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Abstract

Complex dynamical systems can be characterized through the time series associated

with dynamical variables, which yield important information on the underlying stochastic

process. The probability density function, the temporal correlation function, the power

spectrum, and the memory function are examples of statistical properties that can be

extracted from the time series. In this thesis, we are particularly interested in describing

complex phenomena in which the stationary distribution of the time series of the main

dynamical variable (the signal) exhibits large deviations from Gaussian statistics, possi-

bly showing long and heavy tails. This kind of phenomena is present in many areas of

physics, biology, and economics. However, our interest is focused on spectral �uctuations

in non-integrable ballistic cavities, intensity �uctuations in random lasers, turbulence in

�uids, stock prices �uctuations in �nancial markets. We shall attempt to describe these

phenomena as a composition of distributions with distinct space/time scales which arise

from a hierarchical dynamics with a coupling between contiguous scales. The model to be

used, denominated H-Theory, was recently proposed by our research group and consists

of a set of coupled stochastic di�erential equations, whose stationary solution leads to a

parametric family of distributions represented by Fox H-function. This result uni�es and

generalizes the universality classes of superstatistics, which is a formalism that has been

successfully used to describe systems with two separated time scales.

Keywords: Complex systems. Stochastic dynamics. Time series. Fox H-functions.



Resumo

Sistemas dinâmicos complexos podem ser caracterizados através de séries temporais

associadas a variáveis dinâmicas que fornecem importante informação sobre o processo es-

tocástico subjacente. A função densidade de probabilidade, as funções de correlação tem-

porais, a potência espectral e a função memória são exemplos de propriedades estatísticas

que podem ser extraídas da série temporal. Nesta tese estamos particularmente interessa-

dos na caracterização de sistemas complexos nos quais a distribuição estacionária da série

temporal da variável dinâmica principal (o sinal) desvia-se substancialmente da gaussiana,

podendo exibir caudas longas e pesadas. Exemplos de sistemas deste tipo podem ser en-

contrados em diversas áreas da física, da biologia e da economia. Contudo, centraremos

nosso foco nos fenômenos de �utuações espectrais em turbulência em �uidos, variações

nos preços de ações no mercado �nanceiro, �utuações de intensidade em lasers aleatórios

em �bra óptica e estatística espectral de cavidades balísticas não-integráveis. Carac-

terizamos esses fenômenos como resultado da composição de distribuições com distintas

escalas espaçiais/temporais que resultam de uma dinâmica hierárquica com acoplamento

entre escalas contíguas. O modelo a ser usado, denominado teoria H, foi recentemente

proposto por nosso grupo de pesquisa e consiste de um sistema de equações diferenci-

ais estocásticas acopladas, cuja solução estacionária produz uma família paramétrica de

distribuições representadas por funções H de Fox. Este resultado uni�ca e estende para

múltiplas escalas as classes de universalidade da superestatística, que é um formalismo

que tem sido usado com sucesso para descrever sistemas dinâmicos complexos com duas

escalas temporais separadas.

Palavras-chave: Sistemas complexos. Dinâmica estocástica. Séries temporais. Funções H

de Fox.
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1 Historical Introduction

1.1 Brief history of turbulence

As a species, we began a recorded history of questions about turbulence in �uids at

the time of the ancient Greece, cradle of the western civilization. However, turbulence

has proved to be such a complex phenomenon that even after centuries trying to describe

its features, we do not yet have a complete understanding. After the initial e�orts a long

gap followed, which included the Middle Ages, and the West had to wait several centuries

to have again the opportunity to inquire about turbulence. As a matter of fact, it was not

until the �fteenth century when Leonardo Da Vinci made sketches and described several

visual features of turbulence in �uids, that the subject came to the fore once again. In

the modern age, after the masterful work done by Galileo and ampli�ed at a level far

beyond the extraordinary by Newton, the foundations were laid for a European legion of

brilliant men to establish the elasticity theory that later became the standard language

for describing �uids and hence turbulence. This was the opening scene in 1880s and

1890s. In this period Osborne Reynolds (Reynolds (1894)), based on Navier and Stokes'

research (Batchelor (1953)) and Poiseulle's law (Sutera and Skalak (1977)), used modern

scienti�c methods to determine the relevant quantities to characterize the phenomenon of

turbulence and to quantify, for the �rst time, the di�erent regimes that may occur in the

dynamics of a �uid.
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1.1.1 Reynolds experiment and Navier-Stokes equations

Reynolds tank experiment

The experiment performed by Reynolds broadly consisted of injecting dye into a liquid

that �owed through a long tube of constant circular cross-section and attempting to

characterize the behavior of the velocity �eld within it. Two types of motions were

observed. In the �rst, called laminar, the dye forms a well-de�ned streamline whose

contour shows that there is only a small di�usion in the radial direction due to molecular

transport and the current lines are parallel to the tube's walls. In this regime, which occurs

only if the �ow's velocity and the tube's diameter are small enough, any perturbation

that appears in the �uid is quickly damped (Batchelor (1953)). On the other hand, if the

velocity or diameter of the tube is large enough, the �uid's motion becomes very sensitive

to any perturbation, which can be rapidly ampli�ed causing the �uid to become irregular

and lose its stationary character. In this scenario, the thickness of the dye grows rapidly

and its contour fades into an irregular shape until it becomes a cloud. This is the second

type of motion observed by Reynolds, called turbulent (Frisch (1995)). The turbulence

phenomenon is universal, which means that it is the same in all �uids, be it a liquid or a

gas. A central quantity is the Reynold's number (Re), de�ned as

Re =
V L

ν
=

(characteristic velocity)(characteristic length)

(kinematic viscosity)
=

inertial forces

viscous forces
. (1.1)

In turbulent �ow, which occurs when Re is above a certain critical number (Temam

(1976)), the perturbations can grow to a certain extent and reach a new state. This

new state may become unstable in the face of other perturbations and grow into another

new state, and the process goes on until �nally the �ow becomes a superposition of

numerous random perturbations (Livi and Vulpiani (2003); McDonough (2004)). The

characterization of turbulent �ow through a dimensionless number that corresponds to

the ratio of the inertial forces and viscous forces is the main legacy left by the Reynolds'

tank experiment.
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In the next section, we shall summarize some connections between the Reynolds num-

ber and the constitutive equations of �uids.

Navier Stokes equations

Building on the famous memoir by Coulomb presented in 1773 about the fundamental

equations of elasticity, Navier establishes in 1827 the constitutive equations of �uids.

However, its �nal form was introduced only in the period between 1845-1851 by Gabriel

Stokes, who used the tensorial notation developed by Cauchy in 1829 and the Lamé

constraints (Tanner and Waiters (1998)). The union of all these works led to the modern

form of the Navier-Stokes (NS) equations

∂~v

∂t
+ (~v · ~∇)~v = −

~∇p
ρ

+ ν∇2~v, (1.2)

where ~v is the velocity �eld of the �uid, p is the pressure, ρ is the mass density and ν is

the kinematic viscosity. It is usual to impose the no-volume-change constraint

~∇ · ~v = 0, (1.3)

which is essentially the mass conservation law for an incompressible �uid. The NS equa-

tions are a consequence of elasticity theory, which in turn are based on Newtonian me-

chanics. Therefore, these equations must satisfy several dynamical symmetries, which

have been summarized very clearly by Frisch (Frisch (1995)). They are listed below

• Space translations: (t, r,v)→ (t, r + a,v), a ∈ <3.

• Time-translations: (t, r,v)→ (t+ τ, r,v) τ ∈ <

• Galilean transformations: (t, r,v)→ (t, r + ut,v + u) u ∈ <3.

• Parity: (t, r,v)→ (t,−r,−v)

• Rotations (t, r,v)→ (t,Ar,Av) A ∈ SO(<3)
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• Scaling: (t, r,v)→ (λ1−ht, λr, λhv), λ ∈ <+, h ∈ <.

Using the conditions set by the above transformations it is possible to rescale the

Navier Stokes equation with respect to time, length, velocity and pressure. This approach

is known as dimensional analysis and allows the generation of dimensionless numbers

representing ratios between the types of forces that characterizes a given phenomenon.

For example, the NS equation can be written as

[St]
∂ ~v∗

∂t∗
+ (~v∗ · ~∇∗)~v∗ = −[Eu] ~∇∗p∗ +

[
1

Re

]
∇∗2 ~v∗. (1.4)

where

• the Strouhal number St indicates when rotation motion or a periodic motion

plays a important role in a �ow;

• the Euler number Eu indicates when energy losses are relevant;

• the Reynolds number Re indicates when viscous e�ects are important.

Dimensional analysis is supported by the Buckingham π theorem (Bluman and Anco

(2002)), which creates dimensionless relations of a primary variable x1 as a function of

the others

x1 = f1(x2, ..., xn), (1.5)

where n is the total number of variables. If m is the number of basic dimensions, usually

three, the Buckingham π theorem demands that (n−m) dimensionless groups of variables

Zohuri (2016), the π terms, are related by

π1 = f1(π2, . . . , πn−m). (1.6)

As a method, dimensional analysis is a useful complementary tool in the study of turbu-

lence because it provides functional relationships without the need to solve the dynamical
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equations. We show in the following sections that dimensional analysis is a fundamental

part of Kolmogorov's theory, which is a statistical approach that characterizes turbulence

in terms of structure functions, de�ned as correlation functions of velocity di�erences

measured at di�erent nearby locations in the �ow (Temam (1976); McDonough (2004)).

Before describing the most important results of the Kolmogorov's theory, we present below

some relevant facts that lead to a statistical approach to turbulence.

For a physical phenomenon to be stable in space and time, it is not enough to verify

the conservation laws, it must also be robust to small perturbations. In turbulence when

the Reynolds number of a �ow is greater than a certain critical value, there are instabilities

caused by in�nitesimal perturbations that can grow spontaneously, which are believed to

be related to the coupling of the viscous term and the convective nonlinear terms in the

constitutive equations. When the instabilities in the �ow begin to appear, the mean �ow is

accompanied by turbulent �uctuations, a fact that leads to the loss of predictability in the

measurements of �uid's velocity, i.e. the �ow becomes a superposition of numerous random

perturbations (Temam (1976)). However, we know that the Navier-Stokes equations are

deterministic (Frisch (1995); Batchelor (1953); Livi and Vulpiani (2003)). So, it is widely

conjectured that for a given initial condition there is a unique solution for all times and

that it does not matter if the initial value is sharp or random.

There were some attempts to reconcile the experimental results in �uids with high

Reynolds numbers and the constitutive relations from the perspective of the Reynolds

averaged Navier Stokes (RANS) decomposition, where the values obtained from velocity

measurements can be interpreted as being composed of a mean part and a �uctuating

part (LESLIE (1973)). However, the resulting system of equations is not closed (closure

problem) and therefore they are quite insoluble (Lesieur (1997)). So, given the need to

�nd invariant measures of turbulence that could guarantee that the experimental results

were reproducible, a new approach emerged in the �rst decades of the twentieth century,

known as Taylor-Richardson-Kolmogorov phenomenology, which was based on Reynolds'
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view of turbulence as a random process.

1.2 Statistical approach to turbulence

In 1922 Richardson (Richardson (1922)) introduced the concept of energy cascade to

describe the transfer of kinetic energy from large, macroscopic scales of motion, where

it is presumed to be the input of the �ow, through successively smaller scales, ending

with viscous dissipation (eddy viscosity) and conversion to heat (thermal energy). The

concept of eddy viscosity was introduced by Boussinesq in 1877 (Boussinesq (1877)) and

corresponds to the constant of proportionality between turbulent (Reynolds) stresses and

mean (large-scale) strain rate, analogous to the mechanical viscosity in Newton's law

(Temam (1976); Davidson (2004)). In 1925 Prandt used the concept of eddy viscosity

to introduce �the mixing-length theory� (Prandtl (1925)), in which the parameter mixing

length is de�ned as the distance over which a hypothesized turbulent eddy retains its

identity. Taylor was one of the �rst to explicitly introduce the assumption that turbulence

is a random phenomenon (Taylor (1935)). He employed a high level of mathematical rigor

and introduced formal statistical methods, such as correlations, Fourier transforms and

power spectra into the turbulence literature. We mention in passing that the energy

cascade is often analyzed in terms of the dependence of the �uid's kinetic energy on

Fourier wavenumbers, and in this context each wavenumber is associated with the size

of a turbulent eddy (Temam (1976); Livi and Vulpiani (2003)). In Taylor's works the

following new concepts were introduced:

• The Taylor microscale corresponds to length scales in the range between the

integral scale and the dissipation scale.

• The Taylor's frozen-�ow hypothesis states that in a turbulent �ow for which

the magnitude of the �uctuations is not too great, it is possible to deduce spatial

turbulence quantities from time series measured at a single point in the �ow.
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• Isotropic turbulence: exhibits statistics that are independent of rotations and

re�ections.

• Local isotropy refers to isotropy only on small scales, identi�ed by their (high)

Fourier wavenumbers.

• Homogeneous turbulence is such that its statistical properties do not change

with spatial translation, i.e., they do not change with position.

The works conducted by these researchers are considered as the preamble to the sta-

tistical description of turbulence. This perspective ultimately gained a prominent place in

the literature through the intellectual contributions made by Kolmogorov and Oboukhov.

1.3 K41 and KO62 theory

The statistical theory of turbulence by Kolmogrov and Oboukhov employs the tools

of dimensional analysis to derive functional relations between the scales that characterize

the dynamics of the �uid. We present in the following section a brief description of these

relevant scales.

1.3.1 Turbulence's scales

• Macro-scale: This is the scale associated with the largest eddies and we denote

by U , L and T its characteristic velocity, length and time scales, which incidently

coincide with the characteristic scales of the �ow itself. The associated Reynolds

number of the macro-scale is thus the same as that of the main �ow. The features

of these large eddies depend on the boundary conditions of the �ow and may have a

strong anisotropic character (dependence on spatial directions) (Batchelor (1953)).

• Intermediate scales: They correspond to scales below the macro-scale in which

there is still no energy dissipation. We denote by u, l and t their characteristic

velocity, length and the time scales respectively.
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• Micro-scale: This is the smallest scale and it is where energy dissipation occurs. Its

characteristic velocity, length and time scales are denoted by u0, η and τ respectively.

Unlike the macro-scale, these micro-scale eddies are quite isotropic in space.

Using this notation it is possible to construct a number of dimensionless ratios for

the internal and dissipated speci�c energy, thus generating the corresponding Reynolds

numbers for each scale. We start with the speci�c energy contained in large vortices (or

eddies) per unit time, which is de�ned as

EL =
U2

2T
→ [EL] ∼ [U ]2[T ]−1 ∼ [U ]3[L]−1, (1.7)

On the other hand the speci�c energy dissipated per unit time on the macroscale is given

by

εL ∼ ν

(
∂Ui
∂xj

)2

→ [εL] ∼ [ν][U ]2[L]−2, (1.8)

thus the relation between internal energy and the dissipated energy is

[EL]

[εL]
∼ [U ]3[L]−1

[ν][U ]2[L]−2
∼ [U ][L]

[ν]
∼ ReL � 1. (1.9)

This large Reynolds number implies that the macro-scale energy dissipation is negligible

and therefore all its internal energy is transferred to the eddies of the intermediate scales

EL ∼ El → U3L−1 ∼ u3l−1. (1.10)

Similarly, in the intermediate scale, the ratio of internal and dissipated energies generates

the Reynolds number associated with that scale, thus

[El]

[εl]
∼ [u]3[l]−1

[ν][u]2[l]−2
∼ [u][l]

[ν]
∼ Rel → Rel = ReL

(
l

L

)4/3

. (1.11)
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Since the ratio of lengths is still signi�cantly close to one, the Reynolds number associated

with the intermediate scale is large and energy dissipation is still negligible. We may thus

use the relations

EL ∼ El ∼ Eη → U3L−1 ∼ u3l−1 ∼ u3
0η
−1, (1.12)

to estimate the internal energy per unit time of the microscale. For this subrange we have

that the ratio between the energy in the cascade and the dissipated energy corresponds

to

[Eη]

[εη]
=

[u0]3[η]−1

[ν][u0]2[η]−2
∼ Reη → Reη = ReL

( η
L

)4/3

. (1.13)

By hypothesis the transported energy is of the same order as the dissipated energy, thus

the above ratio is of the order of unity, which in turn implies

Eη
εη
∼ 1 → η

L
∼ Re

−3/4
L . (1.14)

This important equation directly relates the characteristic lengths of the microscale and

the macroscale. In modern literature (Livi and Vulpiani (2003); McDonough (2004)), η

is refered to as the microscale of Kolmogorov, at which all of the �uid's mechanic energy

is dissipated, and whose associated Reynolds number is one.

1.3.2 Kolmogorov 1941 theory

Once the relevant scales of turbulence have been established, Kolmogorov's K41 theory

presented two universality assumptions (Kolmogorov (1941c,b)) through which the so-

called structure functions were constructed to establish relations for the moments of the

distributions associated with the series of velocity increments between two separate points

in the �ow (Lagrangian turbulence) in terms of the relevant variables. The assumptions

are listed below (Frisch (1995))



25

• First universality assumption: At very high, but not in�nite, Reynolds number,

all of the small-scale statistical properties are uniquely and universally determined

by the length scale l, the mean dissipation rate (per unit mass) ε and the viscosity

ν.

• Second universality assumption: In the limit of in�nite Reynolds number, all

small scale statistical properties are uniquely and universally determined by the

length scale l and the mean dissipation rate ε.

Based on these two original hypotheses, experts in Kolmogorov's theory, such as as Frisch

(Frisch (1995)), Yaglom (Yaglom (1948.)) and Batchelor (Batchelor (1953)), summarized

K41 theory in terms of three basic hypothesis:

• H1. In the limit of in�nite Reynolds numbers, all the possible symmetries of the

Navier-Stokes equation, usually broken by the mechanisms producing the turbulent

�ow, are restored in a statistical sense at small scales and away from boundaries.

• H2. Under the same assumptions as in H1, the turbulent �ow is self-similar at

small scales, i.e. it possesses a unique scaling exponent h such that.

δu(x, λl) = λhδu(x, l) ∀λ ∈ <+, x ∈ <3 (1.15)

with increments l and λl small compared with the integral scale.

• H3. Under the same assumptions as in H1, the turbulent �ow has a �nite nonvan-

ishing mean rate of dissipation ε per unit mass.

The mean rate of energy dissipation ε, calculated from N-S equation (see appendix B),

corresponds to

ε = 2ν|S|2, (1.16)
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whose dimensions are [ε] ∼ [l]2[t]−3. Using dimensional analysis rules and the Buckingham

π theorem it is possible to estimate the structure functions, calculated as

Sp(l) = 〈
(

[~v(~x+~l)− ~v(~x)] · l̂
)p
〉 = 〈(δvl)p〉. (1.17)

In particular the K41 theory predicts that the average energy per unit mass associated

with the velocity increments is given by

S2(l) = 〈(δvl)2〉 = 〈E〉 = Cε2/3l2/3, (1.18)

where C is a universal constant. Equation (1.18) is known as the Kolmogorov's 2/3 law and

it works very well in turbulent �ows at very high Reynolds number. Incidently, applying

the scale invariance hypothesis directly in δ~v(~x, λ~l) = λhδ~v(~x,~l), the value of the exponent

h consistent with Kolmogorov's 2/3 law (Kolmogorov (1941c)) can is determined, thus

S2(λl) = 〈
(
~v(~x, λ~l) ·~l

)2

〉 = Cε2/3(λl)2/3, (1.19)

where

λ2h〈(δvl)2〉 = Cε2/3(λl)2/3, (1.20)

it follows that the unique scaling exponent has the value h = 1/3 (Frisch (1995)). Rela-

tions for the structure functions of higher order can be found similarly, yielding

〈δvpl 〉 = CP (εl)p/3 (η � l� L). (1.21)

In the particular case of the third-order structure functions of velocity increments, a

linear relation with the distance, called the 4/5 law, is obtained with an exact value for

the constant C3

〈δv3
l 〉 = −4

5
εl. (1.22)
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Another way to calculate the average energy contained by the system is through a spectral

decomposition with a discrete Fourier representation of the periodic �ow in a box of size

l. Therefore, the velocity �eld may be expanded as a Fourier series

~v(~x, t) =
∑

n1,n2,n3

v̂(~k, t) exp(i~k · ~x), (1.23)

where ~k is a vector with components ki so that ~k = {k1, k2, k3} =
{

2π
l
n1,

2π
l
n2,

2π
l
n3

}
,

with n1, n2 and n3 being integers. we may de�ne three ranges for the wavenumbers in

this representation (McDonough (2004))

• The production range at low wavenumbers, about which nothing can be said in

the present framework.

• The inertial range at intermediate wavenumbers, at which energy is shifted up-

wards towards higher wavenumbers without much production or dissipation taking

place.

• The dissipation range at high wavenumbers, at which the energy put into the

production range is �nally destroyed.

Using an argument due to Obukhov (Obukhov (1941a,b)), one can estimate how the

�uid's energy is distributed as a function of the wavenumber. We get

〈E(k)〉 =

∫ ∞
k

d〈E〉 =

∫ ∞
k

E(k)dk, where E(k) ∼ k−n for 1 ≤ n ≤ 3, (1.24)

therefore

〈E(k)〉 ∼
∫ ∞
k

k−ndk ∼ CnkE(k). (1.25)

Now using Kolmogorov's 2/3 law, we obtain
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CnkE(k) = Cε2/3k−2/3 → E(k) = CKε
2/3k−5/3, (1.26)

where CK is the Kolmogorov constant. This is another important prediction of K41 theory

and is known as the k−5/3 energy spectrum of the inertial-range.

Contrary to what we might think of a homogeneous three-dimensional isotropic turbu-

lent �ow, the velocity �uctuations' amplitude is not distributed uniformly in space, feature

that gives rise to a phenomenon called internal intermittency (Obukhov (1962); Lan-

dau and Lifshitz (1959); Kolmogorov (1962a)). It is an important statistical property

of the �ow that results from the local kinetic energy dissipation rate displaying relevant

�uctuations about its mean value. This e�ect is not accommodated in Kolmogorov's 1941

theory, since it does not consider �uctuations of the variable ε. This critique became

known as the Landau's objection and was one of the reasons that led to a reformulation

of the K41 theory. Kolmogorov himself, with the help of previous work by Oboukhov,

gave an answer to Landau's objection that became known as the KO62 theory, which will

be discussed in the following subsection.

1.3.3 The Kolmogorov Oboukhov Theory

In 1961, at the Colloque International de Mecanique de la Turbulence in Marseille,

Kolmogorov and Oboukhov presented their theory of intermittency (Kolmogorov (1962a);

Obukhov (1962)), the KO62 theory. The new theory provides answers to the criticism

raised by Landau, whose statement was translated into English as follows

Landau's Objection

It might be thought that the possibility exists of obtaining a universal for-

mula, applicable to any turbulent �ow, which should give S2(l) for all dis-

tances l that are small compared with L. In fact, however, there can be no

such formula, as we see from the following argument. The instantaneous

value of 〈δvl〉2 might in principle be expressed as a universal function of the
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dissipation ε at the instant considered. When we average these expressions,

however, an important part will be large eddies with size ∼ L, and this vari-

ation is di�erent for di�erent �ows. The result of the averaging therefore

cannot be universal (Landau and Lifshitz (1959)).

This objection can be stated mathematically as follows. Assume that N > 1 experi-

ments are made with di�erent positive values of the mean dissipation rate, denoted by εi

with i = 1, . . . , N . The structure functions for the i-th �ow (LESLIE (1973)) is given by

Sip(l) = CP ε
p/3
i lp/3. (1.27)

Let us now construct a superensemble in order to accommodate the �uctuations in the

N realizations of structure functions and dissipation rates. The superaveraged structure

functions and dissipation rate are given respectively by

〈Sp(l)〉 =
1

N

N∑
i=1

Sip(l), and 〈ε〉 =
1

N

N∑
i=1

εi. (1.28)

Comparing the structure function obtained from the K41 theory, Eq. (1.21), with the

superaveraged value above we obtain the following relation

(
1

N

N∑
i=1

εi

)p/3

=
1

N

N∑
i=1

(εi)
p/3, (1.29)

which is contradictory for all values of p, except for p = 3. To solve this, the KO62 theory

proposes that the local energy dissipation ε(~x, t), de�ned as the average of ε on a sphere

of center ~x and radius r has a log-normal distribution LN (Kolmogorov (1962a,b)). With

this assumption, the model predicts that the variance σ2
r of ln εr is given by

σ2
r = Q(~x, t) + µ ln

(
L

r

)
, (1.30)

where L is the integral scale of turbulence, Q(~x, t) a function that depends on the large

scales and µ is a universal constant, known as the intermittency exponent (Lesieur
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(1997)). The surmise is supposed to be valid only for r � L. Using this model one can

show that the structure functions are given by

Sn ∼ 〈εn/3r 〉rn/3, (1.31)

where the moments for the local energy dissipation are1

〈εpr〉 = 〈ε〉p exp

(
p(p− 1)

σ2
r

2

)
. (1.32)

Using (1.30), it is possible to rewrite the above equation in terms of a derivative of order

p

〈εpr〉 = Dp〈ε〉p
(
L

r

)µp(p−1)/2

, (1.33)

where Dp is the derivative operator. In this notation the correlation function for the rate

of energy dissipation is

〈ε(~x+ ~r, t)ε(~x, t)〉 = D2〈ε〉2
(
L

r

)µ
=

1

2
∂2
r (r

2〈ε(~x, t)2〉), (1.34)

while the second-order longitudinal structure function is given by

S2(r, t) ∼ 〈ε〉2/3r2/3

(
L

r

)µ/9
. (1.35)

Its generalization to order n is straightforward

Sn ∼ 〈ε〉n/3rn/3
(
L

r

)µn(n−3)/18

. (1.36)

The KO62 theory also generalizes the k−5/3 energy spectrum law to the following law

E(k) ∼ 〈ε〉2/3k−5/3(kL)−µ/9. (1.37)

1For more details see Gurvich and Yaglom (1967) and Orszag (1970)
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Gurvich and Yaglom (Gurvich and Yaglom (1967)) were able to provide a theoretical

justi�cation for the log-normal hypothesis of Oboukhov and Kolmogorov. Beginning with

the integral length scale L = l0, they de�ned a sequence of smaller length scales

l1 = αl0; . . . , lj = αjl0; . . . ; lN = αN l0. (1.38)

The ratio α is small enough to ensure that, according to Kolmogorov's hypothesis, little or

no energy will be transferred directly from an eddy of size lj, to one of size lj+1 Therefore

these eddies may be regarded as statistically independent. Furthermore, lN is considered

smaller than the Kolmogorov microscale η, and N is supposed to be large, implying that

Re is very large indeed (Monin and Yaglom (2007)). Here, εj denotes the spatial average

of 〈ε〉 = ε̄ over a box of side lj, ε0 may be identi�ed with the average dissipation ε, while

lN is so small that εN does not di�er appreciably from the instantaneous value of ε. We

then have

ε̄ = ζNζN−1 . . . ζ1ε (1.39)

and thus

ln ε̄ = ln ε+
N∑
j=1

ln ζj, (1.40)

which shows that the random variable ε̄ as a sum of independent random variables ln ζj

(Lesieur (1997)). If N is large enough, the central limit theorem assures us that the

distribution of ln ε̄ must be normal or Gaussian, which implies a log-normal distribution

for ε̄.

More recently, using several features of Kolmogorov's theory such as energy cascade,

intermittency and multiscale dynamics, Salazar and Vasconcelos (Salazar and Vasconcelos

(2010)) introduced a dynamical stochastic model that accounted well for the heavy power

law tails observed in experimental time series of velocity increments in turbulent �ow.

The log-normal distribution predicted by KO62 was found to be a limiting case. This

theory, which we shall call the SV model, was the central motivation for the subjects
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studied in this Thesis. However, before entering into the technical details of this Thesis'

contributions, we want to present a brief chronological account of the Thesis' project.

1.4 A chronological description of the Thesis' project

1.4.1 Stage 1

In this part of the chapter, we want to contextualize the reader about the relevant

facts that have motivated this research project, which was born from the idea to construct

an extension to Generalized Hypergeometric Model (GHM) developed by Salazar and

Vasconcelos (SV) (Salazar and Vasconcelos (2010, 2012); Salazar (2010)) and apply it

to the eigenvalues' spectrum of closed ballistics cavities (better known as billiards) with

mixed dynamics where the regular and chaotic universal regimes coexist (Abul-Magd

et al. (2008); Prosen and Robnik. (1993); Prosen and Robnik (1994); Richter (1999)). The

GHM is a hierarchical system of coupled stochastic di�erential equations, which have been

proposed as a statistical model for describing turbulence in classical �uids, thus satisfying

the symmetries of Navier Stokes equations (Frisch (1995); Salazar (2010)) in addition to

obeying the principles of Kolmorov 1941 theory (K41) (Kolmogorov (1941c,b); Obukhov

(1941a,b); Kolmogorov (1941d,a)) and being compatible with Kolmogorov-Obukhov 1962

(KO62) hypothesis (Obukhov (1962); Kolmogorov (1962a,b)).

Another reference model for this research has been the statistical superposition or

superstatistics (SS) approach, which was introduced into physics by Beck et al. (Beck

et al. (2005)). The SS approach establishes, through Bayes' theorem, the convolution

between two types of statistics whose characteristic relaxation times are well separated

so that one of the dynamics reaches a local equilibrium, while the other remains practi-

cally invariant. From this initial perspective, the GHM together with SS seemed to be

suitable candidates to explain the deviations from Wigner-Dyson's (WD) statistics that

are observed in the nearest neighbor spacing distribution (NNSD) of billiards with mixed

dynamics. The WD distribution is a universal feature of chaotic dynamics in ballistic

cavities. This hypothesis was strengthened after we came to know the research by Abul-
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Magd, Richter, and et. al. (Abul-Magd et al. (2008)), which opened the possibility to

explain through a dynamic model the integrable-chaotic transition from thus going be-

yond Brody's and Berry-Robnik distributions (Prosen and Robnik. (1993); Prosen and

Robnik (1994); Mehta. (2004)). In (Abul-Magd et al. (2008)), the authors not only de-

scribed the NNSD in cavities with mixed dynamics by means of the SS approach, but they

also applied it to the eigenvector's probability density function (PDF) and some types

of correlation functions. However, after analysing the results of reference (Abul-Magd

et al. (2008)) in more detail, we perceived several problems may be related to the reduced

number of eigenvalues and eigenvectors used to perform the statistic analysis. Even after

being mindful of the enormous experimental di�culties that limit the measurement of

a larger spectrum, we also noticed that the histograms had normalization problems and

the �uctuations between neighboring bins were so great that many parametric families

could make an acceptable �t. All these evidences combined with comments by Stöckmann

(Stöckmann (2007)), who stated that the presence of antennas in resonant cavities could

modify the NNSD in such a proportion that a cavity previously characterized as regular

can change towards the chaotic regime, made us believe that a dynamical approach was

needed to solve this problem.

In order to answer the questions raised by the subtleties that were not clari�ed in

the literature of integrable-chaotic transition, we decided to perform some computational

tests, and to do so we looked for e�cient algorithms and available tool boxes. In that

search we found the MPSpack MATLAB Toolbox, developed by Barnett and Betcke

(Barnett and Betcke (2012)) and as one can �nd on their website is an algorithm designed

to solve 2D Helmholtz scattering and eigenvalue problems via particular solutions and

integral equations. In order to check the precision and power of this method, we ran a

number of tests with the limaçon shape or Robnik's billiard.
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Figure 1.1: In blue: histogram of NNSD for Limaçon ((a),(b)) and Mushroom ((c),(d))
billiards with mixed dynamics. The black lines represent the predictions made by the SS
model taken from the reference (Abul-Magd et al. (2008)). The colored lines correspond
to the solution obtained through the Milstein method of a coupled set of stochastic dif-
ferential equations (see appendix A). Our main interest here is to show the di�culty of
establishing a statistical model when the number of data points is small.

Mathematically, this geometry is constructed from the coordinate transformation

x(φ) = cosφ + λ cos 2φ, y(φ) = sinφ + λ sin 2φ, where the azimuth angle is de�ned

in the domain 0 ≤ φ ≤ 2π, while the deformation parameter 0 ≤ λ ≤ 0.5 controls the

transition from the circular form (λ = 0) to the cardioid (λ = 0.5). In the literature

(Richter (1999); Prosen and Robnik. (1993); Prosen and Robnik (1994); Gómez et al.

(2005)) is more common to describe this billard in conformal notation according to the

transformations z(φ) = cosφ + ı sinφ and ω(φ) = x(φ) + ıy(φ) = z(φ) + λz2(φ). In �-

gure 1.2 we show some eigenfunctions of the time-independent Schrödinger equation with

Dirichlet boundary conditions applied to the limaçon billard. We made the acquisition of

computed eigenvalues (3 × 104), in an attempt to make statistics to determine the form

of the NNSD. Nevertheless, after unfolding the spectrum using Weyl's law (Heinz and

Schreiber. (2002)), the results did not agree with those shown by the literature (Gómez

et al. (2005)). One possible solution was to divide the spectrum according to the sy-

mmetry but it was not clear how to determine the procedure to execute such task. The
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Figure 1.2: We show some modes of the Helmholtz equation's spectrum that is equivalent
to the mathematical model of the time-independent Schödinger equation for the Limaçon
billard with parameter λ = 0.25.

second option was to divide the geometry to break its symmetries, so using the MPSpack's

tutorial (Barnett and Betcke (2012)) was designed a half limaçon billiard, but when per-

forming this operation the toolbox presented errors to calculate large wave numbers. This

led us to leave MPSpack and search another way to perform our own tests.

1.4.2 Stage 2

In this phase was considered the possibility to generate the cavities and the di�erential

operators involved in our eigenvalues problem by using discrete di�erential geometry tools,

particularly discrete exterior calculus (DEC). For that purpose, was used the Distmesh

MATLAB Toolbox designed by Persson and Strang (Persson and Strang (2004); Persson

(2004)) particularly useful. This tool set up a triangular mesh within a de�ned contour

using Signed Distance Functions, in which the distance function can be computed by

interpolation between values on a grid. DistMesh uses the Delaunay triangulation routine

in MATLAB and restricts through its algorithm the formation of triangles with obtuse

angles with the purpose of avoiding inconsistencies in the implementation of di�erential

operators, which correspond to the operations on vertices, sides or faces over the original

mesh or over the dual mesh whose vertices depending of the approach will be generated



36

in the circumcenters or barycentres of the �rst triangulation (Botsch et al. (2010); Crane

(2005); Bobenko and Springborn. (2007)) (see �gure (1.3)).

Figure 1.3: In black: Delaunay triangular mesh that excludes the formation of obtuse-
angles. In red: barycentric hexagonal dual mesh applied to the Limaçon billiard

After generating the geometries, the next step was to construct the Laplace operator

with Dirichlet boundary conditions for this mesh. In particular, during this work we

followed the Peyré research (Peyré (2008)) for di�erent reasons, including that he has

implemented several mappings approach, such as (i) Conformal: no distortion in angles,

(ii) Equilateral: no distortion in areas. With these DEC tools, the sparse matrix of the

Laplace-Beltrami operator was constructed, which was diagonalize, and its eigenvalues

were characterized based on two statistical parameters: (i) The Kullback Leibler distance

δLK between the nearest neighbor spacing distribution of the spectrum and the universal

Wigner-Dyson distribution and (ii) the exponent α in the tail of the power spectrum

density s(f) ∼ 1/fα. Results for �at billiards were consistent with previous works of the

recent literature (Gómez et al. (2005)).

Working with conformal maps also allowed us to generate curvatures in the geometries

and to diagonalize their corresponding Laplace-Beltrami operator (see appendix D). To
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determine a possible dependence of the NNSD as a function of the curvature, an initially

circular and plane geometry was considered and a deformation was created on its surface

with controlled amplitude. The spectra were characterized via the measures mentioned

above, the curvature acted as a kind of factor that produces a crossover from the integrable

to the chaotic regimes, as described in Chapter Six.

1.4.3 Stage 3

Given the need to gain experience in the statistical analysis of complex systems, we

followed as a parallel activity the research of Beck et al. (Beck et al. (2005)) and Guhr et

al. (Schmitt et al. (2013)). These papers show the possibility of extracting an auxiliary

data series (background series), which can be integrated numerically with the Gaussian

kernel and reproduce the PDFs with heavy tails, which could be associated directly with

the experimental data (signal). We tested this procedure using the same reference data

used by Guhr and coworkers Schmitt et al. (2013), which were released to the public at

(Standard and data from Yahoo! Finance (2013)). However, after performing several

computational tests was perceived that the criterion to determine the background series

(Abul-Magd et al. (2008); Beck et al. (2005); Schmitt et al. (2013)) sometimes does not

recover the experimental signal after performing the numerical integration, which consists

of the arithmetic average

P (xi) =
1

Nε

Nε∑
j=1

1√
2πεj

exp

(
−x2

i

2εj

)
(1.41)

of Gaussian distributions with variable variances. The variances were sampled from Nε

elements of the background series, which have obtained by computing the standard devi-

ation of a running window from the signal data series.

We realized that the best way to generate the background series is by �xing the size of

the running window such that after integrating with the Gaussian kernel, it produces the

best �t to the experimental data. This is quite di�erent form Guhr's procedure, in which

the running window size are chosen by the criterion that a renormalized series, which is
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obtained from subtracting the local mean from the original series and then dividing by

the local standard deviation, recovers the Gaussian value for the kurtosis.

This new procedure, which is described in detail with examples in chapter three, has

become a ubiquitous tool in this research, since it allowed us through a simple numerical

integration to obtain the parametric family of distributions that have been found in the

four complex systems characterized in this Thesis, which was supported by our theoretical

model, the H-theory (Macêdo et al. (2017)) (see chapter two).

Our theoretical model, the H-theory, was constructed from an extension of the gener-

alized hypergeometric model GHM developed by Salazar and Vasconcelos, which roughly

can be summarized as a model to describe the emergence of distributions with heavy non-

Gaussian tails through the stationary solution of a coupled system of stochastic di�erential

equations.

1.4.4 Stage 4

At this stage the goal was to con�rm the existence of a possibly large number of

background scales, N > 1, from the experimental data of velocity increments (uδi(j) =

v(j + δi − 1) − v(j − 1) with δi = 2i ) of Eulerian turbulence in a jet of Hellium gas,

supplied by Chabaud-Hábral et al. (Chabaud et al. (1994); Chanal et al. (2000)), which

were analyzed previously by Salazar in (Salazar (2010)). We worked with the data for the

Reynolds number Re = 295, 000. In agreement with the SV approach, we found that the

PDF of the smallest velocity increments normalized by its standard deviation, uδ0 , had

an optimal �t when �ve background scales were used, as shown in �gure (1.4).

Another important feature in the SV approach is that the number of relevant scales

in the background distribution decreases progressively when the statistics on normalized

distributions uδi are performed, for δi → {δ1, δ2, δ3, δ4, . . . } until it recovers the integral

scale, where the Gaussian distribution applies. The speci�c form in which this crossover

occurred agreed with reference (Salazar (2010)) and did not seem to have any notable

inconsistencies, since the GHM is a robust model that is based on assumptions and sym-
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Figure 1.4: This �gure, which has been taken from chapter 4 of reference (Salazar (2010)),
justi�es the existence of �ve background scales for the Eulerian turbulence with Reynolds
number Re = 295, 000.

metries underlying the Kolmogorov theory. So the arguments in the GHM appeared to

be �nal, especially after we successfully �tted the hypergeometric functions NF0, corre-

sponding to stationary solutions of the model, using the parameters set by Salazar for the

Reynolds number Re = 295, 000. However, for the sake of completeness, we decided to test

if the other members of the three background families of the superstatistics model could

also �t the PDF of the velocity increments, uδi . The standard background distributions

are

f(ε) =



(βε0)β+1

Γ(β+1)
εβ exp (−βε0ε) Gamma class

(βε0)β+1

Γ(β+1)
ε−β−2 exp

(
−βε0

ε

)
Inverse-Gamma class

1

ε
√

2πσ2
exp

(
− (ln ε−µ)2

2σ2

)
Log-Normal class,

and the composed distribution is obtained from
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P (u) =

∫ ∞
0

1√
2πε

exp

(
−u

2

2ε

)
f(ε)dε. (1.42)

We also noticed the existence of a direct correspondence between the moments of the

marginal distribution P (u) and the moments of f(ε), also seen by Salazar (Salazar (2010))

in the inverse-gamma class, which is shown in table 1.1

〈ε〉 〈ε2〉 〈u2〉 〈u4〉

Gamma (G) β+1
βε0

(β+2)(β+1)
(βε0)2 〈ε〉(G) 3〈ε2〉(G)

Inverse-Gamma (IG) ε0
βε20

(β−1)
〈ε〉(IG) 3〈ε2〉(IG)

Log-Normal (LN) eµeσ
2/2 e2µe2σ2 〈ε〉(LN) 3〈ε2〉(LN)

Table 1.1: Relations between the background's and signal's moments for the universal
classes of the SS model, where 〈xn〉 =

∫
xnf(x)dx.

Although Beck-Cohen-Swinney in (Beck et al. (2005)) perceived an essentially identi-

cal relation between the background and signal distributions (in their notation the back-

ground variable is the inverse of the variance) which was done de�ning the parameters

q := <β∗2>
<β∗>2 and F = <u4>

<u2>2 and deriving the ratio q = F/3 for the superposition between

the Gaussian and the log-normal distributions. They however never mentioned explicitly

that this ratio is valid for all three universality classes (gamma, inverse-gamma and log-

normal), nor did they mention that the q = F/3 ratio is strictly linked to having a Gaus-

sian kernel in the superposition, therefore it is quite independent of the background family

and it is also independent of whether the kernel probability distribution is conditioned by

the variance ε or by its inverse β∗. They also did not establish direct relations between the

signal and the background moments 〈u2r〉 = 〈β∗r〉
∏r

k=1(2k−1). Although this may seem

an irrelevant fact, thanks to the fact that the signal's kustosis κ, or �atness F , is constant
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when it is normalized by the standard deviation κ(u) = κ(u/σ), the value of the back-

ground's variance can be directly deduced from the identity σ2(ε) =< ε2 > −1 = κ(u)
3
−1.

Applying this simple procedure to the Eulerian turbulence data, we obtained excellent

�ts for the normalized velocity increments distributions uδi for δi = {1, 2, 4, 8, 16}. In this

test we considered the following classes: (i) inverse-gamma, which gives the distribution

PIG(u) =
1√

2πβε0

Γ(β + 3/2)

Γ(β + 1)
1F0

(
β +

3

2
,− u2

2βε0

)
, (1.43)

that we have called hypergeometric 1F0 in agreement with the GHM, where β is the free

parameter for the IG class in table 1.1; and (ii) the log-normal class, which gives the

distribution

P (u) =

∫ ∞
0

ε−3/2

2πσLN
exp

(
−u

2

2ε

)
exp

(
−(ln ε− µ)

2σ2
LN

)
dε, (1.44)

which does not have a de�ned name in literature, therefore we will refer to it in this

chapter as P (u). Using the kurtosis criterion for the u(δi) data series and �xing the free

parameters using the relations in table 1.1, the best �ts obtained are shown in �gure (1.5).

Figure 1.5: Normalized PDF for velocity increments uδi , with δi = (1, 2, 4, 8, 16). In black
lines: best �ts made with the universal classes inverse-gamma and log-normal of the SS
model.
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These results were somewhat unexpected, since it puts in check the hypergeometric

model (GHM) and contradicts in a �rst approximation the conclusion put forward by

Salazar that according to �gure (1.4) �ve background scales are necessary to obtain the

best quantitative description of the uδ0 PDF, which mathematically is the hypergeometric

function

PIG(u) =
1√

2πβ1 . . . β5ε0

5∏
i=1

Γ(βi + 3/2)

Γ(βi + 1)
5F0

(
β1 +

3

2
, . . . , β5 +

3

2
;− u2

2β1 . . . β5ε0

)
,

(1.45)

with parameters (β1 = β2 = β3 = β4 = β5 = 7.9) and ε0 = 1. Using the generalized

hypergeometric model (Salazar (2010)), equation (1.45) corresponds to the distribution

generated by the superposition of �ve background scales

fN(ε) =

∫ ∞
0

. . .

∫ ∞
0

f(ε|εN−1) . . . f(ε1|ε0)dεN−1 . . . dε1, (1.46)

where to each scale one can associate a conditional distribution of the parametric family

inverse gamma (IG)

f(εi|εi−1) =
(βiεi−1)βi+1

Γ(βi + 1)
ε−βi−2
i exp

(
−βiεi−1

εi

)
. (1.47)

On the other hand, using the superstatistics model, we showed that is possible to �t

with the same quality using a function 1F0 with parameters β1 = 3.26 and ε0 = 1 as shown

in the black line that accompanies the red histograms at the top of �gure (1.5). Also, we

have identi�ed that for distributions at di�erent intervals δi greater than the measure's

resolution; the superstatistics model produces an optimal �t using the log-normal class

(LN) on the background. This distribution can also be constructed from the GHM in the

limit as N →∞ and β →∞, with the �nite variance condition σ2
LN = N/β

lim
N,β→∞

fN(εN) =
1

ε
√

2πσ2
LN

exp

(
−(ln ε− µ)2

2σ2
LN

)
. (1.48)
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The possibility of using superposition with LN distribution for velocity increases uδi

with δi = (2, 4, 8, 16), questioned the GHM hypothesis where there are a de�ned number

of scales involved in the energy transfer process (cascades) as a function of δi. From these

considerations, some interesting questions arose

• How many scales are involved in the dynamical process?

• How does the transition between classes take place as we move towards the integral

scale?

We discovered a way to explain the uδi PDF's behavior from the smallest scale (δ0 =

1) to larger scales, where the conditions of the central limit theorem are reestablished

(∼ δ10 = 210). The argumemnts will be presented in detail in chapter four.

1.4.5 Stage 5

In a transitional model, we removed the normalization condition from the standard

deviation, so we let the central even moments (〈u2r
δi
〉) of the u distribution evolve as

a function of δi. We considered as a starting point two popular stochastic volatility

models in the �nancial market, the Heston and Hull-White models (Biró and Rosenfeld

(2008); Dragulescu and Yakovenko. (2002); Vicente et al. (2006)). This SDE approach

helped us improve our previous statistical analysis in two ways: (i) we now focus on time-

lagged increment distributions, as opposed to marginal stationary distributions; (ii) we can

account for long time-lagged Gaussian asymptotic behavior in the increment distributions

by inserting time-dependence on some SDE parameters. The numerical solution of the

SDE showed good qualitative agreement with experimental data on Eulerian turbulence

of helium gas with Re = 295, 000.
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Figure 1.6: The coupled SDE describes qualitatively the cumulants behavior. However,
the large number of free parameters in the model made it di�cult to carry out a �t for
the distribution of velocity increments uδi (κi:i-th cumulant, µj: j-th central moment).

Although the results obtained with this numerical approach were interesting, the initial

questions were still open. So, after an extended period of research we found a formalism

that consistently describes the PDF's features of complex hierarchical systems similar

to �uids with turbulent dynamics. The most satisfactory answer have been called the H

theory, mainly because Fox H-functions forms the most general family that uni�es the two

classes of distributions with heavy tails: power law and stretched exponential (Macêdo

et al. (2017)).

1.4.6 Stage 6

The most commonly studied statistical property of a time series is its histogram, which

gives the shape of the probability density function. In the complex systems considered in

this dissertation, the PDFs are sensitive to the scale of observation, or data acquisition,

so that the forms associated with the central limit theorem (Gaussian, Lévy, Wigner-
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Dyson) are obtained only on the integral scale, which is the largest scale of the system.

In this perspective, the �uctuations in smaller scales can be relaxed until one reaches the

local equilibrium exhibiting distributions that depend parametrically on variables that

�uctuate in larger scales. Therefore, the signal's histogram obtained on the experimental

detection scale, usually smaller than the integral scale, can be interpreted as a result

of stochastic processes in which multiple spatial/temporal scales are coupled through

a hierarchical structure. To describe in a more general context this type of behavior

we proposed the formalism of H-theory, which generalizes the model GHM proposed by

Salazar and Vasconcelos, in which the slow dynamics of the parameters that �uctuate in

larger scales is obtained as a direct consequence of the validity of �ve basic principles: (i)

Time-translations symmetry, (ii) local interactions, (iii) scale invariance, (iv) equilibrium

condition and (v) unidirectional �ow. The H-theory is a dynamic stochastic model that

overcomes the other approaches' limitations in describing a temporal/spatial multiscale

hierarchical system. It can also describe transitions between the two types of distributions

with heavy tails, and with a joint �tting procedure it determines the number of scales

for both the signal and the background of the complex system. This is an important

feature, since if only the signal is �tted one gets an ambiguity, because model distributions

with di�erent values of the number of scales in the background produce �ts with similar

qualities.
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2 The H-Theory

2.1 Introduction

Experimental time series of complex systems usually show large deviations from Gau-

ssian statistics. It is common to assume a priori that the experimental time series is

stationary, however, in general, the distributions may have time-dependence and if so it

could be interpreted as �uctuations about some time-dependent mean ( Livi and Vulpiani

(2003)). There are two well-de�ned trends in the current literature to describe statio-

nary time series of physical systems that di�er substantially from Gaussian processes. In

the �rst approach the time series is treated as the position of a particle undergoing an

anomalous di�usive process, therefore its histogram or probability density function (PDF)

corresponds to a Lévy distribution (Mantegna and Stanley (1994); Koponen (1995)). The

physically undesirable consequence that such distributions have in�nite variance is usually

dealt with, a posteriori, by imposing some sort of truncation, generating the so-called

truncated Lévy distributions. The second trend comes from the observation that in many

cases the resulting heavy-tailed distributions can be accounted for by a superposition of

statistics known as compounding [mathematics] or superstatistics [physics]. The basic

assumption in a statistical superposition approach is the existence of two well separated

time scales driving the dynamics, which would ultimately lead to a stationary solution

where the short time distribution, due to the fast variables (the signal), is averaged over

the long time slow variables (the background) distribution. Three universality classes

have been found for the background distribution, which have been proposed on the basis

of very general arguments, such as the central limit theorem for the sum or product of

independent random variables. The three universal distributions are gamma, inverse-
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gamma and lognormal. The empirical success of such a scheme is well described in the

literature, as can be seen in examples ranging from turbulence in classical �uids (Beck et al.

(2005)), microwave propagation through disordered cavities (Abul-Magd et al. (2008)) and

price variations in �nancial time series (Schmitt et al. (2013)).

Albeit successful in describing the stationary distributions, or histograms, of the time

series of many types of complex systems, statistical superposition cannot be considered a

complete description since it o�ers no explanations to the other features of the stochas-

tic process associated with the system's time series, such as correlation functions, noise

power spectra and memory function. For that a dynamical approach is required. In

the �nance literature such approaches were put forward as stochastic volatility models,

with the Heston (Heston (1993)) and Hull-White models (Hull and White (1987)) being

the most popular. A basic assumption in the study of such models is the validity of

the Chapman-Kolmogorov (CK) equation for the transition probability density associa-

ted with log-returns, de�ned as the logarithm of the ratio of prices separated by a time

lag (Kleinert (2006)). The CK equation is basically a semigroup property that entails a

scaling law relating, via convolution integrals, the probability distribution of log-returns

at di�erent time-scales. Experimental �nancial time series satisfy the CK equation with

reasonably accuracy (Bouchaud and Potters (2000)). In the context of turbulence in clas-

sical �uids, a dynamical model has recently been put forward by Salazar and Vasconcelos

(SV) (Salazar and Vasconcelos (2010)). It accommodates, through �ve physical require-

ments, two concepts introduced by Kolmogorov's approach to the onset of turbulence:

the energy cascade, i.e. the energy transfer between spatial/temporal scales, and the phe-

nomenon of intermittency, which accounts for stochastic changes in energy transfer rates.

The underlying picture in Kolmogorov's theory is the hypothesis that at large Reynold's

number big eddies are created spontaneously, which because of large inertia e�ects decay

into smaller eddies in a series of events that go all the way down to the smallest scale

where complete viscous dissipation takes place. The SV model consists basically in a set
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of coupled stochastic di�erential equations for the rates of energy transferred between

contiguous scales. For large scale separation, the stationary solution of the model for

the distribution of velocity increments can be interpreted both as a multiscale extension

of the superstatistical superposition approach and as dynamical derivation of the scaling

hypothesis implied by the CK equation. The validity of the CK equation in the descrip-

tion of fully developed turbulence was independently veri�ed in (Salazar and Vasconcelos

(2010)). The main prediction of the SV model is a distribution of velocity increments

given by a family of generalized hypergeometric functions, which contains a dimensionless

integer parameter N and exhibits power law tails. Interestingly, the model predicts ve-

locity increments with a Gaussian distribution for N = 0 and a t-Student (or q-Gaussian)

distribution for N = 1. It is quite striking to observe that good agreement was found

with experimental data on velocity increments distribution of Lagrangean turbulence and

the generalized hypergeometric function with N = 7. The SV model accommodates two

universality classes: the inverse-gamma and the log-normal models.

Notwithstanding the theoretical advances brought about by the SV model, three ma-

jor problems remained: (i) the determination of the number of relevant time-scales N , (ii)

the extraction of the background series from the experimental data and (iii) the extension

to other universality classes, including the gamma class. In this work we shall address

all three problems. We introduce a dynamical stochastic model, whose stationary solu-

tion extends the SV model to a large family of parametric distributions, which includes

as particular cases the three standard universality classes of the statistical superposition

approach. We show that both the signal and the background distributions can be repre-

sented in terms of Meijer's G-function and in some cases the more general Fox H-function.

We also introduce a numerical procedure to extract from the time series of a given signal,

the corresponding background distribution which reveals, besides the universality class,

the number N of relevant time scales.

In the new dynamic model, described as a system of stochastic di�erential equations
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(SDE), one assumes that distributions with heavy tails should be interpreted as the com-

position of various random sub-processes with well separated time scales that can reach

a local equilibrium. Using the stationary solution of the model, we will characterize

statistically the time series corresponding of complex dynamical systems through its pro-

bability density functions (PDF), in analogy with turbulence in a classical �uid. The main

applications include (i) �nancial market returns, (ii) intensity increments of random �ber

lasers, (iii) numerically calculated eigenvalues from the energy spectrum of resonant ca-

vities with mixed dynamics and, (iv) velocity increments of Eulerian turbulence for He

with Reynolds number Re = 295, 000. In each case, the PDF associated presents large

deviations from the Gaussian distribution, a fact that is assumed as a violation of the cen-

tral limit theorem (CLT). In general, the Gaussian distribution is the result of a normal

di�usive process, where the variance is a well-behaved function of time.

2.1.1 The dynamical hierarchical model

Consider an inhomogeneous non-equilibrium system in which a relevant observable,

x, is described locally in a spatial or temporal cell by a conditional distribution function

P (x|ε), which contains a parameter, ε, that varies slowly from cell to cell according to

some distribution f(ε). The unconditional global distribution of x is then given by

P (x) =

∫
P (x|ε)f(ε)dε. (2.1)

The existence of at least two widely separated time scales in the dynamics of the system is

a basic assumption for the validity of Eq. (2.1). In the statistical superposition approach,

the form of P (x|ε) is usually straightforwardly obtained from a large scale maximum

entropy type of analysis, akin to equilibrium statistical mechanics. The choice of f(ε),

however, is a more subtle issue, which has been addressed in the literature by means of

statistical �tting procedures. These studies led to a partial classi�cation of complex non-

equilibrium phenomena, regarding the choice of f(ε), into three large universality classes:

(i) gamma; (ii) inverse gamma and (iii) log-normal.
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Although there has been much success in �tting distributions from superstatistical

universality classes with experimental data, a stochastic dynamical model is an essential

next step if the approach is required to make actual predictions and thus become a full

�edged physical description. The dynamical model should, among other things, lay out

the mechanisms underlying the emergence of the universality classes. We show below

how to derive and extend the universality classes using stochastic di�erential equations

(SDE). The proposed SDE is consistent with Kolmogorov's theory of turbulence and was

constructed under �ve simple hypotheses, which can be enumerated as (i) the temporal

translation symmetry, (ii) local interactions, (iii) scale invariance, (iv) equilibrium con-

dition and (v) unidirectional �ow. We show in �gure 2.1 a pictorial description, which

can be used as a complement to the more technical explanation that is presented in the

following sections.

Figure 2.1: (i) The underlying picture in Kolmogorov's theory is the hypothesis that
at large Reynold's number big eddies are created spontaneously, which because of large
inertia e�ects decay into smaller eddies in a series of events that go all the way down
to the smallest scale where complete viscous dissipation takes place. (ii) Hypothesis of
local interactions: In the limit of in�nite Reynolds number, the energy �uctuation of a
scale i in the cascade is uniquely determined by their respective spatial scale and by the
total energy's �ow through this scale, represented by the di�erence εi− εi−1, between the
out�ow and incoming �ow on this scale.



51

We start by considering a simple model for the signal at the observation time scale,

which consists of a stochastic process with Langevin dynamics (Risken and Franck (1996))

given by

dx = −ζxdt+
√

2ζεNdV, (2.2)

where, ζ = constant, dV represents a Wiener process, and εN is a stochastic variable

that has relaxed in the observation scale towards a local equilibrium (Born Oppenheimer

hypothesis). In general, εN , with stationary distribution fN(εN), is the result of the

composition with other scales N − 1 random variables εi with well-separated time scales

τi, τi � τi−1, so that the dynamic εi is described by a Langevin equation in which the terms

of dissipation and �uctuations are a function of time and other relevant spatial/temporal

scales in the system. We consider the general equation

dεi = Fi(ε0, . . . , εN , t)dt+Gi(ε0, . . . , εN , t)dWi, (2.3)

where the functional forms of Fi(ε0, . . . , εN , t), Gi(ε0, . . . , εN , t) and the total number of

scales, N , will describe the PDFs associated with the time series of complex hierarchical

systems. The choice of these functions has been made taking into account the cascade

model of classical turbulence, as done in the SV model (Salazar (2010); Salazar and

Vasconcelos (2010)). For that, we impose the following set of dynamical restrictions:

(i) Temporal translation symmetry

∂tFi(ε0, . . . , εN , t) = 0 = ∂tGi(ε0, . . . , εN , t)

(ii) Local interactions

Fi(ε0, . . . , εN) = Fi(εi−1, εi)

Gi(ε0, . . . , εN) = Gi(εi−1, εi)
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(iii) Scale invariance

Fi(λεi−1, λεi) = λFi(εi−1, εi)

Gi(λεi−1, λεi) = λGi(εi−1, εi)

(iv) Stationary condition

εi = εi−1 ⇒
〈
dεi
dt

〉
= 0

(v) Unidirectional �ux

Prob(εi < 0) = 0, ∀t, if εi(t = 0) ≥ 0

The most general form for the coe�cients of equation (2.3) satisfying the �ve relations

established above correspond to: Fi(ε0, . . . , εN , t) = −γi(εi− εi−1) and Gi(ε0, . . . , εN , t) =

κiε
α
i ε

1−α
i−1 , where γi, κi, α are positive numbers. The physically reasonable values for

the exponent α are those that lead to analytical functions in the di�usion coe�cients

of the associated Fokker-Planck equation, which are (i) α = 1 which yields stationary

distributions f(εi|εi−1) given by inverse gamma densities and (ii) α = 1/2 which gives

gamma densities for the stationary distributions. With this background, in the following

sections we explicitly show how to get the probability density functions associated with

the dynamical model.

2.2 Parametric Families

We start the formal mathematical presentation of the model with a simple case where

the background's dynamics has a single scale εN = ε1 = ε, which contains most of the

universality classes treated in the current literature. In this case, the hierarchical model

is restricted to two coupled Itô type stochastic di�erential equations

dx = −ζxdt+
√

2ζεdV, (2.4)

dε = −γ(ε− ε0)dt+ κg(ε)dW, (2.5)
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where dV and dW are independent Wiener processes, ζ, γ and κ are positive constants,

and g(ε) = ε1−α
0 εα, where α = 1/2 (α = 1) for the gamma (inverse gamma) class.

Furthermore, we admit well separated time scales, i.e. ζ � γ.

Under this assumption, the Fokker-Planck equation associated with the Langevin

equation (2.4) (for more details see Appendix C) has the form

[
∂t − ζ∂xx− ζε∂2

x

]
P (x, t|ε) = 0, (2.6)

whose stationary solution is obtained as

[
x+ ε

d

dx

]
P (x|ε) = 0 ⇒ P (x|ε) =

1√
2πε

exp

(
−x

2

2ε

)
, (2.7)

corresponding to a Gaussian distribution conditioned by the variance ε, where this is a

stochastic variable which behavior is described by equation (2.5) on large time scales.

This feature causes the marginal distribution, P (x), on the observation scale to exhibit

heavy tails. So, is possible to determine that ε have a probability density function, f(ε),

which is the stationary solution of the Fokker-Planck equation (FPE)

[
∂t − γ∂ε(ε− ε0)− κ2

2
∂2
εg

2(ε)

]
f(ε, t) = 0. (2.8)

The stationary solution satis�es1

[
β(ε− ε0) +

d

dε
g2(ε)

]
f(ε) = 0, (2.9)

where β = 2γ
κ2 and g(ε) = ε1−α

0 εα. Substituting these values into (2.9), results in the

ordinary di�erential equation

d

dε
(ε2αf(ε)) = −β(ε− ε0)f(ε)ε2α−2

0 , (2.10)

1The reader should note that by taking the stationary solution of equation (2.8), it becomes indepen-
dent of the time. So, it is possible to factorize one order of epsilon partial derivative, then the term to
be derived corresponds to the left side of equation (2.9); this ordinary di�erential equation is in general
equated to a constant, only that the probability density function (f(ε)) must be normalized. Therefore,
we have to calibrate said constant in zero, to avoid the divergence of the f(ε) PDF.
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which can be solved via F (ε) = ε2αf(ε), thereby

dF (ε)

dε
= −β (ε− ε0)

ε2−2α
0 ε2α

F (ε). (2.11)

This equation can be easily solved by separating variables, thus we get

∫
dF (ε)

F (ε)
= − β

ε2−2α
0

∫ (
1

ε2α−1
− ε0

ε2α

)
dε. (2.12)

The explicit integration of (2.12) is best performed after discriminating the universality

classes, which we do in the next subsections. The two classes are the gamma class (α =

1/2) and the inverse-gamma class (α = 1).

2.2.1 Gamma class

In this case, the exponent is α = 1/2 and the integral (2.12) is reduced to

lnF (ε) = −βε
ε0

+ β ln ε+ c1, (2.13)

which after returning to the original variable f(ε) takes the form

F (ε) = c2ε
β exp

(
−βε
ε0

)
⇒ f(ε) = c3ε

(β−1) exp

(
−βε
ε0

)
, (2.14)

where c3 is obtained using the normalization condition
∫∞

0
f(ε)dε = 1. The �nal result is

f(ε) =
ββ

εβ0 Γ(β)
εβ−1 exp

(
−βε
ε0

)
, ε > 0. (2.15)

We have thus proved that for the particular case α = 1/2 the stationary PDF associa-

ted with the equation (2.5) corresponds to the gamma distribution (2.15). The moments

〈ε(r−1)〉 =
∫∞

0
dεεr−1f(ε), are well de�ned through

〈ε(r−1)〉 =

(
β

ε0

)1−r
Γ(β − 1 + r)

Γ(β)
. (2.16)

For positive and integer values of r ∈ Z+ we get the quantities commonly de�ned in

statistics: mean, variance, kurtosis, etc., can be determined. However, the result obtained
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in (2.16) will be used to show that the Gamma distribution can be understood as part

of a general group of special functions known as the Meijer G-functions (Prudnikov et al.

(1991); Meijer (1941)) that will be the cornerstone of our theoretical model. For this

purpose we consider the Mellin Transform (see Appendix D) of the Meijer G-function

Gm,n
p,q (z), that is the usual way of de�ning this type of special functions (for more details

see Mathai and Saxena (1973); Mathai (1993); Mathai et al. (2010))

∫ ∞
0

dzzr−1Gm,n
p,q

(
(a1), . . . , (ap)
(b1), . . . , (bq)

∣∣∣∣αz) = α−r
∏m

j=1 Γ(bj + r)∏q
j=m+1 Γ(1− bj − r)

∏n
j=1 Γ(1− aj − r)∏p
j=n+1 Γ(aj + r)

.

(2.17)

Comparing equations (2.16) and (2.17), it becomes evident that the generalized relation

for the moments of the gamma distribution, correspond to the Mellin transform of the

Meijer G-function with parameters m = q = 1, n = p = 0, α = β/ε0, {aj} = , b1 = β − 1.

Thus it is possible to rewrite the PDF (2.15) as

f(ε) =
β

ε0Γ(β)
G1,0

0,1

(
____
β − 1

∣∣∣∣βεε0

)
. (2.18)

At this point, the use of the Meijer G-functions will be the mathematical tool that

provides the possibility of having closed forms for the PDFs resulting from the multiscale

superposition, as presented in the next sections. For now, the parametric dependence of

the gamma distribution is shown in �gure (2.2).

In this approach the value of the β parameter is central since it determines the shape of

the gamma distribution, as shown in �gure (2.2). Also, when working with experimental

data series, the value of ε0 is going to �x the background distribution's mean 〈ε〉 = ε0 = 1,

so the parameter ε0 will be previously known.
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Figure 2.2: On the left we show how the β parameter controls the shape of the gamma
distribution. On the right we show how the ε0 parameter controls the distribution's mean
for β = constant. In the �gure's inset the values of the parameters, the letter G represents
the initial of the word gamma.

2.2.2 Inverse gamma classes

The other possible case for the equation (2.12) corresponds to α = 1. For this value,

the integral takes the form

lnF (ε) = −β ln ε− βε0

ε
+ c4, (2.19)

which after returning to the original variable f(ε) gives the distribution

F (ε) = c5ε
−β exp

(
−βε0

ε

)
⇒ f(ε) = c6ε

−β−2 exp

(
−βε0

ε

)
. (2.20)

Applying the normalization condition, we obtain the inverse-gamma density

f(ε) =
(βε0)β+1

Γ(β + 1)
ε−β−2 exp

(
−βε0

ε

)
, ε > 0, (2.21)



57

analogously to the previous case, the generalized equation for the moments of the distri-

bution (2.21) is given by

〈ε(r−1)〉 =
1

βε0Γ(β + 1)

(
1

βε0

)−r
Γ(β + 2− r). (2.22)

Using the Mellin transform's property (2.17), we obtain the Meijer G-function with

indexes m = q = 0, n = p = 1, while its coe�cients are α = 1
βε0

, a1 = −β − 1, aj = for

j 6= 1, bj = ∀j. With these values the inverse Gamma distribution becomes

f(ε) =
1

βε0Γ(β + 1)
G0,1

1,0

(
−β − 1
____

∣∣∣∣ εβε0

)
. (2.23)

The parametric dependence of the inverse gamma distribution (IG) is presented graphi-

cally in �gure (2.3) . For this distribution, the β parameter controls its shape, while the

ε0 parameter is related to the distribution's mean. In fact for IG this parameter is strictly

the mean 〈ε〉 = ε0. It must be remembered that the parameters β and ε0 in each of the

classes are di�erent from each other βγ 6= βγ̄ and εγ0 6= εγ̄0 .

Figure 2.3: On the left we show how the β parameter controls the shape of the Inverse-
Gamma distribution. On the right we show how the ε0 parameter controls the distri-
bution's mean for β = constant. In the �gure's inset the values of the parameters, the
letters IG represent the initials of the compound word Inverse-Gamma
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After this introduction, where the expressions for the background's distributions with

a single scale were written in terms of Meijer G-functions, we will now return to the

physical model and treat the general case of N background scales.

2.3 The multiscale approach

In this section we shall derive the stationary solution of the systems of stochastic

di�erential equations (2.24-2.25), which represents our dynamic model

dx = −ζxdt+
√

2ζεNdV, (2.24)

dεi = −γi(εi − εi−1)dt+ κig(εi|εi−1)dWi, i = 1, . . . , N. (2.25)

The calculations proceed in two steps: (i) �rst, we admit well separated time scales,

i.e. ζ � γN � · · · � γi � · · · � γ1 and obtain the joint distribution of background

variables (stationary solution of the set of equations (2.25)), (ii) and second, under the

same hypothesis, we determine the signal's distribution (P (x)) by calculating a weighted

average of a Gaussian with variable variance εN . In other words, we derive the model's

prediction for the unconditional stationary distribution in the observation scale P (x).

In the uni�ed notation each background variable εi in equation (2.25) has stationary

distribution through its associated FPE and the classes are discriminated by means of

the coe�cient g(εi|εi−1) = ε1−α
i−1 ε

α
i , where α = 1/2 (α = 1) for the conditional gamma

(conditional inverse gamma) class2

f(εi|εi−1) =


β
βi
i

Γ(βi)

ε
βi−1
i

ε
βi
i−1

exp
(
−βi εi

εi−1

)
for f(ε)→ Gamma(G)

(βiεi−1)βi+1

Γ(βi+1)
ε−βi−2
i exp

(
−βi εi−1

εi

)
for f(ε)→ Inverse-Gamma(IG).

2The exponents α = 1/2 and α = 1 are chosen to guarantee the analytical solution of the Fokker-Planck
equation associated with the Langevin equation.
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To determine the joint background distribution fN(εN), we �rst observe that the sep-

aration of time scales is equivalent to applying Bayes' theorem, so that the unconditional

distribution that is being sought corresponds to the integral

fN(εN) =

∫
dεN−1f(εN |εN−1) . . .

∫
dε1f(ε1|ε0). (2.26)

It is necessary to decouple the multiple integrals on the conditional distributions and thus

be able to calculate the Mellin transform of the background distribution (2.26). For this

purpose we de�ne new variables through the relation

εN
ε0

=
εN
εN−1

εN−1

εN−2

. . .
ε2

ε1

ε1

ε0

= ζNζN−1 . . . ζ2ζ1. (2.27)

The distributions of the new variables g(ζi) are obtained through

g(ζi) = f(εi|εi−1)
∂εi
∂ζi

∣∣∣∣
εi−1=const

i = 1, . . . , N. (2.28)

Now the two types of classes, Gamma (G) and Inverse-Gamma (IG) are given by

g(ζi) =


β
βi
i

Γ(βi)
ζβi−1
i exp (−βiζi) G

(βi)
βi

Γ(βi)
ζ−βi−2
i exp

(
−βi
ζi

)
IG,

it is now possible to independently calculate the right-hand integrals of (2.26) using a

Mellin transform for each scale

〈ζpi 〉 =


Γ(βi+p)
βpi Γ(βi)

G

βpi
Γ(βi−p+1)

Γ(βi+1)
IG.

So the joint Mellin's transform is simply the product of the transforms at each scale

〈ζs−1〉 =

∫ ∞
0

dζζs−1g(ζ) =


∏N

i=1
Γ(βi+s−1)

βs−1
i Γ(βi)

G

∏N
i=1 β

s−1
i

Γ(βi−s+2)
Γ(βi+1)

IG.



60

The joint distribution for the multiple background scales regarding the Meijer G-

functions is obtained using the property (2.17). Analogously to the procedure performed

on a single scale

g(ζ) =



β1,...,βN
Γ(β1),...,Γ(βN )

GN,0
0,N

(
____

β1 − 1, . . . , βN − 1

∣∣∣∣β1 . . . βNζ

)
G

(β1,...,βN )−1

Γ(β1+1),...,Γ(βN+1)
G0,N
N,0

(
−β1 − 1, . . . ,−βN − 1

____

∣∣∣∣ ζ
β1...βN

)
IG.

Through the relation fN(εN) = 1
ε0
g(ζ) = 1

ε0
g
(
εN
ε0

)
is returned to the distribution

for original variable. It will prove useful to combine the above results for fN(εN) in a

single formula using G-Meijer function. Let Nγ and Nγ̄ be the number of gamma and

inverse-gamma variables respectively, with the constraint Nγ +Nγ̄ = N , then

fN(εN) = ωΩγγ̄G
Nγ ,Nγ̄
Nγ̄ ,Nγ

(
aγ̄
bγ

∣∣∣∣ωεN) , (2.29)

where aγ̄ = −β1 − 1, . . . ,−βNγ̄ − 1, bγ = β1 − 1, . . . , βNγ − 1 and

ω =

Nγ∏
j=1

βj

Nγ̄∏
j=1

1

βj
, (2.30)

Ωγγ̄ =

Nγ∏
j=1

1

Γ(βj)

Nγ̄∏
j=1

1

Γ(βj + 1)
= ΩγΩγ̄. (2.31)

By convention, the β parameters are the same for each scale (β1 = β2 = · · · = βN)γ∨γ̄,

therefore, it is the primary interest of this dissertation to determine for the four systems

(i) its parametric class, (ii) the scales number N , and (iii) the value of the corresponding

β parameter. However, it is still premature to talk about how to make that choice.

Since this chapter only introduces the theoretical model, and the e�ects that occur when

changing the parameters β and N of the di�erent classes. In that order of ideas, �gure

(2.4) shown several plots of the background composed of the class Gamma, represented

by the equation (2.29). In �gure (2.5) we plotted equation (2.29) for the inverse-gamma
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class. It is important to note that although for these two classes the same values have

been used for the parameters β and N, its e�ects on each family are di�erent.

Figure 2.4: On the left we show how the β parameter controls the shape of the distribution
setting the number of background's scales on N = 4. On the right we show the behavior
of the distribution according to the scales' number given a parameter β = constant. In
all cases the distribution has been plotted fN(εN) for the Gamma class (eq (2.29))

Figure 2.5: On the left we show how the β parameter controls the shape of the distribution
setting the number of background's scales on N = 4. On the right we show the behavior
of the distribution according to the scales' number given a parameter β = constant. In
all cases the distribution has been plotted fN(εN) for the Inverse-Gamma class (eq (2.29))
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Through these examples, we have given an overall idea of the type of distributions

generated from stationary solutions of fN(εN). With this result, we can move to the

second item stated at the beginning of this section, so in the following subsection, it

will be explicitly described how to obtain the probability density function P (x) for the

observation scale.

2.3.1 Marginal distribution

In agreement with the hypothesis of large scales separations, the PDF (P (x)) of the

experimental detection is the superposition of variables that �uctuate in smaller scales,

and that relax until reaching a local equilibrium exhibiting background's distributions

that depend parametrically on variables that range in the greater scales. Mathemati-

cally represented by the set of SDE (2.24, 2.25), we have already identi�ed its stationary

distributions in (2.7) and (2.29) separately, now just the superposition integral will be

considered

P (x) =

∫ ∞
0

dεNP (x|εN)fN(εN) =
1√
2π

∫ ∞
0

exp

(
− x2

2εN

)
ε
−1/2
N fN(εN)dεN , (2.32)

which can be evaluated through the Mellin transform. To make such calculation, the

following change of variable

y =
x2

2εN
⇒ x2 = 2yεN ⇒ xs−1 = 2(s−1)/2y(s−1)/2ε

(s−1)/2
N (2.33)

is made, and the transform of P (x) takes the form

∫ ∞
0

dxxs−1P (x)︸ ︷︷ ︸
<xs−1>

= 2(s−1)/2

<y(s−1)/2>︷ ︸︸ ︷∫ ∞
0

dyy(s−1)/2P (y)

∫ ∞
0

dεNε
(s−1)/2
N f(εN)︸ ︷︷ ︸

<ε
(s−1)/2
N >

, (2.34)

where

P (y) = P (x|εN) |x=
√

2εNy

dx

dy
=

1√
4πy

exp(−y). (2.35)
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Sequentially the integrals on the right side of (2.34) are calculated, obtaining

〈y(s−1)/2〉 =
Γ
(
s
2

)
2
√
π
, (2.36)

and

〈ε(s−1)/2
N 〉 =


∏N

i=1 β
(1/2−s/2) Γ(βi+s/2−1/2)

Γ(βi)
G(γ)

∏N
i=1 β

(s/2−3/2)
i

Γ(βi+3/2−s/2)
Γ(βi)

IG(γ̄).

The second integral is expressed in terms of the two cases gamma and inverse gamma

in concordance with the previous subsection, therefore Mellin transform to (2.34) also

incorporates these two possibilities

∫ ∞
0

dxxs−1P (x)︸ ︷︷ ︸
<xs−1>

=


∏N

i=1
β

1/2
i√

8πΓ(βi)

(
2
βi

)s/2
Γ
(
s
2

)
Γ
(
βi − 1

2
+ s

2

)
G(γ)

∏N
i=1

(2β)−3/2
√
πΓ(βi)

(2βi)
s/2 Γ

(
s
2

)
Γ
(
βi + 3

2
− s

2

)
IG(γ̄).

The purpose of this calculation is to determine the form of the distribution P (x). For

this we have used the following property on Fox H-function, that was taken from the

reference Mathai et al. (2010)

∫ ∞
0

dxxs−1Hm,n
p,q

(
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣αx) = α−s
∏m

j=1 Γ(bj +Bjs)∏q
j=m+1 Γ(1− bj −Bjs)

∏n
j=1 Γ(1− aj − Ajs)∏p
j=n+1 Γ(aj + Ajs)

.

(2.37)

Using this identity we evaluated in the following subsubsections the two possible cases for

P (x), beginning with the Gamma class.

Signal's PDF for gamma class

By implementing property (2.37) for the Mellin transform of P (x) of the gamma class

by direct comparison it is recognized that P (x)γ corresponds to the Fox H-function with

coe�cients m = q = N + 1, p = n = 0, aj = Aj = ∅ ∀ j, b1 = 0, bj = βj−1 − 1/2 for
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j = 2, ..., N + 1, Bj = 1/2 for j = 1, . . . , N + 1, and α =

√∏
j βj

2
. Equation (2.37) takes

the particular form

∫ ∞
0

dxxs−1HN+1,0
0,N+1

(
____

(0, 1/2), (β1 − 1/2, 1/2), . . . , (βN − 1/2, 1/2)

∣∣∣∣
√
β1 . . . βN

2
x

)
=

N∏
i=1

(√
βi
2

)−s
Γ
(s

2

)
Γ

(
βi −

1

2
+
s

2

)
.

We �nd

P (x) =

√
β1 . . . βN

2
√

2πΓ(β1) . . .Γ(βN)
HN+1,0

0,N+1

(
____

(0, 1/2), (β1 − 1/2, 1/2) . . . (βN − 1/2, 1/2)

∣∣∣∣
√
β1 . . . βN

2
x

)
.

(2.38)

It is possible to eliminate the dependence of the parameters Bj, using the following identity

Hm,n
p,q

(
(au, Au)
(bv, Bv)

∣∣∣∣z) = kHm,n
p,q

(
(au, kAu)
(bv, kBv)

∣∣∣∣zk) . (2.39)

Through (2.39) the function Hm,n
p,q can be transformed into a Meijer G-function set

corresponding to coe�cients for which Bj = 1 (Prudnikov et al. (1991); Meijer (1941)),

so P (x) takes the �nal form

P (x) =

√
β1 . . . βN√

2πΓ(β1) . . .Γ(βN)
GN+1,0

0,N+1

(
____

(0), (β1 − 1/2), . . . , (βN − 1/2)

∣∣∣∣β1 . . . βNx
2

2

)
.

(2.40)

The asymptotic expansion of the function Gp,q
m,n, with m = q = 0 and n = p = N + 1

Mathai and Saxena (1973), is given by

PN(x) ∼ x2θ exp
[
−(N + 1)(ωx2/2ε0)1/(N+1)

]
(2.41)

where θ =
(∑N

i=1 βi −N
)
/(N + 1) and ω =

∏N
j=1 βj. Due to this asymptotic behavior,

this class will be denominated stretched exponential.
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To have a clear image of the forms that take these functions, we have plotted in

semilog scale the PDF (2.40), with the same parameters used in �gure (2.4), so that

(2.6) corresponds to P (x) =
∫∞

0
P (x|εN)fN(εN)dεN , where the background's distributions

fN(εN) are plotted in �gure (2.4).

Figure 2.6: On the left we show how the β parameter controls the form of the distribution
setting the number of background's scales on N = 4. On the right we show the behavior
of the distribution according to the scales' number given a parameter β = constant. In
all cases the distribution has been plotted P (x) for the class stretched exponential (eq
(2.40)).

Parametric distributions with heavy tails of the stretched exponential class have only

been used in the current literature of complex systems for the case N = 1 (called K-

distribution Jakeman and Pusey (1978)). So this work has made an original contribution

to this area through the dynamic model called H theory, which supports the existence of

this PDF's class in physical systems with chaotic dynamics. Speci�cally, in this thesis

it has been calculated the spectrum of intensities in the random �ber laser (Chapter

�ve), and the spectrum of the di�erences of the eigenvalues' spacing in ballistic cavities

(Chapter seven) is characterized by this family.

Once has been established the probability density function of the signal P (x) for the
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stretched exponential class, an analogous calculation is made for the other class, which

so far has been termed inverse-gamma because the form of conditional PDF f(εi|εi−1),

partial solution of the SDE set (2.25) for the case α = 1.

Signal's PDF for inverse gamma class

Applying the Mellin transform (2.37) into equation (2.42), is recognized by direct

comparison that P (x)γ̄ corresponds to the Fox H-function with coe�cients m = q = 1,

p = n = N , aj = −βj − 1/2, Aj = 1/2 for j = 1, ..., N , b1 = 0, B1 = 1/2, bj = Bj = ∅ for

j 6= 1, and α =
√

1
2
∏
j βj

.

〈xs−1〉γ̄ =
N∏
i=1

(2β)−3/2

√
πΓ(βi)

(2βi)
s/2 Γ

(s
2

)
Γ

(
βi +

3

2
− s

2

)
, (2.42)

thus

∫ ∞
0

dxxs−1H1,N
N,1

(
(−β1 − 1/2, 1/2), . . . , (−βN − 1/2, 1/2)
(0, 1/2)

∣∣∣∣ x√
2β1 . . . βN

)
=

N∏
i=1

(
√

2βi)
sΓ
(s

2

)
Γ

(
βi +

3

2
− s

2

)
,

and P (x)γ̄ is the normalized function

P (x) =
(2β1 . . . βN)−3/2

√
πΓ(β) . . .Γ(βN)

H1,N
N,1

(
(−β1 − 1/2, 1/2), . . . , (−βN − 1/2, 1/2)
(0, 1/2)

∣∣∣∣ x√
2β1 . . . βN

)
.

(2.43)

Now, the Fox H-function is transformed into a Meijer G-function using the identity

(2.39), getting

P (x) =
(β1 . . . βN)−1/2

√
2πΓ(β1 + 1) . . .Γ(βN + 1)

G1,N
N,1

(
−β1 − 1/2, . . . , βN − 1/2
0

∣∣∣∣ x2

2β1 . . . βN

)
.

(2.44)
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Expressing P (x) ∼ Gm,n
p,q has a signi�cant operational advantage since several technical

computing programs have the ability to plot and perform operations with the Meijer

G-functions.

The PDF (2.44) can be directly connected to the multiscale aproach of generalized

hypergeometric functions NF0, implemented by Salazar and Vasconcelos Salazar and Vas-

concelos (2010); Salazar (2010), via the identity

G1,N
N,1

(
−β1 − 1/2, . . . , βN − 1/2
0

∣∣∣∣z) =

(
N∏
i=1

Γ(βi + 3/2)

)
NF0 (β1 + 3/2, . . . , βN + 3/2; ;−z) ,

(2.45)

where z = x2

2β1...βN
. For this model the asymptotic expansion corresponds to power-law

tails

P (x) ∼
N∑
i=1

ci
x2βi+3

, for |x| → ∞, (2.46)

where the ci's are constants. Based on the asymptotic limit, this class will be called the

power-law class.

To have a clear picture of the forms that take these functions, we have plotted in

semilog scale the equation (2.44), with the same parameters used in �gure (2.5), such

that �gure (2.7) corresponds to the PDF P (x) =
∫∞

0
P (x|εN)fN(εN)dεN for the signal,

where the background's PDF fN(εN) have been plotted in �gure (2.5).

This important class has allowed to characterize the velocity increments series of He-

lium gas modeled as Eulerian turbulence, and the series of intraday returns of the Ibovespa

index with time interevents of 30s (Macêdo et al. (2017)). Systems that will be described

in detail in chapter four.
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Figure 2.7: On the left we show how the β parameter controls the form of the distribution
setting the number of background's scales on N = 4. On the right we show the behavior
of the distribution according to the scales' number given a parameter β = constant. In
all cases the distribution has been plotted P (x) for the power-law class (eq (2.44)).

Uni�ed representation for γ and γ̄ classes

Working with the Meijer G-function representation allows unifying the two classes

of parametric families presented so far, as was done with the background's distributions

fN(εN) in the equation (2.29). Now the PDF P (x) will have a single representation

P (x) =
ω1/2Ωγγ̄√

2π
G
Nγ+1,Nγ̄
Nγ̄ ,Nγ+1

(
aγ̄ + 1/2
bγ + 1/2, 0

∣∣∣∣ωx2

2

)
. (2.47)

For particular cases: Nγ = 0, Nγ̄ = 1 the q-Gaussian distribution is obtained, whereas

for Nγ = 1, Nγ̄ = 0 the exponentially damped K-distribution is established. Together

with the Log-Normal distribution ( corresponding to the limit limN,β → ∞ ) these are

the three possible distributions in the current literature of the superstatistics model.

The following sections present other possible types of background's distributions for

this SDE hierarchical model, which are described generically since so far we have not yet

found physical systems in which those can be implemented, so its applications are still on
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the waiting list.

2.3.2 Probability density functions of the beta classes

Since f(ε) is a background distribution, i.e. it is generated from the dynamics of

hidden, and in principle uncontrolled, degrees of freedom, we would like it to be as general

as possible. With that in mind, we consider the possibility that the noise is bounded either

above (beta class) or below (inverse beta class). The corresponding SDE is

dε = −γ(ε− ε̄)dt+ κ
√
ε|1− ε|dW, (2.48)

where γ and κ are positive constants. Furthermore the constant ε̄ satis�es 0 < ε̄ < 1 for

the beta class, and 0 < ε < 1. The associated FPE is

{
∂t − γ∂ε(ε− ε̄)−

κ2

2
∂2
ε (ε(1− ε))

}
f(ε, t) = 0. (2.49)

Using its stationary form

{β(ε− ε̄) + dεε(1− ε)} f(ε) = 0, (2.50)

where β = 2γ/κ2, its solution can be found through substitution F (ε) = ε(1− ε)f(ε)

dF (ε)

dε
= −β(ε− ε̄) F (ε)

ε(1− ε)
, (2.51)

we �nd

F (ε) = εβε̄(1− ε)β(1−ε̄). (2.52)

Returning to the original variable and normalizing, we get the beta distribution

f(ε) =
Γ(ν + µ)

Γ(ν)Γ(µ)
εν−1(1− ε)µ−1, (2.53)

for 0 < ε < 1, where ν = βε̄ and µ = β(1− ε̄). We displayed graphically the parametric

dependence of beta in the background's distribution (2.53) in �gure (2.8)
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Figure 2.8: On the left we show how the ν parameter controls the form of the beta
distribution, whereas the µ parameter is constant. Complementary to the right we show
how the µ parameter controls the form of the beta distribution, whereas the ν parameter
is constant

The beta PDF has a distribution associated with the inverse multiplicative of the

background's variable ε which is described below.

The inverse-beta distribution

De�ne the random variable ζ as ζ = 1
ε
. Its derivative is determined by Itô calculus as

dζ = − 1

ε2
dε+

1

ε3
(dε)2. (2.54)

Here, dε corresponds to the Langevin equation (2.48), so by direct substitution we get

dζ = − 1

ε2

{
−γ(ε− ε̄)dt+ κ

√
ε(1− ε)dW

}
+

1

ε3
κ2ε(1− ε) (dW )2︸ ︷︷ ︸

dt

. (2.55)

Then, we proceed to organize the equation, separating the terms of �uctuation and dissi-

pation
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dζ

ζ
=

(
−γε̄(ζ − 1

ε̄
) + κ2(ζ − 1)

)
dt+ κ

√
ζ − 1 dW̃︸︷︷︸

−dW

. (2.56)

Performing the necessary algebraic steps, the Langevin equation for the inverse beta is

obtained

dζ = −γ̃ζ(ζ − ζ̄)dt+ κζ
√
ζ − 1dW̃ . (2.57)

The SDE (2.57) can be generically expressed as

dε = −γε(ε− ε̄)dt+ κε
√
ε− 1dW (2.58)

and its asociated Fokker Planck equation is

{
∂t − γ∂ε(ε(ε− ε̄))−

κ2

2
∂2
ε (ε

2(ε− 1))

}
f(ε, t) = 0, (2.59)

with stationary form

{
βε(ε− ε̄) + dε(ε

2(ε− 1))
}
f(ε) = 0, (2.60)

where β = 2γ/κ2. Its solution may be determined using the substitution F (ε) = ε2(ε −

1)f(ε)

dF (ε)

dε
= −β ε− ε̄

ε(ε− 1)
F (ε), ⇒ F (ε) = (ε− 1)β(ε̄−1)ε−βε̄. (2.61)

Returning to the original variable and applying the normalization condition we deduced

the inverse beta distribution as

f(ε) =
Γ(ν̄ + µ̄)

Γ(ν̄)Γ(µ̄)
ε−ν̄−1(1− ε−1)µ̄−1, (2.62)

for ε > 1, where ν̄ = β + 2 and µ̄ = β(ε̄− 1). In Figure (2.9) we present plots of inverse

beta distribution, whose parameters were chosen by convenience.
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Figure 2.9: Plots of background's PDF f(ε) for the inverse beta class, these parameters
have been chosen conditioned that the Fox H-function associated with background and
signal can be plotted. The reader should be aware that in the inset we used the notation
µ→ µ̄ and ν → ν̄.

It is important to note that due to the distribution's domain it's hard to execute the

joint graphs for signal and background, for that reason, a set of restricted parameters has

been chosen.

Just as for the gamma case, is possible to combine the above results in a single Meijer

G-function. Let Nβ and Nβ̄ be the number of beta and inverse-beta variables respectively,

with the constraint Nβ +Nβ̄ = 1, then

f(ε) = Ωββ̄G
Nβ ,Nβ̄
1,1

(
aβ∨β̄
bβ∨β̄

∣∣∣∣ε) , (2.63)

where β∨ β̄ = βNβ+ β̄Nβ̄. Furthermore, aβ = µ+ν−1, bβ = ν−1, aβ̄ = −ν̄, bβ̄ = −ν̄− µ̄

and

Ωββ̄ =

Nβ∏
j=1

Γ(µj + νj)

Γ(νj)

Nβ̄∏
j=1

Γ(µ̄j + ν̄j)

Γ(ν̄j)
= ΩβΩβ̄, (2.64)

with ν1 = ν, µ1 = µ, ν̄1 = ν̄ and µ̄1 = µ̄.



73

PDF P (x) for uni�ed beta class signal

Using the Mellin transform properties for the Fox H-function, shown in previous sec-

tions a joint probability density function for the signal associated with the background

distribution (2.63) is determined

P (x) =
Ωββ̄√

2π
G
Nβ+1,Nβ̄
1,2

(
aβ∨β̄ + 1/2
bβ∨β̄ + 1/2, 0

∣∣∣∣x2

2

)
. (2.65)

We will complete this development presenting graphs corresponding to the signal for

classes β and β̄, respecting the correspondence of parameters. The signal for the β class

is the �rst case, shown in �gure (2.10)

Figure 2.10: Plots of signal's PDF P (x) for the beta class. On the left we show how
the ν parameter controls the form of the beta distribution, whereas the µ parameter is
constant. Complementary, on the right we show how the µ parameter controls the form
of the beta distribution, whereas the ν parameter is constant

.

The asymptotic expansion for this class Nβ = 1 and Nβ̄ = 0, corresponds to

P (x) ∼ x−2µ exp

(
−x

2

2

)
[1 +O(x−2)], (x→∞), (2.66)
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which is a truncated power law. In �gure (2.11) curves of signal of the inverse beta class

(β̄) are shown

Figure 2.11: Plots of signal's PDF P (x) for the inverse beta class. This graph uses the
same parameters shown in the �gure 2.9 for background's PDF.

Its asymptotic expansion Nβ = 0 and Nβ̄ = 1, corresponds to a power law

P (x) ∼ x−2ν̄−1, (x→∞). (2.67)

With these results, the presentation for the uni�ed beta class is concluded.

2.3.3 Generalized Gamma and Beta Classes

The last extension at the level of a single background time scale is the introduction of

the generalized gamma and beta distributions

Generalized gamma classes

In this case the SDE is

dε = −γ(εr − 1)dt+ κεsdW, (2.68)
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where r, γ, κ are positive constants, dW is a Wiener process and s = 1/2 (s = (1 + r)/2)

for the gamma (inverse gamma) class. The stationary distribution for the gamma class is

f(ε) =
r

Γ(β/r)

(
β

r

)β/r
εβ−1 exp

(
−βε

r

r

)
, where β = 2γ/κ2. (2.69)

As has been recurrent in this chapter, we plotted the parametric dependence of the

function (2.69), as shown in �gure (2.12), with r 6= 1, to distinguish the gamma distribu-

tion.

Figure 2.12: Plots of background's PDF f(ε) for the generalized gamma class. On the
left we show how the β parameter controls the form of the distribution, whereas the
r parameter is constant. Complementary, on the right we show how the r parameter
controls the form of the distribution, whereas the β parameter is constant.

Similarly the stationary distribution for the inverse generalized gamma class is

f(ε) =
r

Γ(β/r + 1)

(
β

r

)β/r+1

ε−β−r−1 exp

(
− β

rεr

)
. (2.70)

A general idea of the parametric dependency can be obtained from �gure (2.13)
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Figure 2.13: Plots of background's PDF f(ε) for the generalized inverse gamma class.
On the left we show how the β parameter controls the form of the distribution, whereas
the r parameter is constant. Complementary, on the right we show how the r parameter
controls the form of the distribution, whereas the β parameter is constant.

Generalized beta classes

The SDE in this case reads

dε = −γ(εr − ε̄)dt+ κ
√
ε|1− εr|dW, ε > 1 (2.71)

where r, γ, κ are positive constants and dW is a Wiener process. The stationary distribu-

tion for the beta class is

f(ε) =
rΓ(ν/r + µ)

Γ(ν/r)Γ(µ)
εν−1(1− εr)µ−1, (2.72)

where 0 < {ε, ε̄} < 1, ν = βε̄ and µ = β(1− ε̄). The parametric dependence is presented

in the left part of �gure (2.14).



77

Figure 2.14: On the left plots of background's f(ε) ∼ H1,0
1,1 (ε) for the generalized beta

class, equation (2.74). In this graph we show how the r parameter controls the form of
the distribution. On the right we show plots of signal's PDF P (x) ∼ H2,0

1,2 (x2) for the
generalized beta class, equation (2.75) where ω = 1, and Γγγ̄ββ̄ = Γβ, using the same
parameters of the background

For inverse beta class we get

f(ε) =
rΓ(ν̄/r + µ̄)

Γ(ν̄/r)Γ(µ̄)
ε−ν̄−1(1− ε−r)µ̄−1, (2.73)

where ε, ε̄ > 1, ν̄ = β + r and µ̄ = β(ε̄− 1). In both cases, we de�ned β = 2γ/κ2. Whose

parametric dependence is shown in the left part of �gure (2.15).

In the next section we give a uni�ed description for the beta and inverse beta distri-

butions, in terms of Fox H-functions. Also, we show the form of the probability density

functions for the signal associated with the background distributions described in this

segment of the manuscript.
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Figure 2.15: On the left plots of background's f(ε) ∼ H0,1
1,1 (ε) for the generalized inverse

beta class, equation (2.74). In this graph we show how the r parameter controls the form
of the distribution. On the right we show plots of signal's PDF P (x) ∼ H1,1

1,2 (x2) for the
generalized inverse beta class, equation (2.75) where ω = 1, and Γγγ̄ββ̄ = Γβ̄, using the
same parameters of the background

2.4 Uni�ed Fox H-function representation

Just as before, the expressions for the generalized gamma and generalized beta classes

can be written in a single formula using Fox H-function and the constraint Nγ + Nγ̄ +

Nβ +Nβ̄ = 1. Thus, we found

f(ε) = ωΩγγ̄ββ̄H
Nγβ ,Nγ̄β̄
Nγ̄ββ̄ ,Nγββ̄

(
(a,A)γ̄∨β∨β̄
(b, B)γ∨β∨β̄

∣∣∣∣ωε) , (2.74)

where Nij = Ni + Nj, Nijk = Ni + Nj + Nk, i ∨ j ∨ k = iNi + jNj + kNk, and (x,X)i =

(xi, Xi) for i, j, k ∈ {γ, γ̄, β, β̄}. Moreover, Ωγγ̄ββ̄ = Ωγγ̄Ωββ̄ and
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ω =

Nγ∏
j=1

(
βj
rj

)1/rj Nγ̄∏
j=1

(
rj
βj

)1/rj

Ωγγ̄ =

Nγ∏
j=1

1

Γ(βj/rj)

Nγ̄∏
j=1

1

Γ(1 + βj/rj)

Ωββ̄ =

Nβ∏
j=1

Γ(µj + νj/rj)

Γ(νj/rj)

Nβ̄∏
j=1

Γ(µ̄j + ν̄j/rj)

Γ(ν̄j/rj)
,

using the notation ν1 = ν, µ1 = µ, ν̄1 = ν̄, µ̄1 = µ̄, β1 = β and r1 = r.In which it has

been de�ned aγ̄ = −(β + 1)/r, aβ = µ + (ν − 1)/r, aβ̄ = 1 − (ν̄ + 1)/r, bγ = (β − 1)/r,

bβ = (ν − 1)/r, bβ̄ = 1 − µ̄ − (ν̄ + 1)/r, and Ai = 1/r = Bi for i ∈ {γ, γ̄, β, β̄}. The

superposition integral can now be readily calculated using properties of Fox H-function.

P (x) = CH
Nγβ+1,Nγ̄β̄
Nγ̄ββ̄ ,Nγββ̄+1

(
(ã, A)γ̄∨β∨β̄
(b̃, B)γ∨β∨β̄, (0, 1)

∣∣∣∣ωx2

2

)
, (2.75)

where C = ω1/2Ωγγ̄ββ̄/
√

2π, ãi = ai + 1/(2r), b̃i = bi + 1/(2r) for i ∈ {γ, γ̄, β, β̄}.

Now, we plotted Eq. (2.75), for the four cases it represents (namely γ, γ̄, β, and β̄).

Thus, in Fig. (2.16) we show the signal for the generalized gamma class, using the same

background parameters, presented in previous sections. Similarly, �gure (2.17) shows the

signal for the generalized inverse gamma class.

The signal for generalized beta and generalized inverse beta class is shown in the right

part of �gures (2.14) and (2.15), respectively.
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Figure 2.16: Plots of signal's PDF P (x) ∼ H2,0
0,2 (x2) for the generalized gamma class,

equation (2.75) where ω = (β/r)1/r, and Γγγ̄ββ̄ = Γγ . On the left we show how the
β parameter controls the form of the distribution, whereas the r parameter is constant.
Complementary, on the right we show how the r parameter controls the form of the
distribution, whereas the β parameter is constant.

Figure 2.17: Plots of signal's PDF P (x) ∼ H1,1
1,1 (x2) for the generalized inverse gamma

class, equation (2.75) where ω = (r/β)1/r, and Γγγ̄ββ̄ = Γγ̄ . On the left we show how the
β parameter controls the form of the distribution, whereas the r parameter is constant.
Complementary, on the right we show how the r parameter controls the form of the
distribution, whereas the β parameter is constant.
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2.5 Conclusions

We introduced a uni�ed dynamical approach to describe statistical features of the

time series of multiscale complex systems. The probability density of the corresponding

time series is represented as a statistical superposition of a macroscopic variable with

a large time scale and an arbitrary number of small time-scales background variables

corresponding to e�ective internal degrees of freedom. We derived analytically a large

family of background distributions from a dynamical model based on �ve simple physical

constraints. We showed that this family of distributions has a simple representation

in terms of Fox H-function which uni�es and generalizes several results of the recent

literature. A number of applications, including normal and anomalous di�usion with

�uctuating background, were worked out in detail and explicit analytical expressions

were derived.
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3 Background series

3.1 Introduction

In the H-theory approach, we assume that the experimental data corresponds to a

stationary series whose probability density function PDF is determined by

P (x) =

∫ ∞
0

P (x|εN)fN(εN)dεN , (3.1)

in which P (x|εN) can be Gaussian1

P (x|εN) =
1√

2πεN
exp

(
−x2

2εN

)
, (3.2)

and fN(εN) is the PDF of the superposition of N background variables. To prove the

theory, we need to know what is the time series associated with the background, whose

superposition with a Gaussian kernel reproduces the PDF of the experimental data. To

achieve this purpose, we developed a method that took as its starting point the results

of reference (Schafer and Guhr (2010)). In this work, the data series of �nantial returns

r(t), which initially presents deviations of the Gaussian (kurtosis κ 6= 3), is normalized

as follows ρn(t) = r(t)−µn(t)
σn(t)

, where µn(t) = 〈r(t)〉n is the local mean value and σn(t) =√
〈r2(t)〉n − 〈r(t)〉2n corresponds to local standard deviation or �nancial language to the

local volatility, and n is a number chosen such that the ρn(t) PDF recovers the Gaussian

form (kurtosis κ = 3). In the method developed in (Schafer and Guhr (2010)) the local

variance series (σ2
n(t)) provides the background distribution fN(εN). However, using this

procedure sometimes we could not obtain by integration (P (r) =
∫
P (r|σ2)f(σ2)dσ2) the

1In general, the transition probability density function correspond to the PDF in the integral scale,
which can be a Gaussian, Wigner-Dyson or Boltzmann distribution
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reconstruction of the experimental PDF, as was also well documented in (xu and Beck

(2016)). To solve this incongruence we have developed an alternative procedure to be

described below.

3.2 The background series

From equation (3.1), which sets the connection between the marginal distribution

P (x) and background distribution fN(εN), one obtains the general relation between the

moments 〈x2r〉 and 〈εrN〉

〈x2r〉 = 〈εrN〉
r∏

k=1

(2k − 1) =
2r√
π

Γ

(
r +

1

2

)
〈εrN〉. (3.3)

It is possible to simplify the procedure assuming that P (x) has zero mean (〈x〉 =

x̄ = 0) and unit variance (σ2 = 1), whereby the central moments will satisfy µn(x) =

〈(x − x̄)n〉 = 〈xn〉, in particular the second moment is one (µ2(x) = σ2(x) = 1), while

the kurtosis de�ned as κ(x) = µ4(x)/µ2
2(x) corresponds to the fourth central moment

(κ(x) = µ4(x) = 〈x4〉). Once de�ned the �rst two nonzero central moments for P (x) we

can establish through equation (3.3) the value of the variance of εN

µ2(εN) = σ2(εN) =
κ(x)− 3

3
=
γ2(x)

3
, (3.4)

since according to equation (3.3) the mean is one (〈εN〉 = 1). So, using equation (3.4)

which corresponds to a theoretical criteria equivalent to applying Bayes theorem for con-

ditional probability distributions, we construct an empirical extension of the experimental

data series2 u(t). The following points are central to the method:

• We focus on the �uctuations or relative increases in the u(t) series. Such variation

can be calculated between �rst neighbors (τ = 1), between second neighbors (τ = 2)

and so forth. In general we can de�ne a variable x(t) = u(t + τ) − u(t) describing

these �uctuations, so that the generic series x(t) becomes our main object of study.

2Since this series is stationary the t parameter or time refers to the temporal sequence of data acqui-
sition
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• We work with a normalized series x(t) with zero mean and unit standard deviation,

which is obtained with the substitution

x(t)− x̄(t)

σ(x(t))
→ x(t). (3.5)

• The procedure is based on dividing the normalized series x(t) into intervals of size

M and for each such interval compute a variance estimator

εM(t) =
1

M

M−1∑
j=0

[x(t− jδt)− x̄M(t)]2, (3.6)

where t = 1, 2, . . . , length of the series, and x̄M(t) represents local mean for M ele-

ments of the data series

x̄M(t) =
1

M

M−1∑
j=0

[x(t− jδt)], (3.7)

thus generating a new time series, based on a procedure that is known as running

average.

• We numerically compound the εM(t) distribution with Gaussian kernel, as suggested

by (3.1), for various M , starting from the M value where the global variance of the

time series εM(t) (σ2(εM(t))) is the nearest value of the third part of excess kurtosis

of the time series x(t) in agreement with the equation (3.4). Since such equation

is an ideal mathematical relation, it that does not take into account the fact that

the experimental series is �nite. Therefore, the choice of the best value of M can

be implemented by selecting the value for which the corresponding superposition

integral, produce the best �t of the probability density function of the experimental

data.

3.2.1 Ilustrative examples

In this section we show three examples that allowed us to test that the local variance

series εM(t) has a M value that can reproduce correctly the background series and its
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associated fN(εN) distribution. In addition to this examples, we present a case in which

the background series have N-scales with N > 1. Therefore, we want to realize a test via

the local variance procedure to eventually separate the internal scales. It is equivalent to

decoupled the background distribution fN into two series, where one of them presents a

single scale while the other has N − 1 scales.

3.2.2 Extracting the inverse gamma distribution

Since the marginal distribution (3.1), it can set up the PDF known as q-Gaussian, or

1F0 hypergeometric function, corresponding to the standard function form of the Meijer

G-function G1,1
1,1

P (x; βγ̄) =
1√

2πβγ̄

Γ(βγ̄ + 3/2)

Γ(βγ̄ + 1)

(
1 +

x2

2βγ̄

)−(βγ̄+3/2)

, (3.8)

integrating the Gaussian kernel (3.2), by the inverse gamma distribution with mean one

f1(ε1; βγ̄) =
β
βγ̄
γ̄

Γ(βγ̄)
ε
−βγ̄−2
1 exp

(
−βγ̄
ε1

)
(3.9)

and scale parameter βγ̄ = βiγ. Once we have been established the distributions of our

interest, we present in two steps as the extraction scale procedure was applied to them:

• Computationally, we generated 1× 106 pseudorandom numbers satisfying the PDF

(3.8) with parameter βγ̄ = 20.

• Now using the variance estimator εM , we want to determine a value of M such

that its associated distribution corresponds to the equation (3.9) (with parameter

βγ̄ = 20).

In Figure (3.1) it can be observed the results of the computational test described above
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Figure 3.1: In this �gure, we used a million of random numbers computer-generated,
whose histogram (red dots) satis�es the PDF (3.8) for the signal. From that data set
we reconstructed the background function (corresponding to the histogram of the inset),
through the εM variance estimator.

In the external part of the �gure the histogram generated by the pseudo random

number satisfying the (3.8) PDF; while the �gure's inset shows how the variance estimator

εM with M = 54 reconstructs the inverse gamma background f1(ε1; βγ̄), corresponding to

the continuous line of the inset.

3.2.3 Extracting the gamma distribution

In a manner analogous to the process shown in subsection 3.2.2, now I applied the

procedure to the superposition between the Gaussian kernel and a gamma distribution

with mean one

f1(ε1; βγ) =
β
βγ
γ

Γ(βγ)
ε
βγ−1
1 exp (−βγε1) . (3.10)

Such superposition is represented by the PDF

P (x; βγ) =

√
2

1−βγ√
βγ√

πΓ(βγ/2)

√
βγx2

(βγ−1)/2
Kβγ−1

2

(√
βγx2

)
, (3.11)

known as K−distribution (Schafer et al. (2015)), or the standard Meijer G-function G2,0
0,2.

In this example we generated one million pseudo-random numbers with (3.11) PDF, and
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scale parameter βγ = 10. The theoretical curve is the continuous black line of the external

part of �gure (3.2), while the circular markers coral colored to correspond to the histogram

of computational data series
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Figure 3.2: In this �gure, we used one million of random numbers computer-generated,
whose histogram (orange dots) satis�es the PDF (3.11) for the signal. From that data
set we reconstructed the gamma background function (corresponding to the histogram of
the inset), through the εM variance estimator.

The inset of �gure (3.2) shows a test in which we found evidences that the estimator

εM with M = 21 generates the auxiliary series such that its histogram �ts very well with

gamma distribution f1(ε; βγ = 10), in agreement with the superposition hypothesis.

3.3 Background for beta class

Another important parametric distribution family that can be used as background

series corresponds to the beta class 0 < ε < 1. In this subsection, we want to emphasize

the possibility of extracting the background series for superpositions between Gaussian

kernel and beta f1(ε1). However, it must note that due to the possible forms that can

take the beta distribution

f1(ε1; ν, µ) =
Γ(ν + µ)

Γ(ν)Γ(µ)
εν−1

1 (1− ε1)µ−1, (3.12)
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for di�erent values of the parameters (ν, µ), we restrict your domain ν, µ > 1, particularly

we worked with the values ν = 2 and µ = 5. Therefore, the PDF superposition (equation

(3.1)) for this case, produce the Meijer G-function

P (x; ν, µ) =
Γ(µ+ ν)√

2πΓ(ν)
G2,0

1,2

(
µ+ ν − 1/2
ν − 1/2, 0

∣∣∣∣x2

2

)
, (3.13)

which is plotted on semi-logarithmic scale in the continuous red line of �gure (3.3). As

has been recurrent in this chapter the black circular markers corresponds to the histogram

of the pseudo-random numbers generated computationally
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Figure 3.3: In agreement with the previous �gures presented in this chapter, a million ran-
dom numbers have been generated that satisfy the signal's PDF (3.13), which corresponds
to a superposition between Gaussian kernel and beta distribution

The goal was to determine the value M for which the εM(t) estimator presents the

closest value to the mean and variance of the beta distribution f1(ε1; ν, µ)

〈ε1〉 = ε̄1 =
ν

ν + µ
and σ2(ε1) =

µν

(ν + µ)2(ν + µ+ 1)
. (3.14)

In �gure (3.4) it is shown both in linear and logarithmic scale the theoretical curve

of the beta distribution and histogram of background series for the empirical estimator
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Figure 3.4: The blue histogram in normal scale (logarithmic scale in the inset) was ob-
tained from the computational data series used in Figure (3.3). Through the variance
estimator εM , the M value is the one for which the mean and variance are the closest to
those theoretically stipulated.

withM = 50 whose mean and variance was the closest to the theoretical values (equation

(3.14)).

It becomes clear that the empirical procedure for extracting background series some-

times is not accurate. For example, for this distribution the domain constraint must be

taken into account 0 < ε < 1. When the numerical integration between εM=50 and the

Gaussian kernel is done, the PDF (3.13) is reconstructed in such a way that the dif-

ference between the two curves seems imperceptible at �rst glance. However, it should

emphasized that the procedure has limited accuracy.

3.3.1 Separating scales into the background

This section presents brie�y the hypothesis that the procedure for extracting back-

ground series could eventually decouple their scales, in case there is more than one. In

particular, we worked with two scales of the parametric family inverse-gamma

f2(ε2; β1γ̄, β2γ̄) =
(β1γ̄β2γ̄)

−1

Γ(β1γ̄ + 1)Γ(β2γ̄ + 1)
G1,1

1,1

(
−β1γ̄ − 1,−β2γ̄ − 1

___

∣∣∣∣ ε2

β1γ̄β2γ̄

)
, (3.15)
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with parameters β1γ̄ = β2γ̄ = 7 as it is shown by the continuos red line in the external

part of �gure 3.5
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Figure 3.5: In this �gure, the possibility of extracting scales within the joint background
distribution is shown, particularly an inverse gamma distribution with two scales is plotted
together with the histogram associated with the random numbers than satisfying such
PDF. In the inset the corresponding separation is presented, i.e., it reconstructs with the
variance estimator the inverse gamma distribution.

For this test, it was computationally generated pseudo-random numbers with proba-

bility density function f2(ε2), whose histogram is represented by the circular black marker

(�g. (3.5)). Once produced the data series was used the variance estimator εM to set

the M value from which we obtained the inverse-gamma distribution with βγ̄ = 7. For

M = 130. We found a series whose histogram is represented by the blue marker of internal

�gure (3.5). This result of the controlled test gives us the future possibility to extract

subscales from the background series.
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4 Applications of H-theory

4.1 Introduction

Since the proposal of Kolmogorov's theory, it is possible to identify two approaches

for the description of turbulence, (i) Eulerian, in which structure functions corresponds

to averages of velocity increments measured at nearby locations r into the �uid, and

(ii) Lagrangian turbulence, related to changes in time (time lag τ) of the velocity

increments (δv). This framework is relevant for stationary bodies exposed to turbulent

�ow conditions (Chevillard et al. (2005)). The statistics analysis of δv from one or the

other approach can be connected through Taylor frozen turbulence hypothesis with the

correspondence U = r/τ (Chabaud et al. (1994)), where U is the mean velocity.

In this chapter we present a statistical description through the hierarchical theory of

stochastic equations applied to two complex systems: (i) turbulence in an axisymmetric

jet with helium at low temperature (Chanal et al. (2000)), and (ii) intraday returns

of the Ibovespa index with 30s (thirty-second) inter-event time. The probability density

functions exhibit signi�cant deviations from the Gaussian distribution on the experimental

resolution scale.

This chapter presents the procedure to extract the auxiliary series for the background

using the variance estimator εM , which satis�es the superposition hypothesis. Consecu-

tively, it is established with a joint �tting the number of N background scales and the β

shape parameter that characterize the PDFs, which are part of the Meijer G-function set.
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4.2 Turbulence in classical �uids

From KO62 theory we can identify two dynamical mechanisms (i) energy cascade,

understood as the transfer of energy between spatial/temporal scales, and (ii) intermi-

ttency that corresponds to �uctuations in the energy transfer rates between the scales.

This model is consistent with the hypothesis of large Reynolds numbers, where large ed-

dies that arise spontaneously decay by inertial e�ects in smaller eddies initiating a cascade

of processes that ends in energy dissipation at the lower scales. Such premises support

the existence of scales compounding, a fact that leads to the presence of heavy tails in

the PDFs of the velocity increases in the turbulent regime.

In this section, we shall characterize by the Meijer G-functions, the probability density

function of the series of 1.67 × 107 data corresponding to measurements made by B.

Chabaud and co-workers (Chabaud et al. (1994)). The experiment is performed on an

axisymmetric jet with helium at low temperature, whose Reynolds number to characterize

is Re = 295, 000. According to the authors of the experiment (Castaing et al. (1992)),

the resolution frequency of the anemometer used as a sensor is τ−1 = 271.5kHz. These

measures are framed in the inertial range, assuming that the Reynolds number is the

unique and universal parameter characterizing turbulence.

Experimental setup

After �ltering and laminarizing, He gas goes through a convergent cone,

30 half angle, ending on a nozzle 2 mm in diameter. The jet then develops

downwards in a cylindrical chamber of vertical axis, 12 cm in diameter (Fig.

4.1). A grid, 16 cm away from the nozzle, stabilizes the jet by breaking the

largest eddies before they can interact with the walls. Helium then �ows out

of the cryostat to a recuperation tank ( Chanal et al. (2000)).
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Figure 4.1: To the left is the experimental setup, consisting of (i) gas injection, (ii)
laminarization honeycomb, (iii) nozzle, (iv) detector, (v) stabilization grid, (vi) pumping
exit, and (vii) pressure measurement (Chabaud et al. (1994); Chanal et al. (2000)). In
green is presented the series for the velocity di�erences δv between neighbors 215, where
the Gaussian probability density function is recovered.

Our main objective is to determine the statistical behavior of PDFs associated with

the data spectrum of velocity increments 1 δvτ (t) = v(t + τ) − v(t), as a function of

experimental resolution time.

The PDFs of velocity increments are sensitive to the parameter τj = 2j. As evi-

dence of this, the probability density functions (δvτj) make a crossover from distributions

with heavy tails for di�erences to �rst neighbors, until reaching a Gaussian behavior for

di�erences between larger neighbors τj > 210, as shown in Fig. (4.2).

It is possible to separate the standard deviation σj associated with each time lagged

τj to characterize the tails of the PDFs. With such a procedure it is guaranteed to

eliminate the dependence on the parameter which sets the mean of background functions,

without losing the shape of the signal's tail. With this justi�cation, we have performed

the characterization of the series at di�erent time delay using the normalized quantity

δv(τj)/σ(τj), written in discrete notation as

1Alternatively, a discrete notation is inserted where the velocity data �ll a place in a vector v such
that the data v(i) corresponds to the ith position of the vector
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Figure 4.2: In this graph we are presenting the PDF of velocity increments as a function
of the separation distance δvj(i) = v(i+ 2j)− v(i) between the data. Here, the statistical
moments associated with the PDFs has not been �xed, so it is possible to observe how
the variance for each of the PDFs increases; Also the �gures show the crossover in the
tails. As the parameter j increases, the power law form in the tails is disappearing.

x(2j) =
δvj(i)

σ(δvj)
=
v(i+ 2j)− v(i)

σ(δvj)
. (4.1)

This form allows the direct implementation in the computer. On the other hand, since

signal's PDF has zero mean and is normalized by the standard deviation, it is the kurtosis

the �rst statistical indicator that characterizes the symmetrical part of the distributions

κ(δvj) = 〈(δvj)4〉 =
1

Nj

Nj∑
i=1

(δvj(i))
4, where Nj = length(δvj). (4.2)

In agreement with the description made in chapter three, the functions have positive

excess kurtosis γ2(δvj) > 0 for small j. Now with PDFs normalized by its standard

deviation is presented in the �gure (4.3) the discrete time lagged dependence noted by

the value of j that measures the distance between events greater than the experimental

resolution. Through this �gure it becomes clear that these PDFs perform a crossover to

Gaussian functions with γ2(δvj) = 0 for j = 15.
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Figure 4.3: PDF's velocity increments doing crossover from heavy tailed to Gaussian
distribution. Each curve is multiplied by a scale factor, with the purpose of obtaining a
clear image of each one of them.

From the series of the velocity increments, the theoretical model of chapter two and the

variance estimator described in chapter three, we proceed to determine the background

auxiliary series. In principle, if gives detailed description of normalized velocity increments

in the limit of the experimental resolution j = 0. Generally, this quantity is noted as

x = v(i+1)−v(i)
σ(δv0)

. The time series (or data series) x is divided into intervals of size M

called �windows." On each of these windows we calculated the mean and the variance,

understood as the subtraction between the average of the square of the elements that

make it up and the square of the local mean.

The value of the parameters M of the auxiliary series is chosen when the numerical

integral composing the εM(t)-series and the Gaussian kernel has the least residue in com-

parison with the histogram of x, applying the least squares method. Excellent agreement

is found forM = 19; see inset of Fig. (4.4(b)). The ε(M=19) corresponds to the background

PDF fN(ε) equation (2.29), where by the asymptotic form of this and, the signal's PDF

P (x) type of power law (Fig.(4.4(a))) it is assumed2 Nγ = 0 and Nγ̄ = N . Therefore,

through the joint �t procedure for background and signal the number of scales for the

power-law class is determined, as shown in �gure 4.4.

2Tests were made to know if the Gamma class also provided good �tting for P (x) using equation
(2.40) and did not obtain satisfactory results
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Figure 4.4: (Color line) (a)Experimental distribution for velocity increments (black dots)
in a turbulent jet �ow and model predictions (solid lines) for N = 1 and β = 3.26 (green),
N = 2 and β = 5.16 (blue), N = 3 and β = 7.47 (Coral), N = 7 and β = 15.5 (red); (b)
histogram (black dots) of the variance series ε(t) and model predictions as in (a). Inset
shows the superposition (red line) of ε(t) with a Gaussian and the empirical distribution
(black dots).
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Several details of the procedure should be noted. There is a correspondence of colors

between the scales N for the parts (a) and (b) of �gure (4.4). For each curve with

β parameters and N numbers of scales, it is has a good �t of the signal P (x). This

agreement happens because the Meijer G-functions perform an excellent �tting on the

right side of the histogram of the background distribution f(ε) (Fig. 4.4(b)), which

controls the tail of the signal. On the other hand, the left side of the background controls

the central part or signal body (P (x)). The signal probability density function does not

have a very large excess kurtosis (γ2(xj=0) < 2). Therefore, in this case, the body of P (x)

does not have a large deviation from the maximum of a Gaussian distribution. In general,

to avoid multiple correspondences with Meijer G-functions for the PDFs we developed a

joint �tting procedure for signal (Eq. (2.47)) and background (Eq. 2.29) that establishes

an optimal �t of the two histograms. Taking into account both Figs. 4.4(a) and 4.4(b),

we concluded that the solution with Nγ̄ = 7 and βγ̄ = 15.5 gives the best overall �t to

the turbulence data (Macêdo et al. (2017)).

Following, using this same procedure of extracting the background series and joint

�tting have been established numerically (table 4.1) and graphically (�gure (4.7)), the

values for the PDF that satisfy the superposition hypothesis for the velocity increments

to greater neighbors.
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Figure 4.5: On the left: background's histograms of large neighbors. On the right:
x(2j) signal's histograms and numerical integrals between the Gaussian kernel and its
corresponding background's histogram, distinguished by color and letter as follows,
(a) : x(21), . . . , (f) : x(26) and (g) : x(29). Finally, in green the histogram for x(210)
is compared with the Gaussian distribution (in red)

.

The �rst step has been to extract the respective background series, where the size of

the windows chosen is speci�ed in table (4.1) and, its histograms have been plotted on

the left side of the �gure (4.5). Such histograms have been numerically integrated with

the Gaussian kernel via Gauss-Laguerre quadrature to obtain the marginal distributions

in continuous black lines that appear on the right side of �gure 4.5. Once it has been

corroborated that such auxiliary series guarantee the superposition, one proceeds to de-

termine which is the parametric class that more accurately describes the background and

signal distributions jointly.

The �t has been made in accordance with the following PDF feature for velocity

increments as a function of the parameter τj. The measure of kurtosis for τ2 = 22 is

maximum, from that value the tails of the PDF P (x(τj)) begin to decrease, as described
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in �gure (4.6). Here we plotted values of the kurtosis excess relative to the central moments

and cumulants γ2

3
= k4

3µ2
2
. Therefore using the form of the tails for the signals and the

criterion of maximum kurtosis have been discriminated between the two types of universal

classes before and after that maximum.

Figure 4.6: Behavior of the kurtosis excess for the signal x(2j) as a function of the j
factor.

Before of the kurtosis maximum (τ0 and τ1), it has been determined by the shape of

the background tails, that best �ts are obtained by the power law class in the domain

[0.1,15] for the background and, [-15,15] for the signal. After the kurtosis maximum, it

has been determined that the best joint �ts of signal and background are produced by the

extended exponential class, using the same domain. Under this premise we have plotted

the Meijer G-functions for signal and background shown in �gure 4.7, where 21 ≤ τj ≤ 29.
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Figure 4.7: On the left: �tting with Meijer G-functions of background's histograms of large
neighbors. On the right: �tting with Meijer G-functions of x(2j) signal's histograms. For
both sides, the same parameters are used and a color correspondence is used as follows,
(a) : x(21), . . . , (f) : x(26) and (g) : x(29).

In summary, Table (4.1) presents the values of kurtosis, window's size M used in the

variance estimator εM and, the values of the scales number N and shape β parameter for

the two universal classes (power law γ̄, and stretched exponential γ). These functions,

represented by eqs (2.29, 2.47) were used for the �ts of �gure 4.7.

Perhaps the parameters listed in Table (4.1) are not de�nitive. Hypothetically, there

could exist an alternate scenario where the two types of universal class have a set of

parameters Nγ∨γ̄ and βγ∨γ̄ that �t the background and the signal for each PDF as a

function of τj with a certain accuracy. However, it should be noted that the εM variance

estimator opens the possibility to infer from the auxiliary series the interscale dynamics,

and that hierarchical theory provides the necessary and su�cient support to justify that

non-Gaussianity is a consequence of the interaction with those intermediate scales.
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2j κ(xj) M → εM Nγ̄, βγ̄ Nγ, βγ

20 4.3273 M = 19 Nγ̄ = 7, βγ̄ = 15.5 __

21 5.7763 M = 25 Nγ̄ = 6, βγ̄ = 9.0 __

22 5.9596 M = 40 __ Nγ = 4, βγ = 4.9

23 5.3022 M = 85 __ Nγ = 3, βγ = 4.9

24 4.7319 M = 150 __ Nγ = 3, βγ = 5.9

25 4.3412 M = 300 __ Nγ = 3, βγ = 8.0

26 4.0219 M = 500 __ Nγ = 2, βγ = 6.1

29 3.2779 M = 5000 __ Nγ = 2, βγ = 18

210 3.0463 M = __ __ __

Table 4.1: In this table are presented: (i) The kurtosis values (κ(xj)) for the normalized

velocity increments xj =
δvj

σ(δvj)
, for neighbors 2j. (ii) The M boxes size with which the

variance estimator was constructed εM . (iii) The universal classes' parameters used for
the �t

4.3 Econophysics Aplications

Stock prices for companies quoted on the di�erent stock exchanges are governed by

supply, demand, market speculation, political events, natural events, etc. Such factors

lead to the loss of the deterministic behavior of the history of its values at �xed time

intervals. The analysis of the time series associated with the prices shows that it can be

decomposed into two parts: one of trend (predictive behavior) and, a �uctuation part

around the local trend or average of the series. Since the trend term is usually particular,

the �uctuations are analyzed from the relative change between price values (S), also

known as percentage changes PC and they are de�ned as

S(t2)− S(t1)

S(t1)
, . . . ,

S(ti+1)− S(ti)

S(ti)
, . . . ,

S(tn)− S(tn−1)

S(tn−1)
, (4.3)

which are independent for t1 < · · · < ti < · · · < tn (Castaing et al. (2004)). The dynamics

of the PC series was �rst investigated by Louis Bachelier as part of his PhD thesis titled

Théorie de la Spéculation, which was a complete analysis of futures and options, based

on the ideas of random �uctuations of stock prices (Bachelier et al. (2006)). Bachelier
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considered price changes as being Gaussian distributed. However, modern approaches

consider the log-prices as being Gaussian distributed, resulting in the geometric Brownian

motion model of stock prices, developed by Fisher Black and Myron Scholes in 1973 (Black

and Scholes (1973); Carinski and Kopp (2012)). The Black-Scholes model establishes an

equation with Langevin dynamics for prices

dS(t)

S(t)
= µdt+ σdW (t) (4.4)

where µ is the drift parameter, σ is the volatility parameter (Castaing et al. (2004);

Richmond et al. (2013); Ho�mann and Schreiber (2002)) and dW (t) is the Wiener process,

assumed as constant in this model. Another way of characterizing the �uctuations is

through the logarithmic variation of the price (returns rτ ) (rτ = lnS(t) − lnS(t − τ)),

which shows remarkable similarities with the Brownian movement, such as self-similarity

and linear growth of variance. A fact that can be shown from equation (4.4) using the

variable change r(t) = log(S(t)) and the Itô lemma (Itô (1951))

dr =
dS(t)

S(t)
− dS2(t)

S2(t)
, (4.5)

where dS(t) and dS2(t) = σ2S2(t)dt, are obtained through equation (4.4) using the rules

dt2 = dt ∗ dW (t) = 0 and dW 2(t) = dt (Oksendal (2003)), so by direct substitution one

obtains

dr(t) =

(
µ− σ2

2

)
dt+ σdW (t), (4.6)

where the probability density function P (r, t), can be obtained through the Fokker-Planck

equation

∂P (r, t)

∂t
= −

(
µ− σ2

2

)
∂P (r, t)

∂r
+ σ2∂

2P (r, t)

∂r2
. (4.7)

The solution is obtained by Fourier transform, where one �nds that P (r, t) is a Gaussian

distribution with mean < r >= (µ− σ2/2)t and variance < (r− < r >)2 >= σ2t, linearly
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time dependent.

Although the hypothesis that the returns distribution is Gaussian provides the basis

for the famous Black-Scholes (BS) theory, observational data from the �nancial market on

scales of hours, minutes and even seconds have shown that associated PDFs have heavy

tails with large deviations from the Gaussian distribution. Such deviations have been

modeled by assuming that the volatility is a variable with stochastic dynamics. There

are two outstanding models (i) Heston (Heston (1993)), and (ii) Hull White (Hull and

White (1987)). In both models, the volatility (v) couples as multiplicative noise to the

stochastic di�erential equation of the BS model

dx(t) = −a(v)dt+
√
vdW1. (4.8)

The relevant random variable is de�ned as x(t) = S(t)
S(0)
− µt, while the drift coe�cient

is: a(v) = v/2 in the Itô scheme, or a(v) = 0 in the Stratonovich-scheme (Biró and

Rosenfeld (2008)). The two models assume that volatility has a stochastic dynamic (eq.

(4.9)), in which the drift terms are the same, whereas the di�usion coe�cient denoted by

b(v) is the one that discriminates each one of them

dv = −γ(v − θ)dt+ b(v)dW2, (4.9)

where b(v) = κ
√
v for the Heston model, and b(v) = κv for the Hull-White model.

It is clear that there is a correspondence between the Hull-White model and the gener-

alized hypergeometric model (GHM) of Salazar and Vasconcelos (Salazar and Vasconcelos

(2010, 2012); Salazar (2010)). In that innovative study, SV �tted the symmetrical part

of the histograms through the asymptotic power law of hypergeometric functions NF0.

These were extracted from the coupled SDE model

dxτ =
√
εNdW (4.10)
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dεi = −γi(εi − εi−1)dt+ κiεidWi i = 1, . . . , N. (4.11)

In this model, ε plays the role of volatility, and intermittency emerges from the multiscale

dynamics. In the uni�ed theory (Macêdo et al. (2017))

dεi = −γi(εi − εi−1)dt+ κiε
α
i ε

1−α
i−1 dWi, i = 1, . . . , N, (4.12)

presented in chapter two, one can incorporate both the Hull-White and the GHM models.

It is also possible to incorporate the single scale Heston model and generalizations thereof

to N arbitrary scales.

4.3.1 Intraday returns of the Ibovespa

The H-theory, in combination with the procedure for the variance estimator, has al-

lowed us to corroborate the superposition hypothesis in the PDFs corresponding to the

series of the returns of IBOVESPA with inter-event time τ = 30s. As described in pre-

viously sections, we can make a simultaneous �t of the background (Eq. (2.29)) and the

signal (Eq. (2.47)) to determine the number of scales N involved in the overlap and the

parameter β that characterizes it.

We analized quotes from the period of November 2002 to March 2004, corresponding

to a total of about 53,000 data points. The background series was optimized at windows

(or box) size M = 5, using the joint �tting, we have concluded that the best combined

�t occurs for Nγ̄ = 3 and βγ̄ = 1.2. The returns series for τ = 30s has a large kurtosis

excess γ2(τ = 30s) = 636.6578, so one might think that it is necessary to have a very high

number of background scales N to �t the signal's PDF. However, such �t can be made

for all values of N , including N = 1 which generates a q-Gaussian distribution or 1F0

with parameter β = 0.15 and, apparently there will always be a collection of parameters

β that adjust the distribution as the number of scales increases. For example, in the

characterization carried out by Salazar (Salazar (2010)), he used nine background scales,
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which corresponds to the hypergeometric 9F0 with parameters βj = 3 for j = 1, . . . , 9.

So it must be emphasized that the joint �tting establishes a robust criterion for choosing

the scales number in this returns series that is part of the group of complex multiscale

systems.
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Figure 4.8: (Color line) (a) Empirical distribution of intraday returns of the Ibovespa
index (black dots) and model predictions (solid lines) for N = 1 and β = 0.15 (green),
N = 2 and β = 0.5 (blue), N = 3 and β = 1.2 (Coral), N = 4 and β = 1.32 (red); (b)
histogram (black dots) of the variance series ε(t) and model predictions as in (a). Inset
shows the superposition (red line) of ε(t) with a Gaussian and the empirical distribution
(black dots).
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4.4 Conclusions

Describing �uctuation phenomena in multiscale complex systems is an admittedly

di�cult task because (among other reasons) one does not usually have direct access to the

interscale dynamics, and hence indirect inferences have to be made about its e�ect on the

measured quantities. For instance, non-Gaussian statistics is usually seen as an evidence

of complex interactions between scales, but a general dynamical framework to explain

such deviations from Gaussianity has not yet been established. Here we have shown,

from a rather minimal set of assumptions on the interscale stochastic dynamics, that

there exist two general classes of heavy-tailed distributions for the statistics of multiscale

�uctuations. The distributions in both classes are given in terms of the same family of

special functions (Meijer G-function) but di�er regarding the nature of the tail: power

law and modi�ed stretched exponential, respectively. Good agreement was found with

experimental data on classical �uid turbulence as well as �nancial data-both sets of data

analyzed here were shown to belong to the power-law class. Finally, the assumption of

well separated time scales, albeit necessary for obtaining the analytical solutions presented

here, is not essential for the validity of our dynamical model. If the relevant time scales

are expected (say, from general grounds) to be of the same order, one could in principle

solve numerically (Huy (2010)) the relevant system of stochastic di�erential equation to

obtain the stationary distribution of the model.

Further development of the theory presented here and additional applications, in-

cluding of the stretched-exponential class, will be discussed in forthcoming publications.

Here we shall only note, as a concluding remark, that the distribution of intensity �uc-

tuations in a random �ber laser can be described as a statistical mixture of Meijer G

distributions with stretched exponential tails (Roa-González et al. (2017)).
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5 Random lasers RL

5.1 Brief introduction

Scattering of light is a common phenomenon that occurs when the light is forced to

change the propagation direction due to heterogeneity in a medium. In many applications

scattering is treated as a detrimental (unwanted) e�ect. However, recent developments in

the �eld of nanophotonics have shown that scattering in disordered media may have new

functionalities, including an unexpected property of random lasers (Gu et al. (2015); Cao

(2013); Wiersma (2008)).

A conventional laser (�gure (5.1.a) ) needs two essential elements: a material that

generates gain through stimulated emission and an optical cavity that partially traps light.

When the gain is greater than the losses, the system reaches the threshold, and there is

laser radiation. The cavity then determines the modes, frequency, and directionality.

On the other hand, random lasers (�gure (5.1.b) ) di�er from a conventional laser in the

fact that the ampli�cation of the feedback is not provided by a cavity formed by mirrors

but by a scattering medium. Depending on the nature of the scattering medium (it may

range from nanometers to several hundred nanometers), the disorder-induced dispersion

can provide feedback on the intensity or feedback in the amplitude (Wiersma (2008)).

Based on the feedback mechanisms, random lasers are classi�ed into two categories: (i)

random laser with incoherent and non-resonant feedback; (ii) random laser with coherent

and resonant feedback (Cao (2013)). Over the years experiments have been performed

with random lasers in di�erent materials including semiconductors, organic �lms, liquid

crystal, colloidal suspensions diluted in colorants, rare earth elements, biological tissues,

quantum dots, among others. All these systems share the lack of directionality of the
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emission due to having two-dimensional or three- dimensional geometry. The lack of

directionality is due to random scattering and is also limited by the depth at which the

pumping light penetrates the gain medium. Both, directionality and increased e�ciency

can be achieved if the scattering medium is placed inside a waveguide that transversely

con�nes the light (de Matos et al. (2007); Burin et al. (2002)). In 2005, Shapira et al.

(Shapira and Fischer (2005)) experimentally demonstrated that a set of identical but

randomly spaced Bragg gratings could increase light localization and suggests that it

could be used to obtain random lasers. More recently, Lizárraga et al. (Lizárraga et al.

(2009)) used this scheme in an Er-doped �ber and e�ectively demonstrated random �ber

lasers (RFLs).

Figure 5.1: (a) A simpli�ed scheme of the cavity used in a conventional laser. (b) Random
laser cavity illustrating the incoherent feedback (red arrows) and coherent feedback (green
arrows); (c) illustration of spectral outputs of a conventional laser and a random laser,
where the spikes free correspond to incoherent feedback, whereas the coherent feedback
is recognized by its spiky signature.
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At present the statistical description of the output intensity spectrum for experiments

with RL and RFL are modeled as a Gaussian distribution below the laser emission thresh-

old. On the other hand, in the vicinity of the threshold, the distribution has heavy tails,

which are modeled through a Lévy distribution with exponential truncation. Above the

threshold, it is believed that the distribution of intensities recovers the conditions estab-

lished by the central limit theorem (Lima et al. (2017); Uppu et al. (2012)). This behavior

can be qualitatively justi�ed by a recent analysis presented in (Raposo and Gomes (2015)),

where the solution Lévy-type was obtained by a model with Langevin dynamics for the

modes of the electromagnetic �eld. The model includes linear terms associated with the

gain medium and radiation loss, plus nonlinear terms associated with the third-order

susceptibility χ(3).

Beyond this theoretical model, other researchers have shown that in the spectrum of

output intensities using RFL (Gorbunov et al. (2015)), its PDFs are susceptible to varia-

tions of the control parameters, such as the pump power and the oscilloscope bandwidth.

The susceptibility of intensity PDFs to measurement resolution is a good indicator of

the possible existence of smaller scales that alter the shape of the signal (known as an

intermittency e�ect).

Another relevant fact that led us to analyse an experiment with a large number of

output intensities I(t) > 1 × 105, is based on the fact that most reports with RL and

RFL have been performed with an insu�cient number of data, which makes it di�cult to

characterize intensities' PDFs through its tails (Lima et al. (2017); Uppu and Mujumdar

(2014, 2013); Merrill et al. (2016)). However, the use of Lévy α− stable distributions,

with characteristic function

P (k) = exp {−|ck|α[1− iβsgn(k)Φ] + ikν} , (5.1)

and asymptotic expansion P (I) ∼ I−1−α, seems to be the accepted model, in spite of the

inaccuracies that it brings the use few data points. In this statistical approach it is neces-
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sary to incorporate an additional constraint (P (I) = 0 for I > Imax) that limits to �nite

values the second moment of the Lévy α−stable distributions. This restriction is very

important because the second-order moment gives information about the average energy

density contained in the spectral series giving rise to functions of Lévy with exponential

truncation P (I) ∼ I−1−α exp(−ηI). The analysis of the time series of intensities is done

by setting the parameters (shape: α ∈ 0, 2, skewness: β ∈ [−1, 1], location ν ∈ (−∞,∞),

scale: c ∈ (0,∞), Φ = tan(πα/2) for α 6= 1, or Φ = −(2/k) ln |k| for α = 1 ) through its

characteristic function (5.1). With this background, we wanted to know if the PDFs with

heavy tails reported in Lima et al. (2017), in the vicinity of the laser emission threshold,

could be modeled through the H-theory.

In colaboration with the photonic and biophotonic laboratory of DF-UPFE, we decided

to carry out an experiment with the continuous-wave-pumped random �ber laser. In this

system, the optical �ber used was doped with erbium, and �ber Bragg gratings scatterers

were recorded which are randomly distributed in its length. We obtained output intensities

in su�cient number to perform an optimal statistical characterization of the time series.

In other words, we wanted to know if the time series formed by the maxima of the out-

put intensity, had features similar to other complex systems (as was presented in chapter

four) that can be modeled under the assumptions of the H-theory. In particular, transfer

of energy between di�erent space/time scales and �uctuations in the energy transfer rates

between contiguous scales. So in the present chapter we describe the results obtained

with the experiment (Roa-González et al. (2017)).

5.2 Experimental setup

The experimental setup made by B. Lima and P.I.R. Pincheira, was described in

references (Lima et al. (2017); Gomes et al. (2016)) and (Roa-González et al. (2017)). For

completeness we present such con�guration in the �gure 5.2
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Figure 5.2: The experimental scheme used to obtain the spectrum of intensities. The
�gure was taken from the reference (Lima et al. (2017)) with the author's authorization.
The elements used are detailed in table 5.1

(1) Diode laser 1480nm CW

(2) Connector between pumping and �ber Bragg gratings

(3) Bragg gratings with random phase shifts written on a �ber doped with erbium

(4) Wavelength-Division Multiplexing (WDM) 1480− 1550

(5) Power meter to measure the output power Pout at 1480 nm

(6) RFL emission out to spectrometer

(7) Spectrometer

(8) Liquid-N2 cooled InGaAs CCD camera

Table 5.1: Laboratory elements used for experimental setup

Er-based random �ber laser. The Er-RFL fabrication, including the �ber Bragg

grating inscription, is detailed in (Gagné and Kashyap (2009)). It employs a polariza-

tion maintaining erbium-doped �ber from CorActive (peak absorption 28dB/m@1530 nm,

NA = 0.25, mode �eld diameter 5.7µm), in which a randomly distributed phase error

grating was written. Using this procedure, a very high number of scatterers (� 103) was

implemented, improving the �ber randomness. A �ber length of 30 cm was used in the

present work. The measured threshold from the FWHM analysis was Pth = (16.30± 0.05)

mW. The Er RFL linewidth was limited by our instrumental resolution to 0.1 nm. We
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remark that the number of longitudinal modes in the Er-RFL, measured using a speckle

contrast technique, is ∼ 204 (Gomes et al. (2016)). This �nding corroborates the multi-

mode character of the Er-RFL system. (Lima et al. (2017); Roa-González et al. (2017))

Intensity measurements. For the intensity �uctuations measurements, an exten-

sive sequence of 150,000 output spectra was collected for each excitation power in the

regimes below, near, and above threshold. The Er-RFL output was directed to a 0.1 nm

resolution spectrometer with a liquid-N2 CCD camera sensitive at 1540 nm. The spectra

for each power were acquired with integration time 100 ms. We stress that the intensity

�uctuations of the pump source, less than 5%, were not correlated with the RFL �uctua-

tions analyzed here, as pointed out in (Gorbunov et al. (2015); Antenucci et al. (2015))

and also speci�cally in the present experimental setup1 (Lima et al. (2017); Roa-González

et al. (2017)).

Now that some experimental details are known, in the following section we shall des-

cribe the characterization made of the spectrum of maximum output intensities via the

power spectral density (or simply, the power spectrum), for the three regimes: below, near

and above the threshold. Subsequently, we report the reasons why the characterization

was made for the increments of intensity �uctuations with zero mean and normalized by

its standard deviation. Also, we show the �ts for the probability density functions in

the three regimes, which has been performed in terms of a statistical mixture of Meijer

G-functions for the regimes near and above the threshold, whereas below the threshold

the PDF is Gaussian.

5.3 Power spectum

In general, it is possible to classify the time series associated with �uctuation pheno-

mena through its power spectrum (PS), in the case of stationary series it can be ob-

tained via Fourier transform of the correlation function using the Wiener-Khinchin the-

1The experiment described here is based and in many parts is similar to the published in the reference
(Roa-González et al. (2017)).
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orem (Risken and Franck (1996); Badii and Politi (1997)). There are di�erent types of

correlation C(t) associated to complex systems, starting from uncorrelated process (or

δ−correlated) where C(t) = 0, which corresponds to statistically independent events,

going through systems where their correlations show exponential decay, even processes

where the decay of the correlation function is a power law, in which long-range mem-

ory manifests (Schroeder (1991); Weissman (1988)). If the conditions established by the

Wiener-Khinchin theorem are satis�ed, each type of correlation can be directly associated

to a type of power spectrum. For example, for uncorrelated processes its PS is inde-

pendent of the frequency. In contrast, if we have an exponential correlation due to an

Ornstein-Uhlenbeck process, the power spectrum is associated with Lorentzian spectrum

(Keizer (1987)). For systems with PS that can be interpreted as a superposition of in-

�nitely many signals with low-frequency Lorentzian spectrum (Badii and Politi (1997);

Weissman (1988)), colored noise2 is generated with a dependence 1/fα directly associa-

ted to series with correlation C(t) ∼ tα−1. There is a particular case where the power

spectrum has exponent α = 0 and is called white noise. If the white noise is integrated

over time one obtains (brown)ian noise 1/f 2 associated to integrable systems, while sys-

tems with chaotic dynamics have associated PS of the type 1/f called pink noise (see

chapter six). Another important type is the black noise, which is associated with natural

catastrophes such as earthquakes and corresponds to spectral exponents α > 2 (Schroeder

(1991); Cambel (1993)). Spectral exponents greater than two have also been reported in

two-dimensional turbulence, where its PS is characterized by having two di�erent types of

exponent (or slope seen from the log-log scale) associated with double-cascade processes,

and as shown below the power spectrum of the output intensities in the random �ber

laser system in two of its regimes has double spectral exponent.

2The spectral power-law index α for the power spectrum has no relation to the shape parameter of
the Lévy distribution.
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Figure 5.3: Time series for the output intensities, (a) below P/Pth = 0.72, (b) near
P/Pth = 0.99, and (c) above P/Pth = 2.92 of lasing threshold.

Since the time series for the output intensities have a non-linear trend, as seen in

the �gure 5.3, we could not make a direct correspondence between correlations and PS,

therefore only the spectral density for the three regimes, (i) below P/Pth = 0.72, (ii) near

P/Pth = 0.99, and (iii) above P/Pth = 2.92 of threshold lasing3 have been characterized.

Each time series (�gure 5.3) were divided into windows (or boxes) of 256 elements,

and 550 windows were taken without overlapping any element of the original series. Then

using discrete Fourier transform

S(k) =

∣∣∣∣∣
L∑
n=1

In exp

(
−2πi(n− 1)(k − 1)

L

)∣∣∣∣∣
2

, where k =
L

2π
f, (5.2)

the power spectrum was obtained for each of the 550 windows of size L = 256. These

values were averaged, and, from this result, the logarithm for both the abscissa and

ordinates was taken, which is plotted in the �gure 5.4. Here k denotes the independent

variable in the Fourier space, related to the frequency through equation (5.2).

3Where Pth denotes power threshold
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Figure 5.4: Power spectrum and turbulence in the intensity dynamics in Er-RFL. Log-log
plots of the spectral density S(k) ∼ k−α of the time series of output intensities, in the
regimes (a) below (P/Pth = 0.72), (b) near (P/Pth = 0.99), and (c) above (P/Pth = 2.92)
threshold. Solid lines are power-law �ts to the experimental data. The white noise (α = 0)
observed in (a) is consistent with statistically-independent non-turbulent Gaussian inten-
sity �uctuations below threshold. The non-trivial double power-law behavior, indicated
by red and green lines in (b) and (c), suggests the existence of turbulence in the Er-RFL
dynamics both near and above the threshold.

The result for low frequencies shows that the �rst series (Fig.5.4.a, P/Pth = 0.72 )

corresponds to white noise, while near P/Pth = 0.99 and above P/Pth = 2.92 of the laser

emission threshold, there is spectral density S(k) ∼ k−α with two exponent types, or slopes

in log-log scale well-de�ned. This result may be related as an analog in the Kraichnan

Leith Batchelor (KLB) theory (Burgess et al. (2015); Farazmand et al. (2011)), which

predicts that for two-dimensional isotropic turbulence there are two inertial ranges, so

due to the presence of an external force that injects energy into the system, two processes

are simultaneously formed, the �rst called inverse cascade of energy, where the spectrum

scaling as E(k) ∼ k−5/3, while in the second known as forward cascade of enstrophy

inertial range, energy spectrum scaling as E(k) ∼ k−3. This analogy for the moment is a

possibility since the results thrown by this experiment are surprising and are beyond the
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approaches that the literature contemplates; so they are an open topic for research.

5.4 Mixture of multiscale distributions

In chapter two, we established the universal classes as stationary solutions of the

stochastic dynamic model, which have been denominated (i) power law, and (ii) stretched

exponential class. Now, we use one of them to characterize the PDF of 1.5× 105 output

intensities for the three regimes described in previous paragraphs. However, each spectrum

presents �uctuations around a nonuniform mean (see �gure 5.3). Also, the �uctuations'

amplitude is so large than the variance associated to each of the three series would take

great values. Therefore, we decided to remove the output intensities trend using the

simplest possible way, using the relative increases between measures, as was done for

the velocity increments series of chapter four. We shall consider a standardized central

measure de�ned as

x(t) ≡ δI(t)/
√
var(δI(t)), (5.3)

where δI(t) = I(t + τ) − I(t) represents the intensity �uctuations, and var denotes the

variance of δI(t) series. Thus, the series x(t) in the insets of Figures (5.5), (5.6.a), and

(5.7.a) guarantee a statistical description that only incorporates its �uctuating part.

Once the signal (x(t)) was established, its probability density function was obtained,

and an attempt was made to make the direct �t with the classes of parametric families.

As each of the regimes presented technical di�culties of di�erent levels, these are reported

separately.

The signal x(t) before the threshold (�gure 5.5) was the simplest to �t since its PDF

corresponds to a Gaussian distribution, in agreement with previous descriptions made

directly on the intensities series (Lima et al. (2017); Gomes et al. (2016)). So by the

PDF (P (x)) and its spectral coe�cient α = 0, it is concluded that the series x(t) below

the threshold is composed of statistically independent events; i.e., in this regime, the
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intensities �uctuations are in the integral scale.
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Figure 5.5: Gaussian distribution of intensity increments in Er-RFL and non-turbulent
behavior below threshold. Semi-log plot of the distribution of experimental intensity
increments x in the non-turbulent prelasing regime at P/Pth = 0.72 (dots) and best
Gaussian �t (solid red line). Insets show the corresponding time series and the same plot
in linear scale.

5.4.1 P (x) near the threshold

The next step was to describe the signal x(t) near the laser emission threshold P/Pth =

0.99, so after getting its histogram (�gure (5.6.a)), immediately two things were perceived:

(i) the signal is a distribution with heavy tails, visually linear on the semi-logarithmic

scale, (ii) in the vicinity of |x(t)| ∼ 4 the distribution presents a drastic change in its

curvature forming a quasi-gaussian body i.e., a smooth curve that has the appearance

of an inverted parabola in the semilog scale. This PDF presents a form that di�ers

substantially from other distributions with heavy tails. So it was a priority to determine

if this PDF could be described by the universal classes of the H-Theory by searching

possible N scales and β parameters for the two families γ and γ̄ that could eventually

allow the �t. It was perceived that for large N ≥ 10 the joint �t of the tail and the body

of the distribution P (x) improved. However, the theoretical curves showed a signi�cant
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deviation from the histogram of the experimental series in the vicinity of x = 0. To

contribute to the solution, the background auxiliary series was extracted via the variance

estimator εM with M = 15, whose histogram is plotted on the log-log scale in the part

(b) of the �gure 5.6. After numerically integrating this series (through the procedure

described in chapter three) with the Gaussian kernel and, one obtaines the red curve of

the inset of �g. (5.6.b), which �t with high performance the x(t) histogram near of the

threshold. So now it was clear that we should have a re�ned background �t to obtain a

clear signal �t. Returning to work with the parameters previously found for the signal

with N ≥ 10 scales, now applied to the background, it became apparent that �ts were

de�cient, so it was necessary to �nd an alternative solution.

From the visual features of the time series, it is always possible to get valuable infor-

mation, so the signal x(t) in the inset of the �gure (5.6.a) suggested the existence of two

simultaneous mechanisms that generated the spectrum. The most active of them gene-

rates with small amplitudes (|x(t)| ≤ 4) the greater data amount, while the other type

of mechanism generates in smaller proportion great �uctuations. With this in mind, the

�rst proposal was to realize a �lter at |x(t)| ≤ 4 that discriminates small (|x(t)| ≤ 4) and

large (|x(t)| > 4) events, in order to make an independent �t of the two truncated series.

The idea was to �nd two Meijer G-functions Gm1,n1
p1,q1

(x) for (|x(t)| ≤ 4) and Gm2,n2
p2,q2

(x) for

(|x(t)| > 4), and try to establish continuity conditions Gm1,n1
p1,q1

(x)|x=4 = Gm2,n2
p2,q2

(x)|x=4 and

∂xG
m1,n1
p1,q1

(x)|x=4 = ∂xG
m2,n2
p2,q2

(x)|x=4. However, such separation was inadequate, mainly

because there is not indication that a mechanism could produce only small or large inten-

sities. Then, we looked for distributions that did not have a truncated domain, although

the idea of the statistical mixture persisted.
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Figure 5.6: Statistical mixture of intensity increments in Er-RFL and turbulent behavior
near the threshold. (a) Semi-log plot of the distribution of experimental intensity incre-
ments x at P/Pth = 0.99 (dots) and model prediction for the statistical mixture (solid
red line). The mixture's K-distribution individual components are shown in dashed green
lines. Inset shows the corresponding time series. A single time scale (N = 1), besides the
largest macroscopic one, characterizes the turbulent behavior of the intensity �uctuations
dynamics in Er-RFL near the threshold. (b) Log-log histogram of the variance series
ε(t) (dots) and model prediction for the statistical mixture (solid red line), with same
parameters as in (a). The mixture's individual components are shown in dashed green
lines. Inset displays the compounding of ε(t) with a Gaussian (solid red line) and the
experimental distribution (black dots).



121

An alternative was to make a �lter for background distribution ε (see �gure 5.6.b),

with a cuto� in ε = 1, for which we discarded the data between 1 < ε < 3, corresponding

to the transition region between the two types of curvature. With these two series we

performed independent �ts for small (ε ≤ 1) and large (ε ≥ 3) events. Using least squares

we obtained for the two cases an excellent correspondence with gamma distributions

f(ε) =
ββ

εβ0γ(β)
ε(β−1) exp

(
−βε
ε0

)
, (5.4)

with parameters β = 4.21, ε0 = 0.36, and β′ = 1.2, ε′0 = 12.0. To corroborate this

possibility we performed a test in which we generated computationally random numbers

that satisfy (5.4) with the parameters stipulated above in a proportion similar to the

original series. The goal was to add two series with a total of 1 × 106 data, so was tried

with a percentage of 85% to fN=1(ε|β, ε0), and 15% to fN=1(ε|β′, ε′0). Comparing the

histogram of the statistical mixture with that of �gure (5.6.b), it became apparent that

they were close but not the same, so we attempted various weights p and (1 − p), to

obtain two almost indistinguishable histograms using p = 0.94 of data associated with

fN=1(ε|β, ε0) and the remaining (1 − p = 0.06) associate to fN=1(ε|β′, ε′0). After this we

compared the auxiliary series histogram directly with the analytic function

f1(ε1) = pf1(β, ε0; ε1) + (1− p)f1(β′, ε′0; ε1). (5.5)

This led to the red curve that �ts the background of �gure (5.6.b), while the green curves

correspond to the components of the right-hand side of equation (5.5). Then, from H-

theory, one deduces that the signal must correspond to the superposition integral

P1(x) =
1√
2π

∫ ∞
0

exp

(
− x2

2ε1

)
ε
−1/2
1 f1(ε1)dε1, (5.6)

which produces a mixture of K-distributions of the type

P1(x) = pP1(β, ε0;x) + (1− p)P1(β′, ε′0;x), (5.7)
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with the same parameters used for the background (eq.(5.5)). This description rea�rms

the validity of the model in the sense that nonlinearity and disorder in complex systems are

manifested as universal features in the PDFs associated with its spectra. Simultaneously,

it opens the possibility to several fundamental questions. For instance: what are the

types of mechanisms that generate the statistical mixture in this system? For now, we

speculated that the internal structure of the spectrum causing the statistical mixture is

due to the spontaneous and stimulated emission composition that generates a correlated

spectrum of output intensities.

5.4.2 P (x) above the threshold

Finally, we shall make the statistical analysis the series x(t) above the laser emission

threshold (P/Pth = 2.92). To characterize the signal's PDF we have used the usual

scheme. First, via the variance estimator we determined the background series, in this

case, the window size that generated the best performance was M = 22, as shown in the

inset of �gure (5.7.b.)

At this point, it should be noted an important subtlety. Since the signal histogram

(�gure (5.7.a)) apparently �ts well a K-distribution with parameter β ∼ 1, there are

two details that such description does not take into account: (i) the numerical integral

with the background series in the vicinity of origin is a smooth curve, whereas the K-

distribution generates a peak, (ii) using a K-distribution to �t the signal immediately

assigns a Gamma distribution to the background, and that is the main �aw, since the

background's histogram (�gure 5.7.b.) does not �t this type of distribution. This is

because about ε ∼ 10−1 the histogram's bins change their increasing tendency towards

a soft decreasing behavior, then around ε ∼ 2 the histogram changes its curvature again

to go quickly towards zero4. In contrast, as have been shown in the second chapter, a

gamma function or multiple coupled scales of them (see �gure 2.4) only has one change

in their curvature. Therefore, we intuitively knew that there was the possibility of having

4the previous description have been seen from the log-log scale
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a background distribution resulting from the statistical mixture.

To consistently determine the assumption of a statistical mixture, it was necessary to

do several tests, in which it was established that with N = 6, and a provisional combi-

nation of parameters was obtained an excellent joint �t for background and signal. Re-

membering that the number of scales in the background corresponds to the superposition

integral

fN(εN) =

∫
dεN−1 . . .

∫
dε1f(εN |εN−1) . . . f(ε1|ε0), (5.8)

where f(εi|εi−1) is the conditioned Gamma distribution, so that when performing the

integral (5.8 ) the joint distribution is obtained

fN(εN) =
ω

ε0Γ(β)
GN,0

0,N

(
__
β − 1

∣∣∣∣ωεNε0

)
, (5.9)

in which ω =
∏N

j=1 βj, and it has been introduced above the vector notation β ≡

(β1, . . . , βN) and Γ(a) ≡
∏N

j=1 Γ(aj).

The compounding integral for the signal distribution can be written as

PN(x) =
1√
2π

∫ ∞
0

exp

(
− x2

2εN

)
ε
−1/2
N fN(εN)dε1, (5.10)

where fN(εN) is given by (5.9). The integral (5.10) can also be evaluated using Mellin

transforms, yielding

PN(x) =
ω1/2

√
2πε0Γ(β)

GN+1,0
0,N+1

(
__

β − 1/2, 0

∣∣∣∣ωx2

2ε0

)
. (5.11)

Therefore, using equations (5.9) and (5.11) with N = 6 I have determined the best

parameters β, ε0 and β′, ε′0, besides the p weight value, via the statistical mixture of

background distributions

f6(ε6) = pf6(β, ε0; ε6) + (1− p)f6(β′, ε′0; ε6), (5.12)

and signal, of the stretched exponential class
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Figure 5.7: Statistical mixture of intensity increments in Er-RFL and multiscale turbulent
cascade behavior above threshold. Description as in Fig. 5.6, but for the regime well
above threshold, at P/Pth = 2.92. The expected raise in the number of relevant time
scales upon increasing the excitation power, expressed in the statistical mixture of Meijer
G-distributions with N = 6, is consistent with the multiscale turbulent cascade behavior
of the intensity �uctuations dynamics in Er-RFL above threshold.



125

P6(x) = pP6(β, ε0;x) + (1− p)P6(β′, ε′0;x). (5.13)

The obtained values were p = 0.3, β = 8.3, ε0 = 0.19, β′ = 6.5 and ε′0 = 1.3. The

statistical mixture was plotted as a red line in �gure (5.7), while its components have been

graphed in green. This statistical mixture allowed �ne-tuning all regions (understood as

near and far from the origin of the coordinate system) of the signal and background

histograms.

5.5 Conclusions

In conclusion, we reported on the �rst observation of statistical signatures of turbulent

emission in a cw-pumped one-dimensional RFL, with customized random Bragg grating

scatterers. The distribution of intensity increments exhibits three qualitatively di�erent

forms as the excitation power is increased: it is Gaussian below threshold, it behaves as

a statistical mixture of K-distributions near the threshold, and it is well described by

a mixture of Meijer G-distributions with stretched exponential tails above threshold. A

recently introduced hierarchical stochastic model, consistent with Kolmogorov's theory of

turbulence, was used to interpret the experimental data (Roa-González et al. (2017)).
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6 Ballistic cavities I

We studied the eigenvalue spectra of �at and curved ballistic cavities with mixed

dynamics, where regular and chaotic behaviors coexist. The cavities considered have a

shape control parameter driving a crossover from integrable to fully chaotic regimes. The

cavities' eigenvalue spectra were obtained numerically using discrete exterior calculus.

This technique allows a topology consistent implementation of the Laplace operator on a

triangular mesh approximation of the system's surface. We propose a characterization of

the eigenvalue spectrum based on three statistical parameters: (i) the Kullback Leibler

distance δLK between the nearest neighbor spacing distribution of the spectrum and the

universal Wigner-Dyson distribution, (ii) the burstiness parameter B, and (iii) the spectral

exponent α in the tail of the power spectrum density s(f) ∼ 1/fα. Results for �at billiards

are consistent with previous works of the recent literature (Gómez et al. (2005)). For

curved billiards, we found that by varying its curvature it is possible to induce a crossover

from the integrable to the chaotic regimes. All results are shown in a δLK Vs α,

and B Vs α, diagrams in an attempt to determine whether the crossover regimes are

themselves new universality classes.

6.1 Introduction

Eigenvalues and eigenvectors of quantum billiards have been studied both experimen-

tally using �at superconducting microwave resonators (Dietz and Richter (2015); Richter

(1999); Graf et al. (1992)), and theoretically through various types of computational

implementations and also analytically via solutions of integrable systems or via time in-

dependent perturbation theory within the limits established by Kolmogorov Arnold Moser



127

(KAM) theory (Li et al. (1998); Barnett and Betcke (2007); Heinz and Schreiber. (2002);

Farantos (2014)). Most of these procedures aims at a statistical characterization of the

cavities' eigenvalues and eigenvectors. From these studies it has been established that the

statistical properties depend crucially on the shape of the cavity. For instance, the nearest

neighbor spacing distributions (NNSD) of the eigenvalue spectra satis�es an exponential

Poisson law for integrable systems, such as cavities with the shape of a circular disk, and

a Wigner-Dyson (WD) type distribution for chaotic systems, such as a cavities bounded

by a cardioid. Another example of a robust statistical signature of the cavities underlying

dynamics is the power spectrum of the �uctuating part of the level spacing sequence, in-

terpreted as a �time series". Integrable systems exhibit 1/f 2 noise in the power spectrum,

whereas chaotic systems are characterized by 1/f noise (Rangarajan and Ding (2000);

Faleiro et al. (2004)). The robustness of these statistical signatures led to an essentially

complete classi�cation of chaotic and integrable systems based on the presence or absence

of certain discrete symmetries, such as time-reversal and spin rotation.

Systems with mixed dynamics are however much more common and less understood.

Their spectra have been studied, for instance, by varying the shape of billiards such that

a smooth crossover between integrable and fully chaotic behaviours takes place by means

of a simple control parameter. It has been found that the NNSD makes a transition from

a Poisson to a Wigner Dyson distribution and that the corresponding power spectrum

shows 1/fα noise, with 1 ≤ α ≤ 2 (Gómez et al. (2005)).

We want to establish a quantitative relation between the control parameter, which

guides the transition from regular to chaotic, with the value of α spectral co�cient, and

in turn determine a measure of the Kullback Leibler divergence of the NNSD associated

with each value of the control parameter with respect to the Wigner Dyson distribution.

The motivation for this characterization comes from the idea of trying to establish the

existence of intermediate universality classes, for which there may not be enough to �nd

the two measures described above. However, they are the ones that have shown more
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susceptibility to change the value of the control parameter.

To ful�ll this purpose, we have computationally generated three geometries with mixed

dynamics. The �rst corresponds to Limaçon or Robnik-billiard described by the area un-

der the curve of the conformal map w = z + λz2 (Prosen and Robnik. (1993); Prosen

and Robnik (1994)), in which the control parameter λ ranges from λ = 0 the integrable-

regular basis to chaotic regimen for 0.4 ≤ λ ≤ 0.5. The second billiard corresponds to

the mushroom billiard with triangular stem (Dietz et al. (2007); Abul-Magd et al. (2008))

(�gure (6.2)), where the control parameter is the ratio r/R, being r the length of the stem,

whereas R corresponds to the billiard radius, for this kind of geometry, the characteriza-

tion has been done for the ratios r/R =
(

1
8
, 1

6
, 1

5
, 1

4
, 3

10
, 1

3
, 2

3
, 7

10

)
. Finally, we have worked

with a circular billiard on which there has been applied a strain function A cos2(θ(x))

generating the curved billiard of �gure (6.11). In this case, the strain amplitude A is the

control parameter.

Each billiard has been modeled through the stationary Schrödinger equation for a

free particle, with Dirichlet boundary conditions. To construct the associated Laplacian

and subsequent collection of eigenvalue energy spectrum, we have chosen discrete exterior

calculus (Crane (2005); Desbrun et al. (2005)). This is a powerful and versatile compu-

tational method based on the idea of discrete operators of di�erential forms. We also

used the Betti numbers of graph theory and its connectivity with simplicial De Rham

complex (Frankel (1997)), which will be described in a practical and detailed form in the

next section of this chapter. DEC is already used in graphical simulations (de Goes et al.

(2015); Mohameda et al. (2016)) and animation (de Goes et al. (2016)) with great success.

Applied to ballistic cavities DEC will provide the opportunity to study not only �at bil-

liards but also allow the inclusion of other geometric properties, such as curvature. This

has been implemented in the third type of billiard with mixed dynamics, as a result of the

direct connection between the mean curvature and Laplace-Beltrami operator (Desbrun

et al. (1999); Botsch et al. (2010); Lévy (2006)). DEC also o�ers the possibility of build-
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ing other di�erential operators, such as the Dirac-Kahler operator (Eftimiades (2014)), or

multi-harmonic operators (Panozzo and Jacobson (2014)). They will be further developed

in future works.

There are some algorithms in the literature that use DEC (Bell and Hirani (2012);

Eftimiades (2014); Panozzo and Jacobson (2014)). However, we have chosen to work based

on two Matlab toolboxes Distmesh, (Persson and Strang (2004)) for generating geometries

with mesh, and Toolbox-Graph (Peyré (2013)) to implement di�erential discrete forms

operators. The combination of these toolboxes, together with independent work, involving

the explicit construction of geometries and curvature, added to the implementation and

veri�cation of boundary conditions. Computational comparisons for �at billiards with

normalized graph-theory and cotangent Laplace-Beltrami for the eigenvalues spectrum

have been made (Peyré (2008)).

The eigenvalues were represented as a time series to which a local unfolding method

is applied to obtain the NNSD distribution (Brody et al. (1981)). From this unfolding

spectrum have been generated the δn-statistic (Gómez et al. (2005)). After that, using the

iterative method of signal analysis known as Empirical Mode Decomposition the trend

of δn-series have been removed (Huang et al. (1998); Morales et al. (2011)). On the

new detrended series δ′n, we applied the Fourier transform to obtain the mean power

spectrum < S(f) >∼ 1/fα (Gómez et al. (2005)), whose exponent is used as a measure

to characterize each billiard.

6.2 Discrete exterior calculus DEC

A di�erential form or p-form corresponds to a covariant skew- symmetric tensor of

rank p in the language introduced by Grassmann algebra (Frankel (1997)). The vector

space of covariant pth rank tensor will be denoted by E∗⊗E∗⊗ ...⊗E∗ = ⊗pE∗. Then if D

is the total dimension of space, it is possible to de�ne several operations over forms. For

example: wedge product (∧), exterior di�erentiation (d), Hodge star (?), codi�erential

(δ), sharp (#) and �at ([) operator, those actions over the p−forms will be presented in
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Table 6.1.

∧ [(p)− form] ∧ [(q)− form]→ (p+ q)− form; (p+ q) ≤ D

d d : [(p)− form]→ (p+ 1)− form
? ? : [(p)− form]→ (D − p)− form

δ := d? δ : [(p)− form]→ (p− 1)− form
#, [ #, [ : [(1)− form] 
 vector

Table 6.1: Applications of operators over p−forms in exterior calculus, where, ∧ is the
wedge or exterior product, d is the exterior di�erential, ? is the Hodge star operator,
δ is the codi�erential, # Sharp operator, [ �at operator (For more details see reference
(Frankel (1997))). D corresponds to the space dimension

In the continuous di�erential forms, the Laplace operator in D-dimensions is 4f =

(d+d?)2f , where g corresponds to space's metric. Now applied over a 0-form, this operator

is reduced to equations (6.1-6.4) (Ivancevic (2011)).

4gf = ?d ? df = ?d ? (∂ifdu
i) (6.1)

= ?d(
√
| det g|∂ifdD−1ui) (6.2)

= ?[∂i(
√
| det g|)(∂if)dDu] (6.3)

=
1√
| det g|

∂i(
√
| det g|∂if), (6.4)

where ∂i = gij∂j. This procedure reproduces the usual form of Laplace operator given by

equation (6.5)

4g = − 1√
| det g|

n∑
i,j=1

∂

∂ui

(
gij
√
| det g| ∂

∂uj

)
. (6.5)

On the other hand, our objective is not focused on the continuous version of di�erential

forms, but on its discrete version (DEC), which is part of the algebraic topology and

will be described by simplicial De Rham complex Ci, where i = 1, ...., D − 1. This is the

generic term to describe the mesh element of D-dimensions (Crane (2005); Frankel (1997);
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Desbrun et al. (2008)). Each element of the mesh is named simplex, and computationally

the largest dimension is D = 3, which corresponds to the so-called tets or tetrahedra.

In general, each geometry is built through a mesh that forms a set of vertices {v}, edges

{e}, faces {f} and tets {T}. The connectivity between tets and faces is determined by a

2-simplex C2. Similarly, connectivity between faces and edges is made by a 1-simplex C1.

Finally, connectivity between edges and vertices is a 0-simplex C0 (Desbrun et al. (2008)).

DEC operators perform an hierarchical step from a Cp simplex to Cp±1, where the increase

or decrease the range of the simplex depends on whether we are acting on the vector basis

(dual basis of the simplex Cp) named chains ∂
∂x1 ...

∂
∂xn

; or on 1−form basis dx1...dxn for Cp

simplex named cochains (Desbrun et al. (2008); de Goes et al. (2015)). The two types of

basis satisfy the orthonormality relations dxi
(
∂
∂xj

)
= δij. In the discrete case, the exterior

di�erentiation d is the coboundary operator acting on cochains, which implies that dp

operating on a simplex Cp returns a Cp+1 simplex, or simply 0 ← C2 d1

← C1 d0

← C0 ← 0.

In contrast, the codi�erential operator δ is the boundary operator ∂ acting on chains,

so that ∂p acting over simplex in dual basis Cp returns a Cp−1. The schematic action

boundary operator is 0→ C2
∂2

→ C1
∂1

→ C0 → 0.

The simplex set depends on the way of implementing the mesh. It inevitably will

in�uence the outcome of any procedure. One should not build a triangular mesh with

obtuse angles, due to the occurrence of inconsistencies in circumcenters or barycenter

positions in the 1-ring mesh or on dual cells, which may be in a position over the boundary

of the geometry, a factor that contributes to errors in the calculation. There are three

traditional ways of construction of cells (Botsch et al. (2010)) 1. The barycentric cell that

connects the triangle barycenters with the edge midpoints. 2. Voronoi cell that replaces

the triangle barycenters with triangle circumcenters. 3. Mixed Voronoi cells that replaces

the circumcenter for obtuse triangles with the midpoint of the edge opposing the center

vertex (v).
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Figure 6.1: This �gure was taken from the reference (Desbrun et al. (2008)) and presents
schematically (i) the discrete exterior derivative, (ii) discrete codi�erential operator, and
(iii) discrete Hodge Star, via connections between vertices, sides, faces and tets.

For a robust mesh, we have worked with Distmesh (Persson and Strang (2004); Pers-

son (2004)), a Matlab toolbox designed through an algorithm that combines a physical

principle of force equilibrium in a truss structure with a mathematical representation of

the geometry using signed distance functions. Through Distmesh we made the meshes for

each of the geometries used in this chapter. The implementation can be explained using

the illustrative example (see �gure 6.2).

We have taken two triangles with a common edge, whose vertices are the set {Xi},

while its edges correspond to lowercase (a, b, c, d, e) and their faces Roman numerals I

and II. On that con�guration we de�ned the coboundary operator d0 (Desbrun et al.

(2005, 2008)), which for practical purposes is an ordered matrix of vertices (rows) with

sides (columns), on each face (I, II) de�ned a direction of "movement", so that we have a

binary assignment, zero or one depending on whether or not connection between a vertex

and a edges. The sign(±1) is positive when it reaches the vertex and negative when

out of it. Also we de�ned the boundary operator ∂1, as the transpose of coboundary
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Figure 6.2: On the left (i) in black: Delaunay triangular mesh that excludes the formation
of obtuse angles. (ii) In red: barycentric hexagonal dual mesh applied to Mushroom
billiard with triangular stem. On the right we show a zoom of the bold hexagon of the
left side, where the common vertex for the six triangles is called Xi. This vertex is taken
as a reference to construct the Laplace operator whose procedure have been detailed in
Appendix E. So, in this approach to each vertex is associated a primary hexagonal cell
that allows the construction of the di�erential operator.

operator ∂1 = (d0)T . The non normalized Laplace operator to the 0-form corresponds to

the noncommutative product L = ∂1d0 equation (6.6). This formulation can be connected

directly with graph laplacian theory, which de�nes an degree diagonal matrix D, which

counts the number of connections to each vertex to the edges, and an adjacency matrix A

that through a binary assignment (Peyré (2008)) describes whether a particular vertex is

directly connected to another on one edge. In graph approach, non-normalized laplacian

is de�ned as L = D − A, equation (6.7). Performing the operations in equations (6.6)

and (6.7), it becomes clear that the two forms are equivalent and produce the same type

of laplacian equation (6.8).

L = ∂1d0 =


−1 0 0 −1 1
1 −1 0 0 0
0 1 1 0 −1
0 0 −1 1 0



−1 1 0 0
0 −1 1 0
0 0 1 −1
−1 0 0 1
1 0 −1 0

 (6.6)
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L =


3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2


︸ ︷︷ ︸

D

−


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


︸ ︷︷ ︸

A

(6.7)

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 (6.8)

To normalize the Laplacian L → L̄, in the graph approach it is su�cient to obtain

the square root of the inverse matrix degree L̄ = D−1/2LD−1/2. The weights are called

combinatorial (Peyré (2008)), depending only on the topology (vertex, edge). In general

this local normalized operator can be written as L̄ = D−1/2(D−W )D−1/2, whereW is the

weight matrix with elements ωij and D = diagi(di), related to weight functions through

di =
∑

j ωij. We have used conformal weights ωij = cot(αij) + cot(βij), which generate

the operator known as Laplace-Beltrami, as a generalization of the Laplacian from �at

spaces.

4(fi) :=
1

2Ai

∑
xj∈N1(xi)

(cotαi,j + cot βi,j) (fj − fi), (6.9)

where αij and βij are the two angles opposite to the e−edge in the two triangles �gure

(6.2), and N1(i) is the set of 1-ring neighbor vertices of vertex Xi (Desbrun et al. (2008)).

Such weights are called conformal because they preserve angles mesh, and they minimize

deformation in the sense that they minimize the Dirichlet energy (Botsch et al. (2010)).

It relates directly to the integral of mean curvature equation (6.10) over mixed Voronoi

cell AM , for each triangle of the mesh (Desbrun et al. (1999); Crane (2005)). The triangle

itself de�nes the local surface metric

∫
AM

K(f)dA =
1

2

∑
xj∈N1(xi)

(cotαi,j + cot βi,j) (fj − fi). (6.10)
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Computational methods for obtaining the weights of the laplace operator can be found

in reference (Peyré (2008)) and detailed implementation in toolbox_graph for Matlab

(Peyré (2013)). It has been the computational tool used to obtain the spectrum with

more than twenty thousand levels for the Laplacian with conformal-weights in each of the

geometries described in the following sections.

6.3 Statistics for billiards with mixed dynamics

We must calibrate the unfolding method of the energy spectrum obtained through the

eigenvalues of the sparse-laplacian matrix with conformal weights. We wanted to consider

two geometries extensively documented in the literature. The �rst geometry corresponds

to a quarter circle (regular-integrable system), while the second corresponds a quarter

Bunimovich billiard (chaotic system) (see �gure 6.3). Over each mesh geometry, we have

been applied Dirichlet boundary conditions.

Figure 6.3: On the left: the quarter of circumference known as regular billiard. On the
right: chaotic billiard of Bunimovich. These two geometries have been used to calibrate
the procedure for obtaining the spectral exponent α, from the discrete Fourier transform
series of δ′n. In the two cases, we have averaged 25 series of 256 data. In agreement with
the current literature, the power spectrum is of the form 〈s(k)〉 ∼ k−α, with exponent
α = 2 in the regular case and α = 1 for the chaotic cavity.
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The Weyl law is the usual way to unfolding billiard's eigenvalue spectrum. In this

approach the spectrum with M elements is organized as E1 < E2 < ... < Ei < ... <

EM . Then, using the cumulative distribution function, de�ned as CDF (E) = N(E) =

#{n|En < E}, it is possible to decompose this CDF in two parts N(E) = N̄(E) + Ñ(E),

a trend part N̄(E) and �uctuating part Ñ(E). The trend part is established via N̄(E) =

AE
4π

+ L
√
E

4π
+ C, where A coe�cient is the billiard's area and L is the billiard's perimeter

(Bohigas (1991)). This method was designed for �at two-dimensional geometries. How-

ever, in this chapter, we shall describe curved billiards, as a crossover mechanism between

regularity and chaos. So, we want to employ a di�erent unfolding method (Brody et al.

(1981)) to be able to work directly with the spectrum as a time series, thus applying

signal analysis tools, which are independent of the geometric features of the systems.

After organizing the spectral data E1 < E2 < ... < Ei < ... < EM , we have normalized

the energy spectral series, dividing by the smallest eigenvalue λ1 < λ2 < ... < λi < ... <

λM λ1 = 1 and λi = Ei/E1. We have used local unfolding equation (6.11) to calculate

the unfolded eigenvalues εi, a practical procedure employed in other applications (Brody

et al. (1981); Voultsidou and Herrmann (2009)).

εi+1 = εi +
λi+1 − λi

Di

, (6.11)

where Di in Equation (6.12) corresponds to the local mean with free parameter d.

Di =
1

d

i∑
j=i−d

(λj+1 − λj). (6.12)

The local unfolding aims to convert the same magnitude order the {λi} spacing series,

because if we de�ned directly the spacing ∆λi = λi+1−λi, it holds that ∆λI � ∆λJ , when

the index I is close to the �rst eigenvalues, and the J index is close to last eigenvalues

in the {λi} series. On the other hand, if from the unfolding series {εi} we formed the

spacing series si = εi+1 − εi, with mean one < s >= 1, {si} is scale invariant sI ∼ sJ .

It is crucial to keep in mind that the unfolding method may lead to di�erent statistical
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characterizations as reported in (Abuelenin and Abul-Magd (2012)), and although the

NNSDs appear to be invariant to the unfolding methods, other measures such as power

spectrum are highly susceptible.

From the approach of quantum spectrum as a time series (Santhanam et al. (2006)), we

have introduced the δn statistic de�ned by equation (6.13), corresponding to �uctuating

part of spectrum,

δn =
n∑
i=1

(si− < s >) = εn+1 − ε1 − n. (6.13)

The main goal of using the δn statistic has been to build the mean power spectrum

< S(k) > (Gómez et al. (2005)). According to reference (Morales et al. (2011)) it is

posibble to construct a new detrended �uctuation δ′n, subtracting the trend δ
′
n = δn−r(m),

where r(m) is the mth residue of iterative method Empirical Mode Decomposition (EMD)

(Huang et al. (1998)). EMD is an adaptive method based in the Hilbert-Huang transform

(Yang et al. (2012)). This method proposes the expansion and decomposition of the data

in terms of intrinsic mode functions (IMFs) the components it outputs should separate

phenomena occurring on di�erent time scales.

The δ′n statistic �uctuations can be used to determine the exponent of the power

spectrum S(k), given by

S(k) =

∣∣∣∣∣ 1√
M

M∑
n=1

δ′n exp

(
−2iπnk

M

)∣∣∣∣∣
2

. (6.14)

Power-law behavior of < S(k) >∼ 1/kα is only an approximation, valid without taking

into account the highest frequencies of the spectrum (Gómez et al. (2005); Morales et al.

(2011)).

The results obtained for the mean power spectrum were < S(k) >∼ 1
kα
, with α = 1.99

for regular-integrable system (quarter circle billiard), and α = 1.02 for the chaotic system

(Bunimovich billiard). This test was a way to calibrate the computational method and

thus make us con�dent to apply it to the study of billiards with mixed dynamics that will
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be presented in the next section.

6.3.1 Measures for P (s) crossover

In this section we present the Kullback-Leibler distance (KLD) δLK (Kullback and

Leibler (1951)) and Burstiness parameter (Goh and Barabási (2008)). We have chosen

then as measures to characterize the crossover from Poisson statistics to Wigner-Dyson

of the nearest neighbor spacing distribution P (s) for the three geometries: Limaçon,

Mushroom, and curved billiard. By de�nition

δLK(Cpj) =

∑
i PWD log

(
PWD

Pob(Cpj)

)
∑

i PWD log
(

PWD

Pob(Cpmin)

) , (6.15)

which corresponds to a normalized measure that compares the distance between the

(Pob(Cpi)) PDF associated with the spacing spectrum for each geometry with respect

to the Wigner-Dyson (PWD) PDF. Pob(Cpmin) is the farthest PDF for each geometry

from the WD. In other words, is the PDF or smallest deformation parameter value

Pob(Cpmin) = {Pob(λ)|0, Pob(r/R)|0, Pob(A)|0.03},

for which the geometry is integrable or close to it.

Another way to characterize the PDF P (s) for unfolded spacing spectrum s ( s is

an inter-event time IET) for billiards has been done by measuring the deviations from

Poisson distribution by the Burstiness parameter, which is de�ned in the bounded range

(-1,1), where B = 1 correspond inter-event time take place highly bursty, B = 0 neutral,

and B = −1 regulate. The Burstinnes coe�cient

B =
σ(s)− < s >

σ(s)+ < s >
(6.16)

is expressed in terms of standard deviation σ(s) and mean < s > of NNSD. For the

billiards there are two references measures for B parameter. Poisson NNSD, where its

Burstiness coe�cient is BPoi = 0, and Wigner-Dyson distribution, for which this value
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correspond to BWD = −0.3134. We have characterized the crossover between these two

extreme values for each of the parameters {λj, (r/R)j, Aj} that control of the geometry.

In the next subsections we characterize each of the geometries, showing the values of

the measures δLK(Cpj), B(Cpj) and α(Cpj). Using these criteria we propose a law of

corresponding states.

Limaçon or Robnik Billiards

The limaçon-billiard or Robnik-billiard is a system described by the area under of

the conformal map curve w = z + λz2 (Prosen and Robnik. (1993); Prosen and Robnik

(1994)). This geometry changes from an integrable-regular for λ = 0, to an entirely chaotic

cardioid billiard λ = 0.5, making a transition to 0 < λ < 0.5 where limaçon-billiard has

mixed dynamics. We have worked with eight λ values, which are shown in �gure (6.4).

The primary purpose is to characterize the transition to the chaotic regime according to

table (6.2) values.

Figure 6.4: In this �gure, we show the eight values of the control parameter λ over
which the energy eigenvalues spectrum was determined. Here the reader can perceive the
parametric dependence of a stationary function used as a reference.
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λ δLK(λ) |B(λ)| α(λ)− 1

0 1 0.0356 0.99± 0.07

0.125 0.6244 0.1078 0.85± 0.10

0.150 0.5025 0.1341 0.74± 0.10

0.175 0.1800 0.2154 0.62± 0.09

0.200 0.0287 0.2789 0.48± 0.07

0.250 0.0175 0.2895 0.24± 0.10

0.300 0.0088 0.2962 0.16± 0.10

0.400 0.0068 0.3056 0.03± 0.11

Table 6.2: Numerical values of the three statistical measures obtained via the energy
spectrum associated with each control parameter (λ).

The values of the Kullback-Leibler distance were obtained from the histograms for the

NNSD of �gure (6.5), with bin width 0.1 in the interval of [0.05, 4.05]. On the other hand,

the values of the Burstiness parameter were obtained through its time series, while the

values of the spectral exponents have been extracted from the Fourier transform of the

δ′n-set, as shown in �gure (6.6).

The α(λ) values have been approximated in the second decimal place, in agreement

with value obtained in reference (Gómez et al. (2005)). So this geometry has been used

mainly to calibrate the computational algorithms used in all stages of this description,

beginning with the DEC, passing through the unfolding of the energy levels, continuing

with the utilization of the EMD to obtain the δ−statistic and �nally take its discrete

Fourier transform.
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Figure 6.5: In blue: Histograms of NNSD for six of the eight parameters λ that have been
used for the description of the Limaçon billard. The red line represents the Wigner-Dyson
distribution, while the black line corresponds to the Poisson distribution. In the inset of
each one, we have plotted the PDFs in semilogarithmic scale.
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Figure 6.6: The blue dots represent the power spectrum, in six of the eight λ parameters
that have been used for the description of the Limaçon billard. The red line in each sub�g-
ure represents the best linear �t made through least squares, where the slope corresponds
to its α spectral exponent.
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After acquiring a certain degree of experience with the characterization of Limaçon

billard, we continued the investigation of DEC applied to cavities that present mixed

dynamics. Therefore, we decided to describe the mushroom with triangular stem, that is

a geometry with similar dynamics features to exhibited by the Limaçon.

Mushroom

This billiard, called the triangular stem mushroom, presented in �gure (6.7), has been

experimentally characterized as a resonant microwave cavity for the coe�cients r = 1/3

and r = 2/3 in the reference (Abul-Magd et al. (2008)). However, this interesting paper

presents a small number of energy levels, making it di�cult to establish a measure of

the deviation of its NNSD from the Wigner-Dyson distribution. So, we were looking for

a more detailed statistical description using computational simulation through the DEC

method. Starting from the regular geometry stemless (r = 0) for the quarter circle, we

evaluated eight ratios more (r/R = (1/8, 1/6, 1/5, 1/4, 3/10, 1/3, 2/3, 7/10)), where r is

the stem length while R is the radius of the circular part (see �gure (6.2)). For each of

the coe�cients r/R corresponding to the control parameter, about 2.5× 104 eigenvalues

were extracted, which were sorted ascendingly and unfolded according to the previously

established procedure.

Once we determined the time series for the spacing energy levels. The values of the

three statistical measures δLK(PWD|P (r/R)), |B(r/R)| and α(r/R) were stipulated, as

shown in table 6.3.
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Figure 6.7: In this �gure, we show the four of the nine values of the control parameter
r/R over which the energy eigenvalues spectrum was determined. Here the reader can
perceive the parametric dependence of a stationary function used as a reference.

r/R δLK(r/R) |B(r/R)| α(r/R)− 1

0 1 0.0356 0.99± 0.07

1/8 0.8186 0.0665 0.93± 0.07

1/6 0.6860 0.0967 0.82± 0.08

1/5 0.5980 0.1122 0.77± 0.08

1/4 0.3797 0.1603 0.69± 0.07

3/10 0.1215 0.2385 0.65± 0.08

1/3 0.0210 0.2839 0.47± 0.09

2/3 0.0132 0.2938 0.24± 0.10

7/10 0.0034 0.3058 0.15± 0.09

Table 6.3: Numerical values of the three statistical measures obtained via the energy
spectrum associated with each control parameter (r/R).

In agreement with the statistical measures of the Mushroom Billard, �gures 6.8, 6.9

and 6.10, shows via its nearest neighbor spacing distribution and its spectral coe�cient,

that is possible to reach the full chaotic regime by increasing the control parameters value.
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Figure 6.8: In blue: Histograms of NNSD for six of the nine parameters r/R that have
been used for the description of the Mushroom billard. The red line represents the Wigner-
Dyson distribution, while the black line corresponds to the Poisson distribution. In the
inset of each one, we have plotted the PDFs in semilogarithmic scale.
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Figure 6.9: In the �rst row, the two NNSDs for the larger r/R control parameters, are
shown. The second and third row shows the power spectrum and its corresponding linear
�t, for the four smaller r/R parameters, not including zero.
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Figure 6.10: The power spectrum and its corresponding linear �t, for the four larger r/R
parameters
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Curved billiards

In this section we describe how a surface curvature on a geometry, which is in principle

integrable-regular, produces a crossover to the chaotic regime. Using the advantages of

conformal maps (Peyré (2008)), we performed an initial deformation, which changes in a

controlled manner the vertices of the mesh, through a A cos2(θ(x)) function, as shown in

�gure (6.11). On the new con�guration a conformal transformation is applied to recover

the �at surface, and the spectrum of the Laplace-Beltrami operator is calculated.

Figure 6.11: On the left: isometric projection of the curved billiard. On the center: its
top view (plane (x− y)). On the right: its side view (plane (x− z))

There are an arbitrary number of choices for the curvature's shape. Therefore, it is

premature to say that all of them will cause a change of the eigenvalues spectrum. In this

case, we are interested in �nding a functional form connecting the dynamic regime and the

geometric deformations in billiards. The control parameter in this geometry corresponds

to the deformation amplitude A. We have worked with nine di�erent amplitude values,

as shown in Table 6.4. In a way analogous to the characterizations made for the other

billiards, this system exhibit a dependence on the control parameter A, and the statistical
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measures δLK(PWD|Pob(A)), |B(A)| and α(A).

A δLK(A) |B(A)| α(A)− 1

0.03 1 0.1587 0.68± 0.06

0.07 0.3362 0.1920 0.61± 0.06

0.1 0.1806 0.2179 0.52± 0.06

0.2 0.1712 0.2273 0.43± 0.07

0.3 0.1530 0.2318 0.40± 0.06

0.4 0.1281 0.2427 0.31± 0.06

0.5 0.1201 0.2473 0.27± 0.07

0.9 0.0857 0.2614 0.24± 0.06

1.9 0.0321 0.2895 0.14± 0.10

Table 6.4: Numerical values of the three statistical measures obtained via the energy
spectrum associated with each control parameter (A), for the curved billiard.

For this geometry, the crossover from the integrable to the chaotic regime is not clear,

even though the control parameter increases to a value that almost doubles the radius

of the primary disk (A = 1.90). i.e., for each of the cases, the eigenvalue spectra still

indicate the presence of mixed dynamics according to the three statistical measures used.

We could speculate on the multiple reasons for this behavior, beginning by attributing

them to the possible presence of very close spacings because the billiard was not divided

to avoid the repetition of eigenvalues by re�ection symmetry. In this sense, the attempt

to characterize the transition between universal regimes due to the surface curvature of

the billiard remains open and will be a topic of future research.
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Figure 6.12: In blue: Histograms of NNSD for six of the nine parameters A that have been
used for the description of the curved billard. The red line represents the Wigner-Dyson
distribution, while the black line corresponds to the Poisson distribution. In the inset of
each one, we have plotted the PDFs in semilogarithmic scale.
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Figure 6.13: The blue dots represent the power spectrum for the parameters A = 0.1,
A = 0.2, and A = 0.3, of the curved billiard. The red line in each sub�gure represents the
best linear �t made through least squares, where the slope corresponds to its α spectral
exponent.
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Figure 6.14: The blue dots represent the power spectrum for the parameters A = 0.4,
A = 0.5, and A = 0.9, of the curved billiard. The red line in each sub�gure represents the
best linear �t made through least squares, where the slope corresponds to its α spectral
exponent.
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Finally, we made two graphs which are intended to show that billiards make similar

crossovers, described through the statistical measures that characterize each one. The

�rst chart (see �gure (6.15)) shows a law of corresponding states between the spectral

coe�cient and the Burstiness parameter, while in the second graph (see �gure (6.16))

we see a correspondence between the Kullback-Leibler distance and spectral coe�cient.

In both cases, the curves have been �tted simultaneously for the three billiards using

a stretched exponential function y = A exp
(
BxC

)
, where the plotted variables and its

�tting parameters are displayed in the caption of each �gure.

Figure 6.15: The abscissa axis represents the relation x = α−1 for the spectral coe�cient;
while in the ordinates axis shows the relation y1 = 1−B

B
for the burstiness parameter. Here

the data for the three billiards (i)Limaçon (blue), (ii) Mushroom (green), and (iii) Curved
(violet), have been �tting via the stretched exponential function y = A exp

(
BxC

)
, with

coe�cients A = 1.57× 108, B = −17.31, C = −0.24.

From �gures (6.15) and (6.16) we see that the Kullback-Leibler distance and Burstiness

parameter, are for the cavities described in this chapter redundant measures. Therefore,
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Figure 6.16: The abscissa axis represents the relation x = α − 1 for the spectral co-
e�cient, while in the ordinates axis shows the relation y2 = δLK

(1−δLK)
for the Kullback-

Leibler distance. Here the data for the three billiards (i)Limaçon (blue), (ii) Mushroom
(green), and (iii) Curved (violet), have been �tting via the stretched exponential function
y = A exp

(
BxC

)
, with coe�cients A = 4.15× 108, B = −17.95, C = −0.34.

with only one of them is su�cient to characterize the histograms' deviations of each

billiard according to its respective control parameter Cp. Also, these �gures show that

the curved billiard does not appear to have the same tendencies.

In the next chapter we shall use the H-theory to obtain the dynamic model for the

transition from the integrable to the chaotic regime of the Limaçon and Mushroom geo-

metries.
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7 Ballistic cavities II

7.1 Abstract

In this chapter, we present the connection of the method of stochastic di�erential equa-

tions with two ensembles of the random matrices theory, (i) Gaussian Diagonal Ensemble

GDE, and (ii) Gaussian Orthogonal Ensemble GOE. In particular, the case where the

Hamiltonian corresponds to a real symmetric matrix 2 × 2 generates the Wigner-Dyson

stationary distribution, which characterize the NNSD in the chaotic regime. So, in the

�rst approach, the probability density functions are the result of the superposition be-

tween a Wigner-Dyson distribution conditioned by its variance, which couples under the

hypothesis of large-scale separations with a background distribution of class (i) Inverse-

Gamma, and (ii) Gamma. In this way, one provides dynamical support for the work done

by Abul-Magd, Dietz, Friedrich, and Richter in (Abul-Magd et al. (2008)). After present-

ing the generalities of the dynamic model, it is established that the superposition with the

gamma class describes the crossover from Poisson to Wigner- Dyson. This distribution

has been used to make the �t of the spectra for the energy levels spacing of Limaçon and

Mushroom billiards that were introduced in the previous chapter.

The second approach of the chapter emerges as another original idea of this research,

where we perform a second-order statistics for the energy spectrum. The main advantage

of this description is that it uses symmetric distributions where a Boltzmann distribution

characterizes the regular regime (see �gure 7.1), and the crossover is made via the K-

distribution until it reaches the Gaussian distribution describing the full chaotic regime.

With the purpose of calibrating the ends of the transition, the GDE and GOE ensembles

have been computationally generated, as shown in �gures (7.1.I.c) and (7.1.II.c), where
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the red lines correspond to the �ts of the theoretical model developed for the second-order

statistics.

7.2 Introduction

Classically a billiard is a system where a free particle is con�ned to a �at surface,

and each time it reaches the boundary there is an elastic collision characterized by a

symmetrical re�ection to the normal of the point where the shock occurred. This system,

which is apparently simple, began to have relevance in physics when

On Friday 27 April 1900, at the Royal Institution of Great Britain, Lord

Kelvin delivered a lecture entitled �The 19th-century clouds over the dynam-

ical theory of heat and light.� In which he said: without exception, the av-

erage kinetic energy of any component of the motion of the inertial center

is, according to the Boltzmann-Maxwell doctrine, equal to 1
3i of the whole

average kinetic energy of the system. The general Boltzmann-Maxwell doc-

trine includes the proposition, even in those cases in which it is not deducible

algebraically from the equality of the 3i energies. (Kelvin (1901))

On that memorable date, Lord Kelvin presented the results of the experiment he

made with his assistant Anderson using two types of billiard, the �rst with a triangular

geometry and the second with a �ower shape (see reference (Kelvin (1901)). Through

the measurements made in these, he concluded that the long temporary measures for the

components of the velocity in each case did not coincide, opening the possibility of the

violation to the Ergodic hypothesis (Nakamura and Harayama (2004)).

Billiards were introduced in physics with this event, and have been for more than a

century a tool used to characterize dynamics of a system as a function of its trajectories.

Thus, from the classical approach these systems are divided into (i) integrable systems,

are characterized by their Hamiltonian admits n independent integrals of motion in in-

volution. In other words, these systems are integrable if the equations of motion can be
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solved for any set of initial conditions by quadratures, where the Poisson bracket between

these, or between each of the quadratures and the Hamiltonian are zero 1. (ii) Chaotic,

corresponding to geometries in which the paths diverge to small changes in initial con-

ditions, that is, are systems where for a single initial condition the object moving inside

the cavity can cover all possible values of the kinematic variables on which is formed the

phase space. (iii) There is a third class, where stable orbits coexist, robust to small per-

turbations and unstable very vulnerable to them, to such a class is called billiards with

mixed dynamics.

On the other hand, with the evolution of quantum mechanics in the twentieth century,

the scientists began to study increasingly complex systems, whose be impossible to solve

analytically, it made necessary the appearance of a di�erent approach. Thus, in the late

1950s, the random matrices theory was born, which in its beginning was formulated to give

an interpretation to the behavior of highly excited levels in heavy nuclei where the shell

model is not applicable. This theory emerged from the works by Wigner (Wigner (1955)),

Dyson (Dyson (1962a,b,c, 1963)) and Metha (Mehta. (2004); Metha (1960); Metha and

M.Gaudin (1960)), where the Hamiltonian of the nucleus is described as a matrix whose

elements are represented by a random variable, considering as the only constraint between

its elements, the symmetries of the system that is wanted to study. In current physics,

this theory is used to explain disordered systems and its symmetries are established by

the Cartan's classi�cation (Caselle and Magnea (2004)). In this approach, ten classes

are recognized, subdivided into three Wigner-Dyson classes, three chiral classes, and four

to the Bogoliubov-de Gennes classes (Macedo-Junior and Macêdo (2006); Mirlin et al.

(2010)). Random Matix Theory is a huge set of information, so in this chapter, we are

going to restrict only to the Gaussian Orthogonal Ensemble GOE, and to a particular

case called Gaussian Diagonal Ensemble GDE, to show the connection that these two

collectivities have with the billiards and its spectrum.

Through the rapid technological advances of recent decades, the study of matter in

1The above is not the only de�nition of integrability, but it is useful to get an idea about this condition
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the sub-micrometer scale has become a relatively common event. In such systems where

the laws of quantum mechanics are prevalent, scientists have discovered a large number

of phenomena that a century ago were unimaginable. For example, small structures have

been made with semiconductor heterojunctions quantum dots, where the resistance be-

havior has been characterized as a function of the electric and/or magnetic �eld applied

(Marcus et al. (1992)). Through them it was perceived that this dependency is not de-

terministic, i.e., the resistance presents rapid �uctuations by modi�cations of the applied

�eld. Moreover, it become evident that the behavior of these �uctuations depends on

the geometry of the quantum dot. Experiments have also been conducted with so-called

quantum corrals (Crommie et al. (1995, 1993)), and ballistic cavities in superconductors

(Abul-Magd et al. (2008); Dietz and Richter (2015)), with the purpose of studying the

local properties electrons con�ned in a two-dimensional geometry modeled as a nearly

free electron gas.

The scienti�c community perceived with these and previous experiments that the

energy spectra of resonant two-dimensional cavities described by quantum mechanics

and the billiards of balls outlined by the classical approach share several characteristics

which can be introduced as correspondences since the set of quantum numbers can be

attributed to the motion constants (Nakamura and Harayama (2004)). From this point

of view, there is a discussion of the existence of integrability when the quantum numbers

of the system present intersections due to interaction with external �elds, a fact that for

example generates energy level crossing. Such interpretation has a correspondence with

the topological approach made by Liouville for classical systems, where the intersection

of the manifolds is the trajectories of the phase space. Also, if over a system described by

the wave mechanics that is initially integrable is applied a non-integrable perturbation,

may be partially (mixed chaotic systems) or wholly, destroyed (full chaotic systems) the

motion constants. So the repulsion appears between nearby energy levels and introduces

the concept of quantum chaos, which is tentatively de�ned as a study of the semiclassical
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behavior of systems whose classical motion exhibits a high dependence on the initial

conditions.

The absence of predictability in the values that take the quantum numbers of these

systems, implied that the statistical approach made by the RMT gained great importance

as it can describe with high precision the probability density function of its energy spacing

spectrum. Using this preamble, in this chapter, we shall characterize the crossover of the

energy spectrum of cavities that start in the integrable, nearest neighbor spacing distribu-

tions are described through the Gaussian Diagonal Ensemble GDE, which is a collective

composed of diagonal and real matrices, i.e., its elements are statistically independent

and correspond directly to their eigenvalues.

In the opposite case, when avoided energy level crossing is imposed, that the proba-

bility distribution is invariant under temporal inversion and real symmetric transforma-

tions P (H)dH = P (H ′)dH ′, where H ′ = KH†K−1 = KHK−1, and K∗K = 1. So, the

probability density function can only depend on the powers of the trace of H. In this

approach, it is assumed that the matrix elements are not correlated P (H11, . . . , Hmm) =

P (H11) . . . P (Hmm). Thus, the PDF that satis�es these conditions is a Gaussian of the

form P (H) = C exp (−ATr(H)−BTr(H2)). This collective, in the RMT, is one of the

three Wigner-Dyson classes and is called the Gaussian Orthogonal Ensemble (GOE).

In the simplest case, the Hamiltonian corresponds to a symmetric 2 × 2 matrix, and

we want to describe the dynamics of the spacing of its energies s = E2 − E1, and the

stationary solution. We generically designated its elements as Hij = xij, and each of them

presents Langevin dynamics

dx11 = −x11dt+
√

2ε1dW11(t) (7.1)

dx22 = −x22dt+
√

2ε1dW22(t) (7.2)

dx12 = −x12dt+
√
ε1dW12(t). (7.3)

The previous system of equations can be expressed in a compact notation through
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dx
(α)
i = −

N∑
j=1

γijx
(α)
j dt+

√
f(i)εMdW

α(t). (7.4)

We want the dynamics of the system to be expressed in terms of its eigenvalues. So,

according to the symmetry of the ensemble, an orthonormal transformation is applied to

diagonalize the Hamiltonian

(
x11 x12

x12 x22

)
=

(
cos θ sin θ
− sin θ cos θ

)(
E1 0
0 E2

)(
cos θ − sin θ
sin θ cos θ

)
. (7.5)

Through this transformation of coordinates we obtain the relations

x11 = E1 cos2 θ + E2 sin2 θ (7.6)

x22 = E1 sin2 θ + E2 cos2 θ (7.7)

x12 = (E2 − E1) sin θ cos θ, (7.8)

where its inverse transformation corresponds to

E1 = x11 cos2 θ + x22 sin2 θ − x12 sin 2θ (7.9)

E2 = x11 sin2 θ + x22 cos2 θ + x12 sin 2θ (7.10)

tan 2θ =
2x12

x22 − x22

. (7.11)

Stochastic dynamics for energy eigenvalues is expressed according to the conditions

established by the Itô lemma, as a Taylor series of the second order

f(x+ dx, y + dy, z + dz) =
∞∑
j=0

[
1

j!

(
dx

∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

)j
f(x, y, z)

]
. (7.12)

Therefore, the derivatives of the equations (7.9) and (7.10) are written as

dEi =
3∑
j=1

[
dxj

∂Ei
∂xj

+
1

2

(
(dxj)

2∂
2Ei
∂x2

j

)]
, (7.13)
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where theWiener processes satis�es the orthonormal conditions dWij(t)dWkl(t
′) = δikδjlδ(t−

t′)dt; which implies, (dx11)2 = (dx22)2 ∼ 2ε1dt, (dx12)2 ∼ ε1dt and dx11dx22 = dx11dx12 =

dx22dx12 = 0. Using these conditions we get

dE1 = −
(
E1 +

ε1

E2 − E1

)
dt+

√
2σdW1 (7.14)

dE2 = −
(
E2 +

ε1

E1 − E2

)
dt+

√
2σdW2. (7.15)

The noise terms in these equations are related to the original variables through

√
2σdW1 =

√
2ε1 cos2 θdW11 +

√
2ε1 sin2 θdW22 −

√
ε1 sin 2θdW12 (7.16)

√
2σdW2 =

√
2ε1 sin2 θdW11 +

√
2ε1 cos2 θdW22 +

√
ε1 sin 2θdW12, (7.17)

thus the Langevin equations system for energies can be written in compact notation as

dEi = −

(
Ei −

∑
j 6=i

ε1

Ei − Ej

)
dt+

√
2ε1dWi. (7.18)

Now, we de�ne s ≡ E2−E1, with the constraint E2 ≥ E1 i.e. s ≥ 0. Subtracting the two

equations from the system (7.18) gives the stochastic di�erential equation for the spacing

of the energies

ds = −
(
E2 +

ε1

(−s)

)
dt+

(
E1 +

ε1

s

)
dt+

√
2ε1(dW2 − dW1), (7.19)

associated with Dyson's Brownian motion

ds =

(
−s+

2ε1

s

)
dt+

√
2σ̃dW, (7.20)

where σ̃ = 2ε1. Therefore,

ds =

D(1)(s)︷ ︸︸ ︷(
−s+

2ε1

s

)
dt+ 2

√
ε1dW. (7.21)
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The stochastic di�erential equation (7.21) establishes the dynamics of the integral

scale, with the associated Fokker-Planck equation

∂P (s, t)

∂t
=

[
− ∂

∂s

(
−s+

2ε1

s

)
+ 2ε1

∂2

∂s2

]
P (s, t), (7.22)

that is in agreement with the reference (Risken and Franck (1996)). It has the general

stationary solution

Peq(s) = C exp (−Φ(s)) . (7.23)

It is necessary to determine the potential function Φ(s), via its relation to the drift

coe�cient

dΦ(s)

ds
= − 1

2ε1

D(1)(s), (7.24)

which is obtained by direct integration

Φ(s) =
s2

4ε1

− ln s. (7.25)

In this way, after establishing the normalization constant, the equation (7.23) becomes

Peq(s|ε1) =
s

2ε1

exp

(
− s2

4ε1

)
, (7.26)

for the case where ε1 is constant, it is determined through the normalization condition

that its value is ε1 = 1
π
, yielding the Wigner-Dyson distribution.
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On the other hand, as was presented in Chapter Six, neither the Wigner-Dyson distri-

bution nor the Poisson distribution, can �t the probability density functions in billiards

with mixed dynamics. However, Poisson and WD do describe the ends of the transition.

So that in the following sections two approaches will be presented based on the conditions

of the H theory. The PDFs produced by these models, �t with high precision each of the

histograms for the billiards Limaçon and Mushroom previously presented.

In �gure (7.1) we show the histograms for (i) the energy spectrum P (E), (ii) the

spacing spectrum (NNSD), and (iii) the spectrum of spacing increments P (x). We con-

sidered both the Gaussian diagonal and orthogonal ensembles, and we de�ned the variable

xi ≡ (si − si−1)/σ(x) for nearest neighbor increments of level spacing, with the aim of

performing second-order statistics for the energy levels, and σ(x) is the standard devia-

tion.
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Figure 7.1: Simulations of the Gaussian Diagonal Ensemble (GDE) are shown in I. The
panels show the average level density ((a) leftmost), the NN level spacing distribution ((b)
centre) and the distribution of NN increments of level spacings ((c) rightmost) in linear
(upper) and semi-log (lower) scales The theoretical curves, shown as red lines, are the
Gaussian distribution with zero average and unit variance ((a) leftmost), the Poisson law
((b) centre) and the Boltzmann distribution ((c) rightmost). In part II. simulations of the
Gaussian Orthogonal Ensemble (GOE). Just as before, the panels show the average level
density ((a) leftmost), the NN level spacing distribution ((b)centre) and the distribution
of NN increments of level spacings ((c)rightmost) in linear (upper) and semi-log (lower)
scales. The red lines are the Wigner semicircle law ((a) leftmost), the Wigner-Dyson
distribution ((b) centre) and the Gaussian distribution with zero average and unit variance
((c)rightmost).
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7.3 Dynamic model applied to NNSD

In this approach, we propose that the deviations of the nearest neighbors spacing

distribution (NNSD) in the observation scale are due to the superposition between the

larger scale of the system with Langevin dynamics

ds =

(
−s+

2εN
s

)
dt+ 2

√
εNdW, (7.27)

and the internal variables that characterize the slowly changing background

dεi = −γi(εi − εi−1)dt+ κiε
α
i ε

1−α
i−1 dWi, i = 1, . . . , N. (7.28)

Since the billiard spacing spectra have about 2.5× 104 data, their histograms show trend

loss beyond P (s) > 1 × 10−3. For this reason, a single background scale is su�cient

to account for the deviation of its PDFs. Then the background dynamics given by the

equation (7.28), is restricted to i = 1. Where background stationary distributions are

(i) inverse-gamma for α = 1, and (ii) gamma for α = 1/2. It using this information, we

proceed to determine the marginal distribution of the model

P (s) =
1

2

∫ ∞
0

s

ε1

exp

(
− s2

4ε1

)
f(ε1)dε1, (7.29)

the integral (7.29) is evaluated under the large scales separation assumption, where the

kernel of integration corresponds to the conditional PDF (7.26) which is the station-

ary solution of the equation (7.27). Whereas f(ε1) may correspond in principle to an

inverse-gamma distribution (γ̄) or gamma (γ), cases presented separately in the following

subsections.

7.3.1 Inverse-Gamma Class

In this part of the manuscript, the marginal distribution (7.29) is determined, when

the background is the inverse-gamma class (stationary solution of Eq. (7.28) for α = 1)
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f(ε1) =
(βε0)β+1

Γ(β + 1)
ε−β−2

1 exp

(
−βε0

ε1

)
. (7.30)

The signal's PDF (7.29) is calculated, through the Mellin transform, where the change

of variable s =
√

4ε1y for the kernel (7.26) is made. So by raising to power (r − 1), the

previous equation takes the form sr−1 = 2r−1y(r−1)/2ε
(r−1)/2
1 . We thus have equation

∫ ∞
0

dssr−1P (s)︸ ︷︷ ︸
<sr−1>

= 2r−1

<y(r−1)/2>︷ ︸︸ ︷∫ ∞
0

dyy(r−1)/2P (y)

∫ ∞
0

dε1ε
(r−1)/2
1 f(ε1)︸ ︷︷ ︸

<ε
(r−1)/2
1 >

, (7.31)

where the distribution P (y) is constructed through the change of variable

P (y) =
(
P (s|ε1)|s=√4ε1y

) √ε1

y︸︷︷︸
(ds/dy)

= exp(−y), (7.32)

while the moments of order (r − 1)/2, expressed on the right side of the equation (7.31),

are

〈y(r−1)/2〉 = Γ

(
r + 1

2

)
(7.33)

〈ε(r−1)/2
1 〉 =

1√
βε0Γ(β + 1)

(
1

βε0

)− r
2

Γ

(
β +

3

2
− r

2

)
. (7.34)

Therefore, the substitution of these results into Eq. (7.31) produces

∫ ∞
0

dssr−1P (s)︸ ︷︷ ︸
<sr−1>

=
1

2
√
βε0Γ(β + 1)

(
1

2
√
βε0

)−r
Γ

(
r + 1

2

)
Γ

(
β +

3

2
− r

2

)
. (7.35)

Using the properties of Mellin transform for the Fox H-function

∫ ∞
0

dssr−1Hm,n
p,q

(
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣αs) = α−r
∏m

j=1 Γ(bj +Bjr)∏q
j=m+1 Γ(1− bj −Bjr)

∏n
j=1 Γ(1− aj − Ajr)∏p
j=n+1 Γ(aj + Ajr)

,

(7.36)
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by direct comparison with the equation (7.35) we get

∫ ∞
0

dssr−1H1,1
1,1

(
(−β − 1/2, 1/2)
(1/2, 1/2)

∣∣∣∣ s

2
√
βε0

)
=

(
1

2
√
βε0

)−r
Γ

(
r + 1

2

)
Γ

(
β +

3

2
− r

2

)
.

(7.37)

The marginal distribution (7.29), expressed as function of the above result, corresponds

to the Fox H-function

P (s) =
1

2
√
βε0Γ(β + 1)

H1,1
1,1

(
(−β − 1/2, 1/2)
(1/2, 1/2)

∣∣∣∣ s

2
√
βε0

)
. (7.38)

Equation (7.38) can be reduced to a Meijer G-function, through the property

Hm,n
p,q

(
(au, Au)
(bv, Bv)

∣∣∣∣z) = kHm,n
p,q

(
(au, kAu)
(bv, kBv)

∣∣∣∣zk) , (7.39)

It produces as a �nal result the probability density function

P (s) =
1√

β3ε0Γ(β)
G1,1

1,1

(
(−β − 1/2)
(1/2)

∣∣∣∣ s2

4βε0

)
. (7.40)

Now, we can determine the relation between the parameters β and ε0, for the PDF to

have a unit average, through equation (7.37)

∫ ∞
0

sP (s)ds = 2

√
ε0

β

(
Γ(3/2)Γ(β + 1/2)

Γ(β)

)
, (7.41)

when equation (7.41) has value one, the parameter ε0 becomes

ε0 =
β

4

(
Γ(β)

Γ(3/2)Γ(β + 1/2)

)2

. (7.42)

The PDF (7.40) has been plotted for several β parameters and is shown in �gure (7.2).

These curves are compared with the Wigner-Dyson (WD) (black line) distribution. Here,

it becomes visible that at the asymptotic limit β →∞ the distributions (7.40) become a

WD. On the other hand, and as far as it was tested, P (s) fails to describe the Poisson

distribution.
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We have thus established that this kind of superposition is not the most appropriate

to characterize the crossover from Poisson to WD that present the energy spacings of

the billiards with mixed dynamics. However, as shown in the following section, the com-

pounding with the Gamma distribution allow describing all cases, regular, mixed, and

full-chaotic.

Figure 7.2: On the left, in regular scale is presented the dependence of Equation (7.40)
for the β values demarcated at the right end of the �gure. On the right side, the same
curves have been plotted on a semi-logarithmic scale to see in detail the tails shape of
this distribution. In both cases, the Wigner-Dyson PDF has been plotted in black as a
reference.

7.3.2 Gamma Class

In this subsection, we determine the signal's probability density function form (7.29)

for the case in which the background (f(ε)) is a gamma distribution

f(ε1) =
ββ

εβ0 Γ(β)
εβ−1

1 exp

(
−βε1

ε0

)
. (7.43)

The �rst step is to �nd the Mellin transform for the exponent (r−1)/2 of equation (7.43)
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〈εr/2−1/2
1 〉 =

ββ

εβ0 Γ(β)

∫ ∞
0

dε1ε
r/2+β−3/2
1 exp

(
−βε1

ε0

)
=

(
β

ε0

)1/2−r/2
Γ(β + r/2− 1/2)

Γ(β)
.

(7.44)

Then, using the result of equation (7.44), the Mellin transform for the marginal distribu-

tion 7.29) take the form

∫ ∞
0

dssr−1P (s)︸ ︷︷ ︸
<sr−1>

=
1

2Γ(β)

√
β

ε0

(
1

2

√
β

ε0

)−r
Γ(1/2 + r/2)Γ(β − 1/2 + r/2). (7.45)

Direct comparison between equations (7.36) and (7.45), we obtain the parametric relations

α = 1
2

√
β
ε0
, b1 = β − 1/2, B1 = 1/2 , b2 = 1/2, B2 = 1/2, and aj = Aj = ∅ ∀ j.

Therefore, the Mellin transform (7.45) can be written as the Fox H-function

∫ ∞
0

dssr−1H2,0
0,2

(
___

(β − 1/2, 1/2), (1/2, 1/2)

∣∣∣∣s2
√
β

ε0

)
=

(
1

2

√
β

ε0

)−r
Γ(β−1/2+r/2)Γ(1/2+r/2).

(7.46)

The marginal distribution for this class is

P (s) =
1

2Γ(β)

√
β

ε0

H2,0
0,2

(
___

(β − 1/2, 1/2), (1/2, 1/2)

∣∣∣∣s2
√
β

ε0

)
. (7.47)

This PDF can be reduced to a G-Meijer function via the identity (7.39)

P (s) =
1

Γ(β)

√
β

ε0

G2,0
0,2

(
___

(β − 1/2), (1/2)

∣∣∣∣βs2

4ε0

)
. (7.48)

Equation (7.46), for the case r = 2, sets the mean of the distribution

〈s〉 =
2

Γ(β)

√
ε0

β
Γ(3/2)Γ(β + 1/2), (7.49)

where the constraint (7.50) satis�es the unit average

ε0 =
β

4

(
Γ(β)

Γ(3/2)Γ(β + 1/2)

)2

. (7.50)
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Equation (7.48) allows to describe the PDFs for two universal regimes, integral and

chaotic, in addition to the crossover between them. Since, as shown in �gure (7.3), for the

value of β = 0.5 (light blue curve) the distribution (7.48) is a Poisson distribution, whereas

for the asymptotic limit β → ∞ converges to the Wigner-Dyson, which corresponds to

the black curve of �gure (7.3). From this result, we can �t the histograms' NNSD of the

billiards Limaçon and Mushroom.

Figure 7.3: On the left, in regular scale is presented the dependence of Equation (7.48)
for the β values demarcated at the right end of the �gure. On the right side, the same
curves have been plotted on a semi-logarithmic scale to see in detail the tails shape of
this distribution. In both cases, the Wigner-Dyson PDF has been plotted in black as a
reference.

7.4 Fits for NNSD of Limaçon Billiard

In �gure (7.4), we show the histograms of the spacing spectrum and its corresponding

�t for the eight values of the control parameters λ of the Limaçon billiard. (i) In linear

scale where it stands out the body of the distributions (upper part), and (ii) in semi-log

scale, it is seen in detail its tails (bottom). The �ts have been made through Poisson

distribution (red �rst line) for λ = 0.0, the Wigner-Dyson PDF (last red line) for λ = 0.4

and the PDF (7.48) (black lines) for the remaining intermediate parameters.
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Figure 7.4: Using Equation (7.48) we have �tted the NNSD's histograms for the eight
values of the control parameter λ of the Limaçon billiard. So, in the upper part, the
graphs are shown in linear scale, while at the bottom they are in semilogarithmic scale,
in this case, each of them has been multiplied by a factor of 0.1 on the previous one. The
�ts have been made through Poisson distribution (red �rst line, case (a)) for λ = 0.0, the
Wigner-Dyson PDF (last red line, case (h)) for λ = 0.4 and the PDF (7.48) (black lines,
with β = 0.92: case (b), β = 1.1: case (c), β = 2.35: case (d), β = 8.5: case (e), β = 17:
case (f), β = 30: case (g) ) for the remaining intermediate parameters.
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7.5 Fits for NNSD of Mushroom Billiard

In a manner analogous to the procedure performed for the billiard of Limaçon, in

this section, we show in �gure (7.5) the histograms of the spacing spectrum and its

corresponding �ts for the nine values of the control parameter r/R of the Mushroom

billard. (i) On the linear scale (upper part), and (ii) on the semi-log scale (bottom).

The �ts have been made through Poisson distribution (red �rst line) for r/R = 0, the

Wigner-Dyson PDF (last red line) for r/R = 7/10 and the PDF (7.48) (black lines) for

the remaining intermediate parameters.



173

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

0 2 4 6 8

P
(s
)

0

0.5

1

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

s0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

r/R=0 r/R=1/8 r/R=1/6

r/R=1/5 r/R=1/4 r/R=3/10

r/R=1/3 r/R=2/3 r/R=7/10

s1 2 3 4 5 6 7

P
(s
)

10
-10

10
-5

10
0

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7.5: Using Equation (7.48) we have �tted the NNSD's histograms for the nine
values of the control parameter r/R of the Mushroom billiard. So, in the upper part, the
graphs are shown in linear scale, while at the bottom they are in Semi-logarithmic scale,
in this case, each of them has been multiplied by a factor of 0.1 on the previous one. The
�ts have been made through Poisson distribution (red �rst line, case (a)) for r/R = 0.0,
the Wigner-Dyson PDF (last red line, case (i)) for r/R = 7/10 and the PDF (7.48) (black
lines, with β = 0.68: case (b), β = 0.89: case (c), β = 1.0: case (d), β = 1.4: case (e),
β = 3.4: case (f), β = 9: case (g), β = 20: case (h) ) for the remaining intermediate
parameters.
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.

7.6 Nearest neighbor increments of level spacings

Let {si}i∈N be the discrete stochastic process of unfolded level spacings. For a �nite

time series of length N , it de�nes the marginal distribution as

P (s) =
1

N

N∑
i=1

〈δ(s− si)〉 ,

the form of P (s) depends on the system's dynamics. Integrable systems obey a Poisson

law

PI(s) = e−s (7.51)

and are well described by the Gaussian diagonal ensemble (GDE), whereas quantum

chaotic systems follow the Wigner-Dyson distribution of the Gaussian orthogonal ensem-

ble (GOE) of random matrix theory,

PC(s) =
π

2
s exp

(
−πs

2

4

)
. (7.52)

A number of interpolating distributions have been proposed in the literature (Prosen and

Robnik (1994); Reichl (2004)) for systems with mixed dynamics, but none were derived

from a full-�edged statistical description, such as GDE or GOE.

In the study of turbulence and mathematical �nance, it is common to consider the

statistics of increments, e.g. velocity increments in turbulent �ow and log-returns in

�nance. Their statistics are generally called second-order statistics. Here, we consider

a special case of second order statistics by de�ning the stochastic process of nearest

neighbor(NN) increments of level spacings {xi}i∈N, where xi = (si+1−si)/σ. The marginal

distribution is de�ned as usual

P (x) =
1

N

N∑
i=1

〈δ(x− xi)〉 ,
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which can be written in terms of the joint distribution of consecutive level spacings

P (s1, s2)

P (x) =

∫ ∞
0

ds1

∫ ∞
0

ds2P (s1, s2)δ.(x− (s2 − s1)/σ)

For integrable systems we may use the fact that there is no level repulsion and thus

PI(s1, s2) = PI(s1)PI(s2). Therefore

PI(x) =

∫ ∞
−∞

dk

2π

∫ ∞
0

ds1

∫ ∞
0

ds2e
−s1−s2eik(x−(s2−s1)/σ)

=

∫ ∞
−∞

dk

2π

σ2eikx

k2 + σ2

=
σ

2
e−σ|x|,

which is the Boltzmann distribution. In this approach, the crossover PDF between the

regular-integrable regime for the chaotic is given by the marginal

P (β;x) =

∫ ∞
0

dεP (x|ε)f(β; ε), (7.53)

the conditional distribution associated with the largest scale of the system corresponds to

the Gaussian

P (x|ε) =
1√
2πε

exp

(
−x

2

2ε

)
, (7.54)

while the background corresponds the Gamma distribution with unitary average

f(β; ε) =
ββ

Γ(β)
εβ−1e−βε, ε > 0. (7.55)

The superposition integral, according to the procedure shown in this document generates

the PDF for the signal

P (β;x) =
β1/2

√
2πΓ(β)

G2,0
0,2

(
−

β − 1/2, 0

∣∣∣∣βx2

2

)
. (7.56)

Thus, by setting the free parameter in β = 1, the marginal (7.56) takes the form of the

Boltzmann distribution
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PI(x) = P (1;x) =
1√
2
e−
√

2|x|, (7.57)

which describes the second-order statistics for the regular integral regime. On the other

hand, when we take the limit of the free parameter going to in�nity, it recoveres the

Gaussian distribution that characterizes the chaotic regime

PC(x) = lim
β→∞

P (β;x) =
1√
2π
e−x

2/2. (7.58)

In �gures (7.6) and (7.7) we show the histograms for nearest neighbor (NN) increments

of level spacings of the Limaçon and Mushroom billiards respectively. The integrable

regimes corresponds to the minimum value of the control parameter. It is zero for the

two billiards, and is represented by the fourth disc, whose histograms are plotted in the

central part of �gures (7.6) and (7.7) (in blue balls), �t by the Boltzmann distribution

(Eq. (7.57)), in green (blue) Limaçon (Mushroom). The full chaotic regime is reached

in each case for the largest value of the control parameter, whose histogram corresponds

to the x−shaped markers of the central part of �gures (7.6) and (7.7), �tted by the

Gaussian distribution, equation (7.58). The intermediate parameters associated with

mixed dynamics have been adjusted by the red dotted lines, ampli�ed in the inset of the

right part of each �gure, where each histogram are in the insets of the left and lower part.
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Figure 7.6: Using Equation (7.56) we have �tted the NN increments of level spacings
histograms for the eight values of the control parameter λ of the Limaçon billiard. The
�ts have been made through Boltzmann distribution (green line for λ = 0.0), the Gaussian
PDF (green line for λ = 0.400) and the PDF (7.56) (dashed red lines, with β = 2.05: for
λ = 0.125, β = 6.80: for λ = 0.150, β = 5.90: for λ = 0.175, β = 5.40: for λ = 0.200,
β = 7.40: for λ = 0.250, β = 8.60: for λ = 0.300) for the remaining intermediate
parameters.
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Figure 7.7: Using Equation (7.56) we have �tted the NN increments of level spacings
histograms for the nine values of the control parameter r/R of the Mushroom billiard.
The �ts have been made through Boltzmann distribution (light blue line for r/R = 0.0),
the Gaussian PDF (light blue line for r/R = 7/10) and the PDF (7.56) (dashed red lines,
with β = 3.20: for r/R = 1/8, β = 5.90: for r/R = 1/6, β = 7.00: for r/R = 1/5,
β = 5.70: for r/R = 1/4, β = 6.50: for r/R = 3/10, β = 9.20: for r/R = 1/3, β = 35.8:
for r/R = 2/3, for the remaining intermediate parameters.

7.7 Conclusions

We characterized the eigenvalue spectra of two families of quantum billiards with

mixed dynamics, where regular and chaotic behaviors may coexist, the Limaçon and the

Mushroom shaped billiards. These families were de�ned with a shape control parameter

that drives a crossover from regular to fully chaotic regimes. The �uctuations in each

spectrum were analysed by treating them as a time series with the level order playing the

role of time.

We determined that in general the probability density function of the nearest neigh-

bors spacing distribution is represented as a statistical superposition of a large time-scale

conditional Wigner-Dyson distribution weighted by the gamma distribution that charac-

terizes the slowly changing background, where the dynamics of the system is formulated

as a hierarchical stochastic model.
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We found in the nearest neighbor spacing increments distribution (P (x)) a smooth

crossover from the Boltzmann distribution in the regular limit to a Gaussian distribution

in the chaotic regime. In the intermediate region, where mixed dynamics takes place, the

nearest neighbor spacing increments is found to be well described by a K− distribution

(Jakeman and Pusey (1978)).
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8 Conclusions and perpectives

8.1 Conclusions

The H-theory, as it has been termed the formalism resulting from this research work,

has proved to be versatile and robust for describing the dynamics of the hierarchical com-

plex systems. This model is a direct consequence of �ve basic principles: (i) temporal

translational symmetry, (ii) local interactions, (iii) scale invariance, (iv) equilibrium con-

dition, and (v) unidirectional �ow. Via this approach, we have characterized the PDFs

for the signal in the experimental detection scale, which were interpreted as the result

of stochastic processes in which multiple spatial/temporal scales are coupled through a

hierarchical structure.

In this manuscript, starting with the second chapter, the universal classes, its asymp-

totic behavior and its parametric dependencies have been shown in detail. Using the

Mellin transform, the probability density functions for the multi-scale approach have

been established. The solutions have been written via the Fox H-functions, which in most

cases have been simpli�ed to Meijer G-functions. Later, in Chapters four, �ve and seven

we have shown valuable and innovative applications.

In chapter three it was established that the variance estimator that allows the de-

coupling of the background from the signal, and guarantees the validity superposition

hypothesis. This procedure has been extended in chapters four and �ve as a fundamental

tool to characterize the experimental series (i) of the velocity measurements in a turbulent

�uid, (ii) output intensities of the erbium random �ber laser, and (iii) the returns series
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with thirty seconds inter-event time of Ibovespa São Paulo Index.

Through a joint �tting procedure, for the signal and background, we eliminated the

ambiguity that several distributions can describe the same data series Macêdo et al.

(2017). This was a crucial contribution made by this formalism, since it allows to establish

in systems that present PDF with heavy tails, the parametric family associated with

the stationary distribution of its time series, the number of background scales and its

parameter values. We remark that all applications detailed in this thesis, are sensitive to

the scale of observation, or data acquisition, so that the forms associated with the central

limit theorem (Gaussian, Wigner-Dyson) are obtained only in the scale Integral, which is

the largest scale of the system.

The H-theory, was used in chapter four, to characterize the entire transition of the

velocity increments spectrum δvτ (t) = v(t+ τ)− v(t), of the Eulerian turbulence experi-

ment made by B. Chabaud and et al, from the experimental resolution scale (τ = 20), to

the integral scale (τ > 210).

In the erbium random �ber laser system described in chapter �ve, I have presented

together with the co-authors of paper Roa-González et al. (2017) for the �rst time in

the literature, relations between the output intensities spectrum and two-dimensional

turbulence, such as a double spectral density coe�cient 1/fα. We also established for the

�rst time in this type of systems the existence of statistical mixture for probability density

functions, which are of the stretched exponential class. On the other hand, by the form

of the distributions shown in reference Burgess et al. (2015), gives some evidence of the

connection between the statistical mixture and the Kraichnan-Leith-Batchelor similarity

theory, which could be the focus of future work.

In chapters six and seven, the energy spacing spectra of resonant cavities with mixed

dynamics were analyzed via discrete exterior calculus, which is a powerful tool that esta-
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blishes a direct correspondence between the continuous operators and its discrete version.

This implementation has allowed us to begin the investigation of the curvature e�ects in

the spectrum of resonant cavities through conformal transformations which preserve the

angles of the mesh.

Using the stochastic di�erential equations model presented in chapter seven, which is

framed in the H-theory domain, we have presented a theory for describing the crossover

from the integral to the chaotic regime. Such models can be used in any system that

presents similar transitions, such as spin chains and random networks, among others.

8.2 Perpectives

Working on this research project o�ered me several valuable experiences, among which

I highlight the opportunity to corroborate through experimental data a theoretical model.

So as far as possible, I would like to keep this trend, via the optical experiments to delve

between the connections of random lasers, turbulence, and spin glasses.

The discrete exterior calculus also opens many possibilities and connections, in the

short term, I want to resume the investigation of the curvature e�ect on the spectral series

of the cavities. Also, I want to simulate through DEC the Navier-Stokes equations con�ned

in two-dimensional and three-dimensional geometries, to characterize the spectrum for

velocity increments.

The DEC also o�ers the possibility to simulate other physical phenomena in closed

or open geometries, which generate a spectral series associated with di�erent ensembles

of random matrix theory, research that has already begun to be carried out by my ad-

viser in collaboration with researchers from the CIN of the UFPE and the mathematics

department of UFRPE. A project that I want to integrate soon.
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A Coupled SDEs for spacing energy levels

Coupled stochastic equations to energy levels spacing in the ballistic cavities with

mixed dynamics have been characterized by a set of three matrix equations which each

equation represent one input for GOE 2X2 x
(α)
i where i = {11, 12, 22} and α = 1, 2, the

elements of each vector are coupled through γ matrix. It will generate the time series for

energy spacing levels S =

√
(x

(2)
11 − x

(2)
22 )2 + 4x

(2)
12 .(

dx
(1)
i

dx
(2)
i

)
= −

(
γ11 γ12

γ21 γ22

)(
x

(1)
i

x
(2)
i

)
dt+

√
f(i)ε1(t)

(
dW

(1)
i

dW
(2)
i

)
. (A.1)

The variance evolution in this model is associated with the εM(t) coe�cient which cor-

responds to greater scale at hierarchy. In this section we have taken the particular case

M = 1 , this single scale for variance is characterized by time ζ1 who satis�es the condi-

tion ζ1 � 1 < λ. Condition that establishes the separation of scales between S(t) and ε1

evolution.

dε1 = −ζ1(ε1 − ε0)dt+ k1ε1dWε1(t). (A.2)

Our goal is to determine the stationary PDF solution for spacing S =

√
(x

(2)
11 − x

(2)
22 )2 + 4x

(2)
12

corresponding to system solution. Using the Milstein's method for coupled stochastic

equations. To implement this computational method, we must discretize the equations

(A.1-A.2), which can be written generically as (A.3) equation.

dX l
t = al(t,Xt)dt+

m∑
k=1

bl,k(t,Xt)dW
k
t . (A.3)

Equation (A.3) has a iterative solution with �xed hopping ∆t, given by Milstein method
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X l
t = X l

t−1 + al(t− 1, Xt−1)∆t+
m∑
k=1

bl,k(t− 1, Xt−1)∆W k
t−1

+
m∑

k1=1

m∑
k2=1

Lk1bl,k2(t− 1, Xt−1)I(k1,k2)∆t,

(A.4)

where Lk1 is a di�erential operator for discretized variables Lk1 =
∑

r b
r,k1 ∂

∂xr
, and I(k1,k2)

corresponds to the Itô integrals for multiplicative white noise associated with the product

of two Wiener processes.

A.1 Milstein method

Milstein method is in general used for solving stochastic di�erential equations of the

form:

dX i
t = ai(t,Xt)dt+

m∑
j=1

bi,j(t,Xt)dW
j
t . (A.5)

Equation (A.5) has a iterative solution with �xed hopping ∆t, given by Milstein method

Kloeden and Platen (1999); Huy (2010) as follows

X i
t = X i

t−1 + ai(t− 1, Xt−1)∆t+
m∑
j=1

bi,j(t− 1, Xt−1)∆W j
t−1

+
m∑
j1=1

m∑
j2=1

Lj1bi,j2(t− 1, Xt−1)I(j1,j2)∆t,

(A.6)

where I(j1,j2) represent the integrals of multiplicative white noise, whose results depends

on the approach taken either Itô or Stratanovich, and indexes j1, j2.

I(j1,j2) =

∫ tn+1

tn

∫ s1

tn

dW j1dW j2 . (A.7)

Since the diagonal case, i.e. when j1 = j2 integrals in the two approaches di�er by the

factor ∆t
2
, in our case we have worked with the Itô approach, which has the form:

I(j1,j1) =
1

2

(
(∆W j1)2 −∆t

)
= J(j1,j1) −

1

2
∆t. (A.8)
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If the indexes are di�erent j1 6= j2 integrals in the two approaches are the same but the

result greatly increases the di�culty of implementing such a result in the computer code,

because it obeys a power series of the form:

I(j1,j2) = Jp(j1,j2) = ∆t

(
1

2
Ξj1Ξj2 +

√
ρp(µj2,pΞj1)

)
+

∆t

2π

p∑
r=1

1

r

(
ψj1,r(

√
2Ξj2 + νj2,r)− ψj2,r(

√
2Ξj1 + νj1,r)

)
,

(A.9)

where Ξj, ψj,r, νj,r, µj,r are all independent N(0 : 1) Gaussian random variables propor-

tional to 1√
∆t
dW j, further the coe�cient ρp is also a series of the form:

ρp =
1

12
− 1

2π2

p∑
r=1

1

r2
(A.10)

For the purposes of computer code we have taken only the �rst term of each of the series

p = 1, since advance di�erent tests were made adding more terms of the series. However,

we did not observe signi�cant changes in the results for the systems discussed here. In

contrast, when all terms of the series of r is obviated the results were not satisfactory

because it di�ered noticeably from the theoretical curves for the tests performed.
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B Dissipation rate of Navier Stokes equations

The dissipation of turbulent energy requires an equation to represent the turbulent

kinetic energy. This is usually achieved by the so-called Reynolds decomposition, where

the instantaneous �ow is described by a time averaged variable Φ and a �uctuating variable

φ.

φ̃ = Φ + φ → Φ ≡ 1

T

∫ t0+T

t0

φ̃dt (B.1)

ρ
∂~v

∂t
+ ρ(~v · ~∇)~v = −~∇p+ µ∇2~v (B.2)

~∇ · ~v = 0, (B.3)

where the quantities to decompose into two parts are the velocity and the pressure

~v = {v1, v2, v3} =
∑3

i=1 viêi

~∇ =
∑3

i=1 êi
∂
∂xi
∇2 =

∑3
i=1

∂2

∂x2
i

vi → ṽi = Vi + vi, p→ p̃ = P + p. Introducing these variables into the Navier-Stokes

equation, we get

ρ

(
∂

∂t
(Vi + vi) + (Vj + vj)

∂

∂xj
(Vi + vi)

)
= − ∂

∂xj
(P + p) + µ

∂2

∂x2
j

(Vi + vi). (B.4)

Performing the multiplications indicated in the above equation

∂Vi
∂t

+
∂vi
∂t

+ Vj
∂Vi
∂xj

+ Vj
∂vi
∂xj

+ vj
∂Vi
∂xj

+ vj
∂vi
∂xj

= −1

ρ

∂

∂xj
(P + p) + ν

∂2

∂x2
j

(Vi + vi). (B.5)
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Using equation (B.5), I proceed to take the average of each of the terms, which are noted

by the bar at the top

vi
∂Vi
∂t

+ vi
∂vi
∂t

+ viVj
∂Vi
∂xj

+ viVj
∂vi
∂xj

+ vivj
∂Vi
∂xj

+ vivj
∂vi
∂xj

= −vi
ρ

∂

∂xj
(P + p) + νvi

∂2

∂x2
j

(Vi + vi),

(B.6)

where the velocity parts (trend and �uctuating) satisfying the following relations

• V = V

• v = 0

• vV = vV = 0

• vv 6= 0

• vi ∂vi∂t =
∂ 1

2
vivi
∂t

= ∂k
∂t

where k = 1
2
vivi

• νvi ∂
2

∂x2
j
(Vi + vi) = νvi

∂2

∂x2
j
(vi) = ν

∂2( 1
2
v2
i )

∂x2
j
− ν ∂vi

∂xj

∂vi
∂xj

Using the results of the previous items, it is possible to write the Navier-Stokes equation

as a function of the average kinetic energy

∂k

∂t
+ Vj

∂k

∂xj
+ vivj

∂Vi
∂xj

+
∂

∂xj

(
1

2
vivivj

)
= −1

ρ

∂

∂xj
(vip) + ν

∂2k

∂x2
j

− ν ∂vi
∂xj

∂vi
∂xj

, (B.7)

when is simpli�ed the equation (B.7) gives

∂k

∂t
= −vivj

∂Vi
∂xj
− ν ∂vi

∂xj

∂vi
∂xj

. (B.8)

Equation (B.8) allows identifying the mean rate of energy dissipation

ε = ν
∂vi
∂xj

∂vi
∂xj

= 2νsijsij (B.9)
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C Connection between Langevin and Fokker-Planck equations

This appendix shows the connection between the Fokker-Planck equation and the

Langevin equation. The Fokker-Planck equation is understood as the second-order ex-

pansion of the Kramers-Moyal equation (KME) (Risken and Franck (1996)). The KME

can be deduced in di�erent ways, in particular, we use the relation with Bayes' theo-

rem, where the purpose is to determine the probability density function PDF a posteriori

W (x, t+ δt) from integration of the product between the transition PDF P (x, t+ δt|x′, t)

and the a priori PDF W (x′|t), given by

W (x, t+ δt) =

∫
P (x, t+ δt|x′, t)W (x′|t)dx′. (C.1)

We express the moments of transition probability density function of equation (C.1)

as

Mn(x′t, δt) = 〈[ξ(t+ δt)− ξ(t)]n〉|ξ(t)=x′ =

∫
(x− x′)nP (x, t+ δt|x′, t)dx, (C.2)

now, using the Fourier transform, we set the characteristic function of the P (x, t+δt|x′, t)

as a Taylor series for its moments

C(u, x′, t, δt) =

∫ ∞
−∞

exp(iu(x− x′))P (x, t+ δt|x′, t)dx = 1 +
∞∑
n=1

(iu)nMn(x′t, δt)

n!
, (C.3)

so that when we taking the inverse Fourier transform we obtain

P (x, t+ δt|x′, t) =
1

2π

∫ ∞
−∞

exp(−iu(x− x′))

[
1 +

∞∑
n=1

(iu)nMn(x′t, δt)

n!

]
du. (C.4)
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Once this procedure has been performed, we use the following properties for the Dirac

delta function

1

2π

∫ ∞
−∞

(iu)n exp(−iu(x− x′))du =

(
− ∂

∂x

)n
δ(x− x′) (C.5)

and

δ(x− x′)f(x′) = δ(x− x′)f(x),

where through the above properties we establish

P (x, t,+δt|x′, t) =

[
1 +

∞∑
n=1

1

n!

(
− ∂

∂x

)n
Mn(x, t, δt)

]
δ(x− x′). (C.6)

We now assume that the moments Mn can be expanded into a Taylor series with

respect to δt Risken and Franck (1996)

Mn(x, t, δt)

n!
= D(n)(x, t)δt+O((δt)2), (C.7)

by taking into account only the linear terms in δt we thus have

∂W (x, t)

∂t
=

N∑
ν=1

(
− ∂

∂x

)ν
D(ν)(x, t)W (x, t); ∞ > N ≥ 2. (C.8)

Relation (C.8) is known as the Kramers-Moyal equation. The goal now is to determine

the form of the coe�cients D(n)(x, t) associated with the Langevin equation (C.9), given

by

dξ

dt
= A(ξ, t) +B(ξ, t)Γ(t), (C.9)

where the term Γ(t) is white noise, which satis�es the following properties 〈Γ(t)〉 = 0;

〈Γ(t)Γ(t′)〉 = 2δ(t− t′). We obtain by integrating equation (C.9)

ξ(t+ δt)− x =

∫ t+δt

t

dt1A (ξ(t1), t1) +

∫ t+δt

t

dt1B (ξ(t1), t1) Γ(t1). (C.10)
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We proceed to expand the drift coe�cient and the noise amplitude regarding the

stochastic variable

A (ξ(t1), t1) = A(x, t1) +
∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x (ξ(t1)− x) + . . . , (C.11)

B (ξ(t1), t1) = B(x, t1) +
∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x (ξ(t1)− x) + . . . . (C.12)

We substitute relations (C.11) and (C.12) in equation (C.10), to obtain

ξ(t+ δt)− x =

∫ t+δt

t

dt1

(
A(x, t1) +

∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x (ξ(t1)− x)

)
+

∫ t+δt

t

dt1

(
B(x, t1) +

∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x (ξ(t1)− x)

)
Γ(t1) + . . . .

We use iteration over the terms (ξ(t1)− x), then we produce

ξ(t+ δt)− x =

∫ t+δt

t

dt1A(x, t1) +

∫ t+δt

t

dt1
∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

∫ t1

t

dt2A(x, t2)

+

∫ t+δt

t

dt1
∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

∫ t1

t

dt2B(x, t2)Γ(t2) + . . .

+

∫ t+δt

t

dt1B(x, t1)Γ(t1) +

∫ t+δt

t

dt1
∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

∫ t1

t

dt2A(x, t2)Γ(t1)

+

∫ t+δt

t

dt1
∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

∫ t1

t

dt2B(x, t2)Γ(t2)Γ(t1) . . .

We take the averages of the previous equation

〈ξt+ δt〉 =

∫ t+δt

t

dt1A(x, t1) +

∫ t+δt

t

∫ t1

t

(
∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

)
A(x, t2)dt2dt1 + . . .

+

∫ t+δt

t

dt1

(
∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

)∫ t1

t

dt2B(x, t2)2δ(t2 − t1) + . . . ,

and using property 〈Γ(t)Γ(t′)〉 = 2δ(t− t′) is obtained
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〈ξt+ δt〉 =

∫ t+δt

t

dt1A(x, t1) +

∫ t+δt

t

∫ t1

t

(
∂A(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

)
A(x, t2)dt2dt1 + . . .

+

∫ t+δt

t

dt1

(
∂B(ξ(t1), t1)

∂ξ(t1)
|ξ(t1)=x

)
B(x, t1) + . . .

In the limit δt→ 0, we thus arrive at

D(1)(x, t) = A(x, t) +

(
∂B(ξ(t), t)

∂ξ(t)
|ξ(t)=x

)
B(x, t). (C.13)

Now, through the relation 〈[ξ(t + δt)− ξ(t)]n〉|ξ(t)=x′ = Mn(x′t, δt) ∼ (n!)D(n)(x, t)δt.

We take the averages on the square of the Langevin equation, thus we �nd that the

coe�cient D(2)(x, t) is given by

D(2)(x, t) =
1

2
lim
δt→0

1

δt

∫ t+δt

t

∫ t+δt

t

dt1dt2B(x, t1)B(x, t2)2δ(t1 − t2) = B2(x, t), (C.14)

taking into account only the linear variations in δt the higher order coe�cientsD(n)(x, t)

for n ≥ 3 are zero. The previous feature leads us that the Langevin equation (C.9) having

a Kramers-Moyal expansion only up to second order. Therefore, we have a direct corre-

spondence with the Fokker-Plank equation, so during the present manuscript, it becomes

recurrent to associate with each Langevin equation a Fokker-Planck equation.
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D Mellin Transform

D.1 Mellin Transform

Starting from the gamma function de�nition

Γ(s) =

∫ ∞
0

e−xxs−1dx, (D.1)

and using its inverse representation, we obtain the exponential function

e−x =
1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds. (D.2)

Expanding the function as a Dirichlet series

ϕ(s) =
∞∑
n=1

an
ns
, (D.3)

and introducing a one
(

1 = Γ(s)
Γ(s)

)
to convenience, to later expand the numerator in the

integral representation of the gamma function

ϕ(s) =
∞∑
n=1

anΓ(s)

Γ(s)ns
=
∞∑
n=1

an
Γ(s)

∫ ∞
0

e−xxs−1dx

ns
, (D.4)

from equation (D.5), it is possible to identify that the term in parentheses is e−nx

ϕ(s) =
∞∑
n=1

an
Γ(s)

∫ ∞
0

(
1

2πi

∫ c+i∞

c−i∞
Γ(s)(nx)−sds

)
︸ ︷︷ ︸

e−nx

xs−1dx. (D.5)

Equation (D.5) can be organized by commutating summation and integral to identify the

serial expansion of the f(x) function
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ϕ(s) =
1

Γ(s)

∫ ∞
0

(
∞∑
n=1

ane
−nx

)
︸ ︷︷ ︸

f(x)

xs−1dx, (D.6)

this way we get the Mellin Transform

ϕ(s) =
1

Γ(s)

∫ ∞
0

f(x)xs−1dx, (D.7)

and the inverse Mellin Transform

f(x) =
1

2πi

∮
C

ϕ(s)x−sds (D.8)
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E Laplace-Beltrami operator

This appendix is a summary of the ideas to build the Laplace-Beltrami operator. In

particular we are interested in the displacements of each vertex fi = f(xi) (which in

the language of di�erential forms corresponds to a 0 − form). Let us assume that the

three-vertices of a reference triangle, which Cartesian coordinates are (xi,xj,xk), where

xi = (xi, yi), for any type of displacement generated on triangulation conforms angles

should be preserved. This condition can be satis�ed if a shift to the coordinates of the

barycenter is made. i.e. relative to this triangle may be considered as weights, Bi, Bj,

Bk, subject to the normalization condition
∑3

δ=1 Bδ = 1. We want to determine the

barycentric coordinates of x = (x, y)

x =
Bixi +Bjxj +Bkxk

Bi +Bj +Bk

, (E.1)

with the constraint Bi = 1−Bj −Bk. From the vector equation (E.1) for barycenter, we

can establish two vector functions equivalent

(
x− xi
y − yi

)
︸ ︷︷ ︸

f(x,y)

=

T︷ ︸︸ ︷(
xj − xi xk − xi
yj − yi yk − yi

)(
Bj

Bk

)
︸ ︷︷ ︸

f(Bj ,Bk)

, (E.2)

where equation (E.3) establishes the inverse relation

(
Bj

Bk

)
=

1

2A

(
yk − yi xi − xk
yi − yj xj − xi

)
︸ ︷︷ ︸

T−1

(
x− xi
y − yi

)
. (E.3)
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Once determined the shape of the f(x, y), for our reference triangle, we want to establish

two main sets of Laplacian operations associated with the set of neighbors to vertrice xi.

The �rst set of operations determines the gradient ∇f(x, y)→ ∇f(Bj, Bk).

∇(f) =

(∂f
∂x
∂f
∂y

)
=

(
∂Bj
∂x

∂f
∂Bj

+ ∂Bk
∂x

∂f
∂Bk

∂Bj
∂y

∂f
∂Bj

+ ∂Bk
∂y

∂f
∂Bk

)
(E.4)

∇(f) =

(
∂Bj
∂x
∂Bj
∂y

)
∂f

∂Bj

+

(∂Bk
∂x
∂Bk
∂y

)
∂f

∂Bk

(E.5)

Derivatives de�ned in Equation (E.5), are obtained from the equation (E.3), thus

giving the �nal gradient form.

∇f =
1

2A

(
yk − yi
xi − xk

)
(fj − fi) +

1

2A

(
yi − yj
xj − xi

)
(fk − fi) (E.6)

Introducing the notation (xk − xi)
⊥ = R⊥(xk − xi), whose corresponds to a orthogonal

positive rotation (equation(E.7)) of vector Botsch et al. (2010) (xk − xi) =

(
xk − xi
yk − yi

)
,

which corresponds to the direction joining the vertices k and i, each determined by the

coordinates xk and xi of triangle

R⊥ =

(
cos θ sin θ
− sin θ cos θ

)
︸ ︷︷ ︸

θ=π/2

=

(
0 1
−1 0

)
(E.7)

So the gradient in E.6 can be written in compact notation as E.8.

∇f = (fj − fi)
(xk − xi)

⊥

2A
+ (fk − fi)

(xi − xj)
⊥

2A
(E.8)

Once set ∇f , we have built the Laplacian associated, through the theorem of Gauss

Ostrogadsky where the normal vectors over which the integration is performed are shown

in Figure (6.2), and can be build through the set of orthogonal rotations opposite sides

of �rst neighbors of vertex coordinate xi.
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∫
Ai

4fdA′ =
∫
∂Ai

∇f · nds′ ∼=
∑
γ,δ

∇fiγδ · nγδ (E.9)

In other words there is a set of triangles having the vertex xi in common, this set is called

1-ring of xi, consisting of six vertices that form the hexagon's area Ai, so that the integral

of equation (E.9), has a discrete form composed of of the inner product sum between

the gradient of each triangle and normal vector associated at 1-ring. Taking our triangle

reference, the inner product has the form

∇fijk · njk = (fj − fi)
(xk − xi)

⊥ · (xk − xj)
⊥

2A

+(fk − fi)
(xi − xj)

⊥ · (xk − xj)
⊥

2A
,

where A is the triangle area.

A =
1

2
|xk − xj||xi − xj| sin(αik) =

1

2
|xk − xj||xk − xi| sin(βij). (E.10)

Producing the �nal result:

∇fijknjk =
1

2
[cot(βij)(fj − fi) + cot(αik)(fk − fi)]. (E.11)

When making the same operations on the other �ve triangles which 1-ring members for i

vertex, we get

∇fiklnkl =
1

2
[cot(βik)(fk − fi) + cot(αil)(fl − fi)] (E.12)

∇filmnlm =
1

2
[cot(βil)(fl − fi) + cot(αim)(fm − fi)] (E.13)

∇fimn · nmn =
1

2
[cot(βim)(fm − fi) + cot(αin)(fn − fi)] (E.14)
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∇finp · nnp =
1

2
[cot(βin)(fn − fi) + cot(αip)(fp − fi)] (E.15)

∇fipj · npj =
1

2
[cot(βip)(fp − fi) + cot(αij)(fj − fi)] (E.16)

Associating terms, we get:

∫
Ai

4fdA =
1

2

∑
xγ∈A1(xi)

(cotαi,γ + cot βi,γ) (fγ − fi) (E.17)

Thus the discrete average of the Laplace-Beltrami operator of a function f at vertex xi

is given by

4f(xi) :=
1

2Ai

∑
xγ∈N1(xi)

(cotαi,γ + cot βi,γ) (fγ − fi) (E.18)




