
ANDRÉ LUÍS RIBEIRO DIDIER

AN ALGEBRA OF TEMPORAL FAULTS

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

<http://www.cin.ufpe.br/~posgraduacao>

RECIFE
2017

http://www.cin.ufpe.br/~posgraduacao

André Luís Ribeiro Didier

An Algebra of Temporal Faults

Este trabalho foi apresentado à Pós-Graduação em
Ciência da Computação do Centro de Informática da
Universidade Federal de Pernambuco como requisito
parcial para obtenção do grau de Doutor em Ciência
da Computação.

ORIENTADOR: Alexandre Cabral Mota
COORIENTADOR: Alexander Romanovsky

Recife
2017

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

D556a Didier, André Luís Ribeiro

An algebra of temporal faults / André Luís Ribeiro Didier. – 2017.
 149 f.: il., fig., tab.

 Orientador: Alexandre Cabral Mota.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2017.
 Inclui referências e apêndices.

 1. Ciência da computação. 2. Análise de falhas. I. Mota, Alexandre Cabral
(orientador). II. Título.

 004 CDD (23. ed.) UFPE- MEI 2017-141

André Luís Ribeiro Didier

An Algebra of Temporal Faults

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação

Aprovado em: 08/03/2017.

__
Orientador: Prof. Dr. ​Alexandre Cabral Mota

BANCA EXAMINADORA

__
Prof. Dr. ​Augusto Cezar Alves Sampaio

Centro de Informática / UFPE

Prof. Dr. Paulo Romero Martins Maciel

Centro de Informática / UFPE

Prof. Dr. Juliano Manabu Iyoda
Centro de Informática / UFPE

Prof. Dr. ​Enrique Andrés López Droguett
 ​Departamento de Engenharia de Produção / UFPE

Profa. Dra. Genaina Nunes Rodrigues

Departamento de Ciência da Computação / UnB

I dedicate this thesis to Juliana, Luciana (pipoquinha), and Bianca (snowflake).

Acknowledgments

If I was afraid of the path, I wouldn’t have got here.

Two men helped me to build this path far before I started my scholar journey:
Roberto and Júnior. My two grandfathers couldn’t see how far I got. My heart was with
them all the time, but I was physically far away from them in their very last breath. May
God have them in his arms.

It is now eleven years since I graduated. I met professors Alexandre and Augusto
still during the Computing Science undergrad course. They have been present in my
academic life ever since. Their comments, instructions, talks, even jokes, are what moulded
my path to here. I have no words to express how much I thank them, specially Alexandre.

CNPq and FACEPE were keen to guarantee my existential needs. The former with
the trip to Newcastle upon Tyne with the Sandwich Doctorate scholarship in Newcastle
upon Tyne, grant 246956/2012-7, and the latter during the time I stayed in Recife, before
and after the trip, with Doctorate scholarship, grant IBPG-0408-1.03/11.

I thank to Sascha Romanovsky for accepting me as his advisee while I was a
Research Assistant of the COMPASS project. His comments, instructions, and knowledge
were of great importance for this work.

My stay in Newcastle upon Tyne couldn’t be as good as it was without the
hospitality, useful discussions, and support of my colleagues at Newcastle University. A
big THANK YOU to John Fitzgerald, Zoe Andrews, Richard Payne, Claire Smith, Dee
Carr, Claire Ingram, my shared office colleague Anirban Bhattacharyya, and all other staff
members.

I thank all friends my family and I made outside University, in Newcastle. Thanks
to Kelechi Dibie and her family to welcome us for the Christmas’ and new year’s dinners.
They were our family abroad.

Dr. Monica Oliveira dedicated a few minutes reporting her own experience as a
PhD student. These minutes were very important in the last days of the writing process
of this work.

I thank all my family for their patience to have me away in several family reunions,
due to the time required to do this work. In special, my two girls and my wife.

“Mathematical reasoning may be regarded rather schematically as the exercise of a
combination of two facilities, which we may call intuition and ingenuity.

(Alan Turing)

Abstract
Fault modelling is essential to anticipate failures in critical systems. Traditionally, Static
Fault Trees are employed to this end, but Temporal and Dynamic Fault Trees have gained
evidence due to their enriched power to model and detect intricate propagation of faults
that lead to a failure. In a previous work, we showed a strategy based on the process
algebra CSP and Simulink models to obtain fault traces that lead to a failure. From the
fault traces we discarded the ordering information to obtain structure expressions for
Static Fault Trees. Instead of discarding such an ordering information, it could be used to
obtain structure expressions of Temporal or Dynamic Fault Trees. In this work we present:
(i) an algebra of temporal faults (with a notion of fault propagation) to analyse systems’
failures, and prove that it is indeed a Boolean algebra, and (ii) a parametrized activation
logic to express nominal and erroneous behaviours, including fault modelling, provided an
algebra and a set of operational modes. The algebra allows us to inherit Boolean algebra’s
properties, laws and existing reduction techniques, which are very beneficial for fault
modelling and analysis. With expressions in the algebra of temporal faults we allow the
verification of safety properties based on Static, Temporal or Dynamic Fault Trees. The
logic created in this work can be combined with other algebras beyond those shown here.
Being used with the algebra of temporal faults it is intended to help analysts to consider all
possible situations in complex expressions with order-related operators, avoiding missing
subtle (but relevant) faults combinations. Furthermore, our algebra of temporal faults
tackles the NOT operator which has been left out in other works. We illustrate our work
on simple but real case studies, some supplied by our industrial partner EMBRAER.

Isabelle/HOL was used to mechanize the theorems proofs of the algebra of temporal faults.

Keywords: Fault Tree Analysis. Temporal Fault Trees. Dynamic Fault Trees. Isabelle/HOL.

Resumo
A modelagem de falhas é essencial na antecipação de defeitos em sistemas críticos. Tra-
dicionalmente, Árvores de Falhas Estáticas são empregadas para este fim, mas Árvores
de Falhas Temporais e Dinâmicas têm ganhado evidência devido ao seu maior poder
para modelar e detectar propagações complexas de falhas que levam a um defeito. Em
um trabalho anterior, mostramos uma estratégia baseada na álgebra de processos CSP e
modelos Simulink para obter rastros (sequências) de falhas que levam a um defeito. A partir
dos rastros de falhas nós descartamos a informação de ordenamento para obter expressões
de estrutura para Ávores de Falhas Estáticas. Ao contrário de descartar tal informação de
ordenamento, poderíamos usá-la para obter expressões de estrutura para Árvores de Falhas
Temporais ou Dinâmicas. No presente trabalho apresentamos: (i) uma álgebra temporal de
falhas (com noção de propagação de falhas) para analisar defeitos em sistemas e provamos
que ela é de fato uma álgebra Booleana, e (ii) uma lógica de ativação parametrizada
para expressar comportamentos nominais e de falha, incluindo a modelagem de falhas a
partir de uma álgebra e um conjunto de modos de operação. A álgebra permite herdar
as propriedades de álgebras Booleanas, leis e técnicas de redução existentes, as quais são
muito benéficas para a modelagem e análise de falhas. Com expressões na álgebra temporal
de falhas nós permitimos a verificação de propriedades de segurança (safety) baseadas em
Árvores de Falhas Estáticas, Temporais ou Dinâmicas. A lógica criada neste trabalho pode
ser usada com outras álgebras além das apresentadas. Sendo usada em conjunto com a
álgebra temporal de falhas, tem a intenção de ajudar os analistas a considerar todas as
possíveis situações em expressões complexas com operadores relacionados ao ordenamento
das falhas, evitando esquecer combinações de falhas sutis (porém relevantes). Além disso,
nossa álgebra temporal de falhas trata operadores NOT, que têm sido deixados de fora em
outros trabalhos. Nós ilustramos nosso trabalho com alguns estudos de caso simples, mas
reais, fornecidos pelo nosso parceiro industrial, a EMBRAER.

Isabelle/HOL foi utilizado para a mecanização das provas dos teoremas da álgebra temporal
de falhas.

Palavras-chave: Análise de Árvore de Falhas. Árvores de Falhas Temporais. Árvore de
Falhas Dinâmicas. Isabelle/HOL.

List of figures

Figure 1 – Traditional Fault Tree Analysis (FTA) 17
Figure 2 – Faults injection and Algebra of Temporal Faults (ATF) to perform FTA 23
Figure 3 – Activation Logic (AL) and ATF to perform FTA 24
Figure 4 – Strategy overview . 25
Figure 5 – Relation of two events with duration 31
Figure 6 – Static Fault Tree (SFT) symbols using a free commercial tool 35
Figure 7 – SFT symbols as in the Fault Tree Handbook 36
Figure 8 – SFT gates . 37
Figure 9 – Very simple example of a fault tree . 37
Figure 10 – TFT-specific gates . 39
Figure 11 – TFT small example . 39
Figure 12 – DFTs’s original gates symbols . 41
Figure 13 – Dynamic Fault Trees’s (DFTs’s) [16, 17] gates symbols 41
Figure 14 – DFT example . 44
Figure 15 – Non-coherent FT college student’s example 48
Figure 16 – Gas detection system . 49
Figure 17 – FT for a generic failure in the gas detection system 50
Figure 18 – Coherent FT for the most critical outcome of the gas detection system 51
Figure 19 – Non-coherent FT for the most critical outcome of the gas detection system 51
Figure 20 – Leak Protection System architectural view 52
Figure 21 – Block diagram of the ACS provided by EMBRAER (nominal model) . 53
Figure 22 – Internal diagram of the monitor component (Figure 21 (A)). 53
Figure 23 – Isabelle/HOL window, showing the basic symmetry theorem 59
Figure 24 – AL overview . 78

List of tables

Table 1 – TTT of TFT’s operators and sequence value numbers 39
Table 2 – TTT of a simple example . 40
Table 3 – Dynamic Fault Tree (DFT) [16, 17] conversion to calculate probability

of top-level event . 42
Table 4 – Algebraic model of DFT gates with inputs A and B 43
Table 5 – Date-of-occurrence function for operators defined in [23] 43
Table 6 – Annotations table of the ACS provided by EMBRAER 57

List of abbreviations and acronyms

AADL Architecture Analysis and Design Language pp. 18, 95, 96
AL Activation Logic pp. 9, 21–24, 78–85, 88–90, 95, 96
AFP archive of formal proofs p. 59
ATF Algebra of Temporal Faults pp. 9, 21–24, 32, 56, 61–65, 67, 70–

73, 76, 78, 79, 85–87, 91, 93–97, 106, 120, 122, 126, 128, 143,
145–148

ANAC Agência Nacional de Aviação Civil p. 16
BDD Binary Decision Diagram pp. 16, 19, 20, 32, 42, 47, 95
BN Bayesian network p. 42
CML COMPASS Modelling Language p. 29
CPN coloured Petri-net p. 42
CSP Communicating Sequential Processes p. 29
CSPM Communicating Sequential Processes pp. 19, 22, 32, 53, 54, 56,

61, 76
CTMC continuous-time Markov chain pp. 20, 42
DBN dynamic bayesian network p. 20
DD Dependence Diagram p. 30
DFT Dynamic Fault Tree pp. 10, 17–21, 26, 30, 32–34, 37, 38, 40–43,

56, 61, 78, 95, 96
DNF disjunctive normal form pp. 33, 38, 39, 42
DRBD Dynamic Reliability Block Diagram p. 30
DT dependency tree pp. 19, 40
DTMC discrete-time Markov chain pp. 20, 30, 40
EASA European Aviation Safety Agency p. 16
EMP electromagnetic pulse p. 30
FAA Federal Aviation Administration p. 16
FBA Free Boolean Algebra pp. 16, 19, 21, 32, 44, 45, 59, 61–63, 65,

86, 95
FDR Failures and Divergences Refinement pp. 19, 53, 54, 56
FMEA Failure Modes and Effects Analysis pp. 20, 30
FT fault tree pp. 9, 16–22, 24, 26, 27, 29, 32–35, 37, 38, 40, 46–52,

56, 61, 72, 75, 96
FTA Fault Tree Analysis pp. 9, 16–20, 22–24, 32–35, 48, 71
HCAS cardiac assist system p. 43

HiP-HOPS Hierarchically Performed Hazard Origin and Propagation Stud-
ies pp. 18–20, 27, 34, 56

HOL higher-order logic p. 58
Isar Intelligible semi-automated reasoning pp. 32, 58
LTL linear temporal logic p. 37
MCS minimal cut set pp. 16, 33, 36, 38, 42
MCSeq minimal cut sequence pp. 18, 22, 38, 39, 42, 71, 72, 75, 76, 95,

96
PN Petri-net p. 28
SBDD Sequential Binary Decision Diagram pp. 20, 42
SFT Static Fault Tree pp. 9, 17–19, 21, 26, 30, 32–37, 39, 42, 44, 47,

56, 61, 78, 95
SoS System of Systems pp. 21, 27
SWN stochastic well-formed net p. 42
SysML Systems Modelling Language pp. 21, 29
TFT Temporal Fault Tree pp. 17–19, 21, 26, 32–34, 37–42, 56, 61, 78,

95, 96
TTT Temporal Truth Table pp. 10, 19, 38, 39
UML Unified Modelling Language p. 29
Z Z Notation p. 59

Fault tree gates

AND ∧. Used in SFT, TFT, and DFT. pp. 16, 17, 32, 33, 35, 37–39,
42, 43, 46–48, 56, 57, 68, 69, 74, 76

CSp cold spare. Used in DFT. pp. 18, 33, 41, 43
FDEP functional dependency. Used in DFT. pp. 18, 33, 41, 43
IBefore inclusive-before. Used in structure expressions of DFT. pp. 42,

43
NIBefore non-inclusive-before. Used in structure expressions of DFT.

pp. 42, 43
NOT ¬. Used in non-coherent trees. pp. 18, 19, 21, 24, 32, 37, 40, 47,

48, 51, 64, 70, 73, 85, 95
OR ∨. Used in SFT, TFT, and DFT. pp. 16, 17, 32, 33, 35, 37, 39,

42, 43, 46, 47, 56, 68, 69, 74
PAND priority-AND. Used in SFT, TFT, and DFT. Its text-only

symbol is <. pp. 17, 32, 33, 37–39, 41, 43, 47, 72
POR priority-OR. Used in TFT. Its text-only symbol is |. pp. 37–39,

42
SAND simultaneous-AND. Used in TFT. Its text-only symbol is &.

pp. 37–39, 41, 42
SEQ sequence enforcing. Used in DFT. pp. 18, 33, 41, 43
SIMLT simultaneous. Used in structure expressions of DFT. pp. 42, 43
WSp warm spare. Used in DFT. p. 18
XBefore exclusive-before. Proposed in this work. pp. 61–65, 67–71, 76,

86, 87, 95, 149

Contents

1 Introduction . 16
1.1 Mathematical models . 19
1.2 Research questions . 21
1.3 Proposed solution . 21
1.4 Contributions . 23
1.5 Thesis organization . 24

2 Basic concepts . 26
2.1 Systems, dependability, and fault modelling 26
2.1.1 Systems . 26
2.1.2 Dependability . 27
2.1.3 Fault Modelling . 29
2.2 Time relation of fault events . 30

3 Analysis and tools . 32
3.1 Fault Tree Analysis and structure expressions 32
3.1.1 Static Fault Trees . 34
3.1.2 Temporal Fault Trees . 37
3.1.3 Dynamic Fault Trees . 40
3.2 Free Boolean Algebras . 44
3.3 Probability theory of fault events . 46
3.4 Using the NOT operator in static fault trees 47
3.4.1 Non-coherent Fault Tree misleads . 48
3.4.2 Usefulness of NOT gates in FTA . 48
3.4.3 Probabilistic analysis of a non-coherent tree 51
3.5 Systems nominal model and fault injection to obtain structure ex-

pressions . 52
3.6 Isabelle/HOL . 58

4 A free algebra to express structure expressions of ordered events . . 61
4.1 Temporal properties (tempo) . 65
4.2 XBefore laws . 67
4.3 Soundness and completeness . 70
4.4 Qualitative and quantitative analyses 71
4.4.1 Minimal cut sequence . 72
4.4.2 Root probability . 72

4.4.3 Formal acceptance criteria . 75
4.5 Mapping CSPm traces to ATF . 76

5 Reasoning about fault activation . 78
5.1 The Activation Logic Grammar . 79
5.2 Healthiness Conditions . 80
5.2.1 H1: No predicate is a contradiction . 81
5.2.2 H2: All possibilities are covered . 81
5.2.3 H3: There are no two terms with exactly the same operational mode. . . . 82
5.2.4 Healthy expression . 82
5.3 Non-determinism . 83
5.4 Predicate Notation . 83

6 Case study . 85
6.1 From traces to structure expressions with Boolean operators 86
6.2 From traces to structure expressions with XBefore 87
6.3 From AL to structure expressions with Boolean operators 88
6.4 From AL to structure expressions with XBefore 91
6.5 Obtaining top-event probability with explicit NOT operators 93

7 Conclusion . 95
7.1 Future work . 96

References . 98

Appendix . 105

Appendix A – Formal proofs in Isabelle/HOL 106

16

1 Introduction

The development process of critical control systems requires the rigorous execution
of guides and regulations [1, 2, 3, 4]. Specialized agencies (like Federal Aviation Admin-
istration (FAA), European Aviation Safety Agency (EASA) and Agência Nacional de
Aviação Civil (ANAC) in the aviation field) use these guides and regulations to certify
such systems. Only upon certification such systems can be used in the real-world.

Safety is a property (measured both qualitative and quantitatively) of crucial
concern on critical systems and it is the responsibility of the safety assessment process. To
employ such a process, dependable systems’ taxonomy and safety assessment techniques
must be well defined and understood. Clarification of concepts of dependable systems can
be surprisingly difficult when systems are complex, because the determination of possible
causes or consequences of failures can be a very subtle process [5].

ARP-4761 [4] defines several techniques to perform safety assessment. One of them
is Fault Tree Analysis (FTA). It is a deductive method that uses trees to model faults
and their dependencies and propagation. In such trees, the premises are the leaves (basic
events) and the conclusions are the roots (top events). Intermediate events use gates to
combine basic events and each kind of gate has its own combination semantics definition.
Fault trees (FTs) that use only ∨ (OR) and ∧ (AND) gates are called coherent fault
trees [6, 7, 8, 9, 10]. They combine events as at least one shall occur and all shall occur,
respectively. To analyse FTs, their structures are abstracted as Boolean expressions called
structure expressions. The analysis of coherent FTs uses a well-defined algorithm based on
the Shannon’s method to obtain minimal cut sets (MCSs) from the structure expressions,
and a general formula to calculate the probability of top events. The MCSs are obtained
by reducing structure expressions to a normal form, in which each term is a combination
of variables (basic events) with conjunctive (AND) gates, and the terms are combined by
disjunctive (OR) gates. These minimal terms are also called prime implicants or minterms.
The Shannon’s method originated a formalism to reduce structure expressions called Binary
Decision Diagram (BDD) [11, 12]. Another approach to reduce structure expressions is to
use a mathematical model—called Free Boolean Algebra (FBA) [13, pp. 256-266]—that
uses sets of sets to represent Boolean expressions.

Although structure expressions are formulas with logical operators, they are for-
malisms to enable automatic FTA. As shown in [14], FTs are a much richer model than
structure expressions alone, enabling a visual indication of fault paths, and include de-
scription of subsystems as intermediate events. Redundancy may be present in FTs, but
not usually in structure expressions.

Chapter 1. Introduction 17

Figure 1 shows how FTA is traditionally performed. It starts with an architectural
model, then faults are identified and modelled in an FT. System requirements are identified
and are checked with FTA results. If the requirements are satisfied (accepted), the process
ends and the modelled system may be implemented. Otherwise, fault tolerance patterns
are used, adding or modifying the original architecture to improve dependability. The
analyses are executed until system requirements are met. We call such system requirements
of FT’s acceptance criteria.

Figure 1 – Traditional FTA

Besides the traditional OR and AND gates, the Fault Tree Handbook [15] defines
other gates as well. For example the priority-AND (PAND) gate, which considers the
order of occurrence of events. Although the Fault Tree Handbook defines new gates,
there is no algorithm to perform the analysis of trees that contain such new gates. This
absence together with the need to analyse dynamic aspects of increasingly complex
systems motivated the introduction of two new kinds of fault trees: Dynamic Fault Trees
(DFTs) [16, 17] and Temporal Fault Trees (TFTs) [18, 19, 20]. These variant trees can
capture sequential dependencies of fault events in a system. The difference from TFT to
DFT is that TFTs use temporal gates directly, while DFT does not—DFTs gates are an
abstraction of temporal gates. To differentiate the fault trees as defined in the Fault Tree
Handbook from the other two, we will call the former as Static Fault Trees (SFTs).

The work reported in [19] aims at performing the full implementation of the

Chapter 1. Introduction 18

Fault Tree Handbook, adding temporal gates to its Pandora1 methodology. It was this
implementation that introduced the new concept of TFTs, cited previously. In such trees,
events ordering is well-defined and an algebraic framework was proposed to reduce structure
expressions to obtain minimal cut sequences (MCSeqs) and perform probabilistic analysis.
Reducing expressions is also desirable to check for tautologies, for example.

DFTs introduce very different gates to capture dynamic configurations of systems.
The main gates are: cold spare (CSp), functional dependency (FDEP), and sequence
enforcing (SEQ). The semantics of the first is to add “backup” events, so the gate is active
if the primary event and all spares are active. The second adds basic events’ dependency
from a trigger event. The third forces the occurrence of events in a particular order. There
is also a warm spare (WSp) gate that is slightly different from the CSp gate. They differ
on the nature of sparing, whether fast (warm, always-on) or slow (cold, stand-by). The
readiness of the backup system in a WSp gate is higher than in a CSp gate. The work
reported in [21] shows an algebraic framework to compositionally reduce DFT gates to
order-based gates and perform probabilistic analysis of structure expressions. Thus, despite
some limitations related to spare gates [22], the structure expressions used in TFTs and
DFTs can be formulated in terms of a generic order-based operator.

The ¬ (NOT) operator is absent in the algebras reported in [19, 20, 23, 24] because,
if it is used without restrictions, it can be misleading, generating non-coherent analysis [8].
Although such an issue may arise, it can be essential in practical use as demonstrated in [6]
with algebraic laws to handle the operator in structure expressions. Our concern is that the
decision of the relevance of its use should be neither due to the choice of events-occurrence
representation, as it is in [19, 20, 23, 24], nor with algebraic laws to include missing terms
as it is in [6]. The algebra created in this work defines the NOT operator such that it can
be used without any restriction (freely), as we show in Chapter 4.

Hierarchically Performed Hazard Origin and Propagation Studies2 (HiP-HOPS) [25]
is a set of methods and tools to analyse FTs. The semi-automatic generation of FTs has
architectural models and failure expressions as inputs. The failure expressions are in
fact structure expressions of components or subsystems. These expressions are annotated
in components and subsystems and describe how they fail. The tool combines these
expressions with regard to the architecture of the system to generate FTs. The work
reported in [18] shows a strategy to use the semi-automatic FT generation of HiP-HOPS
with Pandora to generate structure expressions of TFTs.

Architecture Analysis and Design Language (AADL) [26] is a standard language
to model (among other features) system structure and component interaction. AADL has
several tools to perform different analyses to obtain SFT to perform FTA. But AADLs’
1 Pandora stands for: P-AND-ORA, which translates to Priority AND, Time.
2 <http://www.hip-hops.eu/>

http://www.hip-hops.eu/

Chapter 1. Introduction 19

assertions framework does not express order explicitly as needed for TFT and DFT
analyses.

In previous work [27, 28], we proposed a systematic hardware-based faults iden-
tification strategy to obtain failure expressions as defined in HiP-HOPS for SFTs. We
considered faults in components or subsystems to obtain structure expressions and use
them as input for HiP-HOPS. If, instead, we obtain failure expressions of a whole sys-
tem, they are in fact structure expressions of an FT. Our previous strategy throws away
the ordering information of the fault event sequences to generate failure expressions for
components or subsystems for SFTs. We focused on hardware faults because we assume
that software does not fail as a function of time (wear, corrosion, etc). We inherited this
view from EMBRAER, which assumes that functional behaviour is completely analysed
by functional verification [29]. We followed industry common practices using Simulink
diagrams [30] as a starting point. The work reported in [28] was based on Communicating
Sequential Processes3 (CSPM) to allow an automatic analysis using the model checker
FDR. Thus, our strategy required the translation from Simulink to CSPM [31]. It then
runs FDR to obtain several counter-examples (which are fault traces) ending in failures.
For two case studies provided by EMBRAER we showed that our automatically created
failure expressions match with the engineer’s provided ones or are better because consider
additional fault occurrence combinations.

1.1 Mathematical models
Both TFT and DFT lack a first-order logic mathematical model like the one defined

for SFT. For SFTs, mathematical models to reduce structure expressions are either based
on set inclusion, with FBA, or through tree search, with BDD. One important concern on
employing FTA is whether an FT indeed represents a system’s operational mode. The work
reported in [32] exposes this concern for DFTs, and the HiP-HOPS framework—related
to SFTs and TFTs—aims at getting this issue sorted out. Our contribution to this issue
for SFT is shown in [28, 27].

The mathematical model for TFT has a discontinuity between states. The transition
from the non-occurrence to an occurrence some time later is different from the occurrence
of one event before another one. Such a discontinuity has some drawbacks as, for example,
the impossibility to use NOT gates, and handling the specific case of non-occurrence with
zeros in Temporal Truth Tables (TTTs). The reduction of structure expressions in TFT
is based on a combination of: (i) algebraic rewriting—which can unfortunately result in
an infinite application of rules, (ii) modularisation of independent subtrees (subtrees not
always are independent), and (iii) dependency tree (DT) [33]—which are limited to seven
3 This variant “M” is the machine-readable version of CSP.

Chapter 1. Introduction 20

basic events, due to exponential growth.

Most mathematical models [34, 35, 36] for DFT are based on the formalisation of
discrete-time Markov chain (DTMC) [37, 14] or continuous-time Markov chain (CTMC) [38,
39] because DFTs were initially conceived to be a visual representation of such models.
As both DTMC and CTMC are state-based, they experience the state-space explosion
problem. The works reported in [40, 41, 4] show techniques to overcome the state-explosion
problem.

There are other approaches, as well. For instance, a modified version of BDD
to tackle events ordering, called Sequential Binary Decision Diagram (SBDD) [42, 43],
that can reduce structure expressions, and the work reported in [36], which proposes a
conversion of DFT into dynamic bayesian network (DBN) [44] to perform probabilistic
analysis.

The approach to tackle events ordering with SBDD [43] has two kinds of nodes:
terminals and non-terminals (terminals are nodes with basic events, and non-terminals
are nodes with two events and an operator). Although demonstrated in [45] that these
unconventional nodes (non-terminals) generate correct and efficient Boolean analysis, the
analysis is still dependent on the order-related operators because the relation of terminals
and non-terminals is not established directly (non-terminals are seen as an independent
node in [43]). For example, the occurrence of A→ B is related to the occurrence of A and
then B, but this relation is obtained in a further step, not in the SBDD.

The approach using the construction of DBNs [36] is automatic and handles time
slices as t + ∆t, which implies a notion of events ordering as well. As it is focused in
probabilistic analysis, qualitative analysis is not directly supported.

The works reported in [23, 43] show that DFT’s operators can be converted into
order-related operators, simplifying DFT analysis. Although the mathematical model
presented in [23] establishes a denotational semantics for order-related operators, it lacks a
formal method for expression reduction based on such a model. It defines, instead, several
algebraic laws to reduce expressions and an algorithm to minimize the structure function.

HiP-HOPS proposes a hierarchical approach to model systems and perform FTA
(and Failure Modes and Effects Analysis (FMEA) [46]). Although there is a tool to model
and analyse systems using HiP-HOPS, FTs construction is based on an algorithm.

Another concern, left untreated in the literature, is the undesirable possibility of
non-determinism in system analyses. For example, an FT to analyse a signal omission has
the structure expression A ∧B. Another FT to analyse a commission has the structure
expression (A ∧B) ∨ C. In this example, if faults A and B are active, then either an
omission or a commission is observed for the system.

Chapter 1. Introduction 21

1.2 Research questions
From the exposed in this section, our research questions are:

RQ1) Is there a consistent mathematical model to analyse TFTs and DFTs that is
set-based and similar to FBA?

RQ2) What guarantees can we provide to detect non-determinism in erroneous be-
haviour?

Also, does such a model:

RQ3) represent systems behaviour by construction?

RQ4) allow both qualitative and quantitative analyses as supported by TFT and
DFT?

1.3 Proposed solution
In this work we present an algebra, called Algebra of Temporal Faults (ATF),

to express ordering of fault events (TFT and DFT), enabling analysis of acceptance
criteria of FTs. The laws of ATF are proven in a denotational semantics based on sets
of lists of distinct elements. ATF aims at answering the research question RQ1. The
analysis of acceptance criteria is a decision problem and we use first-order logic and
Isabelle/HOL 20154 as verification tool.

System and fault modelling is an essential step towards safety analysis. Architectural
modelling is the first step of the strategy and can be executed either in a graphical tool,
or as requirements in natural language. For example, our work reported in [48, 49] uses
fault modelling in the Systems Modelling Language (SysML) [50] to verify fault tolerance
of Systems of Systems (SoSs) [51].

Writing and analysing expressions with order-related operators is more complex than
analysing expressions with Boolean operators only. We propose a logic, called Activation
Logic (AL), which works together with an accompanied (attached) algebra to perform
analysis of system structure and component interaction with a focus on fault modelling
and fault propagation, tackling the complexity introduced by order-related operators. AL
receives an algebra and the set of operational modes of a system as parameters. The choice
of algebra defines which structure expressions can be obtained: if Boolean algebra is passed
as a parameter, AL can generate structure expressions with Boolean operators (SFT); if
ATF is passed as a parameter, AL can generate structure expressions with order-related
operators (TFT and DFT). AL requires that the accompanied algebras satisfy a set of
properties (tautology and contradiction) and semantic values. The use of the NOT is
4 The 2002 tutorial is reported in [47], but there is a newer version published with the tool itself. The

tool and the tutorial are available on their website at <http://isabelle.in.tum.de>.

http://isabelle.in.tum.de

Chapter 1. Introduction 22

essential: besides its use in expressions, we use the complement of structure expressions,
normalizing them and making them healthy.

To obtain critical event expressions used in FTs and to denote faults propagation,
the AL provides a predicate notation and verification of non-determinism. We show three
different approaches to check non-determinism and answer research question RQ2: (i) verify
its existence, (ii) indicate which set of operational modes are active for a combination of
faults, or (iii) which combination of faults activates a set of operational modes.

In our proposed solution, depending on the easiness to identify the faults, the
analyst may follow one of the paths: (i) model the system in Simulink to allow fault
injection and discovery, or (ii) model faults using the Activation Logic. Both paths end
with structure expressions and the FTA is performed using ATF.

Figure 2 shows how to perform FTA using fault injection. The “Faults injection”
block is obtained from part of our work reported in [28, 27]. It starts with Simulink
modelling, converts the model to CSPM and then obtains fault event sequences (also
called fault traces). The fault event sequences are then mapped to ATF, which has a
denotational semantics based on sets of lists. This strategy aims at answering the research
question RQ3.

Safety requirements are stated in terms of critical failures such as, for example,
“the probability of a complete failure of an airplane engine should be less than 10−9”
(quantitative), or “a complete failure of the propulsion system should not be caused by a
single failure” (qualitative). Positive requirements such as, for example, “the communication
system should be operational 99.99% of the cruise phase” are treated as a complement
(the complete failure should have a probability in less than 0.01% of the cruise phase).
The acceptance criteria analysis aims at answering the RQ4.

From the model in ATF (Figure 2), the acceptance criteria are then verified. If
the criteria are accepted, the process finishes. Otherwise, the system is modified, and
the process continues, modifying the system architecture, using fault tolerance patterns,
improving the system dependability.

Figure 3 shows a fault modelling strategy directly in the AL. The AL associates
each operational mode with a fault expression. After modelling all faults, the top events
are extracted in a predicate notation. For example, “is the behaviour of the system in the
operational mode X?”, where X can be an omission, commission, etc. Given the flexibility
of the AL notation, it can be used to reason about basic fault events and top-event failures,
which are related to RQ1. Each predicate in AL generates an expression in ATF, which is
reduced to obtain a normal form to obtain MCSeqs and to calculate top-events probability.
With the system modelled in AL, the fault tolerance patterns can be applied directly on
the model.

Chapter 1. Introduction 23

Figure 2 – Faults injection and ATF to perform FTA

The complete proposed solution is summarized in Figure 4, joining the paths
described in Figure 2 and Figure 3 (paths A and B, respectively).

1.4 Contributions
The main contributions of this work are:

C1) Define a denotational model and an algebra to express fault events order with
ATF (Chapter 4);

C2) Define a new operator to express order explicitly and proving that the resulting
algebra—(ATF) using this operator and Boolean operators—is a conservative
extension of the Boolean algebra (also published in [52])—see Chapter 4;

C3) Map sequences of fault events into ATF (Chapter 4);

C4) Reason about fault modelling in AL to obtain formal expressions of critical
failures (top-event failures, Chapter 5);

C5) Illustrate both ATF and AL on a real case study, provided by EMBRAER
(Chapter 6), and on a literature case study.

We use Isabelle/HOL, theories in Isabelle/HOL’s library, and a theory in the AFP
library [53] to prove the theorems of Chapter 4.

Chapter 1. Introduction 24

Figure 3 – AL and ATF to perform FTA

The case studies cover the following scenarios, presented in Chapter 6:

1. From a model in Simulink, obtain the failure expression of a critical failure, analyse
the ordering relation of fault events, and verify its acceptance criteria;

2. Given a set of FT structure expressions, verify which fault combinations analysis
are missing;

3. Perform a probabilistic analysis in an FT with an explicit NOT operator.

1.5 Thesis organization
This thesis is organized as follows: in Chapters 2 and 3 we show the concepts

and tools used as basis for this work. Chapter 4 presents ATF, Chapter 5 presents AL,
Chapter 6 the case study and the application of the proposed strategy, and we present our
conclusions and future work in Chapter 7. The contributions presented in Chapter 4 are
summarized in terms of proved results. To facilitate the understanding of the presented
strategy, the effort to build laws and theirs (mechanized) proofs are shown in Appendix A.

Chapter 1. Introduction 25

Figure 4 – Strategy overview

Isabelle/HOL’s theory files with all proofs are available at <http://www.cin.ufpe.
br/~alrd/phd/phd-alrd.zip> (password: 6Zvq$5Vyj).

http://www.cin.ufpe.br/~alrd/phd/phd-alrd.zip
http://www.cin.ufpe.br/~alrd/phd/phd-alrd.zip

26

2 Basic concepts

The means to dependability are obtained by modelling and analysing a system.
It is strongly related to fault modelling, which depends on the kinds of analyses we
want to perform. FTs are present in several stages of systems’ modelling. We introduce
dependability and fault modelling in Section 2.1.

An SFT is a snapshot of a faults’ topology of a system, subsystem or component.
The time relation of fault events in TFTs and DFTs allows the analysis of different
configurations (or snapshots) of a system, subsystem or component. We discuss these time
relations in Section 2.2.

2.1 Systems, dependability, and fault modelling
Computing systems are characterized by five properties: functionality, performance,

cost, dependability, and security [5]. The work reported in [54, p. 289–302] explains these
properties—including dependability—with a focus on software. Hardware and software
are connected, as software faults may cause a failure in a software-controlled hardware,
and hardware faults may send incorrect data, causing a failure in the software.

The work reported in [5] summarizes all concepts of (and related to) dependability
for computing systems that contain software and hardware. In the following, we show
these concepts and highlight those used in this work.

2.1.1 Systems

Before introducing systems’ dependability, we first describe what a system is and
its characteristics. A system is an entity that interacts with other systems (software and
hardware as well), users (humans), and the physical world. These other entities are the
environment of the given system, and its boundary is the frontier between the system and
its environment.

The function of a system is what the system is intended to do, and its behaviour is
what the system does to implement its function. The total state of a system are the means
to implement its function and is defined as the set of the following states: computation,
communication, stored information, interconnection, and physical condition. The service
delivered by a system is its behaviour as it is perceived by its boundary. A system can
both provide and consume services.

The structure of a system is how it is composed: a system is composed of components,

Chapter 2. Basic concepts 27

and each component is another system, etc. This concept of hierarchical compositionality
in systems is what originated the concept of SoS and is the object of analysis in HiP-HOPS.
Such a recursion (of a system containing other systems) stops when a component—or a
constituent system—is considered to be atomic. A system is the total state of its atomic
components.

2.1.2 Dependability

The concepts that create the basis for dependability are: (i) threats to, (ii) attributes
of, and (iii) means to attain.

Threats to dependability are the so-called fault-error-failure chain. A failure is a
service deviation perceived on systems’ boundary. An error is the part of the total state of
a system that leads to subsequent service failure. Depending on how a system tolerate
internal errors, many errors may not reach system’s boundary. Finally, a fault is what
causes an error. In this case, we say that the fault occurred (the fault is active). Otherwise,
the fault is dormant, and has not occurred (yet). A degraded mode of a system is when
there are active faults, so some functions of the system are inoperative, but the system
still delivers its service.

There are two acceptable definitions of dependability reported in [5]. One is more
general, difficult to measure: “the ability to deliver service that can justifiably be trusted”.
A more precise definition that uses the definition of service failure is: “the ability to avoid
service failures that are more frequent and more severe than is acceptable”. This definition
has two implications about system’s requirements: there should be defined how it can fail,
and what are the acceptable severity and frequency of its failures.

The following systems’ dependability attributes enlightens such requirements:

Availability: the readiness for correct service;

Reliability: continuity of correct service;

Safety: absence of catastrophic consequences on the environment (other systems, users,
and the physical world). Safety can be verified using FTs, which is part of the
objective of this work;

Integrity: absence of improper systems alterations;

Maintainability: ability to be modified and repaired.

A system description should mention all or most of these attributes, at least the first three
of them.

Chapter 2. Basic concepts 28

The implementation of these attributes requires a deep analysis of system’s models.
The means to attain dependability are summarized as follows:

Prevention is about avoiding incorporating faults during development.

Tolerance deals with the usage of mechanisms to still deliver a—possibly degraded—
service even in the presence of faults.

Removal is about detecting and removing (or reducing severity of) failures from a system,
both in the development and production stages.

Forecasting is about predicting likely faults so they can removed, or tackling their effects.

The intersection of the current work with dependability is in fault removal during
development and fault tolerance (analysis). Following the taxonomy presented in [5], there
are some techniques for fault removal, summarized as follows:

a) Static verification:

– Structural model:

Static analysis: Range from inspection or walk-through, data flow analysis,
complexity analysis, abstract interpretation, compiler checks, vulnerabil-
ity search, etc.

Theorem proving: Check properties of infinite state models.

– Behaviour model:

Model checking: Usually the model is a finite state-transition model (Petri-
nets (PNs), finite state automata). Model-checking verifies all possible
states on a given system’s model.

b) Dynamic verification:

– Symbolic inputs:

Symbolic Execution: It is the execution with respect to variables (symbols)
as inputs.

– Actual inputs:

Testing: Selected input values are set on system’s inputs and their outputs
are compared to expected values. The verification outcomes are observed
faults, in case of hardware testing or software mutation testing, and
criteria-based, in case of software testing.

Verification methods are often used in combination. For example, symbolic execution
may be used to obtain testing patterns, test inputs can be obtained by model-checking

Chapter 2. Basic concepts 29

as in [55], faults can be used as symbolic inputs, and system behaviour can be observed
using model-checking as in [28, 27] (This technique is called fault injection; see also [56]).

The techniques to attain fault tolerance are summarized as follows:

Error detection: is used to identify the presence of an error. It can be a concurrent or a
preemptive detection. Concurrent detection takes place during normal service, while
preemptive detection takes place while normal service is suspended.

Recovery: transforms a system state that contains errors into a state without them.
The behaviour of the system upon recovery is equivalent to the normal behaviour.
Techniques range from rollback to a previously saved state without errors, error
masking, isolation of faulty components, to reconfiguration using spare components.

In this work, we use a combination of: (i) fault-injection, (ii) theorem proving, and
(iii) symbolic execution. We use these methods to obtain an erroneous behaviour of the
system which is compared to the system dependability attributes (safety). We explain how
these methods are combined in Chapter 4.

On the analyses of systems and its constituents, there is a distinction of operational
modes and error events. Operational modes refer to the behaviour that is perceived on the
boundaries of a system (failure). Error events, on the other hand, represent the behaviour
detected in a constituent of a system. Such error events may relate to an operational
mode, but not necessarily. Further in Chapter 4 we abstract these differences and leave
the distinction as a parameter. We refer to such a set as operational modes.

2.1.3 Fault Modelling

Fault modelling plays an important role in reasoning about the fault-error-failure
chain. They are the initial steps to perform the verification of a system, starting in
the architectural model to reason about the critical failures, which are (in general) the
top-events in FTs.

SysML is a profile for Unified Modelling Language (UML) that provides features
to model structure and behaviour of systems. The works reported in [48, 49] define several
structural and behavioural views in SysML to model the fault-error-failure chain and
fault tolerance. Fault, error, failures, and fault propagation have structural views, which
are related to behavioural views to describe fault activation and recovery. These works
map SysML to two formal languages—COMPASS Modelling Language (CML) [57] and
Communicating Sequential Processes (CSP) [58], respectively—to verify fault tolerance.

In [4] the safety assessment process for civil airborne systems and equipment
describes development cycles and methods to “clearly identify each failure condition”. The

Chapter 2. Basic concepts 30

methods that involve failure identification are: (i) SFT, (ii) Dependence Diagram1 (DD) [59,
p. 198], (iii) Markov chain, and (iv) FMEA. The first three are top-down methods, that
start with undesired failure conditions and move to lower levels to obtain more detailed
conditions that causes the top-level event. DDs are an alternative method of representing
the data in SFT. FMEA is a bottom-up method that identifies failure modes of a component
and determines the effects on the upper level. We detail SFT in Section 3.1.1.

DFTs are an extension of SFTs and models dynamic behaviour of system faults.
Similarly to the relation of SFTs and DDs, the work reported in [60] demonstrates the
relation of DFTs to Dynamic Reliability Block Diagrams (DRBDs) [60]. As the models
(DFT and DRBD) are equivalent, this work sticks to DFT due to the amount of work
already published. We detail DFTs in Section 3.1.3.

2.2 Time relation of fault events
The most general case for time relations is to consider that each fault event has a

continuous time duration. They are the basis on how fault events discretisation are defined.
The point of view in this work is the analysis of the effects caused by a combination
of faults in a snapshot of a system state. In Figure 5 we show all possibilities of events
relations in a continuous time line from A to B (the converse relation is similar):

a) A starts and ends before B starts;

b) A starts before and ends after B has started, but before B has ended;

c) A starts before B and ends after B has ended (A contains B);

d) A and B start at the same time, but A ends before B;

e) B starts after A, but they end at the same time;

f) A and B start and end at the same time;

g) A starts before B and ends when B starts.

Considering that fault occurrence corresponds to the start of a fault event and
its duration, from Figure 5 we clearly identify which event comes first: A comes before
B, except in the cases of items d) and f), where they start exactly at the same time.
Even in the case of failures that have a common cause, there may be a slight fraction of
time between failures. For example, an electromagnetic pulse (EMP) may cause a failure
in all electronics, or a power shortage may cause a failure in all cooling systems in a
power plant (see Fukushima accident [61]). There is a (temporal) causation relation of an
EMP occurrence and the failures in all electronics, and also of a power shortage and the
cooling systems’s shutdown in Fukushima. On the other hand, there is no direct relation
1 Also known as Reliability Block Diagram (RBD).

Chapter 2. Basic concepts 31

of the failure in each electronic, nor the failure in each cooling system. So, even if failure
events have a common cause, and are not the same, they are statistically independent. The
relations of items a) and g) shows the case that the system was repaired, thus A is not
active when B starts.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

A

A

A

A

A

A

A

B

B

B

B

B

B

B

Figure 5 – Relation of two events with duration

In Chapter 4 we abstract the relation of events in continuous time as an exclusive
before relation, based on fault occurrence (it is similar—at least implicitly—to what is
reported in [19, 21]).

32

3 Analysis and tools

Structure expressions are used to analyse fault trees. In general, a structure
expression comes from gates semantics and basic events. Basic events become variables
and gates become operators (a gate may become one or more operators). In Section 3.1
we explain SFTs, TFTs, DFTs, and their respective structure expressions.

FBAs and BDDs are the basis to analyse structure expressions. We were inspired
by FBA concepts to create our Algebra of Temporal Faults (Chapter 4). We explain FBAs
in Section 3.2.

The quantitative analysis of FTs requires a probability theory of fault events. It is
introduced in Section 3.3.

The use of the Boolean operator NOT : (i) can be misleading, generating non-co-
herent fault trees [8], or (ii) can be essential in practical use [6]. We discuss such cases in
Section 3.4. In particular, in Section 3.4.3 we show the probability calculation of an FT
with an explicit NOT operator.

To reuse a nominal model to analyse faults we need fault injection. In Section 3.5
we explain how we used Simulink and CSPM to inject faults and obtain failure expressions
from a nominal model.

Finally, in Section 3.6 we present basic usage of Isabelle/HOL and Intelligible
semi-automated reasoning (Isar), which were essential to carry out the proofs presented in
this thesis.

3.1 Fault Tree Analysis and structure expressions
FTA was introduced in the Fault Tree Handbook [15] with Static Fault Trees. FTA

is a deductive method that investigates what are the possible causes of an unwanted event.
The method starts with the top-level event as the unwanted event and the combination
of lower-level events that can cause it. Events are combined using gates, and each gate
has a well defined semantics. It continues until basic (atomic) events are reached. An SFT
represents, in a single view—very often considering faults outside of the boundaries of a
system—different states in which a particular failure (top event) is active in a system. The
most traditional gates are AND and OR, which are equivalent to Boolean operators. These
gates are also called coherent gates because they construct coherent trees (see Section 3.4
about the use of NOT gates). The Fault Tree Handbook shows other gates as, for example,
the PAND gate, but the FTA with these gates is not well defined. SFT’s gates and analysis
are detailed in Section 3.1.1.

Chapter 3. Analysis and tools 33

TFTs were created aiming at fully implementing the Fault Tree Handbook. The
PAND gate was first defined for SFTs, but its analysis was left open in the handbook. The
semantics (and analysis) of TFTs is defined in terms of a denotational semantics based
on sequence values to express ordering of events, thus tackling PAND’s order. We explain
TFTs and the sequence values in Section 3.1.2.

With component and system design evolution, DFTs were created to tackle dynamic
behaviour: fault-tolerance-related components (CSp), functional dependency (FDEP), and
analysis of particular order of occurrence of faults (SEQ). SFT’s gates (as AND and OR)
are part of DFTs as well. We explain them and DFT’s analysis in Section 3.1.3.

The structure of an FT (or the structure of an MCS, explained further) is repre-
sented with a formula. The variables represent occurrences of basic events. Unary and
binary relation symbols capture the semantics of gates. A formula with these characteristics
is called structure expression or structure function (as the expression depends on the
variables). The semantics of a structure expression is that the top-level event occurs if
some combination of basic events occur.

The results obtained from the FTAs are shown in the Fault Tree Handbook. We
summarize them as:

a) Qualitative

MCSs: Minimal combinations of component failures causing system failure.
They are obtained from the reduction of structure expressions to a normal
form. For example, in SFTs, structure expressions are reduced to disjunctive
normal form (DNF). Each term in a reduced DNF is an MCS.

Importance: Qualitative rankings on contributions to system failure. A single
fault causing a catastrophic failure is usually unacceptable. Ranking MCSs
is the same as ordering them in ascending order of their size (smaller first).

b) Quantitative

Numerical probabilities: Probabilities of system and MCS failures. A sys-
tem failure probability is obtained by assigning probabilities to basic events
and then calculating it according to the gate semantics. MCS failure prob-
ability is the calculation of the probability of the occurrence of all basic
events of a specific MCS.

Importance: Quantitative rankings on contributions to system failure. Rank-
ing MCSs is the same as ordering them in descending order of some
unreliability formula (higher first). These formulas used to quantify impor-
tance vary. The most common are: (i) system unavailability, and (ii) system
failure occurrence rate.

Chapter 3. Analysis and tools 34

Sensitivity evaluation: Modifying characteristics of components and evalu-
ate their impact. For a particular event in a tree, a higher and a lower
failure probability value are assigned. If the system unavailability is not
changed, then such an event is not important—the system is not sensitive
to such an event.

As stated in [62], there are other uses of FTA. One of great importance is using it
to minimize and optimize resources, which has been object of study in HiP-HOPS [63].
Through importance measures, FTA not only identifies what is important but also what is
unimportant. This removes components without impacting the overall failure probability,
which is related to the quantitative importance and sensitivity evaluation.

In important stages of critical systems, FTA plays an essential role. At least three
dependability means can be achieved by using FTs:

Removal. An FTA calculates the probability of failure of a subsystem. If such a probability
is higher than a certain maximum reference, such a subsystem should be removed or
left to be incorporated in combination with a more reliable component.

Tolerance. An FTA indicates whether a single fault—or fewer combinations than
expected—could lead to a catastrophic failure. In this case, a system should have
replication, or stages of fault detection and error handling. Also, the probability of
failure of the chosen fault tolerance method can be evaluated.

In Sections 3.1.1 to 3.1.3 we briefly show the FT symbology and the means to
analyse FTs. We detail its structure expression extraction because they are a common
means to perform both qualitative and quantitative analysis.

3.1.1 Static Fault Trees

SFT gates and structure expressions were used as basis for other kinds of trees, as
in TFTs and DFTs. We explain their symbology and semantics in this section.

The Fault Tree Handbook shows traditional symbols for gates and events. Basic
events are usually drawn as a rectangle (for the text) and a circle below it, as shown in
Figure 6, or as a circle with the text of the basic event, as shown in Figure 7. Top-level
and intermediate events are drawn as a rectangle (for the text) and a gate below it, as
shown in Figures 6 and 7. When an FT becomes too large, transfer in and out symbols can
be used. They are usually drawn as triangles with a letter or a number. Figure 7 depicts
traditional gates as specified in the Fault Tree Handbook, and Figure 6 shows an FT using
the Fault Tree Analyser1—a free commercial tool. In this work, to keep a visual identity
with other FTs, and to avoid symbol confusion, we use gate symbols as shown in Figure 8.

Chapter 3. Analysis and tools 35

Figure 6 – SFT symbols using a free commercial tool

Structure expressions in FTA are defined in terms of set theory, using symbols for
fault events occurrence. If a fault event symbol is in a set, then it means that this fault has
occurred. A set is a combination of fault events that causes the occurrence of the top-level
event of a tree. A structure expression of a tree is denoted by a set of sets of fault event
combinations. The OR gate becomes the union operator between sets and the AND gate,
the intersection. For example, if a system contains fault events a, b, and c, fault trees for
this system contain at most all these three events. The occurrence of the fault event a is
denoted by a set of sets A, which contains the following sets:

a) {a}: only a occurs;

b) {a, b}: a and b occur in any order;

c) {a, c}: a and c occur in any order;

d) {a, b, c}: all three events occur in any order.

All sets of A contain the fault event a. Similarly, the set of sets B—which represents the
occurrence of b—contains all sets that contain the fault event b (it includes the set {a, b, c},
for example).

The fault tree in Figure 9 contains only two events and the resulting structure
expression for this FT is the expression A∩B (TOP), where A and B are the sets of sets
1 <http://www.fault-tree-analysis-software.com>, accessed 2/feb/2016

http://www.fault-tree-analysis-software.com

Chapter 3. Analysis and tools 36

Figure 7 – SFT symbols as in the Fault Tree Handbook

that contain a and b, respectively. The resulting combinations for TOP are {a, b} and
{a, b, c} (fault events a and b occur in all possibilities, which includes the occurrence and
the non-occurrence of c).

After obtaining structure expressions, the next step is to reduce the expressions
to a normal form to obtain the MCSs, which are the sets that contain the minimum and
sufficient events to activate the top-level failure. Probabilistic analysis is then performed
on these events to obtain the overall probability of occurrence of the top-level event. The
Fault Tree Handbook shows an algorithm based on Shannon’s method to reduce structure
expressions to obtain minimal cut sets. The Boolean expression of the tree shown in
Figure 9 is TOP = A ∧B.

Chapter 3. Analysis and tools 37

(a) Basic event (b) Intermediate event (c) AND gate

(d) OR gate (e) NOT gate (f) Transfer symbol

Figure 8 – SFT gates

Figure 9 – Very simple example of a fault tree

3.1.2 Temporal Fault Trees

There are at least two versions of TFTs. One is described in [64] and uses a more
traditional style of temporal logic (a variation of linear temporal logic (LTL)). The other
version is called Pandora and is the one we refer to in what follows.

TFTs express ordering of events by directly focusing on ordering relationships
rather than different states of a system. Basically they extend SFT’s PAND gates, allowing
analysis of FT with such gates. It is simpler to express than DFT, but lacks the fault-
tolerance-related gate of DFTs (which we show in Section 3.1.3).

Structure expressions are also present in TFTs [19, 20, 33], through the Pandora
methodology. These expressions use the SFT operators OR and AND, and three new
operators2 related to events ordering: priority-AND (PAND), priority-OR (POR), and
2 In formulas, the following symbols are used to represent the operators PAND, POR, and SAND,

respectively: “<”, “|”, and “&”

Chapter 3. Analysis and tools 38

simultaneous-AND (SAND). The semantics of the PAND in TFTs is similar to the
semantics of the PAND described in the Fault Tree Handbook. To avoid ambiguous
expressions, the semantics in TFTs is stated in terms of natural numbers, using a sequence
value function. For every possible combination of events ordering, it assigns a sequence
value to each fault event. For example, if event A occurs before event B, then the sequence
value of A is lower than the sequence value of B, and one formula to express this is A<B.

An invariant on sequence values is that there are no gaps for assigned values. For
example, if faults A and B occur at the same time and there are only these two events,
then they should both be assigned value 1. On the other hand, if A occurs before B, then
the assigned values are 1 and 2, respectively. The possible values increase with the number
of variables to express the cases that all events occur in different times. For example, A
occurs before B, and B occurs before C. In this case, the assigned values are 1, 2, and 3,
respectively. Value zero means that the event is not active on the combination. Similar to
Boolean’s truth tables, the Pandora methodology defines TTTs. They represent formula
values for every combination of events. Table 1 shows the TTT of all TFT operators
according to the semantics described in terms of a sequence value function S as follows:

S (A ∧B) =

max (S (A) , S (B)) if S (A) > 0 ∧ S (B) > 0

0 otherwise
(3.1a)

S (A ∨B) =

min (S (A) , S (B)) if S (A) > 0 ∧ S (B) > 0

max (S (A) , S (B)) , otherwise
(3.1b)

S (A<B) =

S (B) if S (A) > 0 ∧ S (B) > 0 ∧ S (A) < S (B)

0 otherwise
(3.1c)

S (A |B) =

S (A) if S (A) < S (B) ∨ S (B) = 0

0 otherwise
(3.1d)

S (A&B) =

S (A) if S (A) > 0 ∧ S (B) > 0 ∧ S (A) = S (B)

0 otherwise
(3.1e)

Figure 10 shows TFT-specific symbols used in this work. To illustrate TFTs, for the
formula (A<C) ∨ (A ∧B), we show: (i) the TFT in Figure 11, and (ii) its corresponding
TTT in Table 2 (the column ‘#’ indicates the MCSeq number).

From structure expressions in order-sensitive FTs (TFT and DFT), MCSeqs are
obtained. Several approaches represent MCSeq ordering differently. For the best of our
knowledge they are introduced in the work [65] similarly to MCS, allowing set elements
with arrows (“→”) to represent order.

For TFTs, in the work [20] MCSeqs are represented as a DNF using AND and the
temporal operators (PAND, POR, and SAND) as doublets (a single temporal relation)—

Chapter 3. Analysis and tools 39

Table 1 – TTT of TFT’s operators and sequence value numbers

A B AND OR PAND POR SAND
0 0 0 0 0 0 0
0 1 0 1 0 0 0
1 0 0 1 0 1 0
1 1 1 1 0 0 1
1 2 2 1 2 1 0
2 1 2 1 0 0 0

(a) PAND gate (b) POR gate (c) SAND gate

Figure 10 – TFT-specific gates

Figure 11 – TFT small example

which are the minimal terms—or prime implicants—in the DNF. In a doublet, the ex-
pression is a product (AND) of temporal operators, and each temporal operator contains
exactly two events. The conversion to doublets uses the temporal laws as shown in the
work reported in [20]. For example, the expression (X &Y) |Z is a temporal relation
(POR) of a temporal relation (SAND). To extract MCSeqs it needs to be converted to
[X &Y]∧ [X |Z]∧ [Y |Z] (the square brackets is the doublets notation and the conversion
is the definition of the Temporal Distributive Law [20, p. 120]).

The normal form for TFT is similar to that for SFT: it is a DNF with temporal
operators (PAND, POR, SAND) in the minimal terms. The reduction of TFT structure

Chapter 3. Analysis and tools 40

Table 2 – TTT of a simple example

A B C A < C A ∧ B (A < C) ∨ (A ∧ B)

01 0 0 0 0 0 0
02 0 0 1 0 0 0
03 0 1 0 0 0 0
04 0 1 1 0 0 0
05 0 1 2 0 0 0
06 0 2 1 0 0 0
07 1 0 0 0 0 0
08 1 0 1 0 0 0
09 1 0 2 2 0 2
10 1 1 0 0 1 1
11 1 1 1 0 1 1
12 1 1 2 2 1 1
13 1 2 1 0 2 2
14 1 2 2 2 2 2
15 1 2 3 3 2 2
16 1 3 2 2 3 2
17 2 0 1 0 0 0
18 2 1 0 0 2 2
19 2 1 1 0 2 2
20 2 1 2 0 2 2
21 2 1 3 3 2 2
22 2 2 1 0 2 2
23 2 3 1 0 3 3
24 3 1 2 0 3 3
25 3 2 1 0 3 3

expressions is achieved using DT. In a DT, if all children of a tree node are true, then the
node is also true. Conversely, if a node is true, then all its children are also true. An issue
with DTs is that they grow exponentially. According to the work reported in [33], it is
already infeasible to deal with seven fault events in TFTs. Although there is a solution,
it is based on a mixed application of DTs, modularisation of independent subtrees, and
algebraic laws [19]. Such a solution is not able to solve FTs with NOT gates, and requires
some manual work to modularise independent trees. Some of these algebraic laws are:

(X <Y) ∨ (X &Y) ∨ (Y <X) = X ∧ Y Conjunctive Completion Law (3.2a)
(X |Y) ∨ (X &Y) ∨ (Y |X) = X ∨ Y Disjunctive Completion Law (3.2b)

(X |Y) ∨ (X &Y) ∨ (Y <X) = X Reductive Completion Law 1st (3.2c)
(X ∧ Y) ∨ (X |Y) = X Reductive Completion Law 2nd (3.2d)

3.1.3 Dynamic Fault Trees

Dynamic Fault Trees were designed with the goal of analysing complex systems with
dynamic redundancy management and complex fault and recovery mechanisms [16]. The
idea was to create easy-to-use and less error-prone modelling tools than using DTMCs—or
simply Markov chains—directly. So, since the very beginning, DFTs were intended to be
a visual representation of Markov chains. Figure 12 depicts the original gate symbols as
shown in [16, 17]. In this work, we use gate symbols as depicted in Figure 13. The informal
semantics of them are:

Chapter 3. Analysis and tools 41

FDEP: When the trigger event occurs, the dependent events are forced to occur. Timing
in this gate between the trigger event and dependent events occurrences can be
instantaneous (like in TFT’s SAND gate), or a small amount of time, thus implying
an order of occurrence, depending on the kind of dependency.

CSp: It is a specific gate to handle spare components. It is important to note that
connected inputs are not components—they are fault events of connected components.
If the ith input is already active (fault has occurred), then it is expected that the
input (i+ 1)th is not, following the specified order. The output becomes true after
all connected inputs become true. A spare event can be connected to more than one
CSp gate, representing the spare unit connection to one or more components.

PAND: The same as in TFT: when the connected input events occur in the specified
order, it outputs true.

SEQ: The connected events shall occur in the specified order. It is different from the
PAND gate, because the latter detects the specified order. The usage of this gate is
usually associated with FDEP.

(a) FDEP gate (b) CSp gate (c) SEQ gate

Figure 12 – DFTs’s original gates symbols

(a) FDEP gate (b) CSp gate (c) SEQ gate

Figure 13 – DFTs’s gates symbols

There are several means to analyse DFTs qualitative and quantitatively. The works
reported in [23, 66, 21, 22] use structure expressions to perform both qualitative and

Chapter 3. Analysis and tools 42

Table 3 – DFT conversion to calculate probability of top-level event

Conversion Calculation Explained in

Automaton-like structure CTMC [35]
Bayesian network (BN) [67] Inference algorithm (model-

specific)
[36]

Stochastic well-formed net (SWN) [68]
(a kind of coloured Petri-net
(CPN) [69])

CTMC [70]

SBDD (a modified version of BDD) model-specific [42, 43]

quantitative analysis, and the work reported in [22] summarizes other approaches. Table 3
shows more details about such approaches. We categorize them as:

a) MCSeqs (qualitative analysis) are obtained by replacing DFT gates with SFT
gates, using the text as their logical constraints. MCSs in the SFT are expanded
using timing constraints from the texts into MCSeq. In this case, the behaviour
of spare events cannot be correctly taken into account;

b) Quantitative analysis consists in converting a DFT to a well-defined formalism
to calculate the probability of its top-level event. Table 3 shows the conversion
options, the calculation, and where the method is explained.

In [23, 66, 21] fault events occur in a specific time and are instantaneous (similar to
detected faults), stated through a “date-of-occurrence” function. As the “date-of-occurrence”
function is stated in continuous time, the probability of two events occurring at the same
time is negligible. Thus, the relation in time of the occurrence of the events is, in fact,
the useful information. DFT gates’ algebraic model is summarized in Table 4. Structure
expressions are written with an algebra that has operators OR and AND, and three
new operators3 to express events ordering: (i) NIBefore, (ii) SIMLT, and (iii) IBefore.
The NIBefore and the SIMLT operators are similar to TFT’s POR and SAND operators,
respectively. The IBefore is a composition of NIBefore and SIMLT operators. Table 5
summarizes the date-of-occurrence function for all operators. An infinite value means the
event never occurs.

MCSeqs are extracted from a normal form of structure expressions written in a
DNF. Minimal terms are products of variables and NIBefore operators (the other operators
can be written as combinations of NIBefore). The reduction of DFT structure expressions
3 In formulas, the symbols of NIBefore, SIMLT, IBefore are, respectively: C, 4, and E

Chapter 3. Analysis and tools 43

Table 4 – Algebraic model of DFT gates with inputs A and B

Gate Algebraic model of gate’s
output

Note

FDEP AT = T ∨ A and BT = T ∨B AT and BT replace A and B on the resulting
expression

CSp (Ba ∧ (ACBa))∨(A ∧ (Bd CA)) A is the active input, and B is the spare. Sub-
scripts a and d represent component’s state—
active and dormant, respectively, which are
used on the failure distribution formulas

PAND B ∧ (AEB) No distinction of active or dormant states.

Table 5 – Date-of-occurrence function for operators defined in [23]

Operator Expression Expr. value if

d (a) < d (b)
Expr. value if

d (a) = d (b)
Expr. value if

d (a) > d (b)

OR d (a ∨ b) d (a) d (a) d (b)
AND d (a ∧ b) d (b) d (a) d (a)

NIBefore d (aC b) d (a) +∞ +∞
SIMLT d (a4 b) +∞ d (a) +∞
IBefore d (aE b) d (a) d (a) +∞

uses algebraic laws as, for example:

(aC b) ∨ (a4 b) ∨ (bC a) = a ∨ b (3.3a)
(a ∧ (bC a)) ∨ (a4 b) ∨ (b ∧ (aC b)) = a ∧ b (3.3b)

(aE b) ∧ (bE a) = a4 b (3.3c)

Figure 14 shows an example of a DFT extracted from [22]. It is a cardiac assist
system (HCAS), which is divided in four modules: trigger, CPU unit, motor section, and
pumps. The trigger is divided in two components, CS and SS. The failure of any CS or SS,
triggers a CPU unit failure. The primary CPU (P) has a warm4 spare (B). The motor
module fails if both M and MC fail. In order for the pumps unit to fail, all three pumps
need to fail, and the left-hand side spare gate needs to fail before (or at the same time as)
the right-hand side spare gate (PAND gate5). The top-level event structure expression is:

SY STEM =CS ∨ SS ∨ (M ∧MC)∨ (3.4)
(P ∧ (Bd CP)) ∨ (Ba ∧ (P CBa))∨
(BPa ∧ (P2CP1) ∧ (P1CBPa)) ∨ (P2 ∧ (P1CBPa) ∧ (BPa CP2))

4 Warm spare gates only differ from CSp on the activation time.
5 Although the original example uses a PAND gate, according to the informal description, a SEQ gate

would fit better.

Chapter 3. Analysis and tools 44

Figure 14 – DFT example

Ideally, one would like to have an axiomatic presentation derived from a denotational
one, as advocated, for example, in [71].

3.2 Free Boolean Algebras
Another means to analyse SFTs is to use an FBA to perform set-theoretical

operations (intersection, difference, etc.) to reduce expressions. In this section we briefly
present the FBA theory and its elements.

Instead of using an axiomatic definition of a Boolean algebra directly, we follow its
set-theoretical definition, as shown in [72, pp. 254–258] and [13, pp. 8–11]. This definition
represents a Boolean algebra as an algebra of sets and does not rely on Boolean axioms
(which can be misleading, if an unfounded axiom is present).

Definition 3.1 (Boolean Algebra). A Boolean algebra is defined as a triple 〈B,∩,−〉,
where B is a set with at least two elements, ∩ is the intersection (also called meet or
infimum) and − is the complement (also called negation).

The other Boolean elements (union, ⊥, and >) are derived from the previous two operators:

∪ is the union (also called join or supremum): A∪B = −(−A∩−B)

Chapter 3. Analysis and tools 45

⊥ is the bottom (also called zero): ⊥ = A∩−A

> is the top (also called unit): > = −⊥

A Free Boolean Algebra is defined from a set E of generators. A generator can
be represented as a proposition in statement calculus [72, p. 274]. For example, “valve A
is stuck closed” and “motor M is malfunctioning” are valid statements. A Free Boolean
Algebra is constructed from P (E), where P is the power set operator. Note that if E has
n symbols, P (E) has 2n elements, called atoms of a finite Boolean algebra. For the two
statements above, the atoms are:

a) “Valve A is stuck closed” and “motor X is malfunctioning”

b) “Valve A is stuck closed” and “motor X is not malfunctioning”

c) “Valve A is not stuck closed” and “motor X is malfunctioning”

d) “Valve A is not stuck closed” and “motor X is not malfunctioning”

Such a Boolean algebra has 22n formulas [13, p. 261]. For example, if E = {a, b}, then
P (E) = {{} , {a} , {b} , {a, b}}. And the Boolean algebra generated by E contains sixteen
(222) formulas: {}, {{}}, {{} , {a}}, {{} , {b}} , . . ., {{a} , {a, b}} , . . ., {{b} , {a, b}} , . . .,
{{} , {a} , {b} , {a, b}}.

The Boolean algebra B can be inductively defined using some constructs.

Definition 3.2 (Inductive Free Boolean Algebra). Let s be a statement, then:

var s = {X | ∃ X • s ∈ X} =⇒ var s ∈ B (variable) (3.5a)
X ∈ B =⇒ −X ∈ B (complement) (3.5b)

X ∈ B ∧ Y ∈ B =⇒ X ∩Y ∈ B (intersection) (3.5c)

The characterisation of a “free” Boolean algebra comes from that, for some valuation
function a, some formulas evaluate to “1”. Given a function p : B×{0, 1} → B, such that:

p (i, j) =

i j = 1

−i j = 0
(3.6)

Lemma 3.1 (Free generators (valuation)). Let F be a finite set, and E be a set of
generators of a Boolean algebra, such that F ⊆ E, and a : F → {0, 1}, a necessary and
sufficient condition for the set E to be free is then:∧

i∈F

p (i, a (i)) 6= 0 (3.7)

Essentially, Lemma 3.1 states that there is no relation between generators, such as
a = −b.

Chapter 3. Analysis and tools 46

Lemma 3.2 (Free generators (algebraic)). Let i and j be statements, such that i, j ∈ E,
hence from Definition 3.2 and Lemma 3.1 it is necessary and sufficient that:

var i = var j ⇐⇒ i = j (3.8a)
var i 6= −var j (3.8b)
−var i 6= var j (3.8c)

3.3 Probability theory of fault events
The work reported in [15] presents the mathematical description of events. It

describes three kinds of events: (i) independent events, (ii) mutually exclusive events, and
(iii) dependent events. Independent events are those as discussed in Section 2.2. Their
occurrence and duration vary independently. The mutually exclusive events are the kind
of events that do not happen at the same time at all. Dependent events are those in which
the occurrence of one implies the occurrence of the other.

In the context of FTs, the combined probability of the OR gate, Pr {QOR}, for
fault events A and B, is:

Pr {QOR} = Pr {A}+ Pr {B} − Pr {A∩B} (3.9)

where Pr {A∩B} is the probability of A given B has occurred, Pr {A|B}, or the probability
of B given A has occurred, Pr {B|A} (if the events are random, these probability values
are the same).

Considering the relations of fault events:

• If A and B are independent events, then Pr {QOR} = Pr {A}+ Pr {B} − Pr {A} ×
Pr {B};

• If A and B are mutually exclusive events, then Pr {QOR} = Pr {A}+ Pr {B}; and

• If B is completely dependent on event A (whenever A occurs, B also occurs), then
Pr {QOR} = Pr {B}.

The combined probability of the AND gate, Pr {QAND}, for fault events A and B,
is:

Pr {QAND} = Pr {A} × Pr {B|A} = Pr {B} × Pr {A|B} (3.10)

Considering the relations of fault events:

• If A and B are independent events, then Pr {QAND} = Pr {A} × Pr {B};

• If A and B are mutually exclusive events, then Pr {QAND} = 0; and

Chapter 3. Analysis and tools 47

• If B is completely dependent on event A, then Pr {QAND} = Pr {A}

The work reported in [23] shows how to calculate the probability of a PAND gate
as:

P (t) = Pr {T1 ≤ T2}<t

=
∫ t

0
P ′2(t2)

∫ t2

0
P ′1(t1)dt1dt2

=
∫ t

0
P ′2(t2)P1(t2)dt2 (3.11)

where P1 and P2 are the probabilities of the occurrences (cumulative distribution function)
of the first and the second faults, respectively, and T1 and T2 are the times the first and
the second faults occur. The general case (reported in [73]) of a PAND gate with n inputs
is the probability of the sequence of faults fi, i ∈ { 1, . . . , n }:

Pr {[f1, f2 . . . , fn−1, fn]} =∫ t

0
P ′n (tn)

∫ tn

0
P ′n−1 (tn−1) . . .

∫ t3

0
P ′2 (t2)

∫ t2

0
P ′1 (t1) dt1dt2 . . . dtn−1dtn (3.12)

where Pi is the cumulative distribution function of fault fi.

3.4 Using the NOT operator in Static Fault Trees
Although the Fault Tree Handbook introduces several gates, the vast majority of

SFT analyses would fit in FTs with only AND and OR gates (coherent FTs). Qualitative
analysis requires the reduction of the structure expression of FTs and, when NOT gates
are present (non-coherent FTs), such a reduction can cause the interpretation of failure
expression to be misled [6, 8, 7, 9, 10]. The work reported in [8] shows three funny examples
of this kind of problem, and the works reported in [6, 9] show how to solve it using BDDs.
In the following we show: (i) the second example presented in [8], which highlights the
problem when using NOT gates (Section 3.4.1), and (ii) the second example presented
in [6], which defends the usefulness of NOT gates in a multitasking system (Section 3.4.2).

Negated events in a non-coherent analysis are in fact the working state of a
component. The failure probability contribution of a negated basic event is close to 1. The
problem with non-coherent FTs is that its analysis can cause impossible situations. The
general formula to identify coherency is given in [6, 9] in terms of a structure function.

Definition 3.3 (FT Coherency). Let Φ (x) : Bn → B1 be a binary function of a vector
of binary variables, such that x = [x1, x2, . . . , xn], representing the states of n system’s
components.

A binary structure function Φ (x) is coherent if all the following hold:

Chapter 3. Analysis and tools 48

a) Φ (x) is monotonic (non-decreasing) in each variable;

b) Each xi is relevant, which means that Φ (x) [xi/1] 6= Φ (x) [xi/0] for some vector x.

where B1 = {0, 1}, Bn = Bn−1×B1, xi = 1 implies that component i failed, and Φ (x) = 1
implies the system failed. For y = [y1, y2, . . . , yn], monotonicity of Φ means that for all
i, xi ≥ yi (yi = 1 =⇒ xi = 1), and for some i, xi > yi (xi = 1 and yi = 0). Variable
replacement ([a/b]) is as usual: x [xi/a] = [x1, . . . , xi−1, a, xi+1, . . . , xn]

3.4.1 Non-coherent fault tree misleads

In this section we illustrate—with the second example detailed in [8]—how a
non-coherent FT misleads.

A college student who wants to visit her mother in another city has two options: wake
up early (x3) and take a ride with a friend (x1), or wake up late (¬x3) and take the metro
(x2). The top-event failure is “visit mother” with expression S = (x1 ∧ x3) ∨ (x2 ∧ ¬x3).
Its fault tree is depicted in Figure 15. It is clear that the structure function is non-coherent
in x3 accordingly to Definition 3.3: Φ (1, 1, x3) [x3/1] = Φ (1, 1, x3) [x3/0].

Figure 15 – Non-coherent FT college student’s example

The problem with this tree is the interpretation of the qualitative results. One of
the possibilities in this scenario is that the college student would take a ride AND take
the metro (x1 ∧ x2). Quantitatively, the analysis of the probabilities shows that this result
is not negligible, but its interpretation is impossible.

3.4.2 Usefulness of NOT gates in FTA

In this section we show the second example detailed in [6].

Chapter 3. Analysis and tools 49

The gas detection system depicted in Figure 16 has two sensors D1 and D2 which
are used to detect a leakage in a confined space. When a leakage is detected, these sensors
send a signal to the logic control unit LU , which performs three tasks:

a) shuts-down the main system (process isolation) by de-energizing relay R1;

b) informs the operator of the leakage by lamp and siren L;

c) deactivates all possible ignition sources, which is the interruption of power
supply by de-energizing relay R2.

Figure 16 – Gas detection system

The system is in a fail state if it does not perform one of these three tasks. The fault
tree that represents this generic failure is depicted in Figure 17. G1, G2, and G3 are subtrees
that represents the three tasks “Operator not informed”, “Process shut-down fails”, and
“Power supply not isolated”, respectively. All three tasks will fail if their respective main
component fails (L, R1, and R2) or there is no signal from LU (LU fails or both D1 and
D2 fail). The structure expressions for the subtrees are:

G1 = L ∨ LU ∨ (D1 ∧D2)
G2 = R1 ∨ LU ∨ (D1 ∧D2)
G3 = R2 ∨ LU ∨ (D1 ∧D2)

TOP = L ∨R1 ∨R2 ∨ LU ∨ (D1 ∧D2)

Analysing in more detail, there are different degrees of system failure. There are
eight outcomes (given the three tasks) and the most critical one is when both process
shut-down (G2) and power supply isolation (G3) fail keeping energized upon a leakage, and
the operator is not informed (G1), but the operator information system is working (lamp
and siren are off, but they are operational). The coherent FT of this outcome is depicted
in Figure 18. The minimal cut sets obtained from this will be: {R1, R2}, {D1, D2}, and
{LU}.

Chapter 3. Analysis and tools 50

Figure 17 – FT for a generic failure in the gas detection system

Quantification of the coherent FT will overestimate the probability of the critical
outcome unless the part of the system that is working (lamp and siren L, LU , and sensors
D1 and D2) is taken into account. The non-coherent FT with the working part is shown
in Figure 19.

If the operator can be informed, then cut sets {D1, D2} and {LU} could not have
occurred (see Figure 17). Thus, the correct qualitative analysis should consider only cut
set {R1, R2}. Reducing the expressions of the non-coherent FT (Figure 19), we obtain the
structure expression: ¬L ∧ ¬LU ∧ R1 ∧ R2 ∧ (¬D1 ∨ ¬D2). The approximation for this
expression, removing the negated events, gives the cut set {R1, R2}, which gives a correct
quantitative analysis.

Chapter 3. Analysis and tools 51

Figure 18 – Coherent FT for the most critical outcome of the gas detection
system

Figure 19 – Non-coherent FT for the most critical outcome of the gas detection
system

3.4.3 Probabilistic analysis of a non-coherent tree

The work reported in [6] shows an example of an FT with an explicit NOT operator,
the importance of such an operator, and how to calculate the probability of a critical
failure. The system is a leak protection system that has valves and sensors, and is depicted
in Figure 20. Valve V AL closes a gas flow if a sensor detects a leak L in room 1. If the
valve is closed for a certain amount of time, the pressure on the system may increase,
and then, a relief valve PRV diverts the gas flow elsewhere. In room 1 there is a possible
ignition source (I1), and nearby there is a permanent source of ignition (I2).

The undesired top-event is an ignition in room 1 (TOP). As shown in [6], the
structure expression of TOP is:

TOP = L ∧ ((¬VAL ∧ PRV) ∨ (VAL ∧ I1)) (3.13)

For a coherent analysis, they use the consensus law to add a “missing” term. In this case,
the missing term is L ∧ PRV ∧ I1. This gives the final expression:

TOP = L ∧ ((¬VAL ∧ PRV) ∨ (VAL ∧ I1) ∨ (PRV ∧ I1)) (3.14)

Chapter 3. Analysis and tools 52

Figure 20 – Leak Protection System architectural view

Finally, the probability for Eq. (3.14) is:

Pr {TOP} = PL × (PP RV + PVAL × PI1 − PP RV × PVAL) (3.15)

where Px is the failure probability of x, x ∈ {L, PRV,VAL, I1}.

3.5 Systems nominal model and fault injection to obtain structure
expressions
In this section we show how to obtain structure expressions from nominal models.

Nominal models are architectural models to represent the nominal behaviour (without
failures) of a system. Faults can be injected into a nominal model to simulate erroneous
behaviour and observe which combinations of faults cause an unwanted operational mode.
The group of such combinations in a single expression is, in fact, the structure expression
of the unwanted operational mode (an FT’s structure expression of the system).

Control system modelling using Simulink block diagrams [74] is recommended
in [30] and have been used by our industrial partner. It is a complementary tool of
Matlab [75]. In fact, it works as a graphical interface to Matlab. A Simulink model has
blocks and connections between these blocks, named signals. Each block has inputs and
outputs and an internal behaviour expressed by its mathematical formula, which defines a
function of the inputs for each output. There are many predefined blocks in the tool. It
is also possible to create new blocks or use subsystems that encapsulate other blocks. A
simulation adds extra parameters to a block diagram, like elapsed time and time between
states. The elapsed time of a simulation is an abstraction for the quantity of possible
simulation states and the time between states is related to the lowest common denominator
of the sample time. Some components define different sample times, depending on their
mode of operation. Usually, the value for this property is set to auto, allowing Simulink to
choose a proper value automatically.

Chapter 3. Analysis and tools 53

Figure 21 – Block diagram of the ACS provided by EMBRAER (nominal
model)

Nowadays, control systems are usually composed of an electromechanical part and
a processor. Figure 21 shows the components of a feedback system [76] which was provided
by EMBRAER. In this system, the feedback behaviour is given by the Controller (1),
Actuator (2) and Sensor (3). A command is received by the Controller, which sends a
signal to the Actuator to start its movement. The Sensor detects the actual position of
the Actuator and sends it back to the Controller, which adjusts the given command to
achieve the desired position. This loop (feedback) continues until the desired position
given by the original command is reached.

Figure 22 – Internal diagram of the monitor component (Figure 21 (A)).

Figure 22 shows the internal elements of the monitor component (Figure 21 (A)),
which is used as a case study in Chapter 6 to illustrate our strategy. The outputs of the
hardware elements are annotated with HW , which are the two power sources and an
internal component of the monitor (switch command).

To perform a formal verification in a Simulink system model we use the model-
checking tool FDR. It is a refinement checker for formal models written in the formal
language CSPM . To verify a refinement6, it takes two specifications: (i) a specification
6 A refinement is an improvement in a specification. Such an improvement can be the reduction on the

Chapter 3. Analysis and tools 54

with more abstract properties, and (ii) an implementation with more concrete properties.
If a refinement does not hold (the implementation fails to refine the specification), FDR
shows counter-examples as traces of events. The CSPM language is suitable to model
concurrent behaviour and is very expressive to model systems’ states. The work reported
in [31] translates a Simulink model to the CSPM language. The resulting CSPM code
(implementation) is then used to check if it meets functional requirements also encoded in
CSPM (specification).

In our previous work, reported in [28], we modified such a translation to perform
fault injection using hardware annotations allowing a subsystem or part to “break” ran-
domly. We designed a CSPM process to act as an observer (specification), watching outputs
of the nominal version and comparing to the outputs of the “breakable” version (with
injected faults—the implementation) of the system. When the CSPM process of the model
and the observer are loaded into the FDR model-checker, counter-examples are generated
for each output that differs from the nominal model, thus obtaining a sequence of injected
fault combinations that leads to the unexpected output, which are indeed fault traces.

In what follows, injected faults and the top-level failure have generic names based
on the names of the Simulink model blocks. It is out of the scope of [28] to define event
names.

For the Simulink model shown in Figure 22, some representative fault traces are:

TRACE 1:
failure.Hardware.N04_RelationalOperator.1.EXP.B.true
failure.Hardware.N04_RelationalOperator.1.ACT.B.false
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

TRACE 2:
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.true
failure.Hardware.N04_RelationalOperator.1.ACT.B.false
out.1.OMISSION

TRACE 3:
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

TRACE 4:
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_MonIn1.1.EXP.I.5

number of communications, bounding values or by a different representation of data.

Chapter 3. Analysis and tools 55

failure.Hardware.N04_MonIn1.1.ACT.OMISSION
out.1.OMISSION

TRACE 5:
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true
out.1.OMISSION

TRACE 6:
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

TRACE 7:
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true

TRACE 8:
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true

TRACE 9:
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION

TRACE 10:
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION

TRACE 11:
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
failure.Hardware.N04_RelationalOperator.1.EXP.B.false
failure.Hardware.N04_RelationalOperator.1.ACT.B.true
failure.Hardware.N04_MonIn1.1.EXP.I.5

Chapter 3. Analysis and tools 56

failure.Hardware.N04_MonIn1.1.ACT.OMISSION

where N04 is the subsystem name of the monitor in the Simulink diagram, MonIn1 (first
input of the monitor), MonIn2 (second input of the monitor), and RelationalOperator
(switcher controller) are the names of the hardware components in the Simulink diagram.

We only show eleven counter-examples, but FDR generates a total of 64 counter-
examples for this system. The other counter-examples are similar to the traces shown with
different internal events.

To reuse HiP-HOPS, which is based on SFTs, we “remove” the ordering information
of the traces to generate a failure expression. Each fault trace is abstracted as a conjunction
(AND combination of the inner events, thus losing the ordering information), and the
several conjunction-based fault events are combined using ORs (disjunctions). The result
of the combination is a Boolean expression that represents the conditions that cause an
undesirable output, the failure expression of the model. With the ATF proposed in this
work we do not “remove” the ordering information, so we are able to use this information
to generate or perform DFT and TFT analyses (TFTs have order-related operators, and
it is shown in [23, 24, 21] that DFTs can be expressed by order-related operators).

If the failure expression is obtained for a whole system, it is indeed the structure
expression of a fault tree for a general failure as the top-level event. Although it is possible
to obtain the failure expression for a larger system, it may be impractical due to state-space
explosion in CSPM model analysis. Thus it should be used for components and subsystems
or small systems following HiP-HOPS compositional structure. Using failure expression as
subsystem annotations in [25], it is possible to obtain structure expressions for a larger
system. It is worth noting that the goal of the work reported in [28] was to connect with
HiP-HOPS, which is based on static fault trees. But we already knew that we had a
richer fault modelling information than that presented in [28] because we abstracted traces
(which already capture fault events ordering) to create propositions (any fault events order
combination).

To show how these traces become failure expression, let us abbreviate fault names
as:

A = failure.Hardware.N04_MonIn1.1
B = failure.Hardware.N04_MonIn2.1
S = failure.Hardware.N04_RelationalOperator

Chapter 3. Analysis and tools 57

Table 6 – Annotations table of the ACS provided by EMBRAER

Component Deviation Port Annotation
PowerSource LowPower Out1 PowerSourceFailure

Monitor LowPower Out1 (SwitchFailure AND (LowPower-In1 OR
LowPower-In2)) OR (LowPower-In1 AND
LowPower-In2)

Reference OmissionSignal Out1 ReferenceDeviceFailure OR LowPower-In1

So, for each trace, we obtain an expression:

TRACE 1 = S ∧B

TRACE 2 = B ∧ S

TRACE 3 = A ∧B

TRACE 4 = B ∧ A

TRACE 5 = A ∧ S

TRACE 6 = A ∧ S ∧B

TRACE 7 = A ∧B ∧ S

TRACE 8 = B ∧ A ∧ S

TRACE 9 = S ∧ A ∧B

TRACE 10 = S ∧B ∧ A

TRACE 11 = B ∧ S ∧ A

And we combine them as a single Boolean expression: TRACE 1∨TRACE 2∨TRACE 3∨
TRACE 4 ∨ TRACE 5 ∨ TRACE 6 ∨ TRACE 7 ∨ TRACE 8 ∨ TRACE 9 ∨ TRACE 10 ∨ TRACE 11, which
by a traditional Boolean reduction strategy results in:

(A ∧B) ∨ (S ∧ (A ∨B))

The above expression is exactly the same failure expression provided by EMBRAER
if we use the following association (Table 6):

A = LowPower-In1
B = LowPower-In2
S = SwitchFailure

Note that when we combine each fault with AND gates, we lose the information
about order7: S∧B and B∧S are equal, due to the commutative law of Boolean expressions.
7 In our previous work we designed the observer to ignore order as well, by making similar traces—with

Chapter 3. Analysis and tools 58

Our strategy finds fault combinations S and B (in the sense of S occurring before
B) as well as B and S (in the sense of B occurring before S) but abstracts this ordering
information obtaining B and S, which is equivalent to S and B in Boolean Algebra. If A
fails before S, the system fails because it should switch to B, but the switcher is in a faulty
state. On the other hand, if S fails before A, the switcher fails because it inadvertently
switched to B when A was still operational. When A fails, nothing changes and the output
of the system is obtained from B.

We also employed the strategy proposed in the work [28] in another case study
and obtained a weaker failure expression (that is, our expression considers more cases).
The failure expression provided by the engineers of EMBRAER was stronger because they
considered that one component has a very low probability of failure and removed it from
the analysis. Our strategy on the other hand generates the weakest failure expression; the
best qualitative solution possible. Obviously that by quantitative analysis we can obtain
the same structure expression as provided by the engineers of EMBRAER.

3.6 Isabelle/HOL
We use the same words of the creators of this tool, retrieved from their website8:

Isabelle is a generic proof assistant. It allows mathematical formulas to
be expressed in a formal language and provides tools for proving those
formulas in a logical calculus. The main application is the formalization of
mathematical proofs and in particular formal verification, which includes
proving the correctness of computer hardware or software and proving
properties of computer languages and protocols.

Isabelle/HOL is the most widespread instance of Isabelle. HOL stands for higher-
order logic. Isabelle/HOL provides a HOL proving environment ready to use, which
includes: (co)datatypes, inductive definitions, recursive functions, locales, custom syntax
definition, etc. Proofs can be written in both human9 and machine-readable language
based on Isar. The tool also includes the sledgehammer, a port to call external first-order
provers to find proofs fully automatically. The user interface is based on jEdit10, which
provides a text editor, syntax parser, shortcuts, etc. (see Figure 23).

Theories on Isabelle/HOL are based on a few axioms. Isabelle/HOL Library’s
theories—which comes with the installer—and user’s theories are based on these axioms.

different ordering—the same size. Here we modified the observer specification to make similar traces
with different sizes.

8 Accessed 27/jan/2016: <https://isabelle.in.tum.de/overview.html>
9 By human we mean that anyone with mathematics and logic basic knowledge—it means that deep

programming knowledge is not essential.
10 Accessed 27/jan/2016: <http://www.jedit.org/>

https://isabelle.in.tum.de/overview.html
http://www.jedit.org/

Chapter 3. Analysis and tools 59

Figure 23 – Isabelle/HOL window, showing the basic symmetry theorem

This design decision avoids inconsistencies and paradoxes (similar as it is in Z Notation
(Z) [77]).

Besides the provided theories, its active community provides a comprehensive
archive of formal proofs11 (AFP). Each entry in this archive can be cited and usually
contains an abstract, a document, and a theory file. For example, a Free Boolean Algebra
theory is available in [78]. To use it, it is enough to download and put on the same directory
of your own theory files.

Bellow we show an example and explain the overall syntax of the human and
machine-readable language.

theorem basic_symmetry:

assumes "x = y" — Assumptions
shows "y = x" — Hypothesis

proof -

have "x = x" .. — Proof step
from assms — Using assumptions
show "y = x" .. — Show thesis

qed
11 Accessed 24/apr/2017: <https://www.isa-afp.org>

https://www.isa-afp.org

Chapter 3. Analysis and tools 60

Finally, Isabelle/HOL provides LATEX syntax sugar and allow easy document
preparation: this entire section was written in a theory file mixing Isabelle’s and LATEX’s
syntax). The above theorem can be written using Isabelle’s quotation and anti-quotations.
For example, we can write it using usual LATEX theorem environment:

Theorem 3.1 (Basic symmetry). Assuming x = y, thus:

y = x

Proof. have "x = x" .. — Proof step

from assms — Using assumptions

show "y = x" .. — Show thesis

Otherwise specified, in the next sections we will omit proofs because they are all
verified using Isabelle/HOL. The complete listing is in Appendix A.

61

4 A free algebra to express structure expres-
sions of ordered events

Recall from Sections 2.2 and 3.1 that fault events are statistically independent of
one another. The set-theoretical abstraction of structure expressions for SFTs [15, pp.
VI-11] is very close to an FBA, where each generator in FBAs corresponds to a fault
event symbol in fault trees. In FBAs, as generators are “free”, they are independent of
one another and Boolean formulas are written as a set of sets of possibilities, which are
similar to the structure expressions of SFTs.

We showed in Section 3.1 that there is a consistent presence of order-based operators
to analyse TFTs and DFTs, and that each approach describes a new algebra based on
different representations of events ordering with similar theorems to reduce expressions to
a normal form.

From the need to tackle events ordering, related to the failure traces we can obtain
by applying the fault injection strategy we developed in [28], we defined a list-based algebra,
called Algebra of Temporal Faults (ATF), to express and analyse systems considering
events ordering. We also provide a mapping from fault traces [28] (from CSPM models) to
this algebra, shown in Section 4.5. The order-specific operations are expressed with a new
operator (→) that we call exclusive-before (XBefore).

We use the concept of generators of the set of sets of FBAs to propose the ATF
with a denotational semantics of a set of lists without repetition (distinct lists1). The
choice for lists is because this structure inherently associates a generator to an index,
making implicit the representation of order. These lists are composed of non-repeated
elements (distinct lists) because the events in fault trees are non-repairable. Thus, they do
not occur more than once.

The elements of a list have an implicit order number, but such an order number
is different from the Sequence Number function used in [19, 20]. Although different, the
order number in lists is related to the concept that there should be no gaps of the indexes
between consecutive events occurrence. The structure of the lists ensures this restriction.
However, it is different because order 0 (zero) in [19, 20] means non-occurrence. It may
cause a discontinuity because 0 to 1 is different from 1 to 2. In FBAs the non-occurrence
of an event is just the absence of the event. Thus we use the same representation of
non-occurrence as absence of the event in ATF to avoid this discontinuity. For example,
the following lists are all permutations of fault events a and b (the generators are a and b):
1 Although some may use the terminology “disjoint lists” to call the lists of non-repeated elements, we

use the same terminology (distinct lists) of the theories built-in the Isabelle/HOL tool.

Chapter 4. A free algebra to express structure expressions of ordered events 62

[]: no fault occurs

[a]: fault a occurs and b does not

[b]: fault b occurs and a does not

[a, b]: fault a occurs before b, a has index 0 and b has index 1.

[b, a]: fault b occurs before a.

In the following we show the definitions and laws of our proposed ATF. To avoid
repetition, let S, T and U formulas in ATF. A list xs is distinct if it has no repeated
element. So, if x is in xs, then it has a unique associated index i and we denote it as
x = xsi, and there is no xsj such that x = xsj, with i 6= j. Furthermore, as we follow an
FBA characterisation, we also need to show that the generators are independent.

The ATF form a free algebra similar to FBAs. Infimum and Supremum are denoted
as set intersection (∩) and union (∪), respectively. The order within the algebra is defined
as set inclusion (⊆).

To distinguish the permutations that are not defined in FBA, we need a new
operator. We give the definition of XBefore (→) in terms of list concatenation, similar to
the work reported in [79]:

[[S → T]] = { zs | ∃ xs, ys • (setxs)∩ (set ys) = {}∧
xs ∈ [[S]] ∧ ys ∈ [[T]] ∧ zs = xs@ ys } (4.1)

where the set function returns the set of the elements of a list, @ concatenates two lists,
and [[.]] obtains the denotational semantics of the formula.

In some cases it is more intuitive to use the XBefore definition in terms of list
slicing because it uses indexes explicitly. Lists slicing is the operation of taking or dropping
elements, obtaining a sublist. In slicing, the starting index is inclusive, and the ending one
is exclusive. Thus the first index is 0 and the last index is the list length. For example, the
list xs[0..|xs|] is equal to the xs list, where |xs| is the length of xs. We use the following
notation for list slicing:

xs[i..j] = starts at i and ends at j − 1 (4.2a)
xs[..j] = xs[0..j] (4.2b)
xs[i..] = xs[i..|xs|] (4.2c)

To simplify the use of list slicing, its definition includes the lower and upper bounds
as 0 and its length, respectively:

xs[i..j] = xs[max (0,i).. min (j,|xs|)] (4.3)

Chapter 4. A free algebra to express structure expressions of ordered events 63

List slicing and concatenation are complementary: concatenating two consecutive
slices of xs results in the original list:

∀ i • xs[..i] @xs[i..] = xs (4.4)

There is an equivalent definition of XBefore with concatenation using list slicing:

[[S → T]] =
{
zs
∣∣∣ ∃ i • zs[..i] ∈ [[S]] ∧ zs[i..] ∈ [[T]]

}
(4.5)

A variable in ATF is defined by one generator, and denotes its occurrence:

[[var x]] = { zs | ∃ zs • x ∈ zs } (4.6)

where x ∈ zs is defined as x ∈ set zs, and set zs is the set of the elements of zs.

For example, for generators a and b, we obtain the following denotational semantics:

[[var a]] = {[a] , [a, b] , [b, a]} (4.7a)
[[var b]] = {[b] , [a, b] , [b, a]} (4.7b)

Given this definition, we show a small example of how the XBefore operator works:

For zs = [] , [] /∈ [[var a]] ∧ [] /∈ [[var b]] =⇒
[] /∈ [[var a→ var b]]

For zs = [a] , [a] ∈ [[var a]] ∧ [a] /∈ [[var b]] ∧ [] /∈ [[var b]] =⇒
[a] /∈ [[var a→ var b]]

For zs = [b] , [b] ∈ [[var b]] ∧ [b] /∈ [[var a]] ∧ [] /∈ [[var a]] =⇒
[b] /∈ [[var a→ var b]]

For zs = [a, b] , [a] ∈ [[var a]] ∧ [b] ∈ [[var b]] =⇒
[a, b] ∈ [[var a→ var b]]

For zs = [b, a] , [b] /∈ [[var a]] ∧ [] /∈ [[var a]] ∧ [b, a] ∈ [[var a]]∧
[] /∈ [[var b]] ∧ [a] /∈ [[var b]] ∧ [b, a] ∈ [[var b]] =⇒
[b, a] /∈ [[var a→ var b]]

[[var a→ var b]] = {[a, b]} (4.8)

Boolean operators are denoted as in FBA:

[[S ∧ T]] = [[S]]∩ [[T]] (4.9a)
[[S ∨ T]] = [[S]]∪ [[T]] (4.9b)

[[¬S]] = UNIV− [[S]] (4.9c)
[[⊥]] = { } (4.9d)
[[>]] = UNIV (4.9e)

Chapter 4. A free algebra to express structure expressions of ordered events 64

UNIV is the universal set. It contains all permutations of the generators of size 0 to
the number of the generators. We denote the set of generators Gen(S) of a formula S as:

Gen(S) =
⋃

xs ∈ [[S]]
setxs (4.10)

The generators of ATF are Gen(UNIV), or simply Gen. For example, if the generators are
a and b, then UNIV is:

{ [] , [a] , [b] , [a, b] , [b, a] }

and Gen(UNIV) = {a, b}.

The following expressions are sufficient to define the ATF in terms of an inductively
defined set (atf):

[[varx]] ∈ atf Variable (4.11a)
[[S]] ∈ atf =⇒ [[¬S]] ∈ atf Complement, Negation (4.11b)

[[S]] ∈ atf ∧ [[T]] ∈ atf =⇒ [[S ∧ T]] ∈ atf Intersection, Infimum (4.11c)
[[S]] ∈ atf ∧ [[T]] ∈ atf =⇒ [[S → T]] ∈ atf XBefore (4.11d)

Following these definitions, the expressions below are also valid for atf :

UNIV ∈ atf Universal set, True (4.11e)
{ } ∈ atf Empty set, False (4.11f)

[[S]] ∈ atf ∧ [[T]] ∈ atf =⇒ [[S ∨ T]] ∈ atf Union, Supremum (4.11g)

The NOT operator is given in terms of UNIV. For example, for generators a and b:

[[¬var a]] = UNIV− [[var a]] by Eq. (4.9c)
= {[] , [a] , [b] , [a, b] , [b, a]} − {[a] , [a, b] , [b, a]} by Eq. (4.7a)
= {[] , [b]} (4.12)

For conciseness, we abbreviate Eq. (4.9c) suppressing UNIV. For example:

UNIV−A ≡ −A

Note that the set that contains the empty list alone is obtained by the conjunction of the
negation of the variables of each generator (for generators a and b):

[[¬var a ∧ ¬var b]] = {[]}

The following expressions are valid for generators a and b and are sufficient to show
that the generators are independent:

[[var a]] = [[var b]] ⇐⇒ a = b (4.13a)
[[var a]] 6⊆ − [[var b]] (4.13b)
− [[var a]] 6⊆ [[var b]] (4.13c)

Chapter 4. A free algebra to express structure expressions of ordered events 65

Expressions Eq. (4.11a) to Eq. (4.11g) and Eq. (4.13a) to Eq. (4.13c) implies that
the ATF without the XBefore operator Eq. (4.1) forms a Boolean algebra based on sets of
lists. And this is also equivalent to an FBA with the same generators.

In our previous work [79] we stated a relation between XBefore and supremum,
provided the operands are variables Eq. (4.6). Now we generalise this relation in terms of
abstract properties of the operands of the XBefore. We name these properties as temporal
properties.

4.1 Temporal properties (tempo)
Temporal properties give a more abstract and less restrictive shape on the XBefore

laws. They are abbreviations that some operators satisfy altogether or individually. However,
the properties considered here are not general properties satisfied by all operators or by
ATF.

The first temporal property is about disjoint split. If the first part of a list is in a
given set, then every remainder part is not. So, if a generator is in the beginning of a list,
it must not be at the end (and vice-versa).

tempo1 S = ∀ i, j, zs • i ≤ j =⇒ ¬
(
zs[..i] ∈ [[S]] ∧ zs[j..] ∈ [[S]]

)
(4.14)

For example, let zs = [z0, z1, z2, z3, z4]. If [z0, z1] ∈ [[S]], thus [z3, z4] /∈ [[S]]. Note that it is
vague, but it is the first relation indication on the lists of S. In this property, as zs has no
repeated elements, then there is no element that is in both sublists.

We use the denotation of a variable below to show how variables satisfy tempo
properties. As illustration, the denotational semantics of var z1 is considered for generators
z1, z2, z3:

[[var z1]] = {[z1] , [z1, z2] , [z2, z1] , [z1, z3] , [z3, z1] , [z1, z2, z3] , [z1, z3, z2] ,
[z2, z1, z3] , [z2, z3, z1] , [z3, z1, z2] , [z3, z2, z1]} (4.15)

We informally demonstrate that the property tempo1 is satisfied by the above set:

[z1] ∈ [[S]] =⇒ [z2] /∈ [[S]] ∧ [z3] /∈ [[S]] ∧ [z2, z3] /∈ [[S]] ∧ [z3, z2] /∈ [[S]]
[z1, z2] ∈ [[S]] =⇒ [z3] /∈ [[S]]
[z2, z1] ∈ [[S]] =⇒ [z3] /∈ [[S]]
[z1, z3] ∈ [[S]] =⇒ [z2] /∈ [[S]]
[z3, z1] ∈ [[S]] =⇒ [z2] /∈ [[S]]

[z1, z2, z3] ∈ [[S]] =⇒ [] /∈ [[S]]
. . .

Chapter 4. A free algebra to express structure expressions of ordered events 66

The second temporal property states that if a list is split into two sublists, say xs
and ys, for every index of the list, then at least one of xs or ys must be in the set:

tempo2 S = ∀ i, zs • zs ∈ [[S]] ⇐⇒ zs[..i] ∈ [[S]] ∨ zs[i..] ∈ [[S]] (4.16)

For example, if a generator is in a list, then it must be in a prefix or in a suffix. If
[z0, z1, z2, z3, z4] ∈ [[S]], thus either [z0] ∈ [[S]], or [z1, z2, z3, z4] ∈ [[S]]. If [z0] /∈ [[S]], thus
[z1, z2, z3, z4] ∈ [[S]]. Then, either [z1] ∈ [[S]] or [z2, z3, z4] ∈ [[S]], and so forth. For variable
var z1:

[z1] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]] ∨ [] ∈ [[S]]
[z1, z2] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]] ∨ [z2] ∈ [[S]]

[z1, z2, z3] ∈ [[S]] ⇐⇒ ([z1] ∈ [[S]] ∨ [z2, z3] ∈ [[S]])∧
([z1, z2] ∈ [[S]] ∨ [z3] ∈ [[S]])

[z2, z1, z3] ∈ [[S]] ⇐⇒ ([z2] ∈ [[S]] ∨ [z1, z3] ∈ [[S]])∧
([z2, z1] ∈ [[S]] ∨ [z3] ∈ [[S]])
. . .

The third temporal property is about belonging to one sublist in the middle. If a
generator belongs to a sublist between j and i, then it belongs to the sublist that starts at
the first position and ends in the jth and to the sublist that starts at ith and ends at the
last position (both sublists contain the sublist in the middle).

tempo3 S = ∀ i, j, zs • i < j =⇒(
zs[i..j] ∈ [[S]] ⇐⇒ zs[..j] ∈ [[S]] ∧ zs[i..] ∈ [[S]]

)
(4.17)

For example, if [z1, z2, z3] ∈ [[S]], then both [z0, z1, z2, z3] ∈ [[S]] and [z1, z2, z3, z4] ∈ [[S]].
For a variable var z1:

[z1] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]] ∧ [z1] ∈ [[S]]∧
[z2, z1] ∈ [[S]] ∧ [z1] ∈ [[S]]∧
[z3, z1] ∈ [[S]] ∧ [z1] ∈ [[S]]∧
[z1] ∈ [[S]] ∧ [z1, z2] ∈ [[S]]∧
[z1] ∈ [[S]] ∧ [z1, z3] ∈ [[S]]∧
[z2, z1] ∈ [[S]] ∧ [z1, z3] ∈ [[S]]∧
[z3, z1] ∈ [[S]] ∧ [z1, z2] ∈ [[S]]

[z1, z2] ∈ [[S]] ⇐⇒ [z3, z1, z2] ∈ [[S]] ∧ [z1, z2] ∈ [[S]]
[z1, z2] ∈ [[S]] ∧ [z1, z2, z3] ∈ [[S]]
. . .

Chapter 4. A free algebra to express structure expressions of ordered events 67

Finally, if a generator belongs to a list, then there is a sublist of size one that
contains the generator.

tempo4 S = ∀ zs • zs ∈ [[S]] ⇐⇒ (∃ i • zs[i..(i+1)] ∈ [[S]]) (4.18)

If list zs = [z0, z1, z2, z3, z4] ∈ [[S]], then one list [zi] ∈ [[S]], where i ∈ {0, . . . , 4}. For a
variable var z1:

[z1] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]]
[z1, z2] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]] ∨ [z2] ∈ [[S]]

[z1, z2, z3] ∈ [[S]] ⇐⇒ [z1] ∈ [[S]] ∨ [z2] ∈ [[S]] ∨ [z3] ∈ [[S]]
. . .

We define tempo1−4 as:

tempo1−4 S = tempo1 S ∧ tempo2 S ∧ tempo3 S ∧ tempo4 S (4.19)

In general, for any generator z, the following is valid:

tempo1−4 (var z)

In our previous work [79] we used set difference to specify the XBefore operator.
Provided tempo1 S and tempo1 T , XBefore in [79] is equivalent to Eq. (4.1):

[[S → T]] = {zs | ∃xs, ys • xs ∈ [[S]]− [[T]] ∧ ys ∈ [[T]]− [[S]]∧
distinct zs ∧ zs = xs@ ys} (4.20)

Other expressions also meet one or more temporal properties:

tempo1 S ∧ tempo1 T =⇒ tempo1 (S ∧ T) (4.21a)
tempo3 S ∧ tempo3 T =⇒ tempo3 (S ∧ T) (4.21b)
tempo2 S ∧ tempo2 T =⇒ tempo2 (S ∨ T) (4.21c)
tempo4 S ∧ tempo4 T =⇒ tempo4 (S ∨ T) (4.21d)

4.2 XBefore laws
We now show some laws to be used in the algebraic reduction of ATF formulas.

The laws follow from the definition of XBefore, from events independence, and from the
temporal properties.

We define events independence (/.) as the property that one operand does not
imply the other. For example, in some rules we need to avoid that the operands of XBefore
are var a and var a ∨ var b (it results in { }, see Eq. (4.23g)).

S /. T = ∀i, zs • ¬
(
zs[i..(i+1)] ∈ [[S]] ∧ zs[i..(i+1)] ∈ [[T]]

)
(4.22)

Chapter 4. A free algebra to express structure expressions of ordered events 68

For generators a and b and the denotational semantics of var a and var b
(see Eqs. (4.7a) and (4.7b)), it is easy to check that var a /.var b is satisfied, and
var a /. (var a ∨ var b) is not. Essentially if the formulas contain independent events
one must not imply on the other on the occurrence of individual events (zs[i..(i+1)]).

The absence of occurrences ({ }, the empty set of atf) is a “0” for the XBefore
operator (Eqs. (4.23a) and (4.23b)). The negation of all events ({[]}, a formula with the
empty list) is a “1” for the XBefore operator (Eqs. (4.23c) and (4.23d)).

⊥ → S = ⊥ (4.23a)
S → ⊥ = ⊥ (4.23b)
1→ S = S (4.23c)
S → 1 = S (4.23d)

(S → T) ∨ S = S (4.23e)
(T → S) ∨ S = S (4.23f)

tempo1 S =⇒ S → S = ⊥ (4.23g)
S → (T → U) = (S → T)→ U (4.23h)

The XBefore is absorbed by one of the operands: if one of the operands causes a failure
alone, thus the order with any other operand is irrelevant (Eqs. (4.23e) and (4.23f)).
However, an event cannot come before itself, thus XBefore is not idempotent (Eq. (4.23g)).
The XBefore is associative (Eq. (4.23h)).

To allow formula reduction we need to relate XBefore to the other Boolean operators.
First we use the XBefore as operands of OR and AND.

tempo1 S ∧ tempo1 T =⇒
(S → T) ∧ (T → S) = ⊥ (4.24a)

tempo1−4 S ∧ tempo1−4 T ∧ S /. T =⇒
(S → T) ∨ (T → S) = S ∧ T (4.24b)

As XBefore is not symmetric, the intersection of symmetrical XBefores is empty. The OR
of symmetrical XBefores is a partition of the intersection of the operands. For example,
given generators a and b (a 6= b):

(var a→ var b) ∨ (var b→ var a) = var a ∧ var b (4.25)

because var a and var b satisfy all temporal properties and are independent events.

In our previous work [79], we stated that S and T had to be variables, for example,
of the form var s and var t. Now, each law requires that the operands satisfy some of the
temporal properties, avoiding requiring that they be necessarily variables.

Chapter 4. A free algebra to express structure expressions of ordered events 69

Expressions with Boolean operators are used as operands of the XBefore in the
following laws.

(S ∨ T)→ U = (S → U) ∨ (T → U) (4.26a)
S → (T ∨ U) = (S → T) ∨ (S → U) (4.26b)

tempo1−4 S ∧ tempo1−4 T ∧ S /. T =⇒
(S ∧ T)→ U = (S → T → U)∨

(T → S → U) (4.26c)
tempo1−4 T ∧ tempo1−4 U ∧ T /.U =⇒

S → (T ∧ U) = (S → T → U)∨
(S → U → T) (4.26d)

tempo2 S =⇒ S ∧ (T → U) = ((S ∧ T)→ U)∨
(T → (S ∧ U)) (4.26e)

tempo1 T ∧ tempo3 T =⇒
S → T ∧ T → U = (S → T)→ U (4.26f)

S /. T ∧ tempo1−4 S ∧ tempo1−4 T =⇒
S ∧ (S → T) = S → T (4.26g)

S /. T ∧ tempo1−4 S ∧ tempo1−4 T =⇒
S ∧ (T → S) = T → S (4.26h)

XBefore is distributive over OR (Eqs. (4.26a) and (4.26b)). On the other hand, it does
not distribute through AND. (Eqs. (4.26c) and (4.26d)). The AND of formulas as the
first argument of an XBefore states that the events of such formulas can occur in any
order within the events in the XBefore (Eq. (4.26e)). The XBefore is transitive with
preconditions over the intermediate variable (Eq. (4.26f)). Lastly, the AND is absorbed
with an XBefore (Eqs. (4.26g) and (4.26h)).

Applying Eqs. (4.26c) and (4.26d) in Eq. (4.26e) results in:

tempo1−4 S ∧ tempo1−4 T∧

tempo1−4 U ∧ S /. T ∧ S /.U =⇒
S ∧ (T → U) = (S → T → U)∨

(T → S → U)∨
(T → U → S) (4.27)

which makes clear that the events of S can occur in any order.

Chapter 4. A free algebra to express structure expressions of ordered events 70

In what follows we show properties of XBefore related to the NOT operators.

S /. T ∧ tempo1−4 S ∧ tempo1−4 T =⇒
¬ (S → T) = (¬S ∨ ¬T) ∨ (T → S) (4.28a)

tempo1 S ∧ tempo2 T =⇒
¬S → T = T (4.28b)

tempo1 T ∧ tempo2 S =⇒
S → ¬T = S (4.28c)

S /. T ∧ tempo1−4 S ∧ tempo1−4 T =⇒
(S ∧ ¬T) ∨ (S → T) =S ∧ ¬ (T → S) (4.28d)

4.3 Soundness and completeness
We use type classes in Isabelle/HOL to describe the language (operators, also called

parameters) and the axioms (assumptions) of ATF. Following our proposed denotational
semantics, the instantiation of the type class maps each operator to a set of distinct
lists, including the operators of Boolean algebra and the XBefore operator. Such an
instantiation requires proof obligations for the type (the set of distinct lists), which we
discharged. With all the proofs, Isabelle/HOL asserts that the declared type (the set of
sets of distinct lists) is indeed a valid instantiation of ATF2. For example, Eq. (4.24b) is
defined in ATF and is proved by mapping each syntactical element to the denotational
semantics (a set of distinct lists) and then establishing the equality at the denotational level.
Moreover, the Eqs. (4.23e), (4.23f), (4.26c), (4.26d), (4.26g), (4.26h), (4.27) and (4.28d)
are theorems proved syntactically and inherited by the instantiation for set of sets of
distinct lists. Soundness of the type class assumptions (stated as axioms) with respect to
the denotational model is a direct consequence of such an instantiation.

To illustrate the connection between the type class of ATF (syntactic presentation)
with the denotational model (semantic presentation) we first consider that, from Eq. (4.24b)
we have that:

[[var a→ var b ∨ var b→ var a]] = [[var a ∧ var b]]

Therefore, as the syntactic equation has been proved at the denotational level, any use of
this equation in syntactic transformations preserves semantics. For example, the following
2 Technically, we split the laws in smaller classes and prove them separately—starting with Boolean

algebra—and then composing all the classes.

Chapter 4. A free algebra to express structure expressions of ordered events 71

equality can be syntactically proved:

var a→ var b ∨ var b→ var a ∨ ¬ (var a ∧ var b)
= (var a ∧ var b) ∨ ¬ (var a ∧ var b) by Eq. (4.24b)
=> by Boolean law

Thus, this directly implies the corresponding semantic equivalence:

[[var a→ var b ∨ var b→ var a ∨ ¬ (var a ∧ var b)]] = UNIV

All the above formulas are theorems in the semantics, but are proved using the
assumptions declared on the type class hierarchy (Boolean and ATF).

Proposition 4.1 (Soundness). Let f be a formula in ATF and Σ be a set of simplification
rules of the syntax, then:

∀ f • Σ ` f =⇒ Σ |= f (4.29)

Σ ` f means that f can be syntactically proved by the rules in Σ, whereas Σ |= f

means the same at the (denotational) semantics level. Although we have not formally
carried out this proof inductively, it follows from the fact that we have proved that every
basic rule is sound (as they where proved in the denotational semantics) and that all the
remaining rules have been derived from provably sound rules.

The syntactical application of the rules can be defined in Isabelle/HOL as an
inductive definition. Thus, if a formula is in such an inductive definition, then such a
formula is provable. On the semantics side (right hand side of 4.29) we use the mapping
function mentioned above.

Completeness is the converse of soundness: if a formula has the semantics of >,
then such a formula is provable (syntactically) from the set of rules Σ.

Proposition 4.2 (Completeness). Let f be a formula in ATF and Σ be a set of simplifi-
cation rules of the syntax, then:

∀ f • Σ |= f =⇒ Σ ` reduce f (4.30)

where reduce f transforms the formula f into a normal form using only a subset of the
Boolean operators and the XBefore. We need to show that every formula can be mapped
into such a normal form using the set of rules of the ATF.

4.4 Qualitative and quantitative analyses
In Section 3.1 we showed the kind of results that are obtained in FTA. In this

section we show how to formalize these FTA results as: (i) MCSeq, the number of fault

Chapter 4. A free algebra to express structure expressions of ordered events 72

elements in the minimal sequences that cause a root failure, and (ii) the root probability,
given the availability of basic fault occurrences probabilities. These attributes of an FT
are the most representative ones, but others can be modelled similarly.

4.4.1 Minimal cut sequence

Recall from the beginning of this chapter that the denotational semantics of a
formula in ATF is a set of distinct lists. Thus, each list has no repeated elements and
represents a possible combination of faults that cause the root failure. MCSeqs are those
distinct lists with the least length, defined as follows.

Definition 4.1 (Minimal cut sequences). Let S be a formula in ATF. Its minimal cut
sequences (MCSeq of S) are:

MCSeq (S) = { xs | xs ∈ [[S]] ∧ |xs| = minS } (4.31)

where
minS = Min ({ |xs| | xs ∈ [[S]] })

and Min returns the size of the smallest sequence in the given set.

For example, the MCSeqs of var a → (var b ∨ var c) (for generators a, b, and c)
are:

MCSeq (var a→ (var b ∨ var c)) = {[a, b] , [a, c]} (4.32)

Equation (4.32) states that it is sufficient that a occurs before b, or a occurs before
c, to cause the top event. Other lists in the denotational semantics of the formula are
[a, b, c] and [a, c, b], but these are not minimal.

4.4.2 Root probability

For ATF, our proposal for probability calculation is defined in terms of the proba-
bility of PAND gates, as shown in Eq. (3.12). The reason is that our semantics is defined
in terms of a set of lists (or sequences) of fault occurrences. The main difference from the
PAND calculation is that repeated situations must be removed. For example, the probabil-
ity of [[var f1 → var f2]] contains the situations in which f1 occurs before f2 and f3 does
not occur, or f3 occurs in some time: Pr {[f1, f2, f3]}, Pr {[f1, f3, f2]}, and Pr {[f3, f1, f2]}.

Using Eqs. (3.12) and (4.10) we define the probability for a list of faults.

Definition 4.2 (Probability of a list of faults in ATF). Let xs be a list of faults. Then
the probability of xs, PrFS {xs}, is given by:

PrFS {xs} = Pr {xs} ×
∏

fj ∈ Gen−set xs

(1− Pj (t)) (4.33)

Chapter 4. A free algebra to express structure expressions of ordered events 73

For example, for generators f1, f2, and f3, PrFS {[f1, f2]} = Pr {[f1, f2]}×(1− P3(t)),
which is the probability of f1 occurring before f2 and f3 not occurring.

As the probability of each fault sequence is independent of each other, the probability
of an ATF formula is the sum of the probabilities of its constituent lists of faults.

Definition 4.3 (Probability of a formula in ATF). Let S be a formula in ATF. Then the
probability of S, FPr {S}, is given by:

FPr {S} =
∑

xs∈[[S]]
PrFS {xs} (4.34)

The interesting part behind the probabilistic calculus over the denotational seman-
tics is that it is only about ordering of events. It means that even if a formula contains a
NOT operator, we still safely obtain a probability value, without worrying about comple-
ment probabilities as tackled in [6]. For example, the denotational semantics of ¬var f1

(for generators f1 and f2) is:

[[¬var f1]] = UNIV− [[var f1]]
= UNIV−{[f1] , [f1, f2] , [f2, f1]}
= {[], [f1] , [f2] , [f1, f2] , [f2, f1]} − {[f1] , [f1, f2] , [f2, f1]}
= {[], [f2]} (4.35)

and the probability of ¬var f1 is:

FPr {¬var f1} = PrFS {[]}+ PrFS {[f2]} by Eq. (4.34)
= Pr {[]} × (1− P1(t))× (1− P2(t))

+ Pr {[f2]} × (1− P1(t)) by Definition 4.2
= 1× (1− P1(t))× (1− P2(t))

+ P2(t)× (1− P1(t)) by Eq. (3.12)
= 1− P1(t) (4.36)

The empty list is a special case and has probability value 1. It works as the universal
complement probability of any other list. When the empty list appears in a denotational
semantics it means that the top-event occurs if no fault occurs.

We use the traditional probability calculations (Section 3.3) as reference to calcu-
late the probabilities of formulas in ATF. For example, the formula (var f1 → var f2) ∨
(var f2 → var f1), considering only the two generators (f1 and f2), has denotational se-
mantics {[f1, f2] , [f2, f1]} and the probability of the formula is the probability of [f1, f2]

Chapter 4. A free algebra to express structure expressions of ordered events 74

or [f2, f1] (but not both):

FPr {(var f1 → var f2) ∨ (var f2 → var f1)}
=PrFS {[f1, f2]}+ PrFS {[f2, f1]} by Eq. (4.34)
= Pr {[f1, f2]}+ Pr {[f2, f1]} by Definition 4.2

=
∫ t

0
P ′2(x)P1(x)dx+

∫ t

0
P ′1(x)P2(x)dx by Eq. (3.11)

=
∫ t

0
(P ′2(x)P1(x) + P ′1(x)P2(x)) dx by sum of

∫
=
∫ t

0
(P1(x)P2(x))′ dx by inv. deriv. product

=P1(t)× P2(t) (4.37)

In 4.37 we demonstrated that the probability of a formula (var f1 → var f2) ∨
(var f2 → var f1) is equal to the probability of the traditional AND probability (var f1 ∧
var f2, Eq. (3.10)). This is expected as these two formulas are equivalent, as shown in
Eq. (4.24b).

Another example including complement is the formula var f1 ∧ var f2 ∧ ¬var f3:

S = var f1 ∧ var f2 ∧ ¬var f3

[[S]] = {[f1, f2] , [f2, f1]}
Pr {S} =PrFS {[f1, f2]}+ PrFS {[f2, f1]} by Eq. (4.34)

= Pr {[f1, f2]} × (1− P3(t)) + Pr {[f2, f1]} × (1− P3(t)) by Definition 4.2
=P1(t)× P2(t)× (1− P3(t)) by Eq. (4.37)

(4.38)

Using Eq. (4.34), and for generators f1 and f2, we demonstrate the equivalence to
the probability of a traditional OR operator (Eq. (3.9)), calculated using the denotational
semantics:

S = var f1 ∨ var f2

FPr {S} =PrFS {[f1]}+ PrFS {[f2]}+
PrFS {[f1, f2]}+ PrFS {[f2, f1]} by Eq. (4.34)

= Pr {[f1]} × (1− P2(t)) + Pr {[f2]} × (1− P1(t)) +
P1(t)× P2(t) by Eq. (4.37) and Definition 4.2

=P1(t)× (1− P2(t)) + P2(t)× (1− P1) +
P1(t)× P2(t)

=P1(t) + P2(t)− P1(t)× P2(t) (4.39)

Chapter 4. A free algebra to express structure expressions of ordered events 75

We show an equivalence using the formula probability FPr for generators f1 and
f2:

FPr {var f1 ∧ var f2} = FPr {var f1} × FPr {var f2} (4.40)
PrFS {[f1, f2]}+ PrFS {[f2, f1]} = (PrFS {[f1]}+ PrFS {f1, f2}+ PrFS {f2, f1})×

(PrFS {[f2]}+ PrFS {f1, f2}+ PrFS {f2, f1})
P1(t)× P2(t) = (P1(t)× (1− P2(t)) + P1(t)× P2(t))×

(P2(t)× (1− P1(t)) + P1(t)× P2(t))
= (P1(t)− P1(t)× P2(t) + P1(t)× P2(t))×

(P2(t)− P2(t)× P1(t)) + P1(t)× P2(t))
= P1(t)× P2(t)

Finally, we propose that the formula probability calculation of a greater set of
generators is the same of a smaller one. For example, for var f1 ∧ var f2 and generators
f1, f2 ,and f3:

FPr {var f1 ∧ var f2} = PrFS {[f1, f2]}+ PrFS {[f2, f1]}+
PrFS {[f1, f2, f3]}+ . . .+ PrFS {[f3, f2, f1]}

= P1(t)× P2(t)× (1− P3(t)) + P1(t)× P2(t)× P3(t)
= P1(t)× P2(t)− P1(t)× P2(t)× P3(t)+
P1(t)× P2(t)× P3(t)

= P1(t)× P2(t) (4.41)

which is the same calculation as shown in Eq. (4.40). Thus, the probability calculation is
not sensitive to a particular set of generators.

4.4.3 Formal acceptance criteria

To enable the formal verification of structure expressions we use the concept of
acceptance criteria. Safety requirements are written in terms of the properties of an FT,
for example: (i) no single failure should cause a critical failure (the length of the MCSeqs
should be greater than 1), or (ii) the probability of all critical failures should be less than
Px. See more examples in [15, p. XI-5,XI-18]. To check these requirements we translate
them into a value and verify in the theorem prover.

For the two analysis shown in this section, we define the two acceptance criteria:

|F |>n = Min ({ |xs| | xs ∈ [[F]] }) > n length of MCSeqs (4.42a)
Pr {F}<Px = FPr {F} < Px root-event probability (4.42b)

Both equations return a Boolean value, which can be verified by a theorem prover.

Chapter 4. A free algebra to express structure expressions of ordered events 76

Using the formal acceptance criteria, safety requirements as stated in the beginning
of this section are:

|F |>1: the minimum length of the MCSeqs of F are higher than 1;

Pr {F}<10−9
: the probability of the top event of F shall be less than 10−9.

The verification of the acceptance criteria is illustrated with the probability calcu-
lation of a formula in Section 6.5.

4.5 Mapping CSPM traces to ATF
In our previous work [28, 27] we reported a strategy to inject faults in a CSPM model

generated from an architectural model of a system in Simulink. Using a model-checker we
were able to obtain failure traces with the injected faults, from which we produced failure
expressions in Boolean algebra. Thus, the order-related information was lost, as there are
no means to represent these failure traces in Boolean algebra. For example, a trace that
represents the occurrence of f1 before f2 was written as the expression var f1 ∧ var f2,
which is the same as var f2 ∧ var f1.

Using the same strategy, but now mapping the traces to ATF we are able to analyse
order-related failures. In this section we show how to map the same failure traces obtained
by the strategy reported in the work [28] to ATF.

The mapping function takes the set of traces as input and produces a structure
expression in ATF. Each event in the traces becomes a variable, and each list becomes an
XBefore with the conjunction (ANDs) of the variables of the remaining generators. The
following recursive definitions describe the mapping function.

〈[]〉XB = > (4.43a)
〈[f]〉XB = var f (4.43b)

〈[f1] @ tr〉XB = var f1 → 〈tr〉XB (4.43c)

〈{tr1, tr2, . . . , trn}〉XB =
∨

i∈{1,...,n}

〈tri〉XB ∧ ¬
∨

j ∈ Gen−set tri

var fj

 (4.43d)

where @ concatenates two traces. The following examples show how it works for generators

Chapter 4. A free algebra to express structure expressions of ordered events 77

f1, f2, f3:

〈[f1]〉XB = var f1 ∧ ¬ (var f2 ∨ var f3) (4.44a)
〈[f1, f2]〉XB = var f1 → var f2 ∧ ¬var f3 (4.44b)

〈[f3, f2, f1]〉XB = var f3 → (var f2 → var f1) (4.44c)
〈{[f1] , [f1, f2]}〉XB = (var f1 ∧ ¬var f2 ∧ ¬var f3)∨

((var f1 → var f2) ∧ ¬var f3) (4.44d)

78

5 Reasoning about fault activation

The AL proposed in this work emerges from the need to analyse the behaviour of
a system when a subset of the faults have been triggered in some order, and to provide
completeness analysis of system behaviour. There are at least two strategies to use AL to
obtain structure expressions of SFT, TFT, or DFT: (i) model systems directly in AL, and
(ii) obtaining operational mode expressions extracted from failure traces, as shown in the
work reported in [52]. In approaches as those reported in [19, 23], behavioural completeness
is left for the analyst. Using tautology and the indication of undefined nominal values, we
ensure that no situation is missed. That is, modelling is behaviourally complete.

The Activation Logic associates: (i) an operational mode, and (ii) the expression of
fault events that activates the operational mode or error event. The expressions of fault
events can be written in any algebra that provides tautology and contradiction properties.
Boolean algebra and ATF provide both. Thus, AL is parametrized by: (i) an algebra that
provides at least tautology and contradiction, and (ii) operational modes. Figure 24 depicts
an overview of AL.

AL(,)

{ {

Operational
Mode

+ Omission

+ Commission

+ Early

+ Late

etc.

Non-determinism

Completeness

Predicates &
structure expr.

Algebra of
Temporal
Faults

+ XBefore

> tautology

> contradiction

Boolean
Algebra

Inner
Algebra

+ infimum

+ supremum

+ bottom

+ top

+ complement

> tautology

> contradiction

Figure 24 – AL overview

We summarise the properties of AL as follows:

Chapter 5. Reasoning about fault activation 79

1. No expression predicate is a contradiction: there are no false predicates in activation
expressions;

2. The predicates in the terms of an expression consider all possible situations: expression
tautology;

3. There are no two terms with exactly the same operational mode: all expression terms
are related to a unique operational mode.

These properties form the healthiness conditions [71] of an expression in AL.

We show the general form of AL to model faults in Section 5.1, the healthiness
conditions to normalize expressions in Section 5.2, how to identify non-determinism in an
expression in Section 5.3, and the predicate notation to analyse systems and model fault
propagation in Section 5.4.

5.1 The Activation Logic Grammar
Each term in AL is a pair of a predicate and an operational mode. The predicate

is written in either Boolean algebra, ATF, or any algebra that provides these properties:
tautology and contradiction. We assume that the set of possible faults on a system is finite
and that each variable declared in a predicate represents a fault event.

The operational mode has two generic values: (i) Nominal, and (ii) Failure. Nominal
values either determine a value, or an undefined value (in this case, the constant value
“undefined” is assumed). Failure values denote an erroneous behaviour, which can be a total
failure (for example, signal omission) or a failure that causes degradation (for example, a
signal below or above its nominal range). The choice of the operational modes depends on
the system being analysed and its definition is generic and is left for the analyst. For the
AL, it is sufficient to specify that it is an erroneous behaviour.

The grammar is parametrized by the syntax of an algebra (Algebra) and a set of
operational modes (OperModes). The initial rules of the grammar are defined as follows:

AL(Algebra, OperModes) = TERM(Algebra, OperModes)
| TERM(Algebra, OperModes)

‘|’ AL(Algebra, OperModes)
TERM(Algebra, OperModes) = ‘(’ Algebra ‘,’ OM(OperModes) ‘)’
OM(OperModes) = ‘Nominal’ NominalValue

| ‘Failure’ OperModes
NominalValue = ‘undefined’ | Number
Number = Integer | Bool | Decimal

Chapter 5. Reasoning about fault activation 80

The denotational semantics of the expressions in AL is a set of pairs. The predicate in each
term of an expression depends on the semantics of the inner algebra. Thus the predicate
evaluates to either true (>) or false (⊥) depending on the valuation in the algebra. In
what follows we show a sketch of the denotational semantics of AL.

(P1, O1) 7→ {(P1, O1)}
(P1, O1) | (P2, O2) 7→ {(P1, O1) , (P2, O2)}

Nominal 100 7→ Nominal 100
Nominal undefined 7→ Nominal undefined

Failure Omission 7→ FailureOmission

In an expression, if the ith predicate evaluates to true (>), we say that the ith operational
mode is activated. To simplify the presentation of the expressions and to ease understanding,
we use the denotational semantics in the remainder of this chapter (the right-hand
side of the sketch above). Thus, instead of using Exp = (P1, O1)|(P2, O2) we use Exp =
{(P1, O1) , (P2, O2)}

In this section, to illustrate the properties and possible analyses, we use an example
of a system with faults A and B and the following outputs:

O1: when A is active;

O2: when B is active;

O3: when A is active, but B is not;

O4: when A or B are active.

The expression for this example in AL is:

S = {(A,O1) , (B,O2) , (A ∧ ¬B,O3) , (A ∨B,O4)} (5.1)

We use Eq. (5.1) in the following sections of this chapter to illustrate AL.

In this example we see that one of the healthiness conditions is not satisfied: when,
for instance, A and B are both inactive (¬ (A ∧B)), there is no explicit output defined. In
Section 6.4 we show a more detailed case study to illustrate the reasoning about temporal
faults. In the next section, we show how to normalise the expression, so that the three
healthiness conditions are satisfied.

5.2 Healthiness Conditions
The healthiness conditions are fix points of a language. The property is defined as

a function of an expression and returns another expression. For example, if a healthiness
condition H is satisfied by an expression Exp, we have H (Exp) = Exp.

Chapter 5. Reasoning about fault activation 81

In what follows we show the three healthiness conditions for AL. For convenience,
we use the following abbreviations:

contradiction: the expression always evaluates to false;

tautology: the expression always evaluates to true.

5.2.1 H1: No predicate is a contradiction

This property is very simple and it is used to eliminate any term that has a
predicate that always evaluates to false.

Definition 5.1. Let exp be an expression in AL, then:

H1 (exp) = { (P,O) | (P,O) ∈ exp ∧ ¬contradiction (P) } (5.2)

where the operator ∈ indicates that a term is present in the expression.

Applying the first healthiness condition to our example results in:

H1 (S) = S

Thus, we conclude that S is H1-healthy.

5.2.2 H2: All possibilities are covered

This property is used to make explicit that there are uncovered operational modes.
In this case, there is a combination of variables in the algebra that was not declared in the
expression. Very often the focus when modelling faults is on erroneous behaviour. So we
assume that such an uncovered operational mode is nominal, but has an undefined value.

Definition 5.2. Let exp be an expression in the AL, and τ is:

τ =
∨

(P,O)∈exp

P

then:

H2 (exp) =

exp, if tautology (τ)

exp ∪ {(¬τ,Nominal undefined)} , otherwise
(5.3)

This property checks erroneous behaviour completeness. If the expression is already
complete, all possibilities are already covered, and the expression is healthy. Otherwise, a
term containing the missing terms is introduced using the Nominal undefined.

Chapter 5. Reasoning about fault activation 82

Applying the second healthiness condition to our example results in the following
expression after simplification:

H2 (S) = S ∪ {(¬A ∧ ¬B,Nominal undefined)}

Thus, we conclude that S is not H2-healthy.

5.2.3 H3: There are no two terms with exactly the same operational mode

This property merges terms that contain the same operational mode. It avoids
unnecessary formulas and may reduce the expression.

Definition 5.3. Let exp be an expression in AL. Then:

H3 (exp) = { (P1, O1) | (P1, O1) ∈ exp ∧
∀ (P2, O2) ∈ exp • (P1, O1) = (P2, O2) ∨O1 6= O2 }∪

{(P1 ∨ P2, O1) | (P1, O1) , (P2, O2) ∈ exp ∧O1 = O2}

(5.4)

Applying H3 in the example in the beginning of the chapter, we conclude that S is
H3-healthy. On the other hand, if we consider an S ′ system being a copy of S, but making
O1 = O2, then:

H3 (S ′) = {(A ∨B,O1) , (A ∧ ¬B,O3) , (A ∨B,O4)}

Thus, we conclude that S ′ is not H3-healthy.

5.2.4 Healthy expression

To obtain a healthy expression, we apply all three healthiness conditions. The order
of application of each healthiness condition does not change the resulting expression. The
healthiness function is written as the composition of functions as follows:

H = H1 ◦ H2 ◦ H3 (5.5)

After applying the three healthiness conditions to S, the resulting expression is:

H (S) = { (A,O1) , (B,O2) ,
(A ∧ ¬B,O3) , (A ∨B,O4) ,
(¬A ∧ ¬B,Nominal undefined) }

The healthiness conditions are useful to faults modelling, aiding the faults analyst
to check contradictions and completeness. Also, obtaining safe predicates is only possible
in healthy expressions. In the next section, we show how to verify non-determinism in AL
expressions.

Chapter 5. Reasoning about fault activation 83

5.3 Non-determinism
Non-determinism is usually an undesirable property. Thus, the analysis shall

consider the activation of faults even if the fault might or not be active.

To identify non-determinism, we can check for the negation of a contradiction in a
pair of predicates in the algebra.

Definition 5.4 (Non-determinism). Let exp be an expression in AL.

nondeterministic (exp) = ∃ (P1, O1) , (P2, O2) ∈ exp •
¬contradiction (P1 ∧ P2)

(5.6)

If there is at least one combination that evaluates P1 ∧ P2 to true (it is not a
contradiction), then exp is non-deterministic. Our example is clearly non-deterministic as
at least A ∧ (A ∨B) is not a contradiction.

To analyse components and systems, and to model faults propagation, a predicate
notation is shown in the next section. The predicate notation offers two additional ways
to check non-determinism.

5.4 Predicate Notation
The Activation Logic needs a special notation to enable the analysis of: (i) a

particular faults expression, or (ii) a propagation in components. Such a special notation
extracts predicates in the algebra given an observable failure of the system (an undesired
operational mode).

Definition 5.5 (Predicate). Let exp be an expression in AL, and Ox an operational mode.
A predicate over exp that matches Ox is described as:

〈|out (exp) = Ox|〉 ⇐⇒ ∃ (P,O) ∈ H (exp) | O = Ox • P (5.7)

The predicate notation function returns a predicate in the algebra. For the example
in the beginning of this section, the predicate for O2 is obtained as follows:

〈|out (S) = O2|〉 = B

To allow fault propagation of components we need another special notation. It
expands the modes of an expression with a predicate in the inner algebra.

Definition 5.6 (Modes). Let exp be an expression in AL, and P a predicate in the inner
algebra, then:

modes (exp, P) = {(Pi ∧ P,Oi) | (Pi, Oi) ∈ H (exp)} (5.8)

Chapter 5. Reasoning about fault activation 84

Finally, to check the possible outputs, we need a function to obtain a set of outputs
given an expression.

Definition 5.7 (Activation). Let exp be an expression in AL, and Px a predicate in the
inner algebra, then:

activation (exp, Px) = {O|(P,O) ∈ H (exp) ∧ tautology (Px =⇒ P)} (5.9)

Non-determinism can also be checked using the predicate notation and the activation
property:

activation (S,A ∧ ¬B) = {O1, O3} (5.10a)
〈|out (S) = O1|〉 ∧ 〈|out (S) = O3|〉 =A ∧ ¬B (5.10b)

Equation (5.10a) shows that both O1 and O3 can be observed if A ∧ ¬B is true. Equa-
tion (5.10b) states that if the possible operational modes of healthy S are O1 and O3, then
the predicate is A ∧ ¬B. Non-determinism is the possibility of observing two different
failures (O1 and O3) for the same failure expression (A ∧ ¬B) in the algebra. In the next
chapter, we show a practical case study using these properties and notations.

85

6 Case study

EMBRAER provided us with the Simulink model of an Actuator Control System
(depicted in Figure 21). The failure expression of this system (that is, for each of its
constituent components) was also provided by EMBRAER (we show some of them in
Table 6). In what follows we illustrate our strategy using the Monitor component.

A monitor component is a system commonly used for fault tolerance [80, 81].
Initially, the monitor connects the main input (power source on input port 1) with its
output. It observes the value of this input port and compares it to a threshold. If the
value is below the threshold, the monitor disconnects the output from the main input
and connects to the secondary input. We present the Simulink model for this monitor in
Figure 22.

Sensors and actuators are used to improve safety by taking measures to decrease
potential failures, as the leak protection system reported in [6], and shown in Section 3.4.3.
A sensor is installed in a room that may have gas leakage. If the sensor detects a gas leak,
then an actuator—a controlled valve—closes the gas flow. A second valve diverts the gas
flow if a high pressure is detected due the first valve closing.

Now we show five contributions: (i) using ATF, but only with Boolean operators,
thus ignoring ordering, we can obtain the same results obtained in [28], (ii) representing
each of the fault traces reported in [28] as a term in our proposed ATF, using the mapping
function shown in Section 4.5, (iii) modelling faults of the monitor using AL, using
expressions in Boolean Algebra, (iv) modelling faults of the monitor with AL, but using
ATF as the inner algebra, and (v) obtaining failure probability from a formula with explicit
NOT operators neither considering the consensus law nor the theory shown in [6]. Similarly
to the association of fault events of Table 6 in Section 3.5, we associate the fault events as:

b1 = LowPower-In1 B1 = var b1

b2 = LowPower-In2 B2 = var b2

f = SwitchFailure F = var f

and for the leak detection system, we associate fault events as:

prv = the pressure relief valve fails PRV = var prv

i1 = there is an ignition source in room 1 I1 = var i1
l = there is a gas leak in room 1 L = var l

val = the isolation valve fails VAL = var val

Chapter 6. Case study 86

6.1 From traces to structure expressions with Boolean operators
In this section we show that the same result reported in [28] in terms of static

failure expression (or Boolean propositions) can be obtained with our Boolean operator
without using XBefore. Similarly to the mapping function shown in Section 4.5, we define
a mapping function from traces to ATF with Boolean operators only as:

〈[]〉bool => (6.1a)
〈[f]〉bool = var f (6.1b)

〈[f1] @ tr〉bool = var f1 ∧ 〈tr〉bool (6.1c)

〈{tr1, tr2, . . . , trn}〉bool =
∨

i∈{1,...,n}

〈tri〉bool ∧ ¬
∨

j∈Gentri

var fj

 (6.1d)

The only difference of the mapping function, when considering Boolean operators only,
is Eq. (6.1c). Equations (6.1a), (6.1b) and (6.1d) are identical to Eqs. (4.43a), (4.43b)
and (4.43d).

For each trace shown in Section 3.5, the mapping function generates the following
expressions

TRACE 1: 〈[f, b2]〉bool = F ∧B2

TRACE 2: 〈[b2, f]〉bool = B2 ∧ F

TRACE 3: 〈[b1, b2]〉bool = B1 ∧B2

TRACE 4: 〈[b2, b1]〉bool = B2 ∧B1

TRACE 5: 〈[b1, f]〉bool = B1 ∧ F

TRACE 6: 〈[b1, f, b2]〉bool = B1 ∧ F ∧B2

TRACE 7: 〈[b1, b2, f]〉bool = B1 ∧B2 ∧ F

TRACE 8: 〈[b2, b1, f]〉bool = B2 ∧B1 ∧ F

TRACE 9: 〈[f, b1, b2]〉bool = F ∧B1 ∧B2

TRACE 10: 〈[f, b2, b1]〉bool = F ∧B2 ∧B1

TRACE 11: 〈[b2, f, b1]〉bool = B2 ∧ F ∧B1

They represent the same faults shown in Section 3.5. By applying the mapping
function, Eq. (6.1d), for the previously shown set of traces, we obtain the following
expression in ATF (and in FBA):

Mbool = (B1 ∧B2) ∨ (F ∧ (B1 ∨B2)) (6.2)

which is equivalent to our industrial partner’s failure expression shown in Table 6. This
shows that ATF can represent (static) failure expression as in our previous work [28].

Chapter 6. Case study 87

6.2 From traces to structure expressions with XBefore
Now, by using ATF with the XBefore operator and the mapping function shown

in Eqs. (4.43a) to (4.43d), we can capture each possible individual sequences as generated
by the work [28]:

TRACE 1: 〈[f, b2]〉XB = (F → B2)
TRACE 2: 〈[b2, f]〉XB = (B2 → F)
TRACE 3: 〈[b1, b2]〉XB = (B1 → B2)
TRACE 4: 〈[b2, b1]〉XB = (B2 → B1)
TRACE 5: 〈[b1, f]〉XB = (B1 → F)
TRACE 6: 〈[b1, f, b2]〉XB = B1 → (F → B2)
TRACE 7: 〈[b1, b2, f]〉XB = B1 → (B2 → F)
TRACE 8: 〈[b2, b1, f]〉XB = B2 → (B1 → F)
TRACE 9: 〈[f, b1, b2]〉XB = F → (B1 → B2)

TRACE 10: 〈[f, b2, b1]〉XB = F → (B2 → B1)
TRACE 11: 〈[b2, f, b1]〉XB = B2 → (F → B1)

Using the mapping function, Eq. (4.43d), for the previously shown set of traces, we
obtain:

MA = (F → B2 ∧ ¬B1) ∨ (B2 → F ∧ ¬B1) ∨ (B1 → B2 ∧ ¬F)∨
(B2 → B1 ∧ ¬F) ∨ (B1 → F ∧ ¬B2) ∨ (B1 → (F → B2))∨
(B1 → (B2 → F)) ∨ (B2 → (B1 → F)) ∨ (F → (B1 → B2))∨
(F → (B2 → B1)) ∨ (B2 → (F → B1))

= (F ∧B2 ∧ ¬B1) ∨ (B1 ∧B2 ∧ ¬F) ∨ (B1 → F ∧ ¬B2)∨
(B1 → (F → B2)) ∨ (B1 → (B2 → F)) ∨ (B2 → (B1 → F))∨
(F → (B1 → B2)) ∨ (F → (B2 → B1)) ∨ (B2 → (F → B1)) by Eq. (4.26c)

= (F ∧B2 ∧ ¬B1) ∨ (B1 ∧B2 ∧ ¬F) ∨ (B1 → F ∧ ¬B2)∨
(B2 ∧ (B1 → F)) ∨ (B2 ∧ (F → B1)) by Eq. (4.27)

= (B1 ∧B2) ∨ (F ∧B2) ∨ (B1 → F ∧ ¬B2) (6.3)

The semantics of the above expression is: (i) fault b2 (var b2) occurs and fault b1

(var b1) or fault f (var f) occurs, or (ii) fault b1 occurs before fault f and fault b2 does
not occur, which is more precise than the expression found without considering order of
events.

Expanding Eq. (6.2), we have:

(B1 ∧B2) ∨ (F ∧B2) ∨ (F ∧B1)

Chapter 6. Case study 88

which differs from Eq. (6.3) only on terms: F ∧B1 (of Mbool) and B1 → F ∧ ¬B2 (of MA).

6.3 From AL to structure expressions with Boolean operators
The power source has only two possible operational modes: (i) the power source

works as expected, providing a nominal value of 12V , and (ii) it has an internal failure Bi,
and its operational mode is “low power”. In AL it is modelled as:

PowerSourcei = {(Bi, LP) , (¬Bi,Nominal 12V)} (6.4)

where LP is the LowPower failure. PowerSourcei is healthy:

• H1-healthy: there is no contradiction in the expressions;

• H2-healthy: combining the expressions of the pairs in a disjunction, we obtain a
tautology;

• H3-healthy: the operational modes of the pairs are distinct.

The monitor is a bit different because its behaviour depends not only on internal
faults, but also on its inputs. We now use the predicate notation defined in Section 5.4 to
express fault propagation. As the monitor has two inputs and its behaviour is described in
Figure 22, then it is a function of the expressions of both inputs:

Monitorbool (in1, in2) =
modes (in1, 〈|out (in1) = NominalX|〉 ∧ ¬F)∪
modes (in2,¬ 〈|out (in1) = NominalX|〉 ∧ ¬F)∪
modes (in2, 〈|out (in1) = NominalX|〉 ∧ F)∪
modes (in1,¬ 〈|out (in1) = NominalX|〉 ∧ F)

(6.5)

where X is an unbound variable and assumes any value. The expression states the following:

• The monitor output is the same as in1 if the output of in1 is nominal and there is
no internal failure in the monitor:

modes (in1, 〈|out (in1) = NominalX|〉 ∧ ¬F)

• The monitor output is the same as in2 if the output of in1 is not nominal and there
is no internal failure in the monitor:

modes (in2,¬ 〈|out (in1) = NominalX|〉 ∧ ¬F)

Chapter 6. Case study 89

• The monitor output is the converse of the previous two conditions if the internal
failure F is active:

modes (in2, 〈|out (in1) = NominalX|〉 ∧ F)∪
modes (in1,¬ 〈|out (in1) = NominalX|〉 ∧ F)

The operational modes (observed behaviour) of the monitor depend on: (i) its
internal fault, and (ii) propagated errors from its inputs. Composing the monitor with the
two power sources, we obtain the AL expression of a power supply subsystem Systembool:

Systembool =
Monitorbool (PowerSource1, PowerSource2)

=modes (in1,¬B1 ∧ ¬F) ∪modes (in2,¬¬B1 ∧ ¬F)∪
modes (in2,¬B1 ∧ F) ∪modes (in1,¬¬B1 ∧ F) by Eq. (5.7)

=modes (in1,¬B1 ∧ ¬F) ∪modes (in2, B1 ∧ ¬F)∪
modes (in2,¬B1 ∧ F) ∪modes (in1, B1 ∧ F) by simplification

= {(Pi ∧ ¬B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in1}∪

{(Pi ∧B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in2}∪

{(Pi ∧ ¬B1 ∧ F,Oi) | (Pi, Oi) ∈ in2}∪

{(Pi ∧B1 ∧ F,Oi) | (Pi, Oi) ∈ in1} by Eq. (5.8)
= {(B1 ∧ ¬B1 ∧ ¬F,LP) ,

(¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V) ,
(B2 ∧B1 ∧ ¬F,LP) ,
(¬B2 ∧B1 ∧ ¬F,Nominal 12V) ,
(B2 ∧ ¬B1 ∧ F,LP) ,
(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) ,
(B1 ∧B1 ∧ F,LP) ,
(¬B1 ∧B1 ∧ F,Nominal 12V)} replacing vars

Simplifying and applying H1, we obtain:

H1 (Systembool) =
{(¬B1 ∧ ¬F,Nominal 12V) , (B2 ∧B1 ∧ ¬F,LP) ,
(¬B2 ∧B1 ∧ ¬F,Nominal 12V) , (B2 ∧ ¬B1 ∧ F,LP) ,
(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) , (B1 ∧ F,LP)}

Chapter 6. Case study 90

Applying, H3, we simplify to:

H3 ◦ H1 (Systembool)

=




(¬B1 ∧ ¬F)∨

(B1 ∧ ¬B2 ∧ ¬F)∨
(¬B1 ∧ ¬B2 ∧ F)

,Nominal 12V

 ,


(B1 ∧B2 ∧ ¬F)∨
(¬B1 ∧B2 ∧ F)∨

(B1 ∧ F)

, LP




= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V) ,
(F ∧ (B1 ∨B2) ∨ (B1 ∧B2) , LP)}

The monitor expression is H2-healthy (the predicates are complete), thus:

H2 ◦ H3 ◦ H1 (Systembool) = H3 ◦ H1 (Systembool)

The resulting expression for the monitor after applying all healthiness conditions
is:

H (Systembool) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V) ,
(F ∧ (B1 ∨B2) ∨ (B1 ∧B2) , LP)}

(6.6)

The operational modes of Systembool is either Nominal 12V or LP (low power).

Finally, we obtain the low power structure expression (see Table 6) using the
predicate notation:

〈|out (Systembool) = LP |〉 ⇐⇒ F ∧ (B1 ∨B2) ∨ (B1 ∧B2)

The monitor expression also indicates that if the switch is operational (¬F) and at
least one PowerSource is operational (¬B1 ∨ ¬B2), the monitor output is nominal. But if
at least one PowerSource is faulty (B1 ∨B2) and the monitor has an internal failure (F)
the system is not operational. These two sentences—written in AL using the predicate
notation—are:

activation (Systembool,¬F ∧ (¬B1 ∨ ¬B2))
= {O| (P,O) ∈ H (Systembool)∧

tautology (¬F ∧ (¬B1 ∨ ¬B2) =⇒ P)} [by Eq. (5.9)]
= {Nominal 12V } [by simplification] (6.7a)

activation (Systembool, F ∧ (B1 ∨B2))
= {O| (P,O) ∈ H (Systembool)∧

tautology (F ∧ (B1 ∨B2) =⇒ P)} [by Eq. (5.9)]
= {LP} [by simplification] (6.7b)

Chapter 6. Case study 91

6.4 From AL to structure expressions with XBefore
Now, let us consider the same system but with a subtle modification. As shown

in [52], the order of the occurrence of faults may be relevant, and the qualitative and
quantitative analyses results may be different than those results without considering the
order of the occurrence of faults. Observing Figure 22, we see that if F activates before a
failure in the first input of the monitor, then it would display a nominal behaviour. This
is because the internal failure F anticipates switching to the second input. On the other
hand, if the first input fails before F , then the monitor would switch to the second input,
and then switch back due to the internal failure. We obtain the following expression for
the monitor, now using the ATF:

MonitorXB (in1, in2) =
modes (in1, 〈|out (in1) = NominalX|〉 ∧ ¬F)∪
modes (in2,¬ 〈|out (in1) = NominalX|〉 ∧ ¬F)∪
modes (in2, 〈|out (in1) = NominalX|〉 ∧ F)∪
modes (in1,¬ 〈|out (in1) = NominalX|〉 → F)∪
modes (in2, F → ¬〈|out (in1) = NominalX|〉)

(6.8)

where X is an unbound variable and assumes any value.

The difference to Systembool (Eq. (6.5)) is only the finer analysis of the cases of
erroneous behaviours of the first input and an internal failure. Note that the finer analysis
splits the predicate

¬ 〈|out (in1) = Nominal 12V |〉 ∧ F (activates in1)

into:

¬ 〈|out (in1) = Nominal 12V |〉 → F (activates in1)

and

F → ¬〈|out (in1) = Nominal 12V |〉 (activates in2)

We can assure that such a split is complete because the predicate notation evaluates to
B1. As the operands satisfy all temporal properties (Eqs. (4.14) and (4.16) to (4.18)) and
events independence (Eq. (4.22)), thus the law shown in Eq. (4.24b) is valid. For the first
split item, the expected behaviour is the same as in1 because the system switches to in2,
but then an internal failure occurs, and it switches back to in1. For the second split item,
it switches to in2 due to an internal failure, then the first input fails, so the behaviour is
similar to the nominal behaviour (see the second modes in Eq. (6.8)).

Chapter 6. Case study 92

Following the similar expansions of Eq. (6.5), we obtain:

SystemXB =MonitorXB (PowerSource1, PowerSource2)
= {(B1 ∧ ¬B1 ∧ ¬F,LP) , (¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V) ,

(B2 ∧B1 ∧ ¬F,LP) , (¬B2 ∧B1 ∧ ¬F,Nominal 12V) ,
(B2 ∧ ¬B1 ∧ F,LP) , (¬B2 ∧ ¬B1 ∧ F,Nominal 12V) ,
(B1 ∧B1 → F,LP) , (¬B1 ∧B1 → F,Nominal 12V)} ,
(B2 ∧ F → B1, LP) , (¬B2 ∧ F → B1,Nominal 12V)}

Simplifying and applying H1 to remove contradictions, we obtain:

H1 (SystemXB) =
{(¬B1 ∧ ¬F,Nominal 12V) , (B2 ∧B1 ∧ ¬F,LP) ,
(¬B2 ∧B1 ∧ ¬F,Nominal 12V) , (B2 ∧ ¬B1 ∧ F,LP) ,
(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) , (B1 → F,LP) ,
(B2 ∧ F → B1, LP) , (¬B2 ∧ F → B1,Nominal 12V)}

Applying H3 to remove redundant terms with identical operational modes and
using the rules shown in Section 4.2, we simplify to:

H3 ◦ H1 (SystemXB)

=





(¬B1 ∧ ¬F)∨
(B1 ∧ ¬B2 ∧ ¬F)∨
(¬B1 ∧ ¬B2 ∧ F)∨

(¬B2 ∧ F → B1)

,Nominal 12V

 ,


(B1 ∧B2 ∧ ¬F)∨
(¬B1 ∧B2 ∧ F)∨

(B1 → F)∨
(B2 ∧ F → B1)

, LP





=





(¬B1 ∧ ¬F)∨
(B1 ∧ ¬B2 ∧ ¬F)∨
(¬B1 ∧ ¬B2 ∧ F)∨

(¬B2 ∧ F → B1)

,Nominal 12V

 ,



(B1 ∧B2 ∧ ¬F)∨
(¬B1 ∧B2 ∧ F)∨
(B2 ∧B1 → F)∨

(¬B2 ∧B1 → F)∨
(B2 ∧ F → B1)

, LP




= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2)∨ ¬B2 ∧ F → B1,Nominal 12V) ,
((B1 ∧B2) ∨ (B2 ∧ F) ∨ (¬B2 ∧B1 → F) , LP)}

The monitor expression is H2-healthy. Simplifying Boolean operators as usual, the
XBefore expression is:

(¬B2 ∧ F → B1) ∨ (¬B2 ∧B1 → F)

Chapter 6. Case study 93

which simplifies to

¬B2 ∧ F ∧B1 by Eq. (4.24b)

Thus:
H2 ◦ H3 ◦ H1 (SystemXB) = H3 ◦ H1 (SystemXB)

The resulting expression for the monitor after applying all healthiness conditions
is:

H (SystemXB) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2)∨
¬B2 ∧ F → B1,Nominal 12V) ,
((B1 ∧B2) ∨ (B2 ∧ F)∨
(¬B2 ∧B1 → F) , LP)}

(6.9)

Finally, we obtain the low power structure expression of the monitor using the
predicate notation:

〈|out (SystemXB) = LP |〉 ⇐⇒ (B1 ∧B2) ∨ (B2 ∧ F) ∨ (¬B2 ∧B1 → F)

Thus, SystemXB fails with LP if:

• Both power sources fail;

• The monitor fails to detect the nominal state of the first power source and the second
power source is in a failure state;

• The monitor fails to detect the failure state of the first power source (the monitor
fails after the failure of the first power source).

Note that if the monitor fails before the failure of the first power source, it fails to detect
the operational mode of the first power source and switches to the second power source,
which is in a nominal state (see expression ¬B2 ∧ F → B1 in Eq. (6.9)).

6.5 Obtaining top-event probability with explicit NOT operators
In this section we show how to use ATF to obtain the same probability formula of

Eq. (3.15).

We use Eq. (4.40) to split the calculations of the top-event structure expression
shown in Eq. (3.13):

FPr {L ∧ ((¬VAL ∧ PRV) ∨ (VAL ∧ I1))} =
FPr {L} × FPr {(¬VAL ∧ PRV) ∨ (VAL ∧ I1)} (6.10)

Chapter 6. Case study 94

Then, we obtain the formula probability of the top-event probability of the structure
expression shown in Eq. (3.13) in ATF:

FPr {L} = PrFS {[l]} by Eq. (4.41)
= Pl(t) (6.11a)

FPr{(¬VAL ∧ PRV)∨
(VAL ∧ I1)} = PrFS {[prv]}+ PrFS {[i1, prv]}+

PrFS {[prv, i1]}+ PrFS {[val, i1]}+
PrFS {[i1, val]}+
PrFS {[val, i1, prv]}+ . . .+
PrFS {[prv, i1, val]}

Note that we use the expression without the consensus law, but the “missing” term
PRV ∧I1 appears naturally on the denotational semantics used in our proposed probability
calculation.

FPr{(¬VAL ∧ PRV)∨
(VAL ∧ I1)} = Pprv(t)× (1− Pi1(t))× (1− Pval(t))

Pi1(t)× Pprv(t)× (1− Pval(t))
Pval(t)× Pi1(t)× (1− Pprv(t))
Pval(t)× Pi1(t)× Pprv(t)

= Pprv(t) + Pval(t)× Pi1(t)− Pprv(t)× Pval(t) (6.11b)

From Eqs. (6.10), (6.11a) and (6.11b), we obtain:

FPr {TOP} = Pl(t)× (Pprv(t) + Pval(t)× Pi1(t)− Pprv(t)× Pval(t)) (6.12)

which is equivalent to Eq. (3.15).

95

7 Conclusion

In this work we presented a foundational theory to support a more precise repre-
sentation of fault events as compared to our previous strategy for injecting faults [28]. The
failure logic is essential for system safety assessment because it is used as basic input for
building fault trees [25, 31, 82]. Furthermore, we still connect the strategy presented in [83]
with the works reported in [31] (functional analysis) and in [82, 25] (safety assessment)
because our new algebra is at least a Boolean algebra.

We also proposed a parametrized logic, AL, that enables the analysis of systems
depending on the expressiveness of a given algebra and a given set of operational modes.
If ATF is used as a parameter, then the order of occurrence of faults can be considered.
Other algebras, like ternary algebras [84] can be used, since they have tautology and
contradiction properties. Although AL does not tackle system details AADL does, the
predicate notation in conjunction with the ATF provides a richer assertion framework.
Also, it is possible to verify non-determinism on the model, by: (i) verifying its existence
with the nondeterministic function, (ii) providing an expression and obtaining the possible
operational modes with the activation function, or (iii) using the predicate notation to
obtain a predicate that enables two or more operational modes.

The work reported in [20, 19, 33] tackles simultaneity with “nearly simultaneous”
events [85]. However, we consider instantaneous events, like the work reported in [22],
because we assume that simultaneity is probabilistically impossible.

The distinct lists’ representation in our algebra allow obtaining MCSeqs directly
from the denotational semantics. Obtaining the MCSeqs from the formulas without using
the denotational semantics requires formula reduction and the conversion of the formula
to the normal form.

Boolean formulas reduction can be achieved by: (i) application of Boolean laws,
(ii) BDDs, or (iii) FBAs. We used Boolean and XBefore laws to reduce ATF formulas.
The work reported in [42, 43] uses Sequential BDDs to reduce formulas with order-based
operators. We plan to use similar concepts in a future work. A ternary tree with special
nodes seems to be a solution, but we have not verified yet.

The works reported in [23, 66, 21, 20, 19] removed the NOT operator. Thus, the
algebras defined there (to analyse TFT and DFT) resembles a Boolean algebra, but
are not complete. ATF allows such trees to have NOT operators and the analysis could
be performed similarly to SFT. Compared to TFTs, ATF does not allow simultaneous
events. Compared to DFTs, ATF is equivalent to the algebra shown in the works reported
in [24, 23], although their algebra has an operator to represent simultaneity, because

Chapter 7. Conclusion 96

simultaneity is probabilistically impossible. The inclusion of an operator to represent
simultaneity and the proofs of relation of ATF to the algebras of TFT and DFT are left
as future work.

The AADL is extensible. The work reported in [86] shows an extension to perform
dependability analysis through state machines and expressions on fault events and opera-
tional modes. Although such an extension captures system behaviour, operational mode
activation conditions are expressed in state transitions in combination with an extension
of Boolean expressions (not related to order). Our work relates operational modes and
fault occurrences order explicitly.

As presented in [52], TFTs and DFTs structure expressions can be written as
formulas in ATF. As the root events of TFTs and DFTs represent operational modes of
a system, the ATF can be used to associate root events with operational modes, thus
allowing the combination of two or more fault trees.

Although the properties of AL require that the inner algebra provides tautology
and contradiction, and we used ATF in the case study, we did not show tautology and
contradiction for ATF. Instead, we used a law to reduce the ATF expression to a Boolean
expression. The methodology to check tautology and contradiction in ATF is related to
expression reduction, which is a future work.

The original expression shown in the case study (Section 6.4) was already H2-healthy.
The second healthiness condition about completeness uses the concept of undefined value
to make any expression H2-healthy. Algebraically it is fine, but in practice, the property
should be met initially, thus the initial expression is already H2-healthy. This property
should only be used as an alert to the analyst if it not met initially.

7.1 Future work
The use of Isabelle/HOL gave us a mechanised means to assure our results. Using

it, however, requires so much time to get used to the notation, and understand proof
mechanisation. All laws shown in Sections 4.1 and 4.2 were proved and are presented
in Appendix A. We plan to prove the other theorems related to probabilities, MCSeq
acceptance criteria verification, and completeness. Properties of the probability calculation
of a formula needs to be proved as well.

Although FTs support events susceptible to common cause, we considered only
independent fault events in this work. This limitation is mainly due to the probabilistic
analysis shown in Section 4.4.2. But, as shown in Section 3.3, a different probability model
could support dependent events as well. A further investigation is needed to verify if it
really affects only the quantitative analysis.

Chapter 7. Conclusion 97

The case studies shown in this work are representative to illustrate the theories, but
a set of more elaborated case studies is essential to evaluate other system properties (like
liveness), as well as to investigate tools limitations related to performance and scalability.

Another future work is to relate ATF with the algebras shown in [23, 20]. It is
important because we can benefit from their results. The main challenge is to define how
to express simultaneity in ATF, or, at least, how to map from ATF to the other algebras.

Considering tools and ease of usage of the theory, a future work is the implementa-
tion of a tool to use the algebra (including the probability calculations) without concerning
about the denotational semantics. We plan to implement such a tool as a plugin in other
tools, like Simulink.

98

References

1 ANAC. Aeronautical Product Certification (in portuguese). 2011. DOU Nº 230, Seção
1, p. 28, 01/12/2011. Available from Internet: <http://www2.anac.gov.br/biblioteca/
resolucao/2011/RBAC21EMD01.pdf>.

2 FAA. Book, Online. RTCA, Inc., Document RTCA/DO-178B. [S.l.]: U.S. Dept. of
Transportation, Federal Aviation Administration, [Washington, D.C.] :, 1993. [1] p. : p.

3 FAA. Part 25 - Airworthiness Standards: Transport Category Airplanes. [S.l.], 2007.

4 SAE. Miscellaneous, SAE ARP4761 Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems and Equipment. [S.l.]: Society of
Automotive Engineers (SAE), 1996.

5 AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, v. 1, n. 1, p. 11–33, 2004. ISSN 1545-5971.

6 ANDREWS, J. D. The use of not logic in fault tree analysis. Quality and Reliability
Engineering International, John Wiley & Sons, Ltd., v. 17, n. 3, p. 143–150, 2001. ISSN
1099-1638. Available from Internet: <http://dx.doi.org/10.1002/qre.405>.

7 ANDREWS, J.; BEESON, S. Birnbaum’s measure of component importance for
noncoherent systems. IEEE Transactions on Reliability, Institute of Electrical &
Electronics Engineers (IEEE), v. 52, n. 2, p. 213–219, jun 2003. Available from Internet:
<http://dx.doi.org/10.1109/TR.2003.809656>.

8 OLIVA, S. Non-Coherent Fault Trees Can Be Misleading. e-Journal of System
Safety, v. 42, n. 3, May-June 2006. Accessed in 13/jan/2016. Available from Internet:
<http://www.system-safety.org/ejss/past/mayjune2006ejss/spotlight2_p1.php>.

9 CONTINI, S.; COJAZZI, G.; RENDA, G. On the use of non-coherent fault trees in
safety and security studies. Reliability Engineering & System Safety, v. 93, n. 12, p. 1886 –
1895, 2008. ISSN 0951-8320. 17th European Safety and Reliability Conference. Available
from Internet: <http://www.sciencedirect.com/science/article/pii/S0951832008001117>.

10 VAURIO, J. K. Importances of components and events in non-coherent systems and
risk models. Reliability Engineering & System Safety, v. 147, p. 117 – 122, 2016. ISSN
0951-8320. Available from Internet: <http://www.sciencedirect.com/science/article/pii/
S0951832015003348>.

11 AKERS. Binary Decision Diagrams. IEEE Transactions on Computers, Institute of
Electrical & Electronics Engineers (IEEE), C-27, n. 6, p. 509–516, jun 1978.

12 BOUTE, R. The binary decision machine as programmable controller. Euromicro
Newsletter, Elsevier BV, v. 2, n. 1, p. 16–22, jan 1976.

13 GIVANT, S.; HALMOS, P. Introduction to Boolean Algebras. [s.n.], 2009. XIV.
(Undergraduate Texts in Mathematics, XIV). ISBN 978-0-387-68436-9. Available from
Internet: <http://www.springer.com/mathematics/book/978-0-387-40293-2>.

http://www2.anac.gov.br/biblioteca/resolucao/2011/RBAC21EMD01.pdf
http://www2.anac.gov.br/biblioteca/resolucao/2011/RBAC21EMD01.pdf
http://dx.doi.org/10.1002/qre.405
http://dx.doi.org/10.1109/TR.2003.809656
http://www.system-safety.org/ejss/past/mayjune2006ejss/spotlight2_p1.php
http://www.sciencedirect.com/science/article/pii/S0951832008001117
http://www.sciencedirect.com/science/article/pii/S0951832015003348
http://www.sciencedirect.com/science/article/pii/S0951832015003348
http://www.springer.com/mathematics/book/978-0-387-40293-2

References 99

14 ERICSON II, C. A. Hazard Analysis Techniques for System Safety. Wiley-
Interscience, 2005. ISBN 978-0-471-72019-5. Available from Internet: <http:
//www.amazon.com/Hazard-Analysis-Techniques-System-Safety/dp/0471720194%
3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%
3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0471720194>.

15 VESELY, W.; GOLDBERG, F.; ROBERTS, N.; HAASL, D. Fault Tree Handbook.
US Independent Agencies and Commissions, 1981. ISBN 9780160055829. Available from
Internet: <http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/>.

16 DUGAN, J. B.; BAVUSO, S. J.; BOYD, M. A. Dynamic fault-tree models for
fault-tolerant computer systems. Reliability, IEEE Transactions on, v. 41, n. 3, p. 363
–377, sep 1992. ISSN 0018-9529.

17 BOYD, M. A. Dynamic Fault Tree Models: Techniques for Analysis of Advanced
Fault Tolerant Computer Systems. Tese (Doutorado) — Duke University, Durham, NC,
USA, 1992. UMI Order No. GAX92-02503.

18 WALKER, M.; PAPADOPOULOS, Y. Synthesis and analysis of temporal fault
trees with PANDORA: The time of Priority AND gates. Nonlinear Analysis: Hybrid
Systems, v. 2, n. 2, p. 368 – 382, 2008. ISSN 1751-570X. Proceedings of the International
Conference on Hybrid Systems and Applications, Lafayette, LA, USA, May 2006: Part II.

19 WALKER, M.; PAPADOPOULOS, Y. Qualitative temporal analysis: Towards a full
implementation of the Fault Tree Handbook. Control Engineering Practice, v. 17, n. 10, p.
1115 – 1125, 2009. ISSN 0967-0661.

20 WALKER, M. D. Pandora: a logic for the qualitative analysis of temporal fault
trees. Tese (Doutorado) — University of Hull, May 2009. Available from Internet:
<https://hydra.hull.ac.uk/resources/hull:2526>.

21 MERLE, G.; ROUSSEL, J.-M.; LESAGE, J.-J. Algebraic determination of the
structure function of Dynamic Fault Trees. Reliability Engineering & System Safety,
Elsevier BV, v. 96, n. 2, p. 267–277, Feb 2011. ISSN 0951-8320.

22 MERLE, G.; ROUSSEL, J.-M.; LESAGE, J.-J. Quantitative Analysis of Dynamic
Fault Trees Based on the Structure Function. Quality and Reliability Engineering
International, Wiley-Blackwell, v. 30, n. 1, p. 143–156, Feb 2014. ISSN 0748-8017.

23 MERLE, G. Algebraic modelling of Dynamic Fault Trees, contribution to qualitative and
quantitative analysis. Tese (Theses) — École normale supérieure de Cachan - ENS Cachan,
jul. 2010. Available from Internet: <https://tel.archives-ouvertes.fr/tel-00502012>.

24 MERLE, G.; ROUSSEL, J.-M.; LESAGE, J.-J. Dynamic fault tree analysis
based on the structure function. 2011 Proceedings - Annual Reliability and
Maintainability Symposium, IEEE, Jan 2011. Available from Internet: <http:
//dx.doi.org/10.1109/RAMS.2011.5754452>.

25 PAPADOPOULOS, Y.; MCDERMID, J.; SASSE, R.; HEINER, G. Analysis and
synthesis of the behaviour of complex programmable electronic systems in conditions
of failure. Reliability Engineering & System Safety, v. 71, n. 3, p. 229–247, 2001. ISSN
0951-8320.

http://www.amazon.com/Hazard-Analysis-Techniques-System-Safety/dp/0471720194%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0471720194
http://www.amazon.com/Hazard-Analysis-Techniques-System-Safety/dp/0471720194%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0471720194
http://www.amazon.com/Hazard-Analysis-Techniques-System-Safety/dp/0471720194%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0471720194
http://www.amazon.com/Hazard-Analysis-Techniques-System-Safety/dp/0471720194%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0471720194
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/
https://hydra.hull.ac.uk/resources/hull:2526
https://tel.archives-ouvertes.fr/tel-00502012
http://dx.doi.org/10.1109/RAMS.2011.5754452
http://dx.doi.org/10.1109/RAMS.2011.5754452

References 100

26 FEILER, P. H.; GLUCH, D. P.; HUDAK, J. J. The Architecture Analysis & Design
Language (AADL): An Introduction. n. February, p. CMU/SEI–2006–TN–011, 2006.
Available from Internet: <http://www.sei.cmu.edu/library/abstracts/reports/06tn011.
cfm>.

27 DIDIER, A. Estratégia sistemática para identificar falhas em componentes de hardware
usando comportamento nominal. Dissertação (Mestrado) — Universidade Federal de
Pernambuco, 2 2012.

28 DIDIER, A.; MOTA, A. Identifying Hardware Failures Systematically. In: GHEYI,
R.; NAUMANN, D. (Ed.). Formal Methods: Foundations and Applications. [S.l.]: Springer
Berlin / Heidelberg, 2012, (Lecture Notes in Computer Science, v. 7498). p. 115–130.
ISBN 978-3-642-33295-1.

29 SNOOKE, N.; PRICE, C. Model-driven automated software FMEA. In: Reliability
and Maintainability Symposium. [S.l.: s.n.], 2011. p. 1–6. ISSN 0149-144X.

30 NISE, N. S. Control systems engineering. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc., 1992. ISBN 0-8053-5420-4.

31 JESUS, J.; MOTA, A.; SAMPAIO, A.; GRIJO, L. Architectural Verification of
Control Systems Using CSP. In: QIN, S.; QIU, Z. (Ed.). ICFEM. [S.l.]: Springer, 2011.
(Lecture Notes in Computer Science, v. 6991), p. 323–339. ISBN 978-3-642-24558-9.

32 MANIAN, R.; COPPIT, D.; SULLIVAN, K.; DUGAN, J. B. Bridging the gap
between systems and dynamic fault tree models. In: Reliability and Maintainability
Symposium, 1999. Proceedings. Annual. [S.l.: s.n.], 1999. p. 105 –111.

33 WALKER, M.; PAPADOPOULOS, Y. A hierarchical method for the reduction of
temporal expressions in Pandora. In: Proceedings of the First Workshop on DYnamic
Aspects in DEpendability Models for Fault-Tolerant Systems. New York, NY, USA: ACM,
2010. (DYADEM-FTS ’10), p. 7–12. ISBN 978-1-60558-916-9.

34 LIU, L.; HASAN, O.; TAHAR, S. Formal Reasoning About Finite-State
Discrete-Time Markov Chains in HOL. J. Comput. Sci. Technol., Springer Science
+ Business Media, v. 28, n. 2, p. 217–231, mar 2013. Available from Internet:
<http://dx.doi.org/10.1007/s11390-013-1324-6>.

35 COPPIT, D.; SULLIVAN, K. J.; DUGAN, J. B. Formal semantics of models for
computational engineering: a case study on dynamic fault trees. In: Software Reliability
Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium on. [S.l.: s.n.],
2000. p. 270 –282. ISSN 1071-9458.

36 BOBBIO, A.; RAITERI, D. C.; MONTANI, S.; PORTINALE, L.; VARESIO, M.
DBNet, a tool to convert Dynamic Fault Trees to Dynamic Bayesian Networks. [S.l.], 2005.

37 SERICOLA, B. Discrete-Time Markov Chains. In: Markov Chains. Wiley-Blackwell,
2013. p. 1–87. Available from Internet: <http://dx.doi.org/10.1002/9781118731543.ch1>.

38 IANNELLI, M.; PUGLIESE, A. An Introduction to Mathematical Population
Dynamics: Along the trail of Volterra and Lotka. In: . Cham: Springer International
Publishing, 2014. cap. Continuous-time Markov chains, p. 329–334. ISBN 978-3-319-03026-5.
Available from Internet: <http://dx.doi.org/10.1007/978-3-319-03026-5_13>.

http://www.sei.cmu.edu/library/abstracts/reports/06tn011.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tn011.cfm
http://dx.doi.org/10.1007/s11390-013-1324-6
http://dx.doi.org/10.1002/9781118731543.ch1
http://dx.doi.org/10.1007/978-3-319-03026-5_13

References 101

39 ANDERSON, W. J. Continuous-Time Markov Chains. Springer New York, 2012.
Available from Internet: <http://www.ebook.de/de/product/25435927/william_j_
anderson_continuous_time_markov_chains.html>.

40 BUCHHOLZ, P.; KATOEN, J.-P.; KEMPER, P.; TEPPER, C. Model-
checking large structured Markov chains. The Journal of Logic and Algebraic
Programming, Elsevier BV, v. 56, n. 1-2, p. 69–97, may 2003. Available from Internet:
<http://dx.doi.org/10.1016/S1567-8326(02)00067-X>.

41 BAIER, C.; HAVERKORT, B.; HERMANNS, H.; KATOEN, J.-P. Model-checking
algorithms for continuous-time markov chains. IEEE Transactions on Software
Engineering, Institute of Electrical & Electronics Engineers (IEEE), v. 29, n. 6, p. 524–541,
jun 2003. Available from Internet: <http://dx.doi.org/10.1109/TSE.2003.1205180>.

42 TANNOUS, O.; XING, L.; DUGAN, J. B. Reliability analysis of warm standby
systems using sequential BDD. 2011 Proceedings - Annual Reliability and Maintainability
Symposium, IEEE, Jan 2011.

43 XING, L.; TANNOUS, O.; DUGAN, J. B. Reliability Analysis of Nonrepairable
Cold-Standby Systems Using Sequential Binary Decision Diagrams. IEEE Trans. Syst.,
Man, Cybern. A, Institute of Electrical & Electronics Engineers (IEEE), v. 42, n. 3, p.
715–726, May 2012. ISSN 1558-2426.

44 MURPHY, K. P. Dynamic bayesian networks: representation, inference and learning.
Tese (Doutorado) — University of California, Berkeley, 2002.

45 BRYANT. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, Institute of Electrical & Electronics Engineers
(IEEE), C-35, n. 8, p. 677–691, aug 1986. Available from Internet: <http:
//dx.doi.org/10.1109/TC.1986.1676819>.

46 MIKULAK, R.; MCDERMOTT, R.; BEAUREGARD, M. The Basics of FMEA,
2nd Edition. CRC Press, 2008. ISBN 9781439809617. Available from Internet:
<https://books.google.com.br/books?id=rM5Vi_0K9bUC>.

47 NIPKOW, T.; PAULSON, L. C.; WENZEL, M. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. Springer, 2002. v. 2283. (LNCS, v. 2283). Available from Internet:
<https://isabelle.in.tum.de/>.

48 ANDREWS, Z.; PAYNE, R.; ROMANOVSKY, A.; DIDIER, A.; MOTA, A.
Model-based development of fault tolerant systems of systems. In: Systems Conference
(SysCon), 2013 IEEE International. [S.l.: s.n.], 2013. p. 356–363.

49 ANDREWS, Z.; DIDIER, A.; PAYNE, R.; INGRAM, C.; HOLT, J.; PERRY,
S.; OLIVEIRA, M.; WOODCOCK, J.; MOTA, A.; ROMANOVSKY, A. Report on
Timed Fault Tree Analysis — Fault modelling. [S.l.], 2013. Available from Internet:
<http://www.compass-research.eu/Project/Deliverables/D242.pdf>.

50 Object Management Group (OMG). Systems Modelling Language (SysML) 1.3. 2012.
Website. Available from Internet: <http://www.omg.org/spec/SysML/1.3>.

51 MAIER, M. W. Architecting principles for systems-of-systems. Systems Engineering,
John Wiley & Sons, Inc., v. 1, n. 4, p. 267–284, 1998. ISSN 1520-6858.

http://www.ebook.de/de/product/25435927/william_j_anderson_continuous_time_markov_chains.html
http://www.ebook.de/de/product/25435927/william_j_anderson_continuous_time_markov_chains.html
http://dx.doi.org/10.1016/S1567-8326(02)00067-X
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
https://books.google.com.br/books?id=rM5Vi_0K9bUC
https://isabelle.in.tum.de/
http://www.compass-research.eu/Project/Deliverables/D242.pdf
http://www.omg.org/spec/SysML/1.3

References 102

52 DIDIER, A.; MOTA, A. An Algebra of Temporal Faults. Information Systems
Frontiers, jan 2016. ISSN 1572-9419.

53 JASKELIOFF, M.; MERZ, S. Proving the Correctness of Disk Paxos. Archive of
Formal Proofs, jun. 2005. ISSN 2150-914x. <http://afp.sf.net/entries/DiskPaxos.shtml>,
Formal proof development.

54 SOMMERVILLE, I. Software Engineering. Pearson, 2011. (International
Computer Science Series). ISBN 9780137053469. Available from Internet: <http:
//books.google.com.br/books?id=l0egcQAACAAJ>.

55 CARVALHO, G.; BARROS, F.; CARVALHO, A.; CAVALCANTI, A.; MOTA,
A.; SAMPAIO, A. NAT2TEST Tool: From Natural Language Requirements
to Test Cases Based on CSP. In: Software Engineering and Formal Methods.
Springer Science + Business Media, 2015. p. 283–290. Available from Internet:
<http://dx.doi.org/10.1007/978-3-319-22969-0_20>.

56 AVRESKY, D.; ARLAT, J.; LAPRIE, J.-C.; CROUZET, Y. Fault injection for
formal testing of fault tolerance. IEEE Transactions on Reliability, Institute of Electrical
& Electronics Engineers (IEEE), v. 45, n. 3, p. 443–455, 1996. Available from Internet:
<http://dx.doi.org/10.1109/24.537015>.

57 BRYANS, J.; CANHAM, S.; WOODCOCK, J. CML Definition 4. [S.l.], 2014.
Available from Internet: <http://www.compass-research.eu/Project/Deliverables/D23.
5-final-version.pdf>.

58 ROSCOE, A. W. The Theory and Practice of Concurrency. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1997. Paperback. ISBN 0136744095.

59 MODARRES, M.; KAMINSKIY, M. P.; KRIVTSOV, V. Reliability engineering and
risk analysis: a practical guide. [S.l.]: CRC press, 2009. ISBN 1420047051, 9781420047059.

60 DISTEFANO, S.; PULIAFITO, A. Dependability Evaluation with Dynamic Reliability
Block Diagrams and Dynamic Fault Trees. IEEE Transactions on Dependable and Secure
Computing, Institute of Electrical & Electronics Engineers (IEEE), v. 6, n. 1, p. 4–17, jan
2009. Available from Internet: <http://dx.doi.org/10.1109/TDSC.2007.70242>.

61 Nuclear Reform Special Task Force. Reassessment of Fukushima Nuclear Accident
and Outline of Nuclear Safety Reform Plan. 2012. Available from Internet: <http:
//www.tepco.co.jp/en/press/corp-com/release/betu12{_}e/images/121214e0201.>

62 STAMATELATOS, M.; VESELY, W.; DUGAN, J.; FRAGOLA, J.; MINARICK III, J.;
RAILSBACK, J. Fault Tree Handbook with Aerospace Applications. Washington, DC 20546,
2002. Available from Internet: <http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf>.

63 ADACHI, M.; PAPADOPOULOS, Y.; SHARVIA, S.; PARKER, D.; TOHDO, T.
An approach to optimization of fault tolerant architectures using HiP-HOPS. Software:
Practice and Experience, John Wiley & Sons, Ltd., v. 41, n. 11, p. 1303–1327, 2011. ISSN
1097-024X.

64 PALSHIKAR, G. K. Temporal fault trees. Information and Software Technology,
v. 44, n. 3, p. 137 – 150, 2002. ISSN 0950-5849.

http://afp.sf.net/entries/DiskPaxos.shtml
http://books.google.com.br/books?id=l0egcQAACAAJ
http://books.google.com.br/books?id=l0egcQAACAAJ
http://dx.doi.org/10.1007/978-3-319-22969-0_20
http://dx.doi.org/10.1109/24.537015
http://www.compass-research.eu/Project/Deliverables/D23.5-final-version.pdf
http://www.compass-research.eu/Project/Deliverables/D23.5-final-version.pdf
http://dx.doi.org/10.1109/TDSC.2007.70242
http://www.tepco.co.jp/en/press/corp-com/release/betu12{_}e/images/121214e0201.
http://www.tepco.co.jp/en/press/corp-com/release/betu12{_}e/images/121214e0201.
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

References 103

65 TANG, Z.; DUGAN, J. Minimal cut set/sequence generation for dynamic fault trees.
In: Reliability and Maintainability, 2004 Annual Symposium - RAMS. [S.l.: s.n.], 2004. p.
207–213.

66 MERLE, G.; ROUSSEL, J.-M.; LESAGE, J.-J.; BOBBIO, A. Probabilistic Algebraic
Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events. IEEE Trans.
Rel., Institute of Electrical & Electronics Engineers (IEEE), v. 59, n. 1, p. 250–261, Mar
2010. ISSN 1558-1721.

67 PEARL, J. Bayesian Networks: a model of self-activated memory for evidential
reasoning. [S.l.], 1985. Available from Internet: <ftp://ftp.cs.ucla.edu/pub/stat_ser/
r43-1985.pdf>.

68 CHIOLA, G.; DUTHEILLET, C.; FRANCESCHINIS, G.; HADDAD, S. Stochastic
well-formed colored nets and symmetric modeling applications. IEEE Transactions
on Computers, Institute of Electrical & Electronics Engineers (IEEE), v. 42, n. 11, p.
1343–1360, 1993. Available from Internet: <http://dx.doi.org/10.1109/12.247838>.

69 JENSEN, K. Coloured Petri Nets. In: Petri Nets: Central Models and Their
Properties. Springer Science + Business Media, 1987. p. 248–299. Available from Internet:
<http://dx.doi.org/10.1007/978-3-540-47919-2_10>.

70 BOBBIO, A.; RAITERI, D. Parametric fault trees with dynamic gates and repair
boxes. In: Reliability and Maintainability, 2004 Annual Symposium - RAMS. [S.l.: s.n.],
2004. p. 459–465.

71 HOARE, C. A. R.; HE, J. Unifying Theories of Programming. Prentice Hall Englewood
Cliffs, 1998. v. 14. Available from Internet: <http://www.unifyingtheories.org/>.

72 STOLL, R. R. Set Theory and Logic. Dover Publications, 1979. (Dover
books on advanced mathematics). ISBN 9780486638294. Available from Internet:
<https://books.google.com.br/books?id=3-nrPB7BQKMC>.

73 FUSSELL, J.; ABER, E.; RAHL, R. On the Quantitative Analysis of Priority-AND
Failure Logic. IEEE Transactions on Reliability, R-25, n. 5, p. 324 – 326, 1976.

74 MATHWORKS. Simulink®. 2010. Available from Internet: <http://www.mathworks.
com/products/simulink>.

75 MATHWORKS. Matlab®. 2010. Available from Internet: <http://www.mathworks.
com/products/matlab>.

76 ASTROM, K. J.; MURRAY, R. M. Feedback Systems: An Introduction for Scientists
and Engineers. Princeton, NJ, USA: Princeton University Press, 2008. ISBN 0691135762,
9780691135762.

77 SPIVEY, J. M. The Z Notation: A Reference Manual. Second edition.
Prentice Hall International (UK) Ltd, 1998. Available from Internet: <http:
//spivey.oriel.ox.ac.uk/~mike/zrm/>.

78 HUFFMAN, B. Free Boolean Algebra. Archive of Formal Proofs, v. 2010, mar.
2010. ISSN 2150-914x. Available from Internet: <http://afp.sourceforge.net/entries/
Free-Boolean-Algebra.shtml>.

ftp://ftp.cs.ucla.edu/pub/stat_ser/r43-1985.pdf
ftp://ftp.cs.ucla.edu/pub/stat_ser/r43-1985.pdf
http://dx.doi.org/10.1109/12.247838
http://dx.doi.org/10.1007/978-3-540-47919-2_10
http://www.unifyingtheories.org/
https://books.google.com.br/books?id=3-nrPB7BQKMC
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://spivey.oriel.ox.ac.uk/~mike/zrm/
http://afp.sourceforge.net/entries/Free-Boolean-Algebra.shtml
http://afp.sourceforge.net/entries/Free-Boolean-Algebra.shtml

References 104

79 DIDIER, A. L. R.; MOTA, A. A Lattice-Based Representation of Temporal Failures.
In: Information Reuse and Integration (IRI), 2015 IEEE International Conference on.
[S.l.: s.n.], 2015. p. 295–302.

80 O’CONNOR, P.; NEWTON, D.; BROMLEY, R. Practical reliability engineering.
[S.l.]: Wiley, 2002. ISBN 9780470844632.

81 KOREN, I.; KRISHNA, C. M. Fault Tolerant Systems. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007. ISBN 0120885255.

82 GOMES, A.; MOTA, A.; SAMPAIO, A.; FERRI, F.; BUZZI, J. Systematic
Model-Based Safety Assessment Via Probabilistic Model Checking. In: MARGARIA,
T.; STEFFEN, B. (Ed.). ISoLA (1). [S.l.]: Springer, 2010. (Lecture Notes in Computer
Science, v. 6415), p. 625–639. ISBN 978-3-642-16557-3.

83 MOTA, A.; JESUS, J.; GOMES, A.; FERRI, F.; WATANABE, E. Evolving a Safe
System Design Iteratively. In: SCHOITSCH, E. (Ed.). SAFECOMP. [S.l.]: Springer, 2010.
(Lecture Notes in Computer Science, v. 6351), p. 361–374. ISBN 978-3-642-15650-2.

84 JONES, D. W. Standard Ternary Logic. 2016. Available from Internet:
<http://homepage.divms.uiowa.edu/{~}jones/ternary/logic.sht>.

85 EDIFOR, E.; WALKER, M.; GORDON, N. Quantification of Simultaneous-AND
Gates in Temporal Fault Trees. In: ZAMOJSKI, W.; MAZURKIEWICZ, J.; SUGIER, J.;
WALKOWIAK, T.; KACPRZYK, J. (Ed.). New Results in Dependability and Computer
Systems. [S.l.]: Springer International Publishing, 2013, (Advances in Intelligent Systems
and Computing, v. 224). p. 141–151. ISBN 978-3-319-00944-5.

86 INTERNATIONAL, S. SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1: Annex A: ARINC653 Annex, Annex C: Code Generation
Annex, Annex E: Error Model Annex. [S.l.], 2015. 134 p. Available from Internet:
<http://standards.sae.org/as5506/1a/>.

87 HAFTMANN, F.; LOCHBIHLER, A. Dlist theory. Available from Internet:
<http://isabelle.in.tum.de/library/HOL/HOL-Quickcheck_Examples/Dlist.html>.

http://homepage.divms.uiowa.edu/{~}jones/ternary/logic.sht
http://standards.sae.org/as5506/1a/
http://isabelle.in.tum.de/library/HOL/HOL-Quickcheck_Examples/Dlist.html

105

Appendix

106

Appendix A – Formal proofs in
Isabelle/HOL

In the following we list all theorems and proofs concerning the laws presented in
Chapter 4. The complete set of verifiable theory files is available at <http://www.cin.ufpe.
br/~alrd/phd/phd-alrd.zip> (password: 6Zvq$5Vyj). We list only those files created in
our work. Each theorem, proof or corollary is followed by its own proof.

The theory about lists of distinct elements (distinct lists) is available in [87] (we
used the 2015 version that is available with Isabelle/HOL).

This Appendix is organized as follows: (i) Appendix A presents the base lemmas and
theorems for sliceable types; (ii) sublists (sliceable distinct lists) are shown in Appendix A;
(iii) algebraic definitions and laws of the ATF are shown in Appendix A, and (iv) proofs
using the denotational semantics of sets of distinct lists are shown in Appendix A.

In this section we present a class to express sub-structures for a data type, and
laws over such a class. For example, for lists, sliceable defines operators and theorems to
obtain sublists.
class sliceable =

fixes slice :: "’a ⇒ nat ⇒ nat ⇒ ’a" ("(3_†_.._)" [80,80,80] 80)

fixes size :: "’a ⇒ nat" ("(1#_)" 65)

fixes empty_inter :: "’a ⇒ ’a ⇒ bool"

fixes disjoint :: "’a ⇒ bool"

assumes slice_none: "x†0..(#x) = x"

assumes empty_seq_inter [simp]:

"disjoint x =⇒ c ≤ k =⇒ empty_inter (x†0..c) (x†k..(#x))"

assumes size_slice: "size (x†i..j) = max 0 ((min j (size x))-i)"

assumes slice_slice: "(x†i..j)†a..b = x†(i+a)..(min j (i+b))"

assumes disjoint_slice_suc:

"disjoint x =⇒ i 6=j =⇒ i < (#x) =⇒ j < (#x) =⇒
x†i..(Suc i) 6= x†j..(Suc j)"

assumes disjoint_slice[simp]: "disjoint x =⇒ disjoint (x†i..j)"

assumes forall_slice_implies_eq: "(#x) = (#y) ∧ (∀ i j. (x†i..j) =

(y†i..j)) ←→ (x = y)"

notation (latex output) slice ("(3_[_.._])" [80,80,80] 80)

Teste x[i..j]

http://www.cin.ufpe.br/~alrd/phd/phd-alrd.zip
http://www.cin.ufpe.br/~alrd/phd/phd-alrd.zip

Appendix A. Formal proofs in Isabelle/HOL 107

definition slice_right :: "’a::sliceable ⇒ nat ⇒ ’a" ("(2_†.._)" [80,80] 80)

where "slice_right x i = x†0..i"

notation ("latex") slice_right ("(2_[.._])" [80,80] 80)

definition slice_left :: "’a::sliceable ⇒ nat ⇒ ’a" ("(2_†_..)" [80,80] 80)

where "x†i.. = x†i..(# x)"

notation ("latex") slice_left ("(2_[_..])" [80,80] 80)

lemma (in sliceable) slice_right_disjoint[simp]: "disjoint xs =⇒
disjoint (slice_right xs i)"

unfolding slice_right_def

by simp

The notation for x[..i] is x[..i]

lemma (in sliceable) slice_left_disjoint[simp]: "disjoint xs =⇒
disjoint (xs†i..)"

unfolding slice_left_def

by simp

abbreviation sliceable_nth :: "’a::sliceable ⇒ nat ⇒ ’a"

where
"sliceable_nth l i ≡ l†i..(Suc i)"

theorem (in sliceable) empty_seq_inter_eq [simp]:

"disjoint x =⇒ empty_inter (x†..i) (x†i..)"

by (simp add: slice_right_def slice_left_def)

theorem (in sliceable) empty_seq_sliced_inter [simp]:

"disjoint x =⇒ b ≤ i =⇒ j ≤ a =⇒ i ≤ j =⇒ a ≤ size x =⇒
empty_inter (x†b..i) (x†j..a)"

proof-
let ?l = "x†b..a"

Appendix A. Formal proofs in Isabelle/HOL 108

assume lt0: "i ≤ j"

assume lt1: "j ≤ a"

assume lt2: "b ≤ i"

assume lt3: "a ≤ size x"

assume lt4: "disjoint x"

have blta: "b ≤ a" using lt0 lt1 lt2 by simp

have ilta: "i ≤ a" using lt0 lt1 by simp

hence 2: "empty_inter (?l†0..(i-b)) (?l†(j-b)..(#?l))"

using lt0 lt4 disjoint_slice by simp

hence "empty_inter ((x†b..a)†0..(i-b)) ((x†b..a)†(j-b)..(#?l))" by simp

hence 3: "empty_inter (x†b..i) ((x†b..a)†(j-b)..(#(x†b..a)))" using ilta lt2

by (simp add: slice_slice min_absorb2)

hence 3: "empty_inter (x†b..i) (x†j..a)"

using blta lt0 lt2 lt3

by (auto simp add: size_slice slice_slice min_def)

thus ?thesis by simp

qed

theorem distinct_slice_lte_inter_empty[simp]:

"distinct l =⇒ i ≤ j =⇒
set (take i (drop 0 l))

∩ set (take (length l-i) (drop i l)) = {}"

by (simp add: set_take_disj_set_drop_if_distinct)

lemma (in sliceable) size_slice_right_absorb: "(#(l†..i)) = min i (#l)"

by (simp add: slice_right_def sliceable_class.size_slice)

lemma (in sliceable) size_slice_left_absorb: "(#(l†i..)) = (#l)-i"

by (simp add: slice_left_def sliceable_class.size_slice)

corollary (in sliceable) slice_right_slice_left_absorb: "(l†..i)†j.. = l†j..i"

unfolding slice_left_def slice_right_def

by (metis (mono_tags, hide_lams) add.left_neutral add.right_neutral max_0L

min.left_idem size_slice_right_absorb slice_right_def

sliceable_class.size_slice sliceable_class.slice_none

sliceable_class.slice_slice)

corollary (in sliceable) slice_right_slice_left_absorb_empty:

"i ≤ j =⇒ (#((l†..i)†j..)) = 0"

by (simp add: size_slice_left_absorb size_slice_right_absorb)

corollary (in sliceable) slice_left_slice_right_absorb:

Appendix A. Formal proofs in Isabelle/HOL 109

"(l†i..)†..j = l†i..(i+j)"

unfolding slice_left_def slice_right_def

proof -

have "(l†i..(#l))†0..j = (l†0..(#l))†i..(i + j)"

by (simp add: sliceable_class.slice_slice)

thus "(l†i..(#l))†0..j = l†i..(i + j)"

by (simp add: sliceable_class.slice_none)

qed

corollary (in sliceable) slice_right_slice_right_absorb:

"(l†..i)†..j = (l†..(min i j))"

unfolding slice_left_def slice_right_def

by (simp add: sliceable_class.slice_slice)

corollary (in sliceable) slice_left_slice_left_absorb:

"(l†i..)†j.. = l†(i+j).."

unfolding slice_left_def slice_right_def

by (simp add: sliceable_class.slice_slice sliceable_class.size_slice

min_absorb1)

corollary (in sliceable) slice_slice_right_absorb:

"(l†i..j)†..b = l†i..(min j (i+b))"

unfolding slice_left_def slice_right_def

by (simp add: add.commute sliceable_class.slice_slice)

corollary (in sliceable) slice_slice_left_absorb:

"(l†i..j)†a.. = l†(i+a)..j"

unfolding slice_left_def slice_right_def

by (metis (mono_tags, hide_lams) add.assoc diff_diff_left max_0L

slice_left_def slice_left_slice_right_absorb slice_right_def

slice_slice_right_absorb sliceable_class.size_slice

sliceable_class.slice_none sliceable_class.slice_slice)

corollary (in sliceable) slice_left_slice_absorb:

"(l†i..)†a..b = l†(i+a)..(i+b)"

unfolding slice_left_def slice_right_def

by (metis (mono_tags, lifting) slice_left_slice_right_absorb slice_right_def

slice_right_slice_left_absorb slice_slice_left_absorb

sliceable_class.slice_none)

corollary (in sliceable) slice_right_slice_absorb:

"(l†..j)†a..b = l†a..(min j b)"

Appendix A. Formal proofs in Isabelle/HOL 110

unfolding slice_left_def slice_right_def

by (simp add: sliceable_class.slice_slice)

lemmas (in sliceable) slice_slice_simps =

slice_left_slice_left_absorb slice_left_slice_right_absorb

slice_right_slice_left_absorb slice_right_slice_right_absorb slice_slice

slice_slice_right_absorb slice_slice_left_absorb slice_left_slice_absorb

slice_right_slice_absorb

lemmas (in sliceable) size_slice_defs =

size_slice size_slice_left_absorb size_slice_right_absorb

lemma (in sliceable) slice_f_min_neutral:

"(P (l†i..(min f k)) ∧ f ≤ k) ←→ (P (l†i..f) ∧ f ≤ k)"

by linarith

lemma (in sliceable) slice_i_min_neutral:

"(P (l†(min i k)..f) ∧ i ≤ k) ←→ (P (l†i..f) ∧ i ≤ k)"

by linarith

lemma (in sliceable) slice_i_min_neutral_lt:

"(P (l†(min k i)..f) ∧ i < k) ←→ (P (l†i..f) ∧ i < k)"

by linarith

lemma (in sliceable) slice_foral_i_min_neutral:

"(∀ i f . P (l†(min i k)..f) ∧ i ≤ k) ←→ (∀ i f . P (l†i..f) ∧ i ≤ k)"

using not_less by auto

lemma (in sliceable) slice_f_max_neutral:

"(P (l†i..(max f k)) ∧ f ≥ k) ←→ (P (l†i..f) ∧ f ≥ k)"

by (metis max.orderE)

lemma (in sliceable) slice_i_max_neutral:

"(P (l†(max i k)..f) ∧ i ≥ k) ←→ (P (l†i..f) ∧ i ≥ k)"

by (metis max.orderE)

lemma (in sliceable) empty_slice[simp]: "i ≤ j =⇒ (#(l†j..i)) = 0"

using local.size_slice by auto

corollary (in sliceable) forall_disjoint_slice_suc:

"∀ i j . (disjoint x ∧ i 6=j ∧ i < (#x) ∧ j < (#x)) −→

Appendix A. Formal proofs in Isabelle/HOL 111

(x†i..(Suc i) 6= x†j..(Suc j))"

by (simp add: local.disjoint_slice_suc)

lemma (in sliceable) empty_slice_none:

"(#x) = 0 =⇒ (#(x†i..j)) = 0"

by (simp add: size_slice)

corollary (in sliceable) empty_slice_right_none:

"(#x) = 0 =⇒ (#(x†..j)) = 0"

by (simp add: slice_right_def sliceable_class.empty_slice_none)

corollary (in sliceable) empty_slice_left_none:

"(#x) = 0 =⇒ (#(x†i..)) = 0"

by (simp add: slice_left_def sliceable_class.empty_slice_none)

The following is the instantiation of the sliceable class for the dlist type.

instantiation dlist :: (type) sliceable

begin

definition
"l†i..f = Dlist (take (max 0 (f-i)) (drop i (list_of_dlist l)))"

definition
"size l = length (list_of_dlist l)"

definition
"empty_inter l k =

((set (list_of_dlist l)) ∩ (set (list_of_dlist k)) = {})"

definition
"disjoint l = distinct (list_of_dlist l)"

lemma list_of_dlist_slice :

"list_of_dlist (l†i..f) = take (max 0 (f-i)) (drop i (list_of_dlist l))"

unfolding slice_dlist_def

by simp

lemma Dlist_slice_inverse :

"list_of_dlist (Dlist (take (max 0 (c-i)) (drop i (list_of_dlist x))))

= (take (max 0 (c-i)) (drop i (list_of_dlist x)))"

by simp

Appendix A. Formal proofs in Isabelle/HOL 112

lemma Dlist_empty_seq_inter: "c ≤ k =⇒
(

set (take c (list_of_dlist x)) ∩
set (drop k (list_of_dlist x))

) = {}"

by (simp add: set_take_disj_set_drop_if_distinct)

lemma Dlist_forall_slice_eq1:

"(∀ i f. (Dlist (take (max 0 (f-i)) (drop i (list_of_dlist l1))) =

Dlist (take (max 0 (f-i)) (drop i (list_of_dlist l2))))) =⇒
l1 = l2"

by (metis (mono_tags, hide_lams) Dlist_list_of_dlist

Sliceable_dlist.list_of_dlist_slice drop_0 drop_take max_0L take_equalityI)

lemma Dlist_forall_slice_eq:

"l1 = l2 ←→
(∀ i f. (Dlist (take (max 0 (f-i)) (drop i (list_of_dlist l1))) =

Dlist (take (max 0 (f-i)) (drop i (list_of_dlist l2)))))"

using Dlist_forall_slice_eq1 by blast

lemma distinct_list_take_1_uniqueness:

"distinct l =⇒ i 6=j =⇒ i < length l =⇒ j < length l =⇒
take 1 (drop i l) 6= take 1 (drop j l)"

by (simp add: hd_drop_conv_nth nth_eq_iff_index_eq take_Suc)

lemmas list_of_dlist_simps = slice_left_def slice_right_def slice_dlist_def

size_dlist_def disjoint_dlist_def empty_inter_dlist_def Dlist_slice_inverse

instance proof
fix l::"’a dlist"

show "l†0..(#l) = l" by (simp add: dlist_eqI list_of_dlist_slice size_dlist_def)

fix l::"’a dlist"

show "disjoint l" by (simp add: disjoint_dlist_def)

next
fix l::"’a dlist" and c::nat and k

assume "c ≤ k"

thus "empty_inter (l†0..c) (l†k..(#l))"

by (simp add: size_dlist_def empty_inter_dlist_def

set_take_disj_set_drop_if_distinct list_of_dlist_slice)

next

Appendix A. Formal proofs in Isabelle/HOL 113

fix l::"’a dlist" and i and j and a and b

show "size (l†i..j) = max 0 (min j (#l) - i)"

proof (cases "j ≤ #l")

case True

assume "j ≤ #l"

thus ?thesis

by (metis (no_types, hide_lams) list_of_dlist_simps(7) size_dlist_def

drop_take length_drop length_take list_of_dlist_simps(3) max_0L

min.commute)

next
case False

assume "¬ (j ≤ #l)"

hence "j > #l" by simp

thus ?thesis

by (metis (no_types, lifting) list_of_dlist_simps(3)

list_of_dlist_simps(7) size_dlist_def length_drop length_take max_0L

min.commute min_diff)

qed
next
fix l::"’a dlist" and i and j and a and b

show "(l†i..j)†a..b = l†(i + a)..(min j (i + b))"

proof -

have f1: "∀ n. max (0::nat) n = n"

by (meson max_0L)

hence "take b (take (max 0 (j - i)) (drop i (list_of_dlist l))) = drop i (take

(i + b) (take j (list_of_dlist l)))"

by (metis (no_types) diff_add_inverse drop_take)

hence "take (max 0 (b - a)) (drop a (list_of_dlist (l†i..j))) = drop a (drop

i (take (min (i + b) j) (list_of_dlist l)))"

using f1 by (metis Sliceable_dlist.list_of_dlist_slice drop_take take_take)

thus ?thesis

using f1 by (metis (no_types) add.commute drop_drop drop_take list_of_dlist_simps(3)

min.commute)

qed
next
fix l::"’a dlist" and i and j

assume "disjoint l" "i 6=j" "i < (#l)" "j < (#l)"

hence "take 1 (drop i (list_of_dlist l)) 6=
take 1 (drop j (list_of_dlist l))"

using distinct_list_take_1_uniqueness size_dlist_def by auto

hence "take (Suc i - i) (drop i (list_of_dlist l)) 6=
take (Suc j - j) (drop j (list_of_dlist l))"

Appendix A. Formal proofs in Isabelle/HOL 114

by simp

hence "take (max 0 (Suc i - i)) (drop i (list_of_dlist l)) 6=
take (max 0 (Suc j - j)) (drop j (list_of_dlist l))"

by simp

thus "l†i..Suc i 6= l†j..Suc j"

by (metis list_of_dlist_slice)

next
fix l1::"’a dlist" and l2::"’a dlist"

show "(#l1) = (#l2) ∧ (∀ i j. l1†i..j = l2†i..j) ←→ (l1 = l2)"

using Dlist_forall_slice_eq

by (metis Sliceable_dlist.list_of_dlist_slice)

qed

end

In the following we present lemmas, corollaries and theorems about sliceable distinct
lists.

abbreviation dlist_nth :: "’a dlist ⇒ nat ⇒ ’a"

where
"dlist_nth l i ≡ (list_of_dlist (sliceable_nth l i))!0"

theorem set_slice :

"set (list_of_dlist l) =

set (list_of_dlist (l†..i)) ∪ set (list_of_dlist (l†i..))"

unfolding slice_dlist_def slice_right_def slice_left_def size_dlist_def

apply (simp add: list_of_dlist_inject)

by (metis append_take_drop_id set_append)

theorem take_slice_right: "take n (list_of_dlist l) = list_of_dlist (l†..n)"

unfolding slice_right_def slice_dlist_def

by (metis Dlist_slice_inverse drop_0 max_0L minus_nat.diff_0)

theorem slice_right_cons: "distinct (x # xs) =⇒
(Dlist (x # xs))†..(Suc n) = Dlist (x # (list_of_dlist ((Dlist xs)†..n)))"

unfolding slice_right_def slice_dlist_def

by (simp add: distinct_remdups_id)

theorem slice_append:

"∀ n. Dlist ((list_of_dlist (l†..n)) @ (list_of_dlist (l†n..))) = l"

unfolding size_dlist_def slice_left_def slice_right_def

by (simp add: list_of_dlist_inverse list_of_dlist_slice)

Appendix A. Formal proofs in Isabelle/HOL 115

theorem slice_append_mid:

"∀ i s e. s ≤ i ∧ i ≤ e −→
((list_of_dlist (l†s..i)) @ (list_of_dlist (l†i..e))) =

list_of_dlist (l†s..e)"

unfolding size_dlist_def slice_left_def slice_right_def list_of_dlist_slice

by (smt Nat.diff_add_assoc2 drop_drop le_add_diff_inverse

le_add_diff_inverse2 max_0L take_add)

theorem slice_append_3:

"∀ i j. i ≤ j −→
((list_of_dlist (l†..i)) @

(list_of_dlist (l†i..j)) @ (list_of_dlist (l†j..))) = list_of_dlist l"

unfolding size_dlist_def slice_left_def slice_right_def list_of_dlist_slice

by (metis append_assoc append_take_drop_id drop_0 le_add_diff_inverse

length_drop max.cobounded2 max_0L minus_nat.diff_0 take_add take_all)

theorem distinct_slice_lte_inter_empty[simp]:

"i ≤ j =⇒ set (list_of_dlist (l†..i)) ∩ set (list_of_dlist (l†j..)) = {}"

unfolding size_dlist_def slice_left_def slice_right_def

by (simp add: Dlist_empty_seq_inter list_of_dlist_slice)

corollary distinct_slice_inter_empty [simp]:

"set (list_of_dlist (l†..i)) ∩ set (list_of_dlist (l†i..)) = {}"

by simp

corollary distinct_slice_lt_inter_empty [simp]:

"i < j =⇒ set (list_of_dlist (l†..i)) ∩ set (list_of_dlist (l†j..)) = {}"

by simp

corollary distinct_slice_diff1:

"set (list_of_dlist (l†..i)) - set (list_of_dlist (l†i..)) =

set (list_of_dlist (l†..i))"

by (simp add: Diff_triv)

corollary distinct_slice_diff2:

"set (list_of_dlist (l†i..)) - set (list_of_dlist (l†..i)) =

set (list_of_dlist (l†i..))"

using distinct_slice_diff1 by fastforce

theorem distinct_in_set_slice1_not_in_slice2:

Appendix A. Formal proofs in Isabelle/HOL 116

"i ≤ j =⇒
x ∈ set (list_of_dlist (l†..i)) ∧ x ∈ set (list_of_dlist (l†j..)) =⇒
False"

using distinct_slice_lte_inter_empty by fastforce

corollary distinct_in_set_slice1_implies_not_in_slice2:

"i ≤ j =⇒ x ∈ set (list_of_dlist (l†..i)) =⇒
x ∈ set (list_of_dlist (l†j..)) =⇒ False"

by (meson distinct_in_set_slice1_not_in_slice2)

lemma exists_sublist_or_not_sublist [simp]: "∃ i. l†..i ∈ T ∨ l†i.. /∈ T"

unfolding slice_right_def slice_left_def

by auto

lemma forall_slice_left_implies_exists [simp]:

"∀ i . l†i.. ∈ S =⇒ ∃ i . l†(Suc i).. ∈ S"

unfolding slice_right_def slice_left_def

by (simp add: slice_dlist_def)

lemma forall_slice_right_implies_exists [simp]:

"∀ i . l†..i ∈ S =⇒ ∃ i . l†..(i-1) ∈ S"

unfolding slice_right_def slice_left_def

by auto

lemma take_Suc_Cons_hd_tl: "length l > 0 =⇒
take (Suc n) l = hd l # (take n (tl l))"

apply (induct l)

by auto

corollary take_Suc_Cons_hd_tl_singleton:

"length l > 0 =⇒ take (Suc 0) l = [hd l]"

apply (induct l)

by auto

lemma take_drop_suc: "i < length l =⇒ length l > 0 =⇒
take (max 0 ((Suc i) - i)) (drop i l) = [l!i]"

by (metis (no_types, lifting) Suc_diff_Suc Suc_eq_plus1_left add.commute

append_eq_append_conv cancel_comm_monoid_add_class.diff_cancel

hd_drop_conv_nth lessI max_0L numeral_1_eq_Suc_0 numeral_One take_add

take_hd_drop)

Appendix A. Formal proofs in Isabelle/HOL 117

lemma slice_right_take:"l†..i = Dlist (take i (list_of_dlist l))"

unfolding slice_right_def slice_dlist_def

by auto

lemma slice_left_drop: "l†i.. = Dlist (drop i (list_of_dlist l))"

unfolding slice_left_def slice_dlist_def size_dlist_def

by auto

lemma take_one_singleton_hd: "l 6= [] =⇒ take (Suc 0) l = [hd l]"

apply (induct l, simp)

by auto

lemma take_one_singleton_nth: "l 6= [] =⇒ take (Suc 0) l = [l!0]"

apply (induct l, simp)

by auto

lemma take_one_drop_n_append_singleton_nth:

"ys 6= [] =⇒ take 1 (drop (length xs) (xs @ ys)) =

[(xs @ ys)!(length xs)]"

by (induct xs, auto simp add: take_one_singleton_nth)

lemma append_length_nth_hd: "ys 6= [] =⇒ [(xs @ ys)!(length xs)] = [hd ys]"

by (induct ys, auto)

lemma take_one_drop_n_singleton_nth: "l 6= [] =⇒ n < length l =⇒
take 1 (drop n l) = [l!n]"

proof-
assume 0: "l 6= []"

assume 1: "n < length l"

obtain xs where "xs = take n l" by simp

obtain ys where "ys = drop n l" by simp

have "take 1 (drop n l) = take 1 (drop (length xs) (xs @ ys))" using 0 1

by (simp add: ‘ys = drop n l‘)

also have "... = [(xs @ ys)!(length xs)]" using 0 1

by (metis ‘ys = drop n l‘ drop_eq_Nil not_le

take_one_drop_n_append_singleton_nth)

also have "... = [l!(length xs)]"

by (simp add: ‘xs = take n l‘ ‘ys = drop n l‘)

finally show ?thesis using 0 1

by (simp add: hd_drop_conv_nth take_one_singleton_hd)

qed

Appendix A. Formal proofs in Isabelle/HOL 118

lemma slice_singleton: "(list_of_dlist l) 6= [] =⇒ i < (#l) =⇒
list_of_dlist (l†i..(Suc i)) = [(list_of_dlist l)!i]"

by (metis list_of_dlist_slice length_greater_0_conv size_dlist_def

take_drop_suc)

lemma slice_right_zero_eq_empty: "list_of_dlist (l†..0) = []"

by (simp add: slice_right_def slice_dlist_def)

lemma slice_left_size_eq_empty: "list_of_dlist (l†(#l)..) = []"

by (simp add: slice_left_def slice_dlist_def)

lemma slice_right_singleton_eq_element: "list_of_dlist l 6= [] =⇒
list_of_dlist (l†..1) = [(list_of_dlist l)!0]"

by (metis One_nat_def take_one_singleton_nth take_slice_right)

lemma slice_left_singleton_eq_element: "list_of_dlist l 6= [] =⇒
list_of_dlist (l†((#l)-1)..) = [(list_of_dlist l)!((#l)-1)]"

by (metis (no_types, lifting) Cons_nth_drop_Suc list_of_dlist_slice

Suc_diff_Suc Suc_leI diff_Suc_eq_diff_pred diff_less drop_0 drop_all

drop_take length_greater_0_conv max_0L minus_nat.diff_0 size_dlist_def

slice_left_def slice_none zero_less_one)

lemma dlist_empty_slice[simp]: "i ≤ j =⇒ (l†j..i) = Dlist []"

by (simp add: slice_dlist_def)

lemma dlist_append_extreme_left:

"i≤j =⇒ list_of_dlist (l†..j) =

(list_of_dlist (l†..i)) @ (list_of_dlist (l†i..j))"

by (metis list_of_dlist_slice le_add_diff_inverse max_0L take_add

take_slice_right)

lemma dlist_append_extreme_right:

"i≤j =⇒ list_of_dlist (l†i..) =

(list_of_dlist (l†i..j)) @ (list_of_dlist (l†j..))"

unfolding list_of_dlist_slice slice_left_def slice_right_def

by (metis append_take_drop_id drop_drop le_add_diff_inverse2 length_drop

max.cobounded2 max_0L size_dlist_def take_all)

lemma dlist_disjoint[simp]: "disjoint (l::’a dlist)"

by (simp add: disjoint_dlist_def)

Appendix A. Formal proofs in Isabelle/HOL 119

lemma dlist_member_suc_nth1:

"x ∈ set (list_of_dlist(l†i..(Suc i))) =⇒ x = (list_of_dlist l)!i"

proof-
assume 0: "x ∈ set (list_of_dlist (l†i..(Suc i)))"

obtain rl where 1:"rl = list_of_dlist l" by blast

hence "x ∈ set (take (max 0 (Suc i - i)) (drop i rl))"

using 0 by (metis list_of_dlist_slice)

hence "x ∈ set (take 1 (drop i rl))" by simp

hence "x = rl!i"

by (metis drop_Nil drop_all empty_iff list.inject list.set(1)

list.set_cases not_less take_Nil take_one_drop_n_singleton_nth)

thus ?thesis using 1 by simp

qed

lemma dlist_member_suc_nth2:

"i < (#l) =⇒ x = (list_of_dlist l)!i =⇒
x ∈ set (list_of_dlist (l†i..(Suc i)))"

unfolding size_dlist_def slice_dlist_def

by (metis Dlist_slice_inverse drop_Nil drop_eq_Nil leD length_greater_0_conv

list.set_intros(1) take_drop_suc)

lemma dlist_member_suc_nth: "i < (#l) =⇒
(x = (list_of_dlist l)!i) ←→ (x ∈ set (list_of_dlist (l†i..(Suc i))))"

using dlist_member_suc_nth1 dlist_member_suc_nth2

by fastforce

corollary not_dlist_member_empty[simp]:

"¬ Dlist.member (Dlist.empty) v"

"¬ (Dlist.member (Dlist []) v)"

by (simp add: Dlist.member_def Dlist.empty_def List.member_def)+

lemma dlist_empty_slice_none: "(Dlist.empty†i..j) = Dlist.empty"

by (simp add: Dlist.empty_def slice_dlist_def)

corollary dlist_empty_slice_right_none: "(Dlist.empty†..j) = Dlist.empty"

by (simp add: dlist_empty_slice_none slice_right_def)

corollary dlist_empty_slice_left_none: "(Dlist.empty†i..) = Dlist.empty"

by (simp add: dlist_empty_slice_none slice_left_def)

lemma dlist_member_slice_empty_none:

"¬ (Dlist.member (Dlist.empty†i..j) v)"

Appendix A. Formal proofs in Isabelle/HOL 120

by (auto simp add: slice_dlist_def)

corollary dlist_member_slice_right_empty_none[simp]:

"¬ (Dlist.member (Dlist.empty†..j) v)"

by (simp add: slice_right_def dlist_empty_slice_none)

corollary dlist_member_slice_left_empty_none[simp]:

"¬ (Dlist.member (Dlist.empty†i..) v)"

by (simp add: slice_left_def dlist_empty_slice_none)

lemma dlist_member_slice_member_dlist:

"∃ i j. Dlist.member (dl†i..j) v =⇒ Dlist.member dl v"

unfolding Dlist.member_def List.member_def slice_dlist_def

using in_set_dropD in_set_takeD by fastforce

corollary dlist_member_slice_right_member_dlist:

"∃ j. Dlist.member (dl†..j) v =⇒ Dlist.member dl v"

by (metis dlist_member_slice_member_dlist slice_right_def)

corollary dlist_member_slice_left_member_dlist:

"∃ i. Dlist.member (dl†i..) v =⇒ Dlist.member dl v"

by (metis dlist_member_slice_member_dlist slice_left_def)

lemma sliceable_nth_member1:

"sliceable_nth dl i = Dlist [v] =⇒ Dlist.member dl v"

by (metis Dlist.member_def distinct_remdups_id distinct_singleton

dlist_member_slice_member_dlist in_set_member list.set_intros(1) list_of_dlist_Dlist)

corollary sliceable_nth_member:

"∃ i. sliceable_nth dl i = Dlist [v] =⇒ Dlist.member dl v"

by (auto simp add: sliceable_nth_member1)

lemma sliceable_nth_member_iff:

"(∃ i. sliceable_nth dl i = Dlist [v]) ←→ Dlist.member dl v"

apply (rule iffI, simp add: sliceable_nth_member)

by (metis Dlist.member_def empty_iff empty_set in_set_conv_nth in_set_member

list_of_dlist_slice size_dlist_def slice_dlist_def slice_singleton)

In the following we present the algebraic laws for the ATF.

class algebra_of_temporal_faults_basic = boolean_algebra +

Appendix A. Formal proofs in Isabelle/HOL 121

fixes neutral :: "’a"

fixes xbefore :: "’a ⇒ ’a ⇒ ’a"

fixes tempo1 :: "’a ⇒ bool"

assumes xbefore_bot_1: "xbefore bot a = bot"

assumes xbefore_bot_2: "xbefore a bot = bot"

assumes xbefore_neutral_1: "xbefore neutral a = a"

assumes xbefore_neutral_2: "xbefore a neutral = a"

assumes xbefore_not_idempotent: "tempo1 a =⇒ xbefore a a = bot"

assumes inf_tempo1: " [[tempo1 a; tempo1 b]] =⇒ tempo1 (inf a b)"

assumes xbefore_not_sym:

" [[tempo1 a; tempo1 b]] =⇒ (xbefore a b) ≤ -(xbefore b a)"

class algebra_of_temporal_faults_assoc = algebra_of_temporal_faults_basic +

assumes xbefore_assoc: "xbefore (xbefore a b) c = xbefore a (xbefore b c)"

class algebra_of_temporal_faults_equivs = algebra_of_temporal_faults_assoc +

fixes independent_events :: "’a ⇒ ’a ⇒ bool"

fixes tempo2 :: "’a ⇒ bool"

fixes tempo3 :: "’a ⇒ bool"

fixes tempo4 :: "’a ⇒ bool"

assumes xbefore_inf_equiv_bot:

" [[tempo1 a; tempo1 b]] =⇒ inf (xbefore a b) (xbefore b a) = bot"

assumes xbefore_sup_equiv_inf:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup (xbefore a b) (xbefore b a) = inf a b"

assumes sup_tempo2: " [[tempo2 a; tempo2 b]] =⇒ tempo2 (sup a b)"

assumes inf_tempo3: " [[tempo3 a; tempo3 b]] =⇒ tempo3 (inf a b)"

assumes sup_tempo4: " [[tempo4 a; tempo4 b]] =⇒ tempo4 (sup a b)"

definition tempo :: "’a::algebra_of_temporal_faults_equivs ⇒ bool" where
"tempo a ≡ tempo1 a ∧ tempo2 a ∧ tempo3 a ∧ tempo4 a"

class algebra_of_temporal_faults_trans = algebra_of_temporal_faults_equivs +

assumes xbefore_trans:

" [[tempo1 a; tempo1 b]] =⇒ tempo2 a =⇒

Appendix A. Formal proofs in Isabelle/HOL 122

less_eq (inf (xbefore a b) (xbefore b c)) (xbefore a c)"

assumes inf_xbefore_trans: " [[tempo1 b; tempo3 b]] =⇒
inf (xbefore a b) (xbefore b c) = xbefore (xbefore a b) c"

class algebra_of_temporal_faults_mixed_ops = algebra_of_temporal_faults_trans +

assumes xbefore_sup_1:

"xbefore (sup a b) c = sup (xbefore a c) (xbefore b c)"

assumes xbefore_sup_2:

"xbefore a (sup b c) = sup (xbefore a b) (xbefore a c)"

assumes inf_xbefore_inf_1:

" [[tempo1 a; tempo1 b; tempo2 a; tempo2 b]] =⇒
xbefore (inf a b) c = inf (xbefore a c) (xbefore b c)"

assumes inf_xbefore_inf_2:

" [[tempo1 b; tempo1 c; tempo2 b; tempo2 c]] =⇒
xbefore a (inf b c) = inf (xbefore a b) (xbefore a c)"

assumes not_xbefore: "

independent_events a b =⇒
[[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒
[[tempo3 a; tempo3 b]] =⇒
[[tempo4 a; tempo4 b]] =⇒
- (xbefore a b) = sup (sup (- a) (- b)) (xbefore b a)"

assumes inf_xbefore_equiv_sups_xbefore: "tempo2 a =⇒
inf a (xbefore b c) = sup (xbefore (inf a b) c) (xbefore b (inf a c))"

assumes not_1_xbefore_equiv: " [[tempo1 a; tempo2 b]] =⇒ xbefore (- a) b = b"

assumes not_2_xbefore_equiv: " [[tempo1 b; tempo2 a]] =⇒ xbefore a (- b) = a"

class algebra_of_temporal_faults = algebra_of_temporal_faults_mixed_ops

The following theorems are valid for ATF. They are valid for any instantiation of
the ATF class as, for example, for the sets of distinct lists type.

context algebra_of_temporal_faults

begin

The following theorem proves Eq. (4.26c).

theorem xbefore_inf_1:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒

Appendix A. Formal proofs in Isabelle/HOL 123

xbefore (inf a b) c =

sup (xbefore (xbefore a b) c) (xbefore (xbefore b a) c)"

proof-
assume "independent_events a b" "tempo1 a" "tempo1 b"

"tempo2 a" "tempo2 b" "tempo3 a" "tempo3 b" "tempo4 a" "tempo4 b"

hence "xbefore (inf a b) c = xbefore (sup (xbefore a b) (xbefore b a)) c"

by (simp add: xbefore_sup_equiv_inf)

thus ?thesis by (simp add: xbefore_sup_1)

qed

The following theorem proves Eq. (4.26d).

theorem xbefore_inf_2:

"independent_events b c =⇒ [[tempo1 b; tempo1 c]] =⇒
[[tempo2 b; tempo2 c]] =⇒ [[tempo3 b; tempo3 c]] =⇒ [[tempo4 b; tempo4 c]] =⇒
xbefore a (inf b c) =

sup (xbefore a (xbefore b c)) (xbefore a (xbefore c b))"

proof-
assume "independent_events b c" "tempo1 b" "tempo1 c" "tempo2 b" "tempo2 c"

"tempo3 b" "tempo3 c" "tempo4 b" "tempo4 c"

hence "xbefore a (inf b c) = xbefore a (sup (xbefore b c) (xbefore c b))"

by (simp add: xbefore_sup_equiv_inf)

thus ?thesis by (simp add: xbefore_sup_2)

qed

The following lemma proves Eq. (4.23f).

lemma xbefore_sup_absorb_1b:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup (xbefore b a) a = a"

by (metis inf_le1 order_trans sup.absorb2 sup.cobounded2

xbefore_sup_equiv_inf)

lemma xbefore_sup_absorb_2:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup a (xbefore a b) = a"

by (metis dual_order.trans inf.cobounded1 sup.absorb1 sup.cobounded1

xbefore_sup_equiv_inf)

The following corollary proves Eq. (4.23e).

corollary xbefore_sup_absorb_1:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒

Appendix A. Formal proofs in Isabelle/HOL 124

[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup (xbefore a b) a = a"

proof-
assume 0: "independent_events a b" "tempo1 a" "tempo1 b" "tempo2 a"

"tempo2 b" "tempo3 a" "tempo3 b" "tempo4 a" "tempo4 b"

hence "sup a (xbefore a b) = sup (xbefore a b) a"

by (simp add: sup.commute)

thus ?thesis using 0 by (simp add: xbefore_sup_absorb_2)

qed

corollary xbefore_sup_absorb_2b:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup a (xbefore b a) = a"

proof-
assume 0: "independent_events a b" "tempo1 a" "tempo1 b" "tempo2 a"

"tempo2 b" "tempo3 a" "tempo3 b" "tempo4 a" "tempo4 b"

hence "sup a (xbefore b a) = sup (xbefore b a) a"

by (simp add: sup.commute)

thus ?thesis using 0 by (simp add: xbefore_sup_absorb_1b)

qed

The following corollary proves Eq. (4.26g).

theorem xbefore_inf_absorb_1: "independent_events a b =⇒
[[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒
[[tempo3 a; tempo3 b]] =⇒
[[tempo4 a; tempo4 b]] =⇒
inf a (xbefore a b) = xbefore a b"

by (simp add: local.inf_absorb2 local.le_iff_sup xbefore_sup_absorb_1)

The following corollary proves Eq. (4.26h).

theorem xbefore_inf_absorb_2: "independent_events a b =⇒
[[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒
[[tempo3 a; tempo3 b]] =⇒
[[tempo4 a; tempo4 b]] =⇒
inf a (xbefore b a) = xbefore b a"

by (simp add: local.inf.absorb2 local.sup.absorb_iff1 xbefore_sup_absorb_2b)

The following lemma proves Eq. (4.27).

lemma inf_xbefore_equiv_sups_xbefore_expanded:

Appendix A. Formal proofs in Isabelle/HOL 125

"independent_events a b =⇒ independent_events a c =⇒
[[tempo1 a; tempo1 b; tempo1 c]] =⇒ [[tempo2 a; tempo2 b; tempo2 c]] =⇒
[[tempo3 a; tempo3 b; tempo3 c]] =⇒ [[tempo4 a; tempo4 b; tempo4 c]] =⇒

inf a (xbefore b c) =

sup (sup (xbefore (xbefore a b) c)

(xbefore (xbefore b a) c))

(xbefore (xbefore b c) a)"

proof-
assume "independent_events a b" "independent_events a c"

"tempo1 a" "tempo1 b" "tempo1 c"

"tempo2 a" "tempo2 b" "tempo2 c"

"tempo3 a" "tempo3 b" "tempo3 c"

"tempo4 a" "tempo4 b" "tempo4 c"

hence "inf a (xbefore b c) =

sup (xbefore (inf a b) c) (xbefore b (inf a c))"

"xbefore (inf a b) c =

sup (xbefore (xbefore a b) c) (xbefore (xbefore b a) c)"

"xbefore b (inf a c) =

sup (xbefore (xbefore b a) c) (xbefore (xbefore b c) a)"

by (auto simp add: inf_xbefore_equiv_sups_xbefore xbefore_inf_1

xbefore_inf_2 xbefore_assoc)

thus ?thesis by (simp add: sup.assoc)

qed

The following lemma proves Eq. (4.28d).

lemma xbefore_sup_compl_inf_absorb1:

"independent_events a b =⇒ [[tempo1 a; tempo1 b]] =⇒
[[tempo2 a; tempo2 b]] =⇒ [[tempo3 a; tempo3 b]] =⇒ [[tempo4 a; tempo4 b]] =⇒
sup (inf a (-b)) (xbefore a b) = inf a (- (xbefore b a))"

proof -

assume a1: "independent_events a b"

assume a2: "tempo1 a"

assume a3: "tempo1 b"

assume a4: "tempo2 a"

assume a5: "tempo2 b"

assume a6: "tempo3 a"

assume a7: "tempo3 b"

assume a8: "tempo4 a"

assume a9: "tempo4 b"

then have f10: "- xbefore a b = sup (sup (- a) (- b)) (xbefore b a)"

using a8 a7 a6 a5 a4 a3 a2 a1 by (meson local.not_xbefore)

have f11: "∀ a aa ab. inf (a::’a) (sup aa ab) = sup (inf a aa) (inf a ab)"

Appendix A. Formal proofs in Isabelle/HOL 126

using local.distrib_imp2 local.sup_inf_distrib1 by force

then have f12: "sup bot (xbefore b a) = inf b (sup (- b) (xbefore b a))"

using a7 a3 by (metis local.inf_compl_bot local.inf_xbefore_trans local.xbefore_neutral_1)

have f13: "inf (sup (- a) (- (- b))) (sup (- a) (- b)) = sup (- a) (inf b (- b))"

using local.double_compl local.sup_inf_distrib1 by presburger

have f14: "inf a (xbefore b a) = xbefore b a"

using a9 a8 a7 a6 a5 a4 a3 a2 a1 by (meson xbefore_inf_absorb_2)

have f15: "sup (sup (inf (sup (- a) (- b)) (- a)) (inf (xbefore b a) (- a))) bot

= sup (- a) (inf b (- b))"

using f10 a9 a8 a7 a6 a5 a4 a3 a2 a1 by (metis (no_types) local.compl_sup local.inf_compl_bot

local.inf_sup_distrib2 xbefore_sup_absorb_1)

have "inf a (- a) = sup (inf (xbefore b a) (- a)) bot"

using f14 f11 by (metis (no_types) local.compl_inf local.inf_compl_bot)

then have "sup (- sup (- a) (- (- b))) (- sup (- a) (- b)) = - inf (sup (sup (-

a) (- b)) a) (- a)"

using f15 f13 by (metis (full_types) local.compl_inf local.inf_sup_distrib2

local.sup_assoc)

then have "sup (- sup (- a) (- (- b))) (- sup (- a) (- b)) = a"

by (simp add: local.sup_assoc)

then show ?thesis

using f13 f12 f10 by (metis (no_types) local.compl_inf local.compl_sup local.double_compl

local.inf_compl_bot local.sup_assoc local.sup_inf_distrib1)

qed

corollary xbefore_sup_equiv_inf_inf_nand:

"tempo a =⇒ tempo b =⇒ independent_events a b =⇒
sup (sup (xbefore a b) (xbefore b a)) (- (inf a b)) = top"

unfolding tempo_def

by (metis (mono_tags, lifting) boolean_algebra_class.sup_compl_top algebra_of_temporal_faults_equivs_class.xbefore_sup_equiv_inf)

end

end

In the following we present the denotational semantics for ATF in terms of sets of
distinct lists.

The definition of a formula in the ATF is a set of sets of distinct lists (dlist).

typedef ’a formula = "UNIV::’a dlist set set" by simp

Appendix A. Formal proofs in Isabelle/HOL 127

In the following we instantiate the formula as a Boolean algebra and prove that
Boolean operators are valid.

instantiation formula :: (type) boolean_algebra

begin

definition
"x u y = Abs_formula (Rep_formula x ∩ Rep_formula y)"

definition
"x t y = Abs_formula (Rep_formula x ∪ Rep_formula y)"

definition
"> = Abs_formula UNIV"

definition
"⊥ = Abs_formula {}"

definition
"x ≤ y ←→ Rep_formula x ⊆ Rep_formula y"

definition
"x < y ←→ Rep_formula x ⊂ Rep_formula y"

definition
"- x = Abs_formula (- (Rep_formula x))"

definition
"x - y = Abs_formula (Rep_formula x - Rep_formula y)"

lemma Rep_formula_inf:

"Rep_formula (x u y) = Rep_formula x ∩ Rep_formula y"

unfolding inf_formula_def

by (simp add: Abs_formula_inverse Rep_formula)

lemma Rep_formula_sup:

"Rep_formula (x t y) = Rep_formula x ∪ Rep_formula y"

unfolding sup_formula_def

by (simp add: Abs_formula_inverse Rep_formula)

lemma Rep_formula_top[simp]: "Rep_formula > = UNIV"

Appendix A. Formal proofs in Isabelle/HOL 128

unfolding top_formula_def

by (simp add: Abs_formula_inverse)

lemma Rep_formula_bot[simp]: "Rep_formula ⊥ = {}"

unfolding bot_formula_def

by (simp add: Abs_formula_inverse)

lemma Rep_formula_compl: "Rep_formula (- x) = - Rep_formula x"

unfolding uminus_formula_def

by (simp add: Abs_formula_inverse Rep_formula)

lemma Rep_formula_diff:

"Rep_formula (x - y) = Rep_formula x - Rep_formula y"

unfolding minus_formula_def

by (simp add: Abs_formula_inverse Rep_formula)

lemmas eq_formula_iff = Rep_formula_inject [symmetric]

lemmas Rep_formula_boolean_algebra_simps =

less_eq_formula_def less_formula_def eq_formula_iff

Rep_formula_sup Rep_formula_inf Rep_formula_top Rep_formula_bot

Rep_formula_compl Rep_formula_diff

instance proof
qed (unfold Rep_formula_boolean_algebra_simps, auto)

The instantiation and this proof shows that ATF is a Boolean algebra as shown in
Eqs. (4.11a) to (4.11g).

end

lemma bot_neq_top_formula [simp]: "(⊥ :: ’a formula) 6= >"

unfolding Rep_formula_boolean_algebra_simps by auto

lemma top_neq_bot_formula [simp]: "(> :: ’a formula) 6= ⊥"

unfolding Rep_formula_boolean_algebra_simps by auto

In this section we define the tempo properties.

Tempo1: disjoint split

definition dlist_tempo1 :: "(’a dlist ⇒ bool) ⇒ bool"

Appendix A. Formal proofs in Isabelle/HOL 129

where
"dlist_tempo1 S ≡ ∀ i j l. i ≤ j −→ ¬ ((S (l†..i) ∧ S (l†j..)))"

Tempo2: belonging iff

definition dlist_tempo2 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo2 S ≡ ∀ i l. S l ←→ (S (l†..i) ∨ S (l†i..))"

definition dlist_tempo3 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo3 S ≡ ∀ i j l. j < i −→ (S (l†j..i) ←→

(S (l†..i) ∧ S (l†j..)))"

definition dlist_tempo4 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo4 S ≡ ∀ l. S l ←→ (∃ i. S (l†i..(Suc i)))"

definition dlist_tempo5 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo5 S ≡
∀ i j l. (i 6= j ∧ i < (#l) ∧ j < (#l)) −→
¬(S (l†i..(Suc i)) ∧ S (l†j..(Suc j)))"

definition dlist_tempo6 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo6 S ≡ ∀ l. (∀ i j. ¬ S (l†i..j)) ←→ ¬ S l"

definition dlist_tempo7 :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo7 S ≡ ∀ l. (∃ i j. i < j ∧ S (l†i..j)) ←→ S l"

definition dlist_tempo :: "(’a dlist ⇒ bool) ⇒ bool"

where
"dlist_tempo S ≡ dlist_tempo1 S ∧ dlist_tempo2 S ∧

dlist_tempo3 S ∧ dlist_tempo5 S ∧ dlist_tempo4 S ∧ dlist_tempo6 S ∧
dlist_tempo7 S"

lemmas tempo_defs = dlist_tempo_def dlist_tempo1_def dlist_tempo2_def

dlist_tempo3_def dlist_tempo5_def dlist_tempo4_def dlist_tempo6_def

dlist_tempo7_def

lemma dlist_tempo_1_no_gap:

Appendix A. Formal proofs in Isabelle/HOL 130

"dlist_tempo1 S =⇒ ∀ i l. ¬ ((S (l†..i) ∧ S (l†i..)))"

unfolding dlist_tempo1_def

by auto

corollary dlist_tempo_1_no_gap_append:

"dlist_tempo1 S =⇒
∀ zs xs ys. list_of_dlist zs = list_of_dlist xs @ list_of_dlist ys −→
¬ ((S xs ∧ S ys))"

using dlist_tempo_1_no_gap

by (metis Dlist_list_of_dlist append_eq_conv_conj slice_left_drop

take_slice_right)

We use the naming convention of variable, but in fact, a variable is equivalent to a
list membership: var a = {xs. a ∈ set (list_of_dlist xs)}.

lemma dlist_tempo1_member: "dlist_tempo1 (λxs. Dlist.member xs a)"

unfolding dlist_tempo1_def Dlist.member_def List.member_def

by (meson distinct_in_set_slice1_not_in_slice2)

lemma dlist_tempo2_member: "dlist_tempo2 (λxs. Dlist.member xs a)"

unfolding dlist_tempo2_def Dlist.member_def List.member_def

by (metis (no_types, lifting) Un_iff set_slice)

lemma dlist_tempo3_member: "dlist_tempo3 (λxs. Dlist.member xs a)"

unfolding dlist_tempo3_def Dlist.member_def List.member_def

by (metis DiffD2 Un_iff distinct_slice_diff2 dlist_append_extreme_left

dlist_append_extreme_right less_imp_le_nat set_append)

lemma dlist_tempo5_member: "dlist_tempo5 (λxs. Dlist.member xs a)"

unfolding dlist_tempo5_def Dlist.member_def List.member_def

by (metis Dlist_list_of_dlist Suc_leI disjoint_dlist_def disjoint_slice_suc

distinct_list_of_dlist dlist_empty_slice dlist_member_suc_nth1 empty_slice

less_Suc_eq_0_disj not_less_eq slice_singleton)

lemma dlist_tempo4_member: "dlist_tempo4 (λxs. Dlist.member xs a)"

unfolding dlist_tempo4_def Dlist.member_def List.member_def

by (metis dlist_member_suc_nth in_set_conv_nth in_set_dropD in_set_takeD

list_of_dlist_Dlist set_remdups size_dlist_def slice_dlist_def)

lemma dlist_tempo6_member: "dlist_tempo6 (λxs. Dlist.member xs a)"

unfolding dlist_tempo6_def Dlist.member_def List.member_def

by (metis append_Nil in_set_conv_decomp in_set_conv_nth in_set_dropD

Appendix A. Formal proofs in Isabelle/HOL 131

in_set_takeD length_pos_if_in_set list_of_dlist_slice take_drop_suc)

lemma dlist_tempo7_member: "dlist_tempo7 (λxs. Dlist.member xs a)"

unfolding dlist_tempo7_def Dlist.member_def List.member_def

by (metis Un_iff dlist_append_extreme_left dlist_member_suc_nth2

in_set_conv_nth lessI less_imp_le_nat set_append set_slice size_dlist_def)

theorem dlist_tempo_member: "dlist_tempo (λxs. Dlist.member xs a)"

unfolding dlist_tempo_def

by (simp add: dlist_tempo1_member dlist_tempo2_member dlist_tempo3_member

dlist_tempo5_member dlist_tempo4_member dlist_tempo6_member

dlist_tempo7_member)

lemma dlist_tempo1_inf: " [[dlist_tempo1 a; dlist_tempo1 b]] =⇒
dlist_tempo1 (λzs. a zs ∧ b zs)"

unfolding dlist_tempo1_def

by simp

lemma dlist_tempo3_inf: " [[dlist_tempo3 a; dlist_tempo3 b]] =⇒
dlist_tempo3 (λzs. a zs ∧ b zs)"

unfolding dlist_tempo3_def

by auto

lemma dlist_tempo2_sup: " [[dlist_tempo2 a; dlist_tempo2 b]] =⇒
dlist_tempo2 (λzs. a zs ∨ b zs)"

unfolding dlist_tempo2_def

by auto

lemma dlist_tempo4_sup: " [[dlist_tempo4 a; dlist_tempo4 b]] =⇒
dlist_tempo4 (λzs. a zs ∨ b zs)"

unfolding dlist_tempo4_def

by blast

definition dlist_xbefore :: "(’a dlist ⇒ bool) ⇒ (’a dlist ⇒ bool) ⇒
’a dlist ⇒ bool"

where
"dlist_xbefore a b xs ≡ ∃ i. a (xs†..i) ∧ b (xs†i..)"

Appendix A. Formal proofs in Isabelle/HOL 132

lemma dlist_tempo1_xbefore: " [[dlist_tempo1 a; dlist_tempo1 b]] =⇒
dlist_tempo1 (dlist_xbefore a b)"

unfolding dlist_tempo1_def dlist_xbefore_def slice_slice_simps

by (smt le_add1 min.absorb2 min.cobounded1 slice_right_slice_left_absorb

slice_right_slice_right_absorb)

lemma Rep_slice_append:

"list_of_dlist zs = (list_of_dlist (zs†..i)) @ (list_of_dlist (zs†i..))"

by (metis distinct_append distinct_list_of_dlist distinct_slice_inter_empty

list_of_dlist_Dlist remdups_id_iff_distinct slice_append)

lemma dlist_xbefore_append:

"dlist_xbefore a b zs ←→
(∃ xs ys. set (list_of_dlist xs) ∩ set (list_of_dlist ys) =

{} ∧ a xs ∧ b ys ∧
list_of_dlist zs = ((list_of_dlist xs) @ (list_of_dlist ys)))"

unfolding dlist_xbefore_def

by (metis Rep_slice_append append_Nil2 append_eq_conv_conj

distinct_slice_inter_empty dlist_xbefore_def drop_take max_0L

size_dlist_def slice_append slice_dlist_def slice_left_def slice_right_def

take_slice_right)

lemma dlist_xbefore_bot_1: "dlist_xbefore (λxs. False) b zs = False"

unfolding dlist_xbefore_def

by simp

corollary dlistset_xbefore_bot_1:

"Collect (dlist_xbefore (λxs. False) b) = {}"

by (simp add: dlist_xbefore_bot_1)

lemma dlist_xbefore_bot_2: "dlist_xbefore a (λxs. False) zs = False"

unfolding dlist_xbefore_def

by simp

lemma dlistset_xbefore_bot_2:

Appendix A. Formal proofs in Isabelle/HOL 133

"Collect (dlist_xbefore a (λxs. False)) = {}"

by (simp add: dlist_xbefore_bot_2)

lemma dlist_xbefore_idem:

"dlist_tempo1 a =⇒ dlist_xbefore a a zs = False"

unfolding dlist_xbefore_def dlist_tempo1_def

by blast

lemma dlistset_xbefore_idem:

"dlist_tempo1 a =⇒ Collect (dlist_xbefore a a) = {}"

by (simp add: dlist_xbefore_idem)

lemma dlist_xbefore_implies_idem:

"∀ xs. b xs −→ a xs =⇒ dlist_tempo1 a =⇒ dlist_xbefore a b zs = False"

unfolding dlist_tempo1_def dlist_xbefore_def

by blast

lemma dlist_xbefore_neutral_1:

"dlist_xbefore (λxs. xs = dlist_of_list []) a zs = a zs"

by (metis (full_types) Dlist_list_of_dlist Rep_slice_append append.simps(1)

dlist_of_list dlist_xbefore_def take_0 take_slice_right)

corollary dlistset_xbefore_neutral_1:

"Collect (dlist_xbefore (λxs. xs = Dlist []) a) = Collect a"

using dlist_xbefore_neutral_1 by auto

lemma dlist_xbefore_neutral_2:

"dlist_xbefore a (λxs. xs = Dlist []) zs = a zs"

by (smt Dlist_list_of_dlist append_Nil2 distinct_append distinct_list_of_dlist dlist_of_list

dlist_xbefore_append list_of_dlist_empty)

corollary dlistset_xbefore_neutral_2:

"Collect (dlist_xbefore a (λxs. xs = Dlist [])) = Collect a"

using dlist_xbefore_neutral_2 by auto

theorem dlist_xbefore_assoc1:

"(dlist_xbefore (dlist_xbefore S T) U zs) ←→

Appendix A. Formal proofs in Isabelle/HOL 134

(dlist_xbefore S (dlist_xbefore T U) zs)"

unfolding dlist_xbefore_def slice_slice_simps dlist_tempo_def

apply auto

apply (metis diff_is_0_eq less_imp_le max_0L min_def not_le

ordered_cancel_comm_monoid_diff_class.le_iff_add slice_dlist_def

take_eq_Nil)

by (metis le_add1 min.absorb2)

corollary dlist_xbefore_assoc:

"(dlist_xbefore (dlist_xbefore S T) U) =

(dlist_xbefore S (dlist_xbefore T U))"

using dlist_xbefore_assoc1 by blast

corollary dlistset_xbefore_assoc:

"Collect (dlist_xbefore (dlist_xbefore S T) U) =

Collect (dlist_xbefore S (dlist_xbefore T U))"

by (simp add: dlist_xbefore_assoc)

lemma dlist_tempo1_le_uniqueness:

"dlist_tempo1 S =⇒ S (l†..i) =⇒ i ≤ j =⇒ ¬ S (l†j..)" and
"dlist_tempo1 S =⇒ S (l†j..) =⇒ i ≤ j =⇒ ¬ S (l†..i)"

unfolding dlist_tempo1_def

by auto

lemma dlist_xbefore_not_sym:

"dlist_tempo1 S =⇒ dlist_tempo1 T =⇒ dlist_xbefore S T xs =⇒
dlist_xbefore T S xs =⇒ False"

by (metis dlist_xbefore_def le_cases dlist_tempo1_le_uniqueness)

corollary dlist_xbefore_and:

"dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
((dlist_xbefore S T zs) ∧ (dlist_xbefore T S zs)) = False"

using dlist_xbefore_not_sym by blast

corollary dlistset_xbefore_and:

"dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
(Collect (dlist_xbefore S T)) ∩ (Collect (dlist_xbefore T S)) = {}"

using dlist_xbefore_and

by auto

Appendix A. Formal proofs in Isabelle/HOL 135

lemma dlist_tempo2_left_absorb: "dlist_tempo2 S =⇒ S (l†i..) =⇒ S l"

unfolding dlist_tempo2_def

by auto

lemma dlist_tempo2_right_absorb: "dlist_tempo2 S =⇒ S (l†..i) =⇒ S l"

unfolding dlist_tempo2_def

by auto

lemma dlist_xbefore_implies_member1[simp]:

"dlist_tempo2 S =⇒ dlist_xbefore S T l =⇒ S l"

by (meson dlist_xbefore_def dlist_tempo2_right_absorb)

lemma dlist_xbefore_implies_member2[simp]:

"dlist_tempo2 T =⇒ dlist_xbefore S T l =⇒ T l"

by (meson dlist_xbefore_def dlist_tempo2_left_absorb)

lemma dlist_xbefore_or1:

"dlist_tempo2 S =⇒ dlist_tempo2 T =⇒
dlist_xbefore S T l ∨ dlist_xbefore T S l =⇒ S l ∧ T l"

using dlist_xbefore_implies_member1 dlist_xbefore_implies_member2 by blast

definition dlist_independent_events ::

"(’a dlist ⇒ bool) ⇒ (’a dlist ⇒ bool) ⇒ bool"

where
"dlist_independent_events S T ≡

(∀ i l. ¬ (S (l†i..(Suc i)) ∧ T (l†i..(Suc i))))"

lemma dlist_indepentent_events_member: "a 6= b =⇒
dlist_independent_events (λ dl. Dlist.member dl a) (λ dl. Dlist.member dl b)"

apply (simp add: dlist_independent_events_def Dlist.member_def List.member_def)

by (metis dlist_member_suc_nth1)

lemma dlist_and_split9:

"dlist_independent_events S T =⇒
dlist_tempo2 S =⇒ dlist_tempo2 T =⇒

Appendix A. Formal proofs in Isabelle/HOL 136

dlist_tempo3 S =⇒ dlist_tempo3 T =⇒
dlist_tempo4 S =⇒ dlist_tempo4 T =⇒

S l ∧ T l ←→ (∃ i j. i ≤ j ∧
((S (l†..i) ∧ T (l†j..)) ∨ (S (l†j..) ∧ T (l†..i))))"

unfolding dlist_independent_events_def

dlist_tempo2_def dlist_tempo3_def dlist_tempo4_def

by (metis le_refl not_less not_less_eq_eq)

lemma dlist_tempo_equiv_xor:

"dlist_tempo1 S =⇒ dlist_tempo2 S =⇒
∀ l. S l ←→ (∀ i. (S (l†..i) ∧ ¬ S (l†i..)) ∨ (¬ S (l†..i) ∧ S (l†i..)))"

unfolding tempo_defs

by (meson order_refl)

corollary dlist_tempo_equiv_not_eq: "dlist_tempo1 S =⇒ dlist_tempo2 S =⇒
∀ l. S l ←→ (∀ i. S (l†..i) 6= S (l†i..))"

using dlist_tempo_equiv_xor

by auto

lemma dlists_xbefore_or2:

"dlist_independent_events S T =⇒
dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
dlist_tempo2 S =⇒ dlist_tempo2 T =⇒
dlist_tempo3 S =⇒ dlist_tempo3 T =⇒
dlist_tempo4 S =⇒ dlist_tempo4 T =⇒
S l ∧ T l =⇒ dlist_xbefore S T l ∨ dlist_xbefore T S l"

unfolding dlist_xbefore_def dlist_tempo_def

by (metis dlist_and_split9 dlist_tempo_equiv_not_eq

dlist_tempo1_le_uniqueness)

theorem dlist_xbefore_or_one_list:

"dlist_independent_events S T =⇒
dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
dlist_tempo2 S =⇒ dlist_tempo2 T =⇒
dlist_tempo3 S =⇒ dlist_tempo3 T =⇒
dlist_tempo4 S =⇒ dlist_tempo4 T =⇒
dlist_xbefore S T l ∨ dlist_xbefore T S l ←→ S l ∧ T l"

using dlist_xbefore_or1 dlists_xbefore_or2 dlist_tempo_def

by blast

corollary dlist_xbefore_or:

"dlist_independent_events S T =⇒

Appendix A. Formal proofs in Isabelle/HOL 137

dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
dlist_tempo2 S =⇒ dlist_tempo2 T =⇒
dlist_tempo3 S =⇒ dlist_tempo3 T =⇒
dlist_tempo4 S =⇒ dlist_tempo4 T =⇒
(λzs. (dlist_xbefore S T zs) ∨ (dlist_xbefore T S zs)) =

(λzs. S zs ∧ T zs)"

using dlist_xbefore_or_one_list

by blast

corollary dlistset_xbefore_or:

"dlist_independent_events S T =⇒
dlist_tempo1 S =⇒ dlist_tempo1 T =⇒
dlist_tempo2 S =⇒ dlist_tempo2 T =⇒
dlist_tempo3 S =⇒ dlist_tempo3 T =⇒
dlist_tempo4 S =⇒ dlist_tempo4 T =⇒
(Collect (dlist_xbefore S T)) ∪ (Collect (dlist_xbefore T S)) =

Collect S ∩ Collect T"

using dlist_xbefore_or

by (smt Collect_cong Collect_conj_eq Collect_disj_eq)

theorem dlist_xbefore_trans: "

[[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a]] =⇒
dlist_xbefore a b zs ∧ dlist_xbefore b c zs =⇒
dlist_xbefore a c zs"

using dlist_xbefore_not_sym

by (metis dlist_tempo2_def dlist_xbefore_def)

corollary dlistset_xbefore_trans: "

[[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a]] =⇒
(Collect (dlist_xbefore a b) ∩ Collect (dlist_xbefore b c)) ⊆

Collect (dlist_xbefore a c)"

using dlist_xbefore_trans

by auto

theorem mixed_dlist_xbefore_or1: "

dlist_xbefore (λxs. a xs ∨ b xs) c zs =

Appendix A. Formal proofs in Isabelle/HOL 138

((dlist_xbefore a c zs) ∨ (dlist_xbefore b c zs))"

unfolding dlist_xbefore_def by auto

corollary mixed_dlistset_xbefore_or1: "

Collect (dlist_xbefore (λxs. a xs ∨ b xs) c) =

Collect (dlist_xbefore a c) ∪ Collect (dlist_xbefore b c)"

proof-
have "Collect (λzs. (dlist_xbefore a c zs) ∨ (dlist_xbefore b c zs)) =

(Collect (dlist_xbefore a c) ∪ Collect (dlist_xbefore b c))"

by (simp add: Collect_disj_eq)

thus ?thesis using mixed_dlist_xbefore_or1 by blast

qed

theorem mixed_dlist_xbefore_or2: "

dlist_xbefore a (λxs. b xs ∨ c xs) zs =

((dlist_xbefore a b zs) ∨ (dlist_xbefore a c zs))"

unfolding dlist_xbefore_def by auto

corollary mixed_dlistset_xbefore_or2: "

Collect (dlist_xbefore a (λxs. b xs ∨ c xs)) =

Collect (dlist_xbefore a b) ∪ Collect (dlist_xbefore a c)"

proof-
have "Collect (λzs. (dlist_xbefore a b zs) ∨ (dlist_xbefore a c zs)) =

Collect (dlist_xbefore a b) ∪ Collect (dlist_xbefore a c)"

by (simp add: Collect_disj_eq)

thus ?thesis using mixed_dlist_xbefore_or2 by blast

qed

lemma and_dlist_xbefore_equiv_or_dlist_xbefore:

"dlist_tempo2 a =⇒
(a zs ∧ dlist_xbefore b c zs) ←→

(dlist_xbefore (λ xs. a xs ∧ b xs) c zs ∨
dlist_xbefore b (λxs. a xs ∧ c xs) zs)"

proof-
assume "dlist_tempo2 a"

hence 0: "∀ i xs. a xs ←→ (a (xs†..i) ∨ a (xs†i..))"

using dlist_tempo2_def by auto

have "a zs ∧ dlist_xbefore b c zs ←→
a zs ∧ (∃ i. b (zs†..i) ∧ c (zs†i..))"

by (auto simp add: dlist_xbefore_def)

thus ?thesis using 0 by (auto simp add: dlist_xbefore_def)

qed

Appendix A. Formal proofs in Isabelle/HOL 139

corollary and_dlistset_xbefore_equiv_or_dlistset_xbefore:

"dlist_tempo2 a =⇒
((Collect a) ∩ (Collect (dlist_xbefore b c)))=

(Collect (dlist_xbefore (λ xs. a xs ∧ b xs) c) ∪
Collect (dlist_xbefore b (λxs. a xs ∧ c xs)))"

by (smt Collect_cong Collect_conj_eq Collect_disj_eq dlist_tempo2_def

dlist_xbefore_def)

lemma dlist_xbefore_implies_not_sym_dlist_xbefore: "

[[dlist_tempo1 a; dlist_tempo1 b]] =⇒
dlist_xbefore a b zs =⇒ ¬ dlist_xbefore b a zs"

unfolding dlist_xbefore_def dlist_tempo1_def

by (meson nat_le_linear)

corollary dlistset_xbefore_implies_not_sym_dlistset_xbefore:

" [[dlist_tempo1 a; dlist_tempo1 b]] =⇒
Collect (dlist_xbefore a b) ⊆ - Collect (dlist_xbefore b a)"

using dlist_xbefore_implies_not_sym_dlist_xbefore

by (metis (mono_tags, lifting) CollectD ComplI subsetI)

theorem mixed_not_dlist_xbefore: "dlist_independent_events a b =⇒
[[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a; dlist_tempo2 b]] =⇒
[[dlist_tempo3 a; dlist_tempo3 b]] =⇒
[[dlist_tempo4 a; dlist_tempo4 b]] =⇒
(¬ (dlist_xbefore a b zs)) =

((¬ a zs) ∨ (¬ b zs) ∨ (dlist_xbefore b a zs))"

using dlist_xbefore_implies_not_sym_dlist_xbefore dlist_xbefore_or_one_list

by blast

corollary mixed_not_dlistset_xbefore: "dlist_independent_events a b =⇒
[[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a; dlist_tempo2 b]] =⇒
[[dlist_tempo3 a; dlist_tempo3 b]] =⇒
[[dlist_tempo4 a; dlist_tempo4 b]] =⇒
(- Collect (dlist_xbefore a b)) =

((- Collect a) ∪ (- Collect b) ∪ Collect (dlist_xbefore b a))"

proof-
assume 0: "dlist_independent_events a b" "dlist_tempo1 a" "dlist_tempo1 b"

"dlist_tempo2 a" "dlist_tempo2 b" "dlist_tempo3 a" "dlist_tempo3 b"

"dlist_tempo4 a" "dlist_tempo4 b"

Appendix A. Formal proofs in Isabelle/HOL 140

have "((- Collect a) ∪ (- Collect b) ∪ Collect (dlist_xbefore b a)) =

((Collect (λzs. ¬ a zs ∨ ¬ b zs)) ∪ Collect (dlist_xbefore b a))"

by blast

also have "... = (Collect (λzs. ¬ a zs ∨ ¬ b zs ∨ dlist_xbefore b a zs))"

by blast

hence "Collect (λzs. (¬ a zs) ∨ (¬ b zs) ∨ (dlist_xbefore b a zs)) =

((- Collect a) ∪ (- Collect b) ∪ Collect (dlist_xbefore b a))"

"Collect (λzs. ¬ (dlist_xbefore a b zs)) =

- Collect (dlist_xbefore a b)"

by blast+

thus ?thesis using 0 mixed_not_dlist_xbefore by blast

qed

theorem not_1_dlist_xbefore:

" [[dlist_tempo1 a; dlist_tempo2 b]] =⇒
dlist_xbefore (λxs. ¬ a xs) b zs = b zs"

by (metis Dlist_list_of_dlist dlist_tempo_1_no_gap dlist_xbefore_def dlist_xbefore_implies_member2

drop_0 slice_left_drop slice_right_take take_0)

corollary not_1_dlistset_xbefore:

" [[dlist_tempo1 a; dlist_tempo2 b]] =⇒
Collect (dlist_xbefore (λxs. ¬ a xs) b) = Collect b"

using not_1_dlist_xbefore by blast

theorem not_2_dlist_xbefore:

" [[dlist_tempo1 b; dlist_tempo2 a]] =⇒ dlist_xbefore a (λxs. ¬ b xs) zs = a zs"

by (metis Dlist.empty_def append_Nil2 dlist_tempo_1_no_gap

dlist_xbefore_append dlist_xbefore_implies_member1 drop_0 inf.commute

inf_bot_left list.set(1) list_of_dlist_empty slice_left_drop

slice_right_take take_0)

corollary not_2_dlistset_xbefore:

" [[dlist_tempo1 b; dlist_tempo2 a]] =⇒
Collect (dlist_xbefore a (λxs. ¬ b xs)) = Collect a"

using not_2_dlist_xbefore by blast

lemma empty_dlist_implies_false[simp]:

" [[dlist_tempo1 a; dlist_tempo2 a]] =⇒ a (Dlist []) =⇒ False"

unfolding dlist_tempo1_def dlist_tempo2_def dlist_tempo3_def dlist_tempo4_def

slice_left_def slice_right_def size_dlist_def slice_dlist_def

by (metis Dlist.empty_def list.size(3) list_of_dlist_empty nat_le_linear)

Appendix A. Formal proofs in Isabelle/HOL 141

lemma dlist_inf_xbefore_trans:

" [[dlist_tempo1 b; dlist_tempo3 b]] =⇒ ((dlist_xbefore a b zs) ∧ (dlist_xbefore

b c zs)) ←→
(dlist_xbefore (dlist_xbefore a b) c) zs"

proof-
assume 0: "dlist_tempo1 b" "dlist_tempo3 b"

hence 1: "∃ i. (∃ j. a (zs†..i) ∧ b (zs†i..) ∧ b (zs†..j) ∧ c (zs†j..) ←→
a (zs†..i) ∧ b (zs†i..j) ∧ c (zs†j..))"

by (metis slice_left_def slice_right_def)

have 2: "(∃ x y. a (zs†..x) ∧ b (zs†x..) ∧ b (zs†..y) ∧ c (zs†y..)) ←→
(∃ x y. a (zs†..x) ∧ b (zs†x..y) ∧ c (zs†y..))"

using 0

by (metis (no_types, hide_lams) diff_zero dlist_empty_slice dlist_tempo1_le_uniqueness

dlist_tempo3_def dlist_tempo_1_no_gap drop_0 list_of_dlist_empty list_of_dlist_simps(3)

max_0L not_le slice_left_drop slice_right_def take_0)

have 3: "((∃ i. a (zs†..i) ∧ b (zs†i..)) ∧ (∃ j. b (zs†..j) ∧ c (zs†j..))) ←→

(∃ i j. a (zs†..i) ∧ b (zs†i..) ∧ b (zs†..j) ∧ c (zs†j..))"

"(∃ i. (∃ j. a (zs†..min i j) ∧ b (zs†j..i)) ∧ c (zs†i..)) ←→
(∃ i j. a (zs†..min i j) ∧ b (zs†j..i) ∧ c (zs†i..))"

by auto

have 4: "(∃ x y. a (zs†..min x y) ∧ b (zs†x..y) ∧ c (zs†y..)) ←→
(∃ x y. a (zs†..x) ∧ b (zs†x..y) ∧ c (zs†y..))"

using 0

by (metis (no_types, lifting) Dlist.empty_def append_Nil2 dlist_empty_slice

dlist_tempo_1_no_gap_append list_of_dlist_empty min.cobounded1 min_def)

have "(∃ i j. a (zs†..i) ∧ b (zs†i..j) ∧ c (zs†j..)) ←→
(∃ i j. a (zs†..min i j) ∧ b (zs†i..j) ∧ c (zs†j..))"

using 4 by simp

hence "(∃ i j. a (zs†..i) ∧ b (zs†i..) ∧ b (zs†..j) ∧ c (zs†j..)) ←→
(∃ i j. a (zs†..min i j) ∧ b (zs†i..j) ∧ c (zs†j..))"

using 0 2 by simp

hence "((∃ i. a (zs†..i) ∧ b (zs†i..)) ∧ (∃ j. b (zs†..j) ∧ c (zs†j..))) ←→

(∃ i j. a (zs†..min i j) ∧ b (zs†i..j) ∧ c (zs†j..))"

using 0 3 by simp

hence "((∃ i. a (zs†..i) ∧ b (zs†i..)) ∧ (∃ j. b (zs†..j) ∧ c (zs†j..))) ←→

(∃ j. (∃ i. a (zs†..min i j) ∧ b (zs†i..j)) ∧ c (zs†j..))"

using 3 by auto

hence "(dlist_xbefore a b zs ∧ dlist_xbefore b c zs) ←→

Appendix A. Formal proofs in Isabelle/HOL 142

(∃ j. (∃ i. a (zs†..min i j) ∧ b (zs†i..j)) ∧ c (zs†j..))"

using dlist_xbefore_def by auto

hence "(dlist_xbefore a b zs ∧ dlist_xbefore b c zs) ←→
(∃ j. (∃ i. a ((zs†..j)†..i) ∧ b ((zs†..j)†i..)) ∧ c (zs†j..))"

by (simp add: min.commute slice_right_slice_left_absorb slice_right_slice_right_absorb)

thus ?thesis unfolding dlist_xbefore_def by simp

qed

lemma dlistset_inf_xbefore_trans:

" [[dlist_tempo1 b; dlist_tempo3 b]] =⇒ (Collect (dlist_xbefore a b) ∩ Collect

(dlist_xbefore b c)) =

Collect (dlist_xbefore (dlist_xbefore a b) c)"

using dlist_inf_xbefore_trans

using Collect_cong Collect_conj_eq by blast

lemma dlist_inf_xbefore_inf_1:

" [[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a; dlist_tempo2 b]] =⇒
((dlist_xbefore a c zs) ∧ (dlist_xbefore b c zs)) ←→
(dlist_xbefore (λxs. a xs ∧ b xs) c zs)"

unfolding dlist_xbefore_def

by (metis dlist_tempo1_le_uniqueness dlist_tempo2_right_absorb

dlist_tempo_equiv_xor nat_le_linear)

lemma dlistset_inf_xbefore_inf_1:

" [[dlist_tempo1 a; dlist_tempo1 b]] =⇒
[[dlist_tempo2 a; dlist_tempo2 b]] =⇒
(Collect (dlist_xbefore a c) ∩ Collect (dlist_xbefore b c)) =

Collect (dlist_xbefore ((λxs. a xs ∧ b xs)) c)"

proof-
assume 0: "dlist_tempo1 a" "dlist_tempo1 b" "dlist_tempo2 a" "dlist_tempo2 b"

hence "Collect (λxs. (dlist_xbefore a c xs) ∧ (dlist_xbefore b c xs)) =

Collect ((dlist_xbefore (λxs. a xs ∧ b xs) c))"

using 0 dlist_inf_xbefore_inf_1 by blast

thus ?thesis using 0 by blast

qed

lemma dlist_inf_xbefore_inf_2:

" [[dlist_tempo1 b; dlist_tempo1 c]] =⇒
[[dlist_tempo2 b; dlist_tempo2 c]] =⇒
((dlist_xbefore a b zs) ∧ (dlist_xbefore a c zs)) ←→
(dlist_xbefore a (λxs. b xs ∧ c xs) zs)"

Appendix A. Formal proofs in Isabelle/HOL 143

unfolding dlist_xbefore_def

by (metis dlist_tempo1_le_uniqueness dlist_tempo2_left_absorb dlist_tempo_equiv_xor

nat_le_linear)

lemma dlistset_inf_xbefore_inf_2:

" [[dlist_tempo1 b; dlist_tempo1 c]] =⇒
[[dlist_tempo2 b; dlist_tempo2 c]] =⇒
Collect (dlist_xbefore a b) ∩ Collect (dlist_xbefore a c) =

Collect (dlist_xbefore a (λxs. b xs ∧ c xs))"

proof-
assume 0: "dlist_tempo1 b" "dlist_tempo1 c" "dlist_tempo2 b" "dlist_tempo2 c"

hence "Collect (λxs. (dlist_xbefore a b xs) ∧ (dlist_xbefore a c xs)) =

Collect (dlist_xbefore a (λxs. b xs ∧ c xs))"

using 0 dlist_inf_xbefore_inf_2 by blast

thus ?thesis using 0 by blast

qed

In the following we prove that a formula is a valid type instantiation for all ATF
classes.

instantiation formula :: (type) algebra_of_temporal_faults_basic

begin

definition
"neutral = Abs_formula { Dlist [] }"

definition
"xbefore a b = Abs_formula { zs .

dlist_xbefore (λxs. xs ∈ Rep_formula a) (λys. ys ∈ Rep_formula b) zs }"

definition
"tempo1 a = dlist_tempo1 (λxs. xs ∈ Rep_formula a)"

lemma Rep_formula_neutral[simp]: "Rep_formula neutral = { Dlist [] }"

unfolding neutral_formula_def

by (simp add: Abs_formula_inverse)

lemma Rep_formula_xbefore_to_dlist_xbefore:

"Rep_formula (xbefore a b) =

Collect (dlist_xbefore (λx. x ∈ Rep_formula a) (λy. y ∈ Rep_formula b))"

unfolding dlist_xbefore_def xbefore_formula_def

by (simp add: Abs_formula_inverse)

Appendix A. Formal proofs in Isabelle/HOL 144

lemma Rep_formula_xbefore_bot_1: "Rep_formula (xbefore bot a) =

Rep_formula bot"

unfolding xbefore_formula_def

by (simp add: Abs_formula_inverse dlist_xbefore_bot_1)

lemma Rep_formula_xbefore_bot_2: "Rep_formula (xbefore a bot) =

Rep_formula bot"

unfolding xbefore_formula_def

by (simp add: Abs_formula_inverse dlist_xbefore_bot_2)

lemma Rep_formula_xbefore_neutral_1: "Rep_formula (xbefore neutral a) = Rep_formula

a"

unfolding xbefore_formula_def neutral_formula_def

apply (simp add: Abs_formula_inverse)

using dlistset_xbefore_neutral_1

by (metis Collect_mem_eq)

lemma Rep_formula_xbefore_neutral_2: "Rep_formula (xbefore a neutral) = Rep_formula

a"

unfolding xbefore_formula_def neutral_formula_def

apply (simp add: Abs_formula_inverse)

using dlistset_xbefore_neutral_2

by (metis Collect_mem_eq)

lemma Rep_formula_xbefore_not_idempotent:

"tempo1 a =⇒ Rep_formula (xbefore a a) = Rep_formula bot"

unfolding xbefore_formula_def tempo1_formula_def

by (simp add: Abs_formula_inverse dlist_xbefore_idem)

lemma Rep_formula_xbefore_not_sym:

" [[tempo1 a; tempo1 b]] =⇒
Rep_formula (xbefore a b) ⊆ Rep_formula (-xbefore b a)"

unfolding xbefore_formula_def tempo1_formula_def uminus_formula_def

by (simp add: Abs_formula_inverse

dlistset_xbefore_implies_not_sym_dlistset_xbefore)

instance proof
fix a::"’a formula"

show "xbefore bot a = bot"

unfolding eq_formula_iff Rep_formula_xbefore_bot_1 by auto

next
fix a::"’a formula"

Appendix A. Formal proofs in Isabelle/HOL 145

show "xbefore a bot = bot"

unfolding eq_formula_iff Rep_formula_xbefore_bot_2 by auto

next
fix a::"’a formula"

show "xbefore neutral a = a"

unfolding eq_formula_iff

using Rep_formula_xbefore_neutral_1 by auto

next
fix a::"’a formula"

show "xbefore a neutral = a"

unfolding eq_formula_iff

using Rep_formula_xbefore_neutral_2 by auto

next
fix a::"’a formula"

assume "tempo1 a"

thus "xbefore a a = bot"

unfolding eq_formula_iff

using Rep_formula_xbefore_not_idempotent by auto

next
fix a::"’a formula" and b::"’a formula"

assume "tempo1 a" "tempo1 b"

thus "xbefore a b ≤ - xbefore b a"

unfolding eq_formula_iff less_eq_formula_def

using Rep_formula_xbefore_not_sym by simp

fix a::"’a formula" and b::"’a formula"

assume "tempo1 a" "tempo1 b"

thus "tempo1 (inf a b)"

unfolding tempo1_formula_def

by (simp add: dlist_tempo1_inf Rep_formula_inf)

qed

The above proof shows basic laws about ATF, as shown in Eqs. (4.21a), (4.23a)
to (4.23d) and (4.23g).

end

instantiation formula :: (type) algebra_of_temporal_faults_assoc

begin

instance proof
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

Appendix A. Formal proofs in Isabelle/HOL 146

show "xbefore (xbefore a b) c = xbefore a (xbefore b c)"

unfolding xbefore_formula_def tempo1_formula_def

by (simp add: Abs_formula_inverse dlist_xbefore_assoc)

qed

The above proof shows associativity law about ATF, as shown in Eq. (4.23h).

end

instantiation formula :: (type) algebra_of_temporal_faults_equivs

begin

definition
"independent_events a b =

dlist_independent_events

(λxs. xs ∈ Rep_formula a) (λxs. xs ∈ Rep_formula b)"

definition
"tempo2 a = dlist_tempo2 (λxs. xs ∈ Rep_formula a)"

definition
"tempo3 a = dlist_tempo3 (λxs. xs ∈ Rep_formula a)"

definition
"tempo4 a = dlist_tempo4 (λxs. xs ∈ Rep_formula a)"

instance proof
fix a::"’a formula" and b::"’a formula"

assume "tempo1 a" "tempo1 b"

thus "inf (xbefore a b) (xbefore b a) = bot"

unfolding xbefore_formula_def tempo1_formula_def bot_formula_def

inf_formula_def

by (simp add: dlistset_xbefore_and Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula"

assume "independent_events a b" "tempo1 a" "tempo1 b" "tempo2 a" "tempo2 b"

"tempo3 a" "tempo3 b" "tempo4 a" "tempo4 b"

thus "sup (xbefore a b) (xbefore b a) = inf a b"

unfolding xbefore_formula_def tempo1_formula_def tempo2_formula_def

tempo3_formula_def tempo4_formula_def independent_events_formula_def

sup_formula_def inf_formula_def

Appendix A. Formal proofs in Isabelle/HOL 147

by (simp add: dlistset_xbefore_or Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula"

assume "tempo2 a" "tempo2 b"

thus "tempo2 (sup a b)"

unfolding tempo2_formula_def

by (simp add: dlist_tempo2_sup Rep_formula_sup)

next
fix a::"’a formula" and b::"’a formula"

assume "tempo3 a" "tempo3 b"

thus "tempo3 (inf a b)"

unfolding tempo3_formula_def

by (simp add: dlist_tempo3_inf Rep_formula_inf)

next
fix a::"’a formula" and b::"’a formula"

assume "tempo4 a" "tempo4 b"

thus "tempo4 (sup a b)"

unfolding tempo4_formula_def

by (simp add: dlist_tempo4_sup Rep_formula_sup)

qed

The above proof shows equivalences in ATF, as shown in Eqs. (4.21b) to (4.21d),
(4.24a) and (4.24b).

end

instantiation formula :: (type) algebra_of_temporal_faults_trans

begin
instance proof
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

assume "tempo1 a" "tempo1 b" "tempo2 a"

thus "inf (xbefore a b) (xbefore b c) ≤ xbefore a c"

unfolding tempo1_formula_def tempo2_formula_def xbefore_formula_def

less_eq_formula_def inf_formula_def

by (simp add: dlistset_xbefore_trans Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

assume "tempo1 b" "tempo3 b"

thus "inf (xbefore a b) (xbefore b c) = xbefore (xbefore a b) c"

unfolding xbefore_formula_def inf_formula_def tempo1_formula_def

tempo3_formula_def

Appendix A. Formal proofs in Isabelle/HOL 148

by (simp add: Abs_formula_inverse dlistset_inf_xbefore_trans)

qed

The above proof shows transitivity in ATF, as shown in Eq. (4.26f).

end

instantiation formula :: (type) algebra_of_temporal_faults_mixed_ops

begin
instance proof
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

show "xbefore (sup a b) c = sup (xbefore a c) (xbefore b c)"

unfolding xbefore_formula_def sup_formula_def

by (simp add: mixed_dlistset_xbefore_or1 Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

show "xbefore a (sup b c) = sup (xbefore a b) (xbefore a c)"

unfolding xbefore_formula_def sup_formula_def

by (simp add: mixed_dlistset_xbefore_or2 Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

assume "tempo1 a" "tempo1 b" "tempo2 a" "tempo2 b"

thus "xbefore (inf a b) c = inf (xbefore a c) (xbefore b c)"

unfolding xbefore_formula_def inf_formula_def tempo1_formula_def

tempo2_formula_def

by (simp add: dlistset_inf_xbefore_inf_1 Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

assume "tempo1 b" "tempo1 c" "tempo2 b" "tempo2 c"

thus "xbefore a (inf b c) = inf (xbefore a b) (xbefore a c)"

unfolding xbefore_formula_def inf_formula_def tempo1_formula_def

tempo2_formula_def

by (simp add: dlistset_inf_xbefore_inf_2 Abs_formula_inverse)

next
fix a::"’a formula" and b::"’a formula"

assume "independent_events a b" "tempo1 a" "tempo1 b" "tempo2 a" "tempo2 b"

"tempo3 a" "tempo3 b" "tempo4 a" "tempo4 b"

thus "(- xbefore a b) = (sup (sup (- a) (- b)) (xbefore b a))"

by (simp add: Abs_formula_inverse xbefore_formula_def uminus_formula_def

sup_formula_def independent_events_formula_def tempo1_formula_def

tempo2_formula_def tempo3_formula_def tempo4_formula_def

Appendix A. Formal proofs in Isabelle/HOL 149

mixed_not_dlistset_xbefore)

next
fix a::"’a formula" and b::"’a formula" and c::"’a formula"

assume "tempo2 a"

thus "inf a (xbefore b c) =

sup (xbefore (inf a b) c) (xbefore b (inf a c))"

apply (auto simp add: xbefore_formula_def sup_formula_def inf_formula_def

tempo2_formula_def Abs_formula_inverse)

using and_dlistset_xbefore_equiv_or_dlistset_xbefore Abs_formula_inverse

by fastforce

next
fix a::"’a formula" and b::"’a formula"

assume "tempo1 a" "tempo2 b"

thus "xbefore (- a) b = b"

unfolding xbefore_formula_def tempo1_formula_def tempo2_formula_def

uminus_formula_def

by (auto simp add: Abs_formula_inverse not_1_dlistset_xbefore

Rep_formula_inverse)

next
fix a::"’a formula" and b::"’a formula"

assume "tempo1 b" "tempo2 a"

thus "xbefore a (- b) = a"

unfolding xbefore_formula_def tempo1_formula_def tempo2_formula_def

uminus_formula_def

by (auto simp add: Abs_formula_inverse not_2_dlistset_xbefore

Rep_formula_inverse)

qed

The above proof shows laws with mixed Boolean and XBefore operators, as shown
in Eqs. (4.26a), (4.26b), (4.26e) and (4.28a) to (4.28c).

end

	Title page
	Dedication
	Acknowledgments
	Epigraph
	Abstract
	Resumo
	List of figures
	List of tables
	List of abbreviations and acronyms
	Fault tree gates
	Contents
	Introduction
	Mathematical models
	Research questions
	Proposed solution
	Contributions
	Thesis organization

	Basic concepts
	Systems, dependability, and fault modelling
	Systems
	Dependability
	Fault Modelling

	Time relation of fault events

	Analysis and tools
	Fault Tree Analysis and structure expressions
	SFTs
	TFTs
	DFTs

	Free Boolean Algebras
	Probability theory of fault events
	Using the NOT operator in static fault trees
	Non-coherent Fault Tree misleads
	Usefulness of NOT gates in FTA
	Probabilistic analysis of a non-coherent tree

	Systems nominal model and fault injection to obtain structure expressions
	Isabelle/HOL

	A free algebra to express structure expressions of ordered events
	Temporal properties (tempo)
	XBefore laws
	Soundness and completeness
	Qualitative and quantitative analyses
	Minimal cut sequence
	Root probability
	Formal acceptance criteria

	Mapping CSPm traces to ATF

	Reasoning about fault activation
	The Activation Logic Grammar
	Healthiness Conditions
	H1: No predicate is a contradiction
	H2: All possibilities are covered
	H3: There are no two terms with exactly the same operational mode.
	Healthy expression

	Non-determinism
	Predicate Notation

	Case study
	From traces to structure expressions with Boolean operators
	From traces to structure expressions with XBefore
	From AL to structure expressions with Boolean operators
	From AL to structure expressions with XBefore
	Obtaining top-event probability with explicit NOT operators

	Conclusion
	Future work

	References
	Appendix
	Formal proofs in Isabelle/HOL

