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Abstract

The importance of structural variants as a source of phenotypic variation has grown in recent
years. At the same time, the number of tools that detect structural variations using Next-
Generation Sequencing (NGS) has increased considerably with the dramatic drop in the cost of
sequencing in last ten years. Then evaluating properly the detected structural variants has been
featured prominently due to the uncertainty of such alterations, bringing important implications
for researchers and clinicians on scrutinizing thoroughly the human genome. These trends have
raised interest about careful procedures for assessing the outcomes from variant calling tools.
Here, we characterize the relevant technical details of the detection of structural variants, which
can affect the accuracy of detection methods and also we discuss the most important caveats
related to the tool evaluation process. This study emphasizes common assumptions, a variety
of possible limitations, and valuable insights extracted from the state-of-the-art in CNV (Copy
Number Variation) detection tools. Among such points, a frequently mentioned and extremely
important is the lack of a gold standard of structural variants, and its impact on the evaluation
of existing detection tools. Next, this document describes a biclustering-based methodology to
screen a collection of structural variants and provide a set of reliable events, based on a defined
equivalence criterion, that is supported by different studies. Finally, we carry out experiments
with the proposed methodology using as input data the Database of Genomic Variants (DGV).
We found relevant groups of equivalent variants across different studies. In summary, this thesis
shows that there is an alternative approach to solving the open problem of the lack of gold

standard for evaluating structural variants.

Keywords: DNA Copy Number Variations. Variant detection methods. Next-generation

sequencing. Biases analysis. Evaluation of variants



Resumo

A importancia das variantes estruturais como fonte de variacao fenotipica tem se proliferado nos
ultimos anos. Ao mesmo tempo, o nimero de ferramentas que detectam variacdes estruturais
usando Next-Generation Sequencing (NGS) aumentou consideravelmente com a dramdtica
queda no custo de seqiienciamento nos ultimos dez anos. Neste cendrio, avaliar corretamente
as variantes estruturais detectadas tem recebido destaque proeminente devido a incerteza de
tais alteragdes, trazendo implicagdes importantes para os pesquisadores e clinicos no exame
minucioso do genoma humano. Essas tendéncias t€m impulsionado o interesse em procedimentos
criteriosos para avaliar os variantes identificados. Inicialmente, caracterizamos os detalhes
técnicos relevantes em torno da detec¢do de variantes estruturais, os quais podem afetar a
precisdo. Além disso, apresentamos adverténcias fundamentais relacionadas ao processo de
avaliacdo de uma ferramenta. Desta forma, este estudo enfatiza questdes como suposi¢cdes
comuns a maioria das ferramentas, juntamente com limitagdes e vantagens extraidas do estado-
da-arte em ferramentas de detec¢do de variantes estruturais. Entre esses pontos, hd uma muito
questdo bastante citada que € a falta de um gold standard de variantes estruturais, € como
sua auséncia impacta na avaliacdo das ferramentas de deteccdo existentes. Em seguida, este
documento descreve uma metodologia baseada em biclustering para pesquisar uma colecdo de
variantes estruturais e fornecer um conjunto de eventos confidveis, com base em um critério de
equivaléncia definido e apoiado por diferentes estudos. Finalmente, realizamos experimentos
com essa metodologia usando o Database of Genomic Variants (DGV) como dados de entrada e
encontramos grupos relevantes de variantes equivalentes em diferentes estudos. Desta forma,
esta tese mostra que existe uma abordagem alternativa para o problema em aberto da falta de

gold standard para avaliar variantes estruturais.

Palavras-chave: Varia¢des no nimero de cépias. Métodos de detecg¢ao de variagdes estruturais.

Sequenciamento de nova-geracdo. Avaliacdo de variagdes estruturais
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Introduction

This chapter starts with a general overview of the thesis and its context. The relevance
of the thesis problem and the chosen solution approach are further motivated in Section 1.2.
Based on this motivation, the thesis objectives are defined in Section 1.3 followed by a more
detailed description of the research contributions and solution approach in Section 1.4. The

chapter concludes with an outline of the structure of the thesis in Section 1.5.

1.1 General Overview

Bioinformatics is an exciting and rapidly expanding interdisciplinary research field that is
attracting relevant attention from both academia and industry. A number of scientific publications,
theses, and books in this area have increasingly demonstrated the capability of applying different
computational techniques to solve challenging problems in bioinformatics as well as in ordering
and summarizing a large body of knowledge. Sequence analysis, microarrays, gene expression,
genome-wide analysis studies, gene regulation, phylogeny, and so on are subareas that have been
resourced to relevant research questions, besides additional topics such as population genetics
and personalized genomics.

The need for manipulating, analyzing, and visualizing the amount of data extracted from
various biological systems brought computer science to this picture, in order to store and process
such data, to build efficient algorithms that draw from areas such as Artificial Intelligence for
recognizing patterns, and to use models to guide the research toward meaning results. The
underlying idea has been to develop emerging computational methods to fulfill the myriad of
demands from biology.

Over the years, biologists have learned how to analyze Deoxyribonucleic Acid (DNA) and
convert millions of short DNA sequences into valuable genetic information. The DNA molecule
is represented by the sequence of nucleotides (Adenine, Cytosine, Guanine and Thymine, labeled
as A, C, G, and T, respectively), whose sizes can vary from a few thousand (viruses) to 6.7x10!!
characters (ameba). The human genome, for instance, contains nearly 3 billion base pairs of
genomic information organized into 23 chromosomes.

When the first draft of the human genome sequence was publicized in 2001, it was
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openly claimed that all the differences among individuals should be attributed only to 0.1% of
the genome. However, with the continuous improvement over the last 15 years in sequencing
technologies and other bioinformatics skills, we now know that human genomes are highly
variable. Since no two individuals share the same DNA code, investigating the similarity and
respective variability of genomes among all human beings has evolved substantially over the
past decade.

As a foundation for the study of genetic variation, a reference genome is considered
to be some sort of representative genome of all possible genomes that an individual of that
species could have. Thus, comparisons of any sequence to a reference genome have led to the
identification of tens of millions of genetic variations, such as the collection of human genetic
variations provided by the 1000 Genome Project (DURBIN et al., 2010).

With the completion of the initial reference human genome sequence some 17 years ago
(INTERNATIONAL, 2004), attention has turned to discovering and cataloging variations among
different individuals (case and control samples) and different populations. Any given individual
carries 4-5 million sequence variants that are known to exist in multiple forms in our species. In
addition, there are countless very rare variants, many of which probably exist in only a single or
a few individuals. In fact, given the number of individuals in our species, essentially every base
pair in the human genome is expected to vary in someone somewhere around the globe.

Currently, the efforts of many studies have aimed at the examination of a genome-wide
set of genetic variants in different individuals to see if any variant is associated with phenotypes
for a particular trait or disease. Such studies, known as Genome-Wide Association Studies
(GWASSs) have uncovered thousands of variants influencing major diseases and complex traits,
including diabetes, dementia, cardiovascular disease, schizophrenia, breast cancer, height, and
body mass index (BMI).

1.2 Motivation

The motivation of this thesis stems from the utmost importance of accuracy in analyses
of biologic data closely related to personalized health care, including cancer prevention. The
responsibility with these analyses lies in the existence of a continuous spectrum of the pheno-
typic effects of genetic variants, from adaptive traits to embryonic lethality, including morbid
consequences such as developmental disorders and cancer (VALSESIA et al., 2013).

While a link between a given variant and a disease may have often been established,
the relative contribution of such a variation to disease progression and the impact on drug
response has yet been the object of a detailed assessment in several genome-wide analysis
studies. Therefore, high levels of accuracy are the aim due to the employment of such analysis
results for selecting appropriate therapies based specifically on the genetic context of a particular
patient.

If, on the one hand, it is extremely important to have accurate genetic variants, on
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the other hand, there is now a present uncertainty around the detection tools responsible for
identifying such variations. The complete variant analysis process is complex, with multiple
analysis steps, and is dependent on a variety of programs, databases, and input/output formats.
Moreover, it also involves the need for handling large amounts of heterogeneous data. In the
middle of such a complex context, a flood of tools for the identification of variants have been
developed using different strategies and approaches.

Although this diversity of tools appears to be positive, it also brings large incongruities in
the results due to the different detection tools, highlighting the need to separate the true positive
events more accurately. To do this, it is necessary to include some validation criteria in order to
assess such tools. However, this is the crucial problem: how to define a set of variants to work as
a benchmark.

The lack of a gold standard of variants, the complex nature of biologic data, and the
heterogeneity across platforms and methods make the acquisition of considerable levels of
accuracy in detecting genetic variants a great challenge. In this light, many authors have
investigated the concordance among structural variant detection tools and have revealed that
there exist significant discrepancies between the overall variant sets called by each available
variant-calling pipeline (O’RAWE et al., 2013).

Given that the importance of obtaining accurate and consistent variant calls for person-
alized medicine, there is a strong demand for highly accurate tools of Structural Variant (SV)
identification. In general, the process of evaluating such tools intends to assess the distinction
between genuine variants and random effects originating from sampling or sequencing errors.
Thus, many authors have firmly stated that the lack of established benchmark data and tools
is one of the largest challenging barriers for adequately evaluating detection tools. This draws
attention to the need for a proper methodology for evaluating the accuracy of SVs returned by a
given tool. Moreover, the relevance of this thesis is strongly corroborated by the proven effort to
establish sufficient quality in available sets of genetic variants.

In addition, it is worthy to note that, from the perspective of engineering bioinformatics
software, most tools, including SV detection tools, are results of development processes that
posses gaps in fundamental actions (LAWLOR; WALSH, 2015), such as clearly defining the
problem, the inability to reproduce the findings, the unreliability of findings, and the limitations
of the data sample size, among other issues. Thus, the positive influence of thoroughly evaluated
tools and data on the progress of data analysis research has been well justified. In general, the
creation and widespread use of a benchmark within a research area are frequently accompanied

by rapid technical progress and community building:

"Creating a benchmark requires a community to examine their understanding of
the field, come to an agreement on what are the key problems, and encapsulate
this knowledge in an evaluation. Using the benchmark results in a more rigorous
examination of research contributions, and an overall improvement in the tools and

techniques being developed. Throughout the benchmarking process, there is greater
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communication and collaboration among different researchers leading to a stronger
consensus on the community’s research goals.” (SIM; EASTERBROOK; HOLT,
2003)

This thesis concurs with these ideas. It is motivated by the belief that an established
evaluation methodology and standard benchmarks for assessing different tools are needed for the

relevant advancement of genetic variants research.

1.3 Thesis Objectives

The main objective of this thesis is the investigation of a new methodology for evaluating
structural variants. Considering the lack of a real gold standard, as described previously, an
important component of our study is to present a manner for alleviate this absence, as there are
so many existing detection tools and other news that need assessment their outcomes.

Towards this aim, in order to answer the main research question, '"How does one evaluate
the accuracy of structural variants without a benchmark data?'', this work visits the following

key issues:

s Commonalities and differences in the methods designed for detecting structural

variants.

» Low agreement among detection tools establishing the uncertainty of the variant
calls.

= Most comparative studies pointing out the lack of a gold standard as a great barrier

for evaluating SV detection tools.

= Data analysis using the most frequently used database of structural variants (DGV -

Database of Genomic Variants).

While still considering other important questions to be answered, such as what to evaluate,
which criteria to use, how to measure those criteria, how to compare two variants, and how to

achieve accuracy, the thesis objectives focus on the two following general topics:

Objective 1: Develop a methodology for evaluating structural variants without using
benchmark data

Objective 2: Release a set of structural variants provided by the proposed methodology
to work as a benchmark.
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1.4 Research Contributions

The main contributions of this thesis include the following:

= An overview of the problem of detecting structural variants using Next-Generation

Sequencing data, with an emphasis on the important caveats in each stage.

= A list of relevant aspects used in comparative and analytic studies that can affect
the specificity of variant detection tools; this was published in the Transactions on

Computational Biology and Bioinformatics Journal - June 2016.
» A methodology for evaluating structural variants without using benchmark data.

» Results of DGV data analysis, in order to assess the usage of this database in a

meta-analysis procedure.

m The release of a set of structural variants to be used as a benchmark for new variant

calling tools.

= A list of studies in which accurate variants were published.

1.5 Thesis Organization

The thesis is organized as follow:

In chapter 2, we provide a brief overview of the primordial biological concepts inherent to
the problem of detecting structural variants. Then we explain terms such as sequencing, reference
genome, and genetic variation, and we also introduce popular databases and projects related
to variant discovery. Moreover, this chapter includes information on the computer science part
within the context of this thesis, especially the biclustering technique, which makes ScreenVar
part of the introduced methodology.

In chapter 3, we enlarge the comprehension of structural variant detection through a
state-of-the-art snapshot with respect to this research problem, and then through a brief survey of
current methods for genetic variation detection using the most popular sequencing technology
called Next-generation sequencing (NGS). Afterwards, with the investigation of several tools, an
analytic perspective has revealed relevant aspects or caveats that are described in this chapter.
Finally, we present a resulting list of features commonly observed during the assessment of
variant detection tools.

In Chapter 4, we introduce the core contribution of this thesis, the ScreenVar methodology,
which aims to provide a method for evaluating structural variants using biclustering algorithms.
Then we describe each step of this methodology as well as the outcomes of several experiments
performed with a consolidated database of genetic variants.

In chapter 5, we provide the most important points of discussion and contributions, along

with the future works designed for this work. It is important to highlight the contents of the
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appendix of this thesis, which comprises details of the ScreenVar implementation and many

supplementary data obtained from the experiments.
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Background

This chapter briefly introduces the fundamental concepts for this thesis, regarding un-
derlying subjects present in a biclustering-based (Section 2.2.2) methodology (Section 2.3.2)
for evaluating structural variants (Section 2.1.3). This thesis pursues a functional approach to
evaluate such variations with respect to the accuracy. An in-depth understanding of the internal
details of each part could thus be helpful, but not essential and neither applicable for this thesis.
Therefore, the coverage of technical background of both areas will be kept rather short. Some
points presented in this background will be complemented by each introduction section in the

next two chapters (Sections 3.1 and 4.1).

2.1 Foundation in Biology

This section provides background information on the biological part of bioinformatics,
highlighting important terms and concepts relevant to better understand the problem of structural

variant detection.

2.1.1 Sequencing and mapping

By sequencing, we mean the process of determining the nucleotide order of a physical
DNA fragment using a sequencing machine. Regardless of the approach to the genome as a
whole, the process of DNA sequencing is the same. Sequencing employs a technique to separate
pieces of DNA that differ from the others in length by only one base.

Three types of sequences play complementary roles in the cell: DNA sequences, RNA
sequences, and protein sequences. DNA sequences are the basis of genetic material and act as
the hereditary mechanism, providing the recipe for life. RNA sequences are derived from DNA
sequences and play many roles in protein synthesis. Protein sequences carry out most essential
processes such as tissue building, catalysis, oxygen transport, signaling, antibody defense, and
transcription regulation.

An automatic sequencing machine outputs DNA sequences, called raw sequences by
genome scientists. In raw sequences, the reads or short DNA sequences are all jumbled together,

like pieces of a jigsaw puzzle in a just-opened box. Then, the reads are organized into larger
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contigs during assembly. Each cell in an organism contains the same set of chromosomes, which
are long DNA sequences. The set of chromosomes in an organism constitutes its genome.

Inevitably, raw sequences also contain a few gaps, mistakes, and ambiguities, making
the task of assembly and mapping much more difficult. The reference sequence is a consensus
sequence generated from a sample of donors, since such sequence does not accurately represent
the set of genes of any single person. An example is the GRCh38, a human reference genome
released on 24 December 2013, with roughly 3 x 10° base pairs.

Given that a reference has already been made available, the next step of a process of DNA
sequencing, assembly and analysis relies heavily on mapping sequencing reads to a reference
genome in order to find candidate positions of the reads. Even though it is a non-trivial task due
to mutation and sequencing errors, it is very fast to look up all matching positions for those reads

that are quite identical to the reference.

2.1.2 Human Genetic Variation

Genetic variation describes differences between the DNA sequences of individual
genomes. Such differences (known as variants) occur in one or more individuals compared
to the reference genome, or within individual cells — in the case of the study of cancer cells
(case-control study), for example. Finding variants is the main goal in assembly with reference,
and it is called variant discovery or variant calling.

Individuals differ from each other mostly because their DNA sequences differ, but genetic
variation is not the only explanation for differences in phenotype (an observable characteristic).
As aresult of changes in DNA which are not corrected by repair systems, mutations are inevitable
— i.e., mutation describes both a process that produces altered DNA sequences (either a change
in the base sequence or in the number of copies of a specific DNA segment) and the outcome of
that change (the altered DNA sequence).

The most common type of genetic variation is the single-nucleotide polymorphism (SNP,
pronounced as “’snip”), which is a change at a given position compared to the reference genome.
Short insertions or deletions are referred to as indels, whereas the larger insertions and deletion
are often referred to as Copy Number Variations (CNV), due to the alterations in the number
of copies of chromosomal segments. Strictly speaking, indels should be considered to be copy
number variants (a person with a gain or loss of copies instead of the normal two copies), but
there is a convention to reserve the term indels to describe alteration up to an arbitrary 50
nucleotides. In addition, the term Structural Variants (SV) was assigned for large genomic
rearrangements, including those involving alterations on the number of copies of genomic
fragments, such as insertions and deletions (unbalanced structural variants), and those which
do not, such as inversions and translocations (balanced structural variants) (Figure 2.1). Thus,
unbalanced SV also includes CNV.
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Figure 2.1: General classes of SV
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The schematic illustrates deletions, duplications, and novel sequence insertions (unbalanced SV), and
inversions, translocations, and mobile element sequence insertions (balanced SV) in a test genome (lower
line) when compared with the reference genome (upper line).

2.1.3 Variants Calling

Variant calling or variant discovery is one of the key challenges in many areas of
genomic research and diagnostics. Having aligned the reads of one or more individuals to
a reference genome, SNP/indels/SV/CNYV calling identifies variable sites, whereas genotype
calling determines the genotype for each individual at each site. This is a stage of a complete
data analysis process where the information sampled from both the population and the personal
genomes is collected and evaluated in order to produce raw variants.

The detection of SV began more than 50 years ago with the development of the first
cytogenetic techniques (karyotyping and fluorescence in situ hybridization (FISH)), with which
observations of large chromosomal aberrations were observed microscopically in human cells.
Then, in the middle of the 2000s, variant calling strategies achieved higher accuracy using array-
based comparative genomic hybridization (arrayCGH) and SNP-array approaches. However,
these approaches have suffered several inherent drawbacks, including low resolution and difficulty
in detecting novel and rare mutations. With the posterior advent of microarray and sequencing
technologies, the evolution of genome-wide methods for identifying all spectrum of SV resulted
in significant enhancement of number, resolution and sensitivity of uncovered genetic variations.

Over the last years, Next-Generation Sequencing (NGS) has evolved into a popular
strategy for genotyping and has included comprehensive characterization of variants by gener-
ating hundreds of millions short reads in a single run (METZKER, 2009). Besides keeping an
inexpensive production of large volumes of sequence data, NGS also provides higher coverage
and resolution, more accurate estimation of copy numbers, and more precision in detecting

breakpoints. Taking these advantages into account, several variant calling tools have developed
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based on different strategies for extracting features from NGS data. Along with such techno-
logical advances, the most prominent development is due to the Third Generation Sequencing
(TGS) technologies, which have revolutionized genomics by enabling the sequencing of long,
individual molecules of DNA and RNA.

Chapter 3 describes further details about the four abroad approaches for detecting
structural variants following the emergence of NGS technologies, namely the Read Depth (RD),
Paired-end Mapping (PEM), Split-read (SR) and Assembly-based (AS) methods. Moreover,

such chapter includes relevant issues about overall procedure of variant calling analysis.

2.1.4 Genetic Mapping in Human Disease

The challenge of identifying genes and biological processes underlying any complex trait
and diseases has motivated diverse linkage and association analyses over the years. While linkage
studies use genetic mapping to identify loci associated with diseases by tracing transmission in
families, genome-wide association studies (known as GWAS) use comparisons of frequencies of
genetic variants among affected and unaffected individuals.

The last decade has seen rapid developments and breakthroughs in interpreting the phe-
notypic consequences of structural variation, especially due to the combination of the availability
of full genome sequences and the growing number of GWAS. Such studies have uncovered thou-
sands of variants influencing major diseases and complex human traits, including cardiovascular

diseases, diabetes, dementia, schizophrenia, height, and body mass index (BMI).

2.1.5 Projects and catalogs

Before 2004, only a few dozen reasonably well-defined, non-disease associated, submi-
croscopic SV had been documented in the human genome. Since 2004, though, efforts have
emerged to investigate, map, characterize and catalog SNP, indels and SV across the human
genome. Through many projects around the world, a number of variants were discovered and
cataloged in useful data sets, and many GWAS have used such collections in research for disease
association. The following list shows some of the most relevant and commonly used projects

and databases related to genetic variations.

= 1000 Genomes Project: Started in 2007, the 1000 Genomes Project is one of the
largest distributed data collection and analysis project, which aimed to sequence
hundreds of human genotypes, at low coverage (4-6)). The project stimulated the
creation of a deep catalog of human genetic variation along with extensive methods
to accurately discover and characterize the human variability using new sequencing
technologies at an unprecedented scale and dramatically reduced cost. One of the
most relevant results of this project was an integrated map of genetic variation
from 1,092 individuals from 14 populations. This map consisted in 38 million
SNP, 1.4 million indels and more than 14,000 larger deletions (ABECASIS et al.,
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2012). Indeed, the 1000 Genomes Project has established as a research standard for
population genetics and genomics, providing access to genotypes, sequences and

genome mapping.

= Database of Genomic Variants (DGV): The explosion of data from diverse SV
studies provoked the need of developing a public data archive. Thus, DGV was
launched in 2004, comprising SV data from a few hundred individuals representing
roughly 1,000 CNV and some inversions. Over more than a decade, the last version
of DGV (at May 2016) has expanded to encompass information from 72 published

studies with over than 6 million entries.

s The Cancer Genome Atlas (TCGA): This dataset was designed to catalog and
discover major cancer-causing genome alterations in large cohorts of human tumors.
Comprising more than two petabytes of publicly available data, TCGA has provided
multi-dimensional maps of the key genomic changes in 33 types of cancer. Since
June 2016, TCGA has been integrated to the Genomic Data Commons (GDC), which
provides a unified data repository to enable data sharing across cancer genomic

studies in support of precision medicine.

2.2 Concepts in Computer Science

This section provides background information on the computer science field of bioinfor-
matics, showing important terms and concepts of data analysis and biclustering in order to better

understand the underlying steps of the proposed methodology.

2.2.1 Data Analysis

The term Data Analysis has been used for quite a while, even before the advent of the
computer era, as an extension of mathematical statistics, starting from development of cluster
analysis and other multivariate techniques. The so-called data avalanche is created by the fact
that there is no concise set of parameters that can fully describe a state of real-world complex
systems studied nowadays by biologists, ecologists, sociologists, economists etc. On the other
hand, powerful computers are able to produce, store, analyze, and visualize unlimited data
sets through a wide spectrum of computational methods, including cluster analysis, pattern
recognition, data mining, neural networks and so on.

A possible definition of data analysis is the process of computing various summaries
and derived values from the given collection of data. Moreover, the process may become more
intelligent if attempts are made to automate some of the reasoning of skilled data analysts and/or
to utilize approaches developed in the Artificial Intelligence areas (BERTHOLD; HAND, 2003).
Overall, the term Data Analysis is usually applied as an umbrella to cover all the various activities

mentioned above, with an emphasis on mathematical statistics and its extensions.
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Analysis of the data includes simple query and reporting functions, statistical analysis,
more complex multidimensional analysis, and data mining (also known as knowledge discovery
in databases, or KDD). Thus, among the diverse goals of data analysis, a significant interest
regarding bioinformatics problems has been developed in cluster analysis, an important technique
in exploratory data analysis, especially when there is no prior knowledge of the distribution of

the observed data.

2.2.2 Biclustering

Biclustering consists in simultaneous partitioning of the set of objects and the set of their
attributes into subsets. Assuming a given typical rectangular data matrix, it is a two-dimensional
clustering in which rows correspond to objects and columns to attributes. For instance, in a
practical example, if one wants to sell a laptop, one must take into consideration that one group
of customers will be mainly interested in price, processor speed and screen size, while another
group will be interested in dimensions, height, and design. This technique leads to finding
homogeneous groups of objects, such as a subset of laptops suitable for one of two groups of

customers.

A x x A x A « A A Alx % % x
X k% % % % k% A A Alx % % x
* ok ok ok ok ok Kk A A Alx % % %
A+ x A *x A x| = x % % |k ok k%
% ok ok ok ok ok ok %k ok |k ok k%
A *x x A x A % %k ok |k ok k%
x ok k% kx  x X * %k | x ok x %

Figure 2.2: Biclustering finds objects and attributes with a similar value A and reports them as a
bicluster (submatrix)

2.2.2.1 Biclustering Program Definition

Given a m x n data matrix A:

Y1 Y2 0 Yn

Xp | a1 aip - aip

Apn= X2 | a1 a2 - Qp
Xm | Gm,1 Am2 - Amn

with objects X, attributes Y and entries a;;. The goal of bicluster analysis is to find

subgroups Ajy of objects I =iy, ...,ix,k < n,I C X which are as similar as possible to each other
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on a subset of variables J = ji,---, j;,j <m,J CY and as different as possible to the remaining
objects and attributes. Bicluster z is then defined as BC, = (I;,J;) = A ..

A typical case to calculate bicluster is a high dimensional dataset with many variables,
so that normal cluster algorithms lead to diffuse results due to many uncorrelated variables
(KAISER, 2011). Also, biclustering is useful if there is an assumed connection of objects and
some variables in the data set, that is, some objects have a certain similarity for a given set of
variables.

In Bioinformatics, biclustering has many significant benefits:

= It can lead to a better understanding of the biological processes. Sets of genes
regulated by the same transcription factor, namely module, can be detected using

biclustering.

» Multi-functionality of the genes leads us to expect subsets of genes to be co-expressed

only under certain conditions and to be uncorrelated under the rest of the conditions.

» Biclustering has a great potential in detecting marker genes that are associated with
certain tissues or diseases. Thus, it may lead to the discovery of new therapeutic

targets.

2.2.2.2 Overview of Existing Biclustering Algorithms

The earliest biclustering algorithm that can be found in the literature is the so-called
Direct Biclustering by Hartigan (HARTIGAN, 1972) also known as Block Clustering, i.e.,
simultaneously clustering rows and columns of a matrix. This approach relies on statistical
analysis of submatrices to form the biclusters. A bicluster is considered perfect if it has zero
variance, so biclusters with lower variance are considered to be better than biclusters with higher
variance. This, however, leads to an undesirable effect: single-row, single-column submatrices
become ideal biclusters as their variance is zero. This issue is normally resolved by finding
biclusters with other desirable properties, such as minimize variance in rows, variance in columns,
or biclusters following certain patterns.

There exists a diverse set of biclustering tools that follow different strategies and algorith-
mic concepts. The most widely used and successful techniques and their related applications can
be found in some relevant surveys on biclustering (PONTES; GIRALDEZ; AGUILAR-RUIZ,
2015) and (BUSYGIN; PROKOPYEV; PARDALOQOS, 2008). Based on the examination of the
biclustering methods in such studies, we selected four of them to highlight details in this section,

which are included in the proposed methodology.

s Cheng and Church (CHENG; CHURCH, 1999): The algorithm introduced by
Cheng and Church aims to find biclusters with a minimum Mean Squared Residue

(MSR) score. This value is equal to zero if all columns of the biclusters are equal to
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each other (that would imply that all rows are equal too). Cheng and Church proved
that the problem of finding the largest square bicluster with MSR score lower than a
given limit is a NP-hard. Thus, they used a greedy procedure starting from the entire
data matrix and successively removing columns or rows contributing most to MSR
score. The brute-force deletion algorithm testing the deletion of each row and column
would be still quite expensive in the sense of time complexity as it would require
O((m+ n)mn) operations. However, the authors employed a simplified search for

columns and rows to delete choosing a column with maximal.

= Plaid Models (LAZZERONI; OWEN, 2002): Introduced by Lazzaroni and Owen,
Plaid Models is a statistical approach based on exploratory analysis of multivariate
data, which assumes that the level of matrix entries is sum of the uniform backgrounds
and k biclusters (a superposition of layers). Motivated for analysis of gene expression,
several versions of the model are described in their work, being the most general the
one in which allows a gene to be in more than one biclusters or in none at all. In
short, Plaid Model is a form of overlapping two-sided clustering, with an embedded
ANOVA in each layer.

= Conserved gene expression motifs (or xXMOTIFs) (MURALI; KASIF, 2003): A
xMOTIF is a subset of genes that is simultaneously conserved across a set of samples
if it is in the same state in each of the samples in the subset. XMOTTIFs is a probabilistic
algorithm that exploits the mathematical structure of a XMOTIF to compute the largest
xMOTIF. In order to identify several XxMOTIFs in the data, an iterative strategy has
been adopted, where samples satisfying each xMOTIF are removed from the data,
and the new largest XMOTTF is searched. This process continues until all samples
satisfy some xMOTIF. This search strategy allows gene overlap and also sample
overlap, whenever any sample does not take part in more than one XMOTIF with the

same gene.

» Bimax algorithm (PRELIC et al., 2006): Binary inclusion-maximal biclustering
(Bimax) algorithm is a recursive divide-and-conquer approach proposed by Prelic.
Its objective is extremely simple: it finds subgroups of 1 values in a binary matrix.
In special, Bimax enumerates all inclusion-maximal biclusters, which are biclusters
of all ones to which no row or column can be added without introducing zeros. By
definition, this strategy only works with binary matrices, but clearly non-binary data

can be converted to binary data in a number of ways.

2.3 Concepts of Accuracy and Precision

The terms precision and accuracy are frequently used inconsistently. Furthermore, the

misconception that high precision implies high accuracy is almost universal. Accuracy refers to
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the closeness of a measured value to a standard or known value, whereas precision refers to the
closeness of two or more measurements to each other. For example, a wrist clock may measure
time with a precision of one second. A stop watch may time your race with a precision of one
hundredth of a second. However, if the clocks change and you forget to reset the wrist watch,
then you have a very precise time but is not very accurate — you will be an hour early or late for
all of your meetings.

The meaning and relationships between accuracy and precision can be clarified through
the common metaphor of the target (Figure 2.3):

Low accuracy Low accuracy
Low precision High precision

High accuracy
Low precision

High accuracy
High precision

Figure 2.3: Accuracy vs Precision

= Low accuracy & low precision: Hits are spread across the target and consistently

missing the centre.

» High accuracy & low precision: Hits are randomly spread across the target. On

average, you get a valid group estimate, but you are inconsistent.

» Low accuracy & high precision: The target is hit consistently and systematically

measuring the wrong value for all cases: it is consistent but wrong.

= High accuracy & high precision: You consistently hit the centre of the target.

2.3.1 Evaluation Methodologies

With respect to the term evaluation, we may present a definition adopted by the German
Evaluation Society (DeGEval), as follows:
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”Evaluation is the systematic investigation of an evaluand’s worth or merit. Evalu-
ands include programs, studies, products, schemes, services, organizations, policies,
technologies, and research projects. The results, conclusions and recommendations

shall derive from comprehensible, empirical qualitative and/or quantitative data.”

This extensive definition resulted from professional dialogues about the standardization
of the use of evaluations in a diverse set of approaches, purposes and fields. From the viewpoint
of scientific evaluations, some questions can direct the purpose of the evaluation. For instance,
to determine the best technique to solve particular problems, to decide whether or how much
new technologies improve over the state-of-the-art and finally to detect weaknesses and their
causes to determine the problems to devote further research.

According to Kitchenham (1996), evaluation methods can be classified into quantitative,
qualitative, and hybrid methods. Benchmarking belongs to hybrid methods, whose primary
distinguishing feature is to carry out direct comparisons of alternatives. Formally, the same

author shows the following definition about Benchmarking:

”Benchmarking is a process of running a number of standard tests/trials using
a number of alternative tools/methods (usually tools) and assessing the relative
performance of the tools in those tests”. (KITCHENHAM, 1996)

2.3.2 Evaluating bioinformatics tools

First, does scientific software development differ from other types of software? Creators
of software widely used in computational biology discussed the factors that have contributed to

their success:

”Scientific software often requires quite a strong insight — that is, algorithmic
development. The algorithm implements novel ideas, is based on deep scientific
understanding of data and the problem, and takes a step beyond what has been
done previously. In contrast, a lot of commercial software is doing specific cases of
fairly straightforward things — book-keeping and moving things around and so on.”
(ALTSCHUL et al., 2013)

Previous work on scientific software evaluation has shown that numerical disagreement
between programs of scientific computation grows at around the rate of 1% in average absolute
difference per 4000 lines of implemented code and that the nature of this disagreement is non-
random (HATTON; ROBERTS, 1994). Most recent scientific studies, especially in the area of
bioinformatics and computational biology, deal with large and complex data sets and complicated
algorithms. This complexity has made the replication of published findings difficult to pursue. In
addition, not all users fully understand the intended usage and limitations of a scientific program.

Errors or limitations of the computer code used could go undetected with possible negative
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effects on future researches. Most importantly, there have been numerous published papers that
attempt to train scientists to adopt best practices for scientific computing (WILSON et al., 2014).

Many scientists rely on the fact that the software has appeared in a peer-reviewed article,
recommendations, and technical opinions, as their reason for adopting it. Nonetheless, one must
not forget that there is a diversity of computational expertise within a development process,
which can lead to misconceptions around all necessary steps to assure the quality of the produced
tools. In other words, there is no guarantee that some tools put to use on the Internet are finished
products.

Another relevant point is about biologists, bioinformaticians, statisticians, and researchers
from other areas, who are not formally prepared to program software and might produce
unreliable products due to the absence of specific skills to provide an adequate solution with
satisfactory quality. Moreover, a complicating factor is that the reality of many of these published
methods derive from thesis or were developed for research projects with time constraints, and, as
a consequence of such limitation, are interrupted before the conclusion of a proper evaluation.

Due to this complex landscape, the need of applying a procedure for validating bioinfor-
matics software is compulsory. Even though it is essential, evaluating such programs is not a
trivial task as one would have imagined. It is often difficult, if not impossible, to define a gold
standard mechanism to decide if the output of the target program is correct, given any possible

input.
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Unraveling variant detection problem in tangible aspects

In the previous chapter, important conceptual elements were presented to contextualize
the variant detection problem. In this chapter, the focus shifts to introduce the current tools
dealing the variant detection problem. In this direction ,fifty tools were identified in the literature
and analyzed. Finally, issues regarding their analysis approaches, application and limitations are

presented.

3.1 Introduction

The completion of the Human Genome Project has brought evidence that the DNA
in the genomes of any two individuals is 99.9% identical, leaving the remaining 0.1% to be
exploited in search of the source of all observed differences. With the whole sequence in hand,
several computational tasks have emerged as challenges for understanding protein functions,
mechanisms, and interactions. Eventually, the research focus turned to the quest for such
variations and their roles, such as the increase of the risk for diseases, individual responses to
medications and environmental factors, as well as phenotypic differences among individuals
(height, eye color, hair color, and so on).

The initial effort in investigating human genetic variants only allowed the detection
of changes on a microscopic level (no less than 3Mbp in size). The development of both
experimental and computational strategies, which led to the availability of DNA sequencing
technologies, allowed for the identification of genetic alterations at a nucleotide level. These
alterations can be of different types and have been classified into three categories, based on their
lengths: (1) SNPs(Single Nucleotide Polymorphisms), which are point mutations in the DNA,
(2) Indels, which include insertions and deletions up to 50 bp in size, and (3) SV (Structural
Variants), which include balanced and unbalanced events, such as long insertions and deletions,
translocations, invertions, etc. (ALKAN; COE; EICHLER, 2011).

An important subgroup of the unbalanced structural variants is the copy number variations
(CNV), alterations in the number of DNA segments, which are usually two, due to the underlying
human evolution, diseases, or developmental disorders, leading the number of copies to become

zero, one, three, or more. At least two mechanisms are responsible for these changes, such as the
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process called non-allelic homologous recombination (NAHR) and microhomology-mediated
events. (A discussion of these mechanisms is beyond the scope of this thesis; for further reading
we suggest, for instance, the work of Hastings and Lupski (PJ Hastings, James R Lupski; IRA,
2010). CNV have been associated with neurological and neurocognitive disorders (GIRIRAJAN
et al., 2013) (SEBAT et al., 2007) and with disease susceptibility (e.g. cancer, asthma, obesity)
(FURUYA et al., 2015), but they can also be found in healthy individuals (ZHAO et al., 2013).

In 1968, Pepler and Smith reported, "It is now generally accepted that Down’s Syndrome
is due to the presence of extra genetic material of a chromosome in the G group" (PEPLER;
SMITH; NIEKERK, 1968). This is only one of many evidences confirming that, for a long time,
scientists have been interested in the pursuit of disease-causing genetic variations. Numerous
studies have been carried out to investigate traits and complex diseases and, almost five decades
later, we are still unravelling the associations between the human genome and diseases or
phenotypes.

Before the advent of high-throughput sequencing (HTS) technologies, most methods for
CNYV detection were based on whole-genome array Comparative Genome Hybridization (aCGH),
which utilized the relative frequencies of probe DNA segments between two genomes. Even
with intense computational effort, hybridization-based approaches still have limited resolution
(about 5-10 Mbp, for FISH (fluorescence in situ hybridization), and 10-25Kbp with 1 million
probes, for aCGH) (YOON et al., 2009), being limited to short CNV detection.

Over the last few years, the newest sequencing technologies have brought revolutionary
breakthroughs in areas such as the analysis of genomes through sequencing of unprecedented
scale. The evolution of NGS has warranted a comprehensive characterization of CNV by gener-
ating hundreds of millions, even billions, of short reads in a single run. Hence, these advances
have been responsible for numerous databases of short reads, and the resulting development of
diverse tools for detecting these variants, especially for smaller SVs.

Knowledge of structural variations in the human genome has improved rapidly since
many more public complete genome sequences have became available, as a result of the dramatic
growth of sequencing capacity (next-generation and third-generation sequencers). Meanwhile,
a number of sophisticated tools and associated pipelines for variant calling, annotation, and
visualization have allowed the compilation of catalogs of human DNA variations shared in diverse
databases (e.g. Database of Genomic Variants (DGV) (MACDONALD et al., 2014), dbSNP
(SHERRY et al., 2001), dbVar (LAPPALAINEN et al., 2013)). A CNV map was published
in February, 2015 (ZARREI et al., 2015), providing a human genome catalog of benign CNV
among healthy individuals of various populations. This map was developed with data from DGV,
which has collected and curated over 2 million CNV that were discovered from 55 studies.

Springing from large projects, such as HapMap (INTERNATIONAL; CONSORTIUM,
2005), 1000 Genomes Project (DURBIN et al., 2010)(TONEVA et al., 2012), and UK10K Project
(SANGER, 2017), a myriad of genome-wide association studies (GWAS) have extended the list

of somatic alterations in key genes uncovered in cancer studies. New findings on associations of
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genetic variations were also published in regard to, for instance, susceptibility or progression
of diabetes (ZANDA et al., 2014), Crohn’s disease (PRESCOTT et al., 2010), and Parkinson’s
disease (PANKRATZ et al., 2011).

Regarding the identification of indels and CNV contained in DNA sequences, there is
only a moderate agreement of findings among available softwares. Many strategies have been
applied, using high-throughput sequencing data and their different data types, but detecting copy
number variations is still a challenging problem. Given the importance of obtaining an accurate
solution, comparative studies have been published pinpointing advantages and disadvantages
in CNYV calling tools. Table 3.1 lists some recently published comparison papers and surveys,
with a brief word on each of them. The aim of these papers is to assist researchers in choosing
the most suitable tool for their research needs. Most of the authors have stated firmly the lack
of gold standard as a major challenging barrier for adequately evaluating the tools, along with
the heterogeneity across sequencing platforms, computational techniques, and data formats
available.

In this chapter, instead of discussing tools and their advantages or drawbacks, we focus
strongly on the core features present in most CNV detection methods, addressing the strategies
applied to overcome their weaknesses. This aims at providing a consistent bird’s eye view with
an analytical perspective covering the most popular tools. As a result, a list of eight highly
relevant aspects or caveats of the CNV detection process emerges, singling out the most pressing

questions in the realm of CNV analysis.

3.2 CNV Detection Tools using NGS data

An ideal CNV detection method from NGS data should accurately quantify the copy
numbers of all genomic segments and define their boundaries across the whole or partial
genome. Generally, such methods are incorporated into either current available pipelines or
workflows (PABINGER et al., 2014), which involves integrated computational steps to execute
data manipulation or analysis procedures, from raw sequences to biological meaningful results
through annotated variants. In short, the main goals of these tools include to identify copy
number states (gain, loss, normal) and copy number change points (a genomic location where
there is a change of copy number state - breakpoints), taking a reference or target genome as the
baseline for recognizing such variations.

Theoretically, detecting CNV from NGS data should be straightforward, once millions
upon millions of sequence reads have been produced. However, in most cases, those reads
measure only a few hundred bases, hence they rarely span a complete variant region of the
genome. Moreover, sequencing is biased with respect to DNA content, which means that some
regions amplify more efficiently than others. Depending on the amplification method, this could

provoke unreliable quantitative results and significant differences in GC-content.
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Table 3.1: List of recent comparative studies and reviews of CNV detection tools. The first three
articles report results of comparative experiments.

SUMMARY ‘ RELEVANT POINTS REF.
Investigates statistical challenges in analyzing | Dataset: paired reads of individual NA12981 (> 20y) - from The 1000 | TEO et al.
NGS data through a list of commonly used soft- | Genome Project (2012)
ware. Reference CNV: from Conrad et al. CONRAD et al. (2012)
Examines the abilities of algorithms designed for | Dataset: sequencing data of five samples (NA19240, NA12878, NA11830, | MAGI
analysing read count data, comparing the perfor- | NA11840, NA12043) sequenced by three platforms at low coverage - from | et al.
mances of the six most widely used sequencing | The 1000 Genome Project (2012)
technologies, particularly for Read-Depth meth- | Reference CNV: from McCarroll et al. MCCARROLL et al. (2008)
ods.
Reports experiments performed among six CNV | Dataset: Simulated data (using reference genome hg18) and real data (chro- | DUAN
detection tools and their results, using synthetic | mosome 21 of the sample NA19240, at medium coverage). et al.
and real data. Some comparative results are re- | Reference CNV: DGV and outcomes from other tools (2013)
lated to computation time/memory and levels of
estimation of breakpoints or copy number.
Shows an analytical study with 12 structural vari- | NGS platforms produce elevated sequencing error rate. XI; KIM;
ants detection tools, discussing data type, re- | The number of ambiguous reads are increased by the short read sizes. PARK
quired control, and SV types that are detectable | Three factors can provoke an unbalanced number of mapped reads: GC- | (2010)
by them. content, amplification errors, and non-uniform fragment distribution along the

genome.

Low coverage limits the sensitivity and specificity of the inference.

For detecting insertion larger than the read length and insert size, one must

opt for de novo assembly.
A throughout review describing in details each | Quality of sample preparation, library construction, sequencing instruments, | XI; LEE;
one of the four approaches, also including a list | and the CNV detection algorithm and its parameters can strongly influence | PARK
of tools using each one. the sensitivity and specificity of the outcomes. (2012)

The high coverage variance in whole exome sequencing makes CNV estima-

tion more challenging than whole-genome sequencing.
Accesses the merits of CNV tools evaluated using | Improvements in read length will significantly impact mapping quality and de | LI;
both array-based data and NGS data. Includes | novo assembling. OLIVIER
important details about tools based on each plat- | To sequence a genome at an adequate depth of coverage for reliable CNV call- | (2013)
form, such as the size range of CNVs best de- | ing (20X or greater) is considerably more expensive than using array-based
tected and data type handled by all methods. platforms.

Large-scale throughput is still not quite feasible, due to considerable hardware

and software infrastructure required for processing all computational pipeline.
Shows a different study about CNV detection, | Achieving a suitable accuracy for detecting CNV faced the extraordinary com- | LIU et al.
providing an overview of tools used for cancer | plexity of tumor genomes has challenged researchers to take full use of NGS | (2013)
analysis, as well as a general workflow for so- | data (BAF, read counts, discordant reads pairs) and to observe whether the
matic CNV detection tools. Many aspects and | process of NGS analysis needs specific adaptations for cancer studies.
challenges are described, fostering the develop-
ment of analytical tools for this kind of study.
Reports results of a comparison study involv- | The combination of different tools has been effective in improving CNV call- | ZHAO
ing 48 tools. Challenges, strengths, and weak- | ing accuracy. Studies involving PEM tools combined with other PEM-based | et al.
nesses are identified with the goal of assisting | tools or with RD and AS approaches have demonstrated significant improve- | (2013)
researchers in selecting the proper NGS tool. | ment in the statistical power of evidence of both CNV size and breakpoints.
Among other insights, there are aspects about the
usage of WES and WGS data.
Surveys 50 software tools capable of detecting | The results of the WGS simulation implied that PEM was the single best | NOLL
SVs in short-read WGS in order to evaluate the | method for deteletion structural variant detection, albeit a combination of | et al.
performance of these methods in deletion struc- | PEM, DOC and SRM methods was optimal. (2016)

tural variant detection.

3.2.1

NGS Data Analysis Workflow

NGS data analysis workflows for CNV detection includes multiple steps performed in

general by a combination of vendor software, third-party tools, and custom scripts. Next, the

overall workflow for NGS projects is grouped in four main tasks briefly described (Figure 3.1).

3.2.1.1

NGS Data Pre-Processing:

NGS data processing consists first in wet lab actions like image analysis, base calling,

and sequence analysis. Through it all, it is known that key early decisions in library preparation
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Figure 3.1: A general workflow of Copy Number Variation Detection Methods

Table 3.2: Tasks of a general workflow of Copy Number Detection Tools

TASK COMMON ACTIONS TYPICAL PRODUCT MAIN CONCERNS
NGS Data Pre- | Prepare library FASTQ file Quality of sequencing data
Processing Call bases Data type (WGS x WES)
Cost-effectiveness (coverage, sampling size)
Mapping / Assembly | Align reads BAM file Ambiguity in mapping reads
Apply quality procedures
Recalibrate reads
Estimation Identify breakpoints VCF file Low mapping quality
Identify copy number Suitable detection tool
Determination of cutoffs
Interpretation Validate CNV callings Annotation Lack of a gold standard
Find associations with Existing callings and annotations with inac-
traits or diseases curate strategies

and sequencing technology can be strongly related to false positive rate in variant calling phase,
which is discussed in detail in (QUAIL et al., 2012), a study of the three main NGS sequencing
platforms (Ion Torrent, [llumina, and Roche).

Another concern involves the sequence data production, whether considering the quality
and richness of data provided by Whole Genome Sequencing (WGS), despite the high cost for
this production, instead of choosing Whole Exome Sequencing (WES), for its reduced cost
and its increased popularity in clinical genetic studies. Along with the data type, important
sequencing concepts have contributed to reach better accuracy, such as read length, single or
paired end, sequencing coverage, and quality scores. Then filters for quality assessment evaluate
the quality of the reads, in order to remove, trim, or correct, considering the base quality scores,
when a large data set of reads are addressable in FASTQ file for the next step.

3.2.1.2 Mapping/Assembly:

Once the raw data is obtained from whole or exome sequencing, the computational
intensive step of read mapping is performed. Considered as the fundamental and most costly
step of this workflow, the mapping of the set of reads against a target genome is done by means
of short read aligners, such as BWA (LI; RUAN; DURBIN, 2008) and Bowtie2 (LANGMEAD;
SALZBERG, 2012). Alternatively, when the reference genome is unknown a priori, a de novo
assembly is attempted through overlapping sequence reads, creating consensus sequences and
eventually the entire genome. The coverage quality of a de novo genome assembly depends on

the size and continuity of the contigs (basically, the number of gaps). This procedure requires an
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efficient overlapping process, which demands higher computational power than mapping to a
known target sequence. During the alignment, quality check procedures are normally applied,
such as soft clipping of low-quality bases, retaining only uniquely mapped reads, and removal
of potential PCR duplicates. The alignment is also refined by locally realigning any suspicious
reads, including known indels, and base quality scores of realigned BAM files are recalibrated.
Only then, the realigned reads are written in the typical product of this phase, a Sequence
Alignment/Map (SAM) or its binary version (BAM file).

3.2.1.3 Estimation:

Once the mapped reads are available, a chosen algorithm is used to identify regions with
any structural variation. Variant callers analyze BAM files to discover all sites with statistical
evidence of occurrence of alternate allele. In order to achieve a higher accuracy in variant calling,
some methods perform trimming and correcting tasks, like the removal of duplicated sequences
and the removal/flagging of sequences with low mapping quality (MQ). In this stage, an accurate
segmentation is essential to estimate the copy number of the segment. Given many aspects that
cover the detection of CNV, the choice of suitable tools to be used in this step have to take into
account the main requirements of the analysis. Abilities, such as dealing with germline and
somatic samples, or prediction of the exact number of DNA copy, for instance, could determine
the choice of one specific tool for this step. Finally, the set of output results is provided in a
variant call format (VCF) file.

3.2.1.4 Post-processing/Interpretation:

In this step, genuine CN'V must be distinguished from random effects originated from
sampling or sequencing errors. Since it would be necessary some kind of gold standard to confirm
the reliability of the CNV, assessing estimated CNV is currently an extremely challenging task.
One common strategy is to verify the concordance with other results. Meanwhile, according to a
reciprocal overlap criterion, some procedures perform a merging of the adjacent regions with
identical copy number into one single segment, and divide regions with different copy numbers
into different segments. Then, the final adjusted file is produced containing all remaining copy

number variations.

3.2.2 Methods for CNV detection using NGS data

The potential for applications provided by NGS technologies has been demonstrated
through several issues that can be more closely addressed in genome sequencing and functional
genome research. Diverse relevant properties extracted from NGS data, such as quantity and
length of reads produced, read counts, B Allele Frequency (BAF), soft-clipped reads, and
discordant read pairs, became a rich source of information which is exploited for detecting

CNV. Different approaches were developed focusing on the exploitation of one or a few of those



3.2. CNV DETECTION TOOLS USING NGS DATA 39

properties. The most widely used sequence-based approaches are: (1) Paired-End Mapping
(PEM), (2) Read-Depth (RD) (or Depth of Coverage), (3) Split-Read (SR), (4) Assembly-based
(AS), and (5) Combined-based (CB).

3.2.2.1 Paired-End Mapping (PEM) Approach

This method analyzes anomalies in the separation lengths or orientation of aligned read
pairs. The overall strategy of Paired-end Mapping methods for CNV detection is to align the ends
of the fragments to a reference genome and fully utilize the respective mate-pair information.
Paired-ends that disagree in length or orientation indicate possible insertions, deletions, or
inversions. Since 2005, when the first study to implement a paired-end sequencing approach was
demonstrated by Tuzun and colleagues (TUZUN et al., 2005), many computational tools based
on this approach have been released, including PEMer (KORBEL et al., 2009), VariationHunter
(HORMOZDIARI et al., 2010), BreakDancer (CHEN et al., 2013), and so on, which were
adopted for SV mapping in personal genomics endeavors, such as the 1000 Genomes Project. A
known drawback shared by all methods from this category is that only an approximate resolution
of the structural variants is possible to find, once this approach depends on the insert size to

provide precise boundaries for identified variants.

3.2.2.2 Read-depth (RD) Approach

The principle of this approach consists in aligning the sampled reads to the reference
genome, then piling up the aligned reads, and using the density of these alignments to calculate
the read counts across sliding windows (or bins), resulting in the so-called RD-signal. The basic
idea is that the read density of a given genomic region should be correlated to the copy number
of that region. Genomic regions with disproportionate read counts indicate potential CNV. An
assumption of data distribution is needed to model this signal and, therefore, to investigate the
presence of variations. Typically, it is assumed that the reads are generated randomly, following
a Poisson or modified Poisson distribution.

In 20009, a study by Chiang and collaborators was the first to adopt this approach, leading
to the development of a tool called SegSeq (CHIANG et al., 2009) to define rearrangements in
cancer. After that, several methods have been released, not only using the RD approach, but also
combining RD and PEM on a single solution. RDXplorer/EWT (YOON et al., 2009), mrFast
(ALKAN et al., 2010), CNVnator (ABYZOV et al., 2011), ReadDepth (MILLER et al., 2011),
and Control-FREEC (BOEVA et al., 2011) are among the most commonly cited methods in the
literature and in scientific forums.

Although the initial application for this strategy was related to tumor studies, read-depth
is the only sequencing-based method to accurately identify absolute copy-number in genomes
(as opposite to only infer gain/loss), even though with poor breakpoint resolution in general
(ALKAN; COE; EICHLER, 2011). In addition, read-depth tools have outnumbered other
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approaches (see Table A.1), due to the use of a number of different strategies commonly applied
to model signal behavior. Table 3.3 points to important particularities which characterize how

this subset of tools deals with data preprocessing and segmentation.

3.2.2.3 Split-read (SR) Approach

The strategy behind this approach is to detect paired reads is to apply longer sequencing
reads to define the breakpoints of structural variants, based on occurrences of gapped read
alignments. Gaps observed are considered as potential breakpoints of a SV, thus multiple parts
of the same read characterized by different anchor points could be mapped to different SVs of
the reference genome.

The focus of this strategy is to detect read pairs in which exactly one read is uniquely
mapped to the reference sequence, while the other read failed to be aligned. The assumption is
that the second paired read could not be mapped, even with few mismatches allowed, because
it corresponds to a deletion or insertion breakpoint. The mapped read is used as an anchor
and knowing both a maximum event length and the direction to search for the unmapped
read; alignment of the unmapped read can be performed either by splitting it into two or three
fragments.

SR methods are more sensitive when used with NGS technologies that produce short
reads, since they are harder to be uniquely aligned. These methods can reach base-pair resolution
in detecting small insertions and deletions. Nonetheless, the length of the variation event must be
smaller than the length of a read. Third generation sequencing, with prominent longer reads, will
potentially improve the method performance. Some computational tools have been developed
using the SR approach, including Pindel (YE et al., 2009), SLOPE (ABEL et al., 2010), AGE
(ABYZOV; GERSTEIN, 2011), and SRiC (ZHANG et al., 2011).

3.2.2.4 Sequence Assembly Approach

This approach is perhaps the most natural, since it builds on the well-known de novo
assemblers. Theoretically, a complete genome sequencing followed by de novo assembly and
comparison to a high-quality reference genome, could detect all structural variants, including
CNV. In practice, accurate assembling is still a challenging problem, due to the genome complex-
ity, the length and error rate of the produced reads, etc. Although de novo assembly of an entire
human genome based on NGS data is a problem far from exhausted and demands significant
computational resources, some authors have proved that it is possible to use de novo assembly to
identify SVs. Some examples of tools based on this approach are Velvet (ZERBINO; BIRNEY,
2008), Cortex Assembler (IQBAL et al., 2012), Magnolya (NIJKAMP et al., 2012), and TIGRA
(CHEN et al., 2014).
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3.2.2.5 Combined Approach

Considering the specific functionality of each approach, some tools have used a combi-
nation of methods in the attempt to improve efficiency. For instance, in 2010, a tool provided by
Medvedev and collaborators, CN Ver, offered a combination of two known approaches, depth
of coverage and paired-end mapping (MEDVEDEYV et al., 2010). The common problem of
non-uniqueness of the reads on RD-based methods could be mitigated by using the information
of discordant mappings from paired-end mapping. Another example of the combined approach
i1s GenomeStrip (HANDSAKER et al., 2011), a complex tool based on all three possible sources
of CNV information handled by previous approaches: read-pairs, split-reads, and read-depth. It
has attracted much attention recently in forums and comparative studies, which is also due to
multiple operations in discovery, refinement, and genotyping. This tool was originally conceived
to support the 1000 Genomes Project, and it is currently maintained by the Broad Institute (Broad
Institute, 2017).

There is currently many open-source/freely-available tools for accurately estimating DNA
copy number variations in NGS data, using different strategies, statistic models, programming
languages, input/output format, and so on. This heterogeneity is further enhanced by new
challenges as, for instance, the advent of increasingly longer reads. Table A.1 shows a panel to
illustrate this variety, featuring some of the most popular tools in use, and Table 3.3 shows major

features of the read-depth based methods.



Table 3.3: Major features of most popular tools based on Read-Depth

Tool ‘ Data preprocessing ‘ Segmentation
CBSBR Multiple sequencing data Continuation block-wise single best replacement (extended CBS)
Negative Binomial Distribution
Penalized least square regression
cn.MOPS Quality control Mixture of Poissons (to separate signal from noise)
Differently sized windows Circular Binary Segmentation (CBS) or DNACopy
Sample normalization
GC-Correction
CNAnorm Mapping quality Smooth segmentation
Window size tuned for data available DNACopy
GC-Correction
Genome-wide normalization
Contamination correction
CNASeg Matched control HMM
GC-correction Segment merging based on statistical testing
Smoothed RD signal (Wavelet Transform)
Mapping quality filtering
CNV-Seq Random sampling assumption Statistical testing (multiple)
Matched control Adaptable size window
Log-Ratio based
CNVeM Clustering of discordant reads Mean-shift approach
GC-Correction Expectation-Maximization (EM)
Mappability: all possible mapping positions
CNVer Random sampling assumption Expectation Maximum
GC-Correction Minimum cost flow
Reduce sequencing bias with discordant read pairs
CNVnator Do not require matched control Mean-shift approach

Equally sized windows
GC-Correction

Control-FREEC

Matched control (optional)
GC-correction
Mappability correction

LASSO algorithm
Empirical cutoff

JointSLM Random sampling assumption Shifting Level Model (SLM) extended / HMM
Multiple sampling Fixed window
Matched control
GC-correction
RDXplorer Random sampling assumption Significance testing (Event-wise testing)
Matched control (optional)
GC-correction
Fixed window
Mapping quality filtering
ReadDepth Negative-binomial distribution assumption Circular Binary Segmentation (CBS)
GC-correction / LOESS regression Adaptable size window
Mappability correction Optimized cutoffs
Discordant read pairs
SegSeq Matched control Circular Binary Segmentation (CBS)

Optimized cutoffs
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3.3 Tangible issues/aspects of CNV Detection Tools

This section discusses issues commonly concerned in any CNV detection tool, related to
the effects of using NGS data and the importance of technical decisions taken on the design of
these tools, which may strongly affect their experiments and outcomes. Since many frequent
new versions have been released, it is extremely important to recognize which questions and
answers have motivated or supported diverse improvements in the most recent methods. The

aspects chosen for discussion are the following.

[

. Handling NGS data: error rate and coverage
2. Choosing a data type for sampling

3. Using a suitable fragment distribution

4. Correcting GC-Content bias

5. Correcting mappability bias

6. Performing a segmentation algorithm

7. Adapting to the advent of longer reads

8. Evaluating in the absence of a gold standard

3.3.1 Handling NGS data: error rate and coverage

Before discussing merits and demerits from methods properly, it is worth examining
the concerns related to the usage of NGS data for discovering structural variants, since this
technology has displaced consolidated experimental approaches, including aCGH and SNP array,
and the traditional Sanger sequencing. Regarding the latter, although NGS platforms generate
considerably shorter sequence reads than Sanger technology, it is much faster, easier to operate,
and less expensive. These massively parallel platforms normally produce huge volumes of reads
(millions or even billions) at greater coverage depths than Sanger, because of the short size
of their reads (average read length from 50bp to 350bp, depending on the platform). Sanger
technologies can generate reads of 1Kbp or more, sequencing only a few thousands nucleotides
in a week, while NGS technologies allow the sequencing of a whole genome of an individual
within a couple of hours. An immediate consequence is the impact in handling the magnitude
of data, then requiring substantial extra investment in computational resources. Apart from
these challenges, the nature of the human genome, with its complex structure, brings other
implications, due to large quantities (over 50% of DNA sequence) of regions rich in repeats and

segmental duplications.
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3.3.1.1 Error rate

Another important factor is the reliability of the sequencing methods, highly related to
systematic and stochastic sequencing errors. Those errors are dangerous when considered alone,
for they become indistinguishable from a real variant. This question can normally be managed
by increasing the number of sequencing reads, since the error rate is known and quantifiable
through extensive calibration of the machines. Furthermore, a high sequencing coverage can
also mitigate the damage caused by high error rates, i.e. raw reads can be recalibrated and obtain

better base quality scores as a result.

3.3.1.2 Coverage

Sequence coverage, defined as the average number of times each nucleotide is represented
in an aligned read, is correlated to other factors relevant to accurate mapping reads, such as the
error rate of the sequencing method, the alignment algorithm used, the repeat complexity, and
the read length. Many studies have proved the correlation between the depth of coverage and
the level of specificity and sensitivity in CNV detection, so that either low-coverage (e.g. 4X
to 8X) or high-coverage (e.g. 40X to 100X) certainly could positively or negatively affect the
capability of a read-depth based method to detect certain types of variations, for instance. In
the AS approach, because of the de novo genome sequencing and assembly needed, a higher
coverage 1s mandatory.

The cost of a project is undeniably an important factor to consider, so much so that
some projects opted to sequence samples at low coverage for cost reducing. The 1000 Genomes
Project, for instance, used two- to six-fold coverage resulting in an expected reduction of the
power to discover structural variants. However, even dealing with low coverage, it is possible
to obtain high sensitivity and specificity for calling structural variants through the split-read
approach. The genomic coverage can be irregular along the genome, yielding low local coverage,
regardless of overall coverage, due to regions of the genome that are not easily fragmented
for sequencing. Thus, read-depth methods are vulnerable to false positives even after bias
corrections (GC-content and mappability) (SIMS et al., 2014). However, in general, the most
serious effect related to coverage in NGS data and CNV detection is that low-depth can introduce
sequence errors, which can be propagated through analyses of genetic variation, leading to wrong

conclusions in CNV detection.

3.3.2 Considering choices for data sample

A crucial issue for planning NGS projects consists in deciding between whole versus
partial sequencing, which is strongly related to the cost and the time required to complete the
analysis.

Although high-throughput sequencing of the entire genome became possible about a

decade ago, researchers and clinicians were historically mostly interested in specific genomic
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regions, such as particular genes or even parts of them. Besides, as whole-genome sequencing
has high computational cost and analytical complexity, WES technologies have been widely
used for molecular diagnostics of pathogenic variants. Even in face of some intrinsic challenges
associated to WES data, like the sparse nature of the target data and the non-uniform depth of
coverage among targeted regions, important contributions to Mendelian and complex diseases
emerged regarding human genetic mutations in the coding regions.

However, recent progress in genomic studies has identified many structural variants
in non-coding regions of the human genome, leading to conclude that the majority of genetic
variants associated with complex traits lie outside genic regions (ZHANG; LUPSKI, 2015). This
research trend has lead the focus back to exploring WGS data in order to achieve a more robust
identification of CNV.

Another critical consideration is the choice among using single sample of one individual,
multiple genomes for population analysis, or different samples (case/control) of one individual.
Depending on the study design, one can be much better suited than the others. This issue is

discussed in more detail in Section 3.4.

3.3.3 Using a suitable fragment distribution

Algorithms based on the RD approach for detecting CNV heavily rely on the assumption
that the sequencing process is uniform, i.e., the number of reads mapped to a region is assumed
to follow a Poisson distribution and to be proportional to the number of copies. However, certain
biases as GC-content and mappability make this assumption unrealistic. In practice, neither
sampling nor mapping of the reads is uniform because of these experimental biases. Miller and
colleagues (MILLER et al., 2011) proved that the observed distribution violates the Poisson
distribution assumption of equal mean and variance, conjecturing that the negative-binomial
distribution is a better approximation for the over-dispersed Poisson distribution.

Assuming that shotgun sampling of DNA fragments is random implies that the CNV
calls made by the methods are not due to different sequencing bias between two sets of data
compared. This assumption could only be held valid when both data are generated using the same
sequencing method. Nevertheless, considering different sequencing techniques, the randomness
of sampling may not hold. In this case, to verify the validity of the initial assumption, some
methods apply statistical tests to compare the distribution of GC-frequencies (for instance, the
Kolmogorov-Smirnov test), in order to make sure that there is no significant difference between
the two distributions. In spite of the probable violation, virtually all methods have used the
Poisson or normal distribution assumption without subsequent evaluation of the suitability of the

choice.
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3.3.4 Correcting GC-Content bias

There is a well-documented dependency between GC-content bias and the number of
reads mapped to different genomic regions in a sequence, causing these regions to be under-
or over-sampled. NGS technologies are potentially affected by this bias in sample preparation,
sequencing, alignment, and assembly. Indeed, DNA amplification, as part of the library prepara-
tion procedure, can severely bias the GC-content of sequences. This implies that higher levels of
GC-content can distort the coverage of the genome, i.e., it can dominate the signal of interest
for analyses that focus on measuring fragment abundance within a genome, the copy number
estimation.

Of the four approaches studied, the most affected by the GC-content bias is RD, due to
an unimodal relationship between this bias and the read depth signal, in which both high and
low GC levels decrease the sequence depth of a region. This correlation has been well discussed
since early studies (DOHM et al., 2008)(HILLIER et al., 2008). A common way to reduce this
effect is to increase the overall sequence depth.

The GC-content effect can be hard to isolate from the true signal, once it is not consistent
among repeated experiments. The control of this effect has become a widely-present procedure
in workflows for NGS analyses. Algorithms based on Poisson models, data smoothing, binning,
and other techniques (BENJAMINI; SPEED, 2012) have been used for normalizing the original
signal and correcting the GC-content bias. For instance, mrFast (ALKAN et al., 2010) and
ReadDepth apply a statistical correction technique to normalize the read-depth signal of each
window. Alternatively, methods that require control sample rely on the assumption that the
GC bias is implicitly corrected, since the variations from bias affect both tumor and normal
samples similarly. CNV-Seq (XIE; TAMMI, 2009), SegSeq, CNASeg (IVAKHNO et al., 2010),
JointSLM (MAGI et al., 2011), among others, share this assumption.

3.3.5 Correcting mappability bias

Other sequencing-related bias in NGS data is the mappability (also known as uniqueness),
which indicates that, for a given region of the genome, the chances that a read originating from this
region is unambiguously mapped back to it. Finding the original position cannot always be done
uniquely due to repetitive regions, mutations, structural rearrangements (insertions/deletions), or
sequencing errors, even using the best existing short read mapping algorithms available. Even
one or two mutations or sequencing errors in one short read is enough to lead to a wrong location
in mapping (LI; RUAN; DURBIN, 2008). Thus, regions with higher mappability have more
unique sequences and produce less ambiguity, and vice versa.

After mapping the reads, the CNV detection tools utilize the mapping quality score,
assigned by the aligner to each mapped read, to deal with multi-reads, i.e., reads mapped to
multiple locations. There are three main different strategies: discarding the read, choosing

a random position out of all of equally good match position, and just reporting all possible
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positions. Some CNV detection tools included procedures to avoid discarding multi-reads, and
consequently leading to false positive deletion calls.

As the mappability only represents the confidence of individual reads and does not point
to regions of the genome where the reads can be confidently mapped, other attempts for defining
this metric have been introduced using fixed length k-mers. Mappability scores have been shown
as crucial information to distinguish regions of the genome that can be reliably mapped from
those that cannot. One great advantage in this a priori processing is to investigate tradeoffs
between many settings of experiments (read length, error rate, paired/single-end, etc.). The most
common programs for computing the mappability score are GEM mappability (from the GEM
(GEnome Multitool)) (DERRIEN et al., 2012) and Genome Mappability Analyzer (GMA) (LEE;
SCHATZ, 2012).

The simplest method for correction using mappability scores is to skip the regions with
low mappability, filtering by some threshold, so that only reads within high mappability regions
are used to call CNV. This strategy is used by Control-FREEC. Another correction strategy is
to recalculate the read counts of a given bin through dividing the raw read counts by regional
mappability. This procedure results in both ambiguous reads discarded and unambiguous reads
in low mappability regions overweighted for CNV detection. ReadDepth uses both procedures
in order to prevent overcorrection in regions with very low mappability.

Nevertheless, no matter what strategy is used, the ambiguous reads will likely create
some biases in the read count signal and may cause mistakes in CNV detection (TEO et al.,
2012). Hence, existing mappers have interpreted multiple mapping reads in different ways,
particularly when they are designed to discard all the reads involved, with implications on the

outcomes obtained through quantitative analyses.

3.3.6 Performing a segmentation algorithm

Right assumption of data distribution for modelling the data variation is essential for
most CNV detection programs to be able to distinguish genuine CNV from random effects.
Segmentation techniques allow splitting RD signal into segments, determining boundaries on
each change of DNA copy numbers. The probability of a segment having an altered number of
copies in general depends mainly on the choice of a suitable data distribution for the signal and a
simple threshold method.

Before segmenting, a partition step splits the entire genome into windows that have
mapped reads enough to estimate the read depth signal. This procedure has been developed using
various mechanisms, with different window-sizes, by different tools. For instance, CNV-Seq
adopts a statistical test to determine an optimal size, while RDXplorer belongs to the class of
methods that use fixed, user-defined window size. As far as base-pair resolution is desirable for
breakpoint estimation, one must remember that the window size limits this resolution. Too large

a window would sacrifice the resolution; on the other hand, too small a window would not give
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enough power for detecting regions rich in segmental duplication. Therefore, it is worth tuning
parameters related to partition, in order to reach the desired resolution in the results.

Most common segmentation algorithms used in aCGH and SNP array have been adapted
for NGS data, including Circular Binary Segmentation and Hidden Markov Models, while others
have been developed in recent years, as, for example, Bayesian Information Criterion (BIC) and

regression tree-based algorithms (XI et al., 2011).

3.3.7 Adapting to the advent of longer reads

As the sequencing technology advances to make longer reads possible, some CNV
detection methods have been adjusted to detect larger and more complex variants according
to the new lengths of generated reads, especially with respect to the proper memory size for
processing. Indeed, sequencing longer reads has increased the assessment of variations embedded
in long repeat structures, such as balanced inversions.

It is widely agreed that CN'V detection accuracy is improved with longer reads. Zhang
and collaborators introduced SRiC (ZHANG et al., 2011), a split-read method, which, according
to them, would be more useful with the production of longer reads in third-generation sequencing
technologies. This was demonstrated through simulations performed with unbiased proportion of
all types of SVs across different length-scales. However, only insertions are affected positively
by longer reads; deletions showed comparable results, keeping marginal improvements at varying
lengths. Indeed, the choice of the ideal read length is still a rather open-end question.

Higher mappability also depends mostly on the length of the sequence reads, besides
the number of mismatches allowed. For instance, in the 1000 Genomes Project, about 20%
of the reference genome was considered inaccessible, due to many ambiguously placed reads
(TEO et al., 2012). This difficulty is due to the different families of motifs present in the human
genome, which inflicts this complexity in certain regions, causing poor mappability.

According to Alkan and collaborators in a review published in 2011, it was estimated
that roughly 1.5% of the human genome still could not be covered uniquely even with read
lengths of 1Kb (ALKAN; COE; EICHLER, 2011). Recently, the powerful long reads have been
highlighted by currently available technologies from Illumina, Oxford Nanopore, and Pacific
Biosciences (PacBio). It has been reported that the most established one is Single Molecule Real
Time (SMRT), from PacBio, which can generate reads as long as 54Kb, with an average read
length over 10Kb, though with high error rate by reads ( 11-15%) (LEE; GURTOWSKI; YOO,
2014). In a recent article (MYERS, 2014), Gene Myers released DALIGNER, a new aligning
tool designed for very noisy long reads. This solution is based on two essential properties: (1)
The distribution along the genome of the reads produced being close to a Poisson sampling, and
(2) An almost perfect randomness in the location of errors within reads.

It is important to note that the favorable effects brought by longer reads are not always

observed. A few studies have shown different views about the impact of these input data for CNV
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detection, particularly related to coverage. For instance, according to Krishnan and colleagues,
to detect most copy number alterations in cancer samples, one does not need longer reads but
acceptable coverage (KRISHNAN et al., 2012); also, according to Abyzov and colleagues,
at constant coverage, longer reads lower sensitivity to smaller CNV in RD-based methods
(ABYZOV et al., 2011).

3.3.8 Evaluating in the absence of a gold standard

Although simulation studies cannot provide accurate evaluation of CNV detection meth-
ods, since the true landscape of variations shows complex structures, which are very hard to
simulate, synthetic data can give some relevant insights. It is quite common for developers to
use DGV as a benchmarking for assessing CNV detection methods, because this database is
distinguished as one of the most reliable and useful current storages of CN'V. Many authors have
produced extensive simulation schemes for recreating different settings of copy number changes
by altering real datasets, in order to supply a properly tailored and repeatable variety of scenarios
under control. Considering this goal, some specific tools were developed to generate artificial
benchmarking datasets. For instance, Hong and colleagues presented a computational tool
(HONG et al., 2014), which generates datasets of test sequences with inserted CNV originated
from DGV spanning a large range of sizes (75bp to 10Mbp), types (losses and gains), and random
locations, as well as short indels and SNPs.

Such automatic procedures allow saving the set of included CNV, to be used in retesting.
Additionally, they may ensure that the quantities of each type of CNV included is proportional to
the ratios of the variations present on real datasets. One common resource used as quantifying
reference is the HapMap collection, in which nearly 80% of the all annotated variations are of
type loss region, 15% of type gain region, and 5% of mixed region (MAGI et al., 2012).

On the other side, to demonstrate performance using real data, most methods have
adopted as resource the mapped reads derived from the collections of genomes available through
projects like the 1000 Genomes Project and HapMap, or from individual complete human
genome sequences, such as Craig Venter’s (LEVY et al., 2007) and James Watson’s (WHEELER
et al., 2008), which were generated using Sanger and 454 platforms, respectively. Furthermore,
in order to validate their results, most methods compare the CNV detected with variants available
on these mentioned resources, treating them as ground truth. One special advantage of the 1000
Genomes Project is its variety of available data, generated by several platforms (Illumina, 454
Roche, ABI Solid System), different read lengths (25bp - 400), and low (up to 4X) or high (5X,
10X, 25X, 50X, 70X) coverage. Despite the fact that higher coverage leads to better performance
in terms of specificity and sensitivity, analyzing CNV in low-coverage data will continue to be

relevant in the future due to lower financial and computational costs.
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3.4 CNYV detection tools for cancer studies

The conventional data choice in CNV detection consists in general in single individual
samples, using a reference genome for identifying variations, without borrowing information
from other samples or matched controls. CNVnator, ReadDepth, and CNVeM (WANG et al.,
2013) are examples of tools that work this way. Population-based sampling, on the other hand,
pursuits particularities among individuals from a specific race, locality, or a group sharing a
particular phenotype. Focusing on clinical applications, the analysis of common CNV population
scale includes the identification of recurrent genomic variants in patient subgroups that are hardly
observed in healthy individuals.

To deal with this type of sampling, detection tools based on multiple samples, such as
RDXbplorer, cn. MOPS (KLAMBAUER et al., 2012), JointSLM, and commonLAW (HORMOZ-
DIARI et al., 2011), integrate complementary information in order to improve the detection
power. For example, CBSBR (DUAN; DENG; WANG, 2014) solves the concurrency of CNV
across multiple samples through a regression model to fit multiple RD signals. Other tools are
JointSLM, which relies on modelling the signals as a sum of independent stochastic processes,
supplemented by a HMM (MAGI et al., 2011), and cn.MOPS, that models the signal with a
mixture of Poison models that generates a separate model for each DNA locus.

A type of sampling that is growing drastically in usage is the control sample, used as
a reference for the mapping. Such samples are particularly useful in disease studies, when
sequence reads from both disease and normal samples of the same individual are compared.
Examples of methods that use this type of data sampling are: CNASeg, BIC-Seq (XI et al., 2011),
CNAnorm (GUSNANTO et al., 2012), and rSW-Seq (KIM et al., 2010). Some methods accept
either single samples or case/control samples, as, for instance, Control-FREEC. Usually this type
of sampling is applied in cancer studies to locate copy number alterations (CNA), which differs
from CNV because CNA are mutations that occur in tumor tissues (as opposed to normal ones)
(OSTROVNAYA; NANJANGUD; OLSHEN, 2010). Detecting CNV usually refers to finding
the number of copies of a particular gene that differs from one individual to others, normally
named germline variants, while detecting CNA means pursuing somatic changes to chromosomal
structure that result in gain or loss in copies of sections of DNA. The procedure for finding these
alterations consists in comparing normal sample with tumor sample from the same individual.

There are relevant differences between germline and somatic variations, especially due
to the complexities of tumor samples. For instance, their lengths and diversities in genome are
very distinguishable, besides the specific concern in dealing with the existence of an inevitable
normal cell contamination in tumor cell. Because of that and other challenges that cause some
misperceptions in the signal variation, there are excellent germline CNV detection tools that are
not suitable for CNA detection (LIU et al., 2013). Tools exclusively focused on CNA detection
have been developed, such as CNASeg, CNAnorm, and ReadDepth.

In cancer studies a tool for detecting CNAs usually relies on matched normal samples (i.e.
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case/control approach), which is required in most methods in order to help identify heterozygous
SNP loci, and to filter out benign CNV in patients. There are undeniable advantages in using
matched control to identify patient-specific CNV and to focus exactly on somatic alterations.
Nonetheless, there are two negative issues about this. One is that sequencing appropriate control
samples is not always possible, thus becoming a challenge for users when it is required. Another
is the disadvantage of handling a double amount of data (LIU et al., 2013). Considering the two
issues just mentioned, there are at least two tools that avoid this requirement of control sample
data. One is ReadDepth, which uses only tumor data, and the other is Control-FREEC that can
call CNAs with or without control samples. When the matched sample is absent, Control-FREEC
uses profiles based on GC-content previously calculated in the normalization step.

One last, but not less important, point to consider in CNA detection tools is about normal
cell contamination in tumor sample, which is inevitable, especially in clinical situations, when
the material is obtained from tissues of tumor samples (GUSNANTO et al., 2012). Therefore,
without the chance of obtaining pure tumor samples, it is necessary to resort to estimation in
order to correct it. Some tools have included procedures to deal with that, such as CNAnorm and
Control-FREEC. On simulations to compare these procedures, the results showed that, unlike
CNAnorm, the performance of Control-FREEC progressively got worse as the contamination

level increased.

3.5 Relevant aspects for comparisons

In this section, some relevant aspects are discussed which should be used to compare

features commonly observed during the assessment of CNV detection tools.

3.5.1 Performance: Execution time and memory usage

NGS and its ability to perform massive parallel sequencing in a single run brought an
unprecedented opportunity to sequence many genomes at a relatively inexpensive cost. With this
huge production of data, the technology needs improvement to better handle, store, and analyze
such data. This also implies in technical issues designed to achieve the best computational speed
using less memory, which means to consider, for instance, whether the programming language
supports parallel computation or how memory should be managed. For instance, considering
an input data of 247Mbp at 34X coverage, the computational time required by six different
methods ranged from aproximatly 6.7 minutes to 2 hours and 15 minutes, while peak memory
reached roughly from 4 to 24.5 Mbytes, in a desktop computer with dual-core 2.8 GHz x86
64-bit processor and 6 GB memory (DUAN et al., 2013).

At least three factors are extremely related to efficiency in speed and in memory usage:
coverage, WES/WGS, and CNV calling length. A higher coverage implies in a larger number of
generated reads. For instance, in the comparative experiment performed by Magi and colleagues

for analyzing the performance of three CNV detection tools, the number of reads in the database
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used varied from 13.44 (at 1.1X coverage) to 2738.03 million (at 39.1X) (MAGI et al., 2012).
A popular alternative for reducing the huge number of reads is to focus on a target region for
analysis (WES). In another aspect, CNV calling length has a strong impact, since, usually, the
longer it is, the more time-consuming the methods become. Therefore, most methods narrow
the size of CNV calling, in order to avoid peaks of execution time, due to the decrease in the

accuracy of the aligning process with larger gaps.

3.5.2 Bias control

In general, the low sensitivity in CN'V detection is mainly caused by short reads mapped
wrongly to the reference genome. This absence of uniqueness in mapping could be associated to
regions with diverse particularities, such as high GC-Content, repeated/segmental duplicated
regions, low read coverage, low base quality scores, mutations, and sequencing errors. Regarding
these challenges, it is essential that each method include efficient strategies to deal with these
factors during the alignment step of data processing.

The local GC-content and the genomic mappability are the two main sources of biases
that affect substantially the variant calling. There is no consensus as to the best technique to
mitigate or to remove the GC effect in a sample. A thorough and well summarized study appears
in a very interesting paper by Benjamini and Speed (BENJAMINI; SPEED, 2012). There is also
no agreement on the major source of the GC bias, but empirical evidence supports the hypothesis
that amplifications are the most important cause for this bias. The key point is to find a more
suitable model for the GC curve and apply it in the development of a method for correcting the
skew effect.

About the mappability, it is certain that it depends mostly on the length of sequence reads,
sequencing approach (single reads vs paired-end sequencing), and the number of mismatches
allowed, as well as the gap parameters of the alignment algorithm used. To avoid discarding low-
mappability regions, it is important that the methods use some strategy for increasing coverage
in these regions. The use of longer reads, along with paired-end libraries, has often been used to
increase the chance of reads to be mapped uniquely. However, even adjusting the parameters, the
ambiguity will probably be present, due to the nature of the data, increasing false positives in
CNV calling.

3.5.3 Variety of applications

Since there is yet no single solution able to cover the full range of analysis involving
CNYV, a variety of available tools are used for solving the CNV detection problem partially.
Analytical studies under various scenarios have been assayed, for instance, with different types
of samples (individual, case/control, and population), both NGS data types (WGS/WES), and at
different levels of resolution. Hence, for achieving a higher accuracy in all CNV classes along

with rather diverse scenarios, it is crucial to take into account the stronger abilities of each tool
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and, therefore, consider the combination of strategies for improving the accuracy.

It is worth noting that any comparative procedure is incomplete without taking into
account the inherent difficulty of ensuring that two different CN'V events could represent the
same variant. In spite of the systematic inspection of quality assurance performed during the
inclusion of an event in DGV database, some imprecision still exists relative to size and location
of the available variants. Thus, to consider two variants as being the same, most studies of CNV
analysis assess the equality as long as there is at least 50% reciprocal overlap (MILLS et al.,
2011).

3.5.3.1 Detection of insertions/duplications

It is quite consensual that insertions are harder than deletions for all approaches (TEO
et al., 2012). PEM-based methods can detect insertions only when the distance between mapped
read pairs is shorter than the fragment length, i.e., these methods have a length upper bound of
an insertion detected as the average fragment length minus the length of the reads. Alternatively,
SR-based methods are not completely capable of detecting insertions, once the read length of the
current technologies limit the size of the detected insertion. Hence, in general, read-depth tools

are considered the best option, since they can detect very large insertions and duplications.

3.5.3.2 Detection of deletions

RD-based methods also show good sensitivity of detecting deletions, although regions
with multi-reads could be falsely detected as a deletion, in the case that these reads are removed.
With PEM methods, false deletions can also be identified instead of true large insertions, caused
by the discordant mappings. The effectiveness of the SR approach in detecting deletions shows
the same limitation related to insertions, the limitation of the read length. Again, tools based on

read-depth are recommended for this application.

3.5.3.3 Copy number estimation

Another source of diversity among approaches is about their ability to estimate the
absolute number of copies for each segment. Read-depth is the only sequencing-based approach
to accurately predict exact DNA copy numbers, thanks to the analysis of proportionality of
mapped read. Paired-end methods cannot estimate well, because they perform poorly on repeat
and segmental duplication-rich regions (ZHAO et al., 2013). Read-depth tools are good options
for estimating the number of copies, due to the hypothesized correlation between depth of

coverage of a genomic region and the copy number of the region (TEO et al., 2012).
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3.5.3.4 Detection of breakpoints

A crucial distinction among approaches is the breakpoint resolution achievable, since a
precise characterization of breakpoints strongly contributes to the accuracy of CNV callings in
general. Split-read methods are highlighted for their capability of detecting breakpoints at base
pair resolution, though limited by the read length. RD-based methods, on the other hand, have a

considerable limitation on the detection of precise breakpoints, even increasing coverage.

3.5.4 Aligner-dependence

It is possible that some methods show some aligner-dependence on their sensitivity
and specificity, since the process of read alignment plays an important role in all strategies
for detecting CN'V. The mappability bias, for instance, and the ambiguity caused by it depend
strongly on the aligner and the parameters used when aligning the reads to an existing reference
sequence. Read alignments also strongly impact the detection of exact breakpoints, which
depends on the upstream aligner to map short sequencing reads to the reference genome.

Many alignment tools for short reads have been developed over the years and, with
the constant push to improve the read length by advances in sequencing technologies, some
improved algorithms have emerged. An in-depth review of some aligner tools was done by
Pabinger and collaborators, showing relevant issues for the selection of an alignment program
for variant analysis (PABINGER et al., 2014).

3.6 Conclusion and Perspectives

The current bottleneck of genomic projects is not the sequencing of the DNA itself
anymore, but lies in addressing issues related to data management and the highly sophisticated
computational analysis of the experimental genomic data. Examining the way to achieve reliable
detection of genetic variants, since the early solutions based on aCGH, it is possible to highlight
diverse challenges (addressed or not) that can better explain the state-of-the-art methods.

To stress the importance of all issues discussed in this study, we can conclude it with
an outlook on the near future of the CNV detection problem, showing two challenging issues
that arise from the fast evolution of the key technologies involved. On the one hand, there is the
intense computational infrastructure needed to satisfactorily support large-scale experiments with
adequate population samples, long reads, and high coverage in whole-genome sequencing. On
the other hand, tool developers must note the urgency of investing in fast computation procedures
for improving the performance of each individual step of the pipeline of CNV analysis.

Most available tools deal with different scopes, including different data types (WGS or
WES), applications (individual, case/control, or population studies), and resolution of CNV size
and breakpoint, besides differences at design level (implementation, operating system, and I/O

format). All this variety brings caveats in elaborating a fair evaluation procedure for these tools.
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Since there is no universally suitable gold standard tool and true benchmark data, an unbiased
evaluation of CNV tools remains a largely open issue.

Moreover, the lack of a generally agreed upon benchmark data also weakens the esti-
mation of the sensitivity of the methods. Large sequencing projects like the 1000 Genomes,
the UK10K, and HapMap, have provided better understanding about the links between genetic
changes and traits or diseases. Even though, the imprecision of the breakpoints identified makes
the variants provided by such projects not perfectly adequate for working as a true benchmark.

With the rapid development of different techniques and analytical methods, there are
improvement gaps to be filled, ranging from data generation to computational analyses, to
achieve the main goal, which is an adequate and accurate clinical interpretation. Despite a
number of software packages and associated pipelines enabled for detecting CNV, this problem
is still a long way from being properly solved.

Finally, all findings presented here strongly point towards what one must be concerned
with in order to comprehend the current context and possible future directions in CNV detection.
As we are dealing with applications for human health, the next step after variant analyses consists
on carrying out genetic association tests at every variation existent, thus achieving important

clinical related results for diagnosis and therapy.
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ScreenVar: a methodology for evaluating structural variants

The absence of a benchmark data of structural variants has been firmly stated in the
literature as a barrier for designing experimental validation of new SV detection tools. In this
thesis, a putative set of consolidated variants is defined as an important result of the proposed
methodology ScreenVar. This chapter introduces the steps of ScreenVar and discusses the results

of the experiment using data from DGV.

4.1 Introduction

Initiatives such as HapMap (INTERNATIONAL; CONSORTIUM, 2005), 1000 Genomes
Project (TONEVA et al., 2012)(DURBIN et al., 2010), and UK10K (SANGER, 2017) have
aimed to extend the knowledge about human genetic variation, with respect to uncovering the
effects of the variability caused by copy number variations (CNV) and balanced rearrangements
on human diseases, complex traits, and evolution. Indeed, these projects have relied on the
growing development of the strategies designed to the process of discovering SV.

Considering the variability within a molecular assay workflow (extraction, quantification,
molecular testing, and data analysis) as well as the diversity of available tools involved in
a NGS analysis and also the complex nature of human genome, this resultant scenario is
undeniably a source of difficulties in establishing unbiased comparisons among identified variants.
Without going into specifics, this uncertainty stem from the inherent differences in sequencing
technologies, data collection, read-align methods, variant-calling algorithms, and so on.

In addition, given the existence of multiple data processing pipelines for CN'V detection,
some comparative studies have been developed in order to examine the degree of concordance
among the currently existing pipelines. We can place particular emphasis on two studies related
to discordance between variant calling pipelines using indels calls. One of them is the description
and experimentation of a method called ReliableGenome (RG) for partitioning genomes into high
and low concordance regions with respect of surveyed variant analysis pipelines (POPITSCH;
SCHUH; TAYLOR, 2016). Such study provides strong evidence that the degree of concordance
depends predominantly on genomic context, including genomic region, variant type, read depth,

and varies by analytic pipelines.
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Another comparative study investigated the question "how closely do the results from
multiple pipeline agree with each other?", showing that, when examining the pipelines GATK,
SOAPindels and SAMTools, the agreement rate for indels calls was very low at 3.0% (O’RAWE
et al., 2013). It can be explained by the imprecision in breakpoint resolution, since single variants
can be obtained with a very high prediction confidence and, in turn, indels and SV callings have
higher uncertainty levels. Moreover, most available reads generated by such platforms have been
short-sized, measuring a few hundred bases in size, thus collaborating to a probable ambiguity in
mapping tasks.

Furthermore, there are diverse studies that draw attention to different caveats that have
been present throughout the stages of NGS data analysis, which may strongly affect the outcomes
(NASCIMENTO; GUIMARAES, 2016) (TEO et al., 2012). In short, no single discovery
approach can cover the entire spectrum of SV in the genome, and the process of evaluating a
SV detection tool depends largely on the platforms and tools used. Thus, many authors have
firmly stated the lack of established benchmark data and tools as a major challenging barrier for
adequately evaluating such tools (ALKAN; COE; EICHLER, 2011) (VALSESIA et al., 2013)
(LIU et al., 2013) (GIANNOULATOU et al., 2014).

The accuracy of a SV detection tool lies basically on its ability to assess the distinction
between genuine variants and random effects originated from sampling or sequencing errors, to
an extent that any significant results of a reliable tool are inherently repeatable. Thus, to address
the issue of evaluating the accuracy of a given detection tool, one way is to focus on verifying
the concordance of the outcomes with other providers. In other words, one important concern is
not whether a given tool give correct variants, but rather how closely it agrees with the others.

In this chapter, we introduce a biclustering-based methodology called ScreenVar, which
aims to screen all variants obtained from a set of different resources, and then to determine
which variants are accurate in face of a subset of these sources, taking into account a specific
equivalence criterion. The overall idea of this methodology involves a rearrangement of the
initial data through a cross tabulation by found equivalent variants and its respective references.
For this purpose, ScreenVar incorporates different ways to check the equivalence of two variants
coupled with the use of biclustering algorithms.

In our experiments, ScreenVar was applied to discover if there are accurate variants
within chromosome 1, under a variety of parameters. The experiments resulted in outcomes that
could be ranked according to their number of equivalent variants, their number of sources, and
their accuracy computed by a determined quality measure. The list of the best ranked results
contains, for instance, a case comprised by a set of 588 variants supported by 8 studies (Vogler
2010, Suktitipat 2014, Redon 2006, de Smith 2007, Lou 2015, Cooper 2011, Conrad 2009, Coe
2014), which was obtained with the least strict analyzed equivalence criterion. In addiction, it
was selected the variants associated to the outcomes with high score and belonged to a putative
benchmarking dataset provided by DGV.

Indeed, an important contribution of this study is to provide some different lists of
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putative accurate variants in order to enhance evaluation strategies of new tools. Moreover,
another relevant contribution consists in bringing a scalable solution that allows researchers
to ascertain the accuracy of a chosen detection tool under own conditions, since input data of

different formats can work together, whenever applicable.

4.2 Materials and Methods

This section describes the proposed methodology for evaluating the agreement of struc-
tural variants derived by different calling studies. Initially, we outline the steps of ScreenVar
and, then, we show a brief description of the biclustering technique, the relevant aspects of the
acquisition of input data, a concept for equivalent variants, and the validation strategies aimed to

produce a collection of candidate gold standard elements.

4.2.1 Proposing an evaluation methodology

To lay a foundation for thorough tool evaluations, specific questions need to be answered,
such as what to evaluate, which criteria to use, how to measure those criteria and how to verify
the accuracy. The answers to such questions contributed to building the foundational ideas of
this thesis:

1. What is being evaluated? Structural variants.
2. Which criteria will be used? The localization and the type of each variant.

3. How to verify the accuracy of analyzed structural variants? Biclustering tech-

niques.

(1) Briefly, structural variants are DNA alteration events occurred in a given location.
Different formats have been used to represent such variants in data discovery and storage.
Adaptable formats, the complex nature of variants and large spectrum of variant types comprise
a landscape with an intrinsic problem: how to verify whether two events are equivalent?

(2) In order to proceed with the evaluation of SVs, the next step is to define which criteria
can be used to compare them. Each variant record consists of many fields, including chromosome,
position, identifications, reference and alternate allele etc. Due to this data complexity, this thesis
only considers a short subset of fields that can provide the adequate information for the type of
comparison to be applied in the evaluation process. In this case, the analysis will deal with the
localization and the type of each variant.

(3) This work concentrates its efforts on investigating the accuracy of SV using biclus-
tering algorithms in order to scrutinize the agreement among structural variants identified over
different resources.

We then describe a new methodology called ScreenVar for evaluating structural variants

based on biclustering techniques. ScreenVar comprises the four following steps:
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1. Preprocessing input data;
2. finding equivalent variants;
3. applying a biclustering algorithm;

4. validating biclusters.

4.2.2 Preprocessing the input data

The input for ScreenVar consists of a collection of variants with the following fields:
identification, chromosome, start position, end position, variation type (gain, loss, inversion,
insertion etc.), and variant calling source (a given study or tool responsible for calling the
variant). Different variant calling sources could feed into the phase of acquisition of data, such
as the published studies 1000 Genomes Consortium Phase 1 (ABECASIS et al., 2012), Wong
2012 (WONG et al., 2013) etc.; a variant calling tool — CNVnator (ABYZOV et al., 2011);
ReadDepth (MILLER et al., 2011); Pindel (YE et al., 2009); a well-structured collection of
variants — DGV (MACDONALD et al., 2014), TCGA (ATLAS, 2008)), or even a putative gold
standard, whenever applicable.

Thus, ScreenVar handles raw data by mapping each variant to its respective source,
forming a matrix where the lines represent variants and the columns represent their references.
Formally, we define this input as a m x n binary matrix, A = [a;;], with rows corresponding
to variants vi,v,,Vv3, ...,V and columns corresponding to references ry,r,,r3,...,r, such that

a;j = 1 if and only if v; is identified by source r;.

4.2.3 Finding equivalent variants

One important issue in the context of variant detection is the notion of equivalent variants.
It is quite common to find variants identified by different experiments which overlap, sometimes
partially, in the same stretch or neighborhood of the genome. There is a common uncertainty
in measurements supporting the same variants detected by different methods, especially if they
result from older (and lower-resolution) studies. Hence, there must be a careful overlapping
control to find possible associations among these events due to their imprecise boundaries
(outer/inner start and stop points).

To decide whether two variant regions, r; and r», correspond to the same event, we use

the concept of Minimum Reciprocal Overlap (MRO) defined as:

MRO(r1,r2) = min (length(overlap(rl,rz)) length(overlap(rl,rz)))

length(ry) ’ length(r)

This measure provides a standard way of determining the similarity in the chromosomal location
of two variant regions. As an example, when using the MRO measure with a threshold of 0.5, at

least half of | must be overlapping with r;, and vice-versa.
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In order to properly deal with similar genetic variants, taking into account fields such
as location, classification and sampling data, we defined two criteria to consider two variants
as equivalent: Global and Local criteria, both supported by a parameter for lower limiting the
MRO value. To be accepted as equivalent under the Global criterion, two variants must fulfill
two conditions: (1) to overcome the determined threshold for MRO, and (2) to be of the same
type. While the Local criterion only requires the first condition, limiting the reciprocal overlap
rate, regardless of their types.

To proceed with the step of finding the equivalent variants, ScreenVar scans all variants
present in the matrix A, comparing with each other according to previously defined criteria. In
addition, to lead a reduction of such huge number of pairwise combinations among all variants,
two user-defined thresholds for controlling the length of overlap and MRO were created. In
general, the greater these values, larger and more similar variants are delivered for further tasks
in ScreenVar. Thus, choosing suitable values for these parameters can determine the acceptance
level of equivalence between each pair of involved variants.

ScreenVar splits such equivalent variants into groups, each of which is referred to as
a Compound Variant (CV) (Fig 4.1). As the methodology compares all variants against each
other, possibly originated from different sources, all members in a CV are equivalents among
themselves. Thus, a variant in a given CV can be seen as an event supported by different
references/studies. In order to better represent such degree of relationship between variants
and references, we established that the number of different references supporting a single CV
represents the support level of this CV. As the proposed methodology aims to examine the
concordance degree across the data sources, high assurance levels should lead, to a certain extent,

to finding accurate variants.

Figure 4.1: ScreenVar clusters equivalent variants to elaborate a matrix of occurrence by

references.
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The next action is to handle the matrix A produced in the first step in order to remodel
it, considering now the compound variants found. The new matrix is a rather smaller, concise
sample space. We represented the consolidated matrix as a m x n binary matrix, B = [b;;], with

rows corresponding to compound variants cvy,cvs,cvs,...,cvy, and columns corresponding to
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references ry,r2,r3,...,1, such that b;; = 1 if s; supports cv; (that is, there is a member of the

compound variants cv; referred to the source s;) and b;; = 0 otherwise.

4.2.4 Applying a biclustering algorithm

The use of clustering techniques is broadly applied to reveal a genuine similarity in data
profiles, analyzing patterns existing in such data in order to partition them according to some
investigated properties. In our case, applying a standard clustering approach to matrix B would
produce clusters of compound variants regarding all studies, or, on the other hand, clusters of
studies involving all compound variants. It should be observed that while the clustering problem
always creates disjoint clusters that cover all the input set, biclusters may cover only a part of the
matrix. Actually, however, the need of this ScreenVar step is to analyze not only the columns
representing the properties of items, but also the rows as the items themselves. Thus, with such
demand for forming an associated cluster of variants and bind it to the cluster of references, it is
suitable to deal with it as a biclustering problem.

Biclustering is an unsupervised technique that can be applied to simultaneously group
rows and columns of a matrix, in order to find certain coherent patterns (BUSYGIN; PROKOPYEV;
PARDALOS, 2008). Formally, given a rectangular matrix Xy« = x;;, with M X N numeric
values, a bicluster Y = (R, C) is a sub-matrix of X, where R and C are the subsets of row and
column indexes, respectively. A biclustering algorithm aims to discover a set of biclusters so
that each result satisfies some specific criterion of homogeneity.

Although being a proved NP-hard problem (CHENG; CHURCH, 1999), there are various
methods designed to undertake this challenging task, as it is the case with heuristic-search based
solution. Several algorithms have been proposed to identify biclusters and some state-of-the-art

methods were considered in this thesis (see Table 4.1).

Table 4.1: Biclustering methods

ALGORITHM ACRONYM REFERENCE

Biclustering of expression data by Cheng | CC Cheng and Church (CHENG;

and Church CHURCH, 1999)

Plaid Models PM Lazzeroni and Owen (LAZZE-
RONI; OWEN, 2002)

Conserved gene expression Motifs Xmotifs Murali and Kasif (MURALL
KASIF, 2003)

Bimax algorithm Bimax Prelic et. al. (PRELIC et al., 2006)

After the generation of matrix B, ScreenVar performs a given biclustering algorithm
in order to find homogeneous subsets of rows and columns simultaneously. We selected four
biclustering algorithms to be used in ScreenVar, namely Cheng and Church (CC), Plaid Models,
Conserved gene expression Motifs, Bimax. Each one should be executed with matrix B as
input and the resulting biclusters be ordered by a quality score. Such list of resulting biclusters
should indicate exact homogeneous groups involving variants strongly connected by a subset of

references.
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4.2.5 Validating biclusters

Some validation measures can be applied to measure the quality of a resulting bicluster.
Typically, these metrics are organized into two main types, namely internal and external measures.
Internal measures consider only information intrinsic to the dataset and external measures use
prior knowledge about groups of objects as extrinsic information (HANDL; KNOWLES; KELL,
2005).

In recent years, different measures have been proposed to score the accuracy of biclusters.
In this work, we chose the statistical measure called ChiaKaruturi measure (CHIA; KARUTURI,
2010), contained in the Biclust toolbox' that also releases the biclustering methods used in this
work. The key feature of the ChiaKaruturi measure lies in the estimation of three different types
of co-expression: strong row effects, strong column effects or row and column joint effects.
Along with such effective measurement, this score quantifies the differential between the rows
and columns involved and the remaining ones.

The idea underlying the addition of this quality function in such a methodology is to rank
the outcomes with respect to their joint effects. Biclusters with undesirable effects caused by
single-row or single-column should be avoided, since it is against the expected relevance among
variants and references jointly. Thus, beyond the need of a low global variance in homogeneous
groups, ScreenVar seeks to focus on biclusters with a suitable number of lines and columns.

Finally, ScreenVar checks whether the variants contained in the well-ranked biclusters
are present in a validation database provided by DGV (DGV-GS). Such crosschecking procedure
of ScreenVar intends to product two special sets: (i) the variants contained in both collections,
which implies in validated events, and (ii) the variants found in our method but not in DGV-GS,
which can indicate new findings for a putative gold standard.

One of the objectives of this thesis is the development of a comprehensive methodology
for evaluating structural variants. Then, the delivery of a tool based on such methodology is

surely the main contribution of this work (see details of the ScreenVar tool in Appendix B).

4.3 Results

We performed a thorough analysis of the performance and behavior of the method

ScreenVar regarding the reliability of variants through some specific issues such as:
1. Insights on the suitability of the input data;
2. distribution of equivalent variants across distinct studies;
3. analysis of resulting biclusters;

4. validation of the resulting biclusters with a validated subset of DGV.

I'Package for bicluster analysis in R (https://cran.r-project.org/package=biclust)
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4.3.1 Insights on the suitability of the input data

The primordial requirement for meta-analysis procedures is the acquisition of a suf-
ficiently large and adequate number of entries in order to reduce the play of chance. Thus,
ScreenVar needs input data that guarantees a reasonable coverage of location, types, and different
discovery methods. In that respect, DGV has easily accomplished its initial goals, as discussed
below.

DGV is a curated database with the goal of providing a catalog of the variants discovered
in analytic studies. It is organized in two large groups, supporting structural variants (SSV) and
structural variant regions (SVR). SSV represent variants identified in a single sample/individual
and SVR are regions formed by the combination of multiple SSV sharing the same start and end
positions (MACDONALD et al., 2014). The archive of DGV used in these experiments was
released in May 2016, corresponding to NCBI Genome Reference hg19 and containing roughly
7 million variants distributed in 72 studies.

It was verified that performing all 7 million variants would be impracticable, since
ScreenVar includes pairwise analyses and a compilation of such results in a matrix, taking
excessive memory usage and execution time. Because of that, we selected the chromosome
with greater number of variants for our experiments, chromosome 1, which represents a total of
565,300 SSV associated to 66 studies.

There is a remarkable heterogeneous scenario around the studies of DGV, comprised by
different genome reference, samples, methods, and platforms. Hence, the initial concern is to
verify possible biases in such context that may affect the pursuit of reliable variants. Then, some
analyses are shown as follows, with the examination of the chosen subset of DGV under some
perspectives, including the source, the classification (the variant types), size and localization
(chromosome, start, end). The aim is surely to collaborate for building a more comprehensive

scenario and fostering respective further conclusions.

4.3.1.1 Source: analytic study and samples

DGYV holds information about the calling process of each analytic study, including the
discovery methods, samples/individuals, platform and other settings. From 72 studies in DGV, 66
have endorsed some variants of chromosome 1, with an average number of 8,565 SSV (~ 1.5%)
per study. As shown in Table 4.2, there is a high concentration of variants on the first ten studies
with more SSV (the full list of 66 studies is presented in Appendix B.2), gathering a total of
521,315 SSV (92%). This concentration occurs especially due to the 1000 Genome Consortium
Phase 3 study, which carries 266,299 variants (~ 47% of total).

Such large quantities of variants in a single study can be justified by the adoption of
recent sequencing technologies and high sample sizes. Regarding the experimental design, a
large sample size is required to achieve sufficient statistical power for rare variant studies. While

sample size increases, the number of novel variants per sequenced individual will decrease
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Table 4.2: Analytic studies cataloged in DGV/Chromosome 1

REFERENCE METHOD TOTAL %

1000 GC Phase 3 Sequencing 266299 | 47.1%
1000 GC Phase 1 Merging, Oligo aCGH, PCR, Sequencing 93733 16.5%
Coe 2014 Oligo aCGH, SNP array 41312 7.3%
Cooper 2011 Oligo aCGH, SNP array 36707 6.5%
Wong 2012b Sequencing 18775 3.3%
Campbell 2011 Oligo aCGH 17390 3.0%
Sudmant 2013 Oligo aCGH, Sequencing 16870 2.9%
Altshuler 2010 SNP array 15296 2.7%
1000 GC Pilot Project | Digital array, Oligo aCGH, PCR, Sequencing 9228 1.6%
Uddin 2014 SNP array 5705 1.0%

(DURBIN et al., 2010). In the input dataset in question, the average sample size is approximately
1,054, with a maximum of 29,084 samples in the Coe 2014 study (COE et al., 2014).

Another important consideration is the resolution achieved in these studies, which can
strongly affect the performance of ScreenVar as a whole. Most studies currently available do not
have base level precision and thus they provide their boundaries in terms of breakpoint range.
This uncertainty directly affects the step of finding equivalent variants of ScreenVar, very likely
leading to false concordance among studies. Therefore, as long as the variants can be base pair
resolution, ScreenVar could integrate such data more suitably and seek valuable insights.

The diversity of methods in such studies is intrinsically linked to the varying resolution
achieved in the respective discovery process. One example of the relevance of high resolution
was demonstrated in the construction of a CNV map produced for documenting the variability of
the human genome (ZARRETI et al., 2015). One of the primary factors for study selection was
the accurate breakpoint resolution, discarding data sets from studies based on lower-resolution
arrays. Thus, it is worthy highlighting that the selection in such case was performed looking for
studies based on sequencing.

To show this aspect in our analyzed input data, Table 4.3 summarizes the quantities of
variants by methods, in which more than 51% of SSV occurred in studies using sequencing,
as expected, due to ongoing advances in NGS data. Moreover, the concentration of variants in
sequencing methods and, therefore into studies, can unevenly guide meta-analysis results (see
the full list of methods used in DGV in Appendix B.3).

At this stage, we do not apply any restrictions for selecting specific sources, but we can
retake some relevant features of the studies in the interpretation phase of the results of ScreenVar,

as appropriate.

4.3.1.2 Location, type and size distributions

In terms of the location distribution of SSV along chromosome 1, it is important to keep
in mind the effect of known biases like mappability and GC-content in NGS data analyses. An
odd behavior presented in Figure 4.2 should result from such effects. The number of variant calls

were displayed unevenly spread, specifically across the windows of 130 — 150 x 10° bp. These
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Table 4.3: Methods used in studies cataloged in DGV/Chromosome 1

METHOD TOTAL
Sequencing 293715 (51.9%)
Merging, Oligo aCGH, PCR, Sequencing 93733 (16.5%)
Oligo aCGH, SNP array 79483 (14.0%)
SNP array 30147 (5.3%)
Oligo aCGH 27195 (4.8%)
Oligo aCGH, Sequencing 17864 (3.1%)
Digital array, Oligo aCGH, PCR, Sequencing 9228 (1.6%)
Merging, SNP array 4638 (0.8%)
BAC aCGH, SNP array 2705 (0.4%)
Sequencing, SNP array 1626 (0.2%)

windows are comprised by an abrupt absence of variant calls in first part and quite high quantities
in the adjacent window, probably because this gap region corresponds to the centromere of

chromosome 1.

Figure 4.2: Histogram of locations of the structural variants along chromosome 1
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In addition, substantial differences in type and size distributions are shown in Table 4.4.
Deletions are the vast majority in chromosome 1, achieving more than 76% of the total, while
duplications only represent roughly 20%, and the others remain close to 1% of the variants.
Indeed, many authors have already confirmed that it is quite common to have more deletions than

others, due to the upper limitation for detecting insertions through the length of insert fragment
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(TEO et al., 2012). Regarding the distribution size, the interquartile ranges® for inversion,
insertion and complex events showed very low size spread. However, the gain, loss and gain+loss
types together enlarged the range to thousands, revealing a relevant size dispersion around the

variants of such input data.

Table 4.4: Variant type/size in studies cataloged in DGV/Chromosome 1

TYPE NUMBER OF SSV INTERQUARTILE RANGE OF SIZE
Loss / Deletion 431948 (76,41) 6895 (7595 - 700)

Gain / Duplication 116252 (20,56) 59325 (69010 - 9685)
Insertion 9851 (1,74) 13(14-1)

Inversion 6136 (1,09) 51 (660 - 609)

Gain + Loss 825 (0,15) 108120 (124700 - 16580)
Complex 288 (0,05) 0 (6000 - 6000)

4.3.1.3 Identifying replicates

As we have mentioned earlier, there are some studies with high sample sizes, generally
focused on complex traits, for which sequencing a large number of cases/controls or subjects is
required. Therefore, such research works tend to report large numbers of replicate variants. The
existing redundancy was detected in our experiments due to a poor performance in overlapping
all variants with each other, in which several compound variants were identified gathering over a
thousand identical variants, resulting in a drastic drop in performance.

Aiming at eliminating this redundancy, a new restriction was employed in order to
filter only distinct variants, regarding location (chromosome, start/end positions), classification
(variant type and sub-type), and source (reference). The number of variants decreased from
565,300 to almost 60,000 SSV, representing a little more than 10%. Interestingly, one of the
studies responsible for these redundant items was the 1000 Genome Project Phase 3, with a
striking mark of 3,419 replicated items for the same variant. In addition, with regards to the
chosen benchmark data, of the initial 431,000 variants of DGV-GS, only 27,865 variants could
be identified as unique, thus representing roughly 6.4% of initial DGV-GS.

4.3.2 Analysis of the equivalent variants across/among independent studies

For experimenting the ScreenVar stage responsible for finding equivalent variants, we
selected many values for the parameters length of overlap (1, 100, 500, 1000, 2000, 5000
and 10000) and MRO (0.5, 0.6, 0.7, 0.8, 0.9, 0.97, 0.99), and also with the application of
an equivalence criterion defined above. One of the key features of this stage is that it allows
to characterize the input data set by a smaller number of representative variants through the
distribution of the resulting compound variants. Such experiments have shown a decrease of the

entire initial set of 565,300 SSV to 7-10 thousand new compound elements, varying according to

2 Also called midspread, which is a measure of statistical dispersion: the difference between upper and lower
quartiles
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the equivalence conditions used. Not all values of each parameter represented relevant changing
in results between themselves. So, we opted to present the further analyses from the most distinct
results, in this case, those using values 1 and 100 for the length of overlap, and the values 0,7,
0,9, and 0,99 for the MRO, as summarized in Table 4.5. It is important to note that the growing
values assigned to the MRO (from 70% to 99%) directly impacted the decrease of the number of
found CVs, as expected.

Table 4.5: Parameters used for finding equivalent variants

PARAMETERS RESULTS
# EQUIVALENCH OVERLAP RECIPROCAL NUMBER NUMBER
CRITERION LENGTH OVERLAP RATE CV SSV
EQI | Full 1 0.99 7214 18791
EQ2 | Local 1 0.99 6289 15599
EQ3 | Full 100 0.90 10767 36097
EQ4 | Local 100 0.90 10440 33506
EQS | Full 100 0.70 10666 42779
EQ6 | Local 100 0.70 10509 40358

Considering the list of ten studies with more input SSV, it is possible to visualize in
Figure 4.3 how the resulting CV were distributed across each of them. It is possible to highlight
the high number of SSV associated to the Wong2012b study, which achieved almost 17,000 for
the parameter settings EQ5 and EQ6. With this excellent rate of more than 90% of its SSV,
which are considered equivalent to some variant in other studies, Wong’s study leads as one of
most reliable studies in the DGV catalog. The list of all studies with their respective numbers of
equivalent SSV and ratio of input SSV as equivalent are available in Appendix B.4.

Other results not as exceptional but yet remarkable have also been found by ScreenVar,
such as Coe2014, Cooper2011, and Conrad2009. In contrast, there have been cases with a very
low proportion of equivalence, which is still an interesting outcome, since such situations would
not only indicate reliability regarding agreement but can also highlight rarely studied variants.
For example, the Kidd-2010 and Itsara-2009 studies showed low ratios of 0/881 and 9/1291,
respectively, using the most relaxed equivalence criterion (EQ6).

From another point of view, by definition, each CV is a result of comprising many SSV
and therefore it can be associated to different studies. Such measurement has termed the support
level of a CV and the higher this value, the more studies give support to all SSV contained in
such CV levels ranging from 0 to 32 for the input data set found (the entire list of support levels
is listed in Appendix B.5). Level O (zero) represents a cluster of SSV whose equivalents were
found in the study itself. However, the main interest is on the high values of support level, which
can indicate sets of putative reliable variants. Under equivalence condition EQS, 274 variants
present in 32 different studies were simultaneously uncovered. The list of these 32 references is
in Appendix B.7.
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Figure 4.3: Number of SSV found in each study
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Table 4.6: Five-number summaries of variables extracted from the resulting biclusters

VARIABLE MINIMUM | 1ST QUARTILE | MEDIAN | 3RD QUARTILE | MAXIMUM
Number of CV 2 45 220 445 9108
Number of SSV 4 394 1702 4143 32263
Number of Studies 2 2 2 3 28
Score -1.03 2.58 3.24 3.85 4.62

4.3.3 Analysis of the resulting biclusters

A key characteristic of ScreenVar is not only to address the issue of clustering equivalent
variants but also to perform a two-way analysis with such variants and their respective supporting
studies. Then, the six sets of generated CVs related to each equivalence criterion were applied to
four prominent biclustering algorithms with 10 iterations.

This experiment resulted in 742 biclusters, which were scored using the accuracy function
of Chia-Karuturi for measuring the co-expression with regards to both the compound variants
and the studies simultaneously. The overall behavior of the resulting biclusters is demonstrated
through five-number summaries for numbers of CV, numbers of SSV, number of studies, and
scores (see Table 4.6). Such statistical measures provide information about how spread are
the dimension and the accuracy of the outcomes regardless of the biclustering algorithm and
equivalence criteria used. Although large intervals between the 1st and the 3rd quartile for
the number of SSV are not sufficient on their own in order to indicate excellent results, this
characterizes a possible scenario for multiple size, type and location of the underlying variants.

In addition, concerning the relevance of each equivalence criterion on the evaluation
of the biclusters, the experiments provided results with higher average scores for the stricter
criteria (EQI and EQ?2), and, similarly, lower average score for the least rigorous one (EQ6), as
summarized in Table 4.7. To a certain extent, this was expected because rigid conditions tend to

produce more cohesive and smaller sets after clustering, as verified by the low average number
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of CV and references for the former cases.

Table 4.7: Summary of generated biclusters

CRITERION | #BICLUSTERS | AVG #CV | MAX#CV | AVG#REFS | MAX #REFS | AVG SCORE | MAX SCORE
EQ1 100 59 405 22 3 42 4.62
EQ2 101 109.88 5278 2.2 3 4.32 4.62
EQ3 113 836.01 9108 222 3 3.15 3.93
EQ4 116 1024.78 8883 2.22 3 2.91 3.84
EQ5 164 798.8 7999 4.07 28 2.49 4.15
EQ6 148 933.7 7959 3.51 28 2.3 3.59

Results grouped by each six defined equivalence criterion: Number of biclusters, average/maximum number of compound variants,
average/maximum number of studies, average/maximum score.

Focusing on the list of the most well-evaluated biclusters (last quartile, i.e, score greater
than 3.85), which are listed in Table 4.8, all of them are comprised by only two or three studies.
Half of these biclusters gather a number of SSV higher than the median value (1,702 SSV), even
though associated to very low number of studies (two and three). Particularly, the outcomes with
the highest scored-value are very small subsets: ID=1 {4 SSV x 3 studies} and ID=2 {10 SSV x
2 studies}.

At afirst, it is possible to highlight potential meaningful biclusters by combining different
aspects such as dimension, score, spreading of the variants, unrelated studies, equivalence
criterion, and so on. Large dimensions could possibly represent good results, but it is still
necessary to verify, for instance, the existence of some bias in the agreement among the involved
studies. Moreover, the ratio of numbers of compound variants and SSV in a bicluster can point
to a high concentration of equivalent variants.

On the other hand, there are a few dozen biclusters with 4-10 studies, which were left
out of the former list by the limit score. This time, two conditions were used to select another set
of biclusters: the score higher than the median (a lower limit) and the number of studies higher
than 3 (the highest value in previous selection). Table 4.9 lists the five biclusters found. As it can
be observed, this list involves larger biclusters, achieving a relevant quantity of 8 studies, even
though the numbers of SSV have decreased. Indeed, as a significant support level is extremely
important to ensure the reliability of these grouped variants, biclusters #29 and #30 deserve to be
taken into full account. Thus, to an enhanced data analysis, the lists of all variants associated to

these two biclusters are shown in Appendix B.8 and B.12.

4.3.4 Validation of the resulting biclusters with a validated subset of DGV

A lack of existing benchmarking data sets means that it is not clear what variants will be
suitable to compare with the identified results. However, it is quite important to consider some
validated sets of structural variants, such as DGV Gold Standard (DGV-GS). This collection is
comprised by a filter whose role is to select a subset of the highest resolution variants according

to the combination of three conditions: (i) share at least 50% reciprocal overlap, (ii) supported by
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Table 4.8: List of the most well-evaluated biclusters

ID | #STUDIES | #CV | #SSV | CRITERION | SCORE | STUDIES
113 2 4 | EQI,EQ2 4.62 | Alkan 2009, Conrad 2009, Perry 2008
212 5 10 | EQ2 4.62 | Locke 2006, Sharp 2005
312 6 16 | EQl 4.57 | Locke 2006, Sharp 2005
4 |2 26 83 | EQ2 4.48 Cooper 2011, Conrad 2009
512 405 1502 | EQI1 4.48 | 1000 GC Phase 3, 1000 GC Phase 1
6|2 396 1464 | EQ2 4.47 | 1000 GC Phase 1, 1000 GC Phase 3
702 55 269 | EQI1 4.43 | Conrad 2009, Ju 2010
8|2 10 37 | EQ2 4.43 | Cooper 2011, Wong 2012b
912 44 132 | EQI, EQ2 4.41 | Conrad 2009, Perry 2008
10 | 2 85 576 | EQ2 4.34 | Wong 2012b, Conrad 2009
11 3 3 20 | EQ2 4.27 | Conrad 2009, Cooper 2011, Wong 2012b
12 | 3 11 48 | EQI 4.25 | Conrad 2009, Park 2010, Perry 2008
13 | 2 41 274 | EQI 4.21 | Conrad 2009, Park 2010
14 | 2 1055 6894 | EQS5S 4.15 | 1000 GC Phase 3, 1000 GC Phase 1
15 ] 2 8 24 | EQ2 4.05 | Cooper 2011, Perry 2008
16 | 2 743 3549 | EQ3 3.93 | Coe 2014, Cooper 2011
17 2 832 6462 | EQS5S 3.91 Conrad 2009, Cooper 2011
18 | 2 3 8 | EQ2,EQl 3.88 | Alkan 2009, Conrad 2009
19 | 2 300 1680 | EQ4, EQ3 3.85 | Redon 2006, Coe 2014
20 | 3 394 2010 | EQ4 3.75 | Coe 2014, Vogler 2010, Cooper 2011
21 | 2 1968 6193 | EQ4 3.75 | Vogler 2010, Cooper 2011
22 | 2 550 3336 | EQ3 3.74 | Conrad 2009, Cooper 2011
23 | 3 396 2471 | EQ3 3.73 | Coe 2014, Vogler 2010, Cooper 2011
24 | 2 657 6406 | EQ4 3.68 | Wong 2012b, Alsmadi 2014
25 | 2 13 58 | EQI 3.65 | Park 2010, Perry 2008
26 | 2 1532 10174 | EQ5 3.59 | 1000 GC Phase 1, 1000 GC Phase 3
27 | 2 1524 9497 | EQ6 3.59 | 1000 GC Phase 1, 1000 GC Phase 3
28 | 2 1534 10174 | EQS5S 3.58 | 1000 GC Phase 3, 1000 GC Phase 1

The data is ordered by the score and it only contains biclusters which achieved score greater than 3.58 (3rd quartile).

Table 4.9: List of the biclusters with the highest number of studies

ID | #STUDIES | #CV | #SSV | CRITERION | SCORE | STUDIES

29 8 25 588 EQ6 3.25 Vogler 2010, Suktitipat 2014, Redon 2006,
de Smith 2007, Lou 2015, Cooper 2011,
Conrad 2009, Coe 2014

30 | 8 17 495 EQ6 3.32 Vogler 2010, Redon 2006, Suktitipat 2014,
de Smith 2007, Lou 2015, Coe 2014, Conrad
2009, Cooper 2011

31 5 111 3244 EQ5 3.44 Wong 2012b, Thareja 2015, Boomsma 2014,
Alsmadi 2014, Dogan 2014

32 |5 81 2374 EQ5 3.52 Wong 2012b, Thareja 2015, Dogan 2014,
Alsmadi 2014, Boomsma 2014

33 4 58 823 EQ5 3.52 Perry 2008, Cooper 2011, Park 2010, Con-
rad 2009

The list contains the biclusters with score greater than 3.24 (median value) and the number of studies exceeded 3 (the maximum value found
in the list of most-evaluated biclusters).

at least two high resolution studies and (iii) found in at least two samples. The data was obtained

from the release of May-2016/hg19, which contains 428,747 SSV, equivalent to approximately
75% of the number of input SSV.
First, the overall True Positive Rate (TPR) of the results of this work reached almost 63%.

Yet, when filtering results by the accuracy score, in which only biclusters with score greater
than the median (3.24) were included, the TPR rose to 77%. In order to observe the effect of

calibrating this score over specificity and sensitivity of such results, it is possible to visualize the

plotted ROC curves. There is a ROC curve for each equivalence criterion, as shown in Figure 4.4.

To generate these graphics, the Chia-Karuturi score worked as a threshold in order to determine
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whether a given instance should be classified as valid or not. It is also worth noting that the
equivalence criterion EQ3 had the best performance according to the highest value of AUC (area
under the ROC curve).

Figure 4.4: ROC curves with different equivalence criteria
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Another list of biclusters is presented in Table 4.8, which is composed by the most
well-evaluated biclusters (3rd quartile considering the accuracy measure), and added the number
of SSV validated using as reference DGV-GS. Thus, according to Table 4.10, most of these
biclusters achieved more than 70% in TPR.

Additionally, there is supplementary material with the lists of SSV obtained from DGV-
GS related to the used input data set (Appendix B.6). This list was ordered in descending
percentage in order to highlight 35 studies with no occurrence of SSV in such gold standard.
Possibly, the reason for these studies being out of the gold standard may indicate a significantly

low quality of these studies regarding the selective criteria of DGV.

4.4 Discussion and future directions

During the experiments, the use of ScreenVar accomplished the initial purpose of this
work, which was to provide sets of reliable variants along with the observation of diverse aspects

with respect to the behavior of each stage of the methodology. A first challenge addressed in
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Table 4.10: List of the biclusters with higher validation ratios

ID | #IN-SSV #GS-SSV | SCORE | STUDIES
5 4 4 (100%) 4.62 | Alkan 2009, Conrad 2009, Perry 2008
18 576 563 (97.74%) 4.34 | Conrad 2009, Wong 2012b
24 37 36 (97.3%) 4.43 | Cooper 2011, Wong 2012b
22 83 80 (96.39%) 4.48 | Conrad 2009, Cooper 2011
4 20 19 (95%) 4.27 | Conrad 2009, Cooper 2011, Wong 2012b
25 24 22 (91.67%) 4.05 | Cooper 2011, Perry 2008
21 274 251 (91.61%) 4.21 | Conrad 2009, Park 2010
13 6406 | 5834 (91.07%) 3.68 | Alsmadi 2014, Wong 2012b
16 1464 | 1316 (89.89%) 4.47 | 1000 GC Phase 1, 1000 GC Phase 3
23 58 52 (89.66%) 3.65 | Perry 2008, Park 2010
3 48 43 (89.58%) 4.25 | Conrad 2009, Park 2010, Perry 2008
15 1502 | 1345 (89.55%) 4.48 | 1000 GC Phase 1, 1000 GC Phase 3
20 132 118 (89.39%) 4.42 | Conrad 2009, Perry 2008
9 9497 | 8276 (87.14%) 3.59 | 1000 GC Phase 1, 1000 GC Phase 3
14 3336 | 2897 (86.84%) 3.74 | Conrad 2009, Cooper 2011
28 7 6 (85.71%) 3.92 | Alkan 2009, Conrad 2009
10 6894 | 5864 (85.06%) 4.15 | 1000 GC Phase 1, 1000 GC Phase 3
7 10174 | 8640 (84.92%) 3.58 | 1000 GC Phase 1, 1000 GC Phase 3
8 10174 | 8640 (84.92%) 3.59 | 1000 GC Phase 3, 1000 GC Phase 1
2 2010 | 1699 (84.53%) 3.75 | Coe 2014, Vogler 2010, Cooper 2011
11 6462 | 5446 (84.28%) 391 | Cooper 2011, Conrad 2009
19 269 218 (81.04%) 4.43 | Conrad 2009, Ju 2010
1 2471 1937 (78.39%) 3.73 | Coe 2014, Vogler 2010, Cooper 2011
12 3549 | 2719 (76.61%) 3.93 | Coe 2014, Cooper 2011
6 6193 | 4520 (72.99%) 3.75 | Cooper 2011, Vogler 2010
17 1293 897 (69.37%) 3.84 | Coe 2014, Redon 2006
26 16 0 (0%) 4.57 | Locke 2006, Sharp 2005
27 10 0 (0%) 4.62 | Locke 2006, Sharp 2005

List ordered by the ratio between Input-SSV and GS-SSV

ScreenVar was to establish proper flexibility for the input data. This is related to the fact that
ScreenVar facilitates the integration of different sources of detecting variants, aiming to discover
how they agree. For instance, it is possible to crosscheck information related to outcomes of
mature tools such as CNVnator or CN'V-Seq along with findings from a newly introduced tool. A
simple preprocessing phase can easily convert different data formats to a given format according
to the required fields of ScreenVar. Still about data input, it is essential to emphasize the relevance
of having high resolution data along with a significant quantity of them, since the presented
methodology can be seen as a strategy based on meta-analysis.

The task of clustering similar variants showed expected impacts according to the chosen
equivalence criterion. A relevant implication about this step is that stricter conditions leads
to better assessed biclusters, whereas softer criteria may entail a higher number of studies in
agreement about a given set of variants. Thus, the user can set up parameters for overlapping
variants, in order to opt by capturing either extremely cohesive, smaller groups, or bigger groups
but not completely homogeneous.

This methodology shows some differences compared to the idea behind the CNV map
built by Zarrei and colleagues (ZARREI et al., 2015), which have also analyzed variants from
different studies. While they gathered sets of variants sharing a milder condition (at least
50% reciprocal overlap), ScreenVar is configured to work with any threshold for this rate (as
experimented in this work, which were carried out with 70%, 90% and 99%), without mentioning

the adoption of specific rules for recognizing the equivalence. Regarding the number of studies,
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they restricted their results to exactly two distinct studies as a stringency condition, whereas the
proposed methodology delegates this task to a data mining technique in order to discover how
many and what studies are more appropriate to form a good cluster. All in all, the differences
between these two works are focused on the ability of combining any number of variants and
studies simultaneously.

The release of a list of reliable variants, as introduced in this thesis, is particularly
valuable, since there are no precise and currently available validated SV. Thus, an ongoing
benefit of using ScreenVar lies on assessing the quality of new SV detection tools and, therefore,
providing further enhancements in the quality of available sets of genetic variants. As we pointed
out in the Results section, ScreenVar found interesting results encompassing two cohesive groups

with eight studies supporting numerous variants (around 500 events).
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Discussions and contributions

5.1 Summary

Despite improvements to NGS technologies and SV detecting tools, the accurate identifi-
cation of genetic variants still remains a challenge. This is due to a large variety of obstacles,
including different technologies and protocols addressing each step of the thorough variant
calling process, different resolutions in identified variants, and the lack of an established gold
standard for such data. These obstacles directly affect the validation of new detection tools,
especially on designing assays for experimental validation. Besides, the most relevant impact can
be encountered when such currently available genetic variations are present in clinical analyses.

The exploration of the possibilities for identifying a set of reliable variants tackled
three issues: unification of output format of different tools and databases, the definition of an

equivalence criterion, and concordance analysis among variants and respective sources.

5.1.1 Unification of output format used in tools and databases

Through the integration of structural variants identified from different resources, the
initial need would be to deal with variants represented in two distinct output formats commonly
adopted by detection tools, which are GFF (generic feature format) and VCF (variant calling
format). Since variants are intrinsically relative elements, each different assembly (hg/8 and
hg19) can lead to uncertainty with respect to the equivalence among variants. Regarding DGV
releases, there is a proper data format, including graphical, tabular and text-based formats.

To apply ScreenVar, it was necessary to define a unified collection with fields related to
minimum required information about variants. This minimum field list was formed according to
some degree of flexibility in input data so that a tool using VCF could be integrated with records
from DGV (tabular format), for instance. Consequently, a proper data model was built and a new
database released called ScreenVarDB (see respective entity-relationship model in Appendix -
Figure B.2). This database is a collection involving the relationship among variants split into

three levels of refinement: input, equivalent and reliable variants.
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5.1.2  Definition of an equivalence criterion

In order to design the process of evaluating structural variants, defining a foundation for
deciding when two variants can be considered equivalent was needed. This was an intriguing
issue due to diverse factors, among which we highlighted the imprecision of a variant localization,
the complex nature of human genome, the own relative nature of a variant (gain for a sample/loss
for another) because of the dependency with the concerned reference genome and sample, and
so on. Thus, defining an equivalence criteria provided an important decision for the other tasks
of ScreenVar.

As our experiments have shown, the degree of replicated variants in DGV is very high,
as shown by the example of a single variant with almost 3,5 thousand identical copies. Thus,
an equivalence criterion should play the role of grouping approximated variants, considering
different degrees of stringency, as defined by the Local and Global Criteria. Both criteria relied

on reciprocal overlapping among the variants and thresholds to control the acceptability.

5.1.3 Concordance analysis among variants and respective sources

Concordance analysis is a strategy to measure the reliability among information and
respective sources. In this thesis, the evaluation methodology consisted in rearranging the
data related to equivalent variants found and their studies in order to build a matrix and then
apply a biclustering algorithm. This aimed at carrying out a sort of meta-analysis seeking for
agreement among studies with respect to identified variants. Therefore, the large number of
resulting biclusters brought to light the possibility of having putative reliable variants depending
on the considered studies and parameterization. As introduced in the previous chapter, there are
well-evaluated biclusters comprised by approximately five hundred variants and supported by
three to eight different studies.

The relevance of this contribution is reinforced by the fact that the chosen criteria were
very stringent and yet a suitable number of variants was selected. Moreover, it is clear that
adjustments or constraints can be included to suit a given researcher need. The methodology
allows employing other equivalence criteria, parameters, biclustering algorithm and also to

determine specific studies and/or variants to deal with.

5.1.4 Limitations

Notwithstanding, there are limitations of the proposed approach. First, it is important to
note that a procedure based on meta-analysis can lead to misleading conclusions due to the highly
dependence of the input data. Particular attention to data distribution is required, especially
across the underlying studies, along with the method used for discovering the analyzed variants.
Moreover, pursuing a gold standard for SV cannot handle with exclusively computational
procedures without dealing with dry lab validations. The main application of this tool consists in

pointing out putative benchmark data for filling the literature gap regarding the absence of robust
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truth sets of SVs. Technically, there is an implication of performing ScreenVar with large input
data sets. The experiments with variants associated to chromosome 1 were processed in roughly
12 hours using < 4GB of memory. The main concern in terms of processing time focuses on
the step of finding equivalent variants, which executes pairwise comparisons among all variants.
Unfortunately, it was not possible to perform an analysis involving more than one chromosome

in order to investigate translocation variants.

5.2 Future works

Important improvements can be obtained from adding selective filters in input data
through an engine that allows choosing only studies involving a given method employed (e.g.,
sequencing) or a certain resolution achieved. Including a stage for doing this can reduce the
number of false equivalent variants found.

Another point is to adapt this methodology to work as an ensemble of tools through
possible new experiments designed to receive outputs from the execution of multiple SV detection
tools, all targeting the same region of DNA. This trial should lead to ScreenVar pinpointing which
tools agree with each other, forming thus an certain ensemble of reliable tools. Additionally, the
resulting set of variants can be adequately qualified as supported by a chosen set of tools, and
so, an ongoing database of reliable variants can gradually be produced. The expected results in
the future are that updated and useful releases of diverse putative gold standard variants for the
researchers are ade available. Thus, in an overview, ScreenVar can directly receive the outcomes
of many detection tools and then it can produce set of agreed results, according to all inherent

parameters and criteria.

5.3 Concluding remarks

Detecting structural variants is a complex problem which researchers have tried to
solve with different strategies until the present without accurate results and with common low
concordance among the tools. Hence, a large amount of effort has been employed to produce
an adequate integration of the data sets in order to acquire meaningful insights. The inaccuracy
of the results obtained derives from the fact that different pipelines have been applied to the
variant analysis, in general, being affected by rapid advances in sequencing technologies. As
an immediate consequence, there is an unprecedented incoming of data with higher levels of
coverage and resolution and also increased availability.

After data mining of hundreds of thousands of variants in DGV using the proposed
methodology, relevant collections of hundreds of variants could be considered reliable by
supporting consolidated published studies. Unlike simulated variants, the findings indicated by
our experiments using ScreenVar can provide a true landscape of variants since they are from

real outcomes. Thus, this work has reached the expected objective of introducing a methodology
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capable of combining information from massive data, relying richly upon diversity size, variant
type, and location, and then being a provider of equivalent variants highly supported by different
sources. Finally, this has produced a comprehensive approach to deal with the need of arranging

benchmark data for use in the validation process of SV detection tools.

5.4 Important lessons learned

In this section, we would like to provide insights about the work performed that may
help other researchers in this area. During each moment of this research, studying, reading,
coding and writing, many difficulties were turned into learned lessons, and, besides the scientific
contributions, we can also share other collaborations.

The challenge of a multidisciplinary area was recurrent along all the process. Undeniably,
Bioinformatics has challenging problems to investigate, which have drawn attention from biolo-
gists, computer scientists, statisticians, mathematicians, and so on. However, most researchers
have an academic degree in only one area, leaving the training for the other required fields of
knowledge to be accomplished individually. This may produce diverse obstacles in the grasp of
the overall context, such as fuzzy scope, fragile requirements, the dependency of a nonexistent
user etc. Particularly, as computer science researchers, we can point out the absence of specificity
in biological definitions. In general, there are many considerations to better comprehend the
scenario, demanding a long contextualization to apply a certain concept or rule. Thus, we should
reinforce the crucial need of training in each of the areas involved, at least Computer Science,
Biology, and Statistics, earlier and more effectively.

Regarding development skills, an obvious, but very relevant point is the enormity of
bioinformatics’ databases. It is extremely important to be precise and careful in coding programs
to handle large, complex and inconsistent databases, such as DGV and other biological databases.
Furthermore, in this work, the combination of R-script with operational system Linux was a
successful decision due to the availability of several libraries of Bioinformatic and having safety

at the completion of jobs.
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Supplementary Information: Unraveling the CNV Detection problem in tangible aspects

Table A.1: Relevant information about most popular Copy Number Variation detection tools
ordered by approach and number of citations

Method \ Language \ Last update \ Reference \ Citations'
ASSEMBLY-BASED TOOLS

Velvet (2008) - https://www.ebi.ac.uk/~zerbino/velvet/ C Aug, 2014 ZERBINO; BIRNEY (2008) 2052/3790
Cortex Assembler (2008) - http://cortexassembler.sourceforge. C April, 2011 IQBAL et al. (2012) 64/151
net/

Tigra (2014) - http://gmt.genome.wustl.edu/packages/ C++ Sep, 2012 CHEN et al. (2014) 10/19
tigra-sv/

Magnolya (2012) - http://sourceforge.net/projects/magnolya/ Python Nov, 2014 NIJKAMP et al. (2012) 6/14
PAIRED-END MAPPING TOOLS

BreakDancer (2009) - http://gmt.genome.wustl.edu/packages/ Perl, C++ Aug, 2014 CHEN et al. (2013) 256/513
breakdancer/

VariationHunter / CommonLAW (2010) - http://variationhunter. | C++ Jul, 2012 HORMOZDIARI et al. (2010) 67/135
sourceforge.net/Home

SPLIT-READS TOOLS

Pindel (2009) - http://gmt .genome.wustl.edu/packages/pindel/ C++ Sep, 2014 YE et al. (2009) 243/477
AGE (2011) - http://sv.gersteinlab.org/age/ C++ Sep, 2011 ABYZOV; GERSTEIN (2011) 24/44
SLOPE (2010) - http://www-genepi.med.utah.edu/suppl/SLOPE/ C++ - ABEL et al. (2010) 16/29
index.html

SRiC (2011) - N/A N/A N/A ZHANG et al. (2011) 15/28
READ-DEPTH TOOLS

MrFast (2009) - http://mrfast.sourceforge.net/ C++ Oct, 2014 ALKAN et al. (2010) 192/425
RDXplorer / EWT (2009) - http://rdxplorer.sourceforge.net/ Perl, Java May, 2011 YOON et al. (2009) 148/292
SegSeq (2009) - http://www.broad.mit.edu/cancer/pub/solexa_ Matlab Jan, 2009 CHIANG et al. (2009) 130/283
copy_numbers/

CNVnator (2011) - http://sv.gersteinlab.org/cnvnator/ C++ Feb, 2014 ABYZOV etal. (2011) 130/244
CNV-Seq (2009) - http://tiger.dbs.nus.edu.sg/cnv-seq Perl, R Aug, 2014 XIE; TAMMI (2009) 107/244
Control-FREEC (2011) - http://bioinfo-out.curie.fr/projects/ C++ Jun, 2014 BOEVA et al. (2011) 38/82
freec/

ReadDepth (2011) - https://code.google.com/p/readdepth/ R Apr, 2011 MILLER et al. (2011) 37/62
cn.MOPS (2012) - http://www.bioinf. jku.at/software/cnmops/ R Aug, 2014 KLAMBAUER et al. (2012) 35/70
BIC-Seq (2010) - http://compbio.med.harvard.edu/Supplements/ R Jan, 2013 Xletal. (2011) 35/67
PNAS11l.html

CNASeg (2009) - http://www.compbio.group.cam.ac.uk/ R Sep, 2010 IVAKHNO et al. (2010) 27157
software/cnaseg

CNAnorm (2012) - http://www.precancer.leeds.ac.uk/ R May, 2014 GUSNANTO et al. (2012) 22/52
software-and-datasets/cnanorm/

JointSLM  (2011) - http://nar.oxfordjournals.org/content/ R Feb, 2011 MAGTI et al. (2011) 18/32
suppl/2011/02/16/gkr068.DCl/JointSLM_R_Package.zip

rSW-Seq (2010) - http://compbio.med.harvard.edu/Supplements/ C Dec, 2010 KIM et al. (2010) 14/28
BMCBioinfolO-2.html

CNVeM (2013) - http://www.sph.umich.edu/csg/szoellner/ C Sep, 2008 WANG et al. (2013) 3/7
software/

CBSBR (2014) - http://www.mathworks.com/matlabcentral/ Matlab May, 2012 DUAN; DENG; WANG (2014) 0/0
fileexchange/36518-continuation-block-wise-sparse-approx

COMBINED TOOLS

Genome Strip - RD+PEM+SR (2011) - http://www.broadinstitute. N/A 2015 HANDSAKER et al. (2011) 82/151
org/software/genomestrip/

CNVer - RD+PEM (2010) - http://compbio.cs.toronto.edu/CNVer/ C++ Jul, 2011 MEDVEDEYV et al. (2010) 53/105
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Supplementary Information: ScreenVar - A methodology for evaluating structural vari-

ants

The tool ScreenVar was implemented using R-scripts in compliance with the requirements

described in the proposed methodology.
The diagram in Figure B.1 represents the flow of the data along all steps of ScreenVar.

To understand the implementation of this tool, it is essential to observe the required input and

parameters, and its output:
= Input: a text file containing genetic variants

» Parameters:
- MRO: threshold for reciprocal overlap in order to find equivalent variants
- Overlap size: threshold for the overlap length between each pair of variants
- Minimum rows: Restriction for the dimension of resulting biclusters
- Minimum cols: Restriction for the dimension of resulting biclusters

- Maximum number of groups: Stopping criterion used in biclustering executions

» Output:

- Graphical files with histograms summarizing all generated biclusters regarding

number of studies, number of variants, score values, and so on.

- Text files with summary data of all execution.

An important item of such process is the data model used for storing the data produced
in each phase in order to allow further intermediate filtering and underlying analyses. The
entity-relationship modeled for this tool is shown in Figure B.2. Moreover, a data summary of
the data resulting after all experiments performed on this research is described in Table B.1. The

data discussed in this thesis can be downloaded at http://bit.ly/screenvardb.
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Figure B.1: Workflow of ScreenVar

Text file with
variants

MRO —

Phase 0: Load variant data

(

[ INSERT VARIANTS

Overlap

size

Minimum
rows
Minimum
cols
Maximum

number of
groups

Phase 1: Find equivalent

variants

-

INSERT COMPOUN
VARIANTS

D

| | Phase 3: Apply biclustering
algorithms

-

INSERT BICLUSTE

Phase 4: Filter results

OUTPUT:
Graphical files:
histograms
Text files: summa

SCREENVAR-
DB




89

Figure B.2: Entity-relationship model of ScreenVar-DB
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Table B.1: Data summary of ScreenVar-DB

BICLUSTERING
CONFIG

BICLUSTERING
ALGORITHM

ENTITY DESCRIPTION DATA
Structural  vari- | Structural variants received to be analyzed 565,300 records obtained
ants from DGV

Equivalence Crite-
rion

Study

Compound Vari-
ants

Bicluster

Biclustering Con-
fig

Criteria defined to cluster structural variants by
equivalence condition

Reference to which each structural variants is asso-
ciated

A set of equivalent structural variants

Two-dimensional relation involving a set of struc-
tural variants and a set of studies generated accord-
ing to a given criterion
List of values defined for parameters related to
biclustering execution

6 pre-defined configurations
(listed in Table 4.5)

72 records from DGV

55,885 CV generated by
ScreenVar

2,743 biclusters generated by
ScreenVar

240 pre-defined records (4 bi-
clustering methods x 6 equiv-
alence criterion configura-
tions x 10 iterations)
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Table B.2: Complete list of studies cataloged by DGV: all studies present in DGV with respective

numbers of variants for each type (deletion, duplication, insertion, inversion, and others)

Study | Method | Sample | Del | Dup | Ims Inv Others | Total
1000 GC Phase 1 Merging,Oligo aCGH,PCR,Sequenc 1151 93733 0 0 0 0 93733
1000 GC Phase 3 Sequencing 2504 205923 54605 2 5769 0 266299
1000 GC Pilot Project Digital array,Oligo aCGH,PCR,S 185 0 1862 7345 21 0 9228
Ahn 2009 Sequencing 1 206 87 0 26 0 319
Alkan 2009 Oligo aCGH,Sequencing 3 18 61 0 0 0 79
Alsmadi 2014 Sequencing 2 2718 775 90 122 0 3705
Altshuler 2010 SNP array 1184 13980 1316 0 0 0 15296
Arlt 2011 Sequencing, SNP array 1 123 3 55 12 0 193
Banerjee 2011 SNP array 1250 61 25 0 0 0 86
Bentley 2008 Sequencing 1 405 0 0 0 0 405
Boomsma 2014 Sequencing 767 865 0 0 0 0 865
Campbell 2011 Oligo aCGH 2366 7050 10340 0 0 0 17390
Coe 2014 Oligo aCGH,SNP array 29084 25629 15118 0 0 565 41312
Conrad 2006 Oligo aCGH,SNP array 60 173 0 0 0 0 173
Conrad 2009 Oligo aCGH 40 2412 2681 0 0 76 5169
Cooper 2008 SNP array 9 31 14 0 0 0 45
Cooper 2011 Oligo aCGH,SNP array 17421 33173 3399 0 0 135 36707
De Smith 2007 Oligo aCGH 51 436 443 0 0 0 879
Dogan 2014 Sequencing 1 552 170 15 0 0 737
Forsberg 2012 SNP array 6 0 1 0 0 0 1
Gusev 2009 SNP array 270 11 0 0 0 0 11
Hinds 2006 Oligo aCGH,PCR 95 5 0 0 0 0 5
Tafrate 2004 BAC aCGH,FISH 39 15 14 0 0 0 29
Itsara 2009 Oligo aCGH,SNP array 1557 1021 270 0 0 0 1291
Jakobsson 2008 SNP array 443 146 51 0 0 0 197
John 2014 Sequencing 1 167 198 56 2 0 423
Ju2010 Sequencing 1 70 26 0 0 0 96
Kidd 2008 FISH,Multiple complete digesti 9 322 0 465 99 0 886
Kidd 2010 Oligo aCGH,Sequencing 9 0 0 881 0 0 881
Kidd 2010b Sequencing 9 65 7 0 14 0 86
Kim 2009 Oligo aCGH,Sequencing,SNP arra 2 55 43 1 0 0 99
Korbel 2007 FISH,Oligo aCGH,PCR,Sequencing 2 102 0 69 15 0 186
Levy 2007 Merging,Oligo aCGH,Sequencing, 2 330 2 376 13 0 721
Locke 2006 BAC aCGH 265 72 300 0 0 0 372
Lou 2015 Sequencing,SNP array 369 1181 252 0 0 0 1433
McCarroll 2006 SNP array 269 309 0 0 0 0 309
McCarroll 2008 SNP array 270 3171 754 0 0 0 3925
McKernan 2009 Sequencing 1 394 15 136 10 0 555
Mills 2006 Sequencing 24 271 0 59 0 0 330
Mokhtar 2014 SNP array 34 66 48 0 0 0 114
Pang 2010 Oligo aCGH,Sequencing,SNP arra 3 316 55 108 7 0 486
Pang 2013b Sequencing 1 126 18 2 0 0 146
Park 2010 Oligo aCGH 31 1476 662 0 0 0 2138
Perry 2008 Oligo aCGH 31 578 1041 0 0 0 1619
Perry 2008b BAC aCGH,FISH,PCR 62 74 135 0 0 0 209
Pinto 2007 SNP array 771 139 186 0 0 0 325
Redon 2006 BAC aCGH,SNP array 270 1073 1597 0 0 35 2705
Schrider 2013 PCR,Sequencing 946 2 0 3 0 0 5
Schuster 2010 Oligo aCGH,Sequencing 1 2 27 0 0 0 29
Sebat 2004 ROMA 31 8 7 0 0 0 15
Shaikh 2009 SNP array 2026 2642 518 0 0 0 3160
Sharp 2005 BAC aCGH,FISH 48 121 10 0 0 0 131
Simon-Sanchez 2007 qPCR,SNP array 181 2 6 0 0 0 8
Sudmant 2013 Oligo aCGH,Sequencing 97 51 16819 0 0 0 16870
Suktitipat 2014 SNP array 3017 623 123 0 0 0 746
Teague 2010 BAC aCGH,Oligo aCGH,Optical ma 4 113 0 167 2 284 566
Thareja 2015 Sequencing 1 578 172 12 19 0 781
Tuzun 2005 BAC aCGH,PCR,Sequencing 1 11 0 9 2 0 22
Uddin 2014 SNP array 873 4902 803 0 0 0 5705
Vogler 2010 Merging,SNP array 1109 3964 662 0 0 12 4638
Wang 2007 SNP array 112 162 65 0 0 0 227
Wang 2008 Sequencing 1 186 0 0 3 4 193
Wheeler 2008 Oligo aCGH,Sequencing 3 3 2 0 0 0 5
Wong 2007 BAC aCGH 95 752 463 0 0 2 1217
Wong 2012b Sequencing 96 18775 0 0 0 0 18775
Young 2008 MLPA,PCR,Sequencing 52 8 1 0 0 0 9




Table B.3: Complete methods using in studies cataloged by DGV: all methods used in studies
present in DGV with respective numbers of variants for each type (deletion, duplication, insertion,
inversion, and others)

Method | Del | Dup | Ins | Inv | Others | Total |
Sequencing 231301 56073 372 4 5965 4 293715
Merging,0Oligo aCGH,PCR,Sequenc 93733 0 0 0 0 0 93733
Oligo aCGH,SNP array 59996 18787 0 700 0 700 79483
SNP array 26243 3904 0 0 0 0 30147
Oligo aCGH 11952 15167 0 76 0 76 27195
Oligo aCGH,Sequencing 74 16909 881 0 0 0 17864
Digital array,Oligo aCGH,PCR,S 0 1862 7345 0 21 0 9228
Merging, SNP array 3964 662 0 12 0 12 4638
BAC aCGH,SNP array 1073 1597 0 35 0 35 2705
Sequencing,SNP array 1304 255 55 0 12 0 1626
BAC aCGH 824 763 0 2 0 2 1589
FISH,Multiple complete digesti 322 0 465 0 99 0 886
Merging,Oligo aCGH,Sequencing, 330 2 376 0 13 0 721
Oligo aCGH,Sequencing,SNP arra 371 98 109 0 7 0 585
BAC aCGH,Oligo aCGH,Optical ma 113 0 167 284 2 284 566
BAC aCGH,FISH,PCR 74 135 0 0 0 0 209
FISH,Oligo aCGH,PCR ,Sequencing 102 0 69 0 15 0 186
BAC aCGH,FISH 136 24 0 0 0 0 160
BAC aCGH,PCR,Sequencing 11 0 9 0 2 0 22
ROMA 8 7 0 0 0 0 15
MLPA,PCR,Sequencing 8 1 0 0 0 0 9
qPCR,SNP array 2 6 0 0 0 0 8
Oligo aCGH,PCR 5 0 0 0 0 0 5
PCR,Sequencing 2 0 3 0 0 0 5
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Table B.4: Number of equivalent variants by DGV studies: Totals of compound variants found

after executing ScreenVar for each defined equivalence criterion (EQ1 to EQ6)

Study | Totalin Chr || EQ1 | EQ2 | EQ3 EQ4 EQ5 EQ6
1000 GC Phase 3 266299 679 (0,25%) 392 (0,15%) 1407 (0,53%) 1160 (0,44%) 1652 (0,62%) 1450 (2%)
1000 GC Phase 1 93733 490 (0,52%) 483 (0,52%) 1209 (1,29%) 1203 (1,28%) 1396 (1,49%) 1390 (2%)
Coe 2014 41312 3175 (7,69%) 1793 (4,34%) 4600 (11,13%) 3411 (8,26%) 5080 (12,3%) 3905 (2%)
Cooper 2011 36707 945 (2,57%) 431 (1,17%) 3360 (9,15%) 2993 (8,15%) 4362 (11,88%) 4019 (2%)
Wong 2012b 18775 9248 (49,26%) | 9246 (49,25%) | 15701 (83,63%) | 15699 (83,62%) | 16949 (90,27%) | 16947 (2%)
Campbell 2011 17390 28 (0,16%) 11 (0,06%) 62 (0,36%) 48 (0,28%) 80 (0,46%) 69 (2%)
Sudmant 2013 16870 9 (0,05%) 8 (0,05%) 74 (0,44%) 73 (0,43%) 224 (1,33%) 223 (2%)
Altshuler 2010 15296 40 (0,26%) 17 (0,11%) 56 (0,37%) 40 (0,26%) 63 (0,41%) 54 (2%)
1000 GC Pilot Project | 9228 68 (0,74%) 66 (0,72%) 267 (2,89%) 267 (2,89%) 428 (4,64%) 428 (2%)
Uddin 2014 5705 291 (5,1%) 256 (4,49%) 536 (9.4%) 507 (8,89%) 683 (11.97%) 654 (2%)
Conrad 2009 5169 1034 (20%) 878 (16,99%) 2366 (45.77%) 2269 (43.9%) 2749 (53,18%) 2666 (2%)
Vogler 2010 4638 499 (10,76%) 348 (7,5%) 770 (16.6%) 650 (14,01%) 919 (19.81%) 813 (2%)
McCarroll 2008 3925 44 (1,12%) 22 (0,56%) 69 (1,76%) 48 (1,22%) 84 (2,14%) 66 (2%)
Alsmadi 2014 3705 261 (7,04%) 260 (7,02%) 599 (16,17%) 598 (16,14%) 846 (22.83%) 845 (2%)
Shaikh 2009 3160 76 (2,41%) 35 (1,11%) 261 (8,26%) 221 (6,99%) 483 (15,28%) 447 (2%)
Redon 2006 2705 291 (10,76%) 147 (5.43%) 497 (18,37%) 388 (14,34%) 600 (22,18%) 502 (2%)
Park 2010 2138 132 (6,17%) 88 (4,12%) 358 (16,74%) 317 (14,83%) 458 (21,42%) 419 (2%)
Perry 2008 1619 153 (9,45%) 103 (6,36%) 430 (26,56%) 389 (24,03%) 625 (38,6%) 588 (2%)
Lou 2015 1433 60 (4,19%) 44 (3,07%) 115 (8.03%) 101 (7.05%) 160 (11,17%) 148 (2%)
Ttsara 2009 1291 2(0,15%) 2(0,15%) 4(0,31%) 4(0,31%) 9 (0,7%) 9 (2%)
Wong 2007 1217 81 (6,66%) 2(0,16%) 102 (8.38%) 27 (2.22%) 173 (14.22%) 108 (2%)
Kidd 2008 886 24 (2,71%) 24 (2,71%) 164 (18,51%) 164 (18,51%) 329 (37,13%) 329 (2%)
Kidd 2010 881 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(2%)
de Smith 2007 879 91 (10,35%) 71 (8,08%) 178 (20,25%) 165 (18,77%) 221 (25,14%) 210 (2%)
Boomsma 2014 865 48 (5,55%) 47 (5,43%) 382 (44,16%) 382 (44,16%) 546 (63,12%) 546 (2%)
Thareja 2015 781 117 (14,98%) 117 (14,98%) 299 (38,28%) 299 (38,28%) 436 (55,83%) 436 (2%)
Suktitipat 2014 746 73 (9,79%) 51 (6,84%) 154 (20,64%) 147 (19,71%) 219 (29,36%) 213 (2%)
Dogan 2014 737 94 (12,75%) 94 (12,75%) 258 (35.01%) 258 (35,01%) 353 (47.9%) 353 (2%)
Levy 2007 721 45 (6,24%) 45 (6,24%) 106 (14,7%) 106 (14,7%) 132 (18,31%) 132 2%)
Teague 2010 566 36 (6,36%) 32 (5,65%) 120 (21,2%) 116 (20.49%) 179 (31,63%) 177 2%)
McKernan 2009 555 14 (2.52%) 14 (2.52%) 69 (12,43%) 69 (12,43%) 153 (27,57%) 153 (2%)
Pang 2010 486 74 (15,23%) 57 (11,73%) 149 (30,66%) 143 (29.42%) 190 (39,09%) 186 (2%)
John 2014 423 42 (9,93%) 42 (9,93%) 160 (37.83%) 160 (37.83%) 214 (50,59%) 214 (2%)
Bentley 2008 405 13 (3.21%) 13 (3.21%) 154 (38.02%) 154 (38.02%) 258 (63.7%) 258 (2%)
Locke 2006 372 7(1,88%) 6(1,61%) 10 (2.69%) 9 (2.42%) 15 (4,03%) 14 2%)
Mills 2006 330 61 (18.48%) 61 (18,48%) 74 (22,42%) 74 (22,42%) 86 (26,06%) 86 (2%)
Pinto 2007 325 101 (31,08%) 96 (29,54%) 180 (55,38%) 175 (53,85%) 207 (63,69%) 202 (2%)
Ahn 2009 319 12 (3,76%) 12 (3,76%) 101 (31,66%) 101 (31,66%) 187 (58,62%) 187 (2%)
McCarroll 2006 309 3(0,97%) 2(0,65%) 10 (3,24%) 10 (3,24%) 25 (8,09%) 25 (2%)
Wang 2007 227 13 (5,73%) 5(2.2%) 23 (10,13%) 17 (7,49%) 37 (16,3%) 32 2%)
Perry 2008b 209 16 (7,66%) 6 (2,87%) 23 (11%) 14.(6,7%) 31 (14,83%) 22 2%)
Jakobsson 2008 197 22 (11,17%) 16 (8,12%) 49 (24,87%) 44 (22,34%) 87 (44,16%) 83 (2%)
Arlt 2011 193 8 (4,15%) 8 (4,15%) 56 (29,02%) 56 (29,02%) 101 (52,33%) 101 2%)
Wang 2008 193 12 (6.22%) 12 (6.22%) 71 (36,79%) 71 (36,79%) 163 (34,46%) 163 (2%)
Korbel 2007 186 6 (3.23%) 6 (3.23%) 71 (38,17%) 71 (38,17%) 99 (53,23%) 99 (2%)
Conrad 2006 173 5(2.89%) 4(2.31%) 22 (12,72%) 22 (12,72%) 56 (32,37%) 56 (2%)
Pang 2013b 146 34 (23,29%) 34 (23,29%) 55 (37.67%) 55 (37.67%) 67 (45,89%) 67 (2%)
Sharp 2005 131 12 (9,16%) 5(3.82%) 12 (9,16%) 5(3.82%) 14 (10,69%) 7(2%)
Mokhtar 2014 114 18 (15,79%) 16 (14,04%) 25 (21,93%) 23 (20,18%) 28 (24,56%) 26 (2%)
Kim 2009 99 6 (6.06%) 6 (6,06%) 34 (34,34%) 34 (34,34%) 40 (40,4%) 40 (2%)
Ju2010 9% 68 (70,83%) 13 (13,54%) 92 (95,83%) 51 (53,13%) 96 (100%) 58 (2%)
Banerjee 2011 86 51 (59.3%) 1(1,16%) 51(59,3%) 2(2,33%) 53 (61,63%) 5(2%)
Kidd 2010b 86 41 (47.67%) 40 (46,51%) 52 (60,47%) 51(59,3%) 56 (65,12%) 55 (2%)
Alkan 2009 79 8 (10,13%) 5(6,33%) 15 (18,99%) 13 (16,46%) 20 (25,32%) 18 2%)
Cooper 2008 45 4(8,89%) 3(6,67%) 15 (33,33%) 14 (31,11%) 23 (51,11%) 22 2%)
Tafrate 2004 29 2 (6,9%) 0(0%) 2 (6,9%) 1 (3.45%) 2(6,9%) 12%)
Schuster 2010 29 1 (3,45%) 1(3.45%) 7 (24,14%) 7 (24,14%) 12 (41,38%) 12 2%)
Tuzun 2005 22 0(0%) 0(0%) 0(0%) 0(0%) 2(9,09%) 2(2%)
Sebat 2004 15 1(6,67%) 1(6,67%) 4(26,67%) 4(26,67%) 6 (40%) 6 (2%)
Gusev 2009 11 0(0%) 0(0%) 0(0%) 0(0%) 2 (18,18%) 2(2%)
Young 2008 9 1(11,11%) 0(0%) 1(11,11%) 0(0%) 1(11,11%) 0(2%)
Simon-Sanchez 2007 | 8 0(0%) 0(0%) 0 (0%) 0(0%) 1(12.5%) 1 (2%)
Hinds 2006 5 0(0%) 0(0%) 0 (0%) 0(0%) 3 (60%) 3(2%)
Schrider 2013 5 0(0%) 0(0%) 1(20%) 1.(20%) 1. (20%) 1 (2%)
Wheeler 2008 5 1.(20%) 1(20%) 5 (100%) 5 (100%) 5 (100%) 5(2%)
Forsberg 2012 1 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(2%)




Table B.5: Number of equivalent variants by support levels: All values found for each support
level and presents respective totals of equivalent variants

Supportlevel | EQ1 || EQ2 | EQ3 | EQ4 | EQ5 | EQ6

0 11020 8765 10997 10148 7871 7503
1 4236 3585 7626 7253 8085 7967
2 1372 1217 3682 3360 3631 3512
3 662 595 2858 2650 2575 2449
4 490 448 2420 2231 2082 2038
5 359 356 2138 2000 2075 1960
6 273 270 983 912 2595 2585
7 123 116 1043 1031 1887 1820
8 149 146 554 533 1488 1393
9 1 1 898 898 1285 1144
10 0 0 439 437 987 1044
11 1 91 688 549 824 663
12 92 8 516 413 495 513
13 11 1 259 273 889 849
14 2 0 180 138 829 782
15 0 0 189 178 836 625
16 0 0 114 102 528 470
17 0 0 39 30 726 669
18 0 0 12 10 431 383
19 0 0 B 5 415 232
20 0 0 4 8 218 203
21 0 0 17 11 176 159
22 0 0 25 16 229 213
23 0 0 2 2 237 104
24 0 0 7 24 216 163
25 0 0 49 10 221 207
26 0 0 58 115 116 82
27 0 0 147 50 92 58
28 0 0 18 118 51 25
29 0 0 129 1 140 139
30 0 0 1 0 230 176
31 0 0 0 0 45 228
32 0 0 0 0 274 0




Table B.6: Number of SSV in DGV-GS by studies: All studies present in DGV with respective
numbers of SSV in input data set, the number of SSV in DGV-GS along with the proportion
between both these values

Study | Total SSV || SSVinGS-DGV |
McCarroll 2008 3925 3837 (97,76%)
Ju 2010 96 91 (94,79%)
Vogler 2010 4638 4311 (92,95%)
1000 GC Phase 1 93733 85568 (91,29%)
Wang 2008 193 172 (89,12%)
Altshuler 2010 15296 13441 (87,87%)
Coe 2014 41312 35629 (86,24%)
1000 GC Phase 3 266299 223686 (84%)
Mokhtar 2014 114 89 (78,07%)
Alkan 2009 79 59 (74,68%)
Campbell 2011 17390 12715 (73,12%)
Boomsma 2014 865 611 (70,64%)
Park 2010 2138 1508 (70,53%)
Wong 2012b 18775 12808 (68,22%)
Cooper 2011 36707 24648 (67,15%)
Bentley 2008 405 271 (66,91%)
Cooper 2008 45 29 (64,44%)
Kidd 2010b 86 54 (62,79%)
Conrad 2009 5169 3208 (62,06%)
Ahn 2009 319 188 (58,93%)
Perry 2008 1619 904 (55,84%)
Schuster 2010 29 14 (48,28%)
Arlt 2011 193 93 (48,19%)
Dogan 2014 737 325 (44,1%)
Uddin 2014 5705 2362 (41,4%)
Kim 2009 99 40 (40,4%)
Mills 2006 330 103 (31,21%)
McKernan 2009 555 167 (30,09%)
Levy 2007 721 161 (22,33%)
Pang 2010 486 68 (13,99%)
Sudmant 2013 16870 1587 (9,41%)
1000 GC Pilot Project 9228 0 (0%)

Alsmadi 2014 3705 0 (0%)
Banerjee 2011 86 0 (0%)

Conrad 2006 173 0(0%)

de Smith 2007 879 0 (0%)
Forsberg 2012 1 0 (0%)

Gusev 2009 11 0 (0%)

Hinds 2006 5 0 (0%)

Tafrate 2004 29 0 (0%)

Itsara 2009 1291 0 (0%)
Jakobsson 2008 197 0 (0%)

John 2014 423 0 (0%)

Kidd 2008 886 0 (0%)

Kidd 2010 881 0 (0%)

Korbel 2007 186 0 (0%)

Locke 2006 372 0 (0%)

Lou 2015 1433 0 (0%)
McCarroll 2006 309 0 (0%)

Pang 2013b 146 0 (0%)

Perry 2008b 209 0(0%)

Pinto 2007 325 0 (0%)

Redon 2006 2705 0 (0%)

Schrider 2013 5 0 (0%)

Sebat 2004 15 0 (0%)

Shaikh 2009 3160 0 (0%)

Sharp 2005 131 0 (0%)
Simon-Sanchez 2007 8 0 (0%)
Suktitipat 2014 746 0 (0%)

Teague 2010 566 0 (0%)

Thareja 2015 781 0 (0%)

Tuzun 2005 22 0 (0%)

‘Wang 2007 227 0 (0%)

Wheeler 2008 5 0 (0%)

‘Wong 2007 1217 0 (0%)

Young 2008 9 0 (0%)
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Table B.7: List of supporting structural variants of the compound variant with greatest support

level (32 studies): All SSV achieved with the highest value for support level, in case of the

maximum value was 32 studies

Studies

Equivalent SSV (members of a single compound variant)

1000 GC Phase 1, 1000 GC Phase 3, Ahn
2009, Alsmadi 2014, Altshuler 2010, Arlt
2011, Boomsma 2014, Campbell 2011, Coe
2014, Conrad 2006, Conrad 2009, Cooper 2011,
de Smith 2007, Dogan 2014, Ju 2010, Kidd
2008, Kidd 2010b, Kim 2009, Korbel 2007,
Lou 2015, McCarroll 2006, McKernan 2009,
Mokhtar 2014, Pang 2010, Pang 2013b, Park
2010, Perry 2008, Sudmant 2013, Teague 2010,
Uddin 2014, Vogler 2010, Wang 2008, Wong
2012b

essv5397580, essv9967976, essv31631, nssv3989690, nssv3994264, essv5002005, nssv626339, essv9762651,
nssv3462749, nssv3462770, nssv3462777, nssv3462784, nssv3462864, nssv3462869, nssv3462885, nssv3462979,
nssv3463261, nssv3463449, nssv3463751, nssv3463825, nssv3463947, nssv3464253, nssv3464717, nssv3465014,
nssv3465450, nssv3465830, nssv3466353, nssv3466551, nssv3466556, nssv3467025, nssv3467054, nssv3467155,
nssv3467366, nssv3467517, nssv3467565, nssv3467575, nssv3467624, nssv3467737, nssv3467770, nssv3467790,
nssv3469289, nssv3469589, nssv3469641, nssv3470453, nssv3470554, nssv3470856, nssv3473002, nssv3473024,
nssv3474331, nssv3474675, nssv3475184, nssv3475865, nssv3475906, nssv3475934, nssv3475962, nssv3476348,
nssv3476740, nssv3476802, nssv3477328, nssv3478970, nssv3479077, nssv3479987, nssv3480458, nssv3480561,

nssv3699284, nssv3701280, nssv3701281, nsv1001710, nsv1004356, nsv1004497, nsv1004974, nsv1005131,

nssv2858524,
nssv3463022,
nssv3465249,
nssv3467302,
nssv3467970,
nssv3473557,
nssv3476366,
nssv3481107,

nsv1005581,

nsv1007261, nsv1008865, nsv1010149, nsv1011218, nsv1011940, nsv1012858, nsv1014678, nsv997354, nsv997915, nsv998810,
nssv467098, nssv467102, essv33962, essv35698, essv38799, essv38946, essv48139, essv49845, essv55301, essv55735, essv65461,
essv70883, essv73288, esv15735, nssv716273, nssv716274, nssv716472, nssv716526, nssv716536, nssv716540, nssv716541,
nssv716542, nssv716546, nssv716553, nssv716561, nssv716616, nssv716641, nssv716642, nssv716644, nssv716663, nssv716673,
nssv716688, nssv716690, nssv716730, nssv716766, nssv717424, nssv717426, nssv717428, nssv717437, nssv717441, nsv546552,

nsv546553, essv101386, essv101502, essv92699, essv94191, essv96805, essv99457, nssv2997160, nssv3002290,
nssv10026, nssv2178, nssv4300, nssv9515, nssv585384, nssv1418741, nssv466029, nssv466040, nssv4027312,
nssv4027501, nssv471557, essv5275117, essv5369149, essv9838628, essv3565326, essv7100023, nssv1421457,
nssv1430349, nssv12095, nssv12777, nssv2758365, nssv618632, nssv622766, essv9768990, essv9769012,
essv9769056, essv9769101, essv9769156, essv9769189, essv9769267, essv9769289, essv9769367, essv9769534,
essv9769789, essv9771256, essv9771289, essv7005437, essv7005447, essv7005463, essv7005565, essv7005568,
essv7028890, essv7030490, essv7030845, essv7030857, essv7031812, essv7031834, essv7031956, essv26730,
essv6669034, essv6669654, essv6675252, essv6679222, essv6682870, essv6689303, essv6692829, essv6696087,
essv6703903, essv6707301, essv6714295, essv6718205, essv6719276, essv6722049, essv6725900, essv6733526,
essv6738858, essv6742190, essv6744984, essv6747827, essv6749020, essv6750647, essv6753544, essv6756591,
essv6764203, essv6766588, essv6769578, essv6773493, essv6776980, essv6780938, essv6785044, essv6789207,
essv6801653, essv6804446, essv6804931, essv6807418, essv6810380, essv6813207, essv6816646, essv6817120,
essv6829056, essv6832648, essv6836236, essv6843935, essv6844288, essv6853314, essv6859251, essv6864017,
essv6871756, essvo877265, essv6877700, essv6880465, essv6886022, essvo889051, essv6892370, essv6895888,
essv6902584, essv6914037, essv6917174, essv6920150, essv6921783, essv6925739, essv6929123, essv6937731,
essv6950615, essv6950662, essv6954830, essv6961646, essv6967989

nssv1420391,
nssv4027490,
nssv1423530,
essv9769023,
ssv9769711,
sv7028879,
essv6666931,
essv6697025,
essv6736018,
essv6761885,
essv6797509,
essv6821239,
essv6868756,
essv6898646,
essv6941847,
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Table B.8: Supporting structural variants associated to a well-evaluated bicluster (ID=29, 25 CV x
8 studies) (1/4): All 588 SSV that were identified as part of a same bicluster, having as support the
following studies: Vogler 2010, Suktitipat 2014, Redon 2006, de Smith 2007, Lou 2015, Cooper

2011, Conrad 2009, Coe 2014

CVID | Minstart

| Max end

List equivalent SSV

CV-285 12834253

CV-289 12835868

CV-296 12838732

CV-300 12839440

CV-303 12839564

CV-308 12839977

CV-313 12841915

CV-1174 148916177

CV-1175 148916177

CV-1176 148916177

CV-1204 148947698

CV-1244 149024802

12934346

12934346

12934346

12934346

12934346

12920040

12918674

149459615

149521828

149521846

149732729

149432369

essv100377, essv101326, essv101537, essv1569, essv2359, essv25781141, essv25781694, essv25787832, essv25787908, essv25787995, essv5455860,
essv6560, essv6990745, essv6991078, essv6991744, essv6991967, essv7004977, essv93105, essv93282, essv95999, essv9856931, esv16950,
nssv1173678, nssv1173679, nssv1173680, nssv1173681, nssv1421443, nssv1424726, nssv1431793, nssv1440799, nssv3462863, nssv3462954,
nssv3463447, nssv3464085, nssv3464712, nssv3465020, nssv3465164, nssv3466322, nssv3468171, nssv3471035, nssv3473439, nssv3473824,
nssv3476384, nssv3478201, nssv3478916, nssv3480618, nssv3480932, nssv4029064, nssv710027, nssv710031, nssv710033, nssv710039, nssv710040
essv100377, essv101326, essv101537, essv1080, essv1569, essv2359, essv25781141, essv25781694, essv25787832, essv25787908, essv25787995,
essv5455860, essv6560, essv6990745, essv6991078, essv6991744, essv6991967, essv7004977, essv7033189, essv93105, essv93282, essv95999,
essv9856931, esv16950, nssv1173680, nssv1173681, nssv1421068, nssv1421443, nssv1424726, nssv1431793, nssv1440799, nssv3462863,
nssv3462954, nssv3463447, nssv3464085, nssv3464481, nssv3464712, nssv3465020, nssv3465164, nssv3466322, nssv3468171, nssv3471035,
nssv3473439, nssv3473824, nssv3476384, nssv3478201, nssv3478916, nssv3479202, nssv3480618, nssv3698020, nssv4029064, nssv710031,
nssv710033, nssv710039, nssv710040

essv100377, essv101326, essv101537, essv1080, essv1569, essv2359, essv25779746, essv25780439, essv25781141, essv25781694, essv25787832,
essv25787908, essv25787995, essv25791015, essv5455860, essv6560, essv6990745, essv6991078, essv6991744, essv6991967, essv7004977,
essv7033189, essv93105, essv93282, essv95999, essv9856931, esv16950, nssv1421068, nssv1421443, nssv1424726, nssv1431793, nssv1440799,
nssv3462863, nssv3462954, nssv3463447, nssv3464085, nssv3464481, nssv3464712, nssv3465020, nssv3465164, nssv3466322, nssv3468171,
nssv3471035, nssv3473439, nssv3473824, nssv3476384, nssv3478201, nssv3478916, nssv3480618, nssv3698020, nssv4029064, nssv547699,
nssv710031, nssv710033, nssv710039, nssv710040, nssv710080, nssv710082

essv100377, essv101326, essv101537, essv1569, essv2359, essv25780439, essv25781141, essv25781694, essv25787832, essv25787908, essv25787995,
essv25791015, essv5455860, essv6560, essv6990745, essv6991078, essv6991744, essv6991967, essv7004977, essv93105, essv93282, essv95999,
essv9856931, esv16950, nssv1421443, nssv1424726, nssv1431793, nssv1440799, nssv3462863, nssv3462954, nssv3463447, nssv3464085,
nssv3464481, nssv3464712, nssv3465020, nssv3465164, nssv3466322, nssv3468171, nssv3471035, nssv3473439, nssv3478201, nssv3480618,
nssv3481472, nssv3698020, nssv4029064, nssv710031, nssv710033, nssv710039, nssv710040, nssv710080, nssv710082

essv101537, essv1080, essv1569, essv2359, essv25779746, essv25780439, essv25781141, essv25781694, essv25787832, essv25787908, essv25787995,
essv25789560, essv25791015, essv5455860, essv6560, essv6990745, essv6991078, essv6991744, essv6991967, essv7004962, essv7004977,
essv7033189, essv93282, essv95999, essv9856931, esv16950, nssv1173688, nssv1173690, nssv1421068, nssv1421443, nssv1424726, nssv1431793,
nssv1440799, nssv3462863, nssv3462954, nssv3463447, nssv3464085, nssv3464481, nssv3464712, nssv3465020, nssv3465164, nssv3466322,
nssv3468171, nssv3471035, nssv3473439, nssv3478201, nssv3480618, nssv3698020, nssv4028323, nssv4029064, nssv547699, nssv710031,
nssv710033, nssv710039, nssv710040, nssv710080, nssv710082

essv2359, essv25781141, essv25781234, essv25787832, essv25787908, essv25787995, essv6560, essv7004962, essv7004977, essv93282, essv95999,
essv9838624, esv16950, nssv1424726, nssv1426371, nssv1431793, nssv1437927, nssv1440799, nssv3462863, nssv3462954, nssv3463447,
nssv3464085, nssv3464712, nssv3465020, nssv3465164, nssv3468171, nssv3471035, nssv3473439, nssv3474437, nssv4028323, nssv4029064,
nssv710031, nssv710033, nssv710040

essv1080, essv2359, essv25781141, essv25781234, essv25787832, essv25787908, essv25787995, essv6560, essv7004962, essv7004977, essv95999,
essv9838624, esv16950, nssv1426371, nssv1437927, nssv1440799, nssv3462863, nssv3462954, nssv3463447, nssv3464085, nssv3464712,
nssv3464724, nssv3465020, nssv3465164, nssv3468171, nssv3471035, nssv3473439, nssv3474437, nssv4028323, nssv4029064, nssv710030,
nssv710031, nssv710033, nssv710040

essv101256, essv14154, essv21629, essv25788953, essv33321, essv33753, essv35957, essv38722, essv38955, essv40849, essv41126, essv43839,
essv44471, essv45569, essv6431, essv6996122, essv6996133, essv6996155, essv6996600, essv6996611, essv6996622, essv6997489, essv6997500,
essv6997722, essv7006218, essv7006220, essv7006226, essv7006297, essv7006309, essv96191, essv9837877, nssv21402, nssv25970, nssv3482912,
nssv3482964, nssv3483427, nssv3483540, nssv3483541, nssv3483633, nssv3483897, nssv3483927, nssv3483946, nssv3484265, nssv3484476,
nssv3485358, nssv3486035, nssv3486170, nssv3486259, nssv3486287, nssv3486784, nssv3488039, nssv3488053, nssv3488077, nssv3489566,
nssv3490081, nssv3490111, nssv3490819, nssv3493105, nssv3493789, nssv3494550, nssv3494893, nssv3495361, nssv3498902, nssv3500097,
nssv3500770, nssv3500897, nssv3501870, nssv3702228, nssv3703992, nssv3703993, nssv3704088, nssv4029806, nssv4029807, nssv4029808,
nssv4029809, nssv451753, nssv723095, nssv723125, nssv723126, nssv723129, nssv723244, nssv723247, nssv723249, nssv723251, nssv723269,
nsv1003007

essv101256, essv21629, essv25788953, essv33321, essv33753, essv35957, essv38722, essv38955, essv40849, essv41126, essv43839, essv44471,
essv45569, essv6431, essv6996122, essv6996133, essv6996155, essv6996600, essv6996611, essv6996622, essv6997489, essv6997500, essv6997722,
essv7006218, essv7006220, essv7006226, essv7006309, nssv21402, nssv25970, nssv3482912, nssv3482964, nssv3483427, nssv3483541, nssv3483927,
nssv3484476, nssv3485358, nssv3485496, nssv3486035, nssv3486170, nssv3486259, nssv3486287, nssv3488053, nssv3488077, nssv3488713,
nssv3489566, nssv3490081, nssv3490111, nssv3490819, nssv3493789, nssv3494893, nssv3495361, nssv3498902, nssv3500097, nssv3500770,
nssv3500897, nssv3501870, nssv3704088, nssv4029806, nssv4029807, nssv4029808, nssv4029809, nssv723095, nssv723125, nssv723126,
nssv723129, nssv723244, nssv723247, nssv723249, nssv723251, nssv723269, nssv723340, nssv723345, nssv723346, nsv1003007

essv101256, essv21629, essv25792902, essv33321, essv33753, essv35957, essv38722, essv38955, essv40849, essv41126, essv43839, essv44471,
essv45569, essv6431, essv6996122, essv6996155, essv699661 1, essv6996622, essv6996811, essv6997489, essv6997500, essv6997722, essv7006218,
essv7006220, essv7006226, essv7006309, nssv21402, nssv25970, nssv3482912, nssv3482964, nssv3483427, nssv3483541, nssv3483927, nssv3484476,
nssv3485358, nssv3485496, nssv3486170, nssv3486287, nssv3488053, nssv3488077, nssv3488713, nssv3490081, nssv3490111, nssv3490819,
nssv3493789, nssv3494893, nssv3495361, nssv3498902, nssv3500097, nssv3500770, nssv3500897, nssv3501870, nssv3704088, nssv4029807,
nssv4029808, nssv4029809, nssv723095, nssv723125, nssv723126, nssv723129, nssv723244, nssv723247, nssv723249, nssv723251, nssv723269,
nssv723340, nssv723345, nssv723346, nsv1003007

essv100936, essv1715, essv19363, essv19885, essv20523, essv25790783, essv25792902, essv33321, essv33753, essv35957, essv38722, essv38955,
essv40849, essv41126, essv43839, essv44471, essv45569, essv5662, essv6985823, essv6996155, essv6996622, essv6996811, essv6996844,
essv7006228, essv7006251, essv7006252, essv97263, nssv23694, nssv25699, nssv27030, nssv3483916, nssv3484219, nssv3484736, nssv3486792,
nssv3488304, nssv3488713, nssv3490111, nssv3490114, nssv3491002, nssv3493160, nssv3493254, nssv3493487, nssv3494530, nssv3496414,
nssv3497834, nssv3499738, nssv3704174, nssv4029809, nssv723095

essv11482, essv14239, essv18916, essv19038, essv25779316, essv25788953, essv5001910, essv6981512, essv6982967, essv6996511, essv6996600,
essv6996611, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366, essv6997434, essv6997445, essv6997489, essv6997645,
essv6997656, essv6997678, essv6997711, essv7006268, essv7006297, essv78072, essv7932, essv942, essv94654, essv9837828, esv16514,
nssv1795806, nssv21402, nssv25970, nssv2849373, nssv3482753, nssv3482792, nssv3482797, nssv3483131, nssv3483222, nssv3483260,
nssv3483325, nssv3483346, nssv3483397, nssv3483423, nssv3483582, nssv3483642, nssv3483897, nssv3484091, nssv3484107, nssv3484217,
nssv3484538, nssv3484544, nssv3484771, nssv3484863, nssv3485169, nssv3485358, nssv3485570, nssv3485825, nssv3485952, nssv3485997,
nssv3486287, nssv3486345, nssv3486424, nssv3486621, nssv3486746, nssv3486972, nssv3487653, nssv3487780, nssv3488077, nssv3488099,
nssv3488871, nssv3489845, nssv3490028, nssv3490029, nssv3490081, nssv3490123, nssv3490202, nssv3490319, nssv3490665, nssv3490750,
nssv3490819, nssv3490997, nssv3491137, nssv3491620, nssv3491812, nssv3492029, nssv3492689, nssv3492993, nssv3493913, nssv3494893,
nssv3494978, nssv3495023, nssv3495361, nssv3495407, nssv3495467, nssv3495835, nssv3495925, nssv3496262, nssv3498191, nssv3498902,
nssv3498972, nssv3500322, nssv3501135, nssv3702635, nssv3702636, nssv3703992, nssv3703993, nssv3704088, nssv3704115, nssv4029794,
nssv4029797, nssv4029798, nssv4029799, nssv4029802, nssv4029805, nssv4029806, nssv4029807, nssv4029808, nssv4029809, nssv4029812,
nssv723111, nssv723124, nssv723125, nssv723126, nssv723129, nssv723212, nssv723240, nssv723243, nssv723244, nssv723247, nssv723249,
nssv723251, nssv723259, nssv723269, nssv723273, nssv723336, nssv723340, nssv723345, nssv723346, nssv723364, nssv723428, nsv1003007

Eight studies give support to this bicluster: Coe 2014, Conrad 2009, Cooper 2011, de Smith 2007, Lou 2015, Redon 2006, Suktitipat 2014, Vogler 2010
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2011, Conrad 2009, Coe 2014

Table B.9: Supporting structural variants associated to a well-evaluated bicluster (ID=29, 25 CV x
8 studies) (2/4): All 588 SSV that were identified as part of a same bicluster, having as support the
following studies: Vogler 2010, Suktitipat 2014, Redon 2006, de Smith 2007, Lou 2015, Cooper

CVID
CV-1245

CV-1248

CV-1249

CV-1256

CV-1318

CV-1319

Min start
149024802

149024802

149024802

149024808

149036512

149036512

Max end
149459615

149732729

149773350

149459615

149334231

149339573

List equivalent SSV

essv14239, essv18916, essv25779316, essv25788953, essv33321, essv33753, essv35957, essv38722, essv38955, essv40849, essv41126, essv43839,
essv44471, essv45569, essv5001910, essv6996600, essv6996611, essv6996622, essv6997244, essv6997366, essv6997434, essv6997445, essv6997489,
essv6997500, essv6997678, essv6997711, essv6997722, essv7006297, essv7006309, essv942, essv94654, essv9837839, nssv1449962, nssv1795806,

nssv21402, nssv25970, nssv3482912, nssv3483350, nssv3483582,

nssv3483642, nssv3483897, nssv3484001, nssv3484217, nssv3484544,

nssv3484771, nssv3485358, nssv3486287, nssv3486424, nssv3486746, nssv3486764, nssv3487780, nssv3488077, nssv3488099, nssv3488871,
nssv3489845, nssv3490028, nssv3490029, nssv3490081, nssv3490202, nssv3490819, nssv3493913, nssv3494893, nssv3495361, nssv3498902,
nssv3498972, nssv3500322, nssv3501135, nssv3501870, nssv3703992, nssv3703993, nssv3704088, nssv4029797, nssv4029798, nssv4029799,

nssv4029802, nssv4029805, nssv4029806,

nssv4029807,

nssv4029808,

nssv4029809, nssv4029812, nssv723124, nssv723125, nssv723126,

nssv723129, nssv723240, nssv723243, nssv723244, nssv723247, nssv723249, nssv723251, nssv723269, nssv723336, nssv723340, nssv723345,
nssv723346, nssv723364, nssv723428, nsv1003007
essv100936, essv1715, essv19363, essv19885, essv20523, essv25790783, essv25792902, essv33321, essv33753, essv35957, essv38722, essv38955,
essv40849, essv41126, essv43839, essv44471, essv45569, essv5662, essv6985823, essv6996811, essv6996844, essv6997489, essv6997500,
essv6997722, essv7006251, essv7006252, essv7006309, essv97263, nssv21402, nssv23694, nssv25699, nssv25970, nssv27030, nssv3482912,
nssv3483350, nssv3484219, nssv3485358, nssv3486287, nssv3486764, nssv3486792, nssv3490081, nssv3490114, nssv3490819, nssv3491002,
nssv3493160, nssv3493254, nssv3493487, nssv3494530, nssv3494544, nssv3495361, nssv3496414, nssv3497834, nssv3499738, nssv3501870,
nssv3704174, nssv3704205, nssv4029807, nssv4029808, nssv4029809, nssv723126, nssv723129, nssv723249, nssv723251, nssv723269, nssv723346
essv100936, essv1715, essv19363, essv19885, essv20523, essv25790783, essv25792902, essv33321, essv33753, essv35957, essv38722, essv38955,
essv40849, essv41126, essv43839, essv44471, essv45569, essv5662, essv6985823, essv6996844, essv6997500, essv6997534, essv6997722,
essv7006251, essv7006252, essv7006306, essv7006309, essv97263, nssv21402, nssv23694, nssv25699, nssv25970, nssv27030, nssv3482912,
nssv3482965, nssv3484219, nssv3484555, nssv3484570, nssv3486792, nssv3488597, nssv3489328, nssv3490081, nssv3490114, nssv3491002,
nssv3493160, nssv3493254, nssv3493487, nssv3494259, nssv3494530, nssv3496414, nssv3497834, nssv3499738, nssv3501870, nssv3704174,
nssv3704182, nssv3704203, nssv3704208, nssv4029808, nssv4029809, nssv547768, nssv723129, nsv1000267

essv14239, essv18916, essv25779316, essv25788953, essv33321, essv33753, essv35957, essv38722, essv38955, essv40849, essv41126, essv43839,
essv44471, essv45569, essv5001910, essv6997244, essv6997366, essv6997434, essv6997445, essv6997489, essv6997500, essv6997678, essv6997711,
essv7006309, essv942, essv94654, essv9837839, nssv1449962, nssv1795806, nssv21402, nssv25970,
nssv3483582, nssv3483642, nssv3483897, nssv3484091, nssv3484217, nssv3484544, nssv3484771,
nssv3486746, nssv3486764, nssv3487780, nssv3488077, nssv3488099, nssv3488871, nssv3489845,
nssv3490202, nssv3490819, nssv3493913, nssv3494893, nssv3495361, nssv3498902, nssv3498972,
nssv3703992, nssv3703993, nssv3704088, nssv4029806, nssv4029807, nssv4029808, nssv4029809,
nssv4029812, nssv723124, nssv723125, nssv723126, nssv723129, nssv723240, nssv723243, nssv723244, nssv723247, nssv723249, nssv723251,
nssv723269, nssv723336, nssv723340, nssv723345, nssv723346, nssv723364, nssv723428, nsv1003007

essv11482, essv18916, essv19038, essv25779316, essv25788983, essv25798108, essv5001910, essv55468, essv6981512, essv6982967, essv6989889,
essv6996867, essv6996911, essv6996922, essv6996933, essv6996978, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366,
essv6997434, essv6997445, essv6997545, essv6997556, essv6997578, essv6997589, essv6997622, essv6997645, essv6997656, essv6997678,
essv6997711, essv6997733, essv7006261, essv7006268, essv78072, essv7932, essv92827, essv94654, essv9837828, nssv1173153, nssv1434888,

essv6997722, essv7006268, essv7006297,
nssv3482797, nssv3482912, nssv3483350,
nssv3485358, nssv3486287, nssv3486424,
nssv3490028, nssv3490029, nssv3490081,
nssv3500322, nssv3501135, nssv3501870,

nssv3482753, nssv3482792, nssv3482797,
nssv3483397, nssv3483443, nssv3483503,
nssv3484217, nssv3484247, nssv3484414,
nssv3485085, nssv3485169, nssv3485324,
nssv3486028, nssv3486203, nssv3486345,
nssv3487555, nssv3487569, nssv3487653,
nssv3489845, nssv3490028, nssv3490029,
nssv3491317, nssv3491428, nssv3491473,
nssv3494028, nssv3494285, nssv3494348,
nssv3495407, nssv3495423, nssv3495467,
nssv3499158, nssv3499407, nssv3499744,
nssv3702635, nssv3702636, nssv3704060,

nssv3482913,
nssv3483582,
nssv3484538,
nssv3485432,
nssv3486621,
nssv3487780,
nssv3490046,
nssv3491620,
nssv3494815,
nssv3495835,
nssv3500322,
nssv3704061,

nssv3483041,
nssv3483642,
nssv3484544,
nssv3485570,
nssv3486746,
nssv3487823,
nssv3490123,
nssv3491812,
nssv3494978,
nssv3495925,
nssv3500765,
nssv3704062,

nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483325,
nssv3483825, nssv3484023, nssv3484060, nssv3484091, nssv3484107,
nssv3484718, nssv3484771, nssv3484863, nssv3484907, nssv3484933,
nssv3485825, nssv3485945, nssv3485952, nssv3485997, nssv3485998,
nssv3486814, nssv3486821, nssv3486940, nssv3486972, nssv3487034,
nssv3487908, nssv3488871, nssv3489491, nssv3489748, nssv3489778,
nssv3490202, nssv3490665, nssv3490996, nssv3490997, nssv3491137,
nssv3491915, nssv3492689, nssv3492993, nssv3493189, nssv3493913,
nssv3495023, nssv3495155, nssv3495296, nssv3495346, nssv3495393,
nssv3496262, nssv3497988, nssv3498229, nssv3498972, nssv3499009,
nssv3500839, nssv3501135, nssv3502111, nssv3502134, nssv3502527,
nssv3704071, nssv3704115, nssv3704135, nssv3704136, nssv3704144,

nssv3704164, nssv3704165, nssv4029812, nssv723195, nssv723196, nssv723200, nssv723212, nssv723240, nssv723243, nssv723254, nssv723255,
nssv723257, nssv723258, nssv723259, nssv723268, nssv723272, nssv723273, nssv723284, nssv723285, nssv723287, nssv723296, nssv723300,
nssv723310, nssv723311, nssv723336, nssv723349, nssv723352, nssv723353, nssv723354, nssv723359, nssv723361, nssv723362, nssv723363,
nssv723364, nssv723378, nssv723380, nssv723386, nssv723392, nssv723395, nssv723417

essv11482, essv18916, essv19038, essv25779316, essv25788983, essv25798108, essv5001910, essv55468, essv6981512, essv6982967, essv6989889,
essv6996867, essv6996911, essv6996922, essv6996933, essv6996978, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366,
essv6997434, essv6997445, essv6997545, essv6997556, essv6997578, essv6997589, essv6997622, essv6997645, essv6997656, essv6997678,
essv6997711, essv6997733, essv7006261, essv7006268, essv78072, essv7932, essv92827, essv94654, essv9837828, nssv1173153, nssv1434888,

nssv3482753, nssv3482797, nssv3482913,
nssv3483443, nssv3483503, nssv3483582,
nssv3484247, nssv3484414, nssv3484538,
nssv3485169, nssv3485324, nssv3485432,
nssv3486203, nssv3486345, nssv3486621,
nssv3487569, nssv3487653, nssv3487780,
nssv3490029, nssv3490046, nssv3490123,
nssv3491620, nssv3491915, nssv3492689,
nssv3495023, nssv3495155, nssv3495296,
nssv3497988, nssv3498229, nssv3498972,
nssv3501135, nssv3502111, nssv3502134,

nssv3483041,
nssv3483642,
nssv3484544,
nssv3485570,
nssv3486746,
nssv3487908,
nssv3490202,
nssv3493189,
nssv3495346,
nssv3499009,
nssv3502527,

nssv3483131,
nssv3483897,
nssv3484718,
nssv3485825,
nssv3486814,
nssv3488871,
nssv3490665,
nssv3493913,
nssv3495393,
nssv3499158,
nssv3703992,

nssv3483132, nssv3483222, nssv3483260, nssv3483325, nssv3483397,
nssv3484023, nssv3484060, nssv3484091, nssv3484107, nssv3484217,
nssv3484771, nssv3484863, nssv3484907, nssv3484933, nssv3485085,
nssv3485945, nssv3485952, nssv3485997, nssv3485998, nssv3486028,
nssv3486821, nssv3486940, nssv3486972, nssv3487034, nssv3487555,
nssv3489491, nssv3489748, nssv3489778, nssv3489845, nssv3490028,
nssv3490997, nssv3491137, nssv3491317, nssv3491428, nssv3491473,
nssv3494028, nssv3494285, nssv3494348, nssv3494815, nssv3494978,
nssv3495407, nssv3495423, nssv3495467, nssv3495835, nssv3496262,
nssv3499407, nssv3499744, nssv3500322, nssv3500765, nssv3500839,
nssv3703993, nssv3704060, nssv3704061, nssv3704062, nssv3704071,

nssv3704115, nssv3704135, nssv3704136, nssv3704144, nssv3704164, nssv3704165, nssv4029812, nssv723196, nssv723200, nssv723212,
nssv723240, nssv723243, nssv723254, nssv723255, nssv723257, nssv723258, nssv723259, nssv723272, nssv723273, nssv723284, nssv723285,
nssv723287, nssv723296, nssv723300, nssv723310, nssv723311, nssv723336, nssv723349, nssv723352, nssv723353, nssv723354, nssv723359,
nssv723361, nssv723362, nssv723363, nssv723364, nssv723378, nssv723380, nssv723386, nssv723392, nssv723395, nssv723417

Eight studies give support to this bicluster: Coe 2014, Conrad 2009, Cooper 2011, de Smith 2007, Lou 2015, Redon 2006, Suktitipat 2014, Vogler 2010
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Table B.10: Supporting structural variants associated to a well-evaluated bicluster (ID=29, 25 CV
x 8 studies) (3/4): All 588 SSV that were identified as part of a same bicluster, having as support
the following studies: Vogler 2010, Suktitipat 2014, Redon 2006, de Smith 2007, Lou 2015,

Cooper 2011, Conrad 2009, Coe 2014

CVID
CV-1320

CV-1321

CV-1322

CV-1332

CV-2140

CV-2142

Min start
149036512

149036512

149036512

149036524

161476489

161478524

Max end
149340200

149373529

149376652

149370974

161681552

161681552

List equivalent SSV

essv11482, essv18916, essv19038, essv25779316, essv25788983, essv25798108, essv5001910, essv55468, essv6981512, essv6982967, essv6989889,
essv6996867, essv6996911, essv6996922, essv6996933, essv6996978, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366,
essv6997434, essv6997445, essv6997545, essv6997556, essv6997578, essv6997589, essv6997622, essv6997645, essv6997656, essv6997678,
essv6997711, essv6997733, essv7006261, essv7006268, essv7006297, essv78072, essv7932, essv92827, essv94654, essv9837828, nssv1173153,
nssv1434888, nssv3482753, nssv3482797, nssv3482913, nssv3483041, nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483397,
nssv3483443, nssv3483503, nssv3483582, nssv3483642, nssv3483897, nssv3484023, nssv3484060, nssv3484091, nssv3484107, nssv3484217,
nssv3484247, nssv3484414, nssv3484538, nssv3484544, nssv3484718, nssv3484771, nssv3484863, nssv3484907, nssv3484933, nssv3485085,
nssv3485169, nssv3485324, nssv3485432, nssv3485570, nssv3485825, nssv3485945, nssv3485952, nssv3485997, nssv3485998, nssv3486028,
nssv3486203, nssv3486345, nssv3486621, nssv3486746, nssv3486814, nssv3486821, nssv3486940, nssv3486972, nssv3487034, nssv3487555,
nssv3487653, nssv3487780, nssv3487908, nssv3488871, nssv3489491, nssv3489748, nssv3489778, nssv3489845, nssv3490028, nssv3490029,
nssv3490046, nssv3490123, nssv3490202, nssv3490665, nssv3490997, nssv3491317, nssv3491428, nssv3491473, nssv3491620, nssv3491915,
nssv3492689, nssv3493189, nssv3493913, nssv3494028, nssv3494348, nssv3494815, nssv3494978, nssv3495023, nssv3495155, nssv3495296,
nssv3495346, nssv3495393, nssv3495407, nssv3495423, nssv3495467, nssv3495835, nssv3496262, nssv3497988, nssv3498229, nssv3498972,
nssv3499009, nssv3499158, nssv3499407, nssv3499744, nssv3500322, nssv3500765, nssv3500839, nssv3501135, nssv3502111, nssv3502134,
nssv3502527, nssv3703992, nssv3703993, nssv3704060, nssv3704061, nssv3704062, nssv3704071, nssv3704115, nssv3704135, nssv3704136,
nssv3704144, nssv3704164, nssv3704165, nssv4029812, nssv723196, nssv723200, nssv723212, nssv723240, nssv723243, nssv723254, nssv723255,
nssv723257, nssv723258, nssv723259, nssv723272, nssv723273, nssv723285, nssv723287, nssv723296, nssv723300, nssv723310, nssv723311,
nssv723336, nssv723349, nssv723352, nssv723353, nssv723354, nssv723359, nssv723362, nssv723363, nssv723364, nssv723378, nssv723380,
nssv723386, nssv723392, nssv723395, nssv723417

essv11482, essv18916, essv19038, essv25779316, essv25788953, essv25788983, essv5001910, essv55468, essv6981512, essv6982967, essv6989889,
essv6996933, essv6996978, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366, essv6997434, essv6997445, essv6997622,
essv6997645, essv6997656, essv6997678, essv6997711, essv7006261, essv7006268, essv7006297, essv78072, essv7932, essv92827, essv94654,
essv9837828, nssv1434888, nssv3482753, nssv3482913, nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483397, nssv3483443,
nssv3483582, nssv3483642, nssv3483897, nssv3484091, nssv3484107, nssv3484217, nssv3484247, nssv3484414, nssv3484538, nssv3484544,
nssv3484771, nssv3484863, nssv3484907, nssv3484933, nssv3485085, nssv3485169, nssv3485570, nssv3485825, nssv3485945, nssv3485952,
nssv3485997, nssv3486028, nssv3486203, nssv3486345, nssv3486424, nssv3486621, nssv3486746, nssv3486821, nssv3486940, nssv3486972,
nssv3487653, nssv3487780, nssv3488077, nssv3488871, nssv3489491, nssv3489748, nssv3489845, nssv3490029, nssv3490046, nssv3490202,
nssv3490665, nssv3490997, nssv3491620, nssv3492689, nssv3493913, nssv3494348, nssv3494893, nssv3494978, nssv3495023, nssv3495296,
nssv3495346, nssv3495407, nssv3495467, nssv3495835, nssv3496262, nssv3497988, nssv3498972, nssv3499009, nssv3499158, nssv3499407,
nssv3500322, nssv3500765, nssv3500839, nssv3501135, nssv3502111, nssv3703992, nssv3703993, nssv3704115, nssv3704164, nssv3704165,
nssv4029812, nssv723200, nssv723212, nssv723240, nssv723243, nssv723244, nssv723258, nssv723259, nssv723273, nssv723296, nssv723300,
nssv723310, nssv723311, nssv723336, nssv723353, nssv723354, nssv723359, nssv723362, nssv723363, nssv723364, nssv723378, nssv723380,
nssv723386, nssv723395, nsv1003007

essv11482, essv18916, essv19038, essv25779316, essv25788953, essv25788983, essv5001910, essv55468, essv6981512, essv6982967, essv6989889,
essv6996978, essv6997044, essv6997055, essv6997066, essv6997244, essv6997366, essv6997434, essv6997445, essv6997622, essv6997645,
essv6997656, essv6997678, essv6997711, essv7006261, essv7006268, essv7006297, essv78072, essv7932, essv92827, essv94654, essv9837828,
nssv1434888, nssv3482753, nssv3482913, nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483397, nssv3483443, nssv3483582,
nssv3483897, nssv3484091, nssv3484107, nssv3484217, nssv3484247, nssv3484538, nssv3484544, nssv3484771, nssv3484863, nssv3484907,
nssv3484933, nssv3485085, nssv3485169, nssv3485570, nssv3485825, nssv3485945, nssv3485952, nssv3485997, nssv3486028, nssv3486203,
nssv3486345, nssv3486424, nssv3486621, nssv3486746, nssv3486821, nssv3486940, nssv3486972, nssv3487653, nssv3487780, nssv3488077,
nssv3488871, nssv3489748, nssv3489845, nssv3490029, nssv3490046, nssv3490202, nssv3490665, nssv3490997, nssv3491620, nssv3492689,
nssv3493913, nssv3494348, nssv3494893, nssv3494978, nssv3495023, nssv3495296, nssv3495346, nssv3495407, nssv3495467, nssv3495835,
nssv3496262, nssv3497988, nssv3498972, nssv3499158, nssv3499407, nssv3500322, nssv3500765, nssv3500839, nssv3501135, nssv3502111,
nssv3703992, nssv3703993, nssv3704115, nssv3704165, nssv4029812, nssv723200, nssv723212, nssv723240, nssv723243, nssv723244, nssv723247,
nssv723258, nssv723259, nssv723273, nssv723296, nssv723300, nssv723310, nssv723311, nssv723336, nssv723340, nssv723353, nssv723354,
nssv723362, nssv723363, nssv723364, nssv723380, nssv723386, nsv1003007

essv11482, essv18916, essv19038, essv25779316, essv25788953, essv25788983, essv55468, essv6981512, essv6982967, essv6989889, essv6997434,
essv6997445, essv6997622, essv6997645, essv6997656, essv6997678, essv6997711, essv7006297, essv78072, essv7932, essv92827, essv94654,
nssv1434888, nssv3482753, nssv3482913, nssv3483041, nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483397, nssv3483443,
nssv3483582, nssv3484091, nssv3484107, nssv3484217, nssv3484247, nssv3484414, nssv3484538, nssv3484544, nssv3484863, nssv3484907,
nssv3484933, nssv3485085, nssv3485169, nssv3485570, nssv3485825, nssv3485945, nssv3485952, nssv3485997, nssv3485998, nssv3486028,
nssv3486203, nssv3486345, nssv3486424, nssv3486621, nssv3486746, nssv3486821, nssv3486940, nssv3486972, nssv3487555, nssv3487653,
nssv3487780, nssv3488871, nssv3489491, nssv3489748, nssv3489845, nssv3490046, nssv3490665, nssv3490997, nssv3491620, nssv3492689,
nssv3493913, nssv3494348, nssv3494978, nssv3495023, nssv3495296, nssv3495346, nssv3495407, nssv3495467, nssv3495835, nssv3496262,
nssv3497988, nssv3498972, nssv3499009, nssv3499158, nssv3499407, nssv3500322, nssv3500765, nssv3500839, nssv3501135, nssv3502111,
nssv3704115, nssv3704164, nssv3704165, nssv4029812, nssv723200, nssv723212, nssv723240, nssv723243, nssv723244, nssv723258, nssv723259,
nssv723273, nssv723296, nssv723300, nssv723310, nssv723311, nssv723336, nssv723353, nssv723354, nssv723359, nssv723362, nssv723363,
nssv723364, nssv723378, nssv723380, nssv723386, nssv723395

essv100802, essv101296, essv12956, essv13240, essv13501, essv17988, essv18558, essv19379, essv19737, essv20462, essv20874, essv22275,
essv22791, essv23720, essv24352, essv25032, essv25779317, essv25801433, essv33649, essv3508, essv3577, essv3586300, essv38332, essv3903,
essv47029, essv5007, essv50525, essv5641, essv6057, essv68133, essv6982257, essv6982345, essv6986310, essv7001566, essv7001599, essv7001633,
essv7001644, essv7001666, essv7006608, essv70602, essv74890, essv7633, essv77909, essv79773, essv81284, essv929, essv93182, essv93746,
essv93879, essv94830, essv96235, essv97445, essv97924, essv9838861, essvI8751, esv12861, esv2763869, esv2764263, nssv1417711, nssv1418784,
nssv1420724, nssv1421202, nssv1421483, nssv1425536, nssv1440156, nssv19108, nssv19430, nssv20409, nssv21757, nssv22769, nssv24878,
nssv25954, nssv25958, nssv26873, nssv2852234, nssv3482857, nssv3482924, nssv3482999, nssv3483033, nssv3483380, nssv3483447, nssv3483551,
nssv3483672, nssv3484055, nssv3484065, nssv3484399, nssv3484406, nssv3484478, nssv3484815, nssv3485712, nssv3486096, nssv3486110,
nssv3486336, nssv3486819, nssv3486923, nssv3488032, nssv3488409, nssv3488764, nssv3489019, nssv3490643, nssv3491312, nssv3493103,
nssv3493731, nssv3494071, nssv3494109, nssv3495534, nssv3495565, nssv3496609, nssv3496688, nssv3496987, nssv3497337, nssv3500421,
nssv3500783, nssv3501236, nssv3501251, nssv3501742, nssv3501770, nssv3502321, nssv3704748, nssv3704750, nssv3704771, nssv3704775,
nssv3704783, nssv3704788, nssv4029940, nssv540130, nssv617996, nssv654186, nssv671510, nssv672481, nssv677351, nssv677518, nssv677746,
nssv678767, nssv679036, nssv686593, nssv693456, nssv693890, nssv697045, nssv727684

essv100802, essv101296, essv12956, essv13240, essv13501, essv17988, essv18558, essv19379, essv19737, essv20462, essv20874, essv22275,
essv22791, essv23720, essv24352, essv25032, essv25779317, essv25801433, essv33649, essv3508, essv3577, essv3586300, essv38332, essv3903,
essv47029, essv5007, essv50525, essv5641, essv6057, essv68133, essv6982257, essv6982345, essv6986310, essv7001566, essv7001599, essv7001633,
essv7001644, essv7001666, essv7006608, essv70602, essv74890, essv7633, essv77909, essv79773, essv81284, essv929, essv93182, essv93879,
essv94830, essv96235, essv97445, essv97924, essv9838861, essv98751, esv12861, esv2763869, esv2764263, nssv1417711, nssv1418784,
nssv1420724, nssv1421202, nssv1421483, nssv1425536, nssv1440156, nssv19108, nssv19430, nssv20409, nssv21757, nssv22769, nssv25954,
nssv25958, nssv26873, nssv2852234, nssv3482857, nssv3482924, nssv3482999, nssv3483033, nssv3483380, nssv3483447, nssv3483551,
nssv3483672, nssv3484055, nssv3484065, nssv3484399, nssv3484406, nssv3484478, nssv3484815, nssv3485022, nssv3485712, nssv3486096,
nssv3486110, nssv3486336, nssv3486819, nssv3486923, nssv3488032, nssv3488409, nssv3488764, nssv3489019, nssv3490643, nssv3491312,
nssv3493103, nssv3494071, nssv3494109, nssv3495534, nssv3495565, nssv3496609, nssv3496688, nssv3496987, nssv3497337, nssv3500421,
nssv3500783, nssv3501236, nssv3501251, nssv3501742, nssv3501770, nssv3502321, nssv3704748, nssv3704750, nssv3704771, nssv3704775,
nssv3704783, nssv3704788, nssv4029940, nssv540130, nssv617996, nssv654186, nssv671510, nssv672481, nssv677351, nssv677518, nssv677746,
nssv678767, nssv679036, nssv686593, nssv693456, nssv693890, nssv697045, nssv727684

Eight studies give support to this bicluster: Coe 2014, Conrad 2009, Cooper 2011, de Smith 2007, Lou 2015, Redon 2006, Suktitipat 2014, Vogler 2010
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Table B.11: Supporting structural variants associated to a well-evaluated bicluster ID=29, 25 CV
x 8 studies) (4/4): All 588 SSV that were identified as part of a same bicluster, having as support
the following studies: Vogler 2010, Suktitipat 2014, Redon 2006, de Smith 2007, Lou 2015,
Cooper 2011, Conrad 2009, Coe 2014

CVID | Minstart | Maxend

List equivalent SSV

CV-2145 161481796 161681552 essv100802, essv101296, essv12956, essv13240, essvI3501, essv17988, essv18558, essv19379, essv19737, essv20874, essv22275, essv22791,
essv23720, essv24352, essv25779317, essv25801433, essv33649, essv3508, essv3577, essv3586300, essv3903, essv47029, essv5007, essv5641,
essv6982257, essv6982345, essv6986310, essv7001599, essv7001633, essv7001644, essv7001666, essv7006608, essv74890, essv7633, essv79773,
essv929, essv93879, essv94830, essv96235, essv97445, essv97924, essv9838861, essvI8751, esv2764263, nssv1417711, nssv1418784, nssv1421202,
nssv1425536, nssv1440156, nssv21757, nssv26873, nssv2852234, nssv3482857, nssv3482924, nssv3482999, nssv3483033, nssv3483380,
nssv3483447, nssv3483551, nssv3483672, nssv3484055, nssv3484065, nssv3484399, nssv3484406, nssv3484478, nssv3484815, nssv3485022,
nssv3485712, nssv3486096, nssv3486110, nssv3486336, nssv3486819, nssv3486923, nssv3488032, nssv3488409, nssv3488764, nssv3489019,
nssv3490643, nssv3493103, nssv3494071, nssv3494109, nssv3495534, nssv3495565, nssv3496609, nssv3496688, nssv3496987, nssv3497337,
nssv3500421, nssv3500783, nssv3501236, nssv3501251, nssv3501742, nssv3501770, nssv3502321, nssv3704748, nssv3704750, nssv3704771,
nssv3704775, nssv3704783, nssv3704788, nssv4029940, nssv617996, nssv654186, nssv671510, nssv672481, nssv677351, nssv677518, nssv677746,
nssv678767, nssv679036, nssv686593, nssv693456, nssv693890, nssv727684, nssv727685

Eight studies give support to this bicluster: Coe 2014, Conrad 2009, Cooper 2011, de Smith 2007, Lou 2015, Redon 2006, Suktitipat 2014, Vogler 2010

Table B.12: Supporting structural variants associated to a well-evaluated bicluster (ID=30, 17 CV
x 8 studies): All 495 SSV that were identified as part of a same bicluster, having as support the
following studies: Vogler 2010, Redon 2006, Suktitipat 2014, de Smith 2007, Lou 2015, Coe
2014, Conrad 2009, Cooper 2011.

List of SSV

essv100377, essv100802, essv100936, essv101256, essv101296, essv101326, essv101537, essv1080, essv11482, essv12956, essv13240, essv13501, essv14154, essv14239, essv1569, essv1715,
essv17988, essv18558, essv18916, essv19038, essv19363, essv19379, essv19737, essv19885, essv20462, essv20523, essv20874, essv21629, essv22275, essv22791, essv2359, essv23720, essv24352,
essv25032, essv25779316, essv25779317, essv25780439, essv25781141, essv25781234, essv25781694, essv25787832, essv25787908, essv25787995, essv25788953, essv25788983, essv25790783,
essv25791015, essv25792902, essv25801433, essv33321, essv33649, essv33753, essv3508, essv3577, essv3586300, essv35957, essv38332, essv38722, essv38955, essv3903, essv40849, essv41126,
essv43839, essv44471, essv45569, essv47029, essv5001910, essv5007, essv50525, essv5455860, essv55468, essv5641, essv5662, essvo057, essvo431, essv6560, essvo8133, essv6981512, essv6982257,
essv6982345, essv6982967, essv6985823, essv6986310, essv6989889, essv6990745, essv6991078, essv6991744, essv6991967, essv6996122, essv6996133, essv6996155, essv6996600, essv6996611,
€ssv6996622, essv6996811, essv6996844, essv6997244, essv6997366, essv6997434, essv6997445, essv6997489, essv6997500, essv6997534, essv6997622, essv6997645, essv6997656, essv6997678,
essv6997711, essv6997722, essv7001566, essv7001599, essv7001633, essv7001644, essv7001666, essv7004962, essv7004977, essv7006218, essv7006220, essv7006226, essv7006228, essv7006251,
essv7006252, essv7006268, essv7006297, essv7006306, essv7006309, essv7006608, essv7033189, essv70602, essv74890, essv7633, essv77909, essv78072, essv7932, essv79773, essv81284,
essv92827, essv929, essv93105, essv93182, essv93282, essv93746, essv93879, essv942, essvo4654, essv94830, essv95999, essv96191, essv96235, essv97263, essv97445, essv97924, essv9837839,
essv9837877, essv9838624, essv9838861, essv9856931, essv98751, esv12861, esv16950, esv2763869, esv2764263, nssv1173678, nssv1173679, nssv1173680, nssv1173681, nssv1417711, nssv1418784,
nssv1420724, nssv1421068, nssv1421202, nssv1421443, nssv1421483, nssv1424726, nssv1425536, nssv1426371, nssv1431793, nssv1434888, nssv1437927, nssv1440156, nssv1440799, nssv1449962,
nssv1795806, nssv19108, nssv19430, nssv20409, nssv21402, nssv21757, nssv22769, nssv23694, nssv24878, nssv25699, nssv25954, nssv25958, nssv25970, nssv26873, nssv27030, nssv2852234,
nssv3462863, nssv3462954, nssv3463447, nssv3464085, nssv3464481, nssv3464712, nssv3464724, nssv3465020, nssv3465164, nssv3466322, nssv3468171, nssv3471035, nssv3473439, nssv3473824,
nssv3474437, nssv3476384, nssv3478201, nssv3478916, nssv3479202, nssv3480618, nssv3480932, nssv3481472, nssv3482753, nssv3482797, nssv3482857, nssv3482912, nssv3482913, nssv3482924,
nssv3482964, nssv3482965, nssv3482999, nssv3483033, nssv3483041, nssv3483131, nssv3483132, nssv3483222, nssv3483260, nssv3483350, nssv3483380, nssv3483397, nssv3483427, nssv3483443,
nssv3483447, nssv3483540, nssv3483541, nssv3483551, nssv3483582, nssv3483633, nssv3483642, nssv3483672, nssv3483897, nssv3483916, nssv3483927, nssv3483946, nssv3484055, nssv3484065,
nssv3484091, nssv3484107, nssv3484217, nssv3484219, nssv3484247, nssv3484265, nssv3484399, nssv3484406, nssv3484414, nssv3484476, nssv3484478, nssv3484538, nssv3484544, nssv3484555,
nssv3484570, nssv3484736, nssv3484771, nssv3484815, nssv3484863, nssv3484907, nssv3484933, nssv3485022, nssv3485085, nssv3485169, nssv3485358, nssv3485496, nssv3485570, nssv3485712,
nssv3485825, nssv3485945, nssv3485952, nssv3485997, nssv3485998, nssv3486028, nssv3486035, nssv3486096, nssv3486110, nssv3486170, nssv3486203, nssv3486259, nssv3486287, nssv3486336,
nssv3486345, nssv3486424, nssv3486621, nssv3486746, nssv3486764, nssv3486784, nssv3486792, nssv3486819, nssv3486821, nssv3486923, nssv3486940, nssv3486972, nssv3487555, nssv3487653,
nssv3487780, nssv3488032, nssv3488039, nssv3488053, nssv3488077, nssv3488099, nssv3488304, nssv3488409, nssv3488597, nssv3488713, nssv3488764, nssv3488871, nssv3489019, nssv3489328,
nssv3489491, nssv3489566, nssv3489748, nssv3489845, nssv3490028, nssv3490029, nssv3490046, nssv3490081, nssv3490111, nssv34901 14, nssv3490202, nssv3490643, nssv3490665, nssv3490819,
nssv3490997, nssv3491002, nssv3491312, nssv3491620, nssv3492689, nssv3493103, nssv3493105, nssv3493160, nssv3493254, nssv3493487, nssv3493731, nssv3493789, nssv3493913, nssv3494071,
nssv3494109, nssv3494259, nssv3494348, nssv3494530, nssv3494544, nssv3494550, nssv3494893, nssv3494978, nssv3495023, nssv3495296, nssv3495346, nssv3495361, nssv3495407, nssv3495467,
nssv3495534, nssv3495565, nssv3495835, nssv3496262, nssv3496414, nssv3496609, nssv3496688, nssv3496987, nssv3497337, nssv3497834, nssv3497988, nssv3498902, nssv3498972, nssv3499009,
nssv3499158, nssv3499407, nssv3499738, nssv3500097, nssv3500322, nssv3500421, nssv3500765, nssv3500770, nssv3500783, nssv3500839, nssv3500897, nssv3501135, nssv3501236, nssv3501251,
nssv3501742, nssv3501770, nssv3501870, nssv3502111, nssv3502321, nssv3698020, nssv3702228, nssv3703992, nssv3703993, nssv3704088, nssv3704115, nssv3704164, nssv3704165, nssv3704174,
nssv3704182, nssv3704203, nssv3704205, nssv3704208, nssv3704748, nssv3704750, nssv3704771, nssv3704775, nssv3704783, nssv3704788, nssv4028323, nssv4029064, nssv4029797, nssv4029798,
nssv4029799, nssv4029802, nssv4029805, nssv4029806, nssv4029807, nssv4029808, nssv4029809, nssv4029812, nssv4029940, nssv451753, nssv540130, nssv547768, nssv617996, nssv654186,
nssv671510, nssv672481, nssv677351, nssv677518, nssv677746, nssv678767, nssv679036, nssv686593, nssv693456, nssv693890, nssv697045, nssv710027, nssv710030, nssv710031, nssv710033,
nssv710039, nssv710040, nssv710080, nssv710082, nssv723095, nssv723124, nssv723125, nssv723126, nssv723129, nssv723200, nssv723212, nssv723240, nssv723243, nssv723244, nssv723247,
nssv723249, nssv723251, nssv723258, nssv723259, nssv723269, nssv723273, nssv723296, nssv723300, nssv723310, nssv723311, nssv723336, nssv723340, nssv723345, nssv723346, nssv723353,
nssv723354, nssv723359, nssv723362, nssv723363, nssv723364, nssv723378, nssv723380, nssv723386, nssv723395, nssv723428, nssv727684, nssv727685, nsv1000267, nsv1003007

Eight studies give support to this bicluster: Vogler 2010, Redon 2006, Suktitipat 2014, de Smith 2007, Lou 2015, Coe 2014, Conrad 2009, Cooper 2011
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