
ROBERTO FERNANDO BATISTA SOTERO FILHO

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

DEPARTAMENTO DE ELETRÔNICA E SISTEMAS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

NOVAS ABORDAGENS PARA CODIFICAÇÃO DE VOZ E RECONHECIMENTO

AUTOMÁTICO DE LOCUTOR PROJETADAS VIA MASCARAMENTO PLENO EM

FREQUÊNCIA POR OITAVA

RECIFE

2017

ROBERTO FERNANDO BATISTA SOTERO FILHO

NOVAS ABORDAGENS PARA CODIFICAÇÃO DE VOZ E RECONHECIMENTO

AUTOMÁTICO DE LOCUTOR PROJETADAS VIA MASCARAMENTO PLENO EM

FREQUÊNCIA POR OITAVA

Dissertação submetida ao curso de Pós-Graduação em

ENGENHARIA ELÉTRICA da Universidade Federal de

Pernambuco, como parte dos requisitos necessários à obtenção

do grau de Mestre em ENGENHARIA ELÉTRICA.

Área de concentração: Comunicações

Linha de pesquisa: Processamento de voz

Orientador: Prof. Docteur Hélio Magalhães de Oliveira

RECIFE

2017

Catalogação na fonte

Bibliotecária Valdicéa Alves, CRB-4 / 1260

S717n Sotero Filho, Roberto Fernando Batista.

 Novas abordagens para codificação de voz e reconhecimento automático

de locutor projetadas via mascaramento pleno em frequência por oitava /

Roberto Fernando Batista Sotero Filho - 2017.

260 folhas, Il.; Tabs; Abr.e Sigl.; e Simbs.

Orientador: Prof. Dr. Hélio Magalhães de Oliveira.

Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG.

Programa de Pós-Graduação em Engenharia Elétrica, 2017.

Inclui Referência, Anexos e Apêndices.

1. Engenharia Elétrica. 2. Vocoder. 3. Reconhecimento automático de

locutor. 4. Mascaramento em frequência. I. Oliveira, Hélio Magalhães (Orientador).

II. Título.

 UFPE

621.3 CDD (22. ed.) BCTG/2017 - 292

PARECER DA COMISSÃO EXAMINADORA DE DEFESA DE
DISSERTAÇÃO DO MESTRADO ACADÊMICO DE

TÍTULO

“NOVAS ABORDAGENS PARA CODIFICAÇÃO DE VOZ E
RECONHECIMENTO AUTOMÁTICO DE LOCUTOR PROJETADAS
VIA MASCARAMENTO PLENO EM FREQUÊNCIA POR OITAVA”

A comissão examinadora composta pelos professores: HÉLIO
MAGALHÃES DE OLIVEIRA, DES/UFPE, RICARDO MENEZES CAMPELLO DE
SOUZA, DES/UFPE e JULIANO BANDEIRA LIMA, POLI/UPE sob a presidência do

primeiro, consideram o candidato ROBERTO FERNANDO BATISTA

SOTERO FILHO APROVADO.

Recife, 30 de outubro de 2009.

RAFAEL DUEIRE LINS
Coordenador do PPGEE

 HÉLIO MAGALHÃES DE OLIVEIRA
Orientador e Membro Titular Interno

JULIANO BANDEIRA LIMA
Membro Titular Externo

 RICARDO MENEZES CAMPELLO DE SOUZA
Membro Titular Interno

Dedico a Paulo Sotero (in memoriam), meu avô.

AGRADECIMENTOS

Agradeço, primeiramente, a DEUS, por me conceder saúde e força para buscar meus
objetivos, e por colocar pessoais tão especiais na minha vida, sem as quais certamente não teria
conseguido concluir este trabalho.

Agradeço também:

A todos os funcionários e professores do Departamento de Eletrônica e Sistemas da
UFPE, em especial ao meu orientador, Prof. Hélio Magalhães, por ter me aceitado como seu
orientando e por toda sua dedicação em minha orientação, estando sempre presente nas horas em
que precisei.

A todos os meus colegas da pós-graduação, pelo harmonioso e agradável convívio, em
especial aos prezados: André Ricardson, Arthur Barreto, Brenno Miro, Caio Barros, Daniel

Simões, Douglas Contente, Eduarda Simões, Eurico Moura, Gabriel Dantas, Giovanna Angelis,
Márcio Lima, Moisés Cordeiro e Victor Oliveira.

Ao Santa Cruz Futebol Clube, meu time de coração, por me ensinar a nunca desistir dos
meus objetivos, mesmo nos momentos mais difíceis.

À minha irmã Viviane, pelo apoio e incentivo, e as meus sobrinhos João Filho e Mari-
ana, pela alegria que sempre me transmitiram.

Aos meus avós Paulo (in memoriam) e Maria José, Antonio e Maria de Lourdes, pelo
amor e força.

À minha noiva Marília, por ser tão importante na minha vida. Devido a seu companhei-
rismo, amizade, paciência, compreensão e apoio, este trabalho pode ser concretizado.

E, em especial, aos meus pais Roberto e Dione, pelo carinho e dedicação em minha
criação, nunca medindo esforços para me proporcionar uma boa educação. Sintam-se igualmente
vitoriosos!!

RESUMO

A área de processamento digital de sinais de voz (PDSV) é uma das mais importantes do
processamento digital de sinais. Como sub-áreas relevantes do PDSV estão a Codificação da Voz e
o Reconhecimento Automático de Locutor (RAL). Esta dissertação propõe uma nova abordagem
para um vocoder baseado no Mascaramento Pleno em Frequência por Oitavas (MPFO) em
adição a uma técnica de preenchimento espectral via distribuição beta de probabilidade. O
método do MPFO consiste em simplificar a magnitude do espectro em frequência do sinal,
considerando apenas uma amostra por oitava. Tal abordagem, que oferece um compromisso
entre taxa de bits (e.g. 2,7 kbits/s), complexidade, inteligibilidade e qualidade dos sinais de
voz, permitiu a criação de um novo formato binário de representação digital da voz: o formato
voz. Apresenta-se, também, um novo método de baixa complexidade computacional para RAL,
baseando-se em uma das propriedades-chave da percepção auditiva humana: o mascaramento
acústico em frequência. O vetor característico dos quadros do sinal de voz é representado pela
fração média das amplitudes dos tons de mascaramento em cada oitava. Ambos os tipos de
reconhecimento de locutor (de texto dependente e de texto independente) são estudados. Os
resultados confirmam que o algoritmo proposto oferece um compromisso entre a complexidade
e a taxa de identificações corretas (típico 85%), sendo atrativo para aplicações em sistemas
embarcados.

Palavras-chave: Vocoder. Reconhecimento automático de locutor. Mascaramento em frequência.

ABSTRACT

Digital processing of speech signals (DPSS) is one of the most important areas of digital signal
processing. Voice coding and automatic speaker recognition (ASR) are relevant DPSS sub-fields.
This dissertation introduces a new vocoder scheme, which is based on full frequency masking
per octave (FFMO), jointly with a new spectral stuffing technique through the beta probability
distribution. The FFMO method consists of simplifying the magnitude of the voice spectrum. It
retains just one spectral sample per octave. This approach offers a tradeoff between the bit rate
(e.g., 2.7 kbits/s), complexity, intelligibility and voice quality. A new file format, termed voz,
was proposed. A novel and low-complexity ASR technique, based one of the key-properties of
the human hearing perception - the auditory frequency masking - is also presented. The feature
vectors of voice frames are represented by the average amplitude of the largest spectral samples
within each octave. Both text-dependent and text-independent speaker recognition is investigated.
Results support a tradeoff between recognition efficiency (typically 85%) and complexity of this
kind of vocoder-based systems, being thereby attractive for embedded systems.

Keywords: Vocoder. Speaker automatic recognition. Frequency masking.

LISTA DE ILUSTRAÇÕES

Figura 1 – Imagem da onda longitudinal criada com as sucessões de rarefações e
compressões das partículas de ar. 23

Figura 2 – Imagem da anatomia do ouvido humano. 26
Figura 3 – Curvas de igual sonoridade: padrão ISO 226:2003. 29
Figura 4 – Gráfico do limiar de audição. 31
Figura 5 – Gráfico do modelo da banda crítica obtido da Equação (4). 33
Figura 6 – Gráfico da relação entre a frequência (Hz) e a banda crítica na escala Bark. . 33
Figura 7 – Esquema do banco de filtros de banda crítica idealizado. 34
Figura 8 – Ilustração dos efeitos de mascaramento de um tom. 36
Figura 9 – Imagem da resposta da membrana basilar para dois tons senoidais. 37
Figura 10 – Ilustração das propriedades do mascaramento temporal do ouvido humano. . 38
Figura 11 – Imagem da anatomia do sistema fonador humano. 39
Figura 12 – (a): Pronúncia da palavra “sino”, (b): Ampliação do segmento não-vocal da

palavra “sino”, (c): Ampliação do segmento vocal da palavra “sino”, (d):
espectro em frequência para o item (b), (e): espectro em frequência para o
item (c). 42

Figura 13 – Ilustração do modelo fonte filtro para o processo de geração de voz. 43
Figura 14 – Ilustração do modelo preditivo linear para o processo de geração da voz. . . 45
Figura 15 – Gráfico dos espectros LPC e FFT para um sinal de voz. 46
Figura 16 – Ilustração da predição de uma amostra x(m) a partir de P amostras passadas. 46
Figura 17 – Fluxograma do algoritmo de Durbin. 51
Figura 18 – Ilustração do efeito, no domínio da frequência, da amostragem no domínio

do tempo. (a) Espectro do sinal original. (b) Espectro do sinal amostrado
quando Ωs > 2ΩN . (c) Espectro do sinal amostrado quando Ωs < 2ΩN 56

Figura 19 – Gráfico das características de entrada-saída de um quantizador uniforme. . . 58
Figura 20 – Gráfico da função de compressão de um quantizador não-uniforme típico.

∆1, ∆2 e ∆3 são os diferentes passos de quantização. 60
Figura 21 – Diagrama de blocos simplificado do vocoder proposto. 73
Figura 22 – Imagem da interface gráfica do codificador. 74
Figura 23 – Imagem da interface gráfica do decodificador. 76
Figura 24 – Ilustração da forma das janelas citadas. 79
Figura 25 – Gráfico da resposta em frequência das funções janela descritas: (a) Retangular,

(b) Hamming, (c) Hanning, (d) Kaiser β = 7.8. 80
Figura 26 – Diagrama de blocos detalhado do codificador proposto. 81
Figura 27 – Ilustração da configuração de um quadro de 20 ms do formato binário voz . 85

Figura 28 – Diagrama de blocos detalhado do estágio de síntese (decodificador). 86
Figura 29 – Ilustração da curva de distribuição Beta para alguns valores de α e β. 87
Figura 30 – Representação do espectro obtido pela FFT de um quadro teste de voz,

para três situações distintas: (a) Espectro do sinal original, (b) Espectro
simplificado pelo MPFO, (c) Espectro anterior preenchido via distribuição beta. 89

Figura 31 – Ilustração dos tipos de RAL . 96
Figura 32 – Ilustração da estrutura básica do sistema de VAL. 97
Figura 33 – Ilustração da estrutura básica do sistema de IAL. 97
Figura 34 – Modelo de um HMM com dois estados (topologia esquerda-direita). 105
Figura 35 – Diagrama de blocos simplificado do sistema de RAL proposto. 110
Figura 36 – Ilustração da interface gráfica do software de RAL proposto. 111
Figura 37 – Imagem do gravador de som do Windows®. 112
Figura 38 – Ilustração da interface gráfica do gerador de padrões de voz. 112
Figura 39 – Representação do espectro de frequência de um quadro de voz, antes e depois

do processo de mascaramento auditivo. 117
Figura 40 – Diagrama de blocos do sistema de identificação proposto. 119

LISTA DE TABELAS

Tabela 1 – Exemplos de situações sonoras. 29
Tabela 2 – Banco de filtros idealizado. 34
Tabela 3 – Escala MOS. 65
Tabela 4 – Taxa de bits e pontuação MOS dos codificadores apresentados. 71
Tabela 5 – Algoritmos do sistema de codificação de voz. 74
Tabela 6 – Número de frequências estimadas pela DFT de comprimento 160 em cada

oitava do espectro vocal. 83
Tabela 7 – Alocação dos bits para um quadro de voz de 20 ms. 84
Tabela 8 – Resultado do teste ACR para as 4 variações do vocoder proposto. 91
Tabela 9 – Taxa de bits e pontuação MOS dos vocoders propostos e dos codificadores

apresentados. 92
Tabela 10 – Algoritmos do sistema de RAL proposto. 110
Tabela 11 – Número de frequências estimadas pela DFT de comprimento 160 em cada

oitava do espectro vocal. 116
Tabela 12 – Resultado dos testes para o reconhecimento de locutor dependente de texto,

frase “O prazo tá terminando”. 120
Tabela 13 – Resultado dos testes para o reconhecimento de locutor dependente de texto,

frase “Amanhã ligo de novo”. 121
Tabela 14 – Resultado dos testes para o reconhecimento de locutor independente de texto. 121
Tabela 15 – Comparação com o estado da arte. 122

LISTA DE ABREVIATURAS E SIGLAS

ACR Classificação por Categoria Absoluta (Absolute Category Rating)

AM Método de Autocorrelação (Autocorrelation Method)

BC Bandas Críticas

bps bits por segundo

BSD Bark Spectral Distance

CELP Codificador com Predição Linear Excitada a Código (Coded-Excited Linear

Prediction)

CM Método de Covariância (Covariance Method)

CS-ACELP Codificador Algébrico de Estrutura Conjugada com Predição Linear
(Conjugate Structure-Algebraic Code Excited Linear Prediction)

dB decibel

DCR Classificação por Categoria de Degradação (Degradation Category Rating)

DFT Transformada Discreta de Fourier (Discrete Fourier Transform)

DMOS Pontuação de Opinião Média de Degradação (Degradation Mean Opinion

Score)

DSI Interpolação Digital de Voz (Digital Speech Interpolation)

DTW Dynamic Time Warping

EMQ Erro Médio Quadrático

ERB Largura de Banda Equivalente Retangular (Equivalent Rectangular Band)

FA Falsa Aceitação

FIR Resposta ao Impulso Finita (Finite Impulse Response)

FCC Coeficientes Cepstrais (Frequency Cepstral Coefficients)

FFT Transformada Rápida de Fourier (Fast Fourier Transform)

FR Falsa Rejeição

GMM Modelos de Misturas Gaussianas (Gaussian Mixtures Models)

HMM Modelos Ocultos de Markov (Hidden Markov Models)

IAL Identificação Automática de Locutor

IFFT Transformada Rápida Inversa de Fourier (Inverse Fast Fourier Transform)

ITU União Internacional de Telecomunicação (International Telecommunication

Union)

LAA Limiar Absoluto de Audição

LBC Largura de Banda Crítica

LD-CELP Codificador de Baixo Atraso com Predição Linear Excitada a Código (Low-

Delay Coded-Excited Linear Prediction)

LIT Linear Invariante no Tempo

LPC Codificação Preditiva Linear (Linear Predictive Coding)

MFCC Coeficientes Mel-Cepstrais (Mel-Frequency Cepstral Coefficients)

MFLOPS Milhões de Operações em Ponto Flutuante por Segundo (Million Floating

point Operations Per Second)

MIPS Milhões de Instruções por Segundo (Million Instructions Per Second)

MOS Pontuação de Opinião Média (Mean Opinion Score)

MPFO Mascaramento Pleno em Frequência por Oitava

NMR Relação Ruído Limiar de Mascaramento (Noise-to[minimum of]-Mask

Ratio)

PCM Modulação por Largura de Pulsos (Pulse Code Modulation)

PDS Processamento Digital de Sinais

PDSV Processamento Digital de Sinais de Voz

PESQ Perceptual Evaluation of Speech Quality

PSQM Perceptual Speech Quality Measure

QV Quantização Vetorial

RAL Reconhecimento Automático de Locutor

RNA Rede Neural Artificial

SF Função de Espalhamento (Spread Function)

SNR Relação Sinal Ruído (Signal-to-Noise Ratio)

SNRR Relação Sinal Ruído de Segmentação (Signal-to-Noise Segmentation)

SMR Relação Sinal Mascarador (Signal-to-Mask Ratio)

SVM Support Vector Machine

SPL Nível de Pressão Sonora (Sound Pressure Level)

VAD Detector de Voz Ativa (Voice Activity Detection)

VAL Verificação Automática de Locutor

VBR Taxa de Bits Variável (Variable Bit Rate)

LISTA DE SÍMBOLOS

Γ Letra grega Gama

Λ Lambda

ζ Letra grega minúscula zeta

∈ Pertence

SUMÁRIO

1 INTRODUÇÃO . 19
1.1 Objetivos . 20
1.2 Estrutura . 21

2 O SOM E SUA PERCEPÇÃO PELOS SERES HUMANOS 23
2.1 Definição de Som . 23
2.2 Características do Som . 23
2.2.1 Frequência . 24
2.2.2 Altura . 24
2.2.3 Volume . 24
2.2.4 Timbre . 25
2.3 Percepção Humana do Som . 25
2.3.1 A Anatomia do Ouvido Humano . 25
2.3.1.1 Ouvido Externo . 26

2.3.1.2 Ouvido Médio . 27

2.3.1.3 Ouvido Interno . 27

2.3.2 Largura de Banda, Sensitividade e Faixa Dinâmica da Audição 28
2.3.2.1 Limiar Absoluto da Audição . 30

2.3.3 Bandas Críticas da Audição . 32
2.3.4 Mascaramento . 35
2.3.4.1 Mascaramento em Frequência . 35

2.3.4.2 Mascaramento no Domínio do Tempo . 37

3 A VOZ . 39
3.1 Mecanismo de Produção da Voz . 39
3.2 Classificação dos Sons Produzidos pelo Sistema de Fonador

Humano . 41
3.3 Modelamento do Sistema de Produção da Voz 43
3.4 Modelamento Preditivo Linear para Sinais de Voz 44
3.4.1 Minimização do Erro . 47
3.4.2 Método da Autocorrelação . 49
3.4.3 Método da Covariância . 52

4 CODIFICAÇÃO DIGITAL DA VOZ . 55
4.1 Digitalização da Voz . 55
4.1.1 Amostragem do Sinal . 55

4.1.2 Quantização . 57
4.1.2.1 Quantização Uniforme . 57

4.1.2.2 Quantização Não-uniforme . 59

4.2 Codificação Paramétrica da Voz . 61
4.3 Atributos dos Codificadores de Voz 62
4.3.1 Taxa de Bits . 63
4.3.2 Qualidade do Sinal de Saída . 63
4.3.2.1 Métodos Objetivos . 64

4.3.2.2 Métodos Subjetivos . 65

4.3.2.2.1 ACR (Absolute Category Rating) . 65

4.3.2.2.2 DCR (Degradation Category Rating) . 65

4.3.3 Complexidade dos Algoritmos e Quantidade de Memória Necessária 66
4.3.4 Atraso . 67
4.3.5 Sensibilidade ao Erro . 67
4.4 Técnicas de Codificação de Voz . 67
4.4.1 G.711 - PCM . 68
4.4.2 G.722 - SB-ADPCM . 68
4.4.3 G.726 - ADPCM . 69
4.4.4 G.728 - LD-CELP . 69
4.4.5 G.729 - CS-ACELP . 70
4.5 Sumário dos Codificadores . 71

5 UM NOVO PADRÃO DE CODIFICAÇÃO DE VOZ 72
5.1 Introdução . 72
5.2 Visão Geral do Sistema . 72
5.2.1 Implementação do Sistema . 73
5.3 Pré-Processamento do Sinal . 77
5.3.1 Segmentação da Voz . 77
5.3.2 Janelamento . 77
5.4 Análise da Voz pela Técnica do MPFO 81
5.4.1 Características Psicoacústicas do Sistema Auditivo Humano 82
5.4.1.1 Insensibilidade à Fase do Som . 82

5.4.2 Simplificação do Espectro Via MPFO 82
5.4.3 Quantização e Codificação dos Sinais de Voz 83
5.4.4 Formato Binário voz . 85
5.5 Síntese da Voz . 85
5.5.1 Preenchimento Espectral via Distribuição Beta 86
5.5.1.1 Metodologia Empregada . 87

5.6 Simulações e Classificações da Qualidade de Voz 90

6 RECONHECIMENTO AUTOMÁTICO DE LOCUTOR 93
6.1 Introdução . 93
6.2 Tipos de RAL . 94
6.2.1 VAL . 94
6.2.2 IAL . 95
6.3 Estrutura Básica dos Sistemas de RAL 96
6.3.1 Extração das Características . 98
6.3.2 Parâmetros Extraídos do Sinal de Voz 99
6.3.2.1 Banco de Filtros . 99

6.3.2.2 Energia de Tempo Curto . 99

6.3.2.3 Taxa de Cruzamento pelo Zero . 99

6.3.2.4 Coeficientes Cepstrais . 100

6.3.2.5 Coeficientes Mel-Cepstrais . 101

6.3.2.6 Coeficientes LPC . 101

6.3.3 Modelamento . 101
6.3.4 Modelos Ocultos de Markov - HMM . 102
6.3.4.1 Introdução . 102

6.3.4.2 Descrição do Modelo . 102

6.3.4.3 Simplificações da Teoria do HMM . 105

6.3.4.4 Treinamento . 105

6.3.4.5 Reconhecimento . 107

7 SISTEMA PROPOSTO DE RAL . 109
7.1 Introdução . 109
7.2 Visão Geral do Sistema . 109
7.2.1 Implementação do Sistema . 110
7.3 Aquisição dos Sinais de Voz . 113
7.4 Pré-Processamento dos Sinais de Voz 113
7.4.1 Pré-Ênfase . 114
7.4.2 Detecção de Pontos Extremos (Endpoints) 114
7.4.3 Segmentação dos Dados em Quadros e Janelamento 115
7.5 Geração do Padrão do Locutor . 115
7.5.1 Extração das Características dos Quadros de Voz 115
7.5.2 Obtenção do Padrão dos Locutores . 118
7.6 Comparação dos Padrões de Voz . 118
7.7 Testes e Resultados Obtidos . 120
7.7.1 IAL Dependente de Texto . 120
7.7.2 IAL Independente de Texto . 121
7.7.3 Comparação com o Estado da Arte . 122

8 DISCUSSÕES E CONCLUSÕES . 124
8.1 Síntese das Contribuições Pessoais 124
8.2 Sistema de Codificação de Voz Proposto 124
8.3 Sistema de Reconhecimento Automático de Locutor Proposto . . 125
8.4 Sugestões e Trabalhos Futuros . 126
8.4.1 Para o Vocoder . 126
8.4.2 Para a Identificação Automática de Locutor 127

REFERÊNCIAS . 128

APÊNDICES 133

APÊNDICE A – ARTIGOS PUBLICADOS 134

ANEXOS 148

ANEXO A – CÓDIGOS FONTE (VOCODER) 149

ANEXO B – CÓDIGOS FONTE (RAL) 165

ANEXO C – MANUAL PARA GERAÇÃO DO PADRÃO DE VOZ . . 257

ANEXO D – CD . 260

19

1 INTRODUÇÃO

Nos dias atuais, os frequentes avanços na eletrônica e na informática estão causando um
explosivo crescimento no uso de máquinas para o processamento de informação. Em meio a
toda essa evolução, faz-se necessário uma forma eficiente de transferência de informação entre
homem e máquina, em ambos os sentidos. A possibilidade de realizar essa comunicação através
da voz torna essa interação mais ágil e produtiva, uma vez que, além de ser a forma mais simples,
natural e universal de comunicação do ser humano, permite ao usuário uma maior liberdade para
a realização de outras tarefas, oferecendo inúmeras vantagens, como velocidade de transmissão,
mobilidade e acesso remoto à informação (RABINER; SCHAFER, 1978).

O interesse pela interação homem-máquina a partir da fala tem aumentado
consideravelmente, dando origem a uma demanda muito grande por sistemas capazes de
representar a voz de uma maneira eficiente, reconhecer o que está sendo dito ou quem se
está falando, ou ainda responder ao que está sendo solicitado (MINKER; BENNACEF, 2004).

Historicamente, pode-se considerar que a barreira da distância na comunicação falada foi
quebrada em 1876, quando da invenção do telefone por Alexander Graham Bell (SCHROEDER,
1981). Desde então, a importância da comunicação à distância na sociedade não tem parado
de crescer, sendo essencial para difusão de informação entre pessoas e países. A introdução da
comunicação digital na década de 70 iniciou uma nova era na comunicação, tendo a representação
eficiente de sinais de voz tornado-se uma área de grande importância. Devido à existência de
várias questões que ainda não foram solucionadas, muito estudo ainda vem sendo realizado
na área de Processamento Digital de Sinais de Voz (PDSV). Muitos deles são feitos visando
a redução da taxa de bits, sendo esse um parâmetro muito importante na definição da largura
de banda do canal de transmissão. A necessidade desta redução permanece mesmo com o
aumento da largura de banda desses canais de transmissão, possibilitando a transmissão de
um número maior de sinais no mesmo canal ou permitindo a utilização em canais ruidosos
(SPANIAS; PAINTER; ATTI, 2007). Da mesma forma, o advento das tecnologias multimídia
e a necessidade de armazenamento de grandes quantidades de informação para utilização
posterior, exige redução da taxa de bits, já que esta determina o espaço requerido na unidade de
armazenamento (MIRANDA, 2002).

Codificação pode ser entendido como a representação eficiente do sinal com vista à
sua transmissão ou armazenamento, mas mantendo uma qualidade aceitável, exigida pelas
eventuais aplicações. Os sistemas responsáveis por realizar compressões em sinais de voz são os
codificadores de voz ou vocoders. Os mais eficientes, ao se aproveitar de algumas propriedades
psicoacústicas do ouvido humano e de características redundantes do sinal de voz, conseguem
trabalhar com taxa de 2 kbits/s (MIRANDA, 1996).

Capítulo 1. Introdução 20

Outras áreas de PDSV também são bastante investigadas. Uma bastante relevante, cujo
estudo foi inaugurado há mais de 30 anos e que ganhou força com a inclusão dos modelos ocultos
de Markov (HMM, do inglês Hidden Markov Models), é o Reconhecimento Automático de
Locutor (RAL) (PARANAGUÁ, 1997). Este sistema consiste de uma técnica fundamental para
os mecanismos de segurança, que podem analisar um segmento de voz e reconhecer a pessoa
que o produziu. O RAL é dividido em Verificação Automática de Locutor (VAL) e Identificação
Automática de Locutor (IAL) (CAMPBELL, 1997). A VAL é o processo de aceitar ou rejeitar a
identidade pretensa de um locutor teste. A IAL objetiva identificar o autor de uma dada elocução
teste baseado em um conjunto de possíveis locutores previamente treinados. O RAL é uma área
da Inteligência Artificial em que o desempenho da máquina pode superar o desempenho de seres
humanos: usando curtas locuções testes e um grande número de locutores, a precisão da VAL ou
da IAL, frequentemente, excede àquela dos seres humanos. Verifica-se isto, especialmente, para
locutores não familiares, cujo “tempo de treinamento” requerido para assimilação de uma nova
voz é maior quando comparado ao tempo necessitado pela máquina.

Para efetuar o reconhecimento em si, os principais métodos utilizados são os baseados
em HMMs (TISHBY, 1991), Modelos de Mistura Gaussiana (GMMs) (REYNOLDS; ROSE,
1995), Dynamic Time Warping (DTW) (CAMPBELL, 1997) e Redes Neurais Artificiais
(RNAs) (FARRELL; MAMMONE; ASSALEH, 1994). Nas que utilizam HMMs, a precisão do
reconhecimento pode chegar a quase 99%, mas essa taxa é conseguida sob altas complexidade e
demanda computacionais (PEACOCKE; GRAF, 1990).

Algumas pesquisas na área de reconhecimento de locutor visam reduzir a complexidade
computacional de métodos já existentes e que, invariavelmente, requerem grande carga
computacional para o processamento. O trabalho publicado em (DAN et al., 2008), baseado no
LS-SVM (Least Square Support Vector Machine), transforma um problema de programação
quadrática, do convencional Support Vector Machine (SVM), num problema de programação
linear, reduzindo assim a complexidade computacional. Outras publicações procuram aprimorar
o desempenho dos métodos de reconhecimento em ambientes ruidosos, como em (WANG et al.,
2007) (SHAO; WANG, 2006).

Neste trabalho, os interesses são nas áreas de codificação de voz, sugerindo um novo tipo
de vocoder e introduzindo um inovador formato binário de armazenamento de sinais de voz, e
no RAL, apresentando uma nova técnica para as identificações dos locutores.

1.1 Objetivos

Esta dissertação possui dois objetivos principais. O primeiro é o desenvolvimento de um
novo sistema de codificação de voz (vocoder) que seja útil para economizar largura de banda
em aplicações requerendo inteligibilidade, bem como para o monitoramento de conversas de
voz de longa duração, decorrentes de espionagem autorizada. Este sistema utiliza uma técnica

Capítulo 1. Introdução 21

definida por Mascaramento Pleno em Frequência por Oitava (MPFO), em adição a um método
de preenchimento espectral via distribuição beta de probabilidade. Tal abordagem permitiu a
criação de um novo formato de codificação para sinais de voz: o formato binário voz. O segundo
objetivo é apresentar uma nova abordagem para o RAL, motivado a partir da síntese do vocoder

proposto e que herda parte da sua teoria. O sistema oferece um compromisso entre complexidade
computacional e taxa de identificações corretas, podendo ser atrativo para aplicações em sistemas
embarcados.

1.2 Estrutura

A dissertação está dividida em oito capítulos. O Capítulo 1, Introdução, contextualiza a
pesquisa e apresenta seus objetivos. O Capítulo 2, O Som e sua Percepção pelos Seres Humanos,
aborda características relacionadas ao som e as formas pelas quais o sistema auditivo humano
percebe a sua presença. O Capítulo 3, A Voz, apresenta uma descrição do sinal de voz, desde
sua geração em forma de ar pelos pulmões até sua saída, de diversas maneiras, pela boca.
Exibe, também, um modelamento matemático para o sistema de produção da voz. Os Capítulos
4 e 5 são pertinentes ao sistema de codificação de voz proposto na dissertação. O Capítulo

4, Codificação Digital da Voz, apresenta o processo de digitalização da voz, introduzindo a
codificação paramétrica e especificando alguns codificadores existentes. Também são expostas
algumas técnicas de codificação da voz. O Capítulo 5, Um Novo Padrão de Codificação de

Voz, diz respeito ao desenvolvimento do sistema de codificação proposto pela dissertação,
introduzindo as técnicas utilizadas para sua implementação e apresentando resultados de testes
realizados. Os Capítulo 6 e 7 são referentes ao sistema de RAL proposto no trabalho. O Capítulo

6, Reconhecimento Automático de Locutor, descreve o funcionamento dos sistemas de RAL e
detalha alguns de seus tipos. Cita, também, algumas possíveis aplicações para eles. O Capítulo

7, Sistema de RAL Proposto, detalha o sistema de RAL desenvolvido e exibe resultado de
simulações envolvendo procedimentos padrão. O Capítulo 8, Discussões e Conclusões, apresenta
as conclusões gerais deste trabalho e algumas sugestões para trabalhos futuros. A dissertação,
também, é composta de um apêndice e quatro anexos. O Apêndice A, Artigos Publicados, lista
os dois artigos publicados temas desta dissertação, juntamente com a cópia de cada um deles. O
Anexo A, Códigos Fonte (vocoder), e o Anexo B, Códigos Fonte (RAL), exibe os códigos fonte,
em MATLAB®, dos algoritmos utilizados na implementação dos sistemas propostos no trabalho.
O Anexo C, Manual para Geração do Padrão de Voz, contém procedimentos necessários para
obtenção dos padrões de voz dos locutores a partir de um número de elocuções de treinamento
definido pelo usuário do sistema. O Anexo D inclui um CD contendo os seguintes itens:

• Versão em pdf desta dissertação;

• Algoritmos do vocoder proposto;

Capítulo 1. Introdução 22

• Algoritmos do RAL proposto;

• Arquivos de voz utilizados nos testes.

23

2 O SOM E SUA PERCEPÇÃO PELOS
SERES HUMANOS

2.1 Definição de Som

O som é definido como um fenômeno acústico. É uma vibração propagante em um meio
na frequência de 20 Hz a 20 kHz. Essas vibrações geram mudanças na pressão, resultando
numa série de compressões e rarefações longitudinais do meio, criando regiões mais densas e
outras menos densas, que, ao atingirem o ouvido dos seres vivos, fazem vibrar os seus tímpa-
nos (RUMSEY; MCCORMICK, 2006). Nervos que ligam o tímpano ao cérebro interpretam
essas vibrações e o resultado é a sensação auditiva (BRANCO NETO, 2000). Fontes sonoras
simples, como colunas de ar, cordas, membranas, etc podem gerar essas vibrações. A Figura
1 ilustra a onda longitudinal criada pela sucessão de compressões e rarefações das partículas de ar.

Figura 1 – Imagem da onda longitudinal criada com as sucessões de rarefações e compressões
das partículas de ar.

Rarefações

Direção do movimento
da partícula de ar

Compressões

Direção aparente da viagem da onda

Fonte: Adaptado de Rumsey e McCormick (2006).

Como uma onda mecânica, o som necessita de um meio (elástico, viscoso) dotado de
forças internas para se propagar — impossibilitando a propagação no vácuo — e sua velocidade
de propagação depende desse meio. No ar (fluido de baixa viscosidade) o som se propaga com
uma velocidade de aproximadamente 340 m/s (BARBOSA, 2008).

2.2 Características do Som

As principais características do som são:

• Frequência

• Altura ou Pitch

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 24

• Volume

• Timbre

2.2.1 Frequência

A taxa na qual a fonte sonora produz vibração em um meio de propagação, num dado
intervalo de tempo, é referida como a frequência da onda sonora. Ela é medida em hertz (Hz)
em homenagem ao físico alemão Heinrich Rudolf Hertz (1857–1894) (BARBOSA, 2008). A
frequência está diretamente ligada à altura do som. Quanto maior for a frequência de uma onda,
maior será a sua altura e, consequentemente, mais aguda será a sua sonoridade (BRANCO
NETO, 2000).

2.2.2 Altura

Altura é a sensação auditiva que cada pessoa possui em relação às frequências de um
determinado som, sendo restrita à interpretação individual de cada uma. É o que determina se o
som é alto ou baixo. Esta percepção auditiva em relação à frequência da componente fundamental
de um som é referida como pitch, termo também utilizado para se referir a própria frequência
fundamental da onda sonora (SMITH, 2003).

Um som com um alto pitch corresponde a um som com uma alta frequência fundamental,
consequentemente a um som mais agudo (mais alto). Em contrapartida, um som com um baixo
pitch corresponde a um som com uma baixa frequência fundamental e, por conseguinte, a um
som mais grave (mais baixo). As frequências múltiplas da frequência fundamental são nomeadas
harmônicos do sinal.

É comum se confundir altura com intensidade. Por exemplo, após se tocar uma corda
no violão, suavemente, ouve-se um som; ao tocá-la, novamente, com uma força maior, não será
ouvido um som mais alto, será ouvido um som mais forte, intenso. Para se ouvir um som mais
alto, basta tocar uma corda que soe em uma frequência maior, independente da força aplicada a
ela.

2.2.3 Volume

O volume é uma medida da intensidade de um som (SMITH, 2003). Está relacionado
com a quantidade de compressão e rarefação do ar que resulta da vibração da onda sonora
(RUMSEY; MCCORMICK, 2006). É medido em unidade de fons. Um fon corresponde a 1 dB
do nível de pressão sonora acima do limiar de audição nominal (o nível de pressão sonora de
20 µPa).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 25

2.2.4 Timbre

O timbre é determinado pelo conteúdo harmônico do sinal (SMITH, 2003) — a relação
entre o nível da fundamental, os níveis dos harmônicos e suas evoluções no tempo — que surge
da conformação da onda. É uma característica importante por diferenciar a voz das pessoas
e o som de diferentes tipos de instrumentos. Esta característica deve-se ao fato de que uma
onda sonora, em geral, não é produzida por apenas uma frequência fundamental, mas por uma
composição da frequência fundamental associada com os seus harmônicos.

Uma mesma nota musical tocada por dois instrumentos distintos apresenta um mesmo
pitch. Entretanto, as notas não soam identicamente porque seus conteúdos harmônicos são
diferentes (as amplitudes dos seus harmônicos são diferentes). Esses sons produzidos tem,
portanto, timbres diferentes. Em geral, uma dada forma de onda particular possui apenas um
único timbre, mas um timbre particular pode ser produzido por um número infinito de possíveis
formas de onda.

2.3 Percepção Humana do Som

A percepção humana do som é um problema complexo. O sistema auditivo humano
não capta, não interpreta, nem “sente” todos os sons da mesma maneira (COOK, 2002). A
psicoacústica, um ramo da psicofísica, busca compreender todo este processo, estudando a
relação entre as medidas físicas dos sons e as formas com que são interpretadas pelo cérebro
humano (BRANCO NETO, 2000).

Vários métodos de processamento de sinais de áudio utilizam-se de modelos da
psicoacústica e da sensitividade da audição humana (VASEGHI, 2007) para projetar sistemas
com taxas de codificação mais eficientes, todavia, sem sacrificar, significativamente, a qualidade
do som (BHARIKTAR; KYRIAKAKIS, 2006). Algumas propriedades da percepção auditiva
humana (e.g., seletividade em frequências, insensitividade à fase e mascaramento em tempo e
frequência) são exploradas para projetar sistemas mais eficientes. Algumas delas foram relevantes
para a implementação desse trabalho, em especial o mascaramento psicoacústico auditivo
humano.

A fim de se entender algumas propriedades psicoacústicas sentidas pelos seres humanos,
as quais serão detalhadas mais adiante, faz-se necessário conhecer a estrutura fisiológica do
ouvido humano e compreender o seu processo de audição.

2.3.1 A Anatomia do Ouvido Humano

O ouvido é o órgão usado para detectar as ondas sonoras. Ele funciona basicamente como
um transdutor, convertendo as variações de pressão do ar, que chega ao tímpano, em impulsos
elétricos transmitidos para o cérebro e interpretados como som (VASEGHI, 2007) .

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 26

A Figura 2 ilustra a anatomia do ouvido humano, compreendendo suas três partes básicas:

1. ouvido externo: responsável por captar as vibrações do ar e direcioná-las ao tímpano.

2. ouvido médio: responsável por converter as vibrações de ar, que se chocam ao tímpano,
em vibrações mecânicas dos ossículos, as quais irão colidir com a região mais interna do
ouvido.

3. ouvido interno: responsável por transformar as vibrações mecânicas do ouvido médio em
vibrações hidráulicas dos tubos cheios de fluido da cóclea.

Figura 2 – Imagem da anatomia do ouvido humano.

Ouvido Externo Ouvido Médio Ouvido Interno

Ossículos

Nervo Auditivo

Trompa de EustáquioCanal Auditivo

Orelha

Tímpano

Fonte: Adaptado de Watkinson (2001).

2.3.1.1 Ouvido Externo

O ouvido externo é constituído pelo pavilhão auditivo ou orelha, pelo canal auditivo —
um tubo de cerca de 0,5 cm de diâmetro que se estende por cerca de 2,5 cm para dentro do ouvido
— e pela camada exterior ao tímpano. A orelha, a estrutura visível do ouvido, é a responsável por
distinguir a direção da fonte sonora, uma vez que ao possuir uma estrutura refletiva, consegue
amortecer determinadas componentes do som e amplificar outras, em função da localização da
mesma. Por outro lado, a mesma não desempenha qualquer função no reconhecimento do som
no plano horizontal (PENHA, 1996).

A presença de um ouvido em cada lado da cabeça permite a audição estereofônica e a
habilidade de encontrar a direção de chegada do som pela análise da intensidade relativa e fase
(atraso) das ondas sonoras que alcançam cada ouvido (VASEGHI, 2007).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 27

Pelo canal auditivo penetra o som vindo do exterior, o qual é conduzido até à membrana
timpânica ou tímpano, que possui uma ressonância natural de aproximadamente 3400 Hz. Esta
estimativa é encontrada pela seguinte expressão:

f =
c

4L
, (1)

em que c é a velocidade de propagação e L é o comportamento do canal (PENHA, 1996). Neste
caso, pode-se adotar c = 340 m/s e L = 2,5 cm.

2.3.1.2 Ouvido Médio

Estrutura do ouvido que serve, basicamente, como um casador de impedância e como
um amplificador (VASEGHI, 2007). É constituído de três pequenos ossos interconectados que
ligam a membrana timpânica ao ouvido interno por meio da janela oval (uma outra membrana).
Os sons que chegam ao tímpano induzem-o a vibrar e essas vibrações são transmitidas através do
ouvido médio pelos três ossículos (martelo, bigorna e estribo) para o ouvido interno. O tímpano
age como um transdutor acústico-mecânico.

Aos ossículos estão acoplados músculos tensores, que podem atenuar a transmissão
de vibrações, especialmente em baixas frequências, em que a atenuação pode atingir 30 dB.
Estes músculos proporcionam uma compressão da faixa dinâmica da percepção sonora, além
de agirem como proteção reflexa contra sons de alta intensidade. A presença desses ossículos
melhora a propagação do som, reduzindo a quantidade de reflexões por meio do princípio do
casamento de impedância. A maior parte desse processo de conversão de impedância resulta da
diferença, em área, entre o tímpano, cuja área é de cerca de 60 mm2, e a janela oval, cuja área é
de aproximadamente 4 mm2. Uma vez que a pressão é inversamente proporcional à área, há um
aumento da pressão da onda sonora por quase 15 vezes (SMITH, 2003).

Uma outra estrutura importante da região intermediária do ouvido é o tubo de Eustáquio,
que conecta o ouvido médio à nasofaringe da garganta. Esse tubo se abre com o ato de engolir
ou de tossir para equalizar a pressão entre o ouvido médio e a pressão ambiente estabelecida na
garganta (VASEGHI, 2007).

2.3.1.3 Ouvido Interno

O ouvido interno é o principal órgão da audição. É nele que se encontram as estruturas
que permitem ao seres humanos identificarem e caracterizarem os sons e suas características
fundamentais: frequência, intensidade e timbre. Tem como função transformar as vibrações
mecânicas dos ossículos do ouvido médio em um padrão de ondas viajantes, que atingem
a membrana basilar e produzem descargas neurais nas células capilares do órgão de Corti
(VASEGHI, 2007).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 28

O ouvido interno é constituído pela cóclea, por canais semicirculares e pelo nervo
auditivo. A cóclea é um órgão em forma de caramujo, que, se esticado, teria comprimento de
2 a 3 cm. Além de estar preenchida de fluido, a superfície interna da cóclea, conhecida como
membrana basilar, é recoberta por cerca de 20.000 células nervosas, que se sensibilizam de
forma diferente, dependendo da intensidade e da frequência do som. Tal fato nos faz perceber,
de forma diferente, dois sons de igual intensidade, mas de frequências distintas e vice-versa.

À medida que uma onda de compressão se move da interface entre o ouvido médio ao
ouvido interno através da cóclea, as células nervosas, em forma de cílios, são empurradas e
entram em movimento. Cada uma destas células possui uma sensibilidade natural para uma dada
frequência de vibração. Quando a frequência da onda de compressão casa com a frequência
natural da célula nervosa, a célula ressoa com uma grande amplitude de vibração. Esta vibração
ressonante induz a célula a liberar um impulso elétrico, que passa ao longo do nervo auditivo
para dentro do cérebro. A cóclea opera, então, como um analisador de espectro ou como um
banco de filtros seletivos distribuídos (VASEGHI, 2007).

O ouvido normal é, assim, capaz de distinguir sons com frequências entre 20 Hz e 20 kHz,
embora a resposta para altas frequências diminua acentuadamente com a idade (50% das pessoas
não ouvem acima de 15 kHz).

2.3.2 Largura de Banda, Sensitividade e Faixa Dinâmica da Audição

O ouvido apresenta resposta perceptual aproximadamente logarítmica, tanto na distinção
de frequências como na de intensidade sonora. É conveniente, então, medir o nível de pressão
sonora em escala logarítmica, sendo definida a unidade “dB SPL” (do inglês “Sound Pressure

Level”) como:

SPL , 20 · log
p

p0

(dB SPL), (2)

em que p0 é o limiar inferior de audibilidade para um ouvido normal. A quantidade é associada a
uma amplitude de pressão sonora de 20 µPa r.m.s. (2.10−5 N/m2) na frequência de 1 kHz, com p0

= 20 µPa. O limiar de desconforto, aquele em que o som passa a ser doloroso e, potencialmente,
prejudicial à saúde é atingido com pressões sonoras 1.000.000 de vezes maiores. À título de
exemplo, a Tabela 1 lista as intensidades sonoras de alguns tipos de sons.

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 29

Tabela 1 – Exemplos de situações sonoras.

dB SPL dB SPL

Avião a jato 155 Restaurante 60

Limiar de dor 140 Residência urbana 40

Limiar de desconforto 120 = 1W/m2 Casa de campo 30

Orquestra fortíssimo 110 Orquestra pianíssimo 30

Rebitadeira 100 Estúdio de gravação 20

Fábrica 78 Folhagens na brisa 10

Tráfego pesado 68 Limiar de audição 0 = 1pW/m2

Escritório ruidoso 65 Ruído térmico do ar -10 dB

Fonte: Produzido pelo autor.

O ouvido é sensível à uma faixa de frequências audível entre 20 Hz e 20 kHz. Dentro
deste intervalo, sua resposta em frequência varia acentuadamente devido às formas e proprieda-
des físicas do canal do ouvido e do ouvido médio. O ouvido é menos sensível a vibrações de
pressão sonora abaixo de 100 Hz e acima de 10 kHz, e é mais sensível a vibrações do som nas
frequências entre 500 Hz e 5 kHz, com sensibilidade máxima em torno de 3 kHz (VASEGHI,
2007).

Figura 3 – Curvas de igual sonoridade: padrão ISO 226:2003.

Curva do limiar
de dor Fons

120

100

80

60

Curva do limiar
de audição

40

20

0

200 1k 5k 20k

20

N
ív

el
 d

e
Pr

es
sã

o
So

no
ra

 (
dB

 S
PL

)

140

120

100

80

60

40

0

-20
20 50 100

200

Frequência (Hz)

×2 10-1

2

20

×2 10-2

×2 10-3

×2 10-4

×2 10-5

Pr
es

sã
o

(P
a)

Fonte: Adaptado de Watkinson (2001).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 30

Na Figura 3, é possível observar o comportamento da sensibilidade do ouvido humano,
que é representado em curvas de nível de igual sonoridade. Ao longo de cada uma dessas
curvas, as diferentes frequências tem mesma sonoridade percebida que a frequência de referência
de 1 kHz. Essas curvas foram, primeiramente, desenvolvidas por Fletcher Munson em 1933
(VASEGHI, 2007). Novas curvas foram, posteriormente, obtidas por Robinson e Dadson em
1956, sendo consideradas mais precisas do que as antecedentes. Elas tornaram-se a base para o
padrão ISO 226 até 2003. Desde então, o novo padrão revisado ISO 226:2003 é adotado.

A curva pontilhada inferior da Figura 3 representa o contorno do campo audível mínimo
e retrata, na média (entre os ouvintes), o limite inferior absoluto da audição humana em
várias frequências (BHARIKTAR; KYRIAKAKIS, 2006). Este nível foi escolhido, já que é,
aproximadamente, igual ao limiar médio de audição para o ser humano com percepção auditiva
normal em 1 kHz (frequência em que o ouvido humano é significativamente sensível (HOLMES;
HOLMES, 2002)). Qualquer som que se encontra nesse limiar de audição (apenas perceptível) é
dito ter uma sonoridade de 0 fons. Todos os pontos ao longo de umas das curvas da Figura 3
terão sonoridades iguais, embora claramente um maior “nível de pressão sonoro” seja necessário
nos extremos do espectro (RUMSEY; MCCORMICK, 2006). As ondulações na sensibilidade
auditiva ocorridas na faixa de 1 a 10 kHz são causadas pela onda estacionária ressonante no
canal auditivo (VASEGHI, 2007). A curva pontilhada superior corresponde ao limiar de dor. Se
um som encontra-se neste limiar, terá uma sonoridade de aproximadamente 120 fons (RUMSEY;
MCCORMICK, 2006). Note que o limiar de audição é cerca de 70 dB SPL em 10 Hz, 0 dB SPL
em 1 kHz — frequência de referência —, e cerca de -10 dB SPL em torno de 3 kHz.

Chama-se de faixa dinâmica da audição a diferença entre o limiar de audição (0 dB SPL)
e o limiar da dor (120 dB SPL). Dessa forma, a diferença entre o som mais alto e o som mais
fraco que os humanos podem ouvir é cerca de 120 dB SPL, que corresponde a uma variação de
um milhão na amplitude. As pessoas podem detectar mudanças na amplitude do sinal quando ele
é alterado por cerca de 1 dB SPL (12% na amplitude), existindo portando 120 níveis que podem
ser percebidos de um mais fraco murmúrio para um mais barulhento trovão (SMITH, 2003).

Experimentalmente, determinou-se que as regiões confortáveis para audição de música
ou voz abrangem faixas dinâmicas, respectivamente, de 70 dB SPL e 30 dB SPL.

2.3.2.1 Limiar Absoluto da Audição

O limiar absoluto da audição (LAA) caracteriza a quantidade de energia necessária para
que um tom puro possa ser detectado por um ouvinte em um ambiente sem ruído.

A Figura 4 ilustra uma curva típica do limiar absoluto, na qual o eixo horizontal indica a
frequência em Hz, enquanto que o eixo vertical representa o limiar absoluto em dB SPL, que
é associado a uma intensidade de referência de 10−12 W/m2 (uma quantidade padrão para a
medida da intensidade do som) (SMITH, 2003).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 31

Figura 4 – Gráfico do limiar de audição.

Frequência (Hz)

N
ív

el
 d

e
Pr

es
sã

o
So

no
ra

 (
dB

 S
PL

)

100
90
80
70
60
50
40
30
20
10
0

-10
100 1k 10k

Fonte: Produzido pelo autor.

A curva do limiar de audição pode ser bem aproximada pela função não linear (VASEGHI,
2007)

LAA(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)4 (dB SPL), (3)

a qual é representativa de uma pessoa jovem com uma audição apurada, mas que reflete apenas um
comportamento médio. A forma atual varia de pessoa para pessoa e é medida experimentalmente
soando um tom de uma certa frequência e variando sua intensidade até a pessoa já não perceber o
seu efeito. Ao repetir-se as medidas para um grande número de valores de frequência, obtém-se
a curva do limiar de audição da Figura 4 (CHU, 2003). Note que a máxima sensitividade da
audição (o mínimo valor de LAA) ocorre em torno de 3 e 4 kHz e é cerca de -5 dB SPL. Os
níveis de pressão somente detectáveis na frequência de máxima sensitividade da audição não são
detectáveis em outras frequências.

Considerando estas propriedades, pode-se tirar vantagem da curva de limiar absoluto no
projeto de codificadores de voz, pois:

• Não há necessidade de se considerar quaisquer sinais com uma intensidade inferior ao
limiar absoluto, uma vez que eles não tem qualquer impacto sobre a qualidade final do
codificador.

• Mais recursos devem ser alocados para a representação dos sinais dentro da faixa de
frequência mais sensível, em linhas gerais de 1 a 4 kHz, já que distorções nesta faixa são
mais perceptíveis (CHU, 2003).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 32

2.3.3 Bandas Críticas da Audição

Anatomicamente, as bandas críticas (BC) da audição são segmentos da cóclea de
cerca de 1.3 mm de comprimento, que agem como filtros passa-banda (VASEGHI, 2007).
São representações para um modelo matemático do ouvido humano, que divide o espectro
audível em bandas de largura não-uniformes, dentro das quais as características auditivas podem
ser consideradas constantes.

O conceito de banda crítica é importante no entendimento da audição, porque ele ajuda a
explicar como alguns sinais são “mascarados” na presença de outro (RUMSEY; MCCORMICK,
2006). Este conceito foi baseado em observações experimentais da percepção de sinais de áudio
ao longo da membrana basilar da cóclea, lugar onde acontecem as transformações espaço-
frequência. Alguns experimentos mostraram que, em qualquer frequência ao longo da cóclea, o
ouvido comporta-se como uma série de filtros passa-banda conhecidos como bandas críticas. As
larguras de bandas críticas são não-uniformes (dependentes de frequências) (VASEGHI, 2007) e
suas respostas em magnitude são assimétricas e não-lineares. Por apresentar essas características,
o efeito de dois ou mais tons presentes em uma mesma banda crítica é diferente do efeito deles
em diferentes bandas críticas.

O termo largura de banda crítica (LBC) foi introduzido por Fletcher em 1940, que
também usou a expressão BC para referir-se ao conceito de filtro auditivo (HOLMES; HOLMES,
2002). Desde que ele introduziu esse conceito, uma série de experimentos foram realizados
para investigar o fenômeno de BC e estimar sua largura. Baseado em alguns experimentos
preliminares, Zwicker, em 1961, classificou a LBC como função de uma frequência central.
Esses valores são mostrados graficamente na Figura 5, os quais são modelados matematicamente
pela seguinte equação:

BC(f) = 25 + 75

(
1 + 1, 4

(
f

103

)2
)0,69

(Hz). (4)

Embora a função BC(f) seja contínua, é útil, para a construção de sistemas práticos,
tratar o ouvido como um conjunto discreto de filtros conforme a Equação (4). Pela Figura 5,
nota-se que a LBC tende a permanecer constante (cerca de 100 Hz) até 500 Hz e cresce para
aproximadamente 20% da frequência central acima de 500 Hz.

Como dito anteriormente, Zwicker classificou a LBC como função de uma frequência
central. Ele propôs a escala Bark para essa finalidade, segundo o qual a diferença de 1 bark

representa a largura de uma BC sobre uma inteira faixa de frequência (HOLMES; HOLMES,
2002).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 33

Figura 5 – Gráfico do modelo da banda crítica obtido da Equação (4).

x - frequências centrais da BC

La
rg

ur
a

de
 B

an
da

 C
rít

ic
a

(H
z)

6000

5000

4000

3000

2000

1000

0 102 103 104

Frequência (Hz)

5 10 15
19

21
22

24

25

Fonte: Adaptado de Spanias, Painter e Atti (2007).

Figura 6 – Gráfico da relação entre a frequência (Hz) e a banda crítica na escala Bark.

x - frequências centrais da BC

ín
di

ce
 d

a
ba

nd
a

cr
íti

ca
, Z

b
(B

ar
k)

25

20

15

10

5

0 0 5k 10k 15k 20k
1

5

10

15

19
21

22
24

25

Frequência (Hz)

Fonte: Adaptado de Spanias, Painter e Atti (2007).

O mapeamento da escala linear de frequência, em Hertz, para a escala Bark, Zc(f),
ilustrado na Figura 6, é dado pela equação abaixo:

Zc(f) = 13, 0 arctan(7, 6× 10−4) + 3, 5 arctan

[(
f

7, 5× 104

)2
]

(Bark). (5)

A Tabela 2 apresenta um banco de filtros idealizado que corresponde aos pontos discretos nume-
rados nas curvas das Figuras 5 e 6.

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 34

Tabela 2 – Banco de filtros idealizado.

Índice da Banda Frequência Central(Hz) Largura de Banda (Hz)

1 50 – 100

5 450 400 – 510

10 1175 1080 – 1270

15 2500 2320 – 2700

19 4800 4400 – 5300

21 7000 6400 – 7700

22 8500 7700 – 9500

24 13.500 12000 – 15500

25 19.500 15500 –

Fonte: Produzido pelo autor.

Correspondentes às frequências centrais da Tabela 2, os pontos numerados nas Figuras 5
e 6 ilustram que o espaçamento, em Hertz, não-uniforme dos banco de filtros (Figura 7) é, na
prática, uniforme na escala Bark (SPANIAS; PAINTER; ATTI, 2007). Dessa forma, uma LBC
engloba um bark.

Figura 7 – Esquema do banco de filtros de banda crítica idealizado.

Frequência (Hz)

1.2

1

0.8

0.4

x 104

0.2

0

0.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
m

pl
itu

de

2

Fonte: Adaptado de Spanias, Painter e Atti (2007).

Muitas das mais recentes estimativas da largura de banda crítica são baseados em experi-
ências de mascaramento para determinar a forma do filtro auditivo e estimar a largura de banda

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 35

equivalente retangular (ERB, do inglês “Equivalent Rectangular Bandwidth”). Tais experiências
são motivadas pelo fato dos filtros auditivos não terem uma resposta retangular no domínio
da frequência e não serem completamente especificados pelas suas larguras de bandas críticas
(HOLMES; HOLMES, 2002). A ERB é definida como a largura de banda de um filtro passa-
banda retangular ideal que permite passar uma mesma potência que uma BC (WATKINSON,
2001).

2.3.4 Mascaramento

A faixa dinâmica de 120 dB do ouvido humano representa a relação entre os níveis de
audibilidade e de desconforto para sons individuais. No entanto, quando dois sons de intensidades
e frequências diferentes são combinados simultaneamente, ocorre o fenômeno do mascaramento,
que pode ser descrito como um deslocamento relativo do limiar de audibilidade, provocado pela
presença de tons de maior intensidade.

O mascaramento refere-se, em linhas gerais, ao processo no qual um som é interpretado
como inaudível devido à presença de outro som (CHU, 2003), tornando-se, desta forma,
irrelevante para a percepção auditiva humana. É esta característica que permite, aos diversos
sistemas de codificação de áudio, conseguirem uma maior compressão de dados ao eliminar
sons mascarados. Outras aplicações práticas em Engenharia de Áudio também aproveitam-se
deste conceito, como em sistemas de redução de ruído. Projetistas destes sistemas podem, por
exemplo, supor que um baixo nível de ruído que exista associado a um sinal de música de alta
intensidade será efetivamente mascarado pelo sinal de música, estando os dois presentes na
mesma banda de frequência. Este fato possibilita que eles utilizem uma menor resolução em
bandas de frequência, pois o ruído será mascarado, de maneira efetiva, pelo sinal propriamente
dito (RUMSEY; MCCORMICK, 2006).

A seguir, são descritos os dois principais tipos de mascaramento: o mascaramento em
frequência (também chamado de mascaramento simultâneo) e o mascaramento no tempo (ou
mascaramento não-simultâneo).

2.3.4.1 Mascaramento em Frequência

O mascaramento em frequência está relacionado ao conceito de bandas críticas da audição
(VASEGHI, 2007). É um fenômeno pelo qual um sinal de baixa amplitude (sinal mascarado)
se torna inaudível na presença simultânea de um sinal com uma amplitude muito maior (sinal
mascarador). De uma forma simplificada, a presença de um ruído forte ou de um tom mascarador
cria uma excitação de força suficiente sobre a membrana basilar, para bloquear, de forma eficaz,
a detecção de um sinal mais fraco (SPANIAS; PAINTER; ATTI, 2007).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 36

Os efeitos do mascaramento simultâneo não estão exclusivamente concentrados aos
limites de uma única banda crítica. O mascaramento entre bandas também ocorre, permitindo
que um tom mascarador centrado em uma banda tenha algum efeito previsível no limiar de
detecção de outras bandas críticas. Este efeito, também conhecido como espalhamento do
mascaramento (do inglês “spread of masking”), é muitas vezes modelado em aplicações de
codificação por uma função de espalhamento (do inglês “spread function”) aproximadamente
triangular, que tem inclinações de 25 e −10 dB por bark (SPANIAS; PAINTER; ATTI, 2007).
Sua forma, SF (x), pode ser obtida através da seguinte expressão:

SF (x) = 15, 81 + 7, 5(x+ 0, 474)− 17.5
√

1 + (x+ 0, 474)2, (dB) (6)

em que x está em unidades de bark.

No contexto de codificação de áudio, noções de largura de banda crítica e mascaramento
simultâneo dão origem a algumas terminologias convenientes, como as ilustradas na Figura 8.

Figura 8 – Ilustração dos efeitos de mascaramento de um tom.

N
ív

el
 d

e
Pr

es
sã

o
So

no
ra

 (
dB

) Tom de Mascaramento

Limiar de Mascaramento
devido ao tom

Limiar de Mascaramento
mínimo

m

Frequência (Hz)Próxima
banda críticaBanda crítica

SN
R SM

R
N

M
R

Tom mascarado

Fonte: Adaptado de Vaseghi (2007).

Nela, considera-se o caso de um único tom de mascaramento ocorrendo no centro de
uma banda crítica. Supondo-se que este tom de mascaramento hipotético ocorre em algum nível
de mascaramento, é gerada uma excitação ao longo da membrana basilar que é modelada por
uma função de espalhamento e um limiar de mascaramento correspondente. Assumindo-se que
o sinal mascarador é quantizado através de um quantizador escalar uniforme de m bits, algum
ruído pode ser introduzido no nível de pressão sonora m. As relações sinal-mascarador (SMR) e
ruído-mascarador (NMR) indicam as distâncias logarítmicas a partir do limiar de mascaramento
mínimo para os níveis de mascaramento e ruído, respectivamente (SPANIAS; PAINTER; ATTI,
2007).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 37

A faixa de frequências mascarada por um tom depende principalmente da área da
membrana basilar colocada em movimento pelo tom, sendo o padrão de movimento desta
membrana mais alargado nas altas do que nas baixas frequências. Se o sinal requerido produz
mais movimento na membrana do que o tom de mascaramento, então ele irá ser percebido
(RUMSEY; MCCORMICK, 2006).

A assimetria do mascaramento em frequência pode ser explicada pelo padrão de vibração
da membrana basilar (Figura 9); devido à sua assimetria, tons de baixa frequência (f1) mascaram,
mais fortemente, os de alta frequência (f2) do que o inverso (caso (a)). No caso (b), o tom f1 de
maior amplitude mascara, completamente, o tom f2. Já no caso (c), um som de frequência f2,
mesmo de maior amplitude, não consegue encobrir o som f1.

Figura 9 – Imagem da resposta da membrana basilar para dois tons senoidais.

Frequência60 Hzf1f2
Janela
Oval 15 Hz

Janela
Oval

Janela
Oval

Frequência60 Hzf1f215 Hz

Frequência60 Hzf1f215 Hz

(a)

(b)

(c)

Fonte: Adaptado de Rumsey e McCormick (2006).

2.3.4.2 Mascaramento no Domínio do Tempo

O segundo principal efeito do mascaramento é o mascaramento no domínio do tempo ou
mascaramento não-simultâneo. Como mostrado na Figura 10, o efeito do mascaramento de um
sinal se estende a janelas temporais imediatamente anteriores (pré-mascaramento) ou posteriores
(pós-mascaramento) ao instante de início do sinal mascarador (KAHRS; BRANDENBURG,
2002).

O pré-mascaramento ocorre antes do princípio de ação do mascarador e dura somente
poucos milisegundos. O pós-mascaramento pode persistir por mais que 100 ms após a retirada
de ação do mascarador, dependendo de sua intensidade e duração (SPANIAS; PAINTER; ATTI,
2007).

Capítulo 2. O Som e sua Percepção pelos Seres Humanos 38

Figura 10 – Ilustração das propriedades do mascaramento temporal do ouvido humano.

Pré Simultâneo Pós-mascaramento

tempo (ms)

Tempo após retirada
do mascarador

Tempo após aparecimento
do mascarador

C
re

sc
im

en
to

 d
o

lim
ia

r
de

au

di
bi

lid
ad

e
m

as
ca

ra
do

 (
dB

)

Mascarador

-50 0 50 100 150 0 50 100 150 200

Fonte: Adaptado de Spanias, Painter e Atti (2007).

Essencialmente, os limiares absolutos de audibilidade são artificialmente aumentados
antes, durante e depois da ocorrência do sinal mascarador (SPANIAS; PAINTER; ATTI, 2007).
Esse efeito torna possível o uso de sistemas de análise/síntese com um limitado tempo de
resolução (e.g., banco de filtros de alta resolução) para a codificação de áudio em alta qualidade
(KAHRS; BRANDENBURG, 2002).

Ao observar a Figura 10 é possível notar que, enquanto o pré-mascaramento tende a
durar apenas 1–2 ms, o pós-mascaramento tende a se entender de 50 até 300 ms, a depender da
intensidade e duração do sinal mascarador (SPANIAS; PAINTER; ATTI, 2007).

39

3 A VOZ

No capítulo anterior foi descrito o fenômeno acústico “som”, relatando suas
características principais e as peculiaridades que o sistema auditivo humano apresenta ao
interpretá-lo. Neste capítulo, o estudo é direcionado ao sinal de voz, foco das aplicações
propostas por esta dissertação. Inicialmente é introduzido o seu mecanismo de produção, desde a
geração a partir do fluxo de ar nos pulmões até a saída em forma de som pelas narinas e boca.
Adicionalmente, são apresentados os tipos de sinais produzidos pelo sistema fonador humano,
enfatizando suas diferenças mais relevantes. O capítulo é concluído com um modelamento
matemático, de tempo discreto, para o sistema de produção da voz.

3.1 Mecanismo de Produção da Voz

Os sinais de voz são compostos de uma sequência de sons que servem como uma
representação simbólica da mensagem produzida pelo locutor para o ouvinte (RABINER;
SCHAFER, 1978). Essa sequência de sons é originada de movimentos controlados da estrutura
anatômica que compõe o sistema fonador humano, e envolve três processos: fonte de geração,
articulação e radiação (CHU, 2003). Uma visão simplificada deste sistema é apresentada na
Figura 11, em que são mostrados os principais órgãos responsáveis pela geração da voz: pulmões,
traqueia, laringe, faringe, cavidades nasal e oral. Todos eles interconectados formam o complexo
órgão vocal humano (FURUI, 2000).

Figura 11 – Imagem da anatomia do sistema fonador humano.

Cavidade nasal

Língua

Diafragma

Pulmões

Traqueia

Laringe

Epiglote

Véu palatino
Cavidade oral

Palato

Faringe

Fonte: Adaptado de Vaseghi (2007).

Capítulo 3. A Voz 40

É esse combinado mecanismo que origina uma variedade de vibrações e composições espectral-
temporal e que forma os diferentes tipos de som (VASEGHI, 2007).

Uma importante estrutura do sistema vocal, composta pela faringe (a conexão do esôfago
para a boca) e boca (ou cavidade oral), é chamada de trato vocal (RABINER; JUANG, 1993). Essa
estrutura, análoga a um sistema acústico de transmissão, pode assumir diversas conformações
dependendo dos movimentos da mandíbula, língua, lábios e outras partes internas (FURUI,
2000). Na média masculina, o comprimento do trato vocal é de cerca de 17 cm (RABINER;
JUANG, 1993). O trato nasal, outra estrutura importante e que é responsável pela produção dos
sons nasais, começa na úvula ou véu palatino e termina nas narinas (RABINER; SCHAFER,
1978).

O processo de produção da voz tem início quando o ar penetra nos pulmões via o
mecanismo de respiração. À medida que o ar é expelido dos pulmões por meio da traqueia, as
cordas vocais situadas nas laringes, na altura do pomo-de-Adão (saliência em frente a garganta
de muitos adultos do sexo masculino), são induzidas a vibrarem em frequências entre 50 e 100
Hz (SMITH, 2003) pelo fluxo de ar (RABINER; JUANG, 1993). O efeito dessas vibrações induz
a glote, pequeno orifício compreendido entre as cordas vocais — normalmente aberto durante
a respiração — a se fechar e se abrir rapidamente (BARBOSA, 2008), enviando pulsos quase
periódicos de ar pressurizados, os quais são modulados em frequência e passam pela faringe,
cavidade da boca e, possivelmente, pela cavidade nasal.

As cordas vocais podem ser contraídas ou relaxadas para modificar a taxa de vibração
ou ainda serem desativadas, permitindo a passagem de ar, sem obstrução, durante a respiração
(PELTON, 1993). A velocidade com que elas se abrem e se fecham é única para cada indivíduo
e define a característica e individualidade de uma voz particular (CHU, 2003).

Dependendo da posição dos articuladores (mandíbula, língua, úvula, lábios), diferentes
formas da cavidade oral são criadas e diferentes sons são produzidos (RABINER; JUANG,
1993).

A natureza da onda sonora irradiada pelos lábios depende das diferentes configurações
da cavidade oral, das características de absorção e reflexão acústica dos diversos materiais que
a compõe, como também da fisiologia individual de cada pessoa (BARBOSA, 2008). Devido
a essas distintas conformações da cavidade oral, o ar expelido pelos pulmões se choca com
vários obstáculos durante seu percurso em direção aos lábios e/ou narinas, perdendo parte de sua
energia. Grande parte dela é refletida, também, nas cavidades, combinando-se com outras frentes
de onda. Alguma dessas ondas ressoam no trato vocal, que tem dimensões de alguns centímetros,
reforçando a energia das ondas ressonantes ou atenuando a energia das ondas não-ressonantes,
dando à voz características de timbre, altura (pitch) e intensidade. Essas frequências ressonantes
aparecem no espectro de voz como máximos locais e são chamados de formantes (BARBOSA,
2008).

Capítulo 3. A Voz 41

Uma forma de onda vocal contém muitos formantes, mas somente os três primeiros
são importantes para a análise de sinais (os demais, no geral, são agrupados como um só).
Normalmente, o primeiro formante, o de frequência mais baixa, ocorre numa faixa de 200 a 1200
Hz. O segundo cai numa faixa de transição entre 500 Hz e 3 kHz (PELTON, 1993). É possível
modificar a amplitude e frequência dos formantes ao alterar a posição relativa entre língua e
lábios.

3.2 Classificação dos Sons Produzidos pelo Sistema de

Fonador Humano

Em termos gerais, os sinais produzidos pelo sistema fonador humano podem ser
classificados como vocais ou não-vocais (BARBOSA, 2008). Sons vocais são gerados quando as
cordas vocais vibram de tal maneira que o fluxo de ar dos pulmões é interrompido periodicamente,
criando uma sequência de pulsos que excitam o trato vocal. Vogais são exemplos de sons vocais.

Os fonemas /i/ e /u/, algumas vezes, não são vogais. Eles aparecem apoiados em uma
vogal, formando com ela uma só emissão de voz (uma sílaba). Nesse caso, são chamados de
fonemas semi-vocais ou semi-vogais.

Com as cordas vocais estacionárias, a turbulência criada pelo fluxo de ar passando através
de uma constrição do trato vocal produzida pela língua, dentes ou lábios, gera os sons não-vocais.
Quando esses sons são resultantes de uma grande turbulência do trato vocal, possuindo grande
conteúdo nas altas frequências, são referidos como fricativos. Sons não-vocais incluem /s/, /f/,
/sh/, /z/, /v/, entre outras consoantes ou junção delas.

No domínio do tempo, um som vocal é caracterizado por uma forte presença periódica
do sinal, tendo uma frequência fundamental referida como frequência de pitch. A frequência de
pitch está situada tipicamente na faixa 50–200 Hz para adultos do sexo masculino e cerca de
uma oitava acima para adultos do sexo feminino (HOLMES; HOLMES, 2002). Sons não-vocais,
por outro lado, não exibem periodicidade e, essencialmente, apresentam um natureza aleatória
(CHU, 2003).

A Figura 12 mostra um exemplo de uma onda de voz pronunciada por um indivíduo
do sexo feminino, em que os sinais vocais e não-vocais estão presentes. É possível apreciar
deste exemplo a característica não-estacionária dos sinais de voz, em que as estatísticas do
sinal mudam constantemente com o tempo. Vê-se que, no trecho vocal do sinal, há uma clara
periodicidade no domínio do tempo, na qual o sinal repete-se num padrão quase-periódico; e
também, no domínio da frequência, onde uma estrutura harmônica é observada. No espectro,
pode-se notar facilmente o comportamento dos formantes (picos da Figura 12 (e)).

Capítulo 3. A Voz 42

Para os sinais não-vocais a característica é essencialmente aleatória, com baixas amplitu-
des e predominância de altas frequências. É essa composição de sinais vocais e não vocais, com
diferentes timbres e amplitudes que possibilita a distinção de diversos tipos de vozes.

Figura 12 – (a): Pronúncia da palavra “sino”, (b): Ampliação do segmento não-vocal da palavra
“sino”, (c): Ampliação do segmento vocal da palavra “sino”, (d): espectro em
frequência para o item (b), (e): espectro em frequência para o item (c).

Sinal não-vocal Sinal vocal

(a) A
m

pl
itu

de
A

m
pl

itu
de

(b)

Tempo (ms)

0 80 160 240 320 400 480 560 640 720
Tempo (ms)

0 20 40 80 120 160 180 200 0 20 80 140 220180

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
(d

B)

Frequência (kHz) Frequência (kHz)

Tempo (ms)

0 4 8 0 4 8

(d)

(c)

(e)

Fonte: Produzido pelo autor.

Capítulo 3. A Voz 43

3.3 Modelamento do Sistema de Produção da Voz

Esta seção estabelece um link entre a fisiologia do sistema de produção da voz e as
funções dos órgãos estudados na seção 3.1 e um modelo linear de produção da voz. Em termos
gerais, um modelo é uma representação simplificada do mundo real (CHU, 2003). O sistema de
produção da voz humana pode ser modelado através de um sistema de tempo discreto, conhecido
como modelo fonte-filtro de produção da voz. O diagrama de blocos simplificado deste modelo
é ilustrado na Figura 13. Ele sugere a separação do sistema articulatório em dois subsistemas
independentes (GREENBERG et al., 2004): (i) um gerador de excitação (fonte aleatória), que
simula os diferentes modos de geração do som no trato vocal e (ii) um filtro linear variante
no tempo que simula a modelagem frequencial do trato vocal (RABINER; SCHAFER, 2007).
Amostras do sinal de voz são assumidas como sendo a saída do sistema linear variante no tempo.

Figura 13 – Ilustração do modelo fonte filtro para o processo de geração de voz.

Período do Pitch

Modelo Glotal
(pitch)
P(z) H(z)

Modelo do
trato vocalFonte

aleatória Excitação voz

Fonte: Adaptado de Vaseghi (2007).

Na representação do modelo de produção da voz, a fonte aleatória cria uma excitação
apropriada para o tipo de som a ser produzido, sendo geralmente constituída de duas componentes.
A primeira é formada por uma sequência quase-periódica de pulsos discretos (glotais), que é
responsável, principalmente, por produzir os sons vocais, incluindo as vogais e os sons semi-
vocais. É também parcialmente responsável pela produção das consoantes vocais (fricativas,
nasais e oclusivas). A localização dessa fonte quase-periódica é a glote (GREENBERG et al.,
2004). A outra componente, caracterizada por um gerador de número aleatório, produz um
sinal de ruído de tempo discreto com um espectro plano e é responsável por produzir os sons
não-vocais (RABINER; SCHAFER, 2007). A ação, em conjunto, da fonte de excitação (que
comuta de vocal para não-vocal) e da resposta em frequência do filtro (aplicada sobre o espectro
do sinal) irá produzir o sinal de voz na saída.

Para produzir um sinal caracterizado como a voz, o tipo de excitação e as propriedades
ressonantes do sistema linear devem variar no tempo. Na forma de onda ilustrada na Figura 12
é possível observar que as propriedades do sinal de voz mudam lentamente com o tempo. É
razoável assumir, para sinais desse tipo, que as propriedades gerais de excitação e do trato vocal
permanecem fixas para períodos de 10–20 ms (RABINER; JUANG, 1993). Assim, é comum
caracterizar o filtro linear da Figura 13 por uma função de transferência, H(z), com N pólos e

Capítulo 3. A Voz 44

M zeros da forma:

H(z) =

M∑
j=0

bjz
−j

1−
N∑
j=1

ajz−j
=

b0

M∏
j=1

(1− djz−1)

N∏
j=1

(1− cjz−1)

, (1)

em que aj e bj são os coeficientes do filtro (parâmetros do trato vocal da Figura 13), que
mudam a uma taxa da ordem de 50 a 100 vezes/s). Alguns dos pólos (cj) da função transferência
situam-se próximos ao círculo unitário e criam ressonâncias para modelar as frequências for-
mantes. Os zeros dj são empregados no modelo detalhado de produção da voz para modelar os
sons nasais e fricativos (RABINER; SCHAFER, 2007). Muitas aplicações do modelo fonte-filtro
(e.g., modelo de predição linear) simplificam a análise requerida para estimar os parâmetros do
sinal de voz, considerando apenas os pólos no modelo.

O modelo fonte-filtro, capaz de representar um sinal de voz como a saída de um filtro
digital variando suavemente no tempo, em adição a uma excitação que capta a natureza vocal/não-
vocal da voz é a base para muitos sistemas que representam o sinal de voz por um conjunto
de parâmetros do modelo, em oposição à sua forma de onda amostrada. Ao assumir que as
propriedades do sinal (e do modelo) são constantes sob curtos intervalos de tempo, é possível
estimar esses parâmetros através da análise de curtos segmentos de amostras do sinal de voz
(RABINER; SCHAFER, 2007), permitindo, assim, representá-lo em um formato digital.

Um dos métodos que utiliza o modelo teórico fonte-filtro como meio de análise de voz
(codificação, reconhecimento e aprimoramento) é o método por predição linear ou análise LPC
(do inglês “Linear Predictive Coding”), como é frequentemente intitulado. Ele é utilizado para
estimar os parâmetros básicos da voz — frequência fundamental (pitch), formantes, espectro e
função área do trato vocal — e para representá-la em uma baixa taxa de bits na transmissão ou
armazenamento (COSTA FILHO, 2005). Na próxima seção tal modelo é apresentado.

3.4 Modelamento Preditivo Linear para Sinais de Voz

A forma particular do modelo de tempo discreto, adaptada para a análise LPC, é repre-
sentada na Figura 14. Nela, o sinal de excitação é modelado como um trem de impulsos para
sinais vocais e como um gerador de ruído aleatório para os sons não-vocais. A composição dos
efeitos da radiação dos lábios, trato vocal e excitação glotal é representada pelo filtro digital
variante no tempo (KONDOZ, 2004), referido, neste modelo, como o filtro de síntese de predição
linear (LP) (SPANIAS; PAINTER; ATTI, 2007).

Capítulo 3. A Voz 45

Figura 14 – Ilustração do modelo preditivo linear para o processo de geração da voz.

Período do Pitch

Gerador
de Trem

de impulsos

Gerador
de Ruído
Aleatório

Filtro Digital
Variante

no Tempo

Coeficientes LPC

Chaveamento
Vocal/não-Vocal

u(n) r(n) s(n)

G

Fonte: Adaptado de Kondoz (2004).

Viu-se que no modelo fonte-filtro a função de transferência do filtro digital é composta de
pólos e zeros. Se a intenção é representar sons nasais e fricativos, os zeros devem ser mantidos na
análise. Porém, se a ordem do denominador for suficientemente alta, H(z) pode ser aproximado
por uma função apenas com pólos (Equação (2)), fornecendo uma boa representação para quase
todos os sons do aparelho vocal (COSTA FILHO, 2005).

H(z) =
S(z)

U(z)
=

G

1−
p∑
j=1

ajz−j
=

G

A(z)
, (2)

em que

A(z) = 1−
p∑
j=1

ajz
−j (3)

é o filtro de análise LP. S(z) e U(z) representam as transformadas Z do sinal de voz, s(n), e do
sinal de excitação, u(n), respectivamente. Os outros parâmetros do modelo são: classificação
vocal/não-vocal, período de pitch para sinais vocais, parâmetro de ganho G (ajustado para
controlar a intensidade da excitação), coeficientes aj de predição linear (coeficientes LPC) e
ordem p do filtro de predição. A maior vantagem desse modelo é que o ganho G e os coeficientes
aj podem ser estimados de maneira direta e computacionalmente eficiente pelo método de
predição linear (RABINER; SCHAFER, 2007).

A resposta em frequência associada com o filtro de síntese LP representa, através do
espectro LPC, a estrutura dos formantes em um sinal de voz (SPANIAS; PAINTER; ATTI, 2007).
A Figura 15 ilustra esta propriedade em um sinal com quatro formantes (F1, F2, F3, F4).

Capítulo 3. A Voz 46

Figura 15 – Gráfico dos espectros LPC e FFT para um sinal de voz.

Frequência (kHz)

M
ag

ni
tu

de
 (

dB
)

Espectro LPC
Espectro FFTF1 F2

F3 F4

0 0.8 1.6 2.4 3.2 4
-50

-40

-30

-20

-10

0

20

10

Fonte: Adaptado de Spanias, Painter e Atti (2007).

No modelo preditivo linear da Figura 14, as amostras de voz s(n) são relacionadas à
excitação pela seguinte equação:

s(n) =

p∑
j=1

ajs(n− j) +Gu(n). (4)

Ela expressa a ideia básica do modelo LPC: as amostras de saída s(n) podem ser determinadas
a partir de uma combinação linear de amostras passadas (RABINER; JUANG, 1993). Uma
ilustração dessa ideia é mostrada na Figura 16.

Figura 16 – Ilustração da predição de uma amostra x(m) a partir de P amostras passadas.

x(m)?

x(m-P) à x(m-1) amostras
são usadas para a predição de x(m)

m

Fonte: Adaptado de Vaseghi (2007).

O problema básico da análise de predição linear é determinar o conjunto de coeficientes
preditores aj , de maneira a obter uma boa estimativa das propriedades espectrais do sinal de
voz. Devido a natureza não-estacionária do sinal de voz, os coeficientes devem ser calculados
em curtos intervalos de tempo. Deve-se, também, minimizar o erro médio quadrático sob curtos

Capítulo 3. A Voz 47

segmentos de voz. Os parâmetros resultante são assumidos como os parâmetros de H(z) no
modelo de produção da voz (KONDOZ, 2004).

Um preditor linear com coeficientes de predição linear, αj , é definido como um sistema
cuja saída (RABINER; SCHAFER, 2007) é

s̃(n) =

p∑
j=1

αjs(n− j). (5)

Se os coeficientes α′js representam uma estimativa para os a′js, o erro de predição e(n), definido
como a diferença entre o valor atual s(n) e o valor predito s̃(n), é dado por

e(n) = s(n)− s̃(n) = s(n)−
p∑
j=1

αjs(n− j). (6)

Da Equação (6), pode ser visto que o erro de predição é a saída de um sistema linear

cuja função do sistema é A(z) = 1−
p∑
j=1

ajz
−j , a mesma expressão do filtro de análise LP de

(3). Também pode ser observado, comparando-se as Equações (4) e (6), que, se o sinal de voz
obedece o modelo de (4), e se αj = aj , então e(n) = Gu(n). Assim, o filtro do erro de predição,
A(z), será um filtro inverso para o sistema, H(z), de (2), i.e. (RABINER; SCHAFER, 2007),

H(z) =
G

A(z)
. (7)

3.4.1 Minimização do Erro

A ideia básica da análise preditiva é a determinação dos coeficientes aj do preditor que
minimizem o erro médio quadrático sobre um curto segmento de voz. Uma das justificativas para
o uso do erro médio quadrático mínimo como estimativa para os parâmetros do modelo é que
essa abordagem leva a uma representação extremamente útil e precisa do sinal de voz, que pode
ser obtido por uma solução eficaz de um conjunto de equações lineares (RABINER; SCHAFER,
2007). O erro médio quadrático é dado por

ε = E[e2(n)] = E

(s(n)−
p∑
j=1

αjs(n− j)

)2
 , 0 < p < 1. (8)

Os valores de αj que minimizam ε podem ser obtidos pelas derivadas parciais de ε com
respeito aos coeficientes do preditor, que são posteriormente igualadas a zero, isto é:

Capítulo 3. A Voz 48

∂ε

∂αi
= 2E

{[
s(n)−

p∑
j=1

αjs(n− j)

][
∂

∂αi

(
p∑
j=1

[−αjs(n− j)]

)]}
= 0

= 2E

{[
s(n)−

p∑
j=1

αjs(n− j)

]
[−s(n− i)]

}
= 0

= E

{
−s(n)s(n− i) +

p∑
j=1

αjs(n− j)s(n− i)

}
= 0, 1 ≤ i ≤ p. (9)

Finalmente, temos que

p∑
j=1

αjE {s(n− j)s(n− i)} = E {s(n)s(n− i)} . (10)

Se nós definirmos

φn(i, j) , E{s(n− i)s(n− j)}, (11)

então a Equação (10) pode ser escrita de uma forma mais compacta como

p∑
j=1

αjφn(i, j) = φn(i, 0), i = 1, . . . , p. (12)

Na dedução da Equação (12), uma hipótese importante é que o sinal do modelo seja
estacionário. Para segmentos de voz, de longa duração, esta condição não se verifica. Entretanto,
para curtos segmentos de voz, a suposição é admissível. Portanto, pode-se substituir as esperanças
na equação (11) por somatórios finitos sobre amostras de voz de curta duração, i.e.,

φn(i, j) = E{s(n− i)s(n− j)}

=
∑
m

sn(m− i)sn(m− j), i = 1, . . . , p, j = 0, . . . , p. (13)

A Equação (12) descreve um sistema com p equações e p incógnitas, que podem ser
resolvidas para os coeficientes do preditor {αj, 1 ≤ j ≤ p } que minimizem ε na Equação (8).

Capítulo 3. A Voz 49

Os métodos mais usados para resolvê-las são (CAVALCANTI, 2009):

I Método da Autocorrelação -

• Vantagem: Utiliza um algoritmo eficiente, com complexidade computacional O(n2);

• Desvantagem: Não representa adequadamente o espectro do sinal de excitação caso
o mesmo esteja no estado estacionário.

II Método da Covariância -

• Vantagem: representa o sinal adequadamente estando este no estado estacionário;

• Desvantagem: Possui um algoritmo pouco eficiente O(p3).

3.4.2 Método da Autocorrelação

Para o método da autocorrelação (AM, do inglês “Autocorrelation Method”), o segmento
do sinal de voz é assumido como sendo nulo fora do intervalo 0 ≤ m ≤ N − 1, em que
N é o comprimento da sequência amostrada. Isto pode ser obtido através de um processo de
janelamento, o qual consiste em multiplicar o segmento de voz s(n) por uma janela w(n) de
comprimento N obtendo um sinal definido por

sn(m) =

{
s(n)w(n), 0 ≤ m ≤ N − 1

0, caso contrário.
(14)

Uma vez que o segmento de análise é definido, pelo janelamento, para ser nulo fora do
intervalo 0 ≤ m ≤ N − 1, segue-se que a sequência do erro de predição pode ser não nula
somente no intervaloN ≤ m ≤ N+p. Portanto, os limites da Equação (13) podem ser expressos
como

φn(i, j) =

N−1−|(i−j|)∑
m=0

sn(m)sn(m+ |i− j|), i = 1, . . . , p, j = 0, . . . , p. (15)

Esta equação pode ser reduzida à função de autocorrelação de curta duração, a qual é dada por

φn(i, j) = Rn(|i− j|), i = 1, . . . , p, j = 0, . . . , p, (16)

em que

Rn(j) =

N−1−j∑
m=0

sn(m)sn(m+ j). (17)

Capítulo 3. A Voz 50

Usando o método da autocorrelação, a Equação (12) pode ser expressa como

p∑
j=1

αjRn(|i− j|) = Rn(i), 1 ≤ i ≤ p (18)

O conjunto de equações dadas por (18) pode ser reescrito em forma matricial como



Rn(0) Rn(1) . . . Rn(p− 1)

Rn(1) Rn(0) . . . Rn(p− 2)

Rn(2) Rn(1) . . . Rn(p− 3)
...

...
Rn(p− 1) Rn(p− 2) . . . Rn(0)





α0

α1

α2

...
αp


=



Rn(1)

Rn(2)

Rn(3)
...

Rn(p)


. (19)

Esta matriz p× p, cujos elementos são valores de autocorrelação, tem as seguinte propriedades:
é simétrica e tem todos os elementos, em cada diagonal com inclinação negativa, iguais,
sendo portanto uma matriz de Toeplitz (RABINER; SCHAFER, 2007). Estas características
apresentadas por matrizes de Toeplitz são exploradas por procedimentos recursivos eficientes,
objetivando facilitar o processo de inversão da matriz e a obtenção dos coeficientes LPC. O
procedimento mais largamente utilizado é o algoritmo de Durbin (KONDOZ, 2004), cujo
diagrama é ilustrado na Figura 17 e que é um processo recursivo, a saber:

E(0)
n = Rn(0); (20)

ki =

[
Rn(i)−

i−1∑
j=1

αi−1
j Rn(i− j)

]/
E(i−j)
n , 1 ≤ i ≤ p; (21)

α
(i)
i = ki; (22)

α
(i)
j = α

(i−1)
j − kiα(i−1)

i−j , 1 ≤ j ≤ i− 1; (23)

E(i)
n = (1− k2

i)E
(i−1)
n . (24)

Após o algoritmo resolver as cinco equações acima recursivamente para i = 1, 2, . . . , p, a solução
final é dada por

aj = apj , 1 ≤ j ≤ p. (25)

Capítulo 3. A Voz 51

Figura 17 – Fluxograma do algoritmo de Durbin.

entrada

saída

Fonte: Produzido pelo autor.

Considere um exemplo em que p = 2,

[
Rn(0) Rn(1)

Rn(1) Rn(0)

][
α0

α1

]
=

[
Rn(1)

Rn(2)

]
. (26)

Então, para i = 1,

Capítulo 3. A Voz 52

E(0)
n = Rn(0); (27)

k1 =
Rn(1)

Rn(0)
; (28)

α
(1)
1 =

Rn(1)

Rn(0)
; (29)

E(1)
n = 1− R2

n(1)

R2
n(0)

; (30)

Rn(0) =
R2
n(0)−R2

n(1)

Rn(0)
. (31)

E para i = 2,

k2 = [Rn(2)− α(1)
1 Rn(1)]/E(1)

n =
Rn(2)Rn(0)−R2

n(1)

R2
n(0)−R2

n(1)
; (32)

α
(2)
2 = k2; (33)

α
(2)
1 = α

(1)
1 − k2α

(1)
1 =

Rn(1)Rn(0)−Rn(1)Rn(2)

R2
n(0)−R2

n(1)
. (34)

E, dessa forma

α1 = α
(2)
1 e α2 = α

(2)
2 . (35)

3.4.3 Método da Covariância

O Método da Covariância (CM, do inglês “Covariance Method”) utiliza uma abordagem
oposta ao AM (KONDOZ, 2004). Nele o intervalo sobre o qual o erro médio quadrático é
calculado é fixo, i.e,

E =
N−1∑
m=0

e2
n(m). (36)

Tal procedimento, permite escrever a Equação (13) como

φn(i, j) =
N−1∑
m=0

sn(m− i)sn(m− j), i = 1, . . . , p, j = 0, . . . , p. (37)

Capítulo 3. A Voz 53

Alterando-se o índice do somatório tem-se:

φn(i, j) =
N−i−1∑
m=−i

sn(m)sn(m+ i− j), i = 1, . . . , p, j = 0, . . . , p. (38)

Esta expressão é levemente diferente da descrita em (15) usada no AM, que requer o uso
das amostras no intervalo −p ≤ m ≤ N − 1. Na verdade a Equação (37) não é exatamente
uma função de autocorrelação, mas, sim, uma correlação cruzada entre duas sequências de
comprimento finito muito semelhantes, mas não idênticas (KONDOZ, 2004). Fazendo-se uso
dela, a Equação (12) pode ser expressa como

p∑
j=1

αjφn(i, j) = φn(i, 0), i = 1, . . . , p, (39)

ou, em sua forma matricial,



φn(1, 1) φn(1, 2) . . . φn(1, p)

φn(2, 1) φn(2, 2) . . . φn(2, p)

φn(3, 1) φn(3, 2) . . . φn(3, p)
...

...
φn(p, 1) φn(p, 2) . . . φn(p, p)





α1

α2

α3

...
αp


=



φn(1, 0)

φn(2, 0)

φn(3, 0)
...

φn(p, 0)


. (40)

A solução de (39) não é tão simples como a equivalente solução do AM. Isto se deve
ao fato da matriz de covariância não ser uma matriz de Toeplitz, apesar de φn(i, j) = φn(j, i).
Entretanto, soluções eficientes de inversão de matrizes tais como a decomposição de Cholesky
podem ser aplicadas, sendo φ expresso como (KONDOZ, 2004):

φ = V DV T , (41)

em que V é uma matriz triangular inferior, cujos elementos da diagonal principal são unitários e
D é uma matriz diagonal. Os elementos das matrizes V e D são obtidos a partir da Equação (41)
por

φn(i, j) =

j∑
m=1

VimdmVjm, 1 ≤ j ≤ i− 1, (42)

Capítulo 3. A Voz 54

ou de forma equivalente,

Vijdj = φn(i, j)−
j−1∑
m=1

VimdmVim, 1 ≤ j ≤ i− 1, (43)

e para os elementos da diagonal de D,

φn(i, i) =
i∑

m=1

VimdmVim, (44)

ou,

di = φn(i, i)−
i−1∑
m=1

V 2
imdm, i ≥ 2 (45)

e finalmente,

d1 = φn(1, 1). (46)

Desta forma, os coeficientes αk do preditor, que minimizam o erro médio quadrático, podem ser
obtidos.

55

4 CODIFICAÇÃO DIGITAL DA VOZ

Nos sistemas de comunicação digital, na qual se inclui a codificação de sinais de voz,
é necessário que, antes de ser processado pelos diferentes estágios da rede, o sinal de entrada
esteja no formato digital.

4.1 Digitalização da Voz

O processo de digitalização (conversão analógica-digital) consiste basicamente em
dois processos: amostragem e quantização. A amostragem é o processo de extrair valores
instantâneos de um sinal analógico em intervalos regulares de tempo (período de amostragem).
Já a quantização envolve o processo de converter cada valor da amplitude do sinal, que varia no
continuum, em um número finito de valores discretos, sendo estes representados por palavras
código. O processo de amostragem, quando realizado segundo o teorema de Shannon-Nyquist,
possibilita a recuperação do sinal original sem perda de informação (OPPENHEIM; SCHAFER;
BUCK, 1999). Em contrapartida, a quantização é um processo irreversivelmente com perdas.
Uma vez quantizado, o valor original da amplitude do sinal não mais pode ser recuperado
(KONDOZ, 2004). Nas duas próximas seções essas duas técnicas são descritas.

4.1.1 Amostragem do Sinal

O primeiro estágio do processo de digitalização do sinal é a amostragem. Neste estágio,
um sinal analógico xc(t) é convertido em um sequência de amostras x[n] de acordo com a relação
(OPPENHEIM; SCHAFER; BUCK, 1999):

x[n] , xc(nT), −∞ < n <∞, (1)

em que T é o período de amostragem, sendo fs = 1/T a frequência de amostragem em
amostras/s, que também pode ser expressa em rad/s como Ωs = 2π/T .

O teorema da amostragem diz que, se um sinal xc(t) tem uma transformada de Fourier
dada por

Xc(jΩ) =

∫ ∞
−∞

xc(t)e
−j(ΩT)tdt, Ω =

ω

T
, (2)

tal que Xc(jΩ) = 0 para |Ω| ≥ ΩN , então pode ser reconstruído de sua versão amostrada

Capítulo 4. Codificação Digital da Voz 56

x[n] = xc(nT), n = 0,±1,±2, . . . , se

Ωs =
2π

T
≥ 2ΩN , (3)

em que a frequência ΩN é a chamada frequência de Nyquist. O valor que deve ser excedido pela
taxa de amostragem, 2ΩN , é chamado de taxa de Nyquist (OPPENHEIM; SCHAFER; BUCK,
1999).

Figura 18 – Ilustração do efeito, no domínio da frequência, da amostragem no domínio do tempo.
(a) Espectro do sinal original. (b) Espectro do sinal amostrado quando Ωs > 2ΩN .
(c) Espectro do sinal amostrado quando Ωs < 2ΩN .

(a)

(b)

(c)

Ω)

X(ejΩT)

2ΩSΩS

-ΩN ΩN

1

1/T

-ΩN ΩN

Ω

Ω

Ω2ΩS

1/T X(ejΩT)

-ΩN ΩN ΩS

Xc(j

Fonte: Adaptado de Kondoz (2004).

O efeito da amostragem é ilustrado na Figura 18, em que é possível observar a
representação da transformada de Fourier banda limitada, Xc(jΩ), duplicada em todo múltiplo
da frequência de amostragem. Isto ocorre devido à transformada de Fourier do sinal amostrado
ser avaliada nos múltiplos desta frequência, ou seja

X(ejΩT) =
1

T

∞∑
k=−∞

Xc(j(Ω− kΩs)). (4)

Esta expressão pode ser interpretada observando-se o processo de amostragem no domínio do
tempo, em que o sinal de entrada é regularmente (em cada intervalo de amostragem) multiplicado
pela função delta (δ[n]). Quando convertido para o domínio da frequência, a multiplicação
torna-se uma convolução e o espectro é reproduzido em múltiplos da frequência de amostragem
(KONDOZ, 2004).

Capítulo 4. Codificação Digital da Voz 57

Em outra análise da Figura 18 é possível notar que não há sobreposição no espectro
ao se obedecer a relação imposta pelo teorema de Nyquist e, consequentemente, o sinal xc(t)
pode ser recuperado, de sua versão repetida, com um filtro passa-baixas ideal. Visto de uma
perspectiva no domínio do tempo, o filtro age como um interpolador ideal. Em contrapartida,
não obedecida a relação, as cópias de Xc(jΩ) irão se sobrepor e o sinal original não poderá
ser recuperado. A distorção causada devido a uma taxa de Nyquist insuficientemente alta é
irreversível e é conhecida como aliasing.

O sinal de voz possui componentes espectrais até uma frequência de aproximadamente
12 kHz, no entanto, uma grande parcela dessas componentes não contribuem de forma essencial
para a formação do sinal de voz. A maior parcela da energia encontra-se na faixa de frequências
inferiores a 4 kHz. Portanto, em aplicações de telefonia, por exemplo, o sinal de voz é filtrado
em 300–3,3 kHz e amostrado a uma taxa de 8.000 amostras por segundo (de acordo com o
teorema de Shannon-Nyquist). Deste modo, tem-se não só um sinal inteligível, mas também a
possibilidade de reconhecimento do interlocutor (BARBOSA, 2008).

4.1.2 Quantização

A quantização converte um sinal de amplitude contínua em um sinal de amplitude
discreta, que difere-se do primeiro por um erro de quantização ou ruído (KONDOZ, 2004). Este
deve ser mantido dentro de limites aceitáveis, segundo um determinado critério. Um dos mais
utilizados é o da relação sinal-ruído (SNR) de quantização, que deverá ser o maior possível. O
processo de quantização pode ser representado pela operação

x̂[n] = Q(x[n]), (5)

em que x[n] representa as amostras do sinal de entrada, x̂[n] as amostras quantizadas e Q(.) a
função de quantização ou quantizador. Existem outras técnicas de quantização (e.g., adaptativa
e vetorial) (BARBOSA, 2008) (KONDOZ, 2004) mas apenas as quantizações uniforme e não-
uniformes serão descritas nesse trabalho.

4.1.2.1 Quantização Uniforme

Um dos métodos mais comuns de quantização é a quantização uniforme, na qual a
máxima excursão do sinal é dividida em m intervalos de mesmo comprimento, sendo cada
um deles representado por uma única palavra-código (BARBOSA, 2008). A Figura 19 exibe a
característica de um típico quantizador uniforme com 8 níveis.

Capítulo 4. Codificação Digital da Voz 58

Figura 19 – Gráfico das características de entrada-saída de um quantizador uniforme.

x = Q(x)^

x7Δ
2

5Δ
2

3Δ
2

Δ
2

-

-Δ

-2Δ

-3Δ

-4Δ

000
-7Δ
2

-5Δ
2

-3Δ
2

Δ
2

-9Δ
2

2Xmax

Fonte: Adaptado de Rabiner e Schafer (2007).

Pela figura, nota-se que o quantizador é apropriado para sinais cujas amostras são ambas
positivas e negativas (bipolar). Para sinais que possuem apenas amostras de entrada positivas
(ou negativas), uma reconfiguração apropriada dos níveis deve ser realizada (OPPENHEIM;
SCHAFER; BUCK, 1999).

Para simplificar a codificação binária, é comum utilizar-se um número de níveis
coincidente com uma potência de 2, de modo a otimizar o número de bits n de codificação por
amostra. Nestas condições, a diferença entre níveis de quantização adjacentes, i.e., o passo de
quantização, normalmente representado por ∆, é dado por

∆ =
2Xmax

m
=

2Xmax

2n
, (6)

considerando [−Xmax, Xmax] a faixa de variação do sinal de entrada a ser quantizado.

A diferença entre o valor real da amostra x[n] e o seu valor quantizado x̂(n) produz um
erro não-linear, conhecido por ruído de quantização e dado pela expressão

e[n] = x[n]− x̂[n]. (7)

Assumindo que o erro de quantização é um processo aleatório com média zero e uma distribuição
de probabilidade uniforme, i.e, −∆

2
≤ e[n] ≤ ∆

2
, pode-se expressar a potência do ruído como:

Capítulo 4. Codificação Digital da Voz 59

E[e2[n]] =

∆/2∫
−∆/2

p(e[n])e2[n]de[n] =
1

∆

∆/2∫
−∆/2

e2[n]de[n]

=
∆2

12
=

X2
max

3× 22n
, (8)

em que

p(e[n]) =
1

∆
, para |e[n]| ≤ ∆

2
, (9)

é a função densidade de probabilidade do ruído.

Usando-se a Equação (8), pode-se definir a relação sinal ruído de quantização (SQNR)
por

SQNR = 10 log10

(
E[x2[n]]

E[e2[n]]

)
= 10 log10

(
Psinal

X2
max2

−2n/3

)
= 10 log10 3− 10 log10

(
X2
max

Psinal

)
+ 10 log10 22n

= 4.77− α + 6, 02n, (10)

em que Psinal é a potência média do sinal, n é o número de bits do quantizador e α é a relação
(em dB) entre a potência de pico do sinal, X2

max, e Psinal. Para uma onda senoidal, tem-se que α
= 3 dB. Pode ser visto da Equação (10) que para cada bit adicional, uma melhoria de 6 dB na
relação sinal ruído de quantização é observada (VASEGHI, 2007).

4.1.2.2 Quantização Não-uniforme

Uma das desvantagens da utilização da quantização uniforme é a grande dependência
da relação sinal-ruído com a potência do sinal de entrada (ver Equação (10)), sendo pior para
sinais de baixa amplitude e melhor para sinais com grande amplitude (BARBOSA, 2008).
A utilização de intervalos com dimensões diferentes, i.e., quantização não-uniforme, pode
minimizar este problema. Diferentemente do quantizador uniforme, o tamanho do passo do
quantizador não-uniforme cresce para os valores mais altos do sinal de entrada.

Um quantizador não-uniforme consegue, para o mesmo número de bits, relações sinal-
ruído de quantização maiores, sendo útil, por exemplo, para sinais de voz com predominância
de pequenas amplitudes. Em geral, a quantização não-uniforme é obtida, primeiramente,

Capítulo 4. Codificação Digital da Voz 60

distorcendo-se o sinal original com uma característica de compressão logarítmica (Figura 20)
seguido de uma quantização uniforme. A compressão logarítmica é efetuada de acordo com

y[n] = h+ k log(x[n]), (11)

em que h e k são constantes positivas. Tal expressão é valida apenas para valores positivos de
x[n], sendo necessária uma aproximação linear para abranger os valores nulos ou negativos.

Figura 20 – Gráfico da função de compressão de um quantizador não-uniforme típico. ∆1, ∆2 e
∆3 são os diferentes passos de quantização.

Δ

Δ

Δ

Δ1 Δ Δ2 3

y[n]

x[n]

Fonte: Adaptado de Spanias, Painter e Atti (2007).

Um processo inverso é requerido no receptor, de modo a não distorcer o sinal quantificado
e possibilitar a recuperação em seu formato original. A operação, denominada de expansão,
é conseguida através da função exponencial. O ciclo completo é geralmente chamado de
companding, termo formado a partir da junção das palavras do inglês para compressão e expansão
(compressing e expanding) (BARBOSA, 2008).

Duas leis de compressão são definidas pelo ITU (International Telecommunication

Union). São elas a lei-µ, que é adotada nos Estados Unidos, e a lei-A, que é utilizada na Europa.
A lei-µ é dada pela relação

y[n] = Xmax.
ln(1 +

|x[n]|
Xmax

)

ln(1 + µ)
.sign(x[n]), (12)

Capítulo 4. Codificação Digital da Voz 61

em que

sign(x[n]) =

{
+1, x ≥ 0

−1, x < 0
. (13)

Para a codificação de voz, o valor de µ = 255 foi adotado como padrão nos Estados
Unidos e Canadá. Este valor reduz em 24 dB a relação sinal-ruído de quantização em compara-
ção à quantização uniforme. Desta forma, um quantizador de 8 bits, usado em conjunto ao um
compressor logarítmico com µ = 255 , produz a mesma qualidade de voz que um quantizador
uniforme de 12 bits. Um valor de µ = 0 corresponde à quantização uniforme. A lei-A de
compressão é dada pela expressão

y[n] =


A|x[n]|

1 + ln(A)
.sign(x[n]), se 0 ≤ |x[n]| < 1

A
,

1 + A|x[n]|
1 + ln(A)

.sign(x[n]), se
1

A
≤ |x[n]| ≤ 1,

(14)

em que A é o parâmetro de compressão com valores típicos de 86 para codificação PCM
(Pulse Code Modulation) com 7 bits (nos EUA) e de 87, 56 para a codificação PCM com 8 bits
(na Europa), ambos relacionados a sinais de voz (KONDOZ, 2004).

4.2 Codificação Paramétrica da Voz

O propósito da compressão de voz é obter uma concisa representação digital que
possibilite a otimização de métodos de transmissão e armazenamento de dados de voz (HUANG
et al., 2008). Com um processamento adequado, um sinal de voz pode ser analisado, codificado
a uma baixa taxa de dados e, em seguida, ressintetizado. Em muitas aplicações, a codificação
digital da voz é necessária para permitir a utilização de algoritmos de criptografia (por questão de
segurança) ou de técnicas de correção de erros (para compensar o ruído do canal de transmissão).
Utilizando-se de alguns métodos de codificação, pode-se conseguir alta qualidade de voz, mas ao
custo de taxas de bits elevadas. Tais codificadores são chamados de codificadores de forma onda.
Esses codificadores tentam reproduzir amostra por amostra o sinal original e são projetados para
serem independentes do tipo de sinal. Desta forma, podem ser utilizados para codificar um ampla
variedade deles (COSTA FILHO, 2005).

Capítulo 4. Codificação Digital da Voz 62

A largura de banda disponível para a transmissão de voz digitalizada é estreita, da
ordem de 4 kHz (POPE; SOLBERG; BRODERSEN, 1987). Em tais condições, é necessária
a utilização de sistemas de codificação que reduzam a taxa de bits, a fim de que a informação
possa ser transmitida apropriadamente. Esses sistemas, no entanto, não conseguem reproduzir
a forma de onda da voz em seu formato original. Ao invés disso, um conjunto de parâmetros
variáveis são extraídos da voz, transmitidos e usados para gerar uma nova forma de onda no
receptor. Essa forma de onda recriada poderá não aproximar necessariamente a forma de onda
original em aparência, mas deverá ser perceptualmente similar (HOLMES; HOLMES, 2002).
Este tipo de codificador, nomeado de vocoder (da contração VOice CODER), termo também
usado largamente para referir-se a codificadores de análise/síntese em geral, irá utilizar-se de
características perceptualmente importantes dos sinais de voz para representá-los de maneira
mais eficiente e sem comprometer, significativamente, a sua qualidade (HOLMES; HOLMES,
2002).

O vocoder foi descrito, primeiramente, por Homer Dudley do Laboratório de Telefonia
da Bell em 1939 e consistia de um sintetizador de voz operado manualmente (PELTON, 1993). A
partir daí, iniciou-se uma moderna investigação sobre codificação de sinais de voz. Os vocoders

baseiam-se no fato de que o trato vocal muda lentamente e seu estado e configuração podem ser
representados por um conjunto de parâmetros. Tipicamente, esses parâmetros são extraídos do
espectro do sinal de voz e atualizados a cada 10–25 ms. Em geral, dada a sua complexidade no
processo de geração da voz sintetizada, as modelagens, simplificações e aproximações utilizadas
pelos vocoders introduzem perdas e distorções que acabam por tornar a qualidade de voz obtida
inferior àquela obtida pelos codificadores de onda (BARBOSA, 2008).

Duas propriedades da comunicação de voz são extensivamente exploradas pelos vocoders.
A primeira é a capacidade de restrição do sistema auditivo humano, que torna os ouvintes
insensíveis a várias imperfeições no processo de reprodução da voz. A segunda diz respeito à
fisiologia do processo de geração da voz, que coloca fortes restrições sobre o tipo de sinal que
pode ocorrer. Este fato pode ser explorado para modelar alguns aspectos da produção da voz
(HOLMES; HOLMES, 2002).

Nos critérios de escolha de um codificador de voz para determinada aplicação, existem
alguns atributos que são decisivos, enquanto outros são menos significativos. Assim, um
compromisso pode ser levado em consideração. Na seção seguinte, é descrito, de modo sucinto,
cada um destes atributos, sendo abordados os principais compromissos envolvidos.

4.3 Atributos dos Codificadores de Voz

Alguns critérios são importantes na escolha de um codificador de voz para uma
determinada aplicação. São eles:

Capítulo 4. Codificação Digital da Voz 63

1. Taxa de bits;

2. Qualidade do sinal de saída;

3. Complexidade dos algoritmos e quantidade de memória necessária;

4. Atraso;

5. Sensibilidade a erros de canal.

Aplicações diferentes requerem que os codificadores sejam otimizados para diferentes
características ou algum balanço entre elas. Para um grande número de aplicações, o principal
objetivo é assegurar a similaridade entre o sinal original e o reconstruído e, em alguns casos, como
nos sistemas em que a segurança é o principal objetivo, que os arquivos de voz reconstruídos
sejam inteligíveis (COSTA FILHO, 2005).

4.3.1 Taxa de Bits

A primeira motivação da codificação da voz é a redução da taxa de bits, com vista a
transmitir ou armazenar dados de maneira mais eficiente. Pode-se imaginar que a redução da
informação a ser transmitida está, necessariamente, atrelada a uma redução da qualidade do sinal
original. Entretanto, codificadores de voz de alta qualidade podem conseguir reduzir a taxa de
bits por um fator de 13 ou mais com nenhuma perda perceptível na qualidade ou inteligibilidade
(SPANIAS; PAINTER; ATTI, 2007).

Em sistemas que utilizam a largura de banda telefônica, a taxa padrão utilizada é de
8.000 amostras/s. Para que um sinal amostrado a essa taxa seja dito de alta qualidade, sendo
considerado uma referência, ele deve apresentar uma resolução de 16 bits por amostra, com
quantização uniforme (PCM), resultando numa taxa de bits de 128 kbits/s. É um sinal com essa
configuração que será processado de modo a gerar um conjunto de bits com uma menor taxa,
sendo posteriormente transmitido ou armazenado. No receptor, esse conjunto de bits (servindo
como entrada) será reconstruído numa aproximação original (em PCM), que posteriormente o
converterá num sinal acústico (BARBOSA, 2008).

Habitualmente, os codificadores produzem taxa de bits fixas, que são ideais para
utilização em canais de transmissão não partilhados, os que não levam em conta critérios
para definir, em cada instante, qual a taxa de bits atribuída. Entretanto, hoje em dia já se é capaz
de utilizar taxas de bits variáveis (VBR, Variable Bit Rate), uma vez que as redes de comunicação
utilizam protocolos flexíveis, (CAVALCANTI, 2009).

4.3.2 Qualidade do Sinal de Saída

Uma das maiores dificuldades no projeto e teste dos codificadores é a medição da
qualidade do sinal reconstruído. A complexidade está na falta de uma medida objetiva para a

Capítulo 4. Codificação Digital da Voz 64

qualidade da voz que represente a percepção entre o sinal original e o sinal reconstruído em
forma de uma função erro (COSTA FILHO, 2005).

Os métodos de análise da qualidade dos codificadores podem ser divididos em dois tipos:
objetivos e subjetivos (SPANIAS; PAINTER; ATTI, 2007). Nos métodos objetivos, comparam-se
características matemáticas do sinal transmitido com as do sinal recebido. Medidas subjetivas
envolvem seres humanos, que são solicitados a atribuir classificações para alguns diálogos em
tempo real ou gravados (CAVALCANTI, 2009). Ao utilizar-se de seres humanos, as medidas
subjetivas são frequentemente mais precisas e úteis para avaliação de um sistema de telefonia.

4.3.2.1 Métodos Objetivos

O desempenho dos codificadores de forma de onda, tais como o PCM, pode simples-
mente ser medido pela relação sinal-ruído, SNR. Sendo x[n] o sinal original de voz e y[n] a
versão sintética dele, tem-se:

SNR = 10 · log10


∑
n

x2[n]∑
n

(x[n]− y[n])2

 , (15)

com o índice n variando no intervalo de medição.

Um método mais refinado de medida objetiva, no que diz respeito à SNR convencional,
é a relação sinal ruído-de-segmentação (SSNR). Este método, definido pela Equação (16), foi
criado para lidar com a natureza dinâmica de sinais não estacionários como a voz.

SNRR =
1

N

N∑
m=1

SNRm. (16)

Da Equação (16), vê-se que a SNRR é uma média dos valores da SNR de quadros
isolados. A vantagem de sua utilização, em vez da SNR convencional, é que, calculando-se a
média sobre os valores de SNR no domínio logarítmico, ocorre uma melhor ponderação para os
segmentos não-vocais da voz com baixa energia. Por essa razão, a SSNR correlaciona melhor a
qualidade perceptiva do que a SNR (COSTA FILHO, 2005).

As medidas de SNR e SSNR são significativas apenas para os codificadores de forma de
onda. Ambas são extremamente sensíveis a distorções de forma de onda e a distorções de fase,
que nem sempre são perceptualmente relevantes. Por outro lado, muitos codificadores de baixa
taxa não preservam a forma de onda original e, portanto, a SNR e a SSNR são insignificantes

Capítulo 4. Codificação Digital da Voz 65

para a avaliação destes codificadores. As técnicas de medidas subjetivas são feitas para superar
essas limitações de abordagem simples da SNR (CHU, 2003).

4.3.2.2 Métodos Subjetivos

Em testes subjetivos, são executadas amostras de voz a um determinado grupo de ouvintes,
que são convidados a classificar a qualidade dos sinais ouvidos. Essas classificações são reunidas
e é calculada a média para produzir o resultado final. Os testes são feitos, normalmente, para uma
grande variedade de condições (naturalidade, inteligibilidade, facilidade de reconhecimento do
locutor, etc) de modo a obter uma avaliação do desempenho geral de um determinado codificador
(CHU, 2003). Alguns testes (os mais populares) são descritos a seguir.

4.3.2.2.1 ACR (Absolute Category Rating)

Nesse teste, um dos mais destacados, ouvintes são convidados a classificar uma frase ou
trecho de voz produzido pelo codificador em teste. Os ouvintes atribuem um grau de 1 (ruim)
a 5 (excelente). A partir dos graus obtidos, é calculado o valor médio (MOS, do inglês “Mean

Opinion Score”) e gerada uma classificação final, em termos perceptuais, a partir da Tabela 3.
Normalmente, são escolhidos indivíduos leigos, não treinados para o teste, mas pode-se utilizar
um número menor de indivíduos treinados capazes de distinguir a fonte e o tipo de degradação.
Ambos os conjuntos possuem sua relevância, mas o de indivíduos leigos é mais adequado, pois
se aproxima mais da média da população (CAVALCANTI, 2009).

Tabela 3 – Escala MOS.

Avaliação Qualidade da Voz Nível de Distorção

5 Excelente Imperceptível
4 Boa Apenas perceptível, mas não irritante
3 Satisfatória Perceptível e levemente irritante
2 Razoável Irritante, mas não desagradável
1 Ruim Muito irritante e desagradável

Fonte: Produzido pelo autor.

4.3.2.2.2 DCR (Degradation Category Rating)

Nesse teste, é solicitado aos ouvintes que seja feita uma comparação entre o sinal original,
tomado como referência, e o sinal sintetizado. De acordo com a quantidade de degradação
percebida, eles irão classificar de 1 (degradação muito audível) a 5 (degradação pouco audível).
A média dos votos, o resultado final, é conhecida como DMOS (do inglês “Degradation Mean

Opinion Score”).

Capítulo 4. Codificação Digital da Voz 66

A confiabilidade dos resultados dos testes subjetivos depende do número de ouvintes.
Na maioria dos testes o número mínimo é de 16, com os ouvintes sendo escolhidos entre a
população em geral, de modo a refletir melhor as condições em que o sistema eventualmente será
implantado. Pela logística necessária para sua realização, os testes subjetivos tornam-se caros e
bastante demorados. Portanto, os esforços de pesquisa atuais estão sendo direcionados para o
desenvolvimento de procedimentos e avaliação de testes automáticos e de medidas objetivas que
sejam capazes de predizer a qualidade subjetiva da voz. Os algoritmos mais conhecidos para a
avaliação objetiva da qualidade da voz baseada no modelo de percepção psicoacústica dos sons
são: BSD (do inglês “Bark Spectral Distance”) (WANG; SEKEY; GERSHO, 1992), PSQM
(do inglês “Perceptual Speech Quality Measure”) - recomendação P.861 da ITU-T (ITU-T,
1998), e PESQ (do inglês “Perceptual Evaluation of Speech Quality”) - recomendação P.862 da
ITU-T (RIX et al., 2001).

Por ser um método já bem estabelecido e bastante utilizado em aplicações envolvendo
classificação da qualidade de voz com alto grau de consistência, o sistema de codificação proposto
faz uso do método subjetivo ACR para medição da qualidade dos sinais de voz gerados.

4.3.3 Complexidade dos Algoritmos e Quantidade de Memória

Necessária

Quanto mais complexidade apresentar um algoritmo de codificação e maior for a
quantidade de memória requerida para seu processamento, mais seus sistemas serão dispendiosos
e volumosos, requerendo um maior consumo de energia. A complexidade é normalmente
aferida pela quantidade de instruções requeridas para processar os algoritmos de codificação.
Usualmente é mensurada em MIPS (milhões de instruções por segundo) ou em MFLOPS
(milhões de operações em ponto flutuante por segundo), enquanto que a memória necessária é
mensurada em número de bytes.

Uma técnica usada por codificadores para economizar o consumo de energia e também
para melhorar a eficiência do canal é a interpolação digital da voz (DSI, do inglês “Digital

Speech Interpolation”) (KONDOZ, 2004). A DSI explora o fato de que somente cerca de metade
da conversação é realmente ativa. Em períodos de inatividade, o canal pode ser utilizado para
outras finalidades, incluindo a limitação da atividade do transmissor, permitindo uma maior
economia de energia. Um subsistema importante da DSI é o detector de atividade de voz (VAD,
do inglês “Voice Activity Detection”), que deve funcionar de forma eficiente e confiável para
garantir que a voz original não seja confundida com o silêncio e vice-versa (KONDOZ, 2004).
Utiliza-se o VAD, também, antes do estágio de pré-processamento do sinal em sistemas de
reconhecimento de voz e locutor. No sistema de RAL proposto nessa dissertação, o VAD é
empregado para economizar tempo de processamento.

Capítulo 4. Codificação Digital da Voz 67

4.3.4 Atraso

No contexto de codificação de voz, atraso refere-se ao tempo necessário para o
processamento da codificação do sinal, ou seja, o tempo que separa o instante em que uma
amostra é apresentada ao emissor, e que a correspondente amostra é gerada pelo receptor. Este
tempo é medido em milisegundos, estando o receptor em conexão direta ao emissor. Não se
considera, na medição, a contribuição dos equipamentos de emissão e recepção e o tempo de
propagação do sinal, mas sim o tempo de transmissão de cada bit. Geralmente, quanto maior a
taxa de bits menor o atraso, visto que taxas de bits maiores representam algoritmos de codificação
com menor compactação (SOUZA et al., 2007).

Embora não seja importante em aplicações de armazenamento, como no sistema de
codificação de voz proposto nesse trabalho, em aplicações de conversação, como na rede
telefônica, o atraso pode se tornar inconveniente, tedioso, vindo a afetar a naturalidade da
conversação. Limites máximos permissíveis para esse atraso podem chegar a 400 ms (BARBOSA,
2008). Em redes de comunicação que não incluem canceladores de eco, essa restrição pode
se tornar mais severa, visto que os próprios interlocutores podem chegar a notar suas próprias
elocuções.

4.3.5 Sensibilidade ao Erro

Na transmissão em canais de comunicação, o sinal codificado fica sujeito a erros
que são introduzidos pelos canais. Esses erros normalmente são de dois tipos: (i) erros
aleatórios, causados pelo ruído estacionário, e (ii) erros em surto, introduzidos por interferências
eletromagnéticas nas imediações do canal (BARBOSA, 2008). Para que ambos os tipos de erros
afetem, minimamente, a qualidade dos sinais de saída, os codificadores devem possuir técnicas
que empreguem códigos capazes de detectar e corrigir esses erros. Entretanto, a introdução
desses códigos demanda uma maior taxa de bits (SPANIAS; PAINTER; ATTI, 2007).

4.4 Técnicas de Codificação de Voz

De maneira geral, a diferença básica entre codificação em formato de onda e codificação
paramétrica está ligada à filosofia de como o sinal é codificado. Codificadores de forma
de onda transmitem o sinal em seu formato original ou como uma variante do mesmo.
Codificadores paramétricos, por outro lado, transmitem apenas parâmetros resultantes de
tratamentos matemáticos realizados sobre propriedades extraídas do sinal. A seguir, algumas
técnicas de codificação são descritas.

Capítulo 4. Codificação Digital da Voz 68

4.4.1 G.711 - PCM

O padrão G.711, desenvolvido pelo ITU-T em 1972, define um codificador de forma de
onda que utiliza modulação por código de pulso (PCM, do inglês “Pulse Code Modulation”)
com quantização não-uniforme (ITU-T, Geneva, 1993), cujas características de compressão
e expansão do quantizador são aproximações lineares por partes para as leis-µ e A, com µ

= 255 e A = 87,56. Essas características não-lineares, ou mapeamentos de entrada-saída, são
explicitamente expressas na forma de uma tabela, onde as entradas são amostras PCM uniformes
de 13 ou 14-bits (CHU, 2003).

Em concordância com o teorema de Shannon-Nyquist e, levando em conta que o espectro
de voz utilizado em telefonia possui uma banda de 4 kHz, foi adotada, pelo padrão, uma taxa
de amostragem de 8.000 amostras/s com 256 níveis de quantização, resultando uma taxa de
transmissão de 64 kbits/s (CHU, 2003). Por ser o primeiro sistema digital de telefonia, o padrão
G.711 foi implantado em vária redes comutadas de telefonia pública (PSTNs, do inglês “Public

Switched Telephone Network”) (KONDOZ, 2004).

4.4.2 G.722 - SB-ADPCM

Em 1976, o ITU-T definiu o padrão G.722, essencialmente um codificador sub-banda cujo
sinal de entrada é dividido em regiões de baixas e altas frequências, posteriormente codificadas
separadamente utilizando-se a técnica de modulação por código de pulso diferencial adaptativo
(ADPCM, do inglês “Adaptive Differential Pulse Code Modulation”) (CHU, 2003). Foi proposto
para aplicações de áudio de alta qualidade, codificando a voz no espectro de 50 Hz a 7 kHz
(BARBOSA, 2008), operando a uma taxa de transmissão de 64 kbits/s, com codificação de 14
bits e frequência de amostragem de 16 kHz (CAVALCANTI, 2009).

No seu funcionamento, o sinal de entrada amostrado é dividido em duas sub-bandas de
iguais larguras, usando-se bancos de filtro de quadratura (QMF, do inglês “Quadrature Mirror

Filter”). Os filtros de sub-bandas hlow(n) e hhigh(n) satisfazem (SPANIAS; PAINTER; ATTI,
2007):

hhigh(n) = (−1)nhlow(n) e |Hlow(z)|2 + |Hhigh(z)|2 = 1. (17)

A sub-banda de baixa frequência é tipicamente quantizada em 48 kbits/s, enquanto a sub-
banda de alta frequência é codificada em 16 kbits/s (SPANIAS; PAINTER; ATTI, 2007). O G.722
inclui um esquema adaptativo de alocação de bits e possui três modos de operação, possíveis
graças à variação dos bits usados para representar o sinal de banda mais baixa (SPANIAS;
PAINTER; ATTI, 2007): 64, 56 e 48 kbits/s, sendo necessário, para os dois últimos, um canal

Capítulo 4. Codificação Digital da Voz 69

secundário auxiliar, que opera a taxas de 8 e 16 kbits/s, totalizando 64 kbits/s (CAVALCANTI,
2009). O padrão G.722 é comumente usado como referência para comparação com outros
codificadores (CHU, 2003).

4.4.3 G.726 - ADPCM

A recomendação G.726 do ITU-T, lançada em 1990, fornece um padrão que visa ser uma
evolução do padrão G.711, convertendo um canal PCM, de lei-µ ou lei-A, que opera a 64 kbits/s,
para um canal a 40, 32, 24 ou 16 kbits/s. A conversão é feita usando-se a técnica ADPCM (ITU-T,
1996). O G.726 incorpora três características em relação ao PCM do G.711: predição linear,
quantização adaptativa e codificação diferencial. No algoritmo do G.726 também é incorporado
um quantizador adaptativo e um preditor adaptativo com 2 pólos e 6 zeros. Os coeficientes do
preditor são adaptados baseados no sinal de entrada (GOLDBERG; RIEK, 2000), levando-se em
conta as características estatísticas, variantes no tempo, da voz (BARBOSA, 2008).

No codificador, o sinal de entrada PCM, de lei-µ ou lei-A, é convertido em um sinal
PCM uniforme, subtraído de um sinal estimado, quantizado em uma resolução menor de bits
e encaminhado para transmissão. Um quantizador inverso produz o sinal diferença novamente.
Nele, o sinal estimado é adicionado ao sinal diferença para produzir a versão reconstruída do sinal
de entrada. O sinal reconstruído e o sinal diferença são operados sobre um preditor adaptativo,
produzindo o sinal de entrada estimado e completando o laço de realimentação.

No processo de decodificação, o sinal amostrado é reconstruído a partir da soma do
sinal diferença com o sinal estimado pelo preditor adaptativo. Assim, após reduzir-se a taxa
de transmissão com o uso do ADPCM, o sinal é novamente transformado em PCM na taxa de
64 kbits/s (padrão G.711).

O G.726 possui uma qualidade praticamente idêntica ao G.711, porém consumindo
menos banda. Sua utilização perdeu espaço durante os anos 90, devido à sua incapacidade de
trabalhar com sinais de modem e de fax com taxas maiores que 12 kbits/s. No entanto, por exigir
pouco processamento, ainda desperta o interesse de quem implementa sistemas de telefonia e
transmissão de voz (CHU, 2003).

4.4.4 G.728 - LD-CELP

O G.728, recomendação lançada em 1992 pelo ITU-T, estabelece um padrão de
codificação de voz a 16 kbits/s, que utiliza um codificador de baixo atraso com predição linear
excitada a código LD-CELP (do inglês “Low-Delay Code-Excited Linear Prediction”) (ITU-T,
1992). Neste padrão, a essência das técnicas de codificação CELP, análise por síntese e busca em
um dicionário é mantida, no entanto uma adaptação de preditores é requerida para se conseguir
um atraso de 0,625 ms. O G.728 é largamente utilizado para aplicações que requerem um
algoritmo de baixo atraso (ITU-T, 1992).

Capítulo 4. Codificação Digital da Voz 70

Na codificação, após a conversão de PCM de lei-µ ou lei-A para PCM uniforme, o
sinal de entrada é segmentado em blocos de cinco amostras consecutivas. Para cada bloco,
o codificador analisa cada um dos 1024 vetores quantizados contidos no dicionário, sendo
previamente tratados pelos blocos de ganho e filtro de síntese, com o intuito de encontrar aquele
que minimize o erro médio quadrático. Realizado esses procedimentos, o sistema transmite
o índice da palavra código escolhida, contendo 10 bits de informação. Essa palavra é, então,
processada pela unidade de escalonamento e pelo filtro de síntese para estabelecer os novos
parâmetros a serem utilizados na codificação do próximo bloco. Os coeficientes dos blocos de
filtro de síntese e ganho são ajustados periodicamente de forma retroalimentada, baseados no
sinal quantizado e no ganho do bloco anterior (CAVALCANTI, 2009). O padrão G.726, talvez,
seja o codificador de baixo-atraso de maior sucesso disponível (CHU, 2003).

4.4.5 G.729 - CS-ACELP

Padronizado pelo ITU-T em 1996, o padrão G.729 é um codificador paramétrico ou
vocoder (BARBOSA, 2008). Ele utiliza uma forma de codificação algébrica de estrutura
conjugada com predição linear CS-ACELP (do inglês “Conjugate Structure-Algebraic Code

Excited Linear Prediction”) e codifica os sinais de áudio em quadros de 10 ms cada, com um
atraso de 15 ms, exigindo cerca de 20 MIPS para codificação e 3 MIPS para decodificação, com
uma qualidade de 8 kbits/s (SALAMI et al., 1997).

Baseado no codificador CELP, o modelo opera com quadros de 10 ms, que correspondem
a 80 amostras das 8.000 do PCM. Cada um dos quadros do sinal de voz é analisado para retirada
dos parâmetros do modelo CELP. Estes parâmetros são codificados e transmitidos ao meio,
totalizando 80 bits por quadro amostrado. O sistema utiliza o método da autocorrelação para
calcular os coeficientes dos filtros, empregando janelas assimétricas deslizantes de 240 amostras
de comprimento, deslocadas a cada 80 amostras (10 ms) (CHU, 2003). As janela assimétricas
são definidas por

w[n] =

{
0, 54− 0, 46 cos

(
2π
399

)
, n = 0, . . . , 199,

cos
(

2π(n−200)
159

)
, n = 200, . . . , 239.

(18)

O padrão G.729 foi concebido para transmitir sinais de voz com qualidade em
ambientes onde baixas taxas de codificação são de extrema importância, como em aplicações
de comunicação sem fio e circuitos transoceânicos. Apesar desse padrão ser extremamente
eficiente em termos de taxa de codificação, seus requisitos computacionais são extremamente
elevados. Dessa maneira, em maio de 1996 foi lançado o Anexo A da recomendação, mantendo a
operabilidade com o G.729 original e reduzindo a sua complexidade computacional. Em outubro

Capítulo 4. Codificação Digital da Voz 71

desse mesmo ano, foi homologado o Anexo B do padrão. Tal anexo descreve o gerador de ruído
de conforto e o detector de voz VAD, utilizados na implementação da compressão de silêncio
nos padrões G.729 e G.729A.

4.5 Sumário dos Codificadores

Nesta seção, busca-se fazer um resumo dos codificadores apresentados na seção anterior.
Como referência, a Tabela 4 resume as principais características de cada um desses codificadores.
Deve ser observado que a coluna MOS denota uma pontuação subjetiva atribuída aos codificado-
res de voz, que pode variar de 1 a 5. Uma pontuação superior a 3 indica que o codificador é de
boa qualidade.

Tabela 4 – Taxa de bits e pontuação MOS dos codificadores apresentados.

Codificador Taxa de bits MOS

G.711 64 4,4
G.722 64 4,5
G.726 40, 32, 24 e 16 4,3
G.728 16 4,2
G.729 8 3,9

Fonte: Produzido pelo autor.

72

5 UM NOVO PADRÃO DE CODIFICA-
ÇÃO DE VOZ

5.1 Introdução

Este capítulo é reservado ao sistema de codificação (vocoder) desenvolvido neste trabalho,
cuja proposta é reunir simplicidade de implementação, baixa complexidade computacional, taxa
de bits inferior aos tradicionais vocoders existentes e qualidade aceitável dos sinais de voz
produzidos. Este novo padrão de codificação de voz é baseado no Mascaramento Pleno em
Frequência por Oitava (MPFO), técnica publicada em (SOTERO FILHO; DE OLIVEIRA, 2009)
e (SOTERO FILHO; DE OLIVEIRA; CAMPELLO DE SOUZA, 2014), e que é fundamentada
no mascaramento auditivo em frequência, fenômeno psicoacústico já discutido no Capítulo 2. O
MPFO atua no espectro de magnitude em frequência de um sinal de voz, descartando amostras
potencialmente mascaradas por outras vizinhas de maior amplitude. A técnica é mais detalhada
durante a Seção 5.4

Neste capítulo, também, apresenta-se um método de preenchimento espectral via
distribuição beta de probabilidade, desenvolvido com o intuito de aperfeiçoar o estágio de síntese
do vocoder proposto. Este procedimento adiciona informação ao espectro simplificado pelo
MPFO, numa tentativa de aproximá-lo ao seu formato original e, dessa forma, obter melhorias
na inteligibilidade e no aspecto metalizado dos sinais de voz sintetizados.

Adicionalmente, introduz-se um inédito formato binário para armazenamento de sinais
de voz, o qual é representado pela extensão voz. Deve-se a esta nova representação a eficiente
compactação dos sinais fornecidos pelo sistema.

Ainda, são apresentados resultados de simulações para o vocoder proposto e exibidas
classificações, a partir de teste subjetivo ACR, da qualidade de alguns sinais de voz por ele
gerados.

5.2 Visão Geral do Sistema

Em geral, um sistema de codificação de voz é constituído por 3 estágios principais: pré-
processamento, análise e síntese do sinal de voz. Estes estágios compõem os seus 2 subsistemas
principais: codificador e decodificador.

No estágio de pré-processamento, o sinal de entrada é submetido a etapas de pré-
tratamento, a fim de permitir uma representação adequada para o estágio de análise. Estas
operações incluem a divisão do sinal, no domínio do tempo, em segmentos menores (segmenta-

Capítulo 5. Um Novo Padrão de Codificação de Voz 73

ção) e a suavização destes através de um janelamento. O estágio de análise descreve as operações
sofridas pelo sinal, a fim de alcançar um resultado final: uma representação no domínio da
frequência do sinal ao longo do tempo. O último estágio do vocoder é a síntese (ou, mais
precisamente, a ressíntese) do sinal de voz no domínio do tempo. A síntese descreve o processo
envolvido na criação de um novo sinal, no domínio do tempo, a partir dos segmentos, no domínio
da frequência, obtidos durante a fase de análise.

Figura 21 – Diagrama de blocos simplificado do vocoder proposto.

Sinal de
entrada

wav
Pré-Processamento Análise

CODIFICADOR

Síntese

Sinal
codificado

voz Sinal
de saída

wav

DECODIFICADOR

Fonte: Produzido pelo autor.

No sistema de codificação proposto, tanto o codificador quanto o decodificador contém
técnicas inovadoras desenvolvidas no Departamento de Eletrônica e Sistemas da UFPE. A Figura
21 apresenta um diagrama de blocos simplificado desse sistema. A descrição detalhada é dada
nas próximas seções.

5.2.1 Implementação do Sistema

O sistema de codificação de voz proposto neste trabalho foi desenvolvido através de
programas elaborados no MATLAB®. A escolha por essa linguagem de implementação foi
influenciada pelos seguintes fatores:

i. bastante difundida no meio acadêmico;

ii. ferramenta matemática completa disponível em qualquer plataforma de computação;

iii. sua sintaxe baseada em vetores esconde a maioria das complexidades não-importantes.

Os algoritmos implementados para o sistema tiveram a intenção de mesclar interatividade
com o usuário, através da interface gráfica do MATLAB®, e facilidade para simulações e testes de
suas rotinas. A Tabela 5 exibe uma listagem dos algoritmos utilizados para a implementação do
vocoder e suas respectivas funções. Os códigos fonte deles estão disponibilizados no Anexo A.

Capítulo 5. Um Novo Padrão de Codificação de Voz 74

Tabela 5 – Algoritmos do sistema de codificação de voz.

Algoritmo Função

VocCod Codificador (wav→ voz)
VocDec Decodificador (voz→ wav)

SpecStuffing Preenchimento Espectral via Distribuição Beta
SpecStuffWindow Preenchimento Espectral com Janelamento Extra

Fonte: Produzido pelo autor.

Como visto da tabela, o sistema é composto de dois algoritmos principais, um para o
codificador (análise), VocCod, e outro para o decodificador (síntese), VocDec; e dois algorit-
mos secundários, SpecStuffing e SpecStuffWindow, que são chamadas pelo decodificador. O
software de análise foi projetado para trabalhar com arquivos de voz do tipo wav, extensão
padrão para arquivos de áudio do Windows®. Na sua interface gráfica, Figura 22, o usuário pode
selecionar quaisquer arquivos wav que deseja codificar, ficando a cargo das rotinas internas do
programa a conversão das taxas de amostragem e bits de resolução desses arquivos para 8 kHz e
16 bits respectivamente, atributos necessários para o seu adequado funcionamento. Nele também
estão contidas as rotinas internas de pré-processamento (segmentação de 20 ms e janelamento de
Hamming sem superposição).

Figura 22 – Imagem da interface gráfica do codificador.

Fonte: Produzido pelo autor.

Capítulo 5. Um Novo Padrão de Codificação de Voz 75

Na rotina principal do VocCod, os arquivos wav são processados pelo método do MPFO,
produzindo vetores representativos do sinal, que são quantizados e codificados para o novo
padrão binário de codificação voz, detalhado durante a subseção 5.4.4. Este procedimento é
realizado através da interface gráfica do programa ao se pressionar o botão “processar”. O usuário
pode, também, salvar o arquivo voz com o nome que desejar. As etapas realizadas pelo VocCod
são dadas abaixo:

i. leitura dos arquivos de entrada wav;

ii. conversão das taxas de amostragem e bits de resolução para 8khz e 16bits, respectivamente;

iii. aplicação da FFT para quadros janelados de 20 ms com a janela de Hamming sem
superposição;

iv. processamento pela técnica do MPFO;

v. quantização e codificação das amostras de mascaramento e suas posições de ocorrência no
espectro;

vi. reunião das informações extraídas do sinal pelo estágio (iv), codificação e armazenamento
no formato binário voz.

Na síntese do sinal, o software de decodificação VocDec, que aceita como entrada apenas
arquivos com extensão binária voz produzidos pelo software de codificação VocCod, extrai as
informações codificadas e, através de suas rotinas específicas, remonta o espectro simplificado
para cada um dos quadros de voz segmentados na análise. O estágio, também, faz uso de
uma técnica de preenchimento espectral baseada na distribuição beta de probabilidade, que é
introduzida no decodificador através de dois algoritmos: SpecStuffing, para o preenchimento
espectral e SpecStuffWindow, para o preenchimento espectral com um janelamento de
Hamming extra.

A interface gráfica do software de decodificação VocDec é exibida na Figura 23. Nela,
o usuário pode inserir os arquivos voz gerados pelo codificador e escolher entre 4 tipos de
recomposição do sinal: (i) utilizando apenas o MPFO, (ii) MPFO acrescido da técnica de
preenchimento espectral, (iii) utilizando uma composição dos sinais em (i) e (ii), e (iv) utilizando
sinais de (ii) com um janelamento de Hamming extra. Estes procedimentos oferecem ao usuário
a possibilidade de avaliar a qualidade dos 4 sinais gerados e optar por aquele que mais o agradou.

Após escolher o tipo de recomposição, o usuário deve clicar o botão “processar” para
que o software inicie a decodificação do arquivo de entrada. Os quadros são concatenados e
reconvertidos para o formato wav, estando aptos a serem reproduzidos. Ao finalizá-la, é aberta
uma janela para que o usuário salve o arquivo wav com o nome que desejar.

Capítulo 5. Um Novo Padrão de Codificação de Voz 76

Figura 23 – Imagem da interface gráfica do decodificador.

Fonte: Produzido pelo autor.

As etapas realizadas pelo algoritmo de síntese são dadas abaixo:

i. leitura dos arquivo de entrada voz;

ii. remontagem dos espectros do sinal sintetizado a partir das informações binárias de entrada;

iii. introdução do preenchimento espectral para cada quadro de espectro da voz (dependendo
da opção escolhida para o processamento);

iv. aplicação da IFFT para cada um desses quadros;

v. concatenação dos quadros de voz;

vi. reconversão do sinal para o formato wav, para fins de reprodução.

As próximas seções trazem a descrição detalhada do sistema proposto.

Capítulo 5. Um Novo Padrão de Codificação de Voz 77

5.3 Pré-Processamento do Sinal

O primeiro estágio do vocoder proposto consiste em um pré-processamento do sinal
lido de um arquivo wav. Este procedimento é necessário em processamento de voz, visto que as
características desses sinais têm algumas peculiaridades que precisam ser previamente tratadas.

Como o sistema desenvolvido é exclusivo para sinais de voz, que possuem a maior parte
de sua energia concentrada numa faixa limitada de frequências, faz-se necessário utilizar uma
taxa de amostragem que leve em consideração essa característica. Além disso, deve-se respeitar a
condição imposta pelo teorema da amostragem (DE OLIVEIRA, 2007) para que não haja perda
de informação: a frequência de amostragem deve ser maior que o dobro da maior frequência
contida no sinal a ser amostrado. A partir desses requisitos, e considerando a máxima frequência
do sinal de voz igual a 4 kHz, adota-se 8 kHz como taxa de amostragem para o sistema.

5.3.1 Segmentação da Voz

A segmentação consiste em particionar o sinal de voz em blocos de duração definida, cujo
tamanho é escolhido dentro dos limites de estacionariedade do sinal (RABINER; SCHAFER,
1978). Um sinal é dito estacionário quando suas características estatísticas não variam com o
tempo (LATHI, 1989). Uma vez que a voz é um sinal de natureza aleatória e sabendo-se que
o trato vocal muda muito lentamente na voz contínua, muitas partes da onda acústica podem
ser assumidas como estacionárias num intervalo de curtíssima duração (entre 10 e 40 ms)
(OPPENHEIM; SCHAFER; BUCK, 1999). No trabalho, são utilizados segmentos de 20 ms,
valor usualmente utilizado para processamento de sinais de voz.

A segmentação é, portanto, a operação de multiplicar intervalos sucessivos do sinal de
voz no domínio do tempo, por um pulso retangular contendo um número definido de amostras e
que pode ser referido como uma janela retangular. Uma vez que a multiplicação no domínio do
tempo equivale à convolução no domínio da frequência, a janela retangular produz uma distorção
do sinal, no domínio da frequência, que deve estar dentro dos limites toleráveis da aplicação.
Assim, para suavizar a sobreposição e evitar efeitos de distorção intoleráveis, são utilizados
janelas especiais para realizar a segmentação, tais como as que serão descritas a seguir.

5.3.2 Janelamento

A utilização do janelamento é uma forma de se conseguir aumentar as informações
espectrais de um sinal amostrado (SILVA, 2006). Esse “aumento” de informação é decorrente da
minimização das margens de transição em forma de ondas truncadas e de uma melhor separação
do sinal de pequena amplitude de um sinal de grande amplitude, com frequências muito próximas
umas das outras. Algumas janelas comumente utilizadas são descritas em seguida. Todas elas
estão, também, disponíveis em funções internas do MATLAB®.

Capítulo 5. Um Novo Padrão de Codificação de Voz 78

• Janela Retangular: Essa janela apenas particiona o sinal em blocos consecutivos de mesmo
tamanho. Sua formulação é dada por

w[n] =

{
1, 0 ≤ n ≤M,

0, caso contrário,
(1)

em que M + 1 é o tamanho da janela.

• Janela de Hamming: Proporciona a manutenção das características espectrais do centro
do quadro e a eliminação das transições abruptas das extremidades (SILVA, 2006). Esta
janela é representada por

w[n] =

 0, 54− 0, 46 cos

(
2πn

M

)
, 0 ≤ n ≤M,

0, caso contrário.
(2)

• Janela de Hanning: Apresenta características parecidas com a janela de Hamming, en-
tretanto ela gera um reforço maior nas amostras centrais e uma suavização maior nas
amostras das extremidades. Esta janela é formulada por

w[n] =

 0, 5− 0, 5 cos

(
2πn

M

)
, 0 ≤ n ≤M,

0, caso contrário.
(3)

• Janela de Kaiser - É uma janela mais flexível que as demais. Através do ajuste do parâ-
metro β, sua forma pode ser modificada. Dessa forma, dependendo da aplicação, pode-se
modificar a forma da janela para controlar a perda espectral. Sua equação é expressa por

w[n] =


I0

β√1−
(
n− α
α

)2


I0(β)
, 0 ≤ n ≤M,

0, caso contrário,

(4)

Capítulo 5. Um Novo Padrão de Codificação de Voz 79

em que α = M/2, e I0(·) representa a função de Bessel modificada de ordem zero
de primeiro tipo (OPPENHEIM; SCHAFER; BUCK, 1999).

As janelas definidas anteriormente são comumente usadas para análise espectral e tam-
bém para projeto de filtros de resposta ao impulso finita (FIR) (OPPENHEIM; SCHAFER;
BUCK, 1999). As formas no domínio do tempo e no domínio da frequência dessas janelas são
mostradas, respectivamente, nas Figuras 24 e 25.

Figura 24 – Ilustração da forma das janelas citadas.

w[
n]

1

0.8

0.6

0.4

0.2

0 M/4 M/2 3M/4 M
n

Hammig
Hanning
Kaiser
Retangular

Fonte: Produzido pelo autor.

Dois efeitos ocorrem como resultado da aplicação das janelas no sinal: resolução em
frequência reduzida e escoamento espectral (leakage). A resolução é influenciada pela largura
do lobo principal, enquanto que o grau de escoamento depende do quociente entre a amplitude
máxima do lobo principal e a amplitude máxima do primeiro lobo lateral. Uma boa resolução
temporal requer uma janela de curta duração. Em contrapartida, uma boa resolução em frequência
requer uma janela de longa duração, com um lobo principal mais estreito. Uma vez que a
atenuação da janela é essencialmente independente da duração da janela, aumentando-se o valor
de M , diminui-se a largura de seu lobo principal (KONDOZ, 2004).

Capítulo 5. Um Novo Padrão de Codificação de Voz 80

Figura 25 – Gráfico da resposta em frequência das funções janela descritas: (a) Retangular, (b)
Hamming, (c) Hanning, (d) Kaiser β = 7.8.

20
lo

g|
W

(𝜔
)|

20
lo

g|
W

(𝜔
)|

20
lo

g|
W

(𝜔
)|

(a) (c)

(b) (d)

0.0

-20.0

-40.0

-60.0

-100.0

-80.0

20
lo

g|
W

(𝜔
)|

𝜋

𝜔

𝜋

𝜔
0.0

-20.0

-40.0

-60.0

-100.0

-80.0

0.0

-20.0

-40.0

-60.0

-100.0

-80.0

0.0

-20.0

-40.0

-60.0

-100.0

-80.0

𝜋

𝜋

𝜔

𝜔

Fonte: Adaptado de Kondoz (2004).

Como se pode observar da Figura 25, o lobo principal da janela retangular é quase que
metade do lobo principal das janelas de Hamming e Hanning. Entretanto, os lobos laterais dessas
últimas são bem menores que os da retangular. O primeiro lobo lateral da janela de Hanning é
aproximadamente 20 dB maior do que o da de Hamming, mas os lobos seguintes diminuem mais
rapidamente do que os da janela de Hamming (SILVA, 2006).

O alto escoamento espectral produzido pelos largos lobos laterais faz o janelamento
através da janela retangular parecer mais ruidoso para a voz, dificultando a discriminação de
componentes de baixa amplitude. Essa indesejável característica entre harmônicos adjacentes
tende a minimizar os benefícios de uma resposta no domínio do tempo plana (maior resolução em
frequência) para a janela retangular. Já nas janelas de Hamming e Hanning, os lobos secundários
menores permitem uma melhor detecção desses componentes (KONDOZ, 2004). A janela de
Kaiser, por possuir um parâmetro de ajuste, permite quantificar o compromisso entre a largura
do lobo principal e a atenuação do lobo lateral.

Uma forma de se aumentar a correlação entre janelas sucessivas é através da superposição
de janelas, evitando variações bruscas entre as características extraídas de janelas adjacentes
(RABINER; SCHAFER, 1978). Entretanto, esta superposição requer um maior complexidade de
implementação, não sendo possível sua implementação para esse trabalho.

Capítulo 5. Um Novo Padrão de Codificação de Voz 81

Diante de todos esses fatos, a escolha da janela a ser utilizada é, então, uma questão de
avaliação da relação custo-benefício entre um lobo principal estreito e lobos laterais pequenos.
No trabalho proposto, o janelamento de Hamming (com janelas de 20 ms), sem superposição, é
o escolhido por apresentar características espectrais interessantes e suavidade nas bordas (CHU,
2003) (OPPENHEIM; SCHAFER; BUCK, 1999).

Terminado o pré-processamento do sinal, passa-se ao estágio de análise dos sinais de
voz através da técnica do MPFO. O procedimento é abordado a seguir.

5.4 Análise da Voz pela Técnica do MPFO

O estágio de análise é o responsável por introduzir a técnica do MPFO sobre o sinal de
voz, a fim de se obter um espectro simplificado do sinal e reduzir a taxa de bits necessária para o
codificação. A priori, o sistema identifica casos de mascaramento em cada uma das oitavas. O
estágio descarta sinais que “não seriam audíveis” devido a este fenômeno auditivo e despreza,
por completo, a fase do sinal. A escolha pelo particionamento do espectro em oitavas tem haver
com as bandas críticas da audição, que também possuem larguras de banda não-uniformes. O
intuito foi investigar o efeito das amostras de mascaramento sobre as mascaradas dentro de uma
oitava. A Figura 26 exibe o diagrama detalhado do codificador do vocoder proposto.

Figura 26 – Diagrama de blocos detalhado do codificador proposto.

Sinal de entrada
wav

PRÉ-PROCESSAMENTO

Segmentação
(20 ms)

Janelamento
(Hamming)

ANÁLISE

FFT
N = 160

Divisão do espectro
em 5 Oitavas

MPFO
Retenção das amostras

mascaradas e suas
posições de ocorrência

Gravação para o
vozformato

Concatenação de blocos
com informações retidas

anteriormente

Quantização e
Codificação das

amostras e posições

Sinal Codificado
voz

Fonte: Produzido pelo autor.

Capítulo 5. Um Novo Padrão de Codificação de Voz 82

5.4.1 Características Psicoacústicas do Sistema Auditivo Humano

Como na maioria dos sistemas de codificação de voz eficientes, os vocoders aproveitam-
se de certas propriedades auditivas do sistema auditivo humano para reduzir as taxas de bits. A
técnica aqui proposta, além de tomar como base para sua implementação o mascaramento em
frequência, aproveitou-se também da insensibilidade do ouvido humano em relação à fase do
som.

5.4.1.1 Insensibilidade à Fase do Som

O ouvido humano apresenta mais uma característica peculiar em relação à sua percepção
auditiva: praticamente não consegue distinguir diferenças em relação à fase de um sinal sonoro.
O processo pode ser explicado examinando-se como um som se propaga por um ambiente.
Qualquer som que se propaga e que chega aos nossos ouvidos atravessa diversos obstáculos
e percorre caminhos distintos. Parte do som chega defasada das demais, mas tal diferença é
minimamente sentida pelos ouvidos (OPPENHEIM; SCHAFER; BUCK, 1999). A informação na
voz humana é principalmente concentrada nas amplitudes das frequências. Desta forma, diversos
codificadores de voz desconsideram a fase do sinal no estágio de análise, considerando esta
percepção como desprezível. Baseado nesse fato, o vocoder proposto descartará as características
de fase do espectro, considerando apenas a amplitude das amostras.

5.4.2 Simplificação do Espectro Via MPFO

De posse dos sinais pré-processados, pode-se iniciar a etapa da análise propriamente dita
do sinal. O procedimento é descrito a seguir.

Para cada segmento do sinal de voz janelado, aplica-se uma FFT de comprimento 160
(número de amostras contidas em um quadro de 20 ms de voz), obtendo-se sua representação no
domínio frequencial. A partir daí, divide-se a região do espectro da magnitude do sinal em zonas
de influência (oitavas). Devido a frequência mínima dos sinais de voz ser acima dos 300 Hz, a
faixa de frequências entre 32 e 256 Hz não é considerada na análise, já que não possui informação
prática. A primeira oitava utilizada corresponderá à faixa de frequências de 256 Hz–512 Hz,
a segunda cobrindo a banda de 512 Hz–1024 Hz, e assim por diante. A quarta (última oitava)
irá corresponder à faixa de 2048 Hz–4000 Hz (notando-se que em 4 kHz o espectro simétrico,
produzido pela FFT, começa a se repetir). A Tabela 6 exibe essa divisão.

Como se está fazendo uso de uma taxa de amostragem de 8 kHz, cada amostra da
magnitude do espectro corresponderá a uma amostra espectral múltipla de 50 Hz, sendo que
a primeira amostra irá representar a componente DC de cada quadro de voz [6]. Como essa
amostra tem pouca informação útil, já que representa apenas um offset do sinal, será prontamente
desconsiderada da análise. Já que as raias espectrais caminham a passos de 50 Hz, a primeira
oitava (de 256 Hz a 512 Hz), será representada pela amostras espectrais de 300, 350, 400, 450 e

Capítulo 5. Um Novo Padrão de Codificação de Voz 83

Tabela 6 – Número de frequências estimadas pela DFT de comprimento 160 em cada oitava do
espectro vocal.

Oitavas (Hz) # amostras
espectrais/oitava

256 - 512 5
512 - 1024 10

1024 - 2048 20
2048 - 4096 39

total 74

Fonte: Produzido pelo autor.

500 Hz, a segunda oitava (512 Hz a 1024 Hz) pelas amostras de 550 Hz, 600, 650, 700,..., 1000
Hz, seguindo-se o mesmo raciocínio para as demais. Terminado esse procedimento inicial de
divisão do espectro em oitavas e de descarte de amostras espectrais sem relevância, passa-se
agora a buscar em cada oitava, em todas as quatro sub-bandas do sinal de voz, o ponto da FFT
de maior magnitude, i.e., aquele que irá (potencialmente) mascarar os demais. Essa amostra
espectral passará a ser o único representante dentro de cada oitava (por opção, para reduzir a
complexidade). As demais serão desconsideradas, assumindo valor espectral nulo. O algoritmo
guarda em que posição no espectro de frequências o tom de mascaramento ocorreu, procedimento
útil para a correta remontagem do espectro pelo sintetizador. O total de 79 frequências oriundas
da estimativa da DFT é reduzido para 4 sobreviventes em adição às suas 4 respectivas posições
de ocorrência (retendo pouco mais do que 10% das componentes espectrais). Para cada quadro
de voz, as amostras sobreviventes e as posições de ocorrência serão quantizadas e codificadas
separadamente, sendo salvas no formato binário voz, cuja composição será explicada mais
adiante. Os procedimentos de quantização e codificação serão vistos em seguida.

5.4.3 Quantização e Codificação dos Sinais de Voz

Na quantização dos quadros de voz utilizou-se o método mais comum de quantização, a
quantização uniforme. Para simplificar a codificação binária, fez-se uso de um número de níveis
coincidente com uma potência de 2, de modo a otimizar o número n de bits de codificação por
amostra. A máxima excursão do sinal (no caso o tom de maior magnitude do espectro completo
do sinal de voz) foi assim dividida em 256 intervalos de mesmo comprimento, sendo cada um
deles representado por uma única palavra-código de 8 bits. Como não há amostras negativas a
serem quantizadas, já que a magnitude do espectro não apresenta valores negativos, o quantizador
utilizado não pode ser bipolar, sendo necessário uma reconfiguração apropriada dos níveis. Uma
rotina do software de análise VocCod foi especificamente projetada para esse fim. A quantização
das posições não foi necessária, visto que elas são números inteiros.

Com a finalidade de se reduzir o número de bits necessário à codificação dos quadros

Capítulo 5. Um Novo Padrão de Codificação de Voz 84

de voz, o algoritmo de alocação dos bits levou em consideração o comprimento da oitava. À
medida que se diminui o número da oitava, reduz-se pela metade a faixa de frequências que
ela cobre e, dessa forma, um menor número de bits é necessário para a adequada codificação
das posições em que as amostras espectrais de mascaramento ocorreram. Essas posições, em
oitavas sucessivas (caminhando no espectro em relação às altas frequências), necessitam de mais
um bit pra a sua correta representação. Por exemplo, um tom de mascaramento que acorra na
primeira oitava (256–512 Hz), tem 5 possíveis posições de ocorrência (posição 7 à posição 11),
todas elas podendo ser completamente representadas por uma palavra-código de 4 bits. Já na
oitava seguinte (512–1024 Hz) a posição máxima em que o tom de mascaramento pode ocorrer
(21a – que corresponde a frequência de 1 kHz) pode ser codificada por um palavra-código de 5
bits. Nas duas oitavas subsequentes, as posições máximas são as posições 41 (descrita por uma
palavra de 6 bits) e 80 (representada por uma palavra de 7 bits), respectivamente. Para os valores
máximos das amplitudes das amostras espectrais de mascaramento são reservados 8 bits (1 byte)
para a sua representação, já que foram escolhidos 256 níveis de quantização. O número de bits
alocados para cada um desses parâmetros é mostrado na Tabela 7. Como já discutido antes, a
fase do sinal não é considerada.

Tabela 7 – Alocação dos bits para um quadro de voz de 20 ms.

Oitava Parâmetro bits

1 amostra espectral de mascaramento 8
posição da amostra de mascaramento 4

2 amostra espectral de mascaramento 8
posição da amostra de mascaramento 5

3 amostra espectral de mascaramento 8
posição da amostra de mascaramento 6

4 amostra espectral de mascaramento 8
posição da amostra de mascaramento 7

total 54
Fonte: Produzido pelo autor.

Vê-se que para cada quadro de voz de 20 ms, são necessário apenas 54 bits (22 para as

posições e 32 para os valores dos tons de mascaramento), levando a uma taxa de
54

20× 10−3
bits/s

ou 2,7 kbits/s.

Capítulo 5. Um Novo Padrão de Codificação de Voz 85

5.4.4 Formato Binário voz

A alocação dos bits para cada quadro de voz, sumarizada na Tabela 7, sugere que se
pense numa representação binária de armazenamento. Foi então proposto o formato voz, que é
constituído pela concatenação de todos os quadros codificados. O conceito de um quadro deste
formato é apresentado na Figura 27.

Figura 27 – Ilustração da configuração de um quadro de 20 ms do formato binário voz

Oitava 1

1 byte 4 bits

amostra
espectral de

mascaramento

posição
de

ocorrência

Oitava 2 Oitava 3 Oitava 4

1 byte 1 byte 1 byte

amostra
espectral de

mascaramento

posição
de

ocorrência

amostra
espectral de

mascaramento

posição
de

ocorrência

amostra
espectral de

mascaramento

posição
de

ocorrência

Repete. . .5 bits 6 bits 7 bits

Fonte: Produzido pelo autor.

Vê-se que os 54 bits são distribuídos em 4 sub-blocos (um para cada oitava utilizada)
compostos pelo valor da amostra de mascaramento associada à sua respectiva posição no espectro.
A concatenação de vários desses quadros forma o formato binário voz. Os arquivos de voz de
entrada, antes no formato wav, são todos convertidos para esse novo padrão através do software
de codificação VocCod.

O software de decodificação VocDec, que possui uma rotina de recomposição do espectro
sintetizado projetada para reconhecer início e término de um novo quadro de 20 ms, consegue
recuperar o sinal de voz sintetizado, transformando-o novamente para o formato wav. A seção
seguinte aborda este processo.

5.5 Síntese da Voz

O objetivo do estágio de síntese é reconstruir os sinais de voz codificados pelo estágio
de análise. Para que isso seja possível, é necessário que os dados alimentados ao sintetizador
estejam codificados no formato binário voz. O algoritmo, então, processa esses dados, identifica
o início e o final de cada quadro de voz e, a partir daí, reconstrói o espectro sintetizado através
dos valores de suas amostras espectrais e de suas respectivas posições de ocorrência no espectro.

No estágio de análise emprega-se o MPFO para simplificar o espectro de cada quadro
de voz. Tal procedimento, apesar de conseguir manter uma voz inteligível na recuperação do
sinal, resulta numa configuração de amostras muito isoladas e espaçadas no espectro. Visando
aprimorar essa representação, melhorando a inteligibilidade e a característica metalizada da voz
gerada, e suavizando a abrupta transição entre amostras em oitavas adjacentes, atribuiu-se ao
sintetizador a técnica do preenchimento espectral via distribuição beta. Cada oitava possui uma

Capítulo 5. Um Novo Padrão de Codificação de Voz 86

distribuição beta particular, que são atualizadas a cada novo quadro de voz. O pico (ou a moda) -
descrita mais adiante - de cada uma dessas distribuições é definido como sendo igual ao valor
da amostra sobrevivente da simplificação pelo MPFO. A Figura 28 exibe o diagrama de blocos
detalhado do estágio de síntese (decodificador) do vocoder proposto.

Figura 28 – Diagrama de blocos detalhado do estágio de síntese (decodificador).

Sinal codificado
voz

SÍNTESE

Reconstrução dos
Espectros simplificados

pelo MPFO

Preenchimento
Espectral

Concatenação dos
quadros de voz

no domínio do tempo
Gravação para o

IFFT
N =160

Sinal de Saída

wavformato

wav

Fonte: Produzido pelo autor.

5.5.1 Preenchimento Espectral via Distribuição Beta

A distribuição beta é uma distribuição de probabilidade contínua definida no intervalo
0 ≤ x ≤ 1, sendo caracterizada por um par de parâmetros α e β , de acordo com a equação
(ANDRADE, 2007):

P (x) =
1

B(α, β)
xα−1(1− x)β−1, 1 < α, β <∞, (5)

em que B(α, β) = Γ(α)Γ(β)
Γ(α+β)

é um fator de normalização, Γ(·) é a função gama e B(·, ·) é a
função Beta. A Figura 29 ilustra esta distribuição para alguns valores de α e β.

Capítulo 5. Um Novo Padrão de Codificação de Voz 87

Figura 29 – Ilustração da curva de distribuição Beta para alguns valores de α e β.

2.5

2

1.5

1

0.5

0

P(
x)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α=2, β=5
α=2, β=2
α=3, β=3
α=3, β=2

x
Fonte: Produzido pelo autor.

O ponto da curva onde ocorre a máxima distribuição de probabilidade é chamado de
moda, e o seu valor é obtido pela seguinte expressão:

moda =
α− 1

α + β − 2
. (6)

5.5.1.1 Metodologia Empregada

Para correta implementação do método do preenchimento espectral, faz-se necessário
manipular a expressão original da distribuição beta de forma que o seu intervalo de representação,
que é definido apenas para o intervalo [0,1], passe a conter o limite de transição entre uma oitava
e sua vizinha. É necessário, também, adotar o valor da moda da distribuição como sendo o valor
da amostra sobrevivente por oitava.

Partindo-se da expressão original da distribuição beta dada pela Equação (5), faz-se uma
expansão da curva de tal maneira que o limite superior seja correspondente a diferença entre as
frequências de corte normalizadas superior (fM) e inferior (fm) de cada oitava, isto é, fM − fm.
Essas frequências de corte precisam ser normalizadas, uma vez que o limite de frequências das
oitavas (256–512 Hz, 512–1024 Hz, etc) não são múltiplos de 50 Hz, que é o valor de passo do
espectro para a taxa de amostragem utilizada (8 kHz). Posteriormente, desloca-se a curva de
um valor fm de forma que os limites inferior e superior sejam fm e fM , respectivamente. Ao
realizar-se esses procedimentos, é necessário também ajustar o valor da moda, que passa a ser

Capítulo 5. Um Novo Padrão de Codificação de Voz 88

representada por

novamoda =
α− 1

α + β − 2
(fM − fm) + fm. (7)

O novo valor da moda deve corresponder ao valor da amostra predominante normalizada
resultante das oitavas (fc), ou seja:

novamoda =
α− 1

α + β − 2
(fM − fm) + fm = fc. (8)

A partir dessa expressão e após algumas manipulações, obtém-se uma relação entre α e β
expressa pela Equação (9) e que será útil na representação da nova expressão da distribuição.

β − 1 = (α− 1).Q, (9)

em que Q =
fM − fm
fc − fm

.

A expressão final, àquela utilizada no algoritmo de preenchimento espectral em cada
quadro, é dada por

P (x) =

(
1

fM − fm

)α+β−2

(x− fm)α−1(fM − x)β−1. (10)

O valor de α, na expressão, é um parâmetro de expansão ou compressão da curva. Quanto maior
o seu valor mais estreita ela se torna. Os valores de α usados foram variados de oitava para oitava,
adequando-os para uma melhor qualidade da voz sintética. A partir de testes, os valores de α que
mais se adequaram foram: α = 4 para a primeira e segunda oitava, α = 7 para a terceira e quarta
oitava.

Dada a simetria dos espectros gerados pela FFT, faz-se necessário preencher as metades
espelhadas dos espectros para a correta recomposição dos sinais; ou um espelhamento para
reduzir a complexidade do algoritmo. Se qualquer um desses procedimentos não forem realizados,
sinais temporais de natureza complexa são gerados incorretamente.

A Figura 30 ilustra a magnitude do espectro de um quadro de sinal de voz teste,
representada antes (a) e depois (b) do processo de simplificação pelo MPFO; por último,
representada com o preenchimento espectral via distribuição beta (c).

Capítulo 5. Um Novo Padrão de Codificação de Voz 89

Figura 30 – Representação do espectro obtido pela FFT de um quadro teste de voz, para três
situações distintas: (a) Espectro do sinal original, (b) Espectro simplificado pelo
MPFO, (c) Espectro anterior preenchido via distribuição beta.

|A
m

pl
itu

de
|

14

12

10

8

6

4

2

0 0 1000 2000 3000 4000
Frequência (Hz) Frequência (Hz)

Frequência (Hz)

|A
m

pl
itu

de
|

14

12

10

8

6

4

2

0
0 1000 2000 3000 4000

|A
m

pl
itu

de
|

14

12

10

8

6

4

2

0
0 1000 2000 3000 4000

(a) (b)

(c)

Fonte: Produzido pelo autor.

Após realizar-se o preenchimento espectral em cada quadro de voz (Figura 30 (c)),
passa-se a uma das últimas fases do processo de recomposição do sinal de voz: a transformação
do domínio frequencial para o domínio temporal. Tal transformação é conseguida através da
transformada rápida inversa de Fourier (IFFT) de mesmo comprimento dos quadros (20 ms). Os
quadros transformados para o domínio do tempo são concatenados um a um (sem superposição)
para formar um único bloco. Em seguida, são convertidos para um arquivo com extensão wav,
com 16 bits por amostra e frequência de amostragem de 8 kHz, para que possa ser reproduzido.
Dessa forma, estará completo o processo de recuperação do sinal.

Capítulo 5. Um Novo Padrão de Codificação de Voz 90

5.6 Simulações e Classificações da Qualidade de Voz

Para as simulações, foram utilizados diversos arquivos de voz, muitas deles sendo
aproveitados do banco de vozes do sistema de RAL proposto nessa dissertação e que será
descrito no capítulo 7. Foi interessante usar algumas dessas frases (“amanhã ligo de novo” e o
“prazo tá terminando”) para diversos locutores diferentes (com ambos os sexos, variadas idades
e etc), por elas apresentarem tanto fonemas nasalados como vocalizados, dando assim uma
visão geral da qualidade dos sinais gerados. Os resultados das simulações foram focados na
inteligibilidade e qualidade de voz versus taxa de bits.

De início, as simulações foram realizadas sem considerar a técnica do preenchimento
espectral via distribuição beta na análise. A intenção foi comparar o efeito deste método na
qualidade do sinal de voz sintetizado. Por descartar grande parte das amostras espectrais, os
sinais gerados apresentaram uma redução na qualidade em comparação aos sinais originais,
tendo como característica principal um som metálico típico dos vocoders. Entretanto, mesmo
contendo essa característica, a maioria dos sinais de voz recuperados foram inteligíveis, inclusive
em simulações com sinais de voz feminina que, em geral, apresentam mais componentes de alta
frequência (susceptivelmente mais afetadas pelos ruídos).

Em relação as simulações efetuadas com a utilização do preenchimento espectral,
observou-se uma melhora no caráter metálico da voz, elevando sua qualidade e inteligibilidade,
mas, em contrapartida, notou-se a presença de ruídos mais fortes nos sinais gerados em
comparação aos gerados sem a sua utilização. Acredita-se que este fato esteja associado ao não
emprego do janelamento com superposição no processo de recuperação do sinal, que por questão
de complexidade não foi implementado. Talvez, a suavização proposta no domínio frequencial
tenha causado, no domínio temporal, descontinuidades mais acentuadas entre quadros adjacentes,
sendo essa, possivelmente, uma das causas do ruído mais acentuado.

A inviabilidade da utilização, nesta primeira versão do sistema, da superposição de
janelas, tentando reduzir o ruído causado pelo preenchimento espectral, sugeriu que fossem
tentados outros procedimentos de mais fácil implementação para eliminá-lo ou reduzi-lo. Um
deles foi gerar um novo sinal, a partir da soma ponderada dos sinais produzidos sem e com
a utilização da técnica de preenchimento espectral, tentando balancear os efeitos positivos e
negativos de cada abordagem. Os sinais gerados sem preenchimento apresentaram menos ruído,
mas, em compensação, soaram mais metálicos do que os sinais gerados com o preenchimento.
Essa composição ganhou em naturalidade, mas em compensação introduziu ainda ruído. Nos
testes de classificação de voz, realizados com algumas pessoas, foi observado que umas optaram
pelos arquivos gerados com essa composição e outras optaram pelos sem a composição,
levando-se em consideração o preenchimento espectral. Com a finalidade de suavizar as
transições entre quadros adjacentes, foi proposto um janelamento adicional de Hamming aos
quadros já novamente transformados para o domínio do tempo. Esse procedimento reduziu
consideravelmente o ruído, melhorando-no significativamente e tornando os sinais bem mais

Capítulo 5. Um Novo Padrão de Codificação de Voz 91

agradáveis de se ouvir.

Os testes foram realizados com um grupo de indivíduos leigos, ou seja, não treinado
para o teste. Esse conjunto é mais adequado, pois se aproxima mais da média da população. A
qualidade de voz foi estimada a partir do teste subjetivo ACR. Durante esse teste, os ouvintes
foram convidados a classificar a qualidade de voz dos arquivos de saída levando em consideração
uma escala absoluta de 1 a 5 (muito ruim – excelente). A partir da média das respostas dadas
por eles, gerou-se um valor médio MOS para o vocoder. A principal dificuldade durante esses
testes foi que as pessoas leigas não estavam familiarizadas com vocoders de baixa taxa de bits e
ficaram confusas entre um som disarmônico, abafado, com zumbido, com qualidade nasal e com
ruído adicionado após a codificação. Mesmo assim, os testes foram conduzidos. Foram testados
quatro tipos de sinais gerados:

1. Sinais produzidos sem o uso da técnica de preenchimento espectral;

2. Sinais produzidos com o uso da técnica de preenchimento espectral;

3. Sinais formados pela composição dos dois últimos;

4. Sinais do item 2, usando um janelamento de Hamming extra.

A Tabela 8 exibe os resultados obtidos nesses testes.

Tabela 8 – Resultado do teste ACR para as 4 variações do vocoder proposto.

Codificador MOS

Proposto (1) 3,0
Proposto (2) 2,5
Proposto (3) 2,8
Proposto (4) 3,0

Fonte: Produzido pelo autor.

A Tabela 9 exibe uma comparação das taxa de bits e pontuação MOS entre as variações
do vocoder proposto e os codificadores tradicionais citados no trabalho. Comparando-se com
as pontuações MOS obtidas pelos codificadores tradicionais, os resultados obtidos a partir das
variações do vocoder proposto foram válidos, dada a reduzida taxa de bits (2.7 kbits/s) e a baixa
complexidade empregada em sua implementação. Logicamente que essa comparação é desleal
com esses codificadores, já que os valores MOS obtidos para eles foram muito mais criteriosos e
realizados com um vasto número de ouvintes, ou até mesmo utilizando métodos objetivos como
o PESQ.

Capítulo 5. Um Novo Padrão de Codificação de Voz 92

Tabela 9 – Taxa de bits e pontuação MOS dos vocoders propostos e dos codificadores
apresentados.

Codificador Taxa (kbits/s) MOS

Proposto (1) 2,7 3,0
Proposto (2) 2,7 2,5
Proposto (3) 2,7 2,8
Proposto (4) 2,7 3,0

G.711 64 4,4
G.722 64 4,5
G.726 40, 32, 24 e 16 4,3
G.728 16 4,2
G.729 8 3,9

Fonte: Produzido pelo autor.

Pode-se observar, também, pela Tabela 9 que o ruído ainda é um fator que desagrada
muito numa avaliação desse tipo, refletindo num menor valor MOS para os sinais mais ruidosos,
aqueles produzidos através da técnica do preenchimento espectral.

93

6 RECONHECIMENTO AUTOMÁTICO
DE LOCUTOR

6.1 Introdução

Os seres humanos são capazes de distinguir pessoas meramente ouvindo-as falar.
Diferenças, ainda que sutis, de timbre, sotaque ou entonação, possibilitam a distinção de uma
pessoa de outra apenas pela sua voz. Geralmente, curtos trechos de fala (2 a 3 segundos) são
suficientes para o reconhecimento de uma voz familiar.

A área de PDSV que torna possível o reconhecimento de pessoas pela voz por meio
de máquinas é chamada de Reconhecimento Automático de Locutor (RAL), termo genérico
que se refere à tarefa de discriminar pessoas baseando-se apenas nas características vocais
(PARANAGUÁ, 1997). A identidade de uma pessoa através de sistemas de RAL tem o intuito
de incrementar a confiabilidade em diversas aplicações de segurança (PETRY, 2002), dentre as
quais:

• Aplicações bancárias: Por meio da voz, pode-se desejar que uma senha seja associada a
um cliente para verificação de sua identidade (e.g., consulta de saldos por telefone). Tal
procedimento poderia também ser estendido aos caixas 24 horas. A confiabilidade de tais
sistemas deve ser alta;

• Controle de acesso a áreas restritas: A tecnologia de RAL pode ser útil para restringir o
número de pessoas a locais específicos como instalações militares, laboratórios, presídios
etc., possibilitando o acesso de forma segura, prática e confiável;

• Controle de acesso em softwares: Informações confidencias podem estar guardadas em
alguns locais específicos em computadores. Pode ser requerido que essas informações
sejam apenas acessadas por algumas pessoas. Usando-se o RAL, pode ser feita uma
autenticação da identidade das pessoas, permitindo ou não o acesso delas;

• Aeroportos: Com a finalidade de se evitar fraudes em aeroportos, cartões de embarque
podiam conter amostras de voz dos passageiros.

• Ponto eletrônico: Um artifício usado em empresas para registrar a presença de um
funcionário, bem como para controlar a sua entrada e saída, é o chamado ponto eletrônico.
Normalmente, esse controle é feito por cartões magnéticos, que não contem nenhuma
informação mais apurada do usuário, permitindo que outras pessoas tenham a possibilidade
de fraudar esse controle. A introdução de sistemas de RAL pode aumentar a confiabilidade
e a segurança do processo;

Capítulo 6. Reconhecimento Automático de Locutor 94

• Assinatura Eletrônica: Comercializações à distância poderiam ser autenticadas através
de um assinatura eletrônica por voz. Por intermédio da confirmação da identidade vocal do
usuário, realizar-se-ia uma transação mais segura, inclusive por meio cartões de crédito;

• Hotéis: Em hotéis, o acesso aos quartos é feito por uma chave (às vezes magnética) que é
recebida no ato do cadastro. Essa chave deve ser guardada ou deixada na recepção toda
vez que o hóspede tem que deixar as dependências do hotel. Tem-se, portanto, o risco
da perda dessa chave e a possibilidade de que pessoas não autorizadas tenham acesso ao
quarto. A substituição por senhas vocais pode ser um meio mais eficiente desse controle.

Os sistemas que trabalham com RAL calculam, por algum critério específico, a
similaridade entre as características da voz do locutor que se deseja reconhecer, com as
características de voz de um conjunto de locutores previamente armazenadas pelo sistema
de reconhecimento. As técnicas utilizadas variam de acordo com o tipo de problema que se
deseja solucionar. Os tipos de RAL, cada um para uma finalidade específica, são descritos em
seguida.

6.2 Tipos de RAL

Os sistemas de RAL dividem-se em:

i. Verificação Automática de Locutor (VAL);

ii. Identificação Automática de Locutor (IAL).

6.2.1 VAL

Nos sistemas de VAL, faz-se uso da máquina para verificar a identidade da voz de uma
pessoa que a reivindica (CAMPBELL, 1997). É fornecido ao sistema uma amostra de voz e uma
identificação correspondente ao suposto falante, cabendo ao sistema avaliar se tal amostra é (ou
não) suficientemente similar aos padrões de referência desse locutor específico.

Independentemente do número de locutores cadastrados, é feita apenas uma comparação
(aceitar ou não aceitar) específica ao locutor pretenso. A inclusão de mais locutores na população
teste não indica que o tempo de processamento necessário para as comparações se alterará
significativamente em comparação a uma possível não inclusão de locutores. Por isso, a
probabilidade de ocorrência de erros de verificação mantém-se a mesma para cada locutor,
mesmo depois da inclusão de um ou mais locutores (PETRY, 2002).

Capítulo 6. Reconhecimento Automático de Locutor 95

Na VAL, pode haver erros de dois tipos: (i) a falsa aceitação (FA) de um locutor impostor
ou mímico, ou (ii) a falsa rejeição (FR) de um locutor verídico (ATAL, 1976) (ROSEMBERG,
1984). Na literatura, há outras denominações para a VAL, incluindo-se: verificação de voz,
autenticação de locutor e autenticação de voz (CAMPBELL, 1997).

6.2.2 IAL

Ao contrário da VAL, na IAL não há a reivindicação de autenticidade. O sistema é que
deverá decidir, dentre um determinado número de locutores, qual o usuário autêntico ou se
o mesmo é desconhecido dentre os possíveis locutores cadastrados (CAMPBELL, 1997). A
partir de uma amostra de voz submetida ao sistema, o mesmo dever ser capaz de compará-la
aos padrões de referência dos locutores registrados, identificando entre eles o mais semelhante.
Esta identificação pode ser implementada com rejeição ou sem rejeição. No primeiro caso, é
estabelecido um limiar para cada usuário. Para o locutor ser considerado autêntico, a similaridade
entre as características de sua elocução teste e as características extraídas de seu padrão deverá
superar esse limiar. Em caso negativo, o locutor é considerado um impostor.

Na IAL sem rejeição o sistema sempre escolherá um dos locutores cadastrados a partir
da maior similaridades entre as características extraídas e a elocução teste. O grau de dificuldade
associado a IAL com rejeição é maior, visto que há a possibilidade da elocução teste não pertencer
a nenhum dos locutores conhecidos.

Como são feitas comparações com todos os locutores cadastrados, a inclusão de mais
locutores à população teste acarreta numa maior carga de processamento em relação aos sistemas
de VAL. Pelo mesmo motivo, a probabilidade de ocorrência de erros cresce com o incremento
do número de locutores a serem testados (PETRY, 2002).

Os sistemas de RAL utilizam-se de frases ou textos para a comparação entre as elocuções
testes e os padrões extraídos das elocuções de treinamento. Tais frases ou textos podem ser
padronizados ou não. Pode-se submeter, aos algoritmos de RAL, dois tipos de testes distintos:

Teste Dependente de Texto: Nesse tipo de abordagem, são reservadas frases padrão que
apresentem grande quantidade de fonemas nasalados e vocalizados. Essas frases são
pronunciadas por todos os locutores e são utilizadas para treinamento do sistema e geração
dos padrões de referência;

Teste Independente de Texto: Nesses sistemas, as comparações entre as elocuções teste e os
padrões gerados são feitas a partir de qualquer amostra de voz pronunciada, pelo locutor
em teste, no momento da gravação. O usuário estará livre para pronunciar qualquer frase ou
texto que eventualmente queira. Toda essa flexibilidade dos sistemas de RAL independente
de texto, acarreta numa maior dificuldade de distinção correta pelos algoritmos de
reconhecimento.

Capítulo 6. Reconhecimento Automático de Locutor 96

A Figura 31 ilustra os tipos de RAL.

Figura 31 – Ilustração dos tipos de RAL

RECONHECIMENTO
AUTOMÁTICO
DE LOCUTOR

DEPENDENTE
DE TEXTO

INDEPENDENTE
DE TEXTO

COM REJEIÇÃO SEM REJEIÇÃO

IDENTIFICAÇÃO VERIFICAÇÃO VERIFICAÇÃO IDENTIFICAÇÃO

SEM REJEIÇÃO COM REJEIÇÃO

Fonte: Adaptado de Campbell (1997).

Por ser de mais fácil implementação, este trabalho é focado, exclusivamente, na IAL sem
rejeição.

6.3 Estrutura Básica dos Sistemas de RAL

Um sistema de RAL é basicamente constituído pelas etapas de treinamento e
reconhecimento. A etapa de treinamento deve ser realizada antes do reconhecimento
propriamente dito. Os passos do treinamento são:

i. obtenção dos sinais de voz;

ii. extração de suas características mais importantes;

iii. geração de padrão a partir das amostras do sinal;

iv. obtenção de limiares associados aos padrões gerados (exclusivo para o caso da VAL).

Já os passos do reconhecimento são os seguintes:

i. extração das características mais importantes das elocuções testes;

ii. comparação com os padrões obtidos pela etapa do treinamento, a partir das amostras do
sinal.

Capítulo 6. Reconhecimento Automático de Locutor 97

Nos sistemas de VAL, a medida de distorção, obtida na etapa do reconhecimento, será realizada
apenas com o padrão do locutor pretenso. Nesse caso, o limiar indicará se a identidade foi
aceita ou não. Nos sistemas de IAL, o padrão que obtiver uma menor distorção em relação as
características da elocução teste será o selecionado e o locutor detentor desse padrão, o escolhido.
As Figuras 32 e 33 ilustram as estruturas básicas dos sistemas de VAL e IAL, respectivamente.

Figura 32 – Ilustração da estrutura básica do sistema de VAL.

Sinal de voz Extração das
características Similaridade

Identificação do
Locutor (#N)

Modelo de
Referência

(Locutor #N)
Limiar

Decisão
Resultado da
Verificação

(aceito/rejeitado)

Fonte: Adaptado de Campbell (1997).

Figura 33 – Ilustração da estrutura básica do sistema de IAL.

Extração das
características

Similaridade

Modelo de
Referência

(Locutor #1)

Modelo de
Referência

(Locutor #2)

Modelo de
Referência

(Locutor #N)

Seleção
máxima

Similaridade

Similaridade

Resultado da
Identificação

Sinal
de voz

Fonte: Adaptado de Campbell (1997).

Capítulo 6. Reconhecimento Automático de Locutor 98

6.3.1 Extração das Características

A extração das características consiste, basicamente, em uma compressão de dados com
o objetivo de diminuir a quantidade de amostras do sinal original. Normalmente essas amostram
apresentam grande quantidade de informação redundante ou que não se relacionam diretamente
com o locutor. Isto permite a economia de tempo de processamento por parte dos algoritmos
de reconhecimento, tornando mais simples a distinção entre amostras de locutores diferentes
(PETRY, 2002). Com uma base de dados mais reduzida, porém apresentando parâmetros mais
consistentes, viabiliza-se uma classificação mais confiável e eficiente. Dessa forma, os parâmetros
precisam conter apenas informações relevantes da voz. Para um apropriado reconhecimento,
algumas características desejáveis desses parâmetros devem ser satisfeitas, entre as quais (WOLF,
1972):

1. Eficiência na representação de informação do locutor que a produziu;

2. Facilidades de se mensurar, reduzindo probabilidade de erros e complexidade;

3. Estáveis no tempo, mantendo sempre uma coerência de valores, independente das situações
em que forem adquiridas;

4. Ocorrência natural e frequente, sendo representativos em qualquer amostra de voz;

5. Pouca variação com o ambiente, devendo ser pouco afetados pelas condições em que as
amostras foram adquiridas;

6. Não susceptível à mímica, sendo imunes a esse tipo de procedimento.

Hoje em dia, muitas dessas exigências já foram satisfeitas pelas técnicas de
reconhecimento, apesar de outros fatores ainda limitarem seu desempenho. A variabilidade das
elocuções é o fator de mais preponderância na limitação desse reconhecimento. Ela apresenta-se
da seguintes forma (RABINER, 1994):

1. Variabilidade dos sons de um mesmo locutor ou de diferentes locutores;

2. Variabilidade do canal de gravação (e.g., microfone utilizado para as gravações);

3. Variabilidade devido à introdução de ruído pelo ambiente;

4. Variabilidade na produção da fala (e.g, hesitação, ruído de respiração e estalos labiais).

Capítulo 6. Reconhecimento Automático de Locutor 99

Esses fatores, normalmente, não podem ser eliminados, ficando a cargo da tecnologia de
reconhecimento realizar artifícios para reduzir os seus efeitos, dentre os quais (RABINER,
1994):

1. Detecção da voz propriamente dita, suprimindo o ruído de fundo ou o silêncio presentes
em instantes de tempo anteriores e posteriores à voz ativa;

2. Reconhecer a sentença falada baseada em reconhecimento de padrões determinísticos ou
por métodos fonético-acústicos (PARANAGUÁ, 1997).

6.3.2 Parâmetros Extraídos do Sinal de Voz

A seguir são apresentados os principais parâmetros utilizados por métodos de RAL para
representar sinais de voz por meio de algumas de suas características mais relevantes.

6.3.2.1 Banco de Filtros

Em geral, essa técnica consiste em aplicar filtros passa-bandas deslocados em frequência,
extraindo como parâmetro a energia na saída de cada um deles (RABINER; JUANG, 1993)
(PETRY, 2002).

6.3.2.2 Energia de Tempo Curto

Uma das formas mais simples de ser representar um sinal de voz é pela sua energia de
tempo curto. Para um sinal x[n], sua energia de tempo curto é dada por

En =
1

N

N−1∑
m=0

(
w[m]x

[
n− N

2
+m

])2

, (1)

em que w[m] é uma janela de N pontos, aplicada ao sinal pré-processado, x[n], e n é o índice de
amostragem (tempo discreto) do centro da janela.

6.3.2.3 Taxa de Cruzamento pelo Zero

A taxa de cruzamento pelo zero (ZCR), pode ser definida como a média ponderada
do número de vezes que o sinal altera sua amplitude de negativa para positiva ou vice-versa
(KONDOZ, 2004), ou seja:

ZCR =
1

N

N−1∑
n=0

0.5|sign(y[n])− sign(y[n− 1])|, (2)

Capítulo 6. Reconhecimento Automático de Locutor 100

em queN é o número de amostras do quadro de voz avaliado, y[n] é o sinal de voz pré-processado
e sign(y[n]) é a função sinal definida na seção 4.1.2 do Capítulo 4.

6.3.2.4 Coeficientes Cepstrais

Como visto no Capítulo 4, o processo de geração da fala pode ser modelado por um
sistema linear variante no tempo e que possui propriedades que variam lentamente. Como a voz
apresenta características quase estacionárias para curtos segmentos, pode ser modelada como
tendo sido gerada por um sistema linear invariante no tempo (LIT) excitado por um trem de
impulsos quase-periódicos ou por uma fonte de ruído aleatório (PARANAGUÁ, 1997). Pode-se
definir então, que o sinal de voz, s[n], é o resultado da operação de convolução (⊗) do sinal de
excitação u[n] com a resposta ao impulso h[n] do sistema LIT, ou seja:

s[n] = u[n]⊗ h[n]. (3)

Passando-se a Equação (3) do domínio do tempo para o domínio da frequência, tem-se:

S(jω) = U(jω).H(jω), (4)

em que a operação de convolução da Equação (3) foi transformada em uma operação de
multiplicação pela transformada de Fourier. Aplicando-se a função logarítmica, a Equação
(4) transforma-se em uma soma (ou sobreposição) de sinais expressa como

log(S(jω)) = log(U(jω)) + log(H(jω)). (5)

Do sistema, portanto, obtém-se saídas lineares, ou seja, componentes representativas do
sinal tornam-se linearmente combinadas. Aplicando-se a transformada inversa de Fourier ao
sistema, obtém-se o cepstrum ou os coeficientes cepstrais (FCC, do inglês “Frequency Cepstral

Coefficients”) do sinal . O processo é ilustrado a seguir.

F−1{log(S(jω))} = F−1{log(U(jω)) + log(H(jω))}

Cs(n) = Cu(n) + Ch(n). (6)

Sabe-se que a parcela do sinal de excitação varia mais rapidamente do que a resposta impulsiva
do trato vocal, então os dois sinais poderiam ser separados no domínio cepstral.

Capítulo 6. Reconhecimento Automático de Locutor 101

6.3.2.5 Coeficientes Mel-Cepstrais

Os coeficientes Mel-cepstrais (MFCC, do inglês “Mel-Frequency Cepstral Coefficients”)
surgiram devido a estudos na área da psico-acústica, que mostraram que a percepção humana das
frequências de tons puros ou de sinais de voz não segue uma escala linear (RABINER; JUANG,
1993). A ideia é fazer um mapeamento da escala linear de frequência, medida em Hz, para uma
escala denominada escala mel, que corresponde à real percepção do sistema auditivo humano. O
mapeamento é dado pela seguinte expressão:

mel(f) = 2595. log10

(
1 +

f

700

)
. (7)

Os coeficientes mel-cepstrais são obtidos de maneira similar aos coeficientes cepstrais. A
diferença principal está na aplicação de um banco de filtros digitais triangulares (passa-banda),
espaçados segundo a escala mel, previamente à introdução da função logarítmica (PETRY, 2002).

6.3.2.6 Coeficientes LPC

Os coeficientes da análise LPC são os mesmo obtidos pelo modelo preditivo linear para
sinais de voz, apresentados no Capítulo 3.

No sistema de RAL proposto por este trabalho são usadas, como coeficientes
representativos dos sinais de voz (vetor característico), as média das amplitudes dos tons de
mascaramento predominantes em cada oitava. O procedimento para obtenção desses coeficientes
será mostrado no capítulo seguinte.

6.3.3 Modelamento

Após a extração dos parâmetros do sinal de voz, os mesmos devem ser comparados com
os padrões gerados e previamente armazenados, com a finalidade de quantificar as similaridades
entres as elocuções teste e os locutores registrados no sistema de reconhecimento. Um melhor
aproveitamento da informação contida nesses parâmetros é atingido quando uma comparação
adequada é realizada. As técnicas mais conhecidas para a comparação dos padrões são as
estatísticas e as determinísticas. Nas técnicas estatísticas, as comparações são realizadas através
de medidas de verossimilhança ou probabilidade condicional da observação do modelo. Nesta
categoria, destacam-se as técnicas baseadas na função densidade de probabilidade e no HMM
(TISHBY, 1991). Nas técnicas determinísticas, o padrão é assumido ser uma réplica perfeita e
o processo de alinhamento faz-se necessário para calcular a distância. Os principais métodos
determinísticos são os baseados em Dynamic Time Warping (DTW) (CAMPBELL, 1997),
Quantização Vetorial (QV) (SONG et al., 1985), Redes Neurais Artificiais (RNAs) (FARRELL;
MAMMONE; ASSALEH, 1994) e Classificadores Polinomiais (ASSALEH; CAMPBELL,
1999).

Capítulo 6. Reconhecimento Automático de Locutor 102

No sistema de RAL proposto por esse trabalho o padrão gerado de cada locutor será
comparado com as características extraídas das elocuções testes, substituindo os classificadores
tradicionais (e.g., HMM, DTW, QV), pela técnica simples de template matching via distância
euclidiana entre os vetores. Nos sistemas de template matching os vetores de características das
elocuções de treinamento e teste são comparados diretamente, com a suposição de qualquer
um deles é um réplica imperfeita do outro. O sistema identifica o locutor pretenso através do
cálculo da menor distância para o padrão gerado no treinamento. Apesar de sua simplicidade de
comparação, esses sistemas não tem performances tão eficientes quanto as que utilizam o HMM,
por exemplo.

6.3.4 Modelos Ocultos de Markov - HMM

6.3.4.1 Introdução

Por manipularem muito bem os aspectos estatísticos e sequências do sinal de voz,
os HMM’s são largamente utilizados no reconhecimento automático da voz e do locutor
(OLIVEIRA, 2001). Esta popularidade deve-se à existência de um algoritmo eficiente e robusto
para treinamento e reconhecimento.

No treinamento do modelo, os parâmetros extraídos do sinal, em janelas de intervalo de
tempo curto, chamados também de sequência das observações, são modelados por uma sequência
de estados (modelo de Markov de primeira ordem) de acordo com as características variante no
tempo do sinal de voz. No reconhecimento, a sequência das observações da elocução teste, caso
possua alguma medida de verossimilhança acima de um limiar previamente estipulado, é aceita
como verdadeira (PARANAGUÁ, 1997).

6.3.4.2 Descrição do Modelo

Um modelo de Markov é um conjunto finito de elementos formando uma máquina de
estados, cujas transições entre eles não são governadas por regras determinísticas, mas por
probabilidades de transição entre eles (ANDRADE, 1999). Apenas as transições para o mesmo
estado e transições esquerda direita (para o caso de VAL dependente do texto), entre estados são
permitidas, dada a característica sequencial da voz (OLIVEIRA, 2001). Na abordagem existem
dois processos associados, um envolvendo as transições entre os estados (modelando a sequência
temporal da voz) e outro envolvendo as observações de saída de cada estado (modelando as
características acústicas do sinal de voz). A designação de “oculto” para o modelo dá-se pelo
fato de a sequência de estados não ser observada, mas afetar a sequência de estados observados.

Um modelo de HMM pode, então, ser definido como um par de processos estocásticos
(X, Y), onde o X representa um modelo de Markov de primeira ordem (não sendo diretamente
observável) e Y representa um sequência de variáveis aleatórias no espaço dos parâmetros
acústicos (observações) (LIPORACE, 1982).

Capítulo 6. Reconhecimento Automático de Locutor 103

Um HMM pode ser definido por um conjunto de parâmetros (RABINER; JUANG, 1993):

• Um conjunto N de estados Sj , incluindo um estado inicial Si e um estado final Sj . A
designação qt(i) indica estar no estado Si no tempo t;

• O número de símbolos observáveis em um alfabeto, M . Para símbolos discretos, M pode
ser inteiro e finito, para símbolos contínuos, M pode ser infinito;

• Uma matriz de transições A = [aij], onde aij representa a probabilidade de se efetuar uma
transição do estado i para o estado j, ou seja:

aij = P (qt = j/qt−1 = i), 1 ≤ i, j ≤ N, (8)

qt indicando o estado atual. A matriz A deve satisfazer

aij ≥ 0, 1 ≤ i, j ≤ N, (9)

e

N∑
j=1

aij = 1, 1 ≤ i ≤ N. (10)

• Uma matriz de probabilidades de saída B = [bj(k)], onde bj(k) define a probabilidade de
emissão do símbolo k , ao se chegar ao estado j. Para o HMM discreto, tem-se:

bj(k) = P (x = vk/qt = j), 1 ≤ j ≤ N, 1 ≤ k ≤M. (11)

vk representa o k-ésimo símbolo observado no alfabeto. Novamente a seguintes condições
estocásticas devem ser satisfeitas:

bj(k) ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M, (12)

e

M∑
j=1

bj(k) = 1, 1 ≤ j ≤ N. (13)

Capítulo 6. Reconhecimento Automático de Locutor 104

Caso a distribuição seja contínua, o conjunto de observações de cada estado é separado
em M grupos, possuindo eles um vetor média e uma matriz de covariância associados
(PARANAGUÁ, 1997). Através de uma soma das M distribuições gaussianas N ,
ponderadas por coeficientes cjm (uma mistura de gaussianas), é calculada a densidade de
probabilidade em cada estado (RABINER; JUANG, 1993), dada pela expressão

bj(x) =
M∑
m=1

cjmN(x, µjm, Ujm), (14)

em que, cjm são os coeficientes de ponderação das gaussianas M , µjm são os vetores
média e Ujm são as matrizes de covariância. Os coeficientes cjm e a função densidade de
probabilidade da mistura devem satisfazer as definições

cjm ≥ 0, 1 ≤ j ≤ N, 1 ≤ m ≤M, (15)

e

M∑
m=1

cjm = 1, 1 ≤ j ≤ N. (16)

• Uma distribuição do estado inicial, Π = {Πi}, em que

Πj = P (q1 = j), 1 ≤ j ≤ N (17)

Em face a toda essas definições, o modelo de Markov pode ser representado pela forma
compacta

λ = (A,B,Π). (18)

Um simples esquema de um HMM é mostrado na Figura 34. De acordo com uma topolo-
gia pré-definida, associa-se cada frase, em uma elocução, a um modelo particular de Markov
construído a partir de Q estados. Para reconhecimento de voz contínua, os HMM são construídos
pela concatenação de unidades elementares da fala, como o fonema (OLIVEIRA, 2001).

Capítulo 6. Reconhecimento Automático de Locutor 105

Figura 34 – Modelo de um HMM com dois estados (topologia esquerda-direita).

P(q1/q1) P(q2/q2)

P(q2/q1)

q1 q2

P(x/q1) P(x/q2)

Fonte: Adaptado de Rabiner e Juang (1993).

6.3.4.3 Simplificações da Teoria do HMM

Algumas suposições são realizadas na teoria do HMM, com o objetivo de facilitar o
tratamento matemático e computacional. São elas (RABINER; JUANG, 1993):

• Suposição de Markov: Assume-se que o modelo é um modelo markoviano de primeira
ordem, ou seja, o próximo estado depende somente do estado atual.

• Suposição de Estacionaridade: Supõe-se que as probabilidades de transição de um estado
para o outro não variam com o tempo.

• Suposição das Observações Independentes: Assume-se que as observações adjacentes
não apresentam nenhum tipo de correlação. Nesse caso, é desconsiderado o efeito de
coarticulação.

6.3.4.4 Treinamento

Como visto anteriormente, o modelo de Markov pode ser representado pela forma
compacta λ = (A,B,Π). A função do estágio de treinamento é obter, através do ajuste do
modelo λ, um novo modelo λ̄, a partir de uma sequência de treinamento X = [x1, x2, . . . , xN],
tal que seja máxima a probabilidade P (X/λ). Um procedimento iterativo é necessário para se
encontrar o melhor do modelo possível, já que P (X/λ) é uma função não-linear, apresentando
muitos máximos locais (OLIVEIRA, 2001). Normalmente os algoritmos que realizam esse
procedimento iterativo, para o HMM, são os seguintes (RABINER; JUANG, 1993): algoritmo

Capítulo 6. Reconhecimento Automático de Locutor 106

Baum-Welch, algoritmo de Viterbi e algoritmo Segmental K-means para o treinamento, sendo o
segundo também usado para o reconhecimento.

Baseando-se no conceito estatístico da esperança do número de transições entre estados e
da esperança do número de ocorrências das observações nos estados, o algoritmo de Baum-Welch

encontra a máxima verossimilhança dos parâmetros do modelo, fazendo uso de duas variáveis
auxiliares α e β, e compondo uma terceira variável, γt(i) (chamada de variável de probabilidade
a posteriori). Essa variável corresponde à probabilidade de estar no estado i, no instante t, sendo
associada à sequência de observações X (RABINER; JUANG, 1993), ou seja:

γt(i) = P (qt = i/X, λ). (19)

A partir das variáveis e dos parâmetros do modelo inicial λ a ser ajustado, os parâmetros do novo
modelo λ̄, discreto, são dados por

π̄i = no esperado de vezes do estado qi no instante t, (20)

āij =
no esperado de transições do estado i para o estado j

no esperado de transições do estado i
, (21)

b̄j(xk) =
no de vezes que xk é observado em qj
no esperado de transições pelo estado j

. (22)

Para o caso do modelo λ ser contínuo, o novo modelo terá os parâmetros cjm, µjm e Ujm
ajustados por

c̄jm =
no esperado de ocorrência da Gaussiana m no estado j

n0 esperado de ocorrências do estado qj
, (23)

µ̄jm =
no esperado de ocorrência da Gaussiana m em qj ponderada por ot

no esperado de ocorrer qj e na mistura m
, (24)

Ūjm =
no esperado de ocorrência de uma Gaussiana m em qj ponderada pela matriz de covariância

no esperado de estar no estado qj e na mistura m
. (25)

O primeiro passo do algoritmo é substituir λ por λ̄. O processo iterativo encerra-se quando não
há mais melhorias significativas em P (X/λ).

No algoritmo de Viterbi, em vez de valores esperados, são usadas as somas das transições
ocorridas e observações encontradas ao longo da melhor sequência de estados obtida para as

Capítulo 6. Reconhecimento Automático de Locutor 107

observações fornecidas. Os parâmetros aij são obtidos pela relação entre a contagem do número
de transições do estado i para o estado j, e o número de transições feitas a partir de qi. Para cada
estado, após se agrupar os vetores de observações em M grupos através do algoritmo K-means

modificado, obtém-se os parâmetros média, covariância e coeficiente de mistura. A média é
estimada de todas as observações pertencentes a um dos M grupos de gaussianas de cada estado.
O mesmo é feito para a covariância. O coeficiente de misturas será igual à relação entre o número
de observações classificadas no grupo e o número total de observações classificadas naquele
estado. Logo, os parâmetros reestimados são dados por

µ̄jm =
1

Njm

Njm∑
i=1

xi, (26)

ˆUjm =
1

Njm

Njm∑
i=1

(xi − µjm)(xi − µjm)T , (27)

cjm =
Njm

Nj

, (28)

em que xi é a i-ésima observação associada ao estado j e gaussiana m (que possui Njm

observações classificadas), e Nj é o número de observações no estado j e Njm, o número
de observações na m-ésima mistura do estado j (OLIVEIRA, 2001).

Como uma tentativa para solucionar os problemas de sensibilidade aos valores iniciais do
modelo λ (observado nos dois algoritmos citados anteriormente), surgiu o algoritmo Segmental

K-means. O primeiro passo desse algoritmo consiste em dividir as observações pelos estados
(agrupamento) de maneira sequencial. Em seguida, o algoritmo de Viterbi é aplicado para a
obtenção do modelo λ̄. A partir daí, o algoritmo de Baum-Welch usa o modelo para reestimar
todos os parâmetros. Obtidos os modelos por ambos os algoritmos, é feita uma comparação da
verossimilhança entre eles. Caso o valor da verossimilhança exceda um limiar, substituem-se os
valores anteriores pelos atuais e repete-se o treinamento. O processo encerra-se quando o modelo
converge para um valor abaixo desse limiar, e os parâmetros passam a estar treinados. Mais
detalhes sobre os algoritmos citados podem ser encontrados em (RABINER; JUANG, 1993).

6.3.4.5 Reconhecimento

A função do estágio de reconhecimento é decidir se uma dada elocução teste foi originada
por um determinado locutor. Para o caso da VAL, calcula-se a verossimilhança da elocução
P (O|λ) ter sido gerado pelo modelo em questão, aceitando-se ou não, dependendo do limiar
calculado para esse modelo.

No caso da IAL, essa verossimilhança é testada com todos os modelos do sistema,
sendo aceito o que obtiver a maior. O algoritmo de Viterbi é o utilizado para o cálculo da

Capítulo 6. Reconhecimento Automático de Locutor 108

verossimilhança, fornecendo o caminho de máxima verossimilhança, da elocução teste, em
pertencer ao modelo treinado. O valor obtido é então comparado a um limiar (se houver),
por algum método de decisão. O método mais utilizado para esse fim é o método de Bayes
(PARANAGUÁ, 1997).

109

7 SISTEMA PROPOSTO DE RAL

7.1 Introdução

Este capítulo é reservado ao sistema de RAL desenvolvido neste trabalho, cuja concepção
foi motivada pelo vocoder proposto no Capítulo 5. Constatou-se que o MPFO, técnica utilizada
na essência do seu projeto, apesar de simplificar, significativamente, a quantidade de amostras
espectrais dos sinais de voz, preservava características fundamentais que possibilitavam o
reconhecimento de maneira computacionalmente eficiente. Assim, esta nova ideologia de RAL
herda parte da teoria proposta pelo vocoder, adaptando-na ao propósito da identificação de
locutores. O principal objetivo é oferecer um compromisso entre complexidade e taxa de
identificações corretas, podendo ser atrativo para aplicações em sistemas embarcados.

Para representar o vetor característico dos sinais de voz, o qual contém as informações
relevantes dos locutores, o sistema não segue o padrão dos sistemas de RAL tradicionais. Ao
invés disso, utiliza um novo procedimento que calcula a média das amplitudes dos tons de
mascaramento por oitava, resultante da simplificação espectral pelo MPFO. Adicionalmente,
para comparação do padrão extraído das características de cada locutor com as características
extraídas das elocuções teste, substitui os classificadores padrão, baseados nos métodos citados
no Capítulo 6, pela técnica simples de template matching via distância euclidiana entre os
vetores.

Ainda, são apresentados resultados de dois testes submetidos ao sistema de RAL proposto:
com e sem dependência de texto. É investigada, também, a eficiência do sistema na ausência da
pré-ênfase do sinal de voz.

7.2 Visão Geral do Sistema

Em geral, os sistemas de RAL são divididos em quatro fases principais: (i) gravações
das elocuções; (ii) pré-processamento do sinal de voz; (iii) obtenção dos padrões dos locutores
e (iv) comparação dos padrões. Nas gravações das elocuções, evita-se principalmente, que a
variabilidade do canal de gravação (eg., microfone) e a introdução de ruído pelo ambiente
afetem a qualidade das amostras adquiridas. No pré-processamento, além dos sinais serem
segmentados e janelados, como no vocoder do Capítulo 6, serão, também, pré-enfatizados e
submetidos a um detector de pontos extremos. Na obtenção dos padrões dos locutores, serão
utilizados procedimentos desenvolvidos no Departamento de Eletrônica e Sistemas da UFPE.
Na comparação dos padrões utiliza-se a técnica simples de menor distância euclidiana entre o
vetor característico da elocução teste e os vetores padrão dos locutores. A Figura 35 apresenta

Capítulo 7. Sistema Proposto de RAL 110

um diagrama de blocos simplificado desse sistema. A descrição detalhada é dada nas próximas
seções.

Figura 35 – Diagrama de blocos simplificado do sistema de RAL proposto.

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Elocução
Teste
wav

PRÉ-PROCESSAMENTO

EXTRAÇÃO DAS
CARACTERÍSTICAS

COMPARAÇÃO
DOS PADRÕES

Template
Matching

Elocuções de
Treinamento
(Locutor #N)

Elocuções de
Treinamento
(Locutor #1)

wav

EXTRAÇÃO DAS
CARACTERÍSTICAS

EXTRAÇÃO DAS
CARACTERÍSTICAS

Padrão de Voz
(Locutor #1)

Padrão de Voz
(Locutor #N)

GERAÇÃO DOS PADRÕES

RESULTADO DAS
IDENTIFICAÇÕES

(PADRÕES
DE VOZ)

ARQUIVO
txt

Fonte: Produzido pelo autor.

7.2.1 Implementação do Sistema

Pelas mesmas razões elencadas na implementação do sistema de codificação de voz
do Capítulo 5, o sistema de RAL proposto foi, também, desenvolvido através de programas
elaborados no MATLAB® e exibidos na Tabela 10.

Tabela 10 – Algoritmos do sistema de RAL proposto.

Algoritmo Função

RecLoc Identificação do locutor pretenso entre os cadastrados
PadraoLoc Geração de arquivo txt com padrões dos locutores
vetorCaract Obtenção do vetor característico de uma elocução

gerPadrao5eloc Geração do padrão do locutor para 5 elocuções
gerPadraoEdit Geração do padrão do locutor (editável pelo usuário)

Fonte: Produzido pelo autor.

O sistema é composto, basicamente, de um software principal, RecLoc, cuja interface
gráfica (Figura 36), habilitada ao se digitar RecLoc na janela de comando do MATLAB®, permite
ao usuário o cadastro de 5 até 20 locutores, com 5 elocuções de treinamento para geração dos

Capítulo 7. Sistema Proposto de RAL 111

padrões. O número de elocuções de treinamento foi fixado em 5 para permitir uma interface
gráfica mais amigável ao usuário. Entretanto, para os testes houve a necessidade de se incluir
mais elocuções de treinamento, com o objetivo de se obter uma representação mais precisa
dos padrões. Em casos como esse, o usuário deve seguir os procedimentos contidos no Anexo
C, a fim de realizar alterações no algoritmo gerPadraoEdit e no arquivo exemploPadrao.txt,
disponibilizados como modelo.

Figura 36 – Ilustração da interface gráfica do software de RAL proposto.

Fonte: Produzido pelo autor.

O cadastro dos locutores é realizado da seguinte forma: primeiramente o usuário
seleciona, no painel “GERAÇÃO DOS PADRÕES”, o número desejado de locutores e a
quantidade de elocuções de treinamento para cada locutor Posteriormente, pressiona o botão
“abrir” para que se habilite a interface gráfica de geração dos padrões dos locutores, PadraoLoc
(Figura 38). Nela, o usuário pode carregar, nos campos correspondentes, todas as 5 elocuções de
treinamento para cada locutor. Essas elocuções devem estar no formato de reprodução wav e
podem ser obtidas, por exemplo, através do gravador de som disponível no Windows® (Figura
37).

O sistema, também, é composto dos algoritmos secundários vetorCaract e gerPa-
drao5eloc, que são utilizados pelos algoritmos principais para geração do vetor característico
(treinamento e teste) e obtenção do padrão de cada locutor a partir de 5 elocuções de treina-
mento, respectivamente. Após o carregamento de todas as elocuções de treinamento, o usuário
deve pressionar o botão “gerar” para que o sistema processe os dados alimentados e gere um
arquivo txt, com nome salvo pelo usuário, contendo os padrões de voz de todos os locutores
escolhidos. É este arquivo que o usuário deve carregar no RecLoc para finalizar o processo

Capítulo 7. Sistema Proposto de RAL 112

Figura 37 – Imagem do gravador de som do Windows®.

Fonte: Produzido pelo autor.

de armazenamento dos locutores no sistema. Ao se realizar isso, o programa exibirá no painel
“Usuários Cadastrados” todos os locutores disponíveis para o reconhecimento, estando pronto
para a etapa das identificações. Para se completar o processo de reconhecimento, o usuário
seleciona a elocução teste e pressiona o botão “processar”. O sistema, então, calcula distâncias
entre o vetor característico da elocução teste e todos os padrões dos locutores cadastrados, e exibe
na tela os nomes dos locutores ordenados pelos de menores distâncias. O locutor que encabeça
a lista é apontado pelo sistema como sendo o detentor da elocução teste, e tem, também, o
nome exibido em destaque no painel “RESULTADO DAS IDENTIFICAÇÕES”. Essa ordenação
em locutores mais prováveis pode ser utilizada para reduzir a base de dados para um número
pré-estabelecido de locutores potenciais.

Figura 38 – Ilustração da interface gráfica do gerador de padrões de voz.

Fonte: Produzido pelo autor.

Capítulo 7. Sistema Proposto de RAL 113

As etapas realizadas para o reconhecimento são dadas abaixo:

i. escolher o número de locutores e elocuções de treinamento;

ii. abrir programa de geração dos padrões (PadraoLoc);

iii. carregar todas as elocuções de treinamentos por locutor;

iv. gerar padrões dos locutores (arquivo txt);

v. alimentar arquivo de padrões no RecLoc;

vi. carregar elocução teste;

vii. processar o sistema.

As próximas seções trazem a descrição detalhada do sistema proposto.

7.3 Aquisição dos Sinais de Voz

O processo de identificação do locutor tem início com a gravação das elocuções para o
processamento. Isso é realizado utilizando-se um microfone, cuja saída está conectada a uma
placa de som instalada em um computador. Essa tem a função de converter o sinal analógico
de voz em amostras igualmente espaçadas no tempo, a uma taxa que pode ser previamente
escolhida.

Tipicamente, a energia de um sinal de voz é concentrada numa faixa de frequência de até
4 kHz, ainda que a realização (pronúncia) típica de fonemas fricativos (e.g. /s/) possua substancial
parte da energia espectral acima desta frequência. No entanto, como isso ocorre apenas para
sons de natureza ruidosa, eles contém pouca informação sobre o locutor (que se concentra mais
nos sons vocálicos). Diante disso, o valor adotado para a taxa de amostragem do sistema foi de
8 kHz, utilizando 16 bits de resolução e 1 canal, mono. O software RecLoc é o responsável por
transformar a taxa de amostragem das elocuções para esta taxa escolhida.

7.4 Pré-Processamento dos Sinais de Voz

Após a aquisição dos dados e sua conversão em amostras digitais, passa-se à fase do pré-
processamento. Essa etapa compreende a pré-ênfase, a detecção de pontos extremos (endpoints),
a segmentação dos dados em quadros (frames) e o janelamento.

Capítulo 7. Sistema Proposto de RAL 114

7.4.1 Pré-Ênfase

Devido a características fisiológicas do sistema de produção da fala, o sinal de voz
irradiado pelos lábios apresenta uma atenuação de aproximadamente 6 dB/oitava nas altas
frequências. O filtro de pré-ênfase serve para compensar esta atenuação, antes da análise espectral,
melhorando a eficiência da análise (RABINER; SCHAFER, 1978); sendo a audição menos
sensível a frequências acima de 1 kHz do espectro, a pré-ênfase amplifica esta área do espectro,
auxiliando os algoritmos de análise espectral na modelagem dos aspectos perceptualmente
importantes do espectro da voz (SILVA, 2006). A resposta em frequência do filtro digital pode
ser representada por

H(z) = 1− az−1. (1)

Neste caso, a saída da pré-ênfase y(n) está relacionada à entrada x(n) pela equação
diferença (PETRY, 2002)

y(n) = x(n)− a.x(n− 1), 1 ≤ n < M, (2)

em que M é o número de amostras do sinal amostrado x(n), y(n) é o sinal pré-enfatizado e a
constante a (o zero do filtro) é normalmente escolhida entre 0, 9 e 1. No trabalho adotou-se um
valor de a igual a 0,95 (SILVA, 2006).

7.4.2 Detecção de Pontos Extremos (Endpoints)

Para se ter um bom desempenho no reconhecimento do locutor é de extrema importância
que sejam determinados, de forma eficiente e precisa, o início e o final de uma locução, com a
finalidade de excluir os silêncios, que não trazem nenhuma informação adicional sobre a locução
a ser reconhecida. Este procedimento reduz o tempo de processamento e evita que o ruído de
fundo, que ocorre antes e depois do sinal de voz, prejudique o reconhecimento (RABINER;
JUANG, 1993).

Os pontos extremos são determinados pelo primeiro quadro onde o sinal de voz realmente
se inicia e pelo último quadro do sinal de voz. Eles são importantes, pois evitam o processamento
dos segmentos onde não há voz ativa, evitando carga computacional e economizando tempo,
além de servir como marco de início e fim de um segmento de voz (ROSEMBERG, 1984). A
determinação dos pontos extremos deve ser feita de forma cuidadosa, pois os mínimos erros
nesta estimação podem degradar o reconhecimento. Ela é realizada através de um classificador
de voz que pode diferenciar entre sons vocais, não-vocais ou silêncio. Neste trabalho, utiliza-se
um classificador baseado nas características temporais do sinal e que foi proposto por Rabiner
e Sambur em 1975, o VAD. Seu código fonte, em linguagem do MATLAB®, está disponível

Capítulo 7. Sistema Proposto de RAL 115

no Anexo B. Ele foi desenvolvido através de um dos algoritmos mais empregados para essa
finalidade e que utiliza duas medidas do sinal de voz: a energia do sinal e a taxa de cruzamento
do zero, obtidas em janelas de 10 ms de duração. Nele, um intervalo de 100 ms no início da
elocução (10 janelas) é utilizado para efetuar uma estatística do ruído de fundo (PELTON, 1993).

7.4.3 Segmentação dos Dados em Quadros e Janelamento

Após a detecção dos pontos extremos, o sinal de voz deve ser particionado em pequenos
segmentos bem definidos (frames), com o propósito de se obter trechos de voz razoavelmente
assumidos como estacionários. Sabe-se que as características dos sinais de voz mudam muito
lentamente na voz contínua, e portanto muitas partes da onda acústica podem ser assumidas como
estacionárias num intervalo de curtíssima duração (entre 10 e 40 ms). Este intervalo caracteriza o
tamanho da janela a ser usada (BEZERRA, 1994). Neste trabalho, o tamanho da janela adotada
(sem superposição) é de 20 ms, um valor típico de muitas aplicações envolvendo voz.

O janelamento do sinal tem o objetivo de amortecer o efeito do “fenômeno Gibbs”
(RABINER; SCHAFER, 1978) (OPPENHEIM; SCHAFER; BUCK, 1999), que surge devido
à descontinuidade das janelas (BEZERRA, 1994). Para o contexto da produção da voz, as
características apresentadas, referentes ao janelamento de Hamming, mostram que este tipo
de janela é mais eficiente quando comparada às janelas Retangular e de Hanning, como uma
aproximação para a janela ideal (OPPENHEIM; SCHAFER; BUCK, 1999) . Por este motivo,
essa é a janela utilizada neste trabalho.

7.5 Geração do Padrão do Locutor

Para obter o padrão de cada locutor, primeiramente é necessário extrair as características
das elocuções teste. O procedimento é descrito a seguir.

7.5.1 Extração das Características dos Quadros de Voz

O processo inicial de extração das características é basicamente igual ao processo de
simplificação do espectro via MPFO, descrito na subseção 5.4.2 do Capítulo 5. Entretanto,
algumas sutis diferenças são observadas. A primeira consiste em adicionar pré-ênfase e detecção
de pontos extremos no estágio de pré-processamento do sinal. A segunda está na inclusão das
3 primeiras oitavas, descartadas na análise do vocoder. A terceira reside no fato de que não há
necessidade de se considerar as posições em que as amostras espectrais de mascaramento ocorre-
ram, já que, nesse caso, não é necessário reconstruir o espectro simplificado. Como resultado da
inclusão dessas diferenças citadas anteriormente, cada quadro de voz, agora, é representado, no
domínio frequencial, por 7 amostras de mascaramento auditivo, uma para cada oitava. O total
de 79 frequências oriundas da estimativa da DFT de comprimento 160 (mostrado na Tabela 11)

Capítulo 7. Sistema Proposto de RAL 116

é reduzido para 7 amostras sobreviventes (retendo menos do que 5% das componentes espectrais).

Tabela 11 – Número de frequências estimadas pela DFT de comprimento 160 em cada oitava do
espectro vocal.

Oitavas (Hz) # amostras
espectrais/oitava

32 - 64 1
64 - 128 1
128 - 256 3
256 - 512 5

512 - 1024 10
1024 - 2048 20
2048 - 4096 39

total 79

Fonte: Produzido pelo autor.

Definindo-se o vetor inicial de amostras espectrais, no i-ésimo quadro de voz, por oct(i)j
em que j representa o índice da oitava, tem-se:

oct
(i)
j = [a

(i)
j,1 a

(i)
j,2 a

(i)
j,3 . . . a

(i)
j,Nj

], i = 1, . . . , n; j = 1, . . . , 7, (3)

em que a(i)
j,k é a amplitude do k-ésimo ponto da FFT, na janela i e oitava j e Nj é o número

de amostras da j-ésima oitava. Aplicando-se o procedimento de busca da amostra espectral de
maior magnitude, obtém-se um novo vetor newoct(i)j sintetizado, contendo Nj−1 zeros, e a única
componente da amostra de mascaramento espectral correspondente ao max(a

(i)
j,k):

newoct
(i)
j = [0 0 . . . max(a

(i)
j,k) . . . 0], (4)

com k = 1, 2, . . . , Nj .

A Figura 39 exibe o módulo do espectro de um quadro, de 20 ms, de uma locução usada
para teste, antes e depois da simplificação por tons de mascaramento psico-acústico.

Gerados todos os vetores newoct(i)j , o algoritmo cria, para cada oitava, uma matriz Mj

cujas linhas são formadas por todos os n vetores newoct(i)j do arquivo. Esse procedimento será

Capítulo 7. Sistema Proposto de RAL 117

Figura 39 – Representação do espectro de frequência de um quadro de voz, antes e depois do
processo de mascaramento auditivo.

|A
m

pl
itu

de
|

|A
m

pl
itu

de
|

Frequência (Hz) Frequência (Hz)

14

12

10

8

6

4

2

0

14

12

10

8

6

4

2

0
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Fonte: Produzido pelo autor.

útil para calcular as médias dos “tons” de mascaramento.

Mj = mj ,k =


newoct1j

newoct2j
...

newoctnj

 =


0 max(a

(1)
j,k) . . . 0

0 0 . . . max(a
(2)
j,k)

...
...

...
...

max(a
(n)
j,k) 0 . . . 0

 . (5)

Calculando-se a média de cada coluna da matriz Mj , obtém-se a participação média, mj , de cada
amostra espectral de mascaramento (múltiplos de 50 Hz) no sinal de voz.

mj = [mj,1 mj,2 . . .mj,Nj
]. (6)

em que mj,k = 1
n

n∑
i=1

max(a
(i)
j,k) e k representa o índice no qual existam amostras espectrais

de mascaramento. Em seguida, todas as componentes do vetor mj são somadas. Essa soma
representará a participação média dos “tons” de mascaramento dentro de sua respectiva oitava.

sj =

Nj∑
k=1

mj,k. (7)

Esses sj assim definidos formarão o vetor

stotal = [s1 s2 ... s7]. (8)

Capítulo 7. Sistema Proposto de RAL 118

Os parâmetros obtidos pela etapa anterior são diretamente proporcionais aos níveis de
energia dos sinais coletados, fator que pode deturpar a classificação incorretamente. Para realizar
a normalização dessas amplitudes, o algoritmo vetorCaract faz a divisão do vetor stotal pela
soma de todas as suas componentes, obtendo-se, enfim, o vetor característica do sinal de voz, com
apenas 7 componentes, representantes do número de oitavas, e que será usado para a comparação
com as elocuções testes no programa RecLoc:

snorm =
1

7∑
j=1

sj

[s1 s2 . . . s7]. (9)

7.5.2 Obtenção do Padrão dos Locutores

Ao contrário, por exemplo, dos HMM’s que utilizam processos iterativos através de
três algoritmos (Baum-Welch, Viterbi e Segmental K-means) para a geração dos padrões dos
locutores, demandando uma carga computacional substancialmente alta, na presente proposta é
utilizada a média de todos os vetores representantes das características do sinal de voz (os snorm),
das elocuções reservadas para o treinamento, como padrão p do locutor.

p =
1

n

n∑
i=1

stnorm(i), (10)

em que p é o vetor padrão e stnorm são os vetores snorm(i) de treinamento, com a soma sendo
vetorial, ou seja, posição por posição. O algoritmo responsável pela obtenção desse padrão é o
gerPadrao5eloc1.

Pretende-se, nessa versão inicial do sistema, diminuir a complexidade computacional,
utilizando abordagens simples. Fica a cargo de trabalhos futuros o aperfeiçoamento do método,
através do uso de metodologias mais refinadas.

7.6 Comparação dos Padrões de Voz

Como última etapa do processo de identificação, tem-se a comparação entre dois vetores.
A comparação é realizada através do cálculo da distorção entre eles. Há várias medidas de
distorção entre vetores que podem ser utilizadas em reconhecimento de locutor. A medida de
distorção mínima ou euclidiana, a medida mais conhecida, foi escolhida. Seja p = [p1, p2, . . . , p7]

o vetor padrão e x = [x1, x2, . . . , x7] o vetor característico da elocução em teste, então a distância
1 pode também ser utilizado o algoritmo gerPadraoEdit, conforme procedimentos disponíveis no Anexo C

Capítulo 7. Sistema Proposto de RAL 119

euclidiana entre eles, d(x,p) será dada por

d(x,p) =
√

(x1 − p1)2 + · · ·+ (x7 − p7)2 =

√√√√ 7∑
i=1

(xi − pi)2. (11)

O padrão que obtiver o menor valor para d(x,p) será o selecionado, e o locutor que for o deten-
tor desse padrão será o escolhido. Simulações de desempenho pela alteração das métricas de
comparação dos locutores precisam ser conduzidas, a fim de selecionar a mais adequada, i.e.,
aquela de melhor compromisso complexidade versus taxa de reconhecimento. Em vista disso,
a seleção do locutor foi então realizada com base na técnica simples de template matching via
distância euclidiana entre o vetor característico de uma elocução teste e os vetores “padrão de
voz” armazenados para os locutores cadastrados. A Figura 40 ilustra o diagrama de blocos do
sistema de RAL proposto neste trabalho.

Figura 40 – Diagrama de blocos do sistema de identificação proposto.

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Elocução
Teste

RESULTADO DAS
IDENTIFICAÇÕES

Elocuções de
Treinamento
(Locutor #1)

Elocuções de
Treinamento
(Locutor #N)

wav

EXTRAÇÃO DAS
CARACTERÍSTICAS

EXTRAÇÃO DAS
CARACTERÍSTICAS

Padrão de Voz
(Locutor #1)

Padrão de Voz
(Locutor #N)

ARQUIVO
txt

(PADRÕES
DE VOZ)

Template
Matching

COMPARAÇÃO
DOS PADRÕES

GERAÇÃO DOS PADRÕES

PRÉ-PROCESSAMENTO

Pré-ênfase Detecção de
Endpoints

Segmentação
(20 ms)

Janelamento
(Hamming)

FFT
N=160

Divisão do Espectro
em 7 Oitavas

Mascaramento Pleno em Frequência
(Síntese do Espectro: uma Amostra/Oitava

Vetor de Características
Normalizado

EXTRAÇÃO DAS CARACTERÍSTICAS

wav

Fonte: Produzido pelo autor.

Capítulo 7. Sistema Proposto de RAL 120

7.7 Testes e Resultados Obtidos

Para a obtenção dos resultados e taxa de precisão do método proposto, foram realizados
dois tipos de testes padrão. No primeiro deles, a identificação dos locutores é realizada
empregando-se uma mesma frase referência para todos os locutores (reconhecimento dependente
de texto). No segundo caso, a identificação é realizada com textos escolhidos aleatoriamente no
momento da gravação (reconhecimento independente de texto).

As elocuções empregadas para os testes foram todas adquiridas de gravações realizadas
numa sala sem qualquer preparação especial destinada à redução de ecos ou mesmo à eliminação
total de ruído de fundo, e a partir de um mesmo microfone.

Nos experimentos realizados, foi investigada, também, a eficiência do sistema na ausência
da pré-ênfase.

7.7.1 IAL Dependente de Texto

Para a realização desse teste, faz-se necessário o conhecimento de textos ou frases previa-
mente. Duas frases, por apresentarem grande quantidade de fonemas nasalados e vocalizados, são
consideradas adequadas para reconhecimento de locutor (BEZERRA, 1994). São elas: “O prazo
tá terminando” e “Amanhã ligo de novo”. Ambas as frases foram selecionadas para os testes
audiométricos. Foram gravadas 40 repetições para 20 locutores diferentes (14 do sexo masculino
e 6 do sexo feminino). 20 dessas elocuções foram utilizadas para a geração do padrão de cada
locutor e outras 20 para a comparação dos padrões, totalizando 800 elocuções. Os resultados dos
testes seguem nas Tabelas 12 e 13.

Tabela 12 – Resultado dos testes para o reconhecimento de locutor dependente de texto, frase
“O prazo tá terminando”.

Pré-ênfase Identificações Identificações Eficiência
corretas incorretas

Sim 320 80 80,0%
Não 333 67 83,25%

Fonte: Produzido pelo autor.

Vê-se que, para ambas as frases, a taxa de identificações foi bem aceitável, dada
a complexidade empregada pela metodologia de reconhecimento. Pode-se observar pelos
resultados apresentados que na ausência da pré-ênfase o algoritmo tornou-se mais eficiente,
indicando que, para a abordagem proposta, as componentes de alta frequência enfatizadas não
foram cruciais para o reconhecimento.

Capítulo 7. Sistema Proposto de RAL 121

Tabela 13 – Resultado dos testes para o reconhecimento de locutor dependente de texto, frase
“Amanhã ligo de novo”.

Pré-ênfase Identificações Identificações Eficiência
corretas incorretas

Sim 322 78 80,25%
Não 340 60 85,0 %

Fonte: Produzido pelo autor.

7.7.2 IAL Independente de Texto

Para esse teste, foram utilizados, para 12 locutores diferentes, 16 textos escolhidos alea-
toriamente, com aproximadamente 10 segundos de duração. 8 desses textos foram destinados à
geração do padrão de cada locutor e outros 8 foram destinados às comparações dos padrões. Os
resultados são sumarizados na Tabela 14.

Tabela 14 – Resultado dos testes para o reconhecimento de locutor independente de texto.

Pré-ênfase Identificações Identificações Eficiência
corretas incorretas

Sim 78 18 81,25%
Não 82 14 85,41%

Fonte: Produzido pelo autor.

Pela Tabela 14, observa-se a mesma característica para o reconhecimento independente
de texto: a pré-ênfase prejudicou um pouco a taxa de identificações corretas. Contradizendo a
tendência normal dos sistemas de reconhecimento, nesse sistema proposto o RAL independente
de texto foi mais eficiente do que o RAL dependente de texto. Suspeita-se que o maior tempo
de gravação para as elocuções independentes de texto possam ter retido, com mais precisão, a
característica de cada elocutor.

Com relação aos parâmetros extraídos, crê-se que as seguintes características desejáveis
para um adequado reconhecimento sejam satisfeitas:

• São eficientes na representação de informação do locutor que a produziu;

• São fáceis de se medir;

• São estáveis no tempo;

• Ocorrência natural e frequente.

Capítulo 7. Sistema Proposto de RAL 122

Por outro lado, outras características ainda precisam ser melhoradas:

• Pouca variação com o ambiente;

• Não susceptível a mímica.

7.7.3 Comparação com o Estado da Arte

Esta subseção discute sobre alguns importantes sistemas de RAL encontrados na litera-
tura científica. Em 1995, Reynolds (REYNOLDS; ROSE, 1995) implementou um sistema de
identificação baseado na variabilidade espectral, obtendo uma taxa de precisão de 96.80% com
49 locutores. Em 2009, Revathi, Ganapathy e Venkataramani (REVATHI; GANAPATHY; VEN-
KATARAMANI, 2009) através de uma abordagem de agrupamento iterativo, PLP (Perceptual
Linear Predictive cepstrum) e MF-PLP (Mel Frequency PLP), alcançaram taxa de precisão de
91% com 50 locutores escolhidos aleatoriamente no banco de dados TIMIT (TIMIT. . . , 1992).
Em 2009 Chakroborty e Saha (CHAKROBORTY; SAH, 2009) combinando MFCC e IMFCC
(MFCC Invertido) baseado no filtro gaussiano, alcançaram taxa de precisão de 97,42% com 131
locutores do banco de dados YOHO (YOHO. . . , 1994). Em 2010, Saeidi, Mowlaee, Kinnunen e
Zheng-Hua (SAEIDI et al., 2009) através da divergência de Kullback-Leibler alcançaram uma
taxa de precisão de 97% com 34 locutores. Em 2011, Gomez (GOMEZ, 2011) implementou um
sistema de identificação baseado em uma nova rede neural paramétrica, atingindo uma precisão
de 94% com 40 locutores. Em 2011, Rao, Prasada e Nagesh (RAO; PRASAD; NAGESH, 2010)
fizeram um estudo comparando GMM, HMM e MFCC. A taxa de precisão obtida na melhor
condição de teste foi de 99% com 200 indivíduos retirados do banco de dados TIMIT. A Tabela
15 exibe uma comparação das taxas de acertos entre as abordagens citadas e as desenvolvidas
neste trabalho.

Tabela 15 – Comparação com o estado da arte.

Abordagem Taxa de acertos

Reynolds e Rose (1995) 96,80%
Revathi, Ganapathy e Venkataramani (2009) 91%

Chakroborty e Sah (2009) 97,42%
Saeidi et al. (2009) 97%

Gomez (2011) 91%
Rao, Prasad e Nagesh (2010) 91%

Proposta (Independente de Texto) 85%
Proposta (Dependente de Texto) 83,25%

Fonte: Produzido pelo autor.

Capítulo 7. Sistema Proposto de RAL 123

Acredita-se que os resultados preliminares apresentados são promissores. Mesmo que
a taxa de reconhecimento correto nesta versão inicial seja inferior a 95%, restringindo seu uso
imediato em algumas aplicações comerciais, aprimoramentos simples podem ser introduzidos
(e.g., considerar mais de um sobrevivente em bandas de maior frequência) visando reduzir a
taxa de falhas. Pode-se também tentar melhorar a taxa de identificações ao substituir o método
de comparação de amostras por um de mais complexidade. Uma análise do comportamento
do vetor de características para diferentes falantes, ou seja, quão bem ele consegue “espalhar”
timbres diferentes no espaço de características (algo como a característica de decorrelação dos
coeficientes mel-cepstrais), também pode ser realizado.

124

8 DISCUSSÕES E CONCLUSÕES

Como os temas abordados nessa dissertação versam sobre áreas distintas do PDSV, as
discussões e conclusões de cada uma serão discutidas independentemente.

8.1 Síntese das Contribuições Pessoais

1. Vocoder Proposto

• Técnica do MPFO;

• Formato voz;

• Preenchimento Espectral via Distribuição Beta.

2. Sistema de RAL Proposto

• Técnica do MPFO;

• Template Matching;

• Análise de Desempenho.

8.2 Sistema de Codificação de Voz Proposto

Esse trabalho teve o objetivo de apresentar uma nova metodologia para codificação
de sinais de voz com baixa taxa de bits e reduzida complexidade computacional, para fins de
armazenamento ou para uma posterior implementação em tempo real. O intuito foi mostrar que
a separação do espectro em bandas de frequências definidas por oitavas (sendo uma analogia
às bandas críticas da audição) seguida, subsequentemente, de uma simplificação do espectro,
considerando apenas uma amostra de mascaramento por oitava, não descaracterizava os sons
vocais e não-vocais, a ponto de os sinais sintetizados não poderem ser compreendidos. Tentou-se
através da técnica de preenchimento espectral via distribuição beta aprimorar a qualidade dos
sinais gerados pelo sistema. Entretanto observou-se que a técnica ainda introduzia ruído ao
sinal, tendo sido necessários artifícios incomuns (composição de sinais obtidos por variações do
método proposto, janelamento extra ao sinal) com o propósito de reduzi-lo.

Os testes de todos as elocuções adquiridas foram realizados através da técnica subjetiva
ACR a partir de uma classificação MOS. Para isso foi solicitado que pessoas leigas avaliassem
a qualidade dos arquivos, produzidos pelo vocoder proposto, numa escala de 1(ruim) a 5
(excelente), de uma frase ou um trecho de voz. Esses arquivos foram divididos em quatro tipos:

Capítulo 8. Discussões e Conclusões 125

1. Sinais produzidos sem o uso da técnica de preenchimento espectral;

2. Sinais produzidos com o uso da técnica de preenchimento espectral;

3. Sinais formados pela composição dos dois últimos;

4. Sinais do item 2, usando um janelamento de Hamming extra.

Pode-se comprovar que os resultados obtidos nos testes foram satisfatórios, haja vista
a reduzida taxa de bits alcançada pelo método, 2.7 kbits/s, e a baixa complexidade empregada
na sua implementação. Esses fatos não indicam uma melhoria em comparação aos sistemas
já existentes, mas ratifica que o sistema proposto pode ser útil para economizar largura de
banda em aplicações requerendo inteligibilidade. Em particular, o sistema é oferecido como uma
opção para monitoramento de conversas de voz de longa duração, decorrentes de espionagem
autorizada. Foi, também, de essencial relevância para o desenvolvimento do sistema de RAL
proposto no trabalho.

8.3 Sistema de Reconhecimento Automático de Locutor

Proposto

Nessa parte do trabalho, ficou comprovado que o mascaramento em frequência, além
de ser útil em codificação de voz, também pode ser proveitoso no RAL. A síntese do sinal de
voz proveniente do vocoder proposto, contendo apenas o espectro “ultra-simplificado” (com um
único sobrevivente por oitava), fornece um sinal perfeitamente inteligível, a partir do qual se
pode reconhecer o falante. Assim, a despeito da qualidade “metálica e artificial” da voz sintética,
típica de vocoders, as informações suficientes para o reconhecimento não são destruídas. O
processo descrito tem como atrativo a simplicidade, pois cada “padrão de voz” é resumido em um
único vetor de sete componentes associadas às oitavas distintas. Adicionalmente, o classificador
padrão usando os modelos de Markov escondidos é substituído pela simplória técnica de template

matching via distância euclidiana entre os vetores.

Nos testes realizados, observou-se uma maior taxa de acertos do algoritmo para o
reconhecimento independente de texto, para ambas as frases testadas, como normalmente não
ocorre em sistemas de RAL. Também, de modo surpreendente para as expectativas iniciais,
constatou-se que o filtro de pré-ênfase comprometeu um pouco a eficiência das identificações. De
fato, ao enfatizar componentes espectrais mais sensíveis a distorções e ruído, obtém-se melhor
qualidade e um sinal de voz mais natural. Porém, os resultados indicam que tais componentes
não são cruciais no reconhecimento.

A técnica de mascaramento espectral pleno “lembra” a abordagem de estatística mínima
suficiente (FERGUSON, 1967). É como se fossem descartadas as informações espectrais
irrelevantes no processo de estimação. Detalhes práticos suplementares merecem investigação. A

Capítulo 8. Discussões e Conclusões 126

transformada de comprimento N=160 usa bases mistas e visando simplicidade de implementação
de hardware ou DSP, pode-se alterar a duração da janela. Com janelas de 32 ms (ou 16 ms) é
possível usar o algoritmo de Cooley-Tukey de base 2 (OPPENHEIM; SCHAFER; BUCK, 1999),
restando investigar o impacto na eficiência.

Uma comparação rigorosa entre a complexidade e o compromisso com o desempenho
do algoritmo de reconhecimento do locutor entre diferentes técnicas IAL não foi realizada.
Porém o principal mérito desta nova abordagem é oferecer uma taxa de reconhecimento
razoável, porém demandando uma complexidade computacional substancialmente inferior àquela
requerida por outras técnicas consagradas (e.g., HMM, redes neurais, quantização vetorial
etc.). Outro aproveitamento possível deste algoritmo é nos casos em que a base de locutores
é demasiadamente extensa. Este método rápido pode ser aplicado, selecionando um locutor
provável, incluído em uma subclasse de locutores potenciais. Este é então eliminado da base
original, repetindo o processo de forma a escolher um segundo locutor potencial. O procedimento
é iterado até gerar um número pré-estabelecido de locutores potenciais (base reduzida). Esta
aplicação prévia não requer taxas de acerto excessivamente altas, sendo 90% bastante razoável.
Um método sofisticado (alto custo computacional e alta eficiência) é aplicado para identificar
o locutor dentro desta base reduzida. Outra situação de potencial interesse para este método
é no monitoramento em tempo real de telefonemas em prédios (empresas, repartições, etc.)
que possuem centrais telefônicas. Com centenas de ligações simultâneas e diferentes ramais,
como selecionar gravações (autorizadas) de conversações envolvendo indivíduo sob suspeição?
Supõe-se disponível um trecho previamente gravado (e.g., primeiro contato de um sequestrador,
chantagista, corrupto, terrorista, etc.) para constituir a informação de treinamento do locutor
alvo. Neste caso, taxas de falsa aceitação e falsa rejeição aceitáveis podem ser maiores do
que em aplicações comerciais típicas. Assim, situações em tempo real — nas quais há parca
disponibilidade de recursos (como em sistemas embarcados) — esta técnica pode se tornar
bastante atrativa.

8.4 Sugestões e Trabalhos Futuros

A seguir são apresentadas algumas sugestões para trabalhos futuros, que podem ser
realizadas de modo a dar seguimento ao que foi exposto nesta dissertação. Muitas dessas
sugestões são linhas de investigação previstas no início deste trabalho, outras são possibilidades
que surgiram ao longo do estudo, mas que foram descartadas devido à limitação de tempo. São
elas:

8.4.1 Para o Vocoder

• Aumentar um pouco a taxa de amostragem do sinal, analisando os efeitos desse
procedimento;

Capítulo 8. Discussões e Conclusões 127

• Considerar mais de uma amostra espectral de mascaramento;

• Tentar adaptar esse sistema para o funcionamento em tempo real;

• Empregar a superposição de janelas, para aumentar a correlação entre quadros adjacentes;

• Implementar o algoritmo de teste objetivo PESQ para uma melhor avaliação do codificador;

• Alterar o tamanho da janela de 20 ms para 32 ou 16 ms, podendo-se utilizar o algoritmo
de Cooley-Tukey de base 2, reduzindo a complexidade computacional;

• Usar a técnica através de iterações sucessivas, conduzindo a aproximações melhores.

8.4.2 Para a Identificação Automática de Locutor

• Tentar melhorar a taxa de identificações, obtendo um vetor de características com
mais componentes, usando também um método de comparação de amostras com mais
complexidade;

• Alterar a duração da janela, visando simplicidade de implementação de hardware ou DSP,
uma vez que a transformada de comprimento N=160 usa bases mistas. Com janelas de
32 ms (ou 16 ms) é possível usar o algoritmo algoritmo de Cooley-Tukey de base 2,
restando investigar o impacto na eficiência;

• Talvez o uso de WAVELETS ao invés da FFT possa render resultados mais favoráveis aos
já obtidos nessa dissertação;

• Implementar a Verificação Automática de Locutor com essa técnica proposta, analisando
todos os prós e contras dessa nova abordagem;

• Fazer o casamento dessa técnica com outras já existentes, aproveitando as partes mais
eficientes de cada uma.

128

REFERÊNCIAS

ANDRADE, G. A. A. Wavelets Monocíclicas de Suporte Compacto Construídas a Partir de
Distribução Beta. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia
Elétrica, Universidade Federal de Pernambuco, Recife, Brasil, 2007. Citado na página 86.

ANDRADE, M. A. R. Reconhecimento Automático de Comandos Conectados. Dissertação
(Mestrado) — Programa de Pós-Graduação em Engenharia Elétrica, Instituto Militar de
Engenharia, Rio de Janeiro, Brasil, 1999. Citado na página 102.

ASSALEH, K. T.; CAMPBELL, W. M. Speaker Identification Using a Polynomial-Based
Classifier. in Proc. 5th International Symposium on Signal Processing and Its Applications
(ISSPA’99), v. 1, p. 115–118, 1999. Citado na página 101.

ATAL, B. S. Automatic Recognition of Speakers from Their Voices. Proceedings of the IEEE,
v. 64, p. 460–474, 1976. Citado na página 95.

BARBOSA, D. C. P. Análise de Sistemas de Telefonia IP em Redes Par-a-Par Sobrepostas.
Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Elétrica, Universidade
Federal de Pernambuco, Recife, Brasil, 2008. Citado 13 vezes nas páginas 23, 24, 40, 41, 57,
59, 60, 62, 63, 67, 68, 69 e 70.

BEZERRA, M. R. Reconhecimento Automático de Locutor para Fins Forenses, Utilizando
Técnicas de Redes Neurais. Dissertação (Mestrado) — Programa de Pós-Graduação em
Engenharia Elétrica, Instituto Militar de Engenharia, Rio de Janeiro, Brasil, 1994. Citado 2
vezes nas páginas 115 e 120.

BHARIKTAR, S.; KYRIAKAKIS, C. Immersive Audio Signal Processing. New York: Springer,
2006. Citado 2 vezes nas páginas 25 e 30.

BRANCO NETO, W. C. Sistema de Reconhecimento de Som para Afinação de Instrumentos.
Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia de Produção,
Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2000. Citado 3 vezes nas páginas
23, 24 e 25.

CAMPBELL, J. P. Speaker Recognition: A Tutorial. Proceedings of the IEEE, v. 85, p.
1437–1462, 1997. Citado 6 vezes nas páginas 20, 94, 95, 96, 97 e 101.

CAVALCANTI, D. L. Uma Análise Comparativa dos Codificadores/Decodificadores de Voz
para Comunicações Digitais. Dissertação (Mestrado) — Programa de Pós-Graduação em
Engenharia Elétrica, Universidade Federal de Pernambuco, Recife, Brasil, 2009. Citado 7 vezes
nas páginas 49, 63, 64, 65, 68, 69 e 70.

CHAKROBORTY, S.; SAH, G. Improved Text-Independent Speaker Identification Using Fused
MFCC and IMFCC Feature Sets Based on Gaussian Filter. International Journal of Signal
Processing, v. 5, n. 1, p. 11–19, 2009. Citado na página 122.

CHU, W. C. Speech Coding Algorithms: Foundation and Evolution of Standardized Coders.
Hoboken, New Jersey: John Wiley & Sons, Inc., 2003. Citado 11 vezes nas páginas 31, 35, 39,
40, 41, 43, 65, 68, 69, 70 e 81.

Referências 129

COOK, N. D. Tone of Voice and Mind: The Connections Between Intonation, Emotion,
Cognition and Consciousness. Amsterdam: John Benjamins, 2002. Citado na página 25.

COSTA FILHO, A. C. Análise e Síntese da Fala por Interpolação de Ondas. Tese (Doutorado)
— Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Uberlândia,
Uberlândia, Brasil, 2005. Citado 5 vezes nas páginas 44, 45, 61, 63 e 64.

DAN, Z. et al. Speaker Recognition Based on LS-SVM. The 3rd International Conference on
Innovative Computing Information and Control, p. 25–28, 2008. Citado na página 20.

DE OLIVEIRA, H. M. Análise de Sinais para Engenheiros — Uma Abordagem via Wavelets.
Rio de Janeiro: Brasport, 2007. Citado na página 77.

FARRELL, K. R.; MAMMONE, R.; ASSALEH, K. Speaker Recognition Using Neural
Networks and Conventional Classifiers. IEEE Trans. Speech, and Audio Processing, v. 2, n. 1, p.
194–205, 1994. Citado 2 vezes nas páginas 20 e 101.

FERGUSON, T. S. Mathematical Statistics: A Decision Theoretic Approach. New York:
Academic Press, 1967. Citado na página 125.

FURUI, S. Digital Speech Processing, Synthesis and Recognition. 2. ed. New York: Marcel
Dekker Inc., 2000. Citado 2 vezes nas páginas 39 e 40.

GOLDBERG, R.; RIEK, L. A Practical Handbook of Speech Coders. Boca Raton, FL.: CRC
Press, 2000. Citado na página 69.

GOMEZ, P. A Text Independent Speaker Recognition System Using a Novel Parametric Neural
Network. Proceedings of International Journal of Signal Processing, Image Processing and
Pattern Recognition, p. 1–16, 2011. Citado na página 122.

GREENBERG, S. et al. Speech Processing in the Auditory System. New York: Springer-Verlag
New York, Inc., 2004. Citado na página 43.

HOLMES, J.; HOLMES, W. Speech Synthesis and Recognition. 2. ed. Bristol, PA: Taylor &
Francis, Inc., 2002. Citado 5 vezes nas páginas 30, 32, 35, 41 e 62.

HUANG, V. T. L. et al. A New Vocoder Based on AMR 7.4 kbits/s Mode in Speaker Dependent
Coding System. Proc. Int. Conf. Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, v. 6, p. 163–167, 2008. Citado na página 61.

ITU-T. Coding Speech at 16 kbits/s Using Low-Delay Code Excited Linear Prediction.
Recommendation G.728, 1992. Citado na página 69.

ITU-T. 40, 32, 24, 16 kbits/s Adaptive Differential Pulse Code Modulation (ADPCM).
Recommendation G.726, 1996. Citado na página 69.

ITU-T. Objective Quality Measurement of Telephone-band (300-3400 Hz) Speech Codecs.
Recommendation P.861, 1998. Citado na página 66.

ITU-T. Pulse Code Modulation (PCM) of Voice Frequencies. Recommendation G.711, Geneva,
1993. Citado na página 68.

KAHRS, M.; BRANDENBURG, K. Applications of Digital Signal Processing to Audio and
Acoustics. New York: Kluwer Academic Publishers, 2002. Citado 2 vezes nas páginas 37 e 38.

Referências 130

KONDOZ, A. M. Digital Speech: Coding for Low Bit Rate Communication Systems. 2. ed.
Chichester, UK: John Wiley & Sons, 2004. Citado 15 vezes nas páginas 44, 45, 47, 50, 52, 53,
55, 56, 57, 61, 66, 68, 79, 80 e 99.

LATHI, B. P. Modern Digital and Analog Communication Systems. New York: Holt, Rinehart,
and Winston, 1989. Citado na página 77.

LIPORACE, L. A. Maximum Likelihood Estimation for Multivariate Observations of Markov
Sources. IEEE Trans. Informat. Theory, v. IT-28, n. 5, p. 729–734, 1982. Citado na página 102.

MINKER, W.; BENNACEF, S. Speech and Human-Machine Dialog. 1. ed. New York: Kluwer
Academic Publishers, 2004. Citado na página 19.

MIRANDA, E. R. The Informatics Handbook: A Guide to Multimedia Communications and
Broadcasting. 1. ed. Oxford, UK: Springer Science & Business Media, 1996. Citado na página
19.

MIRANDA, E. R. Computer Sound Design: Synthesis Techniques and Programming. 2. ed.
Oxford, UK: Focal Press, 2002. Citado na página 19.

OLIVEIRA, M. P. B. Verificação Automática de Locutor, Dependente de Texto, Utilizando
Sistemas Híbridos MLP/HMM. Dissertação (Mestrado) — Programa de Pós-Graduação em
Engenharia Elétrica, Instituto Militar de Engenharia, Rio de Janeiro, Brasil, 2001. Citado 4
vezes nas páginas 102, 104, 105 e 107.

OPPENHEIM, A. V.; SCHAFER, R. W.; BUCK, J. R. Discrete-Time Signal Processing. 2. ed.
Upper Saddle River, NJ: Prentice Hall, 1999. Citado 9 vezes nas páginas 55, 56, 58, 77, 79, 81,
82, 115 e 126.

PARANAGUÁ, E. D. S. Reconhecimento de Locutor Utilizando Modelos de Markov Escondidos
Contínuos. Dissertação (Mestrado) — Programa de Pós-Graduação em Engenharia Elétrica,
Instituto Militar de Engenharia, Rio de Janeiro, Brasil, 1997. Citado 7 vezes nas páginas 20, 93,
99, 100, 102, 104 e 108.

PEACOCKE, R. D.; GRAF, D. H. An Introduction to Speech and Speaker Recognition. IEEE
Computer Society Press, v. 23 (8), p. 26–33, 1990. Citado na página 20.

PELTON, G. E. Voice Processing. New York: McGraw-Hill, Inc., 1993. Citado 4 vezes nas
páginas 40, 41, 62 e 115.

PENHA, R. Avaliação Audio–Vestibular in: Penha R. Lisboa: Otorrinolaringologia, 1996.
Citado 2 vezes nas páginas 26 e 27.

PETRY, A. Reconhecimento Automático de Locutor Utilizando Medidas Invariantes Dinâmicas
Não-Lineares. Tese (Doutorado) — Programa de Pós-Graduação em Ciência da Computação,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2002. Citado 7 vezes nas
páginas 93, 94, 95, 98, 99, 101 e 114.

POPE, S. P.; SOLBERG, B.; BRODERSEN, R. W. A Single-Ship Linear-Predictive-Coding
Vocoder. IEEE Journal of Solid-State Circuits, v. 22, n. 3, p. 479–487, 1987. Citado na página
62.

Referências 131

RABINER, L.; JUANG, B.-H. Fundamentals of Speech Recognition. Englewood Cliffs, NJ:
Prentice-Hall, 1993. Citado 11 vezes nas páginas 40, 43, 46, 99, 101, 103, 104, 105, 106, 107
e 114.

RABINER, L. R. Applications of Voice Processing to Telecommunications. Proceedings of
IEEE, v. 82, n. 2, p. 199–228, 1994. Citado 2 vezes nas páginas 98 e 99.

RABINER, L. R.; SCHAFER, R. W. Digital Processing of Speech Signals. 1. ed. New Jersey:
Prentice-Hall, 1978. Citado 7 vezes nas páginas 19, 39, 40, 77, 80, 114 e 115.

RABINER, L. R.; SCHAFER, R. W. Introduction to Digital Speech Processing. Foundations
and Trends in Information Retrieval, v. 1, n. 1–2, p. 1–194, 2007. Citado 6 vezes nas páginas
43, 44, 45, 47, 50 e 58.

RAO, R. R.; PRASAD, V. K.; NAGESH, A. Performance Evaluation of Statistical Approaches
for Text-Independent Speaker Recognition Using Source Feature. InterJRI Computer Science
and Networking), v. 2, n. 1, p. 8–13, 2010. Citado na página 122.

REVATHI, A.; GANAPATHY, R.; VENKATARAMANI, Y. Text Independent Speaker
Recognition and Speaker Independent Speech Recognition Using Iterative Clustering Approach.
International Journal of Computer Science & Information Technology, v. 1, n. 2, p. 30–42, 2009.
Citado na página 122.

REYNOLDS, D. A.; ROSE, R. C. Robust Text-Independent Speaker Identification Using
Gaussian Mixture Speaker Models. IEEE Trans. Speech Audio Process, v. 3, p. 72–83, 1995.
Citado 2 vezes nas páginas 20 e 122.

RIX, A. W. et al. Perceptual Evaluation of Speech Quality (PESQ), an Objective Method for
End-to-End Speech Quality Assessment of Narrowband Telephone Networks and Speech
Codecs. ITU-T Recommendation, v. 862, 2001. Citado na página 66.

ROSEMBERG, A. E. Automatic Speaker Verification: A Review. Proceedings of the IEEE,
v. 64, p. 475–487, 1984. Citado 2 vezes nas páginas 95 e 114.

RUMSEY, F.; MCCORMICK, T. Sound and Recording: An Introduction. 5. ed. Burlington, MA:
Focal Press, 2006. Citado 6 vezes nas páginas 23, 24, 30, 32, 35 e 37.

SAEIDI, R. et al. Signal-to-Signal Ratio Independent Speaker Identification for Co-Channel
Speech Signals. Proceedings of International Conference on Pattern Recognition (ICPR 2009),
p. 4565–4568, 2009. Citado na página 122.

SALAMI, R. et al. ITU-T G.729 Annex A: Reduced Complexity 8 kb/s CS-ACELP Codec
for Digital Simultaneous Voice and Data. IEEE Communications Magazine, p. 56–63, 1997.
Citado na página 70.

SCHROEDER, M. R. Dudley, Homer W.: A Tribute. Signal Processing, v. 3, p. 187–188, 1981.
Citado na página 19.

SHAO, Y.; WANG, D. Robust Speaker Recognition Using Binary Time-Frequency Masks. IEEE
International Conference on Acoustic, Speech and Signal Processing, I, p. 645–648, 2006.
Citado na página 20.

Referências 132

SILVA, D. D. C. Desenvolvimento de um IP Core de Pré-Processamento Digital de Sinais
de Voz para Aplicações em Sistemas Embutidos. Dissertação (Mestrado) — Programa de
Pós-Graduação em Informática, Universidade Federal de Campina Grande, Campina Grande,
Brasil, 2006. Citado 4 vezes nas páginas 77, 78, 80 e 114.

SMITH, S. W. Digital Signal Processing – A Practical Guide for Engineers and Scientists. 3. ed.
Burlington, MA: Newnes, 2003. Citado 5 vezes nas páginas 24, 25, 27, 30 e 40.

SONG, F. K. et al. A Vector Quantization Approach to Speaker Recognition. in Proc. Int. Conf.
Acoustics, Speech and Signal Processing, p. 387–390, 1985. Citado na página 101.

SOTERO FILHO, R. F. B.; DE OLIVEIRA, H. M. Reconhecimento de Locutor Baseado em
Mascaramento Pleno em Frequência por Oitava. 7o Congresso de Engenharia de Áudio, São
Paulo, SP. Anais do AES Brasil, p. 61–66, 2009. Citado na página 72.

SOTERO FILHO, R. F. B.; DE OLIVEIRA, H. M.; CAMPELLO DE SOUZA, R. M. A
Full Frequency Masking Vocoder for Legal Eavesdropping Conversation Recording. XXXV
Congresso Nacional de Matemática Aplicada e Computacional, Natal, RN, Brasil, v. 3, 2014.
Citado na página 72.

SOUZA, M. A. et al. Avaliação de Técnicas de Codificação de Voz para Voip. XIV Encontro
Regional de Informática, Guarapuava, PR, 2007. Citado na página 67.

SPANIAS, A.; PAINTER, T.; ATTI, V. Audio Signal Processing and Coding. 1. ed. New Jersey:
John Wiley & Sons, Inc., 2007. Citado 15 vezes nas páginas 19, 33, 34, 35, 36, 37, 38, 44, 45,
46, 60, 63, 64, 67 e 68.

TIMIT Speech Database. 1992. Disponível em: <http://www.ldc.upenn.edu>. Citado na página
122.

TISHBY, N. Z. On Application of Mixture AR Hidden Markov Models to Text Independent
Speaker Recognition. IEEE Trans. Signal Processing, v. 39, n. 3, p. 563–570, 1991. Citado 2
vezes nas páginas 20 e 101.

VASEGHI, S. V. Multimedia Signal Processing: Theory and Applications in Speech, Music and
Communications. Chichester, UK: John Wiley & Sons, Ltd, 2007. Citado 15 vezes nas páginas
25, 26, 27, 28, 29, 30, 31, 32, 35, 36, 39, 40, 43, 46 e 59.

WANG, N. et al. Robust Speaker Recognition using Both Vocal Source and Vocal Tract
Features Estimated from Noisy Input Utterances. IEEE International Symposium on Signal
Processing and Information Technology, 2007. Citado na página 20.

WANG, S.; SEKEY, A.; GERSHO, A. An Objective Measure for Predicting Subjective Quality
of Speech Coders. IEEE J. Select. Areas Commun, v. 10, n. 5, p. 819–829, 1992. Citado na
página 66.

WATKINSON, J. The Art of Digital Audio. 3. ed. Woburn, MA: Focal Press, 2001. Citado 3
vezes nas páginas 26, 29 e 35.

WOLF, J. J. Efficient Acoustic Parameters for Speaker Recognition. Journal of the Acoustic
Society of America 51, v. 6 (Part 2), p. 2044–2056, 1972. Citado na página 98.

YOHO Speech Database. 1994. Disponível em: <http://www.ldc.upenn.edu>. Citado na página
122.

http://www.ldc.upenn.edu
http://www.ldc.upenn.edu

Apêndices

134

APÊNDICE A – ARTIGOS
PUBLICADOS

Este trabalho está relacionado às seguintes publicações:

• SOTERO FILHO, R. F. B.; DE OLIVEIRA, H. M. Reconhecimento de Locutor Baseado
em Mascaramento Pleno em Frequência por Oitava. 7o Congresso de Engenharia de Áudio,

São Paulo, SP. Anais do AES Brasil, p. 61–66, 2009.

• SOTERO FILHO, R. F. B.; DE OLIVEIRA, H. M.; CAMPELLO DE SOUZA, R. M.
A Full Frequency Masking Vocoder for Legal Eavesdropping Conversation Recording.
XXXV Congresso Nacional de Matemática Aplicada e Computacional, Natal, RN, Brasil,
v. 3, 2014.

Sociedade de Engenharia de Áudio

Artigo de Congresso
Apresentado no 7

o
 Congresso de Engenharia de Áudio

13
a
 Convenção Nacional da AES Brasil

26 a 28 de Maio de 2009, São Paulo, SP

Este artigo foi reproduzido do original final entregue pelo autor, sem edições, correções ou considerações feitas pelo comitê

técnico. A AES Brasil não se responsabiliza pelo conteúdo. Outros artigos podem ser adquiridos através da Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA, www.aes.org. Informações sobre a seção

Brasileira podem ser obtidas em www.aesbrasil.org. Todos os direitos são reservados. Não é permitida a reprodução total

ou parcial deste artigo sem autorização expressa da AES Brasil.

Reconhecimento de Locutor baseado em Mascaramento
Pleno em Freqüência por Oitavas

Sotero Filho, R. F. B. e de Oliveira, H. M.

Departamento de Eletrônica e Sistemas

Universidade Federal de Pernambuco - UFPE

Recife, Pernambuco, 50711-970, Brasil

 rsotero@hotmail.com hmo@ufpe.br

RESUMO

Este artigo propõe um novo método de baixa complexidade computacional para reconhecimento de locutor,

baseando-se em uma das propriedades-chave da percepção auditiva humana: o mascaramento acústico em

freqüência. O vetor característico dos quadros do sinal de voz é representado pela média das amplitudes dos tons

de mascaramento em cada oitava. Ambos os tipos de reconhecimento de locutor (de texto dependente e de texto

independente) são estudados. Os resultados confirmam que o algoritmo proposto oferece um compromisso entre

a complexidade e a taxa de identificações corretas, sendo atrativo para aplicações em sistemas embarcados.

ABSTRACT

This paper introduces a novel and low-complexity speaker identification technique. It is based on one of the

key-properties of the human hearing perception: the auditory frequency masking. The feature vectors of voice

frames are merely represented by the average amplitude of the greatest spectral samples within each octave.

Both text-dependent and text-independent speaker recognition is investigated. Results corroborate a tradeoff

between recognition efficiency and complexity of this kind of vocoder-based systems, which turns it attractive

for embedded systems.

0 INTRODUÇÃO

Enquanto humanos, somos capazes de distinguir pessoas

meramente ouvindo-as falar. Diferenças (ainda que sutis)

de timbre, sotaque e/ou entonação, habilitam-nos a

distinguir uma pessoa de outra apenas pela sua voz.

Geralmente, curtos trechos de fala (2 a 3 segundos) são

largamente suficientes para o reconhecimento de uma voz

familiar.

A área de processamento de voz, que torna possível o

reconhecimento de pessoas pela voz por meio de máquinas

é chamada de “reconhecimento automático de locutor”

(RAL). No RAL, determina-se a identidade de uma pessoa

através da voz, com o propósito de controlar/restringir o

acesso a redes, computadores, bases de dados, bem como

restringir a disponibilização de informações confidenciais

para pessoas não autorizadas, dentre várias outras

aplicações [1].

Um sistema que trabalha com RAL calcula (por algum

critério específico) a similaridade entre as características

da voz do locutor que se deseja reconhecer, com as

características de voz de um conjunto de locutores

previamente armazenadas pelo sistema de reconhecimento.

 O RAL divide-se em Verificação Automática de

Locutor (VAL) e Identificação Automática de Locutor

(IAL). Na VAL, faz-se uso de uma máquina para verificar

SOTERO FILHO E DE OLIVEIRA

RECONHECIMENTO DE LOCUTOR

7º CONGRESSO / 13ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 26 A 28 DE MAIO DE 2009

a identidade da voz de uma pessoa que a reivindicou [2].

Na literatura há outras denominações para a VAL,

incluindo-se: verificação de voz, autenticação de locutor e

autenticação de voz. Na VAL pode haver erros de dois

tipos: a falsa aceitação (FA) de um locutor impostor, ou a

falsa rejeição (FR) de um locutor verídico, [3], [4].

 Na IAL não há a reivindicação de autenticidade. O

sistema é que deverá decidir, dentre um determinado

número N de locutores, qual o usuário correto ou se o

mesmo é desconhecido dentre N possíveis locutores

cadastrados [2]. A IAL pode ser implementada com

rejeição ou sem rejeição. No primeiro caso, é estabelecido

um limiar para cada usuário. Para o locutor ser considerado

autêntico, a similaridade entre as características de sua

elocução teste e as características extraídas de seu padrão

deverá superar esse limiar. Em caso negativo, o locutor é

considerado um impostor. Este trabalho é focado

exclusivamente na Identificação Automática de Locutor

sem rejeição.

O reconhecimento de locutor pode ser feito através do

uso de um texto conhecido ou pode ser feito através de um

texto arbitrário. No primeiro caso (reconhecimento

dependente de texto), o texto ou frase é previamente

conhecido pelo sistema que o utilizará para teste e para o

treinamento. No segundo (reconhecimento independente de

texto), não há especificação de texto. A tarefa de

verificação é realizada com a comparação de um texto

falado no momento do reconhecimento, com outro texto

distinto, previamente gravado pelo sistema.

 Recentes pesquisas na área de reconhecimento de

locutor visam reduzir a complexidade computacional de

métodos já existentes, e que invariavelmente requerem

grande carga computacional para o processamento. O

trabalho publicado recentemente, [5], baseado em LS-SVM

(The Least Square Support Vector Machine), transforma

um problema de programação quadrática, do convencional

Support Vector Machine (SVM), num problema de

programação linear, reduzindo assim a complexidade

computacional. Outras publicações recentes procuram

aprimorar o desempenho dos métodos de reconhecimento
em ambientes ruidosos, como em [6] e [7].

Visando trabalhar com uma técnica de baixa

complexidade e com alta simplicidade de implementação,

este trabalho apresenta os resultados obtidos utilizando-se

técnicas de processamento digital de sinais para a

identificação automática de pessoas pela voz, baseado em

uma técnica nomeada de “mascaramento em freqüência por

oitava”.

Inicialmente são introduzidas as técnicas adotadas para a

realização do pré-processamento do sinal e extração das

características representativas do sinal pré-processado.

Posteriormente, o processo de reconhecimento é descrito.

Concluindo, são analisados os resultados obtidos, com a

implementação prática das técnicas descritas neste artigo

para o reconhecimento de falantes.

1 AQUISIÇÃO DE SINAIS DE VOZ

O processo de identificação do locutor tem início com a

gravação das elocuções para o processamento. Isso é

realizado utilizando um microfone, cuja saída está

conectada a uma placa de som instalada em um

computador. Essa tem a função de converter o sinal

analógico de voz em amostras igualmente espaçadas no
tempo, a uma taxa que pode ser previamente escolhida.

Do teorema da amostragem de Shannon [8], sabe-se que

para não haver perda de informação, o sinal banda limitada

em fm Hz deve ser amostrado a uma taxa de pelo menos 2fm

amostras eqüiespaçadas por segundo. Tipicamente, a

energia de um sinal de voz é concentrada numa faixa de

freqüência de até 5 kHz, ainda que a realização (pronúncia)

típica de fonemas fricativos (e.g. /s/) possua substancial

parte da energia espectral acima desta freqüência. No

entanto, como isso ocorre apenas para sons de natureza

ruidosa, eles contêm pouca informação sobre o locutor

(que se concentra mais nos sons vocálicos). Diante disso,

em concordância com o Teorema da amostragem, um valor

aceitável para amostragem de um sinal de voz típico na

aplicação em vista deveria ser em torno de 10 kHz [9]. O

valor escolhido nesse trabalho foi o de 8 kHz, utilizando 16

bits de resolução e 1 canal, Mono.

2 PRÉ-PROCESSAMENTO DO SINAL DE VOZ

Após adquirirem-se os dados e convertê-los em amostras

digitais, passa-se à fase do pré-processamento dos mesmos.

Essa etapa compreende a pré-ênfase, a detecção de pontos

extremos (endpoints), segmentação dos dados em quadros
(frames) e janelamento.

2.1 Pré-ênfase

Devido a características fisiológicas do sistema de

produção da fala, o sinal de voz irradiado pelos lábios

apresenta uma atenuação de aproximadamente 6 dB/ oitava

nas altas freqüências. O filtro de pré-ênfase serve para

compensar esta atenuação, antes da análise espectral,

melhorando a eficiência da análise [10]; sendo a audição

menos sensível a freqüências acima de 1 kHz do espectro,

a pré-ênfase amplifica esta área do espectro, auxiliando os

algoritmos de análise espectral na modelagem dos aspectos

perceptualmente importantes do espectro da voz [11]. A

resposta em freqüência do filtro pode ser representada por:

𝐻 𝑧 = 1 − 𝑎𝑧−1. (1)

Neste caso, a saída da pré-ênfase y(n) está relacionada à

entrada x(n) pela equação diferença [12]:

𝑦 𝑛 = 𝑥 𝑛 − 𝑎. 𝑥(𝑛 − 1) (2)

para 1 ≤ n < M, em que M é o número de amostras do sinal

amostrado x(n), y(n) é o sinal pré-enfatizado e a constante

"a" é normalmente escolhido entre 0,9 e 1. No trabalho foi

adotado um valor de "a" igual a 0,95 [11].

2.2 Detecção de pontos extremos (endpoints)

 A fim de reduzir o tempo de processamento, e evitar que

o ruído de fundo que ocorra antes e depois do sinal de voz

prejudique o desempenho do reconhecimento [13], far-se-á

o uso de um algoritmo (voice activity detection – VAD),

que detecta os pontos extremos do sinal. Esse algoritmo

baseia-se na metodologia criada por Rabiner e Sambur em

1975 e faz uso de duas medidas do sinal de voz: a energia e

a taxa de cruzamento do zero obtidas em janelas de 10 ms

SOTERO FILHO E DE OLIVEIRA

RECONHECIMENTO DE LOCUTOR

7º CONGRESSO / 13ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 26 A 28 DE MAIO DE 2009

de duração do sinal. Um intervalo de 100 ms no início da

elocução (10 janelas) é utilizado para efetuar uma

estatística do ruído de fundo [14].

2.3 Segmentação dos dados em quadros e
Janelamento

 Após a detecção dos pontos extremos, o sinal de voz

deve ser particionado em pequenos segmentos (frames)

bem definidos, com o propósito de se obter trechos de voz

razoavelmente assumidos como estacionários. Isso porque,

sendo o sinal de voz um processo estocástico, e sabendo-se

que o trato vocal muda de forma muito lentamente na voz

contínua, muitas partes da onda acústica podem ser

assumidas como estacionárias num intervalo de curtíssima

duração (entre 10 e 40 ms). Este intervalo caracteriza o

tamanho da janela a ser usada [15]. Neste trabalho, o

tamanho da janela adotada será de 20 ms, um valor típico

de muitas aplicações envolvendo voz.

 O janelamento do sinal tem o objetivo de amortecer o

efeito do "fenômeno Gibbs” [10], [16] que surge devido à

descontinuidade das janelas [15].

 Para o contexto da produção da voz, as características

apresentadas, referentes ao janelamento de Hamming,

mostram que este tipo de janela é mais eficiente quando

comparada às janelas Retangular e de Hanning, com uma

aproximação da janela ideal [16]. Assim sendo, essa foi a

janela utilizada neste trabalho.

3 METODOLOGIA EMPREGADA

 A idéia proposta baseou-se em umas das propriedades

psico-acústicas da audição humana: o mascaramento

auditivo ou “audibilidade diminuída de um som devido à

presença de outro”, podendo este ser em freqüência – foco

do nosso trabalho – ou no tempo. O mascaramento

auditivo em freqüência ocorre quando um som que

normalmente poderia ser ouvido é mascarado por outro, de

maior intensidade, que se encontra em uma freqüência

próxima. Ou seja, o limiar de audição é modificado

(aumentado) na região próxima à freqüência do som que

causa a ocorrência do mascaramento, sendo que isto se

deve à limitação da percepção de freqüências do sistema

auditório humano.

 Em função deste comportamento, o que método de

reconhecimento proposto fará, a priori, é identificar casos

de mascaramento em freqüência no espectro do sinal

particionado em oitavas, e descartar sinais que “não seriam

audíveis” devido a este fenômeno.

A tendência predominante dos padrões de

reconhecimento existentes em utilizar coeficientes

cepstrais e mel-cepstrais [16] para caracterizar um quadro

de voz, não será aqui adotada. Em vez disso, utilizaremos a

fração média das amplitudes das freqüências de

mascaramento por oitava, como uma representação do

padrão de voz. Essa nova abordagem reduz
significativamente o volume de dados para processamento.

As algoritmos desenvolvidos para a extração das

características do quadro de voz, geração e comparação dos

padrões foram todos escritos na linguagem MATLAB® por

ser uma linguagem muito difundida nos meios acadêmicos
e de fácil implementação.

A seguir a metodologia abordada é descrita.

3.1 Extração das características do quadro de
voz

O sinal gravado e amostrado (a uma taxa de 8 kHz)

passará pelas etapas descritas no item 2, ou seja, da pré-

ênfase, detecção dos pontos extremos, segmentação e

janelamento. Posteriormente, para cada segmento do

arquivo de voz janelado, será aplicada uma FFT de

comprimento 160 (número de amostras contidas em um

quadro de 20 ms de voz), obtendo-se assim a representação

no domínio da freqüência do sinal, para cada quadro.

Subseqüentemente, o espectro da magnitude do sinal é

dividido em oitavas. A primeira oitava correspondendo à

faixa de freqüências de 32 Hz – 64 Hz, a segunda indo de

64 Hz – 128 Hz, e assim por diante, até a sétima que

corresponde à faixa de 2048 Hz a 4096 Hz.

 Como se está fazendo uso de uma taxa de amostragem

de 8 kHz, cada amostra da magnitude do espectro

corresponderá a uma amostra espectral múltipla de 50 Hz,

sendo que a primeira amostra irá representar a componente

DC de cada quadro de voz. Já que as raias espectrais

caminham a passos de 50 Hz, a primeira oitava (de 32 Hz a

64 Hz), será representada pela amostra espectral de 50 Hz,

a segunda oitava (64 Hz a 128 Hz) pela amostra de 100 Hz,

a terceira (de 128 Hz a 256 Hz) pelas amostras de 150 Hz,

200 Hz e 250 Hz, e assim por diante.

Tabela 1 – Número de freqüências estimadas pela DFT de

comprimento 160 em cada oitava do espectro vocal.

Oitava (Hz) # amostras

espectrais/oitava

32 - 64 1

64 - 128 1

128 - 256 3

256 - 512 5

512 - 1024 10

1024 - 2048 20

2048 - 4096 39

 Terminado esse procedimento inicial, o algoritmo irá

agora buscar em cada oitava, em todos os sete sub-bandas

de voz do sinal, o ponto da FFT de maior magnitude, i.e.,

aquele que irá (potencialmente) mascarar os demais. Essa

amostra espectral passará a ser o único representante

dentro de cada oitava (por opção de complexidade

reduzida). As demais serão descartadas, assumindo valor

espectral nulo. O total de 80 freqüências oriundas da

estimativa da DFT com N=160 é reduzido para 7

sobreviventes (retendo menos do que 5% das componentes

espectrais). Portanto, cada quadro, agora, será

representado, no domínio freqüencial, por 7 tons puros de

mascaramento auditivo, um para cada oitava. Esta técnica é

denominada aqui de mascaramento pleno de freqüência.

 Definindo o vetor inicial de amostras espectrais, no i-

ésimo quadro de voz, por 𝑜𝑐𝑡𝑗
(𝑖)

 em que j representa o

índice da oitava, tem-se:

𝑜𝑐𝑡𝑗
(𝑖)

= 𝑎𝑗 ,1
(𝑖)

 𝑎𝑗 ,2
(𝑖)

𝑎𝑗 ,3
(𝑖)

…𝑎𝑗 ,𝑁𝑗

(𝑖)
 ,

𝑖 = 1,2 … , 𝑛
 𝑗 = 1,2. . . ,7

 (3)

sendo, 𝑎𝑗 ,𝑘
(𝑖)

 a amplitude do k-ésimo ponto da FFT, na

janela i e oitava j e 𝑁𝑗 o número de amostras da j-ésima

oitava.

Aplicando-se o procedimento de busca da amostra

espectral de maior magnitude, vamos obter um novo vetor

SOTERO FILHO E DE OLIVEIRA

RECONHECIMENTO DE LOCUTOR

7º CONGRESSO / 13ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 26 A 28 DE MAIO DE 2009

𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(𝑖)

 sintetizado contendo 𝑁𝑗 -1 zeros, e a única

componente da amostra de mascaramento espectral

correspondente ao max (𝑎𝑗 ,𝑘
(𝑖)

):

 𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(𝑖)

= [0 0 ... max (𝑎𝑗 ,𝑘
(𝑖)

)... 0], k =1,2... 𝑁𝑗 . (4)

A Figura 1 mostra o módulo do espectro de um quadro,

de 20 ms, de uma locução usada para teste, antes e depois

da simplificação por tons de mascaramento psico-acústico.

Figura 1 Representação do espectro de freqüência de um quadro de
voz, para antes e depois do processo de mascaramento auditivo.

Obtidos todos os vetores 𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(𝑖)

, o algoritmo obtém,

para cada oitava, uma matriz 𝑀𝑗 cujas linhas são formadas

por todos os n vetores 𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(𝑖)

 do arquivo. Esse

procedimento será útil para calcular as médias dos “tons”

de mascaramento.

𝑀𝑗 = (𝑚𝑗 ,𝑘) =

 𝑛𝑒𝑤_𝑜𝑐𝑡𝑗

(1)

𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(2)

𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(3)

⋮

𝑛𝑒𝑤_𝑜𝑐𝑡𝑗
(𝑛)

 (5)

=

0
0

max⁡(𝑎𝑗 ,𝑘
(3)

)

⋮
0

0
0
0
⋮

max⁡(𝑎𝑗 ,𝑘

(𝑁𝑗)
)

max⁡(𝑎𝑗 ,𝑘
(1)

)

0
0
⋮
0

…
……
…
…

 0

 max⁡(𝑎𝑗 ,𝑘
(2)

)

0
⋮
0

 Calculando-se a média de cada coluna da matriz 𝑀𝑗 ,

obtém-se a participação média de cada amostra espectral

de mascaramento (múltiplos de 50 Hz), no sinal de voz,

resultando no vetor:

 𝑚𝑗 = [𝑚𝑗 ,1 𝑚𝑗 ,2 …𝑚𝑗 ,𝑁𝑗] , (6)

em que, 𝑚𝑗 ,𝑘 =
1

𝑛
 max⁡(𝑎𝑗 ,𝑘

(𝑖)
)𝑛

𝑖=1 , e k representa o índice

no qual existam amostras espectrais de mascaramento.

Em seguida, todas as componentes do vetor, 𝑚𝑗 são

somadas. Essa soma representará a participação média dos
“tons” de mascaramento dentro de sua respectiva oitava.

𝑠𝑗 = 𝑚𝑗 ,𝑘
𝑁𝑗

𝑘=1 . (7)

Esses 𝑠𝑗 assim definidos formarão o vetor 𝑠𝑡𝑜𝑡𝑎𝑙 :

𝑠𝑡𝑜𝑡𝑎𝑙 = [𝑠1 𝑠2. . . 𝑠7]. (8)

Os parâmetros obtidos pela etapa anterior são

diretamente proporcionais aos níveis de energia dos sinais

coletados, fator que pode deturpar a classificação

incorretamente. Para realizar a normalização dessas

amplitudes, faz-se a divisão do vetor 𝑠𝑡𝑜𝑡𝑎𝑙 pela soma de

todas as suas componentes.

Normalizando, o vetor 𝑠𝑡𝑜𝑡𝑎𝑙 encontra-se, enfim, o vetor

característica do sinal de voz, com apenas 7 componentes,

representantes do número de oitavas, o qual será usado
para a comparação com as locuções testes:

𝑠𝑛𝑜𝑟𝑚 =
1

 𝑠𝑗
7
𝑗=1

[𝑠1 𝑠2 …𝑠7]. (9)

3.2 Geração dos padrões de locutores

A geração do padrão de cada locutor é feita obtendo a

média de todos os vetores representantes das características

do sinal de voz, das elocuções reservadas para o
treinamento.

3.3 Comparação dos padrões de voz

 Como última etapa do processo de identificação, tem-se

a comparação entre dois vetores. A comparação é realizada

através do cálculo da distorção entre eles. Há várias

medidas de distorção entre vetores que podem ser

utilizadas em reconhecimento de locutor. A medida de

distorção mínima ou euclidiana, a medida mais conhecida,

foi aquela utilizada. Simulações de desempenho pela

alteração das métricas de comparação dos locutores

precisam ser conduzidas, a fim de selecionar a mais

adequada, i.e., aquela de melhor compromisso

complexidade versus taxa de reconhecimento. A seleção do

locutor é realizada com base na técnica simples de template

matching via distância euclidiana entre o vetor de

característica e os vetores armazenados para os locutores

cadastrados. A Figura 2 no anexo ilustra o algoritmo de

reconhecimento de locutor proposto neste trabalho.

4 RESULTADOS

Foram realizados dois tipos de testes. No primeiro deles,

a identificação dos locutores é feita fazendo uso de uma

mesma frase padrão para todos os locutores

(reconhecimento dependente de texto). No segundo caso, a

identificação é feita com textos escolhidos aleatoriamente

no momento da gravação (reconhecimento independente de

texto). Todas as gravações foram realizadas com o mesmo

microfone, numa sala que não teve nenhuma preparação

especial destinada à redução de ecos ou mesmo a

eliminação total de ruído de fundo. Nos experimentos

realizados a eficiência do algoritmo foi também testada na

ausência da pré-ênfase. Os resultados são comentados a

seguir.

4.1 IAL Dependente de Texto

Para a realização desse teste faz-se necessário o pré-

conhecimento de textos ou frases. Duas frases são

consideradas adequadas para reconhecimento de locutor,

por apresentarem grande quantidade de fonemas nasalados

e vocalizados [15]. São elas: “O prazo tá terminando” e

“Amanhã ligo de novo”. A segunda opção foi à

selecionada para realização dos testes audiométricos.

SOTERO FILHO E DE OLIVEIRA

RECONHECIMENTO DE LOCUTOR

7º CONGRESSO / 13ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 26 A 28 DE MAIO DE 2009

Foram gravadas 40 repetições para 10 locutores

diferentes (7 do sexo masculino e 3 do sexo feminino), das

quais 20 serão utilizadas para a geração do padrão de cada

locutor e outros 20 serão utilizados para a comparação dos

padrões, totalizando 400 elocuções. Os resultados dos

testes seguem na Tabela 2.

Tabela 2 – Resultado dos testes para o reconhecimento de

locutor dependente de texto.

Pré-ênfase Identificações

corretas

Identificações

incorretas

Eficiência

Sim 174 26 87,0 %

Não 183 17 91,5%

Como se pode observar pela Tabela 2, na ausência da

pré-ênfase o algoritmo tornou-se mais eficiente.

4.2 IAL Independente de Texto

Nesse teste, utilizaram-se oito textos, escolhidos

aleatoriamente, de aproximadamente 10 segundos de

duração, para 12 locutores diferentes. Quatro desses textos

foram usados para a geração do padrão de cada locutor. Os

outros quatro textos foram utilizados para as comparações

dos padrões. Os resultados são sumarizados na Tabela 3.

Tabela 3 – Resultado dos testes para o reconhecimento de

locutor independente de texto.

Pré-ênfase Identificações

corretas

Identificações

incorretas

Eficiência

Sim 39 9 81,25 %

Não 44 4 91,66 %

5 DISCUSSÃO E CONCLUSÕES

Ficou constatado nesse artigo que o mascaramento em

freqüência fazendo uso de um único ponto da FFT

sobrevivente por oitava pode ser útil no reconhecimento de

locutor. A síntese do sinal de áudio proveniente de um

vocoder contendo apenas o espectro “ultra-simplificado”

(com único sobrevivente por oitava, e.g. Fig.1) fornece um

sinal perfeitamente inteligível, a partir do qual se

reconhece facilmente o falante. Assim, a despeito da

qualidade “metálica e artificial” da voz sintética (vide

arquivo anexo sotero-reconhecimento-2.wav), típica de

vocoders, as informações suficientes para o

reconhecimento não são destruídas. O processo descrito

tem como atrativo a simplicidade, pois cada "padrão de

voz" é resumido em um único vetor de sete componentes

associadas às oitavas distintas. Adicionalmente, o

classificador padrão usando cadeias de Markov escondidas

(HMM) é substituído pela técnica simples de template

matching via distância euclidiana entre os vetores. Foi

observada uma maior taxa de acertos do algoritmo para o

reconhecimento dependente de texto. De modo

surpreendente para as expectativas iniciais, constatou-se

que o filtro de pré-ênfase comprometeu um pouco a

eficiência das identificações. De fato, ao enfatizar

componentes espectrais mais sensíveis a distorções e ruído,

obtém-se melhor qualidade e um sinal de voz mais natural.

Porém, os resultados indicam que tais componentes não

são cruciais no reconhecimento. Os resultados preliminares

apresentados são promissores. Mesmo que a taxa de

reconhecimentos corretos nesta versão inicial seja inferior

a 95% − restringindo seu uso imediato em algumas

aplicações comerciais– aprimoramentos simples podem ser

introduzidos (e.g. considerar mais de um sobrevivente em

bandas de maior freqüência) visando reduzir a taxa de

falhas. Este tópico encontra-se atualmente sob

investigação, além de uma análise do comportamento do

vetor de características para diferentes falantes, ou seja,

quão bem ele consegue "espalhar" timbres diferentes no

espaço de características (algo como a característica de
decorrelação dos coeficientes MFCC).

A técnica de mascaramento espectral pleno “lembra” a

abordagem de estatística mínima suficiente [17]. É como se

fossem descartadas as informações espectrais irrelevantes

no processo de estimação. Detalhes práticos suplementares

merecem investigação. A transformada de comprimento

N=160 usa bases mistas e visando simplicidade de

implementação de hardware ou DSP, pode-se alterar a

duração da janela. Com janelas de 32 mseg (ou 16 mseg) é

possível usar o algoritmo butterfly (radix-2) [16], restando
investigar o impacto na eficiência.

Uma comparação rigorosa entre a complexidade e o

compromisso com o desempenho do algoritmo de

reconhecimento do locutor entre diferentes técnicas IAL

não foi realizada. Porém o principal mérito desta nova

abordagem é oferecer uma taxa de reconhecimento

razoável, porém demandando uma complexidade

computacional substancialmente inferior àquela requerida

por outras técnicas consagradas (e.g., HMM, redes neurais,

quantização vetorial etc.). Vale lembrar que as

complexidades (por janela de 20 ms) exigidas pela FFT

(N=160) e algoritmo de seleção do maior elemento de uma

lista (Tabela 1) são desprezíveis para os comprimentos

requeridos. A adaptação do método para uso de wavelets

discretas [8], tornando-o mais atrativo, também se encontra

em investigação. Outro aproveitamento possível deste

algoritmo é nos casos em que a base de locutores é

demasiadamente extensa. Este método rápido pode ser

aplicado, selecionando um locutor provável, incluído em

uma subclasse de locutores potenciais. Este é então

eliminado da base original, repetindo o processo de forma

a escolher um segundo locutor potencial. O procedimento é

iterado até gerar um número pré-estabelecido de locutores

potenciais (base reduzida). Esta aplicação prévia não

requer taxas de acerto excessivamente altas, 90% é

bastante razoável. Um método sofisticado (alto custo

computacional e alta eficiência) é aplicado para identificar

o locutor dentro desta base reduzida. Outra situação de

potencial interesse para este método é no monitoramento

em tempo real de telefonemas em prédios (empresas,

repartições, etc.) que possuem centrais telefônicas. Com

centenas de ligações simultâneas e diferentes ramais, como

selecionar gravações (autorizadas) de conversações

envolvendo indivíduo sob suspeição? Supõe-se disponível

um trecho previamente gravado (e.g., primeiro contato de

um seqüestrador, chantagista, corrupto, terrorista etc.) para

constituir a informação de treinamento do locutor alvo.

Neste caso, taxas de FA e FR aceitáveis podem ser maiores

do que em aplicações comerciais típicas. Assim, situações

em tempo real – nas quais há parca disponibilidade de

recursos (como em sistemas embarcados) – esta técnica
pode se tornar bastante atrativa.

AGRADECIMENTOS- Os autores agradecem a revisores

anônimos por sugestões valiosas para aperfeiçoar a

apresentação deste trabalho.

SOTERO FILHO E DE OLIVEIRA

RECONHECIMENTO DE LOCUTOR

7º CONGRESSO / 13ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 26 A 28 DE MAIO DE 2009

6 REFERÊNCIAS

[1] Oliveira, M.P.B., “Verificação Automática de locutor,

Dependente do Texto, Utilizando Sistemas Híbridos

MLP/HMM” Dissertação de Mestrado – Instituto

Militar de Engenharia / IME - 2001.

[2] Campbell Jr, J.P., “Speaker Recognition: A Tutorial”,

Proceedings of the IEEE, September, vol.85, n 9.

(1997).

[3] Atal, B.S. “Automatic Recognition of Speakers from

Theirs Voices”, Proceedings of the IEEE, April, vol

64, n 64, pp 460-475 (1976).

[4] Rosemberg, A.E. “Automatic Speaker Verification: A

Review”, Proceedings of the IEEE, April vol. 64, n 4,

pp. 475-487 (1976).

[5] Dan, Z. Zheng, S. Sun S. and Dong, R. “Speaker

Recognition based on LV-SVM” – The 3rd

International Conference on Innovative Computing

Information and Control (ICICIC’08), 2008.

[6] Wang, N. Ching, P.C. Zheng N.H. and Tan Lee –

“Robust Speaker Recognition Using Both Vocal

Source and Vocal Tract Features Estimated from

Noisy Input Utterances”, IEEE International

Symposium on Signal Processing and Information

Technology, 2007.

[7] Shao Y. and Wang D., “Robust Speaker Recognition

Using Binary Time-Frequency Masks”- IEEE

International Conference on Acoustic, Speech and

Signal Processing 2006 (ICASSP 2006).

[8] De Oliveira, H.M., Análise de sinais para

Engenheiros – Uma abordagem via Wavelets,

Brasport, 2007.

[9] Diniz, S.S. “Uso de Técnicas Neurais para o

Reconhecimento de Comandos à Voz”. Dissertação de

Mestrado, IME, Rio de Janeiro, 1997.

[10] Rabiner, L.R.; Schafer, R.W. Digital processing of

speech signals. New Jersey: Prentice Hall, 1978.

[11] Silva, D.D.C, “Desenvolvimento de um IP Core de

Pré-Processamento Digital de Sinais de Voz para

Aplicações em Sistemas Embutidos”, Dissertação de

Mestrado, UFCG, Campina Grande, 2006.

[12] Petry, A., Zanuz, A. e Barone, D.A.C.,

“Reconhecimento Automático de Pessoas pela Voz

usando técnicas de Processamento Digital de Sinais.

SEMAC, Semana de Computação da UNESP, 2000.

[13] Rabiner, L.; Juang, B.H., Fundamentals of Speech

Recognition. New Jersey: Prentice Hall, 1993. 507p.

[14] Paranaguá, E.D.S., “Reconhecimento de Locutor

Utilizando Modelos de Markov Escondidos

Contínuos”, Dissertação de Mestrado, IME, Rio de

Janeiro-RJ, 1997.

[15] Bezerra, M.R. “Reconhecimento Automático de

Locutor para Fins Forenses, Utilizando Técnicas de

Redes Neurais”, Dissertação de Mestrado, IME, Rio

de Janeiro, 2001.

[16] Oppenheim, A.V. & Schafer, R.W. Digital-Time

Signal Processing, Prentice-Hall, Inc, Englewood

Cliffs, New Jersey, 1989.

[17] Ferguson, T., Mathematical Statistics: a Decision

Theoretic Approach, New York, Academic Press,

1967.

ANEXO

Figura 2 Diagrama de blocos de um sistema de reconhecimento de locutor com base no mascaramento de freqüências por oitava.

A Full Frequency Masking Vocoder for Legal Eavesdropping

Conversation Recording

R. F. B. Sotero Filho, H. M. de Oliveira, R. Campello de Souza

Signal Processing Group, Federal University of Pernambuco - UFPE

E-mail: rsotero@hotmail.com.br, {hmo,ricardo}@ufpe.br

Abstract: This paper presents a new approach for a vocoder design based on full frequency

masking by octaves in addition to a technique for spectral filling via beta probability

distribution. Some psycho-acoustic characteristics of human hearing - inaudibility masking in

frequency and phase - are used as a basis for the proposed algorithm. The results confirm that

this technique may be useful to save bandwidth in applications requiring intelligibility. It is

recommended for the legal eavesdropping of long voice conversations.

The purpose of the voice compression is to obtain a concise representation of the signal,

which allows efficient storage and transmission of voice data [1]. With proper processing, a

voice signal can be analyzed and encoded at low data rates and then resynthesized. In many

applications, the digital coding of voice is needed to introduce encryption algorithms (for

security) or error correction techniques (to mitigate the noise of the transmission channel).

Often, the available bandwidth for the transmission of digitized voice is a few kilohertz [2]. In

such conditions of scarce bandwidth, it is necessary to adopt coding schemes that reduce the bit

rate in such a way that information can be properly transmitted. However, these coding systems

at low bit rate cannot reproduce the speech waveform in its original format. Instead, a set of

parameters are extracted from the voice, transmitted and used to generate a new waveform at

the receiver. This waveform may not necessarily recreate the original waveform in appearance,

but it should be perceptually similar to it [3]. This type of encoder – called the vocoder (a

contraction from voice encoder), a term also used broadly to refer to encoding analysis /

synthesis in general, will use perceptually relevant features of the voice signal to represent it in

a more efficient way, without compromising much on its quality [3]. The vocoder was first

described by Homer Dudley at Bell Telephone Laboratory in 1939, and consisted of a voice

synthesizer operated manually [4]. Generally speaking, the vocoders are based on the fact that

the vocal tract changes slowly and its state and configuration may be represented by a set of

parameters. Typically, these parameters are extracted from the spectrum of the voice signal and

updated every 10-25 ms [5]. In general, given its low complexity in the process of generating

the synthesized voice, the modeling, and the nature of simplifications carried out by vocoders,

they introduce losses and/or distortions that ultimately make the voice quality below those

obtained by waveform encoders [5]. Two properties of voice communication are heavily

exploited by vocoders. The first is the limitation of the human auditory system [6]. This

restriction makes the listeners hearing rather insensitive to various flaws in the process of voice

reproduction. The second concerns the physiology of the voice generation process that places

strong constraints on the type of signal that can occur, and this fact can be exploited to model

some aspects of the production of the human voice [3,5]. The vocoder also find wide

acceptance as an essential principle for handling audio files. For example, audio effects like

time stretching or pitch transposition are easily achieved by a vocoder [7]. Since then, a series

of modifications and improvements to this technology have been published [5]. In this article

we present an innovative technique, which combines simplicity of implementation, low

computational complexity, low bit rate and acceptable quality of generated voice files. In our

approach, the stage of analysis of the voice signal is based on full frequency masking, recently

published in [8] and explained in detail in Section III. In the resynthesis stage of the signal, we

present a new approach based on spectral filling by a beta probability distribution.

The first stage of the proposed vocoder is a pre-signal processing. This is often required in

speech processing, since the characteristics of voice signals have peculiarities that need to be

worked with, previously. Because vocoders are designed for voice signals, which have most of

their energy concentrated in a limited range of frequencies (typically between 300 Hz and less

than 4 kHz), it is required to limit the bandwidth of the signals within this range, by a low-pass

filter. Then a sampling rate that meets the Shannon sampling theorem condition must be taken.

According to this theorem [9], there is no loss of information in the sampling process when a

signal band limited to fm Hz is sampled at a rate of at least 2fm equally spaced samples per

second. Voice Segmentation and Windowing-A signal is said to be stationary when its statistical

features do not vary with time [9]. Since the voice signal is an stochastic process, and knowing

that the vocal tract changes its shape very slowly in a continuous speech, many parts of the

acoustic waveform can be assumed as stationary within a short duration range (typically

between 10 and 40 ms). Segmentation is the partition of the speech signal into pieces (frames),

selected by windows of duration perfectly defined. The size of these segments is chosen within

the bounds of stationarity of the signal [10]. The use of windowing is a way of achieving

increased spectral information from a sampled signal [11]. This "increase" of information is

due to the minimization of the margins of transition in truncated waveforms and a better

separation of the signal of small amplitude from a signal of high amplitude with frequencies

very close to each other. Many different types of windows can be used. The Hamming window

was chosen due to the fact that it presents interesting spectral characteristics and softness at the

edges [12]. Pre-emphasis- The pre-emphasis aims to reduce a spectral inclination of

approximately -6dB/octave, radiated from the lips during speech. This spectral distortion can be

eliminated by ap-plying a filter response approximately +6 dB / octave, which causes a

flattening of the spectrum [13]. The hearing is less sensitive to frequencies above 1 kHz of the

spectrum; pre-emphasis amplifies this area of the spectrum, helping spectral analysis algorithms

for modeling the perceptually aspects of the spectrum of voice [6,11]. Equation (1) describes

the pre-emphasis performed on the signal that is obtained by differentiating the input.

y(n)= x(n)-a.x(n-1), (1)

for 1 ≤ n < M, where M is the number of samples of x(n), y(n) is the emphasized signal and the

constant "a" is normally set between 0.9 and 1. In this paper the adopted value was "a" equals

to 0.95 [13]. The algorithms developed for implementation of this vocoder were written in

MATLAB
TM

 platform, owing to the fact that it is a widespread language in the academic world

and it is easy to implement. In the following, details of the approach are described. As in most

efficient speech coding systems, vocoders may exploit certain properties of the human auditory

system, taking advantage of them to reduce the bit rate. The technique proposed in this article

for implementation of the vocoder is founded on two important characteristics: the masking in

frequency and the insensitivity to phase. The function of the stage of analysis is, a priori, to

identify the frequency masking in the spectrum of the signal (obtained by an FFT of

blocklength 160), partitioned into octave bands, discard signals that "would not be audible,"

due to the phenomenon of masking in frequency [14], and totally disregard the signal phase.

Psycho-Acoustics of the Human Auditory System- Because it is of great importance for the

understanding of the proposed method, a few characteristics of human auditory system are

briefly discussed [6,14].

• Frequency Masking: Masking in frequency or "reduced audibility of a sound due to the

presence of another" is one of the main psycho-acoustic characteristics of human hearing.

The auditory masking (which may be in frequency or in time) occurs when a sound, that

could be heard, is often masked by another, more intense, which is in a nearby frequency.

In general, the presence of a tone cannot be detected if the power of the noise is more

than a few dB above this tone. Due to the effect of masking, the human auditory system

is not sensitive to detailed structure of the spectrum of a sound within this band [3,5].

• Insensitivity to the phase: The human ear has little sensitivity to the phase of signals.

The process can be explained by examining how sound propagates in an environment.

Any sound that propagates reaches our ears through various obstacles and travels distinct

paths. Part of the sound gets lagged, but this difference is hardly felt by the ear [15]. The

information in the human voice is mostly concentrated in “bands of frequencies”. Based

on this fact, the proposed vocoder discards the phase characteristics of the spectrum.

Simplification of the spectrum via the frequency masking- Equipped with the pre-processed

signals, we can start the stage of signal analysis, which is described in the sequel. For each

voice segment of the file, an FFT of blocklength 160 (number of samples contained in a frame

of 20 ms of voice) is applied, thus obtaining the spectral representation of each voice frame.

Only the magnitude of the spectrum is considered. After that, the spectrum is segmented into

regions of influence (octaves). The range of frequencies between 32 and 64 Hz is removed from

the analysis. The first pertinent octave corresponds to the frequency range 64 Hz-128 Hz, the

second covering the band 128 Hz-512 Hz, and so on. The sixth (last octave band) matches the

range of 2048 Hz-4000 Hz (remarking that from here the spectrum produced by the FFT begins

to repeat). Since the sampling rate is 8 kHz, each spectral sample corresponds to a multiple of

50 Hz, and the first sample represents the DC component of each frame of speech. Because this

sample has no information, it is promptly disregarded from the analysis. Since the spectral lines

have a step of 50 Hz, the first octave (from 64 Hz to 128 Hz) is represented by the spectral

sample of 100 Hz, the second octave (from 128 Hz to 256 Hz) by samples at 150 Hz, 200 Hz

and 250 Hz, with the remaining octaves following a similar reasoning. After this preliminary

procedure, we search at each octave, in all relevant sub-bands of the voice signal, for the DFT

component of greatest magnitude, i.e., that one that (potentially) can mask the others. There are

80 spectral lines (dc is not shown). This component is taken as the sole representative tone in

each octave (as an option of reducing the complexity). The other spectral lines are discarded,

assuming a zero spectral value. A total of 79 frequencies coming from the estimation of the

DFT with N=160 is then reduced to only 4 survivors (holding less than 5% of the spectral

components). Therefore, each frame is now represented in the frequency domain by 4 pure

(masking) tones. This technique is called full frequency masking [8]. These simplified frames

are encoded and used by a synthesizer to retrieve the voice signal. Now a signal synthesis is

described on the basis of a spectral filling via a distribution of probability. The beta distribution

is a continuous probability distribution defined over the interval 0≤x≤1, characterized by a pair

of parameters α and β, according to Equation [16]:

P(x)=1/B(α,β) x
(α-1)

 (1-x)
(β-1)

, 1<α,β<+∞, (2)

whose normalized factor is B(α,β)=(Γ(α)Γ(β))/(Γ(α+β)), where Γ(.) is the generalized Euler

factorial function and B(.,.) is the Beta function. The point where the maximum of the density

is achieved is the mode and can be computed by the following equation [16]:

 mode= (α-1)/(α+β-2). (3)

Octave (Hz) # spectral samples/octave
32-64 1

64-128 1

128-256 3

256-512 5

512-1024 10

1024-2048 20

2048-4096 39

Table 1. Number of Spectral Lines per Octave Estimated by a DFT of Length N=160 with a
Sample Rate 8 kHz.

The purpose of the synthesis stage is to retrieve the voice signal from data provided by the

parsing stage. As mentioned, the full frequency masking was adopted to simplify the spectrum

of each frame of voice. Such a simplification results in a very vague and spaced sample

configuration in the spectrum. To improve this representation, the synthesizer can use the

spectral filling technique via beta distribution, so as to smooth the abrupt transition between

adjacent samples in octaves, assigning interpolated values to lines with zero magnitude, thus

filling up the spectrum completely. Each octave has its own distribution and these are updated

with each new frame. The peak of each of these distributions is equal to the survivor spectral

sample after the full masking simplification. In what follows, the methodology of spectral

filling, via beta distribution, is described. Since the beta distribution is defined over the interval

[0,1], see Fig.1, it is necessary to scale and translate the original expression of the distribution,

so that their range encompass the transition from one octave to another. Moreover, the value of

the mode should assume the same value of the survivor spectral sample within the octave.

Based on the original expression of the beta distribution, given by Eq. (2), there is a suitable

scaling of the curve so that the upper limit is equivalent to the difference between the

normalized cutoff frequency exceeding (fM) and lower (fm) of each octave, i.e., fM - fm. The

cutoff frequencies need to be normalized, since the limiting frequency of octaves (64-128 Hz,

128 – 256 Hz, etc.) are not multiples of 50 Hz, which is the value of the spectrum step while

sampling at 8 kHz. Later, the curve must be translated so that the lower and upper limits

become fm and fM, respectively. By making the fitting, it is also necessary to adjust the value of

the mode, which becomes

newmode= (α-1)/(α+β-2) (fM - fm)+ fm. (4)

From this expression and after some mathematical manipulations, we find a relation between α

and β, which is useful in representing the adjusted expression of the distribution:

β-1=(α-1).Q, (5)

where:

Q:= (fM – fc)/(fc -fm). (6)

0 0.2 0.4 0.6 0.8
0

1

2

3

beta x 2 5()

beta x 2 2()

beta x 3 3()

beta x 3 2()

x

Figure 1. Envelope shape of the survivor tone is shown for a few parameters α and .

The final expression, one that is used to fulfill the spectral algorithm each frame, is given by:

P(x)= 1/(fM - fm)
(α+β-2)

 (x- fm)
(α-1)

 (fM -x)
(β-1)

. (7)

The value of α in Eq. (7) represents a parameter of expansion/compression of the interpolation

curve. The higher its value, the narrower it becomes. The values of α were octave-dependent.

Fig. 2 shows the magnitude of the spectrum of a frame of a file (test voice file), (a) before

simplifying by masking, (d) after simplifying and (c) after the fulfilling via beta distribution. A

few audio files generated by this vocoder are available at the URL

http://www2.ee.ufpe.br/codec/vocoder.html Given the symmetry of the DFT, it is also

necessary to fulfill the half mirror portion of the spectrum for proper signal restoration.

Otherwise a signal in time domain, complex in nature, will be incorrectly generated. As one of

the last stages of reconstruction of the voice signal, there is the transformation from the

frequency domain to the time domain of all voice frames. Such a transformation is achieved

through the inverse fast Fourier transform (IFFT) of the same blocklength of a frame. In doing

so, the frames are glued one by one, resetting the pre-emphasized signal. An inverse pre-

emphasis filter is used to de-emphasize the signal, thus finalizing the process of recovering the

voice signal. For each frame, spectral samples survivors and the positions of each are then

quantized and encoded, and saved in a binary format (.voz) and used later by a synthesizer.

 (a) (b)

 (c)

Figure 2. Steps of the procedure of analysis/synthesis of a frame of tested voice signal. The

spectrum of a voice frame computed by the FFT is shown: a) Original spectrum, b) Simplified

spectrum using full masking, c) Spectrum fulfilled by the beta distribution.

 The quantization and coding procedures (allocation of bits per frame) are shown in the

sequel. The most common method was used in the quantization of frames: the uniform

quantization. A number of levels coincident with a power of 2 was adopted to simplify the

binary encoding. The maximum excursion of the signal (greater magnitude of the full spectrum

of the voice signal) was thus divided into 256 intervals of equal length, each represented by one

byte. Since there are no negative samples to be quantized (the magnitude of the spectrum does

not assume negative values), the quantizer cannot be bipolar.

Relevant octave #possible survivor components Bits A+P

#1 (256-512 Hz) 5 8 + 3
#2 (512-1024 Hz) 10 8 + 4

#3 (1024-2048 Hz) 20 8 + 5
#4 (2048-4096 Hz) 39 8 + 6

Table 2. Bit allocation in a voice frame (20 ms). The required number of bits is expressed as A
+ P, where A is the number of bits for spectral line amplitude and P the number of bits to
express the relative position within the OCTAVE.

A MATLAB routine is specifically designed for this purpose. The quantization of the positions

was not necessary, since they are integer-valued. In order to reduce the number of bits needed

for encoding voice frames, the bit allocation algorithm took into consideration the bandwidth of

each octave. A lower octave reduces by half the bandwidth and therefore fewer bits are needed

for proper co-ing of positions in which the spectral masking occurred. Positions in successive

octaves (spectrum towards high frequencies) need an extra bit for its correct representation. For

example, a tone masking which occurs in the first octave (256-512 Hz) has 5 possible

occurrences (position 7 to position 11 of DFT), thereby requiring a 3-bit codeword. In the next

octave, (512 - 1024 Hz), the maximum position that the tone masking may occur is 21, which

can be encoded by a 4-bit codeword. In the subsequent two octaves, the peak may be at 41th

position (5-bit codeword) and 80th (6-bit codeword), respectively. For the maximum values of

the spectral masking samples, one byte is reserved for their representation. The number of bits

allocated to each of these parameters is shown in Table 2. As mentioned, the phase information

of the spectrum is disregarded. It is seen that each voice frame needs only 50 bits (18 for

identifying positions and 32 for identifying masking tones), leading to a rate of 50 bits/20

ms=2.5 kbps. The binary format .voz - The bit allocation in each frame, summarized in Table II,

suggests the concatenation of encoded frames. The representation of a voice frame in this

format (extension .voz) is shown in Fig.3. The 50 bits are distributed into four sub blocks (one

for each octave), indicating the value of the spectral sample followed by its respective position

in the spectrum. The voice files registered in the .wav format are all converted to this binary

format, by a Matlab routine. In the decoder, the reconstruction algorithm of the synthesized

spectrum, can recover the voice signal by converting it back into the .wav format.

Figure 3. Frame of files in the format .voz (20 ms).

 Simulation results usually focus on intelligibility and voice quality versus bit rate [17]. Fifty-

eight subjects, of whom eight were trained, were accessed for this study. Voice quality is

estimated using the "Mean Opinion Score (MOS)" and "degradation Mean Opinion Score

(DMOS)” tests. During the tests, "MOS"-listeners were asked to rate voice quality of the output

files considering an absolute scale 1-5, with 1 meaning very poor quality and 5 being excellent.

The main obstacle for the MOS testing was that ordinary people were not familiar with low bit

rate vocoders and got confused between a sound disharmonies, stuffy, with tinnitus, and the

nasal quality of speech and noise added after encoding. To overcome this limitation, DMOS

tests were conducted. In this test, listeners were asked to rate the quality of sentences encoded

and spread over time on the output of the vocoder MELP pattern [15]. Preliminary tests were

conducted and voice signals tested using four different techniques of synthesis.

Evaluated techniques.

1. Synthesized signals with no spectral filling.

2. Vocoder signals reconstructed via beta spectral filling technique.

3. Synthesized voice signals combining 1 and 2 techniques (linear combination).

4. Voice signals from item 2, but with an extra Hamming windowing.

Results are summarized in Table III. They were reasonable, given the low bit rate (2.5 kbits/s)

and low implementation complexity of the vocoder. Indeed, the comparison is “unfair” to those

coders, since the MOS values obtained for them were much more insightful and performed with

a wide range of listeners, or even using objective methods such as PESQ [17]. It can be

observed from Table 3 that noise is still a factor that impairs such an assessment, reflecting a

lower MOS score for noisy signals (produced by the technique of spectral filling).

Vocoder technique MOS score

1 3.0

2 2.5

3 2.8

4 3.0

Table 3. MOS scores for the voice signals synthesized by four different techniques.

We introduced a new vocoder that can represent a voice signal using fewer samples of the

spectrum. Our initial results suggest that this approach has the potential to transmit voice, with

acceptable quality, at a rate of a few kbits/s. A new technique of spectral filling was also

presented, which is based on the beta distribution of probability. Surprisingly, this was not

helpful in improving the voice quality, although it improved the naturalness of the speech

generated by this vocoder. This vocoder can be useful for the transmission of maintenance

voice channels in large plants. It was successfully applied in a recent speaker recognition

system. In particular, it is offered as a technique for monitoring long voice conversation

stemming from authorized eavesdropping.

References

[1] Schroeder, M.R., A Brief History of Synthetic Speech, Speech Comm., vol.13, pp.231-237,

(1993).

[2] Pope, S.P., Solberg, B., Brodersen, R.W, A Single-Chip Linear-Predictive-Coding Vocoder,

IEEE J. of Solid-State Circuits, vol. SC-22, (1987).

[3] Holmes, J., Holmes, W. Speech Synthesis and Recognition, Taylor & Francis, 2001.

[4] Schroeder, M.R., Homer Dudley: A tribute, Signal Processing, vol.3, pp.187-188, (1981).

[5] Spanias, A., Speech Coding: A tutorial Review, Proc. of IEEE, vol. 82, pp.1541-1582,

(1994).

[6] Greenwood, D., Auditory Masking and the Critical Band, J. Acoust. Soc. Am., vol. 33, pp.

484-502, (1961).

[7] Zoelzer, U. Digital Audio Effects', Wiley & Sons, pp.201-298, 2002.

[8] Sotero Filho, R.F.B, de Oliveira, H., Reconhecimento de Locutor Baseado no

Mascaramento Pleno em Frequência por Oitava, Audio Engineering Congress, AES2009, São

Paulo,2009.

[9] Lathi, B.P. Modern Digital and Analog Communication Systems. Oxford Univ. Press, NY,

1998.

[10] Rabiner, L.R.; Schafer, R.W., Digital Processing of Speech Signals. Prentice Hall, NJ,

1978.

[11] Turk, O., Arsan, L.M., Robust Processing Techniques for Voice Conversation, Computer

Speech & Language, vol. 20, pp.441-467, (2006).

[12] Taubin, G., Zhang, T., Golub, G., Optimal Surface Smoothing as Filter Design, Lecture

Notes on Computer Science, vol. 1064, pp. 283-292, (1996).

[13] Schnell, K., Lacroix, A., Time-varying pre-emphasis and inverse filtering of Speech, Proc.

Interspeech, Antwerp, 2007.

[14] Wegel, R.L., Lane, C.E., Auditory masking of one pure tone by another and its probable

relation to the dynamics of the inner ear, Physical Review, vol. 23, pp. 266-285, (1924).

[15] Smith, S.W., Digital Signal Processing – A Practical Guide for Engineers and Scientists,

Newnes, 2003.

[16] de Oliveira, H.M., Araújo G.A.A., Compactly Supported One-cyclic Wavelets Derived

from Beta Distributions, Journal of Communication and Information Systems, vol. 20, pp.27-

33, (2005).

[17] Kreiman, J., Gerrat, B.R., Validity of rating scale measures of voice quality, J. Acoust.

Soc. Am., vol. 104, pp.1598-1608, (1998).

Anexos

149

ANEXO A – CÓDIGOS FONTE
(VOCODER)

Requerido MATLAB® 2013 ou versões mais recentes.

VocCod.m

function varargout = VocCod(varargin)

%VOCCOD Codificador wav -> voz baseado no Mascaramento Pleno em

% Frequencia por Oitava (MPFO).

% Reune simplificidade de implementacao e baixa taxa de bits

% (2,7 kbits/s). Aceita como entrada arquivos no formato wav

% e produz arquivo binario, codificado no formato voz, para

% posterior decodificacao no VocDec.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 23/05/2017

% Codigo de inicializacao do programa - nao editavel

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @VocCod_OpeningFcn, ...

'gui_OutputFcn', @VocCod_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% Chamada dos logos na tela.

function ufpe_CreateFcn(~, ~, ~)
A = imread('ufpectgdes_80.png');

imshow(A);

% ------------ Rotinas e funcoes internas do programa --------------------

ANEXO A. Códigos Fonte (vocoder) 150

function VocCod_OpeningFcn(hObject, ~, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = VocCod_OutputFcn(~, ~, handles)

varargout{1} = handles.output;

function edit1_Callback(~, ~, ~)
function edit1_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit2_Callback(~, ~, ~)
function edit2_CreateFcn(hObject, ~, ~)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4_Callback(~, ~, ~)
function edit4_CreateFcn(hObject, ~, ~)
if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Acoes executadas ao se pressionar o botao "selecionar" -------------.

function togglebutton2_Callback(~, ~, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento'); % Seleciona arquivo wav.

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar') % mensagem de cancelar.

else

arquivowav = strcat(diretorio,nome); % leitura do arquivo wav.

set(handles.edit4,'string',arquivowav); % escreve arquivo no diretorio.

end

% --------------------- ROTINAS PRINCIPAIS DO PROGRAMA -------------------

% --- Acoes executadas ao se pressionar o botao "processar" --------------

function pushbutton1_Callback(hObject, ~, handles)

guidata(hObject, handles)

arquivowav = get(handles.edit4,'string'); %leitura do arquivo wav (caminho)

[y_in, fs_in] = audioread(arquivowav); % leitura atributos do arquivo wav.

fs = 8000; % tx amostragem utilizada.

y8000=resample(y_in,fs,fs_in); % conversao da tx de amostragem.

% para 8 kHz.

ANEXO A. Códigos Fonte (vocoder) 151

N = length(y8000); % comprimento dos sinais de voz.

c = 160; % numero de amostras em 20ms.

n = round(N/c);

y8000 = [y8000;0*ones(n*c-N,1)]; % preenche amostras arquivo de voz

% com zeros caso seu tamanho n seja

% multiplo de 160.

HAM = hamming(c); % cria janela de Hamming de c = 160.

% Bloco de montagem espectro de frequencia simplificado (1 amostra/oitava)|

for i=0:n-1

spectrum_bloco(c*i+1:c*i+c)= ...

abs(fft(HAM(1:c).*y8000(c*i+1:c*i+c))); % cria bloco de FFTs janeladas

% com apenas as amplitudes.

end

for k =0:n-1;

spectrum_bloco(c*k+1:c*k+6)=0;

spectrum_bloco(c*k+156:c*k+160)=0; %zera amostras n consideradas.

spectrum_bloco(c*k+81)=0;

%--

% Oitava 1 (256 - 512 Hz)

%--

int1 = c*k+7:c*k+11; % intervalo da oitava 1.

y(int1)= spectrum_bloco(int1); % forma bloco de amostras.

spectrum_bloco(find(y ~= max(y)& y~=0))= 0; % zera amplitudes n maximas.

valormaximo1 = spectrum_bloco(find(y == ... % acha amplitude maxima.

max(y)));

posicao1 = find(y==max(y)); % posicao da amplitude max.

clear y;

%--

% Oitava 2 (512 - 1024 Hz)

%--

int2 = c*k+12:c*k+21; % intervalo da oitava 2.

z(int2)=spectrum_bloco(int2); % forma bloco de amostras.

spectrum_bloco(find(z ~= max(z)& z~=0))=0; % zera amplitudes n maximas.

valormaximo2 = spectrum_bloco(find(z == ... % acha amplitude maxima.

max(z)));

posicao2 = find(z==max(z)); % posicao da amplitude max.

clear z;

%--

% Oitava 3 (1024 - 2048 Hz)

%--

int3 = c*k+22:c*k+41; % intervalo da oitava 3.

h(int3)=spectrum_bloco(int3); % forma bloco de amostras.

spectrum_bloco(find(h ~= max(h)& h~=0))=0; % zera amplitudes n maximas.

valormaximo3 = spectrum_bloco(find(h ==... % acha amplitude maxima.

ANEXO A. Códigos Fonte (vocoder) 152

max(h)));

posicao3 = find(h==max(h)); % posicao da amplitude max.

clear h;

%--

% Oitava 4 (2048 - 4096 Hz)

%--

int4 = c*k+42:c*k+80; % intervalo da oitava 4.

j(int4)=spectrum_bloco(int4); % forma bloco de amostras.

spectrum_bloco(find(j ~= max(j)&j~=0))=0; % zera amplitudes n maximas.

valormaximo4 = spectrum_bloco(find(j ==... % acha amplitude maxima.

max(j)));

posicao4 = find(j==max(j)); % posicao da amplitude max.

clear j;

spectrum_bloco(c*k+1:c*k+c) =... % montagem do espectro completo

[spectrum_bloco(c*k+1:c*k+80)...

0 spectrum_bloco(c*k+80:-1:2+c*k)];

%conversao p/binario das posicoes

seq_posi_bin(22*k+1:22*k+22) = [dec2binvec(mod(posicao1,c),4)...

dec2binvec(mod(posicao2,c),5)...

dec2binvec(mod(posicao3,c),6)...

dec2binvec(mod(posicao4,c),7)];

end

%---|

% Bloco de quantizacao (quantizacao uniforme de 256 niveis) das amplitudes|

% das amostras dominantes do espectro |

%---|

ind_max_raia = find(spectrum_bloco==...

max(spectrum_bloco)); %indice da amostra maxima

maxraia = spectrum_bloco(ind_max_raia); %valor da amostra maxima

valormaxraia = maxraia(1);

Q = valormaxraia/257; %passo de quantizacao

cont1=0;

for cont = 1:length(spectrum_bloco)

q=0;

while spectrum_bloco(cont) >= q*Q && spectrum_bloco(cont) ~= 0

q = q+1;

end

if q>255

q=255;

end

if q > 0

cont1 = cont1+1;

seq_bin_total(8*(cont1-1)+1:8*(cont1-1)+8)= dec2binvec(q,8);

ANEXO A. Códigos Fonte (vocoder) 153

end

end

for i=0:n-1

%montagem do bloco de amplitudes em binario

seq_bin(32*i+1:32*i+32) = seq_bin_total(64*i+1:64*i+32);

end

%---------Bloco de formacao do arquivo binario (.voz) de saida -----------

for i=1:n

%montagem dos blocos do formato .voz

saidaBinaria(54*(i-1)+1:54*(i-1)+54)=...

[seq_bin((32*(i-1)+1:32*(i-1)+8))...

seq_posi_bin(22*(i-1)+1:22*(i-1)+4) ...

seq_bin((32*(i-1)+9:32*(i-1)+16))...

seq_posi_bin(22*(i-1)+5:22*(i-1)+9) ...

seq_bin((32*(i-1)+17:32*(i-1)+24))...

seq_posi_bin(22*(i-1)+10:22*(i-1)+15)...

seq_bin((32*(i-1)+25:32*(i-1)+32))...

seq_posi_bin(22*(i-1)+16:22*(i-1)+22)];

end

% abre tela para salvar arquivo de saida

[nome_out,diretorio_out] = uiputfile('*.voz','Salvar arquivo .voz como');

if isequal(nome_out,0) || isequal(diretorio_out,0)

disp('Usuario pressionou cancelar')

else

arquivo_out = strcat(diretorio_out,nome_out);

fid = fopen(arquivo_out,'w');

fwrite(fid,saidaBinaria'); %escreve os dados para o arquivo binario

aviso_sucesso %habilita tela de sucesso no processamento

end

ANEXO A. Códigos Fonte (vocoder) 154

VocDec.m

function varargout = VocDec(varargin)

%VOCDEC Decodificador voz -> waz baseado no Mascaramento Pleno em

% Frequencia por Oitava (MPFO).

% Aceita como entrada arquivos codificados no formato voz e

% produz arquivos wav, atraves de 4 tipos de recomposicao do

% sinal: (i) utilizando apenas o %MPFO, (ii) MPFO acrescido

% da tecnica de preenchimento espectral, iii) utilizando uma

% composicao dos sinais em (i) e (ii), e (iv) utilizando

% sinais de (ii) com um janelamento de Hamming extra.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 25/05/2017

% Codigo de inicializacao do programa - nao editavel

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @VocDec_OpeningFcn, ...

'gui_OutputFcn', @VocDec_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% Chamada dos logos na tela.

function ufpe_CreateFcn(hObject, eventdata, handles)

A = imread('ufpectgdes.png');

imshow(A);

%------------ Rotinas e funcoes internas do programa --------------------

function VocDec_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = VocDec_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

ANEXO A. Códigos Fonte (vocoder) 155

function edit1_Callback(hObject, eventdata, handles)

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit2_Callback(hObject, eventdata, handles)

function edit2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4_Callback(hObject, eventdata, handles)

function edit4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Acoes executadas ao se pressionar o botao "selecionar" -------------

function togglebutton2_Callback(hObject, eventdata, handles)

guidata(hObject, handles)

[nome,diretorio] = uigetfile('*.voz',...

'Selecione o arquivo .voz para processamento'); % Seleciona arquivo voz.

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar') % mensagem de cancelar.

else

arquivovoz= strcat(diretorio,nome); % leitura do arquivo voz

set(handles.edit4,'string',arquivovoz); % escreve arquivo no diretorio

end

% --

% --------------------- ROTINAS PRINCIPAIS DO PROGRAMA -------------------

% --- Acoes executadas ao se pressionar o botao "processar" --------------

function pushbutton1_Callback(hObject, eventdata, handles)

guidata(hObject, handles)

arquivovoz = get(handles.edit4,'string');

valor4 = get(handles.radiobutton4,'Value');

valor5 = get(handles.radiobutton5,'Value');

valor6 = get(handles.radiobutton6,'Value');

valor7 = get(handles.radiobutton7,'Value');

fs = 8000; % tx amostragem utilizada.

c = 160; % numero de amostras em 20ms.

fid = fopen(arquivovoz); % ler identificador arquivo voz

arq_interm_bin = fread(fid)'; % ler o arquivo binario voz

ANEXO A. Códigos Fonte (vocoder) 156

% CONVERSAO DO SINAL DE VOZ DE BINARIO PARA DECIMAL

for i=1:length(arq_interm_bin)/54

arq_interm(8*(i-1)+1:8*(i-1)+8) =...

[binvec2dec(arq_interm_bin((54*(i-1)+1:54*(i-1)+8)))...

binvec2dec(arq_interm_bin(54*(i-1)+9:54*(i-1)+12))+160*(i-1)...

binvec2dec(arq_interm_bin((54*(i-1)+13:54*(i-1)+20)))...

binvec2dec(arq_interm_bin(54*(i-1)+21:54*(i-1)+25))+160*(i-1),...

binvec2dec(arq_interm_bin((54*(i-1)+26:54*(i-1)+33))) ...

binvec2dec(arq_interm_bin(54*(i-1)+34:54*(i-1)+39))+160*(i-1)...

binvec2dec(arq_interm_bin((54*(i-1)+40:54*(i-1)+47))) ...

binvec2dec(arq_interm_bin(54*(i-1)+48:54*(i-1)+54))+160*(i-1)];

end

n = length(arq_interm)/8;

%------Bloco de Recomposicao do espectro simplificado pelo MPFO ---------|

for k =0:n-1;

spectrum_bloco(c*k+1:c*k+6)=0;

spectrum_bloco(c*k+156:c*k+160)=0; %zera amostras n consideradas.

spectrum_bloco(c*k+81)=0;

%--

% Oitava 1 (256 - 512 Hz)

%--

spectrum_bloco(arq_interm(8*k+1+1))=arq_interm(8*k+1);

%--

% Oitava 2 (512 - 1024 Hz)

%--

spectrum_bloco(arq_interm(8*k+3+1))=arq_interm(8*k+2+1);

%---

% Oitava 3 (1024 - 2048 Hz)

%--

spectrum_bloco(arq_interm(8*k+5+1))=arq_interm(8*k+4+1);

%--

% Oitava 4 (2048 - 4096 Hz)

%--

spectrum_bloco(arq_interm(8*k+7+1))=arq_interm(8*k+6+1);

%--

%CONSTRUCAO DO ESPECTRO SIMPLIFICADO COMPLETO

spectrum_bloco(c*k+1:c*k+c) = [spectrum_bloco(c*k+1:c*k+80)...

0 spectrum_bloco(c*k+80:-1:2+c*k)];

%OBTENCAO DO SINAL DE VOZ NO TEMPO ATRAVES DA IFFT DO ESPECTRO SIMPLIFICADO

arq(c*k+1:c*k+c) = ifft(spectrum_bloco(c*k+1:c*k+c));

end

% DEFINICAO DO ARQUIVO DE SAIDA

saida = arq';

%----------------------TIPOS DE RECOMPOSICAO DO SINAL---------------------

ANEXO A. Códigos Fonte (vocoder) 157

% (i) MPFO apenas

if valor4 ==1

[nome_out,diretorio_out] = uiputfile('*.wav',...

'Salvar arquivo .wav como');

if isequal(nome_out,0) || isequal(diretorio_out,0)

disp('Usuario pressionou cancelar')

else

arquivo_out = strcat(diretorio_out,nome_out);

audiowrite(arquivo_out,0.35*saida,fs)

aviso_sucesso % habilita tela de sucesso

end

end

% (ii) MPFO + Preenchimento espectral

if valor5 ==1

out = SpecStuffing(saida); % chama rotina de preenchimento

[nome_out,diretorio_out] = uiputfile('*.wav',...

'Salvar arquivo .wav como');

if isequal(nome_out,0) || isequal(diretorio_out,0)

disp('Usuario pressionou cancelar')

else

arquivo_out = strcat(diretorio_out,nome_out);

audiowrite(arquivo_out,0.35*out,fs)

aviso_sucesso % habilita tela de sucesso

end

end

% (iii) Composicao de (i) com (ii)

if valor6 ==1

out = SpecStuffing(saida); % chama rotina de preenchimento

out = out(1:length(saida));

out_new = (saida+out)/2; % calcula media de (i) e (ii)

[nome_out,diretorio_out] = uiputfile('*.wav',...

'Salvar arquivo .wav como');

if isequal(nome_out,0) || isequal(diretorio_out,0)

disp('Usuario pressionou cancelar')

else

arquivo_out = strcat(diretorio_out,nome_out);

audiowrite(arquivo_out,0.35*out_new,fs)

aviso_sucesso % habilita tela de sucesso

end

end

% (iv) MPFO + Preenchimento espectral + Janelamento extra

if valor7 ==1

out = SpecStuffWindow(saida); % chama rotina de preenchimento

% e janelamento extra

[nome_out,diretorio_out] = uiputfile('*.wav',...

'Salvar arquivo .wav como');

ANEXO A. Códigos Fonte (vocoder) 158

if isequal(nome_out,0) || isequal(diretorio_out,0)

disp('Usuario pressionou cancelar')

else

arquivo_out = strcat(diretorio_out,nome_out);

audiowrite(arquivo_out,0.35*out,fs)

aviso_sucesso % habilita tela de sucesso

end

end

ANEXO A. Códigos Fonte (vocoder) 159

SpecStuffing.m

function [out] = SpecStuffing(in)

%SPECSTUFFING Tecnica de Preenchimento Espectral via Distribuicao Beta

% de Probabilidade.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 10/2008

fs = 8000; % frequencia amostragem utilizada.

N = length(in); % comprimento arquivo de entrada

c = fs*20e-3; % numero de amostras em 20 ms.

%calculo do numero de blocos no arquivo de voz

if rem(N,c) ~= 0

n = round(N/c + 0.5);

in = [in; 0*ones(n*c-N,1)];

else

n = N/c;

end

HAM = hamming(c); %criando janela de Hamming

% -------- Frequencias de corte normalizadas de cada oitava -----------

% Oitava 0 fm0=64/50 +1 fM0=2*64/50 +1

fm0=2.28; fM0=3.56;

% Oitava 1 fm1=128/50 +1 fM1=2*128/50 +1

fm1=3.56; fM1=6.12;

% Oitava 2 fm2=256/50 +1 fM2=2*256/50 +1

fm2=6.12; fM2=11.24;

% Oitava 3 fm3=512/50 +1 fM3=2*512 +1

fm3=11.24; fM3=21.48;

% Oitava 4 fm4=1024/50 +1 fM4=2*1024/50+1

fm4=21.48; fM4=41.96;

% Oitava 5 fm5=2048/50 +1 fM5=2*2048/50 +1

fm5=41.96; fM5=82.92;

%--------------BLOCO DE MONTAGEM DO NOVO ESPECTRO DE FREQUENCIAS----------|

for i=0:n-1

% cria o bloco de transformadas rapidas

spectrum_block(c*i+1:c*i+c)= abs(fft(in(c*i+1:c*i+c)));

end

for k =0:n-1

spectrum_block(c*k+1:c*k+2)=0; % anular oitava de dc-64 Hz

spectrum_block(c*k+81)=0;

%--

% Oitava 0 (64 - 128 Hz)

alfa0=2; %2

ANEXO A. Códigos Fonte (vocoder) 160

int0 = c*k+3:c*k+3;

ft0(int0)= spectrum_block(int0);

% Encontrando o tom dominante original do programa E0= sqrt(sum(ft0.^2));

E0= sqrt(sum(ft0.^2));

spectrum_block(find(ft0 ~= max(ft0)& ft0~=0))= 0;

surv0 = spectrum_block(find(int0 == max(int0)));

survivor0=spectrum_block(c*k+3:c*k+3); % unico tom dominante

nota0=find(survivor0 ~=0); % indice da nota sobrevivente

f0oct0=find(survivor0 ~=0)+2; % posicao do tom na oitava

unnormfoct0=(f0oct0-1)*50; %freq do tom dominante na oitava 0

% spectrum stuffing via beta distribution

Q0=(fM0-f0oct0)/(f0oct0-fm0);

K0=0;

if (Q0 ~=0)
K0=1/(((f0oct0-fm0)^(alfa0-1))*(fM0-f0oct0)^(Q0*(alfa0-1)));

end

if (nota0 ~=0)
spectrum_block(c*k+3)=...

abs(E0*K0*((3-fm1)^(alfa0-1))*((fM1-3)^(Q0*(alfa0-1))));

end

clear peso(3:3);

clear ft0;

%--

% Oitava 1 (128 - 256 Hz)

alfa1=3; %3

int1 = c*k+4:c*k+6;

ft1(int1)= spectrum_block(int1);

% Encontrando o tom dominante

E1= sqrt(sum(ft1.^2));

spectrum_block(find(ft1 ~= max(ft1)& ft1~=0))= 0;

surv1 = spectrum_block(find(int1 == max(int1)));

survivor1=spectrum_block(c*k+4:c*k+6); % unico tom dominante

nota1=find(survivor1 ~=0); % indice da nota sobrevivente

f0oct1=find(survivor1 ~=0)+3; % posicao do tom na oitava

unnormfoct1=(f0oct1-1)*50; % freq do tom dominante na oitava 1

% spectrum stuffing via beta distribution

Q1=(fM1-f0oct1)/(f0oct1-fm1);

K1=0;

if (Q1 ~=0)
K1=1/(((f0oct1-fm1)^(alfa1-1))*(fM1-f0oct1)^(Q1*(alfa1-1)));

end

for dummy=4:6

peso(dummy)=K1*((dummy-fm1)^(alfa1-1))*((fM1-dummy)^...

(Q1*(alfa1-1))); % stuffing

end

peso(4:6);

if (nota1 ~=0)

ANEXO A. Códigos Fonte (vocoder) 161

spectrum_block(c*k+4:c*k+6)=E1*peso(4:6);

end

clear peso(4:6);

clear ft1;

%--

% Oitava 2 (256 - 512 Hz)

alfa2=4; %4

int2 = c*k+7:c*k+11;

ft2(int2)= spectrum_block(int2);

% Encontrando o tom dominante

E2= sqrt(sum(ft2.^2));

spectrum_block(find(ft2 ~= max(ft2)& ft2~=0))= 0;

surv2 = spectrum_block(find(int2 == max(int2)));

survivor2 = spectrum_block(c*k+7:c*k+11); % unico tom dominante

nota2 = find(survivor2 ~=0); % indice da nota sobrevivente

f0oct2 = find(survivor2 ~=0)+6; % posicao do tom na oitava

unnormfoct2=(f0oct2-1)*50; % freq do tom dominante na oitava 2

% spectrum stuffing via beta distribution

Q2=(fM2-f0oct2)/(f0oct2-fm2);

K2=0;

if (Q2 ~= 0)

K2=1/(((f0oct2-fm2)^(alfa2-1))*(fM2-f0oct2)^(Q2*(alfa2-1)));

end

% o dummy corresponde ao x da equacao e o Beta - 1 corresponde ao

%Q2*(alfa - 1) por manipulacoes na forma da distribuicao beta pegando

%o valor da moda.

for dummy=7:11

peso(dummy)=K2*((dummy-fm2)^(alfa2-1))*((fM2-dummy)^...

(Q2*(alfa2-1))); % stuffing

end

peso(7:11);

if (nota2 ~=0)
spectrum_block(c*k+7:c*k+11)=E2*peso(7:11);

end

clear peso(7:11);

clear ft2;

%--

% Oitava 3 (512 - 1024 Hz)

alfa3=4; %4

int3 = c*k+12:c*k+21;

ft3(int3)=spectrum_block(int3);

% Encontrando o tom dominante

E3 = sqrt(sum(ft3.^2));

spectrum_block(find(ft3 ~= max(ft3)& ft3~=0))=0;
surv3 = spectrum_block(find(int3 == max(int3)));

survivor3=spectrum_block(c*k+12:c*k+21); % unico tom dominante

nota3=find(survivor3 ~=0); % indice da nota sobrevivente

ANEXO A. Códigos Fonte (vocoder) 162

f0oct3=find(survivor3 ~=0)+11; % posicao do tom na oitava

unnormfoct3=(f0oct3-1)*50; % freq do tom dominante na oitava 3

% spectrum stuffing via beta distribution

Q3=(fM3-f0oct3)/(f0oct3-fm3);

K3=0;

if (Q3 ~=0)
K3=1/(((f0oct3-fm3)^(alfa3-1))*(fM3-f0oct3)^(Q3*(alfa3-1)));

end

for dummy=12:21

peso(dummy)=K3*((dummy-fm3)^(alfa3-1))*((fM3-dummy)^...

(Q3*(alfa3-1))); % stuffing

end

peso(12:21);

if (nota3 ~=0)
spectrum_block(c*k+12:c*k+21)=E3*peso(12:21);

end

clear peso(12:21);

clear ft3;

%--

% Oitava 4 (1024 - 2048 Hz)

alfa4=7; %7

int4 = c*k+22:c*k+41;

ft4(int4)=spectrum_block(int4);

% Encontrando o tom dominante

E4= sqrt(sum(ft4.^2));

spectrum_block(find(ft4 ~= max(ft4)& ft4~=0))=0;
surv4 = spectrum_block(find(int4 == max(int4)));

survivor4=spectrum_block(c*k+22:c*k+41); % unico tom dominante

nota4=find(survivor4 ~=0); % indice da nota sobrevivente

f0oct4=find(survivor4 ~=0)+21; % posicao do tom na oitava

unnormfoct4=(f0oct4-1)*50; % freq do tom dominante na oitava 4

% spectrum stuffing via beta distribution

Q4=(fM4-f0oct4)/(f0oct4-fm4);

K4=0;

if (Q4 ~=0)
K4=1/(((f0oct4-fm4)^(alfa4-1))*(fM4-f0oct4)^(Q4*(alfa4-1)));

end

for dummy=22:41

peso(dummy)=K4*((dummy-fm4)^(alfa4-1))*((fM4-dummy)^...

(Q4*(alfa4-1))); % stuffing

end

if (nota4 ~=0)
spectrum_block(c*k+22:c*k+41)=E4*peso(22:41);

end

clear peso(22:41);

clear ft4;

ANEXO A. Códigos Fonte (vocoder) 163

%--

% Oitava 5 (2048 - 4006 Hz)

alfa5=7; %7

int5 = c*k+42:c*k+80;

ft5(int5)=spectrum_block(int5);

% Encontrando o tom dominante

E5= sqrt(sum(ft5.^2));

spectrum_block(find(ft5 ~= max(ft5)&ft5~=0))=0;
surv5 = spectrum_block(find(int5 == max(int5)));

survivor5=spectrum_block(c*k+42:c*k+80); % unico tom dominante

nota5=find(survivor5 ~=0); % indice da nota sobrevivente

f0oct5=find(survivor5 ~=0)+41; % posicao do tom na oitava

unnormfoct5=(f0oct5-1)*50; % freq do tom dominante na oitava 5

% spectrum stuffing via beta distribution

Q5=(fM5-f0oct5)/(f0oct5-fm5);

K5=0;

if (Q5 ~=0)
K5=1/(((f0oct5-fm5)^(alfa5-1))*(fM5-f0oct5)^(Q5*(alfa5-1)));

end

for dummy=42:80

peso(dummy)=K5*((dummy-fm5)^(alfa5-1))*((fM5-dummy)^...

(Q5*(alfa5-1))); % stuffing

end

if (nota5 ~=0)
spectrum_block(c*k+42:c*k+80)=E5*peso(42:80);

end

clear peso(42:80);

clear ft5;

%lista dos tons sobreviventes por oitava, para cada quadro k

spectrum_block(c*k+1:c*k+c) = [spectrum_block(c*k+1:c*k+80)...

0 spectrum_block(c*k+80:-1:2+c*k)];

end

%---------- BLOCO DE MONTAGEM DO NOVO ARQUIVO DE VOZ SINTETIZADO --------|

% concatenacao de blocos

aux=~isnan(spectrum_block);
spectrum_block(find(aux == 0)) = 0;

for i=0:n-1

arquivoVozSintetizado(c*i+1:c*i+c)= ifft(spectrum_block(c*i+1:c*i+c));

end

arquivoVozSintetizado = arquivoVozSintetizado(1:N)';

for i=0:n-2

arquivoVozSintetizado(c*i+1:c*i+c)=...

(HAM(1:c)).*arquivoVozSintetizado(c*i+1:c*i+c);

end

out = arquivoVozSintetizado;

end

ANEXO A. Códigos Fonte (vocoder) 164

SpecStuffWindow.m

function [out] = SpecStuffWindow(in)

%SPECSTUFFINGWINDOW Tecnica de Preenchimento Espectral via Distribuicao

% Beta de Probabilidade com janelamento extra.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 10/2008

arquivoVozSintetizado=SpecStuffing(in); % chamada do SpecStuffing

fs = 8000; % frequencia amostragem utilizada.

N = length(in); % comprimento arquivo de entrada

c = fs*20e-3; % numero de amostras em 20 ms.

n = N/c;

HAM = hamming(c); %criando janela de Hamming

for i=0:n-2

%janelamento extra

arquivoVozSintetizado(c*i+1:c*i+c)=...

(HAM(1:c)).*arquivoVozSintetizado(c*i+1:c*i+c);

end

out = arquivoVozSintetizado;

end

165

ANEXO B – CÓDIGOS FONTE (RAL)

Requerido MATLAB® 2013 ou versões mais recentes.

RecLoc.m

function varargout = RecLoc(varargin)

%RECLOC Software de Reconhecimento de Locutor baseado no Mascara-

% mento Pleno em Frequencia por Oitava. Eh possivel o cadas-

% tro de 5(cinco) a 20(vinte) usuarios distintos atraves de

% 5 elocucoes de treinamento por usuario. Aceita como entra-

% da arquivo com extensao txt, produzido pelo software

% PadraoLoc, que contem os padroes dos usuarios a serem

% cadastrados no sistema. Retorna como saida o resultado da

% IAL, exibindo o usuario detentor da elocucao em teste. O

% sistema, tambem, exibe uma classificacao para os outros

% usuarios, ordenando-nos pelos de padrao de voz mais seme-

% lhante ao do detentor da elocucao em teste.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 04/06/2017

% Codigo de inicializacao do programa - nao editavel

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @RecLoc_OpeningFcn, ...

'gui_OutputFcn', @RecLoc_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% Chamada dos logos na tela.

function ufpe_CreateFcn(hObject, eventdata, handles)

A = imread('figuras\ufpectgdes.png');

ANEXO B. Códigos Fonte (RAL) 166

imshow(A);

% ------------ Rotinas e funcoes internas do programa --------------------

function RecLoc_OpeningFcn(hObject, ~, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = RecLoc_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

% campo de texto para eloucacao teste

function textoteste_Callback(hObject, eventdata, handles)

function textoteste_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% campo de texto para resultado das indentificacoes

function texto

Callback(hObject, eventdata, handles)

function textoident_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function popupmenu1_Callback(hObject, eventdata, handles)

contents1 = cellstr(get(hObject,'String'));

b1 = contents1{get(hObject,'Value')};

function popupmenu1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function popupmenu2_Callback(hObject, eventdata, handles)

contents2 = cellstr(get(hObject,'String'));

b2 = contents2{get(hObject,'Value')};

contents1 = get(handles.popupmenu1,'string');

b1 = contents1{get(hObject,'Value')};

function popupmenu2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% Acoes executadas ao pressionar botao "abrir" geracao dos padroes.

function abrirpadrao_Callback(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 167

v = get(handles.popupmenu1,'Value');

v1 = get(handles.popupmenu2,'Value');

indice1 = v-1;

indice2 = v1-1;

if isequal(indice1,0) || isequal(indice2,0)

disp('Preencher todos os atributos') %mensagem preencher atributos

end

if isequal(indice1,1) && ~isequal(indice2,0)
PadraoLoc5 %chama tela de padrao 5 loc

end

if isequal(indice1,2) && ~isequal(indice2,0)
PadraoLoc6 %chama tela de padrao 6 loc

end

if isequal(indice1,3) && ~isequal(indice2,0)
PadraoLoc7 %chama tela de padrao 7 loc

end

if isequal(indice1,4) && ~isequal(indice2,0)
PadraoLoc8 %chama tela de padrao 8 loc

end

if isequal(indice1,5) && ~isequal(indice2,0)
PadraoLoc9 %chama tela de padrao 9 loc

end

if isequal(indice1,6) && ~isequal(indice2,0)
PadraoLoc10 %chama tela de padrao 10 loc

end

if isequal(indice1,7) && ~isequal(indice2,0)
PadraoLoc11 %chama tela de padrao 11 loc

end

if isequal(indice1,8) && ~isequal(indice2,0)
PadraoLoc12 %chama tela de padrao 12 loc

end

if isequal(indice1,9) && ~isequal(indice2,0)
PadraoLoc13 %chama tela de padrao 13 loc

end

if isequal(indice1,10) && ~isequal(indice2,0)
PadraoLoc14 %chama tela de padrao 14 loc

end

if isequal(indice1,11) && ~isequal(indice2,0)
PadraoLoc15 %chama tela de padrao 15 loc

end

if isequal(indice1,12) && ~isequal(indice2,0)
PadraoLoc16 %chama tela de padrao 16 loc

end

if isequal(indice1,13) && ~isequal(indice2,0)
PadraoLoc17 %chama tela de padrao 17 loc

end

if isequal(indice1,14) && ~isequal(indice2,0)

ANEXO B. Códigos Fonte (RAL) 168

PadraoLoc18 %chama tela de padrao 18 loc

end

if isequal(indice1,15) && ~isequal(indice2,0)
PadraoLoc19 %chama tela de padrao 19 loc

end

if isequal(indice1,16) && ~isequal(indice2,0)
PadraoLoc20 %chama tela de padrao 20 loc

end

%campo de texto do caminho do arquivo txt padroes de voz

function textopadrao_Callback(hObject, eventdata, handles)

function textopadrao_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%campo de texto dos usuarios cadastrados

function textocadastrados_CreateFcn(hObject, eventdata, handles)

%--Acoes executadas ao pressionar botao "selecionar padrao dos locutores"--

function selepadrao_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.txt',...

'Selecione o arquivo .txt do padrao dos locutores'); %selecionar

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar') %cancelar

else

%formacao da string com diretorio e nome do arquivo selecionado('C:\x.txt')

arquivovoz= strcat(diretorio,nome);

set(handles.textopadrao,'string',arquivovoz); %envia 'C:\x.txt' p/textbox

set(handles.textocadastrados2,'string',''); %limpa texto cadastrados 2

set(handles.textclassificacao,'string',''); %limpa texto classificacao

set(handles.textclassificacao2,'string','');%limpa texto classificacao2

tabelacomp = readtable(arquivovoz); %ler tabela dos padroes

tabelacell1 = table2cell(tabelacomp); % transforma em celula

[linha coluna] = size(tabelacell1); %tamanho das linhas e colunas

% ------ leitura das strings dos locutores na matriz padroes de voz ------

stringloc1=tabelacell1(1,1); stringloc1char=char(stringloc1);

stringloc2=tabelacell1(2,1); stringloc2char=char(stringloc2);

stringloc3=tabelacell1(3,1); stringloc3char=char(stringloc3);

stringloc4=tabelacell1(4,1); stringloc4char=char(stringloc4);

stringloc5=tabelacell1(5,1); stringloc5char=char(stringloc5);

if linha>=6

stringloc6=tabelacell1(6,1); stringloc6char=char(stringloc6);

end

if linha>=7

stringloc7=tabelacell1(7,1); stringloc7char=char(stringloc7);

end

if linha>=8

ANEXO B. Códigos Fonte (RAL) 169

stringloc8=tabelacell1(8,1); stringloc8char=char(stringloc8);

end

if linha>=9

stringloc9=tabelacell1(9,1); stringloc9char=char(stringloc9);

end

if linha>=10

stringloc10=tabelacell1(10,1); stringloc10char=char(stringloc10);

end

if linha>=11

stringloc11=tabelacell1(11,1); stringloc11char=char(stringloc11);

end

if linha>=12

stringloc12=tabelacell1(12,1); stringloc12char=char(stringloc12);

end

if linha>=13

stringloc13=tabelacell1(13,1); stringloc13char=char(stringloc13);

end

if linha>=14

stringloc14=tabelacell1(14,1); stringloc14char=char(stringloc14);

end

if linha>=15

stringloc15=tabelacell1(15,1); stringloc15char=char(stringloc15);

end

if linha>=16

stringloc16=tabelacell1(16,1); stringloc16char=char(stringloc16);

end

if linha>=17

stringloc17=tabelacell1(17,1); stringloc17char=char(stringloc17);

end

if linha>=18

stringloc18=tabelacell1(18,1); stringloc18char=char(stringloc18);

end

if linha>=19

stringloc19=tabelacell1(19,1); stringloc19char=char(stringloc19);

end

if linha==20

stringloc20=tabelacell1(20,1); stringloc20char=char(stringloc20);

end

%------------------- 5 LOCUTORES CADASTRADOS ---------------------------

if linha==5

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char};

end

%-------------------- 6 LOCUTORES CADASTRADOS ---------------------------

if linha==6

%forma vetor de strings

ANEXO B. Códigos Fonte (RAL) 170

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char};

end

%------------------- 7 LOCUTORES CADASTRADOS ---------------------------

if linha==7

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char};

end

%------------------- 8 LOCUTORES CADASTRADOS ---------------------------

if linha==8

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char};

end

%------------------- 9 LOCUTORES CADASTRADOS ---------------------------

if linha==9

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char};

end

%------------------- 10 LOCUTORES CADASTRADOS ---------------------------

if linha==10

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

end

%------------------- 11 LOCUTORES CADASTRADOS ---------------------------

if linha==11

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char};

end

%------------------- 12 LOCUTORES CADASTRADOS ---------------------------

if linha==12

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

ANEXO B. Códigos Fonte (RAL) 171

stringloc10char};

vetorstring2={stringloc11char;stringloc12char};

end

%------------------- 13 LOCUTORES CADASTRADOS ---------------------------

if linha==13

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char};

end

%------------------- 14 LOCUTORES CADASTRADOS ---------------------------

if linha ==14

%forma vetor de strings

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char};

end

%------------------- 15 LOCUTORES CADASTRADOS ---------------------------

if linha==15

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char;stringloc15char};

end

%------------------- 16 LOCUTORES CADASTRADOS ---------------------------

if linha==16

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char;stringloc15char;stringloc16char};

end

%------------------- 17 LOCUTORES CADASTRADOS ---------------------------

if linha==17

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

ANEXO B. Códigos Fonte (RAL) 172

stringloc14char;stringloc15char;stringloc16char;...

stringloc17char};

end

%------------------- 18 LOCUTORES CADASTRADOS ---------------------------

if linha==18

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char;stringloc15char;stringloc16char;...

stringloc17char;stringloc18char};

end

%------------------- 19 LOCUTORES CADASTRADOS ---------------------------

if linha==19

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char;stringloc15char;stringloc16char;...

stringloc17char;stringloc18char;stringloc19char};

end

%------------------- 20 LOCUTORES CADASTRADOS ---------------------------

if linha==20

vetorstring={stringloc1char;stringloc2char;stringloc3char;...

stringloc4char;stringloc5char;stringloc6char;...

stringloc7char;stringloc8char;stringloc9char;...

stringloc10char};

vetorstring2={stringloc11char;stringloc12char;stringloc13char;...

stringloc14char;stringloc15char;stringloc16char;...

stringloc17char;stringloc18char;stringloc19char;...

stringloc20char};

end

%envia strings para tela em "Usuarios Cadastrados"

set(handles.textocadastrados,'string',vetorstring);

if linha>=11

set(handles.textocadastrados2,'string',vetorstring2);

end

end

%Acoes executadas ao pressionar botao "selecionar elocucao teste (wav)"

function selelocteste_Callback(~, ~, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav de teste para processamento'); %selecionar

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar') %cancelar

else

ANEXO B. Códigos Fonte (RAL) 173

arquivovoz= strcat(diretorio,nome);

set(handles.textoteste,'string',arquivovoz);

end

%Acoes executadas ao se pressionar o botao "processar"

function resultado_Callback(~, ~, handles)

eloctestestring = get(handles.textoteste,'string'); %le caminho da elocucao

elocteste = audioread(eloctestestring); %le arquivo wav

vetorCaracteristico=vetorCaract(elocteste); %monta vetor caracteristico

string_padrao = get(handles.textopadrao,'string'); %le caminha arquivo txt

matrizpadrao = readtable(string_padrao); %le matriz padrao

matrizpadraocell = table2cell(matrizpadrao); %gera celular da matriz

[linha coluna] = size(matrizpadraocell); %tamanho da matriz

tabelacomp = readtable(string_padrao);

tabelacell1 = table2cell(tabelacomp);

if linha>=5

%leitura, no arquivo dos padroes, do padrao de cada locutor

locutor1=matrizpadraocell(1,2:8); locutor1mat=cell2mat(locutor1);

locutor2=matrizpadraocell(2,2:8); locutor2mat=cell2mat(locutor2);

locutor3=matrizpadraocell(3,2:8); locutor3mat=cell2mat(locutor3);

locutor4=matrizpadraocell(4,2:8); locutor4mat=cell2mat(locutor4);

locutor5=matrizpadraocell(5,2:8); locutor5mat=cell2mat(locutor5);

%calculos dos erros

erroloc1 = vetorCaracteristico - locutor1mat;

erroloc2 = vetorCaracteristico - locutor2mat;

erroloc3 = vetorCaracteristico - locutor3mat;

erroloc4 = vetorCaracteristico - locutor4mat;

erroloc5 = vetorCaracteristico - locutor5mat;

%calculo das normas

norm_loc1 = norm(erroloc1,2);

norm_loc2 = norm(erroloc2,2);

norm_loc3 = norm(erroloc3,2);

norm_loc4 = norm(erroloc4,2);

norm_loc5 = norm(erroloc5,2);

%leitura, no arquivo padroes dos locutores, do nome de cada locutor

stringloc1=tabelacell1(1,1); sloc1char=char(stringloc1);

stringloc2=tabelacell1(2,1); sloc2char=char(stringloc2);

stringloc3=tabelacell1(3,1); sloc3char=char(stringloc3);

stringloc4=tabelacell1(4,1); sloc4char=char(stringloc4);

stringloc5=tabelacell1(5,1); sloc5char=char(stringloc5);

end

if linha>=6

locutor6=matrizpadraocell(6,2:8); locutor6mat=cell2mat(locutor6);

erroloc6 = vetorCaracteristico - locutor6mat;

norm_loc6 = norm(erroloc6,2);

stringloc6=tabelacell1(6,1); sloc6char=char(stringloc6);

end

ANEXO B. Códigos Fonte (RAL) 174

if linha>=7

locutor7=matrizpadraocell(7,2:8); locutor7mat=cell2mat(locutor7);

erroloc7 = vetorCaracteristico - locutor7mat;

norm_loc7 = norm(erroloc7,2);

stringloc7=tabelacell1(7,1); sloc7char=char(stringloc7);

end

if linha>=8

locutor8=matrizpadraocell(8,2:8); locutor8mat=cell2mat(locutor8);

erroloc8 = vetorCaracteristico - locutor8mat;

norm_loc8 = norm(erroloc8,2);

stringloc8=tabelacell1(8,1); sloc8char=char(stringloc8);

end

if linha>=9

locutor9=matrizpadraocell(9,2:8); locutor9mat=cell2mat(locutor9);

erroloc9 = vetorCaracteristico - locutor9mat;

norm_loc9 = norm(erroloc9,2);

stringloc9=tabelacell1(9,1); sloc9char=char(stringloc9);

end

if linha>=10

locutor10=matrizpadraocell(10,2:8); locutor10mat=cell2mat(locutor10);

erroloc10 = vetorCaracteristico - locutor10mat;

norm_loc10 = norm(erroloc10,2);

stringloc10=tabelacell1(10,1); sloc10char=char(stringloc10);

end

if linha>=11

locutor11=matrizpadraocell(11,2:8); locutor11mat=cell2mat(locutor11);

erroloc11 = vetorCaracteristico - locutor11mat;

norm_loc11 = norm(erroloc11,2);

stringloc11=tabelacell1(11,1); sloc11char=char(stringloc11);

end

if linha>=12

locutor12=matrizpadraocell(12,2:8); locutor12mat=cell2mat(locutor12);

erroloc12 = vetorCaracteristico - locutor12mat;

norm_loc12 = norm(erroloc12,2);

stringloc12=tabelacell1(12,1); sloc12char=char(stringloc12);

end

if linha>=13

locutor13=matrizpadraocell(13,2:8); locutor13mat=cell2mat(locutor13);

erroloc13 = vetorCaracteristico - locutor13mat;

norm_loc13 = norm(erroloc13,2);

stringloc13=tabelacell1(13,1); sloc13char=char(stringloc13);

end

if linha>=14

locutor14=matrizpadraocell(14,2:8); locutor14mat=cell2mat(locutor14);

erroloc14 = vetorCaracteristico - locutor14mat;

norm_loc14 = norm(erroloc14,2);

stringloc14=tabelacell1(14,1); sloc14char=char(stringloc14);

ANEXO B. Códigos Fonte (RAL) 175

end

if linha>=15

locutor15=matrizpadraocell(15,2:8); locutor15mat=cell2mat(locutor15);

erroloc15 = vetorCaracteristico - locutor15mat;

norm_loc15 = norm(erroloc15,2);

stringloc15=tabelacell1(15,1); sloc15char=char(stringloc15);

end

if linha>=16

locutor16=matrizpadraocell(16,2:8); locutor16mat=cell2mat(locutor16);

erroloc16 = vetorCaracteristico - locutor16mat;

norm_loc16 = norm(erroloc16,2);

stringloc16=tabelacell1(16,1); sloc16char=char(stringloc16);

end

if linha>=17

locutor17=matrizpadraocell(17,2:8); locutor17mat=cell2mat(locutor17);

erroloc17 = vetorCaracteristico - locutor17mat;

norm_loc17 = norm(erroloc17,2);

stringloc17=tabelacell1(17,1); sloc17char=char(stringloc17);

end

if linha>=18

locutor18=matrizpadraocell(18,2:8); locutor18mat=cell2mat(locutor18);

erroloc18 = vetorCaracteristico - locutor18mat;

norm_loc18 = norm(erroloc18,2);

stringloc18=tabelacell1(18,1); sloc18char=char(stringloc18);

end

if linha>=19

locutor19=matrizpadraocell(19,2:8); locutor19mat=cell2mat(locutor19);

erroloc19 = vetorCaracteristico - locutor19mat;

norm_loc19 = norm(erroloc19,2);

stringloc19=tabelacell1(19,1); sloc19char=char(stringloc19);

end

if linha>=20

locutor20=matrizpadraocell(20,2:8); locutor20mat=cell2mat(locutor20);

erroloc20 = vetorCaracteristico - locutor20mat;

norm_loc20 = norm(erroloc20,2);

stringloc20=tabelacell1(20,1); sloc20char=char(stringloc20);

end

%--------ROTINA PARA ORDENACAO DOS 5 LOCUTORES PELOS DE MENOR NORMA--------

if linha==5

for i=1:4

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

ANEXO B. Códigos Fonte (RAL) 176

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc5char);

end

%--------ROTINA PARA ORDENACAO DOS 6 LOCUTORES PELOS DE MENOR NORMA--------

if linha==6

for i=1:5

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

ANEXO B. Códigos Fonte (RAL) 177

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc6char;sloc5char;sloc4char;sloc3char;...

sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc6char);

end

%------ROTINA PARA ORDENACAO DOS 7 LOCUTORES PELOS DE MENOR NORMA----------

if linha==7

for i=1:6

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

ANEXO B. Códigos Fonte (RAL) 178

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc7char;sloc6char;sloc5char;sloc4char;...

sloc3char;sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc7char);

end

%-------ROTINA PARA ORDENACAO DOS 8 LOCUTORES PELOS DE MENOR NORMA---------

if linha==8

for i=1:7

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

ANEXO B. Códigos Fonte (RAL) 179

end

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc8char;sloc7char;sloc6char;sloc5char;sloc4char;...

sloc3char;sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc8char);

end

%--------ROTINA PARA ORDENACAO DOS 9 LOCUTORES PELOS DE MENOR NORMA--------

if linha==9

for i=1:8

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

ANEXO B. Códigos Fonte (RAL) 180

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc9char;sloc8char;sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc9char);

end

%--------ROTINA PARA ORDENACAO DOS 10 LOCUTORES PELOS DE MENOR NORMA-------

if linha==10

for i=1:9

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

ANEXO B. Códigos Fonte (RAL) 181

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

i=i+1;

end

%montagem do vetor com string ordenada dos locutores

vetor_stringsort = {sloc10char;sloc9char;sloc8char;sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc10char);

end

%--------ROTINA PARA ORDENACAO DOS 11 LOCUTORES PELOS DE MENOR NORMA-------

if linha==11

for i=1:10

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

ANEXO B. Códigos Fonte (RAL) 182

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc1char};

vetor_stringsort1 = {sloc11char;sloc10char;sloc9char;...

sloc8char;sloc7char;sloc6char;sloc5char;sloc4char;...

sloc3char;sloc2char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc11char);

end

ANEXO B. Códigos Fonte (RAL) 183

%--------ROTINA PARA ORDENACAO DOS 12 LOCUTORES PELOS DE MENOR NORMA-------

if linha==12

for i=1:11

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

ANEXO B. Códigos Fonte (RAL) 184

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc2char;sloc1char};

vetor_stringsort1 = {sloc12char;sloc11char;sloc10char;sloc9char;...

sloc8char;sloc7char;sloc6char;sloc5char;sloc4char;...

sloc3char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc12char);

end

%-------ROTINA PARA ORDENACAO DOS 13 LOCUTORES PELOS DE MENOR NORMA--------

if linha==13

for i=1:12

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

ANEXO B. Códigos Fonte (RAL) 185

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc13char;sloc12char;sloc11char;...

sloc10char;sloc9char;sloc8char;sloc7char;...

sloc6char;sloc5char;sloc4char};

ANEXO B. Códigos Fonte (RAL) 186

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc13char);

end

%------ROTINA PARA ORDENACAO DOS 14 LOCUTORES PELOS DE MENOR NORMA---------

if linha==14

for i=1:13

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

ANEXO B. Códigos Fonte (RAL) 187

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc4char;sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc14char;sloc13char;sloc12char;sloc11char;...

sloc10char;sloc9char;sloc8char;sloc7char;...

sloc6char;sloc5char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc14char);

end

%---------ROTINA PARA ORDENACAO DOS 15 LOCUTORES PELOS DE MENOR NORMA------

if linha==15

for i=1:14

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

ANEXO B. Códigos Fonte (RAL) 188

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

ANEXO B. Códigos Fonte (RAL) 189

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc5char;sloc4char;sloc3char;...

sloc2char;sloc1char};

vetor_stringsort1 = {sloc15char;sloc14char;...

sloc13char;sloc12char;sloc11char;sloc10char;...

sloc9char;sloc8char;sloc7char;sloc6char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc15char);

end

%---------ROTINA PARA ORDENACAO DOS 16 LOCUTORES PELOS DE MENOR NORMA------

if linha==16

for i=1:15

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

ANEXO B. Códigos Fonte (RAL) 190

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

ANEXO B. Códigos Fonte (RAL) 191

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

if norm_loc15<norm_loc16

naux = norm_loc16; norm_loc16=norm_loc15; norm_loc15 = naux;

stringlocaux=sloc16char; sloc16char=sloc15char;

sloc15char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc6char;sloc5char;sloc4char;sloc3char;...

sloc2char;sloc1char};

vetor_stringsort1 = {sloc16char;sloc15char;sloc14char;...

sloc13char;sloc12char;sloc11char;sloc10char;...

sloc9char;sloc8char;sloc7char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc16char);

end

%---------ROTINA PARA ORDENACAO DOS 17 LOCUTORES PELOS DE MENOR NORMA------

if linha==17

for i=1:16

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

ANEXO B. Códigos Fonte (RAL) 192

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

ANEXO B. Códigos Fonte (RAL) 193

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

if norm_loc15<norm_loc16

naux = norm_loc16; norm_loc16=norm_loc15; norm_loc15 = naux;

stringlocaux=sloc16char; sloc16char=sloc15char;

sloc15char=stringlocaux;

end

if norm_loc16<norm_loc17

naux = norm_loc17; norm_loc17=norm_loc16; norm_loc16 = naux;

stringlocaux=sloc17char; sloc17char=sloc16char;

sloc16char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc17char;sloc16char;sloc15char;sloc14char;...

sloc13char;sloc12char;sloc11char;sloc10char;...

sloc9char;sloc8char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc17char);

end

%---------ROTINA PARA ORDENACAO DOS 18 LOCUTORES PELOS DE MENOR NORMA------

if linha==18

for i=1:17

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

ANEXO B. Códigos Fonte (RAL) 194

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

ANEXO B. Códigos Fonte (RAL) 195

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

if norm_loc15<norm_loc16

naux = norm_loc16; norm_loc16=norm_loc15; norm_loc15 = naux;

stringlocaux=sloc16char; sloc16char=sloc15char;

sloc15char=stringlocaux;

end

if norm_loc16<norm_loc17

naux = norm_loc17; norm_loc17=norm_loc16; norm_loc16 = naux;

stringlocaux=sloc17char; sloc17char=sloc16char;

sloc16char=stringlocaux;

end

if norm_loc17<norm_loc18

naux = norm_loc18; norm_loc18=norm_loc17; norm_loc17 = naux;

stringlocaux=sloc18char; sloc18char=sloc17char;

sloc17char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc8char;sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc18char;sloc17char;sloc16char;...

sloc15char;sloc14char;sloc13char;sloc12char;...

sloc11char;sloc10char;sloc9char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicar locutor pretenso no visor

set(handles.textoident,'string',sloc18char);

end

%---------ROTINA PARA ORDENACAO DOS 19 LOCUTORES PELOS DE MENOR NORMA------

if linha==19

for i=1:18

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

ANEXO B. Códigos Fonte (RAL) 196

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

ANEXO B. Códigos Fonte (RAL) 197

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

if norm_loc15<norm_loc16

naux = norm_loc16; norm_loc16=norm_loc15; norm_loc15 = naux;

stringlocaux=sloc16char; sloc16char=sloc15char;

sloc15char=stringlocaux;

end

if norm_loc16<norm_loc17

naux = norm_loc17; norm_loc17=norm_loc16; norm_loc16 = naux;

stringlocaux=sloc17char; sloc17char=sloc16char;

sloc16char=stringlocaux;

end

if norm_loc17<norm_loc18

naux = norm_loc18; norm_loc18=norm_loc17; norm_loc17 = naux;

stringlocaux=sloc18char; sloc18char=sloc17char;

sloc17char=stringlocaux;

end

if norm_loc18<norm_loc19

naux = norm_loc19; norm_loc19=norm_loc18; norm_loc18 = naux;

stringlocaux=sloc19char; sloc19char=sloc18char;

sloc18char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc9char;sloc8char;sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc19char;sloc18char;sloc17char;sloc16char;...

ANEXO B. Códigos Fonte (RAL) 198

sloc15char;sloc14char;sloc13char;sloc12char;...

sloc11char;sloc10char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

% indicar locutor pretenso do visor

set(handles.textoident,'string',sloc19char);

end

%---------ROTINA PARA ORDENACAO DOS 20 LOCUTORES PELOS DE MENOR NORMA------

if linha==20

%bloco de ordenacao dos vetores strings

for i=1:19

if norm_loc1<norm_loc2

naux = norm_loc2; norm_loc2=norm_loc1; norm_loc1 = naux;

stringlocaux=sloc2char; sloc2char=sloc1char;

sloc1char=stringlocaux;

end

if norm_loc2<norm_loc3

naux = norm_loc3; norm_loc3=norm_loc2; norm_loc2 = naux;

stringlocaux=sloc3char; sloc3char=sloc2char;

sloc2char=stringlocaux;

end

if norm_loc3<norm_loc4

naux = norm_loc4; norm_loc4=norm_loc3; norm_loc3 = naux;

stringlocaux=sloc4char; sloc4char=sloc3char;

sloc3char=stringlocaux;

end

if norm_loc4<norm_loc5

naux = norm_loc5; norm_loc5=norm_loc4; norm_loc4 = naux;

stringlocaux=sloc5char; sloc5char=sloc4char;

sloc4char=stringlocaux;

end

if norm_loc5<norm_loc6

naux = norm_loc6; norm_loc6=norm_loc5; norm_loc5 = naux;

stringlocaux=sloc6char; sloc6char=sloc5char;

sloc5char=stringlocaux;

end

if norm_loc6<norm_loc7

naux = norm_loc7; norm_loc7=norm_loc6; norm_loc6 = naux;

stringlocaux=sloc7char; sloc7char=sloc6char;

sloc6char=stringlocaux;

end

if norm_loc7<norm_loc8

naux = norm_loc8; norm_loc8=norm_loc7; norm_loc7 = naux;

stringlocaux=sloc8char; sloc8char=sloc7char;

sloc7char=stringlocaux;

end

ANEXO B. Códigos Fonte (RAL) 199

if norm_loc8<norm_loc9

naux = norm_loc9; norm_loc9=norm_loc8; norm_loc8 = naux;

stringlocaux=sloc9char; sloc9char=sloc8char;

sloc8char=stringlocaux;

end

if norm_loc9<norm_loc10

naux = norm_loc10; norm_loc10=norm_loc9; norm_loc9 = naux;

stringlocaux=sloc10char; sloc10char=sloc9char;

sloc9char=stringlocaux;

end

if norm_loc10<norm_loc11

naux = norm_loc11; norm_loc11=norm_loc10; norm_loc10 = naux;

stringlocaux=sloc11char; sloc11char=sloc10char;

sloc10char=stringlocaux;

end

if norm_loc11<norm_loc12

naux = norm_loc12; norm_loc12=norm_loc11; norm_loc11 = naux;

stringlocaux=sloc12char; sloc12char=sloc11char;

sloc11char=stringlocaux;

end

if norm_loc12<norm_loc13

naux = norm_loc13; norm_loc13=norm_loc12; norm_loc12 = naux;

stringlocaux=sloc13char; sloc13char=sloc12char;

sloc12char=stringlocaux;

end

if norm_loc13<norm_loc14

naux = norm_loc14; norm_loc14=norm_loc13; norm_loc13 = naux;

stringlocaux=sloc14char; sloc14char=sloc13char;

sloc13char=stringlocaux;

end

if norm_loc14<norm_loc15

naux = norm_loc15; norm_loc15=norm_loc14; norm_loc14 = naux;

stringlocaux=sloc15char; sloc15char=sloc14char;

sloc14char=stringlocaux;

end

if norm_loc15<norm_loc16

naux = norm_loc16; norm_loc16=norm_loc15; norm_loc15 = naux;

stringlocaux=sloc16char; sloc16char=sloc15char;

sloc15char=stringlocaux;

end

if norm_loc16<norm_loc17

naux = norm_loc17; norm_loc17=norm_loc16; norm_loc16 = naux;

stringlocaux=sloc17char; sloc17char=sloc16char;

sloc16char=stringlocaux;

end

if norm_loc17<norm_loc18

naux = norm_loc18; norm_loc18=norm_loc17; norm_loc17 = naux;

ANEXO B. Códigos Fonte (RAL) 200

stringlocaux=sloc18char; sloc18char=sloc17char;

sloc17char=stringlocaux;

end

if norm_loc18<norm_loc19

naux = norm_loc19; norm_loc19=norm_loc18; norm_loc18 = naux;

stringlocaux=sloc19char; sloc19char=sloc18char;

sloc18char=stringlocaux;

end

if norm_loc19<norm_loc20

naux = norm_loc20; norm_loc20=norm_loc19; norm_loc19 = naux;

stringlocaux=sloc20char; sloc20char=sloc19char;

sloc19char=stringlocaux;

end

i=i+1;

end

%montagem dos vetores com string ordenada dos locutores

vetor_stringsort = {sloc10char;sloc9char;sloc8char;sloc7char;sloc6char;...

sloc5char;sloc4char;sloc3char;sloc2char;sloc1char};

vetor_stringsort1 = {sloc20char;sloc19char;sloc18char;sloc17char;...

sloc16char;sloc15char;sloc14char;sloc13char;...

sloc12char;sloc11char};

%envia string de elocutores ordenados para tela

set(handles.textclassificacao,'string',vetor_stringsort1);

set(handles.textclassificacao2,'string',vetor_stringsort);

%indicacao do locutor pretenso

set(handles.textoident,'string',sloc20char);

end

ANEXO B. Códigos Fonte (RAL) 201

PadraoLoc20.m

function varargout = PadraoLoc20(varargin)

% PADRAOLOC20 Software de geracao do padrao de voz de 20 usuarios atraves

% de 5 elocucoes de treinamento como entrada. Produz na saida

% um arquito txt contendo os padroes de voz de todos os usua-

% usuarios cadastrados.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 15/05/2017

% Codigo de inicializacao do programa - nao editavel

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @PadraoLoc20_OpeningFcn, ...

'gui_OutputFcn', @PadraoLoc20_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% Chamada dos logos (CTG e DES) na tela.

function des_CreateFcn(hObject, eventdata, handles)

A = imread('figuras\logospadrao.png');

imshow(A);

% Chamada do logo UFPE na tela.

function ufpe_CreateFcn(hObject, eventdata, handles)

A = imread('figuras\ufpepadrao.png');

imshow(A);

% ------------ Rotinas e funcoes internas do programa --------------------

function PadraoLoc20_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = PadraoLoc20_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

%campos de texto das elocucoes

function textoeloc1_1_Callback(hObject, eventdata, handles)

function textoeloc1_1_CreateFcn(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 202

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc1_2_Callback(hObject, eventdata, handles)

function textoeloc1_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc1_3_Callback(hObject, eventdata, handles)

function textoeloc1_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc1_4_Callback(hObject, eventdata, handles)

function textoeloc1_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc1_5_Callback(hObject, eventdata, handles)

function textoeloc1_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc3_1_Callback(hObject, eventdata, handles)

function textoeloc3_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc3_2_Callback(hObject, eventdata, handles)

function textoeloc3_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 203

function textoeloc3_3_Callback(hObject, eventdata, handles)

function textoeloc3_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc3_4_Callback(hObject, eventdata, handles)

function textoeloc3_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc3_5_Callback(hObject, eventdata, handles)

function textoeloc3_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%Acoes executadas ao pressionar botao selecionar (elocucao1)

function botaoeloc1_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc1_1,'string',arquivovoz11);

end

%Acoes executadas ao pressionar botao selecionar (elocucao2)

function botaoeloc1_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc1_2,'string',arquivovoz11);

end

function botaoeloc1_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

ANEXO B. Códigos Fonte (RAL) 204

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc1_3,'string',arquivovoz11);

end

function botaoeloc1_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc1_4,'string',arquivovoz11);

end

function botaoeloc1_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc1_5,'string',arquivovoz11);

end

function botaoeloc3_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc3_1,'string',arquivovoz11);

end

function botaoeloc3_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc3_2,'string',arquivovoz11);

end

ANEXO B. Códigos Fonte (RAL) 205

function botaoeloc3_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc3_3,'string',arquivovoz11);

end

function botaoeloc3_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc3_4,'string',arquivovoz11);

end

function textoeloc4_1_Callback(hObject, eventdata, handles)

function textoeloc4_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc4_2_Callback(hObject, eventdata, handles)

function textoeloc4_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc4_3_Callback(hObject, eventdata, handles)

function textoeloc4_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc4_4_Callback(hObject, eventdata, handles)

function textoeloc4_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 206

set(hObject,'BackgroundColor','white');

end

function textoeloc4_5_Callback(hObject, eventdata, handles)

function textoeloc4_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc4_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc4_1,'string',arquivovoz11);

end

function botaoeloc4_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc4_2,'string',arquivovoz11);

end

function botaoeloc4_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc4_3,'string',arquivovoz11);

end

function botaoeloc4_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

ANEXO B. Códigos Fonte (RAL) 207

set(handles.textoeloc4_4,'string',arquivovoz11);

end

function botaoeloc4_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc4_5,'string',arquivovoz11);

end

function textoeloc5_1_Callback(hObject, eventdata, handles)

function textoeloc5_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc5_2_Callback(hObject, eventdata, handles)

function textoeloc5_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc5_3_Callback(hObject, eventdata, handles)

function textoeloc5_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc5_4_Callback(hObject, eventdata, handles)

function textoeloc5_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc5_5_Callback(hObject, eventdata, handles)

function textoeloc5_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 208

set(hObject,'BackgroundColor','white');

end

function botaoeloc5_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc5_1,'string',arquivovoz11);

end

function botaoeloc5_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc5_2,'string',arquivovoz11);

end

function botaoeloc5_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc5_3,'string',arquivovoz11);

end

function botaoeloc5_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc5_4,'string',arquivovoz11);

end

function botaoeloc5_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

ANEXO B. Códigos Fonte (RAL) 209

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc5_5,'string',arquivovoz11);

end

function nome3_Callback(hObject, eventdata, handles)

function nome3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function nome14_Callback(hObject, eventdata, handles)

function nome14_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function nome4_Callback(hObject, eventdata, handles)

function nome4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc6_1_Callback(hObject, eventdata, handles)

function textoeloc6_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc6_2_Callback(hObject, eventdata, handles)

function textoeloc6_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc6_3_Callback(hObject, eventdata, handles)

function textoeloc6_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 210

function textoeloc6_4_Callback(hObject, eventdata, handles)

function textoeloc6_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc6_5_Callback(hObject, eventdata, handles)

function textoeloc6_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc6_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc6_1,'string',arquivovoz11);

end

function botaoeloc6_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc6_2,'string',arquivovoz11);

end

function botaoeloc6_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc6_3,'string',arquivovoz11);

end

function botaoeloc6_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

ANEXO B. Códigos Fonte (RAL) 211

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc6_4,'string',arquivovoz11);

end

function botaoeloc6_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc6_5,'string',arquivovoz11);

end

function nome6_Callback(hObject, eventdata, handles)

function nome6_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc7_1_Callback(hObject, eventdata, handles)

function textoeloc7_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc7_2_Callback(hObject, eventdata, handles)

function textoeloc7_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc7_3_Callback(hObject, eventdata, handles)

function textoeloc7_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 212

function textoeloc7_4_Callback(hObject, eventdata, handles)

function textoeloc7_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc7_5_Callback(hObject, eventdata, handles)

function textoeloc7_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc7_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc7_1,'string',arquivovoz11);

end

function botaoeloc7_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc7_2,'string',arquivovoz11);

end

function botaoeloc7_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc7_3,'string',arquivovoz11);

end

function botaoeloc7_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

ANEXO B. Códigos Fonte (RAL) 213

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc7_4,'string',arquivovoz11);

end

function nome7_Callback(hObject, eventdata, handles)

function nome7_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc9_1_Callback(hObject, eventdata, handles)

function textoeloc9_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc9_2_Callback(hObject, eventdata, handles)

function textoeloc9_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc9_3_Callback(hObject, eventdata, handles)

function textoeloc9_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc9_4_Callback(hObject, eventdata, handles)

function textoeloc9_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc9_5_Callback(hObject, eventdata, handles)

function textoeloc9_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

ANEXO B. Códigos Fonte (RAL) 214

end

function botaoeloc9_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc9_1,'string',arquivovoz11);

end

function botaoeloc9_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc9_2,'string',arquivovoz11);

end

function botaoeloc9_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc9_3,'string',arquivovoz11);

end

function botaoeloc9_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc9_4,'string',arquivovoz11);

end

function botaoeloc9_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

ANEXO B. Códigos Fonte (RAL) 215

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc9_5,'string',arquivovoz11);

end

function textoeloc10_1_Callback(hObject, eventdata, handles)

function textoeloc10_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc10_2_Callback(hObject, eventdata, handles)

function textoeloc10_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc10_3_Callback(hObject, eventdata, handles)

function textoeloc10_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc10_4_Callback(hObject, eventdata, handles)

function textoeloc10_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc10_5_Callback(hObject, eventdata, handles)

function textoeloc10_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc10_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

ANEXO B. Códigos Fonte (RAL) 216

set(handles.textoeloc10_1,'string',arquivovoz11);

end

function botaoeloc10_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc10_2,'string',arquivovoz11);

end

function botaoeloc10_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc10_3,'string',arquivovoz11);

end

function botaoeloc10_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc10_4,'string',arquivovoz11);

end

function botaoeloc10_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc10_5,'string',arquivovoz11);

end

function nome10_Callback(hObject, eventdata, handles)

function nome10_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 217

set(hObject,'BackgroundColor','white');

end

function textoeloc2_1_Callback(hObject, eventdata, handles)

function textoeloc2_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc2_2_Callback(hObject, eventdata, handles)

function textoeloc2_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc2_3_Callback(hObject, eventdata, handles)

function textoeloc2_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc2_4_Callback(hObject, eventdata, handles)

function textoeloc2_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc2_5_Callback(hObject, eventdata, handles)

function textoeloc2_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc2_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc2_1,'string',arquivovoz11);

ANEXO B. Códigos Fonte (RAL) 218

end

function botaoeloc2_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc2_2,'string',arquivovoz11);

end

function botaoeloc2_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc2_3,'string',arquivovoz11);

end

function botaoeloc2_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc2_4,'string',arquivovoz11);

end

function botaoeloc2_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc2_5,'string',arquivovoz11);

end

function nome2_Callback(hObject, eventdata, handles)

function nome2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 219

set(hObject,'BackgroundColor','white');

end

function textoeloc8_1_Callback(hObject, eventdata, handles)

function textoeloc8_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc8_2_Callback(hObject, eventdata, handles)

function textoeloc8_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc8_3_Callback(hObject, eventdata, handles)

function textoeloc8_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc8_4_Callback(hObject, eventdata, handles)

function textoeloc8_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc8_5_Callback(hObject, eventdata, handles)

function textoeloc8_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc8_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc8_2,'string',arquivovoz11);

end

ANEXO B. Códigos Fonte (RAL) 220

function botaoeloc8_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc8_3,'string',arquivovoz11);

end

function botaoeloc8_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc8_4,'string',arquivovoz11);

end

function botaoeloc8_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc8_5,'string',arquivovoz11);

end

function nome8_Callback(hObject, eventdata, handles)

function nome8_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc8_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc8_1,'string',arquivovoz11);

end

ANEXO B. Códigos Fonte (RAL) 221

function pushbutton49_Callback(hObject, eventdata, handles)

function tabA_Callback(hObject, eventdata, handles)

set(handles.painelA, 'Visible', 'on');

set(handles.painelB, 'Visible', 'off');

function tabB_Callback(hObject, eventdata, handles)

set(handles.painelA, 'Visible', 'off');

set(handles.painelB, 'Visible', 'on');

function nome1_Callback(hObject, eventdata, handles)

function nome1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc3_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc3_5,'string',arquivovoz11);

end

function botaoeloc7_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc7_5,'string',arquivovoz11);

end

function nome5_Callback(hObject, eventdata, handles)

function nome5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function nome9_Callback(hObject, eventdata, handles)

function nome9_CreateFcn(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 222

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc11_1_Callback(hObject, eventdata, handles)

function textoeloc11_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc11_2_Callback(hObject, eventdata, handles)

function textoeloc11_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc11_3_Callback(hObject, eventdata, handles)

function textoeloc11_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc11_4_Callback(hObject, eventdata, handles)

function textoeloc11_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc11_5_Callback(hObject, eventdata, handles)

function textoeloc11_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc13_1_Callback(hObject, eventdata, handles)

function textoeloc13_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 223

function textoeloc13_2_Callback(hObject, eventdata, handles)

function textoeloc13_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc13_3_Callback(hObject, eventdata, handles)

function textoeloc13_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc13_4_Callback(hObject, eventdata, handles)

function textoeloc13_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc13_5_Callback(hObject, eventdata, handles)

function textoeloc13_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc11_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc11_1,'string',arquivovoz11);

end

function botaoeloc11_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc11_2,'string',arquivovoz11);

end

ANEXO B. Códigos Fonte (RAL) 224

function botaoeloc11_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc11_3,'string',arquivovoz11);

end

function botaoeloc11_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc11_4,'string',arquivovoz11);

end

function botaoeloc11_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc11_5,'string',arquivovoz11);

end

function botaoeloc13_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc13_1,'string',arquivovoz11);

end

function botaoeloc13_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

ANEXO B. Códigos Fonte (RAL) 225

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc13_2,'string',arquivovoz11);

end

function botaoeloc13_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc13_3,'string',arquivovoz11);

end

function botaoeloc13_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc13_4,'string',arquivovoz11);

end

function textoeloc14_1_Callback(hObject, eventdata, handles)

function textoeloc14_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc14_2_Callback(hObject, eventdata, handles)

function textoeloc14_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc14_3_Callback(hObject, eventdata, handles)

function textoeloc14_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc14_4_Callback(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 226

function textoeloc14_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc14_5_Callback(hObject, eventdata, handles)

function textoeloc14_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc14_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc14_1,'string',arquivovoz11);

end

function botaoeloc14_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc14_2,'string',arquivovoz11);

end

function botaoeloc14_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc14_3,'string',arquivovoz11);

end

function botaoeloc14_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

ANEXO B. Códigos Fonte (RAL) 227

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc14_4,'string',arquivovoz11);

end

function botaoeloc14_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc14_5,'string',arquivovoz11);

end

function textoeloc15_1_Callback(hObject, eventdata, handles)

function textoeloc15_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc15_2_Callback(hObject, eventdata, handles)

function textoeloc15_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc15_3_Callback(hObject, eventdata, handles)

function textoeloc15_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc15_4_Callback(hObject, eventdata, handles)

function textoeloc15_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc15_5_Callback(hObject, eventdata, handles)

function textoeloc15_5_CreateFcn(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 228

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc15_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc15_1,'string',arquivovoz11);

end

function botaoeloc15_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc15_2,'string',arquivovoz11);

end

function botaoeloc15_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc15_3,'string',arquivovoz11);

end

function botaoeloc15_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc15_4,'string',arquivovoz11);

end

function botaoeloc15_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

ANEXO B. Códigos Fonte (RAL) 229

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc15_5,'string',arquivovoz11);

end

function nome13_Callback(hObject, eventdata, handles)

function nome13_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc16_1_Callback(hObject, eventdata, handles)

function textoeloc16_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc16_2_Callback(hObject, eventdata, handles)

function textoeloc16_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc16_3_Callback(hObject, eventdata, handles)

function textoeloc16_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc16_4_Callback(hObject, eventdata, handles)

function textoeloc16_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc16_5_Callback(hObject, eventdata, handles)

function textoeloc16_5_CreateFcn(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 230

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc16_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc16_1,'string',arquivovoz11);

end

function botaoeloc16_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc16_2,'string',arquivovoz11);

end

function botaoeloc16_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc16_3,'string',arquivovoz11);

end

function botaoeloc16_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc16_4,'string',arquivovoz11);

end

function botaoeloc16_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

ANEXO B. Códigos Fonte (RAL) 231

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc16_5,'string',arquivovoz11);

end

function nome16_Callback(hObject, eventdata, handles)

function nome16_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc17_1_Callback(hObject, eventdata, handles)

function textoeloc17_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc17_2_Callback(hObject, eventdata, handles)

function textoeloc17_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc17_3_Callback(hObject, eventdata, handles)

function textoeloc17_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc17_4_Callback(hObject, eventdata, handles)

function textoeloc17_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc17_5_Callback(hObject, eventdata, handles)

function textoeloc17_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 232

set(hObject,'BackgroundColor','white');

end

function botaoeloc17_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc17_1,'string',arquivovoz11);

end

function botaoeloc17_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc17_2,'string',arquivovoz11);

end

function botaoeloc17_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc17_3,'string',arquivovoz11);

end

function botaoeloc17_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc17_4,'string',arquivovoz11);

end

function nome17_Callback(hObject, eventdata, handles)

function nome17_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

ANEXO B. Códigos Fonte (RAL) 233

set(hObject,'BackgroundColor','white');

end

function textoeloc19_1_Callback(hObject, eventdata, handles)

function textoeloc19_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc19_2_Callback(hObject, eventdata, handles)

function textoeloc19_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc19_3_Callback(hObject, eventdata, handles)

function textoeloc19_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc19_4_Callback(hObject, eventdata, handles)

function textoeloc19_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc19_5_Callback(hObject, eventdata, handles)

function textoeloc19_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc19_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc19_1,'string',arquivovoz11);

ANEXO B. Códigos Fonte (RAL) 234

end

function botaoeloc19_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc19_2,'string',arquivovoz11);

end

function botaoeloc19_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc19_3,'string',arquivovoz11);

end

function botaoeloc19_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc19_4,'string',arquivovoz11);

end

function botaoeloc19_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc19_5,'string',arquivovoz11);

end

function textoeloc20_1_Callback(hObject, eventdata, handles)

function textoeloc20_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

ANEXO B. Códigos Fonte (RAL) 235

end

function textoeloc20_2_Callback(hObject, eventdata, handles)

function textoeloc20_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc20_3_Callback(hObject, eventdata, handles)

function textoeloc20_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc20_4_Callback(hObject, eventdata, handles)

function textoeloc20_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc20_5_Callback(hObject, eventdata, handles)

function textoeloc20_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc20_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc20_1,'string',arquivovoz11);

end

function botaoeloc20_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

ANEXO B. Códigos Fonte (RAL) 236

set(handles.textoeloc20_2,'string',arquivovoz11);

end

function botaoeloc20_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc20_3,'string',arquivovoz11);

end

function botaoeloc20_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc20_4,'string',arquivovoz11);

end

function botaoeloc20_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc20_5,'string',arquivovoz11);

end

function nome20_Callback(hObject, eventdata, handles)

function nome20_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc12_1_Callback(hObject, eventdata, handles)

function textoeloc12_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 237

function textoeloc12_2_Callback(hObject, eventdata, handles)

function textoeloc12_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc12_3_Callback(hObject, eventdata, handles)

function textoeloc12_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc12_4_Callback(hObject, eventdata, handles)

function textoeloc12_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc12_5_Callback(hObject, eventdata, handles)

function textoeloc12_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc12_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc12_1,'string',arquivovoz11);

end

function botaoeloc12_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc12_2,'string',arquivovoz11);

ANEXO B. Códigos Fonte (RAL) 238

end

function botaoeloc12_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc12_3,'string',arquivovoz11);

end

function botaoeloc12_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc12_4,'string',arquivovoz11);

end

function botaoeloc12_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc12_5,'string',arquivovoz11);

end

function nome12_Callback(hObject, eventdata, handles)

function nome12_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc18_1_Callback(hObject, eventdata, handles)

function textoeloc18_1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

ANEXO B. Códigos Fonte (RAL) 239

function textoeloc18_2_Callback(hObject, eventdata, handles)

function textoeloc18_2_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc18_3_Callback(hObject, eventdata, handles)

function textoeloc18_3_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc18_4_Callback(hObject, eventdata, handles)

function textoeloc18_4_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function textoeloc18_5_Callback(hObject, eventdata, handles)

function textoeloc18_5_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc18_2_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc18_2,'string',arquivovoz11);

end

function botaoeloc18_3_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

ANEXO B. Códigos Fonte (RAL) 240

set(handles.textoeloc18_3,'string',arquivovoz11);

end

function botaoeloc18_4_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc18_4,'string',arquivovoz11);

end

function botaoeloc18_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc18_5,'string',arquivovoz11);

end

function nome18_Callback(hObject, eventdata, handles)

function nome18_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc18_1_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav','Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc18_1,'string',arquivovoz11);

end

function nome11_Callback(hObject, eventdata, handles)

function nome11_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function nome15_Callback(hObject, eventdata, handles)

ANEXO B. Códigos Fonte (RAL) 241

function nome15_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function nome19_Callback(hObject, eventdata, handles)

function nome19_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function botaoeloc13_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc13_5,'string',arquivovoz11);

end

function botaoeloc17_5_Callback(hObject, eventdata, handles)

[nome,diretorio] = uigetfile('*.wav',...

'Selecione o arquivo .wav para processamento');

if isequal(nome,0) || isequal(diretorio,0)

disp('Usuario pressionou Cancelar')

else

arquivovoz11= strcat(diretorio,nome);

set(handles.textoeloc17_5,'string',arquivovoz11);

end

function botaogerar_Callback(hObject, eventdata, handles)

h = waitbar(0,'Processando...'); %habilita barra de processamento

eloc1string = get(handles.textoeloc1_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc1_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc1_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc1_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc1_5,'string');

eloc5 = audioread(eloc5string);

ANEXO B. Códigos Fonte (RAL) 242

%gera padrao do locutor 1 %barra de processamento

padrao1=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(1/21,h);

eloc1string = get(handles.textoeloc2_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc2_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc2_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc2_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc2_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 2 %barra de processamento

padrao2=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(2/21,h);

eloc1string = get(handles.textoeloc3_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc3_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc3_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc3_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc3_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 3 %barra de processamento

padrao3=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(3/21,h);

eloc1string = get(handles.textoeloc4_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc4_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc4_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc4_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc4_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 4 %barra de processamento

padrao4=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(4/21,h);

eloc1string = get(handles.textoeloc5_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc5_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc5_3,'string');

ANEXO B. Códigos Fonte (RAL) 243

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc5_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc5_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 5 %barra de processamento

padrao5=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(5/21,h);

eloc1string = get(handles.textoeloc6_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc6_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc6_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc6_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc6_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 6 %barra de processamento

padrao6=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(6/21,h);

eloc1string = get(handles.textoeloc7_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc7_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc7_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc7_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc7_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 7 %barra de processamento

padrao7=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(7/21,h);

eloc1string = get(handles.textoeloc8_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc8_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc8_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc8_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc8_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 8 %barra de processamento

padrao8=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(8/21,h);

ANEXO B. Códigos Fonte (RAL) 244

eloc1string = get(handles.textoeloc9_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc9_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc9_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc9_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc9_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 9 %barra de processamento

padrao9=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(9/21,h);

eloc1string = get(handles.textoeloc10_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc10_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc10_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc10_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc10_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 10 %barra de processamento

padrao10=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(10/21,h);

eloc1string = get(handles.textoeloc11_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc11_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc11_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc11_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc11_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 11 %barra de processamento

padrao11=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(11/21,h);

eloc1string = get(handles.textoeloc12_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc12_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc12_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc12_4,'string');

eloc4 = audioread(eloc4string);

ANEXO B. Códigos Fonte (RAL) 245

eloc5string = get(handles.textoeloc12_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 12 %barra de processamento

padrao12=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(12/21,h);

eloc1string = get(handles.textoeloc13_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc13_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc13_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc13_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc13_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 13 %barra de processamento

padrao13=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(13/21,h);

eloc1string = get(handles.textoeloc14_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc14_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc14_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc14_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc14_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 14 %barra de processamento

padrao14=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(14/21,h);

eloc1string = get(handles.textoeloc15_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc15_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc15_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc15_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc15_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 15 %barra de processamento

padrao15=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(15/21,h);

eloc1string = get(handles.textoeloc16_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc16_2,'string');

ANEXO B. Códigos Fonte (RAL) 246

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc16_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc16_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc16_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 16 %barra de processamento

padrao16=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(16/21,h);

eloc1string = get(handles.textoeloc17_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc17_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc17_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc17_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc17_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 17 %barra de processamento

padrao17=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(17/21,h);

eloc1string = get(handles.textoeloc18_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc18_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc18_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc18_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc18_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 18 %barra de processamento

padrao18=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(18/21,h);

eloc1string = get(handles.textoeloc19_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc19_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc19_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc19_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc19_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 19 %barra de processamento

ANEXO B. Códigos Fonte (RAL) 247

padrao19=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(19/21,h);

eloc1string = get(handles.textoeloc20_1,'string');

eloc1 = audioread(eloc1string);

eloc2string = get(handles.textoeloc20_2,'string');

eloc2 = audioread(eloc2string);

eloc3string = get(handles.textoeloc20_3,'string');

eloc3 = audioread(eloc3string);

eloc4string = get(handles.textoeloc20_4,'string');

eloc4 = audioread(eloc4string);

eloc5string = get(handles.textoeloc20_5,'string');

eloc5 = audioread(eloc5string);

%gera padrao do locutor 20 %barra de processamento

padrao20=gerPadrao5eloc(eloc1,eloc2,eloc3,eloc4,eloc5); waitbar(20/21,h);

%cria matriz com os padroes dos 20 locutores

matrizpadrao=[padrao1;padrao2;padrao3;padrao4;padrao5;padrao6;padrao7;...

padrao8;padrao9;padrao10;padrao11;padrao12;padrao13;padrao14;...

padrao15;padrao16;padrao17;padrao18;padrao19;padrao20];

locutor1=get(handles.nome1,'string');

locutor2=get(handles.nome2,'string');

locutor3=get(handles.nome3,'string');

locutor4=get(handles.nome4,'string');

locutor5=get(handles.nome5,'string');

locutor6=get(handles.nome6,'string');

locutor7=get(handles.nome7,'string');

locutor8=get(handles.nome8,'string');

locutor9=get(handles.nome9,'string');

locutor10=get(handles.nome10,'string');

locutor11=get(handles.nome11,'string');

locutor12=get(handles.nome12,'string');

locutor13=get(handles.nome13,'string');

locutor14=get(handles.nome14,'string');

locutor15=get(handles.nome15,'string');

locutor16=get(handles.nome16,'string');

locutor17=get(handles.nome17,'string');

locutor18=get(handles.nome18,'string');

locutor19=get(handles.nome19,'string');

locutor20=get(handles.nome20,'string');

waitbar(21/21,h);

close(h);

%gera vetor com nome dos 20 locutores

vetornomes={locutor1;locutor2;locutor3;locutor4;locutor5;locutor6;...

locutor7;locutor8;locutor9;locutor10;locutor11;locutor12;...

locutor13;locutor14;locutor15;locutor16;locutor17;locutor18;...

locutor19;locutor20};

ANEXO B. Códigos Fonte (RAL) 248

T1 = table([vetornomes],[matrizpadrao]);

[filename, pathname] = uiputfile('*.txt',...

'Salvar arquivo de padroes dos locutores como:'); %abre tela salvar

arquivodospadroes= strcat(pathname,filename);

writetable(T1,arquivodospadroes); % gera arquivo txt com padroes

ANEXO B. Códigos Fonte (RAL) 249

vetorCaract.m

function [vetorCaracteristico]= vetorCaract(arquivoVoz)

%VETORCARACT Programa intermediario que faz uso da amplitude media

% presente no modulo do espectro de frequencias de cada

% sinal de voz, para gerar o vetor caracteristico de

% treinamento de cada locutor em teste. Este vetor

% sera utilizado no programa de geracao do padrao de cada

% usuario.

% Recebe como entrada o arquivo de voz (wav) de treinamento

% e gera como saida seu vetor caracteristico.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 04/06/2008

fs = 8000; % frequencia amostragem utilizada.

c = fs*20e-3; % numero de amostras em 20ms

arquivoVoz = myVAD(arquivoVoz); %processa os endpoints do sinal

N = length(arquivoVoz); %comprimento do arquivo de entrada

%calculo do numero de blocos no arquivo de voz

if rem(N,c) ~= 0

n = round(N/c + 0.5);

arquivoVoz = [arquivoVoz; 0*ones(n*c-N,1)];

else

n = N/c;

end

HAM = hamming(c); %criando janela de Hamming

%---|

% Bloco de montagem espectro de frequencia simplificado (1 amostra/oitava)|

%---|

for i=0:n-1

%cria bloco de FFTs janeladas com apenas as amplitudes.

spectrum_bloco(c*i+1:c*i+c)= abs(fft(HAM(1:c).*arquivoVoz(c*i+1:c*i+c)));

end

for k =0:n-1;

spectrum_bloco(c*k+1)= 0; % anular parte dc

spectrum_bloco(c*k+81)= 0; % anular ponto desprezivel no espectro

%--

ANEXO B. Códigos Fonte (RAL) 250

% Oitava -2 (32 - 64Hz)

intmenos2 = c*k+2;

a(intmenos2)= spectrum_bloco(intmenos2);

spectrum_bloco(find(a ~= max(a)& a~=0))= 0;

clear a;

%--

% Oitava -1 (64 - 128Hz)

intmenos1 = c*k+3;

b(intmenos1)= spectrum_bloco(intmenos1);

spectrum_bloco(find(b ~= max(b)& b~=0))= 0;

clear b;

%--

% Oitava 0 (128 - 256Hz)

int0 = c*k+4:c*k+6;

g(int0)= spectrum_bloco(int0);

spectrum_bloco(find(g ~= max(g)& g~=0))= 0;

clear g;

%--

% Oitava 1 (256 - 512 Hz)

int1 = c*k+7:c*k+11;

y(int1)= spectrum_bloco(int1);

spectrum_bloco(find(y ~= max(y)& y~=0))= 0;

clear y;

%--

% Oitava 2 (512 - 1024 Hz)

int2 = c*k+12:c*k+21;

z(int2)=spectrum_bloco(int2);

spectrum_bloco(find(z ~= max(z)& z~=0))=0;
clear z;

%--

% Oitava 3 (1024 - 2048 Hz)

int3 = c*k+22:c*k+41;

h(int3)=spectrum_bloco(int3);

spectrum_bloco(find(h ~= max(h)& h~=0))=0;
clear h;

%--

% Oitava 4 (2048 - 4096 Hz)

int4 = c*k+42:c*k+80;

j(int4)=spectrum_bloco(int4);

spectrum_bloco(find(j ~= max(j)&j~=0))=0;
clear j;

end

%--

% MONTAGEM DAS ENERGIAS POR OITAVA E COMPARACAO DO PADRAO DE VOZ

%--

for i=0:n-1

%coloca os elementos das oitavas em linhas da matriz "block matrix"

ANEXO B. Códigos Fonte (RAL) 251

spc_block_matrix_oitmenos2(i+1,2)= spectrum_bloco(c*i+2);

spc_block_matrix_oitmenos1(i+1,3)= spectrum_bloco(c*i+3);

spc_block_matrix_oit0(i+1,4:6)= spectrum_bloco(c*i+4:c*i+6);

spc_block_matrix_oit1(i+1,7:11)= spectrum_bloco(c*i+7:c*i+11);

spc_block_matrix_oit2(i+1,12:21)= spectrum_bloco(c*i+12:c*i+21);

spc_block_matrix_oit3(i+1,22:41)= spectrum_bloco(c*i+22:c*i+41);

spc_block_matrix_oit4(i+1,42:80)= spectrum_bloco(c*i+42:c*i+80);

end

% media das amplitudes de todas as janelas para as oitava

spc_block_matrix_oitmenos2_mean = mean(spc_block_matrix_oitmenos2);

spc_block_matrix_oitmenos1_mean = mean(spc_block_matrix_oitmenos1);

spc_block_matrix_oit0_mean = mean(spc_block_matrix_oit0);

spc_block_matrix_oit1_mean = mean(spc_block_matrix_oit1);

spc_block_matrix_oit2_mean = mean(spc_block_matrix_oit2);

spc_block_matrix_oit3_mean = mean(spc_block_matrix_oit3);

spc_block_matrix_oit4_mean = mean(spc_block_matrix_oit4);

% Soma das medias das amplitudes de todos os elementos das oitavas

somaOitavamenos2 = sum(spc_block_matrix_oitmenos2_mean);

somaOitavamenos1 = sum(spc_block_matrix_oitmenos1_mean);

somaOitava0 = sum(spc_block_matrix_oit0_mean);

somaOitava1 = sum(spc_block_matrix_oit1_mean);

somaOitava2 = sum(spc_block_matrix_oit2_mean);

somaOitava3 = sum(spc_block_matrix_oit3_mean);

somaOitava4 = sum(spc_block_matrix_oit4_mean);

%Soma geral de todas as oitavas

somatotal = somaOitavamenos2 + somaOitavamenos1 + somaOitava0 + ...

somaOitava1 + somaOitava2 + somaOitava3 + somaOitava4;

%Porcentagem de amplitude por oitava do arquivo de entrada a ser comparado

vetorCaracteristico = [somaOitavamenos2 somaOitavamenos1 somaOitava0 ...

somaOitava1 somaOitava2 somaOitava3 somaOitava4]...

/somatotal * 100;

gerPadrao5eloc.m

function [padrao]= gerPadrao5eloc(x1,x2,x3,x4,x5)

%GERPADRAO5ELOC Programa que calcula o padrao (tom equivalente / oitava)

% de cadalocutor.

% Recebe como entrada os 5 arquivos (wav) de treinamento e

% gera como saida o padrao desse locutor.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 04/06/2008

vetorCaract(x1);

ANEXO B. Códigos Fonte (RAL) 252

ans1=ans;

vetorCaract(x2);

ans2=ans;

vetorCaract(x3);

ans3=ans;

vetorCaract(x4);

ans4=ans;

vetorCaract(x5);

ans5=ans;

% geracao do padrao (media dos 5 vetores caracteristicos de treinamento

padrao = (ans1+ans2+ans3+ans4+ans5)/5;

end

gerPadraoEdit.m

function [padrao]= gerPadraoEdit(x1,x2,x3,x4,x5,x6) %acrescentar entradas

%GERPADRAOEDIT Programa, editavel pelo usuario, que calcula o padrao (tom

% equivalente/oitava) de cada locutor de acordo com procedi-

% mentos disponiveis no Anexo C.

% Recebe como entrada os N arquivos (wav) de treinamento e

% gera como saida o padrao desse locutor.

%

%Autores: Roberto F. B. Sotero Filho e Helio Magalhaes de Oliveira

%E-mail: rsotero@hotmail.com e hmo@ufpe.br

%Universidade: Universidade Federal de Pernambuco

%Data: 04/06/2008

vetorCaract(x1);

ans1=ans;

vetorCaract(x2);

ans2=ans;

vetorCaract(x3);

ans3=ans;

vetorCaract(x4);

ans4=ans;

vetorCaract(x5);

ans5=ans;

vetorCaract(x6); %exemplo para 6 elocucoes de treinamento

ans6=ans;

% vetorCaract(xN); %acrescentar ou retirar as linhas de codigos de

% ansN=ans; %acordo com o numero de elocucoes de treinamento

%geracao do padrao (media dos N vetores caracteristicos de treinamento

ANEXO B. Códigos Fonte (RAL) 253

%padrao = (ans1+ans2+ans3+ans4+ans5+ans6+ansN)/N; %editavel pelo usuario

%exemplo para 6 elocucoes de treinamento

padrao = (ans1+ans2+ans3+ans4+ans5+ans6)/6;

end

myVAD.m

function trimmedX = myVAD(x)

%Author: Olutope Foluso Omogbenigun

%Email: olutopeomogbenigun at hotmail.com

%University: London Metropolitan University

%Date: 02/08/07

%Syntax: trimmedSample = myVAD2(samplex);

%This function accepts an audio sample 'samplex' as input and returns a

%trimmed down version with non-speech sections trimmed off. Also known as

%voice activity detection, it utilises the algorithm due to Rabiner &

%Sambur (1975)

Ini = 0.1; %Initial silence duration in seconds

Ts = 0.01; %Frame width in seconds

Tsh = 0.005; %Frame shift in seconds

Fs = 16000; %Sampling Frequency

counter1 = 0;

counter2 = 0;

counter3 = 0;

counter4 = 0;

ZCRCountf = 0; %Stores forward count of crossing rate > IZCT

ZCRCountb = 0; %As above, for backward count

ZTh = 40; %Zero crossing comparison rate for threshold

w_sam = fix(Ts*Fs); %No of Samples/window

o_sam = fix(Tsh*Fs); %No of samples/overlap

lengthX = length(x);

segs = fix((lengthX-w_sam)/o_sam)+1; %Number of segments in speech signal

sil = fix((Ini-Ts)/Tsh)+1; %Number of segments in silent period

win = hamming(w_sam);

Limit = o_sam*(segs-1)+1; %Start index of last segment

FrmIndex = 1:o_sam:Limit; %Vector containing starting index

%for each segment

ZCR_Vector = zeros(1,segs); %Vector to hold zero crossing rate

%for all segments

ANEXO B. Códigos Fonte (RAL) 254

%Below code computes and returns zero crossing rates for all segments in

%speech sample

for t = 1:segs

ZCRCounter = 0;

nextIndex = (t-1)*o_sam+1;

for r = nextIndex+1:(nextIndex+w_sam-1)

if (x(r) >= 0) && (x(r-1) >= 0)

elseif (x(r) >= 0) && (x(r-1) < 0)

ZCRCounter = ZCRCounter + 1;

elseif (x(r) < 0) && (x(r-1) < 0)

elseif (x(r) < 0) && (x(r-1) >= 0)

ZCRCounter = ZCRCounter + 1;

end

end

ZCR_Vector(t) = ZCRCounter;

end

%Below code computes and returns frame energy for all segments in speech

%sample

Erg_Vector = zeros(1,segs);

for u = 1:segs

nextIndex = (u-1)*o_sam+1;

Energy = x(nextIndex:nextIndex+w_sam-1).*win;

Erg_Vector(u) = sum(abs(Energy));

end

IMN = mean(Erg_Vector(1:sil)); %Mean silence energy (noise energy)

IMX = max(Erg_Vector); %Maximum energy for entire utterance

I1 = 0.03 * (IMX-IMN) + IMN; %I1 & I2 are Initial thresholds

I2 = 4 * IMN;

ITL = min(I1,I2); %Lower energy threshold

ITU = 5 * ITL; %Upper energy threshold

IZC = mean(ZCR_Vector(1:sil)); %mean zero crossing rate for silence region

stdev = std(ZCR_Vector(1:sil)); %standard deviation of crossing rate for

%silence region

IZCT = min(ZTh,IZC+2*stdev); %Zero crossing rate threshold

indexi = zeros(1,lengthX); %Four single-row vectors are created

indexj = indexi; %in these lines to facilitate computation

%below

indexk = indexi;

indexl = indexi;

%Search forward for frame with energy greater than ITU

for i = 1:length(Erg_Vector)

if (Erg_Vector(i) > ITU)

ANEXO B. Códigos Fonte (RAL) 255

counter1 = counter1 + 1;

indexi(counter1) = i;

end

end

ITUs = indexi(1);

%Search further forward for frame with energy greater than ITL

for j = ITUs:-1:1

if (Erg_Vector(j) < ITL)

counter2 = counter2 + 1;

indexj(counter2) = j;

end

end

start = indexj(1)+1;

Erg_Vectorf = fliplr(Erg_Vector);%Flips round the energy vector

%Search forward for frame with energy greater than ITU

%This is equivalent to searching backward from last sample for energy > ITU

for k = 1:length(Erg_Vectorf)

if (Erg_Vectorf(k) > ITU)

counter3 = counter3 + 1;

indexk(counter3) = k;

end

end

ITUf = indexk(1);

%Search further forward for frame with energy greater than ITL

for l = ITUf:-1:1

if (Erg_Vectorf(l) < ITL)

counter4 = counter4 + 1;

indexl(counter4) = l;

end

end

finish = length(Erg_Vector)-indexl(1)+1;%Tentative finish index

%Search back from start index for crossing rates higher than IZCT

BackSearch = min(start,25);

for m = start:-1:start-BackSearch+1

rate = ZCR_Vector(m);

if rate > IZCT

ZCRCountb = ZCRCountb + 1;

realstart = m;

end

end

if ZCRCountb > 3

ANEXO B. Códigos Fonte (RAL) 256

start = realstart; %If IZCT is exceeded in more than 3 frames

%set start to last index where IZCT is

%exceeded

end

%Search forward from finish index for crossing rates higher than IZCT

FwdSearch = min(length(Erg_Vector)-finish,25);

for n = finish+1:finish+FwdSearch

rate = ZCR_Vector(n);

if rate > IZCT

ZCRCountf = ZCRCountf + 1;

realfinish = n;

end

end

if ZCRCountf > 3

finish = realfinish; %If IZCT is exceeded in more than 3 frames

%set finish to last index where IZCT is

%exceeded

end

x_start = FrmIndex(start); %actual sample index for frame 'start'

x_finish = FrmIndex(finish-1); %actual sample index for frame 'finish'

trimmedX = x(x_start:x_finish); %Trim speech sample by start and finish

%indices

257

ANEXO C – MANUAL PARA
GERAÇÃO DO PADRÃO DE VOZ

Procedimentos que o usuário dever realizar caso necessite acrescentar mais de 5 elocuções de
treinamento para geração do padrão do locutor.

• Abrir MATLAB (versões acima de 2013) e selecionar o diretório do sistema de RAL;

• no prompt de comando do MATLAB, chamar todas as elocuções selecionadas para
treinamento através do comando “audioread”;
– exemplo para elocuções gravadas no diretório “C:\”:

>> eloc1 = audioread('C:\elocucao1.wav');

>> eloc2 = audioread('C:\elocucao2.wav');

...

>> elocN = audioread('C:\elocucaoN.wav');

• editar algoritmo gerPadraoEdit (disponível na pasta principal do sistema de RAL
proposto contido no CD anexo) da seguinte forma:

a) acrescentar quantidade de entradas na função de acordo com o número N de elocuções
de treinamento;
– exemplo:

function [padrao]= gerPadraoEdit(x1,x2,x3,x4,x5,x6,...,xN)

b) acrescentar linhas de códigos para a chamada do algoritmo vetorCaract, também de
acordo com o número N de elocuções de treinamento;
– exemplo:

vetorCaract(x1);
ans1=ans;
vetorCaract(x2);
ans2=ans;
vetorCaract(x3);
ans3=ans;

...

vetorCaract(xN)
ansN=ans;

ANEXO C. Manual para Geração do Padrão de Voz 258

c) acrescentar linhas de códigos para obter o padrão de acordo com o número N de
elocuções de treinamento;
– exemplo:

padrao = (ans1+ans2+ans3+ans4+ans5+...+ansN)/N

• salvar algoritmo gerPadraoEdit;

• No prompt de comando do MATLAB, chamar o algoritmo gerPadraoEdit da seguinte
forma:

>> gerPadraoEdit(eloc1,eloc2,eloc3,eloc4,eloc5,...,elocN)

• Copiar os valores gerados pelo sistema e substituir nas linhas do arquivo exemploPadrao.txt,
separados por vírgula, de acordo com o exemplo abaixo. Renomear, também,
“nomedolocutor1” para o nome do locutor detentor do padrão;
– exemplo (locutor1 = André):

ans =

7.6635 13.1833 23.2021 28.9004 11.0877 8.7292 7.2339

• Fazer o mesmo procedimento para os demais locutores, completando as outras linhas do
arquivo exemploPadrao.txt;
– exemplo para 6 locutores (André, Arthur, Roberto, Victor, Caio e Daniel):

ANEXO C. Manual para Geração do Padrão de Voz 259

• Salvar arquivo exemploPadrao.txt com o nome que desejar.

Ao finalizar esses procedimentos, o arquivo conterá todos os padrões de voz dos N locutores, e
estará habilitado para ser alimentado no software RecLoc.

260

ANEXO D – CD

Este anexo inclui um CD contendo:

• Versão em pdf desta dissertação;

• Algoritmos do vocoder proposto;

• Algoritmos do sistema de RAL proposto;

• Arquivos de voz utilizados nos testes.

————————————————

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Objetivos
	Estrutura

	O Som e sua Percepção pelos Seres Humanos
	Definição de Som
	Características do Som
	Frequência
	Altura
	Volume
	Timbre

	Percepção Humana do Som
	A Anatomia do Ouvido Humano
	Ouvido Externo
	Ouvido Médio
	Ouvido Interno

	Largura de Banda, Sensitividade e Faixa Dinâmica da Audição
	Limiar Absoluto da Audição

	Bandas Críticas da Audição
	Mascaramento
	Mascaramento em Frequência
	Mascaramento no Domínio do Tempo

	A Voz
	Mecanismo de Produção da Voz
	Classificação dos Sons Produzidos pelo Sistema de Fonador Humano
	Modelamento do Sistema de Produção da Voz
	Modelamento Preditivo Linear para Sinais de Voz
	Minimização do Erro
	Método da Autocorrelação
	Método da Covariância

	Codificação Digital da Voz
	Digitalização da Voz
	Amostragem do Sinal
	Quantização
	Quantização Uniforme
	Quantização Não-uniforme

	Codificação Paramétrica da Voz
	Atributos dos Codificadores de Voz
	Taxa de Bits
	Qualidade do Sinal de Saída
	Métodos Objetivos
	Métodos Subjetivos
	ACR (Absolute Category Rating)
	DCR (Degradation Category Rating)

	Complexidade dos Algoritmos e Quantidade de Memória Necessária
	Atraso
	Sensibilidade ao Erro

	Técnicas de Codificação de Voz
	G.711 - PCM
	G.722 - SB-ADPCM
	G.726 - ADPCM
	G.728 - LD-CELP
	G.729 - CS-ACELP

	Sumário dos Codificadores

	Um Novo Padrão de Codificação de Voz
	Introdução
	Visão Geral do Sistema
	Implementação do Sistema

	Pré-Processamento do Sinal
	Segmentação da Voz
	Janelamento

	Análise da Voz pela Técnica do MPFO
	Características Psicoacústicas do Sistema Auditivo Humano
	Insensibilidade à Fase do Som

	Simplificação do Espectro Via MPFO
	Quantização e Codificação dos Sinais de Voz
	Formato Binário voz

	Síntese da Voz
	Preenchimento Espectral via Distribuição Beta
	Metodologia Empregada

	Simulações e Classificações da Qualidade de Voz

	Reconhecimento Automático de Locutor
	Introdução
	Tipos de RAL
	VAL
	IAL

	Estrutura Básica dos Sistemas de RAL
	Extração das Características
	Parâmetros Extraídos do Sinal de Voz
	Banco de Filtros
	Energia de Tempo Curto
	Taxa de Cruzamento pelo Zero
	Coeficientes Cepstrais
	Coeficientes Mel-Cepstrais
	Coeficientes LPC

	Modelamento
	Modelos Ocultos de Markov - HMM
	Introdução
	Descrição do Modelo
	Simplificações da Teoria do HMM
	Treinamento
	Reconhecimento

	Sistema Proposto de RAL
	Introdução
	Visão Geral do Sistema
	Implementação do Sistema

	Aquisição dos Sinais de Voz
	Pré-Processamento dos Sinais de Voz
	Pré-Ênfase
	Detecção de Pontos Extremos (Endpoints)
	Segmentação dos Dados em Quadros e Janelamento

	Geração do Padrão do Locutor
	Extração das Características dos Quadros de Voz
	Obtenção do Padrão dos Locutores

	Comparação dos Padrões de Voz
	Testes e Resultados Obtidos
	IAL Dependente de Texto
	IAL Independente de Texto
	Comparação com o Estado da Arte

	Discussões e Conclusões
	Síntese das Contribuições Pessoais
	Sistema de Codificação de Voz Proposto
	Sistema de Reconhecimento Automático de Locutor Proposto
	Sugestões e Trabalhos Futuros
	Para o Vocoder
	Para a Identificação Automática de Locutor

	Referências
	Apêndices
	Artigos Publicados

	Anexos
	Códigos Fonte (vocoder)
	Códigos Fonte (RAL)
	Manual para Geração do Padrão de Voz
	CD

