‘Centro L
wnform tica

Pés-Graduacdo em Ciéncia da Computacao

DANIEL ROSENDO

A HIGH-LEVEL AUTHORIZATION FRAMEWORK FOR
SOFTWARE-DEFINED NETWORKS

e
e~

¢

B

Federal University of Pernambuco

&

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE
2017

www.cin.ufpe.br/~posgraduacao

DANIEL ROSENDO

A HIGH-LEVEL AUTHORIZATION FRAMEWORK FOR
SOFTWARE-DEFINED NETWORKS

A M.Sc. Dissertation presented to the Center for
Informatics of Federal University of Pernambuco in
partial fulfillment of the requirements for the degree of

Master of Science in Computer Science.

Advisor: Prof” Dr* Judith Kelner
Co-Advisor: Prof* Dr® Patricia Takako Endo

RECIFE
2017

Catalogacéo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

R813h

Rosendo, Daniel

A high-level authorization framework for software-defined networks / Daniel
Rosendo — 2017.

77 f.: L., fig., tab.

Orientadora; Judith Kelner.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacéo, Recife, 2017.
Inclui referéncias.

1. Redes de computadores. 2. Internet das coisas. |. Kelner, Judith
(orientadora). Il. Titulo.

004.6 CDD (23. ed.) UFPE- MEI 2017-111

DANIEL ROSENDO

A HIGH-LEVEL AUTHORIZATION FRAMEWORK FOR
SOFTWARE-DEFINED NETWORKS

Trabalho apresentado ao Programa de P6s-graduagao
em Ciéncia da Computacdo do Centro de Informatica
da Universidade Federal de Pernambuco como req-
uisito parcial para obtengcdo do grau de Master of

Science em Ciéncia da Computagdo.

Aprovado em: 14/03/2017.

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa
Centro de Informatica / UFPE

Profa. Dra. Rossana Maria de Castro Andrade

Departamento de Computa¢do/UFC

Profa. Dra. Judith Kelner
Centro de Informatica / UFPE

(Orientadora)

I dedicate this thesis to all my family, friends and professors

who gave me the necessary support to get here.

Acknowledgements

I would first like to thank my grandmother (Maria), my parents (Djalma and Luzineide),
and my brothers (Diomedes and Diogo) for all support they gave me during these two years of
hard work. Many thanks to them for cheering me up in some moments. Likewise, I would like to
thank all my family members and friends (Danilo and Eduardo).

Next, I would like to thank my advisor Dra. Judith Kelner and co-advisor Dra. Patricia
Endo for their patience and believing and guiding me during my research. I feel extremely
pleased in thanking them.

I would also like to thank all researchers at the Networking and Telecommunications
Research Group (GPRT) for sharing their knowledge, offering relevant feedbacks, giving me
new ideas and suggestions to improve this work, and encouraging me (in special: Djamel, Rafael,
Marcos, Alexandre, Ernani, Rodrigo, Greg, Thiago, Wesley, Glauco, Moisés, Demis, Késsia, and
Cani). Without their support, I would have never finished my research.

Next, I would like to thank external researchers (Fabien Autrel, Nate Foster, Steffen
Smolka, Adrian Lara, and Robert Soulé) for their attention and patience for answering my
questions via e-mails. Many thanks to them for contributing and helping me to improve this
work.

Finally, I would like to thank the Fundacdao de Amparo a Ciéncia e Tecnologia de
Pernambuco (FACEPE) for funding this work through grant IBPG-0745-1.03/14.

Try not to become a man of success,

but rather try to become a man of value.

—ALBERT EINSTEIN

Abstract

Network Access Control (NAC) management is a critical task. Misconfigurations may
result in vulnerabilities that may compromise the overall network security. Traditional access
control setups rely on firewalls, IEEE 802.1x, VLAN, ACL, and LDAP. These approaches work
well for stable and small networks and are hard to integrate and configure. Besides, they are
inflexible and require per-device and vendor-specific configurations, being error-prone. The
Software-Defined Networking (SDN) paradigm overcomes architectural problems of traditional
networks, simplifies the network design and operation, and offers new opportunities (programma-
bility, flexibility, dynamicity, and standardization) to manage these issues. Furthermore, SDN
reduces the human intervention, which in turn also reduce operational costs and misconfigura-
tions. Despite this, access control management remains a challenge, once managing security
policies involves dealing with a large set of access control rules; detection of conflicting policies;
defining priorities; delegating rights; reacting to dynamic network states and events. This disser-
tation explores the use of SDN to mitigate these problems. We present HACFlow, a novel SDN
framework for network access control management based on the OrBAC model. HACFlow aims
to simplify and automate the NAC management. It allows network operators to govern rights of
network entities by defining dynamic, fine-grained, and high-level access control policies. To
illustrate the operation of HACFlow we present through a step by step how the main management
tasks are executed. Our study case is a Smart City network environment. We conducted many
experiments to analyze the scalability and performance of HACFlow, and the results show that it
requires a time in the order of milliseconds to execute all the management tasks, even managing

many policies. Besides, we compare HACFlow against related approaches.

Keywords: Software-defined Networks. Internet of Things. Security management. Policy-

based management. Autonomic and cognitive management.

Resumo

Gerenciar o controle de acesso entre recursos (usudrios, maquinas, servigos, etc.) em uma
rede € uma tarefa critica. Erros de configuracao podem resultar em vulnerabilidades que podem
comprometer a seguranca da rede como um todo. Em redes tradicionais, esse controle de acesso
¢ implementado através de firewalls, IEEE 802.1x, VLAN, ACL, and LDAP. Estas abordagens
funcionam bem em redes menores e estdveis, e sao dificeis de configurar e integrar. Além disso,
sao inflexiveis e requerem configuracoes individuais e especificas de cada fabricante, sendo
propensa a erros. O paradigma de Redes Definidas por Software (SDN) supera os problemas
arquiteturais das redes tradicionais, simplifica o projeto e operacdo da rede, e proporciona novas
oportunidades (programabilidade, flexibilidade, dinamicidade, e padroniza¢ao) para lidar com os
problemas enfrentados em redes tradicionais. Apesar das vantagens do SDN, o gerenciamento
de politicas de controle de acesso na rede continua sendo uma tarefa dificil. Uma vez que,
gerenciar tais politicas envolve lidar com uma grande quantidade de regras; detectar e resolver
conflitos; definir prioridades; delegar papéis; e adaptar tais regras de acordo com eventos e
mudancas de estado da rede. Esta dissertacao explora o paradigma SDN a fim de mitigar tais
problemas. Neste trabalho, apresentamos o HACFlow, um framework SDN para gerenciamento
de politicas de controle de acesso na rede baseado no modelo OrBAC. HACFlow tem como
principal objetivo simplificar e automatizar tal gerenciamento. HACFlow permite que operadores
da rede governe os privilégios das entidades da rede através da defini¢@o de politicas de controle
de acesso dinamicas, em alto nivel, e com alta granularidade. Para ilustrar o funcionamento
do HACFlow apresentamos um passo a passo de como as principais tarefas de genrenciamento
de controle de acesso sdo realizadas. Nosso estudo de caso € um ambiente de rede de uma
cidade inteligente. Véarios experimentos foram realizados a fim de analisar a escalabilidade
e performance do HACFlow. Os resultados mostram que o HACFlow requer um tempo na
ondem de milissegundos para executar cada uma das tarefas de gerenciamento, mesmo lidando
com uma grande quantidade de regras. Além disso, n6s comparamos HACFlow com propostas

relacionadas existentes na literatura.

Palavras-chave: Redes Definidas por Software. Internet das Coisas. Gerenciamento de

seguranca. Gerenciamento baseado em politicas. Gerenciamento autdbnomo e cognitivo.

2.1
2.2
2.3
24
2.5

3.1
3.2
33
34
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
54
5.5

List of Figures

Components of an SDN Architecture. Adapted from: ONF (2014). 21
OpenFlow structure. Adapted from: yuba.stanford.edu. 23
OpenFlow match field constraints. Source: flowgrammable.org. 23
Accesscontrolmodels. Lo oo 25
The abstract and concrete levels of the OrBAC model. Adapted: orbac.org. 25
Network access control using a firewall. 29
Network access control using PNAC. 29
Network access control using VLAN. oL oL 30
Network access control using LDAP. 31
Combining different solutions of traditional network to control the access of network

ENLILIES. e e e e 31
SDN-based solutions. L L 32
HACFlow Framework Architecture. 38
HACFlow skeleton classes. 39
How HACFlow translates an OrBAC policy into OpenFlow. 41
High-level policy definition in HACFlow. 43
HACFlow policy granularity and expressiveness. 44
BeanShell and Temporal contexts. e 45
Prova context definition for vulnerability alert. 46
HACFlow reaction against a vulnerability alert. 47
Reaction against a user authentication. 48
Smart City case study scenario.o 50
Creating the Organization predicate in MotOrBAC tool. 51
Creating a context and setting its definition. 52
Creating the garbageA entity and assigning its class definition. 52
Attribute values of the garbageA entity. oL 52
Attribute values of two different services within the cameraA entity. 53
Creating the PolicyA securityrule. 54
Experimental setup. 57
Steps to react to an authentication. 58
Steps to react to a vulnerability alert. oL 59
Steps to react to a dynamic policy. Lo o 60

Stepstodelegatearole. L 61

5.6
5.7
5.8
59

Scalability: high-level to low-level policy inference. 63
Policy inference steps: security rule filter and policy translation. 63
Frenetic, FRESCO, OpenSec, and HACFlow syntax comparison to create a policy. 67
CPU performance comparison provided by CPUBoss. 68

1.1

4.1
4.2

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11

5.12
5.13

List of Tables

Research Challenges AHMAD et al. (2015); WICKBOLDT et al. (2015) and ONF

Requirements and Problems to be Solved TR-516 (2015). 18
HACFlow Framework Scope. 37
HACFlow REST APIresources. 42
Network Entity Authentication. 58
HACFlow process: authenticationevent. 58
Network Vulnerability Alert. L L 59
HACFlow process: vulnerability alert. 59
Dynamic Security Policy. 61
HACFlow process: dynamic policy. 61
Role delegation. 62
HACFlow process: role delegation. 62
High-level to low-level policy inference. 63
Summary of the comparison analysis. 65
Features Implemented by Different SDN-based Network Access Control (NAC)

Solutions. e e 66
High-level to low-level policy translation for a singlerule. 69

Required time to HACFlow and OpenSec react to a networking event. 70

AAA
ABAC
ACL
AD
CBAC
DAC
DDoS
DPI
FRP
ISP
LDAP
MAC
NAC
NAS
ONF
OrBAC
PNAC
RBAC
REST
SDN
SEK
TCAM
TCP
TLS
TMAC
VLAN
XACML

List of Acronyms

Authentication, Authorization, and Accounting......................cco.... 20
Attribute-Based Access Control 24
Access Control List 16
ACtive DITECIOTY . . .ttt 30
Coalition Based Access Control, 24
Discretionary access COntrol.t 24
Distributed Denial of Service................ i i 46
Deep Packet Inspectiont 46
Functional Reactive Programming 32
Internet Service Provide i 24
Lightweight Directory Access Protocol................. . ..o it 16
Mandatory Access Control............cooiiiiiiiniiiiiiiiiiiiiiiieea... 24
Network Access Controloiiiiiiiiii e 16
Network ACCeSS SETVETottt 28
Open Networking Foundation i i, 18
Organization Based Access Control ..., 25
Port-based Network Access Control................ ...t 16
Role-Based Access Control ... 24
Representative State Transfer......... i 20
Software-Defined Networking i, 16
Security Enforcement Kernel............ 34
Ternary Content-Addressable Memory 40
Transmission Control Protocol o i i 22
Transport Layer Securityoouuiiii e 22
Team-based Access Controloouuuiiiiiii i 24
Virtual Local Area Network it 16

eXtensible Access Control Markup Language 30

1.1
1.2
1.3
1.4

2.1

2.2

2.3

24
24.1
24.1.1
24.1.2
24.1.3
24.14
24.1.5
24.1.6
24.1.7
2.5

3.1
3.2
3.3
34

4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5

Contents

Introduction

Motivation e e e e
Problem Statement
General and SpecificGoals o

Organization of the Dissertation

Background

Software Defined Networks
OpenFlow Standard
Authentication, Authorization and Accounting
Access Control Models
Organization Based Access Control
Organization L e e e e
Role and Subject
Activity and Action oL e e
Viewand Object
Context Definition e
Class Definition i
High-level Security Policy Definition

Concluding Remarks e

Related Work

Network Access Control in Traditional Networks
Network Access ControlinSDN
Candidates to Comparison Against HACFlow

Concluding Remarks

HACFlow

HACFlow Framework
OVEIVIEW . . . o o o e e e e e e e e
Architecture e
OrBAC APL e
Policy Skeleton L
Entity Manager e
Event Listener

Policy Translator

16
16
17
19
19

20
20
22
24
24
25
25
26
26
26
26
27
27
27

28
28
32
33
35

4.1.2.6
4.1.3
4.1.3.1
4.14
4.1.5
4.1.5.1
4.15.2
4.1.6
4.2
4.2.1
422
423
4.23.1
4232
4.2.4
4.2.5
4.3

5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.2.1
522
5.2.2.1
5.2.22
523
5.2.3.1
5.2.3.2
524

REST APL 41
Step-by-step: High-level Policy Definition 41
Security Policy Expressiveness and Granularity 44
Step-by-step: Dynamic Security Policies 44
Step-by-step: Reacting to Network Events 45
Vulnerability Alert 46
Authentication Event Lo 47
Step-by-step: Role Delegation 47
Case Study: Applying HACFlow ina SmartCity 48
OVervIewW o e 49
Defining High-level Goals 49
Defining the Network Entities 50
The Abstract Level 51
The Concrete Level 51
Defining High-level Security Policies 53
Enforcing Security Policies in the Network 54
Concluding Remarks 55
Evaluation and Comparison 56
HACFlow Performance Evaluation 56
Scenario Description and Methodology 56
Network State Changesand Events 57
Authentication Event L L L Lo 58
Vulnerability Alert e 59
Dynamic Security Policy oL 60
Role Delegation 61
High-level to Low-level Policy Inference 62
Discussion 64
Comparison Against Existing Solutions 64
OVervVIEW o o o e 64
Qualitative Analysis L e 65
Framework Features 65
Syntax Simplicity e e 66
Quantitative Analysis L 68
Policy Translation 69
Event ReactionDelayo . 69
Discussion 70
Conclusion 71
Difficulties Found 72

6.2
6.3

Future Work and Open Challenges

Statement of the Contributions . .

References

16

Introduction

During the last decade, advances in the Internet architecture and communication system
technologies together with the introduction of the Software-Defined Networking (SDN) and
Internet of Things (IoT) paradigms contributed to the growth of the network and the number of
interconnected heterogeneous devices. These devices exchange information and interact with
each other and with humans and machines. Ensuring the security and privacy of these entities
and defining and managing access rights to protect them from unauthorized access become a
challenge SICARI et al. (2015).

In this scenario, Network Access Control (NAC) management is a critical task. There
are several devices in the network, each one with different features; and at the same time, there
are also many users with different levels of access rights to these devices. For instance, in a
Smart City, we may have many garbage can with embedded sensors spread in a neighborhood
and users can have different interest on monitoring these garbage cans; a simple citizen would
like to know if a given garbage can is free for his/her use, while a city manager would like to
know if it is necessary to increase the number of garbage cans considering their usage per day.

From the network operator perspective, security tasks, like authorizing the access between
and for each network entity (users, sensors, printers, services, among others), are complex and
challenging to manage due to many reasons. For instance, misconfigurations may result in
vulnerabilities that may compromise the overall network security. Besides, large and dynamic

network environments and sensitive information also increase the management complexity.

1.1 Motivation

In traditional networks, the NAC management relies on a series of network devices like
firewalls, routers, and switches, together with protocols, standards and technologies like RADIUS,
IEEE 802.1x Port-based Network Access Control (PNAC), Access Control List (ACL), Virtual
Local Area Network (VLAN), Lightweight Directory Access Protocol (LDAP) (OpenLDAP and
Active Directory), among others.

Those solutions are inflexible and require per-device and vendor-specific manual config-

1.2. PROBLEM STATEMENT 17

urations, which are prone to errors. Besides, misconfigurations may result in vulnerabilities, that
may compromise the overall network security.

Furthermore, changes in the network require manual reconfigurations in the network
devices to comply the established network security policy. Also, managing and maintaining them
are expensive, which even in a small network, requires a management team LIU et al. (2016).
Therefore, these approaches work well for stable though they are small networks and are hard to
integrate and configure.

Due to those concerns, there is a need for a more sophisticated access control solutions
based on high-level and autonomic policy implementations to minimize costs, and the network
administrator effort and errors KREUTZ et al. (2015).

The SDN paradigm stands to replace those low-level configurations by high-level net-
work access control mechanisms. SDN offers new opportunities (programmability, flexibility,
dynamicity, and standardization) to overcome the above limitations ONF (2014).

Differently from the traditional approaches, SDN eliminates the need for configuring
and integrating the many vendor-specific network devices. The basic concept of SDN is its
introduction and use of controllers that have a complete view of the entire network offering an
easier configuration of programmable switches and consequently simplifying the management
of the traffic between the network resources LARA; RAMAMURTHY (2016). Besides, the
SDN-based approach reduces the human intervention, which in turn reduce operational costs
and misconfigurations.

Despite the new opportunities and benefits provided by the SDN paradigm, those prob-
lems in traditional networks perseveres in SDN. Furthermore, access control management
remains a challenge, once managing security policies involves dealing with a large set of access
control rules; detection of conflicting policies; defining priorities; delegating rights; reacting to

dynamic network states and events.

1.2 Problem Statement

A survey about security in SDN AHMAD et al. (2015) highlights some research chal-
lenges in areas that need to be properly addressed before deploying SDN commercially. Two
of those challenges regard to the Synchronization of Network Security and Network Traffic,
and the Network Security Automation.

About Synchronization of Network Security and Network Traffic, the authors point
that a stable and robust security policy deployment requires global analysis of policy configu-
ration of all network entities to avoid conflicts and inconsistencies that may result in security
breaches and network vulnerabilities. Furthermore, the network security and traffic need to be
synchronized due to network changes and events.

In Network Security Automation, the authors point the need to automate the network

security configuration, avoiding the human intervention, and manual configurations, which are

1.2. PROBLEM STATEMENT 18

prone to errors. They highlight that configuration complexity is one of the main reasons for
security breaches in enterprise networks.

The authors in WICKBOLDT et al. (2015) discuss challenges and management require-
ments in SDN. From all their listed challenges, this work is related to the following: From
High-level Rules to Network Configuration, and Autonomic and In-Network Management.
The first regards the loss of low-level information when using high-level commands or rules.
That way, the lost information needs to be reconstructed in the process of translating high-level
rules into low-level configurations. The second regards the autonomic reaction to network events.

The Open Networking Foundation (ONF) ! promotes the adoption of SDN through open
standards development, such as the OpenFlow protocol TS-020 (2014). Recently, the ONF
Technical Recommendation document TR-516 (2015) specified new requirements to be met by
the SDN architecture, such as Security and Network Interaction Policies.

Regarding Security requirements, the document determines the use of access control
by enforcing policies that govern rights for each network entity. On the other hand, for Net-
work Interaction Policies, the document highlights the need to create mechanisms to express,
distribute, and manage interaction policies that define which operations can be performed by
network entities. It also refers to the policy delegation process, that consists in delegating the
rights (security policies) from one entity to others.

Table 1.1 summarizes those gaps.

Table 1.1: Research Challenges AHMAD et al. (2015); WICKBOLDT et al. (2015)
and ONF Requirements and Problems to be Solved TR-516 (2015).

1. Synchronization of Network Security and Network Traffic

1.1. Global analysis of policy configuration of all the network entities.

1.2. Synchronization to network state changes and events.

2. Network Security Automation

2.1. Change from manual to automatic network security configurations.

3. From High-level Rules to Network Configuration

3.1. Reconstruct the lost information in the process of translating high-level rules into
low-level configurations.

4. Autonomic and In-Network Management

4.1. Autonomic reaction to network events.

S. Security

5.1. Govern rights by enforcing, access control policies.

6. Network Interaction Policies

6.1. Mechanisms to express, distribute, and manage policies.

6.2. Right delegation between network entities.

Therefore, based on those research challenges, requirements, and problems to be solved,

we point out the following research questions:

= How to simplify the NAC management in SDN networks?

Thttps://www.opennetworking.org/

1.3. GENERAL AND SPECIFIC GOALS 19

= How to allow the definition of high-level access control policies to configure the

network?

= How to automate the reaction of security policies against network state changes and

events?

» How to maintain the synchronization between high-level policies and the network

configurations?

1.3 General and Specific Goals

In face of the challenges, problems, and requirements presented in the Subsection 1.1
and summarized in Table 1.1, this work has as main goal to simplify and automate the network
access control management in SDN.

As specific goals, we can highlight:
= Analyze the policy-based management in SDN.

= Provide an autonomic translation of high-level security policies into low-level Open-

Flow ow rules to congure the network.

= Provide an autonomic synchronization of security policy congurations against net-

work state changes and events

1.4 Organization of the Dissertation

The rest of this work is organized as follows. Chapter 2 presents background information
on SDN, OpenFlow, NAC management, and access control models. In Chapter 3 we survey
related work in traditional and SDN-based networks regarding NAC management. Chapter 4
presents the architecture of the HACFlow framework and describes its main components. Besides,
we present a practical example of using HACFlow in a Smart City scenario. These examples
demonstrate the policy expressiveness of HACFlow. After that, we analyze the performance and
scalability of HACFlow in Chapter 5. Also, we compare HACFlow against similar SDN-based
work. Finally, Chapter 6 concludes this work, presenting the difficulties found and future work.

Lastly, we discuss open challenges.

20

Background

In this chapter, we present the main concepts related to our research problem. First, we
make an overview of the SDN architecture, its contributions, and deployment challenges. Next,
we describe the OpenFlow protocol presenting its message types and basic structure. Then, we
present the whole Authentication, Authorization, and Accounting (AAA) process. Lastly, we

present some access control frameworks and detail the OrBAC model.

2.1 Software Defined Networks

The SDN concept aims to simplify network management tasks and leverage innovation in
communication networks. The SDN paradigm offers new opportunities (programmability, flexi-
bility, dynamicity, and standardization) to solve many problems in traditional networks AHMAD
et al. (2015).

The main change in the SDN architecture consists in decoupling the control plane from
the data plane ONF (2014). The SDN architecture relies on the following components depicted
in Figure 2.1 and detailed below.

The Application Layer is in the top of the SDN architecture and communicates with
the SDN controller through a northbound Representative State Transfer (REST) API. SDN
applications run on top of the controller, and consist of business applications that determine the
network logic and behavior ONF (2014).

Those applications implement network functions and technologies, such as traffic engi-
neering (load balancing, quality of service policies, energy aware routing, and so on); data center
networking (detects operational problems, live network migration, optimize network utilization,
and so on); security and dependability (security policy enforcement, flow-based network access
control, DoS attack mitigation, among others), among others KREUTZ et al. (2015).

SDN applications enable developers, and network and data-center operators to program-
matically manage the network, eliminating the need of manual, per-device, and vendor-specific
configurations, which are prone to errors and present in traditional networks.

The Control Layer or control plane, consists of SDN controllers (Floodlight, HP VAN

2.1. SOFTWARE DEFINED NETWORKS 21

SDN, NOX, OpenDaylight, among others). It is in the middle of the SDN architecture and is the
logic of the network, where all traffic decisions are made through the setup of technologies such
as OpenFlow flow rules in switches ONF (2014).

The control layer offers to SDN applications network statistics and a global view of the
entire network topology. This global view allows an easier way to guarantee the consistency and
completeness of security policy enforcement LIU et al. (2016). Besides, the control plane is
responsible for enforcing application’s configurations in OpenFlow switches.

The Infrastructure Layer or data plane has the role of forwarding packets according to
flow rules enforced by SDN controllers in switch’s flow tables. It is in the bottom of the SDN
architecture and is composed of many OpenFlow-enabled switches.

A southbound API allows the communication between the control plane and the data
plane. This communication occurs through the OpenFlow protocol, the most accepted and widely
used implementation BLIAL; BEN MAMOUN; BENAINI (2016). There are other available
southbound protocols, such as I12RS, PCE-P, BGP-LS, FORCES, OMI, OvSDB, NetConf/Yang,
among others NADEAU; GRAY (2013); PUJOLLE (2015). We give more details about the
OpenFlow protocol in Section 2.2.

The switch-to-controller communication has a fundamental role in the SDN operation.
Both of them exchange relevant information, such as network events, statistics, capabilities,
query configuration parameters, and others TS-020 (2014).

APPLICATION

LAYER | I J

Business Applications

S

CONTROL
LAYER
Network Services
‘ t OpenFlow
INFRASTRUCTURE
LAYER

Figure 2.1: Components of an SDN Architecture. Adapted from: ONF (2014).

2.2. OPENFLOW STANDARD 22

Despite their contributions, the SDN deployment also provides new challenges in many
areas. Some of them are security challenges (lack of access control and accountability, DoS
attacks, flooding attacks, and so on); network management challenges (high-availability and
resilience, performance and scalability, monitoring, and visualization), among others. A complete
and detailed list can be found in TR-516 (2015), AHMAD et al. (2015), and WICKBOLDT
et al. (2015).

2.2 OpenFlow Standard

As explained, the SDN architecture separates the data plane from the control plane, and
each OpenFlow-enabled switch is managed by a centralized SDN controller through OpenFlow
messages. It is through this protocol and an OpenFlow channel, that the SDN controller
exchanges information and executes management operations (insert, remove, and update flow
rules) in a network switch.

This channel may be encrypted using Transport Layer Security (TLS) or run directly over
Transmission Control Protocol (TCP). The three types of messages supported by the OpenFlow

protocol are controller-to-switch, asynchronous, and symmetric TS-020 (2014).

= Controller-to-switch messages allow the controller to manage the switch’s state
by adding, deleting or modifying flow entries in a flow table. Those messages are
initiated by the controller, and through them, it obtains the capabilities of a switch,
send packets, and receive notifications for completed operations (like flow setup

successful).

= Asynchronous messages are sent by the switches to the controller. Those messages
may indicate an error (notify a problem in the switch), a switch state change (removal
of a flow rule, sent only if OFPFF_SEND_FLOW_REM flag is enabled), or a packet

arrival (packets forwarded to the controller).

» Symmetric messages are sent without requesting. Those messages are hello (used
in connection startup), echo (to verify connection liveness, or measure latency or
bandwidth), and experimental (staging area for features that aims to offer additional

functionality).

The structure of an OpenFlow message consists in a header, common structures, and
stats. The header defines terms such as the protocol version, message type, and length, among
others. The common structures consist of a port, flow instructions, actions, experimenter and
finally 42 types of matching fields which 13 are required, meaning that SDN OpenFlow capable
switches must support at least those fields. Stats includes individual flow statistics. Figure 2.2

shows the OpenFlow structure.

2.2. OPENFLOW STANDARD 23

Action Stats
(instructions) (counters)

Packet + byte counters

1. Forward packets to port(s)

2. Encapsulate and forward to controller
3. Drop packet

4. Send to normal processing pipeline

Figure 2.2: OpenFlow structure. Adapted from: yuba.stanford.edu.

It is important to highlight that most of the OpenFlow matching fields present constraints.
SDN developers have to take care of each of them. If not in accordance, it is not possible to

create OpenFlow flow rules. Figure 2.3 ! show those constraints.

OXM_OF IN_PHY PO

OXM_OF_IN_PORT - RT

OXM _OF YLAN VID I=NONE®| OXM OF VLAN PCP

6
0x0800 / 0x86dd—p{ OXM_OF_IP_* > OXM_TCP_*
% 17
0x0800 OXM_OF_IPV4_* OXM_UDP_*
- _ x86dd 132
OXM_OF ETH TYPE # OXM OF IPV6 * OXM_SCTP_*
0x0800 | 0x86dd 1 135
x A | OXM_OF IP PROTO »| OXM _OF ICMPV4 * »| OXM_OF IPV6 ND SLL
0x0806 5% 35/ 136 1
p| OXM OF ARP * L s OXM OF ICMPV6 * > OXM—OF—E):?—?“D—TAR
0x8847 / 1x8848 136]
: p OXM OF MPLS * » OXM OF IPV6 ND TLL

Figure 2.3: OpenFlow match field constraints. Source: flowgrammable.org.

As one may note, the ingress physical port field (OXM_OF_IN_PHY_PORT) depends on
the ingress port field (OXM_OF_IN_PORT), that means, to define the physical port of the switch
in the OpenFlow message, it must have the ingress port field defined. The same idea applies to the
remaining fields (OXM_OF_ETH_TYPE, OXM_OF _IP_PROTO, and OXM_OF _ICMPV6_TYPE).

Thttp://flowgrammable.org/sdn/openflow/message-layer/match/#tab_ofp_1_3

2.3. AUTHENTICATION, AUTHORIZATION AND ACCOUNTING 24

2.3 Authentication, Authorization and Accounting

Effective network security and management combines the AAA processes CONVERY
(2007). Those mechanisms provide proper protection while access is made to a variety of network
resources (hosts, servers, printers, users devices, and so on).

Authentication is the first step of the whole AAA process. It uniquely identifies entities
through credentials provided by them. Once offered, the credential is compared to registered
one stored in a database, and if a match occurs, the entity being authenticated gets access to
the network. This access is limited, meaning that this entity is still not authorized to access the
network resources.

Therefore, the Authorization process must be started next. It will be responsible for
granting access to network resources to the authenticated entity. The granularity of the access
granted depends on the implemented authorization mechanism.

In some configurations, when a user successfully authenticates, it can access the overall
network. In others, the user is assigned to a VLAN in a VLAN-segmented network, and obtains
access to a particular set of network resources. Those configurations are coarse-grained.

On the other hand, in a more sophisticated and fine-grained configuration, the access
control goes a step further. The access is granted by enforcing a set of security policies on the
network. Those policies (applied to a group or a single user) protect the privacy of various
network entities (users, hosts, services, and so on). Each one, with different capabilities of
accessing the network resources.

Finally, Accounting is the last step of AAA process. Here, the network access is audited
and is the basis for billing Internet Service Provide (ISP) customers. All entities that accessed the
network are recorded, registering which resources they accessed, and when they disconnected
from the network CONVERY (2007).

2.4 Access Control Models

In the literature, there are many access control framework solutions; known exam-
ples include Role-Based Access Control (RBAC) SANDHU et al. (1996), Team-based Ac-
cess Control (TMAC) THOMAS (1997), Discretionary access control (DAC) SANDHU; MU-
NAWER (1998), Mandatory Access Control (MAC) OSBORN; SANDHU; MUNAWER (2000),
Coalition Based Access Control (CBAC) COHEN et al. (2002), and Attribute-Based Access
Control (ABAC) WINSBOROUGH; LI (2002). Figure 2.4 presents their timeline.

Those approaches present some limitations such as no support delegation, not providing
restrictions to control rights’ propagation, no possible way to specify contextual requirements
(e.g. temporal or location-based requirements), impossibility to define security policies for

various organizations within a unique framework, among others KALAM et al. (2003).

2.4. ACCESS CONTROL MODELS 25

RBAC TMAC DAC MAC CBAC OrBAC

L]] . . L] L]

1996 1997 1998 2002

o
ABAC

Figure 2.4: Access control models.

2.4.1 Organization Based Access Control

The Organization Based Access Control (OrBAC) model comes to supply the limitations
of the access control models cited and integrate concepts like hierarchy, context, and role
delegation. Differently of these approaches, OrBAC allows the creation of security policies at
the abstract level and is independent of implementation, making it applicable to many scenarios.
Due to that, this model was consolidated and is widely used KALAM et al. (2003).

Figure 2.5 depicts the abstract and concrete levels of OrBAC. The abstract level is
composed of the Organization, Role, Activity, View, and Context predicates. When applied
together, they generate an abstract policy that can be a Permission, Prohibition, Recommendation
or Obligation. Consequently, it may infer a set of concrete rules composed by Subject, Action,

and Object entities. All of these predicates, entities, and relationships will be detailed next.

ABSTRACT
LEVEL

ORGANIZATION

CONCRETE
LEVEL

SUBJECT ACTION OBJECT

Figure 2.5: The abstract and concrete levels of the OrBAC model. Adapted: orbac.org.

24.1.1 Organization

The abstract security policy management is centered on the Organization predicate.
Many things, such as a network, a city, a company, and a firewall can be modeled as an OrBAC
Organization. Each one, may be structured into several sub-organizations, meaning that we can
divide, for example, a city or an university in sub-sets (sub-cities, sub-universities), each one

having its own security policies.

2.4. ACCESS CONTROL MODELS 26

As we are proposing a framework for NAC management in SDN-based networks, the
Organization may be modeled as many domains (a company, industry, a university, a smart city,
a smart building, and so on). All following predicates (Role, Activity, View, and Context) must
be assigned to this Organization to create the abstract rules. For the following examples, we will

consider that we are modeling a company named CompanyX.

2.4.1.2 Role and Subject

The Empower relationship links a Subject entity to a Role predicate. A set of Subjects
can be grouped in one or more Roles, and those roles can be structured hierarchically. Assum-
ing that the subject Alice works in CompanyX at the Statistics department, we link them as
Empower(CompanyX, Alice, statistics). A Subject is not necessarily a person, it can also be a
host. For example, assuming that we have a machine named HostA on CompanyX located at
the statistics department, we can link them with the same idea: Empower(CompanyX, HostA,

statistics).

2.4.1.3 Activity and Action

The Consider relationship links an Action entity to an Activity predicate. Actions can
be grouped in Activities, and the latter can be organized hierarchically. An action represents
operations that a subject can perform over objects, once the subject is authenticated and the
access is granted. Assuming that a subject has network access to objects from CompanyX, we

may represent this network access as Consider(CompanyX, networkAccess, Access).

2.4.1.4 View and Object

The Use relationship links a concrete Object to an abstract View. Objects can also be
grouped in one or more Views, and Views may be structured hierarchically. An Object represents
inanimate entities, like a machine or a network service. Assuming that we have a machine
named HostA with a WebMail service on CompanyX, we can associate this service to HostA as
Use(CompanyX, WebMail, HostA).

2.4.1.5 Context Definition

The Define relationship links a context to an Organization, Subject, Action, and Object.
The Context entity is used to create dynamic security policies. The context associated with a
rule determines its state that can be active or inactive depending on the context condition. A
context can represent a temporal condition (e.g. hours, days, months), a network state (e.g.
safety, vulnerable, congested), a sensor state, among others. OrBAC permits the combination
of contexts (e.g. temporal and network state) to express more complex contextual conditions.
Assuming that we have a temporal context in CompanyX named StrictContext, with a definition
like between 14 PM and 22 PM only on Fridays. We can link this context as Define(CompanyX,

2.5. CONCLUDING REMARKS 27

Alice, networkAccess, WebMail, StrictContext). In this way, the subject Alice will be able to

access the WebMail service only within circumstances.

2.4.1.6 Class Definition

Classes can be assigned to concrete entities (Subject, Action, Object) to include additional
information for them. Such additional information is strictly related to the modeling domain
(a firewall, a city, an university, and so on) and comes in attributes defined in a class. As an
example, the HostA object may require additional particular attributes such as IP address, MAC

address, host identifier, and so on.

2.4.1.77 High-level Security Policy Definition

Security policies are defined at the abstract level. The Permission, Prohibition, Obliga-
tion, and Recommendation relationships link the Organization, Role, Activity, View, and Context
predicates, resulting in the final definition of a policy. The example below summarizes the

axioms required to implement a high-level security policy.

V Alice ¥V networkAccess ¥ WebMail ¥ statistics ¥ Access ¥ HostA Y StrictContext
Permission(CompanyX, statistics, Access, HostA, StrictContext) N\
Empower(CompanyX, Alice, statistics) N\

Consider(CompanyX, networkAccess, Access) N\

Use(CompanyX, WebMail, HostA) N\

Define(CompanyX, Alice, networkAccess, WebMail, StrictContext)

— Is_permitted(Alice, networkAccess, WebMail)

As one may note, in this example we defined the permission rule Permission(CompanyX,
statistics, Access, HostA, StrictContext). This security rule will be only active in this context
condition (between 14 PM and 22 PM only on Fridays) and Alice (empowered in statistics) will
be able to access the WebMail service. Out of this condition, the policy will be inactive and
Alice loses her access.

2.5 Concluding Remarks

This chapter presented the main concepts related to our proposal. We presented the
application, control, and infrastructure layer of the SDN architecture. We described the OpenFlow
protocol presenting its message types, basic structure, and constraints. Then, we presented the
whole AAA process. Lastly, we presented different access control frameworks in literature. We

described in detail the OrBAC model presenting its abstract and concrete levels and relationships.

28

Related Work

In this Chapter, we survey related work in traditional and SDN-based networks regarding
NAC management. We describe the benefits and limitations of each approach presenting some
insights against our solution. First, we present access control technologies and standards used in
traditional networks. Then, we present SDN applications and programming languages that aim
to improve the security policy management. Lastly, we present some SDN-based candidates to

compare against HACFlow.

3.1 Network Access Control in Traditional Networks

Firewalls are widely deployed to secure a network by providing access control. It
protects a private network against unauthorized access and attacks from the public Internet.
A firewall analyzes all the network communication flow (incoming and outgoing traffic) and
determines, based on predefined security rules, which operations can be executed. Despite their
wide adoption, firewalls do not analyze the internal traffic between network entities inside a
private network (see Figure 3.1). In that case, a malicious user could attack another user, host, or
service in the private network. Therefore, the integration with other mechanisms should be done
to protect the network.

With HACFlow, as it provides a more granular and deeper enforcement (in switches)
approach, the malicious traffic, once detected, will be immediately blocked at the source of
communication, that means, at the switch that the attacker is connected to. Furthermore,
adapting to the frequent network state changes and events, results in an even harder firewall
deployment AHMAD et al. (2015). HACFlow was designed to automatically react to those state
changes and events.

The IEEE 802.1x ! standard is a PNAC solution widely used. It consists of a supplicant,
software running on a client device; an authenticator: Network Access Server (NAS) like a
switch or router; and an authentication server: like RADIUS 2 DIAMETER 3, and so on. Typical

"https://www.ietf.org/rfc/rfc3580
Zhttps://tools.ietf.org/html/rfc2865
3https://tools.ietf.org/html/rfc6733

3.1. NETWORK ACCESS CONTROL IN TRADITIONAL NETWORKS 29

#‘/ Firewall Security Policies
y- accept
| reject S Local network -

E drop

Web Sites
== ; ; —
a i‘ E : = lj

“._HostA HostB UserA UserB.

Hacker \W

firewalls do not analyze
the internal traffic

Figure 3.1: Network access control using a firewall.

configurations combine the 802.1x and RADIUS (as the AAA server) standards to provide access
control by using another common mechanism named ACL.

In that setup, when a user successfully authenticates, the RADIUS server returns access
privileges to the NAS port. But, ACLs present some limitations when applied to flexible
environments that require continuously access control policy updates. They are also limited to
only supporting allow or deny decisions for access control, that means, once a user authenticates
it may access or not all network resources. Therefore, this solution is not so fine-grained (see
Figure 3.2).

Authentication

. Server
Supplicant User’s User’s

credentials credentials -~
£ -E — — E),
Authdntidator L}

™ #aaanew-model
#aaa authentication dotix defaultgroupradius
i #dotixsystem-auth-control
H d | #interface fastethernet 5/1

m authorized m #authenticationport-controlauto

: : TCP, UDP, etc —_ i #radius-serverhost 172.120.39.46

#radius-serverkey rad123

trafficis allowed
[XN
LR LR |

Protected side of the network

Figure 3.2: Network access control using PNAC.

Another typical configuration consists of including VLAN assignment in the previous
setup to isolate the access to network entities in a VLAN-segmented network. In this setup,
when a network entity successfully authenticates, its switch port is dynamically assigned to a
VLAN (dynamic VLAN). VLANs make a virtual separation by grouping hosts that are not on
the same network switch. It marks packets through VLAN tagging (IEEE 802.1Q tag). A switch
port in a trunk mode allows traffic tagged with any VLAN to be sent to connected switches.

As a VLAN isolates a group of hosts setting them in different VLANS, to allow inter-

3.1. NETWORK ACCESS CONTROL IN TRADITIONAL NETWORKS 30

VLAN communication, a router or a layer three switch must be manually configured in the trunk
mode. In this setup, any host in a VLAN will be able to communicate to any host on the other

one (coarse-grained access control), which may result in vulnerabilities (see Figure 3.3).

Authentication

Server
VLAN assignment mm
configuration
!] < 'gurati Alice VLANS, VLAN7
/ -
&) P Bob VLAN5

Authenticated Authenticator
T - : -
i i i A
{/__E__?__\I #interface fastethernets/1
| | #switchport mode private-vlan host
| | #authenticationport-controlauto
| e —y N #authenticationevent failretry 3action
| (Y2 authorizevlan2
=3 _ -
VLANG VLAN7 o

Figure 3.3: Network access control using VLAN.

If the network operator requires a more granular (fine-grained) access control (e.g. a
single host in a VLAN being able to communicate to a particular set of hosts (not all) in the other
VLAN), using VLAN:S it is not achievable. Another limitation of using VLAN:S is that they are
restricted to a number of 4096 ports, a number that can be easily achieved in large scenarios.
HACFlow overcomes those limitations by providing a fine-grained access control solution.

More sophisticated approaches like OpenLDAP 4 and Active Directory (AD) >, that
implement the LDAP, may be combined with 802.1x and RADIUS to overcome some of the
previous limitations. For example, OpenLDAP and AD allow more complex configurations and
offer support to dynamic network updates.

LDAP is a protocol for accessing and maintaining distributed directory information
services. Those directories may be composed of sensible and critical data. LDAP may be used
to control access to various network entities like users, hosts, services, printers, and others. That
way, network operators may define directory services to control the access to many network
entities. Therefore, granting access for users to those directories become critical (see Figure 3.4).

Differently from ACL, OpenLDAP and AD are not limited to only allow or deny policies;
they provide a more granular approach (grouping by role, or defining some circumstances).
OpenL.DAP and AD may also be integrated with the Kerberos © technology. Kerberos aims
to replace the ACL approach by a more advanced authorization model like ABAC and the
eXtensible Access Control Markup Language (XACML) standard. Despite their improvements,

setting those services is often hard to integrate and configure HU et al. (2014).

“http://www.openldap.org/
>https://technet.microsoft.com/en-us/library/9a5cba91-7153-4265-adda-c70df2321982
Ohttps://www.ietf.org/rfc/rfc4120

3.1. NETWORK ACCESS CONTROL IN TRADITIONAL NETWORKS 31

- -

= - r Il | ;

‘ = —
#TLSCertificateFile /path/to/your/cert.crt [Eg----------smm--mmv m m

#base dc=example,dc=org
#urildap://server.example.org/

#dn: ou=people,dc=example,dc=org N . . : :
#objectClass: top { i) IE IE
N . . B B Na_s - -

objectClass: organizationalUnit ooy s LEER &ER
#ou: people -

= =N HostA HostB UserA UserB

cee Finane e = ~=7 Account

Figure 3.4: Network access control using LDAP.

The aforementioned approaches (firewalls, PNAC, VLAN, LDAP, and Kerberos), nor-
mally rely on manual configurations (in firewalls, RADIUS server, routers, switches), being
highly exposed to misconfigurations, and resulting in a time-consuming task MATIAS et al.
(2014). Therefore, the employment of those technologies becomes harder in dynamic and large
networks scenarios, requiring a management team. Besides, there is a lack of granularity and
expressiveness to implement the network access control, requiring the combination of different
solutions. Figure 3.5 depicts the combination of these solutions (firewall, PNAC, VLAN, LDAP)
to control the access in a traditional network. HACFlow aims to mitigate those limitations by
allowing network configuration in a high-level, expressive, and fine-grained way and providing

mechanisms to automate the network re-configurations.

Firewall #= PNAC 4= VLAN == LDAP
Authentication

i) Server
Supplicant User’s Alice VLANS, VLAN7
credentials a

o Firewall Security S E— Bob VLAN5

L Policies i 500 000
accept : .

U ep Authenticator
reject
drop AJ
. -
Web Sites }

#aaa new-model

#interface fastethernets/1
#authentication port-control auto
#radius-server host 172.120.39.46
#radius-server key radi23

a .LDAP
-
Host A Host B UserA UserB A
Hacker o é -
A

)

#interface fastethernet 5/1
#switchport mode private-vlan host

#TLSCertificateFile /path/to/your/cert.crt —\#authentication port-controlauto
#base dc=example,dc=org N |
#urildap://server.example.org/ (‘j) |

#dn: ou=people,dc=example,dc=org Lo Sa;:,,_\ |

#objectClass: top { N (al" LERR LR |

#objectClass: organizationalUnit rimmeNems See? Aot X) '\534/" /l

#ou: people) T VAN

Figure 3.5: Combining different solutions of traditional network to control the access of
network entities.

3.2. NETWORK ACCESS CONTROL IN SDN 32

3.2 Network Access Control in SDN

Recently, many efforts have been made to define high-level SDN programming lan-
guages, such as Frenetic FOSTER et al. (2011), Procera VOELLMY; KIM; FEAMSTER (2012),
PonderFlow BATISTA; FERNANDEZ (2014), and SDN network applications, such as Cloud-
Watcher SHIN; GU (2012), FRESCO SHIN et al. (2013), FlowNAC MATIAS et al. (2014),
OpenSec LARA; RAMAMURTHY (2016). Figure 2.4 presents their timeline.

SDN Programming Languages

Frenetic Procera PonderFlow
® ¢ ®

2012 2013 2014 2015 2016
o 6 . .
Cloudwatcher FRESCO FlowNAC OpenSec

SDN Network Applications

Figure 3.6: SDN-based solutions.

These proposals focused on specific aspects (expressing packet-forwarding policies, ex-
pressing access control lists, security policy enforcement, flow-based access control, fine-grained
access control, and so on), while seeking to facilitate and automate the network management.

SHIN; GU (2012) proposed CloudWatcher, a framework that provides security monitor-
ing services that allow network operators to create security policies that define which flow must
be investigated by those services. CloudWatcher consists of a policy manager, a routing flow
rule translator (considers the best path to send the monitoring traffic to security services), and an
enforcer to setup flow on switches.

The main weakness of this framework is that it only uses four matching fields of the
OpenFlow protocol (source/destination IP address and source/destination port) to create the
security policy. This limitation restricts the variety of packets to inspect. Another limitation
is that the security policies defined in CloudWatcher are script-based (in a low-level, using IP
addresses), and not in a high-level way (using high-level names, like users, hosts, and services),
as in HACFlow.

VOELLMY; KIM; FEAMSTER (2012) proposed Procera, a framework to express
event-driven network policies based on Functional Reactive Programming (FRP), like in Frenetic.
Similar to HACFlow, Procera focus on two network management problems: (1) configure
the network using a high-level language/model, and the (2) dynamic network reconfiguration
according to the frequent network state changes and conditions. Both solutions define the
high-level policies, translates them into OpenFlow flow rules, and enforce the switch-level rules

on the underlying network infrastructure.

3.3. CANDIDATES TO COMPARISON AGAINST HACFLOW 33

In Procera, the implementation of reactive network policies relies on the following four
control domains. (1) Time: depends on the date or time of day; (2) data usage: depends on the
amount of data usage or data transfer rate; (3) status: device’s or user’s privilege; and (4) flow:
based on various field values of a flow rule KIM; FEAMSTER (2013). Those domains can be
combined to implement richer network policies.

In HACFlow, the reactive policies rely on context definitions provided by the OrBAC
model. Those contexts can also be combined. Despite the Procera contributions, we cannot find
any scalability (increasing the number of security policies) and performance (time needed to
translate the high-level policy into OpenFlow flow rule; and the required time to Procera reacts to
network state changes and events). The Section 5.1 presents those and more analysis regarding
the HACFlow framework.

MATIAS et al. (2014) proposed FlowNAC, a Flow-Based Network Access Control
solution based on an extended version of the IEEE 802.1x standard. FlowNAC allows the
definition of policies that specifies which network services a user can access. Differently from
HACFlow, FlowNAC does not focus on dynamic policies. Furthermore, FlowNAC enforces
its policies proactively, meaning that the flow setup of all policies occurs in advance of the
connection of a user to the network. This approach results in the deployment of flow rules not
required at the current moment, and consequently, the waste of switches’ resources (like TCAM
memory).

On the other hand, HACFlow enforcement is reactive, that means, on-demand and as a
result of a networking event (i.e. user authentication), network state change (i.e. vulnerability
state), or policy context change (i.e. a user can access a host only on weekends). The advantage
of the proactive approach against the reactive one is that the user requesting the access to a
network host has not to wait for the flow setup (time to a controller pushes flow rules to OpenFlow
switches) to access this host.

BATISTA; FERNANDEZ (2014) proposed a framework based on the Ponder language,
named PonderFlow. Ponder allows the management and specification of security policies for
distributed systems. The PonderFlow framework extends the Ponder language to enable the
creation of OpenFlow flow rules.

The main limitation of PonderFlow is the absence of a policy conflict resolution mecha-
nism. Furthermore, PonderFlow does not translates high-level network policies into OpenFlow.
On the other hand, once HACFlow is based on the OrBAC model, it is able to detect and solve
conflicting policies. HACFlow also translates high-level security policies into OpenFlow flow
rules, leaving to controller’s application the enforcement of those rules on the network.

3.3 Candidates to Comparison Against HACFlow

From the SDN-based solutions that allow network administrators to define high-level

security policies to configure the network, we selected three to compare against HACFlow,

3.3. CANDIDATES TO COMPARISON AGAINST HACFLOW 34

they are: Frenetic FOSTER et al. (2011), FRESCO SHIN et al. (2013), and OpenSec LARA;
RAMAMURTHY (2016). We chose them due to their similarities with HACFlow and available
data for conducting the comparisons.

We describe them next and Section 5.2 makes a comparison regarding (1) Framework
Features, (2) Policy Definition Simplicity, (3) Time to Translate Policies, and (4) Time to React
Against Network Events. We chose these points once they are relevant aspects offered by each
solution to simplify and automate the network access control management in SDN.

FOSTER et al. (2011) proposed Frenetic, a high-level language for OpenFlow networks
based on FRP and SQL-like queries. The Frenetic architecture consists of an implementation
of the FRP operations (to define high-level policies), a run-time system (to translate high-level
policies into low-level packet-processing rules, and to manage the enforcement of flow rules),
and the NOX SDN controller. Recently, Frenetic has been extended in two main directions.

HACFlow and Frenetic manage the network traffic by defining high-level policies. In
both, network managers do not take care of how those policies will be implemented and enforced
on the network.

SHIN et al. (2013) proposed FRESCO, a security framework focused on enforcing
security constraints of SDN applications. With FRESCO, those applications can replicate
security functions like firewalls and attack deflectors. In FRESCO, network operators define
high-level security policies based on a scripting language.

This language, relies on the block, deny, allow, redirect, and quarantine security primi-
tives. Those high-level security policies are translated into OpenFlow flow rules and enforced
on OpenFlow-enabled switches. While, in HACFlow, the high-level policies are based on the
OrBAC model and automatically translated into flow rules to be enforced on the network by
SDN applications. Thus, network operators focus on the high-level goals, not requiring taking
care of how the low-level OpenFlow flow rules will be implemented.

FRESCO and HACFlow react automatically (by reprogramming OpenFlow switches)
to network alerts according to predefined configurations implemented by network managers.
Furthermore, both can detect and solve conflicting high-level policies. Those features avoid the
setup of overlapping of OpenFlow flow rules.

To detect and solve conflicts, FRESCO includes a Security Enforcement Kernel (SEK)
module integrated to the NOX SDN controller. This feature avoids flow rules from a security
SDN application to compete with non-security-critical ones PORRAS et al. (2012). Therefore,
supporting FRESCO in other SDN controllers require the implementation of this module, not
being a straightforward integration.

On the other hand, the OrBAC component in HACFlow framework detects and solve
conflicting policies. The HACFlow deployment does not require any extension or modification
in SDN controllers, as FRESCO requires.

Similarly to CloudWatcher, LARA; RAMAMURTHY (2016) proposed OpenSec, a

security framework to automate the implementation of security policies. In OpenSec, the

3.4. CONCLUDING REMARKS 35

network operator defines high-level goals (high-level security rules) to determine by which
processing units (DDoS, DPI, spam detection, among others) a traffic must be monitored. While,
HACFlow implements high-level security policies to determine which actions network entities
can perform.

OpenSec and HACFlow react dynamically to network alerts by enforcing switch-level
rules. Besides, they allow network managers to previously define how this reaction must be

implemented/enforced according to the alert received.

3.4 Concluding Remarks

This Chapter presented the advantages and drawbacks of existing NAC solutions in
traditional network, such as firewall, PNAC, VLAN, and LDAP. We explained how each
solution may be used to implement network access control, presenting its expressiveness and
granularity. Next, we presented the SDN-based network access control solutions, that may be
divided as SDN applications and programming languages. Lastly, we presented SDN-based
candidates to compare against HACFlow.

36

HACFlow

This chapter presents our proposed framework named HACFlow. Then, we detail how to

operate HACFlow to govern rights of network entities in a smart city case study scenario.

4.1 HACFlow Framework

Applying high-level security policies to govern users’ rights involves issues like managing
a broad set of policies, solving conflicting rules, and dealing with the dynamic nature of networks.
This complexity becomes even harder when managing large networks and critical data. In this
section, we present the HACFlow framework and explain how it overcomes the challenges,
problems, and requirements presented in Chapter 1. Next, we describe the HACFlow architectural

components and detail the role of each one to improve the network access control management.

4.1.1 Overview

HACFlow is a High-level Access Control management framework for SDN based on
the OrBAC model. HACFlow aims to simplify and automate the NAC management providing
mechanisms to define dynamic, fine-grained, and high-level access control policies, detect and
solve conflicting policies, delegate roles, and react to network state changes and events. Next,
we pass through the points highlighted in Table 1.1 and explain how HACFlow addresses each
of them.

Synchronization of Network Security and Network Traffic: HACFlow takes advan-
tage of the OrBAC model to address these challenges. As all the network entities are mapped
into OrBAC, we can achieve that global analysis as well as detect and solve conflicting policies.
HACFlow also provides a mechanism to guarantee the security synchronization by reacting
automatically to network changes. Network Security Automation: HACFlow mitigates those
concerns providing mechanisms to automate management tasks, and allows network operators to
configure the network by defining high-level security policies.

From High-level Rules to Network Configuration, and Autonomic and In-Network

Management: HACFlow addresses these challenges by allowing the definition of high-level

4.1. HACFLOW FRAMEWORK 37

security policies and translating them into low-level OpenFlow flow rule configurations. Fur-
thermore, HACFlow allows creating dynamic and contextual security policies that automatically
react to network events.

Security and Network Interaction Policies: HACFlow allows network operators to
govern rights to network entities by enforcing access control policies. Besides, HACFlow
provides mechanisms to express, distribute, and manage network interaction policies. Express
directive refers to the creation of high-level security rules based on the OrBAC model. Distribute
implies to the automatic conversion from high-level policies to low-level OpenFlow flow rules
and enforce them on the network devices. Manage includes the resolution of conflicting policies,
definition of rule priorities, creation of dynamic policies based on contexts, automatic reaction to
network state changes and events, and delegating rights.

It is important to highlight that HACFlow is not responsible for the identification and
authentication of network entities, neither for the integrity of policy file data and monitoring the
network. We consider that a third party SDN application authenticates the network entities and
such SDN application uses HACFlow for authorizing them. The integrity of the policy file data
could be required when deploying HACFlow in production. Lastly, we consider that third party
monitoring systems must notify HACFlow about network state changes and events, in order
to HACFlow react properly to them. Table 4.1 lists the features covered and those considered

outside the scope of the HACFlow framework.
Table 4.1: HACFlow Framework Scope.

Features Covered

1. Govern rights for each network entity in a fine-grained way

2. Define high-level and dynamic security policies

3. Translate high-level policies into low-level OpenFlow flow rules
4. Delegate rights between network entities

5. React automatically to network state changes and events
Features Not Covered

1. Identification and authentication of network entities

2. Maintain the privacy and integrity of policy data

3. Monitor the network

4.1.2 Architecture

The HACFlow framework architecture is composed of many sub-components that work
together to comply with all the previous issues. Next, we describe the role of each one, and how
they interact with each other. The architectural components are OrBAC API, Policy Skeleton,
Entity Manager, Event Listener, Policy Translator, and REST API Interface. Figure 4.1 depicts
the HACFlow framework architecture and their interaction.

As one may note, we integrated the OrBAC model inside the HACFlow architecture. The
REST API and the Event Listener components interacts with OrBAC through its API.

4.1. HACFLOW FRAMEWORK 38

\
[HACFlow !
[T R |
| v ' S
| S T POLICY SKELETON | @® Generate policy file
: : : ©® Import policy file
| i POLICYIMPLEMENTER | ©® Implementrole delegation
: : POLICY CHECKER ENTITY MANAGER :’ : © Filter security policies
| i : © Among others (see Table 4.2)
| i ;o i i
| POLICY PARSER <@ EVENT LISTENER i @ send/Receive OrBAC policy
[: ® Mma nage authenticated entity
: . POLICY INFERENCE v P © Get low-level data
: § POLICY TRANSLATOR @ : © Get affected policy
| A A A A A b @ Send OrBAC Policy
| E ' ' ! eee ! o E |
| @ OO0 O pesrapinteriace © 0}
\
N v

Figure 4.1: HACFlow Framework Architecture.

The REST API component is composed of many methods that interacts with OrBAC (see
items 2 to 5) to import a policy file, implement role delegation, filter security policies, among
others (a complete list can be found in Table 4.2). Methods of the REST API component also
interacts with the Policy Skeleton component to get a pre-configured security policy file (see
item 1), interacts with the Entity Manager to manage the authenticated network entities (see item
7), and with the Policy Translator component to translate the security policies get from OrBAC
(see item 6).

The Event Listener implements an OrBAC interface in order to be notified about contex-
tual changes in security policies (see item 9). Once the Event Listener receives a changed policy,
it communicates with the Policy Translator (see item 10) to translate the OrBAC security rule
into an OpenFlow flow rule. In the translation process, the Policy Translator must reconstruct
the low-level data (lost when achieving higher levels of abstraction), to do so, it interacts with
the Entity Manager component to obtain those low-level data (see item 8). Lastly, HACFlow
sends the OpenFlow flow rules to a third party SDN application.

4.1.2.1 OrBAC API

As we said, HACFlow takes advantage of the OrBAC model to define high-level security
policies. We choose the OrBAC model due to its high-level of abstraction to define security
policies, completeness, and advantages (hierarchical structure, context-aware policies, role
and rule delegation, among others) when compared to similar approaches, as presented in the
Subsection 2.4.1.

We included the OrBAC API as a sub-component of HACFlow. The OrBAC component
is one of the most important features in HACFlow. Its main role is to allow the definition of
high-level and context-aware security policies. Besides, it provides mechanisms to detect and

solve conflicting policies. The OrBAC API is composed of policy implementer, policy checker,

4.1. HACFLOW FRAMEWORK 39

policy parser, and policy inference.

The policy implementer allows the creation of predicates (Organization, Role, Activity,
View, and Context), entities (Subject, Action, and Object), and abstract permission and prohibition
policies. Then, the policy checker checks for constraints and conflicts in those abstract policies.
Next, the policy parser generates the concretes rules from the abstract policies. Lastly, the
policy inference infer the concrete rules considering its states, that can be active or inactive

(in/out of context), and preempted or not preempted (lower/higher priority).

4.1.2.2 Policy Skeleton

As HACFlow uses OrBAC to create the high-level security policies, we needed to make
some configurations to enable HACFlow to implement some tasks. Therefore, the Policy Skeleton
generates a policy template file containing those configurations, avoiding human intervention
and misconfigurations.

The first configuration regards to the role delegation and revocation. HACFlow provides
to network operators all configurations required to setup this feature in OrBAC, enabling them to
delegate roles.

The second configuration refers to the creation of class definitions in OrBAC. As
explained in Subsection 2.4.1.6, those classes provide additional information to network entities.
Those classes allow HACFlow to derive the OpenFlow flow rules from the high-level security
policies. Therefore, we defined the following classes in Figure 4.2.

The ID attribute links an authenticated network entity to a subject and object in OrBAC.
The IP_PROTO and PORT attributes determine the IP protocol, and port number used to
communicate the source and destination network entities. The remainder low-level data is

obtained by the Policy Translator component in HACFlow.

srcEntityClass dstEntityClass entityStateClass

ID ID STATUS
IP_PROTO
PORT

Figure 4.2: HACFlow skeleton classes.

4.1.2.3 Entity Manager

The Entity Manager keeps a record of authenticated network entities. Its role is to
maintain the synchronization of this record with the network. This information is provided by
SDN controllers, once they have a global view of network entities.

This record contains additional information obtained from the authentication. It in-
cludes the entity identifier, IP address, MAC address, connected switch, and switch port. Such

information is used by the policy translator to construct the OpenFlow flow rule.

4.1. HACFLOW FRAMEWORK 40

4.1.2.4 Event Listener

The Event Listener is one of the main features of HACFlow. It automatically processes
network events and policy’s context changes. HACFlow receives those events from the controller
and they can be the result of a user authentication, a vulnerability alert detected by a security
service, among others. The main role of the event listener is to maintain the synchronization
between the high-level security policies to network configurations.

In order to HACFlow be able to react to those events, network operators must previously
define context conditions and link it to a security policy. Therefore, HACFlow allows the
network operator to describe how to react in case malicious traffic is detected. Subsection 4.1.5
exemplifies.

4.1.2.5 Policy Translator

One of the main features provided by HACFlow is the autonomic policy translation. It
allows network operators to define high-level goals without taking care of how they will be
implemented in the network.

As HACFlow allows network operators to define policies in a high-level way. Such high
level of abstraction results in the loss of low-level network information (e.g. IP address, MAC
address, port number, connected switch, among others).

Therefore, these low-level data must be reconstructed in the translation process. This
way, while translating a high-level security policy into a low-level OpenFlow flow rule, the
HACFlow architectural components (OrBAC API, Policy Translator, and Entity Manager) must
work together to perform the translation.

As an example, once a user authenticates on the network, a third party SDN application
responsible for authenticating the user will notify HACFlow (through its REST API) to start
the authorization process. At first, once notified HACFlow will (step one) get the user’s high-
level policies through the OrBAC API and (step two) pass them to the Policy Translator. Next,
the Policy Translator (step three) gets from the Entity Manager the low-level data and then
translates the high-level rule (OrBAC policy) into the low-level rule (OpenFlow flow rule).
Lastly, HACFlow (step four) returns the OpenFlow rules to the third party application to enforce
the user’s rules in the network. Finally, the user will be able or not to access the network entities
(hosts, printers, services, among others). Figure 4.3 depicts the whole translation process.

HACFlow provides a smart translation process. While translating, HACFlow checks
for OpenFlow constraints (see Figure 2.3) and authenticated entities. The security policies are
translated and enforced if both (source and destination) network entities were authenticated.
This makes the translation process faster, and mainly saves switch’s resources like Ternary
Content-Addressable Memory (TCAM).

4.1. HACFLOW FRAMEWORK 41

ID: Id_auth_userA
IpAddress: 10.50.2.1
macAddress: 00:1C:B3:09:85:15
datapathiD: 00:00:00:00:00:00:02

ID: Id_auth_userA switchPort: 3
ID: Id_auth_userB ID: I1d_auth_garbageA
IpAddress: 10.50.2.17
ID: Id_auth_garbageA macAddress: 00:1C:B3:09:85:07
IP_PROTO: TCP datapathID: 00:00:00:00:00:00:06
PORT: 8443 switchPort: 6

_______ R SRR EUUPUpUp U U U UPRPRU, I, J0, SRS J

T |

poli 3. Entity Enti E

OrBACAPI ol daa_ [
ransiator e — anager !

i GRanEiGw: OpenFlow rule
. rule v

High-levelrule

Y. : 1.Filter {
: rules cookie=0x29192000000 00000, duration=10.412s,table=0,
: n_packets=0, n_bytes=0, hard_age=240, idle_age=7,
 priority=55000,tcp,nW_src=10.50.2.,nw_dst=10.50.2.17,
| tp_dst=8443 actions=NORMAL

HACFlow

6
4

¢ }
] —

Authenticated
User

Is_permitted(Alice, access, garbageA)

High-level of abstraction results in
loss of low-level information

The translation process reconstructs
the lost information

Figure 4.3: How HACFlow translates an OrBAC policy into OpenFlow.

4.1.2.6 REST API

The REST API is the point of interaction with SDN applications. Through this API, the
HACFlow framework receives network events and responds to them, maintaining the security
policies synchronized to the network configurations. Besides, it provides methods to load policy
file data, register authenticated entities, get entity’s security policies, delegate roles, among
others. Table 4.2 summarizes all REST API methods of HACFlow.

4.1.3 Step-by-step: High-level Policy Definition

In this subsection, we describe how a network operator can express their high-level goals
into high-level security policies. In a nutshell, operators should first define the environmental
network model (i.e., a hospital or a smart city); in other words, the domain in which the abstract
policies will be referred. Then, they must specify the entities (users, hosts, services, actions, and
so on), classify those entities as Subject, Action, or Object, and group them in Roles, Activities,
or Views predicates.

Lastly, those entities and predicates may be put together to create permission and pro-
hibition security policies. Those policies say who can access what in which circumstances the
network resources. The Section 4.2 demonstrates how to create those high-level security rules.

Required steps:

4.1. HACFLOW FRAMEWORK

42

Method
POST
GET
GET

GET

GET

GET

GET

GET

GET

POST

GET

POST

POST

PUT

GET

GET

POST

Table 4.2: HACFlow REST API resources.

Resource
/policyupload
/abstractpermissions
/abstractprohibitions

/allabstractrules

/allconcreterules

/rulepriorities

/authentity/highlevelrules/{id}

/authentityrules/{id }/permissions

/authentityrules/{id }/prohibitions

/authentity/openflowrules

/authentities

/authenticated

/unauthenticated

/mofify/networkstatechange
/context/{org}

/classmembers/{class }

/delegate/role

Parameters
file

none

none

none

none

none

entityld

entityld

entityld

identification
ipAddress
macAddress
dataPathld
switchPort

none

identification
ipAddress
macAddress
dataPathld
switchPort
identification
ipAddress
macAddress
dataPathld
switchPort
type

state

organization

className

organization
role
grantee

Description

Uploads a policy file.

Returns all security permissions.
Returns all security prohibitions.
Returns all security policies
(permissions and prohibitions).
Returns all concrete rules
(permissions and prohibitions).
Returns the priority of all
concrete rules (permissions

and prohibitions).

Returns all security policies

of a single network entity
(permissions and prohibitions).
Returns all security permissions
of a single network entity.
Returns all security prohibitions
of a single network entity.

Registers an authenticated
network entity and returns

its security policies
(permissions and prohibitions).

Returns all authenticated
network entities.

Registers an authenticated
network entity.

Unregisters an authenticated
network entity.

Notifies a network state change
or event.

Returns all contexts definitions
defined in an organization.
Returns the attributes and values
of instances of a single class.

Delegates a role.

4.1. HACFLOW FRAMEWORK 43

Method

POST

5.

6.

Resource Parameters Description
organization

/revoke/role role Revokes a role.
grantee

. Create the Organization, Role, Activity, View, and Context predicates.

Create the Subject, Action, and Object entities.

. Assign entities of the previous step to a Class definition.

. Link these predicates and entities using the Permission and Prohibition relationships

to compose and obtain the high-level policy.
Manually solve conflicting policies detected by OrBAC through priority assignment.

Load the security policy file data into HACFlow.

Completed these six steps, HACFlow is able to implement the security policies in the
network. Steps 1 to 5 can be done using the MotOrBAC graphical tool AUTREL et al. (2008).

Figure 4.4 summarizes the previous six steps to define a high-level policy in HACFlow (steps

A and B). As one may note, at first (step A) the network operator define its high-level security

policies and then (step B) import the policy in HACFlow.

High-level
goal

MotOrBAC High-level
) GUI Security Policy

Definition

%]_Import
d ? Policy file

'

2

>
%;?,gl

Network
Administrator

REST API
<=

HACFlow

SDN =
Applications { @
SDN CONTROLLER

B

Figure 4.4: High-level policy definition in HACFlow.

In step 5, we aim to extend the OrBAC model to provide a semi-automated policy conflict

resolution mechanism, based on some configuration parameters specified by the policy manager.

Section 6.2 present more details.

4.1. HACFLOW FRAMEWORK 44

4.1.3.1 Security Policy Expressiveness and Granularity

HACFlow allows network operators to define high-level access control policies in a much
more fine-granular and expressive way when compared to the solutions of traditional networks
(see Section 3.1). The Figure 4.5 depicts different levels of granularity and expressiveness to

define a variety of security policies in HACFlow.

il Safe state

.................................. |

Between

J 8and 18hrs

: At weekend

HostC

Figure 4.5: HACFlow policy granularity and expressiveness.

As one may note, the two first security policies regarding the User A allow it to access all
the resources in Host A and a single resource in Host C. Besides, another security policy allow
the users User A and User B to access all the resources in Host A and Host B. Lastly, we have a
policy that allows both User A and User B to access only the database service in Host C.

Furthermore, all the access control policies previously described contains a circumstance
in which the users will be able to access each resource. In that case, we have circumstances such

as network state, hours of the day, and days of the week.

4.1.4 Step-by-step: Dynamic Security Policies

In the previous subsection, we explained how a network operator may create security
policies. In this subsection, we demonstrate how a contextual condition is linked to a security
policy to make it dynamic. Next, we describe how HACFlow automatically reacts to a dynamic
policy to reconfigure the network.

Suppose that an enterprise network operator wants to control the access to a network
resource (for instance, financial report system) imposing some circumstances (day of a week, an
hour of a day, among others). The operator determines that the access must only occur during
the working hours from Monday to Friday.

To implement this high-level goal the operator must:

1. Create the Context predicate.

4.1. HACFLOW FRAMEWORK 45

2. Create the context definition (determines the circumstance).

These steps can be done using the MotOrBAC tool. The context definition, in this
example, can be expressed in two different ways. The first in BeanShell and the second in
Temporal context type. Figure 4.6 depicts this definition.

As we have a dynamic security policy that may have its state changed at any moment
the network must be reconfigured to comply with the enterprise high-level goals. Therefore,
HACFlow provides mechanisms to do it automatically, without human intervention.

All the steps to HACFlow react to a dynamic policy are:

1. The OrBAC API notifies the affected security rules.
2. The Policy Translator translates the security rule into OpenFlow flow rules.

3. HACFlow sends the OpenFlow flow rules to be enforced and change the network

configuration.

—_——— e — —————————————————————— ———— e ——————

(import java.util.Date;
| import java.util.Calendar;

:int hour = date.get(Calendar.HOUR_OF_DAY);

:int dayOfiWeek = date.get(Calendar.DAY_OF_WEEK); (h >= 8 & h <= 18) & (dow#6 & dow#7)
|

I'result = (hour >= 8 && hour <= 18) &&

| (dayOfWeek != Calendar.SATURDAY &&
\

. dayOflWeek != Calendar.SUNDAY); J |
/ \

~—

|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4.6: BeanShell and Temporal contexts.

Once HACFlow reacts to a dynamic policy, the network entities linked to this policy
will be able to access (if the policy becomes active) or not (if the policy becomes inactive) the
network resources in the policy. Subsection 5.1.3 presents a performance analysis of the reaction

of HACFlow against dynamic policies.

4.1.5 Step-by-step: Reacting to Network Events

Besides reacting autonomously to dynamic security policies, HACFlow also provides
mechanisms to automatically react to network state changes and events. In this subsection, we
describe how a network operator can configure HACFlow to interpret network events and alerts.
HACFlow receives these events and alerts through its REST API (see Table 4.2). We present
two examples, the first represents a vulnerability alert and the second an authentication event.
Furthermore, we show the steps required to HACFlow react to those events and reconfigure the

network.

4.1. HACFLOW FRAMEWORK 46

4.1.5.1 Vulnerability Alert

A network state change could be a vulnerability alert sent by a security monitoring
system on the network like Distributed Denial of Service (DDoS), Deep Packet Inspection (DPI),
and so on. It is important to highlight that HACFlow does not provide any network monitoring
mechanism to trigger events. But, it allows network operators to say how HACFlow must react
against those network events.

As an example, suppose that a security monitoring system detects an attack and sends
an alert notifying that the network is vulnerable. As a result, the operator wants to immediately
block any access to the storage service to protect the overall enterprise data.

To implement this high-level goal, the operator must execute the following steps:

1. Create the Object entity (representing the network event) and assign to a Class
definition.

2. Create the Context predicate.
3. Create the context definition (determines the circumstance).

Supposing that in step one the entity "networkSecurityState" was created and assigned
to a class with the attribute "state”, the context definition must look like the one depicted in
Figure 4.7.

/
| hold(Org, Subject, Action, Object) :- attribute(networkSecurityState, state, safe)\;
\

B ———.—

Figure 4.7: Prova context definition for vulnerability alert.
Next, when HACFlow receives this event it will automatically reconfigure the network

to block any traffic to the storage service. Therefore, it will execute the following tasks:

1. Through the OrBAC API, change the entity attribute (created in step one above)

according to the alert received.
2. The OrBAC API notifies the affected security rules.
3. The Policy Translator translates the security rule into OpenFlow flow rules.
4. HACFlow sends the OpenFlow flow rules to change the network configuration.

Figure 4.8 illustrates the response of HACFlow against a network state change event. Note
that the context definition in Figure 4.7 starts with the value "safe"” as the default network state.
Once HACFlow is notified of the alert, it changes the object attribute to "vulnerable". As a result,
the policy becomes out of context and HACFlow reconfigures the network. Subsection 5.1.2.2

presents a performance analysis of the reaction of HACFlow against a vulnerability alert.

4.1. HACFLOW FRAMEWORK 47

s . B— = Tglu
E

BI= Service Vulnerability

—— Attacker Alert
/ \I Security / \I Security
: | Monitoring : | Monitoring
« _DPI DDoS _/ Systems « _DPI DDoS / Systems

Figure 4.8: HACFlow reaction against a vulnerability alert.

4.1.5.2 Authentication Event

Another example of a networking event is an authentication. Once a network entity
(user, host, service, among others) authenticates in the network by an SDN application, this
application will use HACFlow as the authorization entity. Therefore, it sends to HACFlow an
authentication alert. As a result, HACFlow returns a set of OpenFlow flow rules to be enforced
in the network and enable the entity to access the network resources. Once HACFlow receives

the authentication alert it will:

1. The OrBAC API filter entity’s security rules.
2. The Policy Translator translates the security rule into OpenFlow flow rules.

3. HACFlow sends the OpenFlow flow rules to be enforced and change the network

configuration.

Figure 4.9 depicts the reaction of HACFlow against a user authentication. As one may
note, at first (step one) assuming that a user authenticates, a third party SDN application sends a
request to HACFlow (step two). After that (step three), HACFlow gets, translates, and returns
the user’s security rules to such SDN application. Lastly (step four), these policies (translated to
OpenFlow flow rules) are enforced on the network and the user get access or not to the network
resources. Subsection 5.1.2.1 presents a performance analysis of the reaction of HACFlow

against a network entity authentication.

4.1.6 Step-by-step: Role Delegation

Delegate and revoke roles is one of the main features of HACFlow. This feature allow
network operators to delegate/revoke rights from a network entity to others without the need of
creating new policies or assigning network entities to different roles. It is important to highlight
that the role delegation feature is not supported by any SDN-based solution presented in related
work section. In this subsection, we describe how a network operator can delegate and revoke

roles to network entities.

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 48

HACFlow
Request Return User’s
User’s OpenFlow
Policies Flow Rules

SDN =

Applications { @ ,
SDN CONTROLLER
Enforce User’s
I I :l— OpenFlow
Flow Rules ‘/
@, - il
ser H

ﬁ Authenticates —— m
u B o Spa— [+-:- [— o2 B

REST API

Figure 4.9: Reaction against a user authentication.

The HACFlow REST API provides methods to network operators delegate and revoke

roles. Therefore, the network operator must simply execute the following single step:

1. Call the REST API delegate/revoke method passing the network entity and the role
being granted/revoked.

Next, HACFlow automatically implements the role delegation or revocation executing

the following steps:

1. The OrBAC API assigns/unassigns the network entity to a role.
2. The OrBAC API notifies the delegated/revoked security rules.
3. The Policy Translator translates the security rules into OpenFlow flow rules.

4. HACFlow sends the OpenFlow flow rules to be enforced and change the network

configuration.

Once the delegation has been implemented, the network entity is able to access the
network resources granted to it. The Subsection 5.1.4 presents a performance analysis of the role

delegation/revocation in HACFlow.

4.2 Case Study: Applying HACFlow in a Smart City

In this subsection, we present how network operators can use HACFlow to govern rights
to network entities through the implementation of network access control policies in a high-level
and human-readable way. Besides, we demonstrate the HACFlow expressiveness to define many

security policies as network configurations. Our case study is a smart city network environment

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 49

and we present a step-by-step from the operator’s high-level goals to low-level OpenFlow flow
rules. We show how these goals may be expressed as high-level security policies and their

representations as switch-level rules.

4.2.1 Overview

The policy expressiveness is an important aspect that allows network operators to express
many common networks’ configurations. It aims to enable operators to define behaviors that
describe their high-level goals, instead of define instructions that say how these goals must be
implemented in the network AOUADJ et al. (2014).

Next, we demonstrate the HACFlow policy expressiveness on defining network access
control rules. We will present a variety of network configuration examples implemented in
HACFlow. These examples allow us to identify strengths and weaknesses/limitations of our
high-level policy definition approach.

Our case study scenario consists of a smart city network controlled by an SDN controller.
The city contains two smart services: the first is a waste management system used to optimize
the trash collection routes and offer rubbish levels to citizen, and the second one is a video
surveillance system for public safety composed of cameras around the city. Figure 4.10 depicts
our case study example.

In this case study, we assume that all network entities (citizen, cameras, and garbage)
are authenticated by an SDN application and this application uses HACFlow as the authorizing
entity. In the next Subsection, we present the city administrator’s high-level security goals to
control the access of the network entities. Thinking on these security goals is the first step to
define high-level security policies in HACFlow.

After that, in Subsection 4.2.3 we demonstrate how operators define network entities
and group them to compose the abstract and concrete levels of the OrBAC model. Besides,
we explain how contexts are defined to create static and dynamic security policies. Next, in
Subsection 4.2.4 we demonstrate how these high-level goals are expressed as high-level security
rules. Lastly, the Subsection 4.2.5 shows how these security policies are enforced in the network

and their representation as OpenFlow flow rules.

4.2.2 Defining High-level Goals

In this subsection, we present the high-level goals of a city administrator that aims to
govern the rights of each network entity. So, imagine that it wants to take control of who
(which network entity) can access what (connected garbage, cameras, among others) in which
circumstances (a day of a week, an hour of a day, and so on) each network resource. In that

case, the city administrator defines the following high-level goals:

1. PolicyA: The citizen may verify any garbage bin fullness when it is not in mainte-

nance.

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 50

2. PolicyB: The police must be able to access the live view service of all cameras any

hour in any day of the week.

3. PolicyC: A garbage can exchange statistics information to other ones to take better

decisions (machine-to-machine communication).

4. PolicyD: The citizen cannot access the live view camera service between 1 AM to 6
AM.

Once defined, these goals must be expressed as high-level security policies in HACFlow.

The next two subsections detail how this can be achieved.

RECIFE AJ

ROLE i
NETWORK OPERATORS

citizen
L Alice DN e
b APPLICATIONS @ 515‘ @ “ HACFlow

REST API

L John SDN CONTROLLER

anyGarbage
garbageA

garbageB
= garbageC

ACTIVITY

L access

networkAccess

VIEW

— anyCamera
cameraA

anyCameralLiveView
cameraALiveView
t cameraBLiveView
cameraCliveView
— anyGarbage
t garbageA
_ garbageB
garbageC
— anyGarbageStats
t garbageAStats
— garbageBStats
garbageCStats
— cameraA
cameraALiveView
cameraASetup

contextA

NOT IN GARBAGE MAINTENANCE
contextB

ANY DAY, ANY HOUR
contextC

FROM 1AM AND 6AM

Figure 4.10: Smart City case study scenario.

4.2.3 Defining the Network Entities

As we explained in Subsection 4.1.3, the two first steps to create high-level security
policies in HACFlow consist in defining the abstract and concrete levels of the OrBAC model,

that means, create the Organization, Role, Activity, View, and Context predicates and create

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 51

the Subject, Action, and Object entities. The next two subsections detail how to create these

predicates and entities.

4.2.3.1 The Abstract Level

As shown in Figure 4.10, the abstract level relies on: Recife as the Organization; citizen,
police, and anyGarbage as the Roles; access as the Activity; anyCamera, anyCameraLive-
View, anyGarbage, and anyGarbageStats as the Views. Figure 4.11 shows the creation of the
Organization predicates using the MotOrBAC tool. The other ones are created in the same way.

Furthermore, we Defined the following three Contexts: contextA with the definition "not
in garbage maintenance", contextB with the definition "any day, any hour"”, and contextC with
the definition "from 1AM to 6AM". We point that we have a static context (contextB) and two
dynamic contexts (contextA and contextC). Therefore, depending on which context a policy is
linked to, we may have static and dynamic security rules. Figure 4.12 depicts the creation of a
context and its definition in MotOrBAC.

Notice that anyGarbage is both, a Role and a View. This allows that the entities inside
anyGarbage (garbageA, garbageB, and garbageC) have access to another network resources and
make them accessible by others. For instance, operators may create an access control rule that
allows the garbageA Role to communicates with other network entity (garbageB or garbageC)
to optimize trash collection (garbageA is the source of the communication). On the other hand,
using the anyGarbage View, operators may define a security rule that allows the citizen to consult

rubbish level of garbageA (here, garbageA is the destination of the communication).

Create new organization in organization adOrBAC

organization name: IRecife|]

sub-organization of |lorganization
ladorBAC |

I_OK, Cancel

Figure 4.11: Creating the Organization predicate in MotOrBAC tool.

4.2.3.2 The Concrete Level

The concrete level is composed of the following Subjects: Alice and Bob empowered
in citizen Role; John empowered in police Role; and garbageA, garbageB, and garbageC
empowered in anyGarbage Role. The following Action: networkAccess considered in access
Activity.

Lastly, we have the following Objects: cameraA, cameraB, and cameraC used in any-

Camera View; cameraALiveView, cameraBLiveView, and cameraCLiveView used in anyCam-

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 52

Add a new context to policy Editing definition for context "contextC (fhome/daniel/git/PM-HACFlow/src/main/resour:

Definition for context "contextC" in organization Recife
(h>=14&h <=8)

Select a context tvpe for the new context

You will be able to add context definitions afterwards

Context tvpe: |TemporalContext =~

This implementation is used to express temporal condit
ions . Implicit variables holding the current date can be u
sed to express boolean conditions on it

[[[
| OK | | Cancel | | Set definition | | Check syntax |

Test definition
subject action object

- " |
|. oK | I£ancel, [id_auth_dev .|V. [act\on_acce... | ¥ Iid_auth_dev... ‘ v| [Test | Result:N/A

Context name|contextC I

Figure 4.12: Creating a context and setting its definition.

eralLiveView View; garbageA, garbageB, and garbageC used in anyGarbage View; and the
garbageAStats, garbageBStats, and garbageCStats used in anyGarbageStats View. Figure 4.13

shows the creation of a concrete entity in MotOrBAC.

Create new object

Entity name: |agarbageA

|

|. |

instance of ||class |
commitment_class
user_password_class

inhibition_class
hacflow_role_class
role_hierarchy _class
activity _assignment_class
activity _hierarchy _class

lirancsa rlass ["’]

| o o o o

|OK| | Cancel|

Figure 4.13: Creating the garbageA entity and assigning its class definition.

Note that while creating the network entity, we assigned its class definition (step three of
Subsection 4.1.3). These classes were depicted in Figure 4.2 and were generated automatically
by the Policy Skeleton module in HACFlow. Figure 4.14 shows how we filled the garbageA
entity attributes in MotOrBAC.

|attribute ||\.-’al.|.|e

IP_PROTO TCP

P ORT 5443

1D id_auth_entity_garbageA

Figure 4.14: Attribute values of the garbageA entity.

It is important to highlight that all network entities must have the ID attribute of the class
definition filled with the certificate identifier used to authenticate these entities. Through this
unique /D, the HACFlow filters the entity’s security rules and returns them to the SDN application
to enforce the rules in the network. Besides, once a network entity authenticates, HACFlow
requires additional information of this entity such as IP address, MAC address, connected switch,
among others.

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 53

Furthermore, the class definitions allow operators to define more granular security
rules. For example, in Figure 4.10 we have the cameraA View and inside it we have the
cameraALiveView and cameraASetup Objects. These Objects represent two different services of
cameraA and the access to them may require different privileges. Therefore, the class definitions

for these services may look like the ones depicted in Figure 4.15.

Attribute Value Attribute Value
IP_PROTO TCP IP_PROTO TCP

PORT 8776 PORT 8777

1D id_auth_camerad 1D id_auth_cameraA

Figure 4.15: Attribute values of two different services within the cameraA entity.

This way, network operators may create a security policy that allows the police to
access the cameraA. In that case, the police will be able to access both cameraALiveView and
cameraASetup services (coarse-grained policy). On the other hand, operators may define a
fine-grained security rule that allows the citizen to have access to only the cameraALiveView
service.

Other important aspect of our case study example regards the hierarchical structure of
the network entities. This reduces the management effort once operators may control the access
of a group of entities (i.e. citizen) to a group of other ones (i.e. anyCameraLiveView) creating
only a single security policy. Therefore, operators do not need to manage each entity individually

by creating many security policies to control their access.

4.2.4 Defining High-level Security Policies

Once the city administrator has defined his/her high-level goals and the network operator
defined the abstract (Roles, Activities, Views, and Contexts) and concrete (Subjects, Actions,
and Objects) levels as detailed in Subsection 4.2.3 and depicted in the left hand of Figure 4.10,
the next step consists in linking them to compose permissions and prohibitions security rules.
The following high-level security policies are the result of the high-level goals defined in
Subsection 4.2.2.

1. PolicyA: Permission(Recife, citizen, access, anyGarbage, contextA)

2. PolicyB: Permission(Recife, police, access, anyCameraLiveView, contextB)

3. PolicyC: Permission(Recife, anyGarbage, access, anyGarbageStats, contextB)
4. PolicyD: Prohibition(Recife, citizen, access, anyCameraLiveView, contextC)

These high-level policies will infer a set of entity-specific security rules that will be
translated into OpenFlow flow rules. Next, the switch-level rules will be enforced on the
underlying smart city network. Figure 4.16 shows how a high-level security policies is created in
the MotOrBAC tool.

4.2. CASE STUDY: APPLYING HACFLOW IN A SMART CITY 54

Create a new abstract permission

Rule name: [Polich JI Create | Cancel

Rule parameters
organization : Recife

[roLe " lcitizen =

[actiwty V Iaccess ~
[\.riew ~ lanyGarbage ~
context lContextA 7

Figure 4.16: Creating the PolicyA security rule.

Once created, those policies may be in conflict. In that case, the network operator must
solve them to avoid malfunctions and policy inconsistencies. Therefore, priorities can be defined
between the conflicting security policies.

4.2.5 Enforcing Security Policies in the Network

The last step to control the access of the network entities consists in enforcing the secu-
rity rules in the network. Will be those rules that really will allow or deny the communication
between the network entities. Next, we demonstrate the inferred OrBAC security rules from the
high-level policy. Besides, we show the low-level OpenFlow flow rule representation of the first

inferred security rule.

Abstract rule 1: PolicyA: Permission(Recife, citizen, access, anyGarbage, contextA)
Concrete rule 1.1: Is_permitted(Alice, access, garbageA)
Concrete rule 1.2: Is_permitted(Alice, access, garbageB)
Concrete rule 1.3: Is_permitted(Alice, access, garbageC)
Concrete rule 1.4: Is_permitted(Bob, access, garbageA)
Concrete rule 1.5: Is_permitted(Bob, access, garbageB)
Concrete rule 1.6: Is_permitted(Bob, access, garbageC)

As one may note, from a single high-level security policy we obtained six security
rules. The hierarchical policy structure defined by the network operator explains this amount of
security rules generated. When the user Alice authenticates in the network, HACFlow filters her
security rules (1.1, 1.2, and 1.3) and then translates each one into low-level OpenFlow flow rules.
Below, we describe how the Concrete rule 1.1 looks like after translated. Note that PolicyA
is a permission, therefore we have the incoming and outgoing flows, from the Alice’s switch

perspective.

OpenFlow flow rule 1.1 (output / ovs-ofctl): cookie=0x29192000000 00000, duration=10.412s,
table=0, n_packets=0, n_bytes=0, hard_age=240, idle_age=7, priority=55000,tcp,nw_src

4.3. CONCLUDING REMARKS 55

=10.50.2.1,nw_dst=10.50.2.17,tp_dst=8443 actions=NORMAL

OpenFlow flow rule 1.1 (input / ovs-ofctl) : cookie=0x29192000000 00000, duration=10.742s,
table=0, n_packets=0, n_bytes=0, hard_age=240, idle_age=7, priority=55000,tcp,nw_src
=10.50.2.17,nw_dst=10.50.2.1,tp_src=8443 actions=NORMAL

Here, we assume that once authenticated, the network entities get the following IP
addresses: Alice (10.50.2.1), garbageA (10.50.2.17), garbageB (10.50.2.18), and garbageC
(10.50.2.19). Besides, each garbage has a service (listening on port 8443) that provides the
garbage fullness. Therefore, the OpenFlow flow rule 1.1 (output) means that all packets with
source IP 10.50.2.1 (Alice), and destination IP 10.50.2.17 and port 8443 (garbageA) will be
forwarded to garbageA.

Furthermore, as the OpenFlow flow rule 1.1 is a permission, it will be enforced in the
path from Alice’s switch to garbageA’s switch. If PolicyA were a prohibition policy, the flow
rule would be needed to enforce only in Alice’s switch, dropping the packet at the source of the
communication.

We also point that, as the PolicyA was defined with contextA, when a garbage needs a
maintenance, the PolicyA will be out of context (becomes inactive) and HACFlow will automat-
ically remove this flow rule from the network. As a result, Alice cannot consult the garbage

fullness until the maintenance finishes.

4.3 Concluding Remarks

This Chapter presented the HACFlow framework. We showed how HACFlow overcomes
the challenges, problems, and requirements presented previously. We justified the integration of
the OrBAC model in our solution and described the role and interaction between the components
of the architecture. A step-by-step description explained how to operate HACFlow to implement
its main management tasks. We demonstrated the benefits of using HACFlow in a smart city

scenario.

56

Evaluation and Comparison

In this chapter, we analyze the performance and scalability of the main management
tasks provided by HACFlow. Then, we compare HACFlow against Frenetic FOSTER et al.
(2011), FRESCO SHIN et al. (2013), and OpenSec LARA; RAMAMURTHY (2016).

5.1 HACFlow Performance Evaluation

In this section, we analyze the performance and scalability of the main management
tasks provided by HACFlow. They are (1) reacting to network state changes and events (i.e.
authentication event and vulnerability alert), (2) reacting to dynamic security policies, (3)

delegating a role, and (4) converting high-level policies into low-level OpenFlow flow rules.

5.1.1 Scenario Description and Methodology

In this subsection, we describe our methodology and experimental setup used to conduct
all experiments. At first, we configured our testbed with one physical host and three virtual
machines. Next, once we have configured our environment, we developed a SDN application
that uses HACFlow to control the access to the network resources. Lastly, we configured our
experimental network topology.

Our testbed consists of a machine with Ubuntu 15.04 operating system containing an
Intel(R) Core(TM) i7-3770 CPU 3.40GHz with eight cores and 16GB of RAM memory. On top
of this physical machine, we used the hypervisor Oracle VirtualBox ! version 5.0.0 to create and
configure three virtual machines.

The first virtual machine refers to the HACFlow framework. HACFlow was developed
using the Spring Framework version 4.3.6 and was deployed in Tomcat > version 8 and the
machine was configured with 1 processor, 2GB of RAM, and Ubuntu 15.04. The second one is
the Mininet network emulator version 2.2 with Open vSwitch 2.4.0 3. It was configured with 1

Uhttps://www.virtualbox.org/
Zhttp://tomcat.apache.org/
3http://openvswitch.org/

5.1. HACFLOW PERFORMANCE EVALUATION 57

processor, 1GB of RAM, and Ubuntu 14.04. Lastly, the third one refers to the HP VAN SDN
controller version 2.5.15. It was configured with 1 processor with 4 cores, 10GB of RAM, and
Ubuntu 12.04.

Next, we developed a prototype SDN application for the HP VAN SDN controller
that interacts with HACFlow through its REST API. This application uses HACFlow as the
authorization entity to control the access to the network by enforcing the OpenFlow security
rules provided by HACFlow.

The network topology used in all experiments consists of one SDN controller, three
OpenFlow-enabled switches, and two hosts (a user and a server). This topology was emulated
using the Mininet # tool.

Lastly, all experiments were executed 64 times, except the last one (Subsection 5.1.5)
that we run 256 times. All the experimental results presented in the following tables include the
mean and standard deviation to perform each task. Figure 5.1 depicts our overall experimental

setup.

PHYSICAL MACHINE |
@ VIRTUALBOX

HACFow H
FRAMEWORK ; HACFlow

Q‘ REST API
HP VAN SDN 3 DEVELOPED J%
i APPLICATION

CONTROLLER

MININET R h =

EMULATOR @ -------- m e r
@VS @ & !E WE5AIL

USER SERVER

Figure 5.1: Experimental setup.

5.1.2 Network State Changes and Events

In this subsection, we analyze the reaction of HACFlow against network state changes
and events. We present two experiments, the first refers to the required time for HACFlow
process the security policies of an authenticated user. The second refers to the time required for

HACFlow to block the access of a user to a server after a vulnerability alert is detected.

“http://mininet.org/

5.1. HACFLOW PERFORMANCE EVALUATION 58

5.1.2.1 Authentication Event

Once a network entity (user, server, service, among others) authenticates on the network,
the next step is to get access to a variety of network resources according to the predefined security
policies. Figure 5.2 depicts these steps.

@ HACFow process
2.1. Concrete rulefilter
HACFlow 2.2. Policy translation
Authorization
Alert
SDN CONTROLLER
User Policy
Authentication ‘ ‘} @ Enforcement
(HP VAN)

-l
F == Q

Authenticated
User

Figure 5.2: Steps to react to an authentication.

When a third party SDN application authenticates a user, (step 1) this application notifies
HACFlow to obtain the user’s rules. Next, (step 2) HACFlow processes the user’s rules. At first,
(step 2.1) it filters the security rules and extracts the low-level data (set in class definitions), and
then (step 2.2) translates the OrBAC security rules into OpenFlow flow rules. Lastly, (step 3)
the third party application enforces the user’s policies and the user is able to access the network

resources. The required times to execute these steps are in Table 5.1 and Table 5.2.

Table 5.1: Network Entity Authentication.

1. Authorization alert 3. Policy Enforcement
(synchronous call) 2 BIACEHI Do prCEEss (HP VAN)

19.0581 ms (6.7%) 258.9622 ms (91.5%)
(s.d 5.361) (s.d 17.3656)

Total time

283.0011 ms 4.9807 ms (1.8%)

Table 5.2: HACFlow process: authentication event.

2. HACFlow process
2.1. Security rule filter 2.2. Policy translation
4.9373 ms 0.0434 ms
(s.d 1.719) (s.d 0.008)

We highlight that this delay only occurs at the first time the network entity authenticates.
Besides, HACFlow presents the lowest time (4.98 ms in average, or 1.8% of the total time) when
compared to the other tasks in the whole process. In step three, the HP VAN controller enforces
six OpenFlow flow rules (three switches, each one with the in/out flows) from a single high-level

permission security policy. As it is a permission rule, we need two flows (in/out) in each switch.

5.1. HACFLOW PERFORMANCE EVALUATION 59

5.1.2.2 Vulnerability Alert

HACFlow is also able to react to network state changes according to the needs defined
by the network operator. Once HACFlow receives a new alert it automatically reconfigures the
network to comply with the configured security policies. Next, we describe all the steps of the

whole process and Figure 5.3 depicts them.

@ HACFlow process
|

2.1. Alert implementation
HACFlow 2.2. Filter affected concrete rule

2.3. Policy translation

Vulnerability 2.4. Send OpenFlow flow rule
Alert

SDN CONTROLLER

. Policy
Vulnerability ‘ ‘} @ Enforcement
Alert (HP VAN)

— £z @
Attacker
Security
: Monitoring
DP| DDOS / Systems

Figure 5.3: Steps to react to a vulnerability alert.

When a network alert is triggered by a security monitoring system (IDS, DPI, DDoS,
among others) the (step 1) SDN application notifies HACFlow to reconfigure the network. Then,
(step 2) HACFlow processes the new alert, which includes the following four steps: (step 2.1)
implement the alert by changing its state, (step 2.2) filter the security rules affected by this alert,
(step 2.3) translate them to OpenFlow flow rules, and (step 2.4) send the flow rules to the SDN
application. Lastly, (step 3) the application reconfigures the network enforcing the flow rules.
Table 5.3 and Table 5.4 present the results.

Table 5.3: Network Vulnerability Alert.

1. Vulnerability alert 3. Policy Enforcement

Total time 2. HACFlow process

(asynchronous call) (HP VAN)
1.8369 ms (7.2%) 15.5548 ms (60.7%)
25.6325 ms (.d 0.2931) 8.2408 ms (32.1%) (5.d 1.6153)
Table 5.4: HACFlow process: vulnerability alert.
2. HACFlow process
2.1. Alert 2.2. Filter affected . . 2.4. Send OpenFlow flow
. . . 2.3. Policy translation
implementation security rule rule (asynchronous call)
0.168 ms 6.4918 ms 0.0518 ms 1.5292 ms

(s.d 0.073) (s.d 1.4716) (s.d 0.009) (s.d 0.237)

5.1. HACFLOW PERFORMANCE EVALUATION 60

From the results, we highlight that in this experiment the (3) policy enforcement is a flow
removal (i.e. once the network is unsafe, the user loses his/her access). Due to that, the HP VAN
requires less time to enforce (remove) the flow rules from the switches, when compared to the
previous experiment (that add flow rules). Besides, we point that HACFlow needed 8.24 ms in
average (32.1% of the total time) to react to a vulnerability alert, resulting in a fast reaction if

compared to a manual reconfiguration (human-intervention), commonly in traditional networks.

5.1.3 Dynamic Security Policy

Dynamic security policies are context-aware policies that may have their state changed
(active or inactive) depending on some circumstances (day of a week, an hour of a day, and
so on). It can change at any time and HACFlow should be able to automatically react to these
changes, not requiring any manual and per-device configuration on network devices. Next, we

describe the steps required to HACFlow react to a dynamic policy. Figure 5.4 depicts those steps.

HACFlow

@ HACFHow process

|
7~ N

1.1. Filter affected concrete rule
1.2. Policy translation
1.3. Send OpenFlow flow rule

SDN CONTROLLER
Policy
‘} @ Enforcement
(HP VAN)

|
- :
A =

Q-

Figure 5.4: Steps to react to a dynamic policy.

Changes in a dynamic police are detected by the OrBAC component inside HACFlow.
Therefore, once detected (step 1) HACFlow will process these changes by (step 1.1) filtering the
affected security rules through the OrBAC API, (step 1.2) converting them into OpenFlow flow
rules, and (step 1.3) sending the flow rule to a SDN application. Lastly, (step 2) this application
will enforce all flow rules to reconfigure the network according to the new circumstances. The
results of this experiment are presented in Table 5.5 and Table 5.6.

In this experiment, we simulate a security policy being out of context, that means, being
out of a circumstance or restriction imposed by the network operator, like out of working hours,
for example. In that case, the enforcement in step two results in the removal of flows. The results
point out that HACFlow required 7.57 ms in average (30.9% of the total time) to react to a single

dynamic security policy.

5.1. HACFLOW PERFORMANCE EVALUATION 61

Table 5.5: Dynamic Security Policy.

2. Policy Enforcement
(HP VAN)
16.9354 ms (69.1%)
(s.d 1.839)

Total time 1. HACFlow process

24513 ms 7.5776 ms (30.9%)

Table 5.6: HACFlow process: dynamic policy.

1. HACFlow process

1.1. Filter affected . . 1.3. Send OpenFlow flow
. 1.2. Policy translation
security rule rule (asynchronous call)
5.9175 ms 0.058 ms 1.6021 ms
(s.d 1.329) (s.d 0.019) (s.d 0.284)

5.1.4 Role Delegation

Role delegation consists in granting the rights of a role to a network entity. Once a
delegation occurs, HACFlow assigns the new security policies to the network entity and (if this
entity was authenticated) sends the rules to be enforced in the network. Figure 5.5 depicts the
whole process.

@ HACFlow process
|

2.1. Role delegation implementation
HACFlow 2.2. Concrete rulefilter
2.3. Policy translation

Role 2.4. Send OpenFlow flow rule
delegation

SDN CONTROLLER
Policy
‘} @ Enforcement
(HP VAN)

‘m

Figure 5.5: Steps to delegate a role.

Through the HACFlow REST API, the operator (step 1) delegates a role. Then, (step 2)
HACFlow processes the delegation according to the following four steps: (step 2.1) implements
the delegation by linking the role to a network entity; next (step 2.2) the assigned security rules
are filtered; then (step 2.3) the rules are translated into OpenFlow flow rules; lastly (step 2.4) the
flow rules are sent to the SDN application. After that, (step 3) this application enforces the rules
in the OpenFlow switches. Table 5.7 and Table 5.8 present the results.

According to the results, if we compare all of the management tasks provided by

HACFlow, the role delegation is the one that requires a longer time. Despite this, requir-

5.1. HACFLOW PERFORMANCE EVALUATION 62

ing 119.45 ms in average (30.8% of the total time) to delegate a single role linked to a single
security policy is still a fast time if you consider the task complexity and if you compare to
manual role delegations.

Furthermore, from the results of the deeper analysis of step two (Table 5.8), we point that
the most of the time is required by the OrBAC API to implement the role delegation. Besides,
the whole process occurs in less than a half of a second, that means, once the network operator
delegates a role to a user, the user will have to wait for about 387.3 ms in average to access the
assigned network resources. We consider that waiting for about 387.3 ms in average is a fast
time once compared to a number of manual reconfigurations that the network operator must

implement in traditional network solutions.

Table 5.7: Role delegation.

1. Role delegation 3. Policy Enforcement

Total time) 2. HACFlow process (HP VAN)
1.8535 ms (0.5%) 266.0537 ms (68.7%)
387.365 ms (5. 0.2199) 119.4578 ms (30.8%) (s.d 26.0062)

Table 5.8: HACFlow process: role delegation.

2. HACFlow process

2.1. Role delegation 2.2. Security 2.4. Send OpenFlow flow

2.3. Policy translation

implementation rule filter rule (asynchronous)
106.0012 ms 7.06 ms 0.0568 ms 1.7035 ms
(s.d 22.724) (s.d 2.3778) (s.d 0.045) (s.d 0.291)

5.1.5 High-level to Low-level Policy Inference

In this subsection, we analyze the scalability of HACFlow to infer the low-level OpenFlow
flow rules from the high-level security policies. As you may notice, all previous management
tasks required filtering and translating the security rules. Therefore, the policy inference is an
important feature provided by HACFlow.

In this analysis, the HACFlow framework infers 1, 4, 16, 32, 64, 128, and 256 high-level
security rules into low-level OpenFlow flow rules. We considered using these values once they
represent a reasonable number of rules that a single user may have in an environment like a
company, a university, a hospital, and so on.

For a deeper analysis, we divided the inference process into two steps. The first (/.
Security rule filter) refers to the filtering of rules through the OrBAC API and the extraction of
low-level data inside the class definition of the network entities.

The second one (2. Policy translation) refers to the translation process, that means,
the process that obtains the OpenFlow flow rules from the rules extracted in the previous step.

Table 5.9 presents the scalability results. Figure 5.6 and 5.7 plots them.

5.1. HACFLOW PERFORMANCE EVALUATION

63

Table 5.9: High-level to low-level policy inference.

Number of rules Total time

1 5.7581 ms
4 20.4588 ms
16 68.2220 ms
32 130.4807 ms
64 227.6918 ms
128 483.0941 ms
256 1136.2124 ms

1. Security rule filter
5.7014 ms (s.d 1.2752)
20.3973 ms (s.d 3.7657)
68.1110 ms (s.d 12.2247)
130.3544 ms (s.d 22.8665)
227.5458 ms (s.d 36.4297)
482.8634 ms (s.d 114.4093)
1135.7333 ms (s.d 132.8165)

2. Policy translation
0.0567 ms (s.d 0.0155)
0.0615 ms (s.d 0.0127)
0.1110 ms (s.d 0.0346)
0.1263 ms (s.d 0.0405)
0.1460 ms (s.d 0.0401)
0.2307 ms (s.d 0.0626)
0.4791 ms (s.d 0.1283)

High-level to low-level policy inference

High-level to low-level policy inference

1500
* —o—- Total time p
3 8 | Security rule filter ,
: S Policy translation i
~~ — /
£ E g g | ol
F000 3 prgil= .
- o o /
5 5 /
o o Q |
8 . $ 2
z : z -) o
c c
"5 500 s ¥ 7
= £ ad
= & [3 o
. == N o
___ == w”
0 ————_ o &’
T T T T T T I T T T T T T
1 4 16 32 64 128 256 0 50 100 150 200 250
Number of rules
Number of rules
Figure 5.6: Scalability: high-level to low-level policy inference.
Security rule filter Policy translation
1500 - —
: I
E £
21000 i «
kel . ko]
c c
o [e]
(8] (5]
8 - $ 04 :
z ; T BB
£ £ :
GE) 500 - g _ —
= 8 - £ 0.2+ - | ‘ : =
o = . . BE= -
__ = =_— = | 3
01 — - 0.0 -
T T T T T T T T T T T T T T
1 4 16 32 64 128 256 1 4 16 32 64 128 256

Number of rules

Number of rules

Figure 5.7: Policy inference steps: security rule filter and policy translation.

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 64

According to the results, we highlight that HACFlow needed only 0.4791 ms in average
to translate 256 security rules. Furthermore, the whole process required about 1.1 seconds in
average to infer the OpenFlow flow rules from the high-level security policies.

Therefore, supposing that, if a user that works in a big company has 256 security rules
that control its access to many network resources, when this user authenticates in the network
he/she will have to wait about 1.1 second plus the time the SDN controller needs to enforce those
rules. It is not so much time if you consider the overall task complexity.

The left side of Figure 5.6 presents a boxplot with both times and at the right side it
presents them in addition to a third one as the sum of them. Furthermore, Figure 5.7 separately
plots the security rule filter (left side) and the policy translation times (right side). Note that they

are in different scales, one goes from 0 to 1500 ms, while the another one goes from 0 to 0.6 ms.

5.1.6 Discussion

The results of the experiments show that HACFlow requires a time in the order of
milliseconds to execute its main management tasks (reacting to network state changes and events,
reacting to a dynamic security policy, and delegating a role). Furthermore, the results of the
high-level to low-level policy inference show that HACFlow required 1.1 seconds in average to
translate a considerable number of policies to a single network entity at a time.

Overall, results show that using HACFlow significantly reduce the effort to implement a
variety of network management tasks. Besides, HACFlow is faster and less prone to errors if
compared to manual and per-device configurations.

It is important to highlight that the required time for the HP VAN SDN controller to
enforce the security policies consists in calculating paths, enforcing six OpenFlow flow rules
(three switches, each one with the in/out flows), and using a check mechanism to enforce the

rules. Besides, this time is controller-specific and HACFlow does not affect it.

5.2 Comparison Against Existing Solutions

In this section, we compare HACFlow against the three related work described in
Section 3.3. They are Frenetic FOSTER et al. (2011), FRESCO SHIN et al. (2013), and
OpenSec LARA; RAMAMURTHY (2016). We present a qualitative and quantitative analysis.

5.2.1 Overview

In the following subsections, we compare HACFlow against Frenetic, FRESCO, and
OpenSec. We performed qualitative and quantitative comparison analysis. Subsection 5.2.2
presents the qualitative analysis, which includes: i) the features provided by each SDN-based
solution and i) the syntax simplicity to define high-level security policies. In Subsection 5.2.3

we present the quantitative analysis, that compares i) the required time to translate high-level

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 65

policies into low-level OpenFlow flow rules and ii) the required time to react to network state
changes and events. Lastly, Subsection 5.2.4 discusses the overall comparison findings.
Table 5.10 summarizes the comparisons presented in the remainder of this section. It

individually details in which aspects we compare HACFlow against Frenetic, FRESCO, and

OpenSec.
Table 5.10: Summary of the comparison analysis.
Comparing HACFlow against related work
Qualitative Quantitative
Candidates Framework Syntax Policy Event Reaction
features Simplicity Translation Delay

Frenetic b 4 b 4 X
FRESCO b 4 b 4
OpenSec b 4 b 4 b 4 b 4
HACFlow b 4 b 4 b 4 b 4

5.2.2 Qualitative Analysis

In this subsection, we present a qualitative comparison of HACFlow against Frenetic,
FRESCO, and OpenSec. We analyze the main features provided by each approach and the syntax
simplicity to create high-level security policies in HACFlow, Frenetic and FRESCO.

5.2.2.1 Framework Features

Next, we present the main management tasks provided by each SDN-based solution.

Besides, we explain the role of each one. Table 5.11 shows the comparison results.

1. High-level security policy definition: allows operators to define policies in a high-
level way, using high-level names (like users, hosts, services, and so on) instead of
IP address, MAC address, among others. Operators do not worry about how these

security policies will be implemented in the network;

2. Hierarchical policies: permits operators to organize the network entities hierar-
chically to decrease the management workload (entities are grouped, instead of

managing them individually);

3. Conlflict detection and resolution: lets operators to define conflict-free security poli-
cies by providing mechanisms to detect and solve conflicts avoiding inconsistencies

and possible vulnerabilities;

4. Definition of dynamic security policies: allows operators to define policies accord-
ing to circumstances like network state, an hour of a day, a day of a week, and so

on.;

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 66

5. Reaction to network changes and events: provides mechanisms to automatically

react to network changes and events according to operator’s configurations;

6. Security policy delegation: permits operators to delegate rights from a network

entity to others;

7. High-level to low-level policy translation: provide mechanisms to translate high-

level policies defined by a network operator into low-level OpenFlow flow rules;

Table 5.11: Features Implemented by Different SDN-based NAC Solutions.

Features Frenetic FRESCO OpenSec HACFlow
. High-level security policy definition v v
. Hierarchical policies
. Conflict detection and resolution v
. Definition of dynamic security policies
. Reaction to network changes and events v
. Security policy delegation
. High-level to low-level policy translation v

~N OB W
S S~

S S K<«
SSSXSKKL«KXx

We highlight that all approaches have in common the possibility to create high-level
security policies and translate them into OpenFlow flow rules. Also, they are able to react to
network events and to detect and solve conflicting policies.

HACFlow is the only one that allows operators to delegate roles to network entities.

Besides, HACFlow and OpenSec allow the definition of hierarchical policies.

5.2.2.2 Syntax Simplicity

We compare the syntax simplicity to define high-level policies in Frenetic, FRESCO,
OpenSec, and HACFlow. Suppose that the network operator would like to define a policy that
"blocks all TCP traffic from user Bob (192.168.1.22) to the webMail service (IP 192.168.1.33
and port 8090)". Figure 5.8 shows the syntax to create this policy in each one.

In Frenetic, the variable p/ and p2 are a pattern that describes a packet (such as OpenFlow
match fields), and a/ is the action. The install function sends flow rules to the switches that will
apply an action to a packet matching the given pattern. This flow rule has the DEFAULT priority
level. In this example, the install function sends to three switches in the network a flow rule that
drops packets with this pattern (p1{NW_ADDR:192.168.1.22} and p2{NW_ADDR:192.168.1.33,
TP_DST:8090)).

In FRESCO, the operator defines a function passing the number of parameters (#input)
and (#output). The variable type denotes a FRESCO module and event denotes events delivered
to a module. The input variable is the input for a module (IP address, port, among others), the

output expresses the output of the module, the parameter expresses the input values (such as

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 67

// def block_rule(switchl, switch2, switch3): N
/ pl = {NW_ADDR:192.168.1.22} Frenetic \
| p2 = {NW_ADDR:192.168.1.33,TP_DST:8090} \\
| al = [block()] |
\ install(switchl, p1, al, DEFAULT))i
\ install(switch2, p1, al, DEFAULT) /

AN install(switch3, pl, al, DEFAULT) 7

N e e e e e e e e e e e . . —

/// __ ~<

traffic_comparator (3)(1 N
// type?Comgar‘ator‘ W1 do_block (1)(@){ FRESCO \\
/ event : INCOMING_FLOW type:ActionHandler \
I input :source_IP, event:PUSH |
| destination_IP,destination_port input:comparison_result . |
| output : comparison_result output: - /* no outputs are defined */ |
: par‘a’neter‘:192.16871.22, pir‘emeﬁer‘: - /* no parameters are deﬁned */ . [
\ 192.168.1.33,8090 / }f input equals to 1, drop, otherwise, forward */|
\ /* no actions are defined */ action:comparator_result == 1 ? DROP : FORWARD /
\ action: - } /
NGB! /

N JRd

N -

- - - - """ F"--F—-FF—FF-F"F-F-F-F"-"--"F" """ "F"¥"” "¥” " ” ¥« ”"¥”"$¥°”"¥"”"¥"”"”""”""” = \\
// Flow: ipSrc=192.168.1.22,ipDst=192.168.1.33,TCP-DstPrt=8090 OpenSec \
\ Service: Firewall |
\ React: block /

~_ ., 7
// —— \\
(\ Prohibition(company, Bob, access, webMail, defaultConext) HACFlow)
~ _7

Figure 5.8: Frenetic, FRESCO, OpenSec, and HACFlow syntax comparison to create a
policy.

192.168.1.22, 192.168.1.33, and 8090), and the action means an action performed in a module
(DROP, FORWARD, REDIRECT, MIRROR, and QUARANTINE).

In the FRESCO script example, the traffic_comparator function will compare the
source_IP and destination_port of the incoming packet, if a match occurs this function will
output the value [as the comparison_result. This value is the input for the do_block function.
The action verifies the condition and gets the DROP action. Lastly, the event named PUSH,
makes the module send a flow rule to the switch to drop packets.

Lastly, the OpenSec syntax relies on the flow, service, and react fields. The flow field
regards to the OpenFlow matching fields (such as ipSrc, ipDst, TCP-DstPrt, among others) to
describe a flow. The service is a security service (like a firewall) that the flow rule must be
rerouted to. Finally, the react field determines how to react (alert, quarantine, or block) against a
flow matching or a malicious content reported by the security service.

Differently from Frenetic, FRESCO and HACFlow, the OpenSec does not block traffic
on demand. But, it is able to match a flow pattern and reroute this flow to a firewall. Next, this
firewall will be responsible for allowing or denying the access of Bob to the webMail service.

From this analysis, we point out that HACFlow presents the simplest syntax to create a
high-level security policy. HACFlow uses high-level names such as Bob and webMail, instead of
IP addresses and port (as in Frenetic, FRESCO, and OpenSec) to represent the network entities

when defining a policy. In this example, we consider that the network operator has executed the

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 68

two first steps (described in Subsection 4.1.3) that consist in defining the abstract and concrete
entities of the OrBAC model, and assigning the class definitions.

Despite Frenetic, FRESCO, and OpenSec allow operators to define policies in a high-
level way, both still use some low-level data in the policy definition such as IP address and
port number. HACFlow goes a step further and provides a higher level of abstraction when
compared to Frenetic and FRESCO. HACFlow obtains those low-level data once a network entity
authenticates (IP address, MAC address, connected switch, among others), and when registering
network services like the webMail (port number and communication protocol).

Furthermore, in Frenetic operators have to say in which network switches the security
rule must be implemented (in this example, we considered a network with three switches).
Differently, in HACFlow operators only define the source (Bob) and destination (webMail) of the

communication and the SDN controller decides in which switches this rule must be enforced.

5.2.3 Quantitative Analysis

In this subsection, we provide a quantitative comparison analysis of HACFlow against
Frenetic and OpenSec. This analysis consists in measuring the required time to each one translate
a security policy into switch-level rules. We also compare HACFlow against OpenSec regarding
the time to react to a networking event. We point that, in both experiments, we compare HACFlow
against the results provided by OpenSec.

Once we can not get the OpenSec source code to run it in our environment, we needed to
create a virtual machine with a configuration as similar as possible to the one used in OpenSec.
In OpenSec authors used an Intel Xeon X5650 2.67GHz to conduct their experiments. As we
do not have a machine with this processor, we configured a virtual machine with an Intel Core
17-3632QM 2.20GHz (single-core), 2GB of RAM, and Ubuntu 15.04.

It is important to highlight that we used a processor with similar performance (Core 17-
3632QM) compared to the one used in OpenSec (Xeon X5650). Figure 5.9 shows a comparison
provided by CPUBoss °. From this CPU analysis (right side of Figure 5.9), we point out that our

processor (Core 17-3632QM) is slightly lower than the Xeon X5650 when using a single-core.

CPUBoss Review

Our evaluation of X5650 vs 3632QM among all CPUs

!’erfnr_mam_:e _ _ Single Core Performance

Xeon X5650 . Xeon X5650

Core i7 3632QM 1 Core iT 3632QM

Figure 5.9: CPU performance comparison provided by CPUBoss.

>http://cpuboss.com/cpus/Intel-Xeon-X5650-vs-Intel-Core-i7-3632QM-BGA 1224

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 69

5.2.3.1 Policy Translation

We compare HACFlow against Frenetic and OpenSec frameworks regarding the required
time to translate a high-level security policy into low-level OpenFlow flow rule. We do not
compare against FRESCO once it does not provide any policy translation analysis. Besides, we
do not have access to the FRESCO source code project to analyze it in our environment.

The autonomic policy translation is an important feature provided by these frameworks.
It allows network operators to define high-level goals without taking care of how they will be
implemented in the network.

Differently of OpenSec, we can get access to the Frenetic source code project. We run
Frenetic in a virtual machine with the same configuration described at the beginning of the
Subsection 5.2.3. To conduct this experiment, we needed to understand the Frenetic code to
locate and insert a time stamp inside the translating function, and recompile it. Also, we needed
to learn how to create a high-level security policy using the Frenetic syntax.

As we are analyzing the policy translation time, we do not need to configure a network
topology. The experiment was executed 256 times and the results are the mean with their
respective standard deviation. Table 5.12 presents the results of this analysis. We point that
HACFlow and OpenSec required similar times to translate a single security rule and Frenetic
required a lower time. Despite this, HACFlow implements more features than Frenetic and

OpenSec.

Table 5.12: High-level to low-level policy translation for a single rule.

Translating a security policy into OpenFlow flow rule

HACFlow Frenetic OpenSec
0.0748 ms 0.0632 ms 0.07 ms
(s.d 0.005) (s.d 0.008) (s.d 0.002)

5.2.3.2 Event Reaction Delay

Lastly, we compare HACFlow against OpenSec regarding how long each one requires
to react to a network state change and event. We point out that neither Frenetic nor FRESCO
provide an analysis of reacting to network events, so we do not compare HACFlow against them.

The autonomic reaction against the dynamic nature of the network is one of the main
features provided by these frameworks. This feature mitigates the management efforts and
misconfigurations.

To conduct this experiment, we used the same virtual machine configuration described
previously. We compare our results with the results provided by OpenSec. The experiment was
run 256 times and our results represent the mean with their respective standard deviation. The
Table 5.13 shows those results.

5.2. COMPARISON AGAINST EXISTING SOLUTIONS 70

Table 5.13: Required time to HACFlow and OpenSec react to a networking event.

Reaction against network state changes and events

HACFlow OpenSec
8.5537 ms 2 1 ms
(s.d 1.4782))

In this experiment, the reaction time includes the moment that the framework receives
the alert until it returns the OpenFlow flow rules to reconfigure the network. That means, the
reaction time does not include the time needed to enforce the flow rules in the network, once this
time is controller-specific. Therefore, we do not configure a network topology to conduct the
experiments.

According to the results of this analysis, we conclude that OpenSec required a lower
time (8.1 ms in average) to react against network events. Despite this, HACFlow provides more

management features than OpenSec.

5.2.4 Discussion

In this section, we made a qualitative (Section 5.2.2) and quantitative (Section 5.2.3)
comparison of HACFlow framework against Frenetic, FRESCO, and OpenSec. Overall, the
qualitative analysis shows that HACFlow provides most of the management tasks and offers a
simpler syntax to define high-level security policies. Besides, HACFlow is the only one that
allows to delegate and revoke roles. On the other hand, the quantitative analysis demonstrates that
the results of the required time to HACFlow translate a high-level policy into an OpenFlow flow
rule is higher than Frenetic and OpenSec. Furthermore, the time to HACFlow react to network
events is higher than the results achieved by OpenSec. Despite this, HACFlow implements more

features than Frenetic and OpenSec.

71

Conclusion

Network access control (NAC) management is a critical task. Misconfigurations may
result in vulnerabilities that may compromise the overall network security. Current approaches
in traditional networks are inflexible and require per-device and vendor-specific configurations,
being error-prone. The SDN paradigm overcomes architectural problems of traditional networks
and offers new opportunities to manage the network. Despite this, access control management
remains a challenge.

This work had as the main goals simplify and automate the NAC management in SDN
environments. We achieved this goal by proposing HACFlow, a novel SDN framework based
on OrBAC model. We demonstrated that OrBAC and OpenFlow are a powerful combination
that allow network operators to define security policies in a high-level, fine-grained, and human-
readable way.

HACFlow also provides mechanisms to translate high-level security policies into low-
level OpenFlow flow rules, hiding the network configuration complexities from operators.
HACFlow allows to create dynamic and conflict-free security rules and is able to automatically
react to network state changes and events. Delegate and revoke roles is other main feature
provided by HACFlow.

We presented a step-by-step on how to operate the management tasks provided in
HACFlow. Our study case demonstrated the benefits of using HACFlow in a smart city scenario.
It showed how an operator can express his/her goals as high-level policies and their respective
representation in switch-level rules. We also demonstrated the HACFlow expressiveness to
define security policies as network configurations.

We analyzed the performance of HACFlow to delegate a role (119.45 ms), reacting to
network events (vulnerability alert: 8.24 ms and authentication event: 4.98 ms) and dynamic
policies (7.57 ms). We also analyzed its scalability to translate high-level policies into low-level
OpenFlow flow rules. The evaluation results showed that using HACFlow significantly reduce the
effort to implement a variety of network access control management tasks. Besides, HACFlow
was faster and less prone to errors if compared to manual and per-device configurations, common

in traditional networks.

6.1. DIFFICULTIES FOUND 72

We presented a qualitative and quantitative comparison. The qualitative analysis results
showed the advantages of HACFlow against Frenetic, FRESCO, and OpenSec. HACFlow offers
a simpler syntax to define high-level security policies. While the quantitative results showed that
HACFlow required a similar time to translate policies (0.07 ms), but a higher time to react to
network events (8.55 ms against 8.1 ms in OpenSec). Despite this, HACFlow provides more

management features than these solutions.

6.1 Difficulties Found

Regarding the difficulties found in this work, we highlight the following /) translation of
OrBAC to OpenFlow, 2) configuration of the HP VAN SDN controller and development of an
SDN application for it, and 3) comparison of HACFlow against related work.

HACFlow is based on the OrBAC model. The high-level security policies defined
in HACFlow are translated into low-level OpenFlow flow rules as network configurations.
Therefore, we had to integrate networking concepts in the OrBAC model to allow the OrBAC-to-
OpenFlow translation. As an example, consider the following high-level policy "blocks all TCP
traffic from Bob to the webMail service". This is a high-level policy that does not make sense for
OpenFlow-enabled switches.

So, how to make understood by networking devices the operators’ security policies
defined in a high-level and human-readable way? How to allow it without compromising the
policy expressiveness to define networking configurations? How do we solve this without
violating the OrBAC structure? These are some of the challenges that we had to take care while
developing the Policy Skeleton 4.1.2.2, Entity Manager 4.1.2.3, and Policy Translator 4.1.2.5 sub-
components of HACFlow. Allow network operators to define their high-level security policies as
network configurations without violating the OrBAC model neither compromising the policy
expressiveness was not a trivial task.

The second difficult regards the configuration of the HP VAN SDN controller and the
development of an SDN application that uses HACFlow as the authorizing entity. Regarding
configuration the HP VAN SDN controller, we had to deal with hardware requirements, controller
installation failures, learning how to operate the HP VAN controller, among others. We were
guided by HP:5998-7315C (2015) and HP:5998-4918 (2013). On the other hand, to develop the
SDN application, we had to configure application files (such as root POM files, module POM
files, among others), solved library dependencies, learned the HP VAN REST API, among others.
We were guided by HP:5998-7318 (2015).

The last one regards the comparison of HACFlow against related work. We tried to talk
with authors by email to get their source code project. One of them provided its code. Others
do not provided their code, but answered some questions about their project. While, others
unfortunately do not answered us.

From the work that we have access to the source code project, we had to understand

6.2. FUTURE WORK AND OPEN CHALLENGES 73

part of its code, make some configurations, and recompile its project to finally conduct the
experiments. Resulting in a time-consuming task.

From the work that we can not get access to the code, we had to create a virtual machine
with a configuration as next as possible to them (as we do not have a machine with the same
configuration). Furthermore, due to the lack information about their testbed configuration we

had to contact the authors by email to get this data.

6.2 Future Work and Open Challenges

As future work, we plan to extend HACFlow in two directions. The first one regards the
implementation of a semi-automated policy conflict resolution. Currently, the OrBAC component
inside of HACFlow allows network operators to solve conflicting policies manually by defining
priorities. Operators solve those conflicts one by one, and this may result in mistakes which in
turn may result in vulnerabilities.

Besides, performing this task may be cumbersome if we consider an environment with
a large number of security policies. Therefore, providing a semi-automated conflict resolution
mechanism will simplify even more the network management.

The second one refers to allowing network operators to define not only high-level access
control policies. But also Quality of Service (QoS), load balancing, and monitoring policies in a
high-level, fine-grained, and human-readable way.

That way, different SDN applications could use HACFlow to define their high-level
policies, avoiding the inter-application conflicting problem. This problem, is related to the
competing policies between multiple SDN applications HAN; HU; AHN (2014); PALADI
(2015).

As open challenges, we point out issues regarding the policy enforcement explosion
problem and the need for mechanisms for network monitoring. The policy enforcement explosion
problem is related to the enforcement of a huge number of OpenFlow flow rules. The definition
of high-level security policies may require multiple low-level OpenFlow flow rules to fulfill the
high-level goal.

As presented in Subsection 4.2.5, a single high-level security policy generated six
OpenFlow flow rules. How do we may group these related security rules, and enforce a single
one instead of six? Therefore, determining mechanisms that aggregate the enforcement of
security policies to save switch’s resources, such as the use of the limited and power hungry
TCAM memory, is required.

The other open challenge regards the need of defining mechanisms for real-time network
monitoring in SDN. Real-time monitoring information is critical for a faster and reliable security
policy reaction and implementation.

As previously explained, HACFlow reacts to network state changes and events, but it

depends on SDN applications that notify HACFlow about those events. Therefore, advances

6.3. STATEMENT OF THE CONTRIBUTIONS 74

regarding SDN network monitoring are relevant.

6.3 Statement of the Contributions

In this work, our main contributions can be highlighted as:

1. We demonstrate how SDN, OpenFlow, and the OrBAC model can be used together

to improve and automate the network access control management.

2. We propose a framework for the definition of high-level and human-readable poli-
cies, trying to simplify the management of access control policies and minimize

misconfigurations.

3. We propose a novel solution to define high-level network security policies that
dynamically reacts to network events and rule state changes, taking advantage of

SDN flexibility and programmability features to reconfigure the network.

4. We show that SDN may be leveraged to offer ACL at a much finer granularity where
more flexible rules may be defined, as opposed to existing port and VLAN based

rules only.

5. We improve network access control management without modifying the SDN archi-

tecture (e.g., the OpenFlow protocol, controllers, and switches).

6. We present a quantitative and qualitative analysis, and a series of examples to motivate

and validate our proposed HACFlow framework.

Furthermore, we had a paper (#163955) "A Network Access Control Solution Combining
OrBAC and SDN" accepted to the Mini-Conference track of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2017). In this paper, we proposed an SDN-based
Network Access Control (S-NAC) solution that authenticates and authorizes network entities.
This paper was the start point of this research. We evolved the idea and proposed a novel SDN
framework with much more management capabilities, as described in Table 4.1.

We also helped to improve the OrBAC model API by notifying a bugfix. Such bug
regards the NotifyContextStateChange() method in the AbstractOrbacPolicy class which was not
correctly monitoring concrete rule state changes, making it impossible to create dynamic security
policies. The OrBAC API developers corrected this bug, then we tested it to validate the bugfix,
and lastly we confirmed the correction to them. In the MotOrBAC web page ! (MotOrBAC
version 2.5 and OrBAC API 1.5.1 from 12/04/2016), inside the changelog.txt file they thank us:
"Big thanks to Daniel Rosendo for pointing this out!".

Thttp://motorbac.sourceforge.net/index.php?page=news&lang=en

75

References

AHMAD, 1. et al. Security in software defined networks: a survey. IEEE Communications
Surveys & Tutorials, [S.1.], v.17, n.4, p.2317-2346, 2015.

AOUADIJ, M. et al. Towards a modular and flexible SDN control language. In: GLOBAL
INFORMATION INFRASTRUCTURE AND NETWORKING SYMPOSIUM (GIIS), 2014.
Anais... [S.l.: s.n.], 2014. p.1-6.

AUTREL, F. et al. MotOrBAC 2: a security policy tool. In: CONFERENCE ON SECURITY IN
NETWORK ARCHITECTURES AND INFORMATION SYSTEMS (SAR-SSI 2008),
LOCTUDY, FRANCE, 3. Anais... [S.L: s.n.], 2008. p.273-288.

BATISTA, B. L. A.; FERNANDEZ, M. P. PonderFlow: a new policy specification language to
sdn openflow-based networks. International Journal on Advances in Networks and Services
Volume 7, Number 3 & 4, 2014, [S.1.], 2014.

BLIAL, O.; BEN MAMOUN, M.; BENAINI, R. An overview on SDN architectures with
multiple controllers. Journal of Computer Networks and Communications, [S.1.], v.2016,
2016.

COHEN, E. et al. Models for coalition-based access control (CBAC). In. ACM SYMPOSIUM
ON ACCESS CONTROL MODELS AND TECHNOLOGIES. Proceedings... [S.1.: s.n.], 2002.
p.97-106.

CONVERY, S. Network Authentication, Authorization, and Accounting. The Internet Protocol
Journal, [S.1.], v.10, n.1, 2007.

FOSTER, N. et al. Frenetic: a network programming language. In: ACM SIGPLAN NOTICES.
Anais... [S.l.:s.n.], 2011. v.46, n.9, p.279-291.

HAN, W.; HU, H.; AHN, G.-J. Lpm: layered policy management for software-defined networks.
In: IFIP ANNUAL CONFERENCE ON DATA AND APPLICATIONS SECURITY AND
PRIVACY. Anais... [S.l.: s.n.], 2014. p.356-363.

HP:5998-4918. HP VAN SDN Controller Installation Guide,
http://h20566.www2.hpe.com/hpsc/doc/public/display ?sp4ts.oid=5443866&docid=emr_na-
c03998700&doclocale=en_us. White Paper, [S.1.],

2013.

HP:5998-7315C. HP VAN SDN Controller 2.5 Administrator Guide,
http://h20566.www?2.hpe.com/hpsc/doc/public/display ?docid=c04647289. White Paper, [S.1.],
2015.

HP:5998-7318. HP VAN SDN Controller 2.5 Programming Guide,
http://h20565.www2.hpe.com/hpsc/doc/public/display ?sp4ts.oid=5443866&docid=emr_na-
c04647292&doclocale=en_us. White Paper, [S.1.],

2015.

REFERENCES 76

HU, V. C. et al. An access control scheme for big data processing. In: COLLABORATIVE
COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING
(COLLABORATECOM), 2014 INTERNATIONAL CONFERENCE ON. Anais... [S.l.: s.n.],
2014. p.1-7.

KALAM, A. A. E. et al. Organization based access control. In: POLICIES FOR
DISTRIBUTED SYSTEMS AND NETWORKS, 2003. PROCEEDINGS. POLICY 2003. IEEE
4TH INTERNATIONAL WORKSHOP ON. Anais... [S.l.: s.n.], 2003. p.120-131.

KIM, H.; FEAMSTER, N. Improving network management with software defined networking.
IEEE Communications Magazine, [S.1.], v.51, n.2, p.114-119, 2013.

KREUTZ, D. et al. Software-defined networking: a comprehensive survey. Proceedings of the
IEEE, [S.1.], v.103, n.1, p.14-76, 2015.

LARA, A.; RAMAMURTRHY, B. OpenSec: policy-based security using software-defined
networking. IEEE Transactions on Network and Service Management, [S.1.], v.13, n.1,
p.30-42, 2016.

LIU, J. et al. Leveraging software-defined networking for security policy enforcement.
Information Sciences, [S.1.], v.327, p.288-299, 2016.

MATIAS, J. et al. FlowNAC: flow-based network access control. In: THIRD EUROPEAN
WORKSHOP ON SOFTWARE DEFINED NETWORKS, 2014. Anais... [S.l.: s.n.], 2014.
p.79-84.

NADEAU, T. D.; GRAY, K. SDN: software defined networks. [S.1.]: " O’Reilly Media, Inc.",
2013.

ONF. Software-Defined Networking: the new norm for networks,
https://www.opennetworking.org. White Paper, [S.1.], 2014.

OSBORN, S.; SANDHU, R.; MUNAWER, Q. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Transactions on Information and
System Security (TISSEC), [S.1.], v.3, n.2, p.85-106, 2000.

PALADI, N. Towards secure SDN policy management. In: UTILITY AND CLOUD
COMPUTING (UCC), 2015 IEEE/ACM 8TH INTERNATIONAL CONFERENCE ON.
Anais... [S.1.: s.n.], 2015. p.607-611.

PORRAS, P. et al. A security enforcement kernel for OpenFlow networks. In: HOT TOPICS IN
SOFTWARE DEFINED NETWORKS. Proceedings... [S.l.: s.n.], 2012. p.121-126.

PUJOLLE, G. Software Networks: virtualization, sdn, 5g, security. [S.l.]: John Wiley & Sons,
2015.

SANDHU, R.; MUNAWER, Q. How to do discretionary access control using roles. In: ACM
WORKSHOP ON ROLE-BASED ACCESS CONTROL. Proceedings... [S.l.: s.n.], 1998.
p.47-54.

SANDHU, R. S. et al. Role-based access control models. Computer, [S.1.], v.29, n.2, p.38-47,
1996.

REFERENCES 77

SHIN, S. et al. FRESCO: modular composable security services for software-defined networks.
In: NDSS. Anais... [S.l.: s.n.], 2013.

SHIN, S.; GU, G. CloudWatcher: network security monitoring using openflow in dynamic cloud
networks (or: how to provide security monitoring as a service in clouds?). In: IEEE
INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2012. Anais...
[S.L.: s.n.], 2012. p.1-6.

SICARI, S. et al. Security, privacy and trust in Internet of Things: the road ahead. Computer
Networks, [S.1.], v.76, p.146-164, 2015.

THOMAS, R. K. Team-based access control (TMAC): a primitive for applying role-based
access controls in collaborative environments. In: ACM WORKSHOP ON ROLE-BASED
ACCESS CONTROL. Proceedings. .. [S.l.: s.n.], 1997. p.13-19.

TR-516, O. Framework for SDN: scope and requirements. Version 1.0. Last access:
December, 2016, https://www.opennetworking.org.

TS-020, O. OpenFlow Switch Specification: version 1.5.0, https://www.opennetworking.org.
White Paper, [S.1.], 2014.

VOELLMY, A.; KIM, H.; FEAMSTER, N. Procera: a language for high-level reactive network
control. In: HOT TOPICS IN SOFTWARE DEFINED NETWORKS. Proceedings. ..
[S.1.: s.n.], 2012. p.43-48.

WICKBOLDT, J. A. et al. Software-defined networking: management requirements and
challenges. IEEE Communications Magazine, [S.l.], v.53, n.1, p.278-285, 2015.

WINSBOROUGH, W. H.; LI, N. Towards practical automated trust negotiation. In: POLICIES
FOR DISTRIBUTED SYSTEMS AND NETWORKS, 2002. PROCEEDINGS. THIRD
INTERNATIONAL WORKSHOP ON. Anais... [S.l.: s.n.], 2002. p.92—-103.

https://www.opennetworking.org

	Introduction
	Motivation
	Problem Statement
	General and Specific Goals
	Organization of the Dissertation

	Background
	Software Defined Networks
	OpenFlow Standard
	Authentication, Authorization and Accounting
	Access Control Models
	Organization Based Access Control
	Organization
	Role and Subject
	Activity and Action
	View and Object
	Context Definition
	Class Definition
	High-level Security Policy Definition

	Concluding Remarks

	Related Work
	Network Access Control in Traditional Networks
	Network Access Control in SDN
	Candidates to Comparison Against HACFlow
	Concluding Remarks

	HACFlow
	HACFlow Framework
	Overview
	Architecture
	OrBAC API
	Policy Skeleton
	Entity Manager
	Event Listener
	Policy Translator
	REST API

	Step-by-step: High-level Policy Definition
	Security Policy Expressiveness and Granularity

	Step-by-step: Dynamic Security Policies
	Step-by-step: Reacting to Network Events
	Vulnerability Alert
	Authentication Event

	Step-by-step: Role Delegation

	Case Study: Applying HACFlow in a Smart City
	Overview
	Defining High-level Goals
	Defining the Network Entities
	The Abstract Level
	The Concrete Level

	Defining High-level Security Policies
	Enforcing Security Policies in the Network

	Concluding Remarks

	Evaluation and Comparison
	HACFlow Performance Evaluation
	Scenario Description and Methodology
	Network State Changes and Events
	Authentication Event
	Vulnerability Alert

	Dynamic Security Policy
	Role Delegation
	High-level to Low-level Policy Inference
	Discussion

	Comparison Against Existing Solutions
	Overview
	Qualitative Analysis
	Framework Features
	Syntax Simplicity

	Quantitative Analysis
	Policy Translation
	Event Reaction Delay

	Discussion

	Conclusion
	Difficulties Found
	Future Work and Open Challenges
	Statement of the Contributions

	References

