
Pós-Graduação em Ciência da Computação

“Uma Abordagem para Gerenciamento de
Consistência em um Ambiente de Banco de

Dados Heterogêneos”

Por

Renata Costa Guedes Pereira

Dissertação de Mestrado

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, Fevereiro/1999

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

RENATA COSTA GUEDES PEREIRA

“Uma Abordagem para Gerenciamento de Consistência em
um Ambiente de Banco de Dados Heterogêneos"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA
DA COMPUTAÇÃO.

 ORIENTADORA: Profa. Dra. Ana Carolina Salgado

RECIFE, 26 de Fevereiro de 1999

Pereira, Renata Costa Guedes

Uma abordagem para gerenciamento de
consistência em um ambiente de banco de dados
heterogêneos / Renata Costa Guedes Pereira. –
Recife : O Autor, 1999.
 xviii, 160 folhas : il., fig., tab.

 Dissertação (mestrado) – Universidade Federal
de Pernambuco. CIn. Ciência da computação, 1999.

 Inclui bibliografia.

 1. Banco de dados – Banco de dados
heterogêneos. 2. Consistência – Técnicas de
integração. I. Título.

 005.74 CDD (22.ed.) MEI2008-003

Á memória da minha avó Diva e aos meus pais ,
Marcos e Socorro, com todo o meu amor, admiração e respeito.

Agradecimentos

A todos que contribuíram direta e indiretamente para que esse trabalho fosse rea-
lizado o meu muito obrigada. Ao CNPq por custear o primeiro ano do meu traba-
lho, os meus sinceros agradecimentos. Agradeço sobretudo à Peter Schneider e Dr.
Fernando Rezende que deram todo apoio financeiro para a realização desse traba-
lho durante todo o segundo ano.

A todos que fazem parte do departamento FT3-EK, o meu muito obrigada. Em es-
pecial, agradeço a Ulrich Schaefer, Alex, Christine, Haike e Grekor pela amizade
e disponibilidade sempre que foi preciso.

Agradeco ao grupo MENTAS do qual participei quando da elaboração desta dis-
sertação.

Agradeço mais que em especial, ao amigo e chefe Dr. Fernando, por sua dedi-
cação, amizade, e apoio irrestrito durante todo o meu trabalho. Com certeza esse
trabalho só chegou até aqui devido a toda ajuda e apoio prestado por ele.

Uli Hermsen, a você o meu muito obrigada, por ter se tornando um amigo tão es-
pecial. Obrigada por todo o apoio e amizade prestados durante o ano. Obrigada pe-
las aulas de alemão e por todo o apoio.

O meu muito obrigada as meninas do Apê: minhas duas cunhadas, Ana Cláudia e
Daniela, Márcia e Micheline, que me proporcionaram um ano maravilhoso do qual
nunca esquecerei.

Obrigada, Márcia, por ter-se mostrado uma amiga tão sincera. Obrigada por seus
emails diários, que aliviavam um pouco a distância de todos do Brasil. Por ler toda
a minha tese e ter dado a sua contribuição.

Obrigada aos meus amigos Inês, Harley, Karina, Michele, Helena, Débora, Stênio,
Valério e Viviane por terem me dado o apoio emocional tão necessário quando eu
estava a milhas de quilometros de vocês.

A Tia Tuta e Mila todo o meu carinho. Obrigada por sempre querer que eu estives-
se ai pertinho.

Aos meus pais e irmãos, todo o meu amor. Obrigada, Frederico e Guilherme, dos
quais sempre procurei ser uma imagem. Obrigada, Papai e Mamãe, por todo o
amor passado por vocês. Obrigada por serem pessoas tão corretas e maravilhosas.

0 Índice

Lista de Figuras ... xv

Lista de Tabelas... xvii

1 Introdução.. 1
1.1 Motivação . 1
1.2 Objetivos da Dissertação . 3
1.3 Estrutura da Dissertação . 4

2 Sistemas de Bancos de Dados Distribuídos 7
2.1 Introdução . 7
2.2 Sistemas de Gerenciamento de Bancos de Dados Distribuídos . . . 8
2.3 Tipos de Bancos de Dados Distribuídos . 10

2.3.1 Grau de Heterogeneidade . 10
2.3.2 Grau de Distribuição . 13
2.3.3 Grau de Autonomia . 13

2.4 Taxonomia dos Bancos de Dados que Compartilham Informações 14
2.5 Considerações . 17

3 Sistemas de Bancos de Dados Heterogêneos 19
3.1 Introdução . 19
3.2 Multidatabases . 20
3.3 Taxonomia dos SBDHs . 22
3.4 Comparação das Arquiteturas de SBDHs 26
3.5 Funcionalidades providas pelos SGBDH . 28

3.5.1 Integração de Esquemas em SGBDH . 28
3.5.2 Gerenciamento de Consultas Distribuídas. 34
3.5.3 Gerenciamento de Transações Distribuídas 34
3.5.4 Administração . 36
3.5.5 Resolução de Heterogeneidade. 37

3.6 Sistemas Heterogêneos Existentes . 38
3.6.1 Não Orientados a Objetos . 38
3.6.2 Orientados a Objetos . 42
xi

3.7 Middleware de Bancos de Dados. 44
3.8 Considerações . 45

4 MENTAS ..47
4.1 Introdução. 47
4.2 Tecnologia Middleware de Banco de Dados 49
4.3 Integração dos Esquemas . 50
4.4 Considerações . 51

5 Integração de Bancos de Dados no MENTAS53
5.1 Introdução. 53
5.2 Arquitetura de Acesso aos Banco de Dados 53
5.3 Servidor de Banco de Dados . 57

5.3.1 Banco de Dados Integrados . 57
5.3.2 Sistema Middleware. 58

5.4 Comunicação . 59
5.5 Servidor . 60

5.5.1 Conector de Banco de Dados . 60
5.5.2 Fábrica de Resultados . 62
5.5.3 Controlador de Segurança. 62
5.5.4 Monitor de Consistência . 62

5.6 Cliente . 65
5.6.1 Conector de Interface . 65
5.6.2 Cache. 67
5.6.3 Monitor de Consistência . 67

5.7 Funcionalidade da Interface . 68
5.7.1 Formulação de Consultas . 71

5.7.1.1 Especificando a Cláusula de Projeção . 72
5.7.1.2 Especificando a Cláusula da Condição . 73
5.7.1.3 Especificando a Ordenação dos Resultados. 74
5.7.1.4 Others Databases . 74
5.7.1.5 Navegação Tipo 1 . 76
5.7.1.6 Navegação Tipo 2 . 79
5.7.1.7 Navegação Tipo 3 . 80

5.7.2 Janela de Resultados . 81
5.7.3 Menu Consistency e o Monitor de Consistência 83

5.7.3.1 Other Databases versus Menu Consistency 83
5.7.3.2 Show Mapping Information . 85
5.7.3.3 Select Mapping Tables. 85
5.7.3.4 Generate Mapping Tables . 85
xii

5.8 Considerações . 86

6 Monitor de Consistência... 87
6.1 Introdução . 87
6.2 Navegação entre os bancos de dados . 88
6.3 Pontos de Entrada . 90
6.4 Identificação dos Conflitos entre os Pontos de Entrada 91
6.5 Definição de Regras para Solucionar os Conflitos 96
6.6 Monitor de Consistência do Servidor - MCS. 99

6.6.1 Arquitetura . 99
6.6.2 Gerente de Acesso aos Bancos de Dados 100
6.6.3 Gerenciador de Pontos de Entrada . 101
6.6.4 Parser. 105
6.6.5 Gerador de Tabelas de Mapeamento - GTM 107
6.6.6 Gerenciador de Tabelas de Mapeamento 111
6.6.7 Atualizador de Consultas . 116
6.6.8 Navegador . 117

6.6.8.1 Vetar a Navegação . 117
6.6.8.2 Montagem das Consultas Intermediárias 118

6.6.9 Gerente de Consistência . 126
6.7 Monitor de Consistência do Cliente - MCC. 132

6.7.1 Parser. 132
6.7.2 Gerenciador de Entradas . 133
6.7.3 Gerente de Navegação . 134

6.8 Um exemplo de navegação no MENTAS 138
6.8.1 Sem Checagem de Consistência. 139
6.8.2 Com Checagem de Consistência. 143

6.9 Consistência X Performance . 146
6.10 Considerações . 148

7 Conclusão .. 149
7.1 Considerações Finais . 149
7.2 Contribuições . 150
7.3 Trabalhos Futuros . 150

Referências .. 153
xiii

xiv

Lista de Tabelas

Tabela 2.1. Diferenças entre Sistemas de Bancos de Dados que Compartilham Informações. . . . 17

Tabela 6.1 Possíveis Navegações no MENTAS. . 89
Tabela 6.2 Possíveis Navegações entre os Pares de Bancos de Dados no MENTAS. 89
Tabela 6.3 Pontos de Entrada. 91
Tabela 6.4 Identificação do Motor e a Representação nos Bancos de Dados. 93
Tabela 6.5 Gramática - Tipo do Motor. 95
Tabela 6.6 Gramática - Especificação. 95
Tabela 6.7 Gramática - Baumuster. . 95
Tabela 6.8 Diferenças nas Representações dos Pontos de Entrada.. 102
Tabela 6.9 Parser - PSD. . 106
Tabela 6.10 Parser - LKD.. 106
Tabela 6.11 Atuação do Parser. 140
Tabela 6.12 Pontos de Entrada para Checagem de Consistência. . 143
xvii

xviii

Lista de Figuras

Figura 2.1 Classificação dos SGBDs. . 8
Figura 2.2 Taxonomia de Sistemas de Bancos de Dados que Compartilham Informações. 15

Figura 3.1 Arquitetura Genérica de um SGBDH. 21
Figura 3.2 Arquitetura de um SBDH com Acoplamento Forte.. 23
Figura 3.3 Arquitetura de SBDH com Acoplamento Fraco. . 25
Figura 3.4 Taxonomia dos SBDHs. . 26
Figura 3.5 Classificação dos Conflitos Estruturais. . 30
Figura 3.6 Fases da Integração de Esquemas. 33

Figura 4.1 A Arquitetura Geral do MENTAS. 48
Figura 4.2 Integração de Esquemas Heterogêneos como um Esquema Global e Virtual. 51

Figura 5.1 Arquitetura de Acesso aos Banco de Dados. 54
Figura 5.2 Passos na Integração dos Esquemas Heterogêneos no MENTAS. 58
Figura 5.3 Cliente/Servidor de uma Aplicação RMI.. 60
Figura 5.4 Janela Principal do MENTAS - Interface de Acesso aos Bancos de Dados. 69
Figura 5.5 Pop up Menu para a Formulação de Consultas. 71
Figura 5.6 Janela da Projeção.. 72
Figura 5.7 Janela de Montagem da Cláusula de Condição.. 73
Figura 5.8 Janela de Ordenação dos Resultados. 74
Figura 5.9 Tipos de Consultas versus Interface na Navegação. . 75
Figura 5.10 Consulta com Cláusula de Condição Contendo Pontos de Entrada. 76
Figura 5.11 Busca da Consulta Intermediária para o Identificador do Motor. 77
Figura 5.12 Falha da Primeira Consulta Intermediária. . 78
Figura 5.13 Janela de Other Matches. 79
Figura 5.14 Janela de Especificação de Atributos. . 81
Figura 5.15 Janela de Apresentação dos Resultados. 83
Figura 5.16 Janela de Especificação dos Pontos de Entrada para Checagem de Consistência. . . 84
Figura 5.17 Janela de Informações sobre as Tabelas de Mapeamento. 85
Figura 5.18 Informação ao Final da Geração de um Novo Mapeamento. 86

Figura 6.1 Arquitetura do Monitor de Consistência. 100
Figura 6.2 Ligação entre as Tabelas de Mapeamento e as Fontes de Dados Remotas 108
Figura 6.3 Problema de Acesso as Tabelas de Mapeamento.. 109
Figura 6.4 Solução Adotada para as Tabelas de Mapeamento. . 110
Figura 6.5 Tabela de Mapeamento versus Tabela de Gerenciamento (Leitura). 111
xv

Figura 6.6 Tabelas de Mapeamento e a Tabela de Gerenciamento. 112
Figura 6.7 Relacionamento entre os Módulos do Monitor de Consistência no Processo de Geração

de Tabela de Mapeamento.114
Figura 6.8 Passos da Navegação com a Presença do Identificador do Motor. 119
Figura 6.9 Montagem das Consultas.. 123
Figura 6.10 Arquitetura do Monitor de Consistência do Cliente. . 132
xvi

Resumo

Atualmente, é muito comum nas empresas a distribuição dos dados ao longo dos depar-
tamentos e linhas funcionais. Dessa forma, recursos e dados são fragmentados contri-
buindo para o surgimento das chamadas “ilhas de informações”. Os dados são
organizados e gerenciados por diferentes Sistemas Gerenciadores de Bancos de Dados
(SGBDs) de diferentes fornecedores e diferentes sistemas operacionais os quais utilizam
diferentes protocolos de rede. Em essência, os dados de uma empresa constituem-se de
servidores de bancos de dados de vários fornecedores, legacy systems e fontes de da-
dos relacionais e não relacionais. Infelizmente, estas fontes de dados não têm habilidade
para comparar e relacionar dados entre si.

Nesta dissertação apresentamos uma metodologia para a resolução de heterogeneidade
semântica de fontes de dados heterogêneas. A resolução de heterogeneidade semântica
visa determinar precisamente os possíveis relacionamentos entre objetos que modelam
informações similares em diferentes bancos de dados componentes. Além disto, uma ou-
tra meta é detectar os conflitos nas estruturas representacionais dos objetos que causam
problemas durante a integração desses componentes. Por fim, deve ser providenciado o
tratamento correto no relacionamento entre esses objetos.

Ao contrário de outras propostas para integrar bancos de dados heterogêneos, onde
existe a presença de esquemas globais totais ou esquemas globais parciais (sistemas
federados), utilizamos o conceito de navegação entre os bancos de dados integrados.
Este método trata conflitos de dados apenas quando uma consulta envolve bancos de
dados distintos. Ou seja, não existe um tratamento prévio das diferenças para a monta-
gem de esquemas globais. Assim, os conflitos são gerenciados somente quando neces-
sário.

Através do conceito de navegação e utilizando a tecnologia de middleware de banco de
dados, apresentamos neste trabalho toda a problemática do nosso ambiente e as nossas
soluções. Dentre estas podemos destacar: a utilização de tabelas intermediárias para re-
solver problemas de heterogeneidade de esquemas de “um-para-muitos atributos”, ou
seja, um atributo em um banco de dados corresponde a vários em outro banco de dados.
Em segundo lugar, empregamos um método avançado de busca por proximidades para
recuperar de um banco de dados informações semelhantes às desejadas pelo usuário,
quando o valor exato de um dado informado não pode ser encontrado. Por último, através
de um mecanismo especial de checagem de consistência, cada usuário pode definir in-
dividualmente os seus desejos de testes de consistência a serem realizados durante a
navegação entre bancos de dados. Através desta tecnologia, provemos ao usuário uma
maior segurança quando o mapeamento entre valores de dados correspondentes não
pode ser feito automaticamente pelo sistema.

Palavras Chave: Banco de Dados, Banco de Dados Heterogêneos, Gerenciamento de
Consistência.

Abstract

A common problem within most corporations nowadays is the distribution of data along
departmental and functional lines, contributing to the emergence of the so-called “islands
of information”. The data are organized and managed by a mix of different DBMSs from
different software vendors and different operating systems that use different network pro-
tocols. Usually, the total corporate data resource is composed of multi-vendor database
servers, legacy systems, and relational and non-relational data sources. Unfortunately,
these data sources have no ability to compare and relate data amongst themselves.

In this thesis, we present an approach to solve the semantic heterogeneity among hetero-
geneous data sources. The task of resolving semantic heterogeneity aims at determining
precisely the relationships between objects that are used to model similar information in
different components. Moreover, another major goal is the detection of possible conflicts
in structural representation of objects, which pose problems during the integration of such
components. At last, the correct treatment and handling of these objects should be con-
sidered as well.

In contrast to other proposals in the field of heterogeneous databases’ integration, where
a single global schema or partial global schemas (federated systems) are usually em-
ployed, we exploit the concept of navigation through the integrated databases. This meth-
od treats data conflicts only when a statement relates data from distinct databases at
once. This means, we do not treat the global schema’s construction beforehand, but on
the contrary, we detect and cope with the conflicts during database navigation on the fly.

We present in this work the problems we were faced with during the design and imple-
mentation of our integrated databases’ environment, and furthermore, we discuss our so-
lutions to these problems. Among these, we can emphasize: the use of intermediary
tables to solve problems of schemas’ integration of the type “one-to-many attributes”, i.e.,
an attribute in a database corresponds to many others in another database. In addition,
we use an advanced methodology for proximity search in order to retrieve for the user
similar information from the databases, in case the desired data value cannot be found for
any reason. At last, by means of a special mechanism for consistency checking, we allow
each user to individually define the level of consistency that must be enforced during nav-
igation through the integrated databases. On the basis of this technology, we provide the
users with a kind of expert system behavior when the mapping between correspondent
data values cannot be made automatically and without inconsistencies.

Keywords: Databases, Heterogeneous Databases, Consistency Management

1 Introdução

1.1 Motivação

Nos anos 90 as organizações estão passando por períodos de fortes transforma-
ções. Pressões de várias naturezas forçam-nas a se adaptarem, a reagirem. O pro-
cesso de globalização dos mercados traz à tona um grau de interdependência entre
as nações e um fluxo de produtos, serviços e idéias nunca antes vivenciado. Esse
fluxo implica na intensificação do impacto da evolução tecnológica que se alastra
pelo globo, tornando velho o que era novo e obsoleto o que há pouco era moderno.
Fatores como custo, produtividade, qualidade e inovação tornaram-se ainda mais
críticos para a conquista e principalmente para a manutenção da vantagem compe-
titiva.

Esse processo alavancado pela globalização dos mercados e pela intensificação
das mudanças tecnológicas, o aumento das organizações e o aumento de competi-
tividade existente levam as empresas a uma reestruturação. A gerência inicialmen-
te centralizada dos dados evoluiu para um modelo mais flexível. As organizações
fragmentaram-se em unidades menores, descentralizando a gerência do negócio.
Com isto, os dados e processamento também foram descentralizados. Cada unida-
de passou a possuir e controlar suas próprias fontes de dados [Pire97]. Forças tec-
nológicas capacitantes, como a computação em grupo e a interconexão em rede,
permitem que empresas tenham alta performance e tornem-se integradas e amplia-
das.

Nos dias de hoje, é muito comum nas empresas a distribuição dos dados ao longo
dos departamentos e linhas funcionais. Dessa forma, recursos e dados são frag-
mentados contribuindo para o surgimento das chamadas “ilhas de informações”.
Os dados são organizados e gerenciados por diferentes Sistemas Gerenciadores
de Bancos de Dados (SGBDs) de diferentes fornecedores e diferentes sistemas
operacionais os quais utilizam diferentes protocolos de rede. Em essência, os da-
dos de uma empresa constituem-se de servidores de banco de dados de vários for-
necedores, legacy systems e fontes de dados1 relacionais e não relacionais.
Infelizmente, estas fontes de dados não têm habilidade para relacionarem-se entre
si [RH98, IBM95].

1. Nesta dissertação o termo fonte de dados sugere o mesmo significado que banco de dados
(BDs).

Introdução
O problema de fontes de dados heterogêneas é tão comum no ambiente de corpo-
racões que, durante o Workshop on Future Database Systems Research patrocina-
do pela National Science Foundation (NSF), foi identificada a necessidade da
criação de um ambiente que controle o compartilhamento e a troca de informações
entre bancos de dados autônomos e heterogêneos. Esta área foi caracterizada como
de grande importância nas pesquisas futuras de bancos de dados [Ham94, FHM92,
FHMS90].

É nesse contexto que está inserido o problema que o MENTAS - MotorEntwi-
cklungsAssistent - se propõe a resolver. O MENTAS é um projeto de inovação da
DaimlerChrysler AG Research and Technology, que está sendo desenvolvido para
engenheiros mecânicos do desenvolvimento de motores da Mercedes-Benz. Hoje,
o ambiente de desenvolvimento de motores na Mercedes-Benz é caracterizado
pelo isolamento, pelo uso de softwares e bancos de dados de vários fornecedores.
Essencialmente, cada departamento envolvido no desenvolvimento de um motor
constitui uma ilha de informação com suas próprias ferramentas e fontes de dados.

O principal problema encontrado pelos engenheiros neste ambiente completamen-
te heterogêneo diz respeito à habilidade de recuperar as informações das várias
fontes de dados para realizar a comparação e correlacioná-las. Os bancos de dados
são encapsulados pelas aplicações, de forma que os engenheiros não têm acesso
direto aos dados armazenados. Portanto, eles devem utilizar diferentes interfaces
providenciadas pelas aplicações para recuperar informações de cada banco de da-
dos. Outra limitação é que tais interfaces não possibilitam a criação de consultas
ad hoc, sendo limitadas a um número de consultas pré-definidas para acessar os
bancos de dados locais. Como o projeto e desenvolvimento de um novo motor é
um processo extremamente criativo, os engenheiros sempre vêem-se limitados na
sua criatividade porque as interfaces não providenciam um método adequado para
recuperar informações nem de uma única fonte de dados, e muito menos quando
estão envolvidos duas ou mais fontes de dados heterogêneas. Ou seja, não há o su-
porte à realização de comparações e correlações entre os dados.

A proposta do MENTAS é realizar a interconexão das fontes de dados e das ferra-
mentas, montando um ambiente de desenvolvimento orientado à engenharia para
a rápida concepção e análise comparativa dos motores. Para atingir este objetivo,
deve ser providenciado um acesso automático e integrado aos bancos de dados he-
terogêneos e às várias ferramentas de simulação.

A solução para a heterogeneidade nas fontes de dados utilizadas pelo MENTAS é
baseada na tecnologia middleware de banco de dados. Acima do sistema midd-
leware, foi projetada e implementada uma interface de acesso aos bancos de da-
dos, através da qual o usuário tem a possibilidade de formular consultas SQL de
modo homogêneo como se tratasse de um banco de dados homogêneo e não de
uma federação de bancos de dados heterogêneos. As consultas feitas pelo usuário
para manipular os bancos de dados seguem o padrão ISO SQL2 (Structured Query
2

Introdução
Language [Mel90, DD97]). Através de uma GUI (Graphic User Interface), os
usuários são guiados no processo de criação de suas consultas as quais podem
acessar desde um simples banco de dados, como também integrar duas ou todas as
demais fontes de dados presentes no MENTAS, tornando um trabalho complexo
numa tarefa trivial para o usuário. A integração dos dados no MENTAS é feita
através do conceito de navegação entre os bancos de dados. Apesar dos dados es-
tarem espalhados ao longo de bancos de dados remotos, autônomos e heterogên-
eos, o que o usuário percebe é um esquema global. Dessa forma os engenheiros
podem navegar por entre os bancos de dados comparando dados e relacionando in-
formações através de uma única e simples interface gráfica. Isso significa que a
informação correta torna-se disponível aos usuários de maneira mais confortável
e, ainda mais importante, muito mais rápido que no ambiente de desenvolvimento
atual.

Para que a interface do usuário seja simples e homogênea, faz-se necessário que
um conjunto de módulos a auxiliem nos diversos problemas encontrados tanto a
nível de um único banco de dados, e principalmente quando trata-se dos bancos de
dados integrados. Nesta dissertação, estamos particularmente interessados no tra-
balho executado por um dos alicerces dessa arquitetura, o Monitor de Consis-
tência do MENTAS. Além de tratar a entrada de dados do sistema no momento da
montagem das consultas, esse módulo é responsável por possibilitar a navegação
entre os bancos de dados integrados.

1.2 Objetivos da Dissertação

Consistência é uma das propriedades mais esperadas em um sistema computacio-
nal, e também uma das mais difíceis de ser garantida. A própria noção de consis-
tência é definida de diferentes formas, de acordo com a comunidade científica
interessada [Cho96]. Nesta dissertação, a palavra consistência está diretamente re-
lacionada à resolução de heterogeneidade semântica das fontes de dados integra-
das. A resolução de heterogeneidade semântica visa determinar precisamente os
possíveis relacionamentos entre objetos que modelam informações similares em
diferentes componentes (bancos de dados) e detectar os possíveis conflitos nas es-
truturas representacionais dos objetos que causam problemas durante a integra-
ção desses componentes. Além disso, deve ser providenciado o tratamento
correto entre esses objetos.

O objetivo principal desta dissertação é apresentar a metodologia empregada para
resolução da heterogeneidade das fontes de dados dentro do ambiente apresentado
pelo MENTAS. Ao contrário de outras propostas para integrar bancos de dados
heterogêneos, onde existe a presença de esquemas globais totais ou esquemas glo-
bais parciais (sistemas federados), o MENTAS utiliza o conceito de navegação.
Este método trata conflitos de dados apenas quando uma consulta envolve dois
bancos de dados distintos. Ou seja, não existe um tratamento prévio das diferenças
3

Introdução
para a montagem de esquemas globais (parciais ou totais). Através do conceito de
navegação e utilizando a tecnologia middleware de banco de dados, apresentare-
mos toda a problemática do nosso ambiente e a nossa solução para o problema.

Além disto, esta dissertação apresenta um panorama geral da pesquisa na área de
integração de bancos de dados heterogêneos, sobre o qual está fundamentado este
trabalho. Após uma breve apresentação do universo de banco de dados distribuíd-
os, são examinadas várias técnicas utilizadas para a resolução do problema das
fontes de dados heterogêneas que compartilham informações. Este estudo serviu
de base para a concepção do Monitor de Consistência atualmente empregado no
MENTAS.

1.3 Estrutura da Dissertação

Os demais capítulos que constituem esta dissertação estão divididos da seguinte
forma:

• Capítulo 2: Sistemas de Bancos de Dados Distribuídos

Este capítulo descreve alguns conceitos de bancos de dados distribuídos, identifi-
cando o posicionamento dos sistemas de bancos de dados heterogêneos como uma
ramificação dos bancos de dados distribuídos.

• Capítulo 3: Sistemas de Bancos de Dados Heterogêneos

Este capítulo dedica-se a descrever toda a problemática existente na união de fon-
tes de dados heterogêneas. Também, apresentamos as principais abordagens da li-
teratura para a resolução deste problema.

• Capítulo 4: MENTAS

Neste capítulo introduzimos o projeto MENTAS, os problemas encontrados e os
objetivos do projeto.

• Capítulo 5: Integração dos Bancos de Dados no MENTAS

Este capítulo apresenta a arquitetura utilizada pelo MENTAS para realizar o aces-
so aos bancos de dados. Aqui também é apresentada a funcionalidade da interface
[Oli99] provida para o usuário final, focalizando os aspectos da navegação.

• Capítulo 6: Monitor de Consistência

Este capítulo apresenta o Monitor de Consistência utilizado pelo MENTAS, des-
crevendo suas características, seus objetivos básicos, as estratégias utilizadas e os
resultados alcançados.
4

Introdução
• Capítulo 7: Conclusão

Neste último capítulo, são exibidas conclusões sobre o trabalho desenvolvido, des-
tacando as contribuições. Por fim, algumas sugestões de trabalhos futuros são in-
dicadas.
5

Introdução
6

2 Sistemas de Bancos de Dados
Distribuídos

2.1 Introdução

No início da década de 60, os sistemas de bancos de dados foram propostos como
uma solução para o problema do acesso compartilhado aos arquivos de dados he-
terogêneos criados por múltiplas aplicações em um ambiente centralizado
[HDRK97]. Estes arquivos de dados eram difíceis de serem gerenciados. Eles fre-
qüentemente continham duplicações, inconsistências, redundâncias, e vários tipos
de heterogeneidades tanto a nível estrutural como a nível dos dados. Para resolver
estes problemas, os arquivos autônomos foram substituídos por um banco de da-
dos o qual opera embaixo do controle centralizado de um Sistema de Gerencia-
mento de Banco de Dados (SGBD).

Existem vários critérios utilizados para classificar os Sistemas de Gerenciamen-
to de Bancos de Dados (SGBDs). Segundo [EN94], os principais critérios para a
classificação são: modelo de dados, o número de usuários e o número de nós (Fi-
gura 2.1).

Descendo um nível da hierarquia, partimos para a classificação do modelo de da-
dos no qual o sistema é baseado. Os modelos de dados utilizados com mais freqüê-
ncia entre os SGBDs são o modelo de rede, modelo hierárquico, o modelo
relacional e mais recentemente, o modelo orientado a objetos.

O segundo critério utilizado para classificar os SGBDs, número de usuários su-
portados pelo sistema, é aprofundado na hierarquia em monousuário e multiusu-
ário. Sendo o próprio nome auto explicativo, um sistema monousuário possui
apenas um único usuário por vez e é mais utilizado em computadores pessoais. Já
um sistema multiusuário, onde estão incluídos a maioria dos SGBDs, suporta
múltiplos usuários trabalhando concorrentemente.

O terceiro e último parâmetro utilizado na classificação dos SGBDs é o número de
nós que o sistema pode estar distribuído. Muitos sistemas podem ser centraliza-
dos, significando que os dados estão armazenados em um único computador, ou
nó. Um SBD centralizado pode suportar múltiplos usuários, mas o SGBD e os ban-
cos de dados residem completamente em um único nó. Um SBD distribuído pode
ter tanto o banco de dados como o software que o gerencia (SGBD) distribuídos

Sistemas de Bancos de Dados Distribuídos
através de múltiplos nós, sendo conectados através de uma rede de computadores.
Um nível abaixo dos sistemas distribuídos, encontram-se os sistemas homogêneos
e os sistemas heterogêneos. Se o software utilizado para fazer o gerenciamento for
o mesmo em todos os nós da rede e todos os clientes utilizarem o mesmo software,
o sistema é chamado de homogêneo. Em qualquer outra situação, ele é dito hete-
rogêneo.

Figura 2.1 Classificação dos SGBDs.

SGBDs

Modelo de Dados N° de usuários N° de nós

Rede Hierárquico Relacional OO Mono Multi Centralizado Distribuído

HeterogêneoHomogêneo

Os sistemas distribuídos foram amplamente difundidos na década atual 1. O pro-
cesso alavancado pela globalização dos mercados, pela intensificação das mudan-
ças tecnológicas além do aumento de competitividade existente, enfatiza a
necessidade do trabalho em grupo, porém de natureza distribuída e paralela. Como
conseqüência, é requisitado das organizações a capacidade de compartilhar infor-
mações que foram implantadas em vários tipos de plataformas. No tocante aos Sis-
temas de Gerenciamento de Banco de Dados, a principal motivação é integrar os
dados de uma organização, de forma a oferecer um acesso centralizado e contro-
lado a esses dados.

2.2 Sistemas de Gerenciamento de Bancos de Dados
Distribuídos

O termo Sistema de Gerenciamento de Bancos de Dados Distribuídos (SGBDD)
designa sistemas com aspectos diversos. A característica principal de tais sistemas
é o fato dos dados e do software estarem distribuídos através de vários nós conec-
tados de alguma forma por uma rede de comunicação. De acordo com [OV91], um

1. Muito embora os sistemas distribuídos venham sendo amplamente estudados desde a década
de 70, as pesquisas iniciais concentram-se em sistemas operacionais distribuídos [Bar97].
8

Sistemas de Bancos de Dados Distribuídos
SGBDD é definido como o software que permite o gerenciamento de um banco de
dados distribuído e que, além disso, torna a distribuição transparente aos usuár-
ios. Onde, banco de dados distribuídos é definido por [EN94] como sendo a co-
leção de dados logicamente relacionados mas fisicamente distribuídos sobre os
nós de uma rede de computadores.

Alguns fatores contribuem para o desenvolvimento de SGBDDs. Entre os princi-
pais podemos destacar a natureza distribuída de algumas aplicações de banco de
dados, o aumento da confiabilidade e disponibilidade dos sistemas, o comparti-
lhamento dos dados assegurando um certo controle local e aumento de perfor-
mance.

Natureza distribuída

Muitas aplicações de bancos de dados são naturalmente distribuídas através de
diferentes localizações. É natural que os bancos de dados utilizados por tais
aplicações sejam também distribuídos ao longo dos nós da rede. Essas aplica-
ções podem ter usuários locais que enxergam apenas os dados locais, mas
podem ter também usuários globais que possuem uma visão global dos dados
espalhados entre os vários nós.

Aumento da confiabilidade e disponibilidade

Estas são duas das vantagens mais comuns citadas. Confiabilidade é em geral
definida como a probabilidade do sistema estar funcionando em um momento
particular, e disponibilidade a probabilidade do sistema ser continuamente
disponível durante um intervalo de tempo. Com os dados de um SGBD dis-
tribuídos em diversas localidades, no caso de ocorrer uma falha em uma local-
idade, as demais continuam operando. Só os dados e o software que existem
na localidade que falhou é que não podem ser acessados, aumentando assim
tanto a confiabilidade quanto a disponibilidade. Em um sistema centralizado,
se ocorrer uma falha, geralmente todo o sistema torna-se inacessível para
todos os usuários.

Compartilhamento dos dados versus controle local

Como os dados estão distribuídos ao longo dos nós da rede, é possível que os
usuários locais tenham os dados armazenados localmente no nó. Entretanto,
usuários de outras localidades podem acessar esses dados remotamente
através do software (SGBDD). Isto permite um compartilhamento das infor-
mações, assegurando um controle local.

Aumento de performance

A distribuição de um banco de dados em vários nós da rede faz com que haja
um aumento de performance no que diz respeito à execução das transações em
um banco de dados. Isso ocorre devido a possibilidade dos dados mais
9

Sistemas de Bancos de Dados Distribuídos
freqüentemente acessados estarem armazenados próximos aos seus usuários, e
ainda a possibilidade de ocorrer a execução paralela da transação. Se as transa-
ções acessarem informações de um único nó, o tempo de resposta será mais
rápido devido a porção do banco de dados estar reduzida. No caso de acessar
vários nós, a transação pode ser dividida e executar paralelamente.

A idéia da arquitetura cliente-servidor está sendo incorporada aos SGBDs de for-
ma a reduzir a complexidade de tais sistemas. A princípio, o SGBD é dividido em
dois módulos - cliente e servidor -, onde a máquina servidora possui o software
que é acessado por múltiplos clientes. A divisão da funcionalidade do SGBD entre
o cliente e o servidor até agora não foi estabelecida. O software de um sistema ge-
renciador de bancos de dados distribuídos pode ser dividido em três níveis
[EN94]:

• servidor: software responsável pelo gerenciamento local dos dados no nó,
semelhante a um SGBD centralizado.

• cliente: software responsável pela maioria das funções de distribuição. Ele
acessa as informações distribuídas do catálogo do SGBD e processa todos os
pedidos que requerem acesso a mais de um nó componente.

• software de comunicação: prover as primitivas de comunicação que são uti-
lizadas pelo cliente para transmitir comandos e dados entre os vários nós
quando necessário. Ele não constitui necessariamente uma parte integrante do
SGBD, mas oferece serviços e primitivas de comunicação essenciais ao seu
funcionamento.

2.3 Tipos de Bancos de Dados Distribuídos

Existem alguns critérios e fatores que diferenciam os sistemas de bancos de dados
distribuídos. Segundo [EN94, SL90], podemos caracterizar tais sistemas de acor-
do com o grau de heterogeneidade, o grau de distribuição e o grau de autonomia.

2.3.1 Grau de Heterogeneidade

Se todos os servidores usam softwares idênticos e todos os clientes também usam
softwares idênticos, o SGBDD é dito homogêneo; de qualquer outra maneira, é
chamado heterogêneo.

A heterogeneidade pode ocorrer de várias formas em sistemas distribuídos, desde
diferenças de hardware e diferenças em protocolos de rede, até variações em ge-
renciadores de dados. No caso da heterogeneidade entre os SGBDs (relacional, de
rede, orientado a objetos, ou mesmo de fabricantes diversos), é necessário a tradu-
ção da consulta originada por um cliente para as linguagens que cada servidor en-
tende. Os fatores mais importantes, a partir da perspectiva de banco de dados,
10

Sistemas de Bancos de Dados Distribuídos
referem-se aos modelos de dados, linguagens de consulta, interfaces, protocolos
de gerenciamento de transações e a semântica dos dados.

Como podemos notar, o problema da heterogeneidade em sistemas de bancos de
dados interoperáveis é uma conseqüência da autonomia de projeto, devido as di-
versas escolhas disponíveis aos projetistas nos diferentes níveis do mesmo
[HDRK97]. A heterogeneidade pode ser classificada em quatro categorias distin-
tas: heterogeneidade de sistemas, heterogeneidade sintática, heterogeneidade de
esquema e heterogeneidade semântica.

Muitas vezes, a heterogeneidade semântica e a heterogeneidade de esquemas são
fundidas em um único conceito [KS91, KGCS95, SL90]. Isto acontece porque a
diferença do que constitui semântica e o que constitui estrutura não é bem clara.

Heterogeneidade de Sistemas

Consiste das diferenças de mais baixo nível das arquiteturas das plataformas que
os sistemas empregam, como configuração de hardware, sistemas operacionais e
tipo de comunicação. Por exemplo, um sistema de banco de dados pode ser imple-
mentado em uma plataforma Unix, enquanto um segundo sistema pode ser imple-
mentado no sistema operacional VMS. Aqui também estão incluídas as
heterogeneidades que são conseqüências de diferentes técnicas de sistemas utili-
zadas por diferentes SGBDs, como estratégias de processamento de consultas, me-
canismos de controle de concorrência e gerenciamento de transação.

Pesquisas nesta área têm resolvido este problema, através de adaptadores para
cada sistema componente1, de forma que consigam “conversar” com o sistema de
software que manipula todos os bancos de dados componentes (sistemas multida-
tabase) [HDRK97, SL90].

Heterogeneidade Sintática

Ocorre devido às diferenças sintáticas entre os modelos de dados (em outras pala-
vras, diferenças nas facilidades disponíveis para representar e manipular os dados)
que são providos pelos SGBDs componentes. Como exemplo de heterogeneidades
desta categoria, temos:

• Diferenças nas primitivas das estruturas de dados providas pelos modelos de
dados (relações versus classes, por exemplo).

• Diferenças nos mecanismos utilizados para expressar as restrições de integri-
dade dos bancos de dados.

1. Nesta dissertação o termo sistema componente e sistema local são utilizados com o mesmo
significado.
11

Sistemas de Bancos de Dados Distribuídos
• Diferenças nas linguagens de acesso providas pelos SGBDs.

Este problema tem sido resolvido através da utilização de um modelo de dados co-
mum a nível global. Cada componente do sistema é passado por um processo de
tradução, o qual passa o modelo de dados a nível local para o modelo de dados co-
mum a nível global [SL90].

Heterogeneidade de Esquemas

Este tipo de heterogeneidade ocorre quando dados equivalentes ou relacionados
são apresentados em diferentes bancos de dados possuindo representações estru-
turais diferentes.

A resolução deste problema em si não representa um problema muito grande. Se-
gundo [BLN86], dois bancos de dados que possuem esquemas diferentes podem
ser integrados pela reestruturação e fusão dos esquemas componentes. O principal
problema aqui é detectar quais são os conflitos estruturais nos conceitos dos dados
que representam o mesmo conceito do mundo real. Em outras palavras, quais são
as diferenças representacionais que existem entre os objetos relacionados nos ban-
cos de dados. Portanto, é preciso nesta situação a habilidade de capturar a semânt-
ica dos dados independentemente das suas propriedades estruturais. Semântica
dos dados neste contexto refere-se ao significado, interpretação e uso dos concei-
tos dos dados, não das propriedades de esquemas.

Heterogeneidade Semântica

Um problema central de interoperabilidade que deve ser levado em consideração
no momento do suporte ao compartilhamento das informações entre uma coleção
de banco de dados heterogêneos é a heterogeneidade semântica. Este termo é de-
finido como as variações na maneira na qual o dado é especificado e estruturado
em diferentes componentes. Heterogeneidade semântica é uma conseqüência na-
tural da criação independente e a evolução de bancos de dados autônomos que são
feitos sob medida para os requisitos dos sistemas dos quais eles fazem parte.

Segundo [BLN86, KS91, HM93] existem três maiores causas para a heterogenei-
dade semântica:

• Diferentes perspectivas: Este é um problema de modelagem, o qual está dire-
tamente ligado à fase do projeto do esquema do banco de dados. Diferentes
grupos de usuários ou projetistas adotam seus próprios pontos de vista para
modelar a mesma informação.

• Construtores equivalentes: O rico conjunto de construtores nos modelos de
dados permite um grande número de possibilidades na modelagem, os quais
resultam em variações na estrutura conceitual do banco de dados. Tipica-
12

Sistemas de Bancos de Dados Distribuídos
mente, em modelos conceituais, algumas combinações de construtores podem
modelar o mesmo domínio do mundo real de forma equivalente.

• Incompatibilidade na especificação do projeto: Diferentes especificações de
projeto resultam em diferentes esquemas.

2.3.2 Grau de Distribuição

Este fator trata do local do armazenamento dos dados. Os dados podem estar dis-
tribuídos sobre múltiplos bancos de dados. Ainda, os bancos de dados podem estar
armazenados em um único sistema computacional ou em múltiplos sistemas, ge-
ograficamente distribuídos ou não, mas interconectados por um sistema de comu-
nicação.

Um conceito importante referente à distribuição é a transparência de distribuição.
Se o usuário vê um único esquema integrado sem qualquer informação sobre frag-
mentação, replicação [Bar97], ou distribuição, o SGBDD é dito ter um alto grau
de transparência de distribuição (ou integração de esquema). Por outro lado, se o
usuário percebe como os dados encontram-se distribuídos ao longo da rede, o
SGBD distribuído não possui transparência de distribuição (nenhuma integração
de esquema). Neste caso, o usuário deve especificar, explicitamente, a que frag-
mento dos dados, localizado em que nó da rede, ele se refere quando formular uma
consulta ao banco de dados.

Este é um dos sérios problemas encontrados em sistemas distribuídos. No caso de
SGBDs distribuídos que não oferecem transparência na distribuição, é dada ao
usuário a responsabilidade de identificar de forma não ambígua os dados que de-
seja acessar. Esta tarefa é mais severa no caso dos sistemas federados, onde cada
servidor (SGBD local) foi desenvolvido independentemente, e como resultado,
devem existir nomes conflitantes entre os diversos servidores. Entretanto, no caso
de um SGBD que possui um esquema integrado, este problema (conflitos de no-
mes) torna-se interno ao sistema, já que é apresentado ao usuário um único esque-
ma sem ambigüidades.

2.3.3 Grau de Autonomia

O grau de autonomia refere-se à distribuição de controle e indica o grau em que
cada SGBD pode operar independentemente. Ele envolve uma série de fatores,
tais como a maneira com que os componentes do sistema trocam informações e a
possibilidade de um determinado componente executar transações independente-
mente e modificá-las. A classificação apresentada por [SL90] subdivide a autono-
mia de três formas: com relação ao projeto, com relação à comunicação e por fim
com relação à associação.
13

Sistemas de Bancos de Dados Distribuídos
A autonomia de projeto refere-se a habilidade de um componente escolher suas
próprias diretivas de projeto. Dentre as diretivas podemos citar: gerência dos da-
dos, representação de tais dados (modelo de dados e linguagem de consulta), in-
terpretação semântica desses dados1, definição dos requisitos de integridade,
definição das operações suportadas pelo sistema, como será o compartilhamento
com os outros sistemas e finalmente como será a implementação.

A autonomia de comunicação diz respeito à capacidade de decisão de quando e
como um banco de dados componente deve responder a um pedido de outro banco
de dados componente. Além disso, também está relacionada à capacidade de reso-
lução de quando comunicar com outro componente.

A autonomia de execução refere-se à habilidade de um componente executar ope-
rações locais (comandos ou transações submetidas diretamente pelo usuário local
a um banco de dados componente) sem a interferência de operações externas. O
componente também deve ser capaz de decidir a ordem que serão executadas as
operações externas.

2.4 Taxonomia dos Bancos de Dados que Compartilham
Informações

Existe um grande número de soluções para o problema do compartilhamento de
dados globais em um ambiente distribuído e pode-se encontrar na literatura uma
variedade de expressões para descrevê-las. Todos os termos empregados descre-
vem um sistema distribuído, que possui um componente global para fornecer aces-
so às informações que devem ser compartilhadas globalmente e múltiplos
componentes locais que manipulam somente os dados locais. As diferenças resi-
dem na estrutura do componente global e como ele interage com os componentes
locais [BHP92, Pire97]. De acordo com [BHP92], podemos caracterizar um siste-
ma de várias maneiras, baseado na análise do grau de autonomia e do tipo de inte-
gração existente entre os componentes do sistema.

Ainda de acordo com [BHP92] dizer que um sistema é fortemente acoplado signi-
fica que as funções globais acessam a baixo nível as funções locais. Isto significa
a possibilidade de uma boa sincronização entre os nós e um eficiente processa-
mento global. Entretanto, isto também implica que as funções globais podem ter
prioridades sobre as funções locais e portanto, que os SGBDs locais não têm o
controle completo sobre os recursos locais. Em um sistema fracamente acoplado,
as funções globais acessam as funções locais através da interface externa dos
SGBDs. A sincronização global e a eficiência do processamento global não são
tão altos como nos sistemas fortemente acoplados, mas em compensação o SGBD

1. Este fator contribui para o problema da heterogeneidade semântica.
14

Sistemas de Bancos de Dados Distribuídos
local possui o controle completo sobre os dados e o processamento local, provi-
denciando um alto grau de autonomia do nó. Na maioria dos sistemas fracamente
acoplados existem poucas funções globais e a interface local para as informações
globais utiliza as aplicações residentes acima da interface dos SGBDs locais. As
definições a seguir começam dos sistemas mais fortemente acoplados até o mais
fracamente acoplado (Figura 2.2). Na Tabela 2.1 podemos perceber as principais
diferenças entre os sistemas de bancos de dados que compartilham informações

Figura 2.2 Taxonomia de Sistemas de Bancos de Dados que Compartilham Informações.

Bancos de Dados
Distribuídos

Sistemas de Bancos de
Dados Federados

 Sistemas com Esquema
Global Único

Sistemas Interoperáveis

Sistemas de Linguagens de
Multidatabases

ac
op

la
m

en
to

 e
nt

re
 o

 S
G

B
D

 g
lo

ba
l e

 o
s

S
G

B
D

s
lo

ca
is

au
to

no
m

ia
 d

os
 S

G
B

D
s

lo
ca

is

• Bancos de Dados Distribuídos: Possui o acoplamento mais forte dos sistemas
que compartilham dados. Funções globais e locais compartilham interfaces
internas de baixo nível e são completamente integradas de forma que existem
pouquíssimas diferenças entre elas. Esses sistemas são projetados de maneira
top-down, com funções locais e globais implementadas simultaneamente. Os
bancos de dados locais são tipicamente homogêneos (com relação ao modelo
de dados). O sistema global tem o controle sobre todos os dados e processa-
mentos locais. Este sistema, tipicamente, mantém um esquema global criado
pela integração de esquemas de todos os SGBDs locais. Um esquema é a
descrição estruturada de informações disponíveis nos bancos de dados
[MIR93]. Usuários globais acessam o sistema submetendo consultas ao
esquema global. Devido à forte integração, eles podem sincronizar o processa-
mento global. Além disso, como as funções globais têm o controle sobre as
funções locais, o processamento pode ser otimizado para os requisitos globais
do sistema. Como resultado, os bancos de dados distribuídos têm uma perfor-
15

Sistemas de Bancos de Dados Distribuídos
mance global excelente, mas custando aos bancos de dados locais a falta de
autonomia.

• Sistemas com Esquema Global Único. São sistemas com acoplamento mais
fraco que os bancos de dados distribuídos porque as funções globais deste
sistema acessam informações locais através de uma interface externa do banco
de dados local. Entretanto esses sistemas ainda mantém um esquema global, o
que leva os sistemas locais a terem que cooperar com o sistema global para
manter o tal esquema. Ao contrário dos sistemas distribuídos, são tipicamente
projetados de maneira bottom-up o que fornece a possibilidade de integrar
bancos de dados pré-existentes sem alterá-los. Normalmente tais sistemas
integram SGBDs locais heterogêneos. Ou seja, os sistemas com esquema
global são compostos por um conjunto de SGBDs componentes, heterogên-
eos, cooperativos mas autônomos, integrados de modo a tornar as consultas e
atualizações às informações globais totalmente transparentes quanto à local-
ização e caminhos de acesso. A transparência é obtida pela tradução dos difer-
entes esquemas dos bancos de dados locais para um modelo de dados comum
e integrado, compondo um esquema global único.

• Sistemas de Banco de Dados Federados. São sistemas com acoplamento mais
fraco que os de esquema global. Não existe um esquema global único, sendo
que cada componente local mantém um esquema de importação e outro de
exportação. O esquema de exportação é uma descrição das informações que o
componente local compartilha com o sistema global. O esquema de importa-
ção é uma descrição da origem e representação dos dados dos nós remotos que
podem ser acessados localmente. Cada esquema de importação é essencial-
mente um esquema global parcial. Portanto cada nó componente só precisa
cooperar diretamente com os nós que ele acessa.

• Sistemas de Linguagens de Multidatabases. São sistemas de acoplamento
mais fraco que os sistemas de banco de dados federados porque não existe um
esquema global parcial. O sistema global suporta todas as transações globais
através de ferramentas de linguagem de consulta que proporcionam a integra-
ção das informações dos SGBDs locais. Consultas podem ser feitas sobre
qualquer dado dos esquemas locais de qualquer nó componente do sistema.
Ferramentas de linguagem incluem um espaço global de nomes e funções
especiais para mapear informações, de diferentes modelos e representações,
para um modelo e representação significativos para o usuário. Assim como os
dois últimos sistemas apresentados (com esquema global e os federados) este
sistema pode integrar pré-existentes e heterogêneos SGBDs sem modificá-los,
preservando a autonomia dos SGBDs locais.

• Sistemas interoperáveis. São sistemas com o acoplamento mais fraco dos
sistemas de compartilhamento de informações. As funções globais são limita-
das a simples troca de dados e não há suporte para todas as facilidades de
banco de dados. Protocolos padrões são definidos para a comunicação entre os
nós. Como o sistema global não é orientado a banco de dados, os sistemas
16

Sistemas de Bancos de Dados Distribuídos
locais podem ser constituídos por outros tipos de repositórios como sistemas
especialistas ou sistemas baseados em conhecimento. Sistemas interoperáveis
estão, ainda, em estágio de pesquisa.

Tabela 2.1. Diferenças entre Sistemas de Bancos de Dados que Compartilham
Informações

Classe Nível da Interface
Global para os SGBDs
Locais

Tipos de Nós
Locais

Método de Integração
Global

Bancos de Dados
Distribuídos

Funções internas ao
SGBD

Homogêneos Esquema global

Multidatabase com
Esquema Global

Interface do usuário Heterogêneos Esquema global

Bancos de Dados
Federados

Interface do usuário Heterogêneos Esquema global parcial

Sistemas de
Linguagens de
Multidatabase

Interface do usuário Heterogêneos Linguagem de acesso

Sistemas
Interoperáveis

Aplicações no topo do
SGBD

Qualquer fonte
de dados

Nenhuma integração
global

.

2.5 Considerações

Atualmente, os bancos de dados são criados dentro das organizações de acordo
com as necessidades de cada departamento/divisão. Isso implica que uma mesma
organização pode conter bancos de dados de vários fabricantes, que operam em di-
ferentes plataformas e que foram modelados de acordo com as necessidades dos
usuários locais a estas fontes. Algumas vezes, os sistemas de banco de dados den-
tro dos departamentos são distribuídos porém homogêneos. Outras vezes, até mes-
mo dentro do mesmo departamento encontra-se a presença de sistemas
heterogêneos. Mas nos dias atuais torna-se imprescindível que as informações pre-
sentes nesses bancos de dados sejam compartilhadas por todo departamento/cor-
poração, mantendo porém, a autonomia local das fontes de dados após a
integração das mesmas.

A necessidade da integração dos sistemas heterogêneos traz à tona todos os pro-
blemas de heterogeneidade que devem ser resolvidos pelos Sistemas Gerenciado-
res de Bancos de Dados Distribuídos e Heterogêneos, ou como são mais
conhecidos, Sistemas de Bancos de Dados Heterogêneos. Esse fato leva a corrente
de pesquisa na área de banco de dados distribuídos e heterogêneos a concentrar-
se no problema de como integrar os sistemas existentes - os chamados legacy sys-
tems - de forma a prover a organização como um todo, informações corretas e, ain-
da mais importante, de forma mais rápida.
17

Sistemas de Bancos de Dados Distribuídos
18

3 Sistemas de Bancos de Dados
Heterogêneos

3.1 Introdução

Hoje, o ambiente de desenvolvimento de motores na Mercedes-Benz é caracteri-
zado pelo isolamento, pelo uso de softwares e bancos de dados de vários fornece-
dores. Estes softwares são, na maioria, ferramentas de cálculos e simulações, e
sistemas CAD, os quais não conseguem entender ou se comunicar uns com os ou
tros. Além disso, os sistemas de banco de dados infelizmente não têm nenhuma
habilidade para relacionar dados de fontes heterogêneas. Essencialmente, cada de-
partamento envolvido no desenvolvimento de um motor constitui uma ilha de in-
formação com suas próprias ferramentas e fontes de dados.

Existem algumas soluções propostas para o problema do desenvolvimento de apli-
cações que necessitam acessar dados residentes em diferentes SGBDs. Uma pos-
sibilidade seria a criação de padrões que deveriam ser adotados pelos diversos
SGBDs. Esta idéia não é tão simples já que depende da obtenção de um consenso
entre os diversos fabricantes para se chegar a um padrão. Sabendo que cada um
investiu em soluções distintas, seria muito difícil alcançar um consenso.

Outra solução proposta para o problema seria a adoção de um único SGBD no con-
texto de uma organização ou corporação. Esta alternativa, no entanto, não é fac-
tível devido:

• aos requisitos atendidos pelos diferentes SGBDs existentes serem distintos,
não havendo um único SGBD que atenda a sua totalidade;

• aos SGBDs serem projetados para plataformas específicas de hardware e soft-
ware, e um único SGBD não atende a todos os diferentes ambientes que
podem ser encontrados em uma organização de grande porte;

• à migração de um SGBD para outro ser extremamente dispendiosa e difícil
devido à necessidade de conversão de dados, de aplicações e treinamento de
usuários.

Uma outra possibilidade é a conversão e migração dos dados de um SGBD para
outro. Tentativas de migração de dados de uma fonte para outra são dificultadas
pela complexidade das tarefas. No caso de migração de todos os dados de um
SGBD para outro, as aplicações pré-existentes devem continuar funcionando. Su-

Sistemas de Bancos de Dados Heterogêneos
porte a aplicações pré-existentes após uma migração completa de dados é um pro-
blema bastante complexo de ser resolvido.

Existem outros projetos propostos para resolver o problema de bancos de dados
heterogêneos que precisam compartilhar informações. Neste capítulo, serão abor-
dadas as soluções mais intensivamente abordadas pela literatura, o que correspon-
de ao estado da arte sobre a integração de sistemas de bancos de dados
heterogêneos.

3.2 Multidatabases

Pesquisas na construção de arquiteturas completas que suportem o compartilha-
mento de informação entre sistemas de banco de dados heterogêneos começaram
apenas na década de 80. O termo Sistema de Bancos de Dados Heterogêneos
(SBDH) foi originalmente utilizado para distinguir os trabalhos que tratam as he
terogeneidades nos modelos de banco de dados e esquemas conceituais dos traba-
lhos de banco de dados distribuídos1 que observam principalmente características
relacionadas à distribuição. Recentemente, existe um ressurgimento das pesquisas
na área de projeto de sistemas de bancos de dados heterogêneos. Este trabalho
pode ser caracterizado pelos diferentes níveis de integração dos sistemas de ban-
cos de dados componentes e pelos diferentes níveis de serviços globais providos
pelos sistemas de bancos de dados heterogêneos.

Um Sistema de Bancos de Dados Heterogêneos é um sistema distribuído que
atua como interface para múltiplos, heterogêneos e pré-existentes SGBDs locais
ou é estruturado como uma camada global do sistema, no topo dos SGBDs locais
[Pire97]. O sistema global (software que faz o gerenciamento do SBDH chamado
de Sistema de Gerenciamento de Bancos de Dados Heterogêneos) fornece todas
as facilidades de bancos de dados e interage com os SGBDs locais através das suas
interfaces externas. Apesar dos sistemas locais manterem algumas funções glo-
bais, os SGBDs locais participam do SGBDH sem modificações e mantêm con-
trole total sobre os dados e processamento locais. Ou seja, os SGBDs locais são
autônomos. O sistema global fornece algum meio de resolução das diferenças
funcionais e de representação de dados entre os SGBDs componentes. O usuário
global pode acessar informações de múltiplas fontes com uma simples e direta re
quisição. Nesta dissertação, usaremos o termo multidatabase com o mesmo si gni-
ficado que sistemas de bancos de dados heterogêneos.

A Figura 3.1 apresenta a arquitetura de um Sistema de Gerenciamento de Bancos
de Dados Heterogêneos [Pire97]. Cada SGBD componente compartilha parte ou

1. O termo banco de dados distribuído é utilizado aqui denotando um sistema homogêneo forte-
mente acoplado e logicamente centralizado, mas distribuído fisicamente entre os bancos de
dados componentes.
20

Sistemas de Bancos de Dados Heterogêneos
todos os seus dados através de visões que são disponibilizadas pela sua interface
externa. Para os SGBDs locais o SBDH nada mais é do que mais um usuário co-
mum. Um módulo do SBDH residente no mesmo nó da rede que o SGBD local é
responsável pela tradução da visão local (no modelo de dados do SGBD local)
para a visão local equivalente no modelo de dados global que é acessível pela lin-
guagem de manipulação global. As visões locais expressas no modelo de dados
global são então combinadas em um esquema global parcial ou algum tipo de ca-
tálogo de dados globais. Este esquema ou catálogo global representa a soma de to-
das as informações disponíveis no SBDH.

Figura 3.1 Arquitetura Genérica de um SGBDH

SGBD1 SGBD n

Interface Local Interface Local

Esquema Local Representado
no Modelo Global

Esquema Local Representado
no Modelo Global

Modulo de
Tradução 1

Modulo de
Tradução n

Esquema ou Catálogo Global
(Parcial)

Esquema Local Esquema Local

Interface Global
Processamento

Global de
Consulta

Controle de
Concorrência Global

...

...

...

.

Como visto na seção 2.4 existe uma grande variedade de soluções que são empre-
gadas para resolver o problema de ambientes distribuídos que compartilham infor-
mações. Uma diferença marcante nas metodologias é o fato da manutenção ou da
autonomia dos SGBDs que compõe o SBDH. Dentre os sistemas distribuídos
apresentados, apenas o banco de dados distribuídos não oferece essa característ-
ica. Ou seja, apenas os bancos de dados distribuídos são excluídos dos SBDHs de
acordo com a definição que foi dada anteriormente.

A variedade de termos existentes na literatura para denominar os SBDH torna
muitas vezes difícil o entendimento. Por exemplo, [BHP92] utiliza o termo multi-
21

Sistemas de Bancos de Dados Heterogêneos
databases para SBDH. Já [SL90] utiliza o termo multidatabase simbolizando os
SBDH em conjunto com os sistemas distribuídos. Ainda segundo [SL90], o termo
sistemas de bancos de dados federados é correspondente à nossa definição de SB-
DH.

3.3 Taxonomia dos SBDHs

Em [SL90] é apresentada uma taxonomia para os sistemas de bancos de dados he-
terogêneos baseada no grau de autonomia e no tipo de integração existente entre
os componentes do sistema. Os sistemas, dependendo do tipo de integração entre
os seus componentes podem ser classificados como sistemas de acoplamento forte
e sistemas de acoplamento fraco.

Nos sistemas com acoplamento forte existe uma autoridade central que é respon-
sável pela administração da federação. As consultas e atualizações podem ser re-
alizadas sem que o usuário saiba os caminhos de acesso ou a localização dos
dados. O sistema global tem controle sobre o(s) esquema(s) global(is) e o proces-
samento de transações e consultas globais. Os sistemas com acoplamento forte po-
dem ser construídos com um único esquema global ou com múltiplos esquemas
parciais globais. No artigo de [SL90] é proposta uma arquitetura genérica de cinco
níveis de esquema para descrever um SBDH (Figura 3.2). Nesta arquitetura, cada
banco de dados componente possui um:

• Esquema local (primeiro nível): define todos os seus dados. Este esquema é
expresso no modelo de dados nativo do BD, e portanto, diferentes esquemas
locais podem ser expressos em diferentes modelos de dados.

• Esquema componente (segundo nível): é a tradução do esquema local para o
modelo de dados comum.

• Esquema de exportação (terceiro nível): é a parte do esquema componente que
será disponibilizada para a federação. Podem existir diversos esquemas de
exportação para cada banco de dados local.

• Esquema Federado (quarto nível): é a combinação de esquemas de exporta-
ção; estes esquemas representam as porções do esquema global lógico

• Esquema Externo (quinto nível): define um esquema para um usuário e/ou
aplicação ou uma classe de usuários/aplicações. Os usuários globais acessam a
federação através destes esquemas.
22

Sistemas de Bancos de Dados Heterogêneos
Figura 3.2 Arquitetura de um SBDH com Acoplamento Forte

Esquema Externo

Esquema
Federado

Esquema Externo Esquema Externo

Esquema
Federado

Esquema de Exportação

Esquema
Componente

Esquema
Componente

SGBD1 SGBDn

Esquema Local Esquema Local

Esquema de Exportação Esquema de Exportação

 1
Modelo de Dados
Local

 2
Modelo de Dados
Comum

 3
Modelo de Dados
Comum

 4
Modelo de Dados
Comum

 5

.

Em sistemas de acoplamento fraco existe uma interface para acesso direto entre os
SGBDs locais componentes, não existindo um esquema global único. Os usuários
são responsáveis pela administração da federação. Não existe uma autoridade cen-
tral para controlar o acesso à criação de dados. Os usuários globais acessam os da-
dos locais através de uma interface que disponibiliza um determinado conjunto de
esquemas de exportação. O sistema global suporta todas as transações globais
através de ferramentas de linguagem de consulta que proporcionam a integração
das informações dos SGBDs locais. Consultas podem ser feitas sobre qualquer
dado dos esquemas locais de qualquer nó componente do sistema. Ferramentas de
linguagem incluem um espaço global de nomes e funções especiais para mapear
informações, de diferentes modelos e representações, para um modelo representa-
tivo para o usuário. O usuário é responsável por compreender a semântica dos da-
dos que compõem os esquemas de exportação. De uma maneira geral podemos
dizer que uma arquitetura genérica para sistemas de acoplamento fraco pode ser
representada pela Figura 3.2 retirando o quarto nível da arquitetura. Na Figura 3.31

1. A arquitetura apresentada na Figura 3.3 é específica de um sistema de linguagens de multida-
tabase sendo que esta arquitetura captura o caso geral de uma arquitetura para sistemas fraca-
mente acoplados [HDRK97].
23

Sistemas de Bancos de Dados Heterogêneos
apresentamos a arquitetura de um sistema fracamente acoplado [LMR90] a qual
apresenta três níveis:

• Nível Interno: O nível interno é composto dos SGBDs cada um tendo seu
esquema físico.

• Nível Conceitual: O nível interno apresenta um esquema conceitual para o
nível conceitual. Como pode ser visto na Figura 3.3 o SGBD1 apresenta o
esquema conceitual diretamente. Neste caso o esquema conceitual do nível
conceitual é o esquema conceitual real do banco de dados componente, isto é,
o componente o compartilha completamente com os outros usuários. Para o
caso que um banco de dados componente deseja que apenas um subconjunto
do seu esquema seja compartilhado, este subconjunto torna-se o conteúdo do
esquema conceitual ao nível conceitual e o esquema conceitual real é repre-
sentado pelo esquema lógico interno no nível interno (veja o SGBD2 e
SGBDn na Figura 3.3). Se um modelo canônico é requerido no nível con-
ceitual, como quase sempre é o caso, é responsabilidade do SGBD compo-
nente assegurar que o esquema conceitual apresentado no nível conceitual
respeite esse requerimento. Neste caso, o componente deve também fazer o
mapeamento do esquema conceitual para o esquema local. O nível conceitual
também inclue uma facilidade de definir dependências entre coleções de
banco de dados. Estes são expressos na arquitetura através dos esquemas de
dependência. O propósito destes esquemas é permitir aos administradores da
federação especificar as restrições para os bancos de dados inter-relacionados
as quais oferecem a habilidade de forçar alguns elementos de consistência na
falta dos esquemas integrados. Um exemplo típico de dependências que
podem ser especificadas nos esquemas de dependência são equivalências de
atributos e/ou domínios.

• Nível Externo: Um usuário pode construir esquemas externos no nível externo
como sendo visões de coleções de esquemas conceituais. Coleções de bancos
de dados podem ser apresentadas com um único banco de dados integrado no
esquema externo, mas isto não deve ser confundido com os esquemas integra-
dos dos sistemas fortemente acoplados. Nos sistemas fracamente acoplados os
esquemas externos são criados e mantidos com a total responsabilidade do
usuário. Não pode ser garantida nenhuma consistência se os conflitos não são
resolvidos ou as restrições de integridade dos bancos de dados inter-relaciona-
dos não são forçadas.
24

Sistemas de Bancos de Dados Heterogêneos
Figura 3.3 Arquitetura de SBDH com Acoplamento Fraco

Esquema Externo 1

Esquema Conceitual
1

Esquema Lógico
Interno 2

SGBD1 SGBD2

Esquema Físico 1 Esquema Físico 2

Usuários

Esquema Conceitual
2

Esquema Externo n1 Esquema Externo n2

Esquema Conceitual
n

Esquema Lógico
Interno n

SGBDn

Esquema Físico n

Esquema de
Dependência 1

Esquema de
Dependência j

Nível Interno

Nível Conceitual

Nível Externo

.

De acordo com a classificação apresentada, sistemas com acoplamento forte e sis-
temas com acoplamento fraco, podemos ver na Figura 3.4 a classificação dos sis-
temas apresentados na seção 2.4.
25

Sistemas de Bancos de Dados Heterogêneos
Figura 3.4 Taxonomia dos SBDHs.

SBDH

Sistemas com
Acoplamento Forte

Sistemas de
Bancos de Dados

Federados

Sistemas com
Esquema Global

Único

Sistemas com
Acoplamento Fraco

Sistemas
Interoperáveis

Sistemas de Ling.
de Multidatabases

3.4 Comparação das Arquiteturas de SBDHs

A proposta do esquema global único para o projeto de um SBDH é derivada dire-
tamente dos bancos de dados distribuídos. O esquema global é somente outra ca-
mada sobre os esquemas externos locais que fornece uma independência de dados
adicional. A principal diferença entre sistemas distribuídos e os sistemas com es-
quema global é que, no segundo, os esquemas locais são desenvolvidos indepen-
dentemente do esquema global. Outra grande diferença é que sistemas de esquema
global podem integrar esquemas locais de múltiplos modelos de dados. Esta pro-
posta faz com que o acesso aos dados globais sejam bastante amigáveis. Usuários
globais vêem um único banco de dados integrado. A interface global é indepen-
dente de toda a heterogeneidade dos SGBDs locais. Para usuários e aplicações po-
dem ser definidas visões específicas no topo do esquema global. Este é
normalmente replicado em cada nó componente para tornar o acesso eficiente.

O esquema global único é construído através da integração dos esquemas dos ban-
cos de dados locais. Esta integração normalmente requer uma homogeneidade dos
conflitos existentes entre os esquemas componentes. Devido às diferenças de re-
presentação e as interdependências entre dados em diferentes nós, este processo
torna-se bastante complexo. Apesar de existir muitas técnicas/metodologias para
o processo de integrar múltiplos e distintos esquemas, este ainda é um processo
muito dependente do trabalho humano. Os projetistas do SGBDH devem possuir
um grande conhecimento de todos os esquemas locais e dos requisitos globais para
poder decidir como integrá-los. O maior problema desta proposta é justamente o
conhecimento geral necessário para projetar tal esquema.
26

Sistemas de Bancos de Dados Heterogêneos
Outra dificuldade apresentada por esta proposta está na parte de manutenção do
esquema global. Mudanças nos esquemas locais devem ser refletidas no esquema
global. As técnicas de integração usadas no projeto do esquema global e os tipos
de mudanças nas representações dos dados locais podem complicar o mapeamento
destas a nível global. Mudanças locais podem forçar a reconsideração de muitas
decisões de projeto feitas durante o processo inicial de integração. Novamente, a
pessoa responsável pela administração do BD (DBA) deve possuir um grande co-
nhecimento global de todos os esquemas locais, do esquema global e das decisões
iniciais do projeto.

Para amenizar os problemas encontrados no projeto do esquema global único pode
ser utilizado esquemas globais parciais. Estes são os chamados sistemas de bancos
de dados federados. Para os usuários globais deste sistema, um determinado es-
quema parcial aparece como um esquema global único porque eles não acessam
partes do sistema que não estejam incluídas neste esquema parcial [Pire97].

A proposta de linguagem de multidatabase [MRJ99, LMR90] busca resolver al-
guns dos problemas associados com os esquemas globais, tais como nível de co-
nhecimento exigido dos administradores (DBAs), tempo de desenvolvimento
necessário para a criação do esquema global (parciais ou único), as dificuldades
de manutenção e os requisitos de processamento/armazenamento dos nós locais
componentes. Um exemplo de sistema que utiliza essa solução é o MRDSM, com
a linguagem MSQL [LMR90].

Ao contrário do esquema global, esta proposta coloca grande parte da responsabi-
lidade de integração, sobre o usuário. Mas, de certa forma, fornece funções de su-
porte e maior controle da informação. São fornecidos operadores adequados e
construtores específicos para os usuários resolverem os conflitos semânticos a vár-
ios níveis de abstração. A maioria da linguagens de múltiplos bancos de dados são
similares ao SQL com um acréscimo significante na sua funcionalidade.

Os sistemas que utilizam-se destas linguagens, devem fornecer ao usuário quais
são as informações disponíveis e os locais onde podem ser encontradas. É neces-
sário que o usuário saiba exatamente qual informação é necessária e o local pro-
vável de sua localização. Ou seja, a responsabilidade de integração antes dada ao
administrador global (na alternativa do esquema global), agora é passada para os
usuários ou administrador local, que são responsáveis por entender os esquemas e
ainda de detectar e resolver os conflitos semânticos. Aqui, os usuários devem ter
conhecimento global das diferenças de representação e a origem dos dados, sendo
que apenas das informações a serem utilizadas. A linguagem deve oferecer opera-
dores adequados para que os usuários resolvam os conflitos semânticos em vários
níveis de abstração. Algumas dessas características interessantes da linguagem
MSQL apresentadas em [BBE98] são: Nomes globais, Dependências entre bancos
de dados e Consultas entre banco de dados.
27

Sistemas de Bancos de Dados Heterogêneos
Uma grande facilidade acrescida nestas linguagens envolve a manipulação de re-
presentação de dados. Como existem diferenças de representação na execução de
uma consulta, a linguagem deve ser capaz de transformar a informação fonte na
representação mais significativa para o usuário.

 [SL90] aponta a metodologia de acoplamento fraco como a melhor solução para
sistemas com um grande número de bancos de dados autônomos utilizados apenas
para leitura, como por exemplo, sistemas de informações públicas. Já a metodolo-
gia de acoplamento forte é apontada como melhor solução para sistemas que ne-
cessitam dos controles extras providos por esta metodologia. Deve-se levar em
consideração os objetivos do SBDH no momento da escolha da arquitetura ade-
quada. Se o objetivo é montar um sistema que seja utilizado por usuários leigos,
com certeza os sistemas interoperáveis e os sistemas de linguagens de multidata-
bases não devem ser escolhidos.

3.5 Funcionalidades providas pelos SGBDH

Segundo [TTCB+90, BHP92], um SGBDH pode oferecer diferentes tipos de fun-
cionalidades. Algumas delas são a integração de esquemas, o gerenciamento de
consultas distribuídas, o gerenciamento de transações distribuídas, funções admi-
nistrativas e tratamento de diferentes tipos de heterogeneidades. Integração de es-
quemas é a forma pela qual os usuários podem ter uma visão lógica dos dados
distribuídos. O gerenciamento distribuído de consultas cuida da análise, otimiza-
ção e execução de consultas que referenciam dados distribuídos. Gerência de tran-
sações distribuídas trata das propriedades de atomicidade, isolamento e
durabilidade das transações em um ambiente distribuído. As funções administra-
tivas incluem autorização, autenticação, definições de restrições de integridade e
gerência do dicionário de dados. Resolução das heterogeneidades inclue o trata-
mento das diferenças de hardware, sistemas operacionais, protocolos, fabricantes
e/ou modelos de dados de SGBDs.

3.5.1 Integração de Esquemas em SGBDH

Se não houvessem conflitos nos valores e estruturas dos dados, a integração de
banco de dados seria uma tarefa trivial. Utilizando uma tecnologia como o midd-
leware, a integração de banco de dados heterogêneos estaria praticamente conclu-
ída. Entretanto, em geral existem duas fontes potenciais de dificuldades na
integração de BDs: diferenças nos esquemas e diferenças nos dados.

Cada banco de dados local possui seu esquema local, descrevendo a estrutura dos
dados no BD. Cada usuário tem uma visão, descrevendo a porção dos dados dis-
tribuídos que são do seu interesse. É através da integração de esquemas que se ob-
tem o mapeamento entre a visão dos usuários e os esquemas locais. A integração
28

Sistemas de Bancos de Dados Heterogêneos
de esquemas é o processo de desenvolvimento de um esquema conceitual, livre de
duplicações ou heterogeneidades, que integre uma coleção de esquemas locais
[Ham94].

[DH84] utiliza o termo integração de esquema apenas como sendo a resolução de
conflitos das estruturas dos esquemas. Ainda segundo [DH84], o processo de
construção do esquema global pode ser dividido em duas classes de problemas: di-
ferenças de esquemas e diferenças de dados. Integração de esquemas inclue a re-
solução de conflito de nomes, conflito na representação dos dados, diferenças
estruturais e diferenças na abstração [DH84]. Os problemas na integração de da-
dos podem ser descritos através de duas situações distintas: Os bancos de dados
são mutuamente inconsistentes, mas corretos e os bancos de dados são mutua-
mente inconsistentes e incorretos.

• Conflito de nomes: Ocorre quando dados semanticamente iguais possuem
nomes diferentes (os atributos neste caso são chamados sinônimos [BBE98,
DH84]). Podem existir ainda entidades de BDs distintos com o mesmo nome
para um atributo que representa diferentes objetos ou relacionamentos no
mundo real, ou seja, dados semanticamente distintos mas com nomes idêntic-
os (neste caso os atributos são chamados de homônimos [BBE98, DH84]).

• Conflito na representação dos dados: Atributos correspondentes em dois ou
mais bancos de dados podem ter tipos ou representações diferentes.

• Diferenças estruturais: Podemos citar como diferença estrutural a falta de
entidades ou atributos nos BDs. Diferenças na modelagem também estão
incluídas nesta categoria, onde uma entidade de um BD pode corresponder a
apenas um atributo de uma entidade em outro BD. Por exemplo, o conceito de
endereço do mundo real pode ser modelado como um atributo (cadeia de car-
acteres representando todo o endereço) de uma relação em um banco de dados.
Da mesma forma, o endereço pode ser modelado como uma entidade, com os
atributos rua, número, cidade, CEP, etc.

• Diferenças na abstração: Entidades e/ou atributos são representados em
diferentes níveis de generalização em dois bancos de dados distintos.

• Os bancos de dados são mutuamente inconsistentes, mas corretos: Consid-
ere dois BDs contendo a entidade EMP com os seguintes atributos: EmpNo
(inteiro) e Salário (inteiro). O atributo EmpNo é a chave primária da entidade
em cada banco de dados. Suponha que exista uma tupla (t1) na tabela que rep-
resenta a entidade EMP tal que EmpNo(t1) = 1 e o Salário(t1) = 25 em um
banco de dados e uma tupla (t2) tal que EmpNo(t2) = 1 e o Salário(t2) = 30 no
outro banco de dados. Uma razão para esta discrepância entre os valores do
atributo Salário pode acontecer porque as entidades que parecem ser a mesma
na realidade são diferentes. Então, embora as tuplas possuam o mesmo valor
para o atributo EmpNo (chave primária), elas representam diferentes emprega-
dos no mundo real. Isso implica que EmpNo não é um identificador para as
29

Sistemas de Bancos de Dados Heterogêneos
entidades EMP. Outra possibilidade para esta diferença é que, embora EmpNo
seja realmente um identificador para a entidade EMP, os atributos são difer-
entes (homônimos). Por exemplo, eles representam o salário para dois cargos
diferentes.

• Os bancos de dados são mutuamente inconsistentes e incorretos: Neste caso,
a solução mais viável é usar o dado mais confiável que pode ser conseguido
com a ajuda do especialista.

Segundo [KS91], duas causas básicas de conflitos estruturais são identificadas no
momento da integração de bancos de dados heterogêneos. Uma classe de conflitos
acontece quando diferentes esquemas de bancos de dados utilizam diferentes es-
truturas para representar a mesma informação (tabelas e atributos). Outra classe de
conflitos surge quando diferentes esquemas de banco de dados utilizam estruturas
similares mas especificações diferentes (como diferenças de nomes e domínios)
para representar a mesma informação. [KS91] também propõe um framework de
forma a identificar os possíveis conflitos originados no momento da integração de
banco de dados heterogêneos. Este esquema de possíveis conflitos estruturais é
válido para a integração de banco de dados relacionais. Em [KGCS95] é proposto
um novo esquema tomando como base o proposto em [KS91], mas este leva em
consideração a integração dos bancos de dados orientados a objetos. Dessa forma,
os problemas apresentados anteriormente por [DH84] podem ser melhor estrutu-
rados utilizando o esquema da Figura 3.5.

Figura 3.5 Classificação dos Conflitos Estruturais.

Conflitos Estruturais

Conflitos de
Esquemas

Entidade
versus

Entidade

Conflitos de Dados

Atributo
versus
Atributo

Entidade
versus
Atributo

Dados Errados Diferentes
Representações
30

Sistemas de Bancos de Dados Heterogêneos
Conflitos de Esquema

A. Conflitos Entidade versus Entidade
 1. Conflitos uma para uma entidade

a. Conflitos entre nomes de entidades
1) Diferentes nomes para entidades equivalentes
2) Mesmo nome para entidades diferentes

b. Conflitos entre as estruturas das entidades
1) Falta de atributos
2) Falta de atributos, porém com presença implícita

c. Conflitos entre as restrições de integridade das entidades
2. Conflitos muitas para muitas entidades

B. Conflitos Atributo versus Atributo
1. Conflitos um para um atributo

a. Conflitos entre nomes dos atributos
1) Diferentes nomes para atributos equivalentes
2) Mesmo nome para atributos diferentes

b. Conflitos de valores default
c. Conflitos entre as restrições de integridade dos atributos

2. Conflitos muitos para muitos atributos

C. Conflitos Entidade versus Atributo

Conflitos de Dados

A. Dados errados
 1. Conflitos uma para uma entidade
 2. Dados obsoletos

B. Diferentes representações para o mesmo dado
(Mesma representação para dados diferentes)
1. Expressões diferentes
2. Unidades diferentes
3. Precisões diferentes

O desenvolvimento de protótipos e projetos no esforço de integrar esquemas de
bancos de dados heterogêneos começou no final dos anos 70 e início dos anos 80,
com ênfase em metodologias para projeto de bancos de dados relacionais. Nesta
primeira fase, havia o objetivo de produzir uma descrição de um esquema global
de um banco de dados baseada nas diferentes perspectivas dos usuários. Após essa
fase, os esforços das pesquisas focalizaram a integração de banco de dados orien-
tados a objetos, para obter uma visão global de informações relacionadas em dife-
rentes domínios. O termo integração de esquemas [RR99], utilizado com muita
31

Sistemas de Bancos de Dados Heterogêneos
freqüência na literatura, inclue a resolução da heterogeneidade semântica, a jun-
ção e a reestruturação de esquemas [Ham94].

Existem duas metodologias mais conhecidas para a integração de banco de dados
heterogêneos, que são: esquema global e banco de dados federados [BHP92]. A
integração de esquema é o coração destas metodologias. De acordo com [RR99],
integração de esquema é o processo de gerar um ou mais esquemas através de ou-
tros pré-existentes. Estes esquemas representam a semântica dos bancos de dados
que estão sendo integrados e são usados como entrada para o processo de integra-
ção. A saída do processo é um ou mais esquemas que representam a semântica do
banco de dados integrado. Tais esquemas são representados usando um modelo de
dados comum, e eles escondem qualquer heterogeneidade resultante das diferen-
ças semânticas ou diferenças de modelos dos bancos de dados integrados.

Ainda de acordo com [RR99], o termo integração de esquemas é usado na litera-
tura para expressar a integração de visão, devido a estas duas metodologias utili-
zarem técnicas comuns. Entretanto, esses dois processos podem ser diferenciados
de várias maneiras:

• Integração de visão é o processo de gerar um único esquema integrado para
múltiplas visões de usuários e é usado com mais freqüência no projeto de um
novo esquema de banco de dados. Portanto, integração de visão é utilizado no
projeto top-down de banco de dados. A partir de múltiplas visões de usuários,
é gerado um esquema integrado correspondente a essas visões e então é pro-
jetado o banco de dados correspondente a este esquema. Ao contrário, integra-
ção de esquema, é um projeto bottom-up porque trata com integração de
esquemas já existentes;

• Na integração de visão, o usuário define visões utilizando um único modelo de
dados. Na integração de esquemas, como os bancos de dados podem ser het-
erogêneos, os esquemas a serem integrados podem ser representados por múlt-
iplos modelos de dados.

• Quando a integração de visão é realizada, as visões dos usuários não refletem
os dados existentes nos bancos de dados. Entretanto, na integração de esque-
mas, os esquemas representam dados existentes nos banco de dados. Esta é
uma grande diferença, porque o esquema gerado pelo processo de integração
não pode violar a semântica dos bancos de dados existentes. Entretanto, na
integração de visões, como estas representam objetos abstratos, existe maior
flexibilidade na interpretação semântica.

Integração de esquema é um problema complexo e que consome tempo. Em pri-
meiro lugar porque muitas representações de esquemas não podem capturar a se-
mântica do banco de dados completamente. Portanto, o processo de integração
requer uma grande interação com o projetista e o administrador dos bancos de da-
dos para entender a semântica dos bancos de dados e assegurar que após a integra-
32

Sistemas de Bancos de Dados Heterogêneos
ção esta permaneça compatível. Isto significa que o processo de integração não
pode ser completamente automatizado[HMS93]. [RR99] o divide em quatro fases
(Figura 3.6). Note que esses passos devem ser realizados de forma interativa para
resolver a heterogeneidade e chegar a uma representação integrada dos esquemas
componentes.

• Tradução de Esquemas: Os esquemas que serão integrados são traduzidos em
um esquema de modelo comum, tal como, o modelo relacional [Che76].

• Identificação dos relacionamentos entre os esquemas: Esta fase tem como
objetivo a identificação de objetos (entidades, atributos e relacionamentos)
entre os esquemas que serão integrados, através da análise da semântica destes
objetos, bem como o agrupamento dos relacionamentos desses objetos em
suas categorias. Nesta fase, a ajuda do especialista contribui para que os resul-
tados destas identificações sejam confiáveis.

• Geração dos esquemas integrados: O conjunto de resultados produzidos na
fase anterior é utilizado para gerar o esquema integrado. Para isso, entretanto,
devem ser resolvidos os diversos tipos de heterogeneidades que podem existir
entre os objetos [SK93, KS91, KGCS95, KS95, DH84, HM93].

• Geração de esquemas de mapeamento: Este passo é o responsável por arma-
zenar informações sobre o mapeamento entre objetos na transformação dos
esquemas integrados e objetos nos esquemas locais.

Figura 3.6 Fases da Integração de Esquemas.

Tradução dos
Esquemas

Identificação dos
relacionamentos entre

os esquemas

Geração dos
esquemas integrados

Geração dos esquemas
de mapeamento

Entrada do
conhecimento do

projetista

Esquemas locais a
 serem integrados

Esquemas locais a
 serem integrados

Relacionamento
entre os esquemas

Relacionamento
confirmado entre

os esquemas
33

Sistemas de Bancos de Dados Heterogêneos
Em [KGCS95] são apresentados os conflitos e possíveis soluções para o problema
de heterogeneidade durante a integração de fontes de dados. Em [SK93] são cita-
dos os conflitos de forma a situar as possíveis similaridades semânticas entre dois
objetos. Da mesma forma [KS95] endereça o problema dos conflitos com relação
aos aspectos semânticos e não com relação à heterogeneidade de esquemas/repre-
sentação/estrutura como [KS91, KGCS95].

3.5.2 Gerenciamento de Consultas Distribuídas

O gerenciamento de consultas globais provê a habilidade de combinar dados de di-
ferentes bancos de dados locais em uma única operação de recuperação. Sistemas
distribuídos podem ou não oferecer esta facilidade. Em alguns sistemas, para uma
aplicação conseguir dados de diferentes bancos de dados é necessário enviar ex-
plicitamente consultas para os bancos de dados individualmente. Se o gerencia-
mento de consultas é oferecido, a aplicação envia apenas uma única consulta, que
é decomposta em um conjunto de subconsultas - uma para cada SGBD local que
está envolvido na execução.

Então, o otimizador de consultas cria uma estratégia de acesso que especifica que
SGBDs locais estão envolvidos, a tarefa de cada um, como será combinado o re-
sultado intermediário, e onde o processamento global vai ocorrer. As restrições
globais devem ser verificadas e garantidas durante a execução da consulta. O pro-
cessamento inicial da consulta normalmente ocorre no nó que a consulta foi sub-
metida sendo a execução da consulta distribuída pelo sistema.

Durante a execução da consulta global, pode ocorrer a tradução de consultas de
acordo com a passagem pelas várias camadas do sistema. Estas traduções permi-
tem a existência de diferentes linguagens e representações entre as camadas e,
também, resolvem as diferenças de representação.

Se o gerenciamento de consulta distribuída é oferecido pelo sistema, existem mui-
tas possibilidades para otimizar as consultas e gerenciar sua execução. Dependen-
do das características do sistema, pode ser desejável explorar o paralelismo na
execução das consultas. A replicação e/ou fragmentação dos dados também adi-
cionam complexidade [Bar97]. Um método simples de gerenciamento de consul-
tas é mover todos os dados desejados para o nó de onde a consulta é oriunda e
então combiná-los. Métodos mais sofisticados podem considerar uma grande
quantidade de algoritmos e fatores nas avaliações de tais consultas.

3.5.3 Gerenciamento de Transações Distribuídas

O conceito tradicional de transações com tempo curto de duração e atomicidade
não é compatível para ambientes de múltiplos bancos de dados. Transações em
34

Sistemas de Bancos de Dados Heterogêneos
sistemas de bancos de dados que compartilham informações envolvem múltiplos
e separados SGBDs bem como várias camadas de traduções em dados e/ ou con-
sultas. Mais importante é que os SBGDs locais possuem autonomia, e dessa for-
ma, não estão sujeitos ao controle global.

Controle de concorrência organiza o acesso aos dados de transações concorrentes
de forma que sejam feitas com aparência serial. Entretanto, isso requer o conheci-
mento de todos as transações ativas no momento bem como a habilidade de con-
trolar o acesso aos dados. Interfaces de usuários em SGBDs normalmente não
oferecem informações sobre transações de outros usuários ou dados que estão com
restrição de acesso no momento, timestamps, etc. Ainda, diferentes SGBDs po-
dem utilizar diferentes controles de concorrência. Devido a isso, muitos SGBDHs
restrigem o acesso às informações globais apenas para recuperação, sendo as atu-
alizações realizadas através da interface do SGBD local.

O gerenciamento de transações distribuídas fornece a habilidade de ler e/ou
atualizar dados de múltiplos nós através de uma única transação, preservando as
propriedades de transação. Esta capacidade pode ou não ser oferecida pelos sis-
temas de bancos de dados distribuídos. Se é oferecido, existem dois aspectos con-
siderados: protocolos de controle de concorrência e protocolos de commit.

Protocolos de controle de concorrência asseguram que a execução de transações
locais, quando originada pelo nó local ou um nó remoto, encontra o padrão de iso-
lamento do sistema local. Em muitos casos isso significa que a execução é seria-
lizada; isto é, a execução atual é equivalente à execução serial das transações em
alguma ordem. Protocolos de controle de concorrência são projetados para asse-
gurar que transações distribuídas são globalmente serializadas; isto é, que a seria-
lização dos componentes locais de todos os bancos de dados são compatíveis com
alguma serialização global de todas as transações distribuídas.

Protocolos de commit locais garantem a atomicidade e durabilidade de transações
locais; ou todas as ações de uma transação local são completadas (commit) ou en-
tão nenhuma é. Já o protocolo de commit distribuído garante a atomicidade e du-
rabilidade global; ou todas as subtransações locais de uma transação distribuída
são completadas (commit global) ou então nenhuma é completada.

Estes protocolos distribuídos trazem um custo operacional, bem como custo de
implementação, já que a falha de um nó pode deixar dados bloqueados em outros
nós por longos períodos de tempo. Então, pode ser vantajoso não tê-los se não fo-
rem necessários. Em algumas situações, a semântica dos bancos de dados e as apli-
cações podem fazer ambos os protocolos desnecessários. Em [BGS92, CR94,
SRK91, TTCB+90, GRS97] podem ser encontrados maiores detalhes.
35

Sistemas de Bancos de Dados Heterogêneos
3.5.4 Administração

Nos sistemas de bancos de dados heterogêneos, as funções administrativas podem
ser disponibilizadas em diferentes graus de centralização e transparência. Como
função de administração temos: autorização de usuários (segurança de uma forma
geral), definir e assegurar restrições de integridade, e a manutenção de informa-
ções dos esquemas.

Gerenciamento de Autorização

Segurança em sistemas distribuídos não é uma tarefa fácil. Alguns dos problemas
incluem canais de comunicação não confiáveis, vários níveis de segurança em di-
ferentes nós, e o grande número de usuários. O acesso a múltiplos sistemas, signi-
fica, na maioria dos casos, a necessidade de múltiplos códigos de autorização e
identificação [Rüt 99].

De acordo com o grau de centralização desta funcionalidade, podemos dividí-la
em três casos distintos. Completamente descentralizada, onde cada usuário possui
uma identificação e senha garantida pelo administrador local (DBA) e assegurada
pelo SGBD local. A segunda opção é que a segurança do sistema seja completa-
mente centralizada, onde cada usuário possui uma única identificação e senha ga-
rantida pelo administrador global e assegurada pelo gerenciador de consultas
globais. Como terceira e última opção, temos uma situação intermediária as apre-
sentadas, com o usuário possuindo uma identificação e senha global, mas assegu-
radas pelos bancos de dados locais.

As vantagens do sistema centralizado é que o usuário tem acesso aos bancos de
dados integrados, mas não tem acesso ao banco de dados local. Nos sistemas des-
centralizados, não é possível prevenir o acesso aos dados parcialmente, o que a tor-
na menos interessante.

Gerenciamento de Restrições de Integridade

O sistema global precisa especificar alguns métodos e assegurar as restrições de
integridades nos relacionamentos e dependências entre os bancos de dados, devido
ao fato de sistemas locais diferentes poderem representar dados semanticamente
equivalentes ou dados relacionados semanticamente. Mais uma vez, temos duas
possibilidades de garantir as restrições de integridade. A primeira delas é de forma
centralizada, através do esquema global conceitual. A segunda é localmente, atra-
vés dos esquemas locais. A vantagem da forma centralizada mais uma vez é que
regras de integridade distribuída (ou seja, regras que dependem de dados armaze-
nados em diferentes bancos de dados) podem ser garantidas.
36

Sistemas de Bancos de Dados Heterogêneos
Restrições de integridade globais requerem um sistema de policiamento para de-
finir como gerenciá-las. Como exemplo temos uma restrição de atualização nos
bancos de dados integrados, onde a atualização de um banco de dados deve atua-
lizar o objeto equivalente no outro banco de dados. Se a atualização é propagada,
a autonomia do nó pode ser comprometida. Caso contrário, o primeiro nó também
deve rejeitar a atualização (função de integridade) ou então aceitá-la (violando a
restrição de integridade o que causa inconsistência nos dados).

Transparência e Manutenção de Esquemas

Transparência é a habilidade de trabalhar com dados distribuídos sem ter o conhe-
cimento de onde estão ou mesmo se existe uma distribuição. Existem dois níveis
de transparência relevantes: o nível do usuário e o nível do administrador do banco
de dados.

Os usuários podem ter que especificar o nome da máquina ou endereço, o identi-
ficador do SGBD, o nome do banco de dados e o nome do dado que deseja acessar
(nenhuma transparência). Por outro lado, os usuários podem apenas especificar os
nomes lógicos dos ítens de dados.

Existe também o nível de transparência provido pelo administrador para progra-
madores e usuários. O SBD pode manter individualmente múltiplos dicionários de
dados em múltiplos nós descrevendo quais dados podem ser encontrados e onde.
Estes dicionários de dados podem representar o esquema global e descrever todos
os dados do sistema, ou eles podem descrever apenas alguns dados de interesse
particular de determinados usuários. Por outro lado, o sistema pode tomar todas as
decisões sobre o local e manutenção dos dados e manter os dicionários automati-
camente.

3.5.5 Resolução de Heterogeneidade

A comunidade científica, na maioria das vezes, considera apenas a heterogeneida-
de dos modelos dos SGBDHs. Mas, a heterogeneidade pode surgir por vários pon-
tos, já que sistemas de banco de dados heterogêneos agrupam bancos de dados
distintos, implementados fisicamente em hardware e software distintos, que utili-
zam protocolos distintos, além de serem gerenciados por sistemas operacionais
também diferentes. Além disso, os SGBDs envolvidos podem ser originados de
fabricantes diferentes e/ou possuírem modelos de dados diferentes.

Diferentes hardwares e sistemas operacionais podem utilizar diferentes represen-
tações para os dados (diferentes representações para números de ponto flutuante,
por exemplo). Ainda, diferentes fabricantes de SGBDs podem utilizar diferentes
formas de definir e manipular os dados. Diferentes modelos de dados podem apre-
sentar dificuldades para a tradução dos esquemas e o problema da tradução de con-
37

Sistemas de Bancos de Dados Heterogêneos
sultas, característica importante do ponto de vista de performance. Portanto, o
SGBDH deve providenciar a resolução de todos os tipos de heterogeneidades exis-
tentes em SBDH.

3.6 Sistemas Heterogêneos Existentes

Abaixo listamos alguns projetos de sistemas distribuídos que agem como interface
para múltiplos bancos de dados locais. Os sistemas escolhidos apresentam-se com
mais freqüência na literatura. Estes projetos são os resultados das pesquisas de
uma grande variedade de países e instituições. Alguns são aplicados para a reso-
lução de uma área específica. Outros são sistemas completamente comerciais. A
grande quantidade de projetos e organizações indicam a importância desta área. A
classificação dos sistemas segue a taxonomia proposta por [SL90].

3.6.1 Não Orientados a Objetos

Amoco Distributed Database System (ADDS) [BR95] - Amoco Production
Company, Research

• O projeto começou no final de 1983 com o objetivo de integrar os bancos de
dados distribuídos através da corporacão e foi um dos primeiros projetos nesta
área. Na terminologia de [SL90], o ADDS é um sistema federado fortemente
acoplado que suporta múltiplos esquemas federados. É baseado no modelo de
dados relacional e utiliza uma extensão da álgebra relacional como linguagem
de consulta. Os bancos de dados locais são mapeados em múltiplos esquemas
de bancos de dados federados, chamados de Composite Database Definitions
(CDB). Os mapeamentos são armazenados no dicionário de dados do ADDS,
que é completamente replicado em todos os nós do ADDS. Um CDB é usual-
mente definido para cada aplicação, mas existe também o caso em que um
CDB é compartilhado entre as aplicações. Os CDBs suportam a integração de
modelos de dados hierárquicos, relacionais e de rede. Dentre os SGBDs inte-
grados pelo ADDS encontram-se IMS, SQL/DS, DB2, RIM, INGRES e
FOCUS1. A interface do usuário consiste de uma API (Application Program
Interface) e uma interface interativa. A API é composta de um conjunto de
procedimentos que oferecem o acesso aos programas de aplicação do ADDS.
A interface interativa permite que usuários executem consultas, mostra os
resultados das consultas e efetua o salvamento de tais resultados. A interface
interativa nada mais é que um programa de aplicação que utiliza a API para
prover uma interface de alto nível para o ADDS. O usuário pode tanto montar
suas próprias consultas (usuários mais experientes) como ser guiado por

1. IMS, SQL/DS e DB2 são marcas registradas da International Business Machines Corpora-
tion. RIM é marca registrada da Boeing Computer Services. INGRES é marca registrada da
Ingres Corporation. E finalmente, FOCUS é marca registrada da Information Builders, Inc.
38

Sistemas de Bancos de Dados Heterogêneos
menus para compor as consultas (usuários menos experientes com o ADDS e
com a linguagem SQL). Ainda em relação à interface, este sistema oferece a
facilidade de salvamento de consultas num catálogo de consultas, sendo que
estas podem ser escolhidas e modificadas pelo usuário antes de serem envia-
das para execução. As consultas submetidas para execução são compiladas e
otimizadas para um custo mínimo de transmissão de dados. A nível de siste-
mas operacionais é percebido a presença de VM, MVS e UNIX1 entre os siste-
mas que encontram-se geograficamente distribuídos. O ADDS mantém a
autonomia dos sistemas locais e não requer qualquer mudança ao SGBD local.
A única comunicação entre o ADDS e o SGBD local é a submissão da con-
sulta e a recuperação dos dados.

DATAPLEX [TTCB+90] - General Motors Corporation

• É um sistema federado fortemente acoplado que suporta múltiplos esquemas
federados. Permite que consultas e transações recuperem e atualizem os dados
distribuídos pelos diversos sistemas já que oferece transparência na localiza-
ção dos dados. Neste ambiente, diferentes sistemas gerenciadores de dados
podem operar em diferentes sistemas operacionais que por sua vez podem uti-
lizar diferentes protocolos de comunicação. O modelo relacional é utilizado
como modelo de dados global. Como podem ser utilizados diferentes modelos
de dados, a definição dos dados para cada banco de dados compartilhado pelo
sistema de banco de dados heterogêneo é transformado para uma definição de
dados relacional ou esquema conceitual equivalente. O modelo conceitual é
implementado como um conjunto de esquemas relacionais, um para cada
localização. As relações de cada localização representam os dados que pre-
cisam ser acessados pelos usuários deste local. Conseqüentemente, os esque-
mas conceituais nem são centralizados e nem replicados. A interface do
usuário é apresentada por uma linha de comando. O protótipo do DATAPLEX
integra os SGBDs IMS e INGRES operando sobre o comando dos sistemas
operacionais MVS E VMS2 respectivamente.

Integrated Manufacturing Data Administrations System (IMDAS)
[TTCB+90] - National Institute of Standards and Technology, U. Florida

• É um sistema federado fortemente acoplado com um único esquema global. O
objetivo deste sistema é oferecer o acesso as muitas fontes de dados entre os
vários sistemas empregados no processo de fabricação. O modelo de dados
integrado é o Semantic Association Model, um modelo de dados semântico
capaz de representar estruturas complexas, relacionamentos e muitos requisi-
tos de integridade encontrados numa fábrica. Um esquema auxiliar mapeia o
modelo global para os bancos de dados que fazem parte da federação, supor-

1. VM e MVS são marcas registradas da International Business Machines Corporation. UNIX é
marca registrada da AT&T.

2. VMS é uma marca registrada da Digital Equipment Corporation.
39

Sistemas de Bancos de Dados Heterogêneos
tando tanto o particionamento horizontal como o vertical de uma dada classe
de objetos. Em geral, o IMDAS suporta tanto recuperação como atualização
distribuída, mas o esquema auxiliar não suporta replicação, sendo esta uma
limitação significante do sistema.

Ingres/STAR [TTCB+90] - Ingres Corporation

• Ingres Corporation surgiu de um projeto de pesquisa sobre a tecnologia de
bancos de dados relacionais da universidade de Berkeley. O Ingres/STAR ofer-
ece acesso transparente aos dados distribuídos. O Ingres/STAR é uma federa-
ção fortemente acoplada que suporta múltiplos esquemas federados [SL90]. O
SGBD Ingres oferece o acesso ao banco de dados Ingres. A interface do Ingres
submete consultas SQL ao SGBD Ingres que recuperam os dados armazena-
dos no banco de dados. O Ingres Gateway oferece um método onde dados
armazenados em outros sistemas gerenciadores de dados comportam-se como
se estivessem armazenados no banco de dados Ingres, tornando-os disponíveis
para a interface. O sistema Ingres/STAR permite que usuários acessem um
banco de dados distribuído, que é definido como uma coleção de tabelas de
um ou mais bancos de dados Ingres. Qualquer conjunto de tabelas de qualquer
conjunto de bancos de dados Ingres pode ser combinada para formar um novo
banco de dados distribuído Ingres/STAR. Isto inclue não só bancos de dados
de um SGBD Ingres mas também bancos de dados acessíveis através do
Ingres Gateway e outros bancos de dados Ingres/STAR. Um único servidor
pode ser utilizado para múltiplos bancos de dados distribuídos, como também
podem existir múltiplos servidores na rede. O acesso aos bancos de dados dis-
tribuídos é feito de modo transparente no sentido que uma vez um banco de
dados seja criado, os usuários do banco de dados não precisam conhecer nada
sobre a existência de bancos de dados individuais.

Mermaid [TTCB+90] - Data Integration, Inc.

• É um sistema federado fortemente acoplado que suporta múltiplos esquemas
federados [SL90]. Na verdade, o Mermaid não é um sistema gerenciador de
bancos de dados, mas uma interface que localiza e integra dados que são man-
tidos por um SGBD local. Partes do SGBD local podem ser compartilhadas
pelos usuários globais. O usuário utiliza uma linguagem de consulta única,
SQL, para acessar e integrar os dados de bancos de dados diferentes. O
sistema automaticamente localiza os dados, abre conexões para os SGBDs,
envia as consultas na linguagem adequada para cada banco de dados e integra
os dados das múltiplas fontes. O Mermaid suporta alguns níveis de heteroge-
neidade, entre eles: hardware, sistema operacional, conexão a rede, tipos de
SGBD e linguagens de acesso, modelo de dados e esquema de dados. O
sistema permite a recuperação através dos bancos de dados e atualizações em
um único banco de dados. Uma característica interessante deste sistema é que
uma transação de leitura pode ver um estado inconsistente do banco de dados,
40

Sistemas de Bancos de Dados Heterogêneos
já que nenhuma atualização local pode ocorrer nos bancos de dados locais
durante a execução de uma consulta.

MULTIBASE [TTCB+90, SBD+81] -Xerox Advanced Information Technolo-
gy

• É um sistema federado fracamente acoplado que oferece a definição de múlt-
iplos esquemas locais e múltiplos esquemas ou visões [SL90]. Esquema locais
descrevem os dados disponíveis nos SGBDs locais. Visões descrevem as inte-
grações dos dados dos esquemas locais. Os usuários podem consultar qualquer
combinação de esquemas locais ou visões, assim como múltiplos esquemas ou
visões podem ser referenciados em uma única consulta. O mecanismo de visão
do MULTIBASE também é usado para solucionar incompatibilidades que fre-
quentemente aparecem quando os bancos de dados desenvolvidos e mantidos
separadamente são acessados em conjunto. Incompatibilidades incluem difer-
enças de nomes, estrutura de dados, representações dos dados ou escala, falta
de dados e conflito entre os valores dos dados. Quando define uma visão, o
administrador do banco de dados aplica o conhecimento das bases de dados
locais para determinar que incompatibilidades podem surgir e que regras
devem ser utilizadas para solucioná-las. As regras são incluídas nas definições
da visão, utilizadas pelo sistema para gerar as respostas as consultas. O MUL-
TIBASE realiza a otimização de consultas tanto a nível global quanto a nível
local. A nível global o sistema cria estratégias de modo a minimizar a quanti-
dade de dados movidos entre os nós e maximizar o processamento paralelo
que é inerente quando sistemas distribuídos são acessados. A arquitetura do
MULTIBASE pode ser vista em [LR82].

SYBASE [TTCB+90, OPSY98] - Sybase, Inc.

• Em 1990, a Sybase introduziu o Open Server, um produto que estende as pos-
sibilidades de distribuição do SYBASE para fontes de dados heterogêneas. O
SYBASE é um SGBD federado fracamente acoplado [SL90], que tenta abrir a
arquitetura o mais possível, de modo a permitir que qualquer banco de dados,
aplicação ou serviço possa ser integrado em sua arquitetura cliente/servidor
num ambiente heterogêneo. Nenhum modelo de dados global ou esquema é
forçado. Até certo ponto, operações distribuídas podem ser suportadas através
de programas de aplicações ou através de RPCs (Remote Procedure Calls)
entre os servidores SQL. Isto provê um alto grau de autonomia do nó. Nos
sistemas tradicionais de bancos de dados centralizados, não é dado aos
usuários de aplicações o acesso direto para realizar atualizações no banco de
dados, em vez disso, dá-se a possibilidade de comunicação com um programa
de aplicação que protege o banco de dados dos usuários. Este método comum
pode ser chamado de application-enforced integrity. A legalidade de qualquer
atualização é determinada principalmente por regras forçadas pelos programas
de aplicação. Application-enforced integrity é um método falho em sistemas
de bancos de dados distribuídos e heterogêneos já que a aplicação pode ser
41

Sistemas de Bancos de Dados Heterogêneos
escrita em departamentos diferentes ou cidades diferentes pelo administrador
do banco de dados que está sendo atualizado. Uma alternativa melhor em
SGBD distribuídos é forçar a integridade a partir do próprio banco de dados.
Neste caso, uma aplicação de um nó remoto se comunica diretamente com um
banco de dados que é capaz de decidir quando uma transação viola qualquer
regra de integridade. Para isto, são armazenados procedimentos nos banco de
dados. O SYBASE suporta o segundo tipo de integridade. Em particular este
sistema oferece um método consistente de recebimento de consultas de uma
aplicação SYBASE e a transmite para um banco de dados ou aplicação difer-
ente. SYBASE suporta atualizações distribuídas que espalham-se em múltipl-
as localizações. O protocolo de two-phase commit assegura o controle de
transações distribuídas sobre múltiplos servidores SQL.

Existe um grande número de sistemas citados na literatura. Aqui nós citamos ape-
nas os mais referenciados. Dentre outros, não orientados a objetos, podemos citar:
DQS (Distributed Query System - CRAI) [Bel88], o EDDS (Experimental Distri-
buted Database System - Universidade de Ulster) [BGL87], o HD-DBMS (Hete-
rogeneous Distributed DBMS - UCLA) [Car87], JDDBS (Japanese Distributed
Database System - Japan Information Processing Development Center) [Tak83],
NDMS (Network Data Management System - CRAI) [Sta85], Preci (Universidade
de Aberdeen) [DAT87], o Proteus (Universidades britânicas) [Str84], Scoop
(Universidade de Paris e Turin) [Spa82], Sirius-Delta (INRIA - Franca) [Esc84],
Unibase (Institute for Scientific, Technical, and Economic Information) [Brz84],
XNDM (Experimental Network Data Manager - National Bureau of Standards)
[Kim81], o Heimbigner (Universidade do Colorado) [HM85], Calida (GTE Rese-
arch Labs) [LZ88], etc.

3.6.2 Orientados a Objetos

Os sistemas orientados a objetos não são tão citados na literatura. Estão ainda na
fase da infância. Desta forma, o número de projetos orientados a objetos é apre-
sentado em um número bem reduzido em relação aos projetos não orientado a ob-
jetos.

Pegasus [SADD+93, ASDK+91] - Hewlett-Packard Laboratories

• É um sistema multidatabase desenvolvido pelo departamento de tecnologia de
banco de dados nos laboratórios da Hewlett-Packard. Pegasus fornece o
acesso a bancos de dados criados no próprio sistema Pegasus (com esquema e
dados gerenciado pelo Pegasus) como também a bancos de dados externos. Os
bancos de dados externos são acessíveis ao Pegasus, mas não são controlados
diretamente por ele, os quais podem ter diferentes modelos de dados (orien-
tado a objetos, relacional, hierárquico, etc.), diferentes linguagens de acesso, e
diferentes estruturas para representar a mesma informação (diferentes visões
do mundo). A definição e manipulação dos dados no Pegasus é feita através
42

Sistemas de Bancos de Dados Heterogêneos
da linguagem HOSQL (Heterogeneous Object SQL). De uma forma geral, o
Pegasus define um modelo orientado a objetos para unificar os modelos de
dados de sistemas externos. Suporta acessos transparentes a sistemas externos
múltiplos, autônomos, heterogêneos e distribuídos através de uma interface
uniforme.

ViewSystem [KDN91]- KODIM

• ViewSystem é um ambiente orientado a objetos que foi desenvolvido como
primeiro protótipo do KODIM (Knowledge Oriented Distributed Information
Management). Está mais concentrado na dinâmica da integração de bases de
informações heterogêneas e autônomas. Fornece uma metodologia completa
para a criação de classes virtuais baseadas em um conjunto de construtores.

Operational Integration System (OIS) [GGO90]

• É uma ferramenta de integração geral que oferece à aplicação um ambiente
com uma interface uniforme de acesso aos dados gerenciados pelos sistemas
heterogêneos. Estes sistemas são sistemas de arquivos, SGBDs, sistemas de
recuperação de informação, serviços de bancos de dados remotos e aplicações
ad hoc. Uma importante contribuição deste sistema é a introdução do conceito
de mapeamento operacional ao longo da implementação.

Comandos Integration System (CIS) [BNPS88, BNPS89]

• Utilizado para integrar alguns ambientes de aplicação diferentes, incluindo
SGBDs relacionais e bancos de dados gráficos. A contribuição deste sistema é
a mesma apresentada para o OIS.

Distributed Object Management System (DOMS) [BOHGM92, MHGHB92]

• Desenvolvido pela GTE, é um ambiente orientado a objetos no qual sistemas
locais autônomos e heterogêneos podem ser integrados e objetos nativos
podem ser implementados. O sistema local não está limitado ao sistema de
banco de dados, mas pode ser sistemas convencionais, sistemas hipermídia,
programas de aplicações, etc.

UniSQL/M [KGKR+93]

• É um sistema de banco de dados heterogêneos, desenvolvido pela UniSQL que
permite a integração de sistemas de banco de dados relacionais baseados em
SQL e sistemas de bancos de dados objeto-relacionais UniSQL/X. Possui
como características importantes o tratamento de conflitos de esquema e
semânticos.
43

Sistemas de Bancos de Dados Heterogêneos
TSIMMIS (The Standford-IBM Manager of Multiple Information Sources)
[CGHI+94,GHIP+95] - IBM Almaden Research Center

• O objetivo do projeto é desenvolver uma ferramenta que facilite a integração
real de fontes de dados heterogêneas que podem conter tanto dados estruturais
como não estruturais. As disponibilidades das fontes, os conteúdos e os sig-
nificados dos conteúdos podem mudar freqüentemente. Outra característica
deste sistema é que o ambiente de integração requer uma maior participação
humana. Num caso extremo, a integração é realizada manualmente pelo
usuário. O objetivo do TSIMMIS não é realizar a completa integração de
forma automatizada, mas sim oferecer uma ferramenta para auxiliar pessoas
no processamento de informações e nas atividades de integração.

3.7 Middleware de Bancos de Dados

Existem duas categorias principais de database middleware disponíveis: midd-
leware software e gateway. Enquanto o middleware software pode estabelecer
uma conexão entre algumas fontes de dados, um database gateway estabelece uma
conexão ponto a ponto para um banco de dados remoto.

Middleware é um termo genérico para referenciar uma camada de sistema de sof-
tware que tenta resolver o problema da heterogeneidade. O objetivo do Middlewa-
re é simplificar a interface do usuário oferecendo uma visão uniforme e
transparente dos serviços que divergem por serem oferecidos por diversos forne-
cedores, ou por terem sido desenvolvidos de acordo com protocolos diferentes ou
porque estão sendo usados para suportar as necessidades de diferentes aplicações.

Os Gateways tornam disponível a comunicação entre dados de fontes heterogên-
eas, possivelmente originárias de diferentes fornecedores e utilizando a mesma ou
talvez plataformas diferentes, protegendo programadores e usuários finais das di-
ferenças nos vários serviços e recursos usados pelas aplicações [RH98, RHS98].
Os gateways variam de acordo com o nível de transparência que eles oferecem.
Eles podem oferecer pouca ou nenhuma transparência de localização, sendo pre-
ciso que os usuários saibam a localização da fonte de dados na rede. Ainda, como
gateway conecta apenas dois bancos de dados, eles requerem múltiplas e distintas
conexões quando uma aplicação requer dados de múltiplas fontes.

Em [RH98] é feito um estudo entre três produtos que oferecem a tecnologia midd-
leware para integrar fontes de dados heterogêneas. Os três produtos são o Data-
Joiner, Transparent Gateway e EDA/SQL1. O Transparent Gateway é baseado na
solução típica da técnica de gateways para bancos de dados. Ele provê a ligação

1. Datajoiner é marca registrada da IBM. Transparent Gateway é marca registrada da ORACLE
e o EDA/SQL é marca registrada da Information Builders.
44

Sistemas de Bancos de Dados Heterogêneos
entre um banco de dados ORACLE para outros bancos de dados de outros forne-
cedores através da linguagem SQL. Ele estabelece uma ligação ponto-a-ponto
com um banco de dados remoto, trabalhando sob o controle de um servidor ORA-
CLE, que é chamado de Integrating Server [ORA97].

A solução da Information Builders, EDA/SQL, apresenta um middleware que é
formado de alguns componentes. Uma instalação pode ser formada, por exemplo,
de Relational Gateways e Full-Function e Hub Servers. O Relational Gateway
permite o acesso a bancos de dados relacionais. Full-Function Servers combinam
alguns serviços como stored procedures ou serviços de meta-dados em um único
servidor. Hub Servers dão o suporte a transparência de localização e distribui as
consultas SQL para outros servidores EDA/SQL para processamento sobre as fon-
tes de dados locais. A estrutura do middleware requer a instalação de um compo-
nente EDA/SQL em cada nó que contém uma fonte de dados para ser integrada
[IBI97].

O DataJoiner pode ser caracterizado como uma solução middleware de banco de
dados. O servidor (DataJoiner Server) é construído no topo do DB2 (versão 2) e
portanto oferece as funcionalidades do DB2 [IBM97, IBM97a].

As diferenças mais importantes entre os três produtos pode ser resumida como se-
gue. O gerenciamento de transação é bem suportado pelo DataJoiner que imple-
menta o protocolo two-phase commit (2PC) para processar transações distribuídas.
O EDA/SQL suporta um grande número de operações DDL e DML e muitas pla-
taformas e fontes de dados. O DataJoiner emprega uma refinada técnica de otimi-
zação de consultas e os benefícios podem ser sentidos através da performance do
produto. O DataJoiner apresentou problemas para trabalhar com atributos não in-
dexados, mas mostrou-se imbatível na realização de selects e especialmente de
joins. O processamento de visões também é bem suportado pelo DataJoiner
[RHS98].

3.8 Considerações

Como foi visto neste capítulo, recuperar informação de uma coleção de banco de
dados independentes não é uma tarefa muito fácil. Os bancos de dados que fazem
parte desta coleção geralmente têm esquemas diferentes, são expressos em dife-
rentes modelos de dados, e são gerenciados por diferentes sistemas gerenciadores
de bancos de dados, cada um dos quais, possuindo sua própria linguagem de recu-
peração. Formular e implementar consultas que requerem dados de mais de um
banco de dados gera muitos problemas para os usuários. Estes problemas incluem
resolver discrepâncias entre os banco de dados, tais como diferenças na represen-
tação e conflito de nomes, resolver inconsistência entre cópias da mesma informa-
ção armazenada em diferentes bancos de dados e transformar a consulta expressa
45

Sistemas de Bancos de Dados Heterogêneos
na linguagem do usuário em um conjunto de consultas expressas nas diferentes
linguagens de recuperação suportadas pelos diferentes SGBDs [DH84].

É importante notar que o middleware providencia apenas a interação entre as fon-
tes de dados heterogêneas, através da transparência de localização e de linguagem
de consulta. Mas, as diferenças estruturais e representacionais entre os esquemas
não são tratadas. Essa tecnologia facilita o trabalho de integração, já que não é ne-
cessário a tradução dos esquemas para um modelo comum, necessários tanto no
modelo do esquema global quanto no modelo federado. Utilizando esta tecnologia
todos os esforços de integração podem ser voltados somente para o aspecto de di-
ferenças representacionais que existem nos objetos relacionados nos diferentes
componentes do sistema.
46

4 MENTAS

4.1 Introdução

MENTAS - MotorEntwicklungsAssistent- é um projeto de inovação da Daimler-
Chrysler AG Research and Technology, que está sendo desenvolvido para enge
nheiros mecânicos do desenvolvimento de motores da Mercedes-Benz, possuindo
as seguintes motivações:

• incrementar a capacidade de reação ao mercado, bem como o potencial inova-
dor;

• reduzir o tempo de desenvolvimento dos motores e conseqüentemente os cus-
tos; e

• paralelizar o trabalho de desenvolvimento.

Hoje, o ambiente de desenvolvimento de motores na Mercedes-Benz é caracteri-
zado pelo isolamento, pelo uso de softwares e banco de dados de vários fornece-
dores. Estes softwares são, na maioria, ferramentas de cálculos e simulações, e
sistemas CAD, os quais não conseguem entender ou se comunicar uns com os ou-
tros. Além disso, os sistemas de bancos de dados infelizmente não têm nenhuma
habilidade para relacionar dados de fontes heterogêneas. Essencialmente, cada de-
partamento envolvido no desenvolvimento de um motor constitui uma ilha de in-
formação com suas próprias ferramentas e fontes de dados.

MENTAS tem por objetivo realizar a interconexão das fontes de dados e ferra-
mentas, montar um ambiente de desenvolvimento orientado a engenharia para a
rápida concepção e análise comparativa dos motores. Para atingir este objetivo,
deve ser oferecido um acesso automático e integrado aos bancos de dados hetero-
gêneos e às várias ferramentas de simulação.

O principal problema encontrado pelos engenheiros neste ambiente completamen-
te heterogêneo diz respeito a habilidade de recuperar as informações das várias
fontes dos dados para realizar a comparação e correlacioná-las. Os bancos de da-
dos são encapsulados pelas aplicações, de forma que os engenheiros não têm aces-
so direto aos dados armazenados. Portanto, eles devem utilizar diferentes
interfaces oferecidas pelas aplicações para cada banco de dados. Outra limitação,
é que tais interfaces não possibilitam a criação de consultas ad hoc, sendo limita-
das a um número de consultas pré-definidas para acessar os bancos de dados lo-
cais. Como o projeto e desenvolvimento de um novo motor é um processo

MENTAS
extremamente criativo, os engenheiros sempre vêem-se limitados na sua criativi-
dade porque as interfaces não oferecem um método adequado para recuperar in-
formações nem das fontes de dados locais, e muito menos de fontes de dados
heterogêneas. Portanto, não é oferecido o suporte para que comparações e corre-
lações entre os dados sejam realizadas.

Na Figura 4.1 podemos ver a arquitetura do projeto MENTAS. No topo da arqui-
tetura encontra-se a GUI que permite aos usuários consultar o sistema. Através
desta interface homogênea, os usuários têm acesso às ferramentas e fontes de da-
dos que fazem parte do MENTAS. Os dados produzidos por uma ferramenta po-
dem ser consumidos por outras ferramentas utilizadas no processo de
desenvolvimento de motores. Essa produção e consumo de dados entre as ferra-
mentas gera um workflow que é controlado por um Sistema de Gerenciamento de
Workflow. Para garantir a consistência e segurança do sistema são utilizados o mo-
nitor de consistência e o gerente de segurança. As fontes de dados são acessadas
através da tecnologia middleware. No contexto que está inserida esta dissertação,
não é levada em consideração a problemática referente à integração das ferramen-
tas no MENTAS. Ao contrário, todas as atenções do trabalho são voltadas para a
integração das fontes de dados

Figura 4.1 A Arquitetura Geral do MENTAS.

Interface do
Usuário

Gerente de Acesso ao Banco de Dados

Monitor de
Consistência

Gerente de
Qualidade dos

Resultados

Gerente de
Segurança

Kernel

Gerente de
Workflow

DISMO1/-M

RKP ZUCK

WAVEZOMOVPROMO

BD Gateway

BD Mentas PSD LKD MVA-PC...

...
...
48

MENTAS
A visão do usuário em relação aos bancos de dados do MENTAS é que se trata de
um esquema global no qual as consultas podem ser formuladas como se todos os
dados residissem em um único banco de dados local, mas na verdade, os dados são
distribuídos sobre fontes de dados remotas. O interessante da nossa solução é que
o usuário pode navegar através dos bancos de dados fazendo comparações, e rela-
cionar informações das várias bases através de uma interface homogênea e sim-
ples, e com isso, recebendo informações mais confortável e o mais importante,
mais rapidamente que nos ambientes usuais de desenvolvimento.

4.2 Tecnologia Middleware de Banco de Dados

Database middleware traz muitos benefícios na integração de banco de dados he-
terogêneos, por isso, decidimos empregar esta tecnologia no MENTAS. Antes de
decidir por um produto particular, foi feita uma análise crítica, testes e compara-
ções entre os mais populares middleware de banco de dados existentes atualmente
no mercado. Decidiu-se pelo uso do DataJoiner (IBM), que mostrou-se imbatível
no processamento de consultas e especialmente entre operações de joins, sendo
esta umas das regras cruciais para o uso desta tecnologia no MENTAS [RH98].

Com o DataJoiner [CHKR98, IBM95], os usuários formulam suas consultas numa
única versão de SQL, como se todos os dados residissem em um único banco de
dados local quando, de fato, alguns ou todos os dados estão distribuídos através de
fontes de dados remotas e heterogêneas. Para oferecer a imagem de uma única lo-
calização para os dados, DataJoiner implementa a tecnologia do gerenciamento de
bancos de dados distribuídos. Prover o suporte a joins, uniões e visões distribuídas
em conjunto com outros operadores relacionais que são necessários no suporte de
consultas complexas. Para realizar estas operações, o DataJoiner através de um
otimizador global minimiza o movimento dos dados através da rede. Desta forma,
é conseguido um eficiente processamento de consultas ad hoc.

Apesar do middleware de banco de dados proporcionar a interação entre fontes de
dados heterogêneas, as diferenças semânticas entre as fontes de dados devem ser
tratadas separadamente. Portanto, devem ser analisados os banco de dados "par-
cialmente" integrados pelo DataJoiner procurando sempre identificar quais atribu-
tos possibilitam a integração entre as bases de dados e quais as possíveis mudanças
que são feitas nos valores para que a comparação entre eles nos retorne os valores
desejados.
49

MENTAS
4.3 Integração dos Esquemas

É importante notar que a autonomia local das fontes de dados dos departamentos
deve ser mantida após a integração das mesmas. Na prática, estas fontes de dados
variam principalmente entre diversas versões de bancos de dados ORACLE e di-
ferentes versões de bancos de dados DB2. Foram analisados os modelos de dados
de cada base de dados a fim de identificar os dados cruciais para o MENTAS, re-
conhecer diferenças semânticas, ambigüidades, sinônimos, homônimos, etc. Nes-
ta fase, encontramos os pontos em comum entre os bancos de dados que são
utilizados no momento que uma consulta de um usuário ultrapassa os limites de
um banco de dados local para obter informação de outro banco de dados.

Após essa fase, foi construído um esquema global, virtual, o qual só contém dados
relevantes para o MENTAS [Rez98, Rez98a, Rez98b]. Essas visões são criadas no
topo do banco de dados original pelo administrador do departamento ao qual o
banco de dados corresponde, mantendo assim a autonomia local. Por outro lado,
informamos ao sistema middleware localizado no servidor de banco de dados que
existem algumas visões definidas nos bancos de dados remotos em alguns nós da
rede. Isto é feito através da definição de nicknames no sistema middleware.

Assim, uma vez construído o esquema global, virtual, é feito uso do middleware
para cobrir as diferenças entre os esquemas heterogêneos. Portanto, MENTAS
pode formular pedidos a todos os dados residentes em um simples banco de dados
local quando, de fato, muitos dos dados são distribuídos sobre fontes de dados re-
motas heterogêneas. A Figura 4.2 mostra como funciona a interconexão entre os
bancos de dados heterogêneos no MENTAS.
50

MENTAS
Figura 4.2 Integração de Esquemas Heterogêneos como um Esquema Global e Virtual.

DB
Middleware

Distribuição,
comunicação, e

aspectos de consistência

LKD
PSD MVA/PCMENTAS

4.4 Considerações

MENTAS providencia a integração das várias fontes de dados dos vários departa-
mentos envolvidos no processo de desenvolvimento de motores utilizando a tec-
nologia middleware. Os usuários têm uma visão de um esquema global já que o
middleware oferece a total transparência de localização dos dados através do uso
de nicknames. Além da transparência de localização é necessário oferecer aos usu-
ários uma visão homogênea dos esquemas e dados. Isto é feito através do conceito
de integração de esquema e é provido pelo módulo gerenciador de consistência
presente na arquitetura de acesso aos bancos de dados do MENTAS.

Através da GUI do MENTAS os usuários são guiados no processo de montagem
das consultas SQL sem se preocupar com a localização e muito menos com o for-
mato dos dados e estruturas nos vários bancos de dados. Dessa forma, o processo
de concepção de motores é otimizado já que disponibilizamos para os engenheiros
uma interface homogênea onde eles podem consultar e comparar valores entre os
vários bancos de dados.
51

MENTAS
52

5 Integração de Bancos de Dados
no MENTAS

5.1 Introdução

Como vimos, MENTAS deve oferecer para os usuários uma interface amigável e
eficiente, de modo que o trabalho dos engenheiros flua com maior rapidez. Ou se-
ja, MENTAS deve prover um ambiente homogêneo para acessar bancos de dados
heterogêneos. Este é o propósito deste capítulo: apresentar como está estruturada
a arquitetura do MENTAS, como é a ligação de todos os módulos que a compõe e
como essas informações chegam até a interface. Terminamos o capítulo apresen-
tando como a interface apresenta-se ao usuário, dando ênfase à interação desta
com o monitor de consistência.

5.2 Arquitetura de Acesso aos Banco de Dados

O MENTAS utiliza a arquitetura cliente-servidor para oferecer o acesso aos ban-
cos de dados (Figura 5.1). A arquitetura cliente-servidor foi desenvolvida para tra-
tar novos ambientes de computação, onde computadores pessoais, estações de
trabalho, servidores de arquivo, impressoras e outros equipamentos são interco-
nectados através de uma rede de comunicação. O objetivo principal desta arquite-
tura consiste em definir servidores com funcionalidades específicas de modo que
os recursos destes servidores especializados possam ser acessados por vários
clientes. Além de aplicar-se a recursos de hardware, esta idéia pode ser estendida
a recursos de software. A decisão por esta arquitetura deu-se principalmente devi-
do a três razões: escalabilidade, o paralelismo e a característica de multi-camadas
oferecida por esta arquitetura.

Integração de Bancos de Dados no MENTAS
Figura 5.1 Arquitetura de Acesso aos Banco de Dados.

Sistema Middleware

Fábrica
de Resultados

Conector de
Banco de

Dados

RMI Stubs

Monitor de
Consistência Cache

Conector da
Interface

Monitor de
Consistência

Interface Gráfica do Usuário

JDBC

RMITCP/ IP

TCP/ IP

MVA-PCMENTAS PSD LKD

S E R V I D O R

C L I E N T E

SERVIDOR DE BANCOS
DE DADOS

Monitor de
Segurança

Middleware

Monitor de
Segurança

RMI Skeletons

BANCOS DE DADOS
INTEGRADOS

A escalabilidade da arquitetura é um fator de grande importância a ser considera-
do. A arquitetura cliente-servidor provê a escalabilidade, uma vez que para o sis-
tema crescer é preciso apenas adicionar novo hardware ou novos componentes de
software quando necessário. Estas arquiteturas providenciam por si só o paralelis-
mo: muitos clientes submetem pedidos independentes para o servidor os quais po-
dem ser processados em paralelo. Com isso, existe o aumento de performance
conseguindo-se resultados mais rápidos. Ainda, essas arquiteturas têm a caracte-
rística de multi-camadas. Isso significa que elas podem ser integradas e fazerem
parte de outras arquiteturas e novos componentes podem ser adicionados ou reti-
rados.

Arquiteturas cliente-servidor podem ser diferenciadas de acordo com o modo
como os a dados são transferidos e como a distribuição das tarefas é organizada:
As três mais importantes formas são: Servidor de Página, Servidor de Objetos e
Servidor de Consultas [HMNR95, RH96, DMFV90, Rez97]. A arquitetura clien-
te-servidor no MENTAS é um exemplo de uma simples mas efetiva metodologia
de servidor de consultas.

Essencialmente, o paradigma da arquitetura servidor de consultas trabalha baseada
em contextos. Um contexto normalmente compreende um conjunto de objetos
54

Integração de Bancos de Dados no MENTAS
complexos e pode ser especificado, por exemplo, através de MQL ou SQL/XNF
[MPPLS93]. No caso do MENTAS, o contexto pode ser visto como as consultas
SQL2 criadas pelos engenheiros através da GUI. A execução de tais consultas
acontece no servidor, onde os objetos são armazenados no buffer de transferência.
Isso significa que com operações como projeções, seleções, e joins, os objetos são
transferidos de acordo com a necessidade dos usuários. No MENTAS, a funciona-
lidade essencial e o poder da linguagem SQL2 são colocadas à disposição dos en-
genheiros para criarem tais operações. Portanto, o volume de informações a ser
transferido para o cache do cliente é significativamente reduzido e otimizado.

A implementação dos módulos que compõem esta arquitetura foi totalmente de-
senvolvida em Java, uma linguagem orientada a objetos desenvolvida pela Sun
Microsystems. No início do projeto, pensávamos em desenvolver apenas a GUI
em Java, já que esta deveria ser independente de plataforma, e a única linguagem
de programação que possibilita essa característica atualmente é Java. O núcleo do
MENTAS iria ser implementado utilizando C ou C++ que são linguagens cujo de-
sempenho e funcionalidade para este tipo de aplicação são testadas e conhecidas.
Entretanto, Java adquiriu de C++ as melhores características e descartou as mais
problemáticas e suscetíveis a erros, como por exemplo os ponteiros existentes em
C++ os quais são fontes comuns de dor de cabeça para os programadores dessa lin-
guagem. O resultado é que Java é simples, elegante, poderosa e fácil de utilizar
[HCF97, Jav97, Roc96]. Dessa forma, devido às facilidades oferecidas por Java e
também pelo bom desempenho, decidimos utilizá-la não só no cliente, mas tam-
bém no servidor, e esta mostrou-se uma boa decisão, já que o tempo de desenvol-
vimento foi bastante reduzido e a performance do sistema não foi prejudicada.

De acordo com a Figura 5.1, podemos notar que a arquitetura é composta de quatro
camadas: O Cliente, o Servidor, o Servidor de Banco de Dados, e os Bancos de
Dados Integrados. Apesar de constituírem duas camadas da nossa arquitetura, os
bancos de dados integrados e o sistema middleware, podemos considerá-los como
uma simples camada, já que o sistema middleware provê a total transparência de
localização para as fontes de dados integradas. Os principais componentes são
[RHO+98]:

• A Interface Gráfica do Usuário (Graphic User Interface - GUI) está na
camada superior da arquitetura. Esta é a parte que é percebida pelo usuário e
na qual ele interage para formular as consultas em SQL2. Todos os outros
componentes da arquitetura são transparentes para o usuário e têm o objetivo
de dar suporte à interface;

• O Monitor de Consistência está presente tanto no lado do cliente quanto no
lado do servidor. Porém, a grande maioria das funcionalidades providas con-
centra-se na parte do servidor. O monitor de consistência cuida de alguns
aspectos relacionados à consistência dos dados tanto num único BD como
providencia todos os aspectos necessários para que uma consulta atravesse as
55

Integração de Bancos de Dados no MENTAS
fronteiras de um banco de dados e compare informações entre as bases de
dados da federação;

• O Cache armazena temporariamente os conjuntos de resultados das consultas
SQL;

• O Conector de Interface intercepta a consulta SQL produzida pela GUI e
envia para processamento no servidor. Através de RMI (Remote Method Invo-
cation [SUN98a]), objetos distribuídos podem ser implementados simples e
elegantemente;

• O Conector de Banco de Dados é responsável pelo gerenciamento das con-
exões providenciando também a comunicação com o sistema middleware.
Neste nível, foi empregado o JDBC (Java Database Connectivity [SUN98,
HCF97]) para a comunicação com o sistema middleware. O poder e funciona-
lidade da API (Application Programming Interface) do JDBC corresponde ao
padrão ISO SQL2. O JDBC emprega o protocolo TCP/IP padrão ISO para a
comunicação;

• Fábrica de Resultados produz conjuntos de resultados de objetos contendo
parte dos resultados das consultas SQL2. Este módulo divide o resultado com-
pleto em pequenos pacotes e envia assincronamente para o cliente para ser
visualizado pelo usuário através da GUI;

• O Monitor de Segurança cuida de todos os aspectos relacionados à seguran-
ça do sistema bem como da segurança dos dados no MENTAS, em ambos os
lados, Servidor e Cliente. É responsável por gerenciar os usuários, autoriza-
ções, acessos e criptografar os dados para transporte entre clientes e o servi-
dor;

• O Sistema Middleware oferece uma visão uniforme e transparente das
divergências dos serviços e recursos dos BDs que são integrados pelo MEN-
TAS;

• Os Banco de Dados Integrados são as fontes de dados integradas no MEN-
TAS. No estágio atual do desenvolvimento do MENTAS, todas as fontes de
dados são relacionais [Cod70, Cod90]. A integração de outras fontes de dados
não relacionais, como por exemplo hierárquico ou em rede, não deve causar
problema ao MENTAS, já que o middleware empregado também suporta estes
tipos de fontes de dados.

Apresentaremos a arquitetura do nível mais baixo (banco de dados integrados) até
o nível mais alto (GUI). Nesta última camada, apresentaremos a funcionalidade
enfatizando as características de como é feita a navegação entre os bancos de da-
dos integrados. Os módulos são apresentados de acordo com os três níveis da nos-
sa arquitetura: Servidor de Banco de Dados, Servidor e Cliente.
56

Integração de Bancos de Dados no MENTAS
5.3 Servidor de Banco de Dados

5.3.1 Banco de Dados Integrados

Nesta camada estão todos os bancos de dados integrados pelo MENTAS. Na prát-
ica, estas fontes de dados variam principalmente entre diversas versões de bancos
de dados ORACLE e diferentes versões de bancos de dados DB2. A Figura 5.2
mostra os passos utilizados durante a integração dos bancos de dados heterogên-
eos no MENTAS. Algumas fontes de dados remotas possuem informações a res-
peito de vários componentes de um carro, não apenas de motores (que é o que
realmente interessa ao nosso projeto). Após a definição de quais bancos de dados
iriam ser integrados pelo MENTAS, foram analisados os modelos de dados de
cada base de dados a fim de identificar os dados cruciais para o MENTAS. Essa
etapa do projeto foi acompanhada pelos engenheiros mecânicos, de modo a garan-
tir que todas as informações necessárias à construção de um motor estivesse pre-
sentes, e mais, deixando os esquemas resultantes o mais enxuto possível.

Uma vez possuindo os esquemas definidos para cada banco de dados participante,
analisamos de modo a reconhecer os pontos em comum entre os bancos de dados.
Identificamos as diferenças semânticas, os sinônimos, homônimos, etc. O projeto
do monitor de consistência foi totalmente formulado de acordo com os resultados
recolhidos nesta fase do projeto. Através destes pontos em comum, é que está ba-
seada a operação de integração dos bancos de dados no MENTAS.

O próximo passo foi a definição das visões para cada banco de dados, refletindo
os esquemas conseguidos em etapa anterior. Todas essas visões são criadas no
topo do banco de dados original pelo administrador do banco de dados do depar-
tamento correspondente, mantendo assim a autonomia do banco de dados local.
Por outro lado, informamos o sistema middleware em nosso servidor de banco de
dados que existem algumas visões definidas nos bancos de dados remotos em al-
guns nós da rede. Isto é feito através da definição de nicknames no sistema midd-
leware [IBM95].

Dessa forma, foi criado um esquema global, virtual, o qual só contém dados rele-
vantes para o MENTAS [Rez98, Rez98a, Rez98b]. Portanto, MENTAS pode for-
mular pedidos a todos os dados residentes em um simples banco de dados local
quando, de fato, muitos dos dados são distribuídos sobre fontes de dados remotas
heterogêneas.
57

Integração de Bancos de Dados no MENTAS
Figura 5.2 Passos na Integração dos Esquemas Heterogêneos no MENTAS.

Identificação dos
dados cruciais

Entrada do
conhecimento dos

engenheiros

Esquema local 1 Esquema local 2 Esquema local N

Esquema local 1
Dados crucias

Esquema local 2
Dados cruciais

Esquema local N
Dados cruciais

Identificacao dos
pontos em comum

Middleware

Visao do
usuário

Esquema
local 1

Esquema
local 2

Esquema
local N

5.3.2 Sistema Middleware

Como vimos, o MENTAS utiliza a tecnologia middleware para conectar as fontes
de dados. Segundo [Rym96], middleware é um software que habilita aplicações
interagirem nos nós da rede, escondendo diferenças de comunicação (protoco-
los), arquitetura de sistemas, sistemas operacionais, banco de dados e outros ser-
viços de aplicações. Em particular, MENTAS utiliza o Datajoiner da IBM como
sistema middleware. Esta escolha foi feita depois de um estudo detalhado [RH98,
RHS98, HR98a], no qual foi demonstrado a superioridade do DataJoiner sobre os
58

Integração de Bancos de Dados no MENTAS
outros produtos comparados, principalmente em relação a operações de join que
são de grande importância no ambiente do MENTAS.

Entretanto, faz-se necessário que fique claro que a arquitetura cliente-servidor do
MENTAS é independente do sistema middleware utilizado. Isto ocorre porque a
comunicação entre o servidor e o servidor de banco de dados, onde o middleware
está localizado, é realizado através do JDBC (Java Database Connectivity), um
padrão Java para acesso a banco de dados relacionais suportando a funcionalidade
e o poder da linguagem SQL2. Dessa forma, MENTAS pode utilizar qualquer sis-
tema middleware que ofereça a API do JDBC. Atualmente, praticamente todos os
sistemas middleware fornecem a API do JDBC.

5.4 Comunicação

Entre Servidor e Servidor de Banco de Dados

No momento, MENTAS integra apenas bancos de dados relacionais. Somando-se
a isto o fato de que MENTAS é um produto 100% Java, a comunicação entre o
servidor e o servidor de banco de dados é feita utilizando o JDBC [HCF97]. Além
deste fato, outra característica que foi levada em consideração é que praticamente
todos os fabricantes de bancos de dados oferecem o driver JDBC correspondente
para os seus produtos. Os tipos de driver JDBC podem ser classificados de quatro
maneiras [SUN98]. No MENTAS foi empregado o driver tipo 3, que é implemen-
tado totalmente em Java [RHO+98] e ainda suporta o paralelismo no processa-
mento de consultas. MENTAS ainda suporta o driver tipo 2 devido a alguns casos
de inviabilidade no do tipo 3. Maiores detalhes sobre este tópico podem ser encon-
trados em [RHO+98].

Entre Clientes e Servidor

A comunicação entre cliente e servidor é feita através do Remote Method Invoca-
tion (RMI).O termo RMI é utilizado para descrever o ato de invocar métodos re-
motos, entre máquinas virtuais Java. RMI habilita um método de uma máquina
virtual para ser invocado por outra máquina virtual com a facilidade de uma cha-
mada a um método local. Isto faz de RMI uma atraente alternativa em comparação
com sockets, por exemplo [SUN98a].

Uma das vantagens do uso de RMI é a abstração providenciada para os detalhes
de comunicação entre os processos. Parte desta abstração é oferecida por classes
especiais chamadas stubs e skeletons. Um stub é o lado cliente que implementa os
métodos remotos de um objeto remoto. Sendo objeto remoto definido como um
objeto com métodos que podem ser chamados por outras máquinas virtuais Java.
59

Integração de Bancos de Dados no MENTAS
Skeleton é o lado servidor que aceita uma chamada de método do cliente e dispara
a invocação ao método fonte no servidor [Jav97].

A Figura 5.3 mostra o relacionamento entre essas classes especiais e as porções
cliente e servidor de uma aplicação RMI.

Figura 5.3 Cliente/Servidor de uma Aplicação RMI.

Servidor

Skeleton

Cliente

Stub

Comunicação percebida
Comunicação real

Quando um cliente invoca um método remoto, existe a ilusão da chamada direta
ao método do objeto remoto. Na realidade, a chamada ao método remoto começa
como uma chamada a um método local no Stub. O stub empacota os parâmetros e
envia o pedido para o objeto remoto no skeleton. O skeleton desempacota-os e dis-
para uma chamada ao método fonte. O stub e o skeleton também são responsáveis
por retornar os resultados.

Em comparação com outros métodos utilizados, como por exemplo CORBA
[OHE94,OMG92, OMG95], a performance de RMI é muito boa. Adiciona-se a
isso ainda o fato de MENTAS possuir uma arquitetura implementada completa-
mente em Java (isso significa que os objetos distribuídos no cliente e servidor são
homogêneos), o poder de CORBA para integrar objetos heterogêneos em ambien-
tes distribuídos seria irrelevante no nosso caso.

5.5 Servidor

5.5.1 Conector de Banco de Dados

As principais tarefas do conector de banco de dados são gerenciar os recursos dos
bancos de dados bem como as consultas SQL recebidas dos clientes.
60

Integração de Bancos de Dados no MENTAS
Gerenciamento dos Recursos dos Bancos de Dados

Com a centralização do gerenciamento das conexões neste módulo, é possível au-
mentar a velocidade do sistema e ao mesmo tempo possuir uma visão global para
controlar os recursos do mesmo. Estas vantagens são conseguidas através do com-
partilhamento de objetos instanciados, no caso, as conexões. Como a mesma co-
nexão é utilizada por várias chamadas, não é gasto tempo para a criação destes
objetos. Após o uso, as conexões são devolvidas para o buffer, poupando o tempo
do garbage collection, por sua vez. Este método melhora a performance e minimi-
za o uso de memória.

Todos os módulos que precisam utilizar uma conexão com o sistema middleware
devem requisitá-la ao conector de banco de dados. Após a execução da consulta
SQL, esta conexão deve ser devolvida ao buffer de modo que o conector de banco
de dados possa gerenciar o tempo de vida das conexões, bem como criar novas
quando necessário. As conexões são utilizadas um número de vezes pré-definido
e após isso, são fechadas e outra conexão é aberta. Em [Dav98], é sugerido uma
proposta similar utilizando timestamps. O pedido da conexão é feito diferenciando
entre leitura e escrita. Através dessa diferenciação é possível aumentar o paralelis-
mo no lado do servidor [RHO+98].

Gerenciamento de Consultas

Um dos requisitos da implementação de drivers JDBC é que qualquer objeto Java
que não esteja sendo utilizado e que consuma recursos do banco de dados deve ser
recolhido pelo garbage collector liberando imediatamente os recursos. Ainda, de-
vem liberar ou reutilizar os recursos usados pela execução de uma consulta. Infe-
lizmente, existem implementações de drivers que não preenchem esses requisitos
totalmente. Além disso, o garbage collector apresenta algumas desvantagens na
prática. Como é sabido, o garbage collector em Java é inicializado automatica-
mente para liberar espaço de memória, quando é preciso. Neste momento, ele li-
bera também os recursos dos bancos de dados. Mas, o contrário não é verdade. Ou
seja, quando os recursos dos bancos de dados estão esgotados o garbage collector
não é acionado. No MENTAS, nós seguimos o método de liberar explicitamente
os recursos dos bancos de dados após cada operação de execução, independente
do driver que estiver sendo utilizado. Dessa forma, não ficamos sujeitos a falhas
de implementações de alguns drivers, e ainda, possuímos um melhor controle so-
bre o uso dos recursos dos bancos de dados. Técnicas diferentes são utilizadas pe-
los vários módulos da nossa arquitetura para liberação desses recursos. O monitor
de consistência e o controlador de segurança podem liberar estes recursos local-
mente1 logo após o processamento da execução da consulta. No caso do conector

1. Isto significa que o objeto Statement, utilizado para executar uma consulta SQL e obter os
resultados retornados por ela são fechados após a execução da consulta.
61

Integração de Bancos de Dados no MENTAS
de banco de dados esta tarefa não é tão simples visto que o processamento dos re-
sultados depende da visualização pelo usuário [RHO+98].

5.5.2 Fábrica de Resultados

Após o processamento de uma consulta SQL, a fábrica de resultados é acionada.
Este módulo é o responsável por criar conjuntos de resultados que são mostrados
através da GUI aos usuários. Os resultados de uma consulta SQL não são trans-
portados de uma só vez para o cliente e nem muito menos tupla por tupla. Ao con-
trário, o conjunto do resultado é dividido em pequenas partes e enviados
assincronamente para o cliente. Dessa forma, o usuário não é penalizado com o
tempo de espera, já que, enquanto é visto o primeiro conjunto dos resultados, os
demais são apanhados no servidor e armazenados no cliente. Além de buscar os
resultados do servidor e levar para o cliente, é também responsabilidade deste
módulo formatar os dados para a apresentação através da GUI aos usuários (janela
de apresentação dos resultados - Figura 5.15).

5.5.3 Controlador de Segurança

O monitor de segurança do servidor é responsável por manipular os dados dos usu-
ários, bem como os acessos aos bancos de dados efetuados por esses usuários. É
responsabilidade deste módulo também criptografar os dados que são transporta-
dos entre o cliente e o servidor. A construção deste módulo é baseada nos meca-
nismos de segurança providos pelo sistema operacional (UNIX) no lado do
servidor e Java [Rüt 99].

5.5.4 Monitor de Consistência

Com o uso da tecnologia middleware, nós conseguimos transparência de localiza-
ção, de sistemas operacionais, de protocolos de rede, etc. Infelizmente, o midd-
leware não cuida dos aspectos relacionados à semântica dos dados e nem das
heterogeneidades de esquemas utilizadas para representar as informações nos di-
versos bancos de dados integrados. O principal objetivo do monitor de consistênc-
ia é justamente resolver os problemas provenientes dessa “falha” dos sistemas
middleware.

O monitor de consistência visa tão somente proporcionar a GUI um ambiente ne-
cessário para a condução da navegação entre os bancos de dados. É função do mo-
62

Integração de Bancos de Dados no MENTAS
nitor de consistência todo o processo de integração de esquemas1 entre os bancos
de dados integrados.

Depois do reconhecimento dos atributos que possuem o mesmo significado se-
mântico chamados de pontos de entrada nos bancos de dados, de estabelecer as re-
gras necessárias para que essas diferenças sejam tratadas, o monitor de
consistência faz as devidas transformações nos dados de forma a garantir que pos-
sa ser executada uma navegação.

Checagem da Possibilidade de Navegação

Outra tarefa importante executada por este módulo é a verificação da possibilidade
de ocorrer ou não uma navegação. Esta verificação é efetuada como primeiro pas-
so durante o processo da navegação. Para isso, é enviada ao servidor de banco de
dados a consulta formulada pelo usuário através da GUI. Se esta consulta retornar
pelo menos um resultado o monitor de consistência sinaliza como possível a na-
vegação e parte para a manipulação dos pontos de entrada. Caso nenhum resultado
seja retornado da execução da consulta, é retornado um código para a GUI que o
interpreta e envia uma mensagem de aviso ao usuário sinalizando não ser possível
a navegação.

Manipulação dos Pontos de Entrada

É necessária a identificação de pontos semelhantes entre os diversos bancos de da-
dos para que possa ser construído o esquema global virtual que é percebido pelo
usuário no processo de navegação. Estes são os chamados pontos de entrada dos
bancos de dados. O monitor de consistência é o responsável por fazer as transfor-
mações necessárias entre os pontos de entrada no momento de uma navegação.

Parser

Se todos os bancos de dados fossem modelados seguindo o mesmo padrão, muitos
dos problemas de integração de esquemas seriam resolvidos. Acontece que os ban-
cos de dados são modelados de acordo com as necessidades de um conjunto de
usuários e mais, projetados por pessoas diferentes que possuem visões diferentes
sobre a mesma informação do mundo real. Devido a essas características, encon-
tramos nos bancos de dados do MENTAS diferentes modelagens para uma mesma
informação. Um exemplo concreto é o atributo que identifica o motor. No banco
de dados Mentas essa informação foi modelada seguindo o padrão da Mercedes-
Benz. Por esse padrão um identificador de motor é composto de 3 partes: um tipo,
seguido de uma identificação e finalmente seguido por um modelo de construção.

1. Integração de esquemas aqui é o processo de desenvolvimento de um esquema conceitual,
livre de duplicações ou heterogeneidades, que integre uma coleção de esquemas locais
[Ham94].
63

Integração de Bancos de Dados no MENTAS
Dessa forma, criamos no banco de dados Mentas três atributos para armazenar tal
informação. Mas, nos demais bancos de dados esta mesma informação é represen-
tada de forma diferente. Em um banco de dados, o tipo é seguido da especificação
sem possuir entretanto o modelo de construção. Em outro banco de dados, o tipo
é seguido do modelo de construção, sendo que este dois atributos na maioria da
vezes (não em todos os casos) são concatenados através de um ponto. Algumas ve-
zes a especificação (no primeiro banco de dados) e o modelo de construção (no
segundo banco de dados) é seguida de seqüências de caracteres que não seguem
nenhum padrão, sendo totalmente aleatórias. Portanto, mesmo nesses dois bancos
de dados em que o identificador do motor é representado por um único atributo
não é possível realizar a comparação. Para resolver este problema foi criado um
parser que separa um único objeto dos bancos de dados que apresentam outro for-
mato que não o da Mercedes-Benz, no formato recomendado por esta. Para isso,
o parser trabalha com o auxílio de regras gramaticais definidas para homogeneizar
o identificador do motor transformando todos para um modelo comum no qual
possam ser comparados entre si.

Gerenciamento das Tabelas de Mapeamento

O monitor de consistência precisa de um formato padrão para todos os pontos de
entrada para que seja possível a ocorrência da navegação. Como a autonomia dos
bancos de dados é uma propriedade que deve ser garantida pelo MENTAS após a
integração, não é possível que haja modificação dos bancos de dados. Por outro
lado, as informações dos usuários formatadas não podem ser comparadas com as
informações originais do banco de dados. O monitor de consistência também não
pode formatar esses dados cada vez que ocorre uma navegação pois seria altamen-
te ineficiente realizar este procedimento a cada ocorrência de uma navegação. De-
vido a todas essas características, nós utilizamos tabelas intermediárias chamadas
por nós de Tabelas de Mapeamento. Essas tabelas são armazenadas no banco de
dados do sistema middleware, e nela são armazenados todos os pontos de entradas.

As tabelas de mapeamento são geradas automaticamente no momento da primeira
inicialização do servidor. Neste momento são buscados das fontes de dados remo-
tas todos os pontos de entrada para serem armazenados nas tabelas de mapeamen-
to. É também acionado o parser para formatar os pontos de entrada. Após essa
fase, são armazenados todos os pontos de entrada já com formato comum. Adicio-
nalmente é armazenado nas tabelas de mapeamento o identificador do ponto de en-
trada no formato original (sem passar pelo parser). Este atributo serve de ponteiro
para as tuplas das tabelas originais. Portanto, no momento da navegação, todos os
pontos de entrada são tratados e comparados a nível do banco de dados do sistema
middleware, não sendo necessário o acesso a fontes de dados remotas. Com isso,
ganhamos na performance, uma vez que é poupado o tempo de comunicação da
rede. E como é armazenado um ponteiro para as tabelas originais, ao final da na-
vegação podem ser recuperadas no banco de dados remoto as tuplas referentes ao
dado ponto de entrada. Claro que isso só ocorre se o usuário enviar a consulta para
64

Integração de Bancos de Dados no MENTAS
o processamento. Deste modo, nossas tabelas de mapeamento permitem uma na-
vegação eficiente, já que todos os pontos de entrada se encontram presentes e no
mesmo formato.

Como as tabelas originais podem sofrer mudanças, damos a possibilidade ao próp-
rio engenheiro de requisitar que um novo mapeamento seja gerado. O monitor de
consistência gerencia informações como dia e hora que foi gerado o último mape-
amento e através da GUI esta informação é disponibilizada ao usuário.

Outra característica importante do monitor de consistência é o suporte ao mecanis-
mo de sombra das tabelas de mapeamento. Para cada banco de dados que necessita
que uma tabela de mapeamento seja gerada, o monitor de consistência manipula
duas tabelas - a versão corrente e a sombra. A tabela de mapeamento corrente dá
suporte a todos os clientes do MENTAS durante a navegação dos bancos de dados.
Isso significa que estas tabelas devem estar sempre disponíveis. Por outro lado, a
requisição da geração de um novo mapeamento pode levar ao bloqueio de todos
os usuários. Por isso, quando é requisitado um novo mapeamento, o monitor de
consistência dispara threads de forma assíncrona gerando o novo mapeamento na
tabela sombra. No momento que todos os dados são armazenados na tabela, o mo-
nitor de consistência simplesmente troca a informação de qual é a tabela corrente
a partir daquele momento, passando a tabela corrente ser a sombra e vice-versa.
Dessa forma, a navegação é paralisada apenas no momento da atualização de qual
tabela é a corrente, e não em todo o tempo que é gerado o mapeamento completo.
Mais uma vez ganhamos na performance do sistema.

5.6 Cliente

5.6.1 Conector de Interface

O Conector de Interface possui duas tarefas principais. A primeira é prover à GUI
informações sobre os meta-dados dos bancos de dados integrados e a segunda é
manipular as consultas SQL criadas pelo usuário através da GUI.

Gerenciamento das informações dos meta-dados

O conector de interface começa o seu trabalho quando a GUI é inicializada no
cliente. Neste momento, ele estabelece uma conexão com o servidor. Através do
registro RMI, o cliente recebe uma referência para o objeto servidor que será usa-
do como ponto inicial para todas as outras conexões com o servidor. Através deste
objeto, muitos outros objetos contendo informações sobre os meta-dados dos ban-
cos de dados integrados no servidor de bancos de dados são carregados para o
cliente. O esquema global das meta-informações é compreendido do nome, atri-
butos e comentários das relações e do nome, comentário e tipo dos atributos.
65

Integração de Bancos de Dados no MENTAS
É criado então uma interface bem definida para que a GUI tenha acesso aos meta-
dados, que são utilizados por esta para fornecer informações de descrição de enti-
dades e atributos aos usuários através do help, controlar os operadores na monta-
gem da cláusula de condição, etc.

Gerenciamento de Códigos de Erros e Mensagens

A manipulação de mensagens de erro no MENTAS é feitas através de uma classe
própria que contém informação tanto para o usuário final como para o DBA (men-
sagens detalhadas como exceções SQL2). Os diferentes tipos de falhas que podem
ocorrer são caracterizados por um código de erro e a mensagem de erro correspon-
dente. Este código e mensagem são armazenados no banco de dados do sistema
middleware e carregados nos properties object de Java durante a inicialização do
cliente.

Gerenciamento de Consultas

No momento que o usuário finaliza a formulação de sua consulta, a GUI produz
um string da consulta SQL correspondente. A partir de então, o conector de inter-
face cria um objeto (ExecuteSelect) que envia assincronamente a consulta para ser
processada no servidor de banco de dados. Nesse momento, o conector de interfa-
ce pára a execução e espera por uma resposta do servidor. Se a consulta for exe-
cutada com sucesso, o conector de interface passa para a GUI o primeiro conjunto
de resultados que é apresentado através da janela de resultados ao usuário. Caso a
consulta falhe, um código é retornado à GUI e esta reporta através de mensagens
ao usuário.

Após apresentar o primeiro subconjunto dos resultados da consulta, o objeto Exe-
cuteSelect busca em paralelo os próximos subconjuntos dos resultados no servi-
dor, armazenando em cache no cliente. Dessa forma, quando o usuário requisita a
visualização do próximo subconjunto de resultados da sua consulta, ele não preci-
sa ficar esperando por muito tempo, uma vez que estes resultados já estão dispo-
níveis em cache para a GUI.

Dependendo da complexidade, o processamento de uma consulta pode levar bas-
tante tempo. Por isso, é dada ao usuário a possibilidade de interromper o proces-
samento da consulta através de uma janela intermediária entre a janela principal e
a janela de resultados. Entretanto, interromper a consulta a nível da GUI não sig-
nifica a interrupção da operação correspondente ao nível do banco de dados (tran-
sação). JDBC não oferece nenhum comando que interrompa uma transação ativa,
e devido a isso, infelizmente nenhum recurso do banco de dados é liberado. O
SGBD sempre executa a consulta até o final.

Em relação às consultas, é ainda de responsabilidade do conector de interface,
através do objeto ExecuteSelect, armazenar no banco de dados do sistema midd-
66

Integração de Bancos de Dados no MENTAS
leware as consultas SQL produzidas pelo usuário (desde que isso seja requisitado
pelo mesmo), bem como armazenar em arquivo os resultados das consultas retor-
nados pelo servidor após o processamento das mesmas. Através desta funcionali-
dade, o usuário não precisa formular consultas que são frequentemente utilizadas,
bastando apenas abrir a consulta através da GUI e esta é imediatamente enviada
para o servidor para processamento. Assim como as consultas, os resultados tam-
bém podem ser salvos em arquivo para visualizações futuras pelo usuário. Os usu-
ários podem salvar tanto os resultados parciais apresentados pela janela de
resultados no momento da requisição, como também os resultados completos do
processamento de uma consulta.

5.6.2 Cache

Este módulo do cliente é gerenciado pelo conector de interface para armazenar
temporariamente os resultados das consultas. O método de implementação do ca-
che do MENTAS provê funcionalidade suficiente para a primeira versão do nosso
sistema, mas existem alguns problemas de capacidade de armazenamento quando
uma consulta produz grande quantidade de resultados. No futuro, esperamos mu-
dar a atual funcionalidade do nosso cache implementando a metodologia CAOS
[Her98].

5.6.3 Monitor de Consistência

O trabalho de ambos os monitores de consistência, tanto o do servidor como o do
cliente, é voltado para possibilitar a navegação entre os banco de dados, sendo que,
o MCC (Monitor de Consistência do Cliente) se preocupa em formatar os dados
fornecidos pelo usuário à GUI e o MCS (Monitor de Consistência do Servidor) em
formatar os dados originados das fontes de dados remotas.

A única tarefa do MCC é formatar os dados fornecidos pelo usuário através da
GUI. Assim como a parte do servidor, o cliente também conta com um parser, sen-
do que este é utilizado para formatar os dados informados pelo usuário para os
pontos de entrada. Mas, este parser manipula as mesmas regras gramaticais do ser-
vidor na hora da formatação. Dessa forma, conseguimos ajustar os valores para um
formato padrão, possibilitando que ocorra a navegação.

O perfil dos usuários do MENTAS, em relação a entrada dos dados, varia de acor-
do com o BD que estes trabalham. Uma preocupação do MENTAS é deixar o usu-
ário trabalhar da maneira mais natural. Dessa forma, não deve ser exigido deste a
responsabilidade de saber em qual formato ele deve realizar uma consulta. Muito
pelo contrário, ele deve interagir com o sistema como se estivesse trabalhando
apenas com o BD usual. Para garantir a transparência das representações dos atri-
butos utilizadas pelos bancos de dados, o monitor de consistência do cliente se en-
67

Integração de Bancos de Dados no MENTAS
carrega de formatar algumas entradas para o usuário. São coisas simples, mas que
se não forem cuidadas pode ocasionar uma falha na consulta.

5.7 Funcionalidade da Interface

Todos os componentes descritos até o momento trabalham com a única e exclusiva
função de oferecer à GUI todo o ambiente necessário para providenciar ao usuário
final uma forma rápida, fácil e eficiente de acessar dados tanto num único banco
de dados quanto quando a consulta envolver mais de um banco de dados.

Devido ao fato dos usuários estarem distribuídos em departamentos diversos e, as-
sim, possuírem o seu próprio computador, esta GUI foi projetada com a finalidade
de possibilitar a sua execução em diferentes plataformas de hardware (entre PCs
e workstations como IBMs, HPs, SUNs, etc.) e software (sistemas operacionais
como Windows-NT, AIX, HP-UX, Solaris, etc.). Desta forma, a GUI do MEN-
TAS foi programada em Java, a qual permite atingir a independência de platafor-
ma desejada [Oli99].

Quando um cliente inicializa uma sessão, são pedidos o login e a senha para que
o usuário possa ter o acesso aos bancos de dados integrados pelo MENTAS. Caso
o usuário seja autorizado, é apresentada a janela principal da interface que pode
ser vista através da Figura 5.41.

1. Sendo que a janela principal é inicializada sem a presença de nenhum modelo de dados no
campo de modelo.
68

Integração de Bancos de Dados no MENTAS
Figura 5.4 Janela Principal do MENTAS - Interface de Acesso aos Bancos de Dados.

Cam po do
m odelo

M enu

Cam po de
consulta

Visualizador
do help

Através da GUI, os usuários podem criar suas consultas SQL para acessar desde
um simples banco de dados como também expandir o contexto da consulta para os
outros bancos de dados, podendo assim comparar valores e adquirir informações
complementares nos outros BDs. A GUI proporciona ao usuário uma visão que to-
das as fontes de dados não passam de um sistema homogêneo, quando na verdade
o acesso é feito a banco de dados remotos heterogêneos. Nesta seção, abordaremos
a funcionalidade da interface, não entrando em detalhes de implementação e técn-
icas utilizadas. Maiores informações podem ser encontradas em [Oli99].

Os dados são apresentados para o usuário através da interface utilizando o modelo
Entidade-Relacionamento - Modelo ER - [Che76] (ver Figura 5.4). Através da vi-
sualização do Modelo ER de um BD, o usuário pode identificar os atores e cenas
que fazem parte do dia-a dia no ambiente de trabalho - como o motor, as válvulas
- e através de um clique do mouse no Modelo ER apresentado pela GUI, o usuário
69

Integração de Bancos de Dados no MENTAS
pode formular suas consultas SQL, sem que para isso ele tenha a menor noção da
linguagem SQL.

A GUI apresenta o Modelo ER da forma mais enxuta possível, apenas entidades e
relacionamentos são mostrados diretamente para o usuário. Os atributos foram
omitidos visto que algumas entidades possuem mais de cem atributos, o que torna
inviável fazer a apresentação completa.

Como podemos observar na Figura 5.4, os principais componentes da janela prin-
cipal são:

• Menu: apresenta cinco títulos, sendo eles:

File, onde o usuário pode abrir consultas previamente salvas e sair do sistema.

Databases, onde o usuário pode escolher qualquer um dos bancos de dados
integrados pelo MENTAS. Quando a GUI é iniciada, não apresenta qualquer
modelo no campo esquema (ver Figura 5.4), só sendo apresentado para o
usuário o Modelo ER após a escolha através deste item de menu.

Consistency, dá ao usuário a possibilidade de gerenciar alguns ítens do
sistema, como: definir se deseja que a navegação ocorra com ou sem checa-
gem de consistência (através do check box Activated), definir os pontos de
entrada que serão verificados no decorrer da navegação com checagem de
consistência, gerar novas tabelas de mapeamento para a navegação entre os
BDs, criar as consultas acessando diretamente as tabelas de mapeamento ou
simplesmente recebendo informações a respeito dessas tabelas. Este item de
menu está totalmente relacionado ao trabalho do monitor de consistência.

User, através deste item, o usuário pode trocar a password que dá acesso ao
sistema.

Help, apresenta ao usuário, através de um browser, uma documentação com-
pleta do sistema em HTML.

• Campo do modelo: mostra ao usuário o Modelo ER do banco de dados corr-
ente. Esse campo é atualizado, mudando o modelo ER apresentado, caso o
usuário escolha outro BD a partir do menu Databases ou no caso de navega-
ção entre os banco de dados, onde é automaticamente apresentado o novo
modelo ER do BD para o qual a consulta do usuário está dirigindo-se ao final
da navegação.

• Campo da consulta: composto por quatro campos editáveis, onde o usuário vai
visualizando a consulta que está sendo construída através do Modelo ER, e no
caso de usuários mais experientes, onde será digitado diretamente a consulta
SQL.

• Visualizador de help: mostra ao usuário um texto de ajuda on-line, depen-
dendo do posicionamento do mouse na interface. Assim, para receber uma
70

Integração de Bancos de Dados no MENTAS
descrição de um objeto presente na interface, tudo que o usuário deve fazer é
colocar o mouse em cima do objeto e um texto é mostrado neste campo.

• Botões OK e Clear: Através do botão OK o usuário envia a consulta corrente
apresentada no campo da consulta para ser processada pelo servidor. O Botão
Clear limpa a consulta corrente dando início a uma nova sessão.

5.7.1 Formulação de Consultas

O uso da interface é bastante simples. Com apenas um toque no botão esquerdo do
mouse em cima de qualquer entidade ou de alguns relacionamentos do diagrama
entidade-relacionamento, surge um pop up menu com as opções que aparecem na
Figura 5.5. O usuário pode montar a sua consulta bastando para isso fazer uso das
opções que lhe são apresentadas no pop up menu, as quais são automaticamente
habilitadas ou não, dependendo da situação em que se encontra a consulta do usu-
ário.

Figura 5.5 Pop up Menu para a Formulação de Consultas.

De acordo com a figura acima, podemos perceber que existem 4 opções no pop up
menu, são elas:

Select: especifica a cláusula de projeção para a consulta SQL.

Where: define a cláusula de condição da consulta SQL.

Order by: especifica a ordenação dos resultados da consulta SQL.

Other Databases: habilita a navegação entre os bancos de dados.

A inserção de qualquer um dos atributos de uma entidade ou de um relaciona-
mento na cláusula de projeção da consulta SQL faz com que haja mudança na
cor do diagrama, possibilitando assim uma melhor visualização do usuário em
relação a interação da sua consulta no banco de dados, representado através do
diagrama ER.
71

Integração de Bancos de Dados no MENTAS
5.7.1.1 Especificando a Cláusula de Projeção

Ao escolher qualquer um dos ítens que compõem o pop up menu, o usuário depara-
se com novas janelas. Através da escolha do Select, ele recebe uma janela conten-
do todos os atributos da entidade, como pode ser visto na Figura 5.6. Basicamente
a janela é composta de duas listas: uma na parte esquerda contendo todos os atri-
butos disponíveis para a projeção e outra no lado direito, contendo os atributos que
foram escolhidos pelo usuário a partir da lista da esquerda. Estas janelas são cha-
madas de janelas de seleção.

A movimentação dos atributos entre as duas listas é feita utilizando os botões ">",
">>", "<", "<<". Antes da movimentação, é necessário que o usuário escolha o
atributo que deseja movimentar. Isto é feito posicionando o mouse sobre o nome
do atributo e clicando o botão esquerdo do mouse. Porém, não é dada a possibili-
dade ao usuário para passar o mesmo atributo mais que uma vez para a lista dos
atributos selecionados. Ainda podemos perceber a presença de um label na parte
superior da janela com o nome da entidade ou relacionamento aos quais os atribu-
tos pertecem. Ainda, a barra superior da janela traz a informação sobre a operação
que pode-se realizar através dela - Attributes for the projection.

Ao selecionar os atributos nessa janela e clicar no botão OK, os dois primeiros
campos do campo de consulta da janela principal são preenchidos. O botão Cancel
por sua vez cancela as operações realizadas nessa janela e volta para a janela prin-
cipal. Através dessa janela são preenchidos os dois primeiros campos do campo de
consulta da janela principal, ou seja, o select e o from.

Figura 5.6 Janela da Projeção.
72

Integração de Bancos de Dados no MENTAS
No momento que o usuário confirma os atributos selecionados por esta janela, é
habilitado no pop up menu a opção de navegar para os outros bancos de dados (op-
ção other databases (Figura 5.5).

5.7.1.2 Especificando a Cláusula da Condição

A escolha do item Where do pop up menu origina uma janela idêntica à apresen-
tada anteriormente (Figura 5.6), sendo que serão selecionados nela os atributos
que irão preencher a cláusula where da consulta do usuário.

A primeira diferença na funcionalidade das janelas é a possibilidade do usuário
passar o mesmo atributo mais de uma vez para a lista dos ítens selecionados, pos-
sibilitando ao usuário então, construir consultas do tipo: "selecione todos os mo-
tores que utilizam diesel ou gasolina na combustão".

A segunda diferença está na funcionalidade do botão OK que ao contrário da jane-
la anterior, aciona uma nova janela (Figura 5.7) que possibilitará ao usuário esta-
belecer as condições para os atributos escolhidos nesta primeira fase.

Figura 5.7 Janela de Montagem da Cláusula de Condição.

Através desta janela o usuário pode escolher o operador da condição, o valor, ani-
nhar as condições através do uso de parênteses e escolher o operador relacional
(and ou or). São mostrados apenas os operadores de condição - através de uma lis-
ta de seleção - compatíveis ao domínio do atributo. Esse controle é feito pela GUI
através das meta-informações recebidas pelo conector de interface, evitando que
o usuário cometa erros dessa natureza.
73

Integração de Bancos de Dados no MENTAS
5.7.1.3 Especificando a Ordenação dos Resultados

Através da escolha do item Order by no pop up menu, o usuário tem acesso a uma
janela similar à apresentada na Figura 5.6, sendo que na lista da esquerda apare-
cem apenas os atributos pertencentes à cláusula de projeção. Os atributos selecio-
nados nessa janela irão ordenar os resultados da consulta. Após pressionar o botão
OK o usuário recebe uma nova janela (Figura 5.8), com dois check-box para cada
atributo selecionado na janela anterior, classificando-os de forma ascendente ou
descendente no resultado. Como nas outras janelas, o botão OK leva o usuário à
janela principal do MENTAS, atualizando de forma apropriada a consulta SQL.

Figura 5.8 Janela de Ordenação dos Resultados.

5.7.1.4 Others Databases

Este é o mais importante tópico da Interface no que diz respeito ao monitor de con-
sistência. Através deste item do pop up menu o usuário pode inicializar a navega-
ção entre os bancos de dados. A palavra navegação no MENTAS está
implicitamente ligada ao monitor de consistência. É através desta opção no pop up
menu que será realizada a integração das fontes de dados no MENTAS. Esta tarefa
é realizada de forma transparente para o usuário.

No momento em que o usuário especifica uma cláusula de projeção na sua consul-
ta, a opção de other databases torna-se ativa (a navegação é habilitada). Note que
a opção torna-se ativa para a entidade a qual possui atributos inclusos na projeção
e não para todas as entidades. Existem três possibilidades de consultas que são re-
levantes para o monitor de consistência no momento da navegação, que são:

• consultas sem cláusula de condição

• consultas com cláusula de condição, mas sem pontos de entrada contidos nas
condições;
74

Integração de Bancos de Dados no MENTAS
• consultas com cláusula de condição contendo ponto(s) de entrada

Com relação à interface - os detalhes do monitor de consistência são tratados no
Capítulo 6 - apenas dois tipos são levados em consideração, que são consultas com
pontos de entrada na cláusula de condição e consultas sem pontos de entrada in-
clusos na cláusula de condição ou consultas sem cláusula de condição (Figura 5.9).
Para a interface é transparente o fato de haver um ou mais pontos de entrada pre-
sentes na cláusula de condição. As janelas apresentadas são as mesmas.

De acordo com a interface, definimos três tipos de navegação (Figura 5.9):

• Tipo 1: A consulta no momento da navegação possui uma cláusula de
condição como também pontos de entrada inclusos nesta cláusula. Mais espe-
cificamente, dentre os pontos de entrada está presente o atributo que identifica
o motor;

• Tipo 2: Apesar de possuir pontos de entrada na cláusula de condição, o atrib-
uto que identifica o motor não está presente;

• Tipo 3: A consulta pode ter duas formas: (i) Não possuir uma cláusula de
condição ou (ii) possuir uma cláusula de condição, sendo que esta não contém
ponto(s) de entrada.

Figura 5.9 Tipos de Consultas versus Interface na Navegação

Consulta

Cláusula Where

Sem Cláusula Where

Pontos de Entrada

Sem Pontos de Entrada

Consulta

Cláusula Where com Pontos de Entrada

Sem Cláusula Where /
Com Cláusula e Sem Pontos de Entrada

 Interface

 Tipos de Consultas

Tipo 1

Tipo 3

Identificador do Motor

Sem Identificador do Motor Tipo 2

Identificador do Motor

Sem Identificador do Motor

.

Apresentaremos como se comporta a interface em cada uma das consultas acima,
e qual o relacionamento da interface com o monitor de consistência em cada caso.
75

Integração de Bancos de Dados no MENTAS
5.7.1.5 Navegação Tipo 1

Este tipo de navegação pode ser dividido ainda em dois casos distintos, que são
apresentados na Figura 5.10. Em ambos os casos será apresentada ao usuário a
mesma interface durante a navegação. A distinção desses dois tipos de consultas
está apenas no relacionamento da GUI e o monitor de consistência (servidor e
cliente).

Figura 5.10 Consulta com Cláusula de Condição Contendo Pontos de Entrada

Consulta

Cláusula Where com Pontos de Entrada

Sem Cláusula Where /
Com Cláusula e Sem Pontos de Entrada

Identificador do Motor

Sem Identificador do Motor Tipo 2

 Identificador do Motor

 Identificador do Motor +
outros Pontos de Ligação

Tipo 3

.

Quando existe a presença do atributo que identifica o motor na consulta do usuário
(condição), é necessário procedimentos intermediários, antes de apresentar a con-
sulta final ao usuário. Na verdade, a consulta final é montada com o auxílio do usu-
ário. Não é possível automatizar completamente este processo, visto que as
diferenças das representações nos atributos que identificam o motor são muitas.

O identificador do motor possui características que o diferenciam dos demais pon-
tos de entrada entre os bancos de dados integrados. Essas características serão ex-
ploradas no Capítulo 6. Esse ponto de entrada é representado de formas diferentes
em cada banco de dados. Em alguns casos faltam informações para que esses atri-
butos sejam comparados. Por esta razão, não foi possível a completa automatiza-
ção do processo de mapeamento deste atributo entre os bancos de dados no
momento da navegação.

Assim, no momento que o usuário especifica esse ponto de entrada e deseja que a
navegação entre os bancos de dados ocorra através dele, a GUI faz uma chamada
ao parser do monitor de consistência do cliente que transforma o identificador do
76

Integração de Bancos de Dados no MENTAS
motor para um formato padrão. A partir de então, são montadas as consultas inter-
mediárias pelo monitor de consistência do servidor, para que sejam recuperados
os motores no banco de dados para onde está seguindo a navegação que correspon-
de ao especificado pelo usuário na consulta corrente. O percurso de uma navega-
ção com a presença do identificador do motor será apresentado no Capítulo 6.

Caso seja encontrado pelo menos um resultado para a consulta intermediária, apre-
sentamos ao usuário uma nova janela contendo tais resultados (Figura 5.11). A
funcionalidade desta janela é a mesma apresentada pela janela de projeção (Figura
5.6). Sendo que a lista da esquerda apresenta todos os motores que possuem as
mesmas definições do motor especificado pelo usuário. Na lista da direita são
apresentados os motores que o usuário escolheu como sendo o(s) motor(es) equi-
valente(s) para o banco de dados para onde está seguindo a navegação.

Quando o usuário clica o botão de OK, é montada a consulta final do usuário de
acordo com os motores escolhidos, retornando para a janela principal. A janela
principal é apresentada com a nova consulta no “campo de consulta” e o modelo
de dados do novo banco de dados para onde ocorreu a navegação.

Figura 5.11 Busca da Consulta Intermediária para o Identificador do Motor.

Esta é a primeira tentativa de acharmos o motor especificado pelo usuário no ban-
co de dados posterior1. Caso o engenheiro tenha especificado no banco de dados
corrente um motor que não possui correspondente direto no banco de dados pos-
terior, ainda oferecemos uma segunda alternativa chamada por nós de Other Ma-
tches. A idéia do Other Matches é procurar no banco de dados posterior os motores
que são mais semelhantes ao especificado pelo usuário ao banco de dados corren-

1. Como convenção, adotamos o termo banco de dados posterior para significar o banco de dados
para onde está ocorrendo a navegação. Do mesmo modo, o termo banco de dados corrente é o
banco de dados inicial de onde parte a navegação.
77

Integração de Bancos de Dados no MENTAS
te. Esta metodologia é uma nova tendência dos métodos de busca e baseia-se na
diretiva de que se não é possível encontrar a especificação completa do usuário,
deve-se procurar por resultados mais semelhantes ao especificado. Dessa forma, o
monitor de consistência monta novas consultas intermediárias que vão buscar no
banco de dados posterior os motores mais semelhantes ao especificado pelo usu-
ário.

Other Matches

Com a falha da primeira consulta intermediária, apresentamos ao usuário a janela
da Figura 5.12. Nesta janela, informamos que não existe motor correspondente no
banco de dados posterior para o especificado no banco de dados corrente e damos
a opção para o usuário decidir se deseja realizar a procura mais refinada (através
do botão other matches). Se o usuário não estiver interessado neste método, pode
optar pelo botão Back que vai retornar à janela principal.

Se o usuário desejar visualizar os motores mais semelhantes ao especificado, o
monitor de consistência monta novas consultas intermediárias que vão buscar no
banco de dados posterior tais motores. Isto é feito procurando cada parte que com-
põe o motor em separado (o identificador do motor no formato padrão). Para faci-
litar o trabalho do usuário, antes de apresentar uma janela semelhante à Figura
5.11, separamos os resultados de acordo com o atributo que foi correspondente.
Após a execução dessas novas consultas intermediárias apresentamos ao usuário
a janela da Figura 5.13. Nesta janela são apresentadas a quantidade de motores en-
contrados para cada parte componente do identificador do motor.

Figura 5.12 Falha da Primeira Consulta Intermediária.
78

Integração de Bancos de Dados no MENTAS
Figura 5.13 Janela de Other Matches.

Como podemos notar através da Figura 5.12, o usuário especificou um motor
M11E18MMX para o banco de dados corrente e ao navegar para o banco de dados
posterior não foi encontrado nenhum motor correspondente. Através da opção de
other matches, conseguimos encontrar 26 motores que possuem o mesmo tipo do
motor igual a M111 e nenhum motor com a especificação E18. A seqüência MMX
é ignorada por não fazer parte da gramática por nós definida (Capítulo 6). Esco-
lhendo o botão Back o usuário retorna para a janela principal sem efetuar nenhuma
mudança. Mas, escolhendo um dos check box à esquerda da janela e clicando no
botão de OK o usuário depara-se com a mesma janela apresentada na Figura 5.11.
Na lista da esquerda são apresentados os motores referentes à busca de other ma-
tches e de acordo com o check box escolhido na fase anterior. O botão OK (da Fi-
gura 5.11) retorna para a janela principal do MENTAS que agora já deve
apresentar a consulta final ao usuário junto com o novo campo de modelo. O botão
Back (da Figura 5.11) volta para a janela Figura 5.13. Caso escolha o Back, o usu-
ário tem a possibilidade de clicar em outro check box (caso exista) para ver os re-
sultados mais aproximados segundo a perspectiva de outro componente do
identificador do motor.

5.7.1.6 Navegação Tipo 2

Esta alternativa de consulta é resolvida sem necessidade de novas janelas na inter-
face. A GUI envia os pontos de entrada presentes na consulta corrente do usuário
para o monitor de consistência e recebe deste os mapeamentos adequados que se-
rão acrescidos à consulta final do usuário. O campo de modelo é atualizado para o
novo banco de dados corrente e a nova consulta é apresentada ao usuário no campo
de consultas.

Por exemplo, suponha que o usuário encontra-se no banco de dados BD1 e realize
a navegação através da entidade EntidadeBD1 para o banco de dados BD2. Para
79

Integração de Bancos de Dados no MENTAS
isso, ele define uma condição através do ponto de entrada desta entidade
(AtributoEntBD1). Ao partir para a navegação então, ele possui uma consulta do
tipo:

SELECT EntidadeBD1.Atributo1, EntidadeBD1.Atributo2, ..., EntidadeBD1.AtributoN
FROM EntidadeBD1
WHERE EntidadeBD1.AtributoEntBD1 <comparação> valor

Que será transformada para a consulta1:

SELECT EntidadeBD1.Atributo1, EntidadeBD1.Atributo2, ..., EntidadeBD1.AtributoN,
EntidadeBD2.AtributoEntBD2
FROM EntidadeBD1, EntidadeBD2
WHERE EntidadeBD1.AtributoEntBD1 <comparação> valor AND
EntidadeBD2.AtributoEntBD2 <comparação> valor

5.7.1.7 Navegação Tipo 3

Caso o usuário resolva expandir os limites de sua consulta a outro banco de dados,
especificando a cláusula de condição sem a presença de pontos de entrada ou sim-
plesmente sem a presença da cláusula de condição, será apresentado ao usuário
uma janela semelhante às apresentadas na Figura 5.14. Esta janela varia de acordo
com a entidade na qual o usuário está realizando a navegação, pois são apresenta-
dos os pontos de entrada para a entidade.

O usuário precisa escolher pelo menos uma das opções apresentadas e a seguir cli-
car no botão de OK para que seja efetuada a navegação para o próximo banco de
dados. O botão de OK só é habilitado depois de pelo menos uma das opções ser
escolhida. Ao contrário, o botão Cancel cancela a operação sem efetuar a navega-
ção, voltando para o mesmo ambiente anterior à escolha da opção other databases.

Dessa forma, a única diferença da interação da interface com o monitor de consis-
tência é que, se a consulta não possuir uma cláusula de condição, a consulta final
é imediatamente montada, sem a necessidade da chamada de nenhum outro mód-
ulo. Mas, se a consulta possuir um cláusula de condição, a GUI deve antes de tudo,
testar se a consulta corrente montada pelo usuário é válida - por válida, entenda-
se que retorna pelo menos uma tupla do banco de dados. Se a consulta não possui
uma cláusula de condição definida, não é necessário efetuar tal teste, já que trata-
se apenas de uma projeção de uma relação de algum dos bancos de dados, e por-
tanto, sempre retornará resultados2.

O exemplo a seguir mostra uma navegação na qual não existe uma cláusula de
condição na consulta inicial. Considere que o usuário encontra-se no banco de da-

1. As modificações são apresentadas em itálico.
2. Considerando o ambiente do Mentas em que todas as tabelas dos bancos de dados já estão

preenchidas.
80

Integração de Bancos de Dados no MENTAS
dos BD1 e deseja expandir sua consulta ao banco de dados BD2, tendo como con-
sulta inicial

SELECT EntidadeBD1.Atributo
FROM EntidadeBD1

No momento que o usuário escolhe a opção other databases do pop up menu da
entidade EntidadeDB1, é mostrada uma janela semelhante às apresentadas na Fi-
gura 5.14 montada pela GUI com os pontos de entrada para a entidade sobre a qual
será efetuada a navegação. Supondo que o usuário escolheu dois pontos de entrada
(A e B) dos apresentados nesta janela, e a seguir, escolheu o botão OK, é mostrado
o novo campo de modelo com o novo diagrama (do banco de dados BD2) e com a
nova consulta no campo de consulta, que pode ser vista a seguir:

SELECT EntidadeBD1.Atributo, EntidadeBD2.Atributo
FROM EntidadeBD1, EntidadeBD2
WHERE EntidadeBD1.A = EntidadeBD2.A AND EntidadeBD1.B = EntidadeBD2.B

Figura 5.14 Janela de Especificação de Atributos.

5.7.2 Janela de Resultados

Como foi explicado anteriormente, após cada passo da montagem da consulta e ao
final de uma navegação, o usuário retorna à janela principal do MENTAS. Assim
que a consulta SQL atinge o ponto em que é possível enviá-la ao servidor de ban-
cos de dados, o botão OK da janela principal é habilitado. Uma vez selecionando
o botão OK, a GUI passa a consulta ao conector de interface, o qual cuida de todos
os passos requeridos para a execução da consulta. A GUI simplesmente recebe o
81

Integração de Bancos de Dados no MENTAS
resultado da execução da consulta e apresenta ao usuário através da janela de re-
sultados (Figura 5.15).

Esta janela é composta de quatro componentes:

• Menu: apresenta três títulos, File, Options e Help.

File: através deste item de menu o usuário pode salvar consultas, salvar os
resultados correntes apresentados pela interface e salvar o resultado completo
da consulta.

Options: Através desse item de menu é possível receber informação das tabe-
las de mapeamento, da mesma forma que na janela principal.

Help: apresenta ao usuário, através de um browser, uma documentação com-
pleta do sistema em HTML.

• Campo da consulta: mostra ao usuário a consulta que foi executada pelo servi-
dor de banco de dados do MENTAS.

• Campo dos Resultados: É dividido em duas partes, a superior apresenta o
nome dos atributos e das entidades e a segunda, apresenta os resultados no for-
mato de uma tabela.

• Botões:

Back: Através do botão Back o usuário retorna à janela principal do MENTAS.

Next: Apresenta ao usuário o próximo conjunto de resultados armazenados no
cache.

Previous: Apresenta ao usuário o conjunto de resultados anterior.
82

Integração de Bancos de Dados no MENTAS
Figura 5.15 Janela de Apresentação dos Resultados.

Menu

Campo da
Consulta

Campo dos
Resultados

5.7.3 Menu Consistency e o Monitor de Consistência

O menu Consistency faz parte da janela principal e é composto de cinco ítens (Fi-
gura 5.4): Check box Activated, Set DB Navigation, Show Mapping Information,
Select Mapping Tables, Generate Mapping Tables. Os dois primeiros ítens estão
relacionados à verificação de consistência durante a navegação. Os três últimos re-
lacionam-se à manipulação das tabelas de mapeamento.

5.7.3.1 Other Databases versus Menu Consistency

As navegações do Tipo 1 (envolvendo o identificador do motor) podem ser reali-
zadas com ou sem checagem de consistência. Este fator não influencia o ambiente
de navegação com relação às janelas apresentadas. Por este motivo não foi feita
referência à checagem de consistência na seção anterior.

Como já mencionamos, os identificadores de motor são modelados de formas di-
ferentes nos vários bancos de dados. Devido a essas diferenças, precisamos do au-
xílio do usuário para fazermos o mapeamento de valores entre os bancos de dados.
83

Integração de Bancos de Dados no MENTAS
Através do menu consistency o usuário tem a possibilidade de deixar um pouco da
responsabilidade sobre o MENTAS. Isto ocorre quando ele deseja realizar a nave-
gação através dos requisitos de verificação de consistência.

Entretanto, quando o usuário deseja definir por quais pontos de entrada vai ocorrer
a navegação, surge uma nova janela (Figura 5.16). Esta janela possui três “abas”
representando as possíveis formas de navegação entre os pares de banco de dados.
Em cada aba são apresentados os pontos de entrada para o par de banco de dados,
onde o usuário pode escolher os mais importantes no seu ponto de vista. Esta in-
formação é armazenada no banco de dados do sistema middleware, junto com ou-
tras informações do usuário. Esta janela será apresentada na primeira vez que o
usuário marcar o check box do menu consistency (Activated), ou então através do
sub-item de menu Set DB Navigation, caso ele já tenha definido em algum mo-
mento a verificação de consistência.

Pela janela abaixo notamos ainda a presença dos botões All, OK e Cancel. O pri-
meiro marca todos os pontos de entrada de todas as abas da janela. Neste caso, uma
nova janela de aviso é mostrada ao usuário, alertando-o que o processo de nave-
gação ficará mais lento que o usual. O botão OK envia as opções escolhidas pelo
usuário para serem salvas no banco de dados1 e o botão Cancel simplesmente ig-
nora qualquer operação sobre a janela.

Figura 5.16 Janela de Especificação dos Pontos de Entrada para Checagem de Consistênc-
ia.

1. A GUI envia as opções marcadas pelo usuário e o monitor de consistência salva as opções no
banco de dados.
84

Integração de Bancos de Dados no MENTAS
5.7.3.2 Show Mapping Information

A escolha deste item de menu pelo usuário, faz com que a GUI envie um pedido
ao monitor de consistência. Este acessa o servidor de banco de dados e recupera
informações sobre as tabelas de mapeamento que são enviadas de volta para a GUI
montar a janela da Figura 5.17.

Figura 5.17 Janela de Informações sobre as Tabelas de Mapeamento.

5.7.3.3 Select Mapping Tables

Este item de menu aciona uma janela semelhante à Figura 5.6, sendo sua funcio-
nalidade semelhante à montagem da cláusula de condição. Na verdade, o que o
usuário faz através deste item é montar a cláusula de condição da sua consulta atra-
vés dos valores já formatados presentes nas tabelas de mapeamento. Esta facilida-
de foi criada para ajudar o engenheiro a encontrar o motor correto para o banco de
dados local. Com isso, é oferecida maior segurança na montagem das consultas lo-
cais, já que esta deve estar correta para que haja navegação.

5.7.3.4 Generate Mapping Tables

Se o usuário escolher este último item, a GUI envia um pedido ao monitor de con-
sistência para que seja gerada uma nova tabela de mapeamento. É enviado em con-
junto, o nome do banco de dados escolhido pelo usuário (através do sub-item de
menu que apresenta todos os bancos de dados para o qual é possível gerar uma
nova tabela de mapeamento). Neste momento, o monitor de consistência dispara
threads assíncronos para gerar a nova tabela de mapeamento, de forma que o usu-
ário pode continuar o trabalho sem que seja necessário a espera pela resposta. As-
sim que o monitor de consistência termina o trabalho, ele envia para a GUI a
informação que o novo mapeamento já está pronto juntamente com as informa-
ções sobre a nova tabela. Estas informações são apresentadas ao usuário através
da janela da Figura 5.18. Esta janela tem função apenas informativa, trazendo o
85

Integração de Bancos de Dados no MENTAS
nome do banco de dados para o qual foi feito o mapeamento (nesse caso PSD), o
nome da tabela no banco de dados que possui o mapeamento corrente (devido a
técnica de tabela corrente e tabela sombra utilizada pelo monitor de consistência)
e a data e hora que o novo mapeamento foi gerado.

Figura 5.18 Informação ao Final da Geração de um Novo Mapeamento.

5.8 Considerações

A interface apresentada pelo MENTAS é bastante fácil de usar. Isto possibilita que
o usuário sinta-se completamente à vontade no momento da criação das suas con-
sultas SQL. O mais importante é que os usuários são capazes de criarem consultas
SQL complexas sem a necessidade do conhecimento dessa linguagem. A funcio-
nalidade completa da interface bem como os aspectos relacionados à implementa-
ção da mesma podem ser encontrados em [HR98a, Oli99].

No momento que dois bancos de dados são envolvidos na mesma consulta tanto a
montagem da consulta quanto as transformações necessárias nos dados são reali-
zadas sem o conhecimento do usuário. Este precisa apenas informar que deseja
acessar um segundo banco de dados e por qual entidade e atributo deseja que seja
feita a integração.

A GUI consegue oferecer um ambiente deste nível aos usuários devido às relações
mantidas com os demais componentes da arquitetura do MENTAS. Neste capítulo
nós demos atenção especial à interação da GUI com o monitor de consistência por
ser esse o tópico de interesse desta dissertação.
86

6 Monitor de Consistência

6.1 Introdução

Na modelagem de um banco de dados um mesmo conceito pode ser representado
de diferentes formas. Essas diferenças podem ser em nomes, estruturas, tipos de
dados, etc. Devido a essas diferenças é impossível manipular dados em diferentes
bancos de dados com uma linguagem como SQL que foi projetada para ser usada
em um banco de dados homogêneo. Como podemos notar, a integração de banco
de dados heterogêneos não é uma tarefa fácil. Através desta integração, deve-se
oferecer para os usuários um ambiente em que ele possa formular consultas únicas
a uma federação de N bancos de dados em vez de uma seqüência de N consultas,
uma para cada banco de dados.

Para o usuário é transparente o fato dos bancos de dados estarem distribuídos sobre
fontes de dados remotas. MENTAS proporciona a este uma visão de um esquema
global no qual as consultas podem ser formuladas como se todos os dados residis-
sem em um único banco de dados local. Entretanto, a integração das fontes de da-
dos acontece no MENTAS apenas quando o usuário navega por entre os bancos de
dados. Dessa forma, garantimos ao usuário a total independência de acesso aos da-
dos de um único banco de dados, e ainda, caso deseje, sua consulta pode atravessar
as fronteiras do banco de dados corrente.

Ao nível de integração das fontes de dados, a principal tarefa do Monitor de Con-
sistência é oferecer à GUI todo o ambiente necessário para que o usuário consiga
ultrapassar os limites do banco de dados corrente no qual está realizando uma con-
sulta, estendendo-a a outras fontes da federação. Isto inclue fazer o mapeamento
entre os diversos atributos correspondentes nos bancos de dados, além de geren-
ciar a entrada de dados no sistema. Ou seja, é tarefa do monitor de consistência
resolver os problemas existentes ao integrar os bancos de dados heterogêneos.

O trabalho de ambos os monitores de consistência, tanto o do servidor como o do
cliente, é voltado para possibilitar a navegação entre os bancos de dados. O MCC
(Monitor de Consistência do Cliente) se preocupa em formatar os dados forneci-
dos pelo usuário à GUI e o MCS (Monitor de Consistência do Servidor) em for-
matar os dados originados das fontes de dados remotas. Além disto, este último
cuida da verificação de consistência entre as fontes de dados no momento da na-
vegação.

Monitor de Consistência
Iniciamos o capítulo com a definição do que vem a ser a navegação no MENTAS
(seção 6.2). A seguir, apresentamos os passos utilizados pelo monitor de consis-
tência para integrar as fontes de dados: na seção 6.3 apresentamos os pontos em
comum que foram identificados no MENTAS, na seção 6.4 apresentamos quais os
conflitos existentes nestes pontos de entrada e na seção 6.5 são mostradas as regras
que devem ser seguidas para resolver os conflitos entre os bancos de dados. Parti-
mos então para apresentar como foi solucionado o problema da integração dos
bancos de dados apresentando as soluções para as heterogeneidades dos pontos em
comum: na seção 6.6 apresentamos o monitor de consistência do servidor e na se-
ção 6.7 apresentamos o monitor de consistência do cliente. Na seção 6.8 apresen-
tamos um exemplo de uma navegação no MENTAS. Na seção 6.9 é feito um
paralelo entre consistência e performance no MENTAS. Finalmente, na seção
6.10, um breve resumo é apresentado.

6.2 Navegação entre os bancos de dados

O termo navegação no ambiente MENTAS está implicitamente relacionado a in-
tegração das fontes de dados. É através desta funcionalidade que o usuário pode
comparar e integrar dados que estão em fontes de dados distintas. Realizar uma
navegação no MENTAS é muito simples. Primeiro o usuário deve formular uma
consulta ao banco de dados no qual ele está trabalhando e depois escolher um se-
gundo banco de dados para o qual sua consulta será expandida, e escolher sobre
quais pontos de entrada entre estes bancos de dados será feita a ligação entre os
bancos de dados. O MENTAS encarrega-se de todo o processo de conversão entre
os pontos comuns que ligam este dois bancos de dados e expande a consulta inicial
do usuário ao nível do próximo banco de dados.

A navegação entre os bancos de dados no MENTAS é unidirecional, significando
que cada banco de dados só pode ser visitado uma única vez durante uma navega-
ção completa. Dizemos que uma navegação está completa quando todos os bancos
de dados já foram visitados. Como um dos objetivos do MENTAS é proporcionar
uma interface amigável e homogênea ao usuário final, não possibilitamos ao usu-
ário a volta a um banco de dados que já foi visitado. Isso deixaria o usuário con-
fuso podendo atrapalhar o processo de montagem da consulta. É preciso que fique
claro que em termos de implementação é completamente possível apresentar esta
funcionalidade ao usuário.

Como MENTAS possui três bancos de dados, é possível realizar a navegação de
seis formas diferentes, apresentadas na Tabela 6.1.
88

Monitor de Consistência
Tabela 6.1 Possíveis Navegações no MENTAS.

BD Inicial BD Intermediário BD Final
PSD LKD MENTAS
PSD MENTAS LKD
LKD PSD MENTAS
LKD MENTAS PSD

MENTAS PSD LKD
MENTAS LKD PSD

Note porém, que a navegação é feita entre pares de bancos de dados, como apre-
sentado na Tabela 6.2. Através desses pares é que torna-se possível realizar uma
navegação completa. Por exemplo, a primeira navegação completa apresentada na
Tabela 6.1 (PSD1 - LKD - Mentas), ocorre da seguinte forma: inicialmente o banco
de dados corrente é o PSD e o banco de dados posterior é o LKD. Uma vez a con-
sulta do usuário seja estendida do domínio do PSD para o LKD, este último passa
a ser o banco de dados corrente. O outro ciclo da navegação ocorre com a extensão
da consulta para o BD Mentas, onde o banco de dados corrente é o LKD. Ao final
deste outro ciclo, o Mentas passa a ser o BD corrente e, como não existe nenhum
banco de dados que não tenha sido visitado, dizemos que ocorreu uma navegação
completa.

Tabela 6.2 Possíveis Navegações entre os Pares de Bancos de Dados no MENTAS.

Navegação entre os BDs
BD Corrente BD Posterior

PSD LKD
PSD MENTAS
LKD PSD
LKD MENTAS

MENTAS PSD
MENTAS LKD

1. Nesta dissertação o termo PSD é utilizado para representar o banco de dados PSD. São utiliza-
dos também os termos LKD e Mentas significando os bancos de dados que eles representam.
89

Monitor de Consistência
O princípio da navegação é simples. Seja N o conjunto de elementos que represen-
tam os bancos de dados onde pode ocorrer a navegação. No MENTAS, N é repre-
sentado inicialmente por:

N = {PSD, LKD, Mentas}

A cada banco de dados visitado é retirado do conjunto o nome correspondente.
Sendo assim, no momento da inicialização do campo do modelo, o conjunto N aci-
ma só terá dois elementos. O controle de quais elementos devem fazer parte deste
conjunto é feito pela GUI, e é mostrado ao usuário através da ativação ou não de
ítens de menu.

6.3 Pontos de Entrada

O primeiro passo na integração de esquemas é identificar nos bancos de dados que
irão compor o esquema global quais os atributos que possuem significado seme-
lhantes. Esta tarefa não é nada trivial. Requer um grande entendimento das mode-
lagens de todos os bancos de dados envolvidos. Na maioria das vezes, cada banco
de dados componente foi modelado para atender uma situação específica. Portan-
to, é comum que tais bancos de dados apresentem modelagens distintas para re-
presentar uma mesma informação.

No MENTAS, em primeiro lugar, foram analisados todos os esquemas de todos os
bancos de dados componentes de modo a identificar os dados cruciais ao sistema.
Depois de definidos estes dados procuramos os pontos que possuíam significado
semelhantes entre os bancos de dados. Estes pontos são referenciados por nós
como pontos de entrada da navegação. Isto porque é através deste pontos em co-
mum que a consulta do usuário a um banco de dados consegue entrar nos limites
de um segundo banco de dados, possibilitando a integração dessas fontes.

Uma definição mais formal para pontos de entrada no MENTAS é atributos exis-
tentes em pelo menos dois dos bancos de dados e que representam a mesma infor-
mação, embora possam ser armazenados em formatos e/ou representações
diferentes. A identificação dos pontos de entrada pode ser vista na Tabela 6.3.
90

Monitor de Consistência
Tabela 6.3 Pontos de Entrada.

PSD LKD Mentas
Entidade Atributo Entidade Atributo Entidade Atributo
PSD_Motor Typ LKD_Motor Typ Motor Typ

Spezifikation
Baumuster

PSD_Zylinder Durchmesser LKD_Motor Bohrung Motor Bohrung

PSD_Zylinder Hubvolumen LKD_Motor ZylinderHubRaum Motor ZylinderHubvolumen

PSD_Ventil Ventil_DM_Aussen_1
Ein_Auslass_Kanal

LKD_Motor Event_TellerDurchm
Avent_TellerDurchm

Ventil
Motor_Kanal_Ventil

Durchmesser
Ein_Auslass_Ventil

PSD_Pleuel Pleuellaenge LKD_Motor PleuelLagerabstand Pleuel Laenge

PSD_Kolben Hub LKD_Motor Hub Kurbelwelle Hub

PSD_Motor
PSD_Kanal

Max_Ventil_Hub
Ein_Auslass_Kanal

LKD_Motor Event_Max_Hub
Avent_Max_Hub

 Ventil
Motor_Kanal_Ventil

Max_Hub
Ein_Auslass_Ventil

6.4 Identificação dos Conflitos entre os Pontos de Entrada

O atributo Typ da entidade PSD_Motor do banco de dados PSD corresponde ao
atributo também denominado Typ da entidade LKD_Motor do banco de dados
LKD. A ligação, tanto do PSD quanto do LKD, com o banco de dados Mentas
através do atributo Typ se dá pela junção de três atributos neste último: Typ, Spe-
zifikation e Baumuster (conflitos de esquemas, um para muitos atributos
[KGCS95, KS91]).

No caso da entidade PSD_Ventil, dependendo do valor do atributo
Ein_Auslass_Kanal, vai haver a correspondência do atributo
Ventil_DM_Aussen_1 com o atributo Event_TellerDurchm ou com
Avent_TellerDurchm no LKD. Em relação ao Mentas, esse relacionamento se dá
através da comparação dos dois atributos, onde Ventil_DM_Aussen_1 corresponde
a Motor_Kanal_Ventil quando Ein_Auslass_Kanal é igual a Ein_Auslass_Ventil.
O mesmo caso ocorre para os atributos Max_Ventil_Hub e Ein_Auslass_Kanal das
entidades PSD_Motor e PSD_Kanal respectivamente. Nos demais casos, cada
atributo de um BD corresponde a apenas um único atributo nos outros BDs.

Todas as entidades que possuem um ponto de entrada são automaticamente habi-
litadas para a navegação assim que o usuário especifica algum atributo na projeção
da sua consulta SQL. Caso o usuário deseje navegar para outro banco de dados
nesse instante, uma nova janela é apresentada com todos os pontos de entrada da
entidade pela qual está realizando a navegação, de forma que para continuar, deve
91

Monitor de Consistência
ser escolhido pelo menos um dentre os apresentados. Por exemplo, suponha que o
usuário esteja no PSD e resolve navegar através da entidade PSD_Zylinder. No
momento em que o usuário escolhe qualquer um dos atributos dessa entidade e o
coloca na cláusula de projeção, a opção de navegação dessa entidade é habilitada.
Caso o usuário resolva navegar nesse instante, uma janela com o Durchmesser e o
Hubvolumem é automaticamente apresentada, de forma que o usuário precisa es-
colher pelo menos um dos apresentados (ver seção 5.7.1.7).

Nesta mesma janela é dado um aviso ao usuário sobre o custo de formular uma
consulta SQL desse tipo, pois o processamento de consultas nas quais valores não
são especificados é o produto cartesiano entre duas ou mais tabelas dos dois BDs
envolvidos. Sabendo que algumas relações dos bancos de dados envolvidos pos-
suem mais de vinte mil tuplas, temos como resultado um tempo de espera razoável
para o usuário caso resolva optar por esse tipo de navegação.

Através da Tabela 6.3 podemos notar que algumas entidades possuem mais de um
ponto de entrada definidos. São elas:

• no PSD, apenas a entidade PSD_Motor através dos atributos Typ e
Max_Ventil_Hub;

• no Mentas, as entidades Motor (através dos atributos Typ, Spezifikation, Bau-
muster e Bohrung) e Ventil (através dos atributos Motor_Kanal_Ventil e
Max_Hub);

• no LKD só é possível realizar a navegação através da entidade LKD_Motor -
utilizando qualquer um dos atributos da Tabela 6.3.

O usuário pode realizar a navegação entre os bancos de dados de acordo com um
dos casos abaixo:

• Sem cláusula de condição;

• Caso não especifique nenhum ponto de entrada na cláusula de condição;

• Especificando apenas um ponto de entrada na cláusula de condição;

• Especificando mais de um ponto de entrada na cláusula condição;

Outro ponto importante sobre a navegação é que só é permitido ao usuário atra-
vessar de um banco de dados para outro se a consulta ao banco de dados corrente
retornar algum resultado. Caso não tenha resultados, conseqüentemente a nova
consulta que será originada com a navegação também não terá resultados. Isto por-
que a nova consulta é apenas uma extensão da antiga, acrescida dos novos atribu-
tos e entidades de acordo com os pontos de entrada especificados pelo usuário (ver
seção 6.8.1 e seção 6.8.2). Ou seja, não será a navegação que mudará o quadro.
Nesse caso, uma mensagem de aviso é enviado pela GUI ao usuário e a navegação
não é feita.
92

Monitor de Consistência
Identificador do Motor - Um Ponto de Entrada com Características Es-
peciais

O identificador do motor (Tabela 6.4) possui algumas características próprias em
cada um dos bancos de dados integrados. Por isso, foi necessário utilizar alguns
artifícios para possibilitar ao usuário utilizar este atributo como ponto de entrada.

Tabela 6.4 Identificação do Motor e a Representação nos Bancos de Dados.

PSD LKD Mentas
Entidade Atributo Entidade Atributo Entidade Atributo

PSD_Motor Typ LKD_Motor Typ Motor
Typ

Spezifikation
Baumuster

São muitas as diferenças apresentadas entre os bancos de dados para o atributos
que representam o identificador do motor. A primeira delas é no nível de represen-
tação dos atributos. No banco de dados Mentas (ver Tabela 6.4) a identificação do
motor é representada por três atributos, enquanto nos demais bancos de dados
(PSD e LKD) é representado apenas por um atributo. Este problema é abordado
como sendo conflito de integração de esquema do tipo um para muitos atributos,
sendo este tratado como um sub caso dos conflitos originados de muitos para mui-
tos atributos (ver Figura 3.5). Kim et al. [KGCS95] propõe várias técnicas para a
resolução de conflitos de esquemas, e dentre elas, é apresentado o problema apon-
tado anteriormente. Abaixo, apresentamos a definição do problema, a solução pro-
posta e um exemplo, segundo [KGCS95].

Problema: As informações podem ser representadas em diferentes níveis de deta-
lhes, especialmente quando são representadas como strings de caracter. Dessa
forma, conflitos de um para muitos atributos podem surgir se a informação cap-
turada de um único atributo de um banco de dados corresponde a mais que um
atributo em outro banco de dados.

Solução: Concatenar os atributos que aparecem em mais de um nível.

Exemplo: Em um banco de dados, o nome de uma pessoa é representado através
dos atributos primeiro_nome e último_nome, e em outra fonte de dados essa mes-
ma informação é representada apenas por um único atributo nome. Dessa forma,
na hora da integração dos esquemas, deve-se definir um operador de concatena-
ção, para que a informação torne-se homogênea na integração dos dados.
93

Monitor de Consistência
Embora nosso problema se enquadre perfeitamente na definição acima, a solução
no nosso caso não é tão simples assim. Essa solução poderia ser adotada, caso to-
dos os bancos de dados integrados tivessem um padrão para a seqüência de carac-
teres que compõe um identificador de motor, o que não é o caso.

Na nossa realidade, cada banco de dados possue uma representação própria para
esse atributo, e com a concatenação, disponibilizaríamos apenas que uma consulta
fosse feita envolvendo os três bancos de dados, mas de forma alguma retornaría-
mos um resultado satisfatório/adequado para os usuários. Em vez da concatenação
dos atributos, a solução adequada para o nosso caso é justamente o contrário da
que foi proposta por Kim et al.[KGCS95]. Ou seja, desagrupar o atributo deixando
com o formato do Mentas.

De acordo com os engenheiros da Mercedes-Benz, um motor é identificado levan-
do em consideração três características: Tipo, Especificação e Modelo de Constru-
ção. No projeto do banco de dados Mentas, essas informações foram modeladas
nos atributos Typ, Spezifikation e Baumuster, nesta ordem. Infelizmente, os outros
bancos de dados não seguem este padrão. Além da própria modelagem do banco
de dados ser diferente, utilizando apenas um único atributo, muitos caracteres di-
ferentes são usados para separar as diferentes partes do identificador do motor.

Como o Mentas foi projetado para armazenar os dados dos motores fabricados atu-
almente ou que ainda serão fabricados nos próximos anos pela Mercedes-Benz, e
principalmente por seguir a padronização da Mercedes-Benz, decidimos usá-lo
como modelo padrão para a comparação com os outros bancos de dados. Depois
de analisar os dados do Mentas, estabelecemos uma gramática através da qual de-
vemos comparar os motores dos outros bancos de dados, identificando semelhan-
ças e diferenças.

Através de informações dos engenheiros mecânicos da Mercedes-Benz, podemos
distinguir a princípio o motor de duas maneiras básicas: motores a gasolina e mo-
tores a diesel. Dessa forma, transcrevemos a informação para nossa gramática, on-
de, o significado do tipo do motor é associado à letra que inicia a descrição.
Motores a gasolina são representados pela letra M seguida de três dígitos. Já os
motores a Diesel são representados pelas letras OM seguidas novamente de três
dígitos -Tabela 6.5.

Tabela 6.5 Gramática - Tipo do Motor.
94

Monitor de Consistência
Gramática – Tipo
Gasolina Diesel

M <dígito><dígito><dígito> OM<dígito><dígito><dígito>

Já a especificação é usada como o próprio nome indica, para dar características es-
pecíficas aos motores, e segue a gramática apresentada na Tabela 6.6.

Tabela 6.6 Gramática - Especificação.

Gramática – Especificação
<letra><dígito><dígito>
<letra><dígito><dígito> <letra><letra>
<letra><letra><dígito><dígito> <letra><letra>
<letra><letra><dígito><dígito> <letra>

O modelo de construção (baumuster) é usado para dar características de como será
a construção do motor. O exemplo clássico é o caso da localização do câmbio nos
carros da Mercedes-Benz. Dependendo do país onde é fabricado, o câmbio pode
estar localizado em locais diferentes: ou entre os bancos do motorista e passageiro
ou junto a direção. É representado por três dígitos - Tabela 6.7.

Tabela 6.7 Gramática - Baumuster.

Gramática – Baumuster
<dígito><dígito><dígito>

Nem todos os motores do Mentas têm necessariamente os três atributos. Existem
alguns identificadores de motores que são a combinação do tipo e especificação,
outros que combinam tipo e a modelo de construção, e ainda, outros que combi-
nam o tipo, especificação e modelo de construção. Mas, em todos os casos, existe
a presença do tipo.
95

Monitor de Consistência
Todos os demais bancos de dados devem seguir este padrão, para que seja possível
a comparação entre os valores e, conseqüentemente, a navegação. Apesar de o
LKD e o PSD utilizarem apenas um atributo para representar essa informação, são
tantas as diferenças semânticas entre os valores dos dados, que se fizermos uma
consulta envolvendo esses dois BDs e procurarmos por todos os motores que são
iguais, só iremos encontrar dois motores distintos. Este resultado não é nada razo-
ável. Isto acontece porque os bancos de dados são utilizados por departamentos di-
ferentes, tendo cada um, sua própria representação para os motores. Por exemplo,
um motor representado em um departamento por OM668.940 pode ser igual ao
motor representado em outro departamento por OM668DE17. Apesar de visual-
mente não ser o mesmo motor, o significado da interpretação pelos engenheiros da
Mercedes-Benz é o mesmo.

Então, com a separação do identificador do motor no formato apresentado pelo
Mentas, é possível procurar por informações de um determinado motor em mais
de um banco de dados tanto através do motor completo caso ele exista em ambos,
ou através de um dos atributos que compõe a identificação do motor após a forma-
tação - tipo, especificação ou modelo de construção.

Analisando os outros bancos de dados tomando como parâmetro o formato do
Mentas, notamos que existem algumas particularidades e similaridades em cada
um. Por exemplo, tanto o PSD como o LKD possuem a seqüência de caracteres
que definem o tipo para um motor. Entretanto, a especificação é mais comum nos
motores do PSD, aparecendo poucas vezes nos motores do LKD. E o modelo de
construção, por sua vez, faz-se presente em quase todos os motores do LKD, mas
em nenhum do PSD. Ou seja, no PSD os motores basicamente são constituídos do
tipo mais a especificação e no LKD pelo tipo e modelo de construção.

6.5 Definição de Regras para Solucionar os Conflitos

A solução para a heterogeneidade nas fontes de dados utilizadas pelo MENTAS é
baseada na tecnologia middleware (ver Capítulo 5). Apesar do middleware utili-
zado -DataJoiner [IBM95, RH98]- proporcionar a interação entre fontes de dados
heterogêneas (providenciando a transparência de localização das fontes de dados,
transparência nas diferenças de comunicação, etc.), não é feito nenhum tratamento
das diferenças estruturais e semânticas entre os dados. Estas diferenças foram tra-
tadas separadamente pelo Monitor de Consistência. Sem realizar este tratamento
os resultados conseguidos por consultas envolvendo dois bancos de dados não fo-
ram nem um pouco satisfatórios. Consultas que deveriam retornar dezenas ou cen-
tenas de tuplas, muitas vezes retornavam algumas unidades ou mesmo nada.

Portanto, devem ser analisados os banco de dados "parcialmente" integrados pelo
DataJoiner procurando sempre identificar quais atributos vão possibilitar a inte-
gração entre as bases de dados. Além disso, devemos analisar tais atributos para
96

Monitor de Consistência
saber a necessidade de efetuarmos mudanças no momento da integração. Se real-
mente for necessário, partimos para uma nova fase, para saber quais mudanças se-
rão feitas nos valores para que a comparação entre eles nos retorne os valores
desejados.

O procedimento de integração de esquema apresentado por [RR99] (ver Figura
3.6) é composto por quatro fases: tradução de esquemas, identificação dos relacio-
namentos entre os esquemas, geração dos esquemas integrados e geração de es-
quemas de mapeamento. Comparando com procedimentos empregados no
MENTAS, podemos notar que a primeira fase é feita implicitamente pelo DataJoi-
ner. Podemos notar que das quatro fases propostas por [RR99] apenas a segunda -
Identificação dos relacionamentos entre os esquemas - está realmente presente no
nosso esquema.

Partindo deste princípio, a primeira tarefa do monitor de consistência foi definir
algumas características de cada banco de dados, com o objetivo de construir regras
que devem ser executadas na hora da navegação entre os bancos de dados. Esta
tarefa foi realizada no momento de definir o esquema global e virtual do MENTAS
(figura 3.2). Abaixo mostraremos as características e no final de cada uma, a regra
que deve ser aplicada. As regras abaixo são utilizadas tanto pelo monitor de con-
sistência do servidor, como também pela GUI e pelo monitor de consistência do
cliente para fazer o tratamento dos valores de entrada do usuário.

Domínios dos atributos:

• O banco de dados LKD possue sempre o CHAR como domínio para seus
atributos, independente do que possam representar;

• PSD e Mentas possuem domínios diferentes para os atributos de acordo com o
que possam representar. O tipo dominante dos pontos de entrada nesses ban-
cos de dados é o FLOAT. Apenas os atributos do identificador de motor,
Ein_Auslass_Kanal, Ein_Auslass_Ventil possuem o tipo VARCHAR.

Regra 1: Entrada de Dados: Usar aspas simples nos valores dos atributos que possuem o
tipo CHAR ou VARCHAR.

Regra 2: Navegação: Transformar o domínio dos atributos quando necessário, de forma
que seja possível a comparação de valores entre eles.

Separador de Casas Decimais:

• O LKD utiliza a vírgula como separador de casas decimais;
97

Monitor de Consistência
• O PSD e o Mentas utilizam o ponto como separador de casas decimais.

Regra 3: Sempre que ocorrer a navegação entre o LKD e os demais bancos de dados, é
necessário fazer a troca do separador de casas decimais, de vírgula para ponto e
vice-versa.

Representação do Identificador do Motor

LKD:

• Utiliza apenas um único atributo;

• Raramente possue a seqüência de caracteres que representa a especificação de
um motor, e quando isso acontece, não possue a seqüência que especifica o
baumuster;

• A seqüência de caracteres que representa o tipo é separada pela seqüência de
caracteres que representam o baumuster através de um ponto;

• Alguns motores apresentam espaços em branco no início, entre e no final da
seqüência dos caracteres que identificam os motores.

PSD:

• Usa apenas um único atributo;

• Não possue a seqüência de caracteres que representa o baumuster;

• Alguns motores apresentam espaços em branco no início e no final da
seqüência dos caracteres que identificam os motores.

Mentas:

• Utiliza três atributos para a identificação, seguindo o padrão estabelecido pela
Mercedes-Benz;

• Apresenta, para a maioria dos motores, a presença das três seqüências que os
compõem;

Regra 4: Para os bancos de dados que possuem apenas um atributo para o identificador do
motor, fazer a separação utilizando o formato empregado no Mentas, retirando
espaços em branco, pontos e todas as demais diferenças que possam existir.
Deve-se utilizar a gramática definida na Tabela 6.5, Tabela 6.6 e Tabela 6.7.

Diferentes Escalas:

• Alguns atributos possuem diferentes escalas para representar os valores.
Alguns consideram cinco casas decimais e outros apenas duas.
98

Monitor de Consistência
Regra 5: Para atributos com o número de casas decimais distintas, deve-se considerar ape-
nas duas casas decimais no momento da comparação dos valores.

Uma vez identificado os pontos em comum entre os bancos de dados, as diferenças
entre eles e realizando a definição das regras que devem ser seguidas no momento
da integração, partimos para o último e indispensável passo que é a resolução de
tais conflitos. As duas próximas seções apresentam como foi solucionado os con-
flitos entre os bancos de dados no MENTAS. Começamos por apresentar o moni-
tor de consistência do servidor pelo fato deste apresentar mais funcionalidades que
o monitor de consistência do cliente. Na verdade, o monitor de consistência do
cliente possui um subconjunto das funcionalidades presentes no servidor sendo di-
ferenciado apenas pelo acréscimo do tratamento de entrada de dados.

6.6 Monitor de Consistência do Servidor - MCS

Como já foi dito anteriormente, não é apenas com a formatação dos dados de en-
trada que o problema de incompatibilidade dos dados dos bancos de dados inte-
grados está resolvido. Além disso, os dados das fontes remotas também devem ser
postos no mesmo formato, de forma que no final haja um casamento perfeito entre
eles. É para isso que existe o monitor de consistência do servidor. As principais
tarefas executadas por este módulo são o gerenciamento dos pontos de entrada, o
gerenciamento das tabelas de mapeamento e principalmente a realização da nave-
gação de um banco de dados para outro. Essa tarefas são distribuídas entre os com-
ponentes que são apresentados na arquitetura do monitor de consistência (Figura
6.1).

6.6.1 Arquitetura

A arquitetura do MCS pode ser vista na Figura 6.1. O módulo de acesso aos bancos
de dados é utilizado por todos os componentes e será abordado na seção 6.6.2.
Logo a seguir, na seção 6.6.3 apresentaremos o Gerente de Pontos de Entrada que
é responsável pelo mapeamento de quase todos os pontos de entrada apresentados
na Tabela 6.3. A única exceção é o atributo que identifica o motor, que é tratado
num caso a parte. Quatro dos oito componentes do Monitor de Consistência estão
voltados diretamente para realizar o mapeamento desse atributo nos diversos ban-
cos de dados. São eles: o Gerador de Tabelas de Mapeamento, o Parser, o Geren-
ciador de Tabelas de Mapeamento, o Atualizador de Consultas e o Gerente de
Consistência, que são apresentados da seção 6.6.4 à seção 6.6.7 respectivamente.
O principal módulo da nossa arquitetura é o Navegador. Todos os demais módulos
existem para auxiliá-lo. Sendo assim, o explicaremos na seção 6.6.8. O Gerente de
Consistência será abordado logo a seguir na seção 6.6.9, visto que esse módulo é
uma extensão do Navegador.
99

Monitor de Consistência
Figura 6.1 Arquitetura do Monitor de Consistência.

Monitor de Consistência - Servidor

Gerenciador
de Tabelas de
Mapemanto

Parser
Gerenciador
de Pontos
de Entrada

Gerador de
Tabelas de
Mapeamento

Gerente de Acesso aos Bancos de Dados

Atualizador
de consultas

Gerente de
Consistência

Navegador

6.6.2 Gerente de Acesso aos Bancos de Dados

O módulo de Acesso aos Bancos de Dados tem a função de interceptar qualquer
consulta SQL referente à navegação, montada pelo usuário através da GUI e en-
viá-la para processamento no servidor de banco de dados.

Antes de cada consulta ser enviada para o processamento no servidor, uma cone-
xão deve ser estabelecida ao sistema middleware de banco de dados. Isto é feito
através de um pedido ao conector de banco de dados, responsável pelo gerencia-
mento das conexões, e esta é retornada (ao conector de banco de dados) tão logo
haja o processamento da consulta. O pedido de conexão é diferenciado para ope-
rações de leitura e operações de escrita como foi visto na seção 5.5.1.

Neste nível, foi empregado o JDBC (Java Database Connectivity [SUN98,
HCF97]) para a comunicação com o sistema middleware de banco de dados. O po-
der e funcionalidade da API (Application Programming Interface) do JDBC cor-
responde ao padrão ISO do SQL2. O JDBC emprega o protocolo TCP/IP padrão
ISO para a comunicação.

A liberação dos recursos do banco de dados é outra tarefa do gerente de acesso.
Existem duas formas principais onde podemos liberar recursos dos bancos de da-
dos: através do fechamento de consulta ou do fechamento das conexões que não
são mais necessárias. As conexões, como foi explicado, são gerenciadas pelo co-
nector de banco de dados e portanto não é tratado pelo gerente de acesso aos ban-
cos de dados. A única tarefa necessária nesse caso é certificar-se que devolvemos
100

Monitor de Consistência
a conexão ao final do processamento da consulta. Por outro lado, as consultas po-
dem ser fechadas ao final do processamento, e esta é a nossa contribuição a nível
local.

Na fase inicial de implementação, o monitor de consistência gerenciava sua próp-
ria conexão com o sistema middleware de banco de dados, a qual era estabelecida
no construtor da nossa classe. Entretanto, esta não era uma boa solução, visto que
não deve-se manter uma conexão aberta por muito tempo, correndo o risco de es-
gotar os recursos do banco de dados. Não é uma boa prática também, abrir e fechar
conexões a todo momento. Dessa forma, tornava-se difícil ter o controle da cone-
xão a nível local, o qual foi delegado mais tarde ao conector de banco de dados.

6.6.3 Gerenciador de Pontos de Entrada

O papel do gerenciador de pontos de entrada - GPE - é fazer o mapeamento entre
os atributos e entidades correspondentes em cada SGBD, bem como formatar os
valores para que seja possível a comparação entre os mesmos. Além disso, é tarefa
dele informar aos demais módulos do monitor de consistência, caso necessitem,
os pontos de entrada correspondentes nos demais bancos de dados, de acordo é
claro, com um ponto de entrada específico e a entidade (visto que alguns pontos
de entrada possuem o mesmo nome). Mas, nem todos os pontos de entrada são tra-
tados por este módulo. O gerenciador de pontos de entrada não faz tratamento dos
atributos que identificam o motor (atributo Typ do PSD e LKD e Typ, Spezifika-
tion, Baumuster no Mentas). Outros componentes da arquitetura são responsáveis
por este mapeamento.

Funcionalidade do GPE

O gerenciador de pontos de entrada é ativado caso o usuário especifique qualquer
um dos atributos da Tabela 6.3 na cláusula de condição da sua consulta e queira
fazer a navegação para outro banco de dados. Neste momento, a GUI faz uma cha-
mada ao servidor, mais precisamente ao gerenciador de pontos de entrada, passan-
do como parâmetros a atual consulta feita pelo usuário, os pontos de entrada
especificados no banco de dados corrente, os valores desses pontos, o banco de da-
dos corrente e o banco de dados para o qual o usuário deseja navegar. Essas infor-
mações são necessárias para mapear os atributos e formatar seus valores de acordo
com os banco de dados no qual o usuário está trabalhando e para o qual está nave-
gando.

O gerente de pontos de entrada envia a consulta SQL do usuário para o servidor
de banco de dados para que esta seja executada. Caso essa consulta não retorne ne-
nhum resultado - dizemos então que a consulta não é válida - um código é retor-
nado à GUI, que por sua vez, o reporta ao usuário como uma mensagem de aviso,
e a navegação não é feita.
101

Monitor de Consistência
Caso a consulta SQL do usuário retorne algum resultado do banco de dados, é
dado prosseguimento à navegação. É feito o mapeamento de acordo com os atri-
butos (leia-se pontos de entrada) e os valores, as entidades, o banco de dados cor-
rente e o banco de dados para o qual o usuário deseja navegar, que foram
informadas no momento da chamada a este módulo.

Para fazer o mapeamento entre os valores especificados para o(s) ponto(s) de en-
trada do BD corrente e o correspondente no BD posterior, o GPE utiliza as regras
definidas na seção 6.5. Aqui é feito então o tratamento de diferenças de tipos entre
os atributos e diferenças nas representações de valores [KGCS95, HM93].

Tabela 6.8 Diferenças nas Representações dos Pontos de Entrada.

PSD LKD Mentas
Tipos dos Atributos FLOAT CHAR(x) FLOAT

Separador Ponto Vírgula Ponto

O tratamento de entrada dos dados é feito pelo módulo Gerente de Entrada locali-
zado no Cliente (seção 6.6.3), sendo este tratamento feito em relação ao banco de
dados corrente, verificando as regras definidas na seção 6.5. O GPE faz o trata-
mento dos valores para o BD posterior, deixando transparente para o usuário qual-
quer diferença da representação. Mostraremos agora através de um exemplo, todos
os passos do GPE numa suposta navegação entre o PSD e o LKD.

A situação mais simples de ocorrência de uma navegação no ambiente do MEN-
TAS acontece quando o usuário especifica apenas por qual ponto de entrada será
feita a ligação entre os bancos de dados, sem entretanto especificar qualquer valor
para o atributo no banco de dados corrente (seção 5.7.1.7). Neste caso não é ne-
cessário qualquer transformação de dados de entrada (pois não foi informado ne-
nhum valor para o atributo). Por exemplo, suponha que o usuário possua como
banco de dados corrente o PSD e formulou a seguinte consulta:

SELECT PSD_Zylinder. Durchmesser
FROM PSD_Zylinder

Suponha ainda que o usuário escolheu a entidade PSD_Zylinder para dar início à
navegação. E mais, que escolheu o atributo PSD_Zylinder.Durchmesser para ser o
ponto de ligação com o banco de dados MENTAS. A GUI envia então as seguintes
informações para o gerente de pontos de entrada:

• Pontos de entrada especificados pelo usuário (uma entidade pode possuir mais
de um ponto de entrada), bem como a entidade que o atributo pertence;
102

Monitor de Consistência
• Banco de dados corrente e banco de dados para o qual o usuário deseja nave-
gar;

Este caso é muito simples. Através da Tabela 6.3 é inferido qual é o atributo cor-
respondente no banco de dados Mentas para o atributo PSD_Zylinder.Durchmes-
ser do PSD (Motor.Bohrung). Dessa forma, montamos a consulta final originada
através da montagem da cláusula de condição como a apresentada a seguir:

SELECT PSD_Zylinder.Durchmesser
FROM PSD_Zylinder, LKD_Motor
WHERE PSD_Zylinder.Durchmesser = Motor.Bohrung

Um exemplo um pouco mais complicado aparece se o usuário especificar um valor
para o ponto de entrada. Por exemplo, suponha que o usuário esteja montando a
sua consulta no banco de dados PSD (banco de dados corrente é o PSD) e especi-
fique o atributo Durchmesser da entidade PSD_Zylinder na cláusula de condição
da sua consulta com o valor 20.3. Agora, o usuário deseja realizar a navegação
para o banco de dados LKD através deste ponto de entrada. O procedimento então
é abrir o pop up menu da entidade PSD_Zylinder e escolher a opção other databa-
ses. Temos então a seguinte consulta montada pelo usuário através da GUI:

SELECT PSD_Zylinder. Durchmesser
FROM PSD_Zylinder
WHERE PSD_Zylinder. Durchmesser = 20.3

A GUI então dispara um pedido ao gerenciador de entradas passando as seguintes
informações:

• Consulta SQL atual;

• Pontos de entrada especificados pelo usuário, bem como a entidade que o
atributo pertence;

• Banco de dados corrente e banco de dados para o qual o usuário deseja nave-
gar;

• Valor especificado para o ponto de entrada e o comparador (=, <, >, like, etc.).

Um vez com essas informações, começa então o trabalho do GPE. Suponha nova-
mente que a consulta SQL retorne alguma tupla quando aplicada ao banco de da-
dos. O que deve ser feito agora é o mapeamento do nome do atributo e valor
especificado pelo usuário aos correspondentes para o banco de dados posterior.
Assim, transformamos o valor 20.3 para '20,3' (note que o ponto foi trocado por
uma vírgula e que foi acrescentado aspas ao valor, já que o BD posterior é o LKD)
e mapeamos a entidade e o atributo PSD_Zylinder e Durchmesser, para os corres-
pondentes no LKD, ou seja, LKD_Motor e Bohrung, respectivamente.

Terminado o trabalho, o GPE retorna para a GUI a entidade, o atributo e os valores
já mapeados, os quais são utilizados para completar a consulta do usuário. É en-
103

Monitor de Consistência
cerrado então para o GPE o ciclo de navegação. Começa então o trabalho da GUI
a qual acrescenta as informações necessárias à consulta do usuário como também
troca o modelo ER antigo apresentado no campo de modelo da janela principal -
no nosso exemplo o PSD - para o novo banco de dados corrente, no nosso caso, o
modelo ER do LKD. Pronto, para o usuário a navegação está concluída, e a con-
sulta SQL apresentada ao usuário através do campo de consultas passou a ser a se-
guinte:

SELECT PSD_Zylinder.Durchmesser
FROM PSD_Zylinder, LKD_Motor
WHERE PSD_Zylinder.Durchmesser = 20.3 AND LKD_Motor.Bohrung = '20,3'

Apresentamos nesta seção um exemplo simples no qual a ligação entre os bancos
de dados foi feita utilizando um único ponto de entrada. No caso do usuário espe-
cificar mais de um ponto de entrada na sua consulta SQL, o mesmo procedimento
é adotado para cada um dos pontos. Isso não implica em várias chamadas ao ser-
vidor. A GUI passa para o GPE um vetor de elementos que são tratados e, logo
após isso, retornados. Não importa a quantidade de pontos de entrada definidas
pelo usuário, o tratamento é homogêneo e a chamada ao servidor única.

O tratamento dispensado para o atributo PSD_Zylinder.Durchmesser é adotado
também para os seguintes pontos de entrada: PSD_Zylinder.Hubvolumen,
PSD_Pleuel.Pleuellaenge, PSD_Kolben.Hub. Todos esses atributos utilizam a re-
gra 1, a regra 2 e a regra 3. É claro que o mesmo é válido para os correspondentes
destes pontos de entrada nos demais bancos de dados. No caso do
PSD_Zylinder.Hubvolumen ainda é necessário o uso da regra 5 porque os bancos
de dados possuem diferentes níveis de precisões nos valores. Desta forma, no mo-
mento da comparação faz-se necessário que os valores sejam truncados em duas
casas decimais. Isto é feito com o auxilio de funções presentes no próprio SGBD.

Os atributos PSD_Ventil.Ventil_DM_Aussen_1, PSD_Motor. Max_Ventil_Hub e
PSD_Kanal.Ein_Auslass_Kanal (e todos os correspondentes nos demais bancos
de dados) precisam de um pouco mais de cuidado no tratamento porque não existe
um mapeamento de um para um entre estes atributos nos bancos de dados (ver Ta-
bela 6.3). Como foi visto é preciso a definição de dois atributos nos bancos de da-
dos PSD e Mentas para corresponder a um único no banco de dados LKD, e vice-
versa. A problemática destes pontos de entrada ocorre porque no MENTAS os
usuários podem montar as consultas de forma ad hoc. Isto implica que o usuário
pode definir estes pontos sem uma ordem prévia. Para piorar o quadro, o usuário
pode combinar vários valores de um atributo para um único valor de um segundo
(no caso no PSD e Mentas no qual o ponto de entrada é constituído de dois atribu-
tos e não apenas de um único). Como exemplo, podemos ver as consultas abaixo:

SELECT PSD_Ventil.Ventil_DM_Aussen_1
FROM PSD_Ventil
WHERE (PSD_Ventil.Ventil_DM_Aussen_1 = 30 OR
PSD_Ventil.Ventil_DM_Aussen_1 = 30.5 OR
104

Monitor de Consistência
PSD_Ventil.Ventil_DM_Aussen_1 = 46.7) AND
PSD_Ventil.Ein_Auslass_Kanal = ’E’

Como um fator ainda mais complicador, o usuário pode definir outros atributos en-
tre PSD_Ventil.Ventil_DM_Aussen_1 e PSD_Ventil.Ein_Auslass_Kanal. Por todas
essas características, deve ser montado um tradutor de forma a agrupar os valores
antes de fazer o mapeamento. Note que o usuário não percebe essa dificuldade. Ele
apenas monta a consulta da forma que lhe é mais conveniente e requisita a nave-
gação. É responsabilidade do monitor de consistência e da GUI fazer todo o trata-
mento.

6.6.4 Parser

Como vimos, a modelagem do identificador do motor nos bancos de dados do
MENTAS é variada e é necessário fazer a transformação dos atributos seguindo a
gramática definida na Tabela 6.5, Tabela 6.6 e Tabela 6.7. O parser é o responsável
por deixar os identificadores dos motores em um formato único, utilizando esta
gramática. Para cada identificador de motor, o parser gera um vetor com quatro
campos. O primeiro para o tipo, o segundo para a especificação, o terceiro conten-
do o modelo de construção e o quarto e último contendo seqüências que não per-
tencem à gramática - desconhecido. Na Tabela 6.9 e Tabela 6.10 são apresentados
os resultados do parser para alguns identificadores de motor, no LKD e no PSD.

Note a variação entre as representações dos motores. Em um banco de dados, o
tipo é seguido da especificação sem possuir entretanto o modelo de construção
(PSD). Em outro banco de dados, o tipo é seguido do modelo de construção, sendo
que este dois atributos na maioria da vezes são concatenados através de um ponto.
Algumas vezes a especificação (no primeiro banco de dados) e o modelo de cons-
trução (no segundo banco de dados) é seguida de seqüências de caracteres que não
seguem nenhum padrão, totalmente aleatórias. Outras vezes os motores só pos-
suem o tipo seguido da seqüência desconhecida pela gramática.

Tabela 6.9 Parser - PSD

Motor Tipo Especificação Arte de Construção Desconhecido
M106E25 M106 E25
M111E18MMX M111 E18 MMX
OM602DE29LA OM602 DE29LA
OM667-LOMIX OM667 -LOMIX

.

Tabela 6.10 Parser - LKD.
105

Monitor de Consistência
Motor Tipo Especificação Arte de Construção Desconhecido
M 110.986 M110 986
M102.910 ECE M102 910 ECE
OM 605.910 KAT OM605 910 KAT
OM601.9 AUT. OM601 9 AUT.
M111E23 M111 E23

Podemos notar que alguns motores possuem o campo desconhecido preenchido.
No caso do Motor M111E18MMX por exemplo, conseguimos realizar o casamen-
to entre o tipo e a especificação. Entretanto, o restante da seqüência - MMX - não
se enquadra para o modelo de construção, sendo tratado como uma seqüência des-
conhecida da gramática. O mesmo ocorre para os demais motores que apresentam
este campo.

Os dados já formatados pelo parser são a base para que ocorra a navegação por este
ponto de entrada. Após a passagem dos identificadores do motor por este módulo,
temos uma representação homogênea entre todos os bancos de dados. Com os da-
dos formatados surgiu um novo problema: como gerenciar esses dados de modo
que as operações de join entre os bancos de dados possam ser feitas? A primeira
alternativa seria mudar a modelagem dos bancos de dados originais. Esta solução
torna-se inviável porque iria infrigir a garantia de autonomia aos bancos de dados
integrados. De forma alguma deve-se mudar qualquer banco de dados componente
para se adequar ao ambiente do MENTAS. Por outro lado, se o identificador do
motor não for transformado para uma representação homogênea não poderão ser
comparados entre si.

Outra alternativa seria executar o parser a cada ocorrência da navegação e compa-
rar os dados a nível de programação, sem a presença de banco de dados. Formata-
ríamos os dados de entrada do usuário e faríamos a comparação com os resultados
do parser. Mais uma vez não seria uma alternativa viável formatar todos os iden-
tificadores do motor a cada navegação porque a performance do sistema seria pre-
judicada. Por isso, decidimos utilizar tabelas intermediárias para armazenar os
resultados do parser. Estas tabelas intermediárias são chamadas de tabelas de ma-
peamento.

De acordo com a arquitetura apresentada na Figura 6.1 podemos notar que o parser
é na realidade um sub-módulo do gerador de tabelas de mapeamento. O funcio-
namento do parser do servidor está totalmente ligado ao gerador de tabelas de ma-
peamento. Este módulo envia para o parser os identificadores do motor no formato
original que estão armazenados nos bancos de dados e recebe exatamente no for-
mato que serão armazenados na tabela de mapeamento.
106

Monitor de Consistência
6.6.5 Gerador de Tabelas de Mapeamento - GTM

Este é o segundo módulo que trata do mapeamento entre os bancos de dados atra-
vés do identificador do motor. Podemos vê-lo como a parte centralizadora que re-
quisita e integra os serviços dos outros módulos. O gerador de tabelas de
mapeamento tem a finalidade de recuperar os valores originais dos identificadores
do motor, enviá-los para o parser, e salvar os resultados do parser nas tabelas de
mapeamento. Além disso é responsabilidade deste módulo também recuperar to-
dos os demais pontos de entrada e armazená-los nas mesmas tabelas de mapea-
mento.

As tabelas de mapeamento são geradas pela primeira vez na primeira inicialização
do servidor. Neste momento são buscados todos os pontos de entrada das fontes
de dados originais, o parser é chamado para formatar os valores dos identificado-
res do motor e a seguir todos os valores são armazenados nas tabelas de mapea-
mento. Estas tabelas de mapeamento são armazenadas em um banco de dados
gerenciado pelo sistema middleware. Essas tabelas podem ser geradas também
pelo usuário. Através da GUI o usuário pode requisitar informações sobre esta ta-
bela e decidir se deseja ou não realizar um novo mapeamento.

Entretanto, para que esta técnica tenha o efeito esperado, é preciso que haja uma
ligação eficiente entre os dados mapeados e as fontes de dados originais, de modo
que as outras informações da relação que armazena o identificador de motor sejam
recuperadas com sucesso. Para criar esta referência entre as tabelas, um novo atri-
buto foi inserido nas tabelas de mapeamento, além dos dados formatados pelo par-
ser. Este atributo é o motor no formato original (Figura 6.2). Em relação ao banco
de dados Mentas, este relacionamento é feito através de três atributos -tipo, espe-
cificação e baumuster-, em conjunto ou separadamente.

Figura 6.2 Ligação entre as Tabelas de Mapeamento e as Fontes de Dados Remotas
107

Monitor de Consistência
Banco de
Dados A

Tabela de
Mapeamento A

Tabela de
Mapeamento B

Banco de Dados do
Sistema Middleware

Banco de
Dados B

......

...

Banco de
Dados C

...

Tipo Espec Modelo ... Ponteiro

As tabelas de mapeamento têm uma importância vital para que a navegação ocorra
com sucesso. Todas as consultas que envolvem os pontos de entrada que identifi-
cam o motor acessam-nas obrigatoriamente. O acesso também ocorre quando o
usuário especifica que a navegação deve ocorrer seguindo as normas de consis-
tência entre os pontos de entradas dos bancos de dados envolvidos. Portanto, uma
propriedade que deve estar presente nestas tabelas é a sua disponibilidade aos usu-
ários sempre que forem requisitadas. Por esta razão, decidimos utilizar duas tabe-
las, uma ativa e uma reserva, como veremos a seguir.

Considere o caso em que apenas uma tabela de mapeamento é utilizada. Como sa-
bemos, operações de leitura e escrita devem ser cuidadosamente tratadas para ga-
rantir a consistência dos dados acessados. Dessa forma, quando um usuário
requisitar uma operação que resulte em escrita de dados na tabela (no nosso caso,
108

Monitor de Consistência
isto ocorre quando o usuário requisita através da GUI que um novo mapeamento
deve ser feito) os demais devem aguardar até que a transação seja concluída. Po-
rém, caso a transação não seja tão simples, o que significa que a tabela ficará blo-
queada por um longo período de tempo, todos os demais usuários ficarão
inabilitados a fazer acesso aos dados da tabela. Podemos ver o caso ilustrado na
Figura 6.3. O primeiro quadro da esquerda apresenta o caso em que todos os usu-
ários utilizam a tabela apenas para leitura, o que não ocasiona problema algum. O
quadro da direita mostra exatamente o problema onde um usuário está realizando
uma operação de escrita na tabela e os demais aguardam sem poder acessá-la. Isso
significaria no MENTAS a paralisação da navegação por todos os usuários, até que
um novo mapeamento fosse concluído por um usuário, sendo portanto, uma alter-
nativa inviável.

Figura 6.3 Problema de Acesso as Tabelas de Mapeamento.

1
2 3

4 1
2 3

4

read
read

read

read read
read

read

write

Para garantir que este tipo de problema não exista nas tabelas de mapeamento do
MENTAS, nós usamos duas tabelas para cada banco de dados, sendo que apenas
uma está ativa num dado instante. A Figura 6.4 ilustra a nossa solução:

Figura 6.4 Solução Adotada para as Tabelas de Mapeamento.
109

Monitor de Consistência
1
2 3

41
2 3

4

Ativa Reserva - vazia

1
2

4

Ativa

3

Reserva - sendo gerada
Reserva – antiga ativa

Ativa – antiga reserva

read
read

read read read
read read

write

1
2

1
2

read
read

read
read

1

2

O primeiro quadro ilustra o caso em que todos os usuários estão acessando a tabela
de mapeamento ativa, enquanto a outra está vazia - tabela reserva. Se algum usu-
ário resolver gerar um novo mapeamento, ele o faz utilizando a tabela reserva (se-
gundo quadro). Com isso, não existe o problema apontado anteriormente, dos
demais usuários ficarem impossibilitados de navegar pelos bancos de dados inte-
grados até que o novo mapeamento seja completado. A navegação entre os bancos
de dados continua sendo realizada sem nenhum problema. Quando o novo mape-
amento torna-se completo (quadro três da Figura 6.4), a tabela de reserva torna-se
a tabela ativa e vice-versa.

Esta técnica introduz um novo problema: como gerenciar as tabelas de mapea-
mento de modo que seja feito o acesso a tabela correta? A Figura 6.5 apresenta
como é feito o relacionamento entre as tabelas de mapeamento e as tabelas de ge-
renciamento e os usuários numa operação de leitura (read). Os nomes das tabelas
de mapeamento ativas para cada banco de dados são armazenados numa outra ta-
bela que é a encarregada de informar aos usuários qual é a tabela de mapeamento
ativa no momento de um acesso. Dessa forma, qualquer atividade que envolver as
tabelas de mapeamento deve antes de tudo consultar a tabela de gerenciamento
para localizar a tabela ativa.

A operação de escrita (write) é similar a de leitura. Sendo que a escrita ocorrerá na
tabela de mapeamento reserva e quando todos os dados são gravados na tabela re-
serva o usuário realiza um novo acesso à tabela de gerenciamento para atualizar o
nome da nova tabela que acabou de ser gerada. Como podemos perceber, com esta
técnica a navegação é interrompida apenas no momento de atualizar dois campos
relativos à tabela de mapeamento que acabou de ser gerado (o nome e o times-
tamp). Este é o único instante em que as operações de navegação são interrompi-
das, apenas uma simples e única operação de escrita.
110

Monitor de Consistência
No momento que ocorre a atualização da tabela de gerenciamento, a tabela de ma-
peamento ativa torna-se a reserva e a tabela de mapeamento reserva torna-se ativa.
Entretanto, a tabela que agora é a reserva ainda está populada com os valores do
antigo mapeamento. Este valores devem ser deletados para que um próximo ma-
peamento possa ser feito da mesma maneira que o especificado anteriormente. Isto
é feito por um thread assíncrono em background.

Figura 6.5

Tabela de mapeamento ativa
 PSD

1

2

3

Tabela de mapeamento ativa
LKDTabela de mapeamento reserva

PSD

Tabela de mapeamento reserva
LKD

Tabela de Gerenciamento

Read

1 - usuário consulta a tabela de gerenciamento para saber qual tabela de mapeamento está ativa

2- usuário recebe a informacao de qual tabela é a ativa
3 - usuário realiza a operacao de leitura da tabela de mapeamento (ativa)

Tabela de Mapeamento versus Tabela de Gerenciamento (Leitura).

6.6.6 Gerenciador de Tabelas de Mapeamento

A tarefa de atualizar o nome do novo mapeamento é do gerenciador de tabelas de
mapeamento. Este módulo é capaz de informar aos usuários informações que po-
dem ser requisitadas através da GUI como qual a tabela ativa e quando ocorreu o
último mapeamento para um determinado banco de dados, ou seja, o dia e hora (ti-
mestamp) em que a tabela foi gerada. Estas informações o auxiliam na decisão de
fazer ou não um novo mapeamento. Ainda mais importante que a informação ao
usuário sobre a data do último mapeamento, é informar ao Atualizador de Consul-
tas a tabela de mapeamento corrente (ver seção 6.6.7). Através desta informação,
as consultas que envolvem tabelas de mapeamento são atualizadas no momento
que são enviadas para o servidor de banco de dados, eliminando assim o problema
de inconsistência da informação, já que o usuário pode gerar as tabelas de mapea-
111

Monitor de Consistência
mento a qualquer momento. O gerenciador de tabelas de mapeamento guarda a in-
formação de qual tabela é a ativa numa relação no sistema middleware onde
também se encontram as tabelas de mapeamento e pode ser visto na Figura 6.6.

Figura 6.6 Tabelas de Mapeamento e a Tabela de Gerenciamento.

Tabela PSD1 - Tabela de Mapeamento ativa Tabela PSD2 – Tabela de Mapeamento reserva

Tabela de Gerenciamento

Tabela LKD1 – Tabela de Mapeamento reserva Tabela LKD2 – Tabela de Mapeamento ativa

Typ Spezifikation Baumuster ... Ursprung

Typ Spezifikation Baumuster ... UrsprungTyp Spezifikation Baumuster ... Ursprung

Typ Spezifikation Baumuster ... Ursprung

PSD_Ativa Timestamp _PSD LKD_Ativa Timestamp _LKD

PSD1 xxx-xxx-xxx LKD2 xxx-xxx-xxx

Controle de Concorrência
112

Monitor de Consistência
No MENTAS, transações submetidas por vários usuários podem executar concor-
rentemente e podem acessar e atualizar os mesmos ítens nos bancos de dados. Mas
se essa concorrência não for controlada, ela pode levar a problemas de inconsis-
tência nos bancos de dados. As nossas tabelas de mapeamento são alvo de proble-
mas causados pela concorrência. Dentre eles podemos destacar:

• Um usuário deseja gerar uma nova tabela de mapeamento antes da tabela
antiga ser deletada.

• Dois usuários desejam gerar ao mesmo tempo um novo mapeamento para um
dos bancos de dados.

No primeiro caso, a sincronização das tarefas deve acontecer de tal forma a garan-
tir que apenas uma tabela de mapeamento possua valores armazenados por vez, de
modo que a tabela reserva esteja sempre disponível para receber um novo mapea-
mento. Isso significa que deve ser garantida a remoção dos dados da tabela de ma-
peamento antiga, quando um novo mapeamento for criado. Para assegurar que
apenas um usuário execute essas três operações -escrita do novo mapeamento, atu-
alização da tabela de gerenciamento, e remoção dos dados da tabela de mapeamen-
to antiga- utilizamos os monitores1 a nível de implementação, de forma que,
apenas o thread do usuário que obtiver o monitor será executado. Para garantir to-
das as funcionalidades necessárias à nossa aplicação, implementamos nossa próp-
ria classe de monitor. Para complementar, o método que realiza a remoção dos
dados é interligado com o método que realiza a escrita na tabela de mapeamento
através de um outro monitor, garantindo que não haverá problemas entre escrita e
remoção dos dados, já que esta última é implementada através de um thread java.
Para não prejudicar o paralelismo do banco de dados, atribuímos um monitor a
cada banco de dados, de modo a garantir que dois mapeamentos sejam gerados si-
multaneamente para dois bancos de dados distintos, caso seja requisitado.

No momento em que ocorre a atualização da tabela de gerenciamento, o novo ma-
peamento está criado e o usuário que fez a requisição não deve ser penalizado com
a espera da remoção dos dados da tabela antiga, que dependendo do tamanho, pode
ser uma operação demorada. Assim, optamos por liberar o usuário assim que a ta-
bela de gerenciamento é atualizada e realizar a operação de remoção dos dados da
tabela antiga em background. Entretanto, o thread do usuário continua com a pos-
se do monitor.

Caso dois usuários requisitem do sistema ao mesmo tempo a geração de um novo
mapeamento para o mesmo banco de dados, damos a sensação aos dois de que seu
pedido está sendo processado. Mas na realidade, só um dos usuários vai ter a posse
do monitor para efetuar as operações sobre o banco de dados. Com isso, contribu-
ímos para o aumento da performance do sistema, já que evitamos vários acessos

1. De uma forma geral, monitores garantem que em tempo de execução apenas um thread execute
o trecho de programa que está sendo controlado por ele.
113

Monitor de Consistência
aos bancos de dados neste caso, além de que, se o primeiro usuário estiver no final
da operação, o tempo de resposta ao segundo usuário será mais rápido.

O uso de monitores, caso não seja bem cuidado, pode introduzir o problema de de-
adlock no sistema, uma vez que um usuário pode manter a posse do monitor, tor-
nando o processo de gerar novos mapeamentos inacessível aos demais usuários.
Garantimos a total disponibilidade e confiabilidade do sistema assegurando a libe-
ração do monitor caso algum problema ocorra com o usuário que o possui.

Na Figura 6.7, podemos ver o relacionamento dos componentes apresentados até
então na ilustração de como é processado um pedido do usuário para gerar um
novo mapeamento para um banco de dados - LKD ou PSD.

Figura 6.7 Relacionamento entre os Módulos do Monitor de Consistência no Processo de
Geração de Tabela de Mapeamento.

Parser
Gerador de
Tabelas de

Mapeamento

Gerenciador de
Tabelas de

Mapeamento

Gerente de Acesso aos Bancos de Dados

1

 2

3

 4
5

 6
7

 8

9

 10 11

Na Figura 6.7 suponha sempre a existência de um retorno por parte do gerente de
Acesso aos Bancos de Dados, o qual não foi ilustrado a título de simplificação do
desenho. A seguir, temos a descrição do fluxo das informações que atravessam os
módulos:

1- Pedido do usuário, oriundo da GUI, para gerar um novo mapeamento.

2- Envio de uma consulta SQL ao servidor de BD para selecionar os identificado-
res de motor das fontes de dados remotas que serão passadas para o parser como
informação, além de todos os demais pontos de entrada1. Como resposta, o Geren-
ciador de Acesso aos Bancos de Dados retorna os pontos de entrada.
114

Monitor de Consistência
3- Chamada ao parser passando os identificadores dos motores.

4- Retorno do parser, com os identificadores no formato que serão armazenados
na tabela de mapeamento.

5- Pedido de informação ao Gerenciador de Tabelas de Mapeamento de qual tabela
do banco de dados que está sendo gerado um novo mapeamento é a ativa.

6- Acesso ao servidor de BD através de uma consulta SQL que seleciona na tabela
de gerenciamento o nome da tabela de mapeamento ativa para o banco de dados
que está sendo requisitado um novo mapeamento.

7- Retorno ao Gerador de Tabelas de Mapeamento com o nome da tabela reserva,
onde vai ser gerado o novo mapeamento.

8- Acessos ao servidor de BD para gravar os resultados do parser na tabela reserva.
Com o retorno do Gerente de Acesso aos Bancos de Dados, o Gerador de Tabelas
de Mapeamento deve informar ao Gerenciador de Tabelas de Mapeamento o nome
da nova tabela em que foi gerado o mapeamento.

9- Passagem do nome da nova tabela de mapeamento bem como o novo timestamp
que serão gravados na tabela de gerenciamento pelo Gerenciador das Tabelas de
Mapeamento.

10- Acesso ao banco de dados para atualizar a tabela de gerenciamento com o
nome e o timestamp da nova tabela de mapeamento.

11- Após atualizar os dados da tabela de gerenciamento e, portanto, tornar visível
a todos os usuários o novo mapeamento, é então feito um novo acesso ao banco de
dados para deletar os dados da tabela antiga, que passa a ser então a tabela reserva.
Esse processo é feito completamente em background, liberando o usuário de
aguardar o final da operação.

6.6.7 Atualizador de Consultas

Este módulo do monitor de consistência visa atualizar as consultas SQL com o
nome da tabela de mapeamento ativa. Como a geração de novos mapeamentos é
um processo dinâmico que pode acontecer em qualquer momento -dependendo

1. No caso do PSD, são necessárias sete consultas ao servidor de banco de dados para recuperar
todas as informações: Três para acessar as fontes remotas, três para salvar os dados dessas
subconsultas em tabelas intermediárias, e finalmente, uma última que integra os dados das
tabelas intermediárias. Parte do resultado desta última consulta (o identificador do motor) é
enviado ao Parser.
115

Monitor de Consistência
apenas que o usuário deseje fazê-lo-, conseqüentemente as consultas SQL que uti-
lizam as tabelas de mapeamento devem verificar antes de acessar o servidor de
bancos de dados qual é a tabela ativa, garantindo então a consistência das consul-
tas SQL.

Na maioria das vezes, a tabela de mapeamento é transparente para o usuário. O
usuário só tem uma forma de gerar consultas SQL onde as tabelas de mapeamento
tornam-se não transparentes. Isto ocorre quando o usuário navega por entre os ban-
cos de dados sem especificar explicitamente qualquer ponto de entrada na cláusula
de condição da sua consulta. Uma vez escolhendo qualquer dos três atributos que
identificam o motor, é inserido na consulta SQL apresentada ao usuário a tabela
de mapeamento referente ao banco de dados.

No momento da montagem de qualquer consulta que envolva as tabelas de mape-
amento, é dado um nome genérico para essas tabelas, como PSDMapping e LKD-
Mapping, por exemplo. Antes de enviar a consulta para o servidor de banco de
dados é feita uma busca nas consultas e se for encontrado qualquer destas duas se-
qüências atualizamos pelo nome da tabela de mapeamento corrente que é informa-
da ao atualizador de consultas pelo gerente de tabelas de mapeamento. Considere
a seguinte consulta montada pelo usuário:

SELECT PSD_Motor.Baustufe
FROM PSDMapping, PSD_Motor, LKDMapping, LKD_Motor
WHERE PSDMapping.Typ = LKDMapping.Typ AND
PSDMapping.Ursprung = PSD_Motor.typ AND
LKDMapping.Ursprung = LKD_Motor.Typ

Antes desta consulta ser enviada para o processamento no servidor de banco de da-
dos, o atualizador de consultas faz a troca dos nomes genéricos utilizados para a
tabela de mapeamento para o nome da tabela ativa. Supondo que a tabela de ma-
peamento ativa para o PSD seja Mapping_Motor_PSD2 e a tabela ativa para o
LKD seja Mapping_Motor_LKD1 temos a seguinte consulta:

SELECT PSD_Motor.Baustufe
FROM Mapping_Motor_PSD2, PSD_Motor, Mapping_Motor_LKD1, LKD_Motor
WHERE Mapping_Motor_PSD2.Typ = Mapping_Motor_LKD1.Typ AND
Mapping_Motor_PSD2.Ursprung = PSD_Motor.typ AND
Mapping_Motor_LKD1.Ursprung = LKD_Motor.Typ

A consulta resultante da saída do atualizador de consultas pode ser finalmente en-
viada para o processamento. Isto não significa que o usuário precisa mudar o com-
portamento quando essas tabelas aparecerem diretamente na sua consulta
apresentada pela GUI. Muito pelo contrário, apesar de não escondermos comple-
tamente do usuário a existência de tais tabelas, temos o cuidado de gerenciá-las
completamente nos casos apresentados acima. Uma vez que essas tabelas não são
restritas apenas ao uso interno do monitor de consistência, faz-se necessário que o
116

Monitor de Consistência
conector de interface também faça acesso ao atualizador de consultas antes da cha-
mada ao servidor de banco de dados para a execução da consulta final do usuário.

6.6.8 Navegador

Este módulo representa a interface do monitor de consistência com os outros com-
ponentes da arquitetura apresentada no capítulo 3, sempre que faz-se presente uma
navegação. Apenas este módulo e o gerador de tabelas de mapeamento recebem
chamadas de componentes externos diretamente.

Uma navegação que envolve o identificador do motor pode ser realizada com ou
sem verificação de consistência. Aqui não será abordado o caso em que existe a
verificação de consistência, sendo este tópico a nossa próxima seção. Também,
não é tarefa deste módulo a montagem das consultas quando a navegação ocorre
sem a definição explícita de um valor na cláusula de condição da consulta, assunto
que será abordado na seção 6.7.3. Resumindo, o Navegador possui as seguintes ta-
refas:

• Enviar a consulta formulada pelo usuário ao banco de dados corrente ao servi-
dor de banco de dados e, dependendo da resposta, habilitar ou não o processo
da navegação;

• Montar as consultas intermediárias durante o processo de navegação quando
necessário;

• Montar a consulta final que será apresentada ao usuário após o processo da
navegação;

• Convocar o Gerente de Consistência sempre que necessário para complemen-
tar as consultas intermediárias durante a navegação;

6.6.8.1 Vetar a Navegação

Sempre que o usuário deseja fazer uma navegação, o primeiro teste a ser feito é se
a consulta SQL formulada por ele retorna resultados. Esta verificação é feita tanto
se o usuário especificar valores para os pontos de entrada na cláusula de condição
ou não. Na verdade, apenas em uma única situação não ocorre a verificação da
consulta atual, no caso do usuário não especificar nenhum valor na cláusula de
condição da sua consulta, pois consultas deste tipo sempre vão retornar valores. Se
a consulta retornar pelo menos um resultado, a navegação prossegue sem maiores
problemas. Caso contrário, o Navegador não inicializa o processo de navegação e
retorna um código à GUI e esta o reporta para o usuário com um aviso que a con-
sulta corrente não retorna nenhum resultado.

Esse procedimento evita trabalho desnecessário para o usuário. Se a consulta cor-
rente não retorna resultados, a consulta posterior, após a navegação, também não
117

Monitor de Consistência
retornará. Paralisando o processo antes de ir para o outro banco de dados, damos
a possibilidade para o usuário de reformular a consulta, se for o caso.

6.6.8.2 Montagem das Consultas Intermediárias

Quando um usuário especifica um identificador do motor na consulta SQL ao ban-
co de dados corrente e deseja navegar para um outro banco de dados, alguns passos
intermediários são necessários (Figura 6.8). Em primeiro lugar deve ser formatado
o valor de entrada para o identificador de motor fornecido pelo usuário. Quando
este encontra-se num formato comum aos identificadores armazenados nos bancos
de dados é visto se o usuário deseja uma navegação seguindo os requisitos de con-
sistência (seção 6.6.9) ou se a navegação ocorrerá de forma normal. A partir de en-
tão, são montadas as consultas intermediárias, para que sejam recuperados os
motores no banco de dados para onde está seguindo a navegação que correspon-
dem ao especificado pelo usuário na consulta corrente.

Existem dois tipos de consultas intermediárias: a primeira delas (Operação nor-
mal) é construída para recuperar no banco de dados posterior todos os motores que
possuem a mesma especificação do usuário. Ou seja, são utilizados todos os resul-
tados válidos1 do parser na construção desta consulta. Como foi visto, os bancos
de dados possuem seqüências diferentes para representar o mesmo motor em cada
banco de dados. Portanto, na maioria das vezes essas consultas montadas com to-
das as especificações não retornam nenhum valor. Para resolver este problema,
criamos o segundo tipo de consulta intermediária, chamada por nós de other ma-
tches. Estas consultas são um refinamento da primeira consulta. É montada uma
consulta intermediária para cada resultado válido retornado pelo parser.

Operação Normal

Se a navegação não for vetada pelo passo anterior damos prosseguimento à nave-
gação. Em primeiro lugar, é preciso que o motor especificado seja passado para o
formato padrão de comparação quando o banco de dados corrente se tratar do LKD
ou PSD. Como discutido anteriormente, o banco de dados Mentas já está dentro
do padrão estabelecido.

Depois de passar o motor (ou os motores) especificado pelo usuário na cláusula de
condição para o formato estabelecido, é montada a primeira consulta intermediária
do processo da navegação, mostrada através da Consulta Intermediária 1.

1. O campo desconhecido retornado pelo parser não é considerado um resultado válido para a
montagem das consultas.
118

Monitor de Consistência
Figura 6.8 Passos da Navegação com a Presença do Identificador do Motor.

banco de dados 1

Parser
(Cliente)

Identificador
do Motor

Tradução para um
formato comum

banco de dados 2 banco de dados N...

Tabela de
Mapeamento 1

Tabela de
Mapeamento 2

Tabela de
Mapeamento N

Banco de Dados do Sistema Middleware

Consistência?

sim

não

Requisitos de
consistência

Consulta
Intermediária

Identificador no
formato comum

Consulta Intermediária 1:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção'

Onde:

EntidadeBDPosterior é o nome da entidade onde encontra-se o identificador
do motor no banco de dados posterior. Se o banco de dados posterior fizer
uso das tabelas de mapeamento (PSD e LKD), essa entidade será a tabela de
mapeamento ativa no momento da execução da consulta. Quando se trata do
banco de dados Mentas, é a própria entidade que contém o identificador do
motor; Ainda se tratando do PSD e LKD os atributos typ, spezifikation, e
baumuster são substituídos por ursprung que é o atributo ponteiro das tabelas
de mapeamento para as fontes de dados originais.
119

Monitor de Consistência
<comparaçãox>, sendo x = 1, 2, 3, é o operador de comparação utilizado
pelo usuário no momento da montagem da sua consulta ao banco de dados
corrente, como =, !=, <, >, etc. Dessa forma garantimos que a busca ao banco
de dados posterior é feita sob as mesmas características requeridas do banco
de dados corrente. Lembramos que para o LKD e o PSD estes três campos
são preenchidos pelo operador de comparação atribuído ao atributo Typ no
banco de dados local, ou seja, <comparação1> = <comparação2> =
<comparação3>, e que no Mentas os comparadores podem ser distintos, uma
vez que o usuário faz a especificação separadamente para cada componente
(tipo, especificação e modelo de construção).

Tipo pode ser originado de duas formas, dependendo de qual banco de dados
é o corrente. No caso do Mentas este valor é o próprio valor fornecido pelo
usuário no momento da formulação da cláusula de condição da consulta, ou
seja, pode ou não existir na consulta intermediária, dependendo do que foi
especificado pelo usuário. Em se tratando do LKD e PSD esse valor na maio-
ria dos casos se faz presente nas consultas intermediárias, sendo originado
através do Parser. O único caso em que o Tipo não está presente nas consultas
intermediárias para esses dois bancos de dados é se o usuário especificar um
motor que não se encaixe na gramática adotada pelo Parser, e este retorne
apenas o campo desconhecido preenchido. Esse problema é resolvido da
seguinte maneira:

Consulta Intermediária 2:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Typ <comparação> 'Desconhecido'

Consulta Intermediária 3:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Unerkannt <comparação> 'Desconhecido'

Como podemos perceber, pode ocorrer dois casos distintos. Se o banco de dados
posterior for o Mentas a comparação é feita com o atributo que armazena o tipo já
que este banco de dados não apresenta atributo correspondente para a seqüência
desconhecido gerada pelo parser. Pensando em termos práticos, só existe uma pos-
sibilidade para isto acontecer, caso o usuário especifique um motor que não pre-
encha sequer o atributo tipo, como 'M11' ou 'M11E23' por exemplo. Já se o banco
de dados for o LKD ou o PSD, a comparação é feita com o próprio atributo das
tabelas de mapeamento que guarda a informação de seqüências desconhecidas
(Unerkannt). Na maioria das vezes, tipos de consultas como esta só vão retornar
valores dependendo do comparador utilizado. Por exemplo, se o usuário especifi-
car o igual "=" serão raras (para não dizer que nunca) as consultas que retornarão
resultados, principalmente se envolver o banco de dados Mentas, não tendo nem a
120

Monitor de Consistência
possibilidade de other matches porque não terá o que procurar em separado. Ao
contrário, os operadores diferente, menor e maior (!= , < , >) terão uma possibili-
dade muito maior de retorno de resultados.

Como podemos notar, a montagem das consultas intermediárias é um processo
completamente dinâmico, que varia de acordo com os bancos de dados envolvidos
na navegação e o valor fornecido pelo usuário para o identificador do motor. Caso
não seja apenas o valor e sim os valores, a consulta é feita da mesma maneira, sen-
do estes formatados pelo Parser em caso necessário (PSD ou LKD) e anexados à
Consulta Intermediária 1 como mostrado abaixo1:

Consulta Intermediária 4:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo(1)' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação(1)' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção(1)' AND
EntidadeBDPosterior.Typ <comparação4> 'Tipo(2)' AND
EntidadeBDPosterior.Spezifikation <comparação5> 'Especificação(2)' AND
EntidadeBDPosterior.Baumuster <comparação6> 'modelo de construção(2)' AND
... AND
EntidadeBDPosterior.Typ <comparação(x)> 'Tipo(n)' AND
EntidadeBDPosterior.Spezifikation <comparação(x+1)> 'Especificação(n)' AND
EntidadeBDPosterior.Baumuster <comparação(x+2)> 'modelo de construção(n)'

As consultas intermediárias apresentadas até o momento são responsáveis por pro-
curar no banco de dados posterior por todos os motores que preenchem as carac-
terísticas do informado ao banco de dados corrente. Existem dois fins previsíveis
para isto: o primeiro é que seja encontrado o motor no outro banco de dados com
as mesmas características informadas pelo usuário ao banco de dados corrente, e
o segundo ocorre quando nenhum motor é selecionado no banco de dados poste-
rior, sendo esse mais freqüente devido às diferenças de representações entre o
identificador do motor nos bancos de dados. Por essa razão, é necessário oferecer
ao usuário uma forma mais refinada na busca pelos motores correspondentes, e
isto é feito através da opção other matches apresentada ao usuário logo após a fa-
lha da consulta anterior.

Operação de Other Matches

Este é o segundo tipo de consulta intermediária montada pelo navegador. O obje-
tivo destas consultas é oferecer ao usuário uma consulta mais refinada ao banco de
dados posterior levando em consideração os motores especificados por este na

1. Os valores acrescentados estão escritos em Itálico.
121

Monitor de Consistência
consulta ao banco de dados corrente. Uma nova consulta é originada para cada re-
sultado válido do parser. De maneira geral, a consulta possui o seguinte formato
quando se trata do LKD e PSD como banco de dados posterior:

Consulta Intermediária 5: Tipo

SELECT TabMapCorrente.Ursprung
FROM TabMapCorrente
WHERE TabMapCorrente.Typ <comparação> 'Tipo'

Consulta Intermediária 6: Especificação

SELECT TabMapCorrente.Ursprung
FROM TabMapCorrente
WHERE TabMapCorrente.Spezifikation <comparação> 'Especificação'

Consulta Intermediária 7: Modelo de Construção

SELECT TabMapCorrente.Ursprung
FROM TabMapCorrente
WHERE TabMapCorrente.Baumuster <comparação> 'modelo de construção'

E as próximas, quando se tratar do Mentas:

Consulta Intermediária 8: Tipo

SELECT Entidade.Typ, Entidade.Spezifikation, Entidade.Baumuster
FROM Entidade
WHERE Entidade.Typ <comparação> 'Tipo'

Consulta Intermediária 9: Especificação

SELECT Entidade.Typ, Entidade.Spezifikation, Entidade.Baumuster
FROM Entidade
WHERE TabMapCorrente.Spezifikation <comparação> 'Especificação'

Consulta Intermediária 10:1 Modelo de Construção

SELECT Entidade.Typ, Entidade.Spezifikation, Entidade.Baumuster
FROM Entidade
WHERE TabMapCorrente.Baumuster <comparação> 'modelo de construção'

Como podemos perceber, existe diferença na montagem das consultas de acordo
com o banco de dados posterior, com o tipo de operador de comparação utilizado
e com o valor especificado para o banco de dados corrente. Através das consultas,

1. Nas consultas intermediárias de 1 a 4 existe a mesma diferença apresentada nas consultas
intermediárias de 5 a 9. Ou seja, no Mentas deve ser projetado os atributos Typ, Spezifikation e
Baumuster como escrito. No LKD e PSD deve ser projetado o atributo ursprung das tabelas de
mapeamento.
122

Monitor de Consistência
vemos que a procura agora é feita separadamente a cada parte que compõe o iden-
tificador do motor, de forma que para cada identificador especificado na cláusula
de condição podem ser geradas até três consultas intermediárias, dependendo mais
uma vez do resultado do Parser (LKD e PSD) ou dos atributos especificados na
consulta corrente (Mentas). Os resultados de cada consulta são armazenados em
um vetor e retornado a GUI que os apresenta ao usuário.

Informação dos Novos Componentes da Consulta a GUI

Outra tarefa do Navegador é definir as regras para guiar a GUI no processo de
montagem das consultas após uma navegação. São regras simples, mas que devem
ser observadas no momento da adição dos novos parâmetros à consulta do usuário.

Consultas do usuário que possuem cláusula de condição sempre são verificadas
antes de uma navegação. Dependendo do conteúdo desta cláusula, a parte comple-
mentar da consulta originada pela navegação é montada no cliente ou no servidor
(Figura 6.9). No caso de não existir cláusula de condição na consulta sempre será
montada a complementação no cliente, já que não é necessário testar a consulta
corrente e conseqüentemente, não é necessário uma comunicação entre cliente e
servidor.

Figura 6.9 Montagem das Consultas.

Consulta

Com
Cláusula Where

Sem
Cláusula Where

Com
Ponto de Entrada

Sem
 Ponto de Entrada

Servidor

Cliente

Cliente

Dessa forma, existe a seguinte regra para a criação da complementação da consulta
do usuário no final de uma navegação. Para a montagem dessa consulta, recebe-
mos da GUI as informações necessárias sobre a navegação, como os bancos de da-
dos envolvidos e os pontos de entrada definidos.

Consulta de Navegacao 1:

Cláusula de condição:
123

Monitor de Consistência
EntidadePEntradaBDPosterior.PEntradaBDPosterior <comparação> valor(EntidadePEntrad-
aBDCorrente.PEntradaBDCorrente)

Tabelas:
EntidadePEntradaBDPosterior

Onde:

EntidadePEntradaBDPosterior.PEntradaBDPosterior é inferido através da
informação do ponto de entrada especificado na consulta e as informações da
Tabela 6.3;

<comparação>, corresponde ao operador escolhido pelo usuário para o
banco de dados corrente e;

valor(EntidadePEntradaBDCorrente.PentradaBDCorrente) corresponde ao
valor fornecido pelo usuário ao ponto de entrada do banco de dados corrente,
transformado para o formato do banco de dados para onde está ocorrendo a
navegação. Caso haja mais de um ponto de entrada especificado numa
mesma consulta, ou ainda, o mesmo ponto de entrada com mais de um valor,
essa regra deve ser empregada para cada ocorrência.

As informações sobre o banco de dados corrente são recebidas através da GUI e
os correspondentes no banco de dados posterior (EntidadePEntradaBDPoste-
rior.PEntradaBDPosterior) são inferidos utilizando-se as informações contidas
na Tabela 6.3, para cada par enviado pela GUI sobre o banco de dados corrente.
Lembramos aqui que o usuário pode escolher mais de um ponto de ligação entre
os bancos de dados, caso a entidade escolhida para efetuar a navegação os conte-
nha, sendo o tratamento uniforme para todos os casos. Além da parte da consulta
que será acrescentada na cláusula de condição do usuário, são devolvidos também
para a GUI os nomes das tabelas envolvidas.

Para ilustrar como é utilizada a Consulta de Navegação 1, considere o seguinte
exemplo: Um usuário monta uma consulta ao banco de dados PSD utilizando o
ponto de entrada Durchmesser igual ao valor 35.8. Considere ainda que a navega-
ção é feita através da entidade que possui o ponto de entrada Durchmesser
(PSD_Zylinder). Para fechar o ambiente de navegação, suponha que o usuário es-
colheu como banco de dados posterior o LKD. Assim, tendo como consulta inicial
a seguinte,

SELECT PSD_Zylinder.Atributo1, PSD_Zylinder. Atributo2, ..., PSD_Zylinder.AtributoN
FROM PSD_Zylinder
WHERE PSD_Zylinder.Durchmesser = 35.8

Com a informação que o usuário escolheu o ponto de entrada da entidade para efe-
tuar a navegação (PSD_Zylinder.Durchmesser) passadas ao monitor de consis-
tência pela GUI, este monta a seguinte consulta de navegação:
124

Monitor de Consistência
Cláusula de condição:
LKD_Motor.Bohrung = ’35,8’

Tabelas:
LKD_Motor

Esta parte da consulta é retornada à GUI que adiciona as informações à consulta
corrente do usuário, transformando-a na seguinte consulta (as modificações estão
em itálico):

SELECT PSD_Zylinder.Atributo1, PSD_Zylinder. Atributo2, ..., PSD_Zylinder.AtributoN
FROM PSD_Zylinder, LKD_Motor
WHERE PSD_Zylinder.Durchmesser = 35.8 AND
LKD_Motor.Bohrung = ’35,8’

Se houver identificador do motor definido na condição da consulta, apesar da regra
ser a mesma definida acima, a diferença encontra-se em como é conseguido o va-
lor(EntidadePEntradaBDCorrente.PEntradaBDCorrente). Como sabemos, o mapeamento
dos valores do identificador do motor não é feito automaticamente, e é através da
escolha dos motores nos passos intermediários (através das consultas intermediár-
ias que foram apresentadas anteriormente - tanto no caso normal, quanto de other
matches), que este campo é preenchido. Quando o usuário escolhe mais de um va-
lor de mapeamento para um único valor fornecido, deve ser seguida a seguinte re-
gra para atualizar a consulta corrente após a navegação:

Identificador do Motor - Mapeamento um para muitos valores

Consulta de Navegacao 2:

Cláusula de condição:
(EntidadeCorrespondente.AtributoCorrespondente <comparação> valor1(EntidadeCorr-
ente.AtributoCorrente) OR
EntidadeCorrespondente.AtributoCorrespondente <comparação> valor2(EntidadeCorr-
ente.AtributoCorrente) OR
... OR
EntidadeCorrespondente.AtributoCorrespondente <comparação> valorN(EntidadeCorr-
ente.AtributoCorrente))

Tabelas:
EntidadeCorrespondente

Mais uma vez, utilizamos o exemplo de uma navegação para ilustrar como é uti-
lizada a Consulta de Navegação 2. Suponha a navegação entre o PSD e o LKD uti-
lizando desta vez o identificador de motor como ponto de entrada.

SELECT PSD_Motor.Atributo1, PSD_Motor. Atributo2, ..., PSD_Motor.AtributoN
FROM PSD_Motor
WHERE PSD_Motor.Typ = ’M111E18MMX’
125

Monitor de Consistência
Suponha que o usuário escolheu três motores dos resultados apresentados pelas
consultas intermediárias, sendo eles: M111.920, M111.921 e M111.940. Dessa
forma, a consulta final será:

SELECT PSD_Motor.Atributo1, PSD_Motor. Atributo2, ..., PSD_Motor.AtributoN, LKD_Motor.Typ
FROM PSD_Motor, LKD_Motor
WHERE PSD_Motor.Typ = ’M111E18MMX’ AND
(LKD_Motor. Typ = ’M111.920’ OR LKD_Motor. Typ = ’M111.921’ OR LKD_Motor. Typ = ’M111.940’)

Convocar o Gerente de Consistência

Uma parte da responsabilidade do mapeamento entre os bancos de dados, quando
o ponto de entrada escolhido para realizar uma navegação é o identificador do mo-
tor, é delegada ao usuário. No entanto, o usuário pode optar por restringir o núm-
ero de resultados intermediários. Isso é possível com a escolha de realizar a
navegação com a verificação de consistência. É tarefa do Navegador convocar o
Gerente de Consistência para que seja acrescentada à consulta intermediária todo
o processo referente a checagem de consistência (Figura 6.8).

6.6.9 Gerente de Consistência

A tarefa deste módulo é montar e acrescentar parte da consulta intermediária, no
caso do usuário ter habilitado a opção de realizar a navegação com a verificação
de consistência (Figura 6.8).

Devido à heterogeneidade semântica e estrutural nos identificadores de motor, nos
bancos de dados integrados, não é feito o mapeamento direto dos valores forneci-
dos pelo usuário de um banco de dados para outro, como acontece com os demais
pontos de entrada do nosso sistema. Por exemplo, o motor M111E18MMX arma-
zenado no banco de dados PSD corresponde ao motor M111.921 no banco de da-
dos LKD e ao motor com o tipo igual a M111, especificação igual a E18 e o
modelo de construção igual a 921 no banco de dados Mentas.

Uma parte da responsabilidade de mapear o motor correspondente no outro banco
de dados é delegada ao usuário. As consultas intermediárias foram projetadas de
forma a resgatar do banco de dados posterior apenas os motores que se enquadrem
nas especificações fornecidas pelo usuário ao identificador do motor do banco de
dados corrente. Quando a operação normal não consegue recuperar nenhum motor
(que acontece com mais normalidade), disparamos a montagem das consultas in-
termediárias que procuram o motor não por todas as características informadas, e
sim por cada uma separadamente (consultas intermediárias para operação de other
matches). Os resultados recuperados por essas consultas, apesar de apresentar fa-
126

Monitor de Consistência
talmente o motor correspondente ao fornecido pelo usuário, vai requerer um maior
conhecimento deste.

Por exemplo, suponha que o usuário especificou o motor M111E18MMX no ban-
co de dados PSD e queira informações referentes a este motor no banco de dados
LKD. A consulta intermediária (operação normal) não conseguirá êxito, uma vez
que não existe no banco de dados LKD nenhum motor que preencha os requisitos
desta consulta (com tipo igual a M111 e Especificação igual a E18). Será neces-
sário então a criação das consultas intermediárias para operação de other matches.
A execução dessas consultas por sua vez recuperam 26 motores no banco de dados
LKD que possuem o tipo igual a M111 e nenhum motor que possue a Especifica-
ção igual a E18. Dentre os valores recuperados está o motor M111.921, que real-
mente corresponde no LKD ao motor que foi fornecido no PSD. Entretanto, o
usuário deve ter conhecimento dessa informação, ou então, escolher todos os mo-
tores apresentados, que nem sempre é uma boa opção.

A verificação de consistência é feita de forma a restringir o número de motores es-
pecificados através da imposição de algumas restrições. Um motor é dito corres-
pondente a outro, de acordo com a nossa verificação de consistência, quando este
apresenta as mesmas especificações, e ainda, possui os valores iguais aos atributos
dos pontos de entrada. Mas, usuários diferentes possuem também necessidades di-
ferentes quando buscam informações de dois bancos de dados distintos. Assim,
um atributo que é importantíssimo para um usuário, pode ser completamente indi-
ferente ou mesmo indesejável para outro.

Percebemos que não seria adequado impor ao usuário que para um motor de um
banco de dados corresponder a outro em um segundo banco de dados, todos os
pontos de entradas relativos a este motor devam ser iguais. Em vez disso, devemos
oferecer ao usuário a possibilidade de especificar por quais pontos de entrada ele
deseja que seja feita a verificação de consistência.

Foi pensando nessa possibilidade que implementamos a verificação de consistênc-
ia do MENTAS. O usuário, além de especificar se deseja que sua navegação ocorra
dentro dos padrões de consistência, pode também especificar quais pontos de en-
trada devem ser analisados. Ainda, oferecemos a possibilidade de escolha dos
pontos de entrada em relação aos pares de bancos de dados por onde pode ocorrer
a navegação. Dessa forma, se o usuário sabe que um determinado ponto de entrada
não merece confiança em um banco de dados ou simplesmente não lhe interessa,
este pode ser ignorado no momento da comparação por este usuário.

Os pontos de entrada que são analisados entre os bancos de dados durante a nave-
gação para a verificação de consistência só precisam ser definidos uma única vez
pelo usuário, os quais são salvos no banco de dados do sistema middleware, con-
juntamente com outras informações do usuário. No momento da inicialização do
sistema, essas informações são buscadas no banco de dados. De acordo com essas
127

Monitor de Consistência
opções, é que montamos a parte da consulta intermediária referente ao processo de
consistência.

A idéia básica para a verificação de consistência é comparar os pontos de entrada
referentes ao motor fornecido para o banco de dados corrente com os pontos de
entrada referentes ao motor correspondente no banco de dados posterior. Sempre
levando em consideração as opções escolhidas pelo usuário para quais pontos de
entrada devem ser considerados de acordo com o par de banco de dados no qual
está acontecendo a navegação.

Portanto, a partir do motor fornecido pelo usuário para o banco de dados corrente,
devemos recuperar os pontos de entrada desse motor, e a cada ocorrência de um
motor que possua mesma identificação (tipo, especificação e modelo de constru-
ção) no banco de dados posterior deve ser feita também a comparação dos pontos
de entrada.

IdentificadorMotorBDCorrente = IdentificadorMotorBDPosterior e
PEntradasIdentMotorBDCorrente = PEntradasIdentMotorBDPosterior

Montagem das Consultas Intermediárias

Para uma melhor visualização de como a consulta é alterada por este módulo,
apresentamos aqui a consulta sem conferência da consistência (produzida pelo na-
vegador) e, logo a seguir, a nova consulta produzida pelo Gerenciador de consis-
tência. Para diferenciar as partes acrescentadas na consulta modificada pelo
gerente de consistência, elas são escritas em itálico.

Operação Normal

• Consulta gerada pelo Navegador:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo' AND EntidadeBDPosterior.Spezifikation
<comparação2> 'Especificação' AND EntidadeBDPosterior.Baumuster <comparação3> 'modelo de con-
strução'

• Consulta modificada pelo Gerente de Consistência:

Consulta Intermediária 11:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
128

Monitor de Consistência
FROM EntidadeBDPosterior, EntidadeBDCorrente, EntidadePEntradaBDC1,..., EntidadePEntradaBDCn,
EntidadePEntradaBDP1,..., EntidadePEntradaBDPn
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo' AND EntidadeBDCorrente.Typ <comparação1>
'Tipo' AND
 EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação' AND EntidadeBDCorrente.Spezifikation
<comparação2> 'Especificação' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção' AND EntidadeBDCorrente.Bau-
muster <comparação3> 'modelo de construção' AND
EntidadePEntradaBDC1.PEntradaBDC1 = EntidadePEntradaBDP1.PEntradaBDP1 AND... AND
EntidadePEntradaBDCn.PEntradaBDPn = EntidadePEntradaBDPn.PEntradaBDSn

Onde:

EntidadeBdCorrente é o nome da entidade onde encontra-se o identificador
do motor no banco de dados corrente. Se o banco de dados posterior fizer uso
das tabelas de mapeamento (PSD e LKD), essa entidade será a tabela de
mapeamento ativa no momento da execução da consulta. Quando se trata do
banco de dados Mentas, é a própria entidade que contém o identificador do
motor.

EntidadePEntradaBDC1 é o nome da entidade onde encontra-se o primeiro
ponto de entrada para o banco de dados corrente (BDC) que será comparado
entre os bancos de dados na hora da recuperação do motor. Na hora da mon-
tagem dessa consulta é necessário saber as opções de consistência definidas
pelo usuário para o dado par de banco de dados envolvido na navegação.
Assim como a EntidadeBdCorrente, se o banco de dados posterior fizer uso
das tabelas de mapeamento (PSD e LKD), essa entidade é a tabela de mapea-
mento ativa no momento da execução da consulta. Quando se trata do banco
de dados Mentas, é a entidade que contém o primeiro ponto de entrada
definido para este banco de dados de acordo com as opções do usuário.

Assim como EntidadePEntradaBDC1, são adicionadas à consulta todas as demais
entidades que possuem pontos de entrada que devem ser analisados no momento
da navegação. Ou seja, EntidadePEntradaBDC2 é a entidade onde encontra-se o
segundo ponto de entrada marcado pelo usuário para ser usado no processo de
comparação entre os bancos de dados, e assim sucessivamente, até o último ponto
de entrada definido pelo usuário para o par de banco de dados onde está ocorrendo
a navegação. O mesmo ocorre com EntidadePEntradaBDP1 até EntidadePEntra-
daBDPn, sendo que neste caso trata-se da entidade do banco de dados posterior.

A presença na cláusula da condição dos atributos do motor para o banco de dados
corrente (EntidadeBDCorrente.Typ <comparação1> 'Tipo', EntidadeBDCorren-
te.Spezifikation <comparação2> 'Especificação', EntidadeBDCorrente.Baumus-
ter <comparação3> 'modelo de construção') é necessária, pois devem ser pegos
os pontos de entrada correspondentes a estes motores. Com relação ao PSD e
LKD, todos os pontos de entrada estão localizados na tabela de mapeamento, e
dessa forma (acrescentando a comparação ao identificador do motor no banco de
dados corrente), conseguimos fazer a comparação com os pontos de entrada do
129

Monitor de Consistência
motor fornecido. O mesmo acontece no caso do Mentas, que também possui pon-
tos de entrada localizados na mesma entidade (e conseqüentemente na mesma re-
lação) que o identificador do motor. Portanto, a presença destas comparações, está
diretamente associada à recuperação dos pontos de entrada para o motor fornecido
ao banco de dados corrente.

Para cada identificador de motor presente na consulta do usuário, é necessário re-
cuperar o identificador do banco de dados corrente. Assim, uma consulta que pos-
sua vários valores para o identificador do motor deve ser montada como mostrado
abaixo:

• Consulta gerada pelo Navegador:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo(1)' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação(1)' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção(1)' AND
EntidadeBDPosterior.Typ <comparação1> 'Tipo(2)' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação(2)' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção(2)' AND
... AND
EntidadeBDPosterior.Typ <comparação1> 'Tipo(n)' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação(n)' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção(n)'

• Consulta modificada pelo Gerente de Consistência:

Consulta Intermediária 12:

SELECT EntidadeBDPosterior.Typ, EntidadeBDPosterior.Spezifikation, EntidadeBDPosterior. Baumuster
FROM EntidadeBDPosterior, EntidadeBDCorrente, EntidadePEntradaBDC1,..., EntidadePEntradaBDCn,
EntidadePEntradaBDP1,..., EntidadePEntradaBDPn
WHERE EntidadeBDPosterior.Typ <comparação1> 'Tipo(1)' AND
EntidadeBDCorrente.Typ <comparação1> 'Tipo(1)' AND
EntidadeBDPosterior.Spezifikation <comparação2> 'Especificação(1)’ AND
EntidadeBDCorrente.Spezifikation <comparação2> 'Especificação(1)' AND
EntidadeBDPosterior.Baumuster <comparação3> 'modelo de construção(1)' AND
EntidadeBDCorrente.Baumuster <comparação3> 'modelo de construção(1)' AND
EntidadeBDPosterior.Typ <comparação4> 'Tipo(2)' AND
EntidadeBDCorrente.Typ <comparação4> 'Tipo(2)' AND
EntidadeBDPosterior.Spezifikation <comparação5> 'Especificação(2)' AND
EntidadeBDCorrente.Spezifikation <comparação5> 'Especificação(2)' AND
EntidadeBDPosterior.Baumuster <comparação6> 'modelo de construção(2)' AND
EntidadeBDCorrente.Baumuster <comparação6> 'modelo de construção(6)'
AND... AND
EntidadeBDPosterior.Typ <comparaçãox> 'Tipo(n)' AND
EntidadeBDCorrente.Typ <comparaçãox> 'Tipo(n)' AND
EntidadeBDPosterior.Spezifikation <comparação(x+1)> 'Especificação(n)’ AND
EntidadeBDCorrente.Spezifikation <comparação(x+1)> 'Especificação(n)' AND
EntidadeBDPosterior.Baumuster <comparação(x+2)> 'modelo de construção(n)' AND
EntidadeBDCorrente.Baumuster <comparação(x+2)> 'modelo de construção(n)' AND
EntidadePEntradaBDC1.PEntradaBDC1 = EntidadePEntradaBDP1.PEntradaBDP1
130

Monitor de Consistência
AND... AND
EntidadePEntradaBDCn.PEntradaBDPn = EntidadePEntradaBDPn.PEntradaBDSn

Operação de Other Matches

Se as consultas anteriores não retornarem resultado algum, damos ao usuário a op-
ção de prosseguir a navegação através da opção de other matches, sendo que da
mesma maneira, faremos a comparação dos pontos de entrada definidos entre os
bancos de dados envolvidos na navegação. Apresentaremos aqui, as consultas ge-
radas pelo navegador, e a seguir, a consulta alterada pelo gerente de consistência.
De uma forma geral, as consultas são modeladas da seguinte maneira:

Consulta Intermediária 13: Tipo

SELECT EntidadeBDPosterior.IdentificadorMotor
FROM EntidadeBDPosterior, EntidadeBDCorrente, EntidadePEntradaBDC1,..., EntidadePEntradaBDCn,
EntidadePEntradaBDS1,..., EntidadePEntradaBDSn
WHERE EntidadeBDPosterior.Typ <comparação> 'Tipo' AND
EntidadeBDCorrente.Typ <comparação> 'Tipo' AND
EntidadePEntradaBDC1.PEntradaBDC1 = EntidadePEntradaBDS1.PEntradaBDS1 AND
... AND
EntidadePEntradaBDCn.PEntradaBDSn = EntidadePEntradaBDSn.PEntradaBDSn

Consulta Intermediária 14: Especificação

SELECT EntidadeBDPosterior.IdentificadorMotor
FROM EntidadeBDPosterior, EntidadeBDCorrente, EntidadePEntradaBDC1,..., EntidadePEntradaBDCn,
EntidadePEntradaBDS1,..., EntidadePEntradaBDSn
WHERE EntidadeBDPosterior.Spezifikation <comparação> 'Especificação' AND
EntidadeBDCorrente.Spezifikation <comparação> 'Especificação’ AND
EntidadePEntradaBDC1.PEntradaBDC1 = EntidadePEntradaBDS1.PEntradaBDS1 AND
... AND
EntidadePEntradaBDCn.PEntradaBDSn = EntidadePEntradaBDSn.PEntradaBDSn

Consulta Intermediária 15: Modelo de Construção

SELECT EntidadeBDPosterior.IdentificadorMotor
FROM EntidadeBDPosterior, EntidadeBDCorrente, EntidadePEntradaBDC1,..., EntidadePEntradaBDCn,
EntidadePEntradaBDS1,..., EntidadePEntradaBDSn
WHERE EntidadeBDPosterior.Baumuster <comparação> 'modelo de construção' AND
EntidadeBDCorrente.Baumuster <comparação> 'modelo de construção' AND
EntidadePEntradaBDC1.PEntradaBDC1 = EntidadePEntradaBDS1.PEntradaBDS1 AND
... AND
EntidadePEntradaBDCn.PEntradaBDSn = EntidadePEntradaBDSn.PEntradaBDSn

Onde:

EntidadeBDPosterior.IdentificadorMotor, quando se tratar do LKD e PSD,
será representada pela tabela de mapeamento corrente para estes bancos de
131

Monitor de Consistência
dados, seguida do atributo que representa o identificador do motor
(ursprung). Para o Mentas, é a própria entidade que possui o identificador do
motor, e são recuperados os três atributos que em conjunto representam o
identificador (tipo, especificação e modelo de construção).

Da mesma forma que para as consultas normais, é preciso inserir na cláusula de
condição a recuperação do valores para o banco de dados corrente (Entidade-
BDCorrente.Typ <comparação> 'Tipo'), a fim de que sejam recuperados os pon-
tos de entrada relativos a essa condição.

6.7 Monitor de Consistência do Cliente - MCC

Uma das tarefas do MCC é formatar os dados fornecidos pelo usuário através da
GUI. Dessa forma, em um trabalho conjunto, o Monitor de Consistência do Clien-
te formata os dados de entrada, enquanto o Monitor de Consistência do Servidor
formata os dados das fontes remotas (seção 6.6). Abaixo podemos ver que o MCC
é composto de três módulos: Parser, Gerenciador de Entrada e Gerente de Nave-
gação (Figura 6.10).

Figura 6.10 Arquitetura do Monitor de Consistência do Cliente.

Monitor de Consistência - Cliente

Parser
Gerenciador
de Entrada

Gerente de
Navegação

6.7.1 Parser

Possui a mesma funcionalidade do parser presente no servidor, sendo que o cliente
não está envolvido com a criação das tabelas de mapeamento e sim com a forma-
ção dos dados de entrada dos usuários quando tratar-se do identificador do motor.
Quando o usuário deseja fazer a navegação entre os bancos de dados e especifica
um valor para o identificador do motor na sua consulta, a primeira atuação do mo-
nitor de consistência, caso ele esteja no PSD ou LKD, é decompor o valor de en-
trada. Caso o usuário esteja no BD Mentas e for navegar para o PSD ou LKD, não
132

Monitor de Consistência
será necessário a chamada ao parser uma vez que os valores de entrada já estão no
formato adequado para a realização da navegação.

Optamos por duplicar essa função no cliente para poupar uma comunicação entre
o cliente e o servidor. O parser do cliente não precisa fazer acesso aos bancos de
dados já que sua única função é formatar para o modelo padrão os dados de entrada
do usuário.

Se a GUI detectar o uso do identificador do motor como ponto de entrada, ela acio-
na o Monitor de Consistência do Cliente passando um ou mais valores deste atri-
buto que foram especificados na cláusula de condição. Com os resultados do
MCC, ou seja, com os motores especificados pelo usuário obedecendo o formato
tipo, especificação e modelo de construção, é montada uma consulta intermediária
para acessar as tabelas de mapeamento, ou para acessar o Mentas, dependendo de
como está ocorrendo a navegação.

6.7.2 Gerenciador de Entradas

Outra tarefa importante realizada pelo MCC é a formatação dos valores de entrada
informados pelos usuários ao sistema, de forma que seja totalmente transparente
para o usuário as diferenças de representações nos valores armazenados nos ban-
cos de dados. Essa tarefa é realizada pelo módulo Gerenciador de Entrada (Figura
6.10). No cliente são feitas as modificações necessárias à adequação dos valores
da consulta para o banco de dados corrente, independente de haver navegação ou
não. Como veremos posteriormente, ao contrário, o MCS é responsável pela for-
matação dos valores de acordo com o banco de dados para o qual está ocorrendo
a navegação, de modo a torná-la possível. Dessa forma, os trabalhos são comple-
mentados.

Para ilustrar a atuação do gerenciador de entradas, podemos imaginar que um usu-
ário do LKD, acostumado à notação da vírgula como caracter separador de casas
decimais, resolve consultar o banco de dados PSD, o qual possui outra notação.
Não devemos exigir do usuário que este tenha conhecimento de todas as diferen-
ças de notações existentes entre os bancos de dados. Por isso, cuidamos para que
essas diferenças sejam totalmente escondidas no momento da montagem da con-
sulta no MENTAS. Portanto, no nosso exemplo, caso o usuário especifique um va-
lor numa consulta ao banco de dados PSD utilizando a notação do LKD, este valor
será automaticamente mapeado para o usuário.

Para realizar esta operação, o monitor de consistência recebe todas as informações
necessárias tanto da GUI (nome do atributo e valor), como do Conector de Inter-
face que fornece informações sobre os meta-dados dos bancos de dados integra-
dos.
133

Monitor de Consistência
6.7.3 Gerente de Navegação

A terceira e última funcionalidade apresentada pelo MCC é a montagem das con-
sultas no caso da navegação sem a especificação explícita de valores na cláusula
da condição. Consultas que não possuem especificação na cláusula de condição
não são verificadas, já que neste caso, sempre haverá retorno de valores1. Dessa
forma, evitamos uma consulta do cliente ao servidor, poupando a comunicação.

Como já foi apresentado, nesse caso, o usuário é obrigado a especificar pelo menos
um ponto de entrada através do qual deseja realizar a navegação (através da janela
apresentada pela Figura 5.14). Daí, a montagem das consultas é feita de forma di-
nâmica, e para isso, a GUI passa todas as informações necessárias. Dentre estas
informações, encontram-se o banco de dados corrente, a entidade pela qual o usu-
ário está realizando a consulta, e os pontos de entrada definidos como ligação (es-
colhidos através da janela apresentada na Figura 5.16).

De uma forma geral, levando-se em consideração o banco de dados de onde está
partindo a navegação (corrente) e o banco de dados posterior, podemos considerar
que as consultas são montadas da seguinte forma2:

Consulta de Navegacao 3:

Cláusula de condição:
EntidadePEntradaBDCorrente.PEntradaBDCorrente = EntidadePEntradaBDCorrespondente.PEntrad-
aBDCorrespondente

Tabelas:
EntidadePEntradaBDCorrente

EntidadePEntradaBDCorrespondente

Onde:

EntidadePEntradaCorrente é o nome da entidade a qual pertence o ponto de
entrada escolhido para que ocorra a navegação.

PEntradaBDCorrente é o nome do ponto de entrada especificado pelo
usuário.

1. Consultas que possuem apenas cláusula de projeção sempre retornam valores se a(s) tabela(s)
envolvida(s) contiver(em) valores. No MENTAS, como todas as tabelas já estão populadas
temos a certeza que algum resultado vai ser retornado por essas consultas.

2. Apresentamos somente a parte da consulta gerada pelo gerente de navegação, a qual é
acrescida à cláusula de condição da consulta do usuário, originando a consulta final após a
navegação.
134

Monitor de Consistência
EntidadePEntradaCorrespondente é o nome da entidade a qual pertence o
ponto de entrada correspondente ao escolhido pelo usuário no banco de
dados corrente.

PEntradaBDCorrespondente é o nome do ponto de entrada correspondente
no banco de dados posterior ao especificado pelo usuário no banco de dados
corrente.

As informações sobre o banco de dados corrente (EntidadePEntradaCorrente,
PEntradaBDCorrente) são informadas ao MCC através da GUI e os correspon-
dentes no banco de dados posterior (EntidadePEntradaCorrespondente e PEntra-
daBDCorrespondente) são inferidos utilizando-se as informações contidas na
Tabela 6.3. Para cada par enviado pela GUI sobre o banco de dados corrente (En-
tidadePEntradaCorrente, PEntradaBDCorrente) é criada (e retornada à GUI) a
parte da consulta como mostrado pela Consulta de Navegação 3. Lembramos aqui
que o usuário pode escolher mais de um ponto de ligação entre os bancos de dados,
caso a entidade escolhida para efetuar a navegação os contenha, sendo o tratamen-
to uniforme para todos os casos. Além da parte da consulta que será acrescentada
na cláusula de condição do usuário, são devolvidos também para a GUI os nomes
das tabelas envolvidas.

Para ilustrar como é utilizada a Consulta de Navegação 3, considere o seguinte
exemplo: Um usuário monta uma consulta ao banco de dados PSD apenas com
cláusula de projeção, não tendo portanto definido nenhum ponto de entrada para
efetuar a navegação. Considere ainda que este usuário definiu a projeção sobre a
entidade PSD_Zylinder a qual apresenta dois pontos de entrada: Durchmesser e
Hubvolumen. Considere ainda que a navegação é feita através desta mesma enti-
dade e que o usuário deseja que ocorra através dos dois pontos. Para fechar o am-
biente de navegação, suponha que o usuário escolheu como banco de dados
posterior o banco de dados LKD. Assim, tendo como consulta inicial a seguinte,

SELECT PSD_Zylinder.Atributo1, PSD_Zylinder. Atributo2, ..., PSD_Zylinder.AtributoN
FROM PSD_Zylinder

Com a informação que o usuário escolheu um ponto de entrada da entidade para
efetuar a navegação passadas ao monitor de consistência pela GUI, este monta a
seguinte consulta de navegação:

Cláusula de condição:
PSD_Zylinder.Durchmesser = LKD_Motor.Bohrung

Tabelas:
PSD_Zylinder
LKD_Motor
135

Monitor de Consistência
Esta parte da consulta é retornada à GUI que adiciona as informações à consulta
corrente do usuário, transformando-a na seguinte consulta (as modificações estão
em itálico):

SELECT PSD_Zylinder.Atributo1, PSD_Zylinder. Atributo2, ..., PSD_Zylinder.AtributoN
FROM PSD_Zylinder, LKD_Motor
WHERE PSD_Zylinder.Durchmesser = LKD_Motor.Bohrung

No caso do identificador do motor estar envolvido na navegação, ainda é acrescido
à consulta apresentada anteriormente o apontador para as fontes de dados origi-
nais. O atributo que serve de apontador entre as tabelas de mapeamento e as fontes
de dados originais deve fazer parte da consulta final após a navegação para que
possam ser recuperadas outras informações da tupla do motor especificado pelo
usuário. Ainda, devido os vários tipos de representações dos bancos de dados para
o identificador do motor, o tratamento dado à construção das consultas de navega-
ção pelo monitor de consistência é diferenciado, como vemos a seguir:

Consulta de Navegacao 4:

PSD ou LKD => Mentas / Mentas => PSD ou LKD

Cláusula de condição:
TabelaMapeamentoCorrente.AtributoCorrente = EntidadeCorrespondente.AtributoCorrespondente
AND
TabelaMapeamanetoCorrente.Ponteiro = EntidadeFonte.AtributoFonteCorrespondente

Tabelas:
TabelaMapeamentoCorrente
Entidade Fonte
EntidadeCorrespondente

Consulta de Navegacao 5:

LKD => PSD ou PSD => LKD

Cláusula de condição:
TabelaMapeamentoCorrente.AtributoCorrente = TabelaMapeamentoCorrenteCorresp.AtributoCorre-
spondente
AND
TabelaMapeamentoCorrente.Ponteiro = EntidadeFonte.AtributoFonteCorrespondente
AND
TabelaMapeamentoCorrenteCorresp.Ponteiro = EntidadeFonteCorresp.AtributoFonteCorrespondente

Tabelas:
TabelaMapeamentoCorrente
TabelaMapeamentoCorrenteCorresp
EntidadeFonte
136

Monitor de Consistência
EntidadeFonteCorresp

Para deixar mais claro, daremos um exemplo de uma navegação entre o LKD e
PSD, onde a entidade escolhida para efetuar a navegação contém o identificador
do motor. Suponha ainda que o usuário no momento da navegação marcou os três
pontos de entrada do identificador do motor para realizar a navegação (tipo, espe-
cificação e baumuster). Então, partindo da consulta abaixo:

SELECT PSD_Motor.Atributo1, PSD_Motor. Atributo2, ..., PSD_Motor.AtributoN
FROM PSD_Motor

o monitor de consistência cria a seguinte consulta de navegação ao receber a in-
formação da GUI que o usuário marcou os atributo Typ, Spezifikation e Baumuster
para efetuar a navegação:

Cláusula de condição:
PSDMapping.Typ = LKDMapping.Typ AND
PSDMapping.Spezifikation = LKDMapping.Spezifikation AND
PSDMapping.Baumuster =LKDMapping.Baumuster AND
PSDMapping.Ursprung = PSD_Motor.Typ AND
LKDMapping.Ursprung = LKD_Motor.Typ

Tabelas:
PSDMapping
LKDMapping
PSD_Motor
LKD_Motor

Ao retornar a cláusula de condição e as tabelas envolvidas para a GUI, esta as adi-
ciona à consulta inicial, produzindo a seguinte consulta após a navegação:

SELECT PSD_Motor.Atributo1, PSD_Motor. Atributo2, ..., PSD_Motor.AtributoN
FROM PSD_Motor, LKD_Motor, PSDMapping, LKDMapping
WHERE PSDMapping.typ = LKDMapping.Typ AND
PSDMapping.Spezifikation = LKDMapping.Spezifikation AND
PSDMapping.Baumuster =LKDMapping.Baumuster AND
PSDMapping.Ursprung = PSD_Motor.Typ AND
LKDMapping.Ursprung = LKD_Motor.Typ1

1. Note que quando o PSD e o LKD estão envolvidos na navegação é necessário que os ponteiros
das tabelas de mapeamento sejam colocados para ambos, como mostrado pela última consulta.
137

Monitor de Consistência
6.8 Um exemplo de navegação no MENTAS

Todos os esforços do Monitor de Consistência na fase de integração dos bancos de
dados do projeto MENTAS são no sentido de possibilitar que o usuário amplie o
universo da sua consulta SQL de modo que esta atinja os outros bancos de dados.
Dessa forma, apresentaremos aqui um exemplo do comportamento do monitor de
consistência numa suposta navegação entre os três bancos de dados integrados.

De acordo com a Figura 6.9, podemos ver que existem duas formas básicas para
realizar uma navegação no MENTAS. Com a presença de uma cláusula de condi-
ção, ou sem a presença desta. Ainda, na primeira alternativa, podemos subdividir
de acordo com a presença de pontos de entrada ou não.

Nesta seção, faremos a simulação de uma navegação para os dois casos apresen-
tados: Uma navegação sem cláusula de condição e uma navegação com a presença
de pontos de entrada na condição da consulta. Não apresentaremos aqui, o com-
portamento da interface, mas sim, a interação entre os módulos que compõem o
Monitor de Consistência.

Lembramos que é possível definir uma consulta com a presença de vários valores
para o mesmo ponto de entrada. Aqui, no entanto, será apresentado apenas com
um valor para o ponto de entrada. Ainda, optamos por um exemplo onde a condi-
ção é composta por dois pontos de entrada: o identificador do motor e outro ponto
de entrada que é tratado pelo gerente de pontos de entrada. Dessa forma, apresen-
taremos a funcionalidade de todos os componentes do monitor de consistência.

O tratamento também é diferenciado, de acordo com os pares de bancos de dados
que são escolhidos pelo usuário para realizar a navegação. Considere então, que a
navegação no nosso exemplo começa no banco de dados PSD, seguindo para o
Mentas e por último o LKD. Considere que a consulta inicial a seguir seja execu-
tada com sucesso pelo banco de dados e que retorne alguns resultados, possibili-
tando ao usuário seguir adiante na navegação. As transformações dos pontos de
entrada são feitas na maioria das vezes de forma transparente para o usuário. A
única exceção é o identificador de motor. Neste caso, parte do mapeamento é feito
pelo usuário. Entretanto, para o identificador do motor é dada a opção de fazer a
checagem da consistência entre os demais pontos de entrada para um determinado
motor (seção 6.8.2).

Ao contrário disto, tentamos restringir ao máximo o conjunto de possíveis resul-
tados, de forma que o usuário consiga identificar o motor correspondente de forma
rápida e segura. Quando não conseguimos encontrar motores que preenchem as
características do que foi informado pelo usuário, é proposto a este analisar os mo-
tores que preenchem os requisitos dos componentes do identificador do motor se-
paradamente (operação de other matches). Veremos como cada um desses
aspectos é tratado pelo Monitor de Consistência.
138

Monitor de Consistência
No nosso exemplo, nenhum atributo é incluído na projeção da consulta nos bancos
de dados que seguem o inicial. A razão para isto é apenas simplificar a consulta,
já que este tipo de inserção não traz mudanças para a atuação do monitor de con-
sistência, não sendo portanto, útil no nosso exemplo, o qual objetiva apenas mos-
trar a atuação deste durante uma navegação. Com a intenção de simplificar
também, supomos que o usuário não adiciona nenhum atributo na cláusula de con-
dição antes de iniciar a segunda navegação (entre o Mentas e o LKD). Como a pro-
jeção, este tipo de inserção não traz mudanças ao monitor de consistência, já que
são completamente ignorados pelo mesmo.

Suponha que o usuário começa a navegação partindo apenas de um ponto de en-
trada, Typ, no PSD, sendo que ao chegar no Mentas, um novo ponto de entrada é
incluído na entidade Motor (Bohrung), seguindo a navegação por dois pontos de
entradas tratados por módulos distintos do Monitor de Consistência.

Utilizamos a consulta a seguir como ponto de partida para o nosso exemplo: Pala-
vras em negrito simbolizam os comandos SQL. Os atributos são escritos seguindo
a notação "entidade.atributo".

SELECT PSD_Motor.Typ
FROM PSD_Motor
WHERE PSD_Motor.Typ = 'M111E18MMX'

6.8.1 Sem Checagem de Consistência

Partimos do princípio que a consulta acima já foi formulada, e que o usuário esco-
lheu o banco de dados Mentas como o banco de dados posterior a ser visitado pela
navegação.

PSD - Mentas

Como existe um valor para o identificador do motor na consulta, é necessário a in-
tervenção do monitor de consistência localizado no cliente. Dessa forma, a GUI
faz uma chamada ao monitor de consistência do cliente, passando como informa-
ção o valor fornecido ao ponto de entrada na consulta acima, e este retorna o valor
decomposto no formato adequado: tipo, especificação e modelo de construção. É
montado pelo navegador uma consulta intermediária que procura no banco de da-
dos Mentas o motor correspondente ao fornecido pelo usuário no PSD, utilizando
o resultado do parser, que mostramos a seguir:
139

Monitor de Consistência
Tabela 6.11 Atuação do Parser.

Parser
Motor Tipo Especificação Arte de Construção Desconhecido
M111E18MMX M111 E18 MMX

Utilizando a definição da Consulta Intermediária 1, obtemos a seguinte consulta
intermediária:

SELECT Motor.Typ, Motor.Spezifikation, Motor. Baumuster
FROM Motor
WHERE Motor.Typ = 'M111' AND Motor.Spezifikation = 'E18'

Como podemos notar, a seqüência final do motor especificado foi totalmente ig-
norada, já que foi retornado no campo "desconhecido" pelo parser. O campo des-
conhecido só é utilizado pelo monitor de consistência para montar as consultas
intermediárias, no caso de não ser retornado nada em nenhum dos outros campos.
Por exemplo, se o usuário informasse o motor "M11", o parser do cliente retornaria
que essa seqüência só encaixa-se no campo desconhecido.

A seguir é feita uma chamada ao Monitor de Consistência - servidor, mais preci-
samente ao gerente de acesso ao banco de dados - passando então a consulta inter-
mediária, a qual seleciona no banco de dados Mentas o motor com o tipo igual a
M111, a especificação igual a E18 e o baumuster igual a 921. Este é o único motor
no banco de dados Mentas que satisfaz à cláusula de condição da consulta inter-
mediária. Note porém que o motor possui a seqüência 921 que corresponde a mo-
delo de construção, apesar do motor especificado ao banco de dados PSD não ter
essa seqüência. Retornamos então o motor encontrado ao cliente e a GUI o apre-
senta ao usuário, através de uma janela de escolha. Neste exemplo, apenas um mo-
tor foi selecionado, mas em muitos casos, a lista de candidatos chega a ter dezenas
de motores diferentes. Como é sabido, os bancos de dados possuem representa-
ções diferentes, e o motor M111E18921 é o que mais assemelha-se ao motor pro-
curado pelo usuário, M111E18MMX. Caso concorde que os motores são
realmente idênticos, selecionando o motor na janela de escolha na qual é apresen-
tado, a navegação para o Mentas é terminada com a alteração da consulta SQL ini-
cial efetuada pela GUI, que agora apresenta-se da seguinte forma:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor
WHERE PSD_Motor.Typ = 'M111E18MMX' AND Motor.Typ = 'M111' AND Motor.Spezifikation = 'E18'
AND Motor.Baumuster = '921'
140

Monitor de Consistência
O usuário portanto já se encontra no banco de dados MENTAS. Considere que um
novo ponto de entrada é adicionado - através da GUI - a entidade Motor, sobre a
qual irá ocorrer a navegação1. O resultado pode ser visto na consulta abaixo:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor
WHERE (PSD_Motor.Typ = 'M111E18MMX' AND Motor.Typ = 'M111' AND Motor.Spezifikation = 'E18'
AND Motor.Baumuster = '921') AND (Motor.Bohrung > 11.5 OR Motor.Bohrung < 110.0)

Bem, como o Mentas já possui os dados no formato adequado, não é necessário
que a GUI chame o Monitor de Consistência do Cliente. Como podemos notar, te-
mos dois pontos de entrada tratados por dois módulos diferentes no Monitor de
Consistência. A GUI separa os pontos de entrada e efetua uma chamada a cada um
dos módulos passando as informações necessárias.

Mentas - LKD

Como já foram visitados o PSD e o Mentas, o único banco de dados possível para
expandir os limites da consulta é o LKD. No caso do identificador do motor, será
montada uma nova consulta intermediária que acessará a tabela de mapeamento
do LKD para procurar os motores que preenchem os requisitos do motor especifi-
cado no Mentas, ou seja, os motores que possuam o tipo igual a M111, a especifi-
cação igual a E18 e o baumuster igual a 921. De acordo com a Consulta
Intermediária 12, temos:

SELECT TabMapCorrenteLKD.Ursprung
FROM TabMapCorrenteLKD
WHERE TabMapCorrenteLKD.Typ = 'M111' AND TabMapCorrenteLKD.Spezifikation = 'E18' AND Tab-
MapCorrenteLKD.Baumuster = '921'

Como podemos notar, a consulta acessa as tabelas de mapeamento, e como tal, an-
tes de executá-la no servidor de banco de dados, esta é passada pelo atualizador de
consultas para que o nome da tabela de mapeamento corrente seja atualizada. As-
sim, antes de executar, todas as ocorrências são transformadas para a tabela de ma-
peamento corrente do LKD. Considere que o nome da tabela corrente para o LKD
seja Mapping_Motor_LKD1, sendo a consulta alterada para:

SELECT Mapping_Motor_LKD1.Ursprung
FROM Mapping_Motor_LKD1
WHERE Mapping_Motor_LKD1.Typ = 'M111' AND Mapping_Motor_LKD1.Spezifikation = 'E18' AND
Mapping_Motor_LKD1.Baumuster = '921'

1. Note que se o ponto de entrada adicionado, pertencesse a outra entidade que não fosse Motor
(a entidade que irá efetuar a navegação) não era preciso considerá-lo.

2. Note que no PSD e LKD o Typ, Spezifikation e Baumuster do Mentas correspondem à
Ursprung.
141

Monitor de Consistência
Mas, não existe nenhum motor no LKD que satisfaça à consulta acima. O gerente
de acesso retorna então essa informação à GUI que a reporta ao usuário. Entretan-
to, é dada ao usuário a possibilidade de verificar outros motores que poderão vir a
ser o especificado, já que cada banco de dados possui uma representação própria.
Caso o usuário deseje verificar os outros motores (other matches), três novas con-
sultas intermediárias são criadas, onde iremos procurar por cada atributo que com-
põe o motor separadamente. De acordo com Consulta Intermediária 5, Consulta
Intermediária 6 e Consulta Intermediária 7, temos as seguintes consultas respecti-
vamente:

SELECT Mapping_Motor_LKD1.Ursprung
FROM Mapping_Motor_LKD1
WHERE Mapping_Motor_LKD1.Typ = 'M111'

SELECT Mapping_Motor_LKD1.Ursprung
FROM Mapping_Motor_LKD1
WHERE Mapping_Motor_LKD1.Spezifikation = 'E18'

SELECT Mapping_Motor_LKD1.Ursprung
FROM Mapping_Motor_LKD1
WHERE Mapping_Motor_LKD1.Baumuster = '921'

O gerente de Acesso ao Banco de dados retorna para a GUI um vetor com os re-
sultados de cada consulta acima e esta reporta ao usuário. A GUI dá ao usuário a
possibilidade de visualizar os resultados -motores- de cada uma das consultas, de
modo que este escolha o motor correspondente ao especificado. Para as consultas
específicas apresentadas acima, são retornados ao usuário 26 motores que pos-
suem o tipo igual a M111, nenhum motor para a especificação igual a E18 e 4 mo-
tores que possuem a modelo de construção igual a 921. Dentro dessa lista de
possibilidades, o usuário pode escolher o motor (ou os motores) correspondentes.

Os motores escolhidos são adicionados pela GUI à consulta original, e damos iníc-
io à segunda etapa da navegação através do segundo ponto de entrada especifica-
do. Outra chamada ao Monitor de Consistência é feita, dessa vez para tratar o
atributo Bohrung. O que deve ser feito agora é o mapeamento do nome do atributo
e valor especificado pelo usuário aos correspondentes para o banco de dados pos-
terior. Assim, transformamos o valor 11.5 para '11,5' já que no LKD o atributo cor-
respondente é um CHAR e que o separador de casas decimais é uma vírgula. Da
mesma forma, transformamos o valor 110.0 para '110,0'. A seguir, mapeamos a en-
tidade e o atributo Motor e Durchmesser, para os correspondentes no LKD, ou se-
ja, LKD_Motor e Bohrung respectivamente.

Terminado o trabalho, o gerenciador de pontos de entrada retorna para a GUI a en-
tidade, o atributo, e os valores já mapeados, os quais são utilizados para completar
a consulta do usuário. O LKD passa a ser então o novo banco de dados corrente e
acaba a navegação. Para a consulta abaixo, supomos que o usuário escolheu ape-
142

Monitor de Consistência
nas dois motores (M111.921 e M111.920) dentre os apresentados. Dessa forma, o
usuário recebe a seguinte consulta:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor, LKD_Motor
WHERE (PSD_Motor.Typ = 'M111E18MMX' AND Motor.Typ = 'M111' AND
Motor.Spezifikation = 'E18' AND Motor.Baumuster = '921') AND
(Motor.Bohrung > 11.5 OR Motor.Bohrung < 110.0) AND
(LKD_Motor.Typ = 'M111.921' OR LKD_Motor.Typ = 'M111.921') AND
(LKD_Motor. Bohrung > '11,5' OR LKD_Motor.Bohrung < '110,0')

6.8.2 Com Checagem de Consistência

Aqui apresentaremos o mesmo exemplo anterior, só que levando em consideração
que o usuário deseja que ocorra a navegação dentro dos critérios definidos para a
manutenção da consistência entre os valores do identificador do motor nos bancos
de dados. Para não tornar as explicações repetitivas, apenas as diferenças serão le-
vadas em consideração nesta seção.

No quadro abaixo, podemos ver como será feita a comparação entre os bancos de
dados no momento da navegação pelo identificador do motor. Estes pontos de en-
trada são definidos pelo usuário através da janela apresentada pela Figura 5.16:

Tabela 6.12 Pontos de Entrada para Checagem de Consistência
Mentas PSD LKD Mentas PSD LKD

Durchmesser Sim Não Sim
Hubvolumen Não Sim Sim

Ventil_DM_Aussen_1
Ein_Auslass_Kanal

Não Não Não

Pleuellaenge Sim Sim Sim
Hub Não Não Não

Max_Ventil_Hub
Ein_Auslass_Kanal

Não Não Não

.

Assim, para o par Mentas - PSD, devem ser levados em consideração o Durchmes-
ser e o PleuelLaenge. Para o par LKD - Mentas, apenas os atributos HubVolumen
e PleuelLaenge são considerados. Com relação ao PSD e LKD são analisados o
Durchmesser, o HubVolumen e PleuelLaenge.

PSD - Mentas

Do mesmo modo que a consulta sem verificação de consistência, também faz-se
necessário a chamada ao parser do cliente, de forma que o valor é decomposto em
tipo, especificação e modelo de construção. É montada pelo navegador uma con-
143

Monitor de Consistência
sulta intermediária que procura no banco de dados Mentas o motor correspondente
ao fornecido pelo usuário no PSD, sendo que desta vez, é necessário acrescentar a
consulta os pontos de entrada que são comparados entre os bancos de dados para
garantia da consistência entre os motores dos dois bancos de dados envolvidos.

Utilizando a definição da Consulta Intermediária 11, obtemos a seguinte consulta
intermediária:

SELECT Motor.Typ, Motor.Spezifikation, Motor. Baumuster
FROM Motor, psdMapping, Pleuel
WHERE Motor.Typ = 'M111' AND psdMapping.Typ = ’M111’
AND Motor.Spezifikation = 'E18' AND psdMapping.Spezifikation = ’E18’
AND Motor.Bohrung = psdMapping.Bohrung
AND Pleuel.Laenge = psdMapping.PleuelLaenge

Através desta consulta, são recuperados os motores que além de possuírem a mes-
ma identificação (tipo e especificação), ainda possuam o Bohrung e o PleuelLaen-
ge iguais. Quanto maior for o número de pontos de entrada escolhidos pelo usuário
para a comparação entre os bancos de dados, maior será a segurança de que o mo-
tor apresentado corresponde realmente ao motor informado no banco de dados
corrente.

Como no exemplo sem verificação de consistência, apenas o motor com tipo igual
a M111, especificação igual a E18 e modelo de construção igual a 921 é recupera-
do do banco de dados Mentas. Isso significa que este motor possui o Bohrung e o
PleuelLaenge também correspondentes. Considerando que este motor é escolhido
pelo usuário, é originada a consulta no final desta navegação:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor
WHERE PSD_Motor.Typ = 'M111E18MMX' AND Motor.Typ = 'M111' AND Motor.Spezifikation = 'E18'
AND Motor.Baumuster = '921'

Como podemos notar, nenhuma modificação na consulta apresentada ao usuário é
feita. As mudanças realizadas são apenas nas consultas intermediárias.

Mentas - LKD

Agora, já é possível navegar para o banco de dados LKD. Como no exemplo an-
terior, adicionamos à consulta um novo ponto de entrada à entidade Motor, sobre
a qual irá ocorrer a navegação. O resultado pode ser visto na consulta abaixo:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor
WHERE PSD_Motor.Typ = 'M111E18MMX' AND (Motor.Typ = 'M111' AND
Motor.Spezifikation = 'E18' AND Motor.Baumuster = '921') AND
(Motor.Bohrung > 11.5 OR Motor.Bohrung < 110.0)
144

Monitor de Consistência
No caso do identificador do motor, é montada uma nova consulta intermediária
que acessa a tabela de mapeamento do LKD para procurar os motores que podem
preencher os requisitos do motor especificado no Mentas, ou seja, os motores que
possuam o tipo igual a M111, a especificação igual a E18 e o baumuster igual a
921. Além disso, é preciso que possuam o HubVolumen e o PleuelLaenge iguais.
De acordo com a Consulta Intermediária 111, temos:

SELECT TabMapCorrenteLKD.Ursprung
FROM TabMapCorrenteLKD,Motor, Pleuel
WHERE TabMapCorrenteLKD.Typ = 'M111' AND Motor.Typ = ’M111’ AND
TabMapCorrenteLKD.Spezifikation = 'E18' AND Motor.Spezifikation = ’E18’ AND
TabMapCorrenteLKD.Baumuster = '921' AND Motor.Baumuster = ’921’ AND
Motor.ZylinderHubvolumen =TabMapCorrenteLKD.Hubvolumen AND
Pleuel.Laenge =TabMapCorrenteLKD.PleuelLaenge

Antes de enviar a consulta acima para execução no servidor de banco de dados,
esta é passada pelo atualizador de consultas para que o nome da tabela de mapea-
mento corrente seja atualizado. Assim, antes de executar, todas as ocorrências são
transformadas para a tabela de mapeamento corrente do LKD. Supondo que a ta-
bela de mapeamento ativa para o banco de dados LKD é Mapping_Motor_LKD1,
temos:

SELECT Mapping_Motor_LKD1.Ursprung
FROM Mapping_Motor_LKD1,Motor, Pleuel
WHERE Mapping_Motor_LKD1.Typ = 'M111' AND Motor.Typ = ’M111’ AND
Mapping_Motor_LKD1.Spezifikation = 'E18' AND Motor.Spezifikation = ’E18’ AND
Mapping_Motor_LKD1.Baumuster = '921' AND Motor.Baumuster = ’921’ AND
Motor.ZylinderHubvolumen =Mapping_Motor_LKD1.Hubvolumen AND
Pleuel.Laenge =Mapping_Motor_LKD1.PleuelLaenge

Como no exemplo anterior, não existe nenhum motor no LKD que satisfaça à con-
sulta acima. O gerente de acesso retorna então essa informação à GUI que a repor-
ta ao usuário. Se o usuário optar por realizar a navegação através da opção de other
matches, três novas consultas intermediárias são criadas, onde iremos procurar por
cada atributo que compõe o motor separadamente. Mais uma vez de acordo com
Consulta Intermediária 13, Consulta Intermediária 14 e Consulta Intermediária 15,
temos as seguintes consultas:

SELECT TabMapCorrenteLKD.Ursprung
FROM TabMapCorrenteLKD, Motor, Pleuel
WHERE TabMapCorrenteLKD.Typ = 'M111' AND Motor.Typ = ’M111’AND
Motor.ZylinderHubvolumen =TabMapCorrenteLKD.Hubvolumen AND
Pleuel.Laenge =TabMapCorrenteLKD.PleuelLaenge

SELECT TabMapCorrenteLKD.Ursprung
FROM TabMapCorrenteLKD, Motor, Pleuel
WHERE TabMapCorrenteLKD.Spezifikation = 'E18' AND Motor.Spezifikation = ’E18’ AND
Motor.ZylinderHubvolumen =TabMapCorrenteLKD.Hubvolumen AND
Pleuel.Laenge =TabMapCorrenteLKD.PleuelLaenge

1. Mais uma vez note que o typ, spezifikation e baumuster da projeção foi trocado pela ursprung.
145

Monitor de Consistência
SELECT TabMapCorrenteLKD.Ursprung
FROM TabMapCorrenteLKD
WHERE TabMapCorrenteLKD.Baumuster = '921' AND Motor.Baumuster = ’921’ AND
Motor.ZylinderHubvolumen =TabMapCorrenteLKD.Hubvolumen AND
Pleuel.Laenge =TabMapCorrenteLKD.PleuelLaenge

Bem diferente do resultado retornando anteriormente, quando estas mesmas con-
sultas foram montadas sem a comparação dos pontos de entrada, agora temos um
conjunto reduzido de motores que são apresentados ao usuário. Desta vez, foram
descartados os motores que apesar de ter o mesmo tipo (ou especificação, ou mes-
mo modelo de construção), não possuem os pontos de entrada com valores iguais.
Dessa forma, é retirada do usuário a responsabilidade de conhecer a semântica do
identificador do motor nos bancos de dados. Desta vez, apenas dois (2) motores
são retornados para a consulta através do tipo, e um (1) motor é retornado para a
consulta através da modelo de construção. Dentro dessa lista de possibilidades, o
usuário pode escolher o motor (ou os motores) correspondente (s), com uma pos-
sibilidade muito maior de acerto.

As diferenças entre a navegação, com e sem checagem de consistência, terminam
aqui. O próximo ponto de entrada é mapeado da mesma maneira que no exemplo
anterior. Assim, o LKD passa a ser então o novo banco de dados corrente e acaba
a navegação. Para a consulta abaixo, supomos que o usuário escolheu apenas um
motor (M111.921) dentre os apresentados. A consulta final é apresentada ao usu-
ário da seguinte forma:

SELECT PSD_Motor.Typ
FROM PSD_Motor, Motor, LKD_Motor
WHERE PSD_Motor.Typ = 'M111E18MMX' AND
Motor.Typ = 'M111' AND Motor.Spezifikation = 'E18' AND
Motor.Baumuster = '921' AND (Motor.Bohrung > 11.5 OR
Motor.Bohrung < 110.0) AND (LKD_Motor.Typ = 'M111.921') AND
(LKD_Motor. Bohrung > '11,5' OR LKD_Motor.Bohrung < '110,0')

6.9 Consistência X Performance

A propriedade de consistência é uma das mais desejadas em um sistema. Mas tam-
bém é uma das mais difíceis de ser garantida. Mas, o que vem a ser consistência?
O termo é tão genérico que existem várias definições de consistência de acordo
com a comunidade científica interessada [Cho96]. Apesar da consistência ser
umas das propriedades mais importantes em um sistema de banco de dados, ela
compromete outra propriedade muito importante no sistema, a performance. Con-
sistência e performance são inversamente proporcionais. É preciso definir até
onde cada uma dessas propriedades é importante para o sistema.

No Mentas, não é diferente. A performance do sistema cai quando o usuário espe-
cifica que a navegação deve ser feita dentro das especificações de consistência. O
usuário recebe informações mais seguras mas com tempo de resposta mais lento.
146

Monitor de Consistência
Mas o MENTAS busca além de garantir a consistência das informações acessadas
em banco de dados heterogêneos também garantir a performance do sistema. Por-
tanto, no momento de definir as técnicas de consistência, procuramos sempre a
melhor resolução também com relação à performance. Como resultado, MENTAS
é capaz de acessar os bancos de dados heterogêneos com uma performance exem-
plar.

Existem algumas técnicas do monitor de consistência que são a chave para que a
navegação entre os bancos de dados ocorra com uma excelente performance. A
primeira delas são as tabelas de mapeamento. Com as tabelas de mapeamento, re-
solvemos vários problemas referentes à navegação, dentre os quais podemos citar:

• a possibilidade da comparação dos atributos que identificam o motor entre os
banco de dados integrados.

• aumento na performance da navegação, quando o usuário requisita que esta
seja feita dentro da checagem de consistência (seção 6.9).

Além disso, o caso de uma navegação onde a verificação de consistência é requi-
sitada mostrou-se muito ineficiente, caso todos os pontos de entrada fossem bus-
cados para comparação nas fontes de dados originais. O tempo de espera por parte
do usuário seria enorme, ultrapassando 15 minutos para a realização de uma nave-
gação simples. Armazenando esses atributos nas tabelas de mapeamento, conse-
guimos diminuir o tempo consideravelmente, não chegando a mais de um minuto
(no pior dos casos) para que a navegação seja concluída.

Outra vantagem das tabelas de mapeamento é que, como foi dito, elas são arma-
zenadas no banco de dados do sistema middleware. Com isso não existe quase o
acesso ao banco de dados remoto no momento da navegação (apenas para executar
a consulta corrente do usuário e com isso, habilitar ou não a navegação), já que
todas as operações podem ser feitas a nível local.

Mas, em algum momento deve ser feito o acesso aos bancos de dados remotos para
obter as informações dos pontos de entrada. Isso é feito no momento em que é re-
quisitado a geração de uma nova tabela de mapeamento. O caso mais crítico é ve-
rificado no banco de dados PSD, que possui atributos em várias entidades
distintas. Devido a natureza da distribuição dos pontos de entrada neste banco de
dados, a consulta utilizada para recuperar esses valores no momento da criação da
tabela de mapeamento, ultrapassava facilmente o tempo de 15 minutos para reali-
zar a execução.

Para resolver este problema, quebramos a consulta original em subconsultas que
são enviadas ao servidor de banco de dados e os resultados são armazenamos tem-
porariamente em tabelas no banco de dados do sistema middleware. Por último,
fazemos um join dessas tabelas, para finalmente armazenar os valores nas tabelas
de mapeamento. Com esse procedimento, conseguimos que o tempo de geração
147

Monitor de Consistência
das tabelas de mapeamento não passe dos 40 segundos. Apesar de ainda ser um
tempo de espera longo para o usuário, devemos levar em consideração que esta
não é uma atividade freqüente realizada pelo usuário, ao passo que a navegação é
a base da integração dos bancos de dados do MENTAS, e por isso, é uma atividade
freqüente no sistema.

Um segundo tópico de grande importância para a garantia da performance é a nos-
sa técnica de verificação de consistência quando trata-se do ponto de entrada que
identifica o motor. Poderíamos apenas ter definido que para um identificador de
motor ser considerado semelhante a outro, todos os pontos de entrada deveriam ser
iguais. Mas, mais uma vez, pensando na performance decidimos deixar a critério
do usuário definir quais são os pontos de entrada importantes para serem compa-
rados no momento da navegação. Isso ocasionou uma grande dificuldade a nível
de implementação, mas o resultado é surpreendente. Parte desses resultados foram
conseguidos devido à adição de todos os pontos de entrada nas tabelas de mapea-
mento. Mesmo que o usuário escolha que a verificação de consistência deve ocor-
rer sobre todos os pontos de entrada, como todos estão presentes nas tabelas de
mapeamento e estas por sua vez no banco de dados do sistema middleware, local-
mente, não existe uma grande queda na performance.

6.10 Considerações

Aqui foi apresentada uma proposta para integração de esquemas de bancos de da-
dos heterogêneos integrados através da tecnologia middleware de banco de dados.
Como o middleware não trata as diferenças de esquemas e representações dos da-
dos no momento da integração das fontes, foi necessário tratá-los separadamente.
Isto é feito pelo Monitor de Consistência no projeto MENTAS. Este módulo é res-
ponsável por tratar as diferenças entre os pontos de entrada dos bancos de dados
no momento da integração e cuidar de todas as operações que envolvem estes pon-
tos como: as tabelas de mapeamento, montagem das consultas que acessam as ta-
belas de mapeamento, transformação da entrada dos dados referentes aos pontos
de entrada, montagem das consultas ao final de uma navegação. De uma forma ge-
ral este módulo trata de todas questões referentes à navegação de um banco de da-
dos para outro dentro do MENTAS, sempre levando em consideração a
performance final do sistema. Dessa forma o usuário consegue acessar informa-
ções de vários bancos de dados, relacionando-as ou comparando-as sem a neces-
sidade de ter o conhecimento de como os dados estão representados nos bancos de
dados e o melhor, conseguindo resultados de forma rápida e segura.
148

7 Conclusão

7.1 Considerações Finais

Existem muitas propostas para a integração de bancos de dados heterogêneos na
literatura. Mas, devido às características apresentadas pelos bancos de dados inte-
grados pelo MENTAS, não foi possível empregar nenhuma das técnicas. As três
propostas mais aceitas, esquema global, sistema de banco de dados federados e os
sistemas de linguagens de multidatabases não são adequadas para o MENTAS. A
princípio seria possível definir um esquema global para integrar as fontes de dados
utilizando a tecnologia middleware. Mas, devido às diferenças das representações
de atributos isto não foi possível. Já as linguagens de consultas de multidatabases
não são adequadas para o MENTAS devido ao fato de colocar a responsabilidade
de grande parte da integração dos bancos de dados sobre o usuário e isso fere o
principal propósito do MENTAS no qual o usuário deve ser o maior beneficiado.

Encontramos na tecnologia middleware o suporte necessário para integrar as fon-
tes de dados do MENTAS, garantido a autonomia das fontes locais após a integra-
ção dos bancos de dados e ainda a total transparência da localização das fontes de
dados (garantida pelo DataJoiner através da definição de nicknames). Mas, apesar
do DataJoiner providenciar a transparência de localização, transparência de lin-
guagens de acesso aos bancos de dados e transparência da heterogeneidade dos
sistemas envolvidos (hardware e sistemas operacionais e protocolos de comuni-
cação) não existe nenhuma homogeneização estrutural e de representação das di-
ferenças entre os esquemas dos múltiplos bancos de dados envolvidos. Sabendo
que este é o principal gargalo da fase de integração de banco de dados heterogên-
eos, propusemos uma solução para integração dessas fontes de dados. A metodo-
logia empregada possui como ponto marcante o conceito de navegação.

O projeto de integração de esquemas no MENTAS dividiu-se em quatro fases dis-
tintas:

• Descobrir os objetos que estão relacionados nos diversos bancos de dados, os
quais são denominados de pontos de entrada na nossa metodologia.

• Descobrir as diferenças entre esses objetos.

• Definir regras para efetuar o tratamento correto desses pontos de entrada no
momento da navegação.

• Resolução das diferenças entre os bancos de dados.

Conclusão
7.2 Contribuições

A principal contribuição do nosso trabalho encontra-se exatamente na última fase.
Apresentamos nesta dissertação técnicas para garantir a consistência no momento
da integração das várias fontes de dados e ao mesmo tempo conservando a perfor-
mance do sistema. Encontramos no uso de tabelas intermediárias armazenadas no
banco de dados do sistema middleware a solução para muitos dos nossos proble-
mas durante a integração destas fontes de dados.

Outra contribuição relevante da nossa dissertação é a apresentação de busca por
proximidades (other matches) quando o valor informado pelo usuário a um banco
de dados não é encontrado no banco de dados para onde está ocorrendo a navega-
ção. Nos bancos de dados do MENTAS esta foi a solução encontrada o problema
na existência de várias formas que um mesmo dado é armazenado nos diversos
bancos de dados heterogêneos.

Assim como a busca por proximidades, possibilitamos ainda no caso de pontos de
entrada cujas representações variam muito entre as fontes integradas a possibili-
dade da navegação com a checagem de consistência, onde além do ponto de entra-
da definido para efetuar a navegação são comparados entre os bancos de dados
todos os demais pontos de entrada escolhidos pelo usuário para um dado par de
banco de dados. Com esta técnica, garantimos uma maior corretude nos dados
apresentados ao usuário.

Outra contribuição foi a realização de um estudo detalhado sobre os sistemas de
banco de dados heterogêneos. Foi exposto um panorama geral da pesquisa nesta
área. Uma série de referências bibliográficas abordando temas referentes a inte-
gração de esquemas estão disponíveis, possibilitando a sua utilização em trabalhos
futuros.

7.3 Trabalhos Futuros

Embora o monitor de consistência tenha atingindo o objetivo inicial que era pro-
videnciar a manutenção de consistência no momento de integração de bancos de
dados heterogêneos, foram identificadas algumas sugestões para o desenvolvi-
mento de futuras extensões. A primeira delas seria melhorar nossa busca por pro-
ximidades. É possível inferir valores de um certo atributo considerando outros
atributos dos bancos de dados. Será necessário uma interação com os engenheiros
mecânicos para capturar o algoritmo utilizado por eles atualmente e traduzí-lo
para o MENTAS. A descoberta de outros pontos de entrada nos bancos de dados
seria bastante útil uma vez que disponibilizaria aos usuários maiores opções no
momento da navegação. Poderia também ser adicionado ao monitor de consistênc-
ia um método automático para gerar as tabelas de mapeamento no momento que
ocorrer uma atualização nos bancos de dados originais. Ainda, existem algumas
150

Conclusão
regras utilizadas pelos engenheiros para validar os dados recebidos para um deter-
minado motor. Essas regras poderiam ser capturadas por um tipo de sistema espe-
cialista visando oferecer informações mais seguras para os usuários do MENTAS.

Outra proposta seria integrar o trabalho do monitor de consistência com o gerente
de workflow do MENTAS. Como existe uma série de ferramentas a serem integra-
das será necessário o apoio do monitor de consistência para gerenciar o fluxo de
informações entre as ferramentas, bem como entre as fontes de dados que cada fer-
ramenta mantém.
151

Conclusão
152

Referências

[ASDK+91] Ahmed, R., Smedt, P. D., Du, W., Kent, W., Ketabchi, M. A., Litwin, W. A., Rafii, A. and
Shan, M. The Pegasus Heterogeneous Multidatabase System. IEEE Computer, 1991.

[Bar97] Barroso, M. C. PROJETOO: Uma Metodologia para Projeto de Banco de Dados
Distribuídos Orientados a Objetos. Dissertação de Mestrado. Universidade Federal de
Pernambuco, Recife, Dezembro de 1997.

[BBE98] Bouguettaya, A., Benatallah, B., Elmagarmid, A. Interconnecting Heterogeneous
Information Systems. Kluwer Academic Publishers, 1998.

[Bel88] Belcastro, V. An Overview of the Distributed Query System DQS. Proc. Int’l Conf.
Extending Database Technology, Springer-Verlag, 1988, pp.170-189.

[BGL87] Bell, D. A., Grimson, J.B. and Ling, D. H. O. EDDS - A System to Harmonize Access to
Heterogeneous Databases on Distributed Micros and Mainframes. Information and
Software Technology, Vol 29, No. 7, 1987, pp. 362-370.

[BGS92] Breitbart, Y., Garcia-Molina, H., Silberschatz, A. Overview of Multidatabase Transaction
Management, VLDB Journal,1992.

[BHP92] Bright, M. W., Hurson, A. R., Pakzad, S. H. A Taxonomy and Current Issues in
Multidatabase Systems. In IEEE Computer, Vol. 25, N. 3, Março de 1992, pp.50-60.

[BLN86] Batini, C., Lenzerini, M. and Navathe, S. A Comparative Analyses of Methodologies of
Database Schema Integration. ACM Computing Surveys, 18(4):323-364, 1986.

[BNPS88] Bertino E., Negri M., Pelaggati G. and Sbatella L. The Commands Integrating System:
An Object-Oriented Approach to the Interconnection of Heterogeneous Applications. In
Proceedings of the Second International Work-shop on Object-Oriented Database
Systems, 213-218, September 1988.

[BNPS89] Bertino E., Negri M., Pelaggati G. and Sbatella L. Integration of Heterogeneous
Database Applications Through an Object-Oriented Interface. Information Systems, 407-
420, 1989.

[BOHGM92] Buchman A., Ozsu M. T., Hornick M., Georgakopoulos D. and Manola F. A. A
Transaction Model for Active Distributed Systems. In Database Transaction Models for
Advanced Applications, A. K. Elmagarmid, Ed. Morgan Kaufmann, San Mateo, Calif,
123-158, 1992.

[BR95] Breitbart, Y. and Reyes, T. Overview of the ADDS System. In Kim, W. (Ed.), Modern
Database Systems - The Object Model, Interoperability, and Beyond, Addison-Wesley,
USA, 1995. (Capítulo 33).

[Brz84] Brzezinski, Z. Unibase - An Integrated Access to Databases. Proc. 10 th Int‘l Conf. Very
Large Databases, Morgan Kaufmann, San Mateo, Calif, 1984, pp.388-396.

[Car87] Cardenas, A. F. Heterogeneous Distributed Database Management: The HD-DBMS.
Proc. IEEE, Vol.75, N0. 5, May 1987, pp. 588-600.

[CGHI+94] Chavathe, S., Garcia-Molina, H., Hammer, J. Ireland, K., Papakonstantinou, Y. Ullman J.
and Widom, J. The TSIMMIS Project: Integration of Heterogeneous Information Sources,
In Proceedings of IPSJ Conference, pp. 7-18, Tokyo, Japan, October 1994.

[Che76] Chen, P. P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, Vol. 1, March 1976. pp. 9-37.

[CHKR98] Carey, M. J., Haas, M. L., Kleewein, J. and Reinwald, B. Data Access Interoperability in
the IBM Database Family. In IEEE Computer Society Technical Committee on Data
Engineering, Vol. 21, N. 3, September 1998.

[Cho96] Cholvy, L. A. Differents Definitions of Consistency, 1996. http://www.cert.fr.francais/deri/
cholvy/partie2.

[Cod70] Cood, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM, Vol. 13, 1970. pp. 377-387.

[Cod90] Cood, E. F.: The Relational Model for Database Management - Version 2. Addison-
Wesley, USA, 1990.

[CR94] Chrysanthis, P. K. and Ramamritham, K. Autonomy Requirements in Heterogeneous
Distributed Database Systems. Proceedings of the 6th International Conference on
Management of Data (COMAD’94), December 1994.

[DAT87] Deen, S. M., Amin, R. R. and Taylor, M. C. Data Integration in Distributed Databases. In
IEEE Transactions on Software Engineering, Vol. SE-13, N. 7 1987.

[Dav98] Davis, T.E.: Build your own Object Pool in Java to Boost Application Speed. JavaWorld,
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-object-pool.html, Jun.1998.

[DD97] Date, C. J., Darwen, H.: A Guide to the SQL Standard. Addison-Wesley, 4 Ed., USA,
1997.

[DH84] Dayal, Umeshwar and Hwang, Hai-Yann: View Definition and Generalization for
Database Integration in a Multidatabase System. In IEEE Transactions on Software
Engineering, Vol. SE-10, N° 6, November 1984.

[DMFV90] DeWitt, D. J., Maier, D., Futtersack, P., Velez, F.: A Study of Three Alternative
Workstation/Server Architectures for Object-Oriented Databases. In Proc. of the 16 th
Int. Conf. on Very Large Data Bases (VLDB’90), Brisbane, Australia, 1990. pp. 107-121.

[EN94] Elmasri, R. and Navathe, S. B. Fundamentals of Database Systems. Addison-Wesley,
second edition, USA, 1994.
154

[Esc84] Esculier, C. The Sirius-Delta Architecture: A Framework for Cooperating Database
Systems. Computer Networks, Vol. 8, No. 1, 1984, pp. 43-48.

[FHM92] Fang, D., Hammer, J., McLeod, D. An Approach to Behavior Sharing in Federated
Database Systems. pp. 334-346, IWDOM 1992

[FHMS90] Fang, D., Hammer, J., McLeod, D. and Si, A. Remote-Exchange: An Approach to
Controlled Sharing among Autonomous, Heterogeneous Databases Systems,1990.

[GGO90] Gagliard R., Ganeve M. and Oldano G. An Operational Approach to the Integration of
Distributed Heterogeneous Environments. In proceedings of the PARBASE-90
Conference, 368-377, Flórida, March 1990.

[GHIP+95] Garcia-Molina, H, Hammer, J. Ireland, K. Papakonstantinou, Y., Ullman, J. and Widom, J.
Integrating and Accessing Heterogeneous Information Sources in TSIMMIS, Department
of Computer Science, Stanford University, 1995.

[GRS97] Gehani, N., Ramamritham, K. and Shmueli, O. Accessing Extra-Database Information:
Concurrency Control and Correctness, Information Systems, 1997.

[Ham94] Hammer, J. Resolving Semantic Heterogeneity in a Federation of Autonomous,
Heterogeneous Database Systems. Dissertation presented to the Faculty of
Graduate School. University of Southern California, 1994.

[HCF97] Hamilton, G., Cattell, R., Fisher, M.: JDBC Database Access with Java: A Tutorial and
Annotated Reference, Addison-Wesley, USA, 1997.

[HDRK97] Hamill, S., Dixon, M., Read, B. J. and Kalmus, J. R. Interoperating Database Systems:
Issues and Architectures. Technical Report, RAL-TR-97-063, CLRC (Central Laboratory
of the Research Councils), November 1997.

[Her98] Hermsen, U. Design and Implementation of an Adaptable Cache in a Heterogeneous
Client/Server Environment (Em alemão). Diploma Thesis, University of Kaiserslautern,
Kaiserslautern, Germany, 1998.

[HM85] Heimbigner, D. and McLeod, D. A Federated Architecture for Information Management.
ACM Trans. Office Information Systems, Vol. 3, No.3, 1985, pp. 253-278.

[HM93] Hammer, J. and McLeod, D. An Approach to Resolving Semantic Heterogeneity In a
Federation of Autonomous, Heterogeneous Database Systems. International Journal of
Intelligent & Cooperative Information Systems, 2(1):51-83, March 1993.

[HMNR95] Härder, T., Mitschang, B., Nink, U., Ritter, N.: Workstation/Server Architectures for
Database/Based Engineering Applications (Em Alemão). Informatik Forschung &
Entwicklung, 1995.

[HMS93] Hammer, J., McLeod, D. and Si, A. An Intelligent System for Identifying and Integrating
Non-Local Objects in Federated Database Systems, 1993.
155

[HR98a] Hermsen, U., and Rezende, F.F.: MEntAs Database Interface Tutorial (Em alemão).
Internal Report, MEntAs Version 0.2, Daimler-Benz AG Research & Technology, Ulm,
Germany, 1998.

[IBI97] Information Builders: EDA/SQL Manuals. Information Builders, 1997.

[IBM95] IBM Corporation: DataJoiner: A Multidatabase Server. White Paper, May,1995.

[IBM97] IBM Corporation: DB2 DataJoiner Administration Guide. IBM, 1997.

[IBM97a] IBM Corporation: DB2 DataJoiner for AIX - Planing, Installation, and Configuration
Guide. IBM, 1997

[Jav97] Java 1.1, Third Edition, 1997, USA.

[KDN91] Kaul M., Drosten K., Neuhold E. J. Viewsystem: Integrating Heterogeneous Information
Bases by Object Oriented Views. In IEEE International Conference on Data Engineering,
2-10, 1991.

[KGCS95] Kim, W., Choi, I., Gala, S., Scheevel, M.: On Resolving Schematic Heterogeneity in
Multidatabase Systems. In Kim, W. (Ed.), Modern Database Systems - The Object
Model, Interoperability, and Beyond, Addison-Wesley, USA, 1995. (Capítulo 26).

[KGKR+93] Kelley, W., Gala, S., Kim, W., Reyes, T. and Graham, B. Schema Architecture of UniSQL/
M Multidatabase System. In Kim, W. (Ed.), Modern Database Systems - The Object
Model, Interoperability, and Beyond, Addison-Wesley, USA, 1995. (Capítulo 30).

[Kim81] Kimbleton, S. R. Applications and Protocols. Distributed Systems - Architecture and
Implementation, Spring-Verlag, 1981, pp. 308-370.

[KS91] Kim, W. and Seo, J. Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. IEEE Computer, December, 1991.

[KS95] Kashyap, V. and Sheth, A. Semantic and Schematic Similarities between Objects in
Databases: A Context-based approach. 1995.

[LMR90] Litwin, W., Mark, L. and Roussopoulos, N. Interoperability of Multiple Autonomous
Databases. In ACM Computing Surveys, Vol 22, N. 3, September 1990.

[LR82] Landers, T. A. and Rosenberg, R. L. An overview of multibase. In Distributed Databases,
H.J. Shneider, Ed. Amsterdam, The Netherlands: North-Holland, 1982.

[LZ88] Litwin, W. and Zeroual, A. Advances in Multidatabase Systems. Proc. european
Teleinformatics Conference - Euteco 88, Research into Networks and Distributed
Applications, North-Holland, Amsterdam, 1988, pp. 1, 137-1, 151.

[Mel90] Melton, J. (Ed.) Database Language SQL 2. American National Standards Institute,
Washington, D.C., USA, 1990.
156

[MHGHB92] Manola F., Heiler S., Georgakopoulos D., Hornick M., and Brodie M. Distributed Object
Management. Int. J. Intell. Cooperative Info Syst. 1, June 1992.

[MIR93] Miller, R. J., Ioannidis, Y. E. and Ramakrishnan, R..Understanding Schemas. Research
Issues in Data Engineering: Interoperability in Multidatabase Systems, 1993.

[MPPLS93] Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B., Südkamp, S.: SQL/XNF - Processing
Composite Objects as Abstractions over Relational Data. In: Proc. of the Int. Conf. on
Data Engineering, Vienna, Austria, Apr. 1993.

[MRJ99] Missier, P., Rusinkiewicz, M. and Jin, W. Multidatabase Languages. In Management of
Heterogeneous and Autonomous Database Systems. Edited by Ahmed Elmagarmid,
Marek Rusinkiewicz and Amit Sheth, Morgan Kaufmann Publishers, Inc. San Francisco,
California, 1999. (Capítulo 7).

[OHE94] Orfali, R., Harkey, D., Edwards, J.: The Essential Distributed Objects Survival Guide.
John Willey & Sons, USA, 1994.

[Oli99] Oliveira, G.S.: Uma Interface Independente de Plataforma para Acesso a Banco de
Dados Heterogêneos. Dissertação de Mestrado, Universidade Federal de Pernambuco,
Recife, Brasil, 1999.

[OMG92] Object Management Group. The Common Object Request Broker Architecture and
Specification (CORBA), OMG, Framingham, USA, 1992.

[OMG95] Object Management Group. The Common Object Request Broker Architecture and
Specification - Rev. 2.0, Technical Report, OMG, Framingham, USA, 1995.

[OPSY98] Olson, S., Pledereder, R., Shaw, P. and Yach, D. The Sybase Architecture for Extensible
Data Management. In IEEE Computer Society Technical Committee on Data
Engineering, Vol. 21, N. 3, September 1998.

[ORA97] ORACLE Corporation: Transparent Gateway Manuals. ORACLE, 1997.

[OV91] Ozsu, T. and Valduriez, P. Principles of Distributed Database Systems, Prentice-Hall,
1991.

[Pire97] Pires, Paulo de Figueiredo: HIMPAR, Uma Arquitetura para Interoperabilidade de
Objtetos Distribuídos. Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro, 1997.

[Rez97] Rezende, F.F. Transaction Services for Knowledge Base Management Systems -
Modeling Aspects, Architectural Issues, and Realiyation Techniques. Infix Verlag,
Germany, 1997. (DISDBIS 35).

[Rez98] Rezende, F. F.: LKD-Datenbank, Sichtdefinitionen. Daimler-Benz-AG - Forschung
&Technologie, Ulm, Germany, 1998.

[Rez98a] Rezende, F. F.: PSD-Datenbank, Sichtdefinitionen. Daimler-Benz-AG - Forschung
&Technologie, Ulm, Germany, 1998.
157

[Rez98b] Rezende, F. F.: MENTAS-Datenbank,Entity-Relationship-Datenmodell und Data
Dictionary. Daimler-Benz-AG - Forschung &Technologie, Ulm, Germany, 1998.

[RH96] Rezende, F. F., Härder, T.: An Approach to Multi-User KBMS in Workstation/Server
Environments. In: 11 Simpósio Brasileiro de Banco de Dados (SBBD’96), São Carlos,
Brasil, Outubro de 1996. pp.58-72.

[RH98] Rezende, F. F.; Hergula, K.: The Heterogeneity Problem and Middleware Technology:
Experiences with and Performance of Database Gateways. In: Proceedings of the 24th
VLDB Conference, New York, USA, 1998.

[RHO+98] Rezende, F. F, Hermsen, U., Oliveira, G. S., Pereira, R. C. G., Rütschlin, J. and
Schneider, P. The Database Access Interface in MEnTAs: Architecture und Functionality.
Technischer Bericht FT3/E-1998-003, Daimler-Benz AG, Forschung und Technologie 3,
Prozeßkette Produktentwicklung, Ulm, Germany, 1998.

[RHS98] Rezende, F. F., Hergula, K., Schneider, P.: A Comparative Analysis and Performance of
Database Gateways. Technischer Bericht FT3/E-1998-001, Daimler-Benz AG,
Forschung und Technologie 3, Prozeßkette Produktentwicklung, Ulm, Germany, 1998.

[Roc96] Rocha, Helder. Diferenças entre Java e C/C++; Lan times Brasil (artigo submetido em 16
de maio de 1996, ainda não publicado). http://www.dsc.ufpb.br/~helder/java/
javavsg.html

[RR99] Ram,S. and Rameshq, V. Schema Integration: Past, Present, and Future. Management
of Heterogeneous and Autonomous Database Systems. Edited by Ahmed Elmagarmid,
Marek Rusinkiewicz and Amit Sheth, Morgan Kaufmann Publishers, Inc. San Francisco,
California, 1999. (Capítulo 5).

[Rüt99] Rütschlin, J.: Security Management in a Heterogeneous Database Environment (Em
Alemão). Diploma Thesis, University of Ulm, Ulm, Germany, 1999.

[Rym96] Rymer, J. R. The Muddle in the Middle. Byte Magazine, April 1996.

[SADD+93] Shan, M., Ahmed R., Davis, J., Du, W. and Kent W. Pegasus: A Heterogeneous
Information Management System. In Kim, W. (Ed.), Modern Database Systems - The
Object Model, Interoperability, and Beyond, Addison-Wesley, USA, 1995. (Capítulo 32).

[SBD+81] Smith, J. M., Bernstein, P. A., Dayal, U., Goodman N., Landers, T. Lin, K. W. T., and
Wong, E., Multibase - Integrating Heterogeneous Distributed Database Systems in Proc.
AFIPS NCC, 1981, pp. 487-499.

[SK93] Sheth, Amit and Kashyap, Vipul. So Far(Schematically) Yet So Near (Semantically), DS -
5 1992: 283 - 312.

[SL90] Sheth, A. P., and Larson, J. A. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. In ACM Computing Surveys, Vol. 22, N. 3
September 1990.
158

[Spa82] Spaccapietra, S. Scoop - A System for Cooperation Between Existing Heterogeneous
Distributed Databases and Programs. Database Eng. Vol. 5, No. 4, 1982, pp. 288-293.

[SRK91] Sheth, A., Rusinkiewicz, M. and Karabatis, G. Using Polytransactions to Manage
Interdependent Data, 1991.

[Sta85] Staniszkis, W. Architecture of the Network Data Management System. Proc. Third Int’l
Seminar on Distributed Data Sharing Systems, North-Holland, Amsterdam, 1985, pp.57-
75.

[Str84] Strocker, P. M. Proteus: A Heterogeneous Distributed Database Project. Cambridge
Univ. Press, 1984, pp. 125-150.

[SUN98] Sun Microsystems Inc. World wide web JDBC page at http://java.sun.com/products/jdbc/
overview.html, 1998.

[SUN98a] Sun Microsystems Inc. World wide web RMI page at http://java.sun.com/products/jdk/
rmi/index.html, 1998.

[Tak83] Takizawa, M. Heterogeneous Distributed Database System: JDDBS. Data Eng., Vol. 6,
No.1, 1983, pp. 58-62.

[TTCB+90] Thomas, G., Thompson, G. R., Chung, C., Barkmeyer, E., Carter, F., Templeton, M., Fox,
S. and Hartman, B. Heterogeneous Distributed Database Systems for Production Use. In
ACM Computing Surveys, Vol 22, N. 3, September 1990.
159

160

	Renata Costa Guedes Pereira
	Dissertação de Mestrado
	folha-de-rosto.pdf
	CENTRO DE INFORMÁTICA
	PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
	Renata Costa Guedes Pereira
	“Uma Abordagem para Gerenciamento de Consistência em um Ambiente de Banco de Dados Heterogêneos"
	Este trabalho foi apresentado à PÓs-Graduação em
	Ciência da COMPUTAÇÃO do Centro de INFORMáTICA DA
	Universidade Federal de Pernambuco como requisito
	parcial para obtenção do grau de MESTRE EM Ciência da Computação.

	Agradecimentos.pdf
	Agradecimentos

	TeseTOC.pdf
	0 Índice
	Lista de Figuras xv
	Lista de Tabelas xvii
	1 Introdução 1
	2 Sistemas de Bancos de Dados Distribuídos 7
	3 Sistemas de Bancos de Dados Heterogêneos 19
	4 MENTAS 47
	5 Integração de Bancos de Dados no MENTAS 53
	6 Monitor de Consistência 87
	7 Conclusão 149
	Referências 153

	TeseLOT.pdf
	Lista de Tabelas

	TeseLOF.pdf
	Lista de Figuras

	ResumoPC.pdf
	Resumo

	AbstractKW.pdf
	Abstract

	Cap1.pdf
	1 Introdução
	1.1 Motivação
	1.2 Objetivos da Dissertação
	1.3 Estrutura da Dissertação

	Cap2.pdf
	2 Sistemas de Bancos de Dados Distribuídos
	2.1 Introdução
	Figura 2.1 Classificação dos SGBDs.

	2.2 Sistemas de Gerenciamento de Bancos de Dados Distribuídos
	2.3 Tipos de Bancos de Dados Distribuídos
	2.3.1 Grau de Heterogeneidade
	2.3.2 Grau de Distribuição
	2.3.3 Grau de Autonomia

	2.4 Taxonomia dos Bancos de Dados que Compartilham Informações
	Figura 2.2 Taxonomia de Sistemas de Bancos de Dados que Compartilham Informações.
	Tabela 2.1. Diferenças entre Sistemas de Bancos de Dados que Compartilham Informações.

	2.5 Considerações

	Cap3.pdf
	3 Sistemas de Bancos de Dados Heterogêneos
	3.1 Introdução
	3.2 Multidatabases
	Figura 3.1 Arquitetura Genérica de um SGBDH.

	3.3 Taxonomia dos SBDHs
	Figura 3.2 Arquitetura de um SBDH com Acoplamento Forte.
	Figura 3.3 Arquitetura de SBDH com Acoplamento Fraco.
	Figura 3.4 Taxonomia dos SBDHs.

	3.4 Comparação das Arquiteturas de SBDHs
	3.5 Funcionalidades providas pelos SGBDH
	3.5.1 Integração de Esquemas em SGBDH
	Figura 3.5 Classificação dos Conflitos Estruturais.
	Figura 3.6 Fases da Integração de Esquemas.

	3.5.2 Gerenciamento de Consultas Distribuídas
	3.5.3 Gerenciamento de Transações Distribuídas
	3.5.4 Administração
	3.5.5 Resolução de Heterogeneidade

	3.6 Sistemas Heterogêneos Existentes
	3.6.1 Não Orientados a Objetos
	3.6.2 Orientados a Objetos

	3.7 Middleware de Bancos de Dados
	3.8 Considerações

	Cap4.pdf
	4 MENTAS
	4.1 Introdução
	Figura 4.1 A Arquitetura Geral do MENTAS.

	4.2 Tecnologia Middleware de Banco de Dados
	4.3 Integração dos Esquemas
	Figura 4.2 Integração de Esquemas Heterogêneos como um Esquema Global e Virtual.

	4.4 Considerações

	Cap5.pdf
	5 Integração de Bancos de Dados no MENTAS
	5.1 Introdução
	Como vimos, MENTAS deve oferecer para os usuários uma interface amigável e eficiente, de modo que o trabalho dos engenheiros flua com maior rapidez. Ou seja, MENTAS deve prover um ambiente homogêneo para acessar bancos de dados heterogêneos. Este...

	5.2 Arquitetura de Acesso aos Banco de Dados
	O MENTAS utiliza a arquitetura cliente-servidor para oferecer o acesso aos bancos de dados (Figura 5.1). A arquitetura cliente-servidor foi desenvolvida para tratar novos ambientes de computação, onde computadores pessoais, estações de trabalho, ...
	Figura 5.1 Arquitetura de Acesso aos Banco de Dados.

	A escalabilidade da arquitetura é um fator de grande importância a ser considerado. A arquitetura cliente-servidor provê a escalabilidade, uma vez que para o sistema crescer é preciso apenas adicionar novo hardware ou novos componentes de softwar...
	Arquiteturas cliente-servidor podem ser diferenciadas de acordo com o modo como os a dados são transferidos e como a distribuição das tarefas é organizada: As três mais importantes formas são: Servidor de Página, Servidor de Objetos e Servidor...
	Essencialmente, o paradigma da arquitetura servidor de consultas trabalha baseada em contextos. Um contexto normalmente compreende um conjunto de objetos complexos e pode ser especificado, por exemplo, através de MQL ou SQL/XNF [MPPLS93]. No caso do...
	A implementação dos módulos que compõem esta arquitetura foi totalmente desenvolvida em Java, uma linguagem orientada a objetos desenvolvida pela Sun Microsystems. No início do projeto, pensávamos em desenvolver apenas a GUI em Java, já que es...
	De acordo com a Figura 5.1, podemos notar que a arquitetura é composta de quatro camadas: O Cliente, o Servidor, o Servidor de Banco de Dados, e os Bancos de Dados Integrados. Apesar de constituírem duas camadas da nossa arquitetura, os bancos de d...
	Apresentaremos a arquitetura do nível mais baixo (banco de dados integrados) até o nível mais alto (GUI). Nesta última camada, apresentaremos a funcionalidade enfatizando as características de como é feita a navegação entre os bancos de dados...

	5.3 Servidor de Banco de Dados
	5.3.1 Banco de Dados Integrados
	Nesta camada estão todos os bancos de dados integrados pelo MENTAS. Na prática, estas fontes de dados variam principalmente entre diversas versões de bancos de dados ORACLE e diferentes versões de bancos de dados DB2. A Figura 5.2 mostra os passo...
	Uma vez possuindo os esquemas definidos para cada banco de dados participante, analisamos de modo a reconhecer os pontos em comum entre os bancos de dados. Identificamos as diferenças semânticas, os sinônimos, homônimos, etc. O projeto do monitor...
	O próximo passo foi a definição das visões para cada banco de dados, refletindo os esquemas conseguidos em etapa anterior. Todas essas visões são criadas no topo do banco de dados original pelo administrador do banco de dados do departamento co...
	Dessa forma, foi criado um esquema global, virtual, o qual só contém dados relevantes para o MENTAS [Rez98, Rez98a, Rez98b]. Portanto, MENTAS pode formular pedidos a todos os dados residentes em um simples banco de dados local quando, de fato, muit...
	Figura 5.2 Passos na Integração dos Esquemas Heterogêneos no MENTAS.

	5.3.2 Sistema Middleware
	Como vimos, o MENTAS utiliza a tecnologia middleware para conectar as fontes de dados. Segundo [Rym96], middleware é um software que habilita aplicações interagirem nos nós da rede, escondendo diferenças de comunicação (protocolos), arquitetur...
	Entretanto, faz-se necessário que fique claro que a arquitetura cliente-servidor do MENTAS é independente do sistema middleware utilizado. Isto ocorre porque a comunicação entre o servidor e o servidor de banco de dados, onde o middleware está l...

	5.4 Comunicação
	Entre Servidor e Servidor de Banco de Dados
	No momento, MENTAS integra apenas bancos de dados relacionais. Somando-se a isto o fato de que MENTAS é um produto 100% Java, a comunicação entre o servidor e o servidor de banco de dados é feita utilizando o JDBC [HCF97]. Além deste fato, outra...
	Entre Clientes e Servidor
	A comunicação entre cliente e servidor é feita através do Remote Method Invocation (RMI).O termo RMI é utilizado para descrever o ato de invocar métodos remotos, entre máquinas virtuais Java. RMI habilita um método de uma máquina virtual par...
	Uma das vantagens do uso de RMI é a abstração providenciada para os detalhes de comunicação entre os processos. Parte desta abstração é oferecida por classes especiais chamadas stubs e skeletons. Um stub é o lado cliente que implementa os m...
	Skeleton é o lado servidor que aceita uma chamada de método do cliente e dispara a invocação ao método fonte no servidor [Jav97].
	A Figura 5.3 mostra o relacionamento entre essas classes especiais e as porções cliente e servidor de uma aplicação RMI.
	Figura 5.3 Cliente/Servidor de uma Aplicação RMI.

	Quando um cliente invoca um método remoto, existe a ilusão da chamada direta ao método do objeto remoto. Na realidade, a chamada ao método remoto começa como uma chamada a um método local no Stub. O stub empacota os parâmetros e envia o pedido...
	Em comparação com outros métodos utilizados, como por exemplo CORBA [OHE94,OMG92, OMG95], a performance de RMI é muito boa. Adiciona-se a isso ainda o fato de MENTAS possuir uma arquitetura implementada completamente em Java (isso significa que o...

	5.5 Servidor
	5.5.1 Conector de Banco de Dados
	As principais tarefas do conector de banco de dados são gerenciar os recursos dos bancos de dados bem como as consultas SQL recebidas dos clientes.
	Gerenciamento dos Recursos dos Bancos de Dados
	Com a centralização do gerenciamento das conexões neste módulo, é possível aumentar a velocidade do sistema e ao mesmo tempo possuir uma visão global para controlar os recursos do mesmo. Estas vantagens são conseguidas através do compartilha...
	Todos os módulos que precisam utilizar uma conexão com o sistema middleware devem requisitá-la ao conector de banco de dados. Após a execução da consulta SQL, esta conexão deve ser devolvida ao buffer de modo que o conector de banco de dados p...
	Gerenciamento de Consultas
	Um dos requisitos da implementação de drivers JDBC é que qualquer objeto Java que não esteja sendo utilizado e que consuma recursos do banco de dados deve ser recolhido pelo garbage collector liberando imediatamente os recursos. Ainda, devem libe...

	5.5.2 Fábrica de Resultados
	Após o processamento de uma consulta SQL, a fábrica de resultados é acionada. Este módulo é o responsável por criar conjuntos de resultados que são mostrados através da GUI aos usuários. Os resultados de uma consulta SQL não são transporta...

	5.5.3 Controlador de Segurança
	O monitor de segurança do servidor é responsável por manipular os dados dos usuários, bem como os acessos aos bancos de dados efetuados por esses usuários. É responsabilidade deste módulo também criptografar os dados que são transportados en...

	5.5.4 Monitor de Consistência
	Com o uso da tecnologia middleware, nós conseguimos transparência de localização, de sistemas operacionais, de protocolos de rede, etc. Infelizmente, o middleware não cuida dos aspectos relacionados à semântica dos dados e nem das heterogeneid...
	O monitor de consistência visa tão somente proporcionar a GUI um ambiente necessário para a condução da navegação entre os bancos de dados. É função do monitor de consistência todo o processo de integração de esquemas entre os bancos de ...
	Depois do reconhecimento dos atributos que possuem o mesmo significado semântico chamados de pontos de entrada nos bancos de dados, de estabelecer as regras necessárias para que essas diferenças sejam tratadas, o monitor de consistência faz as de...
	Checagem da Possibilidade de Navegação
	Outra tarefa importante executada por este módulo é a verificação da possibilidade de ocorrer ou não uma navegação. Esta verificação é efetuada como primeiro passo durante o processo da navegação. Para isso, é enviada ao servidor de banc...
	Manipulação dos Pontos de Entrada
	É necessária a identificação de pontos semelhantes entre os diversos bancos de dados para que possa ser construído o esquema global virtual que é percebido pelo usuário no processo de navegação. Estes são os chamados pontos de entrada dos b...
	Parser
	Se todos os bancos de dados fossem modelados seguindo o mesmo padrão, muitos dos problemas de integração de esquemas seriam resolvidos. Acontece que os bancos de dados são modelados de acordo com as necessidades de um conjunto de usuários e mais...
	Gerenciamento das Tabelas de Mapeamento
	O monitor de consistência precisa de um formato padrão para todos os pontos de entrada para que seja possível a ocorrência da navegação. Como a autonomia dos bancos de dados é uma propriedade que deve ser garantida pelo MENTAS após a integra...
	As tabelas de mapeamento são geradas automaticamente no momento da primeira inicialização do servidor. Neste momento são buscados das fontes de dados remotas todos os pontos de entrada para serem armazenados nas tabelas de mapeamento. É também ...
	Como as tabelas originais podem sofrer mudanças, damos a possibilidade ao próprio engenheiro de requisitar que um novo mapeamento seja gerado. O monitor de consistência gerencia informações como dia e hora que foi gerado o último mapeamento e a...
	Outra característica importante do monitor de consistência é o suporte ao mecanismo de sombra das tabelas de mapeamento. Para cada banco de dados que necessita que uma tabela de mapeamento seja gerada, o monitor de consistência manipula duas tabe...

	5.6 Cliente
	5.6.1 Conector de Interface
	O Conector de Interface possui duas tarefas principais. A primeira é prover à GUI informações sobre os meta-dados dos bancos de dados integrados e a segunda é manipular as consultas SQL criadas pelo usuário através da GUI.
	Gerenciamento das informações dos meta-dados
	O conector de interface começa o seu trabalho quando a GUI é inicializada no cliente. Neste momento, ele estabelece uma conexão com o servidor. Através do registro RMI, o cliente recebe uma referência para o objeto servidor que será usado como ...
	É criado então uma interface bem definida para que a GUI tenha acesso aos meta- dados, que são utilizados por esta para fornecer informações de descrição de entidades e atributos aos usuários através do help, controlar os operadores na monta...
	Gerenciamento de Códigos de Erros e Mensagens
	A manipulação de mensagens de erro no MENTAS é feitas através de uma classe própria que contém informação tanto para o usuário final como para o DBA (mensagens detalhadas como exceções SQL2). Os diferentes tipos de falhas que podem ocorrer...
	Gerenciamento de Consultas
	No momento que o usuário finaliza a formulação de sua consulta, a GUI produz um string da consulta SQL correspondente. A partir de então, o conector de interface cria um objeto (ExecuteSelect) que envia assincronamente a consulta para ser process...
	Após apresentar o primeiro subconjunto dos resultados da consulta, o objeto ExecuteSelect busca em paralelo os próximos subconjuntos dos resultados no servidor, armazenando em cache no cliente. Dessa forma, quando o usuário requisita a visualizaç...
	Dependendo da complexidade, o processamento de uma consulta pode levar bastante tempo. Por isso, é dada ao usuário a possibilidade de interromper o processamento da consulta através de uma janela intermediária entre a janela principal e a janela ...
	Em relação às consultas, é ainda de responsabilidade do conector de interface, através do objeto ExecuteSelect, armazenar no banco de dados do sistema middleware as consultas SQL produzidas pelo usuário (desde que isso seja requisitado pelo mes...

	5.6.2 Cache
	Este módulo do cliente é gerenciado pelo conector de interface para armazenar temporariamente os resultados das consultas. O método de implementação do cache do MENTAS provê funcionalidade suficiente para a primeira versão do nosso sistema, ma...

	5.6.3 Monitor de Consistência
	O trabalho de ambos os monitores de consistência, tanto o do servidor como o do cliente, é voltado para possibilitar a navegação entre os banco de dados, sendo que, o MCC (Monitor de Consistência do Cliente) se preocupa em formatar os dados forn...
	A única tarefa do MCC é formatar os dados fornecidos pelo usuário através da GUI. Assim como a parte do servidor, o cliente também conta com um parser, sendo que este é utilizado para formatar os dados informados pelo usuário para os pontos de...
	O perfil dos usuários do MENTAS, em relação a entrada dos dados, varia de acordo com o BD que estes trabalham. Uma preocupação do MENTAS é deixar o usuário trabalhar da maneira mais natural. Dessa forma, não deve ser exigido deste a responsab...

	5.7 Funcionalidade da Interface
	Todos os componentes descritos até o momento trabalham com a única e exclusiva função de oferecer à GUI todo o ambiente necessário para providenciar ao usuário final uma forma rápida, fácil e eficiente de acessar dados tanto num único banco...
	Devido ao fato dos usuários estarem distribuídos em departamentos diversos e, assim, possuírem o seu próprio computador, esta GUI foi projetada com a finalidade de possibilitar a sua execução em diferentes plataformas de hardware (entre PCs e w...
	Quando um cliente inicializa uma sessão, são pedidos o login e a senha para que o usuário possa ter o acesso aos bancos de dados integrados pelo MENTAS. Caso o usuário seja autorizado, é apresentada a janela principal da interface que pode ser v...
	Figura 5.4 Janela Principal do MENTAS - Interface de Acesso aos Bancos de Dados.

	Através da GUI, os usuários podem criar suas consultas SQL para acessar desde um simples banco de dados como também expandir o contexto da consulta para os outros bancos de dados, podendo assim comparar valores e adquirir informações complementa...
	Os dados são apresentados para o usuário através da interface utilizando o modelo Entidade-Relacionamento - Modelo ER - [Che76] (ver Figura 5.4). Através da visualização do Modelo ER de um BD, o usuário pode identificar os atores e cenas que f...
	A GUI apresenta o Modelo ER da forma mais enxuta possível, apenas entidades e relacionamentos são mostrados diretamente para o usuário. Os atributos foram omitidos visto que algumas entidades possuem mais de cem atributos, o que torna inviável fa...
	Como podemos observar na Figura 5.4, os principais componentes da janela principal são:
	5.7.1 Formulação de Consultas
	O uso da interface é bastante simples. Com apenas um toque no botão esquerdo do mouse em cima de qualquer entidade ou de alguns relacionamentos do diagrama entidade-relacionamento, surge um pop up menu com as opções que aparecem na Figura 5.5. O ...
	Figura 5.5 Pop up Menu para a Formulação de Consultas.

	De acordo com a figura acima, podemos perceber que existem 4 opções no pop up menu, são elas:
	5.7.1.1 Especificando a Cláusula de Projeção
	Ao escolher qualquer um dos ítens que compõem o pop up menu, o usuário depara- se com novas janelas. Através da escolha do Select, ele recebe uma janela contendo todos os atributos da entidade, como pode ser visto na Figura 5.6. Basicamente a jan...
	A movimentação dos atributos entre as duas listas é feita utilizando os botões ">", ">>", "<", "<<". Antes da movimentação, é necessário que o usuário escolha o atributo que deseja movimentar. Isto é feito posicionando o mouse sobre o nome ...
	Ao selecionar os atributos nessa janela e clicar no botão OK, os dois primeiros campos do campo de consulta da janela principal são preenchidos. O botão Cancel por sua vez cancela as operações realizadas nessa janela e volta para a janela princi...
	Figura 5.6 Janela da Projeção.

	No momento que o usuário confirma os atributos selecionados por esta janela, é habilitado no pop up menu a opção de navegar para os outros bancos de dados (opção other databases (Figura 5.5).

	5.7.1.2 Especificando a Cláusula da Condição
	A escolha do item Where do pop up menu origina uma janela idêntica à apresentada anteriormente (Figura 5.6), sendo que serão selecionados nela os atributos que irão preencher a cláusula where da consulta do usuário.
	A primeira diferença na funcionalidade das janelas é a possibilidade do usuário passar o mesmo atributo mais de uma vez para a lista dos ítens selecionados, possibilitando ao usuário então, construir consultas do tipo: "selecione todos os motor...
	A segunda diferença está na funcionalidade do botão OK que ao contrário da janela anterior, aciona uma nova janela (Figura 5.7) que possibilitará ao usuário estabelecer as condições para os atributos escolhidos nesta primeira fase.
	Figura 5.7 Janela de Montagem da Cláusula de Condição.

	Através desta janela o usuário pode escolher o operador da condição, o valor, aninhar as condições através do uso de parênteses e escolher o operador relacional (and ou or). São mostrados apenas os operadores de condição - através de uma ...

	5.7.1.3 Especificando a Ordenação dos Resultados
	Através da escolha do item Order by no pop up menu, o usuário tem acesso a uma janela similar à apresentada na Figura 5.6, sendo que na lista da esquerda aparecem apenas os atributos pertencentes à cláusula de projeção. Os atributos selecionad...
	Figura 5.8 Janela de Ordenação dos Resultados.

	5.7.1.4 Others Databases
	Este é o mais importante tópico da Interface no que diz respeito ao monitor de consistência. Através deste item do pop up menu o usuário pode inicializar a navegação entre os bancos de dados. A palavra navegação no MENTAS está implicitament...
	No momento em que o usuário especifica uma cláusula de projeção na sua consulta, a opção de other databases torna-se ativa (a navegação é habilitada). Note que a opção torna-se ativa para a entidade a qual possui atributos inclusos na proj...
	Com relação à interface - os detalhes do monitor de consistência são tratados no Capítulo 6 - apenas dois tipos são levados em consideração, que são consultas com pontos de entrada na cláusula de condição e consultas sem pontos de entrad...
	De acordo com a interface, definimos três tipos de navegação (Figura 5.9):
	Figura 5.9 Tipos de Consultas versus Interface na Navegação.

	Apresentaremos como se comporta a interface em cada uma das consultas acima, e qual o relacionamento da interface com o monitor de consistência em cada caso.

	5.7.1.5 Navegação Tipo 1
	Este tipo de navegação pode ser dividido ainda em dois casos distintos, que são apresentados na Figura 5.10. Em ambos os casos será apresentada ao usuário a mesma interface durante a navegação. A distinção desses dois tipos de consultas est...
	Figura 5.10 Consulta com Cláusula de Condição Contendo Pontos de Entrada.

	Quando existe a presença do atributo que identifica o motor na consulta do usuário (condição), é necessário procedimentos intermediários, antes de apresentar a consulta final ao usuário. Na verdade, a consulta final é montada com o auxílio ...
	O identificador do motor possui características que o diferenciam dos demais pontos de entrada entre os bancos de dados integrados. Essas características serão exploradas no Capítulo 6. Esse ponto de entrada é representado de formas diferentes e...
	Assim, no momento que o usuário especifica esse ponto de entrada e deseja que a navegação entre os bancos de dados ocorra através dele, a GUI faz uma chamada ao parser do monitor de consistência do cliente que transforma o identificador do motor...
	Caso seja encontrado pelo menos um resultado para a consulta intermediária, apresentamos ao usuário uma nova janela contendo tais resultados (Figura 5.11). A funcionalidade desta janela é a mesma apresentada pela janela de projeção (Figura 5.6)....
	Quando o usuário clica o botão de OK, é montada a consulta final do usuário de acordo com os motores escolhidos, retornando para a janela principal. A janela principal é apresentada com a nova consulta no “campo de consulta” e o modelo de da...
	Figura 5.11 Busca da Consulta Intermediária para o Identificador do Motor.

	Esta é a primeira tentativa de acharmos o motor especificado pelo usuário no banco de dados posterior. Caso o engenheiro tenha especificado no banco de dados corrente um motor que não possui correspondente direto no banco de dados posterior, ainda...
	Other Matches
	Com a falha da primeira consulta intermediária, apresentamos ao usuário a janela da Figura 5.12. Nesta janela, informamos que não existe motor correspondente no banco de dados posterior para o especificado no banco de dados corrente e damos a opç...
	Se o usuário desejar visualizar os motores mais semelhantes ao especificado, o monitor de consistência monta novas consultas intermediárias que vão buscar no banco de dados posterior tais motores. Isto é feito procurando cada parte que compõe o...
	Figura 5.12 Falha da Primeira Consulta Intermediária.
	Figura 5.13 Janela de Other Matches.

	Como podemos notar através da Figura 5.12, o usuário especificou um motor M11E18MMX para o banco de dados corrente e ao navegar para o banco de dados posterior não foi encontrado nenhum motor correspondente. Através da opção de other matches, c...

	5.7.1.6 Navegação Tipo 2
	Esta alternativa de consulta é resolvida sem necessidade de novas janelas na interface. A GUI envia os pontos de entrada presentes na consulta corrente do usuário para o monitor de consistência e recebe deste os mapeamentos adequados que serão ac...
	Por exemplo, suponha que o usuário encontra-se no banco de dados BD1 e realize a navegação através da entidade EntidadeBD1 para o banco de dados BD2. Para isso, ele define uma condição através do ponto de entrada desta entidade (AtributoEntBD1...
	SELECT EntidadeBD1.Atributo1, EntidadeBD1.Atributo2, ..., EntidadeBD1.AtributoN
	FROM EntidadeBD1
	WHERE EntidadeBD1.AtributoEntBD1 <comparação> valor
	Que será transformada para a consulta:
	SELECT EntidadeBD1.Atributo1, EntidadeBD1.Atributo2, ..., EntidadeBD1.AtributoN, EntidadeBD2.AtributoEntBD2
	FROM EntidadeBD1, EntidadeBD2
	WHERE EntidadeBD1.AtributoEntBD1 <comparação> valor AND
	EntidadeBD2.AtributoEntBD2 <comparação> valor

	5.7.1.7 Navegação Tipo 3
	Caso o usuário resolva expandir os limites de sua consulta a outro banco de dados, especificando a cláusula de condição sem a presença de pontos de entrada ou simplesmente sem a presença da cláusula de condição, será apresentado ao usuário...
	O usuário precisa escolher pelo menos uma das opções apresentadas e a seguir clicar no botão de OK para que seja efetuada a navegação para o próximo banco de dados. O botão de OK só é habilitado depois de pelo menos uma das opções ser esc...
	Dessa forma, a única diferença da interação da interface com o monitor de consistência é que, se a consulta não possuir uma cláusula de condição, a consulta final é imediatamente montada, sem a necessidade da chamada de nenhum outro módul...
	O exemplo a seguir mostra uma navegação na qual não existe uma cláusula de condição na consulta inicial. Considere que o usuário encontra-se no banco de dados BD1 e deseja expandir sua consulta ao banco de dados BD2, tendo como consulta inicial
	SELECT EntidadeBD1.Atributo
	FROM EntidadeBD1
	No momento que o usuário escolhe a opção other databases do pop up menu da entidade EntidadeDB1, é mostrada uma janela semelhante às apresentadas na Figura 5.14 montada pela GUI com os pontos de entrada para a entidade sobre a qual será efetuad...
	SELECT EntidadeBD1.Atributo, EntidadeBD2.Atributo
	FROM EntidadeBD1, EntidadeBD2
	WHERE EntidadeBD1.A = EntidadeBD2.A AND EntidadeBD1.B = EntidadeBD2.B
	Figura 5.14 Janela de Especificação de Atributos.

	5.7.2 Janela de Resultados
	Como foi explicado anteriormente, após cada passo da montagem da consulta e ao final de uma navegação, o usuário retorna à janela principal do MENTAS. Assim que a consulta SQL atinge o ponto em que é possível enviá-la ao servidor de bancos de...
	Esta janela é composta de quatro componentes:
	Figura 5.15 Janela de Apresentação dos Resultados.

	5.7.3 Menu Consistency e o Monitor de Consistência
	O menu Consistency faz parte da janela principal e é composto de cinco ítens (Figura 5.4): Check box Activated, Set DB Navigation, Show Mapping Information, Select Mapping Tables, Generate Mapping Tables. Os dois primeiros ítens estão relacionado...
	5.7.3.1 Other Databases versus Menu Consistency
	As navegações do Tipo 1 (envolvendo o identificador do motor) podem ser realizadas com ou sem checagem de consistência. Este fator não influencia o ambiente de navegação com relação às janelas apresentadas. Por este motivo não foi feita ref...
	Como já mencionamos, os identificadores de motor são modelados de formas diferentes nos vários bancos de dados. Devido a essas diferenças, precisamos do auxílio do usuário para fazermos o mapeamento de valores entre os bancos de dados. Através...
	Entretanto, quando o usuário deseja definir por quais pontos de entrada vai ocorrer a navegação, surge uma nova janela (Figura 5.16). Esta janela possui três “abas” representando as possíveis formas de navegação entre os pares de banco de ...
	Pela janela abaixo notamos ainda a presença dos botões All, OK e Cancel. O primeiro marca todos os pontos de entrada de todas as abas da janela. Neste caso, uma nova janela de aviso é mostrada ao usuário, alertando-o que o processo de navegação...
	Figura 5.16 Janela de Especificação dos Pontos de Entrada para Checagem de Consistência.

	5.7.3.2 Show Mapping Information
	A escolha deste item de menu pelo usuário, faz com que a GUI envie um pedido ao monitor de consistência. Este acessa o servidor de banco de dados e recupera informações sobre as tabelas de mapeamento que são enviadas de volta para a GUI montar a...
	Figura 5.17 Janela de Informações sobre as Tabelas de Mapeamento.

	5.7.3.3 Select Mapping Tables
	Este item de menu aciona uma janela semelhante à Figura 5.6, sendo sua funcionalidade semelhante à montagem da cláusula de condição. Na verdade, o que o usuário faz através deste item é montar a cláusula de condição da sua consulta atravé...

	5.7.3.4 Generate Mapping Tables
	Se o usuário escolher este último item, a GUI envia um pedido ao monitor de consistência para que seja gerada uma nova tabela de mapeamento. É enviado em conjunto, o nome do banco de dados escolhido pelo usuário (através do sub-item de menu que...
	Figura 5.18 Informação ao Final da Geração de um Novo Mapeamento.

	5.8 Considerações
	A interface apresentada pelo MENTAS é bastante fácil de usar. Isto possibilita que o usuário sinta-se completamente à vontade no momento da criação das suas consultas SQL. O mais importante é que os usuários são capazes de criarem consultas ...
	No momento que dois bancos de dados são envolvidos na mesma consulta tanto a montagem da consulta quanto as transformações necessárias nos dados são realizadas sem o conhecimento do usuário. Este precisa apenas informar que deseja acessar um se...
	A GUI consegue oferecer um ambiente deste nível aos usuários devido às relações mantidas com os demais componentes da arquitetura do MENTAS. Neste capítulo nós demos atenção especial à interação da GUI com o monitor de consistência por s...

	Cap6.pdf
	6 Monitor de Consistência
	6.1 Introdução
	6.2 Navegação entre os bancos de dados
	Tabela 6.1 Possíveis Navegações no MENTAS.
	Tabela 6.2 Possíveis Navegações entre os Pares de Bancos de Dados no MENTAS.

	6.3 Pontos de Entrada
	Tabela 6.3 Pontos de Entrada.

	6.4 Identificação dos Conflitos entre os Pontos de Entrada
	Tabela 6.4 Identificação do Motor e a Representação nos Bancos de Dados.
	Tabela 6.5 Gramática - Tipo do Motor.
	Tabela 6.6 Gramática - Especificação.
	Tabela 6.7 Gramática - Baumuster.

	6.5 Definição de Regras para Solucionar os Conflitos
	Regra 1: Entrada de Dados: Usar aspas simples nos valores dos atributos que possuem o tipo CHAR ou VARCHAR.
	Regra 2: Navegação: Transformar o domínio dos atributos quando necessário, de forma que seja possível a comparação de valores entre eles.
	Regra 3: Sempre que ocorrer a navegação entre o LKD e os demais bancos de dados, é necessário fazer a troca do separador de casas decimais, de vírgula para ponto e vice-versa.
	Regra 4: Para os bancos de dados que possuem apenas um atributo para o identificador do motor, fazer a separação utilizando o formato empregado no Mentas, retirando espaços em branco, pontos e todas as demais diferenças que possam existir. Deve-s...
	Regra 5: Para atributos com o número de casas decimais distintas, deve-se considerar apenas duas casas decimais no momento da comparação dos valores.

	6.6 Monitor de Consistência do Servidor - MCS
	6.6.1 Arquitetura
	Figura 6.1 Arquitetura do Monitor de Consistência.

	6.6.2 Gerente de Acesso aos Bancos de Dados
	6.6.3 Gerenciador de Pontos de Entrada
	Tabela 6.8 Diferenças nas Representações dos Pontos de Entrada.

	6.6.4 Parser
	Tabela 6.9 Parser - PSD.
	Tabela 6.10 Parser - LKD.

	6.6.5 Gerador de Tabelas de Mapeamento - GTM
	Figura 6.2 Ligação entre as Tabelas de Mapeamento e as Fontes de Dados Remotas
	Figura 6.3 Problema de Acesso as Tabelas de Mapeamento.
	Figura 6.4 Solução Adotada para as Tabelas de Mapeamento.
	Figura 6.5 Tabela de Mapeamento versus Tabela de Gerenciamento (Leitura).

	6.6.6 Gerenciador de Tabelas de Mapeamento
	Figura 6.6 Tabelas de Mapeamento e a Tabela de Gerenciamento.
	Figura 6.7 Relacionamento entre os Módulos do Monitor de Consistência no Processo de Geração de Tabela de Mapeamento.

	6.6.7 Atualizador de Consultas
	6.6.8 Navegador
	6.6.8.1 Vetar a Navegação
	6.6.8.2 Montagem das Consultas Intermediárias
	Figura 6.8 Passos da Navegação com a Presença do Identificador do Motor.
	Consulta Intermediária 1:
	Consulta Intermediária 2:
	Consulta Intermediária 3:
	Consulta Intermediária 4:
	Consulta Intermediária 5: Tipo
	Consulta Intermediária 6: Especificação
	Consulta Intermediária 7: Modelo de Construção
	Consulta Intermediária 8: Tipo
	Consulta Intermediária 9: Especificação
	Consulta Intermediária 10: Modelo de Construção

	Figura 6.9 Montagem das Consultas.
	Consulta de Navegacao 1:
	Consulta de Navegacao 2:

	6.6.9 Gerente de Consistência
	Consulta Intermediária 11:
	Consulta Intermediária 12:
	Consulta Intermediária 13: Tipo
	Consulta Intermediária 14: Especificação
	Consulta Intermediária 15: Modelo de Construção

	6.7 Monitor de Consistência do Cliente - MCC
	Figura 6.10 Arquitetura do Monitor de Consistência do Cliente.
	6.7.1 Parser
	6.7.2 Gerenciador de Entradas
	6.7.3 Gerente de Navegação
	Consulta de Navegacao 3:
	Consulta de Navegacao 4:
	Consulta de Navegacao 5:

	6.8 Um exemplo de navegação no MENTAS
	6.8.1 Sem Checagem de Consistência
	Tabela 6.11 Atuação do Parser.

	6.8.2 Com Checagem de Consistência
	Tabela 6.12 Pontos de Entrada para Checagem de Consistência.

	6.9 Consistência X Performance
	6.10 Considerações

	cap7.pdf
	7 Conclusão
	7.1 Considerações Finais
	7.2 Contribuições
	7.3 Trabalhos Futuros

	RefTodas.pdf
	Referências
	[ASDK+91
	[Bar97
	[BBE98
	[Bel88
	[BGL87
	[BGS92
	[BHP92
	[BLN86
	[BNPS88
	[BNPS89
	[BOHGM92
	[BR95
	[Brz84
	[Car87
	[CGHI+94
	[Che76
	[CHKR98
	[Cho96
	[Cod70
	[Cod90
	[CR94
	[DAT87
	[Dav98
	[DD97
	[DH84
	[DMFV90
	[EN94
	[Esc84
	[FHM92
	[FHMS90
	[GGO90
	[GHIP+95
	[GRS97
	[Ham94
	[HCF97
	[HDRK97
	[Her98
	[HM85
	[HM93
	[HMNR95
	[HMS93
	[HR98a
	[IBI97
	[IBM95
	[IBM97
	[IBM97a
	[Jav97
	[KDN91
	[KGCS95
	[KGKR+93
	[Kim81
	[KS91
	[KS95
	[LMR90
	[LR82
	[LZ88
	[Mel90
	[MHGHB92
	[MIR93
	[MPPLS93
	[MRJ99
	[OHE94
	[Oli99
	[OMG92
	[OMG95
	[OPSY98
	[ORA97
	[OV91
	[Pire97
	[Rez97
	[Rez98
	[Rez98a
	[Rez98b
	[RH96
	[RH98
	[RHO+98
	[RHS98
	[Roc96
	[RR99
	[Rüt 99
	[Rym96
	[SADD+93
	[SBD+81
	[SK93
	[SL90
	[Spa82
	[SRK91
	[Sta85
	[Str84
	[SUN98
	[SUN98a
	[Tak83
	[TTCB+90

