‘Centro .
wlnformatlca
' . L B U WL

P&6s-Graduacdo em Ciéncia da Computacao

“DIRETRIZES E UM UTILITARIO PARA
AVALIACAO DE DESEMPENHO DE TOOLKITS
WEB SERVICES”

Por
ANA CAROLINA CHAVES MACHADO

Dissertacao de Mestrado

e
1B

¢
"l

[

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, AGOSTO/2006

ddid UNIVERSIDADE FEDERAL DE PERNAMBUCO
@ CENTRO DE INFORMATICA
e POS-GRADUACAO EM CIENCIA DA COMPUTACAO

ANA CAROLINA CHAVES MACHADO

“DIRETRIZES E UM UTILITARIO PARA AVALIACAO DE DESEMPENHO
DE TOOLKITS WEB SERVICES"

ESTE TRABALHO FOI APRESENTADO A POS-GRADUACAO EM

CIENCIA DA COMPUTACAO DO CENTRO DE INFORMATICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENCAO DO GRAU DE MESTRE EM CIENCIA DA
COMPUTACAO.

ORIENTADOR(A): Prof. Dr. Carlos A. G. Ferraz

RECIFE, AGOSTO/2006

Machado, Ana Carolina Chaves

Diretrizes e um utilitario para avaliacdo de
desempenho de toolkits web services / Ana Carolina
Chaves Machado. — Recife : O Autor, 2006.

iv, 135 folhas : il., fig.,tab.

Dissertacdo (mestrado) — Universidade Federal
de Pernambuco. CIn. Ciéncia da Computacéo,
2006.

Inclui bibliografia.

1.Sistemas distribuidos. I. Titulo.

004.36 CDD (22.ed.) MEI2008-055

DEDICATORIAS

para minha familia.

AGRADECIMENTOS

Agradeco ao Prof. Dr. Carlos André Guimardes Ferraz pela orientagdo no mestrado.
Pelo seu comprometimento e presenca nas duvidas técnicas, informacdes sobre a vida
académica, ensino de disciplinas, enfim todo o incentivo e apoio durante o

desenvolvimento deste trabalho.

Agradeco aos professores que forneceram conhecimentos nas disciplinas cursadas

durante o mestrado. Agradeco a Profd Marcilia Andrade pela sua amizade e orientacao.

Agradeco aos meus colegas de turma pelo compartilhamento de informacdes e pelos

momentos de descontracdo durante essa jornada.

Agradeco ao C.E.S.A.R (Centro de Estudos e Sistemas Avangados do Recife) pela
liberacdo de algumas horas do meu trabalho para me dedicar as pesquisas e ao Tribunal
de Contas do Estado de Pernambuco (TCE-PE), princiaplmente a Saulo Malincénico,

pela ajuda, compreensdo e motivacao.

Agradeco ao meu esposo Claudio Morais e toda minha familia pelo companheirismo e

ajuda e por aceitar minha auséncia em muitos momentos importantes da nossa familia.

-iv-

DIRETRIZES E UM UTILITARIO PARA AVALIACAO DE
DESEMPENHO DE TOOLKITS WEB SERVICES'

Autora: Ana Carolina Chaves Machado
Orientador: Prof. Dr. Carlos André Guimaraes Ferraz

RESUMO

A tecnologia Web Services estd se tornando a mais importante solucdo para prover a
comunicacdo entre aplicagdes heterogéneas, contribuindo enormemente para o avango
na area de desenvolvimento de sistemas distribuidos. Uma conseqiiéncia dessa
popularidade € a existéncia de mais de setenta Web Services toolkits disponiveis para
uma variedade de plataformas e linguagens de programacdo. Além disso, varias
aplicacfes em areas como, por exemplo, e-commerce, computacéo cientifica, satde e
financas estdo sendo expostas como Web Services. Dessa forma, o fato de estar sendo
adotada por muitas empresas como a infra-estrutura para desenvolver seus sistemas,
aumenta a demanda pela sua eficiéncia, uma vez que desempenho é um importante
parametro da qualidade do servico.

O problema é que o desempenho de Web Services é uma questdo em aberto, uma vez
que sua eficiéncia foi sacrificada para prover simplicidade, interoperabilidade e
flexibilidade. Dessa forma, os desenvolvedores deveriam avaliar as condices de
desempenho das aplicacdes Web Services, pois sua ineficiéncia pode limitar sua
aplicabilidade em algumas situacdes.

O principal objetivo dessa dissertacéo é viabilizar a avaliagdo de desempenho de Web
Services toolkits, propondo diretrizes que foram desenvolvidas baseando-se nos
gargalos de desempenho de Web Services. A partir dessas diretrizes, foi elaborado um
processo que tem como objetivo uniformizar a avaliacdo de desempenho de toolkits e
facilitar a escolha do toolkit “ideal” para desenvolver uma aplicagdo. Também sera
apresentado o utilitario JWSPerf (Java Web Service Performance) que, juntamente com
outras ferramentas, automatiza algumas tarefas desse processo, reduzindo o tempo e 0s
Ccustos necessarios para sua execugao.

Palavras-chave: Web Services, Toolkits e Avaliagdo de Desempenho.

! Dissertacéio de Mestrado em Ciéncia da Computacdo, Centro de Informatica, Universidade Federal de
Pernambuco, Recife, PE, 2006.

GUIDELINES AND UTILITY FOR PERFORMANCE
EVALUATION OF WEB SERVICES TOOLKITS?

Author: Ana Carolina Chaves Machado
Adviser: Prof. Dr. Carlos André Guimaraes Ferraz

ABSTRACT

The Web Services technology is becoming the most important solution to provide the
communication between heterogeneous applications, contributing enormously for the
advance in the area of distributed systems development. A consequence of this
popularity is the existence of more than seventy Web Services toolkits available for a
variety of platforms and programming languages. Moreover, various applications in
areas such as e-commerce, scientific computation, health and finance have been
exposed as Web Services. Therefore, the fact that it is being adopted for many
companies as the infrastructure to develop its systems, increases the demand for its
efficiency, because performance is an important parameter of quality of service.

The problem is that Web Services performance is an open question, because its
efficiency was sacrificed to provide simplicity, interoperabilidade and flexibility.
Therefore, the developers would have to evaluate the conditions of performance of the
Web Services applications, because its inefficiency can limit its applicability in some
situations.

The main objective of this dissertation is to make the performance evaluation of Web
Services toolkits, publishing guidelines that had been developed based on the
performance overheads of Web Services. Based on guidelines, a process was elaborated
that has as objective to standardise the performance evaluation of toolkits and to
facilitate the choice of the "ideal" toolkit to develop an application. Also it will present
the utility JWSPerf (Java Web Service Performance) that, together with other tools,
automatizes some tasks of this process, reducing the time and costs for its execution.

Keywords: Web Services, Toolkits and Performance Evaluation.

> Master of Science dissertation in Computer Science, Informatics Center, Federal University of
Pernambuco, Recife, PE, 2006.

SUMARIO

LISTA DE TABELAS 10
LISTA DE FIGURAS 11
1 Introducdo 13
1.1 Motivacéo 13
1.2 Objetivos e Metodologia 14
1.3 Organizacéo da Dissertacao 16

2 A Tecnologia Web Services 17
2.1 Introducéo 17
2.2 Arquitetura Orientada a Servicos 18
Camada de Transporte 20
Camada de Empacotamento das Mensagens 21
Camada de Descricdo do Servico 22
Camada de Registro 24

2.3 Desenvolvendo Web Services 25
2.3.1 Projetando a Interface WSDL 26

2.4 Web Services Toolkits 29
24.1 Apache Axis 29

2.4.2 JWSDP (Java Web Services Developer Pack) 30

243 Glue 30

2.4.4 SS] (Systinet Server for Java) 30

245 XSOAP 31

246 Framework .NET 31
247 gSOAP 31

248 bSOAP 32

2.5 Consideracdes Finais 32

3 Desempenho de Web Services 34
3.1 Introducéo 34
3.2 XML versus Representacdo Binaria 35
3.3 Comparacao entre Web Services e outros Middleware 37
3.4 Desempenho de Web Services Toolkits 39
35 Gargalos de Desempenho 42
3.5.1 Tamanho da Mensagem 43

3.5.2 Escolha do Parser XML 43

3.5.3 Custos de Serializacdo e Deserializacdo 44
3.5.4 Calculo do Tamanho da Mensagem SOAP 45

3.5.5 Gargalos de Comunicacao 46

3.5.6 Custo do Estabelecimento da Conexao 48

3.6 Técnicas de Otimizacéo 48
3.6.1 Compressdo dos Dados 49

3.6.2 Parser Especifico de Esquema XML

49

3.6.3 Caching das Requisi¢des SOAP

49

3.6.4 Otimizando o Célculo do Tamanho da Mensagem SOAP

50

3.6.5 Otimizac¢6es na Comunicacdo

53

3.6.6 Uso de Conexdes Persistentes

55

3.6.7 Caodificacdo Binaria dos Dados XML

55

3.6.8 Enviando Mensagens SOAP com Anexos

55

3.6.9 Otimizando os Custos de Serializacéo

56

3.7 Consideracdes Finais

57

4 Diretrizes para Avaliacdo de Desempenho de Web Services

59

4.1 Introducéo

59

4.2 Objetivo das Diretrizes

60

4.3 Guia para Avaliacdo de Desempenho

61

Diretriz 1: Adote o estilo Document/Literal Wrapped

63

Diretriz 2: Utilize mensagens de tamanhos e complexidades diferentes
Diretriz 3: Analise as mensagens SOAP transportadas na rede

65

66

Diretriz 4: Verifique o parser suportado pelo toolkit

68

Diretriz 5: Monitore o trafego de pacotes

69

Diretriz 6: Quantifique o desempenho do Web Services toolkit

70

4.4 Consideracdes Finais

72

5 Processo e um Utilitario para a Avaliacdo de Desempenho de Web Services ToolKits

74

5.1 Introducéo

74

5.2 Processo de Avaliacédo de Desempenho

75

5.3 Utilitario JWSPerf

77

Modulo de Geragdo das Classes de Teste

79

Médulo de Invocacao

82

54 Instalando o JWSPerf

87

5.5 Executando o Utilitario JWSPerf

89

Passo 1: Rodar o arquivo env.bat

90

Passo 2: Alterar os arquivos parameters.properties e jwsperf.xml

90

Passo 3: Construir as classes cliente

90

Passo 4: Executar o utilitario JWSPerf

96

5.6 Guia para Incorporar Novos Toolkits

97

5.7 Consideracdes Finais

98

6 Plataforma Experimental e Resultados

6.1 Introducéo

6.2 Aplicacdo-teste

6.2.1 Projeto da Aplicagdo-teste

101
101

102
104

6.2.2 Configuracfes do Ambiente de Execucdo

106

6.3 Resultados da Avaliacdo de Desempenho

Tarefa 1: Recuperar a interface WSDL

107
108

Tarefa 2: Escolher o Web Services toolkit

108

Tarefa 3: Verificar o parser do toolkit

109

Tarefa 4: Gerar o Stub

109

Tarefa 5: Implementar a aplicacéo cliente

110

Tarefa 6: Invocar as operacgdes do servico
Tarefa 7: Monitorar as mensagens SOAP

111

115

120

Tarefa 8: Analisar o trafego de pacotes

6.4 Consideracdes Finais

7 Conclusdes e Trabalhos Futuros

7.1 Principais Contribuictes

7.2 Trabalhos Futuros

Referéncias Bibliogréficas

123
126
128
129
130

LISTA DE TABELAS

Tabela 2.1 - Regras para configurar o estilo de codificacdo do documento WSDLccccecevvvvrvrenennne. 27
Tabela 2.2 - Regras para configurar o atributo ““use” do documento WSDL..........ccccoevviviivevercnennnenen, 27
Tabela 5.1 - Mapeamento entre as diretrizes, 0 processo e o responsavel pela execugdo...........ccceeeene. 77
Tabela 5.2 - Descrigdo dos atributos da classe CONfig........cvviiriiiiiiiiiiee s 84
Tabela 5.3 - Principais arquivos de CONfIQUIAGADccuiirieiierieirieieisieisie et 87
Tabela 6.1 - Ferramentas d0S t00IKITS..........ceiiieiiie it 110
Tabela 6.2 - Tempos (ms) de instanciac@o do stub e dos métodos SIMPIESccccceverviieneienenieceseneen, 112
Tabela 6.3 - Tamanho das MenSageNns €M DYLES.........ciiiiiiiie et 120
Tabela 6.4 - ComPAaragao A0S TO0IKILS.ccviiiierieiie e 124

-10-

LISTA DE FIGURAS

Figura 1.1 - Estratégia para avaliagdo de desempenho de Web SErviCescccocvvveivierieienenieieseneeennns 15
Figura 2.1 - Entidades do paradigma “find, bind and eXeCUte™ccvvvvvrvieeieierere e 19
Figura 2.2 - Pilha das tecnologias de WED SEIVICES ..ot 20
Figura 2.3 - Estrutura das mensSagens SOAP ...t 22
Figura 2.4 - Estrutura de um documento WSDL..........ccuiiiiiiiiiiiineee e 23
Figura 3.1 - Laténcia das mensagens SOAP usando diferentes estilos..........ocevvvievivvivsieiiveceeiecsesesenes 40
Figura 3.2 - Estagios para enviar e receber uma mensagem SOAP ... vvrieerere s s 42
Figura 3.3 - Trafego de pacotes para uma chamada SOAP/HTTP......ccccovveieiine s 46
Figura 3.4 — Enviando uma mensagem SOAP COM OtIMIZAGBEScvrviviiriiiririesesese e 52
Figura 3.5 - Trafego de pacotes para uma chamada SOAP com otimizagOescceerveerrerieesereeennens 54
Figura 4.1 - Fatores que influenciam o desempenho de Web SErVICEScccocvvvveiveieiciieie e 61
Figura 4.2 - Exemplo de uma requisicdo SOAP enviada Via HTTP ..o 66
Figura 4.3 - Exemplo de uma resposta SOAP enviada Via HTTPcccccoovviviieicner e 67
Figura 4.4 - Exemplo de uma resposta SOAP enviada via HTTP fechando a conexao............cccccecevvveene 67
Figura 5.1 - Componentes do processo de avaliagdo de desempenhoccccvveivirvinensnenscseeses 75
Figura 5.2 - Papel do UtHHTArIo JWSPEITcvcieiece ettt 78
Figura 5.3 - Diagrama de classes do médulo de geracéo das classes de teste.........ccovvvvvvivrivrieeicrierieniens 79
Figura 5.4 - Diagrama de seqliéncia do modulo de geracdo das classes de testeocovvvvvrervrerernnennn, 81
Figura 5.5 - Diagrama de classes do mOdulo de iNVOCACADcevverveeereeriererese et 83
Figura 5.6 - Diagrama de seqtiéncia do modulo de INVOCAGED.cceivrerueirerireniniei et 85
Figura 5.7 - Estrutura de diret6rios do Utilitario JWSPerT..........cccovriiicciii s 88
Figura 5.8 - Comando para construir as Classes CHENESc.cvoiveieeiene e 91
Figura 5.9 - Comando para preparar 0 diretorio build...........ccocoovviiiiiiieiicie e 91
Figura 5.10 - Comando para gerar as Classes de tEStEccuciriiriie e e 92
Figura 5.11 - Comando para gerar as classes usando 0 tOOIKit AXIS..........cccverererenenene s 93
Figura 5.12 - Comando para gerar as classes usando 0 to0lKit JWSDPccccocevvienensieneninienenese e 93
Figura 5.13 - Comando para gerar as classes usando 0 toOIKIt SSJ.........cccovvrviieniiininsiene e 94
Figura 5.14 - Comando para copiar as Classes geratas..........ccocuiirerinirerinienenieesenese e seee e neens 95
Figura 5.15 - Comando para compilar todas @s ClaSSES ..o e 95
Figura 5.16 - Comando para rodar 0 ULITITAIIO ..o e 96
Figura 5.17 - Comando para investigar a execug¢ao do tOOIKit............cocereiriniiiiineiie e 96
Figura 5.18 - Resultado da investigagdo do toolkit SSJ usando 0 PerfAnal............cccocvvovvvvinicicicne 97
Figura 6.1 - Métodos da interface IWSBENCAMAIKcoovieieiiniie e 102
Figura 6.2 - Entidades de negd6cio definidas Pelo USUAIIO........c..cveveierereiinise e 103

-11-

Figura 6.3 - Arquitetura da apliCaCA0-TESIE........c.eveiereie st e s enees 105

Figura 6.4 — Arquivo parameterS.PrOPEITIES.ciuiieieiereieeeereeiestestestesreste s e eseeseeseeseeseessesresresresneenens 108
Figura 6.5 - RTT (ms) dos métodos teStEXCEption € retUrNSEriNGc.ccovveeerirenirisee e 113
Figura 6.6 — RTT dos métodos returnDoubles e returnMyComplexObjJectsScccevvrvrrerirereriricieneenns 114
Figura 6.7 - Requisicdo SOAP/HTTP gerada pelo toolKit AXISc.covveiiiniiiircseeee e 116
Figura 6.8- Resposta SOAP/HTTP gerada pelo toOIKit AXIS........cccoueieiirenieniniiicie e 116
Figura 6.9 - Requisicdo SOAP/HTTP gerada pelo toolkit JWSDP...........cccceiiiiniiiiiienceeeeee e 117
Figura 6.10 - Resposta SOAP/HTTP gerada pelo toolKit JWSDPc.ccooeiiinine e 118
Figura 6.11 - Requisicdo SOAP/HTTP gerada pelo toolKit SSJccovvvveiieieiieiee e 118
Figura 6.12 - Resposta SOAP/HTTP gerada pelo toolKit SSJ........cccovvveieiiiiieiene e 119
Figura 6.13 - Trafego de pacotes do tOOIKIT AXIScccciiiiiieeieieeieie et re e 121
Figura 6.14 - Trafego de pacotes do toolKit JWSDP..........ccccoeieiiriie e 122
Figura 6.15 - Trafego de pacotes do tOOIKIt SSJcccviiieiiieieice s 123

-12-

1 Introducao

1.1 Motivacao

Web Services tém muitas qualidades como possivel comunicacdo através de firewalls e
promover a integracdo entre aplicagcBes distribuidas na Internet. Devido a essas
vantagens, a tecnologia Web Services esta se tornando a mais importante solucdo para
prover a comunicacao entre aplicacfes heterogéneas, contribuindo enormemente para o

avanco na area de desenvolvimento de sistemas distribuidos.

Uma consequéncia dessa popularidade é a existéncia de mais de setenta Web
Services toolkits disponiveis para uma variedade de plataformas e linguagens de
programacao. Além disso, vérias aplicacdes em areas como, por exemplo, e-commerce,
computacdo cientifica, salde e finangas, estdo sendo expostas como Web Services.
Dessa forma, o fato de estar sendo adotada por muitas empresas como a infra-estrutura
para desenvolver seus sistemas, aumenta a demanda pela sua eficiéncia, uma vez que

desempenho é um importante parametro da qualidade do servigo.

O problema € que o desempenho de Web Services € uma questdo em aberto, uma
vez que sua eficiéncia foi sacrificada para prover interoperabilidade. Os gargalos de

desempenho de Web Services se originam do projeto e implementacdo dos toolkits

13-

utilizados, da escolha do protocolo de transporte da mensagem SOAP e dos gargalos
inerentes ao proprio protocolo SOAP. Nesse contexto, algumas questdes sao

pertinentes:

1) Qual é o desempenho apresentado pelas varias implementacdes Web Services?
2) Quais os gargalos introduzidos pelos protocolos SOAP e HTTP? Quais desses
gargalos podem ser removidos através de melhores implementagdes?

3) Qual Web Services toolkit usar para desenvolver e expor um servigo?

Os desenvolvedores deveriam verificar as condicdes de desempenho das
aplicacdes Web Services, pois sua ineficiéncia pode limitar sua aplicabilidade em
algumas situagdes. Na maioria dos casos, uma implementacao “ingénua” pode consumir

muito tempo de processamento.

Dessa forma, é necessario avaliar o desempenho de toolkits antes de desenvolver
os sistemas, a fim de identificar o mais apropriado para atender aos seus requisitos de
eficiéncia. Porém, o processo de avaliacdo de desempenho pode consumir muito tempo
analisando a documentacdo e escrevendo diferentes codigos para cada toolkit e

demandar pessoas com experiéncia na tecnologia.

1.2 Objetivos e Metodologia

O principal objetivo dessa dissertacdo é viabilizar a avaliagdo de desempenho de Web
Services toolkits, publicando diretrizes que foram desenvolvidas baseando-se nos
gargalos de desempenho de Web Services (Figura 1.1). Observe-se que a Figura 1.1
descreve a metodologia de desenvolvimento adotada neste trabalho: 1) organizar os
gargalos de desempenho; 2) publicar as diretrizes; 3) propor o processo de avaliagéo; e

4) desenvolver o utilitario JWSPerf.

Uma contribuicdo importante € a organizacdo dos gargalos de desempenho de
Web Services toolkits, permitindo que qualquer desenvolvedor entenda os fatores que

-14-

influenciam sua eficiéncia e identifique as possiveis otimizacdes para melhorar seu

desempenho.

Gargalos de Desempenho

4L

Diretrizes

-

Processo

g

Utilitario JWSPerf

Figura 1.1 - Estratégia para avaliacdo de desempenho de Web Services

As diretrizes publicadas guiam a avaliacdo, focando nos principais aspectos de
um toolkit que devem ser analisados. Além das diretrizes, sdo apresentadas
recomendagOes para projetar a interface WSDL sem afetar a interoperabilidade da

aplicacéo.

A partir das diretrizes, foi elaborado um processo que tem como objetivo
uniformizar a avaliacdo de desempenho de toolkits e facilitar a escolha do toolkit “ideal”
para desenvolver uma aplicacdo. De forma geral, 0 processo representa um guia pratico

composto por um conjunto de tarefas para executar a avaliacao.

Uma vez que o processo de avaliacdo pode demandar muito tempo, verificou-se
a necessidade de automatizar algumas de suas tarefas, principalmente os passos
referentes a parte de implementacdo, compilacdo, execucdo da aplicacéo cliente e coleta
de metricas. Nesse contexto, foi desenvolvido o utilitario JWSPerf (Java Web Service

Performance) de cddigo aberto e implementado em Java.

O utilitario é simples, facil de usar e suporta trés Web Services toolkits — Axis,
Systinet Server for Java (SSJ) e Java Web Services Developer Pack (JWSDP). O
utilitario JWSPerf, juntamente com outras ferramentas, automatiza parte desse processo,

reduzindo o tempo e 0s custos necessarios para sua execucao.

-15-

1.3 Organizacao da Dissertacao

A dissertacdo esta organizada em 7 capitulos. Neste capitulo inicial foi apresentada a
motivacdo para o trabalho, seguida da descricdo dos objetivos e organizacdo da

dissertacéo.

O capitulo 2 apresenta uma introducdo sucinta da tecnologia Web Services,
focando principalmente nas principais decisfes de projeto que desenvolvedores devem
tomar durante o projeto da interface WSDL, pois afetam a estruturacdo e as regras de

serializacdo e deserializacdo das mensagens.

O capitulo 3 procura dar uma visao estruturada dos trabalhos que investigaram a
ineficiéncia de Web Services, detalhando seus gargalos e listando as possiveis

otimizacGes para tornar os servi¢cos mais eficientes.

O capitulo 4 apresenta as diretrizes para avaliacdo de desempenho de Web
Services toolkits, propostas para que um arquiteto entenda o comportamento do toolkit
sendo analisado e identifique seus gargalos de desempenho.

O capitulo 5 descreve o0 processo proposto e suas tarefas para avaliar o
desempenho de Web Services toolkits e o utilitario JWSPerf (Java Web Services

Performance), que visa automatizar uma parte desse processo.

O capitulo 6 apresenta experimentos, resultados e conclusdes da avaliacdo de
desempenho dos toolkits suportados pelo utilitdrio JWSPerf utilizando o processo

proposto. A aplicacdo-teste utilizada como benchmark também é apresentada.

O capitulo 7 relata as conclusdes finais dessa dissertacdo e apresenta propostas

para trabalhos futuros que possam vir a contribuir para o crescimento da area.

-16-

2 A Tecnologia Web Services

2.1 Introducao

Os avancgos recentes na padronizacdo das tecnologias Internet tém impulsionado a
publicacdo de protocolos baseados em XML que viabilizam a interoperabilidade entre
aplicacbes em diferentes linguagens e plataformas, dessa forma encorajando a

integracdo entre sistemas.

Nesse contexto, surgiu a tecnologia Web Services como uma solugédo baseada em
tecnologias padrédo para integrar sistemas distribuidos através da Internet. Atualmente,
essa tecnologia é responsavel pelo crescimento na area de desenvolvimento e integracdo

de sistemas.

Existem varias definicdes para Web Services, porém segundo o W3C (World
Wide Web Consortium), Web Service é uma aplicacdo identificada por uma URI
(Uniform Resource Identifier), cuja interface publica e estilo de binding s&o definidos e
descritos usando XML [Austin et al., 2004]. Sua definigdo pode ser descoberta por
outras aplicacbes que devem interagir com esses Web Services de acordo com sua

definicdo, usando mensagens XML transportadas por protocolos Internet.

-17-

Web Services baseiam-se em padrdes, que sdo independentes de plataforma, e
ndo é um middleware de objetos distribuidos como CORBA (Common Object Request
Broker Architecture) e Java RMI (Java Remote Method Invocation), portanto ndo
suportam algumas caracteristicas como coletor de lixo de objetos remotos distribuidos e
referéncias remotas. Dessa forma, a interface do servico deve ser orientada a
documentos, ndo expondo suas opera¢des usando 0s conceitos de orienta¢do a objetos

como overloading, polimorfismo e heranca.

De forma geral, para garantir a interoperabilidade entre as partes que necessitam

se comunicar, as mesmas devem concordar com relagéo a alguns pontos:
1. Formatacgéo dos dados;
2. Regras para serializar e deserializar o estado de uma entidade nesse formato;
3. Protocolo de comunicacgao;
4. Protocolo de transporte da mensagem.

Cada um desses pontos é garantido por uma ou mais camadas que compdem a

pilha da tecnologia Web Services apresentada na proxima secao.

2.2 Arquitetura Orientada a Servigos

Web Services promovem um ambiente de integracdo que € interoperavel e de baixo
acoplamento, pois suas caracteristicas originam da arquitetura conceitual chamada SOA
(Service-Oriented Architecture), que € uma maneira de projetar software para fornecer
servigos as aplicacdes de usuarios finais ou para outros servigos atraves de interfaces

publicaveis e descobertas [McGoven et al., 2003].

SOA emprega o paradigma ““find, bind and execute”, que pode ser entendido
como “localizar, conectar e executar”. As entidades necessarias para implementar esse

paradigma sao (ver Figura 2.1):

1. Consumidor do Servico (Service Consumer): é uma aplicacdo, servico ou
algum outro tipo de software que demanda por um servico. E a entidade que

inicia o processo de busca no registro por um servigo para, em seguida, acopla-

-18-

lo e executa-lo. Para executar o servico, o consumidor precisa enviar uma

requisicdo ao servigco no formato estabelecido no contrato.

2. Provedor do Servico (Service Provider): é o servico em si. E a entidade que
recebe as requisi¢des dos consumidores e executa a tarefa solicitada, podendo
ser um componente, um mddulo, um sistema de um mainframe ou qualquer
outro tipo de software que se registrou para fornecer um servico aos
consumidores mediante um contrato. Para que possa receber solicitacbes, todo

servigo precisa ter um enderego na rede.

3. Registro (Service Registry): é o repositério onde 0s servicos sdo registrados e
onde os consumidores v@o procurar pelos servicos que atendam as suas
necessidades. Quando o registro encontra um servico compativel com a
solicitacdo, o endereco do servigo € retornado para o consumidor, que pode,

entdo, executa-lo.

Consumidor
do Servigo
(Service Consumer)

2. Localizar (Find)

3. Conectar e Contrato Registro de
Executar ; i
S S
(Bind and éofw%f:% o _en’gos_ t
Execute) (Service Registry)
1. Registrar
Provedor
do Servigo
(Service Provider)

Figura 2.1 - Entidades do paradigma “find, bind and execute”

O contrato dita a forma como as duas partes devem se comunicar, além de
estabelecer um conjunto de pré-condicbes e pds-condicdes necessarias a execucdo do

Servico.

Para tornar um servigo disponivel aos possiveis consumidores, um Provedor de

Servico precisa "publica-lo" no Registro de Servigos, conforme mostra o passo 1. Para

-19-

utilizar um servico, o Consumidor primeiro busca o servigo no Registro (passo 2), que
por sua vez, retorna o endereco onde 0 servigo se encontra além do contrato. O contrato
vai definir as regras para a utilizacdo do servigo. De posse do endereco e do contrato do
servigo desejado, o consumidor pode entdo "conectar-se” ao servidor e “executar" o

servigo, conforme mostra o passo 3.

Do ponto de vista técnico, Web Services sdo simplesmente um conjunto de
tecnologias que podem ser usadas para implementar o paradigma da arquitetura SOA
[McGoven et al., 2003]. A Figura 2.2 ilustra a pilha conceitual de Web Services,

categorizando suas tecnologias padrées em um modelo em camadas.

Registro (UDDI)

Descricdo (WSDL)

Mensagem (SOAP/XML)

Transporte (HTTP, HTTPS, SMTP)

Figura 2.2 - Pilha das tecnologias de Web Services

Camada de Transporte

A principal funcdo da camada de transporte é transferir dados de uma maquina para
outra utilizando um protocolo para transportar a mensagem. Web Services podem usar

multiplos protocolos para transferir os dados como, por exemplo, HTTP, SMTP e FTP.

HTTP é o protocolo de transporte mais comumente adotado para transportar 0s
dados Web Services, pois 0 mesmo freglientemente nédo é blogueado por firewalls, que
tendem a ser estruturas de seguranca de natureza bastante seletiva no que diz respeito ao

trafego de informagdes.

-20-

Camada de Empacotamento das Mensagens

No contexto de integracdo entre aplicacGes distribuidas, € necessario que o estado das
entidades seja enviado sobre a rede seguindo um formato e usando um protocolo
conhecidos. No caso de Web Services, isso significa que dentro da mensagem SOAP, o
documento XML representando o estado deve estar no formato padrdo, para que ambas
as partes possam entender e interpretar corretamente as informacfes. A camada de
empacotamento das mensagens é a responsavel pela formatacdo dos dados transmitidos

entre o cliente e o servidor sobre o protocolo de transporte.

A especificacdo padrdo adotada por essa camada é o protocolo SOAP (Simple
Object Access Protocol) — protocolo “leve” para a troca de informagfes em um
ambiente descentralizado e distribuido [Box et al., 2000]. A especificacdo SOAP define

trés pontos importantes:

1. Formato em que as mensagens XML devem ser estruturadas, incluindo as

mensagens de erro;

2. Os mecanismos de ligacdo ao protocolo de transporte da mensagem, ou seja, as
regras que ditam como uma mensagem deve ser enviada sobre um protocolo em

particular, chamados de SOAP Binding;

3. As regras de (de)serializacdo, chamadas de SOAP Encoding, para mapear as

estruturas de dados da aplicacdo em XML e, vice-versa.

Uma mensagem SOAP é um documento XML que contém trés principais

elementos (ver Figura 2.3):

e Envelope: é o elemento raiz da mensagem XML e informa que a mensagem
sendo processada se trata de uma mensagem SOAP;

e Cabecalho: é um elemento opcional usado para carregar informacdes auxiliares
para 0s servigos, por exemplo, de autenticagdo, seguranca, transacdo e
roteamento. Qualquer né na cadeia de processamento da mensagem SOAP pode
adicionar ou remover itens do cabecalho, como também pode ignora-los caso
ndo sejam entendidos. Caso o cabecalho esteja presente, 0 mesmo deve ser o

primeiro elemento dentro do envelope;

-21-

e Corpo: é a parte principal da mensagem porque contém os dados que devem ser
enviados. Esses dados podem representar uma chamada remota, descrevendo os
parametros ou valor de retorno, ou um simples documento XML. Esses dois
estilos de codificacdo do corpo das mensagens serdo apresentados na Secao
2.3.1. Além desses, 0 corpo pode conter uma mensagem de erro indicando que

houve algum problema no processamento da mensagem.

<soap:Envelop xmlns:soap="http://schemas.xmlsoap.org/soap/envelop/’>
<soap:Header>
<I-- elemento(s) do cabecalho -->
</soap:Header>
<soap:Body>
<!-- chamada RPC ou um Documento XML -->
<soap:Body>
</soap:Envelop>

Figura 2.3 - Estrutura das mensagens SOAP

Camada de Descricao do Servico

Essa camada tem como objetivo responder as seguintes questdes:
1. Quais operagcdes um servico oferece?
2. Quais dados devem ser enviados para invocar uma determinada operacéo?
3. Qual protocolo usar para invocar um servi¢co?

A descricdo de um servigo consiste em especificar em detalhes suas operacoes,
as mensagens que podem ser enviadas, os tipos de dados usados nessas mensagens, 0
estilo das mensagens, o protocolo que o consumidor deve usar para acessar 0 Servico e a

sua localizacéo.

A tecnologia padrdo adotada para definir o contrato do servico como um
conjunto de enderecos de rede (endpoints) que operam sobre as mensagens formatadas é
a especificacdo WSDL (Web Services Description Language). O consumidor do servigo

usa a descricdo do servico em uma das seguintes maneiras:

1. Early Binding: durante o desenvolvimento, o consumidor gera o stub do servico
a partir da interface WSDL, onde o consumidor do servigo faz referéncias

estaticas ao mesmo em tempo de compilagéo;

-22-

2. Late Binding: utiliza o conceito de proxy gerado dinamicamente em tempo de

execucdo a partir da interface WSDL.

<definitions>

<types>
<schema>
</schema>

</types>

<message>
<part>
</part>

</message>

<portType>
<operation>
<input message=""">
</input>
<output message="""">
</output>
<fault></fault>
</operation>
</portType>

<binding>
<soap:binding transport="" style="" />

<operation>
<input>
<soap:body use=""" />
</input>
<output>
<soap:body use="" />
</output>
</operation>
</binding>

<service>
<port>
<soap:address location=""" />
</port>
</service>

</definitions>

Figura 2.4 - Estrutura de um documento WSDL

Antes de entender como projetar uma interface WSDL (ver Secdo 2.3.1), €
importante apresentar a estrutura e a descricdo dos principais elementos que compdem
um documento WSDL (Figura 2.4):

e <definitions>: elemento raiz do documento WSDL;

-23-

e <types>: agrupa um ou mais elementos <schema> que contém a declaracdo dos
tipos de dados usados pelos elementos <message>, independentemente de

linguagem e plataforma;

e <message>: define o formato das mensagens que devem ser trocadas dentro do
corpo de uma mensagem SOAP, pois contém os parametros de entrada ou valor
de retorno de um servico. Cada elemento <message> pode ter zero ou mais
elementos <part>, onde cada <part> tem um nome e um atributo type ou

element;

e <operation>: esse elemento é uma defini¢do abstrata de uma operacgdo suportada
pelo servi¢co em termos de suas mensagens de entrada e saida. A mensagem de
entrada é definida pelo elemento <input> e a de saida é definida pelo elemento

<output>;

e <portType>: define o conjunto de operagdes, ou seja, representa a interface do

Servigo;

e <binding>: representa a implementacdo concreta do elemento <portType>
usando um determinado protocolo como, por exemplo, SOAP, que é 0 mais
adotado. Se o servigo suportar mais de um protocolo, o arquivo WSDL devera

ter um elemento <binding> para cada protocolo;

e <service>: colecdo de elementos <port>, onde cada <port> descreve a

localizagéo de rede para um elemento <binding>.

Camada de Registro

A camada de registro adota a especificacdo UDDI (Universal Description, Discovery,
and Integration) para oferecer uma maneira padrdo de publicacdo das informacdes de
um Web Services e 0s mecanismos para descobrir quais servicos atendem as
necessidades de um determinado consumidor. Um repositério UDDI é semelhante a um
servigo de paginas amarelas, pois fornece operacdes de registro e descoberta de servicos

a partir de determinadas caracteristicas.

-24-

Web Services suportam o conceito de descoberta dindmica de servigos. Um
consumidor de um servigo pode usar um registro para encontrar 0s servi¢os de seu
interesse. Os registros UDDI sdo Web Services que expde sua APl (Application
Program Interface) como um conjunto de mensagens SOAP bem definidas. Para cada
servigo registrado no repositorio UDDI, sdo mantidos o contrato e informag6es sobre o

seu negocio.

2.3 Desenvolvendo Web Services

Muitas aplicacdes Web Services estdo sendo publicadas sem que os desenvolvedores
tenham qualquer conhecimento sobre as tecnologias XML, SOAP e WSDL. Isso é
perfeitamente viavel, pois os toolkits atuais disponibilizam funcionalidades para gerar
dinamicamente a interface WSDL do servigo e toda a camada de comunicacao (stubs e
skeletons) a partir do cddigo da aplicacdo. Essa forma de desenvolvimento é chamada

Bottom-up.

Apesar de ser uma maneira facil e rapida de desenvolver, a mesma ndo € a mais
apropriada quando o objetivo é alcancar a interoperabilidade entre aplicacdes
heterogéneas, pois os toolkits podem ndo adotar as mesmas regras para gerar a interface
WSDL e as mensagens SOAP. Além disso, o desenvolvedor “aceita” o funcionamento
padrdo desses toolkits que muitas vezes nao esta configurado para executar de forma

eficiente e interoperavel.

Uma segunda alternativa de desenvolvimento € a Top-down que consiste em
iniciar pelo projeto da interface WSDL, pois a mesma representa o contrato que o
cliente e o servidor devem aderir. Criar o contrato WSDL refere-se ao processo de
projetar a interface baseando-se nas mensagens XML que devem ser trocadas, em vez

de basear-se no cddigo do servico.

Uma vez projetada a interface WSDL, a mesma deveria ser usada para gerar 0S
skeletons do lado do servidor que serdo, por sua vez, usados como templates para a

implementacao do servico. Essa é a maneira mais indicada de desenvolvimento quando

-25-

se deseja projetar uma aplicagdo Web Services corporativa, pois problemas de

interoperabilidade podem ser evitados manipulando diretamente o arquivo WSDL.

A préxima secdo tem como objetivo apresentar as regras e configuracfes que
devem ser aplicadas durante o projeto da interface WSDL, uma vez que essa nao é uma
tarefa facil.

2.3.1 Projetando a Interface WSDL

Essa secdo explica as duas principais decisdes que os desenvolvedores devem tomar
durante o projeto da interface WSDL: configuragdo dos parametros style e use. Esses
parametros sdo de especial importancia porque afetam a formacdo do corpo das
mensagens SOAP e as regras de codificacdo adotadas, porém 0s mesmos sdo
freqlientemente desconhecidos pelos desenvolvedores. O objetivo é mostrar como
configurar esses parametros e esclarecer a confusdo sobre os diferentes formatos do
corpo da mensagem SOAP.

O primeiro parametro € o atributo style (ver Tabela 2.1), que controla a
estruturacdo do corpo da mensagem. Web Services podem expor suas operagdes

seguindo os seguintes estilos de codificacao:

1. RPC: nesse estilo, o cliente invoca 0 método no servidor enviando no corpo da
mensagem SOAP todas as informagfes necessarias para a sua execugao e recebe
a resposta da mesma maneira. Dessa forma, a estrutura do corpo da mensagem
SOAP deve conter a chamada remota, indicando o nome do método e 0s

parédmetros ou valor de retorno.

2. Document: esse estilo reflete 0 uso mais natural de XML e é mais flexivel, pois

documentos XML séo passados como entrada e saida dos servicos.

A segunda decisdo, que especifica as regras de serializacdo e deserializacdo dos

dados, é a configuragdo do atributo use (ver Tabela 2.2). As duas possiveis op¢des sao:

1. Literal: baseia-se num pré-acordo do esquema XML que define as regras para
codificar e interpretar o corpo da mensagem SOAP. A tecnologia XML Schema é

utilizada para definir os tipos dos dados.

-26-

2. Encoded: baseia-se em um conjunto de regras definidas na especificacdo do

protocolo SOAP. Essa codificacdo ndo é a obrigatoria, e também nédo existe um

padrdo, pois depende de cada toolkit.

Tabela 2.1 - Regras para configurar o estilo de codificacdo do documento WSDL

Regra RPC Document
Atributo style do elemento | style=“rpc” style="document”
<soap:binding>
Quantidade de elementos <part> | Pode conter zero ou mais|Deve conter zero ou um Unico
dentro do elemento <message> |elementos <part>, cada um |elemento <part> contendo um
contendo o atributo type. atributo element.

Além de configurar os valores dos atributos style e use, outras regras sdo

necessarias para projetar a interface WSDL seguindo um desses estilos (ver Tabelas 2.1

e 2.2). Para as mensagens Encoded, deve-se configurar o atributo encodingStyle com

uma URL que especifique as regras adotadas para codificar e interpretar o corpo da

mensagem, enquanto que uma mensagem Literal adota um esquema XML como regra.

Tabela 2.2 - Regras para configurar o atributo “use” do documento WSDL

Regra

Encoded

Literal

Atributo

<soap:body>

use do elemento

use=“encoded”

use=“literal”

Outros atributos do elemento

<soap:body>

encodingStyle="http://schemas.xml

soap.org/soap/encoding/"

Independentemente da configuracdo adotada, as partes tém que concordar sobre

0 mesmo formato da mensagem SOAP e mecanismo de codificacdo usado para que a

mensagem seja corretamente processada. A partir das possiveis configuracdes desses

atributos, existem quatro combinagdes de estilo de codificacéo:

-27-

e RPC/Encoded;

e RPClLiteral,

e Document/Encoded;
e Document/Literal.

Adiciona-se a essas combinacges, o estilo Document/Literal Wrapped, também
chamado de Literal/Wrapped, definido pela Microsoft, porém o mesmo nédo é um estilo
oficialmente documentado. Document/Literal Wrapped é uma convengdo de
programagdo que simula o estilo RPC, mas produz mensagens no estilo

Document/Literal.

Embora Document/Literal Wrapped ndo seja um estilo oficial da especificacdo
WSDL, o mesmo é composto por um conjunto de regras que devem ser seguidas
durante o projeto da interface WSDL [Manes, 2004]:

1. A definicdo da mensagem de entrada e saida deve conter um unico elemento
<part> que deve obrigatoriamente conter um atributo element (ndo um type)

com o mesmo nome da operacao;

2. O nome do element referenciado no elemento <part> deve estar definido na
secdo <types> do documento WSDL como um tipo complexo que é uma
sequéncia de elementos, onde cada elemento dentro da seqliéncia representara

um parametro do servico;

3. Na se¢do <binding>, 0 elemento <soap:binding> deveria configurar o seu
atributo “style=document” e o elemento <soap:body> deveria configurar o

atributo “use=literal’’ e nada mais.

Dessa forma, existem cinco combinagdes para escolher durante o projeto da
interface WSDL. A Diretriz 1 que sera apresentada no Capitulo 4, aborda cada uma
dessas combinacdes e apresenta as implicagcdes no desempenho e na interoperabilidade

decorrentes da selecdo de uma combinagao sobre a outra.

-28-

2.4 \Web Services Toolkits

Varias implementacGes Web Services amadureceram rapidamente. As mesmas diferem
no seu suporte aos tipos de dados definidos na aplicacdo, no modo de usar, na
linguagem de implementacao e, principalmente, no desempenho e suporte a otimizacGes
[Govindaraju et al., 2004].

Atualmente mais de setenta Web Services toolkits estdo disponiveis para uma
variedade de plataformas e linguagens de programacdo como, por exemplo, Ada, C#,
C++, Delphi, Java, Perl, Python e Visual Basic [SoapWare.Org, 2004].

Esse grande crescimento causou alguns problemas de interoperabilidade entre
plataformas. Um caso comum era um envelope SOAP gerado por um toolkit ndo ser
completamente entendido por um outro, pois 0os mesmos diferiam no tratamento do
cabecalho de uma mensagem SOAP ou na quantidade de digitos para representar um
tipo de dado decimal ou na geragéo do arquivo WSDL. Existem esforcos dirigidos pelos
participantes do forum Soap Builders [SOAP Builders, 2004] para criar padrdes de
interoperabilidade entre Web Services toolkits, mesmo que desenvolvidos por

fabricantes diferentes.

A seguir, serdo apresentadas algumas implementagfes Web Services mais
populares e que foram exploradas pelos trabalhos relacionados apresentados no proximo

capitulo.

2.4.1 Apache Axis

Apache eXtensible Interaction System é uma implementacdo Web Services gratuita e de
cddigo aberto desenvolvida pela Apache Software Foundation [Apache Axis, 2004].
Surgiu como sucessora da implementacdo Apache SOAP [Apache SOAP, 2004], por

isso também é conhecida como Apache SOAP 3.0.

O objetivo dessa substituicdo foi criar uma implementacdo SOAP mais modular,

flexivel e de alto desempenho. Entre as novas caracteristicas incorporadas ao Axis, a

-29-

principal foi a utilizagdo do parser XML SAX (Simple API for XML) [SAX, 2004] para

melhorar o desempenho.

Axis é a implementacdo SOAP mais popular escrita na linguagem Java e boa
parte das ferramentas de desenvolvimento do mercado incorporam na sua
implementagdo esse toolkit como, por exemplo, JBoss, Borland JBuilder, Borland
Enterprise Server e JOnAS (Java™ Open Application Server) [Apache Axis, 2004].

2.4.2 JWSDP (Java Web Services Developer Pack)

E um toolkit gratuito mantido pela Sun Microsystems para acelerar o desenvolvimento
de aplicagdes Web, XML e Web Services [Sun, 2004]. O JWSDP contém ferramentas,

APIs e tecnologias para simplificar a construcdo de Web Services na plataforma Java.

2.4.3 Glue

O toolkit Glue da webMethods € uma plataforma comercial para desenvolver aplicacfes
Java com JSP, Servlet e Web Services [webMethods, 2004]. Com o uso de plugins, o
Glue pode ser integrado a ambientes de desenvolvimento como JBuilder e Eclipse,
permitindo a criacdo das aplicacdes Web Services atraves de assistentes de programa

(wizards).

2.4.4 SSJ (Systinet Server for Java)

Systinet Server for Java é uma solucdo completa e gratuita desenvolvida pela Systinet
para construir aplicacdes J2EE (Java 2 Platform, Enterprise Edition) e Web Services
[Systinet, 2004]. Esse toolkit é facil de usar, de alto desempenho e constitui um
ambiente completo para criar, instalar e gerenciar suas aplica¢des, uma vez que embute

seu proprio servidor de aplicacéo.

-30-

2.4.5 XSOAP

Anteriormente chamado de SoapRMI, foi desenvolvido pelo laboratério Extreme! da
Universidade Indiana com o objetivo de estudar o protocolo SOAP aplicado em
sistemas que demandam por alto desempenho [Extreme!, 2004]. E um sistema RMI
baseado em SOAP, implementado em Java e C++, que permite criar e invocar Web

Services.

O parser XML Pull Parser (XPP) [Extreme!, 2004] foi criado durante o
desenvolvimento de SoapRMI, a fim de melhorar o seu desempenho ao trabalhar com
grandes estruturas de dados. O parser XPP2, sucessor do XPP, faz parte agora do
XSOAP.

2.4.6 Framework .NET

NET é o atual framework Web Services da Microsoft, substituindo o toolkit Microsoft
SOAP. Esse framework é um conjunto de ferramentas de desenvolvimento de software
usadas para criar, publicar e consumir Web Services [Microsoft, 2004].

Apesar da capacidade de integracdo e comunicagdo com outras plataformas por
meio de Web Services, .NET € centrado no ambiente Microsoft, ou seja, 0s servicos
criados com .NET podem apenas ser instalados em sistemas operacionais da Microsoft.

Esse toolkit suporta o estilo RPC, porém adota o estilo Document como o padréo.

2.4.7 gSOAP

O toolkit de desenvolvimento Web Services gSOAP — gratuito e de alto desempenho —
permite a construcdo de aplicagdes Web Services em C/C++ [gSOAP, 2004]. A
implementacdo oferece um compilador facil de usar que gera stub e skeleton para
integrar aplicacOes existentes em C/C++ com Web Services [Engelen and Gallivan,
2002].

-31-

2.4.8 bSOAP

bSOAP €é uma implementacdo otimizada do protocolo SOAP para desenvolver
aplicacdes Web Services em C++ [Abu-Ghazaler et al., 2004] [Abu-Ghazaler et al.,
2004a] [Abu-Ghazaler et al., 2004b].

bSOAP foi desenvolvido com o objetivo de viabilizar a ado¢do de SOAP em
aplicacdes cientificas que demandam por alto desempenho e freqiientemente transmitem

grandes arrays contendo nimeros ponto flutuante e tipos de dados complexos.

2.5 ConsideracoOes Finais

O objetivo desse capitulo ndo foi simplesmente introduzir ao leitor a definicdo da
tecnologia Web Services, uma vez que a mesma encontra-se bastante difundida no
mercado e no meio académico, mas dar uma visdo geral dos conceitos necessarios ao
entendimento dos proximos capitulos dessa dissertacdo, principalmente no que se refere
ao projeto de interfaces WSDL.

Com relagéo a tecnologia Web Services, foram apresentados 0s pontos em que as
partes integrantes devem concordar para garantir a integracdo e cada uma das suas
tecnologias — SOAP, WSDL e UDDI - adotadas para implementar o paradigma ““find,
bind and execute” da arquitetura SOA. O resultado da adocdo dessas tecnologias

ubiquas faz de Web Services uma solucédo independente de plataforma e linguagem.

Existem duas formas de desenvolvimento de aplicacdes Web Services, cada uma
com suas vantagens e desvantagens. A primeira é chamada de Bottom-up e consiste em
gerar a interface WSDL a partir do codigo da aplicacdo. Essa forma é a mais usada
pelos desenvolvedores, porque alem de ser mais rapida, 0s mesmos ndo tém qualquer
contato com as tecnologias XML e WSDL. Entretanto, as aplicacdes geradas dessa
forma podem estar suscetiveis a problemas de interoperabilidade e/ou eficiéncia, pois

dependem das configurac6es do toolkit utilizado.

-32-

A segunda é chamada Top-down e consiste em projetar primeiramente a
interface WSDL, e em seguida, usar a mesma para gerar os skeletons e stubs. Essa € a

mais indicada quando se deseja projetar aplicacdes Web Services corporativas.

Durante o projeto do contrato WSDL, algumas decisfes com relacdo aos
parametros style e use devem ser tomadas a fim de definir a estruturacdo e regras de
codificacdo das mensagens SOAP. Por isso a pratica de desenvolvimento a partir da
interface WSDL nao é comumente adotada, uma vez que o0s projetistas ndo sabem como
configurar esses pardmetros nem como aplicar algumas regras com relacéo a estrutura e

quantidade de elementos que devem compor o documento WSDL.

Por fim, foram apresentados oito Web Services toolkits para desenvolver
aplicacdes Web Services nas linguagens Java e C/C++ que sdo comumente adotados no
mercado e foram estudados nos trabalhos relacionados apresentados no proximo

capitulo.

-33-

3 Desempenho de Web Services

3.1 Introducéo

A tecnologia Web Services esta se tornando uma importante solucdo para prover a
comunicagdo entre aplicacdes heterogéneas. Logo, o fato de esta sendo adotada pelas
empresas como a infra-estrutura para expor seus sistemas, aumenta a demanda pela sua

eficiéncia.

Dessa forma, existem algumas discussdes avaliando o desempenho de Web
Services, porque 0 objetivo principal do seu projeto foi prover a interoperabilidade entre
aplicacdes Web Services distribuidas. Durante a especificacdo do protocolo SOAP, o
desempenho foi sacrificado a fim de obter simplicidade, interoperabilidade,

universalidade e flexibilidade.

Os padrdes adotados por Web Services, apresentados no capitulo anterior,
incorporam gargalos adicionais comparados a interacdo Web tradicional, porque sua
universalidade introduz um problema: as mensagens SOAP sdo textuais e seu tamanho é
significantemente maior que as mensagens dos protocolos binarios, aumentando, dessa

forma, os custos de codificagcdo e de comunicacéo.

-34-

De forma geral, as pesquisas na area de desempenho de Web Services, além de
analisarem sua eficiéncia em dominios de aplicacdo, como computacdo cientifica e

financas, consistem em:

1) Estudar as vantagens e desvantagens do uso de XML, uma vez que WSDL,
SOAP e UDDI baseiam-se nessa tecnologia;

2) Comparar a eficiéncia de Web Services com outros middleware como CORBA e
Java RMI;

3) Avaliar o desempenho dos diferentes Web Services toolkits, implementados em
diferentes linguagens;

4) ldentificar os gargalos inerentes a Web Services, tanto na implementacdo quanto
na camada de comunicagao;

5) Desenvolver e aplicar possiveis otimizagdes para eliminar ou reduzir o impacto

desses gargalos e projetar aplicacfes Web Services eficientes.

Para cada uma dessas abordagens, serdo apresentados os principais trabalhos
realizados, dando énfase a seus resultados e conclusdes. O objetivo é apresentar de
forma clara o estado da arte do desempenho de Web Services e permitir que qualquer
desenvolvedor ou arquiteto possa tomar decisdes mais eficientes durante o projeto

desses Web Services toolkits.

3.2 XML versus Representacéo Binaria

O formato binario e XML sdo duas formas populares de representacdo das mensagens
transportadas na rede, onde XML tem sido largamente adotado quando a
interoperabilidade entre aplicacdes € necessaria, enquanto que a representacdo binaria é
usada quando o desempenho é um fator critico. Como a flexibilidade e o desempenho
dos sistemas que se comunicam dependem da representacdo adotada, estudos tém sido
realizados a fim de explorar as vantagens e desvantagens associadas a essas duas

representacdes de dados.

-35-

Cai et al. (2002) compararam o tamanho em bytes das mensagens transmitidas
entre o cliente e o servidor representadas nos formatos XML e binario e depois
analisaram o papel da técnica de compressdo na reducdo do tamanho das mensagens,
adotando os algoritmos de compressdo Zip e XMill [Suciu and Liefke, 2004], que é uma
técnica exclusiva para comprimir dados XML. Os resultados obtidos foram que:

1. Sem aplicar qualquer técnica de compressdo, as mensagens XML sdo, em média,
cinco vezes maiores que sua representacao binéria;

2. A mensagem XML comprimida usando o algoritmo Zip é duas vezes maior que
a mesma mensagem binaria comprimida usando o mesmo algoritmo;

3. A mensagem XML comprimida utilizando o algoritmo XMill é menor que a
mensagem binaria comprimida com o algoritmo Zip. Porém, segundo os autores,
esse resultado sé € verdadeiro para mensagens com mais de um megabyte;

4. Embora as técnicas de compressdo reduzam o tamanho das mensagens, elas
aumentam o tempo de resposta devido ao tempo gasto na compressao dos dados.
Entdo, os dados apenas deveriam ser comprimidos quando a largura de banda é
limitada.

Hericko et al. (2003) analisaram o custo de espaco em memoria e do tempo
gasto do processo de (de)serializacdo binaria e XML para as plataformas Java e .NET,
com o objetivo de investigar as razdes das diferencas de desempenho. Do ponto de vista
da serializacdo binéria, a plataforma Java apresentou um desempenho melhor por um
fator de, aproximadamente, 1,3 a 2,3 e ocupa 25% menos espaco em memoria.
Enquanto que, o processo de serializacdo XML da plataforma .NET foi 65% a 85%
mais rapido que Java usando a tecnologia JAXB (Java Architecture for XML Binding) e

o tamanho das mensagens geradas foi 3% menor.

Kohlhoff e Steele (2003) obtiveram um importante resultado comparando o
desempenho de duas representacfes textuais — XML e FIX (Financial Information
eXchange) [FIX, 2005] — com a representacdo bindria CDR (Commom Data
Representation). Analisando o tamanho da mensagem, a laténcia e a vazdo, verificou-se
que o protocolo FIX foi mais eficiente e produziu mensagens mais compactas. Dessa
forma, um formato de rede baseado em texto pode apresentar um desempenho melhor

-36-

que um binario e que o uso de padrbes baseados em XML ndo é o Unico fator da

ineficiéncia de Web Services.

3.3 Comparacdao entre Web Services e outros
Middleware

Como os desenvolvedores de software podem optar entre varias tecnologias de
middleware, desempenho tem sido um fator decisivo na escolha da solucdo apropriada
para implementar uma aplicacdo distribuida. Dessa forma, varios estudos comparando o
desempenho de Web Services com outros middleware foram realizados a fim de
investigar o trade-off entre eficiéncia e interoperabilidade, pois os mesmos adotam
diferentes protocolos e formatos de dados na troca das mensagens. Por exemplo, IIOP
(Internet Inter-Orb Protocol) e JRMP (Java Remote Messaging Protocol) sao
protocolos binarios que agem diretamente sobre TCP/IP, enquanto que Web Services

transportam comumente as mensagens SOAP sobre o protocolo HTTP.

Uma andlise detalhada do tempo de resposta e da vazdo de diferentes protocolos
RMI foi realizada por Govindaraju et al. (2000), comparando a eficiéncia de Web
Services com a de Java RMI e Nexus RMI — implementagcéo da API de Java RMI,
porém adota Nexus como protocolo de comunicacdo. Outra diferenca entre esses
middleware é que Java RMI apenas suporta a interoperabilidade entre aplicacfes Java e
Nexus RMI prové a comunicacdo entre aplicagfes Java e C++. Em todos os
experimentos, o desempenho de Web Services foi dez vezes menor que os demais
middleware, exceto quando pequenas mensagens eram trocadas, onde Nexus RMI foi o
mais ineficiente. No contexto de computacao cientifica de alto desempenho, os autores
concluiram que as mensagens SOAP baseadas em XML ndo sdo apropriadas para
transferir grandes volumes de dados numéricos, mas devido a sua flexibilidade e
universalidade, podem ser utilizadas como parte de um sistema multi-protocolo usando

SOAP como um protocolo de ‘lingua franca’.

Elfwing et al. (2002) realizaram um estudo comparativo do desempenho de Web

Services e CORBA focando nos aspectos da comunicacéo entre o cliente e o servidor.

-37-

Dois cenarios de teste foram explorados: 1) Apenas um cliente enviando requisi¢fes ao
servidor; 2) Além do cliente, um gerador de carga também enviava requisicdes
simultaneas. A implementacdo Web Services apresentou um tempo de resposta 400
vezes mais lento, atingindo seu limite de saturacdo de processamento no primeiro
cenario. Isso implica que existem gargalos de desempenho na implementacdo Web

Services que € independente da carga submetida ao servico.

Os resultados apresentandos em [Davis and Parashar, 2002] [Devaram and
Andresen, 2003] e [Engelen, 2003] também confirmaram que Web Services no seu uso
direto e “ingénuo” sdo mais ineficientes que Java RMI e CORBA, porém existem varios
esforgos que estdo sendo avaliados para otimizar seu desempenho (ver Segdo 3.6).

Juric et al. (2004) compararam o desempenho do Web Services toolkit JWSDP
com as tecnologias de tunelamento de Java RMI (HTTP-to-port, HTTP-to-CGl e HTTP-
to-Servlet) que podem ser utilizadas para desenvolver aplicacdes Java distribuidas que
obrigatoriamente necessitam se comunicar atraves de firewalls. A vantagem de usar
uma dessas tecnologias de tunelamento na comunicacdo entre aplicacdes Java RMI
existentes, € que nenhuma alteracdo no seu cddigo é necessaria. Porém, nos testes
realizados transportando apenas tipos de dados simples, Web Services foi trés vezes
mais eficiente. Diante desses resultados, cabe ao arquiteto decidir entre eficiéncia,

seguranca e o custo de implementacéo.

Gray (2005) avaliou o desempenho de diferentes middleware para desenvolver
aplicacdes Java distribuidas — CORBA/IIOP, Java RMI/JRMP, Java RMI/HTTP e Web
Services/JAX-RPC (Java API for XML-Based RPC) — focando na analise de métricas
como o numero total de pacotes e bytes transferidos e o tempo de resposta. Quando o
cliente invocava uma operacdo simples que retorna uma string de tamanho fixo, 0s
resultados encontrados foram consistentes com os dos trabalhos anteriores, onde Java
RMI/JRMP apresentou o melhor desempenho e Web Services foi mais eficiente que
Java RMI/HTTP. Porém, utilizando um array de tipos de dados simples e com poucos
objetos, CORBAV/IIOP apresentou 0 melhor desempenho e Java RMI/HTTP e Web
Services apresentaram resultados semelhantes. Por fim, avaliando estruturas de dados
grandes e complexas, Web Services foi o mais ineficiente, diferentemente dos resultados

apresentados em [Juric et al., 2004]. A partir desses resultados, pode-se concluir que a

-38-

avaliacdo de desempenho de Web Services deve analisar a influéncia da natureza e do

tamanho dos dados e da maneira como 0s mesmos sdo organizados em pacotes de rede.

3.4 Desempenho de Web Services Toolkits

O desempenho dos Web Services toolkits tem sido comparado de diferentes maneiras,
principalmente utilizando os mais variados tipos de dados, com o objetivo de investigar
a sua eficiéncia e permitir que os desenvolvedores possam escolher o toolkit mais

apropriado para expor uma aplicacédo distribuida.

Davis e Parashar (2002) analisaram a eficiéncia das implementacdes Web
Services — Apache SOAP, Apache Axis, Microsoft SOAP Toolkit, SOAP::Lite versao
Perl e SoapRMI — operando sobre o protocolo HTTP e usando os servidores de
aplicacdo Tomcat da Apache e o IS (Internet Information Services) da Microsoft. As
comparagOes foram feitas utilizando um benchmark simples com apenas trés metodos:
um método que nem recebia nem retornava valores, o segundo retornava uma string e o
ultimo retornava um array de inteiros. A partir dos experimentos realizados, o0s

seguintes resultados foram obtidos:

1. Quando o cliente e o servidor rodavam em maquinas distintas, verificou-se um
aumento de 200ms no tempo de resposta dos toolkits Apache SOAP, Microsoft
SOAP Toolkit e SOAP::Lite. Esse aumento foi causado pelos gargalos de
comunicacéo (ver Secédo 3.5.5);

2. Microsoft SOAP Toolkit apresentou o melhor resultado quando um array de
inteiros foi retornado;

3. Em relacdo ao Apache SOAP, o toolkit Apache Axis apresentou o melhor
desempenho (ver Se¢édo 2.4.1);

4. O toolkit SoapRMI teve um bom desempenho em todos 0s experimentos e 0

SOAP::Lite foi o mais ineficiente.

Ng et al. (2003) estudaram o desempenho de trés implementacGes comerciais de

Web Services rodando sobre o protocolo HTTP, porém seus nomes ndo foram

-39-

mencionados. O objetivo foi avaliar o impacto no desempenho dos diferentes estilos de
codificacdo das mensagens SOAP suportados por cada um dos toolkit, como
RPC/Encoded, Document/Literal e Document/Encoded. As métricas de desempenho
utilizadas nesse processo de avaliagdo foram a laténcia, a vazdo e os custos de
serializacdo e deserializacdo de diferentes de tipos de dados. Além de requerer metade
do ndmero de bytes para representar as mensagens, 0 estilo de codificacdo
Document/Literal apresentou o melhor desempenho, enquanto que o estilo
RPC/Encoded foi o mais ineficiente. Outro resultado importante foi que os toolkits
apresentaram diferentes resultados de desempenho para um mesmo estilo de
codificacdo. A Figura 3.1 foi extraida de [Ng et al., 2003] e ilustra a laténcia dos toolkits
analisados para enviar mensagens simples, média e complexas usando diferentes estilos

de codificagéo.

140

120

100
80

(ms)
60

40

20

Complexa
Média
Simples

A (Doc/Enc)
A (Doc/Lit)
A (RPC/Enc)
B (Doc/Lit)
B (RPC/Enc)
C (RPC/Enc)

Figura 3.1 - Laténcia das mensagens SOAP usando diferentes estilos

Govindaraju et al. (2004) comparam o desempenho dos toolkits gSOAP, Axis
C++, Axis Java, .NET e XSOAP4/XSUL utilizando os tipos de dados comuns em
computacdo cientifica, como array de string e de nimeros ponto flutuante. O objetivo
foi identificar o toolkit mais apropriado para trabalhar com dados cientificos. Entre os

toolkits analisados, 0 gSOAP foi 0 mais eficiente e 0 Axis Java, 0 mais lento.

-40-

A Sun Microsystems desenvolveu um benchmark para comparar o desempenho
do seu toolkit JWSDP (Java Web Services Developer Pack) com o framework .NET da
Microsoft. Em todos os experimentos realizados, o toolkit JWSDP apresentou um
desempenho e escalabilidade superiores [Sun, 2004b]. Em resposta a Sun, a Microsoft
realizou os mesmos testes, porém usando uma versdao mais atualizada do toolkit
JWSDP, e obteve resultados totalmente de diferentes, onde o framework .NET foi duas

a trés vezes mais eficiente [Microsoft, 2004b].

Qworks [Qworks, 2004] realizou os mesmos testes de [Sun, 2004b] e
[Microsoft, 2004b] e adicionou & avaliacdo o toolkit Axis Java. Usando J2SE (Java 2
Standard Edition) versdo 1.5, os toolkits JWSDP e .NET apresentaram desempenhos
semelhantes e foram mais eficientes que o Axis. Porém, usando J2SE versdo 1.4 0s
resultados obtidos foram semelhantes aos publicados em [Microsoft, 2004b], onde .NET
apresentou o melhor desempenho. Ambos JWSDP e Axis foram mais eficientes quando
a versao do J2SE foi alterada de 1.4 para a versdo 1.5, sendo a otimizacdo do JWSDP
maior. A partir dos resultados obtidos, detectou-se que a versdo da plataforma Java

adotada impacta no desempenho do Web Services toolkit.

Além de comparar o desempenho dos toolkits gSOAP, bSOAP, Axis versao Java
e XSUL, Head et al. (2005) propuseram um benchmark para quantificar o desempenho
desses toolkits usando arrays de diferentes tamanhos e tipos de dados (ponto flutuante,
string e inteiros). O benchmark era composto por interfaces WSDL que definiam
operagdes projetadas para testar a laténcia, o desempenho fim-a-fim e os custos de
serializacdo e deserializacdo separadamente, pois o toolkit usado pelo cliente pode ser
diferente do usado para implementar o servico. As chamadas das operacdes definidas
nessas interfaces WSDL foram implementadas para cada toolkit avaliado. Os autores
apresentaram importantes resultados referentes ao desempenho dessas implementacdes
Web Services: 1) o toolkit Axis apresentou a maior laténcia e 0 gSOAP, a menor; 2)
Axis e XSUL apresentaram custos de serializacdo similares, porém, em termos de
deserializacdo, o Axis € muito mais ineficiente quando arrays de tipos de dados simples
sdo usados; e 3) o desempenho fim-a-fim do XSUL degrada consideravelmente usando
tipos de dados complexos.

-41-

3.5 Gargalos de Desempenho

O uso do protocolo HTTP e de documentos XML formatados segundo o protocolo
SOAP promovem a interoperabilidade entre as aplicacBes, porém incorporam um

aumento significativo no tempo de processamento e nos custos de comunicacao.

Nessa secdo serdo apresentados os trabalhos que focaram no levantamento de
gargalos de desempenho associados a Web Services que séo decorrentes de decisGes de
projeto tomadas durante o desenvolvimento dos Web Services toolkits, da escolha do

protocolo de transporte da mensagem SOAP e 0s inerentes ao proprio protocolo SOAP.

Antes de detalhar os gargalos nas subsecdes seguintes, € importante entender 0s
diferentes estagios [Chiu et al., 2002] que compdem 0 processo de envio e recebimento

das mensagens SOAP (Figura 3.2).

Enviando uma mensagem SOAP

e
rede e

—»| Interpretar | Deserializar

Recebendo uma mensagem SOAP

Figura 3.2 - Estagios para enviar e receber uma mensagem SOAP

Para enviar uma mensagem SOAP sdo necessarias, de forma geral, as fases para
varrer as estruturas de dados, serializar os dados para XML, armazenar os dados XML
no buffer e, por fim, transmitir o conteldo do buffer na rede. O receptor deve ler a
mensagem da rede, varrer (parse) o documento XML para validar sua sintaxe,

interpretar o contetido de cada tag XML e deserializar o documento XML.

-42-

3.5.1 Tamanho da Mensagem

O tamanho da mensagem SOAP tem sido uma meétrica de desempenho bastante
analisada a fim de calcular o aumento no tamanho das mensagens devido ao uso da

tecnologia XML.

A codificacdo das mensagens no formato de texto expande o tamanho da
mensagem por um fator de 4 a 10 vezes em relagdo a sua representacdo binaria
[Govindaraju et al., 2000] [Kohlhoff and Steele, 2003] [Ng et al., 2003] [Ying et al.,
2004]. Essa expansdo pode ter um impacto significativo na comunicacdo e no tempo
total de execucdo, pois requer um buffer de memoéria maior, mais largura de banda e

mais processamento [Engelen, 2003].

3.5.2 Escolha do Parser XML

O processamento de documentos XML esta assumindo uma grande importancia nas
infra-estruturas de tecnologia da informagdo nos tempos atuais e o cenério de uso mais
conhecido sdo Web Services, pois SOAP é um protocolo baseado em XML e suas
mensagens tém que ser varridas (parsed) e interpretadas antes de serem invocadas.
Além das mensagens SOAP, as tecnologias WSDL, utilizada para definir as operac6es
dos servigos, e XML Schema, utilizada para definir os tipos de dados das mensagens,
também sdo baseadas em XML.

O parsing do documento XML em tempo de execugdo requer um tempo de
processamento adicional que pode resultar em um longo tempo de resposta do servidor
[Chiu et al., 2002] [Davis and Parashar, 2002] [Elfwing et al., 2002] [Kohlhoff and
Steele, 2003] [Govindaraju et al., 2004].

Atualmente trés modelos de parsing de documentos XML estdo sendo usados

pelos toolkits:

e Document Object Model (DOM): constréi uma representacdo orientada a objetos
do documento em memoria. Esse modelo de processamento € o mais indicado

qguando o documento necessita ser alterado;

-43-

e Simple API for XML (SAX): é um modelo orientado a eventos que notifica a
aplicacdo a ocorréncia de elementos no documento através de chamadas
callback, e dessa forma, ndo necessita construir uma representacdo em memoria

do documento;

e XML Pull Parsing (XPP): oferece vantagens como alto desempenho, um uso
otimizado de memoria comparado ao modelo DOM e facilidade de uso. Permite
que o parsing XML seja realizado de forma incremental, onde a aplicacéo
controla e solicita ao parser o proximo evento XML apenas quando a mesma
pode processa-lo, ou seja, o parsing pode ser interrompido a qualquer momento

e retomado quando a aplicacdo estiver pronta para consumir mais dados.

No momento da escolha do modelo de processamento é importante entender as
limitagdes de cada um e avaliar o trade-off entre facilidade de uso e eficiéncia. Uma
desvantagem comum a todos esses modelos é que requerem que os dados sejam
varridos duas vezes: a primeira para o parser fazer a anélise sintatica do documento, e a

segunda, para a aplicacdo interpretar o contetdo.

Elfwing et al. (2002) compararam os modelos de parsing DOM e SAX usando
duas implementaces — Xerces e Crimson. Conforme o esperado, 0 modelo SAX foi
mais eficiente que 0 modelo DOM. Porém, para 0 mesmo modelo de processamento,
existiu uma grande diferenca de desempenho entre as implementacgdes, pois 0 Xerces
SAX foi seis vezes mais lento que Crimson SAX. Além disso, o Crimson DOM foi mais
eficiente que o Xerces SAX. A partir desses resultados, conclui-se que é importante
analisar a implementacdo do modelo de parsing utilizada pelo toolkit.

3.5.3 Custos de Serializacdo e Deserializacao

O tempo gasto nas fases de serializacdo e deserializacdo das mensagens SOAP tem sido
identificado como o de maior impacto no tempo total de execucdo, com o custo da
deserializacdo maior que o da serializacdo [Govindaraju et al., 2000] [Chiu et al., 2002]
[Davis and Parashar, 2002] [Devaram and Andresen, 2003] [Engelen, 2003] [Kohlhoff
and Steele, 2003] [Govindaraju et al., 2004] [Ng et al., 2003].

-44-

Além de consumir dez vezes mais memdria que o processo de (de)serializacéo
binaria, a conversdo entre objetos Java e mensagens XML € consideravelmente maior
gue 0s custos associados a comunicacédo e a buferizacdo dos dados [Govindaraju et al.,

2000], devido ao uso da tecnologia reflection para instanciar os objetos.

Devaram e Andresen (2003) identificaram que 50% do tempo de execugdo sdo
gastos na serializacdo da mensagem SOAP em XML antes que seja enviada para o
servidor e na criacdo da conexdo HTTP. Porém, quando a conversdo envolve arrays do
tipo double, as rotinas de (de)serializacdo podem gastar 90% do tempo total de uma
chamada SOAP [Chiu et al., 2002].

3.5.4 Célculo do Tamanho da Mensagem SOAP

De acordo com a especificacdo do protocolo HTTP 1.0 [Berners et al., 1996], é
necessario especificar o tamanho exato do corpo da mensagem HTTP, que é a
mensagem SOAP codificada em XML, no atributo “Content-Length” do cabecalho,
quando o protocolo HTTP 1.0 for adotado para transportar as requisi¢cdes SOAP. Porém,
para calcular o tamanho de uma mensagem SOAP que é dindmica, o cliente deve
primeiro serializa-la antes mesmo de finalizar a construcdo do cabecalho [Chiu et al.,
2002] [Kohlhoff and Steele, 2003].

A solugdo adotada por um Web Services toolkit para realizar esse calculo tem
impacto direto no seu desempenho. Uma solucéo simples e mais comumente utilizada é
usar buffers separados para o cabecalho e para o corpo HTTP. Apenas quando a
mensagem é completamente serializada e armazenada no buffer, € que seu tamanho sera
calculado e o valor é colocado no atributo “Content-Length” [Govindaraju et al., 2004].
Esta solucéo apesar de ser facil de implementar, pode apresentar os seguintes problemas
[Chiu et al., 2002] [Shirasuma et al., 2002] [Kohlhoff and Steele, 2003]:

1. Consumir muita memoria se a mensagem serializada for grande, uma vez que a

mesma sera armazenada no buffer;

2. Invocar varias chamadas de sistema para o sistema operacional transmitir os

dados armazenados nos buffers;

-45-

3. Usando um buffer que excede o tamanho da cache de sistema, podera aumentar

a falta de cache;

4. As fases de serializacdo, de transmissdo na rede e de deserializacdo sdo
realizadas em sequéncia (ver Figura 3.2). Tais fases ndo podem ser sobrepostas
porque a mensagem nao pode ser enviada até que o processo de serializacdo
XML tenha terminado, para que se possa calcular o seu tamanho. E dependendo
do modelo de parsing utilizado no receptor, a mensagem SO podera ser

deserializada depois que todos os dados estejam armazenados no buffer.

3.5.5 Gargalos de Comunicacéao

Alguns estudos focaram na analise dos custos associados diretamente ao protocolo de
transporte, principalmente o protocolo HTTP, e a implementacdo da camada de

comunicacéo do toolkit.

CLIENTE SERVIDOR

1. [TCP SYN]

A 4

2. [TCP SYN/ACK]

A

3. [TCP ACK]

A 4

4. HTTP REQUEST

A 4

5. HTTP RESPONSE (HEAD)

A

6. [ACK]

»
>

7. HTTP RESPONSE (BODY)

A

8. [ACK]

A 4

9. [FIN, ACK]

A

10. [ACK]

\4

11. [FIN, ACK]

A 4

12. [ACK]

A

Figura 3.3 - Trafego de pacotes para uma chamada SOAP/HTTP

O processo de identificacdo dos gargalos de comunicacdo baseou-se na analise
detalhada do trafego de pacotes da comunicacdo entre o cliente e o servidor. Os

-46-

seguintes gargalos foram identificados [Elfwing et al., 2002] [Davis and Parashar, 2002]
[Gray, 2004]:

1.

Quebra da requisicdo ou resposta do servidor em duas partes: a primeira
contendo o cabecalho HTTP e a segunda, 0 corpo da resposta que representa o
envelope SOAP. A Figura 3.3 foi extraida de [Elfwing et al., 2002] e ilustra esse
comportamento, onde a resposta do servidor foi quebrada. Outro ponto é que

para cada uma dessas partes, um pacote de confirmacao é transmitido na rede;

Numero total de pacotes de dados necessarios para transmitir a mensagem
SOAP: além dos custos associados a transferéncia dos documentos, quanto mais
dados séo transmitidos na rede, mais controle dos pacotes é necessario. Os Web

Services toolkits geram, em média, de 3 a 5 vezes mais pacotes de dados.

Atraso para enviar os pacotes de confirmacdo (pacotes de nimero 6 e 8 na
Figura 3.3): esse atraso acontece em dois momentos: o primeiro apos o cliente
receber o pacote de niumero 5 com cabecalho, e 0 segundo apds o cliente receber
0 pacote de numero 7 com o corpo da mensagem. O tempo que o cliente espera
para enviar o pacote de confirmacéo variou entre 100ms a 200ms e € causado

pelo algoritmo TCP delayed ACK, que é configurado no sistema operacional;

Tempo esperando o pacote de confirmagdo: o servidor ndo envia o pacote de
namero 7 antes que o pacote de confirmacgdo referente ao pacote de nimero 5
tenha chegado. Esse comportamento é causando pelo algoritmo Nagle habilitado
no lado do servidor. O algoritmo Nagle é controlado pela propriedade
TcP_NODELAY 00 socket. Para aplicacbes Java, a seguinte linha de codigo
desabilita o algoritmo Nagle, onde socket €& uma instancia do tipo

java.net.Socket!:
socket .setTcpNoDelay (true) ;

Atraso associado ao fechamento da conexdo. O fechamento da conexao inicia
qguando o servidor envia o pacote TCP/FIN para o cliente, que deve ser
confirmado pelo cliente. Apos a confirmagdo, o cliente também envia o pacote
TCP/FIN para o servidor, que também deve ser confirmado. O gargalo nédo
consistiu na quantidade de pacotes trocados, mas no atraso do servidor em

enviar o primeiro pacote, pois o cliente fica lendo do socket até encontrar fim de

47-

arquivo. Este gargalo foi responsavel pela maior parte do tempo de execucéo,

variando entre 7.9 a 439ms.

O gargalo introduzido pela combinacdo dos algoritmos Nagle e TCP delayed
ACK foi, em média, de 350ms no tempo total para cada requisi¢do, porém ambos foram

projetados para reduzir o nimero de pequenos pacotes trafegando na rede.

3.5.6 Custo do Estabelecimento da Conexao

A especificacdo do protocolo HTTP 1.0 obriga que o cliente estabeleca uma nova
conexd@o antes de cada requisicdo e que o servidor feche-a apds finalizar o envio da

resposta ao cliente [Berners et al., 1996].

Estabelecendo uma nova conexdo para cada transacdo pode ter um impacto
negativo no desempenho, pois o protocolo HTTP usa o protocolo TCP que estabelece
conexdes via Three-Way Handshake (ver Figura 3.3), onde o cliente envia a requisi¢éo
para estabelecer uma conexao, o servidor confirma a solicitacdo e, por fim, o cliente
também confirma. O estabelecimento de uma nova conexdo para cada requisicao
também aumenta o numero de pequenos pacotes trocados entre o cliente e o servidor
[Davis and Parashar, 2002] [Elfwing et al., 2002] [Kohlhoff and Steele, 2003].

Em uma LAN onde o atraso é baixo e a perda de pacotes é rara, 0 custo do
estabelecimento da conexdo TCP é 1% menor que o custo de parsing. Porém, quando o

atraso for alto, esse custo ndo € insignificante [Elfwing et al., 2002].

3.6 Técnicas de Otimizacao

Embora uma simples aplicacdo Web Services possa apresentar problemas de
desempenho, algumas técnicas de otimizacdo podem ser aplicadas a fim de amenizar

sua ineficiéncia.

Além de identificarem os gargalos que afetam o desempenho de Web Services,

alguns trabalhos também desenvolveram e avaliaram técnicas de otimizacdo de

-48-

desempenho que serdo detalhadas nas proximas subsecdes. De forma geral, tais técnicas

visam reduzir 0 uso de memdria, o tempo de processamento e o custo da comunicacéo.

3.6.1 Compressao dos Dados

Quando a largura de banda € baixa, o tamanho das mensagens é um gargalo limitante do
desempenho [Kohlhoff and Steele, 2003]. Uma maneira de reduzir o nimero de bytes
transferidos na rede € comprimir o tamanho das mensagens SOAP. Porém, como a
compressao em tempo real requer um tempo de CPU extra, pode ocorrer um aumento
no tempo de resposta e uma reducdo da vazdo. Experimentos mostraram que a
compressdo em tempo real é cara e excede 0s custos da serializacdo e transmissdo dos
dados [Cai et al., 2002] [Engelen, 2003] [Kohlhoff and Steele, 2003].

Uma outra tentativa para reduzir o tamanho das mensagens XML foi usar tags
XML compactas [Kohlhoff and Steele, 2003]. Essa otimizacdo proporcionou uma
melhora insignificante no tempo de serializagdo das mensagens, indicando que o maior
custo da codificacdo e decodificacdo XML estd na complexidade estrutural e sintaxe dos

elementos e ndo apenas na natureza XML dos dados.

3.6.2 Parser Especifico de Esquema XML

Parsers desenvolvidos para processar de um esquema XML especifico apresentam um
melhor desempenho em relacdo aos parsers de propésito geral — DOM, SAX e Pull
Parsing, principalmente quando grandes estruturas de dados estdo envolvidas [Chiu et

al., 2002], porque varrem os dados XML apenas uma vez.

O toolkit gSOAP suporta essa otimizacdo disponibilizando um compilador que
gera o0 cOdigo para realizar o parsing e processamento de estruturas de dados a partir de
um esquema XML.

3.6.3 Caching das Requisi¢cdes SOAP

Apés identificar que 50% do tempo de processamento do cliente sdo gastos na

codificagdo da mensagem SOAP em XML e na cria¢do da conexdo HTTP, Devaram e

-49-

Andresen (2003) projetaram um eficiente mecanismo de caching para as requisi¢des
SOAP do cliente, com o objetivo de otimizar o seu desempenho diminuindo a
necessidade de gerar uma nova mensagem XML para todas as requisi¢@es. Dois tipos de

mecanismos de caching foram desenvolvidos — caching completa e caching parcial.

O mecanismo de caching completa aplica-se nos casos onde repetidas
requisicdes SOAP sdo enviadas ao servidor. Antes de realizar qualquer requisi¢do, o
cliente deve verificar na cache se ja existe uma mensagem associada a requisi¢ao
desejada. Caso seja a primeira vez que uma determinada requisicdo € realizada, um
arquivo contendo toda a mensagem SOAP é gerado e armazenado na cache e indexado
por uma chave. Para que, nas requisi¢cdes subseqlientes, essa mensagem € recuperada da

cache e ndo seja novamente serializada, reduzindo, entdo, o tempo de execugéo.

O mecanismo de caching parcial aplica-se nos casos onde o cliente faz a mesma
requisicdo, exceto pelos valores dos seus parametros. Nessa estratégia, quando a
mensagem € encontrada na cache, o cliente deve preencher os valores das tags na

mensagem com 0s novos valores dos parametros.

O pré-requisito para aplicar a estratégia de caching completa é que o cliente
tenha um namero fixo de diferentes tipos de requisi¢cdes, caso contrario, 0 tempo gasto
com operacdes de entrada e saida (1/0) sera alto devido ao aumento do tamanho da
cache. E o pré-requisito para a aplicacdo do mecanismo de caching parcial, é que o

namero das tags cujos valores serdo atualizados seja pequeno.

Nos experimentos realizados, o desempenho de uma aplicacao Java utilizando a
estratégia de caching foi melhor que o desempenho da mesma aplicacdo implementada
em Java RMI. Usando mensagens grandes (20 KB) e complexas a estratégia de caching
parcial foi mais eficiente que a estratégia de caching completa, devido ao crescimento

do tamanho da cache [Devaram and Andresen, 2003].

3.6.4 Otimizando o Calculo do Tamanho da Mensagem SOAP

Nessa secdo serdo apresentadas algumas técnicas que visam otimizar o gargalo do

calculo do tamanho da mensagem SOAP apresentado na se¢édo 3.5.4.

-50-

Técnica 1: Preenchendo o Atributo “Content-Length” com Espacos

Essa técnica é chamada de Back-Patching e consiste em inserir espagos no atributo
“Content-Length” durante a geracdo inicial do cabecalho, que serdo, posteriormente,
substituidos pelo tamanho real quando a mensagem SOAP for processada [Chiu et al.,
2002].

Utilizando essa técnica, ndo € necessario manter dois buffers separados, um para
0 cabecalho e outro para o corpo da mensagem SOAP, e apenas uma chamada de

sistema € realizada para enviar a mensagem.

Técnica 2: Envio Vetorizado das Mensagens

E uma solucdo alternativa & técnica anterior e permite o envio de varios buffers de
memoria com uma Unica chamada de sistema [Chiu et al., 2002]. Entdo, os buffers do
cabecalho e do corpo da mensagem podem ser enviados a0 mesmo tempo. Essa técnica
é chamada de Vectored Send Call e é utilizada pelo toolkit bSOAP [Govindaraju et al.,
2004].

Técnica 3: Técnica de Serializagcdo em Dois Estagios

Diferentemente das técnicas que armazenam a mensagem em buffers a fim de
determinar o seu tamanho, a técnica de serializacdo em dois estagios (two-stage
serialization) emprega um algoritmo rapido de serializacdo que é divido em duas fases:
a primeira fase consiste em varrer os dados, contar o tamanho da mensagem sem
armazenar em um buffer e verificar os ponteiros da estrutura de dados, caso seja ciclica
ou um grafo. A segunda fase consiste em construir o cabecalho e serializar a mensagem
SOAP diretamente sobre TCP/IP. O toolkit gSOAP aplica essa técnica a fim de
minimizar o uso de memoria e preservar as estruturas de dados ciclicas e multi-

referenciadas [Engelen and Gallivan, 2002].

Técnica 4: Transmissdo dos Dados em Blocos (Chunked Transfer Coding)

HTTP 1.1 [Fielding et al., 1999] suporta uma forma simples de streaming chamada
Chunked Transfer Coding, que permite a quebra da mensagem HTTP em varios blocos

(chunks), onde cada bloco é precedido pelo seu préprio tamanho. Quando essa técnica

-51-

de streaming é usada, ndo é necessario enviar o tamanho da mensagem no cabecalho,

mas indicar que a mensagem sera enviada em blocos.

A sua vantagem é que pode ser aplicada tanto pelo cliente quanto pelo servidor,
onde é mais frequentemente adotada. Além disso, evita 0 armazenamento em memdaria
dos dados antes da transmisséo e permite a sobreposicéo entre as fases de serializagao,
de transmissdo na rede e a de deserializagdo [Chiu et al., 2002] [Davis and Parashar,
2002] [Engelen, 2003] [Govindaraju et al., 2004]. O emissor da mensagem, apds
serializar um bloco, pode transmiti-lo a0 mesmo tempo em que serializa 0 proximo
bloco, enquanto que o receptor da mensagem pode iniciar as fases de parsing e de

deserializacdo, assim que as mensagens cheguem no buffer (Figura 3.4).

O problema dessa técnica é determinar o tamanho ideal para os blocos, pois se
for muito pequeno, muitas chamadas de sistemas séo invocadas, e se for muito grande,

aumenta a falta de cache de sistema.

[serializagao { serializagao |

E transmissao [transmisséo !

i buferizacdo [| buferizacao E | buferizacdo [

parser i parser ™~ parser

{deserializagéo H deserializag&o | deserializag&o

Figura 3.4 — Enviando uma mensagem SOAP com otimizac¢Ges

Técnica 5: Eliminacéo do Atributo Content-Length

Essa técnica propde que os servidores HTTP contenham pares de tags XML para
determinar o final da mensagem SOAP. Dessa forma, eliminando o atributo “Content-
Length” do cabegalho e, consequentemente, eliminando o célculo do tamanho da

mensagem.

-52-

Com a omissdo desse atributo, é possivel sobrepor as fases de serializagdo, de
transferéncia na rede e de deserializacdo (ver Figura 3.4), reduzindo o tempo total de
processamento e solucionando o gargalo introduzido pelo calculo do tamanho da

mensagem (ver Secdo 3.5.4).

A partir dos experimentos realizados numa LAN, Shirasuma et al. (2002)
verificaram que essa técnica otimizou em aproximadamente 55% o tempo de resposta,
porém sua aplicacdo viola a RFC 1945 [Berners et al., 1996], uma vez que a mesma

especifica que é necessario enviar o tamanho da mensagem.

3.6.5 Otimizac¢des na Comunicagao

A partir dos gargalos de comunicagdo apresentados na Secdo 3.5.5, Elfwing et al.
(2002) propuseram algumas otimizagdes a fim de diminuir o nimero de pacotes e,
principalmente, reduzir os atrasos inerentes aos pacotes de confirmacao e de fechamento

da conexao.

Técnica 1: Fechamento da Conexao Iniciada pelo Cliente

A Figura 3.5 ilustra o trafego de pacotes onde o cliente € responsavel pelo fechamento
da conexdo, iniciado pelo pacote de nimero sete. Para isso, o atributo “Content-Length”
foi enviado no cabecgalho da resposta do servidor, permitindo que o cliente conte os
bytes recebidos e feche a conexdo, sem precisar esperar que o servidor envie 0 pacote
TCP/FIN. Aplicando essa otimizagdo nos seus experimentos, Elfwing et al. (2002)

verificaram que o tempo de execuc¢do reduziu de 680ms para 200ms.

Embora essa solucdo tente eliminar o atraso inerente ao protocolo de fechamento
da conexdo, ela introduz o problema do calculo do tamanho da mensagem no envio da
resposta (ver Se¢do 3.5.4). Outra desvantagem € que a especificacao do protocolo HTTP
1.0 ndo garante que esse atributo estara presente no cabecalho da resposta do servidor.
Antes de aplicar essa técnica, € necessario avaliar qual gargalo tem o maior impacto — o

atraso para fechar a conexdo ou o calculo do tamanho da mensagem.

-53-

CLIENTE SERVIDOR

1. [TCP SYN]

A 4

2. [TCP SYN/ACK]

A

3. [TCP ACK]

A 4

4. HTTP REQUEST

A 4

5. HTTP RESPONSE

A

6. [ACK]

\4

7. [FIN, ACK]

\4

8. [ACK]

A

9. [FIN, ACK]

A

10. [ACK]

v

Figura 3.5 - Trafego de pacotes para uma chamada SOAP com otimizac6es

Técnica 2: Enviando o Cabecalho e a Mensagem SOAP em um Pacote HTTP

Além de diminuir o nimero de pacotes transmitidos na rede, essa otimizacdo reduziu,

em meédia, 150ms do tempo de resposta, originado pelo algoritmo TCP delayed ACK.

Aplicando essa otimizacdo juntamente com a anterior, 0 tempo de execucao
reduziu para, aproximadamente, 42ms. A Figura 3.5 ilustra os pacotes trocados quando

a resposta do servidor é enviada em um Unico pacote.

Técnica 3: Desabilitar o algoritmo Nagle e Configurar o Tempo do Algoritmo TCP
delayed ACK para Zero

Como os algoritmos Nagle e TCP delayed ACK causam atrasos desnecessarios no
cenario da comunicacdo Web Services, desabilitando esses algoritmos ocasionaria uma
diminuicdo, aproximadamente, de 350ms no tempo de execucdo. No entanto, a carga na
rede podera aumentar, uma vez que 0os mesmos foram projetados para reduzir 0 nimero

de pacotes na rede.

-54-

3.6.6 Uso de Conexdes Persistentes

O protocolo HTTP 1.1 suporta conexdes persistentes (HTTP keep-alive) por default, a

menos que o atributo “Connection: Close” seja especificado no cabecalho.

Essa caracteristica permite o reuso da mesma conexdo TCP/IP para enviar
maltiplas requisicoes, dessa forma, eliminando os gargalos de estabelecer (Three-Way
Handshake) e fechar uma conex&o para cada chamada e 0 atraso para iniciar 0 processo
de fechamento da conexao [Elfwing et al., 2002] [Engelen, 2003] [Kohlhoff and Steele,
2003] [Govindaraju et al., 2004].

Uma vez que o custo de estabelecer uma conexdo aumenta com o atraso da rede,
0 beneficio dessa otimizacdo sera mais percebivel em redes com alto atraso [Chiu et al.,
2002].

3.6.7 Codificacao Binaria dos Dados XML

A codificacdo dos dados em Base64 é suportada pela tecnologia XML Schema e € uma
representacdo atrativa para tornar mais eficiente a troca de arrays de nimeros ponto
flutuante, pois reduz a perda de precisdo dos numeros, diminui 0 nimero de bytes e o
gargalo da serializacdo [Engelen, 2003]. Os experimentos realizados para quantificar
sua eficiéncia demonstram que essa otimizacdo reduz o tempo total de execucdo em
75% [Shirasuma et al., 2002].

A desvantagem é que ndo suporta o0 envio de muitos dados binarios de forma
eficiente e, por ser uma técnica de codificacdo binaria, perde-se a legibilidade dos
dados. Nesses casos, técnicas como SOAP with Attachments e WS-Attachment, descritas

na préxima subsecao, deveriam ser utilizadas.

3.6.8 Enviando Mensagens SOAP com Anexos

Tanto SWA (SOAP with Attachment) quanto WS-Attachment sdo técnicas utilizadas para
viabilizar a transferéncia de grandes dados binédrios — imagens e sons — em uma
mensagem SOAP. A diferenca esta na estruturacdo e processamento da mensagem. A

especificacdo de SwA encapsula uma mensagem SOAP e 0s demais anexos em uma

-55-

estrutura MIME (Multipurpose Internet Mail Extension) e a especificagdo WS-

Attachment, utiliza uma estrutura DIME (Direct Internet Message Encapsulation).

Para determinar o nimero de anexos e o0s seus limites numa estrutura MIME ¢
preciso varrer toda a mensagem. Com a estrutura DIME, o parser pode simplesmente
usar os dados do cabecalho dos registros para rapidamente indexa-los e calcular o
numero de anexos na mensagem [Govindaraju et al., 2004]. Outra diferenca é que 0s

anexos DIME podem ser transmitidos na forma de streaming.

Ying et al. (2004) compararam o padrdo SOAP com as técnicas SWA e WS-
Attachment. Em geral, as técnicas SWA e WS-Attachment tém melhor desempenho que o
padrdo SOAP, principalmente quando o tamanho dos dados aumenta. O beneficio € que
essas técnicas reduzem o tamanho da mensagem e o custo de serializacdo e
deserializacdo, conseqiientemente melhorando o tempo de resposta. Porém, em termos

de desempenho, a técnica WS-Attachment foi mais eficiente que a SWA.

3.6.9 Otimizando os Custos de Serializacéo

A técnica chamada differential serialization foi projetada e desenvolvida para reduzir 0s
custos associados ao processo de serializagdo de uma mensagem SOAP e otimizar a
comunicacdo do lado do emissor da mensagem [Abu-Ghazaler et al., 2004] [Abu-
Ghazaler et al., 2004a] [Abu-Ghazaler et al., 2004b].

A técnica consiste em salvar uma cépia da mensagem serializada apds o seu
primeiro envio. Durante as requisi¢cBes subseqlentes, para a mesma aplicacdo Web

Services, apenas 0s elementos que mudaram serdo serializados novamente.

A eficiéncia dessa otimizacdo depende do tamanho da mensagem, do contetdo e
da similaridade entre as mensagens executadas. A partir dos estudos realizados em
[Abu-Ghazaler et al., 2004] [Abu-Ghazaler et al., 2004a] [Abu-Ghazaler et al., 2004b],

0s seguintes resultados foram encontrados:

1. Quando a mensagem exata necessita ser enviada novamente, 0 processo de

serializacédo € eliminado;

2. Quando todos os elementos necessitam ser serializados, onde apenas as tags e o

envelope SOAP sdo reusados, o ganho de desempenho € de 17%;

-56-

3. Dependendo do percentual de elementos que necessitam ser serializados, o

ganho de desempenho pode variar entre 22% e 68%.

O toolkit bSOAP aplica essa técnica, e atualmente, a técnica differential
deserialization estd sendo estudada para otimizar o processo de deserializacdo das
mensagens SOAP.

3.7 Consideracoes Finais

Nesse capitulo foram apresentados varios trabalhos que investigaram a ineficiéncia de
Web Services, detalhando seus gargalos e listando possiveis otimizaces para tornar as
aplicacbes Web Services mais eficientes. Além disso, foram apresentados alguns
resultados da comparacgédo de desempenho de diferentes Web Services toolkits entre si e

também com outros middleware.

De forma geral, o desempenho de uma aplicagdo Web Services dependem do
projeto e implementacdo do toolkit utilizado para implementd-la e dos gargalos
introduzidos pelos protocolos SOAP e de transporte, onde o protocolo HTTP é o mais
comumente adotado. Os gargalos detalhados nesse capitulo foram o tamanho e a
complexidade das mensagens, a escolha do parser, os custos de serializacdo e
deserializacdo, o tempo gasto para calcular o tamanho da mensagem, estilo de
codificagdo, o custo de estabelecimento das conexdes e 0s gargalos de comunicacdo

como o atraso na troca de pacotes e 0 niUmero de pacotes.

Desses gargalos, o0s custos associados ao processo de serializacdo e
deserializacdo foram os de maior impacto no desempenho, logo as solugdes que visam
otimizar essas rotinas sdo as que apresentaram melhores resultados como as técnicas de
caching, differential serialization e representacdo binaria dos dados XML usando a
codificagdo Base64, SOAP with Attachment ou WS-Attachment. Entretanto, a
codificacdo binaria dos dados ao mesmo tempo em que reduz o tamanho das
mensagens, também reduz as caracteristicas de universalidade e interoperabilidade, uma

vez que a troca de mensagens XML é o coragdo de Web Services.

-57-

Atualmente, alguns toolkits como o gSOAP e bSOAP estdo sendo projetados
com foco em eficiéncia, aplicando técnicas de otimizacdo para solucionar os gargalos de
desempenho. O toolkit Axis da Apache, que é de codigo aberto e gratuito, esta sendo
estudado por varios autores e suas versdes mais recentes sdo mais eficientes que as

versoes anteriores, embora 0 mesmo ainda apresente o pior desempenho.

Mesmo aplicando as otimizagOes propostas, a questdo do desempenho de Web
Services ainda estd em aberto e muito se tem que estudar. Entdo, antes de ser utilizado
para expor aplicagdes que demandam por alto desempenho, deve-se testar sua eficiéncia
e comportamento no ambiente que simule as mesmas caracteristicas do cenario real.
Idealmente, o processo de escolha do toolkit deve incluir a avaliacdo de varios Web

Services toolkits, a fim de selecionar o que mais atende aos requisitos da aplicagao.

Diferentemente dos trabalhos apresentados nesse capitulo, essa dissertacdo foca
na avaliacdo de desempenho de Web Services toolkits guiada por um conjunto de
diretrizes desenvolvidas com o objetivo de identificar seus gargalos de desempenho e
entender seu funcionamento. Dessa forma, contribui-se com a uniformidade do processo

de avaliacdo de diferentes Web Services toolkits.

No préximo capitulo serdo apresentadas as diretrizes de avaliacdo de
desempenho de Web Services que foram desenvolvidas baseando-se nos gargalos,
otimizacdes, métricas e resultados detalhados ao longo desse capitulo.

-58-

4 Diretrizes para Avaliacdo de
Desempenho de Web Services

4.1 Introducao

O cenério atual da area de desenvolvimento de software é caracterizado por aplicacdes
complexas, distribuidas e que demandam por alto desempenho e por varias tecnologias
que os desenvolvedores podem escolher para implementar essas aplicagdes. No mundo
de Web Services ndo é diferente, pois existem varios Web Services toolkits
implementados em diferentes linguagens (ver Secdo 2.4). Dessa forma, é necessario
avaliar o desempenho desses toolkits antes de desenvolver as aplicacdes, a fim de
identificar o mais apropriado para atender aos seus requisitos ndo funcionais como

eficiéncia, laténcia baixa, alta vazdo e uso eficiente de memoria.

A avaliacdo de desempenho dos Web Services toolkits realizada nos trabalhos
apresentados anteriormente foi feita, na maioria dos casos, de forma simples, usando
apenas tipos de dados escalares e coletando algumas métricas de desempenho (ver
Capitulo 3). Uma conseqiéncia é que os resultados de alguns desses estudos ndo foram
totalmente abrangentes, pois o desempenho ndo foi avaliado usando tipos de dados

complexos. Um exemplo dessa situagéo foi a contradicdo entre os resultados obtidos por

-59-

Juric et al. (2004) e Gray (2005). O primeiro concluiu que Web Services sdo mais
eficientes que as tecnologias de tunelamento de Java RMI. Porém, explorando varios
cenarios de teste, Gray (2005) verificou que o desempenho de Web Services é melhor
apenas quando tipos de dados simples sdo utilizados. Quando estruturas grandes e

complexas sdo utilizadas, Java RMI sobre o protocolo HTTP é mais eficiente.

Dessa forma, existe a necessidade de um guia geral para realizar os testes de
desempenho de Web Services, a fim de uniformizar o processo de avaliacdo. Nas se¢des
seguintes serdo apresentadas as diretrizes para avaliacdo de desempenho de Web
Services toolkits que podem ser utilizadas, por desenvolvedores ou arquitetos com ou
sem experiéncia na tecnologia Web Services, para avaliar a eficiéncia de qualquer
toolkit [Machado and Ferraz, 2005].

4.2 Objetivo das Diretrizes

As diretrizes apresentadas a seguir foram desenvolvidas baseando-se nos resultados,
métricas, gargalos e otimizacGes explicados no capitulo anterior, ou seja, resultam da
analise detalhada e organizacdo dos trabalhos relacionados ao estado da arte do

desempenho de Web Services.

A proposta das diretrizes é descrever uma politica de avaliagdo de desempenho,
contribuindo, assim, com o avango da area. A Figura 4.1 sintetiza tais gargalos que
afetam o desempenho de Web Services e que foram utilizados como base para propor as
diretrizes. De forma geral, as mesmas tém como objetivo permitir que um

desenvolvedor ou arquiteto [Machado and Ferraz, 2005]:

1) Entenda o comportamento do toolkit sendo analisado;

2) ldentifique os gargalos de desempenho;

3) Quantifique o tempo para transmitir as mensagens SOAP de diferentes
tamanhos, complexidade e tipos de dados;

4) Monitore o trafego de pacotes entre o cliente e o servidor;

-60-

5) Projete uma interface WSDL que atenda aos requisitos de eficiéncia e
interoperabilidade;
6) Verifigue a necessidade de aplicar otimizacGes na comunicacdo ou na

implementacéo do toolkit.

Estabelecimento das Estilo de Web Service Atrasos associados a
conexdes codificagéo Toolkit troca de pacotes

Célculo do Tamanho e
tamanho da » Desempenho |« complexidade das
mensagem mensagens
Custo de Parser XML | | Protocolo de NUmero de
(de)serializacéo transporte pacotes

Figura 4.1 - Fatores que influenciam o desempenho de Web Services

Dessa forma, as diretrizes podem ser utilizadas na escolha do toolkit “ideal”
para desenvolver um servico que demanda por desempenho. Como o objetivo é
melhorar o desempenho sem afetar a interoperabilidade, as diretrizes ndo exploram
nenhuma técnica de codificacdo binaria dos dados e nem a troca do protocolo HTTP por

um outro, como SMTP.

4.3 Guia para Avaliacao de Desempenho

As diretrizes listadas nessa secdo foram projetadas para serem simples, praticas,
eficientes e faceis de usar, simplificando a escolha do melhor toolkit para desenvolver e
expor um determinado servi¢co, além de propor uma padronizacdo do processo de

avaliacdo de desempenho dos diferentes Web Services toolkits.

As boas praticas para desenvolver uma aplicagdo distribuida sdo praticamente as

mesmas para desenvolver aplicacGes Web Services:

-61-

1. Deve-se projetar uma interface de forma a otimizar o tr&fego na rede,

minimizando o nimero de chamadas remotas, para melhorar o desempenho;
2. A interface do servigo constitui um contrato entre o servico e o cliente.

A granularidade da interface WSDL é uma importante decisdo de projeto, pois a
mesma se refere tanto ao escopo do dominio do servigo quanto ao escopo do dominio de
cada método da interface. Em geral, o nivel de granularidade apropriado para um
servico e seus métodos é “coarse-grained”, pois significa que o servico disponibiliza

varias funcionalidades que retornam muitos dados.

Determinar a granularidade de uma interface € uma decisdo dificil, porque os
projetistas ndo podem antecipar completamente a maneira como 0S Servigos serao
usados durante o seu projeto. Além disso, dentro da granularidade “coarse-grained”
ainda existe uma escala com varios degraus de granularidade. De maneira geral, 0s
servigos disponibilizados deveriam ser faceis de usar €, a0 mesmo tempo, deveriam

satisfazer as necessidades dos seus consumidores.

Uma vez que os clientes invocam o servico remotamente, é importante que as
interfaces estejam bem projetadas, caso contrario, o consumidor do servi¢o poderd
receber mais dados do que precisa ou podera fazer muitas requisi¢cbes para obter todas

as informacdes de que necessita.

Os projetistas, tendo consciéncia desses impactos, deveriam desprender um
tempo maior durante a definicdo do servigo, a fim de projetar uma interface que
minimize o impacto no desempenho. Dessa forma, é importante estudar as possiveis

solugdes de projeto e implementar a mais apropriada.

Além do desempenho, o projeto da interface também afeta outros requisitos ndo
funcionais da aplicacdo como modificabilidade, que representa o0 grau em que o sistema
incorpora mudancas de forma “facil”, e a reusabilidade, habilidade de uma aplicacéo ser

usada em diferentes contextos sem sofrer modificagdes.

De forma geral, como regra de desempenho, na divida sobre a granularidade de
um servico, deve-se publicar operacBes que fagcam muito trabalho, aceitem varios

parametros e retorne uma por¢do de informagdes. O objetivo € minimizar o nimero de

-62-

requisicdes remotas. Aléem disso, os futuros clientes provavelmente poderdo necessitar

das informacdes extras.

As diretrizes apresentadas a seguir ndo exploram diretamente o impacto no
desempenho causado pela granularidade de um servico. O foco foi investigar o
desempenho dos Web Services toolkits usando diferentes tipos de dados com tamanhos e
complexidades variados, a fim de publicar regras para avaliar o desempenho desses

toolkits, e ndo os gargalos introduzidos pela granularidade da interface da aplicacao.

Diretriz 1: Adote o estilo Document/Literal Wrapped

Durante o projeto da interface WSDL, a configuracdo dos parametros style e use pode
afetar ndo s6 o grau de interoperabilidade do servigo, como também o seu desempenho

(ver Secdo 2.3.1). Os possiveis estilos para codificar a interface WSDL séo:
1. RPC/Encoded
2. Document/Encoded
3. RPClLiteral
4. Document/Literal
5. Document/Literal Wrapped

Uma vez que a escolha do estilo de codificacdo afeta o desempenho da aplicacao
[Cohen, 2003] [Ng et al., 2003], qual dessas cinco combinagdes deve ser usada para
estruturar as mensagens SOAP?

O estilo RPC/Encoded tem sido o mais comumente adotado devido sua
semelhanca com os modelos de chamadas remotas tradicionais [Devaram and Andresen,
2003]. Esse estilo foi projetado para permitir que as mensagens SOAP simulem
chamadas RPC. As principais vantagens desse estilo séo a clareza do arquivo WSDL e o
envio do nome da operagdo na mensagem SOAP, dessa forma o receptor da mensagem
pode facilmente despachar a mensagem para a implementacdo do método solicitado. A
desvantagem € que o conteddo da mensagem SOAP ndo pode ser facilmente validado

porque existem dados que ndo estdo definidos no esquema XML dos tipos.

-63-

O estilo Document/Encoded tem sido visto como uma combinacédo invalida, ndo
sendo suportado pelos Web Services toolkits atuais. Essa combinacdo devera

desaparecer nas futuras versdes da especificacdo WSDL.

Como essas duas combinagdes sdo Encoded, ou seja, usam as regras de
codificagcdo detalhadas na especificacdo do protocolo SOAP, as mesmas ndo fazem
parte do conjunto de recomendagOes propostas pelo WS-1 (Web Services
Interoperability Organization) para maximizar a interoperabilidade das aplicacbes Web
Services. Além disso, o tipo de codificagdo Encoded é um ponto de degradacdo do

desempenho.

O estilo RPC/Literal apesar de ser um estilo recomendado pelo WS-1, ndo €
suportado por algumas plataformas Web Services como, por exemplo, o toolkit .NET.

Entdo, por questdes de interoperabilidade, esse estilo também nédo deveria ser adotado.

O estilo Document/Literal € a maneira mais recomendada para representar uma
requisicdo Web Services. As mensagens SOAP codificadas nesse estilo podem ser
facilmente analisadas por qualquer tecnologia de validagdo XML, uma vez que todo o

contetdo dentro da tag <soap:body> € definido por esquema XML.

Nos estudos realizados por Ng et al. (2003) e Cohen (2003), o estilo
Document/Literal apresentou um melhor desempenho, porque produz mensagens menos
complexas e requer, aproximadamente, metade do nimero de bytes para representar as
mensagens, minimizando os custos de transmissdo dos dados na rede e o tempo de
resposta. Além disso, as regras de serializagdo e deserializacdo sdo mais eficientes que
as do estilo RPC/Encoded.

Apesar do estilo Document/Literal ser o mais indicado para construir as
mensagens SOAP, o mesmo tem uma desvantagem, pois 0 nome da operacdo sendo

invocada ndo esta presente na mensagem SOAP, dificultando o despacho da operacéo.

Para solucionar esse problema foi projetado o estilo Document/Literal Wrapped,
também chamado de Wrapped/Literal, que além de possuir as mesmas vantagens do
estilo Document/Literal, envia 0 nome da operacdo sendo invocada na mensagem
SOAP. Do ponto de vista técnico, esse estilo € um caso especial do estilo

Document/Literal.

-64-

Dessa forma, essa diretriz adota o uso do estilo Document/Literal Wrapped,
porque além do desempenho, esse estilo apresenta bons resultados de
interoperabilidade. As recomendacdes de interoperabilidade eliminam o uso do estilo
RPC/Encoded, apesar de muitos Java Web Services toolkits adotarem esse estilo como o

padréo.

Diretriz 2: Utilize mensagens de tamanhos e complexidades
diferentes

A maioria dos estudos reportados anteriormente tem analisado benchmarks que
envolvem pouca transferéncia de dados, usando operac6es simples que ndo tinham nem
parametros nem valores de retorno, ou apenas tipos de dados simples como inteiros,

ponto flutuante ou string.

Como os tipos de dados basicos consomem menos tempo de processamento e
freqUentemente sdo empacotados em um Unico pacote, tais estudos nao apresentam uma
analise completa do desempenho cujos resultados possam ser totalmente usados na

selecdo do toolkit para expor as aplicacdes reais.

Um processo de avaliagdo deveria também wusar tipos de dados mais
representativos de aplicacbes Web ou de qualquer outro contexto que envolva néo
apenas grandes quantidades de dados, como também uma sintaxe complexa. Essa

diretriz auxilia a responder questdes como:

e Qual é a influéncia de diferentes tipos de dados usados como parametro e

valores de retorno no desempenho?
e Qual é o tempo para serializar e deserializar diferentes tipos de dados?

e Qual é o impacto do tamanho dos dados no desempenho, devido a sua influéncia

no empacotamento dos dados para a transmissdo na rede?

A ineficiéncia de Web Services ndo é unicamente afetada pelo tamanho da
mensagem, mas, principalmente, pelo tempo gasto na converséo das estruturas de dados
em XML e vice-versa. Quanto mais complexa for uma mensagem, maior sera o seu

tempo de conversao.

-65-

Dessa forma, é importante avaliar o desempenho de um toolkit usando
mensagens de varios tamanhos e complexidades, principalmente usando estruturas
arrays, pois os toolkits podem representar essas estruturas de formas e tamanhos

diferentes.

Diretriz 3: Analise as mensagens SOAP transportadas na rede

Monitorando as mensagens SOAP transportadas sobre o protocolo HTTP, é possivel
determinar o tamanho da requisicdo e da resposta para cada operacdo invocada,
identificar o estilo de codificacdo das mensagens (RPC ou Document), a versdao do
protocolo HTTP e os atributos do seu cabecalho. A versdo do protocolo é informada na
primeira linha do cabecalho (Figura 4.2) e a requisi¢éo do cliente pode usar uma versdo
do protocolo diferente da versao usada nas respostas do servidor.

As Figuras 4.2, 4.3 e 4.4 representam exemplos de mensagens capturadas atraves
de uma ferramenta grafica de monitoramento das mensagens SOAP chamada TCP
Monitor [Apache Axis, 2004]. Cada uma das figuras representa um exemplo de
possiveis configuracbes do cabecalho HTTP, usando diferentes atributos para

transportar a mesma mensagem.

POST /service HTTP/1.1

Content-Type: text/xml; charset=utf-8

Content-Length: 454

SOAPAction: ™'

User-Agent: Java/1.4.2_08

Host: 127.0.0.1

Accept: text/html, image/gif, image/jpeg, *; g=-2, */*; g=-2
Connection: keep-alive

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/*
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<env:Body>
</env:Body>

</env:Envelope>

Figura 4.2 - Exemplo de uma requisi¢cdo SOAP enviada via HTTP

A partir da analise do cabecalho da mensagem ilustrada na Figura 4.2, observa-se o

seguinte comportamento do toolkit:

-66-

1) A requisicdo é enviada ao servidor usando a versao 1.1 do protocolo HTTP;

2) O tamanho da mensagem ¢ calculado e enviado através do atributo “Content-
Length”. O processo de calculo do tamanho da mensagem pode ser um gargalo

de desempenho do toolkit (ver Secéo 3.5.4);

3) A requisigdo solicita o estabelecimento de conexdes persistentes devido a

presenca do atributo “Connection: keep-alive”.

HTTP/1.1 200 OK

SOAPAction: ™'

Content-Type: text/xml;charset=utf-8
Transfer-Encoding: chunked

Date: Sun, 24 Jul 2005 13:52:55 GMT

Server: Sun-Java-System/Web-Services-Pack-1.4

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/*
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<env:Body>

</env:Body>
</env:Envelope>

Figura 4.3 - Exemplo de uma resposta SOAP enviada via HTTP

A mensagem da Figura 4.3 indica que a resposta do servidor também € enviada
usando a versdo 1.1, o servidor ndo fecha a conexdo devido a auséncia do atributo
“Connection: close”. O atributo “Transfer-Encoding: chunked” informa que a
mensagem serd transmitida em blocos usando a técnica de streaming Chunked Transfer
Coding. A mensagem da Figura 4.4 indica que o servidor fechard a conexdo apds o

envio da resposta ao cliente devido a presenga do atributo “Connection: close”.

HTTP/1.1 200 OK

Content-Type: text/xml;charset=utf-8
Server: Apache-Coyote/1.1
Connection: close

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<env:Body>

</env:Body>

</env:Envelope>

Figura 4.4 - Exemplo de uma resposta SOAP enviada via HTTP fechando a conexao

-67-

Os atributos *“Content-Length”, *“Connection” e “Transfer-Encoding” do
cabecalho HTTP sdo importantes porque eles impactam no desempenho. Essa diretriz é
importante para verificar como a mensagem SOAP ¢ transportada usando o protocolo
HTTP, pois influencia como a mesma sera processada. Além disso, a analise das
mensagens também deve ser feita para validar se o projeto da interface WSDL esté
correto com relacgdo a assinatura das operacoes, a formatacdo das mensagens e aos tipos

de dados usados.

Diretriz 4: Verifique o parser suportado pelo toolkit

Baseado no fato que os documentos XML representando as mensagens SOAP sao
grandes e complexos, é necessario escolher um modelo de parsing eficiente e que
apresente um bom gerenciamento de memoria. A questdo é que o numero de diferentes
modelos tem crescido, entdo néo é trivial determinar qual modelo usar baseando-se em

suas caracteristicas de desempenho e de facilidade de uso.

Como diferentes implementagfes do mesmo modelo de parsing podem
apresentar diferente desempenho, é importante identificar o parser XML adotado pelos
Web Services toolkits, porém a implementacdo utilizada pelo toolkit quando o seu
codigo ndo é aberto ndo € imediatamente determinada. Essa diretriz sugere que 0s
projetistas da aplicagdo desprendam algum tempo analisando o parser do toolkit,

baseando-se na sua documentacao e em resultados publicados em outros trabalhos.

E recomendado também n&o habilitar a validagio das mensagens pelo parser se
0 desempenho for um requisito prioritario, porém € uma boa pratica de programacao

validar os valores dos parametros antes de invocar os métodos.

Para melhorar o desempenho do processo de recebimento de uma mensagem
SOAP, uma implementacdo do modelo de processamento Pull Parsing poderia ser
adotada pelos toolkits porque € mais eficiente e permite que o processo de parsing da

mensagem inicie antes que todo o documento tenha sido recebido.

Alguns toolkits permitem que o desenvolvedor escolha qual a implementacdo do
modelo de parsing usar para varrer e validar as mensagens SOAP. Nesses casos, €

interessante fazer uma avaliacdo prévia das implementacGes disponiveis para determinar

-68-

qual delas apresenta o melhor desempenho para tratar os tipos de dados de uma
determinada aplicacéo, pois nem sempre 0s gargalos associados ao parser sao claros, e
futuramente, podem ser necessarias alteracdes no cddigo do toolkit para trocar de

modelo.

Mesmo existindo progresso no desempenho do parsing dos documentos XML, é
importante avaliar a implementacdo adotada por um toolkit antes de seleciona-lo. Os
toolkits mais flexiveis permitem que o desenvolvedor selecione a implementacdo mais
apropriada para sua aplicacdo, e atualize, de forma simplificada, seu codigo com

implementacBes mais eficientes a medida que sejam desenvolvidas.

Diretriz 5: Monitore o trafego de pacotes

Atualmente, os cddigos das aplicacOes cliente e servidor sdo construidos baseados em
stubs e skeletons que sdo automaticamente gerados a partir da interface do servico e
escondem do programador os detalhes da comunicacio na rede. E importante avaliar os
custos associados diretamente a camada de comunicacdo antes de adotar um toolkit,
principalmente porque aplicagbes Web Services consomem muito tempo de
processamento e transmitem muitos dados. Quanto mais dados sdo transmitidos na rede,

mais controle dos pacotes é necessario.

Mesmo que a especificacdo SOAP néo determine qual protocolo de transporte
adotar, as mensagens SOAP s&o mais freqlientemente transportadas usando o protocolo
HTTP. As vantagens de usar HTTP s&o claras, pois 0 mesmo é universalmente
suportado e seu trafego normalmente esta configurado para passar por firewalls. Porém
é necessario identificar os gargalos especificos do protocolo que afetam o desempenho

de Web Services.

Analisando o trafego de pacotes entre o cliente e o servidor é possivel identificar
alguns detalhes da transferéncia dos dados e gargalos especificos da comunicacdo que
podem ter um significativo impacto no desempenho geral da aplicacdo Web Services.
Também permite um entendimento detalhado da seqliéncia de pacotes gerada pelos
diferentes toolkits, pois as implementacdes apresentam variacbes na seqiiéncia dos

pacotes e, conseqientemente, na sua eficiéncia.

-69-

Essa diretriz auxilia a identificacdo dos gargalos relacionados a comunicacao
que foram apresentados na Secdo 3.5.5 e no entendimento do funcionamento do toolkit
para estabelecer a comunicacdo. Atualmente, existem varias ferramentas graficas ou
baseadas em linha de comando que automatizam o monitoramento do trafego na rede
[Kennington, 2005]. Monitorando o trafego, € possivel identificar os atrasos e comparar

0s pacotes trocados, além de responder as seguintes questoes:
e Qual o nimero total de pacotes trocados entre o cliente e o servidor ?

e Em quantos pacotes de dados uma mensagem SOAP grande é quebrada, uma

vez que as mensagens pequenas sao preenchidas em um Unico pacote?
e Qual o nimero total de bytes transferidos?
e Quantas conexdes foram abertas?
e Qual o custo para estabelecer e fechar uma conexdo?
e Qual é o impacto dos algoritmos Nagle e TCP delayed ACK?

Dessa forma, essa diretriz avalia o desempenho do toolkit para uma aplicagéo
particular baseando-se na sua implementacdo da camada de comunicacdo e nos custos

adicionais inerentes ao protocolo de transporte.

Uma solucdo eficiente em termos de rede deveria suportar as técnicas de
conexdes persistentes e Chunked Transfer Coding suportadas pela especificagédo do
protocolo HTTP 1.1. Tais técnicas sdo otimizacfes e melhoram o desempenho de Web

Services (ver Sec¢éo 3.6).

Diretriz 6: Quantifique o desempenho do Web Services toolkit

Desempenho é uma medida da produtividade de uma aplicacdo e um importante critério
para distinguir e selecionar o Web Services toolkit mais apropriado. As seguintes
métricas tém sido comumente adotadas e podem ser usadas para quantificar a qualidade

de um servigo em termos do seu desempenho:

e Round Trip Time (RTT): representa 0 tempo medio para enviar e receber uma

mensagem, a partir do cliente ao servidor e de volta ao cliente. Essa métrica

-70-

inclui o tempo requerido para serializar e deserializar os argumentos e valores de
retorno e o custo para transmitir os dados na rede. Quando o cliente e o servidor

estdo rodando na mesma maquina, o custo da rede é reduzido;

e Laténcia: representa o gargalo imposto pelo toolkit para enviar e receber uma

mensagem sem parametros e sem valores de retorno;

e Vazdo: representa 0 numero de requisicdes dos clientes completadas dentro de
uma certa unidade de tempo, tipicamente em segundos. Quando a taxa de
requisicdo excede a capacidade do servidor, ou seja, quando a taxa de requisi¢éo
€ maior que a taxa de servigo, a vazao decresce e 0 tempo de resposta aumenta.
A vazdo deveria aumentar com o aumento do nimero de clientes simultaneos até
saturar a capacidade maxima do servidor. A vazdo e o RTT sdo inversamente

proporcionais.

e Escalabilidade: métrica que avalia a degradacdo do desempenho quando varios

clientes enviam requisi¢Ges ao servidor simultaneamente.

Evitando qualquer processamento do lado do servidor quando calculando o
RTT, como por exemplo, 0 acesso ao banco de dados, o resultado representara apenas o
gargalo introduzido pelo uso da tecnologia Web Services na chamada remota, sem a

interferéncia dos gargalos inerentes a execuc¢ado da aplicacéo.

Para completar o processo de avaliacdo de desempenho dos Web Services
toolkits, outras métricas podem ser calculadas: o tempo de instanciacdo do stub, o
tamanho total das mensagens, o numero total de pacotes transmitidos na rede e o custo

para tratar uma excegao ou erro.

O tempo de instanciacdo do stub é o tempo para levantar e inicializar o stub que
pode ser de forma estatica ou dindmica. Existe um trade-off entre desempenho e
invocacdo dindmica, pois 0 tempo de inicializacdo dos toolkits que utilizam proxy
gerados em tempo de execucdo € maior que os toolkits que geram o codigo do stub
estaticamente. Porém, o instanciamento dindmico torna as aplicagdes clientes mais

adaptaveis a possiveis alteracdes na interface do servico.

-71-

O tamanho das mensagens representa 0 numero total de bytes da mensagem
XML trocada em cada transacao, ou seja, no nimero de bytes da requisi¢do do cliente e

da resposta do servidor.

O numero de pacotes associados a uma determinada chamada remota, incluindo
o0s pacotes de confirmacdo e os referentes a abertura e fechamento da conexao, pode ser
uma importante métrica quando grandes mensagens sao avaliadas, pois o tamanho das

mensagens influencia no nimero total de pacotes necessarios para transmitir os dados.

O tempo para tratar uma excec¢do especifica do usuario representa o custo para o
cliente fazer a requisicdo, o servidor levantar a excecdo e o cliente fazer o seu
tratamento. Como o usudrio é livre para projetar sua aplicacdo, uma excecdo pode ser

tdo complexa quanto uma entidade de negdcio.

4.4 Consideracdes Finais

Atualmente, os desenvolvedores podem escolher entre as varias solugdes tecnoldgicas
para construir uma aplicacdo Web Services e cada escolha feita pode afetar tanto o
desempenho quanto a escalabilidade da aplicacdo desenvolvida. Outro fator que pode
degradar o desempenho é a granularidade da interface do servico. A interface deve ser
projetada de forma a minimizar o trafego na rede, evitando a troca de mensagens

desnecessarias.

Para os projetistas terem uma posicao correta durante a selecdo do toolkit mais
apropriado para desenvolver seu servico que demanda por alto desempenho, seis

diretrizes foram desenvolvidas e apresentadas nesse capitulo:
e Diretriz 1. Adote o estilo Document/Literal Wrapped,;
e Diretriz 2. Utilize mensagens de tamanhos e complexidades diferentes;
e Diretriz 3. Analise as mensagens SOAP transportadas na rede;
e Diretriz 4. Verifique o parser suportado pelo toolkit;

e Diretriz 5. Monitore o trafego de pacotes;

-72-

e Diretriz 6. Quantifique o desempenho do Web Services toolkit.

Em recentes investigacdes, foi descoberto que o estilo de codificacdo das
mensagens SOAP, além de representar um acordo entre o cliente e o servidor sobre

como interpretar as mensagens, também afeta o desempenho do toolkit.

Esse problema foi abordado pela Diretriz 1, onde foram descritos os diferentes
estilos e mostrado o trade-off entre interoperabilidade e desempenho associado a cada
estilo. Além disso, a Diretriz 1 funciona como uma otimizacdo para os gargalos
referentes ao tamanho da mensagem e aos custos de serializacdo e deserializacdo das

mensagens.

De forma geral, as diretrizes 3, 4 e 5 foram desenvolvidas para facilitar a
identificacdo dos gargalos inerentes aos Web Services toolkits e os diretamente

associados ao protocolo HTTP.

As diretrizes 2 e 6 visam padronizar o processo de avaliacdo de desempenho de
qualquer toolkit, permitindo que os resultados da avaliagdo sejam abrangentes e

propondo métricas, respectivamente.

A partir das diretrizes, foi elaborado um processo focando no passo a passo que
deve ser executado durante a avaliacdo de desempenho de Web Services toolkits. Para
reduzir o tempo gasto na sua execucdo, algumas das tarefas desse processo serdo
automatizadas por um utilitario de c6digo aberto e implementado em Java. Tanto o

processo quanto o utilitario serdo descritos no préximo capitulo.

-73-

5 Processo e um Utilitario para a

Avaliacdo de Desempenho de
Web Services Toolkits

5.1 Introducéo

A avaliacdo de desempenho de Web Services pode ndo ser uma tarefa facil, consumindo
muito tempo e demandando desenvolvedores ou arquitetos com experiéncia na
tecnologia. Devido a essas dificuldades, o processo de avaliacdo é muitas vezes
realizado depois que a aplicacdo Web Services é completamente implementada ou, no
pior caso, é simplesmente omitido. Porém o desempenho de Web Services ndo pode ser
desconsiderado, uma vez que ainda é um problema em aberto, onde os toolkits

apresentam eficiéncias diferentes.

Nesse capitulo serdo apresentados um processo para avaliacdo de desempenho
de Web Services toolkits e um utilitario, denominado JWSPerf (Java Web Services
Performance), cujo objetivo é automatizar alguns passos desse processo. Dessa forma, é
possivel identificar os gargalos de desempenho e selecionar o toolkit “ideal” para expor

0 Servico.

-74-

5.2 Processo de Avaliacado de Desempenho

O processo para a avaliagdo de desempenho de Web Services toolkits apresentado nessa
secdo é uma extensdo das diretrizes apresentadas no capitulo anterior e seu objetivo é
uniformizar a avaliacdo de desempenho de diferentes toolkits. De forma geral, o
processo representa um guia pratico, definindo um passo a passo para executar a

avaliacdo, porém sempre embasado pelas diretrizes.

Interface |
. WwsDL |

Aplicacgo cliente Servico

Toolkit
Stub Web Services Skeleton
Analisador Analisador . s
de de {serddor de aplicacéo)
Trafego Mensagens SOAP

Rede

Figura 5.1 - Componentes do processo de avalia¢do de desempenho

O processo proposto é composto por um conjunto de tarefas que devem ser
executadas do lado do cliente, pois o servigo deve estar implementado e rodando no
servidor de aplicacdo. A Figura 5.1 ilustra a estrutura necessaria para executar o

processo seguindo as seguintes tarefas:

1. Recuperar a mesma interface WSDL utilizada para desenvolver o servi¢o que
sera avaliado. Essa interface deveria conter operacfes usando tipos de dados
simples e complexos de varios tamanhos, assim respeitando a Diretriz 2 (Utilize
mensagens de tamanhos e complexidades diferentes). Como a interface WSDL
representa o contrato entre o cliente e o servidor, ndo é necessario que ambos
adotem o mesmo toolkit;

2. De acordo com a Diretriz 1, selecionar um Web Services toolkit que suporte o
estilo de codificacdo Document/Literal Wrapped,

-75-

. Verificar, a partir da sua documentacdo, se o parser adotado pelo toolkit
implementa 0 modelo SAX ou XPP, pois 0 modelo DOM € o mais ineficiente.
Essa tarefa deve ser realizada para atender a Diretriz 4 (Verifiqgue o parser
suportado pelo toolkit);

Gerar, a partir da interface WSDL, o stub cujo cédigo varia de acordo com o
Web Services toolkit selecionado. A maioria dos toolkits implementados em Java
disponibiliza ferramentas para executar esse passo a partir de linha de comando
passando apenas 0s parametros necessarios como, por exemplo, o diretério onde
sera gerado o codigo e o caminho da interface WSDL. Dessa forma, para
executar esse passo corretamente, € importante analisar a documentacdo da
ferramenta disponibilizada, uma vez que cada toolkit adota uma maneira
diferente;

Implementar a aplicacdo cliente, codificando todas as chamadas de operagdes
definidas na interface WSDL. No minimo, a implementacdo de cada chamada de
operacgdo deve acessar o0 stub gerado para invocar a operacdo do servico remoto.
O cébdigo para recuperar o stub varia de acordo com o toolkit selecionado. Além
da chamada de operagdo em si, também & necessario escrever o codigo
responsavel pela coleta do tempo e calculo das métricas de desempenho;

Invocar, passando os parametros desejados, as operacdes suportadas pelo servigo
a fim de calcular o RTT (Round Trip Time) e a vazdo. Dessa forma, a Diretriz 6
(Quantifique o desempenho do Web Services toolkit) é atendida;

. Analisar as mensagens SOAP para determinar o seu tamanho, o estilo de
codificacdo, a versdo do protocolo HTTP e os atributos do seu cabecalho a fim
de atender a Diretriz 3 (Analise as mensagens SOAP transportadas na rede);

. Adotar um analisador de trafego de pacotes, a fim de identificar os gargalos de
comunicacdo. Dessa forma, a Diretriz 5 (Monitore o trafego de pacotes) é

satisfeita.

Dependendo da quantidade de toolkits que serdo analisados e da experiéncia do

desenvolvedor ou arquiteto na tecnologia Web Services, esse processo de avaliacdo pode

demandar muito tempo, pois é necessario estudar a documentacdo dos toolkits para

executar os passos 2, 3 e 4. Além disso, para atender & Diretriz 2, a interface deve

definir varias operaces, implicando em um tempo maior para executar a tarefa 5. As

-76-

tarefas 6, 7 e 8 também consomem muito tempo, porque a mesma operacdo deve ser

executada varias vezes, a fim de coletar resultados estaveis.

Para simplificar a execucdo dessas tarefas, o utilitario JWSPerf (Java Web
Services Performance) foi desenvolvido para automatizar os passos 4, 5 e 6 desse
processo. Os passos 1 e 2 sdo executados apenas configurando os parametros dos
arquivos de propriedades do utilitario JWSPerf. Os passos 7 e 8 sdo auxiliados por
ferramentas como, por exemplo, TCP Monitor, Ethereal, WinDump e TCP Sniffer. O
passo 3 consiste pesadamente na analise da documentacdo dos toolkits. A Tabela 5.1
apresenta 0 mapamento das diretrizes com as tarefas do processo e o responsavel pela

execucao.

Tabela 5.1 - Mapeamento entre as diretrizes, o processo e 0 responsavel pela execucao

Diretrizes Processo Execucdo

Diretriz 1 Tarefa 2 Configuracdo do pardmetro no arquivo de

propriedade do utilitario JWSPerf.

Diretriz 2 Tarefa 1 Configurar parametro no arquivo de propriedade
do utilitario JWSPerf.

Tarefas4 e 5 Médulo responsavel pela geracdo de classes de

teste a partir da interface WSDL do utilitario

JWSPerf.
Diretriz 3 Tarefa 7 Analisador de mensagens SOAP.
Diretriz 4 Tarefa 3 Anélise manual da documenta¢do do toolkit.
Diretriz 5 Tarefa 8 Analisador de trafego de rede.
Diretriz 6 Tarefa 6 Modulo responsavel pela invocacgdo e coleta das

métricas de desempenho do utilitario JWSPerf.

5.3 Utilitario JWSPerf

JWSPerf é um utilitario de cddigo aberto, facil de usar e com suporte a maltiplas
implementacdes Web Services [Machado and Ferraz, 2006]. Até o0 momento, trés Web
Services toolkits implementados em Java sdo suportados — Axis da Apache [Apache
Axis, 2004], JWSDP (Java Web Services Developer Pack) da Sun [Sun, 2004] e SSJ

-77-

(Systinet Server for Java) [Systinet, 2004]. Cada um desses toolkits possui
caracteristicas diferentes para desenvolver a aplicacéo e instalar o servigo no servidor de
aplicacdo. Todos esses toolkits atualmente incorporados ao JWSPerf atendem a Diretriz
1 e, conseqlientemente, a tarefa 2 do processo acima. Entretanto, Document/Literal
Wrapped ndo é o estilo de codificacdo padrdo desses toolkits, exceto para o toolkit SSJ,

que permite que o usuario configure o estilo padrdo durante a sua instalagéo.

Do ponto de vista de projeto, 0 JWSPerf é constituido por dois médulos (Figura
5.2): 0 de invocacdo e o de geracdo das classes de teste. Esses modulos foram
projetados para permitir que qualquer desenvolvedor automaticamente gere a aplicacédo
cliente, que consiste nas classes de teste e nos artefatos especificos do toolkit, a partir da
interface WSDL, independentemente da sua complexidade. Além disso, também
invoque as operacdes definidas na interface do servigo e apresente os resultados no final
da execucdo. Devido a essa estruturacao é que JWSPerf automatiza as tarefas 4, 5 e 6 do
processo. As proximas secdes detalham o funcionamento e a implementacao de cada um

desses médulos.

JWSPert . Interface
e EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEs .
: : ¢ WSDL
* Modulo de :: Mod. de geracdo :
1 Invocagéo de classes .
i Aplicacéao cliente CA A - Servico
. \ 4 .
: | : |
: Toolkit :
: Stub |« : ; » Skeleton
: Web Services |:
Y oo : (servidor de aplicagdo)
Analisador Analisador

de de
Trafego Mensagens SOAP
Rede

Figura 5.2 - Papel do utilitario JWSPerf

-78-

Mddulo de Geracéo das Classes de Teste

O modulo de geracédo das classes de teste foi construido baseando-se na implementacéo
do parser WSDL do toolkit Axis, e seu objetivo é gerar uma classe de teste para cada
operacgéo definida na interface WSDL. A Figura 5.3 ilustra o seu diagrama de classes,
incluindo as classes do proprio toolkit Axis que foram reusadas — Emitter,

SymbolTable, JavaGeneratorFactory € JavaClassWriter.

A classe Emitter funciona como um parser de documentos WSDL que gera, a
partir dos parametros configurados, stubs, skeletons e classes representando os tipos de
dados. A classe SymbolTable é um tipo definido para representar em memoria 0

documento WSDL varrido.

<<axis>> <<auig>> <<java inss
JavaGeneratorFactory JavaClasswyriter f----- = PrintWriter
WSDLParser ZF
& SymbolTable syrmbolTable TestClassGeneratorFactory
& CString toolkit
P @
getGenerator)
Srun(String wsdUR) <_<abstract>> _
&Pgenerate(SymbolTable symbolTable) ToolkitTestClagsiriter
Srmain(String args) :
W SgetExtendsText()
Y Operation TestClassyyriter ‘writeFiIeHeaderO
QJ‘ Lz ®witeHeaderComments()
RERIEGE) DR
Emittter SymbolTable SyiteConstructor)
ByriteSetupMethod()
MriteRunMethodO

SYSTINETTestClassetvriter [} AxisTestClassWhiter

‘writeSetupMethodO : ‘writeSetupMethndO
SyniteFileBody() PO et sty SyriteFileBody()

ByriteSetupMethodo)
PyriteFileBody()

Figura 5.3 - Diagrama de classes do médulo de geracdo das classes de teste

A classe wsDLParser € uma especializacdo da classe Emitter, também
funcionando como parser, porem foi adaptada para gerar apenas as classes de teste das
operacOes definidas na interface WSDL. Os principais métodos definidos sdo run e
generate. O primeiro cria uma instancia da classe SymbolTable e invoca seu método
populate para carregar a interface. Uma vez inicializada, classe SymbolTable €

passada como parametro para 0 método generate.

-79-

As classes TestClassGeneratorFactory, OperationTestClassWriter e
ToolkitTestClassWriter S0 responsaveis pela criacdo das classes de teste de acordo
com o toolkit configurado. A classe ToolkitTestClassWriter herda da classe
JavaClassWriter, que define os métodos responsaveis pela escrita do codigo Java das

classes de teste geradas.

AS classes AxisTestClassWriter, JWSDPTestClassWriter e
SYSTINETTestClassWriter sdo especializagOes da classe ToolkitTestClassWriter
e apenas contém os metodos cuja implementacao varia de acordo com o toolkit. A regra
é criar uma classe <TOOLKIT>TestClassWriter para cada toolkit suportado, porque as
implementacGes dos metodos writeRunMethod e writeSetupMethod dependem do

toolkit e do modo como o stub é instanciado.

Uma instancia da classe PrintWriter € criada para representar uma abstracao
alto nivel do arquivo Java, que posteriormente sera gerado fisicamente. Durante a

execucdo, todo o codigo da nova classe € armazenado nessa instancia.

5.3.1.1 Diagrama de Seqiiéncia

Nessa secdo sera apresentado o diagrama de sequiéncia referente a execugdo do mddulo
de geracdo das classes de teste, mostrando a interacdo e a troca de mensagens entre as
classes participantes (ver Figura 5.4). O diagrama apresentado é uma visdo alto nivel do

funcionamento real, pois algumas classes foram omitidas.

A execucdo desse modulo é iniciada quando o método main da classe
WSDLParser € invocado, que apds validar o preenchimento dos parametros recebidos,
cria uma instancia da classe WSDLParser, que por sua vez, cria uma instancia da classe

TestClassGeneratorFactory.

Finalizada a criagdo da classe WSDLParser, 0 seu método run é acionado para
iniciar o processo de geracdo das classes de teste. Esse método executa duas tarefas
importantes. A primeira consiste em criar uma instancia da classe SymbolTable, a fim
de invocar seu método populate. Se a localizacdo do arquivo WSDL for uma URL, o

usuario deve garantir que o servico esteja rodando; caso contrario, uma excecao sera

-80-

levantada. A segunda tarefa é invocar o0 método generate da classe WSDLParser. A
principal acdo do método generate da classe WSDLParser € invocar 0 método
getGenerator da classe TestClassGeneratorFactory, que simplesmente cria uma
instdncia da classe OperationTestClassWriter — responsavel pela geracdo das

classes de teste, uma para cada operacédo definida na interface.

- soript buildsm i:WSDLParser} i:S mboITabIei TestCIassGeneratorFactor\f} i: OnerationTestClassWr%

cToolW T estClassiriter : Printivriter

| main(String args() |

=

@
“é
=

s el

rung

1

new)

populate)

generate) !

!

! getGenerator)

: ey

generated

newinstanceq

generatel

getPrinttriter]

U

ey

wiiteFileHeader(} |

[

writeFileBody()

1

witeSetuphlethodi)

[

writsRUnMEthod()

[

witeFileFooterd

|

closePrintiriter)

[

closed

Figura 5.4 - Diagrama de seqiiéncia do mddulo de geracao das classes de teste

Ap0s a criacdo do objeto OperationTestClassWriter, Seu metodo generate €
invocado. A implementacdo desse método consiste em varrer todas as operacoes

definidas na interface WSDL e para cada operacdo, o metodo generate da classe

-81-

JavaClassWriter € invocado. Esse ultimo cria uma instancia da classe PrintWriter,
representando o arquivo Java a ser gerado, e invoca 0s métodos writeFileHeader para
gerar o cabecalho da classe, writeFileBody que escreve 0s atributos, o construtor e 0s
demais métodos, e 0 método writeFileFooter para finalizar a declaracdo. Por fim, o
método closePrintWriter € invocado, gerando fisicamente a classe com o codigo

especificado.

Dependendo do toolkit informado como parametro pelo usuario, apenas uma das
especializacbes da classe ToolkitTestClassWriter (AXISTestClassWriter,
JWSDPTestClassWriter € SYSTINETTestClassWriter) € criada em tempo de
execucdo. As implementagdes dos métodos writeFileBody € writeSetupMethod S30

diferentes para cada um dos toolkits.

Modulo de Invocacéao

O objetivo do moédulo de invocagéo é rodar a operacao solicitada pelo usuario e coletar
as metricas de desempenho referentes a execucdo. Para isso, é preciso apenas configurar
algumas propriedades antes de iniciar a execucgdo. Para realizar sua tarefa, esse médulo
é composto por classes e interfaces, com responsabilidades bem definidas (ver Figura
5.5).

A classe JwsSPerfDriver € 0 ponto inicial da execucdo desse modulo. Suas
principais tarefas sdo carregar os atributos da classe Config, gerenciar o ciclo de vida
dos agentes rodando simultaneamente e solicitar & classe MetricHandler a geracao do

arquivo com os resultados.

A classe config define os atributos que armazenam os parametros informados
pelo usuério antes da execucdo e ficam acessiveis durante todo o processamento (ver
Tabela 5.2, pp. 84). Apenas dois métodos estdo definidos: init, que simplesmente
inicializa seus atributos, e 0 método getResultFileName, que gera o caminho completo

e 0 nome do arquivo de saida.

-82-

Thread

TN %
Agent

<<abstractz> Q?code int "
JWEP erfD)
TestCase StesiCase | TestCase Suoner
" 0 timer - Timer [Sstar)
Setup))
S Srunp *main(Sting[] args)
% Saetup() :
=0perat on=TestCase iy)
W MetricHandler
Ssetup() Config stransactions : long[]
*ryn() SAGENT MUMBER - int eresponseTimes BigDecimal]
T SVARN P : long ’ esetupTimes | BigDecimall]
: SEVALUATIONS - long gttotalTransactwons. long
a otalResponse Times - BigDecimal
2&?%'@%%&%”38. long StotalSetupTimes | BigDecimal
STOOLKIT Strmg' SaverageResponseTime : BigDecimal
AvisStun | [ssi5tn | :-?Eg-l\—/(‘:%%{hgﬁ%wr sting :addResponseT_me(\ rt agent, BigDecimal responseTime)
| | | | | eTESTCASE PACKAGE * String ‘adSS‘E;em(?TLT&e(mtfgent Si\gaecwmal setupTime)
PRESULT_FILE_PATH : String getstandarcdDevat oni) . double
JWSDP - - :getTotaITransacnons() s long
Stub LS An—— . getTotalResponseTimesi) - BigDecimal
init{String] configurations) & - :
SetResulttileName() : String %gﬁ}gﬁgﬁ&%?%ﬁiﬂ?eS() BigDecimal
SgetTotalSetupTimes(): BigDecimal
*gethverageSetupTimes() | BigDecimal
SprintResults))

Figura 5.5 - Diagrama de classes do médulo de invocagédo

A classe Agent é uma especializacdo da classe java.lang.Thread e representa
um cliente do servico. E possivel configurar maltiplos agentes rodando
concorrentemente para simular um cenario real, onde uma thread é criada para cada
novo agente a ser executado. Cada agente tem um identificador Unico, uma referéncia
da biblioteca de medicdo de tempo e uma instancia da classe de teste que serd
executada, anteriormente gerada pelo médulo de geracdo das classes de teste.

Os métodos definidos na classe Agent Sd0 setup, que se encarrega de instanciar
a classe de teste em tempo de execuc¢do, e 0 método run, que invoca a classe de teste.
De modo geral, a tarefa de um agente é executar a operacao encapsulada na classe de
teste. Os agentes também tém a responsabilidade de enviar a classe MetricHandler 0

tempo de resposta de cada requisicdo completada e o tempo para instanciar o stub.

A classe TestCase € uma abstracdo que declara os métodos que as classes de
teste devem implementar, independentemente do tipo de tecnologia utilizada para fazer

a invocacdo do servico remoto. Dois métodos abstratos estdo definidos: setup, que

-83-

contém o codigo necessario para instanciar o stub, e 0 método run, que invoca a

operacgéo desejada usando o stub.

Tabela 5.2 - Descricdo dos atributos da classe Config

Atributo Descrigéo
AGENT_NUMBER Indica 0 numero de agentes que devem rodar simultaneamente.
WARM_UP Representa 0 numero de invocacfes a operacdo para
estabilizar o tempo.
EVALUATIONS Indica o numero de avaliacbes que sera realizada. Cada
avaliacdo é composta por varios ciclos.
CYCLES Indica a quantidade de ciclos de uma avaliacdo. Cada ciclo é
composto por varias interacoes.
INTERACTIONS Representa 0 nimero de invocagdes a operacdo dentro de um
determinado ciclo.
TOOLKIT Representa o toolkit selecionado pelo usuério.

SERVICE_ENDPOINT Atributo utilizado pelo método setup de cada classe de teste
para recuperar o stub do servico solicitado.

TESTCASE Nome da classe de teste que devera ser instanciada durante a
execucao.

TESTCASE_PACKAGE Representa o pacote das classes de teste e, juntamente com o
atributo acima, é usada para instanciar a classe de teste usando
a tecnologia Reflection de Java.

RESULT FILE PATH Diretdrio onde o arquivo de saida devera ser gerado.

A classe <Operation>TestCase € uma implementacdo concreta da classe
TestCase e 0 cddigo dos seus métodos varia de acordo com o toolkit usado para fazer a
requisicdo e com a operacdo invocada. O mddulo de geragdo das classes de teste é
responsével por gerar uma classe <Operation>TestCase para cada operacdo da
interface WSDL.

Apenas em tempo de execucdo o utilitario instancia a classe de teste configurada
nos atributos TESTCASE_PACKAGE e TESTCASE da classe Config, utilizando a tecnologia
Reflection de Java. Caso o usuério deseje testar outra operacao, basta configurar a classe

de teste responsavel por invocar a operacéo desejada.

A classe MetricHandler é responsavel por calcular as métricas utilizadas na
avaliacdo de desempenho dos Web Services toolkits analisados. Essas meétricas
calculadas sdo: 1) o tempo de resposta médio (RTT); 2) a vazdo e 3) o tempo médio
para instanciar o stub. Todos os resultados calculados sdo armazenados em um arquivo

gerado no diretdrio especificado pelo atributo Config.RESULT_FILE_PATH.

-84-

5.3.1.2 Diagrama de Sequéncia

Nessa secdo serd apresentado um diagrama de sequéncia da execugdo do modulo de
invocacdo (Figura 5.6). Esse diagrama também é uma visdo de alto nivel do

funcionamento real.

x

o = - Config - Agent [Timer - = < Stub
cript build.xrnl JWS PerDriver =Operation=TestCase || MetricHandler
main{String[] args}
nit{String[] args):
start()
P
newl) .
1 hewTirner()
setup()
PE— newdnstancel)
reset() |_|
start() :
setup() ! getinstance() :
stop() H D
E— H H
getDuration() I
T addSetupTime() !
start() H :
: 5 run()
reset()
start()
H o mn) : :
: operativn()
stop() L |‘|
getDuratian() I
TaddResponseTimeO
L printResults()

Figura 5.6 - Diagrama de sequiéncia do mddulo de invocacao

-85-

O usuério inicia a invocacdo do servi¢o executando o método main da classe
JWSPerfDriver, passando 0S parametros necessarios para inicializar a classe Config.
Finalizada essa fase de configuragdo da execugdo, uma instancia da classe

JWSPerfDriver é criada e seu método start é invocado.

A primeira tarefa do método start é instanciar os objetos do tipo Agent, onde 0
nimero de agentes a ser criado € determinado pelo atributo AGENT_NUMBER da classe
Config. Criar um agente significa recuperar uma instancia da interface ITimer
invocando seu método estatico newTimer e, em seguida, executar seu método setup,
que se encarrega de criar uma instancia, em tempo de execucdo, da classe de teste que

encasula a operacdo solicitada pelo usuario.

Uma vez instanciada a classe de teste, seu método setup € invocado, a fim de
recuperar, de forma estatica ou dindmica, o stub que serd utilizado para acessar o
servigo e abstrair as questdes referentes a comunicacdo. Como o tempo para instanciar o
stub é uma métrica de desempenho proposta pela Diretriz 6, 0 mesmo é armazenado na

classe MetricHandler através do método addSetupTime.

Apdbs criar todos os agentes, a segunda tarefa do método start da classe
JWSPerfDriver € invocar o0 método start da thread agente, que implicitamente

executa o seu método run.

A implementacdo do método run da classe Agent simplesmente executa o
método run da sua classe de teste que, por sua vez, invoca a operacdo na classe stub
anteriormente recuperada. O tempo para executar a operacdo também é uma métrica de
desempenho proposta pela Diretriz 6, portanto, 0 mesmo deve ser armazenado na classe

MetricHandler invocando o seu método addResponseTime.

Por fim, a terceira tarefa do método start da classe JwSPerDriver é executar
0 método printResults da classe MetricHandler, depois que todos os agentes
finalizaram sua execucdo e suas métricas foram coletadas. Seu objetivo é calcular as
métricas de desempenho referentes a execugdo da operacdo e ao toolkit configurado e
gerar um arquivo com os resultados no diretério de saida. Um arquivo diferente é

gerado para cada execucao.

-86-

5.4 Instalando o JWSPerf

Nessa secdo serd apresentado um guia rapido composto pelos passos basicos para um

desenvolvedor instalar o utilitario de forma simples e rapida. Primeiramente, é

necessario instalar separadamente cada Web Services toolkit suportado pelo utilitario,

pois os mesmos ndo fazem parte do seu codigo. Atualmente, o desenvolvedor deve

garantir a instalagdo dos toolkits Axis, JWSDP e SSJ. Apos finalizar a instalacdo de

cada um desses toolkits, os seguintes passos devem ser realizados para instalar o

utilitario:

1. Fazer o download do arquivo “jwsperf 0.0.9 beta.zip” disponivel no endereco

http://code.google.com/p/jwsperf/;

2. Descompactar o arquivo baixado em qualquer diretorio do sistema de arquivo.
Dentro do diretério <JWSPERF_HOME>/jwsperf, onde <JWSPERF_HOME>

representa o diretorio de instalagdo do utilitario, devem estar presentes todos 0s

diretdrios (ver Figura 5.7) e arquivos de configuracdo (Tabela 5.3);

3. Alterar o arquivo env.bat, a fim de atualizar o path da maquina com as

bibliotecas para rodar os Web Services toolkits;

4. Configurar as propriedades “axis.home”, “jwsdp.home” e “ssj.home” do arquivo

build.properties com os diretorios onde os toolkits Axis, JWSDP e SSJ foram

instalados, respectivamente.

Tabela 5.3 - Principais arquivos de configuracao

Arguivos

Descricéo

build.xml

Descreve todos 0s comandos/tarefas para interagir com o utilitario.

build.properties

Define as propriedades referentes ao diretério de instalacdo dos
toolkits.

env.bat

Arquivo de batch que configura as varidveis de ambiente para
executar os toolkits.

parameters.properties

Define propriedades passadas como parametros ao moédulo de
invocagéo.

config.xml Arquivo de configuracdo apenas utilizado pelo toolkit JWSDP.
jwsperf.xml Define as propriedades referentes ao servico sendo executado e
configuragdes necessarias para executar o médulo de geracdo das
classes de teste.
path.xml Define o classpath necessario para executar cada toolkit.

properties.xml

Define as propriedades que representam a estrutura de diretérios.

-87-

=) jwspetf
=) build
] classes
[} generate
[} src
[} testcase
= |} config
[} etc
= i) wsdls
[axis
() jwsdp
[} ¥mils
i lib
i) profile
1 results

*] src

=l I} testcases
+ i) axis
1 jwsdp
+) systinet

Figura 5.7 - Estrutura de diretorios do utilitario JWSPerf

A Figura 5.7 ilustra a estrutura de diretdrio do JWSPerf, onde cada um tem seu

papel bem definido. Segue a descri¢do de suas responsabilidades:

e jwsperf: diretério raiz que contém os arquivos build.xml, build.properties e
env.bat e os demais diretorios do utilitario;
e src: armazena o codigo fonte do utilitario JWSPerf, incluindo as classes dos
modulos de invocagdo e de geracdo das classes de teste;
e build: usado como um repositério temporario dos arquivos gerados para
construir todo o cédigo que sera executado. Contém os seguintes subdiretorios:
0 classes: armazena os arquivos resultantes da compilacdo das classes
do utilitario e as geradas pelo mesmo;
O generate: armazena as classes clientes geradas pelo utilitario cujo
codigo é especifico do toolkit;
o src: contém o cddigo fonte do utilitario, as classes de teste geradas e
0 codigo do diretorio “generate”;
0 testcase: contém os arquivos resultantes da compilacdo do médulo de

geracdo das classes de teste.

-88-

e config: contém os arquivos de configuracdo do utilitario (ver Tabela 5.3). Fazem
parte desse diretdrio:

0 etc: armazena o arquivo de configuragdo parameters.properties;

o wsdls: armazena os arquivos WSDL separados por toolkit;

o xmls: contém os arquivos de configuracdo do tipo XML necessarios
para gerar as classes e rodar o utilitario — jwsperf.xml, path.xml,
config.xml e properties.xml.

e lib: armazena as bibliotecas necessarias para construir e rodar o utilitario;

e profile: armazena os resultados da investigacdo (profiling) da execucdo do
utilitario;

e results: contém os arquivos de saida com os resultados da execucédo do utilitario;

e testcases: armazena as classes de teste geradas pelo mddulo de geracdo das
classes de teste. As classes geradas sdo sobrescritas a cada execugdo, caso a
propriedade “generate.testcase” do arquivo jwsperf.xml esteja habilitada. As

classes geradas sdo separadas por toolkit.

5.5 Executando o Utilitario JWSPerf

Para facilitar a interacdo entre o desenvolvedor e o JWSPerf, a ferramenta Java de
construcdo Ant foi adotada. Dessa forma, o utilitario pode ser executado a partir de
linha de comando, automatizando a construcao de todo o cddigo do cliente, incluindo as

classes de teste e os artefatos especificos de cada toolKkit.

Um desenvolvedor que domine as tecnologias Ant e XML, pode facilmente
obter todas as informacdes necessarias para desenvolver uma aplicacdo cliente com
JWSPerf apenas analisando o arquivo build.xml (ver Tabela 5.3), pois 0 mesmo define
todos os comandos suportados. Além disso, o utilitario foi estruturado de forma simples,

seguindo uma nomenclatura familiar aos desenvolvedores de aplicagdes.

Entretanto, para os desenvolvedores que desejem usar o utilitario JWSPerf como
uma caixa preta, onde apenas é necessario invocar 0s comandos e analisar os resultados

gerados, serd apresentado um guia com 0s passos que devem ser realizados e quais

-89-

comandos devem ser invocados para executar corretamente o utilitario. Os passos
apresentados a seguir apenas podem ser efetuados depois que o guia descrito na secdo

anterior tenha sido corretamente executado.

Passo 1: Rodar o arquivo env.bat

Primeiramente, antes de executar esse passo, 0 desenvolvedor deve abrir uma janela
DOS e mudar para o diretorio <JJWSPERF_HOME>/jwsperf. Em seguida, &€ necessario
rodar o arquivo de batch env.bat, para garantir que as variaveis de ambiente da maquina
estejam corretamente configuradas. Esse arquivo precisa ser executado todas as vezes

que uma nova janela DOS for aberta.

Passo 2: Alterar os arquivos parameters.properties e jwsperf.xml

E necessario verificar e alterar as configuracbes armazenadas no arquivo
parameters.properties localizado no diretério “config/etc”, pois as mesmas sdo passadas
como parametro ao utilitario. Durante a execucdo, os parametros — o nimero de threads
clientes, o numero de invocacBes para estabilizar os resultados, os numeros de
avaliacOes, de ciclos e interacdo, a classe de teste e o diretdrio onde serdo gerados 0s

resultados — sdo armazenados na classe Config (ver Secéo 5.3.2).

O arquivo jwsperf.xml contém as propriedades que instruem como o utilitario
deve gerar as classes de teste e informam sobre o servico remoto. Entdo, € necessario
configurar suas propriedades de acordo com o cenario que se deseja avaliar. As
principais propriedades que devem ser configuradas séo o toolkit, a URI do WSDL que
pode ser local ou remota, o endere¢o do servico e a propriedade que habilita ou ndo a

geracdo das classes de teste.

Passo 3: Construir as classes cliente

A construcdo das classes cliente consiste em invocar o comando “build” do script
build.xml. Seu objetivo é gerar as classes necessarias para executar o utilitario do lado
do cliente.

-90-

O comando “build” aciona outros comandos basicos, que executados em
conjunto, realizam as tarefas necessarias para construir toda a infra-estrutura para o

cliente invocar o servico.

<target name="build"”
depends="prepare,generate-testcases,
generate-axis,generate-jwsdp,
generate-systinet,
copy-Ffiles,compile™>

Figura 5.8 - Comando para construir as classes clientes

O comando “build” é responsavel pela invocacdo, nessa ordem, dos comandos
“prepare”, “generate-testcases”, “generate-axis”, “generate-jwsdp”, “generate-systinet”,
“copy-files” e “compile” (Figura 5.8), que também podem ser executados
separadamente. As proximas subsecOes apresentam as tarefas realizadas por cada um

desses comandos.

Tarefa 1: Preparando o diretorio build

Essa tarefa consiste em invocar o comando “prepare” (Figura 5.9), que é responsavel
por limpar todo o contetddo dentro do diretério “build” e, novamente, criar todos os seus

subdiretorios — classes, src, generate e testcase.

Embora seja um comando simples, 0 mesmo € importante para garantir ao
desenvolvedor que nenhum outro arquivo, gerado em execugbes anteriores, seja

utilizado erradamente.

<target name=''prepare'>
<delete dir="${build.dir}" />
<mkdir dir="${build.dir}" />
<mkdir dir="${build.src.dir}" />
<mkdir dir="${build.classes.dir}" />
<mkdir dir="%${build.generate.dir}" />
<mkdir dir="${build.testcase.dir}"” />
</target>

Figura 5.9 - Comando para preparar o diretorio build

91-

Tarefa 2: Gerando as classes de teste

Essa tarefa consiste em invocar o comando “generate-testcases” para gerar as classes
que serdo usadas para invocar as operacgdes do servico Web Services. Esse comando foi
definido para automatizar a execu¢do do modulo de geracdo das classes de teste e
apenas é executado quando o desenvolvedor habilita a propriedade “generate-testcase”
do arquivo jwsperf.xml, que indiretamente torna a propriedade

“generate.testcase.present” verdadeira.

<target name=''generate-testcases" if=""generate.testcase.present’>
<copy todir="${build.testcase.dir}">
<fileset dir="${src.dir}/br/ufpe/cin/jwsperf/wsdl"/>
</copy>

<javac srcdir="${build.testcase.dir}"
destdir="${build.testcase.dir}">
<classpath refid="axis.classpath"/>
</javac>

<delete dir="${testcases.dir}/${toolkit}"” />

<java classname="br._ufpe.cin.jwsperf.wsdl _WSDLParser"
fork=""true" classpathref="axis.classpath'>
<classpath path="${build.testcase.dir}"/>
<arg value=""${wsdl.uri}'"/>
<arg value="${toolkit}"/>
<arg value="${stub.package}'/>
<arg value="${testcases.dir}/${toolkit}"/>

</java>

</target>

Figura 5.10 - Comando para gerar as classes de teste

A Figura 5.10 ilustra as tarefas realizadas por esse comando. As mesmas
consistem em copiar para o diretorio “build/testcase” apenas os arquivos fontes que
compdem o mddulo de geragdo das classes de teste, a fim de serem compilados. Antes
de executar esse mddulo invocando a classe WSDLParser, as classes de teste geradas em

execucgOes anteriores sdo apagadas.

O codigo resultante da execucdo desse comando depende da configuracdo da
propriedade “toolkit” do arquivo jwsperf.xml. Além do toolkit, também s&o informados
a localizacdo do arquivo WSDL, o pacote das classes geradas e o diretorio para

armazena-las.

-92-

Tarefa 3: Construindo com o toolkit Axis

Essa tarefa consiste em invocar 0 comando “generate-axis”, porém o mesmo apenas €
executado se o desenvolvedor tiver configurado a propriedade “toolkit” para usar o
Axis. Caso contrério, essa tarefa ndo sera executada, porque a propriedade “axis.toolkit”

serd falsa.

<target name="'generate-axis" if="axis.toolkit">
<java classname="'org.apache.axis.wsdl _WSDL2Java"
classpathref="axis.classpath” fork="true'">
<arg value="${wsdl._uri}"/>
<arg value="-o0%{build.generate.dir}"/>
<arg value="-p${stub.package}" />
</java>
</target>

Figura 5.11 - Comando para gerar as classes usando o toolkit Axis

O objetivo € invocar a classe wsbL2Java do toolkit Axis para gerar as classes
especificas desse toolkit. A partir da Figura 5.11, verifica-se que os parametros para
executar essa classe sdo a localizagdo do arquivo WSDL (“${wsdl.uri}”), o diretorio
raiz para armazenar as classes geradas (“${build.generate.dir}”) e o pacote que todos 0s
namespaces do arquivo WSDL deverdo ser mapeados (“${stub.package}”). O valor
padrdo das propriedades “${build.generate.dir}” e “${stub.package}” sdo

“build\generate” e “br.ufpe.cin.jwsperf.communication.ws”, respectivamente.

Tarefa 4: Construindo com o toolkit JIWSDP

De forma semelhante a anterior, essa tarefa apenas é executada quando o toolkit JWSDP
estiver configurado. O objetivo do comando “generate-jwsdp” € gerar os artefatos do

cliente especificos desse toolkit usando a sua ferramenta WSCompile.

<target name=''generate-jwsdp" if="jwsdp.toolkit'">
<wscompile keep=""true" client=""true"
base="${build.generate._dir}"
config="${jwsdp.config.file}">
<classpath>
<path refid="jwsdp.classpath"/>
</classpath>
</wscompile>

</target>

Figura 5.12 - Comando para gerar as classes usando o toolkit JWSDP

-93-

WSCompile é uma ferramenta simples e foi projetada para obter a localizacdo da
interface WSDL a partir do arquivo de configuracdo “${jwsdp.config.file}” (Figura
5.12). O nome padrdo desse arquivo € config.xml e esta localizado no diretorio
“config\xmls”. Além do arquivo WSDL, a ferramenta também I€é desse arquivo o
atributo “packageName”, que especifica o pacote das classes geradas e seu valor esta

configurdo na configurado na propriedade “${stub.package}”.

Analisando a Figura 5.12, verifica-se que o comando “wscompile” apenas deve
gerar os artefatos do lado do cliente (cliente="true”), manter os arquivos gerados
(keep=“true”) e armazena-los no diretério indicado pelo pardmetro
base="${build.generate.dir}”.

Tarefa 5: Construindo com o toolkit SSJ

Quando o toolkit SSJ é configurado, o comando “generate-systinet” é executado e as
classes do cliente SSJ sdo geradas usando a ferramenta de linha de comando
WSDL2Java disponibilizada pelo proprio toolkit. Semelhantemente aos comandos
anteriores, as classes cliente também sdo geradas a partir da interface WSDL indicada
pelo pardmetro wsdlURL="${wsdl.uri}” (Figura 5.13).

<target name=''generate-systinet" if="systinet.toolkit">
<WsDL2Java outputDirectory="${build.generate.dir}/"
interfacePackage=""${stub.package}"
generateJavaBeans=""true"
force=""true"
strictSchema=""true"
wsdlURL="${wsdl .uri}"/>

</target>

Figura 5.13 - Comando para gerar as classes usando o toolkit SSJ

Além da interface WSDL, também sdo passados como parametro o diretério
onde as classes serdo geradas (outputDirectory="${build.generate.dir}"), seu pacote
(interfacePackage="${stub.package}") e as propriedades indicando que as classes
devem ser sobrescritas a cada execucdo (force="true") e devem ser geradas seguindo o
padrdo JavaBeans (generateJavaBeans="true”) e o esquema definido no arquivo WSDL

(strictSchema="true").

-94-

Tarefa 6: Copiando as classes geradas

Essa tarefa consiste em executar o comando “copy-files” (Figura 5.14) que copia para 0
diretério “build/src” todas as classes que compdem o mddulo de invocacdo, as classes
de teste geradas a partir do comando “generate-testcases” e as classes clientes
especificas dos toolkits geradas pelos comandos “generate-axis”, “generate-jwsdp” ou

“generate-systinet”.

<target name="copy-fTiles">
<copy todir="${build.src.dir}" >
<fileset dir="${src.dir}" excludes="**/wsdl/**"/>
</copy>
<copy todir="${build.src.dir}">
<fileset dir="%${build.generate.dir}"/>
<fileset dir="${testcases.dir}/${toolkit}"/>
</copy>
<copy todir="${build.classes.dir}" >
<fileset dir="${build.src.dir}"
includes="**/native, **/**_h, **/**_c,
*x/*x*_xmap' description=""">
<exclude name="**/*_java'/>
</fileset>
</copy>
</target>

Figura 5.14 - Comando para copiar as classes geradas

Tarefa 7: Compilando as classes

O comando “compile” (Figura 5.15) compila todos os arquivos Java gerados e 0s
arquivos fontes do proprio utilitario, ambos armazenados no diretério “build/src”. Os
arquivos resultantes da compilacdo sdo armazenados no diretorio “build/classes”. Esse
passo pode ser executado separadamente, caso as classes de teste geradas sejam
alteradas para montar os objetos que serdo passados como parametro,

<target name="'compile" description="Compile all classes'>
<javac srcdir="${build.src.dir}"
destdir="${build.classes.dir}">
<classpath refid="${toolkit}.classpath"/>
<classpath refid="axis.classpath"/>
<classpath path="_:${hrtlib_jar}"/>
</javac>
</target>

Figura 5.15 - Comando para compilar todas as classes

-95-

Passo 4: Executar o utilitario JWSPerf

Para executar o utilitario, dois comandos podem ser invocados. O primeiro € o comando
“run” (Figura 5.16) que simplesmente roda o utilitdrio usando as classes localizadas no
diretério “build/classes”. O segundo é comando “profile” (Figura 5.17) que roda e
investiga o fluxo de execucéo do toolkit selecionado.

<target name="'run" description="Run the client'>
<java classname=""br _ufpe.cin.jwsperf.JWSPerfDriver"
classpathref="${toolkit}.classpath” fork=""true'>
<classpath path="${build.classes.dir}:${hrtlib_jar}"/>
<arg value="${parameters.properties}'"/>
<arg value="${toolkit}"/>
<arg value="${service.endpoint}"/>
<arg value="'${testcase.package}''/>
</java>
</target>

Figura 5.16 - Comando para rodar o utilitario

Ambos 0s comandos invocam a classe JWSPerfDriver, passando como
parametro o arquivo parameters.properties, o toolkit selecionado, o enderego do servico
remoto e o pacote onde estdo localizadas as classes de teste cujo valor padrdo é

“pr.ufpe.cin.jwsperf.communication.ws.testcase” .

<target name="profile'>
<java
classname=""br .ufpe.cin.jwsperf_JWSPerfDriver"
classpathref="${toolkit}.classpath” fork="true'>
<classpath path="${build.classes.dir}:${hrtlib_jar}"/>
<arg value=""${parameters.properties}'"/>
<arg value="${toolkit}"/>
<arg value="${service.endpoint}'"/>
<arg value="${testcase.package}'/>
</java>
<java jar="${PerfAnal._jar}"” fork="true">
<arg value="${profile.file_name}"/>
</java>
</target>

Figura 5.17 - Comando para investigar a execucdo do toolkit

Uma diferenca entre esses comandos € que 0 “run” apenas gera um arquivo com
os resultados no diretorio “results”, enquanto que o comando “profile”, além de gerar
esse arquivo, também gera um outro arquivo com resultado da investigacdo dentro do

diretorio “profile” e, em seguida, invoca a ferramenta Java de analise de desempenho

-96-

PerfAnal [Meyers, 2005], que 1€ esse ultimo arquivo e apresenta uma tela com todo o
fluxo de execucdo juntamente com o percentual gasto em cada método (Figura 5.18) ,
dividida em quatro visdes: percentuais por métodos invocados (quadrante superior
esquerdo), percentuais a partir dos invocadores do método (quadrante inferior esquerdo)
e percentuais pelo numero da linha do método (quadrantes do lado direito).

£ performance Analysis: profilefsystinet_profile 20060723 1638.txt

File
E Method Times by Caller (times inclusive): 131670 ticks Method Times by Line Number (times inclusive): 131670 ticks
= java.net SocketinputStream.read: 99,47 % (130965 inclusive / 0 exclusive) Ijja\ra.net.SUcketlnputstream.read. 99 47% (130968 inclusive)
[T com.idnox transport http client HitnResponse.letsGo: 89,47% (130968 inclusive / 0 &) [T com.idooxtranspont hitp.client HtpResponse.letsGo: 99,47% (130968 inclusive)
= java.io.BufferedinputStream.read: 99,47% (130968 inclusive / 0 exclusive) Ijja\ra.io.EuﬁeredInputStream read: 99,47% {130968 inclusive)
[java.io. BufferedinputStream.fill: 83,47% (130968 inclusive / 0 exclusive) [java.io. BufferedinputStream fill: 99,47% (130968 inclusive)
D java.net SocketinputStream.socketRead0: 99,47% (130968 inclusive [130968 exclus [T java.net SocketinputStream socketReadd 99,47% (130968 inclusive)
[T com.idnox transport.util ReadLine read: 93 47% (130968 inclusive f 0 exclusive) 3 com.idooxtransport.util ReadLine.read: 99,47% (130968 inclusive)
[} java.netinetdaddressimpl. getHostByAddr: 0,53% (702 inclusive / 702 exclusive) [T java.netInetdAddressimpl.getHostByAddr: 0,53% (702 inclusive)
3 com.idoo: transport hitp server Jetty load: 0,53% (702 inclusie § 0 exclusive) [T com.idooxtransport hitp. server.Jetty. load: 0,53% (702 inclusive)

[T java.netinetdddress. getHostFromMarmeService: 0,53% (702 inclusive)

= java.netinetdddress.getHostFromMameService: 0,53% (F02 inclusive /0 exclusive)
[T java.netinetaddress. getHostName: 0,53% (702 inclusive)

[T java.netInettddress getHosthame: 0,53% (702 inclusive / 0 exclusive)

T java.netinettddress$1 getHostByAddr 0,53% (702 inclusive § 0 exclusive) [T java.netInetaddress$1.getHostByAddr: 0,53% (702 inclusive)

[«]

Method Times by Callee {times inclusive): 131670 ticks Method Times by Line Humber (times exclusive): 131670 ticks

[java.net SacketinputStream.read: 99,47 % (130968 inclusive) [T java.net SocketinputStream socketRead0: 89,47% (130968 exclusive)
D corm.idooxtransporthttp client HitpResponse letsGo: 99,47 % (130968 inclusive) [T java.netInetdAddressimpl getHostByaddr: 0,53% (702 exclusive)

[java.in BufferedinputStrearn read: 99,47% (130968 inclusive) [T java.net SocketinputStream read: 0% (0 exclusive)

[java.io BufferedinputStrearn fill: 33,47 % (1 30968 inclusive) [T com.idooxtranspart. hitp.client HiteRespanse letsGo: 0% (0 exclusive)
[T java.net SocketinputStream.socketRead: 98,47% (130968 inclusive) [java.io BufferedinputStrear read: 0% (0 exclusive)

3 comn.idooxtransport util ReadLine. read: 99,47% (130968 inclusive) [T java.io.BufferedinputStream fill: 0% (0 exclusive)

[java.netinetdAddressimpl.aetHostByAddr: 0,53% (702 inclusive) [com.idooxtransport. http. server.Jetty.load: 0% (0 exclusive)

[com.idooxtranspart hitp_server.Jetty load: 0,53% (702 inclusive) [java.netInstAddress. getHostFromMameService: 0% (0 exclusive)

[java.netinethddres s getHostFromMameService: 0,53% (702 inclusive) [T java.netinetaddress. getHostiarme: 0% (0 exclusive)

[T java.netinetaddress getHosthame: 0,53% (702 inclusive) O java.netinettddress$1 getHostByAddr: 0% (0 exclusive)

[T java.netInettddress$1.getHostByhddr 0,53% (702 inclusive) (3 com.idoox transportutil ReadLine.reart: 0% (0 exclusive)

Figura 5.18 - Resultado da investigacdo do toolkit SSJ usando o PerfAnal

5.6 Guia para Incorporar Novos Toolkits

Nessa secdo serdo apresentados 0s passos que um desenvolvedor deveria fazer para
incorporar novos Web Services toolkits ao utilitario JWSPerf. Os requisitos basicos que

0 novo toolkit deve atender sdo:

1. Suportar a geracdo das classes cliente a partir de um documento WSDL,
localizado local ou remotamente;

2. Suportar o estilo de codificacio Document/Literal Wrapped, atendendo a
Diretriz 1.

-97-

Em relacdo ao codigo fonte existente do utilitario, nenhuma modificacdo é
necessaria. Apenas é preciso criar uma nova classe no pacote
“br.ufpe.cin.jwsperf.wsdl.toolkit” e sua implementacdo deve conter todo o
codigo especifico do novo toolkit. Essa classe deve, obrigatoriamente, seguir o padréo
de nome <TOOLKIT>TestClassWriter, onde <TOOLKIT> deve ser substituido pelo
nome do toolkit, caso contrario, uma exce¢do serd levantada. Com relagdo aos arquivos
de configuracdo do utilitario, as seguintes alteracdes devem ser feitas para suportar o

novo toolkit:

1. Apobs instalar o novo toolkit na maquina, o desenvolvedor deve alterar o arquivo
env.bat, a fim de atualizar o path da maquina com as bibliotecas do toolkit
instalado, caso seja necessario;

2. Incluir no arquivo build.properties a propriedade “<toolkit>.home”,
apontando para o diretério onde o toolkit foi instalado;

3. Definir no arquivo path.xml a propriedade “<toolkit>.classpath” que
representard o classpath do novo toolkit. Essa propriedade devera conter todas
as bibliotecas necessarias para rodar o toolkit;

4. Criar a propriedade “<nome>.toolkit” no arquivo jwsperf.xml, que indicara se
0 novo toolkit foi selecionado pelo usuério;

5. Por fim, definir o comando “generate-<toolkit>" no arquivo build.xml que
gerara as classes clientes especificas do toolkit, dentro do diretorio representado

pela propriedade “${build.generate}”, cujo valor padréo ¢é “build/genetarate”.

5.7 Considerac0es Finais

Nesse capitulo foram apresentados um processo para avaliagdo de desempenho de Web
Services toolkits e o utilitario JWSPerf (Java Web Services Performance) que visa
automatizar os passos desse processo, referentes a parte de implementagédo, compilacéo
e execucdo da aplicacdo cliente. Além disso, o utilitario também automatiza a coleta de

métricas de desempenho.

-98-

O objetivo foi reduzir o tempo gasto no estudo da documentacdo dos toolkits e
na implementacdo do codigo em si, uma vez que os desenvolvedores apenas necessitam
configurar algumas propriedades nos arquivos de configuracdo e rodar os comandos
para gerar e executar o utilitario. Do ponto de vista técnico, as principais caracteristicas

do utilitario sao:

e Cadigo aberto e implementado em Java;

e Utiliza a tecnologia Ant de Java para automatizar o processo de construcéo
do cddigo;

e Suporta trés Web Services toolkits — Axis, Java Web Services Developer
Pack (JWSDP) e Systinet Server for Java (SSJ);

e Facil de usar, sendo apenas necessario invocar os comandos definidos e
analisar os resultados gerados;

e Gera automaticamente todo o codigo cliente especifico de um Web Services
toolkit a partir de um arquivo WSDL, garantindo assim a interoperabilidade
com 0 Servico;

e Coleta as métricas de desempenho referente a execugéo;

e Flexibilidade para incorporar novos toolKkits;

e Composto por dois mdédulos com responsabilidades bem definidas: o médulo

de geracao das classes de teste e 0 modulo de invocacao.

O modulo de geragdo das classes de teste facilita a aplicacdo da Diretriz 2, pois
para cada operacdo definida na interface WSDL do servico, uma classe de teste
invocando essa operacdo € criada e sua implementacdo é especifica do toolkit

configurado.

O mddulo de invocacdo recupera a instancia do stub e executa a operacao
desejada pelo desenvolvedor, gerando as métricas de desempenho no final da execucéo.
O mddulo de invocacao foi projetado para automatizar a Diretriz 6.

Todo o funcionamento desses modulos baseia-se nas propriedades dos seus
arquivos de configuracdo, que precisam ser alteradas antes de invocar os comandos do
utilitario. Com essa estruturacdo, quando um novo toolkit implementado em Java for

incorporado, basta definir algumas propriedades e criar uma Unica classe.

-99-

Para realizar a avaliagdo de desempenho de um determinado servigo Web
Service utilizando o JWSPerf, os seguintes passos do lado do servidor (Passo 1 e 2) e do

cliente (Passos 3 a 10) devem ser realizados:

Passos

Execucéo

Construir a interface WSDL do servico

e prover sua implementacéo.

Manual

Gerar a camada de comunicacdo Web
Services do servico para os toolkits
Axis, JWSDP e SSJ.

Usar os comandos que os toolkits
disponibilizam para automatizar esse

passo.

Instalar os toolkits Axis, JWSDP e SSJ

e configurar o arquivo build.properties.

Manual

Instalar o utilitario JWSPerf.

Manual

Configurar e executar o arquivo env.bat

Manual

Configurar 0S arquivos

parameters.properties e jswperf.xml.

Manual

Construir as classes de teste

Automatizado pelo JWSPerf

Alterar as classes testes para montar o0s
objetos que serdo passados como

parametros. Esse passo € opcional.

Manual

9.

Executar o utilitario JWSPerf

Automatizado pelo JWSPerf

10. Analisar os resultados

Manual

De forma geral, JWSPerf reduz o custo para desenvolver uma aplicagcdo, uma
vez que todo o cddigo, incluindo as classes de teste, é gerado pelo mesmo, sem 6nus
para o desenvolvedor. Além disso, pode-se facilmente avaliar o desempenho da mesma
aplicacdo utilizando trés diferentes Web Services toolkits, permitindo a comparagéo e

identificacdo dos seus gargalos de desempenho.

No proximo capitulo serdo apresentados os experimentos realizados utilizando
JWSPerf para analisar o desempenho dos toolkits suportados, aplicando as diretrizes e o
processo propostos e utilizando uma aplicacao-teste com operagdes bem definidas como

benchmark.

-100-

6 Plataforma Experimental e
Resultados

6.1 Introducéo

Esse capitulo apresenta os resultados dos experimentos que foram executados seguindo
0 processo de avaliacdo e utilizando o utilitdrio JWSPerf. Uma aplicacdo-teste foi
projetada e utilizada como benchmark para avaliar o desempenho dos trés Web Services

toolkits suportados pelo utilitario.

Segundo Buble (2003), para que um processo de avaliacdo obtenha resultados
estaveis, é necessario executar algumas invocagdes a operacao sendo avaliada antes de
iniciar a coleta dos tempos. Esse passo & importante para minimizar ou eliminar a

influéncia de fatores que podem tornar os resultados incorretos.

Além do tempo para estabilizar o resultado (warm-up), outra causa de erro na
coleta de resultados é a medicdo imprecisa do tempo, pois a grande maioria dos
benchmarks envolve a medi¢do do tempo. Dessa forma é importante usar uma fonte

precisa de medigéo, pois uma invocagdo remota pode gastar menos que 10ms.

No decorrer desse capitulo, sera verificado que os experimentos realizados

levaram em consideracdo esses dois pontos. Antes de iniciar a coleta, 3000 requisi¢oes

-101-

foram feitas a cada operacdo analisada e uma biblioteca de tempo precisa foi utilizada,

conforme descrito a seguir.

Antes de apresentar os resultados, as proximas secdes detalham a aplicacdo-
teste, explicando seu projeto e os métodos da sua interface, e as configuracbes de
software e hardware da plataforma experimental de avaliagdo (ver Se¢éo 6.2.2).

6.2 Aplicacio-teste

As operacdes suportadas pela aplicacdo-teste foram definidas baseando-se nos
benchmarks definidos por Juric et al. (1999) e Slominski et al. (2005). A Figura 6.1
ilustra a interface 1WSBenchmark definida com o objetivo de permitir que os resultados

obtidos atraves do processo de avaliagdo sejam comparaveis entre si.

<<Interface>>

IWSBenchmark

SechoVoid()

Secho<TYPE>s(<TYPE>[] input) : <TYPE>[]

Secho<TYPE>(<TYPE>input) : <TYPE>

Saccept<TYPE>s(<TYPE>[] input)

Saccept<TYPE>(<TYPE> input)

SacceptParameters(String myString, double myDouble, boolean myBoolean, int mylInt)
Sreturn<TYPE>s() : <TYPE>(]

Sreturn<TYPE>() : <TYPE>

StestException()

Ssetup(int size, int detailsSize, int digits, int precision)

Figura 6.1 - Métodos da interface IWSBenchmark

De acordo com a Diretriz 2, a avaliacdo deveria analisar mensagens de diferentes
tamanhos e complexidades, a fim de entender como diferentes tipos de dados utilizados
como parametros e valores de retorno dos metodos influenciam no desempenho de uma
aplicacdo Web Services. Dessa forma, a interface 1wWSBenchmark utiliza tanto tipos de
dados simples — double, int, boolean € string — quanto tipos de dados complexos

definidos pelo usuario.

O diagrama de classe da Figura 6.2 mostra os tipos de dados definidos pelo

usuario, empregados pela interface IWSBenchmark — MySimpleObject,

-102-

MyComplexObject € MyException. A classe MySimpleObject representa um objeto
que encapsula apenas os tipos de dados simples. A classe MyComplexObject, além de
encapsular os tipos de dados simples, tem um array de objetos do tipo

MySimpleObject, cuja quantidade de elementos é dinamica.

A classe MyExcpetion representa uma exce¢do, uma vez que herda da classe
java.lang.Exception. Essa classe encapsula apenas uma string representando a

mensagem do erro ocorrido.

Exceotion MyException
X |
pon |4 BSmessage : String

MyComplexObject
E&myString : String
EEmyDouble : double
EfmyIint : int
E3myBoolean : boolean
B mySimpleObjects : MySimpleObject([]

MySimpleObject
E&myString : String
E5myDouble : double
EEmyint : int S
EEmyBoolean : boolean

Figura 6.2 - Entidades de negécio definidas pelo usuario

Para cada tipo de dado simples ou complexo, a interface 1wSBenchmark define
um método que passa como parametro e/ou retorna o tipo de dado. Além do tipo de
dado em si, também foram definidos métodos usando um array do tipo de dado, a fim
de aumentar a complexidade e analisar os custos da serializacdo e deserializacdo desses
dados. Dessa forma, a interface 1wSBenchmark é constituida basicamente por quatro

categorias de métodos:

e echo<TYPE>: essa categoria de meétodo recebe um argumento de um

determinado tipo e retorna um valor do mesmo tipo. Exemplos:
o public int echolnt(int input);
0 public MySimpleObject echoMySimpleObject(MySimpleObject input).

e accept<TYPE>: essa categoria recebe um unico argumento de um determinado

tipo e ndo retorna nenhum valor. Exemplos:
o0 public void acceptint(int input);
o public void acceptMySimpleObject(MySimpleObject input).

-103-

o return<TYPE>: essa categoria ndo recebe nenhum parametro e retorna apenas o

tipo de dado. Exemplos:

o public int returnint();
o public MySimpleObject returnMySimpleObject().

e echo<TYPE>s, accept<TYPE>s e return<TYPE>s: essa categoria € similar as

descritas acima, exceto que utiliza um array do tipo de dado. Exemplos:
o public int[] echolnts(int[] input);
o0 public void acceptints(int[] input);
o public int[] returnints().

Para complementar essas categorias, outros métodos auxiliares foram definidos,

pois sdo importantes para a avaliacdo de desempenho:

e echoVoid: esse método é utilizado para determinar o gargalo associado com
uma chamada SOAP imposta pelo toolkit;

e acceptParameters: esse método recebe quatro pardmetros do tipo string,
double, boolean € int;

e testException: esse método simplesmente levanta uma excecdo definida pelo

usuario.

O método setup foi definido com o objetivo de configurar o tamanho em bytes
da string ou a quantidade de digitos de um ndmero do tipo double. Ele também foi
usado para configurar a quantidade de elementos do array retornado pelos métodos das

categorias echo e return.

6.2.1 Projeto da Aplicacdo-teste

A aplicacdo-teste foi projetada em camadas (ver Figura 6.3) com o objetivo de atender
aos requisitos de modularidade e reusabilidade. Dessa forma, foi possivel reusar a
mesma implementacdo da aplicacdo-teste, alterando apenas 0s componentes
responsaveis pela comunicacdo que dependem do Web Services toolkit escolhido para

expor 0 servico.

A camada de comunicacao trata as requisicdes dos clientes e as encaminha para

a classe controller da camada de neg6cio. O componente ServiceAdapter contém

-104-

uma instancia da classe Controller e é responsavel pelo processo de adaptacdo das

requisi¢des antes de encaminhé-las.

<<AXis <<JWSDP <<SSJ
Communication Communication Communication
Components>> Components>> Components>>
<<Service Adapter>> Comunicagao

<<Business Entity>>

r

<<Controller>>
Negécio

Figura 6.3 - Arquitetura da aplicacao-teste

A camada de negdcio € constituida pela classe Controller, que representa o
ponto Unico de acesso da aplicacdo, e pelas entidades de negdcio que sdo as entidades
que representam objetos do mundo real e agrupam operacdes. A classe Control ler foi
implementada usando o padrdo de projeto Singleton. As entidades de negdcio fornecem
as informacgOes necessarias aos dados armazenados pela aplicacdo. No caso dessa

aplicacdo-teste, as entidades de negdcio estdo definidas na Figura 6.2.

Para evitar que o tempo de acesso ao banco influenciasse o processo de
avaliacdo de desempenho da camada de comunicacdo implementada em Web Services, a

persisténcia dos dados foi simplesmente omitida.

A fim de garantir a interoperabilidade entre os toolkits, a interface WSDL foi
projetada usando o estilo Document/Literal Wrapped. Uma vez definida a interface, a
mesma foi utilizada para gerar o skeleton do lado do servidor, exceto para o toolkit SSJ
que ndo suportou a geracdo do cddigo a partir da interface WSDL, mas a partir do
cédigo Java. A ferramenta Ant foi utilizada para automatizar esse processo de
construcdo da camada de comunicacdo Web Services. As seguintes regras de

interoperabilidade também foram consideradas:

-105-

e Cada método deveria ter um nome de operacdo diferente. Dessa forma, néo foi
usado o overloading de métodos;

e Na&o usar o tipo de dado char, porque 0 mesmo ndo é suportado pela tecnologia
XML Schema,;

e Nao expor as colecdes de objetos usando tipos especificos da linguagem, assim
como Collection, Map, List e Hashtable, porque nao existe uma
padronizacdo entre os toolkits para enviar esses tipos de dados. Converter todos

para array.

6.2.2 Configuracdes do Ambiente de Execucéao

Os codigos do cliente e do servidor foram implementados em Java e foram compilados
e executados usando o Java™ 2 SDK Standard Edition versdo 1.4.2_08 da Sun para o

sistema operacional Windows da Microsoft.

Os toolkits Java avaliados nessa dissertacdo foram Axis versdo 1.2 RC2 da
Apache, Web Services Developer Pack (JWSDP) verséo 1.5 da Sun e Systinet Server for
Java (SSJ) verséo 5.5. O Tomcat versdo 5.0 foi utilizado como servidor de aplicagdo
para os toolkits Axis e JWSDP, enquanto que o SSJ rodou no servidor de aplicacdo

embutido na sua implementacao.

A Dbiblioteca de tempo HRTLib [Roubtsov, 2004] foi escolhida porque a
resolucdo do método Java system.currentTimeMillis () N&0 é ideal para investigar
com precisdo a execucdo do codigo Java. Essa biblioteca é simples e emprega a
tecnologia JNI (Java Native Interface) para retornar o tempo transcorrido em
milisegundos. Essa biblioteca foi escolhida para se ter uma fonte precisa de medicéo,

embora esteja implementada apenas para rodar no sistema operacional Windows.

O trafego TCP/IP entre o cliente e o servidor foi recuperado usando a ferramenta
Ethereal versdo 0.10.10 [Ethereal, 2004], que é um analisador do protocolo de

transporte e executa em todas as plataformas populares como Unix, Linux e Windows.

-106-

As mensagens HTTP transportando chamadas SOAP foram recuperadas usando
a ferramenta TCP Monitor [Apache Axis, 2004]. Dessa forma, pode-se monitorar as

mensagens enguanto a aplicacdo é executada.

Os experimentos foram realizados usando dois computadores rodando o sistema
operacional Windows XP da Microsoft Versdo 2002 Service Pack 2 e conectados por
uma rede Ethernet de 100Mbps exclusiva para 0s experimentos. A maquina servidora
foi um Pentium 4 da Intel com o processador Pentium(R) 4 CPU de 2.80 GHz e 1 GB
de memoria RAM. A maquina cliente também foi um Pentium(R) 4 CPU da Intel,

porém com um processador de 2.40 GHz e 2 GB de memoria RAM.

6.3 Resultados da Avaliacao de Desempenho

Essa secdo apresenta os resultados da avaliacdo de desempenho seguindo o processo
proposto e utilizando o utilitario JWSPerf. Os resultados apresentados a seguir
representam uma média dos resultados obtidos na execucdo de 10 avaliagdes, onde cada
avaliacdo executou 3000 invocacgdes para estabilizar os resultados e 20 ciclos, com cada
ciclo executando 500 invocacGes a operacdo sendo analisada. Dessa forma, foram
executadas 13000 invocagdes para cada avaliacdo, sendo 3000 sem coleta de tempo e
10000 (20 x 500) com coleta.

Esse cenario de teste € facilmente configurado usando o utilitario JWSPerf, pois
basta inicializar os pardmetros WARM_UP, EVALUATIONS, CYCLES e INTERACTIONS do
arquivo de propriedades parameters.properties (ver Figura 6.4) com os valores 3000, 10,

20 e 500, respectivamente.

A seguir, serdo detalhadas as tarefas do processo proposto, explicando o passo a

passo que deve ser executado do lado do cliente.

-107-

HHHHHH

Parameters properties

#

Developed by Ana Machado (accm2@cin.ufpe.br).
HHHHHH A

#Number of concurrent clients
AGENT_NUMBER=1

#Number of evaluation
EVALUATIONS=10

#Number of cycles
CYCLES=20

#Number of interactions
INTERACTIONS=500

#Number of invocations before the timing information is collected
WARM_UP=3000

#Testcase name
TESTCASE=EchoBooleanTestCase

#0utput directory where the results are generated
RESULT_FILE_PATH=_.\\results\\vazao

Figura 6.4 — Arquivo parameters.properties

Tarefa 1: Recuperar a interface WSDL

Essa tarefa deve ser o ponto de partida, pois a interface WSDL é o contrato entre as
aplicacOes — essa é a primeira lei da interoperabilidade. Utilizando o utilitario JWSPerf,
esse passo € executado configurando os parametros do arquivo de propriedade

jwsperf.xml.

A interface WSDL utilizada nessa tarefa foi a mesma que foi utilizada para
desenvolver a aplicacdo-teste, dessa forma todas as operagdes da interface

IWSBenchmark sdo suportadas (ver Figura 6.1).

Tarefa 2: Escolher o Web Services toolkit

Os toolkits avaliados nos experimentos foram os suportados pelo utilitario JWSPerf —
Axis, JWSDP e SSJ. Para checar se esses toolkits suportam o estilo Document/Literal
Wrapped, foi necessario estudar suas documenta¢des. Mesmo nédo sendo o estilo padrao,

todos suportam o estilo Document/Literal Wrapped.

-108-

As versGes anteriores do Axis ndo suportavam o estilo Document/Literal
Wrapped, porém as versdes mais recentes estdo sendo implementadas suportando esse

estilo para melhor atender aos requisitos de interoperabilidade [Apache Axis, 2004].

Usando o utilitdrio JWSPerf, essa tarefa é executada configurando o parametro
“toolkit” do arquivo de propriedade jwsperf.xml. Uma vez configurado o toolkit e a
interface WSDL, o utilitario é capaz de gerar o codigo da aplicacdo cliente

implementando todas as operacdes do servico.

Tarefa 3: Verificar o parser do toolkit

Analisando a documentacao dos toolkits Axis e SSJ, verificou-se que ambos adotam o
parser Xerces, que é uma implementacdo do modelo de parsing SAX. Embora a equipe
de desenvolvimento do Axis recomende fortemente o uso desse parser, o Axis foi
desenvolvido para suportar qualquer implementacdo compativel com a especificacao
JAXP 1.1 (Java API for XML Processing) como, por exemplo, o parser Crimson que é
mais eficiente [Elfwing et al., 2002]. A versdo adotada pelo Axis 1.2 RC2 foi Xerces

2.4.0, enguanto que o toolkit SSJ 5.5 adotou a versao Xerces 2.6.2.

O toolkit JWSDP 1.5 adota o parser SISXP (Sun Java Streaming XML Parser)
versdo 1.0 EA [Sun, 2004], que é uma eficiente implementacdo da API Java padréo do
modelo de parsing Pull Parsing chamada StAX (Streaming API for XML Parser).
SJSXP é um parser simples de usar e permite a leitura e escrita de documentos XML de

forma eficiente.

Tarefa 4: Gerar o Stub

O objetivo dessa tarefa é gerar o stub, que sdo classes especificas dos toolkits para
abstrair detalhes da comunicacdo, usando as ferramentas disponibilizadas pelos
mesmos. Para isso é necessario estudar sua documentacdo, pois cada ferramenta utiliza
diferentes configuracdes para executar. Para eliminar esse 6nus, o utilitario disponibiliza

comandos para automatizar essa tarefa. A Tabela 6.1 apresenta para cada toolkit

-109-

analisado, a ferramenta e o comando do utilitario responsavel pela execucdo dessa

tarefa.

Tabela 6.1 - Ferramentas dos toolkits

Toolkit Ferramenta | Comando do JWSPerf
AXxis WSDL 2Java generate-axis
JWSDP WSCompile generate-jwsdp
SSJ WSDL2Java generate-systinet

Embora possuam o mesmo nome, as ferramentas dos toolkits SSJ e Axis sdo
implementacdes completamente distintas. Uma semelhanca entre essas ferramentas, é
que obrigatoriamente todas recebem como pardmetro o endereco local ou remoto da
interface WSDL. Em cada avaliacdo realizada com o utilitario, apenas um desses

comandos é executado, pois apenas um toolkit pode ser configurado.

Tarefa 5: Implementar a aplicacao cliente

Nesse experimento, a aplicacdo cliente deve implementar as invocacgGes as opera¢des
definidas na interface da aplicacdo-teste e 0 codigo de cada operacdo deve acessar o
stub para invocar o servi¢o, porém a forma de instanciar o stub varia de acordo com o
toolKkit.

Segundo a Diretriz 2, a interface deveria conter operagdes que explorem tipos de
dados de diferentes complexidades e tamanhos. Dessa forma, seria muito custoso
desenvolver todas as operacGes definidas para os diferentes toolkits. Além disso,

também deve ser escrito o cddigo responsavel pela coleta do tempo.

Com o objetivo de simplificar essa tarefa, foi projetado o modulo de geracéo de
classes de teste (ver Secdo 5.3.1) que € responsavel pela geracdo de uma classe de teste
para cada operacdo da interface WSDL. O codigo das classes geradas € especifico do
toolkit selecionado. Além desse modulo, o utilitario disponibiliza classes responsaveis
pela coleta do tempo e geracdo de um arquivo com os resultados da execucdo. Dessa
forma, ndo é necessario gastar tempo analisando documentacdo e implementando o

codigo da aplicacéo cliente para todas as operac6es definidas.

-110-

O utilitario JWSPerf disponibiliza o comando “generate-testcases” para
automatizar essa tarefa, considerando que o toolkit e a interface WSDL estdo
configurados. Na prética, o desenvolvedor invoca apenas o comando “buid” (ver Se¢do
5.5), pois 0 mesmo executa 0 comando “generate-testcases” e 0s comandos para
executar a tarefa anterior, além de estruturar e compilar todo o c6digo para a execucao

da proxima tarefa.

Tarefa 6: Invocar as operacdes do servico

O objetivo dessa tarefa é invocar as operagdes do servigo e coletar suas métricas.
Durante o processo de avaliacdo, apenas uma versdo da implementacdo da aplicagéo-
teste para um toolkit estava rodando no servidor de aplicacdo. Para medir apenas o
tempo gasto na camada Web Services, qualquer processamento na camada de negocio

foi evitado.

Para executar essa tarefa, foi projetado 0 modulo de invocacdo do utilitario (ver
Secdo 5.3.2) que é responsavel pela invocacdo e coleta das métricas no final da
execucdo. O desenvolvedor precisa apenas configurar a operacdo que deseja analisar e

executar o comando “run” para o utilitario invocar a operagao.

Primeiramente, foram avaliados, para cada toolkit, o tempo de instanciagéo do
stub, a laténcia representada pelo método echovoid € 0 RTT para enviar e receber
mensagens compostas por tipos de dados simples e pelos definidos pelo usuério (ver
Tabela 6.2).

Os toolkits Axis e JWSDP apresentaram um tempo de instanciacdo do stub
menor que o SSJ porque o stub desses toolkits foi gerado estaticamente (early binding),
enguanto que o SSJ instancia o stub dinamicamente (late binding).

Analisando o método echoVoid, a laténcia do Axis foi o dobro da laténcia dos
outros toolkits, indicando que o mesmo tem problemas na sua implementacao,

independentemente da carga, uma vez que esse método nao envia nenhum tipo de dado.

Os métodos echolnt, echoDouble, echoBoolean, € echoString foram
analisados para medir o tempo para serializar, transmitir e deserializar tipos de dados

simples (double, int, boolean e string), inicializados com seu valor default. Para um

-111-

determinado toolkit, o RTT calculado foi praticamente igual ao tempo do seu método

echovoid (Tabela 6.2). O toolkit Axis apresentou 0 maior tempo de processamento.

Tabela 6.2 - Tempos (ms) de instanciacéo do stub e dos métodos simples

Operagdes JWSDP SSJ AXis
Instanciacdo do stub 3200 22100 4900
echoVoid 3 3 6
echolnt 5 4 7
echoDouble 5 4 7
echoBoolean 5 4 7
echoString 4 4 7
echoMySimpleObject 4 5 7
echoMyComplexObject 5 10 14
acceptParameters 5 4 7
acceptMySimpleObject 3 5 6

Depois de calcular o RTT para cada tipo basico separadamente, foi analisado o
impacto para enviar todos esses tipos de dados como parametro para o servidor,
invocando 0 método acceptprarameters. Nenhum impacto foi detectando, pois todos

os toolkits mantiveram 0s mesmos tempos.

A fim de comparar o tempo para enviar, simultaneamente, os dados como
pardmetros (acceptpParameters) COM 0O tempo para enviar os mesmos dados
encapsulados em um objeto, 0 método acceptMysSimpleobject foi analisado (ver
Tabela 6.2). Como os tempos desses métodos foram semelhantes, fica a critério do

projetista da interface a escolha de encapsular ou ndo os dados transmitidos.

Com o objetivo de investigar o gargalo para enviar um dado complexo definido
pelo usuério ao servidor, o tempo para invocar 0 método echoMyComplexObject foi
calculado, onde o0 objeto MycomplexObject agregava vinte objetos do tipo
MySimpleobject. O toolkit JWSDP ndo sofreu impacto e manteve praticamente o
mesmo tempo. Porém, o aumento da complexidade dobrou o tempo de resposta dos

toolkits Axis e SSJ, comparado ao método echoMySimpleObject.

Para entender as razdes das diferencas de desempenho entre o0s toolkits
analisados, a execucdo das operaches echoVoid € echoMyComplexObject foi
investigada para identificar os métodos que consomem a maior parte do tempo. Nesse
experimento foi usado o comando “profile” do utilitario, que implicitamente utiliza a

ferramenta PerfAnal (ver Secéo 5.5).

-112-

Investigando a execucdo do método echoVoid, 0 Axis gasta 69,38% e 30,58%
do seu tempo executando os métodos connect da classe java.net.Socket € read da
classe java.net.SocketlnputStream, respectivamente. Quando o0 método
echoMyComplexObject foi investigado, esses percentuais foram alterados para 65,67%
e 34,33%, respectivamente. Para o toolkit SSJ, 99,47% e 85,77% do tempo sdo gastos
executando o0 método read da classe java.net.SocketlnputStream, quando as
operacdes echoVvoid e echoMyComplexObject S0 executadas, respectivamente. A
partir desses resultados, conclui-se que a maior parte do tempo é gasto na conexdo entre

o cliente e o servidor.

Analisando o toolkit JWSDP, 99,38% do seu tempo de execucdo foram gastos
executando o0 método read da classe java.net.SocketlnputStream, quando as
operacdes echoVoid e echoMyComplexObject sdo invocadas. A partir desse resultado,
pode-se concluir que esse toolkit possui rotinas eficientes de serializagdo e

deserializacdo, mesmo aumentando a complexidade das mensagens transportadas.

16

14 —

12

© — |@JWSDP
@ 8 @ SSJ
é 6 O Axis

4

2

0 : :

returnString(7000) returnString(14000) testException

Figura 6.5 - RTT (ms) dos métodos testException e returnString

A classe MyException, herdando de java.lang.Exception, foi definida com o
objetivo de calcular o tempo para tratar uma exce¢do definida pelo usuario. Analisando
0 método testException (Figura 6.5), verificou-se que o Axis gasta aproximadamente
15ms para tratar um elemento <soap:fault> da mensagem SOAP, enquanto que, 0S

toolkits JWSDP e SSJ gastam aproximadamente 5ms.

A fim de investigar o impacto do tamanho da mensagem no tempo de resposta, 0

método returnstring foi configurado, primeiramente, para retornar uma string de

-113-

7000 bytes e depois, uma string de 14000 bytes. Em ambos 0s experimentos a
mensagem SOAP tinha os mesmos elementos, variando apenas o tamanho da mensagem
transportada. A Figura 6.5 ilustra o tempo para transferir os dados na rede invocando

esse método.

A partir da analise do trafego de pacotes, verificou-se que o Axis utiliza 6 e 10
pacotes de rede para enviar uma string de 7000 e 14000 bytes, respectivamente,
enguanto que os toolkits JWSDP e SSJ utilizam 7 e 12 pacotes. Mesmo utilizando
menos pacotes de rede, em ambos 0s casos, 0 tempo de resposta do toolkit Axis foi
maior, significando que o problema esta nas suas rotinas de (de)serializacdo. O toolkit

JWSDP manteve exatamente 0 mesmo tempo para executar as duas operacoes.

O impacto do processo de serializacdo e deserializacdo foi investigado
invocando 0S métodos returnDoubles € returnMyComplexObjects (Figura 6.6). O
primeiro método foi configurado para retornar um array com 500 ndmeros do tipo
double com quatro digitos de precisdo. O método returnMyComplexObjects foi
configurado para retornar um array com cinglenta objetos do tipo MyComplexobject,

cada um contendo vinte objetos do tipo MySimpleObject.

140

120 —
100 —

80 - o JWSDP

£ mSSJ

60 - 0O Axis

40 —

20 -

0 T
returnDoubles returnMyComplexObjects

Figura 6.6 — RTT dos métodos returnDoubles e returnMyComplexObjects

A andlise desses métodos foi importante para validar o impacto da complexidade
dos tipos de dados no tempo de resposta, pois se verificou a ineficiéncia dos toolkits
Axis e SSJ com relagéo ao toolkit JWSDP. Em relagéo aos resultados apresentados na
Tabela 6.2, os toolkits SSJ e JWSDP apresentaram praticamente 0 mesmo desempenho,

-114-

porém comparando o resultado do método returnMyComplexObjects, 0s toolkits SSJ
e Axis foram, respectivamente, 19,25% e 24,45% mais ineficientes que o JWSDP. Os
custos de serializacdo e deserializacdo do toolkit Axis sdo maiores que 0s custos dos

demais toolkits analisados.

Se apenas tipos de dados simples fossem utilizados no processo de avaliacéo,
concluir-se-ia que os toolkits JWSDP e SSJ apresentam praticamente 0 mesmo tempo de
resposta. Porém, segundo a Diretriz 2, é importante analisar métodos usando tipos de

dados complexos para verificar o comportamento de um toolkit em situaces criticas.

Um experimento aumentando o numero de clientes concorrentes foi realizado
para avaliar a degradacdo de desempenho dos toolkits. O JWSPerf foi projetado para
criar uma nova thread para cada novo cliente, permitindo assim a execugao concorrente
pois as threads sdo independentes umas das outras. Entretanto, se a quantidade de
clientes rodando numa mesma maquina for muito grande, a aplicacdo pode esgotar a

utilizagdo de recursos do sistema.

Nesse experimento, foi invocado o método returnMyComplexObjects que
retorna, no caso do toolkit Axis, no minimo 183 KB (ver Tabela 6.3, pp. 119). O
resultado obtido foi preocupante porque os toolkits saturaram a utilizacdo de seus
recursos com apenas cinco clientes rodando simultaneamente. Um fator que contribuiu
para esse resultado foi que todas as threads rodavam em uma Unica maquina, portanto
as mesmas disputavam pelos mesmos recursos do computador como memobria e
processador. Para evitar problemas dessa natureza, o uso de recursos deve ser
controlado e a carga deve ser distribuida em varios computadores, para realmente

produzir carga intensa.

Tarefa 7: Monitorar as mensagens SOAP

Para monitorar as mensagens SOAP trocadas entre o servidor e o cliente, a ferramenta
TCP Monitor foi utilizada. Os objetivos dessa tarefa foram calcular o tamanho da
requisicéo e da resposta em bytes de uma determinada operagéo e analisar o cabecalho
HTTP, a fim de estudar as configuragcdes adotadas por cada toolkit.

-115-

POST /axis/server/WSBenchmark?WSDL HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.2RC2

Host: 127.0.0.1

Content-Length: 325

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<echoString xmlns="http://ws.communication.benchmark">
<input xmlns=""">WSBenchmark</input>
</echoString>
</soapenv:Body>
</soapenv:Envelope>

Figura 6.7 - Requisicdo SOAP/HTTP gerada pelo toolkit Axis

As Figuras 6.7, 6.9 e 6.11 representam a requisicdo do método echoString
gerada pelos toolkits Axis, JWSDP e SSJ, respectivamente. As Figuras 6.8, 6.10 e 6.12
representam a resposta dessa operacdo para cada um dos toolkits. Comparando essas
figuras, observa-se que para uma mesma operacdo e estilo de codificacdo
(Document/Literal Wrapped), os toolkits geram mensagens diferentes, inclusive de

tamanhos diferentes.

HTTP/1.1 200 OK

Content-Type: text/xml;charset=utf-8
Date: Sat, 22 Jul 2006 18:22:56 GMT
Server: Apache-Coyote/1.1
Connection: close

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema"*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>
<echoStringResponse xmlns="http://ws.communication.benchmark>
<result xmIns=""">WSBenchmark</result>
</echoStringResponse>
</soapenv:Body>
</soapenv:Envelope>

Figura 6.8- Resposta SOAP/HTTP gerada pelo toolkit Axis

Analisando as Figuras 6.7 e 6.8, as seguintes caracteristicas do toolkit Axis
podem ser identificadas: a) o cliente usa o protocolo HTTP 1.0 para enviar a requisi¢ao,

-116-

enquanto que o servigo utiliza o protocolo HTTP 1.1 para enviar a resposta; b) o
servidor sempre fecha a conexdo, pois o atributo “Connection: close” é enviado; c) o
atributo “Content-Length” da requisi¢cdo informa o tamanho da mensagem SOAP

serializada.

Diferentemente do toolkit Axis, as caracteristicas do toolkit JWSDP sdo (ver
Figuras 6.9 e 6.10): 1) adotar o protocolo HTTP 1.1 para transportar tanto a requisi¢cdo e
a resposta; 2) a fim de obter um melhor desempenho, o toolkit JWSDP configura o
atributo “Connection: keep-alive” no cabecalho da requisicdo, habilitando o uso de
conexdes persistentes; e 3) O atributo “Transfer-Encoding: chunked” no cabecalho da
resposta do servidor informa ao cliente que a resposta sera dividida em varios blocos

(chunks), onde cada bloco é precedido pelo seu tamanho (Figura 6.10).

POST /jwsdp/server/WSBenchmark HTTP/1.1

Content-Type: text/xml; charset=utf-8

Content-Length: 439

SOAPAction: ™'

User-Agent: Javas/1.4.2 08

Host: 192.168.1.1:8080

Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmIns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"*
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:nsO0="http://service.benchmark"
xmIns:nsl1="http://ws.communication.benchmark">
<env:Body>
<nsl:echoString>
<input>WSBenchmark</input>
</nsl:echoString>
</env:Body>
</env:Envelope>

Figura 6.9 - Requisicdo SOAP/HTTP gerada pelo toolkit JWSDP

Aplicando a técnica de streaming Chunked Transfer Coding, o tamanho de cada
bloco é informando na mensagem usando a notacdo hexadecimal. Por exemplo, a
resposta da operacdo echoString retornou apenas 1 bloco de tamanho, em
hexadecimal, 1c9 bytes (Figura 6.10).

-117-

HTTP/1.1 200 OK

SOAPAction: ™'

Content-Type: text/xml;charset=utf-8
Transfer-Encoding: chunked

Server: Sun-Java-System/Web-Services-Pack-1.4

1c9
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmIns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:nsO0="http://service.benchmark"
xmIns:ns1="http://ws.communication.benchmark">
<env:Body>
<nsl:echoStringResponse>
<result>WSBenchmark</result>
</nsl:echoStringResponse>
</env:Body>
</env:Envelope>
0

Figura 6.10 - Resposta SOAP/HTTP gerada pelo toolkit JWSDP

Analisando as Figuras 6.11 e 6.12, verificou-se que o toolkit SSJ também utiliza
0 protocolo HTTP 1.1 para enviar e receber as requisi¢des e configura os atributos
“Connection: keep-alive” na requisicao da operacdo e “Transfer-Encoding: chunked” no

cabecalho da resposta do servidor.

POST /WSBenchmark/ HTTP/1.1

Host: 192.168.1.1:8080

Connection: keep-alive

Content-type: text/xml;charset=UTF-8
Content-length: 571

<?xml version="1.0" encoding="UTF-8"?>
<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:d=""http://www.w3.0rg/2001/XMLSchema""
xmIns:i="http://www._.w3_.0rg/2001/XMLSchema-instance"
xmlns:wn2="http://systinet.com/wsdl/benchmark/service/"
xmIns:wn3="http://systinet.com/wsdl/benchmark/communication/ws/">
<e:Body>
<wn3:echoString><wn3:p0 i:type="d:string'>WSBenchmark</wn3:p0>
</wn3:echoString>
</e:Body>
</e:Envelope>

Figura 6.11 - Requisico SOAP/HTTP gerada pelo toolkit SSJ

-118-

Outra semelhanca entre os toolkits JWSDP e SSJ € que 0s mesmos agrupam
todos os namespaces XML dentro da tag <envelope> e informam a versdo XML usada
para formatar a mensagem, porém apenas o SSJ informa o tipo dos parametros da

operacdo na mensagem SOAP.

HTTP/1.1 200 OK

Date: Sat, 22 Jul 2006 16:46:20 GMT
Content-type: text/xml;charset=UTF-8
Transfer-Encoding: chunked

27e
<?xml version="1.0" encoding="UTF-8"?>
<e:Envelope
xmIns:e=""http://schemas.xmlsoap.org/soap/envelope/*
xmIns:d="http://www.w3.0org/2001/XMLSchema"
xmIns:i=""http://www._.w3.0rg/2001/XMLSchema-instance"
xmIns:wnl="http://systinet.com/xsd/SchemaTypes/"
xmIns:wn3="http://systinet.com/wsdl/benchmark/service/"
xmIns:wn4="http://systinet.com/wsdl/benchmark/communication/ws/"">
<e:Body>
<wn4:echoStringResponse>
<wn4:response i:type="d:string'>WSBenchmark</wn4:response>
</wn4:echoStringResponse>
</e:Body>
</e:Envelope>
0

Figura 6.12 - Resposta SOAP/HTTP gerada pelo toolkit SSJ

Para comparar o tamanho das mensagens geradas pelos toolkits, operacdes
transportando tipos de dados simples e complexos foram analisadas. A Tabela 6.3 lista
algumas operac0es da interface 1WSBenchmark, apresentando o tamanho das requisi¢des
e respostas, incluindo, no caso dos toolkits SSJ e JWSDP, a quantidade de blocos em

que as mensagens foram quebradas quando mais de 1 bloco foi requerido.

Analisando os resultados obtidos, verifica-se que os toolkits geram mensagens
de tamanhos diferentes para um mesmo estilo de codificacdo. Para todas as operagdes
analisadas, o toolkit Axis gerou mensagens menores, enquanto que o toolkit SSJ gerou
mensagens maiores que o JWSDP, com excecdo das operagdes echoVoid e

acceptParameters.

Analisando a operacdo returnMyComplexObjects, verificou-se que a diferenca
entre o tamanho da resposta gerada pelo SSJ em relacdo ao JWSDP foi de,

aproximadamente, 8 megabytes, enquanto que a diferencga entre 0 JWSDP e o Axis foi

-119-

de 723 bytes. A diferenca no tamanho das mensagens entre o SSJ e JWSDP é maior,
quando as operagdes utilizam arrays de algum tipo de dados como, por exemplo,
echoMyComplexObject, returnDoubles € returnMyComplexObjects. Isso significa
que o toolkit SSJ é ineficiente para representar esse tipo de estrutura de dados, pois o
mesmo utiliza uma classe para encapsular essa estrutura de dados e os toolkits Axis e

JWSDP enviam e retornam diretamente o array.

Tabela 6.3 - Tamanho das mensagens em bytes

Toolkit AXIS JWSDP SSJ
Operacéo Requisicdo | Resposta | Requisicdo | Resposta | Requisicdo | Resposta
echoVoid 276 284 395 403 306 314
echolnt 309 327 423 441 552 619
echoDouble 317 337 431 451 563 632
echoBoolean 320 338 434 452 564 631
echoString 325 343 439 457 571 638
echoMySimpleObject 418 439 532 553 773 843
echoMyComplexObject 2880 2961 2994 3075 5974 6125
acceptParameters 426 292 513 411 473 322
acceptMySimpleObject 422 296 536 415 619 326
returnSting (7000) 280 7336 399 7450 511 7630
returnString (14000) 280 14336 399 14450 (2 511 14631 (2
blocos) blocos)
returnDoubles 281 16312 400 11935 (2 512 25142 (4
blocos) blocos)
returnMyComplexObjects 290 183630 409 184353 521 8390097
(23 (41
blocos) blocos)

Tarefa 8: Analisar o trafego de pacotes

A Ultima tarefa do processo de avaliacdo tem como objetivo entender os detalhes da
comunicacdo dos toolkits Axis, JWSDP e SSJ analisando o trafego de rede entre o
cliente e o servidor usando a ferramenta Ethereal (ver Secdo 6.2.2). As Figuras 6.13,
6.14 e 6.15 mostram os pacotes de rede trocados na comunicacdo SOAP desses toolkits

respectivamente.

-120-

CLIENTE SERVIDOR

[TCP $YN)

[TCP SYN/ACE]

Aberivra da Conexdo
[TCP ACK)

HITP REQUEST

OTTP RESPONSE Eequisigies e Eespostas

Y

[FIN, ACE]

[ACK]

b

[T, ACK] Fechamento da Conexdo

*

[ACK])

Figura 6.13 - Trafego de pacotes do toolkit Axis

Analisando a Figura 6.13, verifica-se que o Axis ndo envia o cabecalho HTTP e
0 corpo da mensagem em pacotes separados, conforme identificado nos trabalhos
anteriores [Elfwing et al., 2002] [Davis and Parashar, 2002]. Isso significa que o Axis
1.2 RC2 resolveu esse problema, otimizando seu cédigo. Outras caracteristicas que
podem ser identificadas sdo o fechamento da conexao iniciado pelo servidor e a abertura

de uma nova conexdao para cada nova requisicao.

A documentacdo do toolkit Axis foi estudada para verificar a viabilidade de
alterar, do lado do cliente, a versdo do protocolo HTTP 1.0 para HTTP 1.1, a fim de
habilitar o uso de conexdes persistentes. A partir dessa analise, verificou-se que para
usar o protocolo HTTP 1.1 no cliente Axis, € necessario configurar a classe
CommonsHTTPSender no arquivo de instalagdo do servico chamado de client-
config.wsdd, que deve estar configurado no classpath. Mesmo fazendo essa alteracao,
uma nova conexao continua sendo aberta a cada requisicao, porque a implementacédo do
toolkit forca o fechamento da mesma enviando o atributo “Connection: close”. Logo,

essa alterag@o ndo reduz o tempo de execugéao.

-121-

| CLIENTE | SEEVIDOE

[TCP 3717

.

[TCP SYMIACK] Abertura da Conexfio

E Y

[TCP ACK]

HTTP REQUEBST (HEADEE)

HTTF EEQUEST (BODY)

[ICE ACK]

FY

Eequisigies e Bespostas
HTTP EESFONSE

[ICP ACK]

[FIV, ACK]

EY

[ACE]

Fechamento da conexdo
[FDY, ACE]

[ACK]

Fy

Figura 6.14 - Trafego de pacotes do toolkit JWSDP

A Figura 6.14 ilustra os pacotes trocados na comunicacdo SOAP do toolkit

JWSDP, e a partir da sua analise, verifica-se que o seu comportamento padrdo é:

e Abrir uma conexdo e apenas fecha-la depois que varias requisicdes sao
transmitidas;

e Separar o0 cabecalho do corpo da mensagem em pacotes diferentes. Esse
comportamento € um gargalo de desempenho, pois dois buffers e duas chamadas
de sistemas sdo necessarias para enviar a requisicao (ver Secao 3.5.4);

e Quebrar a resposta do servidor em varios blocos precedidos pelo seu tamanho.
Porém, ndo é permitido ao cliente usar essa técnica, uma vez que o atributo
“Content-Length” é sempre enviado no cabegalho;

e Servidor inicia o fechamento da conexao.

Diferentemente dos toolkits Axis e JWSDP, na implementacdo do SSJ o
responsavel pelo fechamento da conexdo é o cliente (ver Figura 6.15). Embora a Sec¢édo
3.6.5 considere esse comportamento uma otimizagdo, analisando em detalhes o pacote

que inicia o fechamento da conexdo, verificou-se que o cliente espera, em média, 800ms

-122-

para enviar o0 mesmo ao servidor. Existem, portanto, problemas na implementagcéo no
cliente do toolkit SSJ com relacdo ao fechamento da conexdo. Além desse
comportamento, SSJ também usa conexdes persistentes e adota a técnica de streaming

dos dados.

CLIENTE SERVIDOR

[ICP $¥N]

[TCP SYIFACK] Abertora da Conexdio

[TCP ACK]

HITF REQUEST

HITP RESPORSE Requisiges & Respostas

&

[TCP ACK]

[EDN, 4CK]

[ACK]

Y

Fechamento da conexilo
[FIM, ACK)

F

[ACK]

Figura 6.15 - Trafego de pacotes do toolkit SSJ

6.4 ConsideracOes Finais

Nesse capitulo foram realizados varios experimentos com 0 objetivo de analisar e
comparar o desempenho dos Web Services toolkits suportados pelo utilitario, aplicando
0 processo proposto para uniformizar a coleta dos resultados. Uma aplicagdo-teste
simples foi definida, porém suficiente para validar o processo proposto e identificar os

gargalos dos toolkits analisados.

Os experimentos realizados avaliaram o tempo para instanciar um stub de forma
dindmica e estatica, a laténcia, o tempo para tratar uma excecdo definida pelo usuario e
0 tempo de respota médio para enviar e receber mensagens de tamanhos e

complexidades diferentes. Além disso, a analise do trafego de pacotes e o

-123-

monitoramento das mensagens SOAP foram realizados para o0 entender o
comportamento dos toolkits. Resumindo as caracteristicas principais identificadas de

cada toolkit, a Tabela 6.4 foi estruturada para facilitar a comparagéo entre 0s mesmos.

Tabela 6.4 - Comparacéo dos toolkits

Caracteristicas Axis JWSDP SSJ
Parser XML Xerces SJSXP Xerces
Geracdo para instanciar o stub Estatica Estéatica Dinamica
Laténcia Média Baixa Baixa
RTT para transamitir tipos basicos Médio Baixo Baixo
RTT para transamitir tipos complexos Meédio Baixo Médio
Tempo de (de)serializacdo Alto Baixo Alto
Tempo para tratar excecdes Alto Baixo Baixo
Tamanho da mesnagem para estrutura complexas Pequeno Médio Grande
Calculo do atributo “Content-Length” Sim Sim Sim
Cabecalho e o corpo da mensagem enviados no Sim Nao Sim
mesmo pacote
Conexdes Persistentes Né&o Sim Sim
Streaming dos dados Nao Sim Sim
Gargalo para fechar a conexao N&o Nao Sim

O toolkit JWSDP (Java Web Services Developer Pack) apresentou o melhor
desempenho em todos os experimentos, respondendo mais rapidamente as requisicoes
do cliente. O toolkit Axis apresentou um tempo alto de resposta, gastando
aproximadamente 7 ms para enviar mensagens compostas por tipos de dados simples.
Diferentemente, o toolkit SSJ (Systinet Server for Java) apresentou um desempenho
semelhante ao toolkit JWSDP quando mensagens simples eram transportadas. Porem,
apresentou problemas de desempenho quando a complexidade das mensagens

aumentou.

Um resultado importante foi a confirmacdo que o tamanho das mensagens nao é
unico gargalo de desempenho de Web Services, pois o toolkit Axis apresentou 0 maior

tempo para enviar tipos de dados simples e complexos mesmo gerando as menores

-124-

mensagens e o toolkit SSJ gerou mensagens maiores e apresentou um tempo de resposta

menor que 0 AXIis.

Os toolkits SSJ e JWSDP, em relacdo ao Axis, aplicam duas otimizagdes que
influenciam no seu bom desempenho. A primeira é o uso de conexdes persistentes, onde
as varias requisicdes sdo transmitidas numa mesma conexdo. E a segunda € a técnica de
streaming, chamada Chunked Transfer Coding, utilizada pelo servidor para enviar as
respostas ao cliente. Além dessas otimizacdes, apenas o toolkit JWSDP adota 0 modelo
Pull Parsing, que é mais eficiente, utilizando o parser SISXP (Sun Java Streaming

XML Parser). Essas otimizacGes tornam o JWSDP mais eficiente.

-125-

[/ Conclusdes e Trabalhos
Futuros

Essa dissertagdo abordou um problema em aberto na area de Web Services: seu
desempenho. A decisdo de adotar a tecnologia Web Services tem sido tomada apenas em
funcdo da sua interoperabilidade. Porém, o seu desempenho deve ser avaliado, pois sua
ineficiéncia limita o desenvolvimento de aplicacGes que demandam por desempenho.

O foco desse trabalho foi avaliar o desempenho de Web Services toolkits,
propondo uma estratégia de avaliacdo para selecionar o toolkit “ideal” para desenvolver
e expor um servico, pois existem varias implementacdes de toolkits disponiveis no

mercado.

A primeira atividade para montar essa estratégia foi estudar e organizar 0s
gargalos de desempenho de Web Services. Os principais gargalos detalhados nessa
dissertacdo foram o tamanho e a complexidade das mensagens, o tempo gasto no
calculo do tamanho da mensagem, a escolha do parser XML, os custos de serializagdo e
deserializacdo, o estilo de codificacdo, os custos do estabelecimento da conexdo e 0s

gargalos de comunicagdo como o atraso na troca de pacotes e 0 niUmero de pacotes.

Além desses, a escolha do estilo de codificacdo também afeta diretamente a
eficiéncia de Web Services. Conforme apresentado na Segcdo 3.4, o estilo
Document/Literal oferece melhor desempenho que o estilo RPC/Encoded, porque

-126-

resulta em mensagens menores e menos complexas, minimizando os custos de
transmissdo na rede e a laténcia. Além de desempenho, o estilo Literal/Wrapped

apresenta melhores resultados de interoperabilidade.

De forma geral, o desempenho de uma aplicagdo Web Services dependem do
projeto e implementacdo do toolkit utilizado para implementd-la e dos gargalos
introduzidos pelos protocolos SOAP e de transporte, onde o protocolo HTTP é o mais

comumente adotado.

A partir desses gargalos, foram publicadas diretrizes para guiar a avaliagdo de
desempenho de Web Services toolkits antes de desenvolver as aplicagdes, a fim de
identificar o mais apropriado para atender os seus requisitos ndo-funcionais como

eficiéncia, baixa laténcia e alta vazao.

As diretrizes desenvolvidas sdo simples e faceis de aplicar, focando desde a
analise da documentacdo de um toolkit, a fim de verificar o parser adotado e o estilo de
codificacdo suportado, a quantificacdo de métricas de desempenho. Além disso, as
diretrizes propem o monitoramento das mensagens SOAP e do trafego de rede. Com
ISSO, as mesmas representam 0s principais pontos que devem ser observados durante a

avaliagéo.

Do ponto de vista operacional, foi proposto um processo para uniformizar a
avaliacdo de desempenho de diferentes toolkits. De forma geral, o processo representa
um guia prético, definindo um passo a passo para executar a avaliacdo, porém sempre

embasado pelas diretrizes.

Uma vez que o processo de avaliacdo pode demandar muito tempo, verificou-se
a necessidade de automatizar algumas de suas tarefas, principalmente 0s passos
referentes a parte de implementacdo, compilacdo, execucao da aplicacéo cliente e coleta

de métricas.

Para facilitar essa tarefa, o utilitario JWSPerf (Java Web Services Performance)
foi desenvolvido. JWSPerf automatiza uma parte do processo proposto, pois o
desenvolvedor apenas configura alguns parametros antes de executar o utilitario.
JWSPerf suporta trés toolkits Java bastante conhecidos e usados — Apache Axis,
JWSDP (Sun Java Web Services Developer Pack) e SSJ (Systinet Server for Java). Para

automatizar a geracao de codigo, o JWSPerf é composto por dois médulos com tarefas

-127-

bem definidas — o de geracdo de classes de teste e 0 de invogdo — e essa estruturacdo

permite que novos toolkits sejam facilmente incorporados.

Mesmo utilizando uma aplicacdo-teste simples, os resultados obtidos foram
suficientes para validar a importancia da aplicacdo das diretrizes e do utilitario para

viabilizar a avaliacao.

O presente trabalho apresentou a importancia de fazer uma anélise detalhada do
desempenho do Web Services toolkit antes de adota-lo, pois as questbes sobre sua
eficiéncia devem ser resolvidas antes ou durante a implementacdo da aplicacdo, dado
que o toolkit é responsavel por boa parte do desempenho da mesma. O objetivo da
estratégia proposta € simplificar a exposicdo de aplicagcbes Web Services usando um
toolkit eficiente. Além de buscar o bom desempenho, é necessario entender o negocio
da aplicacdo para projetar sua interface e escolher os tipos de dados apropriados, pois a
natureza da aplicacdo afeta sua eficiéncia.

7.1 Principais Contribuicoes

A seguir sdo resumidas as principais contribuicdes deste trabalho:
o Organizacdo dos gargalos de desempenho de Web Services.

o Publicagdo de diretrizes guiam a avaliacdo, focando nos principais
aspectos de um toolkit que devem ser analisados.

o Elaboracdo de um processo, a fim de uniformizar a avaliacdo de
desempenho de toolkits e facilitar a escolha do toolkit “ideal” para

desenvolver uma aplicacéo.

o Desenvolvimento do utilitario JWSPerf (Java Web Services
Performance) de codigo aberto que automatiza parte das tarefas do
processo proposto para avaliacdo de desempenho de Web Services

toolkits.

o Usando o utilitario JWSPerf, reduz-se o tempo gasto na avaliacdo e no

estudo da documentacdo dos toolkits e na implementacdo do codigo em

-128-

si, uma vez que os desenvolvedores apenas necessitam configurar
algumas propriedades nos arquivos de configuragdo e rodar os

comandos.

Desenvolvimento de um benchmark simples que pode ser utilizado para

avaliar o desempenho de outros Web Services toolkits.

7.2 Trabalhos Futuros

Entre os principais topicos possiveis de extensdo em trabalhos futuros, podemos citar as

seguintes melhorias:

Q

Suportar toolkits implementados em linguagens diferente de Java, como
C#, C, C++.

Incoporar outros toolkits Java ao utilitario JWSPerf, como por exemplo,
0 Glue da webMethods [webMethods, 2004].

Incoporar ao JWSPerf outras métricas, como por exemplo, o célculo do

intervalo de confianca.

Elaborar interfaces graficas para melhorar a interagdo do usuario com o
JWSPerf.

Automatizar a construcdo do codigo do lado do servidor, passando a ser
responsavel pela geragdo da camada de comunicacdo Web Services da
aplicacéo para diferentes toolkits;

Avaliar a interoperabilidade de diferentes Web Services toolkits, usando
o utilitario JWSPerf para automatizar essa tarefa uma vez que o mesmo

gera o cAdigo a partir da interface WSDL.

Projetar o utilitario para utilizar varios computadores, a fim de distribuir
a carga e gerar carga intensa para avaliar a escalabilidade dos Web

Services toolkits.

-129-

Referéncias Bibliograficas

[Abu-Ghazaler et al., 2004]

[Abu-Ghazaler et al., 2004a]

[Abu-Ghazaler et al., 2004b]

[Apache Axis, 2004]

[Apache SOAP, 2004]

[Austin et al., 2004]

N. Abu-Ghazaleh, M. J. Lewis and M. Govindaraju,
“Differential Serialization for Optimized SOAP Performance",
Proceedings of the 13th International Symposium on High
Performance Distributed Computing (HPDC), Honolulu, Hawaii,
pp. 55-64, 2004.

N. Abu-Ghazaleh, M. J. Lewis and M. Govindaraju,
“Performance of Dynamically Resizing Message Fields for
Differential Serialization of SOAP Messages"”, Proceedings of
the International Symposium on Web Services and Applications
(ISWS), Honolulu, Hawaii, pp. 783-789, 2004.

N. Abu-Ghazaleh, M. Govindaraju and M. J. Lewis, "Optimizing
Performance of Web Services with Chunk-Overlaying and
Pipelined-Send”, Proceedings of the International Conference on
Internet Computing (ICIC), pp. 482-485, 2004.

Apache Software Foundation, “Apache AXis”,
http://ws.apache.org/axis/, 2004.

Apache Software Foundation, “Apache SOAP”,
http://ws.apache.org/soap/, 2004.

D. Austin, A. Barbir, C. Ferris and S. Garg, “Web Services
Architecture Requirements”, http://www.w3.0rg/TR/wsa-reqs/,
2004.

-130-

[Berners et al., 1996]

[Box et al., 2000]

[Cai et al., 2002]

[Chiu et al., 2002]

[Cohen, 2003]

[Davis and Parashar, 2002]

[Devaram and Anresen,
2003]

[Elfwing et al., 2002]

[Engelen, 2003]

[Engelen and Gallivan, 2002]

T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer
Protocol - HTTP/1.0”, IETF RFC 1945,
http://www.ietf.org/rfc/rfc1945, 1996.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Nielsen, S. Thatte and D. Winer, “Simple
Object Access Protocol (SOAP) 1.17,
http://www.w3.0rg/TR/soap11/, 2000.

M. Cai, S. Ghandeharizadeh and S. Song, “A Comparison of
Alternative Encoding Mechanism for Web Services”,
Proceedings of the 13th International Conference on Database
and Expert Systems Applications (DEXA), Aix en Provence,
France, pp. 93-102, 2002.

K. Chiu, M. Govindaraju and R. Bramley, “Investigating the
Limits of SOAP Performance for Scientific Computing”,
Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC 2002), Edinburgh,
Scotland, pp. 246-254, 2002.

F. Cohen, “Discover SOAP encoding’s impact on Web service
performance”, http://www-128.ibm.com/developerworks/
webservices/library/ws-soapenc/, 2003.

D. Davis and M. Parashar, “Latency Performance of SOAP
Implementations”, Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGRID), Berlin, Germany, pp. 407-412, 2002.

K. Devaram and D. Anresen, “SOAP Optimization Via
Parameterized Client-Side Caching”, Proceedings of the
IASTED International Conference on Parallel and Distributed
Computing and Systems, Marina Del Rey. CA, pp. 785-790,
2003.

R. Elfwing, U. Paulsson and L. Lundberg, “Performance of
SOAP in Web Service Environment Compared to CORBA”,
Proceedings of the Ninth Asia-Pacific Software Engineering
Conference (APSEC), Queensland, Australia, pp. 84, 2002.

R. A. Van Engelen, “Pushing the SOAP Envelope With Web
Services for Scientific Computing”, Proceedings of the
International Conference on Web Services (ICWS), Las Vegas,
pp. 346-352, 2003.

R. A. van Engelen and K. A. Gallivan, “The gSOAP Toolkit for
Web Services and Peer-To-Peer Computing Networks”,
Proceedings of the 2nd IEEE/ACM International Symposium on

-131-

[Ethereal, 2004]

[Extreme!, 2004]

[Fielding et al., 1999]

[FIX, 2005]

[Govindaraju et al., 2000]

[Govindaraju et al., 2004]

[Gray, 2004]

[Gray, 2005]

[gSOAP, 2004]

[Head et al., 2005]

Cluster Computing and the Grid (CCGrid), Berlim, Germany,
pp. 128-135, 2002.

Ethereal, “A Network Protocol Analyser”,
http://www.ethereal.com, 2004.

Extreme! Laboratory of Indiana University, “Grid Web
Services”, http://www.extreme.indiana.edu/xgws/#projects,
2004.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach and T. Berners-Lee, “Hipertext Transfer Protocol --
HTTP/1.1”, IETF RFC 1626, http://www.ietf.org/rfc/rfc2616.txt,
1999.

FIX Protocol Ltd, “The Financial Information Exchange
Protocol (FIX)”, http://www.fixprotocol.org/specification/fix-43-
pdf.zip, 2005.

M. Govindaraju, A. Slominski, V. Chopella, R. Bramley and D.
Gannom, “Requirements for and Evaluation of RMI Protocols
for Scientific Computing”, Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), Dallas, Texas, pp.
61, 2000.

M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen
and M. J. Lewis, “Toward Characterizing the Performance of
SOAP Toolkits”, Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, Pittsburgh, USA,
pp. 365-372, 2004.

N. A. B. Gray, “Comparison of Web Services, Java-RMI, and
CORBA service implementations”, Proceedings of the 5th
Australasian Workshop on Software and System Architectures
(ASWEC 2004), Melbourne, Australia, pp. 52-63, 2004.

N. A. B. Gray, “Performance of Java Middleware — Java RMI,
JAXRPC, and CORBA”, Proceedings of the 6th Australasian
Workshop on Software and System Architectures (AWSA 2005),
Brisbane, Australia, pp. 31-39, 2005.

gSOAP Toolkit. “gSOAP: C/C++ Web Services and Clients”,
http://www.cs.fsu.edu/~engelen/soap.html, 2004.

M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-
Ghazaleh, R. Engelen, K. Chiu and M. Lewis, “A Benchmark
Suite for SOAP-based Communication in Grid Web Services”,
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, Seattle, pp. 19, 2005.

-132-

[Hericko et al., 2003]

[Juric et al., 2004]

[Kennington, 2005]

[Kohlhoff and Steele, 2003]

[Machado and Ferraz, 2005]

[Machado and Ferraz, 2006]

[Manes, 2004]

[McGoven et al., 2003]

[Meyers, 2005]

[Microsoft, 2004]

[Microsoft, 2004b]

M, Hericko, M. Juric, I. Rozman and A. Zivkovic, “Object
Serialization Analysis and Comparison in Java and .NET”, ACM
SIGPLAN Notices, Vol 38, N° 8, pp. 44-54, 2003.

M. B. Juric, B. Kezmah, M. Hericko, I. Rozman and I. Vezocnik,
“Java RMI, RMI Tunneling and Web Services Comparison and
Performance Analysis”, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Vol. 39, N° 5, Venice, Italy, pp. 58-65,
2004.

A. Kennington, “Network Traffic Monitoring”,
http://www.topology.org/comms/netmon.html, 2005.

C. Kohlhoff and R. Steele, “Evaluating SOAP for High
Performance Business Applications: Real-Time Trading
Systems”, Proceedings of the 12th International World Wide
Web Conference (WWW2003), Budapest, Hungary, 2003.

A. C. C. Machado and C. A. G. Ferraz, “Guidelines for
Performance Evaluation of Web Services”, Proceedings of the
11th Brazilian Symposium on Multimedia and the web
(WebMedia '05), Pogos de Caldas, Minas Gerais, Brazil, pp. 1-
10, 2005.

A. C. C. Machado and C. A. G. Ferraz, “JWSPerf: A
Performance Benchmarking Utility with Support to Multiple
Web Services Implementations”, Proceeding of the Advanced
International Conference on Telecommunications and
International Conference on Internet and Web Applications
and Services (AICT/ICIW 2006), Guadalupe, French Caribbean,
pp. 159, 2006.

A. Manes, “The wrapped document/literal convention”,
http://atmanes.blogspot.com/2005/03/wrapped-documentliteral-
convention.html, 2004.

McGovern, J., Tyagi, S., Stevens, M., Mathew, S., “Java Web
Services Architecture, Morgan Kaufmann Publishers, 2003.

N. Meyers, “PerfAnal: A Performance Analisys Tool”,
http://java.sun.com/developer/technical Articles/Programming/perfa
nal/, 2005.

Microsoft Corporation, “.NET Framewrok Developer Center”,
http://msdn.microsoft.com/netframework/, 2004.

Microsoft Corporation, “Web Services Performance: Comparing
Java™ 2 Enterprise Edition (J2EE™ platform) and .NET
Framework. A Response to Sun Microsystem’s Benchmark”,

-133-

[Ng et al., 2003]

[Qworks, 2004]

[Roubtsov, 2004]

[SAX, 2004]

[Shirasuma et al., 2002]

[SOAP Builders, 2004]

[SoapWare.Org, 2004]

[Suciu and Liefke, 2004]

[Sun, 2004]

[Sun, 2004b]

[Systinet, 2004]

http://www.gotdotnet.com/team/compare/Benchmark_response.pdf,
2004.

A. Ng, S. Chen and P. Greenfield, “Evaluation of Contemporary
Commercial SOAP”, Proceedings of the 5th Australasian
Workshop on Software and System Architectures (AWSA),
Melbourne, Australia, pp. 64-71, 2003.

Qworks, “Web Services Performance: Comparing JWSDP (Java
Web Service Developer Pack) TM, AXIS and .NET Framework
TM, Version 0.1, http://groups-beta.googe.com/group/qworks,
2004.

V. Roubtsov, “My kingdom for a good timer”,
http://www.javaworld.com/javaworld/javaqa/2003-01/01-ga-
0110-timing.html, 2004.

SAX, “Official Website for SAX”, http://www.saxproject.org/,
2004,

S. Shirasuma, H. Nakata, S. Matsuoka and S. Sekiguchi,
“Evaluating Web Services Based Implementations of GridRPC”,
Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HDPC 2002), Edinburgh,
Scotland, pp. 237-245, 2002.

SOAP Builders, “SOAP Builders Forum”,
http://groups.yahoo.com/group/soapbuilders/, 2004.

SoapWare.Org, “The Leading Directory for SOAP 1.1
Developers”,
http://www.soapware.org/directory/4/implementations, 2004.

D. Suciu and H. Liefke, “Xmill: An Efficient Compressor for
XML Data”, http://www.research.att.com/sw/tools/xmill/, 2004.

Sun Microsystems, “Java Web Services Developer Pack (Java
WSDP)”, http://java.sun.com/webservices/jwsdp/index.jsp,
2004.

Sun Microsystems, “Web Services Performance: Comparing
Java™ 2 Enterprise Edition (J2EE™ platform) and .NET
Framework”,
http://java.sun.com/performance/reference/whitepapers/WS_Test-
1 _0.pdf, 2004

Systinet, “Systinet Server for Java”,
http://www.systinet.com/products/ssj/overview, 2004.

-134-

[webMethods, 2004]

[Ying et al., 2004]

webMethods, “Glue Evaluation”,

http://www.webmethods.com/meta/default/folder/0000006047,
2004.

Y. Ying, Y. Huang and D. W. Walker, “Using SOAP with

Attachment for e-Science”, Proceedings of the UK e-Science All
Hands Meeting, Nottingham, UK, pp. 1061-1064, 2004.

-135-

SERVICO PUBLICO FEDERAL
UNIVERSIDADE FEDERAL DE PERNAMBUCC
CENTRO DE INFORMATICA
Pés-GRABUACAO Ex CIENCIA BA COMPUTACAD

Ata de Defesa de Dissertagéo de Mestrado do
GCentro de informatica da Universidade Fe-
deral de Pernambuco, 28 de agosto de
2006.

Ao vigésimo oftavo dia do més de agosto do ano
dois mil e seis, as catorze horas e trinta minutos, no Centro de Informética da Universidads
Federal de Perambuco, teve inicio a gilingentésima qliinquagésima oitava defesa de
dissertacio de Mestrado em Ciéncia da Computagao intitulada “Diretrizes e um Utilitario
para Avaliagéo de Desempenho de Toolkits Web Services” da candidata Ana Carolina
Chaves Machado, a qual j4 havia preenchido anteriormente as demais condigdes exigidas
para a obtengdo do grau de mestre. A Banca Examinadora, composta pelos professores
André Luis de Medeiros Santos, periencente ao Centro de Informatica desta Universidade,
Walfredo Costa Cirne Filho, perfencente ao Departamento de Sistemas e Compuiacéo da
Universidade Federai de Campina Grande e Carlos André Guimardes Feraz, pertencente
a0 Centro de Informdtica desta Universidade, sendo o primeiro presidente da Banca
Examinadora e o ultimo orientador do trabalho de dissertagdo, resolveu: Aprovar pof
unanimidade e dar o prazo de trinta dias para entrega da versdo final do trabaino. E
para constar lavrei a presente ata que vai por mim assinada e pela Banca Examinadora.
Recife, 28 de agosio de 2006

’ e ; 3
Wi e L g“‘"i"ti” C ‘{’-_/,"’
Maria Lilia Pinheiro de Freitas &
{secretaria)

o i

\

g H
< iy
R oA

Prof. André Luis de Medeiros Santos
{primejro examinador) '

Hend

i
3 . D

4 A .

| ‘) “,}{ ; 7t s

A/ XU ot d dwi@,,m J,// 0
Walfredg Gosta Cirne Filho

{segundo examinador)

Prof. Carlog’André Guimaraesferraz”/
(terceiro éxaminader) I 04

