

Pós-Graduação em Ciência da Computação

“DIRETRIZES E UM UTILITÁRIO PARA

AVALIAÇÃO DE DESEMPENHO DE TOOLKITS
WEB SERVICES”

Por

ANA CAROLINA CHAVES MACHADO

Dissertação de Mestrado

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, AGOSTO/2006

 -ii-

 UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ANA CAROLINA CHAVES MACHADO

“DIRETRIZES E UM UTILITÁRIO PARA AVALIAÇÃO DE DESEMPENHO
DE TOOLKITS WEB SERVICES"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR(A): Prof. Dr. Carlos A. G. Ferraz

RECIFE, AGOSTO/2006

 -137-

Machado, Ana Carolina Chaves
Diretrizes e um utilitário para avaliação de

desempenho de toolkits web services / Ana Carolina
Chaves Machado. – Recife : O Autor, 2006.
 iv, 135 folhas : il., fig.,tab.

 Dissertação (mestrado) – Universidade Federal
de Pernambuco. CIn. Ciência da Computação,
2006.

 Inclui bibliografia.

 1.Sistemas distribuídos. I. Título.

 004.36 CDD (22.ed.) MEI2008-055

 -iii-

DEDICATÓRIAS

para minha família.

 -iv-

AGRADECIMENTOS

Agradeço ao Prof. Dr. Carlos André Guimarães Ferraz pela orientação no mestrado.

Pelo seu comprometimento e presença nas dúvidas técnicas, informações sobre a vida

acadêmica, ensino de disciplinas, enfim todo o incentivo e apoio durante o

desenvolvimento deste trabalho.

Agradeço aos professores que forneceram conhecimentos nas disciplinas cursadas

durante o mestrado. Agradeço a Profª Marcilia Andrade pela sua amizade e orientação.

Agradeço aos meus colegas de turma pelo compartilhamento de informações e pelos

momentos de descontração durante essa jornada.

Agradeço ao C.E.S.A.R (Centro de Estudos e Sistemas Avançados do Recife) pela

liberação de algumas horas do meu trabalho para me dedicar às pesquisas e ao Tribunal

de Contas do Estado de Pernambuco (TCE-PE), princiaplmente a Saulo Malincônico,

pela ajuda, compreensão e motivação.

Agradeço ao meu esposo Cláudio Morais e toda minha família pelo companheirismo e

ajuda e por aceitar minha ausência em muitos momentos importantes da nossa família.

 -5-

DIRETRIZES E UM UTILITÁRIO PARA AVALIAÇÃO DE
DESEMPENHO DE TOOLKITS WEB SERVICES1

Autora: Ana Carolina Chaves Machado
Orientador: Prof. Dr. Carlos André Guimarães Ferraz

RESUMO

A tecnologia Web Services está se tornando a mais importante solução para prover a
comunicação entre aplicações heterogêneas, contribuindo enormemente para o avanço
na área de desenvolvimento de sistemas distribuídos. Uma conseqüência dessa
popularidade é a existência de mais de setenta Web Services toolkits disponíveis para
uma variedade de plataformas e linguagens de programação. Além disso, várias
aplicações em áreas como, por exemplo, e-commerce, computação científica, saúde e
finanças estão sendo expostas como Web Services. Dessa forma, o fato de estar sendo
adotada por muitas empresas como a infra-estrutura para desenvolver seus sistemas,
aumenta a demanda pela sua eficiência, uma vez que desempenho é um importante
parâmetro da qualidade do serviço.

O problema é que o desempenho de Web Services é uma questão em aberto, uma vez
que sua eficiência foi sacrificada para prover simplicidade, interoperabilidade e
flexibilidade. Dessa forma, os desenvolvedores deveriam avaliar as condições de
desempenho das aplicações Web Services, pois sua ineficiência pode limitar sua
aplicabilidade em algumas situações.

O principal objetivo dessa dissertação é viabilizar a avaliação de desempenho de Web
Services toolkits, propondo diretrizes que foram desenvolvidas baseando-se nos
gargalos de desempenho de Web Services. A partir dessas diretrizes, foi elaborado um
processo que tem como objetivo uniformizar a avaliação de desempenho de toolkits e
facilitar a escolha do toolkit “ideal” para desenvolver uma aplicação. Também será
apresentado o utilitário JWSPerf (Java Web Service Performance) que, juntamente com
outras ferramentas, automatiza algumas tarefas desse processo, reduzindo o tempo e os
custos necessários para sua execução.

Palavras-chave: Web Services, Toolkits e Avaliação de Desempenho.

1 Dissertação de Mestrado em Ciência da Computação, Centro de Informática, Universidade Federal de

Pernambuco, Recife, PE, 2006.

 -6-

GUIDELINES AND UTILITY FOR PERFORMANCE
EVALUATION OF WEB SERVICES TOOLKITS2

Author: Ana Carolina Chaves Machado
Adviser: Prof. Dr. Carlos André Guimarães Ferraz

ABSTRACT

The Web Services technology is becoming the most important solution to provide the
communication between heterogeneous applications, contributing enormously for the
advance in the area of distributed systems development. A consequence of this
popularity is the existence of more than seventy Web Services toolkits available for a
variety of platforms and programming languages. Moreover, various applications in
areas such as e-commerce, scientific computation, health and finance have been
exposed as Web Services. Therefore, the fact that it is being adopted for many
companies as the infrastructure to develop its systems, increases the demand for its
efficiency, because performance is an important parameter of quality of service.

The problem is that Web Services performance is an open question, because its
efficiency was sacrificed to provide simplicity, interoperabilidade and flexibility.
Therefore, the developers would have to evaluate the conditions of performance of the
Web Services applications, because its inefficiency can limit its applicability in some
situations.

The main objective of this dissertation is to make the performance evaluation of Web
Services toolkits, publishing guidelines that had been developed based on the
performance overheads of Web Services. Based on guidelines, a process was elaborated
that has as objective to standardise the performance evaluation of toolkits and to
facilitate the choice of the "ideal" toolkit to develop an application. Also it will present
the utility JWSPerf (Java Web Service Performance) that, together with other tools,
automatizes some tasks of this process, reducing the time and costs for its execution.

Keywords: Web Services, Toolkits and Performance Evaluation.

2 Master of Science dissertation in Computer Science, Informatics Center, Federal University of

Pernambuco, Recife, PE, 2006.

 -7-

SUMÁRIO

LISTA DE TABELAS ___ 10

LISTA DE FIGURAS ___ 11

1 Introdução___ 13
1.1 Motivação __ 13

1.2 Objetivos e Metodologia___ 14

1.3 Organização da Dissertação__ 16

2 A Tecnologia Web Services ___ 17
2.1 Introdução __ 17

2.2 Arquitetura Orientada a Serviços _____________________________________ 18
Camada de Transporte ___20
Camada de Empacotamento das Mensagens __21
Camada de Descrição do Serviço___22
Camada de Registro ___24

2.3 Desenvolvendo Web Services ___ 25
2.3.1 Projetando a Interface WSDL __26

2.4 Web Services Toolkits ___ 29
2.4.1 Apache Axis ___29
2.4.2 JWSDP (Java Web Services Developer Pack)__________________________________30
2.4.3 Glue __30
2.4.4 SSJ (Systinet Server for Java) __30
2.4.5 XSOAP ___31
2.4.6 Framework .NET__31
2.4.7 gSOAP__31
2.4.8 bSOAP__32

2.5 Considerações Finais ___ 32

3 Desempenho de Web Services ___ 34
3.1 Introdução __ 34

3.2 XML versus Representação Binária ___________________________________ 35

3.3 Comparação entre Web Services e outros Middleware_____________________ 37

3.4 Desempenho de Web Services Toolkits__________________________________ 39

3.5 Gargalos de Desempenho __ 42
3.5.1 Tamanho da Mensagem___43
3.5.2 Escolha do Parser XML __43
3.5.3 Custos de Serialização e Deserialização ______________________________________44
3.5.4 Cálculo do Tamanho da Mensagem SOAP ____________________________________45
3.5.5 Gargalos de Comunicação ___46
3.5.6 Custo do Estabelecimento da Conexão _______________________________________48

3.6 Técnicas de Otimização ___ 48
3.6.1 Compressão dos Dados ___49

 -8-

3.6.2 Parser Específico de Esquema XML __49
3.6.3 Caching das Requisições SOAP __49
3.6.4 Otimizando o Cálculo do Tamanho da Mensagem SOAP_________________________50
3.6.5 Otimizações na Comunicação __53
3.6.6 Uso de Conexões Persistentes __55
3.6.7 Codificação Binária dos Dados XML __55
3.6.8 Enviando Mensagens SOAP com Anexos_____________________________________55
3.6.9 Otimizando os Custos de Serialização__56

3.7 Considerações Finais ___ 57

4 Diretrizes para Avaliação de Desempenho de Web Services _________________ 59
4.1 Introdução __ 59

4.2 Objetivo das Diretrizes__ 60

4.3 Guia para Avaliação de Desempenho __________________________________ 61
Diretriz 1: Adote o estilo Document/Literal Wrapped___________________________________63
Diretriz 2: Utilize mensagens de tamanhos e complexidades diferentes _____________________65
Diretriz 3: Analise as mensagens SOAP transportadas na rede ____________________________66
Diretriz 4: Verifique o parser suportado pelo toolkit____________________________________68
Diretriz 5: Monitore o tráfego de pacotes __69
Diretriz 6: Quantifique o desempenho do Web Services toolkit____________________________70

4.4 Considerações Finais ___ 72

5 Processo e um Utilitário para a Avaliação de Desempenho de Web Services Toolkits
___ 74

5.1 Introdução __ 74

5.2 Processo de Avaliação de Desempenho_________________________________ 75

5.3 Utilitário JWSPerf ___ 77
Módulo de Geração das Classes de Teste __79
Módulo de Invocação__82

5.4 Instalando o JWSPerf___ 87

5.5 Executando o Utilitário JWSPerf _____________________________________ 89
Passo 1: Rodar o arquivo env.bat___90
Passo 2: Alterar os arquivos parameters.properties e jwsperf.xml _________________________90
Passo 3: Construir as classes cliente __90
Passo 4: Executar o utilitário JWSPerf __96

5.6 Guia para Incorporar Novos Toolkits__________________________________ 97

5.7 Considerações Finais ___ 98

6 Plataforma Experimental e Resultados _________________________________ 101
6.1 Introdução ___ 101

6.2 Aplicação-teste ___ 102
6.2.1 Projeto da Aplicação-teste __104
6.2.2 Configurações do Ambiente de Execução ____________________________________106

6.3 Resultados da Avaliação de Desempenho______________________________ 107
Tarefa 1: Recuperar a interface WSDL ___108
Tarefa 2: Escolher o Web Services toolkit ___108
Tarefa 3: Verificar o parser do toolkit __109
Tarefa 4: Gerar o Stub __109
Tarefa 5: Implementar a aplicação cliente ___110

 -9-

Tarefa 6: Invocar as operações do serviço ___111
Tarefa 7: Monitorar as mensagens SOAP ___115
Tarefa 8: Analisar o tráfego de pacotes ___120

6.4 Considerações Finais __ 123

7 Conclusões e Trabalhos Futuros ______________________________________ 126
7.1 Principais Contribuições ___ 128

7.2 Trabalhos Futuros __ 129

Referências Bibliográficas __ 130

 -10-

LISTA DE TABELAS

Tabela 2.1 - Regras para configurar o estilo de codificação do documento WSDL27
Tabela 2.2 - Regras para configurar o atributo “use” do documento WSDL..27

Tabela 5.1 - Mapeamento entre as diretrizes, o processo e o responsável pela execução.........................77
Tabela 5.2 - Descrição dos atributos da classe Config..84
Tabela 5.3 - Principais arquivos de configuração ...87

Tabela 6.1 - Ferramentas dos toolkits..110
Tabela 6.2 - Tempos (ms) de instanciação do stub e dos métodos simples ..112
Tabela 6.3 - Tamanho das mensagens em bytes...120
Tabela 6.4 - Comparação dos toolkits..124

 -11-

LISTA DE FIGURAS

Figura 1.1 - Estratégia para avaliação de desempenho de Web Services ...15

Figura 2.1 - Entidades do paradigma “find, bind and execute”..19
Figura 2.2 - Pilha das tecnologias de Web Services ..20
Figura 2.3 - Estrutura das mensagens SOAP...22
Figura 2.4 - Estrutura de um documento WSDL..23

Figura 3.1 - Latência das mensagens SOAP usando diferentes estilos..40
Figura 3.2 - Estágios para enviar e receber uma mensagem SOAP ..42
Figura 3.3 - Tráfego de pacotes para uma chamada SOAP/HTTP..46
Figura 3.4 – Enviando uma mensagem SOAP com otimizações ..52
Figura 3.5 - Tráfego de pacotes para uma chamada SOAP com otimizações ...54

Figura 4.1 - Fatores que influenciam o desempenho de Web Services ..61
Figura 4.2 - Exemplo de uma requisição SOAP enviada via HTTP ..66
Figura 4.3 - Exemplo de uma resposta SOAP enviada via HTTP..67
Figura 4.4 - Exemplo de uma resposta SOAP enviada via HTTP fechando a conexão67

Figura 5.1 - Componentes do processo de avaliação de desempenho ...75
Figura 5.2 - Papel do utilitário JWSPerf ...78
Figura 5.3 - Diagrama de classes do módulo de geração das classes de teste..79
Figura 5.4 - Diagrama de seqüência do módulo de geração das classes de teste81
Figura 5.5 - Diagrama de classes do módulo de invocação ..83
Figura 5.6 - Diagrama de seqüência do módulo de invocação..85
Figura 5.7 - Estrutura de diretórios do utilitário JWSPerf ..88
Figura 5.8 - Comando para construir as classes clientes ..91
Figura 5.9 - Comando para preparar o diretório build ...91
Figura 5.10 - Comando para gerar as classes de teste ..92
Figura 5.11 - Comando para gerar as classes usando o toolkit Axis...93
Figura 5.12 - Comando para gerar as classes usando o toolkit JWSDP ...93
Figura 5.13 - Comando para gerar as classes usando o toolkit SSJ..94
Figura 5.14 - Comando para copiar as classes geradas..95
Figura 5.15 - Comando para compilar todas as classes..95
Figura 5.16 - Comando para rodar o utilitário ...96
Figura 5.17 - Comando para investigar a execução do toolkit ..96
Figura 5.18 - Resultado da investigação do toolkit SSJ usando o PerfAnal ..97

Figura 6.1 - Métodos da interface IWSBenchmark ..102
Figura 6.2 - Entidades de negócio definidas pelo usuário...103

 -12-

Figura 6.3 - Arquitetura da aplicação-teste...105
Figura 6.4 – Arquivo parameters.properties..108
Figura 6.5 - RTT (ms) dos métodos testException e returnString ..113
Figura 6.6 – RTT dos métodos returnDoubles e returnMyComplexObjects ..114
Figura 6.7 - Requisição SOAP/HTTP gerada pelo toolkit Axis ...116
Figura 6.8- Resposta SOAP/HTTP gerada pelo toolkit Axis..116
Figura 6.9 - Requisição SOAP/HTTP gerada pelo toolkit JWSDP..117
Figura 6.10 - Resposta SOAP/HTTP gerada pelo toolkit JWSDP ...118
Figura 6.11 - Requisição SOAP/HTTP gerada pelo toolkit SSJ ..118
Figura 6.12 - Resposta SOAP/HTTP gerada pelo toolkit SSJ..119
Figura 6.13 - Tráfego de pacotes do toolkit Axis ...121
Figura 6.14 - Tráfego de pacotes do toolkit JWSDP..122
Figura 6.15 - Tráfego de pacotes do toolkit SSJ ..123

 -13-

1 Introdução

1.1 Motivação

Web Services têm muitas qualidades como possível comunicação através de firewalls e

promover a integração entre aplicações distribuídas na Internet. Devido a essas

vantagens, a tecnologia Web Services está se tornando a mais importante solução para

prover a comunicação entre aplicações heterogêneas, contribuindo enormemente para o

avanço na área de desenvolvimento de sistemas distribuídos.

Uma conseqüência dessa popularidade é a existência de mais de setenta Web

Services toolkits disponíveis para uma variedade de plataformas e linguagens de

programação. Além disso, várias aplicações em áreas como, por exemplo, e-commerce,

computação científica, saúde e finanças, estão sendo expostas como Web Services.

Dessa forma, o fato de estar sendo adotada por muitas empresas como a infra-estrutura

para desenvolver seus sistemas, aumenta a demanda pela sua eficiência, uma vez que

desempenho é um importante parâmetro da qualidade do serviço.

O problema é que o desempenho de Web Services é uma questão em aberto, uma

vez que sua eficiência foi sacrificada para prover interoperabilidade. Os gargalos de

desempenho de Web Services se originam do projeto e implementação dos toolkits

 -14-

utilizados, da escolha do protocolo de transporte da mensagem SOAP e dos gargalos

inerentes ao próprio protocolo SOAP. Nesse contexto, algumas questões são

pertinentes:

1) Qual é o desempenho apresentado pelas várias implementações Web Services?

2) Quais os gargalos introduzidos pelos protocolos SOAP e HTTP? Quais desses

gargalos podem ser removidos através de melhores implementações?

3) Qual Web Services toolkit usar para desenvolver e expor um serviço?

Os desenvolvedores deveriam verificar as condições de desempenho das

aplicações Web Services, pois sua ineficiência pode limitar sua aplicabilidade em

algumas situações. Na maioria dos casos, uma implementação “ingênua” pode consumir

muito tempo de processamento.

Dessa forma, é necessário avaliar o desempenho de toolkits antes de desenvolver

os sistemas, a fim de identificar o mais apropriado para atender aos seus requisitos de

eficiência. Porém, o processo de avaliação de desempenho pode consumir muito tempo

analisando a documentação e escrevendo diferentes códigos para cada toolkit e

demandar pessoas com experiência na tecnologia.

1.2 Objetivos e Metodologia

O principal objetivo dessa dissertação é viabilizar a avaliação de desempenho de Web

Services toolkits, publicando diretrizes que foram desenvolvidas baseando-se nos

gargalos de desempenho de Web Services (Figura 1.1). Observe-se que a Figura 1.1

descreve a metodologia de desenvolvimento adotada neste trabalho: 1) organizar os

gargalos de desempenho; 2) publicar as diretrizes; 3) propor o processo de avaliação; e

4) desenvolver o utilitário JWSPerf.

Uma contribuição importante é a organização dos gargalos de desempenho de

Web Services toolkits, permitindo que qualquer desenvolvedor entenda os fatores que

 -15-

influenciam sua eficiência e identifique as possíveis otimizações para melhorar seu

desempenho.

Figura 1.1 - Estratégia para avaliação de desempenho de Web Services

As diretrizes publicadas guiam a avaliação, focando nos principais aspectos de

um toolkit que devem ser analisados. Além das diretrizes, são apresentadas

recomendações para projetar a interface WSDL sem afetar a interoperabilidade da

aplicação.

A partir das diretrizes, foi elaborado um processo que tem como objetivo

uniformizar a avaliação de desempenho de toolkits e facilitar a escolha do toolkit “ideal”

para desenvolver uma aplicação. De forma geral, o processo representa um guia prático

composto por um conjunto de tarefas para executar a avaliação.

Uma vez que o processo de avaliação pode demandar muito tempo, verificou-se

a necessidade de automatizar algumas de suas tarefas, principalmente os passos

referentes à parte de implementação, compilação, execução da aplicação cliente e coleta

de métricas. Nesse contexto, foi desenvolvido o utilitário JWSPerf (Java Web Service

Performance) de código aberto e implementado em Java.

O utilitário é simples, fácil de usar e suporta três Web Services toolkits – Axis,

Systinet Server for Java (SSJ) e Java Web Services Developer Pack (JWSDP). O

utilitário JWSPerf, juntamente com outras ferramentas, automatiza parte desse processo,

reduzindo o tempo e os custos necessários para sua execução.

Gargalos de Desempenho

Diretrizes

Processo

Utilitário JWSPerf

 -16-

1.3 Organização da Dissertação

A dissertação está organizada em 7 capítulos. Neste capítulo inicial foi apresentada a

motivação para o trabalho, seguida da descrição dos objetivos e organização da

dissertação.

O capítulo 2 apresenta uma introdução sucinta da tecnologia Web Services,

focando principalmente nas principais decisões de projeto que desenvolvedores devem

tomar durante o projeto da interface WSDL, pois afetam a estruturação e as regras de

serialização e deserialização das mensagens.

O capítulo 3 procura dar uma visão estruturada dos trabalhos que investigaram a

ineficiência de Web Services, detalhando seus gargalos e listando as possíveis

otimizações para tornar os serviços mais eficientes.

O capítulo 4 apresenta as diretrizes para avaliação de desempenho de Web

Services toolkits, propostas para que um arquiteto entenda o comportamento do toolkit

sendo analisado e identifique seus gargalos de desempenho.

O capítulo 5 descreve o processo proposto e suas tarefas para avaliar o

desempenho de Web Services toolkits e o utilitário JWSPerf (Java Web Services

Performance), que visa automatizar uma parte desse processo.

O capítulo 6 apresenta experimentos, resultados e conclusões da avaliação de

desempenho dos toolkits suportados pelo utilitário JWSPerf utilizando o processo

proposto. A aplicação-teste utilizada como benchmark também é apresentada.

O capítulo 7 relata as conclusões finais dessa dissertação e apresenta propostas

para trabalhos futuros que possam vir a contribuir para o crescimento da área.

 -17-

2 A Tecnologia Web Services

2.1 Introdução

Os avanços recentes na padronização das tecnologias Internet têm impulsionado a

publicação de protocolos baseados em XML que viabilizam a interoperabilidade entre

aplicações em diferentes linguagens e plataformas, dessa forma encorajando a

integração entre sistemas.

Nesse contexto, surgiu a tecnologia Web Services como uma solução baseada em

tecnologias padrão para integrar sistemas distribuídos através da Internet. Atualmente,

essa tecnologia é responsável pelo crescimento na área de desenvolvimento e integração

de sistemas.

Existem várias definições para Web Services, porém segundo o W3C (World

Wide Web Consortium), Web Service é uma aplicação identificada por uma URI

(Uniform Resource Identifier), cuja interface pública e estilo de binding são definidos e

descritos usando XML [Austin et al., 2004]. Sua definição pode ser descoberta por

outras aplicações que devem interagir com esses Web Services de acordo com sua

definição, usando mensagens XML transportadas por protocolos Internet.

 -18-

Web Services baseiam-se em padrões, que são independentes de plataforma, e

não é um middleware de objetos distribuídos como CORBA (Common Object Request

Broker Architecture) e Java RMI (Java Remote Method Invocation), portanto não

suportam algumas características como coletor de lixo de objetos remotos distribuídos e

referências remotas. Dessa forma, a interface do serviço deve ser orientada a

documentos, não expondo suas operações usando os conceitos de orientação a objetos

como overloading, polimorfismo e herança.

De forma geral, para garantir a interoperabilidade entre as partes que necessitam

se comunicar, as mesmas devem concordar com relação a alguns pontos:

1. Formatação dos dados;

2. Regras para serializar e deserializar o estado de uma entidade nesse formato;

3. Protocolo de comunicação;

4. Protocolo de transporte da mensagem.

Cada um desses pontos é garantido por uma ou mais camadas que compõem a

pilha da tecnologia Web Services apresentada na próxima seção.

2.2 Arquitetura Orientada a Serviços

Web Services promovem um ambiente de integração que é interoperável e de baixo

acoplamento, pois suas características originam da arquitetura conceitual chamada SOA

(Service-Oriented Architecture), que é uma maneira de projetar software para fornecer

serviços às aplicações de usuários finais ou para outros serviços através de interfaces

publicáveis e descobertas [McGoven et al., 2003].

SOA emprega o paradigma “find, bind and execute”, que pode ser entendido

como “localizar, conectar e executar”. As entidades necessárias para implementar esse

paradigma são (ver Figura 2.1):

1. Consumidor do Serviço (Service Consumer): é uma aplicação, serviço ou

algum outro tipo de software que demanda por um serviço. É a entidade que

inicia o processo de busca no registro por um serviço para, em seguida, acoplá-

 -19-

lo e executá-lo. Para executar o serviço, o consumidor precisa enviar uma

requisição ao serviço no formato estabelecido no contrato.

2. Provedor do Serviço (Service Provider): é o serviço em si. É a entidade que

recebe as requisições dos consumidores e executa a tarefa solicitada, podendo

ser um componente, um módulo, um sistema de um mainframe ou qualquer

outro tipo de software que se registrou para fornecer um serviço aos

consumidores mediante um contrato. Para que possa receber solicitações, todo

serviço precisa ter um endereço na rede.

3. Registro (Service Registry): é o repositório onde os serviços são registrados e

onde os consumidores vão procurar pelos serviços que atendam às suas

necessidades. Quando o registro encontra um serviço compatível com a

solicitação, o endereço do serviço é retornado para o consumidor, que pode,

então, executá-lo.

Figura 2.1 - Entidades do paradigma “find, bind and execute”

O contrato dita a forma como as duas partes devem se comunicar, além de

estabelecer um conjunto de pré-condições e pós-condições necessárias à execução do

serviço.

Para tornar um serviço disponível aos possíveis consumidores, um Provedor de

Serviço precisa "publicá-lo" no Registro de Serviços, conforme mostra o passo 1. Para

 -20-

utilizar um serviço, o Consumidor primeiro busca o serviço no Registro (passo 2), que

por sua vez, retorna o endereço onde o serviço se encontra além do contrato. O contrato

vai definir as regras para a utilização do serviço. De posse do endereço e do contrato do

serviço desejado, o consumidor pode então "conectar-se" ao servidor e "executar" o

serviço, conforme mostra o passo 3.

Do ponto de vista técnico, Web Services são simplesmente um conjunto de

tecnologias que podem ser usadas para implementar o paradigma da arquitetura SOA

[McGoven et al., 2003]. A Figura 2.2 ilustra a pilha conceitual de Web Services,

categorizando suas tecnologias padrões em um modelo em camadas.

Descrição (WSDL)

Transporte (HTTP, HTTPS, SMTP)

Mensagem (SOAP/XML)

Registro (UDDI)

Descrição (WSDL)

Transporte (HTTP, HTTPS, SMTP)

Mensagem (SOAP/XML)

Registro (UDDI)

Figura 2.2 - Pilha das tecnologias de Web Services

Camada de Transporte

A principal função da camada de transporte é transferir dados de uma máquina para

outra utilizando um protocolo para transportar a mensagem. Web Services podem usar

múltiplos protocolos para transferir os dados como, por exemplo, HTTP, SMTP e FTP.

HTTP é o protocolo de transporte mais comumente adotado para transportar os

dados Web Services, pois o mesmo freqüentemente não é bloqueado por firewalls, que

tendem a ser estruturas de segurança de natureza bastante seletiva no que diz respeito ao

tráfego de informações.

 -21-

Camada de Empacotamento das Mensagens

No contexto de integração entre aplicações distribuídas, é necessário que o estado das

entidades seja enviado sobre a rede seguindo um formato e usando um protocolo

conhecidos. No caso de Web Services, isso significa que dentro da mensagem SOAP, o

documento XML representando o estado deve estar no formato padrão, para que ambas

as partes possam entender e interpretar corretamente as informações. A camada de

empacotamento das mensagens é a responsável pela formatação dos dados transmitidos

entre o cliente e o servidor sobre o protocolo de transporte.

A especificação padrão adotada por essa camada é o protocolo SOAP (Simple

Object Access Protocol) – protocolo “leve” para a troca de informações em um

ambiente descentralizado e distribuído [Box et al., 2000]. A especificação SOAP define

três pontos importantes:

1. Formato em que as mensagens XML devem ser estruturadas, incluindo as

mensagens de erro;

2. Os mecanismos de ligação ao protocolo de transporte da mensagem, ou seja, as

regras que ditam como uma mensagem deve ser enviada sobre um protocolo em

particular, chamados de SOAP Binding;

3. As regras de (de)serialização, chamadas de SOAP Encoding, para mapear as

estruturas de dados da aplicação em XML e, vice-versa.

Uma mensagem SOAP é um documento XML que contém três principais

elementos (ver Figura 2.3):

• Envelope: é o elemento raiz da mensagem XML e informa que a mensagem

sendo processada se trata de uma mensagem SOAP;

• Cabeçalho: é um elemento opcional usado para carregar informações auxiliares

para os serviços, por exemplo, de autenticação, segurança, transação e

roteamento. Qualquer nó na cadeia de processamento da mensagem SOAP pode

adicionar ou remover itens do cabeçalho, como também pode ignorá-los caso

não sejam entendidos. Caso o cabeçalho esteja presente, o mesmo deve ser o

primeiro elemento dentro do envelope;

 -22-

• Corpo: é a parte principal da mensagem porque contém os dados que devem ser

enviados. Esses dados podem representar uma chamada remota, descrevendo os

parâmetros ou valor de retorno, ou um simples documento XML. Esses dois

estilos de codificação do corpo das mensagens serão apresentados na Seção

2.3.1. Além desses, o corpo pode conter uma mensagem de erro indicando que

houve algum problema no processamento da mensagem.

<soap:Envelop xmlns:soap=”http://schemas.xmlsoap.org/soap/envelop/”>
 <soap:Header>
 <!-- elemento(s) do cabeçalho -->
 </soap:Header>
 <soap:Body>
 <!-- chamada RPC ou um Documento XML -->
 <soap:Body>
</soap:Envelop>

Figura 2.3 - Estrutura das mensagens SOAP

Camada de Descrição do Serviço

Essa camada tem como objetivo responder as seguintes questões:

1. Quais operações um serviço oferece?

2. Quais dados devem ser enviados para invocar uma determinada operação?

3. Qual protocolo usar para invocar um serviço?

A descrição de um serviço consiste em especificar em detalhes suas operações,

as mensagens que podem ser enviadas, os tipos de dados usados nessas mensagens, o

estilo das mensagens, o protocolo que o consumidor deve usar para acessar o serviço e a

sua localização.

A tecnologia padrão adotada para definir o contrato do serviço como um

conjunto de endereços de rede (endpoints) que operam sobre as mensagens formatadas é

a especificação WSDL (Web Services Description Language). O consumidor do serviço

usa a descrição do serviço em uma das seguintes maneiras:

1. Early Binding: durante o desenvolvimento, o consumidor gera o stub do serviço

a partir da interface WSDL, onde o consumidor do serviço faz referências

estáticas ao mesmo em tempo de compilação;

 -23-

2. Late Binding: utiliza o conceito de proxy gerado dinamicamente em tempo de

execução a partir da interface WSDL.

<definitions>

 <types>
 <schema>
 </schema>
 </types>

 <message>
 <part>
 </part>
 </message>

 <portType>
 <operation>
 <input message=””>
 </input>
 <output message=””>
 </output>
 <fault></fault>
 </operation>
 </portType>

 <binding>

 <soap:binding transport=”” style=”” />

 <operation>
 <input>
 <soap:body use=”” />
 </input>
 <output>
 <soap:body use=”” />
 </output>
 </operation>
 </binding>

 <service>
 <port>
 <soap:address location=”” />
 </port>
 </service>

</definitions>

Figura 2.4 - Estrutura de um documento WSDL

Antes de entender como projetar uma interface WSDL (ver Seção 2.3.1), é

importante apresentar a estrutura e a descrição dos principais elementos que compõem

um documento WSDL (Figura 2.4):

• <definitions>: elemento raiz do documento WSDL;

 -24-

• <types>: agrupa um ou mais elementos <schema> que contêm a declaração dos

tipos de dados usados pelos elementos <message>, independentemente de

linguagem e plataforma;

• <message>: define o formato das mensagens que devem ser trocadas dentro do

corpo de uma mensagem SOAP, pois contém os parâmetros de entrada ou valor

de retorno de um serviço. Cada elemento <message> pode ter zero ou mais

elementos <part>, onde cada <part> tem um nome e um atributo type ou

element;

• <operation>: esse elemento é uma definição abstrata de uma operação suportada

pelo serviço em termos de suas mensagens de entrada e saída. A mensagem de

entrada é definida pelo elemento <input> e a de saída é definida pelo elemento

<output>;

• <portType>: define o conjunto de operações, ou seja, representa a interface do

serviço;

• <binding>: representa a implementação concreta do elemento <portType>

usando um determinado protocolo como, por exemplo, SOAP, que é o mais

adotado. Se o serviço suportar mais de um protocolo, o arquivo WSDL deverá

ter um elemento <binding> para cada protocolo;

• <service>: coleção de elementos <port>, onde cada <port> descreve a

localização de rede para um elemento <binding>.

Camada de Registro

A camada de registro adota a especificação UDDI (Universal Description, Discovery,

and Integration) para oferecer uma maneira padrão de publicação das informações de

um Web Services e os mecanismos para descobrir quais serviços atendem às

necessidades de um determinado consumidor. Um repositório UDDI é semelhante a um

serviço de páginas amarelas, pois fornece operações de registro e descoberta de serviços

a partir de determinadas características.

 -25-

Web Services suportam o conceito de descoberta dinâmica de serviços. Um

consumidor de um serviço pode usar um registro para encontrar os serviços de seu

interesse. Os registros UDDI são Web Services que expõe sua API (Application

Program Interface) como um conjunto de mensagens SOAP bem definidas. Para cada

serviço registrado no repositório UDDI, são mantidos o contrato e informações sobre o

seu negócio.

2.3 Desenvolvendo Web Services

Muitas aplicações Web Services estão sendo publicadas sem que os desenvolvedores

tenham qualquer conhecimento sobre as tecnologias XML, SOAP e WSDL. Isso é

perfeitamente viável, pois os toolkits atuais disponibilizam funcionalidades para gerar

dinamicamente a interface WSDL do serviço e toda a camada de comunicação (stubs e

skeletons) a partir do código da aplicação. Essa forma de desenvolvimento é chamada

Bottom-up.

Apesar de ser uma maneira fácil e rápida de desenvolver, a mesma não é a mais

apropriada quando o objetivo é alcançar a interoperabilidade entre aplicações

heterogêneas, pois os toolkits podem não adotar as mesmas regras para gerar a interface

WSDL e as mensagens SOAP. Além disso, o desenvolvedor “aceita” o funcionamento

padrão desses toolkits que muitas vezes não está configurado para executar de forma

eficiente e interoperável.

Uma segunda alternativa de desenvolvimento é a Top-down que consiste em

iniciar pelo projeto da interface WSDL, pois a mesma representa o contrato que o

cliente e o servidor devem aderir. Criar o contrato WSDL refere-se ao processo de

projetar a interface baseando-se nas mensagens XML que devem ser trocadas, em vez

de basear-se no código do serviço.

Uma vez projetada a interface WSDL, a mesma deveria ser usada para gerar os

skeletons do lado do servidor que serão, por sua vez, usados como templates para a

implementação do serviço. Essa é a maneira mais indicada de desenvolvimento quando

 -26-

se deseja projetar uma aplicação Web Services corporativa, pois problemas de

interoperabilidade podem ser evitados manipulando diretamente o arquivo WSDL.

A próxima seção tem como objetivo apresentar as regras e configurações que

devem ser aplicadas durante o projeto da interface WSDL, uma vez que essa não é uma

tarefa fácil.

2.3.1 Projetando a Interface WSDL

Essa seção explica as duas principais decisões que os desenvolvedores devem tomar

durante o projeto da interface WSDL: configuração dos parâmetros style e use. Esses

parâmetros são de especial importância porque afetam a formação do corpo das

mensagens SOAP e as regras de codificação adotadas, porém os mesmos são

freqüentemente desconhecidos pelos desenvolvedores. O objetivo é mostrar como

configurar esses parâmetros e esclarecer a confusão sobre os diferentes formatos do

corpo da mensagem SOAP.

O primeiro parâmetro é o atributo style (ver Tabela 2.1), que controla a

estruturação do corpo da mensagem. Web Services podem expor suas operações

seguindo os seguintes estilos de codificação:

1. RPC: nesse estilo, o cliente invoca o método no servidor enviando no corpo da

mensagem SOAP todas as informações necessárias para a sua execução e recebe

a resposta da mesma maneira. Dessa forma, a estrutura do corpo da mensagem

SOAP deve conter a chamada remota, indicando o nome do método e os

parâmetros ou valor de retorno.

2. Document: esse estilo reflete o uso mais natural de XML e é mais flexível, pois

documentos XML são passados como entrada e saída dos serviços.

A segunda decisão, que especifica as regras de serialização e deserialização dos

dados, é a configuração do atributo use (ver Tabela 2.2). As duas possíveis opções são:

1. Literal: baseia-se num pré-acordo do esquema XML que define as regras para

codificar e interpretar o corpo da mensagem SOAP. A tecnologia XML Schema é

utilizada para definir os tipos dos dados.

 -27-

2. Encoded: baseia-se em um conjunto de regras definidas na especificação do

protocolo SOAP. Essa codificação não é a obrigatória, e também não existe um

padrão, pois depende de cada toolkit.

Tabela 2.1 - Regras para configurar o estilo de codificação do documento WSDL

Regra RPC Document

Atributo style do elemento
<soap:binding>

style=“rpc” style=“document”

Quantidade de elementos <part>

dentro do elemento <message>

Pode conter zero ou mais

elementos <part>, cada um

contendo o atributo type.

Deve conter zero ou um único

elemento <part> contendo um

atributo element.

Além de configurar os valores dos atributos style e use, outras regras são

necessárias para projetar a interface WSDL seguindo um desses estilos (ver Tabelas 2.1

e 2.2). Para as mensagens Encoded, deve-se configurar o atributo encodingStyle com

uma URL que especifique as regras adotadas para codificar e interpretar o corpo da

mensagem, enquanto que uma mensagem Literal adota um esquema XML como regra.

Tabela 2.2 - Regras para configurar o atributo “use” do documento WSDL

Regra Encoded Literal

Atributo use do elemento
<soap:body>

use=“encoded” use=“literal”

Outros atributos do elemento
<soap:body>

encodingStyle="http://schemas.xml

soap.org/soap/encoding/"

Independentemente da configuração adotada, as partes têm que concordar sobre

o mesmo formato da mensagem SOAP e mecanismo de codificação usado para que a

mensagem seja corretamente processada. A partir das possíveis configurações desses

atributos, existem quatro combinações de estilo de codificação:

 -28-

• RPC/Encoded;

• RPC/Literal;

• Document/Encoded;

• Document/Literal.

Adiciona-se a essas combinações, o estilo Document/Literal Wrapped, também

chamado de Literal/Wrapped, definido pela Microsoft, porém o mesmo não é um estilo

oficialmente documentado. Document/Literal Wrapped é uma convenção de

programação que simula o estilo RPC, mas produz mensagens no estilo

Document/Literal.

Embora Document/Literal Wrapped não seja um estilo oficial da especificação

WSDL, o mesmo é composto por um conjunto de regras que devem ser seguidas

durante o projeto da interface WSDL [Manes, 2004]:

1. A definição da mensagem de entrada e saída deve conter um único elemento

<part> que deve obrigatoriamente conter um atributo element (não um type)

com o mesmo nome da operação;

2. O nome do element referenciado no elemento <part> deve estar definido na

seção <types> do documento WSDL como um tipo complexo que é uma

seqüência de elementos, onde cada elemento dentro da seqüência representará

um parâmetro do serviço;

3. Na seção <binding>, o elemento <soap:binding> deveria configurar o seu

atributo “style=document” e o elemento <soap:body> deveria configurar o

atributo “use=literal” e nada mais.

Dessa forma, existem cinco combinações para escolher durante o projeto da

interface WSDL. A Diretriz 1 que será apresentada no Capítulo 4, aborda cada uma

dessas combinações e apresenta as implicações no desempenho e na interoperabilidade

decorrentes da seleção de uma combinação sobre a outra.

 -29-

2.4 Web Services Toolkits

Várias implementações Web Services amadureceram rapidamente. As mesmas diferem

no seu suporte aos tipos de dados definidos na aplicação, no modo de usar, na

linguagem de implementação e, principalmente, no desempenho e suporte a otimizações

[Govindaraju et al., 2004].

Atualmente mais de setenta Web Services toolkits estão disponíveis para uma

variedade de plataformas e linguagens de programação como, por exemplo, Ada, C#,

C++, Delphi, Java, Perl, Python e Visual Basic [SoapWare.Org, 2004].

Esse grande crescimento causou alguns problemas de interoperabilidade entre

plataformas. Um caso comum era um envelope SOAP gerado por um toolkit não ser

completamente entendido por um outro, pois os mesmos diferiam no tratamento do

cabeçalho de uma mensagem SOAP ou na quantidade de dígitos para representar um

tipo de dado decimal ou na geração do arquivo WSDL. Existem esforços dirigidos pelos

participantes do fórum Soap Builders [SOAP Builders, 2004] para criar padrões de

interoperabilidade entre Web Services toolkits, mesmo que desenvolvidos por

fabricantes diferentes.

A seguir, serão apresentadas algumas implementações Web Services mais

populares e que foram exploradas pelos trabalhos relacionados apresentados no próximo

capítulo.

2.4.1 Apache Axis

Apache eXtensible Interaction System é uma implementação Web Services gratuita e de

código aberto desenvolvida pela Apache Software Foundation [Apache Axis, 2004].

Surgiu como sucessora da implementação Apache SOAP [Apache SOAP, 2004], por

isso também é conhecida como Apache SOAP 3.0.

O objetivo dessa substituição foi criar uma implementação SOAP mais modular,

flexível e de alto desempenho. Entre as novas características incorporadas ao Axis, a

 -30-

principal foi a utilização do parser XML SAX (Simple API for XML) [SAX, 2004] para

melhorar o desempenho.

Axis é a implementação SOAP mais popular escrita na linguagem Java e boa

parte das ferramentas de desenvolvimento do mercado incorporam na sua

implementação esse toolkit como, por exemplo, JBoss, Borland JBuilder, Borland

Enterprise Server e JOnAS (JavaTM Open Application Server) [Apache Axis, 2004].

2.4.2 JWSDP (Java Web Services Developer Pack)

É um toolkit gratuito mantido pela Sun Microsystems para acelerar o desenvolvimento

de aplicações Web, XML e Web Services [Sun, 2004]. O JWSDP contém ferramentas,

APIs e tecnologias para simplificar a construção de Web Services na plataforma Java.

2.4.3 Glue

O toolkit Glue da webMethods é uma plataforma comercial para desenvolver aplicações

Java com JSP, Servlet e Web Services [webMethods, 2004]. Com o uso de plugins, o

Glue pode ser integrado a ambientes de desenvolvimento como JBuilder e Eclipse,

permitindo a criação das aplicações Web Services através de assistentes de programa

(wizards).

2.4.4 SSJ (Systinet Server for Java)

Systinet Server for Java é uma solução completa e gratuita desenvolvida pela Systinet

para construir aplicações J2EE (Java 2 Platform, Enterprise Edition) e Web Services

[Systinet, 2004]. Esse toolkit é fácil de usar, de alto desempenho e constitui um

ambiente completo para criar, instalar e gerenciar suas aplicações, uma vez que embute

seu próprio servidor de aplicação.

 -31-

2.4.5 XSOAP

Anteriormente chamado de SoapRMI, foi desenvolvido pelo laboratório Extreme! da

Universidade Indiana com o objetivo de estudar o protocolo SOAP aplicado em

sistemas que demandam por alto desempenho [Extreme!, 2004]. É um sistema RMI

baseado em SOAP, implementado em Java e C++, que permite criar e invocar Web

Services.

O parser XML Pull Parser (XPP) [Extreme!, 2004] foi criado durante o

desenvolvimento de SoapRMI, a fim de melhorar o seu desempenho ao trabalhar com

grandes estruturas de dados. O parser XPP2, sucessor do XPP, faz parte agora do

XSOAP.

2.4.6 Framework .NET

.NET é o atual framework Web Services da Microsoft, substituindo o toolkit Microsoft

SOAP. Esse framework é um conjunto de ferramentas de desenvolvimento de software

usadas para criar, publicar e consumir Web Services [Microsoft, 2004].

Apesar da capacidade de integração e comunicação com outras plataformas por

meio de Web Services, .NET é centrado no ambiente Microsoft, ou seja, os serviços

criados com .NET podem apenas ser instalados em sistemas operacionais da Microsoft.

Esse toolkit suporta o estilo RPC, porém adota o estilo Document como o padrão.

2.4.7 gSOAP

O toolkit de desenvolvimento Web Services gSOAP – gratuito e de alto desempenho –

permite a construção de aplicações Web Services em C/C++ [gSOAP, 2004]. A

implementação oferece um compilador fácil de usar que gera stub e skeleton para

integrar aplicações existentes em C/C++ com Web Services [Engelen and Gallivan,

2002].

 -32-

2.4.8 bSOAP

bSOAP é uma implementação otimizada do protocolo SOAP para desenvolver

aplicações Web Services em C++ [Abu-Ghazaler et al., 2004] [Abu-Ghazaler et al.,

2004a] [Abu-Ghazaler et al., 2004b].

 bSOAP foi desenvolvido com o objetivo de viabilizar a adoção de SOAP em

aplicações científicas que demandam por alto desempenho e freqüentemente transmitem

grandes arrays contendo números ponto flutuante e tipos de dados complexos.

2.5 Considerações Finais

O objetivo desse capítulo não foi simplesmente introduzir ao leitor a definição da

tecnologia Web Services, uma vez que a mesma encontra-se bastante difundida no

mercado e no meio acadêmico, mas dar uma visão geral dos conceitos necessários ao

entendimento dos próximos capítulos dessa dissertação, principalmente no que se refere

ao projeto de interfaces WSDL.

Com relação à tecnologia Web Services, foram apresentados os pontos em que as

partes integrantes devem concordar para garantir a integração e cada uma das suas

tecnologias – SOAP, WSDL e UDDI – adotadas para implementar o paradigma “find,

bind and execute” da arquitetura SOA. O resultado da adoção dessas tecnologias

ubíquas faz de Web Services uma solução independente de plataforma e linguagem.

Existem duas formas de desenvolvimento de aplicações Web Services, cada uma

com suas vantagens e desvantagens. A primeira é chamada de Bottom-up e consiste em

gerar a interface WSDL a partir do código da aplicação. Essa forma é a mais usada

pelos desenvolvedores, porque além de ser mais rápida, os mesmos não têm qualquer

contato com as tecnologias XML e WSDL. Entretanto, as aplicações geradas dessa

forma podem estar suscetíveis a problemas de interoperabilidade e/ou eficiência, pois

dependem das configurações do toolkit utilizado.

 -33-

A segunda é chamada Top-down e consiste em projetar primeiramente a

interface WSDL, e em seguida, usar a mesma para gerar os skeletons e stubs. Essa é a

mais indicada quando se deseja projetar aplicações Web Services corporativas.

Durante o projeto do contrato WSDL, algumas decisões com relação aos

parâmetros style e use devem ser tomadas a fim de definir a estruturação e regras de

codificação das mensagens SOAP. Por isso a prática de desenvolvimento a partir da

interface WSDL não é comumente adotada, uma vez que os projetistas não sabem como

configurar esses parâmetros nem como aplicar algumas regras com relação à estrutura e

quantidade de elementos que devem compor o documento WSDL.

Por fim, foram apresentados oito Web Services toolkits para desenvolver

aplicações Web Services nas linguagens Java e C/C++ que são comumente adotados no

mercado e foram estudados nos trabalhos relacionados apresentados no próximo

capítulo.

 -34-

3 Desempenho de Web Services

3.1 Introdução

A tecnologia Web Services está se tornando uma importante solução para prover a

comunicação entre aplicações heterogêneas. Logo, o fato de está sendo adotada pelas

empresas como a infra-estrutura para expor seus sistemas, aumenta a demanda pela sua

eficiência.

Dessa forma, existem algumas discussões avaliando o desempenho de Web

Services, porque o objetivo principal do seu projeto foi prover a interoperabilidade entre

aplicações Web Services distribuídas. Durante a especificação do protocolo SOAP, o

desempenho foi sacrificado a fim de obter simplicidade, interoperabilidade,

universalidade e flexibilidade.

Os padrões adotados por Web Services, apresentados no capítulo anterior,

incorporam gargalos adicionais comparados à interação Web tradicional, porque sua

universalidade introduz um problema: as mensagens SOAP são textuais e seu tamanho é

significantemente maior que as mensagens dos protocolos binários, aumentando, dessa

forma, os custos de codificação e de comunicação.

 -35-

De forma geral, as pesquisas na área de desempenho de Web Services, além de

analisarem sua eficiência em domínios de aplicação, como computação científica e

finanças, consistem em:

1) Estudar as vantagens e desvantagens do uso de XML, uma vez que WSDL,

SOAP e UDDI baseiam-se nessa tecnologia;

2) Comparar a eficiência de Web Services com outros middleware como CORBA e

Java RMI;

3) Avaliar o desempenho dos diferentes Web Services toolkits, implementados em

diferentes linguagens;

4) Identificar os gargalos inerentes a Web Services, tanto na implementação quanto

na camada de comunicação;

5) Desenvolver e aplicar possíveis otimizações para eliminar ou reduzir o impacto

desses gargalos e projetar aplicações Web Services eficientes.

Para cada uma dessas abordagens, serão apresentados os principais trabalhos

realizados, dando ênfase a seus resultados e conclusões. O objetivo é apresentar de

forma clara o estado da arte do desempenho de Web Services e permitir que qualquer

desenvolvedor ou arquiteto possa tomar decisões mais eficientes durante o projeto

desses Web Services toolkits.

3.2 XML versus Representação Binária

O formato binário e XML são duas formas populares de representação das mensagens

transportadas na rede, onde XML tem sido largamente adotado quando a

interoperabilidade entre aplicações é necessária, enquanto que a representação binária é

usada quando o desempenho é um fator crítico. Como a flexibilidade e o desempenho

dos sistemas que se comunicam dependem da representação adotada, estudos têm sido

realizados a fim de explorar as vantagens e desvantagens associadas a essas duas

representações de dados.

 -36-

Cai et al. (2002) compararam o tamanho em bytes das mensagens transmitidas

entre o cliente e o servidor representadas nos formatos XML e binário e depois

analisaram o papel da técnica de compressão na redução do tamanho das mensagens,

adotando os algoritmos de compressão Zip e XMill [Suciu and Liefke, 2004], que é uma

técnica exclusiva para comprimir dados XML. Os resultados obtidos foram que:

1. Sem aplicar qualquer técnica de compressão, as mensagens XML são, em média,

cinco vezes maiores que sua representação binária;

2. A mensagem XML comprimida usando o algoritmo Zip é duas vezes maior que

a mesma mensagem binária comprimida usando o mesmo algoritmo;

3. A mensagem XML comprimida utilizando o algoritmo XMill é menor que a

mensagem binária comprimida com o algoritmo Zip. Porém, segundo os autores,

esse resultado só é verdadeiro para mensagens com mais de um megabyte;

4. Embora as técnicas de compressão reduzam o tamanho das mensagens, elas

aumentam o tempo de resposta devido ao tempo gasto na compressão dos dados.

Então, os dados apenas deveriam ser comprimidos quando a largura de banda é

limitada.

Hericko et al. (2003) analisaram o custo de espaço em memória e do tempo

gasto do processo de (de)serialização binária e XML para as plataformas Java e .NET,

com o objetivo de investigar as razões das diferenças de desempenho. Do ponto de vista

da serialização binária, a plataforma Java apresentou um desempenho melhor por um

fator de, aproximadamente, 1,3 a 2,3 e ocupa 25% menos espaço em memória.

Enquanto que, o processo de serialização XML da plataforma .NET foi 65% a 85%

mais rápido que Java usando a tecnologia JAXB (Java Architecture for XML Binding) e

o tamanho das mensagens geradas foi 3% menor.

Kohlhoff e Steele (2003) obtiveram um importante resultado comparando o

desempenho de duas representações textuais – XML e FIX (Financial Information

eXchange) [FIX, 2005] – com a representação binária CDR (Commom Data

Representation). Analisando o tamanho da mensagem, a latência e a vazão, verificou-se

que o protocolo FIX foi mais eficiente e produziu mensagens mais compactas. Dessa

forma, um formato de rede baseado em texto pode apresentar um desempenho melhor

 -37-

que um binário e que o uso de padrões baseados em XML não é o único fator da

ineficiência de Web Services.

3.3 Comparação entre Web Services e outros
Middleware

Como os desenvolvedores de software podem optar entre várias tecnologias de

middleware, desempenho tem sido um fator decisivo na escolha da solução apropriada

para implementar uma aplicação distribuída. Dessa forma, vários estudos comparando o

desempenho de Web Services com outros middleware foram realizados a fim de

investigar o trade-off entre eficiência e interoperabilidade, pois os mesmos adotam

diferentes protocolos e formatos de dados na troca das mensagens. Por exemplo, IIOP

(Internet Inter-Orb Protocol) e JRMP (Java Remote Messaging Protocol) são

protocolos binários que agem diretamente sobre TCP/IP, enquanto que Web Services

transportam comumente as mensagens SOAP sobre o protocolo HTTP.

Uma análise detalhada do tempo de resposta e da vazão de diferentes protocolos

RMI foi realizada por Govindaraju et al. (2000), comparando a eficiência de Web

Services com a de Java RMI e Nexus RMI – implementação da API de Java RMI,

porém adota Nexus como protocolo de comunicação. Outra diferença entre esses

middleware é que Java RMI apenas suporta a interoperabilidade entre aplicações Java e

Nexus RMI provê a comunicação entre aplicações Java e C++. Em todos os

experimentos, o desempenho de Web Services foi dez vezes menor que os demais

middleware, exceto quando pequenas mensagens eram trocadas, onde Nexus RMI foi o

mais ineficiente. No contexto de computação científica de alto desempenho, os autores

concluíram que as mensagens SOAP baseadas em XML não são apropriadas para

transferir grandes volumes de dados numéricos, mas devido à sua flexibilidade e

universalidade, podem ser utilizadas como parte de um sistema multi-protocolo usando

SOAP como um protocolo de ‘língua franca’.

Elfwing et al. (2002) realizaram um estudo comparativo do desempenho de Web

Services e CORBA focando nos aspectos da comunicação entre o cliente e o servidor.

 -38-

Dois cenários de teste foram explorados: 1) Apenas um cliente enviando requisições ao

servidor; 2) Além do cliente, um gerador de carga também enviava requisições

simultâneas. A implementação Web Services apresentou um tempo de resposta 400

vezes mais lento, atingindo seu limite de saturação de processamento no primeiro

cenário. Isso implica que existem gargalos de desempenho na implementação Web

Services que é independente da carga submetida ao serviço.

Os resultados apresentandos em [Davis and Parashar, 2002] [Devaram and

Andresen, 2003] e [Engelen, 2003] também confirmaram que Web Services no seu uso

direto e “ingênuo” são mais ineficientes que Java RMI e CORBA, porém existem vários

esforços que estão sendo avaliados para otimizar seu desempenho (ver Seção 3.6).

Juric et al. (2004) compararam o desempenho do Web Services toolkit JWSDP

com as tecnologias de tunelamento de Java RMI (HTTP-to-port, HTTP-to-CGI e HTTP-

to-Servlet) que podem ser utilizadas para desenvolver aplicações Java distribuídas que

obrigatoriamente necessitam se comunicar através de firewalls. A vantagem de usar

uma dessas tecnologias de tunelamento na comunicação entre aplicações Java RMI

existentes, é que nenhuma alteração no seu código é necessária. Porém, nos testes

realizados transportando apenas tipos de dados simples, Web Services foi três vezes

mais eficiente. Diante desses resultados, cabe ao arquiteto decidir entre eficiência,

segurança e o custo de implementação.

Gray (2005) avaliou o desempenho de diferentes middleware para desenvolver

aplicações Java distribuídas – CORBA/IIOP, Java RMI/JRMP, Java RMI/HTTP e Web

Services/JAX-RPC (Java API for XML-Based RPC) – focando na análise de métricas

como o número total de pacotes e bytes transferidos e o tempo de resposta. Quando o

cliente invocava uma operação simples que retorna uma string de tamanho fixo, os

resultados encontrados foram consistentes com os dos trabalhos anteriores, onde Java

RMI/JRMP apresentou o melhor desempenho e Web Services foi mais eficiente que

Java RMI/HTTP. Porém, utilizando um array de tipos de dados simples e com poucos

objetos, CORBA/IIOP apresentou o melhor desempenho e Java RMI/HTTP e Web

Services apresentaram resultados semelhantes. Por fim, avaliando estruturas de dados

grandes e complexas, Web Services foi o mais ineficiente, diferentemente dos resultados

apresentados em [Juric et al., 2004]. A partir desses resultados, pode-se concluir que a

 -39-

avaliação de desempenho de Web Services deve analisar a influência da natureza e do

tamanho dos dados e da maneira como os mesmos são organizados em pacotes de rede.

3.4 Desempenho de Web Services Toolkits

O desempenho dos Web Services toolkits tem sido comparado de diferentes maneiras,

principalmente utilizando os mais variados tipos de dados, com o objetivo de investigar

a sua eficiência e permitir que os desenvolvedores possam escolher o toolkit mais

apropriado para expor uma aplicação distribuída.

Davis e Parashar (2002) analisaram a eficiência das implementações Web

Services – Apache SOAP, Apache Axis, Microsoft SOAP Toolkit, SOAP::Lite versão

Perl e SoapRMI – operando sobre o protocolo HTTP e usando os servidores de

aplicação Tomcat da Apache e o IIS (Internet Information Services) da Microsoft. As

comparações foram feitas utilizando um benchmark simples com apenas três métodos:

um método que nem recebia nem retornava valores, o segundo retornava uma string e o

último retornava um array de inteiros. A partir dos experimentos realizados, os

seguintes resultados foram obtidos:

1. Quando o cliente e o servidor rodavam em máquinas distintas, verificou-se um

aumento de 200ms no tempo de resposta dos toolkits Apache SOAP, Microsoft

SOAP Toolkit e SOAP::Lite. Esse aumento foi causado pelos gargalos de

comunicação (ver Seção 3.5.5);

2. Microsoft SOAP Toolkit apresentou o melhor resultado quando um array de

inteiros foi retornado;

3. Em relação ao Apache SOAP, o toolkit Apache Axis apresentou o melhor

desempenho (ver Seção 2.4.1);

4. O toolkit SoapRMI teve um bom desempenho em todos os experimentos e o

SOAP::Lite foi o mais ineficiente.

Ng et al. (2003) estudaram o desempenho de três implementações comerciais de

Web Services rodando sobre o protocolo HTTP, porém seus nomes não foram

 -40-

mencionados. O objetivo foi avaliar o impacto no desempenho dos diferentes estilos de

codificação das mensagens SOAP suportados por cada um dos toolkit, como

RPC/Encoded, Document/Literal e Document/Encoded. As métricas de desempenho

utilizadas nesse processo de avaliação foram a latência, a vazão e os custos de

serialização e deserialização de diferentes de tipos de dados. Além de requerer metade

do número de bytes para representar as mensagens, o estilo de codificação

Document/Literal apresentou o melhor desempenho, enquanto que o estilo

RPC/Encoded foi o mais ineficiente. Outro resultado importante foi que os toolkits

apresentaram diferentes resultados de desempenho para um mesmo estilo de

codificação. A Figura 3.1 foi extraída de [Ng et al., 2003] e ilustra a latência dos toolkits

analisados para enviar mensagens simples, média e complexas usando diferentes estilos

de codificação.

A
(D

oc
/E

nc
)

A
(D

oc
/L

it)

A
(R

PC
/E

nc
)

B
(D

oc
/L

it)

B
(R

PC
/E

nc
)

C
 (R

PC
/E

nc
)

Simples
Média

Complexa0

20

40

60

80

100

120

140

(ms)

Figura 3.1 - Latência das mensagens SOAP usando diferentes estilos

Govindaraju et al. (2004) comparam o desempenho dos toolkits gSOAP, Axis

C++, Axis Java, .NET e XSOAP4/XSUL utilizando os tipos de dados comuns em

computação científica, como array de string e de números ponto flutuante. O objetivo

foi identificar o toolkit mais apropriado para trabalhar com dados científicos. Entre os

toolkits analisados, o gSOAP foi o mais eficiente e o Axis Java, o mais lento.

 -41-

A Sun Microsystems desenvolveu um benchmark para comparar o desempenho

do seu toolkit JWSDP (Java Web Services Developer Pack) com o framework .NET da

Microsoft. Em todos os experimentos realizados, o toolkit JWSDP apresentou um

desempenho e escalabilidade superiores [Sun, 2004b]. Em resposta a Sun, a Microsoft

realizou os mesmos testes, porém usando uma versão mais atualizada do toolkit

JWSDP, e obteve resultados totalmente de diferentes, onde o framework .NET foi duas

a três vezes mais eficiente [Microsoft, 2004b].

Qworks [Qworks, 2004] realizou os mesmos testes de [Sun, 2004b] e

[Microsoft, 2004b] e adicionou à avaliação o toolkit Axis Java. Usando J2SE (Java 2

Standard Edition) versão 1.5, os toolkits JWSDP e .NET apresentaram desempenhos

semelhantes e foram mais eficientes que o Axis. Porém, usando J2SE versão 1.4 os

resultados obtidos foram semelhantes aos publicados em [Microsoft, 2004b], onde .NET

apresentou o melhor desempenho. Ambos JWSDP e Axis foram mais eficientes quando

a versão do J2SE foi alterada de 1.4 para a versão 1.5, sendo a otimização do JWSDP

maior. A partir dos resultados obtidos, detectou-se que a versão da plataforma Java

adotada impacta no desempenho do Web Services toolkit.

Além de comparar o desempenho dos toolkits gSOAP, bSOAP, Axis versão Java

e XSUL, Head et al. (2005) propuseram um benchmark para quantificar o desempenho

desses toolkits usando arrays de diferentes tamanhos e tipos de dados (ponto flutuante,

string e inteiros). O benchmark era composto por interfaces WSDL que definiam

operações projetadas para testar a latência, o desempenho fim-a-fim e os custos de

serialização e deserialização separadamente, pois o toolkit usado pelo cliente pode ser

diferente do usado para implementar o serviço. As chamadas das operações definidas

nessas interfaces WSDL foram implementadas para cada toolkit avaliado. Os autores

apresentaram importantes resultados referentes ao desempenho dessas implementações

Web Services: 1) o toolkit Axis apresentou a maior latência e o gSOAP, a menor; 2)

Axis e XSUL apresentaram custos de serialização similares, porém, em termos de

deserialização, o Axis é muito mais ineficiente quando arrays de tipos de dados simples

são usados; e 3) o desempenho fim-a-fim do XSUL degrada consideravelmente usando

tipos de dados complexos.

 -42-

3.5 Gargalos de Desempenho

O uso do protocolo HTTP e de documentos XML formatados segundo o protocolo

SOAP promovem a interoperabilidade entre as aplicações, porém incorporam um

aumento significativo no tempo de processamento e nos custos de comunicação.

Nessa seção serão apresentados os trabalhos que focaram no levantamento de

gargalos de desempenho associados a Web Services que são decorrentes de decisões de

projeto tomadas durante o desenvolvimento dos Web Services toolkits, da escolha do

protocolo de transporte da mensagem SOAP e os inerentes ao próprio protocolo SOAP.

Antes de detalhar os gargalos nas subseções seguintes, é importante entender os

diferentes estágios [Chiu et al., 2002] que compõem o processo de envio e recebimento

das mensagens SOAP (Figura 3.2).

Figura 3.2 - Estágios para enviar e receber uma mensagem SOAP

Para enviar uma mensagem SOAP são necessárias, de forma geral, as fases para

varrer as estruturas de dados, serializar os dados para XML, armazenar os dados XML

no buffer e, por fim, transmitir o conteúdo do buffer na rede. O receptor deve ler a

mensagem da rede, varrer (parse) o documento XML para validar sua sintaxe,

interpretar o conteúdo de cada tag XML e deserializar o documento XML.

Dados Serializar Buferizar Transmitir

rede

Parse Deserializar InterpretarLer

Enviando uma mensagem SOAP

Recebendo uma mensagem SOAP

Dados Serializar Buferizar Transmitir

rede

Deserializar InterpretarLer

Enviando uma mensagem SOAP

Recebendo uma mensagem SOAP

 -43-

3.5.1 Tamanho da Mensagem

O tamanho da mensagem SOAP tem sido uma métrica de desempenho bastante

analisada a fim de calcular o aumento no tamanho das mensagens devido ao uso da

tecnologia XML.

A codificação das mensagens no formato de texto expande o tamanho da

mensagem por um fator de 4 a 10 vezes em relação à sua representação binária

[Govindaraju et al., 2000] [Kohlhoff and Steele, 2003] [Ng et al., 2003] [Ying et al.,

2004]. Essa expansão pode ter um impacto significativo na comunicação e no tempo

total de execução, pois requer um buffer de memória maior, mais largura de banda e

mais processamento [Engelen, 2003].

3.5.2 Escolha do Parser XML

O processamento de documentos XML está assumindo uma grande importância nas

infra-estruturas de tecnologia da informação nos tempos atuais e o cenário de uso mais

conhecido são Web Services, pois SOAP é um protocolo baseado em XML e suas

mensagens têm que ser varridas (parsed) e interpretadas antes de serem invocadas.

Além das mensagens SOAP, as tecnologias WSDL, utilizada para definir as operações

dos serviços, e XML Schema, utilizada para definir os tipos de dados das mensagens,

também são baseadas em XML.

O parsing do documento XML em tempo de execução requer um tempo de

processamento adicional que pode resultar em um longo tempo de resposta do servidor

[Chiu et al., 2002] [Davis and Parashar, 2002] [Elfwing et al., 2002] [Kohlhoff and

Steele, 2003] [Govindaraju et al., 2004].

Atualmente três modelos de parsing de documentos XML estão sendo usados

pelos toolkits:

• Document Object Model (DOM): constrói uma representação orientada a objetos

do documento em memória. Esse modelo de processamento é o mais indicado

quando o documento necessita ser alterado;

 -44-

• Simple API for XML (SAX): é um modelo orientado a eventos que notifica à

aplicação a ocorrência de elementos no documento através de chamadas

callback, e dessa forma, não necessita construir uma representação em memória

do documento;

• XML Pull Parsing (XPP): oferece vantagens como alto desempenho, um uso

otimizado de memória comparado ao modelo DOM e facilidade de uso. Permite

que o parsing XML seja realizado de forma incremental, onde a aplicação

controla e solicita ao parser o próximo evento XML apenas quando a mesma

pode processá-lo, ou seja, o parsing pode ser interrompido a qualquer momento

e retomado quando a aplicação estiver pronta para consumir mais dados.

No momento da escolha do modelo de processamento é importante entender as

limitações de cada um e avaliar o trade-off entre facilidade de uso e eficiência. Uma

desvantagem comum a todos esses modelos é que requerem que os dados sejam

varridos duas vezes: a primeira para o parser fazer a análise sintática do documento, e a

segunda, para a aplicação interpretar o conteúdo.

Elfwing et al. (2002) compararam os modelos de parsing DOM e SAX usando

duas implementações – Xerces e Crimson. Conforme o esperado, o modelo SAX foi

mais eficiente que o modelo DOM. Porém, para o mesmo modelo de processamento,

existiu uma grande diferença de desempenho entre as implementações, pois o Xerces

SAX foi seis vezes mais lento que Crimson SAX. Além disso, o Crimson DOM foi mais

eficiente que o Xerces SAX. A partir desses resultados, conclui-se que é importante

analisar a implementação do modelo de parsing utilizada pelo toolkit.

3.5.3 Custos de Serialização e Deserialização

O tempo gasto nas fases de serialização e deserialização das mensagens SOAP tem sido

identificado como o de maior impacto no tempo total de execução, com o custo da

deserialização maior que o da serialização [Govindaraju et al., 2000] [Chiu et al., 2002]

[Davis and Parashar, 2002] [Devaram and Andresen, 2003] [Engelen, 2003] [Kohlhoff

and Steele, 2003] [Govindaraju et al., 2004] [Ng et al., 2003].

 -45-

Além de consumir dez vezes mais memória que o processo de (de)serialização

binária, a conversão entre objetos Java e mensagens XML é consideravelmente maior

que os custos associados à comunicação e à buferização dos dados [Govindaraju et al.,

2000], devido ao uso da tecnologia reflection para instanciar os objetos.

Devaram e Andresen (2003) identificaram que 50% do tempo de execução são

gastos na serialização da mensagem SOAP em XML antes que seja enviada para o

servidor e na criação da conexão HTTP. Porém, quando a conversão envolve arrays do

tipo double, as rotinas de (de)serialização podem gastar 90% do tempo total de uma

chamada SOAP [Chiu et al., 2002].

3.5.4 Cálculo do Tamanho da Mensagem SOAP

De acordo com a especificação do protocolo HTTP 1.0 [Berners et al., 1996], é

necessário especificar o tamanho exato do corpo da mensagem HTTP, que é a

mensagem SOAP codificada em XML, no atributo “Content-Length” do cabeçalho,

quando o protocolo HTTP 1.0 for adotado para transportar as requisições SOAP. Porém,

para calcular o tamanho de uma mensagem SOAP que é dinâmica, o cliente deve

primeiro serializá-la antes mesmo de finalizar a construção do cabeçalho [Chiu et al.,

2002] [Kohlhoff and Steele, 2003].

A solução adotada por um Web Services toolkit para realizar esse cálculo tem

impacto direto no seu desempenho. Uma solução simples e mais comumente utilizada é

usar buffers separados para o cabeçalho e para o corpo HTTP. Apenas quando a

mensagem é completamente serializada e armazenada no buffer, é que seu tamanho será

calculado e o valor é colocado no atributo “Content-Length” [Govindaraju et al., 2004].

Esta solução apesar de ser fácil de implementar, pode apresentar os seguintes problemas

[Chiu et al., 2002] [Shirasuma et al., 2002] [Kohlhoff and Steele, 2003]:

1. Consumir muita memória se a mensagem serializada for grande, uma vez que a

mesma será armazenada no buffer;

2. Invocar várias chamadas de sistema para o sistema operacional transmitir os

dados armazenados nos buffers;

 -46-

3. Usando um buffer que excede o tamanho da cache de sistema, poderá aumentar

a falta de cache;

4. As fases de serialização, de transmissão na rede e de deserialização são

realizadas em seqüência (ver Figura 3.2). Tais fases não podem ser sobrepostas

porque a mensagem não pode ser enviada até que o processo de serialização

XML tenha terminado, para que se possa calcular o seu tamanho. E dependendo

do modelo de parsing utilizado no receptor, a mensagem só poderá ser

deserializada depois que todos os dados estejam armazenados no buffer.

3.5.5 Gargalos de Comunicação

Alguns estudos focaram na análise dos custos associados diretamente ao protocolo de

transporte, principalmente o protocolo HTTP, e à implementação da camada de

comunicação do toolkit.

SERVIDORCLIENTE

1. [TCP SYN]

2. [TCP SYN/ACK]

3. [TCP ACK]

4. HTTP REQUEST

5. HTTP RESPONSE (HEAD)

9. [FIN, ACK]

11. [FIN, ACK]

12. [ACK]

10. [ACK]

6. [ACK]

7. HTTP RESPONSE (BODY)

8. [ACK]

SERVIDORCLIENTE

1. [TCP SYN]

2. [TCP SYN/ACK]

3. [TCP ACK]

4. HTTP REQUEST

5. HTTP RESPONSE (HEAD)

9. [FIN, ACK]

11. [FIN, ACK]

12. [ACK]

10. [ACK]

6. [ACK]

7. HTTP RESPONSE (BODY)

8. [ACK]

CLIENTE

1. [TCP SYN]

2. [TCP SYN/ACK]

3. [TCP ACK]

4. HTTP REQUEST

5. HTTP RESPONSE (HEAD)

9. [FIN, ACK]

11. [FIN, ACK]

12. [ACK]

10. [ACK]

6. [ACK]

7. HTTP RESPONSE (BODY)

8. [ACK]

Figura 3.3 - Tráfego de pacotes para uma chamada SOAP/HTTP

O processo de identificação dos gargalos de comunicação baseou-se na análise

detalhada do tráfego de pacotes da comunicação entre o cliente e o servidor. Os

 -47-

seguintes gargalos foram identificados [Elfwing et al., 2002] [Davis and Parashar, 2002]

[Gray, 2004]:

1. Quebra da requisição ou resposta do servidor em duas partes: a primeira

contendo o cabeçalho HTTP e a segunda, o corpo da resposta que representa o

envelope SOAP. A Figura 3.3 foi extraída de [Elfwing et al., 2002] e ilustra esse

comportamento, onde a resposta do servidor foi quebrada. Outro ponto é que

para cada uma dessas partes, um pacote de confirmação é transmitido na rede;

2. Número total de pacotes de dados necessários para transmitir a mensagem

SOAP: além dos custos associados à transferência dos documentos, quanto mais

dados são transmitidos na rede, mais controle dos pacotes é necessário. Os Web

Services toolkits geram, em média, de 3 a 5 vezes mais pacotes de dados.

3. Atraso para enviar os pacotes de confirmação (pacotes de número 6 e 8 na

Figura 3.3): esse atraso acontece em dois momentos: o primeiro após o cliente

receber o pacote de número 5 com cabeçalho, e o segundo após o cliente receber

o pacote de número 7 com o corpo da mensagem. O tempo que o cliente espera

para enviar o pacote de confirmação variou entre 100ms a 200ms e é causado

pelo algoritmo TCP delayed ACK, que é configurado no sistema operacional;

4. Tempo esperando o pacote de confirmação: o servidor não envia o pacote de

número 7 antes que o pacote de confirmação referente ao pacote de número 5

tenha chegado. Esse comportamento é causando pelo algoritmo Nagle habilitado

no lado do servidor. O algoritmo Nagle é controlado pela propriedade

TCP_NODELAY do socket. Para aplicações Java, a seguinte linha de código

desabilita o algoritmo Nagle, onde socket é uma instância do tipo

java.net.Socket:

socket.setTcpNoDelay(true);

5. Atraso associado ao fechamento da conexão. O fechamento da conexão inicia

quando o servidor envia o pacote TCP/FIN para o cliente, que deve ser

confirmado pelo cliente. Após a confirmação, o cliente também envia o pacote

TCP/FIN para o servidor, que também deve ser confirmado. O gargalo não

consistiu na quantidade de pacotes trocados, mas no atraso do servidor em

enviar o primeiro pacote, pois o cliente fica lendo do socket até encontrar fim de

 -48-

arquivo. Este gargalo foi responsável pela maior parte do tempo de execução,

variando entre 7.9 a 439ms.

O gargalo introduzido pela combinação dos algoritmos Nagle e TCP delayed

ACK foi, em média, de 350ms no tempo total para cada requisição, porém ambos foram

projetados para reduzir o número de pequenos pacotes trafegando na rede.

3.5.6 Custo do Estabelecimento da Conexão

A especificação do protocolo HTTP 1.0 obriga que o cliente estabeleça uma nova

conexão antes de cada requisição e que o servidor feche-a após finalizar o envio da

resposta ao cliente [Berners et al., 1996].

Estabelecendo uma nova conexão para cada transação pode ter um impacto

negativo no desempenho, pois o protocolo HTTP usa o protocolo TCP que estabelece

conexões via Three-Way Handshake (ver Figura 3.3), onde o cliente envia a requisição

para estabelecer uma conexão, o servidor confirma a solicitação e, por fim, o cliente

também confirma. O estabelecimento de uma nova conexão para cada requisição

também aumenta o número de pequenos pacotes trocados entre o cliente e o servidor

[Davis and Parashar, 2002] [Elfwing et al., 2002] [Kohlhoff and Steele, 2003].

Em uma LAN onde o atraso é baixo e a perda de pacotes é rara, o custo do

estabelecimento da conexão TCP é 1% menor que o custo de parsing. Porém, quando o

atraso for alto, esse custo não é insignificante [Elfwing et al., 2002].

3.6 Técnicas de Otimização

Embora uma simples aplicação Web Services possa apresentar problemas de

desempenho, algumas técnicas de otimização podem ser aplicadas a fim de amenizar

sua ineficiência.

Além de identificarem os gargalos que afetam o desempenho de Web Services,

alguns trabalhos também desenvolveram e avaliaram técnicas de otimização de

 -49-

desempenho que serão detalhadas nas próximas subseções. De forma geral, tais técnicas

visam reduzir o uso de memória, o tempo de processamento e o custo da comunicação.

3.6.1 Compressão dos Dados

Quando a largura de banda é baixa, o tamanho das mensagens é um gargalo limitante do

desempenho [Kohlhoff and Steele, 2003]. Uma maneira de reduzir o número de bytes

transferidos na rede é comprimir o tamanho das mensagens SOAP. Porém, como a

compressão em tempo real requer um tempo de CPU extra, pode ocorrer um aumento

no tempo de resposta e uma redução da vazão. Experimentos mostraram que a

compressão em tempo real é cara e excede os custos da serialização e transmissão dos

dados [Cai et al., 2002] [Engelen, 2003] [Kohlhoff and Steele, 2003].

Uma outra tentativa para reduzir o tamanho das mensagens XML foi usar tags

XML compactas [Kohlhoff and Steele, 2003]. Essa otimização proporcionou uma

melhora insignificante no tempo de serialização das mensagens, indicando que o maior

custo da codificação e decodificação XML está na complexidade estrutural e sintaxe dos

elementos e não apenas na natureza XML dos dados.

3.6.2 Parser Específico de Esquema XML

Parsers desenvolvidos para processar de um esquema XML específico apresentam um

melhor desempenho em relação aos parsers de propósito geral – DOM, SAX e Pull

Parsing, principalmente quando grandes estruturas de dados estão envolvidas [Chiu et

al., 2002], porque varrem os dados XML apenas uma vez.

O toolkit gSOAP suporta essa otimização disponibilizando um compilador que

gera o código para realizar o parsing e processamento de estruturas de dados a partir de

um esquema XML.

3.6.3 Caching das Requisições SOAP

Após identificar que 50% do tempo de processamento do cliente são gastos na

codificação da mensagem SOAP em XML e na criação da conexão HTTP, Devaram e

 -50-

Andresen (2003) projetaram um eficiente mecanismo de caching para as requisições

SOAP do cliente, com o objetivo de otimizar o seu desempenho diminuindo a

necessidade de gerar uma nova mensagem XML para todas as requisições. Dois tipos de

mecanismos de caching foram desenvolvidos – caching completa e caching parcial.

O mecanismo de caching completa aplica-se nos casos onde repetidas

requisições SOAP são enviadas ao servidor. Antes de realizar qualquer requisição, o

cliente deve verificar na cache se já existe uma mensagem associada à requisição

desejada. Caso seja a primeira vez que uma determinada requisição é realizada, um

arquivo contendo toda a mensagem SOAP é gerado e armazenado na cache e indexado

por uma chave. Para que, nas requisições subseqüentes, essa mensagem é recuperada da

cache e não seja novamente serializada, reduzindo, então, o tempo de execução.

O mecanismo de caching parcial aplica-se nos casos onde o cliente faz a mesma

requisição, exceto pelos valores dos seus parâmetros. Nessa estratégia, quando a

mensagem é encontrada na cache, o cliente deve preencher os valores das tags na

mensagem com os novos valores dos parâmetros.

O pré-requisito para aplicar a estratégia de caching completa é que o cliente

tenha um número fixo de diferentes tipos de requisições, caso contrário, o tempo gasto

com operações de entrada e saída (I/O) será alto devido ao aumento do tamanho da

cache. E o pré-requisito para a aplicação do mecanismo de caching parcial, é que o

número das tags cujos valores serão atualizados seja pequeno.

Nos experimentos realizados, o desempenho de uma aplicação Java utilizando a

estratégia de caching foi melhor que o desempenho da mesma aplicação implementada

em Java RMI. Usando mensagens grandes (20 KB) e complexas a estratégia de caching

parcial foi mais eficiente que a estratégia de caching completa, devido ao crescimento

do tamanho da cache [Devaram and Andresen, 2003].

3.6.4 Otimizando o Cálculo do Tamanho da Mensagem SOAP

Nessa seção serão apresentadas algumas técnicas que visam otimizar o gargalo do

cálculo do tamanho da mensagem SOAP apresentado na seção 3.5.4.

 -51-

Técnica 1: Preenchendo o Atributo “Content-Length” com Espaços

Essa técnica é chamada de Back-Patching e consiste em inserir espaços no atributo

“Content-Length” durante a geração inicial do cabeçalho, que serão, posteriormente,

substituídos pelo tamanho real quando a mensagem SOAP for processada [Chiu et al.,

2002].

Utilizando essa técnica, não é necessário manter dois buffers separados, um para

o cabeçalho e outro para o corpo da mensagem SOAP, e apenas uma chamada de

sistema é realizada para enviar a mensagem.

Técnica 2: Envio Vetorizado das Mensagens

É uma solução alternativa à técnica anterior e permite o envio de vários buffers de

memória com uma única chamada de sistema [Chiu et al., 2002]. Então, os buffers do

cabeçalho e do corpo da mensagem podem ser enviados ao mesmo tempo. Essa técnica

é chamada de Vectored Send Call e é utilizada pelo toolkit bSOAP [Govindaraju et al.,

2004].

Técnica 3: Técnica de Serialização em Dois Estágios

Diferentemente das técnicas que armazenam a mensagem em buffers a fim de

determinar o seu tamanho, a técnica de serialização em dois estágios (two-stage

serialization) emprega um algoritmo rápido de serialização que é divido em duas fases:

a primeira fase consiste em varrer os dados, contar o tamanho da mensagem sem

armazenar em um buffer e verificar os ponteiros da estrutura de dados, caso seja cíclica

ou um grafo. A segunda fase consiste em construir o cabeçalho e serializar a mensagem

SOAP diretamente sobre TCP/IP. O toolkit gSOAP aplica essa técnica a fim de

minimizar o uso de memória e preservar as estruturas de dados cíclicas e multi-

referenciadas [Engelen and Gallivan, 2002].

Técnica 4: Transmissão dos Dados em Blocos (Chunked Transfer Coding)

HTTP 1.1 [Fielding et al., 1999] suporta uma forma simples de streaming chamada

Chunked Transfer Coding, que permite a quebra da mensagem HTTP em vários blocos

(chunks), onde cada bloco é precedido pelo seu próprio tamanho. Quando essa técnica

 -52-

de streaming é usada, não é necessário enviar o tamanho da mensagem no cabeçalho,

mas indicar que a mensagem será enviada em blocos.

A sua vantagem é que pode ser aplicada tanto pelo cliente quanto pelo servidor,

onde é mais freqüentemente adotada. Além disso, evita o armazenamento em memória

dos dados antes da transmissão e permite a sobreposição entre as fases de serialização,

de transmissão na rede e a de deserialização [Chiu et al., 2002] [Davis and Parashar,

2002] [Engelen, 2003] [Govindaraju et al., 2004]. O emissor da mensagem, após

serializar um bloco, pode transmiti-lo ao mesmo tempo em que serializa o próximo

bloco, enquanto que o receptor da mensagem pode iniciar as fases de parsing e de

deserialização, assim que as mensagens cheguem no buffer (Figura 3.4).

O problema dessa técnica é determinar o tamanho ideal para os blocos, pois se

for muito pequeno, muitas chamadas de sistemas são invocadas, e se for muito grande,

aumenta a falta de cache de sistema.

serialização serialização

transmissão transmissão

buferização buferização buferização

deserialização deserialização deserialização

parser parser parser

serialização serialização

transmissão transmissão

buferização buferização buferização

deserialização deserialização deserialização

parser parser parser

Figura 3.4 – Enviando uma mensagem SOAP com otimizações

Técnica 5: Eliminação do Atributo Content-Length

Essa técnica propõe que os servidores HTTP contenham pares de tags XML para

determinar o final da mensagem SOAP. Dessa forma, eliminando o atributo “Content-

Length” do cabeçalho e, conseqüentemente, eliminando o cálculo do tamanho da

mensagem.

 -53-

 Com a omissão desse atributo, é possível sobrepor as fases de serialização, de

transferência na rede e de deserialização (ver Figura 3.4), reduzindo o tempo total de

processamento e solucionando o gargalo introduzido pelo cálculo do tamanho da

mensagem (ver Seção 3.5.4).

A partir dos experimentos realizados numa LAN, Shirasuma et al. (2002)

verificaram que essa técnica otimizou em aproximadamente 55% o tempo de resposta,

porém sua aplicação viola a RFC 1945 [Berners et al., 1996], uma vez que a mesma

especifica que é necessário enviar o tamanho da mensagem.

3.6.5 Otimizações na Comunicação

A partir dos gargalos de comunicação apresentados na Seção 3.5.5, Elfwing et al.

(2002) propuseram algumas otimizações a fim de diminuir o número de pacotes e,

principalmente, reduzir os atrasos inerentes aos pacotes de confirmação e de fechamento

da conexão.

Técnica 1: Fechamento da Conexão Iniciada pelo Cliente

A Figura 3.5 ilustra o tráfego de pacotes onde o cliente é responsável pelo fechamento

da conexão, iniciado pelo pacote de número sete. Para isso, o atributo “Content-Length”

foi enviado no cabeçalho da resposta do servidor, permitindo que o cliente conte os

bytes recebidos e feche a conexão, sem precisar esperar que o servidor envie o pacote

TCP/FIN. Aplicando essa otimização nos seus experimentos, Elfwing et al. (2002)

verificaram que o tempo de execução reduziu de 680ms para 200ms.

Embora essa solução tente eliminar o atraso inerente ao protocolo de fechamento

da conexão, ela introduz o problema do cálculo do tamanho da mensagem no envio da

resposta (ver Seção 3.5.4). Outra desvantagem é que a especificação do protocolo HTTP

1.0 não garante que esse atributo estará presente no cabeçalho da resposta do servidor.

Antes de aplicar essa técnica, é necessário avaliar qual gargalo tem o maior impacto – o

atraso para fechar a conexão ou o cálculo do tamanho da mensagem.

 -54-

CLIENTE

1. [TCP SYN]

2. [TCP SYN/ACK]

3. [TCP ACK]

4. HTTP REQUEST

5. HTTP RESPONSE

7. [FIN, ACK]

9. [FIN, ACK]

10. [ACK]

SERVIDOR

8. [ACK]

6. [ACK]

CLIENTE

1. [TCP SYN]

2. [TCP SYN/ACK]

3. [TCP ACK]

4. HTTP REQUEST

5. HTTP RESPONSE

7. [FIN, ACK]

9. [FIN, ACK]

10. [ACK]

SERVIDOR

8. [ACK]

6. [ACK]

 Figura 3.5 - Tráfego de pacotes para uma chamada SOAP com otimizações

Técnica 2: Enviando o Cabeçalho e a Mensagem SOAP em um Pacote HTTP

Além de diminuir o número de pacotes transmitidos na rede, essa otimização reduziu,

em média, 150ms do tempo de resposta, originado pelo algoritmo TCP delayed ACK.

Aplicando essa otimização juntamente com a anterior, o tempo de execução

reduziu para, aproximadamente, 42ms. A Figura 3.5 ilustra os pacotes trocados quando

a resposta do servidor é enviada em um único pacote.

Técnica 3: Desabilitar o algoritmo Nagle e Configurar o Tempo do Algoritmo TCP

delayed ACK para Zero

Como os algoritmos Nagle e TCP delayed ACK causam atrasos desnecessários no

cenário da comunicação Web Services, desabilitando esses algoritmos ocasionaria uma

diminuição, aproximadamente, de 350ms no tempo de execução. No entanto, a carga na

rede poderá aumentar, uma vez que os mesmos foram projetados para reduzir o número

de pacotes na rede.

 -55-

3.6.6 Uso de Conexões Persistentes

O protocolo HTTP 1.1 suporta conexões persistentes (HTTP keep-alive) por default, a

menos que o atributo “Connection: Close” seja especificado no cabeçalho.

Essa característica permite o reuso da mesma conexão TCP/IP para enviar

múltiplas requisições, dessa forma, eliminando os gargalos de estabelecer (Three-Way

Handshake) e fechar uma conexão para cada chamada e o atraso para iniciar o processo

de fechamento da conexão [Elfwing et al., 2002] [Engelen, 2003] [Kohlhoff and Steele,

2003] [Govindaraju et al., 2004].

Uma vez que o custo de estabelecer uma conexão aumenta com o atraso da rede,

o benefício dessa otimização será mais percebível em redes com alto atraso [Chiu et al.,

2002].

3.6.7 Codificação Binária dos Dados XML

A codificação dos dados em Base64 é suportada pela tecnologia XML Schema e é uma

representação atrativa para tornar mais eficiente a troca de arrays de números ponto

flutuante, pois reduz a perda de precisão dos números, diminui o número de bytes e o

gargalo da serialização [Engelen, 2003]. Os experimentos realizados para quantificar

sua eficiência demonstram que essa otimização reduz o tempo total de execução em

75% [Shirasuma et al., 2002].

A desvantagem é que não suporta o envio de muitos dados binários de forma

eficiente e, por ser uma técnica de codificação binária, perde-se a legibilidade dos

dados. Nesses casos, técnicas como SOAP with Attachments e WS-Attachment, descritas

na próxima subseção, deveriam ser utilizadas.

3.6.8 Enviando Mensagens SOAP com Anexos

Tanto SwA (SOAP with Attachment) quanto WS-Attachment são técnicas utilizadas para

viabilizar a transferência de grandes dados binários – imagens e sons – em uma

mensagem SOAP. A diferença está na estruturação e processamento da mensagem. A

especificação de SwA encapsula uma mensagem SOAP e os demais anexos em uma

 -56-

estrutura MIME (Multipurpose Internet Mail Extension) e a especificação WS-

Attachment, utiliza uma estrutura DIME (Direct Internet Message Encapsulation).

Para determinar o número de anexos e os seus limites numa estrutura MIME é

preciso varrer toda a mensagem. Com a estrutura DIME, o parser pode simplesmente

usar os dados do cabeçalho dos registros para rapidamente indexá-los e calcular o

número de anexos na mensagem [Govindaraju et al., 2004]. Outra diferença é que os

anexos DIME podem ser transmitidos na forma de streaming.

 Ying et al. (2004) compararam o padrão SOAP com as técnicas SwA e WS-

Attachment. Em geral, as técnicas SwA e WS-Attachment têm melhor desempenho que o

padrão SOAP, principalmente quando o tamanho dos dados aumenta. O benefício é que

essas técnicas reduzem o tamanho da mensagem e o custo de serialização e

deserialização, conseqüentemente melhorando o tempo de resposta. Porém, em termos

de desempenho, a técnica WS-Attachment foi mais eficiente que a SwA.

3.6.9 Otimizando os Custos de Serialização

A técnica chamada differential serialization foi projetada e desenvolvida para reduzir os

custos associados ao processo de serialização de uma mensagem SOAP e otimizar a

comunicação do lado do emissor da mensagem [Abu-Ghazaler et al., 2004] [Abu-

Ghazaler et al., 2004a] [Abu-Ghazaler et al., 2004b].

A técnica consiste em salvar uma cópia da mensagem serializada após o seu

primeiro envio. Durante as requisições subseqüentes, para a mesma aplicação Web

Services, apenas os elementos que mudaram serão serializados novamente.

A eficiência dessa otimização depende do tamanho da mensagem, do conteúdo e

da similaridade entre as mensagens executadas. A partir dos estudos realizados em

[Abu-Ghazaler et al., 2004] [Abu-Ghazaler et al., 2004a] [Abu-Ghazaler et al., 2004b],

os seguintes resultados foram encontrados:

1. Quando a mensagem exata necessita ser enviada novamente, o processo de

serialização é eliminado;

2. Quando todos os elementos necessitam ser serializados, onde apenas as tags e o

envelope SOAP são reusados, o ganho de desempenho é de 17%;

 -57-

3. Dependendo do percentual de elementos que necessitam ser serializados, o

ganho de desempenho pode variar entre 22% e 68%.

O toolkit bSOAP aplica essa técnica, e atualmente, a técnica differential

deserialization está sendo estudada para otimizar o processo de deserialização das

mensagens SOAP.

3.7 Considerações Finais

Nesse capítulo foram apresentados vários trabalhos que investigaram a ineficiência de

Web Services, detalhando seus gargalos e listando possíveis otimizações para tornar as

aplicações Web Services mais eficientes. Além disso, foram apresentados alguns

resultados da comparação de desempenho de diferentes Web Services toolkits entre si e

também com outros middleware.

De forma geral, o desempenho de uma aplicação Web Services dependem do

projeto e implementação do toolkit utilizado para implementá-la e dos gargalos

introduzidos pelos protocolos SOAP e de transporte, onde o protocolo HTTP é o mais

comumente adotado. Os gargalos detalhados nesse capítulo foram o tamanho e a

complexidade das mensagens, a escolha do parser, os custos de serialização e

deserialização, o tempo gasto para calcular o tamanho da mensagem, estilo de

codificação, o custo de estabelecimento das conexões e os gargalos de comunicação

como o atraso na troca de pacotes e o número de pacotes.

Desses gargalos, os custos associados ao processo de serialização e

deserialização foram os de maior impacto no desempenho, logo as soluções que visam

otimizar essas rotinas são as que apresentaram melhores resultados como as técnicas de

caching, differential serialization e representação binária dos dados XML usando a

codificação Base64, SOAP with Attachment ou WS-Attachment. Entretanto, a

codificação binária dos dados ao mesmo tempo em que reduz o tamanho das

mensagens, também reduz as características de universalidade e interoperabilidade, uma

vez que a troca de mensagens XML é o coração de Web Services.

 -58-

Atualmente, alguns toolkits como o gSOAP e bSOAP estão sendo projetados

com foco em eficiência, aplicando técnicas de otimização para solucionar os gargalos de

desempenho. O toolkit Axis da Apache, que é de código aberto e gratuito, está sendo

estudado por vários autores e suas versões mais recentes são mais eficientes que as

versões anteriores, embora o mesmo ainda apresente o pior desempenho.

Mesmo aplicando as otimizações propostas, a questão do desempenho de Web

Services ainda está em aberto e muito se tem que estudar. Então, antes de ser utilizado

para expor aplicações que demandam por alto desempenho, deve-se testar sua eficiência

e comportamento no ambiente que simule as mesmas características do cenário real.

Idealmente, o processo de escolha do toolkit deve incluir a avaliação de vários Web

Services toolkits, a fim de selecionar o que mais atende aos requisitos da aplicação.

Diferentemente dos trabalhos apresentados nesse capítulo, essa dissertação foca

na avaliação de desempenho de Web Services toolkits guiada por um conjunto de

diretrizes desenvolvidas com o objetivo de identificar seus gargalos de desempenho e

entender seu funcionamento. Dessa forma, contribui-se com a uniformidade do processo

de avaliação de diferentes Web Services toolkits.

No próximo capítulo serão apresentadas as diretrizes de avaliação de

desempenho de Web Services que foram desenvolvidas baseando-se nos gargalos,

otimizações, métricas e resultados detalhados ao longo desse capítulo.

 -59-

4 Diretrizes para Avaliação de
Desempenho de Web Services

4.1 Introdução

O cenário atual da área de desenvolvimento de software é caracterizado por aplicações

complexas, distribuídas e que demandam por alto desempenho e por várias tecnologias

que os desenvolvedores podem escolher para implementar essas aplicações. No mundo

de Web Services não é diferente, pois existem vários Web Services toolkits

implementados em diferentes linguagens (ver Seção 2.4). Dessa forma, é necessário

avaliar o desempenho desses toolkits antes de desenvolver as aplicações, a fim de

identificar o mais apropriado para atender aos seus requisitos não funcionais como

eficiência, latência baixa, alta vazão e uso eficiente de memória.

A avaliação de desempenho dos Web Services toolkits realizada nos trabalhos

apresentados anteriormente foi feita, na maioria dos casos, de forma simples, usando

apenas tipos de dados escalares e coletando algumas métricas de desempenho (ver

Capítulo 3). Uma conseqüência é que os resultados de alguns desses estudos não foram

totalmente abrangentes, pois o desempenho não foi avaliado usando tipos de dados

complexos. Um exemplo dessa situação foi a contradição entre os resultados obtidos por

 -60-

Juric et al. (2004) e Gray (2005). O primeiro concluiu que Web Services são mais

eficientes que as tecnologias de tunelamento de Java RMI. Porém, explorando vários

cenários de teste, Gray (2005) verificou que o desempenho de Web Services é melhor

apenas quando tipos de dados simples são utilizados. Quando estruturas grandes e

complexas são utilizadas, Java RMI sobre o protocolo HTTP é mais eficiente.

Dessa forma, existe a necessidade de um guia geral para realizar os testes de

desempenho de Web Services, a fim de uniformizar o processo de avaliação. Nas seções

seguintes serão apresentadas as diretrizes para avaliação de desempenho de Web

Services toolkits que podem ser utilizadas, por desenvolvedores ou arquitetos com ou

sem experiência na tecnologia Web Services, para avaliar a eficiência de qualquer

toolkit [Machado and Ferraz, 2005].

4.2 Objetivo das Diretrizes

As diretrizes apresentadas a seguir foram desenvolvidas baseando-se nos resultados,

métricas, gargalos e otimizações explicados no capítulo anterior, ou seja, resultam da

análise detalhada e organização dos trabalhos relacionados ao estado da arte do

desempenho de Web Services.

A proposta das diretrizes é descrever uma política de avaliação de desempenho,

contribuindo, assim, com o avanço da área. A Figura 4.1 sintetiza tais gargalos que

afetam o desempenho de Web Services e que foram utilizados como base para propor as

diretrizes. De forma geral, as mesmas têm como objetivo permitir que um

desenvolvedor ou arquiteto [Machado and Ferraz, 2005]:

1) Entenda o comportamento do toolkit sendo analisado;

2) Identifique os gargalos de desempenho;

3) Quantifique o tempo para transmitir as mensagens SOAP de diferentes

tamanhos, complexidade e tipos de dados;

4) Monitore o tráfego de pacotes entre o cliente e o servidor;

 -61-

Desempenho

Parser XML

Web Service
Toolkit

Custo de
(de)serialização

Cálculo do
tamanho da
mensagem

Estabelecimento das
conexões

Protocolo de
transporte

Estilo de
codificação

Número de
pacotes

Atrasos associados à
troca de pacotes

Tamanho e
complexidade das

mensagens

5) Projete uma interface WSDL que atenda aos requisitos de eficiência e

interoperabilidade;

6) Verifique a necessidade de aplicar otimizações na comunicação ou na

implementação do toolkit.

Figura 4.1 - Fatores que influenciam o desempenho de Web Services

Dessa forma, as diretrizes podem ser utilizadas na escolha do toolkit “ideal”

para desenvolver um serviço que demanda por desempenho. Como o objetivo é

melhorar o desempenho sem afetar a interoperabilidade, as diretrizes não exploram

nenhuma técnica de codificação binária dos dados e nem a troca do protocolo HTTP por

um outro, como SMTP.

4.3 Guia para Avaliação de Desempenho

As diretrizes listadas nessa seção foram projetadas para serem simples, práticas,

eficientes e fáceis de usar, simplificando a escolha do melhor toolkit para desenvolver e

expor um determinado serviço, além de propor uma padronização do processo de

avaliação de desempenho dos diferentes Web Services toolkits.

As boas práticas para desenvolver uma aplicação distribuída são praticamente as

mesmas para desenvolver aplicações Web Services:

 -62-

1. Deve-se projetar uma interface de forma a otimizar o tráfego na rede,

minimizando o número de chamadas remotas, para melhorar o desempenho;

2. A interface do serviço constitui um contrato entre o serviço e o cliente.

A granularidade da interface WSDL é uma importante decisão de projeto, pois a

mesma se refere tanto ao escopo do domínio do serviço quanto ao escopo do domínio de

cada método da interface. Em geral, o nível de granularidade apropriado para um

serviço e seus métodos é “coarse-grained”, pois significa que o serviço disponibiliza

várias funcionalidades que retornam muitos dados.

Determinar a granularidade de uma interface é uma decisão difícil, porque os

projetistas não podem antecipar completamente a maneira como os serviços serão

usados durante o seu projeto. Além disso, dentro da granularidade “coarse-grained”

ainda existe uma escala com vários degraus de granularidade. De maneira geral, os

serviços disponibilizados deveriam ser fáceis de usar e, ao mesmo tempo, deveriam

satisfazer as necessidades dos seus consumidores.

Uma vez que os clientes invocam o serviço remotamente, é importante que as

interfaces estejam bem projetadas, caso contrário, o consumidor do serviço poderá

receber mais dados do que precisa ou poderá fazer muitas requisições para obter todas

as informações de que necessita.

Os projetistas, tendo consciência desses impactos, deveriam desprender um

tempo maior durante a definição do serviço, a fim de projetar uma interface que

minimize o impacto no desempenho. Dessa forma, é importante estudar as possíveis

soluções de projeto e implementar a mais apropriada.

Além do desempenho, o projeto da interface também afeta outros requisitos não

funcionais da aplicação como modificabilidade, que representa o grau em que o sistema

incorpora mudanças de forma “fácil”, e a reusabilidade, habilidade de uma aplicação ser

usada em diferentes contextos sem sofrer modificações.

De forma geral, como regra de desempenho, na dúvida sobre a granularidade de

um serviço, deve-se publicar operações que façam muito trabalho, aceitem vários

parâmetros e retorne uma porção de informações. O objetivo é minimizar o número de

 -63-

requisições remotas. Além disso, os futuros clientes provavelmente poderão necessitar

das informações extras.

As diretrizes apresentadas a seguir não exploram diretamente o impacto no

desempenho causado pela granularidade de um serviço. O foco foi investigar o

desempenho dos Web Services toolkits usando diferentes tipos de dados com tamanhos e

complexidades variados, a fim de publicar regras para avaliar o desempenho desses

toolkits, e não os gargalos introduzidos pela granularidade da interface da aplicação.

Diretriz 1: Adote o estilo Document/Literal Wrapped

Durante o projeto da interface WSDL, a configuração dos parâmetros style e use pode

afetar não só o grau de interoperabilidade do serviço, como também o seu desempenho

(ver Seção 2.3.1). Os possíveis estilos para codificar a interface WSDL são:

1. RPC/Encoded

2. Document/Encoded

3. RPC/Literal

4. Document/Literal

5. Document/Literal Wrapped

Uma vez que a escolha do estilo de codificação afeta o desempenho da aplicação

[Cohen, 2003] [Ng et al., 2003], qual dessas cinco combinações deve ser usada para

estruturar as mensagens SOAP?

O estilo RPC/Encoded tem sido o mais comumente adotado devido sua

semelhança com os modelos de chamadas remotas tradicionais [Devaram and Andresen,

2003]. Esse estilo foi projetado para permitir que as mensagens SOAP simulem

chamadas RPC. As principais vantagens desse estilo são a clareza do arquivo WSDL e o

envio do nome da operação na mensagem SOAP, dessa forma o receptor da mensagem

pode facilmente despachar a mensagem para a implementação do método solicitado. A

desvantagem é que o conteúdo da mensagem SOAP não pode ser facilmente validado

porque existem dados que não estão definidos no esquema XML dos tipos.

 -64-

O estilo Document/Encoded tem sido visto como uma combinação inválida, não

sendo suportado pelos Web Services toolkits atuais. Essa combinação deverá

desaparecer nas futuras versões da especificação WSDL.

Como essas duas combinações são Encoded, ou seja, usam as regras de

codificação detalhadas na especificação do protocolo SOAP, as mesmas não fazem

parte do conjunto de recomendações propostas pelo WS-I (Web Services

Interoperability Organization) para maximizar a interoperabilidade das aplicações Web

Services. Além disso, o tipo de codificação Encoded é um ponto de degradação do

desempenho.

O estilo RPC/Literal apesar de ser um estilo recomendado pelo WS-I, não é

suportado por algumas plataformas Web Services como, por exemplo, o toolkit .NET.

Então, por questões de interoperabilidade, esse estilo também não deveria ser adotado.

O estilo Document/Literal é a maneira mais recomendada para representar uma

requisição Web Services. As mensagens SOAP codificadas nesse estilo podem ser

facilmente analisadas por qualquer tecnologia de validação XML, uma vez que todo o

conteúdo dentro da tag <soap:body> é definido por esquema XML.

Nos estudos realizados por Ng et al. (2003) e Cohen (2003), o estilo

Document/Literal apresentou um melhor desempenho, porque produz mensagens menos

complexas e requer, aproximadamente, metade do número de bytes para representar as

mensagens, minimizando os custos de transmissão dos dados na rede e o tempo de

resposta. Além disso, as regras de serialização e deserialização são mais eficientes que

as do estilo RPC/Encoded.

Apesar do estilo Document/Literal ser o mais indicado para construir as

mensagens SOAP, o mesmo tem uma desvantagem, pois o nome da operação sendo

invocada não está presente na mensagem SOAP, dificultando o despacho da operação.

Para solucionar esse problema foi projetado o estilo Document/Literal Wrapped,

também chamado de Wrapped/Literal, que além de possuir as mesmas vantagens do

estilo Document/Literal, envia o nome da operação sendo invocada na mensagem

SOAP. Do ponto de vista técnico, esse estilo é um caso especial do estilo

Document/Literal.

 -65-

 Dessa forma, essa diretriz adota o uso do estilo Document/Literal Wrapped,

porque além do desempenho, esse estilo apresenta bons resultados de

interoperabilidade. As recomendações de interoperabilidade eliminam o uso do estilo

RPC/Encoded, apesar de muitos Java Web Services toolkits adotarem esse estilo como o

padrão.

Diretriz 2: Utilize mensagens de tamanhos e complexidades
diferentes

A maioria dos estudos reportados anteriormente tem analisado benchmarks que

envolvem pouca transferência de dados, usando operações simples que não tinham nem

parâmetros nem valores de retorno, ou apenas tipos de dados simples como inteiros,

ponto flutuante ou string.

Como os tipos de dados básicos consomem menos tempo de processamento e

freqüentemente são empacotados em um único pacote, tais estudos não apresentam uma

análise completa do desempenho cujos resultados possam ser totalmente usados na

seleção do toolkit para expor as aplicações reais.

 Um processo de avaliação deveria também usar tipos de dados mais

representativos de aplicações Web ou de qualquer outro contexto que envolva não

apenas grandes quantidades de dados, como também uma sintaxe complexa. Essa

diretriz auxilia a responder questões como:

• Qual é a influência de diferentes tipos de dados usados como parâmetro e

valores de retorno no desempenho?

• Qual é o tempo para serializar e deserializar diferentes tipos de dados?

• Qual é o impacto do tamanho dos dados no desempenho, devido a sua influência

no empacotamento dos dados para a transmissão na rede?

A ineficiência de Web Services não é unicamente afetada pelo tamanho da

mensagem, mas, principalmente, pelo tempo gasto na conversão das estruturas de dados

em XML e vice-versa. Quanto mais complexa for uma mensagem, maior será o seu

tempo de conversão.

 -66-

Dessa forma, é importante avaliar o desempenho de um toolkit usando

mensagens de vários tamanhos e complexidades, principalmente usando estruturas

arrays, pois os toolkits podem representar essas estruturas de formas e tamanhos

diferentes.

Diretriz 3: Analise as mensagens SOAP transportadas na rede

Monitorando as mensagens SOAP transportadas sobre o protocolo HTTP, é possível

determinar o tamanho da requisição e da resposta para cada operação invocada,

identificar o estilo de codificação das mensagens (RPC ou Document), a versão do

protocolo HTTP e os atributos do seu cabeçalho. A versão do protocolo é informada na

primeira linha do cabeçalho (Figura 4.2) e a requisição do cliente pode usar uma versão

do protocolo diferente da versão usada nas respostas do servidor.

 As Figuras 4.2, 4.3 e 4.4 representam exemplos de mensagens capturadas através

de uma ferramenta gráfica de monitoramento das mensagens SOAP chamada TCP

Monitor [Apache Axis, 2004]. Cada uma das figuras representa um exemplo de

possíveis configurações do cabeçalho HTTP, usando diferentes atributos para

transportar a mesma mensagem.

POST /service HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 454
SOAPAction: ""
User-Agent: Java/1.4.2_08
Host: 127.0.0.1
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <env:Body>
 ...
 </env:Body>

</env:Envelope>

Figura 4.2 - Exemplo de uma requisição SOAP enviada via HTTP

A partir da análise do cabeçalho da mensagem ilustrada na Figura 4.2, observa-se o

seguinte comportamento do toolkit:

 -67-

1) A requisição é enviada ao servidor usando a versão 1.1 do protocolo HTTP;

2) O tamanho da mensagem é calculado e enviado através do atributo “Content-

Length”. O processo de cálculo do tamanho da mensagem pode ser um gargalo

de desempenho do toolkit (ver Seção 3.5.4);

3) A requisição solicita o estabelecimento de conexões persistentes devido a

presença do atributo “Connection: keep-alive”.

HTTP/1.1 200 OK
SOAPAction: ""
Content-Type: text/xml;charset=utf-8
Transfer-Encoding: chunked
Date: Sun, 24 Jul 2005 13:52:55 GMT
Server: Sun-Java-System/Web-Services-Pack-1.4

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <env:Body>
 ...
 </env:Body>
</env:Envelope>

Figura 4.3 - Exemplo de uma resposta SOAP enviada via HTTP

A mensagem da Figura 4.3 indica que a resposta do servidor também é enviada

usando a versão 1.1, o servidor não fecha a conexão devido à ausência do atributo

“Connection: close”. O atributo “Transfer-Encoding: chunked” informa que a

mensagem será transmitida em blocos usando a técnica de streaming Chunked Transfer

Coding. A mensagem da Figura 4.4 indica que o servidor fechará a conexão após o

envio da resposta ao cliente devido à presença do atributo “Connection: close”.

HTTP/1.1 200 OK
Content-Type: text/xml;charset=utf-8
Server: Apache-Coyote/1.1
Connection: close

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <env:Body>
 ...
 </env:Body>

</env:Envelope>

Figura 4.4 - Exemplo de uma resposta SOAP enviada via HTTP fechando a conexão

 -68-

Os atributos “Content-Length”, “Connection” e “Transfer-Encoding” do

cabeçalho HTTP são importantes porque eles impactam no desempenho. Essa diretriz é

importante para verificar como a mensagem SOAP é transportada usando o protocolo

HTTP, pois influencia como a mesma será processada. Além disso, a análise das

mensagens também deve ser feita para validar se o projeto da interface WSDL está

correto com relação à assinatura das operações, à formatação das mensagens e aos tipos

de dados usados.

Diretriz 4: Verifique o parser suportado pelo toolkit

Baseado no fato que os documentos XML representando as mensagens SOAP são

grandes e complexos, é necessário escolher um modelo de parsing eficiente e que

apresente um bom gerenciamento de memória. A questão é que o número de diferentes

modelos tem crescido, então não é trivial determinar qual modelo usar baseando-se em

suas características de desempenho e de facilidade de uso.

Como diferentes implementações do mesmo modelo de parsing podem

apresentar diferente desempenho, é importante identificar o parser XML adotado pelos

Web Services toolkits, porém a implementação utilizada pelo toolkit quando o seu

código não é aberto não é imediatamente determinada. Essa diretriz sugere que os

projetistas da aplicação desprendam algum tempo analisando o parser do toolkit,

baseando-se na sua documentação e em resultados publicados em outros trabalhos.

 É recomendado também não habilitar a validação das mensagens pelo parser se

o desempenho for um requisito prioritário, porém é uma boa prática de programação

validar os valores dos parâmetros antes de invocar os métodos.

Para melhorar o desempenho do processo de recebimento de uma mensagem

SOAP, uma implementação do modelo de processamento Pull Parsing poderia ser

adotada pelos toolkits porque é mais eficiente e permite que o processo de parsing da

mensagem inicie antes que todo o documento tenha sido recebido.

Alguns toolkits permitem que o desenvolvedor escolha qual a implementação do

modelo de parsing usar para varrer e validar as mensagens SOAP. Nesses casos, é

interessante fazer uma avaliação prévia das implementações disponíveis para determinar

 -69-

qual delas apresenta o melhor desempenho para tratar os tipos de dados de uma

determinada aplicação, pois nem sempre os gargalos associados ao parser são claros, e

futuramente, podem ser necessárias alterações no código do toolkit para trocar de

modelo.

Mesmo existindo progresso no desempenho do parsing dos documentos XML, é

importante avaliar a implementação adotada por um toolkit antes de selecioná-lo. Os

toolkits mais flexíveis permitem que o desenvolvedor selecione a implementação mais

apropriada para sua aplicação, e atualize, de forma simplificada, seu código com

implementações mais eficientes à medida que sejam desenvolvidas.

Diretriz 5: Monitore o tráfego de pacotes

Atualmente, os códigos das aplicações cliente e servidor são construídos baseados em

stubs e skeletons que são automaticamente gerados a partir da interface do serviço e

escondem do programador os detalhes da comunicação na rede. É importante avaliar os

custos associados diretamente à camada de comunicação antes de adotar um toolkit,

principalmente porque aplicações Web Services consomem muito tempo de

processamento e transmitem muitos dados. Quanto mais dados são transmitidos na rede,

mais controle dos pacotes é necessário.

Mesmo que a especificação SOAP não determine qual protocolo de transporte

adotar, as mensagens SOAP são mais freqüentemente transportadas usando o protocolo

HTTP. As vantagens de usar HTTP são claras, pois o mesmo é universalmente

suportado e seu tráfego normalmente está configurado para passar por firewalls. Porém

é necessário identificar os gargalos específicos do protocolo que afetam o desempenho

de Web Services.

Analisando o tráfego de pacotes entre o cliente e o servidor é possível identificar

alguns detalhes da transferência dos dados e gargalos específicos da comunicação que

podem ter um significativo impacto no desempenho geral da aplicação Web Services.

Também permite um entendimento detalhado da seqüência de pacotes gerada pelos

diferentes toolkits, pois as implementações apresentam variações na seqüência dos

pacotes e, conseqüentemente, na sua eficiência.

 -70-

Essa diretriz auxilia a identificação dos gargalos relacionados à comunicação

que foram apresentados na Seção 3.5.5 e no entendimento do funcionamento do toolkit

para estabelecer a comunicação. Atualmente, existem várias ferramentas gráficas ou

baseadas em linha de comando que automatizam o monitoramento do tráfego na rede

[Kennington, 2005]. Monitorando o tráfego, é possível identificar os atrasos e comparar

os pacotes trocados, além de responder as seguintes questões:

• Qual o número total de pacotes trocados entre o cliente e o servidor ?

• Em quantos pacotes de dados uma mensagem SOAP grande é quebrada, uma

vez que as mensagens pequenas são preenchidas em um único pacote?

• Qual o número total de bytes transferidos?

• Quantas conexões foram abertas?

• Qual o custo para estabelecer e fechar uma conexão?

• Qual é o impacto dos algoritmos Nagle e TCP delayed ACK?

Dessa forma, essa diretriz avalia o desempenho do toolkit para uma aplicação

particular baseando-se na sua implementação da camada de comunicação e nos custos

adicionais inerentes ao protocolo de transporte.

Uma solução eficiente em termos de rede deveria suportar as técnicas de

conexões persistentes e Chunked Transfer Coding suportadas pela especificação do

protocolo HTTP 1.1. Tais técnicas são otimizações e melhoram o desempenho de Web

Services (ver Seção 3.6).

Diretriz 6: Quantifique o desempenho do Web Services toolkit

Desempenho é uma medida da produtividade de uma aplicação e um importante critério

para distinguir e selecionar o Web Services toolkit mais apropriado. As seguintes

métricas têm sido comumente adotadas e podem ser usadas para quantificar a qualidade

de um serviço em termos do seu desempenho:

• Round Trip Time (RTT): representa o tempo médio para enviar e receber uma

mensagem, a partir do cliente ao servidor e de volta ao cliente. Essa métrica

 -71-

inclui o tempo requerido para serializar e deserializar os argumentos e valores de

retorno e o custo para transmitir os dados na rede. Quando o cliente e o servidor

estão rodando na mesma máquina, o custo da rede é reduzido;

• Latência: representa o gargalo imposto pelo toolkit para enviar e receber uma

mensagem sem parâmetros e sem valores de retorno;

• Vazão: representa o número de requisições dos clientes completadas dentro de

uma certa unidade de tempo, tipicamente em segundos. Quando a taxa de

requisição excede a capacidade do servidor, ou seja, quando a taxa de requisição

é maior que a taxa de serviço, a vazão decresce e o tempo de resposta aumenta.

A vazão deveria aumentar com o aumento do número de clientes simultâneos até

saturar a capacidade máxima do servidor. A vazão e o RTT são inversamente

proporcionais.

• Escalabilidade: métrica que avalia a degradação do desempenho quando vários

clientes enviam requisições ao servidor simultaneamente.

Evitando qualquer processamento do lado do servidor quando calculando o

RTT, como por exemplo, o acesso ao banco de dados, o resultado representará apenas o

gargalo introduzido pelo uso da tecnologia Web Services na chamada remota, sem a

interferência dos gargalos inerentes à execução da aplicação.

Para completar o processo de avaliação de desempenho dos Web Services

toolkits, outras métricas podem ser calculadas: o tempo de instanciação do stub, o

tamanho total das mensagens, o número total de pacotes transmitidos na rede e o custo

para tratar uma exceção ou erro.

 O tempo de instanciação do stub é o tempo para levantar e inicializar o stub que

pode ser de forma estática ou dinâmica. Existe um trade-off entre desempenho e

invocação dinâmica, pois o tempo de inicialização dos toolkits que utilizam proxy

gerados em tempo de execução é maior que os toolkits que geram o código do stub

estaticamente. Porém, o instanciamento dinâmico torna as aplicações clientes mais

adaptáveis a possíveis alterações na interface do serviço.

 -72-

 O tamanho das mensagens representa o número total de bytes da mensagem

XML trocada em cada transação, ou seja, no número de bytes da requisição do cliente e

da resposta do servidor.

O número de pacotes associados a uma determinada chamada remota, incluindo

os pacotes de confirmação e os referentes à abertura e fechamento da conexão, pode ser

uma importante métrica quando grandes mensagens são avaliadas, pois o tamanho das

mensagens influencia no número total de pacotes necessários para transmitir os dados.

 O tempo para tratar uma exceção específica do usuário representa o custo para o

cliente fazer a requisição, o servidor levantar a exceção e o cliente fazer o seu

tratamento. Como o usuário é livre para projetar sua aplicação, uma exceção pode ser

tão complexa quanto uma entidade de negócio.

4.4 Considerações Finais

Atualmente, os desenvolvedores podem escolher entre as várias soluções tecnológicas

para construir uma aplicação Web Services e cada escolha feita pode afetar tanto o

desempenho quanto a escalabilidade da aplicação desenvolvida. Outro fator que pode

degradar o desempenho é a granularidade da interface do serviço. A interface deve ser

projetada de forma a minimizar o tráfego na rede, evitando a troca de mensagens

desnecessárias.

 Para os projetistas terem uma posição correta durante a seleção do toolkit mais

apropriado para desenvolver seu serviço que demanda por alto desempenho, seis

diretrizes foram desenvolvidas e apresentadas nesse capítulo:

• Diretriz 1. Adote o estilo Document/Literal Wrapped;

• Diretriz 2. Utilize mensagens de tamanhos e complexidades diferentes;

• Diretriz 3. Analise as mensagens SOAP transportadas na rede;

• Diretriz 4. Verifique o parser suportado pelo toolkit;

• Diretriz 5. Monitore o tráfego de pacotes;

 -73-

• Diretriz 6. Quantifique o desempenho do Web Services toolkit.

Em recentes investigações, foi descoberto que o estilo de codificação das

mensagens SOAP, além de representar um acordo entre o cliente e o servidor sobre

como interpretar as mensagens, também afeta o desempenho do toolkit.

Esse problema foi abordado pela Diretriz 1, onde foram descritos os diferentes

estilos e mostrado o trade-off entre interoperabilidade e desempenho associado a cada

estilo. Além disso, a Diretriz 1 funciona como uma otimização para os gargalos

referentes ao tamanho da mensagem e aos custos de serialização e deserialização das

mensagens.

De forma geral, as diretrizes 3, 4 e 5 foram desenvolvidas para facilitar a

identificação dos gargalos inerentes aos Web Services toolkits e os diretamente

associados ao protocolo HTTP.

As diretrizes 2 e 6 visam padronizar o processo de avaliação de desempenho de

qualquer toolkit, permitindo que os resultados da avaliação sejam abrangentes e

propondo métricas, respectivamente.

A partir das diretrizes, foi elaborado um processo focando no passo a passo que

deve ser executado durante a avaliação de desempenho de Web Services toolkits. Para

reduzir o tempo gasto na sua execução, algumas das tarefas desse processo serão

automatizadas por um utilitário de código aberto e implementado em Java. Tanto o

processo quanto o utilitário serão descritos no próximo capítulo.

 -74-

5 Processo e um Utilitário para a
Avaliação de Desempenho de
Web Services Toolkits

5.1 Introdução

A avaliação de desempenho de Web Services pode não ser uma tarefa fácil, consumindo

muito tempo e demandando desenvolvedores ou arquitetos com experiência na

tecnologia. Devido a essas dificuldades, o processo de avaliação é muitas vezes

realizado depois que a aplicação Web Services é completamente implementada ou, no

pior caso, é simplesmente omitido. Porém o desempenho de Web Services não pode ser

desconsiderado, uma vez que ainda é um problema em aberto, onde os toolkits

apresentam eficiências diferentes.

Nesse capítulo serão apresentados um processo para avaliação de desempenho

de Web Services toolkits e um utilitário, denominado JWSPerf (Java Web Services

Performance), cujo objetivo é automatizar alguns passos desse processo. Dessa forma, é

possível identificar os gargalos de desempenho e selecionar o toolkit “ideal” para expor

o serviço.

 -75-

5.2 Processo de Avaliação de Desempenho

O processo para a avaliação de desempenho de Web Services toolkits apresentado nessa

seção é uma extensão das diretrizes apresentadas no capítulo anterior e seu objetivo é

uniformizar a avaliação de desempenho de diferentes toolkits. De forma geral, o

processo representa um guia prático, definindo um passo a passo para executar a

avaliação, porém sempre embasado pelas diretrizes.

Figura 5.1 - Componentes do processo de avaliação de desempenho

O processo proposto é composto por um conjunto de tarefas que devem ser

executadas do lado do cliente, pois o serviço deve estar implementado e rodando no

servidor de aplicação. A Figura 5.1 ilustra a estrutura necessária para executar o

processo seguindo as seguintes tarefas:

1. Recuperar a mesma interface WSDL utilizada para desenvolver o serviço que

será avaliado. Essa interface deveria conter operações usando tipos de dados

simples e complexos de vários tamanhos, assim respeitando a Diretriz 2 (Utilize

mensagens de tamanhos e complexidades diferentes). Como a interface WSDL

representa o contrato entre o cliente e o servidor, não é necessário que ambos

adotem o mesmo toolkit;

2. De acordo com a Diretriz 1, selecionar um Web Services toolkit que suporte o

estilo de codificação Document/Literal Wrapped;

 -76-

3. Verificar, a partir da sua documentação, se o parser adotado pelo toolkit

implementa o modelo SAX ou XPP, pois o modelo DOM é o mais ineficiente.

Essa tarefa deve ser realizada para atender à Diretriz 4 (Verifique o parser

suportado pelo toolkit);

4. Gerar, a partir da interface WSDL, o stub cujo código varia de acordo com o

Web Services toolkit selecionado. A maioria dos toolkits implementados em Java

disponibiliza ferramentas para executar esse passo a partir de linha de comando

passando apenas os parâmetros necessários como, por exemplo, o diretório onde

será gerado o código e o caminho da interface WSDL. Dessa forma, para

executar esse passo corretamente, é importante analisar a documentação da

ferramenta disponibilizada, uma vez que cada toolkit adota uma maneira

diferente;

5. Implementar a aplicação cliente, codificando todas as chamadas de operações

definidas na interface WSDL. No mínimo, a implementação de cada chamada de

operação deve acessar o stub gerado para invocar a operação do serviço remoto.

O código para recuperar o stub varia de acordo com o toolkit selecionado. Além

da chamada de operação em si, também é necessário escrever o código

responsável pela coleta do tempo e cálculo das métricas de desempenho;

6. Invocar, passando os parâmetros desejados, as operações suportadas pelo serviço

a fim de calcular o RTT (Round Trip Time) e a vazão. Dessa forma, a Diretriz 6

(Quantifique o desempenho do Web Services toolkit) é atendida;

7. Analisar as mensagens SOAP para determinar o seu tamanho, o estilo de

codificação, a versão do protocolo HTTP e os atributos do seu cabeçalho a fim

de atender à Diretriz 3 (Analise as mensagens SOAP transportadas na rede);

8. Adotar um analisador de tráfego de pacotes, a fim de identificar os gargalos de

comunicação. Dessa forma, a Diretriz 5 (Monitore o tráfego de pacotes) é

satisfeita.

Dependendo da quantidade de toolkits que serão analisados e da experiência do

desenvolvedor ou arquiteto na tecnologia Web Services, esse processo de avaliação pode

demandar muito tempo, pois é necessário estudar a documentação dos toolkits para

executar os passos 2, 3 e 4. Além disso, para atender à Diretriz 2, a interface deve

definir várias operações, implicando em um tempo maior para executar a tarefa 5. As

 -77-

tarefas 6, 7 e 8 também consomem muito tempo, porque a mesma operação deve ser

executada várias vezes, a fim de coletar resultados estáveis.

Para simplificar a execução dessas tarefas, o utilitário JWSPerf (Java Web

Services Performance) foi desenvolvido para automatizar os passos 4, 5 e 6 desse

processo. Os passos 1 e 2 são executados apenas configurando os parâmetros dos

arquivos de propriedades do utilitário JWSPerf. Os passos 7 e 8 são auxiliados por

ferramentas como, por exemplo, TCP Monitor, Ethereal, WinDump e TCP Sniffer. O

passo 3 consiste pesadamente na análise da documentação dos toolkits. A Tabela 5.1

apresenta o mapamento das diretrizes com as tarefas do processo e o responsável pela

execução.

Tabela 5.1 - Mapeamento entre as diretrizes, o processo e o responsável pela execução

Diretrizes Processo Execução

Diretriz 1 Tarefa 2 Configuração do parâmetro no arquivo de

propriedade do utilitário JWSPerf.

Tarefa 1 Configurar parâmetro no arquivo de propriedade

do utilitário JWSPerf.

Diretriz 2

Tarefas 4 e 5 Módulo responsável pela geração de classes de

teste a partir da interface WSDL do utilitário

JWSPerf.

Diretriz 3 Tarefa 7 Analisador de mensagens SOAP.

Diretriz 4 Tarefa 3 Análise manual da documentação do toolkit.

Diretriz 5 Tarefa 8 Analisador de tráfego de rede.

Diretriz 6 Tarefa 6 Módulo responsável pela invocação e coleta das

métricas de desempenho do utilitário JWSPerf.

5.3 Utilitário JWSPerf

JWSPerf é um utilitário de código aberto, fácil de usar e com suporte a múltiplas

implementações Web Services [Machado and Ferraz, 2006]. Até o momento, três Web

Services toolkits implementados em Java são suportados – Axis da Apache [Apache

Axis, 2004], JWSDP (Java Web Services Developer Pack) da Sun [Sun, 2004] e SSJ

 -78-

Aplicação cliente

Stub

Interface
WSDL

Toolkit
Web Services

Serviço

Skeleton

Rede

Analisador
de

Tráfego

Analisador
de

Mensagens SOAP

(servidor de aplicação)

Módulo de
Invocação

Mód. de geração
de classes

JWSPerf

(Systinet Server for Java) [Systinet, 2004]. Cada um desses toolkits possui

características diferentes para desenvolver a aplicação e instalar o serviço no servidor de

aplicação. Todos esses toolkits atualmente incorporados ao JWSPerf atendem à Diretriz

1 e, conseqüentemente, à tarefa 2 do processo acima. Entretanto, Document/Literal

Wrapped não é o estilo de codificação padrão desses toolkits, exceto para o toolkit SSJ,

que permite que o usuário configure o estilo padrão durante a sua instalação.

Do ponto de vista de projeto, o JWSPerf é constituído por dois módulos (Figura

5.2): o de invocação e o de geração das classes de teste. Esses módulos foram

projetados para permitir que qualquer desenvolvedor automaticamente gere a aplicação

cliente, que consiste nas classes de teste e nos artefatos específicos do toolkit, a partir da

interface WSDL, independentemente da sua complexidade. Além disso, também

invoque as operações definidas na interface do serviço e apresente os resultados no final

da execução. Devido a essa estruturação é que JWSPerf automatiza as tarefas 4, 5 e 6 do

processo. As próximas seções detalham o funcionamento e a implementação de cada um

desses módulos.

Figura 5.2 - Papel do utilitário JWSPerf

 -79-

 Módulo de Geração das Classes de Teste

O módulo de geração das classes de teste foi construído baseando-se na implementação

do parser WSDL do toolkit Axis, e seu objetivo é gerar uma classe de teste para cada

operação definida na interface WSDL. A Figura 5.3 ilustra o seu diagrama de classes,

incluindo as classes do próprio toolkit Axis que foram reusadas – Emitter,

SymbolTable, JavaGeneratorFactory e JavaClassWriter.

A classe Emitter funciona como um parser de documentos WSDL que gera, a

partir dos parâmetros configurados, stubs, skeletons e classes representando os tipos de

dados. A classe SymbolTable é um tipo definido para representar em memória o

documento WSDL varrido.

Figura 5.3 - Diagrama de classes do módulo de geração das classes de teste

A classe WSDLParser é uma especialização da classe Emitter, também

funcionando como parser, porém foi adaptada para gerar apenas as classes de teste das

operações definidas na interface WSDL. Os principais métodos definidos são run e

generate. O primeiro cria uma instância da classe SymbolTable e invoca seu método

populate para carregar a interface. Uma vez inicializada, classe SymbolTable é

passada como parâmetro para o método generate.

 -80-

As classes TestClassGeneratorFactory, OperationTestClassWriter e

ToolkitTestClassWriter são responsáveis pela criação das classes de teste de acordo

com o toolkit configurado. A classe ToolkitTestClassWriter herda da classe

JavaClassWriter, que define os métodos responsáveis pela escrita do código Java das

classes de teste geradas.

As classes AxisTestClassWriter, JWSDPTestClassWriter e

SYSTINETTestClassWriter são especializações da classe ToolkitTestClassWriter

e apenas contêm os métodos cuja implementação varia de acordo com o toolkit. A regra

é criar uma classe <TOOLKIT>TestClassWriter para cada toolkit suportado, porque as

implementações dos métodos writeRunMethod e writeSetupMethod dependem do

toolkit e do modo como o stub é instanciado.

Uma instância da classe PrintWriter é criada para representar uma abstração

alto nível do arquivo Java, que posteriormente será gerado fisicamente. Durante a

execução, todo o código da nova classe é armazenado nessa instância.

5.3.1.1 Diagrama de Seqüência

Nessa seção será apresentado o diagrama de seqüência referente à execução do módulo

de geração das classes de teste, mostrando a interação e a troca de mensagens entre as

classes participantes (ver Figura 5.4). O diagrama apresentado é uma visão alto nível do

funcionamento real, pois algumas classes foram omitidas.

A execução desse módulo é iniciada quando o método main da classe

WSDLParser é invocado, que após validar o preenchimento dos parâmetros recebidos,

cria uma instância da classe WSDLParser, que por sua vez, cria uma instância da classe

TestClassGeneratorFactory.

Finalizada a criação da classe WSDLParser, o seu método run é acionado para

iniciar o processo de geração das classes de teste. Esse método executa duas tarefas

importantes. A primeira consiste em criar uma instância da classe SymbolTable, a fim

de invocar seu método populate. Se a localização do arquivo WSDL for uma URL, o

usuário deve garantir que o serviço esteja rodando; caso contrário, uma exceção será

 -81-

levantada. A segunda tarefa é invocar o método generate da classe WSDLParser. A

principal ação do método generate da classe WSDLParser é invocar o método

getGenerator da classe TestClassGeneratorFactory, que simplesmente cria uma

instância da classe OperationTestClassWriter – responsável pela geração das

classes de teste, uma para cada operação definida na interface.

Figura 5.4 - Diagrama de seqüência do módulo de geração das classes de teste

Após a criação do objeto OperationTestClassWriter, seu método generate é

invocado. A implementação desse método consiste em varrer todas as operações

definidas na interface WSDL e para cada operação, o método generate da classe

 -82-

JavaClassWriter é invocado. Esse último cria uma instância da classe PrintWriter,

representando o arquivo Java a ser gerado, e invoca os métodos writeFileHeader para

gerar o cabeçalho da classe, writeFileBody que escreve os atributos, o construtor e os

demais métodos, e o método writeFileFooter para finalizar a declaração. Por fim, o

método closePrintWriter é invocado, gerando fisicamente a classe com o código

especificado.

Dependendo do toolkit informado como parâmetro pelo usuário, apenas uma das

especializações da classe ToolkitTestClassWriter (AXISTestClassWriter,

JWSDPTestClassWriter e SYSTINETTestClassWriter) é criada em tempo de

execução. As implementações dos métodos writeFileBody e writeSetupMethod são

diferentes para cada um dos toolkits.

 Módulo de Invocação

O objetivo do módulo de invocação é rodar a operação solicitada pelo usuário e coletar

as métricas de desempenho referentes à execução. Para isso, é preciso apenas configurar

algumas propriedades antes de iniciar a execução. Para realizar sua tarefa, esse módulo

é composto por classes e interfaces, com responsabilidades bem definidas (ver Figura

5.5).

A classe JWSPerfDriver é o ponto inicial da execução desse módulo. Suas

principais tarefas são carregar os atributos da classe Config, gerenciar o ciclo de vida

dos agentes rodando simultaneamente e solicitar à classe MetricHandler a geração do

arquivo com os resultados.

A classe Config define os atributos que armazenam os parâmetros informados

pelo usuário antes da execução e ficam acessíveis durante todo o processamento (ver

Tabela 5.2, pp. 84). Apenas dois métodos estão definidos: init, que simplesmente

inicializa seus atributos, e o método getResultFileName, que gera o caminho completo

e o nome do arquivo de saída.

 -83-

Figura 5.5 - Diagrama de classes do módulo de invocação

A classe Agent é uma especialização da classe java.lang.Thread e representa

um cliente do serviço. É possível configurar múltiplos agentes rodando

concorrentemente para simular um cenário real, onde uma thread é criada para cada

novo agente a ser executado. Cada agente tem um identificador único, uma referência

da biblioteca de medição de tempo e uma instância da classe de teste que será

executada, anteriormente gerada pelo módulo de geração das classes de teste.

Os métodos definidos na classe Agent são setup, que se encarrega de instanciar

a classe de teste em tempo de execução, e o método run, que invoca a classe de teste.

De modo geral, a tarefa de um agente é executar a operação encapsulada na classe de

teste. Os agentes também têm a responsabilidade de enviar à classe MetricHandler o

tempo de resposta de cada requisição completada e o tempo para instanciar o stub.

A classe TestCase é uma abstração que declara os métodos que as classes de

teste devem implementar, independentemente do tipo de tecnologia utilizada para fazer

a invocação do serviço remoto. Dois métodos abstratos estão definidos: setup, que

 -84-

contém o código necessário para instanciar o stub, e o método run, que invoca a

operação desejada usando o stub.

 Tabela 5.2 - Descrição dos atributos da classe Config

Atributo Descrição
AGENT_NUMBER Indica o número de agentes que devem rodar simultaneamente.

WARM_UP Representa o número de invocações à operação para
estabilizar o tempo.

EVALUATIONS Indica o numero de avaliações que será realizada. Cada
avaliação é composta por vários ciclos.

CYCLES Indica a quantidade de ciclos de uma avaliação. Cada ciclo é
composto por várias interações.

INTERACTIONS Representa o número de invocações à operação dentro de um
determinado ciclo.

TOOLKIT Representa o toolkit selecionado pelo usuário.
SERVICE_ENDPOINT Atributo utilizado pelo método setup de cada classe de teste

para recuperar o stub do serviço solicitado.
TESTCASE Nome da classe de teste que deverá ser instanciada durante a

execução.
TESTCASE_PACKAGE Representa o pacote das classes de teste e, juntamente com o

atributo acima, é usada para instanciar a classe de teste usando
a tecnologia Reflection de Java.

RESULT_FILE_PATH Diretório onde o arquivo de saída deverá ser gerado.

A classe <Operation>TestCase é uma implementação concreta da classe

TestCase e o código dos seus métodos varia de acordo com o toolkit usado para fazer a

requisição e com a operação invocada. O módulo de geração das classes de teste é

responsável por gerar uma classe <Operation>TestCase para cada operação da

interface WSDL.

Apenas em tempo de execução o utilitário instancia a classe de teste configurada

nos atributos TESTCASE_PACKAGE e TESTCASE da classe Config, utilizando a tecnologia

Reflection de Java. Caso o usuário deseje testar outra operação, basta configurar a classe

de teste responsável por invocar a operação desejada.

A classe MetricHandler é responsável por calcular as métricas utilizadas na

avaliação de desempenho dos Web Services toolkits analisados. Essas métricas

calculadas são: 1) o tempo de resposta médio (RTT); 2) a vazão e 3) o tempo médio

para instanciar o stub. Todos os resultados calculados são armazenados em um arquivo

gerado no diretório especificado pelo atributo Config.RESULT_FILE_PATH.

 -85-

5.3.1.2 Diagrama de Seqüência

Nessa seção será apresentado um diagrama de seqüência da execução do módulo de

invocação (Figura 5.6). Esse diagrama também é uma visão de alto nível do

funcionamento real.

Figura 5.6 - Diagrama de seqüência do módulo de invocação

 -86-

O usuário inicia a invocação do serviço executando o método main da classe

JWSPerfDriver, passando os parâmetros necessários para inicializar a classe Config.

Finalizada essa fase de configuração da execução, uma instância da classe

JWSPerfDriver é criada e seu método start é invocado.

A primeira tarefa do método start é instanciar os objetos do tipo Agent, onde o

número de agentes a ser criado é determinado pelo atributo AGENT_NUMBER da classe

Config. Criar um agente significa recuperar uma instância da interface ITimer

invocando seu método estático newTimer e, em seguida, executar seu método setup,

que se encarrega de criar uma instância, em tempo de execução, da classe de teste que

encasula a operação solicitada pelo usuário.

Uma vez instanciada a classe de teste, seu método setup é invocado, a fim de

recuperar, de forma estática ou dinâmica, o stub que será utilizado para acessar o

serviço e abstrair as questões referentes à comunicação. Como o tempo para instanciar o

stub é uma métrica de desempenho proposta pela Diretriz 6, o mesmo é armazenado na

classe MetricHandler através do método addSetupTime.

Após criar todos os agentes, a segunda tarefa do método start da classe

JWSPerfDriver é invocar o método start da thread agente, que implicitamente

executa o seu método run.

A implementação do método run da classe Agent simplesmente executa o

método run da sua classe de teste que, por sua vez, invoca a operação na classe stub

anteriormente recuperada. O tempo para executar a operação também é uma métrica de

desempenho proposta pela Diretriz 6, portanto, o mesmo deve ser armazenado na classe

MetricHandler invocando o seu método addResponseTime.

Por fim, a terceira tarefa do método start da classe JWSPerDriver é executar

o método printResults da classe MetricHandler, depois que todos os agentes

finalizaram sua execução e suas métricas foram coletadas. Seu objetivo é calcular as

métricas de desempenho referentes à execução da operação e ao toolkit configurado e

gerar um arquivo com os resultados no diretório de saída. Um arquivo diferente é

gerado para cada execução.

 -87-

5.4 Instalando o JWSPerf

Nessa seção será apresentado um guia rápido composto pelos passos básicos para um

desenvolvedor instalar o utilitário de forma simples e rápida. Primeiramente, é

necessário instalar separadamente cada Web Services toolkit suportado pelo utilitário,

pois os mesmos não fazem parte do seu código. Atualmente, o desenvolvedor deve

garantir a instalação dos toolkits Axis, JWSDP e SSJ. Após finalizar a instalação de

cada um desses toolkits, os seguintes passos devem ser realizados para instalar o

utilitário:

1. Fazer o download do arquivo “jwsperf 0.0.9 beta.zip” disponível no endereço

http://code.google.com/p/jwsperf/;

2. Descompactar o arquivo baixado em qualquer diretório do sistema de arquivo.

Dentro do diretório <JWSPERF_HOME>/jwsperf, onde <JWSPERF_HOME>

representa o diretório de instalação do utilitário, devem estar presentes todos os

diretórios (ver Figura 5.7) e arquivos de configuração (Tabela 5.3);

3. Alterar o arquivo env.bat, a fim de atualizar o path da máquina com as

bibliotecas para rodar os Web Services toolkits;

4. Configurar as propriedades “axis.home”, “jwsdp.home” e “ssj.home” do arquivo

build.properties com os diretórios onde os toolkits Axis, JWSDP e SSJ foram

instalados, respectivamente.

Tabela 5.3 - Principais arquivos de configuração

Arquivos Descrição
build.xml Descreve todos os comandos/tarefas para interagir com o utilitário.

build.properties Define as propriedades referentes ao diretório de instalação dos
toolkits.

env.bat Arquivo de batch que configura as variáveis de ambiente para
executar os toolkits.

parameters.properties Define propriedades passadas como parâmetros ao módulo de
invocação.

config.xml Arquivo de configuração apenas utilizado pelo toolkit JWSDP.
jwsperf.xml Define as propriedades referentes ao serviço sendo executado e

configurações necessárias para executar o módulo de geração das
classes de teste.

path.xml Define o classpath necessário para executar cada toolkit.
properties.xml Define as propriedades que representam a estrutura de diretórios.

 -88-

Figura 5.7 - Estrutura de diretórios do utilitário JWSPerf

A Figura 5.7 ilustra a estrutura de diretório do JWSPerf, onde cada um tem seu

papel bem definido. Segue a descrição de suas responsabilidades:

• jwsperf: diretório raiz que contém os arquivos build.xml, build.properties e

env.bat e os demais diretórios do utilitário;

• src: armazena o código fonte do utilitário JWSPerf, incluindo as classes dos

módulos de invocação e de geração das classes de teste;

• build: usado como um repositório temporário dos arquivos gerados para

construir todo o código que será executado. Contém os seguintes subdiretórios:

o classes: armazena os arquivos resultantes da compilação das classes

do utilitário e as geradas pelo mesmo;

o generate: armazena as classes clientes geradas pelo utilitário cujo

código é específico do toolkit;

o src: contém o código fonte do utilitário, as classes de teste geradas e

o código do diretório “generate”;

o testcase: contém os arquivos resultantes da compilação do módulo de

geração das classes de teste.

 -89-

• config: contém os arquivos de configuração do utilitário (ver Tabela 5.3). Fazem

parte desse diretório:

o etc: armazena o arquivo de configuração parameters.properties;

o wsdls: armazena os arquivos WSDL separados por toolkit;

o xmls: contém os arquivos de configuração do tipo XML necessários

para gerar as classes e rodar o utilitário – jwsperf.xml, path.xml,

config.xml e properties.xml.

• lib: armazena as bibliotecas necessárias para construir e rodar o utilitário;

• profile: armazena os resultados da investigação (profiling) da execução do

utilitário;

• results: contém os arquivos de saída com os resultados da execução do utilitário;

• testcases: armazena as classes de teste geradas pelo módulo de geração das

classes de teste. As classes geradas são sobrescritas a cada execução, caso a

propriedade “generate.testcase” do arquivo jwsperf.xml esteja habilitada. As

classes geradas são separadas por toolkit.

5.5 Executando o Utilitário JWSPerf

Para facilitar a interação entre o desenvolvedor e o JWSPerf, a ferramenta Java de

construção Ant foi adotada. Dessa forma, o utilitário pode ser executado a partir de

linha de comando, automatizando a construção de todo o código do cliente, incluindo as

classes de teste e os artefatos específicos de cada toolkit.

Um desenvolvedor que domine as tecnologias Ant e XML, pode facilmente

obter todas as informações necessárias para desenvolver uma aplicação cliente com

JWSPerf apenas analisando o arquivo build.xml (ver Tabela 5.3), pois o mesmo define

todos os comandos suportados. Além disso, o utilitário foi estruturado de forma simples,

seguindo uma nomenclatura familiar aos desenvolvedores de aplicações.

Entretanto, para os desenvolvedores que desejem usar o utilitário JWSPerf como

uma caixa preta, onde apenas é necessário invocar os comandos e analisar os resultados

gerados, será apresentado um guia com os passos que devem ser realizados e quais

 -90-

comandos devem ser invocados para executar corretamente o utilitário. Os passos

apresentados a seguir apenas podem ser efetuados depois que o guia descrito na seção

anterior tenha sido corretamente executado.

Passo 1: Rodar o arquivo env.bat

Primeiramente, antes de executar esse passo, o desenvolvedor deve abrir uma janela

DOS e mudar para o diretório <JWSPERF_HOME>/jwsperf. Em seguida, é necessário

rodar o arquivo de batch env.bat, para garantir que as variáveis de ambiente da máquina

estejam corretamente configuradas. Esse arquivo precisa ser executado todas as vezes

que uma nova janela DOS for aberta.

Passo 2: Alterar os arquivos parameters.properties e jwsperf.xml

É necessário verificar e alterar as configurações armazenadas no arquivo

parameters.properties localizado no diretório “config/etc”, pois as mesmas são passadas

como parâmetro ao utilitário. Durante a execução, os parâmetros – o número de threads

clientes, o número de invocações para estabilizar os resultados, os números de

avaliações, de ciclos e interação, a classe de teste e o diretório onde serão gerados os

resultados – são armazenados na classe Config (ver Seção 5.3.2).

O arquivo jwsperf.xml contém as propriedades que instruem como o utilitário

deve gerar as classes de teste e informam sobre o serviço remoto. Então, é necessário

configurar suas propriedades de acordo com o cenário que se deseja avaliar. As

principais propriedades que devem ser configuradas são o toolkit, a URI do WSDL que

pode ser local ou remota, o endereço do serviço e a propriedade que habilita ou não a

geração das classes de teste.

Passo 3: Construir as classes cliente

A construção das classes cliente consiste em invocar o comando “build” do script

build.xml. Seu objetivo é gerar as classes necessárias para executar o utilitário do lado

do cliente.

 -91-

O comando “build” aciona outros comandos básicos, que executados em

conjunto, realizam as tarefas necessárias para construir toda a infra-estrutura para o

cliente invocar o serviço.

<target name="build"
 depends="prepare,generate-testcases,
 generate-axis,generate-jwsdp,
 generate-systinet,
 copy-files,compile">

Figura 5.8 - Comando para construir as classes clientes

O comando “build” é responsável pela invocação, nessa ordem, dos comandos

“prepare”, “generate-testcases”, “generate-axis”, “generate-jwsdp”, “generate-systinet”,

“copy-files” e “compile” (Figura 5.8), que também podem ser executados

separadamente. As próximas subseções apresentam as tarefas realizadas por cada um

desses comandos.

Tarefa 1: Preparando o diretório build

Essa tarefa consiste em invocar o comando “prepare” (Figura 5.9), que é responsável

por limpar todo o conteúdo dentro do diretório “build” e, novamente, criar todos os seus

subdiretórios – classes, src, generate e testcase.

Embora seja um comando simples, o mesmo é importante para garantir ao

desenvolvedor que nenhum outro arquivo, gerado em execuções anteriores, seja

utilizado erradamente.

<target name="prepare">
 <delete dir="${build.dir}" />
 <mkdir dir="${build.dir}" />
 <mkdir dir="${build.src.dir}" />
 <mkdir dir="${build.classes.dir}" />
 <mkdir dir="${build.generate.dir}" />
 <mkdir dir="${build.testcase.dir}" />
</target>

Figura 5.9 - Comando para preparar o diretório build

 -92-

Tarefa 2: Gerando as classes de teste

Essa tarefa consiste em invocar o comando “generate-testcases” para gerar as classes

que serão usadas para invocar as operações do serviço Web Services. Esse comando foi

definido para automatizar a execução do módulo de geração das classes de teste e

apenas é executado quando o desenvolvedor habilita a propriedade “generate-testcase”

do arquivo jwsperf.xml, que indiretamente torna a propriedade

“generate.testcase.present” verdadeira.

<target name="generate-testcases" if="generate.testcase.present">
 <copy todir="${build.testcase.dir}">
 <fileset dir="${src.dir}/br/ufpe/cin/jwsperf/wsdl"/>
 </copy>

 <javac srcdir="${build.testcase.dir}"
 destdir="${build.testcase.dir}">
 <classpath refid="axis.classpath"/>
 </javac>

 <delete dir="${testcases.dir}/${toolkit}" />

 <java classname="br.ufpe.cin.jwsperf.wsdl.WSDLParser"
 fork="true" classpathref="axis.classpath">
 <classpath path="${build.testcase.dir}"/>
 <arg value="${wsdl.uri}"/>
 <arg value="${toolkit}"/>
 <arg value="${stub.package}"/>
 <arg value="${testcases.dir}/${toolkit}"/>
 </java>
</target>

Figura 5.10 - Comando para gerar as classes de teste

A Figura 5.10 ilustra as tarefas realizadas por esse comando. As mesmas

consistem em copiar para o diretório “build/testcase” apenas os arquivos fontes que

compõem o módulo de geração das classes de teste, a fim de serem compilados. Antes

de executar esse módulo invocando a classe WSDLParser, as classes de teste geradas em

execuções anteriores são apagadas.

O código resultante da execução desse comando depende da configuração da

propriedade “toolkit” do arquivo jwsperf.xml. Além do toolkit, também são informados

a localização do arquivo WSDL, o pacote das classes geradas e o diretório para

armazená-las.

 -93-

Tarefa 3: Construindo com o toolkit Axis

Essa tarefa consiste em invocar o comando “generate-axis”, porém o mesmo apenas é

executado se o desenvolvedor tiver configurado a propriedade “toolkit” para usar o

Axis. Caso contrário, essa tarefa não será executada, porque a propriedade “axis.toolkit”

será falsa.

<target name="generate-axis" if="axis.toolkit">
 <java classname="org.apache.axis.wsdl.WSDL2Java"
 classpathref="axis.classpath" fork="true">
 <arg value="${wsdl.uri}"/>
 <arg value="-o${build.generate.dir}"/>
 <arg value="-p${stub.package}" />
 </java>
</target>

Figura 5.11 - Comando para gerar as classes usando o toolkit Axis

O objetivo é invocar a classe WSDL2Java do toolkit Axis para gerar as classes

específicas desse toolkit. A partir da Figura 5.11, verifica-se que os parâmetros para

executar essa classe são a localização do arquivo WSDL (“${wsdl.uri}”), o diretório

raiz para armazenar as classes geradas (“${build.generate.dir}”) e o pacote que todos os

namespaces do arquivo WSDL deverão ser mapeados (“${stub.package}”). O valor

padrão das propriedades “${build.generate.dir}” e “${stub.package}” são

“build\generate” e “br.ufpe.cin.jwsperf.communication.ws”, respectivamente.

Tarefa 4: Construindo com o toolkit JWSDP

De forma semelhante à anterior, essa tarefa apenas é executada quando o toolkit JWSDP

estiver configurado. O objetivo do comando “generate-jwsdp” é gerar os artefatos do

cliente específicos desse toolkit usando a sua ferramenta WSCompile.

<target name="generate-jwsdp" if="jwsdp.toolkit">
 <wscompile keep="true" client="true"
 base="${build.generate.dir}"
 config="${jwsdp.config.file}">
 <classpath>
 <path refid="jwsdp.classpath"/>
 </classpath>
 </wscompile>

</target>

Figura 5.12 - Comando para gerar as classes usando o toolkit JWSDP

 -94-

 WSCompile é uma ferramenta simples e foi projetada para obter a localização da

interface WSDL a partir do arquivo de configuração “${jwsdp.config.file}” (Figura

5.12). O nome padrão desse arquivo é config.xml e está localizado no diretório

“config\xmls”. Além do arquivo WSDL, a ferramenta também lê desse arquivo o

atributo “packageName”, que especifica o pacote das classes geradas e seu valor está

configurdo na configurado na propriedade “${stub.package}”.

Analisando a Figura 5.12, verifica-se que o comando “wscompile” apenas deve

gerar os artefatos do lado do cliente (cliente=“true”), manter os arquivos gerados

(keep=“true”) e armazená-los no diretório indicado pelo parâmetro

base=“${build.generate.dir}”.

Tarefa 5: Construindo com o toolkit SSJ

Quando o toolkit SSJ é configurado, o comando “generate-systinet” é executado e as

classes do cliente SSJ são geradas usando a ferramenta de linha de comando

WSDL2Java disponibilizada pelo próprio toolkit. Semelhantemente aos comandos

anteriores, as classes cliente também são geradas a partir da interface WSDL indicada

pelo parâmetro wsdlURL=“${wsdl.uri}” (Figura 5.13).

<target name="generate-systinet" if="systinet.toolkit">
 <WSDL2Java outputDirectory="${build.generate.dir}/"
 interfacePackage="${stub.package}"
 generateJavaBeans="true"
 force="true"
 strictSchema="true"
 wsdlURL="${wsdl.uri}"/>

</target>

Figura 5.13 - Comando para gerar as classes usando o toolkit SSJ

Além da interface WSDL, também são passados como parâmetro o diretório

onde as classes serão geradas (outputDirectory=“${build.generate.dir}"), seu pacote

(interfacePackage="${stub.package}") e as propriedades indicando que as classes

devem ser sobrescritas a cada execução (force="true") e devem ser geradas seguindo o

padrão JavaBeans (generateJavaBeans=“true”) e o esquema definido no arquivo WSDL

(strictSchema="true").

 -95-

Tarefa 6: Copiando as classes geradas

Essa tarefa consiste em executar o comando “copy-files” (Figura 5.14) que copia para o

diretório “build/src” todas as classes que compõem o módulo de invocação, as classes

de teste geradas a partir do comando “generate-testcases” e as classes clientes

específicas dos toolkits geradas pelos comandos “generate-axis”, “generate-jwsdp” ou

“generate-systinet”.

<target name="copy-files">
 <copy todir="${build.src.dir}">
 <fileset dir="${src.dir}" excludes="**/wsdl/**"/>
 </copy>
 <copy todir="${build.src.dir}">
 <fileset dir="${build.generate.dir}"/>
 <fileset dir="${testcases.dir}/${toolkit}"/>
 </copy>
 <copy todir="${build.classes.dir}">
 <fileset dir="${build.src.dir}"
 includes="**/native, **/**.h, **/**.c,
 /.xmap" description="">
 <exclude name="**/*.java"/>
 </fileset>
 </copy>
</target>

Figura 5.14 - Comando para copiar as classes geradas

Tarefa 7: Compilando as classes

O comando “compile” (Figura 5.15) compila todos os arquivos Java gerados e os

arquivos fontes do próprio utilitário, ambos armazenados no diretório “build/src”. Os

arquivos resultantes da compilação são armazenados no diretório “build/classes”. Esse

passo pode ser executado separadamente, caso as classes de teste geradas sejam

alteradas para montar os objetos que serão passados como parâmetro,

<target name="compile" description="Compile all classes">
 <javac srcdir="${build.src.dir}"
 destdir="${build.classes.dir}">
 <classpath refid="${toolkit}.classpath"/>
 <classpath refid="axis.classpath"/>
 <classpath path=".:${hrtlib.jar}"/>
 </javac>
</target>

Figura 5.15 - Comando para compilar todas as classes

 -96-

Passo 4: Executar o utilitário JWSPerf

Para executar o utilitário, dois comandos podem ser invocados. O primeiro é o comando

“run” (Figura 5.16) que simplesmente roda o utilitário usando as classes localizadas no

diretório “build/classes”. O segundo é comando “profile” (Figura 5.17) que roda e

investiga o fluxo de execução do toolkit selecionado.

<target name="run" description="Run the client">
 <java classname="br.ufpe.cin.jwsperf.JWSPerfDriver"
 classpathref="${toolkit}.classpath" fork="true">
 <classpath path="${build.classes.dir}:${hrtlib.jar}"/>
 <arg value="${parameters.properties}"/>
 <arg value="${toolkit}"/>
 <arg value="${service.endpoint}"/>
 <arg value="${testcase.package}"/>
 </java>
</target>

Figura 5.16 - Comando para rodar o utilitário

Ambos os comandos invocam a classe JWSPerfDriver, passando como

parâmetro o arquivo parameters.properties, o toolkit selecionado, o endereço do serviço

remoto e o pacote onde estão localizadas as classes de teste cujo valor padrão é

“br.ufpe.cin.jwsperf.communication.ws.testcase” .

<target name="profile">
 <java
 classname="br.ufpe.cin.jwsperf.JWSPerfDriver"
 classpathref="${toolkit}.classpath" fork="true">
 <classpath path="${build.classes.dir}:${hrtlib.jar}"/>
 <arg value="${parameters.properties}"/>
 <arg value="${toolkit}"/>
 <arg value="${service.endpoint}"/>
 <arg value="${testcase.package}"/>
 </java>
 <java jar="${PerfAnal.jar}" fork="true">
 <arg value="${profile.file.name}"/>
 </java>
</target>

 Figura 5.17 - Comando para investigar a execução do toolkit

Uma diferença entre esses comandos é que o “run” apenas gera um arquivo com

os resultados no diretório “results”, enquanto que o comando “profile”, além de gerar

esse arquivo, também gera um outro arquivo com resultado da investigação dentro do

diretório “profile” e, em seguida, invoca a ferramenta Java de análise de desempenho

 -97-

PerfAnal [Meyers, 2005], que lê esse último arquivo e apresenta uma tela com todo o

fluxo de execução juntamente com o percentual gasto em cada método (Figura 5.18) ,

dividida em quatro visões: percentuais por métodos invocados (quadrante superior

esquerdo), percentuais a partir dos invocadores do método (quadrante inferior esquerdo)

e percentuais pelo número da linha do método (quadrantes do lado direito).

Figura 5.18 - Resultado da investigação do toolkit SSJ usando o PerfAnal

5.6 Guia para Incorporar Novos Toolkits

Nessa seção serão apresentados os passos que um desenvolvedor deveria fazer para

incorporar novos Web Services toolkits ao utilitário JWSPerf. Os requisitos básicos que

o novo toolkit deve atender são:

1. Suportar a geração das classes cliente a partir de um documento WSDL,

localizado local ou remotamente;

2. Suportar o estilo de codificação Document/Literal Wrapped, atendendo à

Diretriz 1.

 -98-

Em relação ao código fonte existente do utilitário, nenhuma modificação é

necessária. Apenas é preciso criar uma nova classe no pacote

“br.ufpe.cin.jwsperf.wsdl.toolkit” e sua implementação deve conter todo o

código específico do novo toolkit. Essa classe deve, obrigatoriamente, seguir o padrão

de nome <TOOLKIT>TestClassWriter, onde <TOOLKIT> deve ser substituído pelo

nome do toolkit, caso contrário, uma exceção será levantada. Com relação aos arquivos

de configuração do utilitário, as seguintes alterações devem ser feitas para suportar o

novo toolkit:

1. Após instalar o novo toolkit na máquina, o desenvolvedor deve alterar o arquivo

env.bat, a fim de atualizar o path da máquina com as bibliotecas do toolkit

instalado, caso seja necessário;

2. Incluir no arquivo build.properties a propriedade “<toolkit>.home”,

apontando para o diretório onde o toolkit foi instalado;

3. Definir no arquivo path.xml a propriedade “<toolkit>.classpath” que

representará o classpath do novo toolkit. Essa propriedade deverá conter todas

as bibliotecas necessárias para rodar o toolkit;

4. Criar a propriedade “<nome>.toolkit” no arquivo jwsperf.xml, que indicará se

o novo toolkit foi selecionado pelo usuário;

5. Por fim, definir o comando “generate-<toolkit>” no arquivo build.xml que

gerará as classes clientes específicas do toolkit, dentro do diretório representado

pela propriedade “${build.generate}”, cujo valor padrão é “build/genetarate”.

5.7 Considerações Finais

Nesse capítulo foram apresentados um processo para avaliação de desempenho de Web

Services toolkits e o utilitário JWSPerf (Java Web Services Performance) que visa

automatizar os passos desse processo, referentes a parte de implementação, compilação

e execução da aplicação cliente. Além disso, o utilitário também automatiza a coleta de

métricas de desempenho.

 -99-

O objetivo foi reduzir o tempo gasto no estudo da documentação dos toolkits e

na implementação do código em si, uma vez que os desenvolvedores apenas necessitam

configurar algumas propriedades nos arquivos de configuração e rodar os comandos

para gerar e executar o utilitário. Do ponto de vista técnico, as principais características

do utilitário são:

• Código aberto e implementado em Java;

• Utiliza a tecnologia Ant de Java para automatizar o processo de construção

do código;

• Suporta três Web Services toolkits – Axis, Java Web Services Developer

Pack (JWSDP) e Systinet Server for Java (SSJ);

• Fácil de usar, sendo apenas necessário invocar os comandos definidos e

analisar os resultados gerados;

• Gera automaticamente todo o código cliente específico de um Web Services

toolkit a partir de um arquivo WSDL, garantindo assim a interoperabilidade

com o serviço;

• Coleta as métricas de desempenho referente à execução;

• Flexibilidade para incorporar novos toolkits;

• Composto por dois módulos com responsabilidades bem definidas: o módulo

de geração das classes de teste e o módulo de invocação.

O módulo de geração das classes de teste facilita a aplicação da Diretriz 2, pois

para cada operação definida na interface WSDL do serviço, uma classe de teste

invocando essa operação é criada e sua implementação é específica do toolkit

configurado.

O módulo de invocação recupera a instância do stub e executa a operação

desejada pelo desenvolvedor, gerando as métricas de desempenho no final da execução.

O módulo de invocação foi projetado para automatizar a Diretriz 6.

Todo o funcionamento desses módulos baseia-se nas propriedades dos seus

arquivos de configuração, que precisam ser alteradas antes de invocar os comandos do

utilitário. Com essa estruturação, quando um novo toolkit implementado em Java for

incorporado, basta definir algumas propriedades e criar uma única classe.

 -100-

Para realizar a avaliação de desempenho de um determinado serviço Web

Service utilizando o JWSPerf, os seguintes passos do lado do servidor (Passo 1 e 2) e do

cliente (Passos 3 a 10) devem ser realizados:

Passos Execução

1. Construir a interface WSDL do serviço

e prover sua implementação.

Manual

2. Gerar a camada de comunicação Web

Services do serviço para os toolkits

Axis, JWSDP e SSJ.

Usar os comandos que os toolkits

disponibilizam para automatizar esse

passo.

3. Instalar os toolkits Axis, JWSDP e SSJ

e configurar o arquivo build.properties.

Manual

4. Instalar o utilitário JWSPerf. Manual

5. Configurar e executar o arquivo env.bat Manual

6. Configurar os arquivos

parameters.properties e jswperf.xml.

Manual

7. Construir as classes de teste Automatizado pelo JWSPerf

8. Alterar as classes testes para montar os

objetos que serão passados como

parâmetros. Esse passo é opcional.

Manual

9. Executar o utilitário JWSPerf Automatizado pelo JWSPerf

10. Analisar os resultados Manual

De forma geral, JWSPerf reduz o custo para desenvolver uma aplicação, uma

vez que todo o código, incluindo as classes de teste, é gerado pelo mesmo, sem ônus

para o desenvolvedor. Além disso, pode-se facilmente avaliar o desempenho da mesma

aplicação utilizando três diferentes Web Services toolkits, permitindo a comparação e

identificação dos seus gargalos de desempenho.

No próximo capítulo serão apresentados os experimentos realizados utilizando

JWSPerf para analisar o desempenho dos toolkits suportados, aplicando as diretrizes e o

processo propostos e utilizando uma aplicação-teste com operações bem definidas como

benchmark.

 -101-

6 Plataforma Experimental e
Resultados

6.1 Introdução

Esse capítulo apresenta os resultados dos experimentos que foram executados seguindo

o processo de avaliação e utilizando o utilitário JWSPerf. Uma aplicação-teste foi

projetada e utilizada como benchmark para avaliar o desempenho dos três Web Services

toolkits suportados pelo utilitário.

Segundo Buble (2003), para que um processo de avaliação obtenha resultados

estáveis, é necessário executar algumas invocações à operação sendo avaliada antes de

iniciar a coleta dos tempos. Esse passo é importante para minimizar ou eliminar a

influência de fatores que podem tornar os resultados incorretos.

Além do tempo para estabilizar o resultado (warm-up), outra causa de erro na

coleta de resultados é a medição imprecisa do tempo, pois a grande maioria dos

benchmarks envolve a medição do tempo. Dessa forma é importante usar uma fonte

precisa de medição, pois uma invocação remota pode gastar menos que 10ms.

No decorrer desse capítulo, será verificado que os experimentos realizados

levaram em consideração esses dois pontos. Antes de iniciar a coleta, 3000 requisições

 -102-

foram feitas a cada operação analisada e uma biblioteca de tempo precisa foi utilizada,

conforme descrito a seguir.

Antes de apresentar os resultados, as próximas seções detalham a aplicação-

teste, explicando seu projeto e os métodos da sua interface, e as configurações de

software e hardware da plataforma experimental de avaliação (ver Seção 6.2.2).

6.2 Aplicação-teste

As operações suportadas pela aplicação-teste foram definidas baseando-se nos

benchmarks definidos por Juric et al. (1999) e Slominski et al. (2005). A Figura 6.1

ilustra a interface IWSBenchmark definida com o objetivo de permitir que os resultados

obtidos através do processo de avaliação sejam comparáveis entre si.

IWSBenchmark

echoVoid()
echo<TYPE>s(<TYPE>[] input) : <TYPE>[]
echo<TYPE>(<TYPE> input) : <TYPE>
accept<TYPE>s(<TYPE>[] input)
accept<TYPE>(<TYPE> input)
acceptParameters(String myString, double myDouble, boolean myBoolean, int myInt)
return<TYPE>s() : <TYPE>[]
return<TYPE>() : <TYPE>
testException()
setup(int size, int detailsSize, int digits, int precision)

<<Interface>>

Figura 6.1 - Métodos da interface IWSBenchmark

De acordo com a Diretriz 2, a avaliação deveria analisar mensagens de diferentes

tamanhos e complexidades, a fim de entender como diferentes tipos de dados utilizados

como parâmetros e valores de retorno dos métodos influenciam no desempenho de uma

aplicação Web Services. Dessa forma, a interface IWSBenchmark utiliza tanto tipos de

dados simples – double, int, boolean e string – quanto tipos de dados complexos

definidos pelo usuário.

O diagrama de classe da Figura 6.2 mostra os tipos de dados definidos pelo

usuário, empregados pela interface IWSBenchmark – MySimpleObject,

 -103-

MyComplexObject e MyException. A classe MySimpleObject representa um objeto

que encapsula apenas os tipos de dados simples. A classe MyComplexObject, além de

encapsular os tipos de dados simples, tem um array de objetos do tipo

MySimpleObject, cuja quantidade de elementos é dinâmica.

A classe MyExcpetion representa uma exceção, uma vez que herda da classe

java.lang.Exception. Essa classe encapsula apenas uma string representando a

mensagem do erro ocorrido.

MySimpleObject
myString : String
myDouble : double
myInt : int
myBoolean : boolean

MyComplexObject
myString : String
myDouble : double
myInt : int
myBoolean : boolean
mySimpleObjects : MySimpleObject[]

MyExcept ion
message : String

Exception

Figura 6.2 - Entidades de negócio definidas pelo usuário

Para cada tipo de dado simples ou complexo, a interface IWSBenchmark define

um método que passa como parâmetro e/ou retorna o tipo de dado. Além do tipo de

dado em si, também foram definidos métodos usando um array do tipo de dado, a fim

de aumentar a complexidade e analisar os custos da serialização e deserialização desses

dados. Dessa forma, a interface IWSBenchmark é constituída basicamente por quatro

categorias de métodos:

• echo<TYPE>: essa categoria de método recebe um argumento de um

determinado tipo e retorna um valor do mesmo tipo. Exemplos:
o public int echoInt(int input);

o public MySimpleObject echoMySimpleObject(MySimpleObject input).

• accept<TYPE>: essa categoria recebe um único argumento de um determinado

tipo e não retorna nenhum valor. Exemplos:
o public void acceptInt(int input);

o public void acceptMySimpleObject(MySimpleObject input).

 -104-

• return<TYPE>: essa categoria não recebe nenhum parâmetro e retorna apenas o

tipo de dado. Exemplos:
o public int returnInt();

o public MySimpleObject returnMySimpleObject().

• echo<TYPE>s, accept<TYPE>s e return<TYPE>s: essa categoria é similar às

descritas acima, exceto que utiliza um array do tipo de dado. Exemplos:
o public int[] echoInts(int[] input);

o public void acceptInts(int[] input);

o public int[] returnInts().

Para complementar essas categorias, outros métodos auxiliares foram definidos,

pois são importantes para a avaliação de desempenho:

• echoVoid: esse método é utilizado para determinar o gargalo associado com

uma chamada SOAP imposta pelo toolkit;

• acceptParameters: esse método recebe quatro parâmetros do tipo string,

double, boolean e int;

• testException: esse método simplesmente levanta uma exceção definida pelo

usuário.

O método setup foi definido com o objetivo de configurar o tamanho em bytes

da string ou a quantidade de dígitos de um número do tipo double. Ele também foi

usado para configurar a quantidade de elementos do array retornado pelos métodos das

categorias echo e return.

6.2.1 Projeto da Aplicação-teste

A aplicação-teste foi projetada em camadas (ver Figura 6.3) com o objetivo de atender

aos requisitos de modularidade e reusabilidade. Dessa forma, foi possível reusar a

mesma implementação da aplicação-teste, alterando apenas os componentes

responsáveis pela comunicação que dependem do Web Services toolkit escolhido para

expor o serviço.

A camada de comunicação trata as requisições dos clientes e as encaminha para

a classe Controller da camada de negócio. O componente ServiceAdapter contém

 -105-

uma instância da classe Controller e é responsável pelo processo de adaptação das

requisições antes de encaminhá-las.

Figura 6.3 - Arquitetura da aplicação-teste

A camada de negócio é constituída pela classe Controller, que representa o

ponto único de acesso da aplicação, e pelas entidades de negócio que são as entidades

que representam objetos do mundo real e agrupam operações. A classe Controller foi

implementada usando o padrão de projeto Singleton. As entidades de negócio fornecem

as informações necessárias aos dados armazenados pela aplicação. No caso dessa

aplicação-teste, as entidades de negócio estão definidas na Figura 6.2.

Para evitar que o tempo de acesso ao banco influenciasse o processo de

avaliação de desempenho da camada de comunicação implementada em Web Services, a

persistência dos dados foi simplesmente omitida.

A fim de garantir a interoperabilidade entre os toolkits, a interface WSDL foi

projetada usando o estilo Document/Literal Wrapped. Uma vez definida a interface, a

mesma foi utilizada para gerar o skeleton do lado do servidor, exceto para o toolkit SSJ

que não suportou a geração do código a partir da interface WSDL, mas a partir do

código Java. A ferramenta Ant foi utilizada para automatizar esse processo de

construção da camada de comunicação Web Services. As seguintes regras de

interoperabilidade também foram consideradas:

 -106-

• Cada método deveria ter um nome de operação diferente. Dessa forma, não foi

usado o overloading de métodos;

• Não usar o tipo de dado char, porque o mesmo não é suportado pela tecnologia

XML Schema;

• Não expor as coleções de objetos usando tipos específicos da linguagem, assim

como Collection, Map, List e Hashtable, porque não existe uma

padronização entre os toolkits para enviar esses tipos de dados. Converter todos

para array.

6.2.2 Configurações do Ambiente de Execução

Os códigos do cliente e do servidor foram implementados em Java e foram compilados

e executados usando o JavaTM 2 SDK Standard Edition versão 1.4.2_08 da Sun para o

sistema operacional Windows da Microsoft.

Os toolkits Java avaliados nessa dissertação foram Axis versão 1.2 RC2 da

Apache, Web Services Developer Pack (JWSDP) versão 1.5 da Sun e Systinet Server for

Java (SSJ) versão 5.5. O Tomcat versão 5.0 foi utilizado como servidor de aplicação

para os toolkits Axis e JWSDP, enquanto que o SSJ rodou no servidor de aplicação

embutido na sua implementação.

A biblioteca de tempo HRTLib [Roubtsov, 2004] foi escolhida porque a

resolução do método Java System.currentTimeMillis() não é ideal para investigar

com precisão a execução do código Java. Essa biblioteca é simples e emprega a

tecnologia JNI (Java Native Interface) para retornar o tempo transcorrido em

milisegundos. Essa biblioteca foi escolhida para se ter uma fonte precisa de medição,

embora esteja implementada apenas para rodar no sistema operacional Windows.

O tráfego TCP/IP entre o cliente e o servidor foi recuperado usando a ferramenta

Ethereal versão 0.10.10 [Ethereal, 2004], que é um analisador do protocolo de

transporte e executa em todas as plataformas populares como Unix, Linux e Windows.

 -107-

As mensagens HTTP transportando chamadas SOAP foram recuperadas usando

a ferramenta TCP Monitor [Apache Axis, 2004]. Dessa forma, pode-se monitorar as

mensagens enquanto a aplicação é executada.

Os experimentos foram realizados usando dois computadores rodando o sistema

operacional Windows XP da Microsoft Versão 2002 Service Pack 2 e conectados por

uma rede Ethernet de 100Mbps exclusiva para os experimentos. A máquina servidora

foi um Pentium 4 da Intel com o processador Pentium(R) 4 CPU de 2.80 GHz e 1 GB

de memória RAM. A máquina cliente também foi um Pentium(R) 4 CPU da Intel,

porém com um processador de 2.40 GHz e 2 GB de memória RAM.

6.3 Resultados da Avaliação de Desempenho

Essa seção apresenta os resultados da avaliação de desempenho seguindo o processo

proposto e utilizando o utilitário JWSPerf. Os resultados apresentados a seguir

representam uma média dos resultados obtidos na execução de 10 avaliações, onde cada

avaliação executou 3000 invocações para estabilizar os resultados e 20 ciclos, com cada

ciclo executando 500 invocações à operação sendo analisada. Dessa forma, foram

executadas 13000 invocações para cada avaliação, sendo 3000 sem coleta de tempo e

10000 (20 x 500) com coleta.

Esse cenário de teste é facilmente configurado usando o utilitário JWSPerf, pois

basta inicializar os parâmetros WARM_UP, EVALUATIONS, CYCLES e INTERACTIONS do

arquivo de propriedades parameters.properties (ver Figura 6.4) com os valores 3000, 10,

20 e 500, respectivamente.

A seguir, serão detalhadas as tarefas do processo proposto, explicando o passo a

passo que deve ser executado do lado do cliente.

 -108-

################
Parameters properties

Developed by Ana Machado (accm2@cin.ufpe.br).
################

#Number of concurrent clients
AGENT_NUMBER=1

#Number of evaluation
EVALUATIONS=10

#Number of cycles
CYCLES=20

#Number of interactions
INTERACTIONS=500

#Number of invocations before the timing information is collected
WARM_UP=3000

#Testcase name
TESTCASE=EchoBooleanTestCase

#Output directory where the results are generated
RESULT_FILE_PATH=.\\results\\vazao

Figura 6.4 – Arquivo parameters.properties

Tarefa 1: Recuperar a interface WSDL

Essa tarefa deve ser o ponto de partida, pois a interface WSDL é o contrato entre as

aplicações – essa é a primeira lei da interoperabilidade. Utilizando o utilitário JWSPerf,

esse passo é executado configurando os parâmetros do arquivo de propriedade

jwsperf.xml.

A interface WSDL utilizada nessa tarefa foi a mesma que foi utilizada para

desenvolver a aplicação-teste, dessa forma todas as operações da interface

IWSBenchmark são suportadas (ver Figura 6.1).

Tarefa 2: Escolher o Web Services toolkit

Os toolkits avaliados nos experimentos foram os suportados pelo utilitário JWSPerf –

Axis, JWSDP e SSJ. Para checar se esses toolkits suportam o estilo Document/Literal

Wrapped, foi necessário estudar suas documentações. Mesmo não sendo o estilo padrão,

todos suportam o estilo Document/Literal Wrapped.

 -109-

As versões anteriores do Axis não suportavam o estilo Document/Literal

Wrapped, porém as versões mais recentes estão sendo implementadas suportando esse

estilo para melhor atender aos requisitos de interoperabilidade [Apache Axis, 2004].

 Usando o utilitário JWSPerf, essa tarefa é executada configurando o parâmetro

“toolkit” do arquivo de propriedade jwsperf.xml. Uma vez configurado o toolkit e a

interface WSDL, o utilitário é capaz de gerar o código da aplicação cliente

implementando todas as operações do serviço.

Tarefa 3: Verificar o parser do toolkit

Analisando a documentação dos toolkits Axis e SSJ, verificou-se que ambos adotam o

parser Xerces, que é uma implementação do modelo de parsing SAX. Embora a equipe

de desenvolvimento do Axis recomende fortemente o uso desse parser, o Axis foi

desenvolvido para suportar qualquer implementação compatível com a especificação

JAXP 1.1 (Java API for XML Processing) como, por exemplo, o parser Crimson que é

mais eficiente [Elfwing et al., 2002]. A versão adotada pelo Axis 1.2 RC2 foi Xerces

2.4.0, enquanto que o toolkit SSJ 5.5 adotou a versão Xerces 2.6.2.

O toolkit JWSDP 1.5 adota o parser SJSXP (Sun Java Streaming XML Parser)

versão 1.0 EA [Sun, 2004], que é uma eficiente implementação da API Java padrão do

modelo de parsing Pull Parsing chamada StAX (Streaming API for XML Parser).

SJSXP é um parser simples de usar e permite a leitura e escrita de documentos XML de

forma eficiente.

Tarefa 4: Gerar o Stub

O objetivo dessa tarefa é gerar o stub, que são classes específicas dos toolkits para

abstrair detalhes da comunicação, usando as ferramentas disponibilizadas pelos

mesmos. Para isso é necessário estudar sua documentação, pois cada ferramenta utiliza

diferentes configurações para executar. Para eliminar esse ônus, o utilitário disponibiliza

comandos para automatizar essa tarefa. A Tabela 6.1 apresenta para cada toolkit

 -110-

analisado, a ferramenta e o comando do utilitário responsável pela execução dessa

tarefa.

Tabela 6.1 - Ferramentas dos toolkits

Embora possuam o mesmo nome, as ferramentas dos toolkits SSJ e Axis são

implementações completamente distintas. Uma semelhança entre essas ferramentas, é

que obrigatoriamente todas recebem como parâmetro o endereço local ou remoto da

interface WSDL. Em cada avaliação realizada com o utilitário, apenas um desses

comandos é executado, pois apenas um toolkit pode ser configurado.

Tarefa 5: Implementar a aplicação cliente

Nesse experimento, a aplicação cliente deve implementar as invocações às operações

definidas na interface da aplicação-teste e o código de cada operação deve acessar o

stub para invocar o serviço, porém a forma de instanciar o stub varia de acordo com o

toolkit.

Segundo a Diretriz 2, a interface deveria conter operações que explorem tipos de

dados de diferentes complexidades e tamanhos. Dessa forma, seria muito custoso

desenvolver todas as operações definidas para os diferentes toolkits. Além disso,

também deve ser escrito o código responsável pela coleta do tempo.

Com o objetivo de simplificar essa tarefa, foi projetado o módulo de geração de

classes de teste (ver Seção 5.3.1) que é responsável pela geração de uma classe de teste

para cada operação da interface WSDL. O código das classes geradas é específico do

toolkit selecionado. Além desse módulo, o utilitário disponibiliza classes responsáveis

pela coleta do tempo e geração de um arquivo com os resultados da execução. Dessa

forma, não é necessário gastar tempo analisando documentação e implementando o

código da aplicação cliente para todas as operações definidas.

Toolkit Ferramenta Comando do JWSPerf
Axis WSDL2Java generate-axis

JWSDP WSCompile generate-jwsdp
SSJ WSDL2Java generate-systinet

 -111-

O utilitário JWSPerf disponibiliza o comando “generate-testcases” para

automatizar essa tarefa, considerando que o toolkit e a interface WSDL estão

configurados. Na prática, o desenvolvedor invoca apenas o comando “buid” (ver Seção

5.5), pois o mesmo executa o comando “generate-testcases” e os comandos para

executar a tarefa anterior, além de estruturar e compilar todo o código para a execução

da próxima tarefa.

Tarefa 6: Invocar as operações do serviço

O objetivo dessa tarefa é invocar as operações do serviço e coletar suas métricas.

Durante o processo de avaliação, apenas uma versão da implementação da aplicação-

teste para um toolkit estava rodando no servidor de aplicação. Para medir apenas o

tempo gasto na camada Web Services, qualquer processamento na camada de negócio

foi evitado.

 Para executar essa tarefa, foi projetado o módulo de invocação do utilitário (ver

Seção 5.3.2) que é responsável pela invocação e coleta das métricas no final da

execução. O desenvolvedor precisa apenas configurar a operação que deseja analisar e

executar o comando “run” para o utilitário invocar a operação.

Primeiramente, foram avaliados, para cada toolkit, o tempo de instanciação do

stub, a latência representada pelo método echoVoid e o RTT para enviar e receber

mensagens compostas por tipos de dados simples e pelos definidos pelo usuário (ver

Tabela 6.2).

Os toolkits Axis e JWSDP apresentaram um tempo de instanciação do stub

menor que o SSJ porque o stub desses toolkits foi gerado estaticamente (early binding),

enquanto que o SSJ instancia o stub dinamicamente (late binding).

Analisando o método echoVoid, a latência do Axis foi o dobro da latência dos

outros toolkits, indicando que o mesmo tem problemas na sua implementação,

independentemente da carga, uma vez que esse método não envia nenhum tipo de dado.

Os métodos echoInt, echoDouble, echoBoolean, e echoString foram

analisados para medir o tempo para serializar, transmitir e deserializar tipos de dados

simples (double, int, boolean e string), inicializados com seu valor default. Para um

 -112-

determinado toolkit, o RTT calculado foi praticamente igual ao tempo do seu método

echoVoid (Tabela 6.2). O toolkit Axis apresentou o maior tempo de processamento.

Tabela 6.2 - Tempos (ms) de instanciação do stub e dos métodos simples

Operações JWSDP SSJ Axis
Instanciação do stub 3200 22100 4900
echoVoid 3 3 6
echoInt 5 4 7
echoDouble 5 4 7
echoBoolean 5 4 7
echoString 4 4 7
echoMySimpleObject 4 5 7
echoMyComplexObject 5 10 14
acceptParameters 5 4 7
acceptMySimpleObject 3 5 6

Depois de calcular o RTT para cada tipo básico separadamente, foi analisado o

impacto para enviar todos esses tipos de dados como parâmetro para o servidor,

invocando o método acceptParameters. Nenhum impacto foi detectando, pois todos

os toolkits mantiveram os mesmos tempos.

A fim de comparar o tempo para enviar, simultaneamente, os dados como

parâmetros (acceptParameters) com o tempo para enviar os mesmos dados

encapsulados em um objeto, o método acceptMySimpleObject foi analisado (ver

Tabela 6.2). Como os tempos desses métodos foram semelhantes, fica a critério do

projetista da interface a escolha de encapsular ou não os dados transmitidos.

Com o objetivo de investigar o gargalo para enviar um dado complexo definido

pelo usuário ao servidor, o tempo para invocar o método echoMyComplexObject foi

calculado, onde o objeto MyComplexObject agregava vinte objetos do tipo

MySimpleObject. O toolkit JWSDP não sofreu impacto e manteve praticamente o

mesmo tempo. Porém, o aumento da complexidade dobrou o tempo de resposta dos

toolkits Axis e SSJ, comparado ao método echoMySimpleObject.

Para entender as razões das diferenças de desempenho entre os toolkits

analisados, a execução das operações echoVoid e echoMyComplexObject foi

investigada para identificar os métodos que consomem a maior parte do tempo. Nesse

experimento foi usado o comando “profile” do utilitário, que implicitamente utiliza a

ferramenta PerfAnal (ver Seção 5.5).

 -113-

0

2

4

6

8

10

12

14

16

returnString(7000) returnString(14000) testException

JWSDP
SSJ
Axis

Investigando a execução do método echoVoid, o Axis gasta 69,38% e 30,58%

do seu tempo executando os métodos connect da classe java.net.Socket e read da

classe java.net.SocketInputStream, respectivamente. Quando o método

echoMyComplexObject foi investigado, esses percentuais foram alterados para 65,67%

e 34,33%, respectivamente. Para o toolkit SSJ, 99,47% e 85,77% do tempo são gastos

executando o método read da classe java.net.SocketInputStream, quando as

operações echoVoid e echoMyComplexObject são executadas, respectivamente. A

partir desses resultados, conclui-se que a maior parte do tempo é gasto na conexão entre

o cliente e o servidor.

Analisando o toolkit JWSDP, 99,38% do seu tempo de execução foram gastos

executando o método read da classe java.net.SocketInputStream, quando as

operações echoVoid e echoMyComplexObject são invocadas. A partir desse resultado,

pode-se concluir que esse toolkit possui rotinas eficientes de serialização e

deserialização, mesmo aumentando a complexidade das mensagens transportadas.

Figura 6.5 - RTT (ms) dos métodos testException e returnString

A classe MyException, herdando de java.lang.Exception, foi definida com o

objetivo de calcular o tempo para tratar uma exceção definida pelo usuário. Analisando

o método testException (Figura 6.5), verificou-se que o Axis gasta aproximadamente

15ms para tratar um elemento <soap:fault> da mensagem SOAP, enquanto que, os

toolkits JWSDP e SSJ gastam aproximadamente 5ms.

A fim de investigar o impacto do tamanho da mensagem no tempo de resposta, o

método returnString foi configurado, primeiramente, para retornar uma string de

 (
m

s)

 -114-

7000 bytes e depois, uma string de 14000 bytes. Em ambos os experimentos a

mensagem SOAP tinha os mesmos elementos, variando apenas o tamanho da mensagem

transportada. A Figura 6.5 ilustra o tempo para transferir os dados na rede invocando

esse método.

A partir da análise do tráfego de pacotes, verificou-se que o Axis utiliza 6 e 10

pacotes de rede para enviar uma string de 7000 e 14000 bytes, respectivamente,

enquanto que os toolkits JWSDP e SSJ utilizam 7 e 12 pacotes. Mesmo utilizando

menos pacotes de rede, em ambos os casos, o tempo de resposta do toolkit Axis foi

maior, significando que o problema está nas suas rotinas de (de)serialização. O toolkit

JWSDP manteve exatamente o mesmo tempo para executar as duas operações.

O impacto do processo de serialização e deserialização foi investigado

invocando os métodos returnDoubles e returnMyComplexObjects (Figura 6.6). O

primeiro método foi configurado para retornar um array com 500 números do tipo

double com quatro dígitos de precisão. O método returnMyComplexObjects foi

configurado para retornar um array com cinqüenta objetos do tipo MyComplexObject,

cada um contendo vinte objetos do tipo MySimpleObject.

0

20

40

60

80

100

120

140

returnDoubles returnMyComplexObjects

(m
s)

JWSDP
SSJ
Axis

Figura 6.6 – RTT dos métodos returnDoubles e returnMyComplexObjects

A análise desses métodos foi importante para validar o impacto da complexidade

dos tipos de dados no tempo de resposta, pois se verificou a ineficiência dos toolkits

Axis e SSJ com relação ao toolkit JWSDP. Em relação aos resultados apresentados na

Tabela 6.2, os toolkits SSJ e JWSDP apresentaram praticamente o mesmo desempenho,

 -115-

porém comparando o resultado do método returnMyComplexObjects, os toolkits SSJ

e Axis foram, respectivamente, 19,25% e 24,45% mais ineficientes que o JWSDP. Os

custos de serialização e deserialização do toolkit Axis são maiores que os custos dos

demais toolkits analisados.

Se apenas tipos de dados simples fossem utilizados no processo de avaliação,

concluir-se-ia que os toolkits JWSDP e SSJ apresentam praticamente o mesmo tempo de

resposta. Porém, segundo a Diretriz 2, é importante analisar métodos usando tipos de

dados complexos para verificar o comportamento de um toolkit em situações críticas.

Um experimento aumentando o número de clientes concorrentes foi realizado

para avaliar a degradação de desempenho dos toolkits. O JWSPerf foi projetado para

criar uma nova thread para cada novo cliente, permitindo assim a execução concorrente

pois as threads são independentes umas das outras. Entretanto, se a quantidade de

clientes rodando numa mesma máquina for muito grande, a aplicação pode esgotar a

utilização de recursos do sistema.

Nesse experimento, foi invocado o método returnMyComplexObjects que

retorna, no caso do toolkit Axis, no mínimo 183 KB (ver Tabela 6.3, pp. 119). O

resultado obtido foi preocupante porque os toolkits saturaram a utilização de seus

recursos com apenas cinco clientes rodando simultaneamente. Um fator que contribuiu

para esse resultado foi que todas as threads rodavam em uma única máquina, portanto

as mesmas disputavam pelos mesmos recursos do computador como memória e

processador. Para evitar problemas dessa natureza, o uso de recursos deve ser

controlado e a carga deve ser distribuída em vários computadores, para realmente

produzir carga intensa.

 Tarefa 7: Monitorar as mensagens SOAP

Para monitorar as mensagens SOAP trocadas entre o servidor e o cliente, a ferramenta

TCP Monitor foi utilizada. Os objetivos dessa tarefa foram calcular o tamanho da

requisição e da resposta em bytes de uma determinada operação e analisar o cabeçalho

HTTP, a fim de estudar as configurações adotadas por cada toolkit.

 -116-

POST /axis/server/WSBenchmark?WSDL HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.2RC2
Host: 127.0.0.1
Content-Length: 325

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <echoString xmlns="http://ws.communication.benchmark">
 <input xmlns="">WSBenchmark</input>
 </echoString>
 </soapenv:Body>
</soapenv:Envelope>

Figura 6.7 - Requisição SOAP/HTTP gerada pelo toolkit Axis

As Figuras 6.7, 6.9 e 6.11 representam a requisição do método echoString

gerada pelos toolkits Axis, JWSDP e SSJ, respectivamente. As Figuras 6.8, 6.10 e 6.12

representam a resposta dessa operação para cada um dos toolkits. Comparando essas

figuras, observa-se que para uma mesma operação e estilo de codificação

(Document/Literal Wrapped), os toolkits geram mensagens diferentes, inclusive de

tamanhos diferentes.

HTTP/1.1 200 OK
Content-Type: text/xml;charset=utf-8
Date: Sat, 22 Jul 2006 18:22:56 GMT
Server: Apache-Coyote/1.1
Connection: close

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <echoStringResponse xmlns="http://ws.communication.benchmark">
 <result xmlns="">WSBenchmark</result>
 </echoStringResponse>
 </soapenv:Body>
</soapenv:Envelope>

Figura 6.8- Resposta SOAP/HTTP gerada pelo toolkit Axis

Analisando as Figuras 6.7 e 6.8, as seguintes características do toolkit Axis

podem ser identificadas: a) o cliente usa o protocolo HTTP 1.0 para enviar a requisição,

 -117-

enquanto que o serviço utiliza o protocolo HTTP 1.1 para enviar a resposta; b) o

servidor sempre fecha a conexão, pois o atributo “Connection: close” é enviado; c) o

atributo “Content-Length” da requisição informa o tamanho da mensagem SOAP

serializada.

Diferentemente do toolkit Axis, as características do toolkit JWSDP são (ver

Figuras 6.9 e 6.10): 1) adotar o protocolo HTTP 1.1 para transportar tanto a requisição e

a resposta; 2) a fim de obter um melhor desempenho, o toolkit JWSDP configura o

atributo “Connection: keep-alive” no cabeçalho da requisição, habilitando o uso de

conexões persistentes; e 3) O atributo “Transfer-Encoding: chunked” no cabeçalho da

resposta do servidor informa ao cliente que a resposta será dividida em vários blocos

(chunks), onde cada bloco é precedido pelo seu tamanho (Figura 6.10).

POST /jwsdp/server/WSBenchmark HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 439
SOAPAction: ""
User-Agent: Java/1.4.2_08
Host: 192.168.1.1:8080
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns0="http://service.benchmark"
 xmlns:ns1="http://ws.communication.benchmark">
 <env:Body>
 <ns1:echoString>
 <input>WSBenchmark</input>
 </ns1:echoString>
 </env:Body>
</env:Envelope>

Figura 6.9 - Requisição SOAP/HTTP gerada pelo toolkit JWSDP

Aplicando a técnica de streaming Chunked Transfer Coding, o tamanho de cada

bloco é informando na mensagem usando a notação hexadecimal. Por exemplo, a

resposta da operação echoString retornou apenas 1 bloco de tamanho, em

hexadecimal, 1c9 bytes (Figura 6.10).

 -118-

HTTP/1.1 200 OK
SOAPAction: ""
Content-Type: text/xml;charset=utf-8
Transfer-Encoding: chunked
Server: Sun-Java-System/Web-Services-Pack-1.4

1c9
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns0="http://service.benchmark"
 xmlns:ns1="http://ws.communication.benchmark">
 <env:Body>
 <ns1:echoStringResponse>
 <result>WSBenchmark</result>
 </ns1:echoStringResponse>
 </env:Body>
</env:Envelope>
0

Figura 6.10 - Resposta SOAP/HTTP gerada pelo toolkit JWSDP

Analisando as Figuras 6.11 e 6.12, verificou-se que o toolkit SSJ também utiliza

o protocolo HTTP 1.1 para enviar e receber as requisições e configura os atributos

“Connection: keep-alive” na requisição da operação e “Transfer-Encoding: chunked” no

cabeçalho da resposta do servidor.

POST /WSBenchmark/ HTTP/1.1
Host: 192.168.1.1:8080
Connection: keep-alive
Content-type: text/xml;charset=UTF-8
Content-length: 571

<?xml version="1.0" encoding="UTF-8"?>
<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wn2="http://systinet.com/wsdl/benchmark/service/"
 xmlns:wn3="http://systinet.com/wsdl/benchmark/communication/ws/">
 <e:Body>
 <wn3:echoString><wn3:p0 i:type="d:string">WSBenchmark</wn3:p0>
 </wn3:echoString>
 </e:Body>
</e:Envelope>

Figura 6.11 - Requisição SOAP/HTTP gerada pelo toolkit SSJ

 -119-

Outra semelhança entre os toolkits JWSDP e SSJ é que os mesmos agrupam

todos os namespaces XML dentro da tag <envelope> e informam a versão XML usada

para formatar a mensagem, porém apenas o SSJ informa o tipo dos parâmetros da

operação na mensagem SOAP.

HTTP/1.1 200 OK
Date: Sat, 22 Jul 2006 16:46:20 GMT
Content-type: text/xml;charset=UTF-8
Transfer-Encoding: chunked

27e
<?xml version="1.0" encoding="UTF-8"?>
<e:Envelope
 xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wn1="http://systinet.com/xsd/SchemaTypes/"
 xmlns:wn3="http://systinet.com/wsdl/benchmark/service/"
 xmlns:wn4="http://systinet.com/wsdl/benchmark/communication/ws/">
 <e:Body>
 <wn4:echoStringResponse>
 <wn4:response i:type="d:string">WSBenchmark</wn4:response>
 </wn4:echoStringResponse>
 </e:Body>
</e:Envelope>
0

Figura 6.12 - Resposta SOAP/HTTP gerada pelo toolkit SSJ

Para comparar o tamanho das mensagens geradas pelos toolkits, operações

transportando tipos de dados simples e complexos foram analisadas. A Tabela 6.3 lista

algumas operações da interface IWSBenchmark, apresentando o tamanho das requisições

e respostas, incluindo, no caso dos toolkits SSJ e JWSDP, a quantidade de blocos em

que as mensagens foram quebradas quando mais de 1 bloco foi requerido.

Analisando os resultados obtidos, verifica-se que os toolkits geram mensagens

de tamanhos diferentes para um mesmo estilo de codificação. Para todas as operações

analisadas, o toolkit Axis gerou mensagens menores, enquanto que o toolkit SSJ gerou

mensagens maiores que o JWSDP, com exceção das operações echoVoid e

acceptParameters.

Analisando a operação returnMyComplexObjects, verificou-se que a diferença

entre o tamanho da resposta gerada pelo SSJ em relação ao JWSDP foi de,

aproximadamente, 8 megabytes, enquanto que a diferença entre o JWSDP e o Axis foi

 -120-

de 723 bytes. A diferença no tamanho das mensagens entre o SSJ e JWSDP é maior,

quando as operações utilizam arrays de algum tipo de dados como, por exemplo,

echoMyComplexObject, returnDoubles e returnMyComplexObjects. Isso significa

que o toolkit SSJ é ineficiente para representar esse tipo de estrutura de dados, pois o

mesmo utiliza uma classe para encapsular essa estrutura de dados e os toolkits Axis e

JWSDP enviam e retornam diretamente o array.

Tabela 6.3 - Tamanho das mensagens em bytes

AXIS JWSDP SSJ Toolkit

Operação Requisição Resposta Requisição Resposta Requisição Resposta

 echoVoid 276 284 395 403 306 314

echoInt 309 327 423 441 552 619

echoDouble 317 337 431 451 563 632

echoBoolean 320 338 434 452 564 631

echoString 325 343 439 457 571 638

echoMySimpleObject 418 439 532 553 773 843

echoMyComplexObject 2880 2961 2994 3075 5974 6125

acceptParameters 426 292 513 411 473 322

acceptMySimpleObject 422 296 536 415 619 326

returnSting (7000) 280 7336 399 7450 511 7630

returnString (14000) 280 14336 399 14450 (2

blocos)

511 14631 (2

blocos)

returnDoubles 281 16312 400 11935 (2

blocos)

512 25142 (4

blocos)

returnMyComplexObjects 290 183630 409 184353

(23

blocos)

521 8390097

(41

blocos)

Tarefa 8: Analisar o tráfego de pacotes

A última tarefa do processo de avaliação tem como objetivo entender os detalhes da

comunicação dos toolkits Axis, JWSDP e SSJ analisando o tráfego de rede entre o

cliente e o servidor usando a ferramenta Ethereal (ver Seção 6.2.2). As Figuras 6.13,

6.14 e 6.15 mostram os pacotes de rede trocados na comunicação SOAP desses toolkits

respectivamente.

 -121-

Figura 6.13 - Tráfego de pacotes do toolkit Axis

Analisando a Figura 6.13, verifica-se que o Axis não envia o cabeçalho HTTP e

o corpo da mensagem em pacotes separados, conforme identificado nos trabalhos

anteriores [Elfwing et al., 2002] [Davis and Parashar, 2002]. Isso significa que o Axis

1.2 RC2 resolveu esse problema, otimizando seu código. Outras características que

podem ser identificadas são o fechamento da conexão iniciado pelo servidor e a abertura

de uma nova conexão para cada nova requisição.

A documentação do toolkit Axis foi estudada para verificar a viabilidade de

alterar, do lado do cliente, a versão do protocolo HTTP 1.0 para HTTP 1.1, a fim de

habilitar o uso de conexões persistentes. A partir dessa análise, verificou-se que para

usar o protocolo HTTP 1.1 no cliente Axis, é necessário configurar a classe

CommonsHTTPSender no arquivo de instalação do serviço chamado de client-

config.wsdd, que deve estar configurado no classpath. Mesmo fazendo essa alteração,

uma nova conexão continua sendo aberta a cada requisição, porque a implementação do

toolkit força o fechamento da mesma enviando o atributo “Connection: close”. Logo,

essa alteração não reduz o tempo de execução.

 -122-

Figura 6.14 - Tráfego de pacotes do toolkit JWSDP

A Figura 6.14 ilustra os pacotes trocados na comunicação SOAP do toolkit

JWSDP, e a partir da sua análise, verifica-se que o seu comportamento padrão é:

• Abrir uma conexão e apenas fechá-la depois que várias requisições são

transmitidas;

• Separar o cabeçalho do corpo da mensagem em pacotes diferentes. Esse

comportamento é um gargalo de desempenho, pois dois buffers e duas chamadas

de sistemas são necessárias para enviar a requisição (ver Seção 3.5.4);

• Quebrar a resposta do servidor em vários blocos precedidos pelo seu tamanho.

Porém, não é permitido ao cliente usar essa técnica, uma vez que o atributo

“Content-Length” é sempre enviado no cabeçalho;

• Servidor inicia o fechamento da conexão.

Diferentemente dos toolkits Axis e JWSDP, na implementação do SSJ o

responsável pelo fechamento da conexão é o cliente (ver Figura 6.15). Embora a Seção

3.6.5 considere esse comportamento uma otimização, analisando em detalhes o pacote

que inicia o fechamento da conexão, verificou-se que o cliente espera, em média, 800ms

 -123-

para enviar o mesmo ao servidor. Existem, portanto, problemas na implementação no

cliente do toolkit SSJ com relação ao fechamento da conexão. Além desse

comportamento, SSJ também usa conexões persistentes e adota a técnica de streaming

dos dados.

Figura 6.15 - Tráfego de pacotes do toolkit SSJ

6.4 Considerações Finais

Nesse capítulo foram realizados vários experimentos com o objetivo de analisar e

comparar o desempenho dos Web Services toolkits suportados pelo utilitário, aplicando

o processo proposto para uniformizar a coleta dos resultados. Uma aplicação-teste

simples foi definida, porém suficiente para validar o processo proposto e identificar os

gargalos dos toolkits analisados.

Os experimentos realizados avaliaram o tempo para instanciar um stub de forma

dinâmica e estática, a latência, o tempo para tratar uma exceção definida pelo usuário e

o tempo de respota médio para enviar e receber mensagens de tamanhos e

complexidades diferentes. Além disso, a análise do tráfego de pacotes e o

 -124-

monitoramento das mensagens SOAP foram realizados para o entender o

comportamento dos toolkits. Resumindo as características principais identificadas de

cada toolkit, a Tabela 6.4 foi estruturada para facilitar a comparação entre os mesmos.

Tabela 6.4 - Comparação dos toolkits

Características Axis JWSDP SSJ

Parser XML Xerces SJSXP Xerces

Geração para instanciar o stub Estática Estática Dinâmica

Latência Média Baixa Baixa

RTT para transamitir tipos básicos Médio Baixo Baixo

RTT para transamitir tipos complexos Médio Baixo Médio

Tempo de (de)serialização Alto Baixo Alto

Tempo para tratar exceções Alto Baixo Baixo

Tamanho da mesnagem para estrutura complexas Pequeno Médio Grande

Cálculo do atributo “Content-Length” Sim Sim Sim

Cabeçalho e o corpo da mensagem enviados no

mesmo pacote

Sim Não Sim

Conexões Persistentes Não Sim Sim

Streaming dos dados Não Sim Sim

Gargalo para fechar a conexão Não Não Sim

O toolkit JWSDP (Java Web Services Developer Pack) apresentou o melhor

desempenho em todos os experimentos, respondendo mais rapidamente às requisições

do cliente. O toolkit Axis apresentou um tempo alto de resposta, gastando

aproximadamente 7 ms para enviar mensagens compostas por tipos de dados simples.

Diferentemente, o toolkit SSJ (Systinet Server for Java) apresentou um desempenho

semelhante ao toolkit JWSDP quando mensagens simples eram transportadas. Porém,

apresentou problemas de desempenho quando a complexidade das mensagens

aumentou.

Um resultado importante foi a confirmação que o tamanho das mensagens não é

único gargalo de desempenho de Web Services, pois o toolkit Axis apresentou o maior

tempo para enviar tipos de dados simples e complexos mesmo gerando as menores

 -125-

mensagens e o toolkit SSJ gerou mensagens maiores e apresentou um tempo de resposta

menor que o Axis.

Os toolkits SSJ e JWSDP, em relação ao Axis, aplicam duas otimizações que

influenciam no seu bom desempenho. A primeira é o uso de conexões persistentes, onde

as várias requisições são transmitidas numa mesma conexão. E a segunda é a técnica de

streaming, chamada Chunked Transfer Coding, utilizada pelo servidor para enviar as

respostas ao cliente. Além dessas otimizações, apenas o toolkit JWSDP adota o modelo

Pull Parsing, que é mais eficiente, utilizando o parser SJSXP (Sun Java Streaming

XML Parser). Essas otimizações tornam o JWSDP mais eficiente.

 -126-

7 Conclusões e Trabalhos
Futuros

Essa dissertação abordou um problema em aberto na área de Web Services: seu

desempenho. A decisão de adotar a tecnologia Web Services tem sido tomada apenas em

função da sua interoperabilidade. Porém, o seu desempenho deve ser avaliado, pois sua

ineficiência limita o desenvolvimento de aplicações que demandam por desempenho.

O foco desse trabalho foi avaliar o desempenho de Web Services toolkits,

propondo uma estratégia de avaliação para selecionar o toolkit “ideal” para desenvolver

e expor um serviço, pois existem várias implementações de toolkits disponíveis no

mercado.

A primeira atividade para montar essa estratégia foi estudar e organizar os

gargalos de desempenho de Web Services. Os principais gargalos detalhados nessa

dissertação foram o tamanho e a complexidade das mensagens, o tempo gasto no

cálculo do tamanho da mensagem, a escolha do parser XML, os custos de serialização e

deserialização, o estilo de codificação, os custos do estabelecimento da conexão e os

gargalos de comunicação como o atraso na troca de pacotes e o número de pacotes.

Além desses, a escolha do estilo de codificação também afeta diretamente a

eficiência de Web Services. Conforme apresentado na Seção 3.4, o estilo

Document/Literal oferece melhor desempenho que o estilo RPC/Encoded, porque

 -127-

resulta em mensagens menores e menos complexas, minimizando os custos de

transmissão na rede e a latência. Além de desempenho, o estilo Literal/Wrapped

apresenta melhores resultados de interoperabilidade.

De forma geral, o desempenho de uma aplicação Web Services dependem do

projeto e implementação do toolkit utilizado para implementá-la e dos gargalos

introduzidos pelos protocolos SOAP e de transporte, onde o protocolo HTTP é o mais

comumente adotado.

A partir desses gargalos, foram publicadas diretrizes para guiar a avaliação de

desempenho de Web Services toolkits antes de desenvolver as aplicações, a fim de

identificar o mais apropriado para atender os seus requisitos não-funcionais como

eficiência, baixa latência e alta vazão.

As diretrizes desenvolvidas são simples e fáceis de aplicar, focando desde a

análise da documentação de um toolkit, a fim de verificar o parser adotado e o estilo de

codificação suportado, à quantificação de métricas de desempenho. Além disso, as

diretrizes propõem o monitoramento das mensagens SOAP e do tráfego de rede. Com

isso, as mesmas representam os principais pontos que devem ser observados durante a

avaliação.

Do ponto de vista operacional, foi proposto um processo para uniformizar a

avaliação de desempenho de diferentes toolkits. De forma geral, o processo representa

um guia prático, definindo um passo a passo para executar a avaliação, porém sempre

embasado pelas diretrizes.

Uma vez que o processo de avaliação pode demandar muito tempo, verificou-se

a necessidade de automatizar algumas de suas tarefas, principalmente os passos

referentes à parte de implementação, compilação, execução da aplicação cliente e coleta

de métricas.

Para facilitar essa tarefa, o utilitário JWSPerf (Java Web Services Performance)

foi desenvolvido. JWSPerf automatiza uma parte do processo proposto, pois o

desenvolvedor apenas configura alguns parâmetros antes de executar o utilitário.

JWSPerf suporta três toolkits Java bastante conhecidos e usados – Apache Axis,

JWSDP (Sun Java Web Services Developer Pack) e SSJ (Systinet Server for Java). Para

automatizar a geração de código, o JWSPerf é composto por dois módulos com tarefas

 -128-

bem definidas – o de geração de classes de teste e o de invoção – e essa estruturação

permite que novos toolkits sejam facilmente incorporados.

Mesmo utilizando uma aplicação-teste simples, os resultados obtidos foram

suficientes para validar a importância da aplicação das diretrizes e do utilitário para

viabilizar a avaliação.

O presente trabalho apresentou a importância de fazer uma análise detalhada do

desempenho do Web Services toolkit antes de adotá-lo, pois as questões sobre sua

eficiência devem ser resolvidas antes ou durante a implementação da aplicação, dado

que o toolkit é responsável por boa parte do desempenho da mesma. O objetivo da

estratégia proposta é simplificar a exposição de aplicações Web Services usando um

toolkit eficiente. Além de buscar o bom desempenho, é necessário entender o negócio

da aplicação para projetar sua interface e escolher os tipos de dados apropriados, pois a

natureza da aplicação afeta sua eficiência.

7.1 Principais Contribuições

A seguir são resumidas as principais contribuições deste trabalho:

 Organização dos gargalos de desempenho de Web Services.

 Publicação de diretrizes guiam a avaliação, focando nos principais

aspectos de um toolkit que devem ser analisados.

 Elaboração de um processo, a fim de uniformizar a avaliação de

desempenho de toolkits e facilitar a escolha do toolkit “ideal” para

desenvolver uma aplicação.

 Desenvolvimento do utilitário JWSPerf (Java Web Services

Performance) de código aberto que automatiza parte das tarefas do

processo proposto para avaliação de desempenho de Web Services

toolkits.

 Usando o utilitário JWSPerf, reduz-se o tempo gasto na avaliação e no

estudo da documentação dos toolkits e na implementação do código em

 -129-

si, uma vez que os desenvolvedores apenas necessitam configurar

algumas propriedades nos arquivos de configuração e rodar os

comandos.

 Desenvolvimento de um benchmark simples que pode ser utilizado para

avaliar o desempenho de outros Web Services toolkits.

7.2 Trabalhos Futuros

Entre os principais tópicos possíveis de extensão em trabalhos futuros, podemos citar as

seguintes melhorias:

 Suportar toolkits implementados em linguagens diferente de Java, como

C#, C, C++.

 Incoporar outros toolkits Java ao utilitário JWSPerf, como por exemplo,

o Glue da webMethods [webMethods, 2004].

 Incoporar ao JWSPerf outras métricas, como por exemplo, o cálculo do

intervalo de confiança.

 Elaborar interfaces gráficas para melhorar a interação do usuário com o

JWSPerf.

 Automatizar a construção do código do lado do servidor, passando a ser

responsável pela geração da camada de comunicação Web Services da

aplicação para diferentes toolkits;

 Avaliar a interoperabilidade de diferentes Web Services toolkits, usando

o utilitário JWSPerf para automatizar essa tarefa uma vez que o mesmo

gera o código a partir da interface WSDL.

 Projetar o utilitário para utilizar vários computadores, a fim de distribuir

a carga e gerar carga intensa para avaliar a escalabilidade dos Web

Services toolkits.

 -130-

Referências Bibliográficas

[Abu-Ghazaler et al., 2004] N. Abu-Ghazaleh, M. J. Lewis and M. Govindaraju,
“Differential Serialization for Optimized SOAP Performance",
Proceedings of the 13th International Symposium on High
Performance Distributed Computing (HPDC), Honolulu, Hawaii,
pp. 55-64, 2004.

[Abu-Ghazaler et al., 2004a] N. Abu-Ghazaleh, M. J. Lewis and M. Govindaraju,
“Performance of Dynamically Resizing Message Fields for
Differential Serialization of SOAP Messages", Proceedings of
the International Symposium on Web Services and Applications
(ISWS), Honolulu, Hawaii, pp. 783-789, 2004.

[Abu-Ghazaler et al., 2004b] N. Abu-Ghazaleh, M. Govindaraju and M. J. Lewis, "Optimizing
Performance of Web Services with Chunk-Overlaying and
Pipelined-Send”, Proceedings of the International Conference on
Internet Computing (ICIC), pp. 482-485, 2004.

[Apache Axis, 2004] Apache Software Foundation, “Apache Axis”,
http://ws.apache.org/axis/, 2004.

[Apache SOAP, 2004] Apache Software Foundation, “Apache SOAP”,
http://ws.apache.org/soap/, 2004.

[Austin et al., 2004] D. Austin, A. Barbir, C. Ferris and S. Garg, “Web Services
Architecture Requirements”, http://www.w3.org/TR/wsa-reqs/,
2004.

 -131-

[Berners et al., 1996] T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer
Protocol – HTTP/1.0”, IETF RFC 1945,
http://www.ietf.org/rfc/rfc1945, 1996.

[Box et al., 2000] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Nielsen, S. Thatte and D. Winer, “Simple
Object Access Protocol (SOAP) 1.1”,
http://www.w3.org/TR/soap11/, 2000.

[Cai et al., 2002] M. Cai, S. Ghandeharizadeh and S. Song, “A Comparison of
Alternative Encoding Mechanism for Web Services”,
Proceedings of the 13th International Conference on Database
and Expert Systems Applications (DEXA), Aix en Provence,
France, pp. 93-102, 2002.

[Chiu et al., 2002] K. Chiu, M. Govindaraju and R. Bramley, “Investigating the
Limits of SOAP Performance for Scientific Computing”,
Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC 2002), Edinburgh,
Scotland, pp. 246-254, 2002.

[Cohen, 2003] F. Cohen, “Discover SOAP encoding’s impact on Web service
performance”, http://www-128.ibm.com/developerworks/
webservices/library/ws-soapenc/, 2003.

[Davis and Parashar, 2002] D. Davis and M. Parashar, “Latency Performance of SOAP
Implementations”, Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid
(CCGRID), Berlin, Germany, pp. 407-412, 2002.

[Devaram and Anresen,
2003]

K. Devaram and D. Anresen, “SOAP Optimization Via
Parameterized Client-Side Caching”, Proceedings of the
IASTED International Conference on Parallel and Distributed
Computing and Systems, Marina Del Rey. CA, pp. 785-790,
2003.

[Elfwing et al., 2002] R. Elfwing, U. Paulsson and L. Lundberg, “Performance of
SOAP in Web Service Environment Compared to CORBA”,
Proceedings of the Ninth Asia-Pacific Software Engineering
Conference (APSEC), Queensland, Australia, pp. 84, 2002.

[Engelen, 2003] R. A. Van Engelen, “Pushing the SOAP Envelope With Web
Services for Scientific Computing”, Proceedings of the
International Conference on Web Services (ICWS), Las Vegas,
pp. 346-352, 2003.

[Engelen and Gallivan, 2002] R. A. van Engelen and K. A. Gallivan, “The gSOAP Toolkit for
Web Services and Peer-To-Peer Computing Networks”,
Proceedings of the 2nd IEEE/ACM International Symposium on

 -132-

Cluster Computing and the Grid (CCGrid), Berlim, Germany,
pp. 128-135, 2002.

[Ethereal, 2004] Ethereal, “A Network Protocol Analyser”,
http://www.ethereal.com, 2004.

[Extreme!, 2004] Extreme! Laboratory of Indiana University, “Grid Web
Services”, http://www.extreme.indiana.edu/xgws/#projects,
2004.

[Fielding et al., 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach and T. Berners-Lee, “Hipertext Transfer Protocol --
HTTP/1.1”, IETF RFC 1626, http://www.ietf.org/rfc/rfc2616.txt,
1999.

[FIX, 2005] FIX Protocol Ltd, “The Financial Information Exchange
Protocol (FIX)”, http://www.fixprotocol.org/specification/fix-43-
pdf.zip, 2005.

[Govindaraju et al., 2000] M. Govindaraju, A. Slominski, V. Chopella, R. Bramley and D.
Gannom, “Requirements for and Evaluation of RMI Protocols
for Scientific Computing”, Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), Dallas, Texas, pp.
61, 2000.

[Govindaraju et al., 2004] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen
and M. J. Lewis, “Toward Characterizing the Performance of
SOAP Toolkits”, Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, Pittsburgh, USA,
pp. 365-372, 2004.

[Gray, 2004] N. A. B. Gray, “Comparison of Web Services, Java-RMI, and
CORBA service implementations”, Proceedings of the 5th
Australasian Workshop on Software and System Architectures
(ASWEC 2004), Melbourne, Australia, pp. 52-63, 2004.

[Gray, 2005] N. A. B. Gray, “Performance of Java Middleware – Java RMI,
JAXRPC, and CORBA”, Proceedings of the 6th Australasian
Workshop on Software and System Architectures (AWSA 2005),
Brisbane, Australia, pp. 31-39, 2005.

[gSOAP, 2004] gSOAP Toolkit. “gSOAP: C/C++ Web Services and Clients”,
http://www.cs.fsu.edu/~engelen/soap.html, 2004.

[Head et al., 2005] M. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-
Ghazaleh, R. Engelen, K. Chiu and M. Lewis, “A Benchmark
Suíte for SOAP-based Communication in Grid Web Services”,
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, Seattle, pp. 19, 2005.

 -133-

[Hericko et al., 2003] M, Hericko, M. Juric, I. Rozman and A. Zivkovic, “Object
Serialization Analysis and Comparison in Java and .NET”, ACM
SIGPLAN Notices, Vol 38, Nº 8, pp. 44-54, 2003.

[Juric et al., 2004] M. B. Juric, B. Kezmah, M. Hericko, I. Rozman and I. Vezocnik,
“Java RMI, RMI Tunneling and Web Services Comparison and
Performance Analysis”, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Vol. 39, Nº 5, Venice, Italy, pp. 58-65,
2004.

[Kennington, 2005] A. Kennington, “Network Traffic Monitoring”,
http://www.topology.org/comms/netmon.html, 2005.

[Kohlhoff and Steele, 2003] C. Kohlhoff and R. Steele, “Evaluating SOAP for High
Performance Business Applications: Real-Time Trading
Systems”, Proceedings of the 12th International World Wide
Web Conference (WWW2003), Budapest, Hungary, 2003.

[Machado and Ferraz, 2005] A. C. C. Machado and C. A. G. Ferraz, “Guidelines for
Performance Evaluation of Web Services”, Proceedings of the
11th Brazilian Symposium on Multimedia and the web
(WebMedia '05), Poços de Caldas, Minas Gerais, Brazil, pp. 1-
10, 2005.

[Machado and Ferraz, 2006] A. C. C. Machado and C. A. G. Ferraz, “JWSPerf: A
Performance Benchmarking Utility with Support to Multiple
Web Services Implementations”, Proceeding of the Advanced
International Conference on Telecommunications and
International Conference on Internet and Web Applications
and Services (AICT/ICIW 2006), Guadalupe, French Caribbean,
pp. 159, 2006.

[Manes, 2004] A. Manes, “The wrapped document/literal convention”,
http://atmanes.blogspot.com/2005/03/wrapped-documentliteral-
convention.html, 2004.

[McGoven et al., 2003] McGovern, J., Tyagi, S., Stevens, M., Mathew, S., “Java Web
Services Architecture, Morgan Kaufmann Publishers, 2003.

[Meyers, 2005] N. Meyers, “PerfAnal: A Performance Analisys Tool”,
http://java.sun.com/developer/technicalArticles/Programming/perfa
nal/, 2005.

[Microsoft, 2004] Microsoft Corporation, “.NET Framewrok Developer Center”,
http://msdn.microsoft.com/netframework/, 2004.

[Microsoft, 2004b] Microsoft Corporation, “Web Services Performance: Comparing
JavaTM 2 Enterprise Edition (J2EETM platform) and .NET
Framework. A Response to Sun Microsystem’s Benchmark”,

 -134-

http://www.gotdotnet.com/team/compare/Benchmark_response.pdf,
2004.

[Ng et al., 2003] A. Ng, S. Chen and P. Greenfield, “Evaluation of Contemporary
Commercial SOAP”, Proceedings of the 5th Australasian
Workshop on Software and System Architectures (AWSA),
Melbourne, Australia, pp. 64-71, 2003.

[Qworks, 2004] Qworks, “Web Services Performance: Comparing JWSDP (Java
Web Service Developer Pack) TM, AXIS and .NET Framework
TM, Version 0.1”, http://groups-beta.googe.com/group/qworks,
2004.

[Roubtsov, 2004] V. Roubtsov, “My kingdom for a good timer”,
http://www.javaworld.com/javaworld/javaqa/2003-01/01-qa-
0110-timing.html, 2004.

[SAX, 2004] SAX, “Official Website for SAX”, http://www.saxproject.org/,
2004.

[Shirasuma et al., 2002] S. Shirasuma, H. Nakata, S. Matsuoka and S. Sekiguchi,
“Evaluating Web Services Based Implementations of GridRPC”,
Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing (HDPC 2002), Edinburgh,
Scotland, pp. 237-245, 2002.

[SOAP Builders, 2004] SOAP Builders, “SOAP Builders Forum”,
http://groups.yahoo.com/group/soapbuilders/, 2004.

[SoapWare.Org, 2004] SoapWare.Org, “The Leading Directory for SOAP 1.1
Developers”,
http://www.soapware.org/directory/4/implementations, 2004.

[Suciu and Liefke, 2004] D. Suciu and H. Liefke, “Xmill: An Efficient Compressor for
XML Data”, http://www.research.att.com/sw/tools/xmill/, 2004.

[Sun, 2004] Sun Microsystems, “Java Web Services Developer Pack (Java
WSDP)”, http://java.sun.com/webservices/jwsdp/index.jsp,
2004.

[Sun, 2004b] Sun Microsystems, “Web Services Performance: Comparing
JavaTM 2 Enterprise Edition (J2EETM platform) and .NET
Framework”,
http://java.sun.com/performance/reference/whitepapers/WS_Test-
1_0.pdf, 2004

[Systinet, 2004] Systinet, “Systinet Server for Java”,
http://www.systinet.com/products/ssj/overview, 2004.

 -135-

[webMethods, 2004] webMethods, “Glue Evaluation”,
http://www.webmethods.com/meta/default/folder/0000006047,
2004.

[Ying et al., 2004] Y. Ying, Y. Huang and D. W. Walker, “Using SOAP with
Attachment for e-Science”, Proceedings of the UK e-Science All
Hands Meeting, Nottingham, UK, pp. 1061-1064, 2004.

 -136-

