO4 (LOC et al., 2008; WNUK et al., 2009), BaTiO3 (DANTEC et

al., 2011; RODRIGUEZ et al., 2009; HSIEH et al., 2009; HSIEH et al., 2010a) and for

this M. Sc thesis, β-BaB2O4 (BBO). Among those crystals, the so called polar possess a

unique axis of rotation. Crystals of this sort can show a change in permanent dipole with

temperature (pyroelectric effect) (BOYD, 2008). Group theory arguments demonstrate

that all polar crystal classes are noncentrosymmetric, but not all noncentrosymmetric

crystal classes are polar (NYE, 1985). Figure 1 shows how the noncentrosymmetric point

groups (PG) can be classified according to the polar character1. More about that will be

presented in Chapter 2.

Polar crystals naturally lack of inversion center due to the spontaneous polarization.

Therefore, they are excellent candidates for nonlinear optical processes (DENEV et al.,

2011). Moreover, that feature can be explored to engineer the nonlinear susceptibility

(BELLINI et al., 2014). Following the aforementioned classification, BBO fits in the polar

category, since it belongs to the 3m PG. The polar character of NCs can be observed

by polarization dependent measurements. A common technique for nonlinear imaging

microscopy allows to determine the NCs’ orientation with respect to the laboratory frame.

This is possible because in a multiple-domain NCs, or a cluster of many single-domain

NCs with random crystal orientations, depolarization takes place due to the random

orientations (PU; PSALTIS, 2016).
1 Following Hermann–Mauguin notation, rotation axes are denoted by an integer number n. The

rotoinversion axes are represented by the corresponding number with a macron, n. The symbol for a
mirror plane (rotoinversion axis 2) is m (HAHN, 2005).



Chapter 1. INTRODUCTION 10

Figure 1 – 21 Noncentrosymmetric PGs. On the left the non-polar (11 PGs) and on the
right the polar (10 PGs).
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SHG microscopy is a less invasive and destructive technique for characterizing

nanomaterials when compared to other techniques like transmission electron microscopy

(TEM). Although the latter has a better spatial resolution than the former, polarization

dependent SHG can be used for investigations of the nonlinear optical properties associated

to different crystal symmetries.

In this work, the relative orientations of BBO NCs were determined by SHG, thus

confirming the crystallographic lattice and shape of second-order susceptibility tensor,

χ(2). The final image obtained by SHRIMPs is limited in resolution by the Point Spread

Function (PSF) of the nonlinear imaging process, typically ≈200 nm for SHG in CM.

1.1 Thesis objectives

The main aim of this research was the construction of a home-made inverted mi-

croscope for SH confocal microscopy of single BBO NCs. The confocal scanning optical

microscope must be able to perform raster scans, record SH spectra and the polarization

response for single emitters, so the apparatus can be used to study SHG in individual NCs.

The results are then compared to the pertinent imaging and SHG theories.

1.2 Thesis outline

This M. Sc. thesis is composed of four chapters. Chapter 1 was a brief introduction,

Chapter 2 introduces the principles of CM for studying single BBO nanocrystals as

well the imaging process based on SHG. Chapter 3 presents the experimental setup,

the methodology and the results obtained. Finally, in Chapter 4 the main results are

summarized and perspectives for future works are given.
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2 BACKGROUND AND MOTIVATION

2.1 Basics of Second-Order Nonlinear Optics

This section presents some considerations about the origins of second harmonic (SH)

in condensed matter. We derive the polarization density in 2ω excited by an optical field

of frequency ω following the anharmonic oscillator model, and show that it is composed of

three components: nonlinear, DC and linear. The model also describes the overall behavior

of the nonlinear susceptibility χ
(2ω)
NL , which is real and frequency independent for lossless

media in the low frequency range. Special attention is given to β–BBO nanocrystals, which

is the system of interest for this M. Sc. thesis. Considering symmetry properties of the

crystalline lattice, we show that the shape of d
(2ω)
ij for that crystal class and construct the

polarization response for a single SH emitter. Furthermore, we apply to the model two

corrections introduced by the high numerical aperture objective used in the system. First,

we correct the polarization response taking into account the axial polarization component

introduced by the tight focusing conditions and then we show the effect of the collection

efficiency.

2.1.1 On the physical origins of Nonlinear Optics

The first observation of optical harmonics was reported by Franken et al. in 1961

(FRANKEN et al., 1961). In that experiment, a ruby laser operating at 694.3 nm was

focused in a sample of crystalline quartz and emergent radiation with twice the fundamental

frequency was detected. The conversion efficiency was ≈ 10−8. Following that experiment,

more efficient systems and materials allowed observation of yields closer to unit.

The optical properties of nonlinear materials are described by expanding the polar-

ization in a power series of the incident electrical field as:

P (t) = ǫ0

[

χ(1)E (t) + χ(2)E2 (t) + χ(3)E3 (t) + . . .
]

, (2.1)

where P (t) is the polarization density (dipole moment per unit volume), E (t) is the incident

electrical field, the coefficients χ(n) are the n-th-order susceptibilities of the medium and ǫ0

is the vacuum permittivity. From equation 2.1, we see that even order harmonics are only

seen in non-centrosymmetric materials. The reason for that is straightforward: since the

inversion operation is symmetric, the relation between P and E needs to remain unchanged

after the inversion, thus χ(even) = 0.

A simple way to understand the physical origins of NO is solving the 1-D oscillator

in a non harmonic potential, analogous to the movement of a bound electron in a crystal

lattice, for instance:

VT = V0 (x) + δV (x) =
mω0x

2

2
+

mβx3

3
, (2.2)
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where VT is a potential composed of a harmonic part (V0 (x)) and δV (x) is a non harmonic

perturbation. ω0 is the fundamental oscillator frequency and β determines the anharmonic

perturbation amplitude. Suppose that an external field excites the system having the form:

E (t) =
1
2

[

E0

(

eiωt + e−iωt
)]

= E0 cos ωt (2.3)

The equation of motion will be:

ẍ + γẋ + ω2
0x + βx2 =

qE0

2m

(

eiωt + e−iωt
)

, (2.4)

where x is the displacement from the potential minimum; q and m are the electron’s

fundamental charge and mass respectively; mβx2 is the anharmonic restoring force cor-

responding to mβx3

3
and γ is a damping constant. We look for the polarization at 2ω, so

assuming a solution like:

x =
1
2

(

q1e
iωt + q2e

2iωt + c.c.
)

(2.5)

Solving equation of motion at the first order of the parameter β we get:

q1 =
(

qE0

m

) 1
(ω2

0 − ω2) + iωγ
(2.6)

q2 =
(

qE0

m

)2 −β

2 [(ω2
0 − ω2) + iωγ]2 (ω2

0 − 4ω2 + 2iωγ)
(2.7)

The linear and nonlinear susceptibilities are given by:

P ω (t) =
ǫ0

2

(

χ
(ω)
L E0e

iωt + c.c.
)

=
Nq

2

(

q1e
iωt + c.c.

)

(2.8)

P 2ω (t) =
ǫ0

2

(

χ
(2ω)
NL E2

0e2iωt + c.c.
)

=
Nq

2

(

q2e
2iωt + c.c.

)

, (2.9)

where N is the number of dipoles excited. Thus:

χ
(ω)
L =

Nq2

mǫ0 [(ω2
0 − ω2) + iωγ]

(2.10)

χ
(2ω)
NL =

−βNq3

2m2ǫ0 [(ω2
0 − ω2) + iωγ]2 (ω2

0 − 4ω2 + 2iωγ)
(2.11)

We notice that the parameter β is zero for centrosymmetric materials, since it is the

origin of the non harmonic perturbation, so the second harmonic is not observed in such

materials (YARIV, 1989). One way to obtain a noncentrosymmetric potential is to add or

remove a charge in any point of a lattice of a unit cell in a centrosymmetric crystal. In

Figure 2 we see that the polarization wave has components with frequencies at the original

frequency and at the double of the original frequency, plus a DC component. We also

notice an important property of the nonlinear susceptibilities for lossless media (γ = 0),

the fact that its components are real. In the next section some other properties of the

nonlinear susceptibilities will be discussed as well the role of the lattice symmetry on the

presence of null elements.
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Figure 2 – Solution for the 1-D oscillator in a non harmonic potential. (a) Nonlinear
polarization wave (thick line). The thin, dotted and dashed lines correspond,
respectively, to nonlinear, DC and linear components; (b) aspect of χ

(2ω)
NL for a

lossless medium at the low frequency range. Solid line is Re
[

χ
(2ω)
NL

]

and dashed

line is Im
[

χ
(2ω)
NL

]

.

t

P(t)

(a) (b)

2.1.2 Properties of the nonlinear susceptibilities

The complete description of the interaction between three waves in a nonlinear

medium requires that we determine several components of the nonlinear susceptibility

tensors, so it is useful to apply some properties in order to reduce the number of independent

variables. The properties can be constructed for the second-order susceptibility χ(2), but

can easily be extended for the higher-order susceptibilities (BOYD, 2008). Writing the

nonlinear polarization as (ǫ0 is embedded in the susceptibility for simplicity):

Pi (ωn + ωm) =
∑

jk

∑

(nm)

χ
(2)
ijk (ωn + ωm; ωn, ωm) Ej (ωn) Ek (ωm) , (2.12)

We can take the following theorems into account:

Theorem 2.1 (Physical fields are real).

χ
(2)
ijk (ωn + ωm; ωn, ωm)∗ = χ

(2)
ijk (−ωn − ωm; −ωn, −ωm) (2.13)

Proof. Since the fields and polarization are real quantities related to each other through

the second-order susceptibility, their complex amplitude must obey the relation: E∗ (ω) =

E (−ω), therefore the positive- and negative-frequency components of the susceptibility

must be related in that manner. �

Theorem 2.2 (Permutation symmetry).

χ
(2)
ijk (ωn + ωm; ωn, ωm) = χ

(2)
ikj (ωn + ωm; ωm, ωn) (2.14)

Proof. The nonlinear susceptibility is unchanged by the simultaneous interchange of its

last two frequency arguments and its last two Cartesian indices. Another way to prove
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that is making one of the frequency arguments equal to zero and double the value of the

other, preserving the result. It cannot matter which is the first field and which is the

second field in products such as Ej (ωn) Ek (ωm). �

Theorem 2.3 (χ(2) is real for lossless medium). For a lossless medium all of the components

of χ
(2)
ijk (ωn + ωm; ωn, ωm) are real.

Proof. This result can be seen from equation 2.11 in the limit when the applied frequency

is significantly different from the resonance frequency. The general proof that χ
(2)
ijk is real

for a lossless medium is verified by the quantum mechanical equation of χ
(2)
ijk in the same

limit. �

Theorem 2.4 (Full permutation symmetry for a lossless medium). For a lossless medium

all of the frequency arguments of χ
(2)
ijk (ωn + ωm; ωn, ωm) are interchangeable as long as the

corresponding Cartesian indices are interchanged simultaneously.

Proof. Full permutation symmetry can be deduced from the field energy density within a

nonlinear medium:

U =
1
2

∑

ij

∑

n

χ
(1)
ijk (ωn) E∗

i (ωn) Ej (ωn)

+
1
3

∑

ijk

∑

n

χ
(2)′

ijk (−ωn − ωm; ωm, ωn) E∗
i (ωm + ωn) Ej (ωm) Ek (ωn)

+ · · · ,

(2.15)

where χ
(2)′

ijk is a coefficient in the power series expansion of U , related to the nonlinear

susceptibility. Since the order in which the fields are multiplied is immaterial, the quantity

χ
(2)′

ijk possesses full permutation symmetry. This demonstration is only valid for the lossless

case, because the internal energy is a function of state. �

Theorem 2.5 (Kleinman’s Symmetry). In the low frequency range for lossless medium

the susceptibilities are essentially independent of frequency.

Proof. This result can be seen from equation 2.11 in the limit when the applied frequency

is significantly smaller than the resonance frequency. In the low frequency range, the system

responds essentially instantaneously to the applied field and the nonlinear polarization

can be expressed in the time domain by the relation:

P̃ (t) = χ(2)Ẽ (t)2
, (2.16)

where χ(2) can be taken to be a constant. The condition of full permutation is also valid,

so we can permute the indices of the susceptibility without permuting the frequencies, so:

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki (ω3 = ω1 + ω2) = χ

(2)
kij (ω3 = ω1 + ω2)

= χ
(2)
ikj (ω3 = ω1 + ω2) = χ

(2)
jik (ω3 = ω1 + ω2)

= χ
(2)
kji (ω3 = ω1 + ω2)

(2.17)
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This result is valid whenever the dispersion of the susceptibility can be neglected. �

Theorem 2.6 (Neumann’s principle). If a crystal is invariant with respect to certain

symmetry operations, its physical properties must also be invariant with respect to the same

symmetry operations.

Proof. The proof is straightforward. Since nonlinear susceptibilities are tensors, trans-

formations that do not change the physical reference between the fields and the media

leave the susceptibilities invariant. Therefore, measurements made in symmetry-related

directions will give the same result (NEWNHAM, 2005). For instance, considering the

inversion:

Ti′i = (−1) δi′i (2.18)

on a medium invariant under inversion, the susceptibility tensor of the inverted medium

is:

χ
(2)
i′j′k′ = (−1)3

χ
(2)
ijk = −χ

(2)
ijk = χ

(2)
ijk = 0, (2.19)

as expected, for a medium invariant under inversion cannot generate SH. On the other

hand, the reverse is not true, since the symmetry of a physical property can be higher

than that of the point group. �

Definition 2.1 (Contracted notation). When Kleinman symmetry is valid, it is useful to

introduce the tensor:

dijk =
1
2

χ
(2)
ijk (2.20)

The nonlinear polarization can be written as:

Pi (ωn + ωm) =
∑

jk

∑

(nm)

2dijkEj (ωn) Ek (ωm) (2.21)

Assuming that dijk is symmetric in its last two indices (valid for second harmonic generation

and when Kleinman symmetry is valid), we have:

dijk = dikj ≡ dil =











d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36











(2.22)

Therefore we simplified the number of components of the tensor from 27 to 18. We could

go even further by a permutation of all indices, so dil would have 10 independent elements.

We can describe the nonlinear polarization leading to second-harmonic generation by the

matrix equation:











Px (2ω)

Py (2ω)

Pz (2ω)











= 2











d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







































Ex (ω)2

Ey (ω)2

Ez (ω)2

2Ey (ω) Ez (ω)

2Ex (ω) Ez (ω)

2Ex (ω) Ey (ω)





























(2.23)
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The linear and nonlinear susceptibilities for any particular crystal are determined by all

the symmetry properties. According to the group theory, the crystals can be classified as

belonging to one of 32 possible classes depending on the point group symmetry of the

crystal. 11 of those classes possess inversion symmetry, remaining 21 non-centrosymmetric.

Figure 3 shows some of the Bravais lattices, followed by the respective packing factors

(KITTEL, 1986).

Figure 3 – Some Bravais lattices. The atoms are represented as half the size of the packing
factor for comparison. (a) Simple Clubic (SC); (b) Body Centered Cubic (BCC);
(c) Face Centered Cubic (FCC); (d) Diamond Lattice (DL).

(a) (b) (c) (d)

Definition 2.2 (Packing factors). Considering Figure 3 above, the packing factor (PF)

is:

PF =
N · Va

Vc

, (2.24)

where N is the number of atoms in the unit cell, Va is the volume occupied by those atoms

and Vc is the volume of the unit cell.

For the SC lattice, the largest atomic radius possible is R = a
2
, thus the PF is:

PF =
8
8

4π
3

(

a
2

)3

a3
=

π

6
≈ 0.524 (2.25)

For the BCC lattice, the largest atomic radius possible is given by Pythagoras’

theorem applied to the cube’s diagonal. We can accommodate only four times the value of

R, so that R = a
√

3
4

and thus:

PF =

(

8
8

+ 1
)

4π
3

(

a
√

3
4

)3

a3
=

π
√

3
8

≈ 0.680 (2.26)

For the FCC lattice, the largest atomic radius possible is given by Pythagoras’

theorem applied to the face of the cube. We can accommodate only four times the value

of R, so that R = a
√

2
4

and thus:

PF =

(

8
8

+ 6
2

)

4π
3

(

a
√

2
4

)3

a3
=

π
√

2
6

≈ 0.740 (2.27)
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For the diamond structure we have a FCC lattice plus four additional atoms at

the coordinates:
(

3a
4

, a
4
, a

4

)

,
(

a
4
, a

4
, 3a

4

)

,
(

a
4
, 3a

4
, a

4

)

and
(

3a
4

, 3a
4

, 3a
4

)

. Applying the Pythagoras’

theorem for the distance between two of those extra atoms and its neighbor at one corner

of the cube, we get: d = a
√

3
4

. We can accommodate only twice the value of R, so that

R = a
√

3
8

and thus:

PF =

(

8
8

+ 6
2

+ 4
)

4π
3

(

a
√

3
8

)3

a3
=

π
√

3
16

≈ 0.340, (2.28)

which is the less dense of those cubic lattices. For all of those four Bravais lattices, only

odd-order harmonics can be generated, since they are all centrosymmetric.

Definition 2.3 (Density of a crystallographic phase). Taking the cobalt atom as an

example, it can form two crystallographic phases: (i) α–Co which is Hexagonal Close

Packed (HCP) with a=0.251 nm and c=0.457 nm (Figure 4); (ii) β–Co which is FCC

with a=0.355 nm.

Figure 4 – HCP lattice of α–Co

c
4.57Å

a
2.51Å

The density of those phases is given by:

d =
N · Ma

Vc · Na

, (2.29)

where N is the number of atoms in each cell, Ma is the atomic weight of Co, Vc is the

volume of the cell and Na is the Avogadro’s number. For the FCC lattice (4 atoms in each

cell):

Vc = a3 ⇒ d = 8749.72 Kg · m−3 (2.30)

For the HCP lattice (6 atoms in each cell):

Vc =
3 · c · a2

√
3

2
⇒ d = 8814.08 Kg · m−3 (2.31)
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By considering the type of symmetry present in mineral species, they can be catego-

rized as a member of one of seven crystal systems and one of thirty two crystal classes. The

symmetries of a crystal can be associated to translational operations or point operations.

Translational operations describe patterns across a volume, while point operations describe

reflections, rotations and inversions around a point. The crystal systems are useful to

determine the optical properties of a sample, since the forms of χ(1) and χ(2) are available

for all the systems and point groups (PG).

Table 1 – Form of χ(1) for the seven crystal systems

System χ(1)

Triclinic







xx xy xz

yx yy yz

zx zy zz







Monoclinic







xx 0 xz

0 yy 0
zx 0 zz







Orthorhombic







xx 0 0
0 yy 0
0 0 zz







Tetragonal






xx 0 0
0 xx 0
0 0 zz






Trigonal

Hexagonal

Cubic & Isotropic







xx 0 0
0 xx 0
0 0 xx







Table 1 shows the form of χ(1) for the seven crystal systems plus the isotropic

medium. The cubic is the only isotropic system because χ(1) is diagonal and with equal

components. The form of χ(2) has been determined for each of the 32 crystal classes,

graphically represented in Figure 5 (ZERNIKE; MIDWINTER, 1973).

Figure 5 – Form of the dil matrix. Small dot: zero coefficient; large dot: nonzero coeffi-
cient; square: coefficient that is zero when Kleinman’s symmetry condition is
valid; connected symbols: numerically equal coefficients, but the open-symbol
coefficient is oposed in sign to the closed symbol to which it is joined. Dashed
connections are valid only under Kleinman’s symmetry conditions.

Class 3m Class 32
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2.1.3 SHG under tight focusing conditions

Beta Barium Borate, β–BaB2O4 (BBO), is a trigonal PG 3m (Figure 6), nonlinear

optical material transparent from ≈190–3300 nm. Due to the crystal symmetry, the SHG

response is determined only by the orientation of the c-axis of the crystal. Historically,

BBO has been misplaced at the PG 3, instead of the 3m, leading to imprecise symmetry

operations. On the other hand, by looking at Figure 6, both PGs share a similar overall

form, and when the elements of the dil matrix are defined accordingly, the misplaced PG

3 can reproduce the results of the PG 3m.

Figure 6 – BBO structure and PG. The N–shaped symbol represents the threefold rotation
axis. The figure shows how an arbitrary point is symmetrically related to other
two (for PG 3) or five (for PG 3m).

(a) BBO viewed along the
c axis

(b) PG 3 (c) PG 3m

For the analysis of this M. Sc. thesis, it is necessary to define the orientation of the

crystals with respect to the microscope’s objective that will be used in the experiments.

For uniaxial crystals, only two angles are required to define the c-axis position, as shown

in Figure 7. It is clear from this geometry that the crystals will be symmetric by the

operation θ0 → θ0 ± π, as well as by any rotation along the c-axis.

In Figure 7, Ω is the collection angle, determined by the numerical aperture (NA)

of the objective and γ gives the relative orientation of the polarization in ω. Following

the methodology described by (HSIEH et al., 2010a; SCHMIDT et al., 2016), the electric

field at the fundamental frequency is decomposed into three orthogonal components in the

crystal frame:

Eω
p = ECX êCX + ECY êCY + ECZ êCZ , (2.32)

where X, Y and Z are in the lab frame and êCX , êCY and êCZ are in the crystal frame.

Applying a proper rotation matrix given by Equation 2.33 and assuming the electrostatic

approximation1 W0 ∝ |P 2ω|2, we get a handy polarization profile chart for the BBO
1 In the electrostatic approximation, the SHG polarizations can be regarded as three orthogonal SHG

dipoles.
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Figure 7 – Schematic diagram for a unaxial particle oriented at an arbitrary direction
under a LP plane-wave excitation (HSIEH et al., 2010b).

crystals, as shown in Figure 8.

R = RotZ(φ0)RotZ(θ0) =











cos φ0 cos θ0 − sin φ0 cos φ0 sin θ0

sin φ0 cos θ0 cos φ0 sin φ0 sin θ0

− sin θ0 0 cos θ0











(2.33)

The inverse transformation is given by R⊤. A similar matrix can be deduced for three

Euler angles, when rotations along the c-axis are relevant (DOW et al., 2016).

Figure 8 – Theoretical model for the polarization-resolved microscopy for 36 BBO nanocrys-
tals. In this simulation, θ0 goes from 0 to π

2
along the columns of the matrix

and φ0 goes from 0 to π along the rows of the matrix. d22 is taken as 2.0 pm/V
(ECKARDT; BYER, 1991; BACHE et al., 2013). (a) all components, (b) only
X and Z components (c) only Y and Z components

As shown in Figure 8, the polarization response for large θ0 consists entirely on the

Y and Z-components. Moreover, the hourglass shaped curve is unique for a given pair of

angles {θ0, φ0}. Since low values of θ0 are less likely to happen due to the crystal’s geometry,

the uniqueness of the polarization response is sufficient to identify a single emitter, since
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a circular pattern would suggest a cluster formation. On the other hand, the incident

beam is diffraction limited and linearly polarized, but under intense field confinement

at the focus, the focal spot becomes more and more elliptical. Whereas in the paraxial

limit the spot is perfectly circular, a strongly focused beam has a spot that is elongated

in the direction of polarization, thus introducing a depolarization effect (NOVOTNY;

HECHT, 2012). Therefore, the previous approach needs to be corrected by the effects of

the depolarization introduced by the high NA objective.

Assuming that E is entirely polarized along the x-axis and the incident beam is

sufficiently large in diameter, the focused field at the beam waist can be written as

(RICHARDS; WOLF, 1959):

EX (r, φ) = −i [f0 (r) + f2 (r) cos (2φ)]

EY (r, φ) = −if2 (r) sin (2φ) (2.34)

EZ (r, φ) = −2f1 (r) sin (φ) ,

where:

f0 (r) =
∫ Ω

0

√
cos θ sin θ (1 + cos θ) J0 (kr sin θ) dθ

f1 (r) =
∫ Ω

0

√
cos θ sin2 θJ1 (kr sin θ) dθ (2.35)

f2 (r) =
∫ Ω

0

√
cos θ sin θ (1 − cos θ) J2 (kr sin θ) dθ

θ and φ are regular polar coordinates and Jn are Bessel functions of the first kind.

According to those equations, the maximum relative values are: |EY |2
|EX |2 = 0.005 and

|EZ |2
|EX |2 = 0.169, for a NA=1.25 and λ=820 nm. The aspect of the XYZ components of the

original Gaussian field are shown in Figure 9. The figure shows that the Y–component is

negligible, but the tight focusing conditions introduce an appreciable Z–component in the

incident electrical field. Re-normalizing that contribution, we find that ≈14% of the pump

intensity is transfered to the Z–component.

Applying the results of Figure 9 to the ones shown in Figure 8, we get what is

shown in Figure 10. Due to the tensorial nature of χ(2), the depolarization effect mixes

all the components together, specially for the introduced Z-component. As a result, some

orientations may produce a higher signal when compared to the previous situation. On the

other hand, these calculations do not take into account the particles’ shape. As it will be

shown in the next chapter, the BBO crystals are shaped like needles, so one component is

much larger than the others. Therefore, it is expected that the particles behave closer to

the represented in Figure 8, since there is a much smaller amount of matter (and therefore

electrical dipoles) in the Z-direction, so the depolarization contribution will be even smaller

when compared to the main polarization component. That would not be true, however,

for spherical particles.
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Figure 9 – Magnitudes of the individual field components |EX |2,|EY |2 and |EZ |2 respec-
tively in the focal plane (z=0).The pixel size is 50 nm and the size of the images
is 4x4 µm2. (b) and (c) are rescaled by a factor of 200X and 6X respectively
for comparison.

Figure 10 – Same as Figure: 8 but taking into account the effects of the tight focalization

The blue and red plots shown in Figures 8 and 10 will be used to illustrate a last

correction that can be done to the theoretical calculations, the effect of the objective’s

efficiency collection, given by:

η =

∫ Ω
0

∫ 2π
0

∣

∣

∣E(2ω)
∣

∣

∣

2
sin θdφdθ

∫ π
0

∫ 2π
0 |E(2ω)|2 sin θdφdθ

(2.36)

We notice after performing the integral that η is a function of all the variables defined

in this section: η = η (θ0, φ0, γ, Ω, λ). Figure: 11 shows the effect of all those variables on

the collection efficiency.

As we can see, due to the crystal symmetry, and the high NA, η has little effect in

terms of relative intensities. In other words, only the overall loss of intensity for Ω < π

need to be taken in consideration.

The next section will address the technique used in this M. Sc. thesis in order to

measure the nonlinear properties of the BBO crystals. As shown in this section, the

high NA objective is a key element for the SHG. Since the microscope is mounted in an
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Figure 11 – Normalized polarization response for θ=18, 54, 90 degrees (solid, dashed and
dotted lines respectively). (a) neglecting the axial component (b) taking into
account the axial component of polarization. (1) Ω=π (2) Ω ≈ 0.31π

(a) (b)

epi-geometry configuration, the objective will also play an important role at the imaging

process and collecting data. Due to the diffraction limits, the image of single emitters will

roughly assume the shape of the so called Point Spread Function (PSF).

2.2 Theory of Confocal Microscopy

After presenting the origins of SH polarization wave for a single BBO nanocrystal,

we direct our attention to the imaging process of the microscope. Starting from some key

definition in confocal microscopy, we show how the resolution depends on the imaging

process and the pinhole size (CORLE; KINO, 1996a; CORLE; KINO, 1996b). The SH

alone gives a better resolution power when compared to reflection or fluorescence, but the

main gain of resolution comes from a properly chosen pinhole size. For this M. Sc. thesis,

the pinhole size is ideal for wavelength and the objective’s specifications, thus the imaging

process can be explored in full extent.

2.2.1 Basic definitions for confocal microscopy

Definition 2.4 (Point Spread Function). The PSF is defined as the image amplitude at

the detector plane when the lens is illuminated by a perfectly point light source. Diffraction

and aberrations will make the point light source appears like a blur of finite area.

The PSF is a function of several variables, not only the spatial coordinates but also the

microscope’s parameters such as the NA, incident wavelength and in case of oil immersion

objectives, the oil’s refractive index. Therefore, it is useful to introduce normalized optical

units so the number of variables can be reduced thus optimizing computer simulations.

Definition 2.5 (Normalized Optical Units). The Optical Unit (OU) is a dimensionless

units of length used in optical microscopy. There are actually two units, one axial (u),

along the optical axis of the objective and one radial (ν), along the detector plane.
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u =
nπz

λ
(1 − cos θ) (2.37)

ν =
2πr

λ

n sin (θ)
M

, (2.38)

where n is the refractive index between the objective and the sample; λ is the incident

wavelength; θ is the cone angle; M is the total magnification , taken as 1 if we are interested

in the sample size. z and r are ordinary lengths. OU can easily be rewritten in terms of

wavenumbers: k ≡ 2π
λ

.

Definition 2.6 (Epi-geometry and transmission geometry). In epi-geometry, the light

scattered by the sample is collected by the same objective, while in transmission geometry,

a second objective is placed in order to collect the signal. It is also possible to put a second

objective in a right angle or in any intermediate position (ZUGEL; LYTLE, 2000).

2.2.2 The technique

Confocal microscopy (CM) is often performed under tight focusing conditions given

by a high NA objective. To collect the signal, several arrangements are possible. Epi-

geometry has some advantages, like the less complicated alignment and the imaging theory

is straightforward. In contrast, the transmission geometry can optimize both excitation

and collection by means of an ideal objective for each task. Figure 12(a) shows the image

formation in both geometries, assuming a process in which the emission occurs in a shorter

wavelength.

Figure 12 – Confocal microscopy. (a) Excitation and collection spots for reflection (epi-
geometry) and transmission geometries. C is the coverslip, where the sample
is placed. (b) Basic experimental setup.

C

(a) (b)

The basic setup of a Confocal Scanning Optical Microscope (CSOM) under epi-

geometry configuration is shown in Figure 12(b). The light scattered by the sample is



Chapter 2. BACKGROUND AND MOTIVATION 25

collected through the objective and an ideal beamsplitter (BS) ensures that only the

wavelengths of interest hit the aperture (A) and the light detector (LD). The confocal

character of the microscope is given by the aperture (pinhole), for the signal coming from

regions out of focus in the focal plane (FP) will not be able to hit the LD.

Table 2 – Differences between the conventional microscope and the CSOM

System Illumination Image amplitude Intensity Radial resolution (FWHM)
Conventional Incoherent AS (r) = h (r) IS (r) = |h (r)|2 dSr = 0.51λ

NA

CSOM Coherent AC (r) = h2 (r) IC (r) = |h2 (r)|2 dCr = 0.37λ
NA

Table 2 shows a brief summary of the characteristics of CM, as a comparison to the

conventional microscopy. As will be demonstrated in the next section, the conventional

microscope can be taken as the limit case of the confocal microscope when the apperture

shown in Figure 12(b) is much larger than the typical confocal parameters. The intensity

of both the conventional and CSOM is determined by the Airy function h (r):

h (r) =
2J1 (ν)

ν
(2.39)

The Airy function corresponds to the diffraction pattern that arises when a point

object is imaged through the optical system in the paraxial approximation (SÁNCHEZ,

2016). That is, a uniformly-illuminated circular aperture that passes a converging uniform

spherical wave yields an Airy function image at the focal plane. For the CSOM, the pinhole

generates an effective PSF given by the square of the PSF for a standard microscope, thus

resulting in a narrower intensity profile.
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Figure 13 – Total PSF for the SH.
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Figure 14 – Total PSF for the fun-

damental wave.

0

0.2

0.4

0.6

0.8

1.0

Figure 15 – Total PSF compared to

the coverslip thickness.

In this picture, the gray

region is 17µm thick or

about 1
3

of the thickness

of a sheet of paper.

Figure 13 shows the total PSF for the SH, considering both the axial and radial

components. It is evident that the under tight focusing conditions, as given by a high NA

objective, the signal is only detected within a small focusing volume, when compared to

the fundamental wave in Figure 14. The focal volume in which the intensity is half the

maximum for the SH is ≈ 3 · 10−3µm3, for NA=1.25 and λ=820 nm. Figure 15 shows a

comparison between the focal volume of the PSF and 1
10

of the coverslip thickness (170

µm).
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2.2.3 Theoretical calculation of the resolution

The rigorous treatment of the CSOM requires that we take into account two main

factors: i) the nature of the imaging process (i. e., whether the image is formed by reflection

or fluorescence) and ii) the size of the pinhole (i. e., whether the dimensions are relevant

in terms of the normalized OU). The ideal pinhole should maximize the collected signal

without harming too much the resolution power of the microscope (SANDISON et al., 1995;

WILSON; CARLINI, 1987). If the sample can be treated as individual point reflectors at

a distance z to the focal plane of the lens, the amplitude of the depth response is given by

(CORLE; KINO, 1996c):

I (z)p =

[

sin knz
2

(1 − cos θ)
knz

2
(1 − cos θ)

]4

, (2.40)

where k is the wavenumber, n the refractive index, z, the axial position with respect to

the focus, and θ the cone angle. Meanwhile, the resolution for a single reflector point is

given by:

dp
z =

0.62λ

n (1 − cos θ)
(2.41)

A distinct characteristic of CSOM is the small value of dp
z, so the portions of the sample

out of focus are not observed. The intensity of the signal due to individual reflectors

is proportional to z−4. Therefore, a large number of particles out of focus has a small

contribution to the final image.

For the transverse response for individual reflectors, the amplitude of the PSF is

given by h2 (r) in the paraxial approximation (CORLE; KINO, 1996c):

h (r) =
2J1 (kr sin θ)

kr sin θ
, (2.42)

Therefore, we get the usual resolution by the FWHM:

dC =
0.37λ

n sin θ0

=
0.37λ

NA
(2.43)

If the sample is composed by fluorescent particles, the depth and transverse responses

will change, since the excitation and emission wavelengths are different. The amplitude

of the PSF in the excitation wavelength λ1 is denoted by h1 (x, y, z) and the PSF of the

fluorescence wavelength λ2 is h2

(

x
β
, y

β
, z

β

)

, where β = λ2

λ1

. Assuming that the fluorescence

signal is proportional to the pump intensity, the normalized detected intensity profile as a

function of the out of focus position is given by:

I (z)p
F =




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meanwhile, the normalized intensity for the radial distance in optical units is given by:
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
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, (2.45)
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Figure 16 represents a simulation of the PSF according to equations 2.44 and 2.45. We

note that the ideal situation is obtained for β=1, which is equivalent to the previous case

(reflection) (WILSON, 1989).

Figure 16 – Lateral and axial PSF for λ1=410 nm, NA=1.25 e n=1.5. (a)–(c) are the
radial PSF for β = 2, β = 1 and β = 2

3
respectively screened across 1 µm2;

(d)–(f) are the corresponding axial PSF for a focus range of 1 µm in both
directions.
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For non linear optics, the Second and Third Harmonic microscopy allows a better

intrinsic resolution of the apparatus. In this case, the images are formed coherently due to

parametric nature of the optical conversion. For the Second Harmonic Generation (SHG)

we have (TANG; XING; LIU, 2004):
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
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and for the Third Harmonic Generation (THG):
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IT HG (0, 0, u) =
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·
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(2.49)

where νx, νy e u are given in optical units. Both SHG and THG break the the resolution

limit of reflection because the non linear effects make the detection spot smaller than the
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excitation one. Figure 17 represents a simulation of the PSF built according to equations

2.40–2.42 and 2.46–2.49. As expected, the resolution increases considerably for the second

and third harmonics. It is worth noticing that the harmonics are only visible when the

excitation surpasses a certain threshold. In other words, only within a small focal volume

the signal will be observed, loosing intensity rapidly outside this region.

Figure 17 – Lateral and axial PSF for λ=820 nm, NA=1.25 e n=1.5. (a)–(c) are the radial
PSF for ω, 2ω and 3ω respectively screened across 1 µm2; (d)–(f) are the
corresponding axial PSF for a focus range of 1 µm in both directions.
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It is important to investigate if there is any symmetry between the processes of

harmonics generation and fluorescence. Taking dH
l (λ, n) e dF

l (λ, β) the lateral resolutions

for the those processes respectively and dR
l (λ) for individual reflectors (equation 2.43), we

get:

dH
l (λ, n = 1) = dR

l (λ) (2.50)

dF
l (λ, β = 1) = dR

l (λ) , (2.51)

since the fundamental wave is seen simply as a reflection of light by the particle and β=1

makes a image by fluorescence with identical to the one generated by reflection. Using the

same constants employed previously, we get numerical results shown in Figure 18. There,

we see that the different imaging processes result in different values for the FWHM of

the PSF. Taking as reference the values obtained for the reflection for each wavelength

the contraction of the FWHM for the second and third harmonics is not exactly equal to

the analogous fluorescence process. For instance, in the second harmonic generation, the

ratio between the detected spot and the excitation one is ≈0.6 and for the fluorescence

the inverted ratio is ≈0.8.
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In order to introduce the effects of the finite sized pinhole in the resolution, the use

of normalized OU simplifies the computational routine. The pinhole’s finite size for the

lateral resolution is introduced by a piecewise function as follows (WILSON; CARLINI,

1987):

I (ν) =











I (υ) = |h (ν)|2
[

2π
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2tν

)2
tdt

]

ν < νp

I (υ) = 2 |h (ν)|2
∫ ν+νp

ν−νp
|h(t)|2 × cos−1
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t2+ν2−νp

2tν

)2
tdt ν > νp

(2.52)

where νp is the pinhole radius and t is an integration parameter.

Figure 18 – A comparison among several imaging processes in CSOMs for NA=1.25 and
n=1.5. The graph, in order of width from left to right we have: R(273),
THG(820–273), F(820–273), R(400), SHG(820–410), F(410–820), R(800),
where the letters stand for the imaging process R=Reflection, THG=Third Har-
monic Generation, SHG=Second Harmonic Generation and F=Fluorescence.
The numbers between parenthesis are the corresponding wavelengths. The
dotted line represents a half maximum intensity, so the radial position at half
maximum for each curve is half the FWHM.
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After computing I (ν), the resolution is determined by solving I (ν) = 0.5 for a given

value of νp. Figure 19 shows the FWHM calculated for reflection, SH, TH and fluorescence

for β=2. For all imaging processes, there is a certain pinhole size for which the resolution

is the worst. An improper choice of pinhole size can lead to a decrease in resolution below

the conventional microscope’s and therefore must be avoided. For this M. Sc. thesis, we

used a 0.5 OU pinhole, small enough so the confocal parameters are still preserved.

Considering the limiting case in which the pinhole radius is zero, the confocal

resolution is bigger than conventional by a factor of
√

2. Below 0.5 OU, the resolution is

not substantially increased and it is almost constant (WILSON; CARLINI, 1988). The

results from Figure 19 are also shown in Table 3. It is clear that we reproduce the results

of Table 2. In other words, the bigger the size of the pinhole, the closest we get from the

conventional microscope (WILSON, 2011). The pinhole size is more critical for nonlinear

optical imaging, since above 1 OU for νp the resolution quickly shifts to the conventional.



Chapter 2. BACKGROUND AND MOTIVATION 31

Figure 19 – Lateral resolution of the CSOM as a function of the pinhole size. Dash-dot line
is a fluorescence process with β = 2, solid line is a simple reflection, dashed
(dotted) line is the resolution for the second (third) harmonic. ν1/2 is the half
FWHM and νp is the pinhole size, both given in OU. For νp>10 OU, the
pinhole is so big that effectively we have a conventional microscope.
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Table 3 – Resolution of the CSOM as a function of the pinhole size

Fluorescence (β=2) Fundamental SH TH
νp = 10 2.12

π
≈ 0.68λ

NA
1.61

π
≈ 0.51λ

NA
0.95

π
≈ 0.30λ

NA
0.68

π
≈ 0.21λ

NA

νp = 0 1.46
π

≈ 0.46λ
NA

1.16
π

≈ 0.37λ
NA

0.67
π

≈ 0.21λ
NA

0.47
π

≈ 0.15λ
NA

Given the numerical results for the PSF for individual particles, SH and TH mi-

croscopy have an intrinsic advantage in terms of resolution, so it is possible to study

individual particles at the nanoscale, avoiding the ensemble averages. In that limit, phase-

matching is not relevant, so the signal can be easily tunable to a wide range of frequencies.

Decreasing the excitation wavelength (ceteris paribus2) the resolution of the microscope

increases, but the collected signal will start to be shifted to the ultraviolet range, more

difficult to detect.

For fluorescent particles, the excitation wavelength is often limited by the kind of

organic molecule used as fluorophore, so a gain in resolution is easier to obtain by choosing

a smaller pinhole or a larger numerical aperture. We can see in Table 3 that the size of the

pinhole alone is responsible for an increase in resolution by a factor of 2.12
1.46

≈
√

2. The value

of the FWHM for β= 2 resides in a intermediate position between the larger fluorescence

spot at 2λ and the smaller excitation spot at λ, since both components participate in the

generation of the detected profile intensity.

2 Id est, keeping the other variables such as the pinhole size constant.
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3 EXPERIMENTAL RESULTS

3.1 Experimental setup

In the previous chapter, we showed how the second harmonic is generated for a single

β–BBO nanocrystal as well as some considerations about the imaging process in CSOMs.

In this section we present the experimental setup in more detail.

3.1.1 Setup description

The experimental setup shown in Figure 20 is as follows: A mode-locked Ti:Sapphire

laser (120fs, 76MHz, Mira Model 900-F Coherent) is set at 820 nm and it is directed to

a telescope in order to compensate laser beam divergence. The cavity is optimized for

a maximum output intensity. In the telescope’s focal position, a chopper is installed in

order to modulate the laser at a fixed frequency, given by the chopper’s controller. The

frequency is adjusted to be about 2 kHz and kept away from any possible harmonic of the

electrical power supply frequency (i.e., 60 Hz).

Following the path, the laser goes through a half-wave plate and a polarizer, that

allows the intensity control for a given polarization, which will be important for some

measurements. The laser beam then passes through a second half-wave plate mounted on

a rotatory mount. At this point, the choice of the wavelength of the laser at 820 nm is

evident: the dichroic mirror DMSP805 (Thorlabs) available for this experiment has an

optimal reflection for wavelengths larger than 810 nm and a good transmission around

410 nm, so a SH generation for 820 nm would be ideal for both processes and yet keeping

the laser cavity stable.

All the mirrors in the experiment up to this point are dielectric BB1-E03 (Thorlabs),

so a reflection >99% is achieved. Beyond the beamsplitter, all the other mirrors are metallic

(aluminum) for a better signal reflection. After entering in the inverted microscope, the

laser is focused by a 100× DIN Achromatic Commercial Grade Objective, oil immersion,

NA=1.25 (Edmund Optics). A 18×18 mm cover glass is set on top of the objective held in

place by magnets over a metallic support. The sample is moved in three directions by the

piezo module NanoMax 300 (Thorlabs), while the laser source is kept in a fixed position.

After the particle is placed in the focal spot, the SH signal (plus the fundamental

frequency) travels back through the same objective and is transmitted by the dichroic

mirror, shining on another telescope at which focal point is a 10 µm pinhole P10S (Thorlabs)

installed. After that, the signal can go to a photomultiplier route or an APD route. In

the PMT route, a DoubleMate monochromator is used for measurements of the spectra

of the light emitted by the nanocrystals, which is detected by a H9305 (Hamamatsu)

PMT. At the APD route, a MiniMate monochromator is used as a filter to eliminate
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Figure 20 – Setup employed in the experiments. M1–M3 are dielectric mirrors, M4–M12
are metallic mirrors, W1 and W2 are half-wave plates, L1–L4 are convex lens,
D is a dichroic mirror acting as a beamsplitter, PH is a pinhole, PD is a
reference photodiode and BS is a simple beamsplitter composed of a thin glass
slab.

undesired scattered light going to the APD. The light if focused by an achromatic lens

and it is coupled to the APD module by a multimode optical fiber, which achieves a more

efficient light coupling due to the larger core diameter. The APD route was thought as a

way to detect weaker signals, since it combines a single photon detector SPCM-AQR-12

(PerkinElmer) and a monochromator with only one diffraction grating.

In the PMT route, the PMT is connected to the SR510 Lock-in Amplifier (Stanford

Research Systems). Essentially, a lock-in is a filter with a narrow bandwidth which is

tuned to a frequency at which the signal is being modulated. Such a filter will reject

most unwanted noise to allow the signal to be measured. Both the PMT and the lock-in

introduce an enormous gain factor to the SH signal, allowing it to be easily discernible

from the noise. The lock-in is set by the chopper modulation and the output is connected

to a 2424C Oscilloscope (Tektronix). Similarly, at the APD route, the APD is connected to

a SR400 Gated Photon Counter (Stanford Research Systems) and then to the oscilloscope.

In order to do a raster scan, the oscilloscope is set as a measuring device, in which
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the first input is reserved for DC signals coming from the lock-in amplifier or the photon

counter. The second input in the oscilloscope shows the reference slow photodetector,

properly calibrated to the laser intensity at the sample. The photodetector is protected

from saturation by a color filter. The piezo is controlled by a MDT693B Open-Loop

Piezo Controller (Thorlabs) and the whole communication is set by software. The simplest

measurement that can be made in this setup is the emission spectrum for the SH. For this

kind of measurement, a stepper motor is put in the DoubleMate in the PMT route and

the communication between the stepper motor driver and the oscilloscope is also set by

software.

During the measurements, it is possible to optimize the particle’s position manually

in the piezo as well at the piezo controller; the spectrum can be recorded once the particle

is located; the signal intensity can be correlated to the angle of the second half-wave

plate and a 2D or even 3D images can be obtained at a desired wavelength for a single

particle. On the other hand, the full operation of the setup is no easy task. Firstly, the

correct alignment of all components is critical, since the inverted microscope relies on the

perpendicularity of the laser and the correct positioning of all components. Secondly, due

to the nature of the parametric process, nonlinear signals are only seen for a tiny focal

volume, and even so, the signal is very weak. A correct balance between the gain factors

need to be set as well as a proper integration time in the equipments. A drawback of the

communication between the computer and the instruments is speed, which only allows

one pixel be recorded for every 100 ms.

There are also other intrinsic limitations of the apparatus. The piezo goes only as far

as 20 µm for the full range of 75V that can be applied. So, effectively, the raster scan is

limited by 10 µm for the left and right assuming that the particle is perfectly positioned at

the middle, which is not always possible to achieve. Due to the communication limitation,

small areas (about 9-25 µm2) were chosen for raster scanning, since one full measurement

of a single particle can take a couple hours. A faster raster scan results in poor quality

image, since acquisition is limited by the communication speed and the integration time.

3.1.2 Calibrating the setup

In order to check the accuracy of the system, some tests were made before investigating

SHG in single BBO nanocrystals. By making a detour at the laser right on the first mirror

(green region in Figure 20), it is possible to generate light at 410 nm with a 0.1 mm thick

BBO crystal. The light is then directed again to the original path and the spectrometers

can be calibrated. The reads on the DoubleMate and MiniMate are checked against

a standard Ocean Optics table spectrometer (HR4000CG-UV-NIR) for three different

wavelengths: 410, 532 and 820 nm1. In general, the DoubleMate had a very good agreement
1 820 nm is the fundamental frequency, 410 nm is the SH generated by the 0.1 mm BBO crystal and 532

nm is an ordinary CW green laser.
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Table 4 – Values of w0 and FWHM in nm for the three wavelengths in Figure 21.

Figure 21
410 532 820

w0 FWHM w0 FWHM w0 FWHM

(a) DoubleMate monochromator 1.28 3.00 1.16 2.73 2.84 6.67
(b) Ocean Optics Spectrometer 0.41 0.96 0.37 0.87 3.26 7.66

with the reference spectrometer, being off by about a couple of nanometers, as shown

in Figure 21. On the other hand, the MiniMate had a much larger offset, about 20

nm of discrepancy, showing readings above the true value of the wavelength. For each

spectrometer, a calibration curve was built. For reasons shown in Section 3.4, only the

DoubleMate data will be taken in consideration.

Figure 21 – Setup calibration. (a) DoubleMate monochromator; (b) Ocean Optics Spec-
trometer. In both pictures from left to right is shown the SH generated by the
0.1 mm thick BBO crystal, the green CW laser and the fundamental Ti:Sa
laser. In (a) this reads are 410.40, 535.32 and 821.92 nm respectively and in
(b) the reads are 409.16, 531.35, 818.59 nm respectively. Values taken for the
maximum intensity in arbitrary units (a. u.).
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We notice from Figure 21 that a PMT is crucial for detecting the weak SH signals

coming from single emitters, since the Ocean Optics spectrometer has a poor S/N ratio

for the SH. We also notice a shortening in the laser’s width for the SH, as expected. From

a Gaussian fit, it can be shown that the FWHM is related to the variance as follows:

FWHM = 2w0

√
2 ln 2 ≈ 2.35w0, (3.1)

where w0 is the standard deviation considering a Gaussian distribution. Table 4 shows the

values of w0 and the FWHM for the three wavelengths measured in Figure 21. The 532 nm

laser can be taken as a reference width, for it is a narrow CW light source. Therefore, the

DoubleMate monochromator has a resolution of 2–3 nm (FWHM), while the Ocean Optics

Spectrometer has a resolution of <1 nm (FWHM), exactly as the technical specifications.
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3.2 The sample

The samples were synthesized and characterized by Professor Lauro Maia’s research

group at Universidade Federal de Goiás. Among the characterization techniques used, X-ray

diffraction at Bragg–Brentano θ-2θ configuration. Results are shown in Figure 22. The

same picture shows the data from JCPDS 80-1489 for the β–BaB2O4 diffraction patterns.

We notice that a single crystalline phase is seen. The β–BBO phase is a rhombohedral

structure being non-centrosymmetric and present non linear properties, as described in

page 19 of this M. Sc. thesis.

Figure 22 – The X-ray diffraction (XRD) measurements taken with a Shimadzu XRD-6000
X-ray diffractometer with Bragg-Brentano θ-2θ geometry, at a continuous scan
speed of 1◦/min from 10◦ to 60◦ with sampling pitch of 0.01◦. Kα radiation of
1.54059 Å from a Cu tube operating at 40 kV was used.

Figure 23 shows the Transmission Electronic Microscopy (TEM), High-Resolution

Transmission Electronic Microscopy (HR-TEM) and the Selected Area Electron Diffraction

(SAED) images of a typical sample from the same batch as used during the SHG experiments.

As can be seen, the BBO particles are shaped as needles. This is a result of the crystals’

growth process, in which the crystals grow along the c-axis, thus making one dimension

much bigger than the other two. On the other hand, the SAED image shows that the

needles are polycrystalline, because they show a continuous ring around the observed area,

without showing any bright spot, typical of monocrystalline samples. This can also be

verified in the HR–TEM images, where interference fringes of crystallites about 10 mm in

diameter can be seen inside a single needle.

Those crystallites are also a consequence of the growth process, but since they do not

alter the c-axis orientation, the defects are invisible to the SHG imaging technique: The

needles are effectively seen as a monocrystalline regardless of the defects. Figure 24 shows

the needles’ length dispersion. From the histogram, we notice that the most probable sizes

are about 100-150 nm, although crystals as big as 1 micron can be found. This result was

also found in SEM images made with MIRA3 TESCAN Scanning Electron Microscope,

showing individual particles as big as 1 micron. The bigger crystals are useful for the
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Figure 23 – (a) and (b) Transmission Electronic Microscopy (TEM) images of some struc-
tures, (c) High-Resolution Transmission Electronic Microscopy (HR–TEM)
image of an individual structure showing two crystallites; (d) Selected Area
Electron Diffraction (SAED) image of β-BBO powder.

(a) (b)

(c) (d)

experiment because at that size the PSF is small enough to start forming a sharper image,

as will be shown in the next section.

Figure 24 – Needles’ size dispersion. The most probable lengths are about 100-150 nm,
although crystals as big as 1 micron can be found.
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The diffuse reflectance spectra were obtained using a UV–Vis–NIR PerkinElmer

Lambda 1200WB spectrophotometer and a Praying Mantis accessory. BaSO4 powder from
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Sigma-Aldrich was used as standard reflectance material. We notice a huge plateau located

from 400 to 1200 nm, which is the limit of the data. This plateau suggests that the sample

is transparent all the way through that region of the electromagnetic spectrum. The drop

of reflectance in the ultraviolet suggest a significant absorption of the light below 400 nm

(MIRANDA, 2016).

Figure 25 – Diffuse reflectance. BaSO4 powder from Sigma-Aldrich was used as standard
reflectance material.

3.3 Making sure that the nanocrystals are individual

As shown before, the signal’s polarization response is able to discern the orientation

of nanocrystals and therefore whether one observes single crystals or clusters. The distinct

polarization signature of a single crystallographic c-axis ensures an individual emitter.

That kind of measurement is beyond the limits of direct observation, since the excitation

laser is diffraction limited. On the other hand, a much shorter wavelength can be achieved

using an electron microscope, so a direct measure of the shape of the crystals is possible.

The sample is prepared depositing an isopropanol suspension (1 mg/ml) in 10 µl aliquots

of a batch previously put in an ultrasonic bath for 20 minutes. The MIRA3 TESCAN

SEM showed individual crystals for this deposition parameters and in order to keep the

crystals fairly close together, one drop of the suspension is let dry, so the concentration is

still high enough for an easy scanning and yet the clusters are split by the ultrasonic bath.

Using the images collected by the MIRA3 TESCAN SEM, it is possible to predict the

behavior of the PSF once the confocal parameters are changed. Converting the crystal’s

image to an 8-bit grayscale, each pixel can be approximated as an infinitesimal emitter, so

a PSF distribution can be attributed for each pixel. Figure 26 shows the simulation results.

It is shown that under the confocal configuration, the contours of this 1 micron long

particle begin to be resolved. The tradeoff of this gain in resolution is of course a weaker

signal. Since the confocal parameters are in normalized optical units, this simulation also
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suggests that a nonlinear imaging by itself provides a better resolution when compared to

reflection.

Figure 26 – (a) Single nanocrystal as seen by SEM (1 µm yellow bar for scale); (b) The
image from (a) is converted into a matrix form. For better visualization, the
colors are inverted and only 4 µm2 are shown. Each small square corresponds
to 100 nm; (c) Detected image for a FWHM=100 nm PSF; (c) Detected image
for a FWHM=300 nm PSF.

(a) (b) (c) (d)

3.4 Optimizing the signal-to-noise (S/N) ratio

The alignment and fine tuning of the setup is time consuming, since the signal is

very weak and in order to properly perform the necessary measurements, a stable and

reliable signal is required. Several attempts were made to increase the S/N ratio, first by

means of a lock-in amplifier and a chopper, which is able to filter the noise created by

spurious light and any other signal out of the expected modulated frequency.

Several attempts were made to optimize the detection setup, like replacing the

spectrometer, the photomultiplier, or even changing the PMT for an APD. The change

of spectrometer from a DoubleMate to a MiniMate was not effective detecting higher

harmonics and only allowed the detection of a larger SH signal. Searching through the

available photomultipliers, we noticed that PMT H9305 was already the best suited for

the experiment, because of the spectral sensitivity. After considering the results, the best

configuration appeared to be the DoubleMate spectrometer and the PMT H9305, set for a

high gain while the sensitivity scale at the lock-in is set adequately. Eventual overload

intensities are prevented using a set of neutral density filters right at the entry of the

monochromator. The laser intensity at the sample is limited only by the losses of the

optical components. The integration time is also an important parameter, and can be set

during each step of measuring data or at the signal processing in the lock-in itself.

After the apparatus fine tuning, the S/N ratio for the Second Harmonic was enough

for the sample’s optical characterization, shown in the following sections. On the other

hand, the Third Harmonic signal is barely seen even after several attempts of optimization.

That result can be attributed to the following limitations:
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1. The signal is much more dependent on the pump intensity (third power) and every

loss introduced in the path is critical;

2. The signal is generated at a much shorter wavelength (about 273 nm), so specific

optical components would be needed to mitigate the signal losses after it leaves the

sample;

3. The signal itself is known to be about one order of magnitude weaker than the SH

for a number of particles>>1 (MIRANDA, 2016);

4. The PMT is less sensitive at that wavelength when compared to the SH and the

fundamental;

5. The APD we tried to use ended up being completely blind for the TH;

6. As shown in Figure 25, around 300 nm the sample starts to absorb a significant

amount of light, so the TH of 820 nm will suffer losses in intensity. That also limits

the the ultraviolet power output for SHG for shorter excitation wavelengths (DEYRA

et al., 2015).

Therefore, the discussion will be limited to the SH, in which the measurements were

much more reliable. Furthermore, the SH allows using a pinhole for better resolution,

especially when the spectrometer is also set for a high spectral resolution.

3.5 Collecting data

In this section it is shown the experimental routine as performed in a typical

measurement. First, the monochromator is set for the expected SH wavelength (410 nm)

and the particle is located by a manual scan in the X and Y directions. This first scan

also gives a basic idea of the particle’s size. Then, the polarization response is recorded to

ensure the presence of single emitters. For some particles, the spectrum and raster scan are

recorded. Since those two measurements are the most time consuming, they are repeated

for a smaller set of particles. The experimental routine is carried out that way due to

technical constrains of the setup. The raster scan is not only time consuming but also

limited to a small area. Therefore, if the raster scan is performed without the particle being

carefully positioned, it is likely that the scan will show no particles whatsoever. Because

of circuitry limitations, the spectrum can only be recorded once the piezo communication

is terminated.

3.5.1 Polarization response

Using the second half-wave plate in the experimental setup, the polarization response

is recorded in a similar way as the spectrum and the raster scan. The plate is rotated up to
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a half revolution, at 10 degrees increments, so the wave plate will rotate the polarization

direction through an angle 2α, resulting in a full revolution at 20 degrees increments.

Figure 27 – Polarization response for some crystals–I. From (a) to (f) the NCs orienta-
tions are: (79◦,73◦), (79◦,94◦), (63◦,73◦), (77◦,94◦), (67◦,82◦) and (77◦,97◦) for
(θ0,φ0).

(a) (b) (c)

(d) (e) (f)

During the measurements, it was necessary to take into consideration the dichroic

mirror’s polarization response. A power meter was positioned just after the dichroic mirror

and the pump power was recorded while the waveplate was rotated. Therefore, it is possible

to compensate the power losses due to the dichroic mirror polarization response for the

SHG experiments.

The polarization measurement is repeated for several crystals and the points were

manually fitted for the variables θ0 and φ0, as shown in Figures 27–282. The figures

are already corrected by the power losses introduced by the dichroic mirror. A simple

Mathematica code imports the raw data, corrects the intensity for the pump losses and

gives the crystal orientation. The single crystals show a distinct polarization signature for

every pair of angles, measured relatively to the incident polarization plan.The crystals

are said to be individual due to the narrow width of the ∞-shaped curve. A circular

polarization pattern would suggest that multiple crystals are seen together in random

orientations.
2 See Figure 7 in page 20 for the NCs orientation.
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Figure 28 – Polarization response for some crystals–II. From (a) to (f) the NCs orientations
are: (74◦,114◦), (69◦,77◦), (80◦,111◦), (64◦,73◦), (47◦,134◦) and (85◦,61◦) for
(θ0,φ0).

(a) (b) (c)

(d) (e) (f)

We notice that the majority of the crystals are oriented around φ0=90◦–270◦. It

is worth noticing that the crystal orientation is not the same as the ∞-shaped curve’s.

From equations 2.32–2.33, it can be shown that the crystal orientation makes a right angle

with respect to the ∞-shaped curve’s orientation. The reason for that values for φ0 is

quite simple. Since the power irradiated by the NCs is strongly dependent on the incident

polarization angle, when the NCs passes through the laser focal spot, only the ones oriented

is such a way that the polarization curve gives a sufficient large signal can be detected.

This happens because the polarization response is recorded after the particle is positioned

and therefore certain orientations are effectively invisible for the initial polarization angle.

If it was possible to do a large raster scan for a fixed polarization orientation, we should

be able to see a large amount of single NCs, but once the second waveplate is rotated,

some of the NCs would look dimmer and some would look brighter. That effect can be

compensated by using doped NCs, since the luminescence is not polarization dependent

(MAYER et al., 2014).
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3.5.2 Spectral data

The total SH radiation power in the electrostatic approximation is given by (HSIEH

et al., 2009):

W
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ck4V 2
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where c is the speed of light, k is the wave number at the SH frequency, V is the

nanocrystal’s volume and ǫ0 is the vacuum permittivity. Since:
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where I(2ω) and I(ω) are the signal and pump power respectively. Therefore, a log-log plot

correlating those two must show an apparent straight line, since:

I(2ω) = α
[

I(ω)
]2 ⇒ log

(

I(2ω)
)

= 2 log
(

I(ω)
)

+ log (α) , (3.5)

where α is a constant.

As shown in Figure 29, the SH signal is ∝ I1.96, thus a quadratic power dependence

on the pump laser. The S/N ratio is about 1000:1, and so a quite good fit is possible

for the power dependence and the system can handle the pinhole without completely

loosing the signal. The peak position is 409.5 nm, FWHM=2.68 nm. As seen during the

setup calibration, the monochromator has a resolution of about 3 nm so the observed

spectrum will be limited solely by the spectrometer resolution. The spectral distribution

for nonlinear signals can be expressed as (EHMKE et al., 2015):

∆λn =
1

n
√

n
∆λfund, (3.6)

where n is the harmonic order, ∆λfund is the fundamental FWHM and ∆λn is the FWHM

for the nth-order harmonic. For SHG we have a narrowing factor of 1
2
√

2
≈0.354. For

FWHM of 6.7 nm at 820 nm central wavelength, the FWHM of the second harmonic

pulses generated at 410 nm central wavelength should therefore be ≈2.4 nm, which is

compatible with the experimental results (2.7 nm).

It is noticeable an asymmetry on the right side of the SH spectrum. That can be

a result of some artifacts during the data collection such as vibrations in the diffraction

grating introduced by the stepper motor.

In order to get an estimation for the effective nonlinear susceptibility, it is necessary

to take into account all the losses introduced by the optical components. We start by

calculating the SH power irradiated that can be collected by the objective. For the objective

used in this thesis, we get a cone angle θ = 0.31π, which gives a solid angle in steradian:

Ω = 2π (1 − cos θ) ≈ 0.87π sr (3.7)
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Figure 29 – Spectral data. (a) SH signal. (b) Power dependence. Signals in arbitrary units
(a. u.).

(a) (b)

The solid angle is related to the area it cuts out of a sphere as:

Ω =
A

r2
sr, (3.8)

where A is the surface area of the spherical cap, r is the radius of the sphere, and sr is

the unit, steradian. The radius of the sphere is the objective’s working distance, 0.1 mm.

Thus:

A ≈ 0.22S, (3.9)

where S is the total spherical surface. The geometry is summarized in Figure 30. The

working distance is defined as the distance from the front lens of the objective to the

closest surface of the coverslip when the sample is in sharp focus.

Figure 30 – Steradian cone in sphere. A is the spherical cap surface area and r the sphere
radius, given by the objective’s working distance. Assuming an uniform SH
power radiation, only 22% of the signal is collected by the objective.

O

r

A
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All the losses and gains in signal need to be compensated so the total SH power

irradiated by the single nanocrystal can be obtained. The total SH power can be related

to an effective nonlinear coefficient, which for BBO can be written as (MIRANDA, 2016):

deff ≈
√

8d2
22

21
, (3.10)

where d22=2 pm/V. From Equations 3.2–3.3, it can be shown that (PU; PSALTIS, 2016;

HSIEH et al., 2010b):
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2r6 |d · êê|2 , (3.12)

where σ2p is the two-photon cross-section (in Göppert-Mayer units), ǫ1 and ǫ2 are the

dielectric constants of the sphere and surrounding medium respectively, c is the speed of

light, Z0 the vacuum impedance, k2 = 2ω
c

, ê is the unit vector in the crystal reference frame

and r is an effective radius considering a spherical particle. After choosing a convenient

nanocrystal orientation, finding deff is a matter of measuring σ2p and substituting that

value in Equation 3.12.

Unfortunately, an accurate estimation for σ2p could not be obtained with the ex-

perimental setup. The lock-in amplifier introduces a gain factor difficult to be controlled

without a reference signal. Moreover, the losses in SHG need to be measured with a fairly

high degree of precision. Since the signal coming from single emitters is extremely weak,

the uncertainties are more critical. It is expected, however, that σ2p ≈ 500 − 5000 GM,

depending on the particle’s size.

3.5.3 Raster scan

The raster scan is performed after the SH signal is optimized by fine tuning the

particle’s position as well the wavelength. The image is formed by scanning the sample

following a sawtooth wave across a small area (about 9–16 µm2) in 50 nm increments.

The first tests used an over-concentrated solution, without ultrasonic bath and two

depositions, so that the particles are close together and form clusters. The result is shown

in Figures 31(a)–31(b). One sees several peaks but no clear definition from a single emitter.

This kind of deposition may be suitable for applications when labeling a large area is

more important than single point resolution. Figures 31(c)–31(d) show a more disperse

deposition and single emitters are now clearly seen.

Those pictures were made without spatial filters (pinhole), so they represent a PSF

for a conventional microscope, but operating in SH imaging mode. As discussed previously,

the parametric process by itself is enough to increase the intrinsic resolution. Finally,

Figures 31(e)–31(f) show single emitters recorded after the signal passes through the 10
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Figure 31 – Raster scan images. (a)–(b) Concentrated deposition; (c)–(d) Single emitters
recorded without using a spatial filter; (e)–(f) Confocal microscopy (10 µm

pinhole).

(a) (b)

(c) (d)

(e) (f)

µm pinhole. Those pictures represent the radial PSF and show a good agreement with

Equation 2.46.

A full 3D raster scan for a single emitter is represented in Figure 32. That kind

of measurement represents one of the most notorious qualities of a CSOMs: the ability

to reconstruct a 3D object with high resolution by stacking confocal image slices at z
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intervals. For objects much bigger than the PSF, this technique is a viable alternative to

fluorescence microscopy for biological applications.

Figure 32 – 3D raster scan. The dotted cube represents an area taken away from the 3D
raster scan, so the inside of the PSF can be seen, since it is a 4D object.
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3.6 Higher harmonics confocal microscopy

As mentioned in the previous sections, the experimental routine was focused in the

SHG due to several technical limitations. However, similar BBO particles are known to

generate up to the 5th-order harmonics under excitation at 2 µm, 100 fs pulses, repetition

rate of 1 kHz and average power of 25–45 mW (MIRANDA, 2016). That experiment

uses more favorable excitation and collection conditions as well a much larger number

of particles. For comparison, in (MIRANDA, 2016), the peak power in the focal spot is
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≈ 5 × 108 W, for a focal spot diameter of ≈ 30 µm containing ≈ 1010 NCs against the

≈ 3 × 104 W for our experiment with single NCs. Therefore, comparing those distinct

experimental conditions, a factor of F ∝ 1010 × (104)2 ≈ 1018 had to be overcome.

As a result of the technical limitations, only the THG spectra were recorded and

even so the results have a poor S/N ratio, therefore, no further imaging analysis was

possible. The TH signal was recorded by optimizing the SH detection and then shifting the

monochromator to the expected spectral range. The integration time had to be raised for

a second/step and special care had to be taken for any spurious light. Unfortunately, the

poor S/N ratio does not allow the power dependency to be taken. The spectral position

and the fact that the signal disappeared when the particle was moved away from the focal

position strongly suggests that the peak in Figure 33 is indeed the TH signal coming from

a single BBO NCs. Equation 3.6 gives a narrowing factor of ≈ 0.19 for the TH so the

spectral width would be limited by the monochromator resolution.

Figure 33 – THG spectrum. The peak position is ≈ 272.5 nm. The signal is too weak for
a FWHM to be determined as well the power dependency.
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The TH is useful for confocal microscopy because in principle it is present for all

nonlinear emitters and do not depend on the existence of inversion symmetry. Since the

confocal microscope is homemade, it has the capability of several improvements depending

on the kind of experiment to be carried on. For instance, the APD route can be useful for

fluorescence measurements in the visible range and a collection setup by transmission can

be added specially for the THG.
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4 CONCLUSIONS AND PERSPECTIVES

In this M. Sc. thesis, it was shown a study of nonlinear imaging of single β–BBO

nanocrystals. From the sample’s basic characterization, one can see the apparent polycrys-

talline structure of the nanoneedles, although our technique is effectively insensitive to the

presence of those defects. This is important because a multiple domain nanocrystal would

jeopardize the polarization resolved microscopy, since the polarization patterns would

overlap. The individual nanocrystals exhibited second and third harmonic generation, but

only the second harmonic had enough intensity to be characterized and studied properly.

For the second harmonic, the spectral behavior matched the expectations for the infrared

pump and the two-photons parametric process. The polarization response of the second

harmonic also allowed to determine the individual crystals’ orientation following a model

derived from the β–BBO group symmetries.

Some of the causes of the poor third harmonic detection can be overcome by changing

the experimental setup to a transmission geometry, so an ideal optics for the excitation

can be combined with more suited optics for collecting the signal at a deeper ultraviolet

region. Another option reported in the literature is the use of a smaller numerical aperture

objective for excitation and a higher numerical aperture one for collection, so a larger

excitation spot is produced, thus allowing images to be taken without scanning, which is

much faster. The gain in acquisition speed can be invested in integration time, so even

weaker signals can be detected. Moreover, the transmission setup makes modeling of the

excitation behavior much simpler by avoiding a tightly focused beam regime that adds

complex polarization components (KIM et al., 2013; TIMOFEEVA et al., 2016). Another

option to generate different wavelengths is to use a sum of frequencies, for it is still a

second-order process so it is expected to occur with greater efficiency than higher order

harmonics in single emitters. A longer excitation wavelength can also be used to bring

the nonlinear signals to the visible range, where the APD is more sensitive. Since the

homemade microscope is quite versatile, it is relatively easy to adapt the optics for other

experiments and particles.

According to the imaging theory for confocal microscopy, the third harmonic promotes

a significant improvement in resolution, even without any spatial filtering, so it is of great

interest for biological applications. The gain in resolution for the second harmonic however is

still considerable, as shown by the experimental results of this work. Therefore, stable single

emitters free of bleaching and blinking can be developed for high resolution microscopy as

well as their nonlinear properties at the nanoscale can be quantified.
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