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Abstract
A time series is a collection of observations measured sequentially in time. Several real-
world dynamic processes can be modeled as time series. One of the main problems of time
series analysis is the forecasting of future values. As a special kind of data stream, a time
series may present concept drifts, which are changes in the underlying data generation
process from time to time. The concept drift phenomenon affects negatively the forecasting
methods which are based on observing past behaviors of the time series to forecast future
values. Despite the fact that concept drift is not a new research area, the effects of concept
drifts in time series are not widely studied. Some approaches proposed in the literature to
handle concept drift in time series are passive methods that successive update the learned
model to the observations that arrive from the data stream. These methods present no
transparency to the user and present a potential waste of computational resources. Other
approaches are active methods that implement a detect-and-adapt scheme, in which the
learned model is adapted just after the explicit detection of a concept drift. By using explicit
detection, the learned model is updated or retrained just in the presence of drifts, which
can reduce the space and computational complexity of the learning system. These methods
are generally based on monitoring the residuals of a fitted model or on monitoring the
raw time series observations directly. However, these two sources of information (residuals
and raw observations) may not be so reliable for a concept drift detection method applied
to time series. Residuals of a fitted model may be influenced by problems in training.
Raw observations may present some variations that do not represent significant changes
in the time series data stream. The main contribution of this work is an active adaptive
learning system which is able to handle concept drift in time series. The proposed method,
called Feature Extraction and Weighting for Explicit Concept Drift Detection (FW-FEDD)
considers a set of time series features to detect concept drifts in time series in a more
reliable way, being trustworthy and transparent to users. The features considered are
weighted according to their importance to define concept drifts at each instant. A concept
drift test is then used to detect drifts in a more reliable way. FW-FEDD also implements
a forecasting module composed by a pool of forecasting models in which each model is
specialized in a different time series concept. Several computational experiments on both
artificial and real-world time series showed that the proposed method is able to improve
the concept drift detection accuracy compared to methods based on monitoring raw time
series observations and residual-based methods. Results also showed the superiority of
FW-FEDD compared to other passive and active adaptive learning systems in terms of
forecasting performance.

Keywords: Adaptive learning systems. Data streams. Concept drift. Time series. Fore-
casting.



Resumo
Uma série temporal é uma coleção de observações medidas sequencialmente no tempo.
Diversos processos dinâmicos reais podem ser modelados como uma série temporal. Um
dos principais problemas no contexto de séries temporais é a previsão de valores futuros.
Sendo um tipo especial de fluxo de dados, uma série temporal pode apresentar mudança
de conceito, que é a mudança no processo gerador dos dados. O fenômeno da mudança
de conceito afeta negativamente os métodos de previsão baseados na observação do
comportamento passado da série para prever valores futuros. Apesar de que mudança de
conceito não é uma nova área, os efeitos da mudança de conceito em séries temporais ainda
não foram amplamente estudados. Algumas abordagens propostas na literatura para tratar
esse problema em séries temporais são métodos passivos que atualizam sucessivamente o
modelo aprendido com novas observações que chegam do fluxo de dados. Estes métodos
não são transparentes para o usuário e apresentam um potencial consumo de recursos
computacionais. Outras abordagens são métodos ativos que implementam um esquema
de detectar-e-adaptar, no qual o modelo aprendido é adaptado somente após a detecção
explícita de uma mudança. Utilizando detecção explícita, o modelo aprendido é atualizado
ou retreinado somente na presença de mudanças, reduzindo a complexidade computacional e
de espaço do sistema de aprendizado. Estes método são geralmente baseados na monitoração
dos resíduos de um modelo ajustado ou na monitoração dos dados da série diretamente. No
entanto, estas duas fontes de informação (resíduos e dados crus) podem não ser tão confiáveis
para um método de detecção de mudanças. Resíduos de um modelo ajustado podem ser
influenciados por problemas no treinamento. Observações cruas podem apresentar variaçõs
que não representam mudanças significativas no fluxo de dados. A principal contribuição
deste trabalho é um sistema de aprendizado adaptativo ativo capaz de tratar mudanças
de conceito em séries temporais. O método proposto, chamado de Feature Extraction and
Weighting for Explicit Concept Drift Detection (FW-FEDD) considera um conjunto de
características da série temporal para detectar mudança de conceito de uma forma mais
confiável, sendo transparente ao usuário. As características consideradas são ponderadas
de acordo com sua importância para a definição das mudanças em cada instante. Um teste
de mudança de conceito é utilizado para detectar as mudanças de forma mais confiável.
FW-FEDD também implementa um módulo de previsão composto por um conjunto
de modelos de previsão onde cada modelo é especializado em um conceito diferente.
Diversos experimentos computacionais usando séries reais e artificiais mostram que o
método proposto é capaz de melhorar a detecção de mudança de conceito comparado com
métodos baseados na monitoração de dados crus da série e métodos baseados em resíduos.
Resultados também mostraram a superioridade do FW-FEDD comparado com outros
métodos de aprendizado adaptativo ativos e passivos em termos de acurácia de predição.



Palavras-chave: Sistemas de aprendizado adaptativo. Fluxos de Dados. Mudança de
Conceito. Séries Temporais. Previsão.
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1 INTRODUCTION

A time series is a collection of observation measured sequentially in time (COW-
PERTWAIT; METCALFE, 2009). Several dynamic processes can be modeled as a time
series, such as stock price movements (CAVALCANTE; OLIVEIRA, 2014), a company
payroll (OLIVEIRA; MEIRA, 2006), product sales (HAMZACEBI, 2008), daily tempera-
ture of a city (SINGH; BORAH, 2013), electricity consumption (ALVAREZ et al., 2011),
exchange rates (BRITO; OLIVEIRA, 2014), among others. Time series modeling and
forecasting can be considered main challenging activities in the computational intelligence
literature. In the last decades, several approaches have been proposed for time series
forecasting. Two major classes of these approaches are the traditional statistical models
and the computational intelligence methods (WANG et al., 2011). Statistical models
assume that the time series under study is generated from a parametric process (KUMAR;
MURUGAN, 2013). Computational intelligence approaches, on the other hand, are data-
driven, self-adaptive methods able to capture linear and nonlinear behavior of time series
without the need of a priori specific statistical assumptions about the data (LU; LEE;
CHIU, 2009).

Despite the fact that there is a vast literature on time series forecasting, the
majority of the existing approaches does not take into account that a time series is a kind
of data stream (CAVALCANTE et al., 2016). A data stream is a set of data observations
which arrive sequentially one by one (GAMA, 2012). Dynamism is an inherent feature
of data streams. This dynamism implies that patterns in a data stream may evolve over
time and introduces a big challenge to traditional batch learning algorithms, which is the
ability to permanently maintain an accurate decision model even in the presence of changes
in the underlying data generation process. This phenomenon is referred to as concept
drift (SCHLIMMER; GRANGER, 1986b; SCHLIMMER; GRANGER, 1986a; WIDMER;
KUBAT, 1993; WIDMER; KUBAT, 1996), concept shift (LUGHOFER; ANGELOV, 2011),
dataset shift (RAZA; PRASAD; LI, 2015).

Most of the approaches designed to time series forecasting have a learning phase
which operates in offline mode. They first learn a model from the data, and then this
model is used to perform forecasting without updating the learned model. Due to this,
they are unaware of concept drifts. These methods are based on the main assumption that
time series concept is stable in such a way that the time series observations follow a fixed
and immutable probability distribution along the time. In this scenario, these methods
first learn how the time series behaves and then they are used to forecast future behaviors.
This assumption, however, may not hold for several industrial time series applications. For
example, the time series of the sales of a product may change its behavior due to changes
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in government regulations or advertising campaigns. The time series of stock prices of a
company may change its behavior due to changes in political and economical factors or
due to changes in the investors psychology or expectations.

Changes in the dynamic of a time series impose serious challenges to forecasting
approaches. In these cases, learning methods which first learn how a time series behaves
and then are used to perform forecasting without updating may become obsolete in case
of explicit or implicit changes in the time series behavior. These environment with changes
requires more sophisticated learning methods, able to precisely detect and adapt to changes
in real-time.

1.1 Motivation
In the last decades, the computational intelligence scientific field has been devoted

to design machine learning algorithms able to learn and model specific problems in
order to support decision-making. The supervised learning approach attempts to learn
about a knowledge domain by means of observing past cases or instances of the problem
and their respective solutions. The goal of this approach is to identify and model the
relationship between descriptor attributes and outputs of the past instances. The model of
the relationship between inputs and outputs represents the knowledge domain and can be
used for solving unseen instances of the same problem. Examples of supervised machine
learning problems are spam filtering (GUZELLA; CAMINHAS, 2009), credit card fraud
detection (MAES et al., 2002), credit risk evaluation (ANGELINI; TOLLO; ROLI, 2008),
stock prices time series forecasting (ATSALAKIS; VALAVANIS, 2009), among others.

The classical supervised learning main assumption is that the statistical distribution
of the instances of some knowledge domain is immutable, in the sense that the examples
come from a fixed unchangeable probability distribution (GAMA et al., 2004; DITZLER
et al., 2015). If this supposition holds for the whole machine learning prediction process
then, once an algorithm has learned how to perform a task, the learned model can be
used to perform this task in the future. So, after the learning phase is completed, the
system would not need further improvement or change. However, in many real-world
applications, data arrives in a stream and patterns evolve over time, since concepts are
often not stable (FDEZ-RIVEROLA et al., 2007; MINKU; YAO, 2012). This is due to the
inherent dynamism of data streams, in which the data is collected over an extended period
of time. In practice, this instability implies that a set of instances has a legitimate output
at one time and a different legitimate output at another time (KOLTER; MALOOF, 2007).

Several methods able to handle concept drift have already been proposed in the
literature for classification problems (GONCALVES et al., 2014). According to Ditzler
et al. (2015), the existing approaches can be divided into two categories: (i) the passive
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adaptive approaches, and (ii) the active adaptive approaches. The passive approaches, also
called implicit or blind methods are those which update the decision model at regular
intervals independent of the occurrence of concept drifts. Examples of blind methods
include the online and incremental learning algorithms proposed by Fdez-Riverola et al.
(2007), Cohen et al. (2008) and the dynamic ensemble methods proposed by Kolter and
Maloof (2007), Tsymbal et al. (2008), Brzezinski and Stefanowski (2014a), Brzezinski and
Stefanowski (2014b), Soares and Araújo (2015). The main issues of these approaches are
the potential resource consumption to update the learned model even when the incoming
data belong to the same concept and the lack of transparency for the user. Since these
approaches just adapt to changes without properly identifying it, they do not inform the
user the existence or absence of changes. Informing the user about the existence of concept
drifts may increase the trust in the automatic prediction process. Practitioners may make
certain decisions based on the knowledge that a change has occurred in data.

The active adaptive learning approaches are those which implement some explicit
drift detection method and update the learned model just after detecting a concept drift.
Examples of explicit drift detection methods are the Drift Detection Mechanism (DDM)
(GAMA et al., 2004), the Early Drift Detection Method (EDDM) (BAENA-GARCIA et
al., 2006) and the Exponentially Weighted Moving Average for Drift Detection (ECDD)
(ROSS et al., 2012). These adaptive learning systems update the learned model just after
a change is detected in the data distribution. These methods rely on an explicit drift
detection mechanism, reacting to changes by updating the existing model or building a new
one (GAMA et al., 2014). An advantage of explicit drift detection is that this approach
works as a white box, by informing the user about the occurrence of concept drifts.

Two main explicit drift detection approaches are (i) those that monitor the residuals
of a fitted model and (ii) those that monitor features extracted from the data generating
process (ZLIOBAITĖ; BUDKA; STAHL, 2015). Methods that monitor the residuals of a
fitted model are supported by the assumption that when the distribution of the incoming
data stream is stable, the residuals of a model fitted to the data are constant or decrease
as the number of predicted instances increases. The first main issue of these approaches is
that the residual levels may not properly reflect concept drifts. These methods rely on the
accuracy of the decision model used for prediction. If a poor training process is used to
build the decision model, it may result in lots of false alarms or high miss-detection rates,
due to generalization problems such as overfitting. In some cases the concept may change
and the error remains constant. Monitoring data distribution directly, on the other hand,
may be a faster and reliable way of detecting concept drifts in data. Based on that, in this
thesis, we will investigate how to detect concept drifts in time series by inspecting some
features that describes data distribution, instead of monitoring residuals.

The forecasting of future values of a time series can be considered one of the main
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challenges of the time series analysis and machine learning field (TAY; CAO, 2001). As a
kind of data stream, time series typically present concept drift (GUAJARDO; WEBER;
MIRANDA, 2010). Despite the fact that concept drift problem has been widely studied
in the literature in classification problems (GAMA, 2012; DITZLER et al., 2015), little
effort has been dedicated to solve this problem in regression and time series analysis
(HU et al., 2015). Concept drifts in time series forecasting have a key difference with
respect to classification and other regression problems, requiring separate investigation and
potentially different drift detection methods. This key difference is the serial correlation
characteristic, in which the time series observations present some temporal relationship,
instead of being independent and identically distributed as in classification problems. This
serial correlation sometimes implies in the presence of systematic changes in time series
observations, such as trend and seasonality, which do not necessarily imply in changes
in the learned model. Depending on how the concept drift problem is approached, these
systematic changes may hinder the drift detection process.

Some approaches have been proposed to handle concept drift in time series, specif-
ically. However, these approaches have some limitations. Those two issues of passive
approaches, namely the excessive adaptation and lack of transparency, may prevent the
wide applicability of these approaches in real industrial applications. Excessive adaptation
may be a waste of resources and provide only incremental insignificant benefits towards the
forecasting performance (ZLIOBAITĖ; BUDKA; STAHL, 2015). Some applications require
efficiency in decisions and this implies in the need for efficient adaptive learning methods.
In applications in which the data have no frequent changes, the successive adaptation
represents a constant computational cost, but does not result in significant improvements
in forecasting accuracy. The lack of transparency for user is another negative feature of
these methods. For example, in financial market forecasting, traders may decide to reduce
their market positions or change the market segment to invest when concept drifts are
identified.

Some concept drift detection approaches proposed in the literature for detecting
changes in time series are explicit mechanisms based on monitoring time series observations
directly (LIU et al., 2013; ROSS, 2013; FERREIRA; LOSCHI; COSTA, 2014; KILLICK;
ECKLEY, 2014). These methods analyze time series observations in order to identify points
of divergence, also known as change points. Change points are time series observations
that divide a time series sequence into two segments such that the null-hypothesis of no
changes in the distribution of observations is rejected. Due to this, change points are
also referred to as structural breaks. These approaches generally operate in a time series
after removing trend and seasonality. A concept drift is then identified when there is a
statistically significant change in mean or variance of the time series observations. Such
methods are unable to detect important changes in the underlying generation process,
such as changes in the behavior of trends, changes in the linear or nonlinear relationship
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about the observations, appearance or disappearance of seasonal patterns, changes in the
periodicity of seasonality, among others.

A second group of existing time series concept drift approaches tries to identify
concept drifts by monitoring the error (residuals) of a forecaster model (ALIPPI; BORAC-
CHI; ROVERI, 2013b; CAVALCANTE; OLIVEIRA, 2015). Such approaches generate a
model of the stable state of the time series and then they monitor the residuals of the
fitted model to the new observations. When the distribution of these residuals changes
significantly, a drift is identified. The issue of this approach is the dependence of the
concept drift detection process on the model created, as discussed before.

Few approaches proposed in the literature have investigated how to detect concept
drifts by monitoring statistical time series features1 derived from the raw time series obser-
vations. Time series features are derivative statistics able characterize some relationship
about time series observations. Boracchi and Roveri (2014) used the self-similarity feature
to identify concept drifts in time series. The proposed approach measures the self-similarity
between time series segments and uses the values of this feature as change detector variable.
A Concept Drift Test (CDT) is then used to monitor and detect changes in this feature
and identify is as a change in the time series generation process. However, this approach
just monitors one aspect of time series behavior and its applicability is restrict to time
series that present self-similarity. A more general method should be able to monitor several
aspects of time series behavior.

There are several specific time series features that may be used to define time
series concepts, such as autocorrelations, partial autocorrelations, presence of trend and
seasonality, periodicity, self-similarity among others. Some of these features may be able to
describe some linear or nonlinear behaviors of a time series in order to accurately describe
the nature of the time series and consequently they may be effectively used to describe
the underlying data generation process. Some of these features have been used in the
literature to solve important time series analysis problems, such as time series classification
(PRUDÊNCIO; LUDERMIR; CARVALHO, 2004), time series clustering (WANG; SMITH;
HYNDMAN, 2006; AGHABOZORGI; SHIRKHORSHIDI; WAH, 2015), time series meta-
learning (PRUDÊNCIO; LUDERMIR, 2004; WANG; SMITH-MILES; HYNDMAN, 2009;
LEMKE; GABRYS, 2010), among others. These problems are intrinsically related with
the concept definition, since their main objective is to precisely characterize a time series
behavior. Clustering algorithms try to identify similarity in the whole time series or time
series segments in order to group them, maximizing the similarity intra-groups. Meta-
learning methods try to identify similarity in time series behaviors in order to apply a
successful forecasting method used in similar time series in the past, maximizing the
forecasting accuracy.
1 It is not the same as input feature attributes.
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In this sense, an important work proposed by Prudêncio and Ludermir (2004) have
used some time series specific features in order to choose, among a set of possible models,
the best one to forecast a given series. In this approach, several models are kept in memory
associated with the time series used to build them. The time series are represented by a set
of statistical features. When a new time series is available to be predicted, its features are
extracted and the best suited model is recovered from memory according to the similarity
of the new time series with the time series features used to build that model. We can use
similar ideas to build an adaptive learning system which is robust to concept drift. Since
the environment is dynamic and the time series patterns may evolve over time, we can
address the problem of identifying drifts by monitoring the features in order to detect
concept drifts. When a concept drift occurs, we can identify the time series features of the
new concept and use a previous forecasting model (or a combination of them) according to
the features of the time series concept used to build it (or them, in case of combination).

In this work, we use the same idea of using a CDT as proposed by Boracchi and
Roveri (2014), but to monitor and detect changes in a set of time series features that
describe time series behaviors in order to build a general model of concept drift detection.
The original contributions of this work are (i) the application of a CDT on an univariate
signal that summarizes the information of some time series features to detect changes
in the data generation process; (ii) the proposition of a weighting function to compute
the importance of the features to describe concepts to improve the drift detection; and
(iii) the integration of this drift detection method to a forecasting method based on a
set of individual models and a model selection approach. The CDT assess the statistical
significance of concept drifts in the monitored signal, reducing the number of false positive
detections.

An important work related to the forecasting method implemented in this thesis
was proposed by Rossi, Carvalho and Soares (2012). In that work, authors proposed
a model selection approach based on some characteristics extracted from data in the
context of regression. Aiming at improving the learning system performance in dynamic
environments affected by concept drift, the proposed approach used the characteristics of
data to select, at fixed time intervals, the more suited model to handle the incoming data.
The meta-attributes are generated by extracting characteristics from data observations,
such as the existence of outliers, skewness, kurtosis, average, variance, correlation between
attributes and target, among others. Periodically, the approach applies a meta-classifier
to predict the most appropriate learning algorithm for the unlabeled data based on that
characteristics. A sliding window scheme is used to build both the base-models and to
extract features and build the meta-data.

We use similar ideas of extracting features of time series to recommend the most
appropriate model to forecast a time series concept, in order to improve forecasting
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performance. The time series features and drift information are used to define model
competences and to recommend which models should be used to handle concepts in order
to improve the forecasting accuracy. We use an explicit concept drift detection scheme
to identify when there is the need to create a new forecasting model. Another important
difference between the proposed work and that proposed by Rossi, Carvalho and Soares
(2012) is that in this work the recommendation of models are done at each instant a new
forecasting need to be done, instead of performing the recommendation periodically at
fixed intervals as in that work. This approach may provide a faster drift recovering. In
addition, this thesis is focused in time series forecasting, while that work are applied in
regression problems.

1.2 Problem Formulation
The time series forecasting problem can be defined as follows. Let S = {x1, ..., xi, ...},

xi ∈ R sampled from an unknown probability distribution, be a time series. At each time
stamp t, we want to forecast the regression value ŷ = xt+n, which is the time series value
in the next t + n instant, based on a set of input attributes X = {xt−k, ..., xt}, i.e., the
last k time series observations. So, the utmost goal of a machine learning algorithm for
building a time series forecasting method is to estimate P (y = xt+n|xt−k...xt). Once this
function is estimated on a training set, we can use it to forecast future values ŷ. However,
a concept drift in the data generation process may cause a change in the relationship
between the input and target variables on the target data (test set).

Gama et al. (2014) define a concept drift between time point t0 and time point
t1 in the context of classification as ∃X : pt0(X, y) �= pt1(X, y), where pt0 is the joint
distribution at time t0 between the set of input variables X and the target variable y.
These changes may occur due to changes in components of this relation, i.e., changes in
the prior probabilities of classes p(y), and/or changes in the class conditional probability
density function p(X|y), which can be viewed as change in the posterior probabilities
p(y|X) and/or in the unconditional probability density function p(X).

In this research, we are particularly interested on changes in the posterior proba-
bilities p(y|X), or in more details, on P (y = xt+n|xt−k...xt), as they affect the underlying
function being learned. This kind of change implies in the need for updating the forecasting
model. The reason for this choice is that the main goal of this thesis is to build an adaptive
learning system able to keep high forecasting accuracy even in the presence of concept
drifts in the time series. This change can cause a change in the decision boundary learned
by the forecasting algorithm. The proposed adaptive learning system should be able to
quickly detect and to adapt its decision boundary if necessary.

So, given the inputs X and the target attribute y, in stable periods (with no concept
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drift), p(X) and p(y) are expected to be generated by the same underlying process S.
So, changes in p(y) will be always reflected by some changes in p(X) with some delay.
Due to this, we expect a drift detection method based on monitoring time series data
(p(X)) to provide a better understanding of how concepts evolve over time than those
based on monitoring the residuals of a fitted model. However, the existing approaches that
monitor the time series observations assume that any changes in p(X) would also affect
p(y|X), which is not always the case. Examples of these situations are the systematic
changes caused by seasonality. If, instead, we monitor the right features derived from
the observations, we may filter out changes in p(X) that are not linked to changes in
p(y|X), such those caused by systematic changes (trends and seasonality, for example).
This kind of explicit drift detection may provide a better understanding of how concepts
evolve over time than those based on monitoring the forecasting error. Since they monitor
data distribution features, the drift detection process relies just in the statistical test that
assesses the evolving of the data distribution and in the feature set used to describe the
data.

1.3 Objectives, Research Questions and Hypothesis
The main aim of this research is to investigate and propose a new adaptive learning

system designed to model and forecast time series eventually affected by concept drifts
with the utmost goal of improving the forecasting accuracy in dynamic environments.
Motivated to overcome the main issues of existing active and passive adaptive learning
systems described in Section 1.1, we propose a learning method that falls into the class of
active adaptive approaches, since it handles concept drift by explicitly detecting changes
and then updating the learned model to cope with changes. The proposed method should
be:

• accurate in detecting concept drifts, since it is feature-based;

• transparent to the user, since it implements an explicit drift detection mechanism;

• able to handle recurrent concept drifts;

• accurate in forecasting time series with evolving patterns, since it quickly reacts to
concept drifts;

• efficient, since it updates the learned model just after detecting a drift in the time
series.

In order to accomplish the objective of building the described adaptive learning
system, some research questions arise and need to be answered by this thesis:
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1. Several methods have been proposed in the literature for detecting changes in time
series. Some of them are based on monitoring the residuals of a fitted model. The main
issue of this approach is that the residuals may not properly reflect changes in the
time series. Other methods are based on monitoring the raw time series observations.
However not every change in these observations indicates a change in the decision
function of the forecasting model. So, could the time series drift detection
be improved by using an approach that monitors a suite of time series
statistical features instead of monitoring raw time series observations or
monitoring the residuals of a fitted model?

2. After choosing a set of time series features to describe time series concepts, we need
to define how to use the information of these features to accurately detect concept
drifts. Some variations in one or in a small subset of these features may not properly
indicate changes in the whole underlying generation process. So, detecting a concept
drift whenever any of these features changes in isolation is likely to make the concept
drift detection method too sensitive, generating many false alarms. So, how can we
best combine the information provided by different time series features
make an accurate concept drift detection?

3. By defining a set of time series features and an approach to combine the information
of these features to detect concept drift, we build a feature-based drift detection
method. However, time series from different domains may present different behaviors.
For different time series behaviors, some features may be more or less informative
about these behaviors. Less informative features may hinder the drift detection.
Can we implement a method for determining and emphasizing the most
informative features in order to build a general concept drift detector
which improved detection accuracy and which may be applied on a broad
set of time series of different domains?

4. Once the concept drifts in a time series are properly identified, the adaptive learn-
ing system should be able to quickly react to them in order to improve the fore-
casting accuracy. How to better build the adaptive learning system that
implements feature-based drift detection in order to improve forecasting
accuracy meanwhile minimizing computational costs?

The main hypotheses formulated in this thesis in order to answer these questions
are as follows:

1. We investigate a set of time series statistical features which could best describe
time series concepts. Our hypothesis is that using a set of statistical time series fea-
tures, namely trend degree, seasonal degree, autocorrelation, partial autocorrelation,
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skewness, kurtosis, turning points rate, periodicity, standard deviation of residuals,
bicorrelation and mutual information, is effective to describe time series concepts.
Based on monitoring these statistical features, we can identify time series behaviors
(concepts) in the stable state (in-control) and detects with minimum delay when
these behaviors go out-of-control, which configures a concept drift. In order to answer
the first question, we compare concept drift detection methods based on monitoring
this set of time series features against methods based on monitoring time series
raw observations and methods that monitor the residuals of a forecasting model.
The study analyzes the drift detection accuracy of the methods using artificial and
real-world data sets.

2. There are some candidate ways of combining the monitored time series features
in order to detect concept drifts. Our hypothesis is that we can combine the time
series in a feature vector instead of observing them in isolation. So, we monitor
the differences between an initial feature vector (which describes the time series
concept in the in-control state) and the current feature vector that describes the
time series at each instant of the processing. If the time series concept remains
stable, then it is expected that the distances between the feature vectors be constant
and small. On the other hand, when a concept drift happens, it is expected the
distances increase. This approach would provide two main advantages: (i) it reduces
the problem of monitoring the distribution of several features individually to the
problem of monitoring the distance between the feature vectors, which is just a
univariate signal; and (ii) it is able to reduce the sensitivity of the drift detector
and consequently the number of false positives (false alarms) caused by variations in
few features individually. The second question is answered by comparing the drift
detection accuracy of our approach considering time series features in combination
against the use of isolated time series features. Some explicit concept drift detection
(CDT) methods were applied to detect changes in the distances between feature
vectors.

3. The identification of which features are more important to define time series concepts
and when these concepts change is a challenging task, since this is an unsupervised
task that should be performed in an online way. According to Kuncheva and Faithfull
(2014), features with lowest variance are more likely to be affected by a change than
features with higher variance. Our hypothesis is that we can use some heuristic
based on the variability of the time series features to implement a dynamic feature
weighting strategy. This method may provide a better understanding of the evolution
of time series concepts, which would increase the trust of the user on the system. It
may also improve the forecasting accuracy since the learned model would be updated
as soon as possible to cope with concept drifts. In order to answer the third question,
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we investigate two weighting strategies and evaluate which of them best improves
drift detection compared to the method without weighting.

4. There are several ways of handling concept drifts to build an adaptive learning
system, such as (i) creating a forecasting model and updating this model at every
new data observation or chunk of observations received by the system, (ii) eliminating
an existing model and building a new one when a drift is detected, (iii) keeping
an ensemble of forecasting models suited to handle different concepts, (iv) keeping
a pool of forecasting models and selecting one of them to properly answer a time
series concept at each instant in real-time. Our hypothesis is that using a pool of
forecasting models combined with an online scheme to select which model to use to
handle a new concept drift faced by the learning system is more effective in time
series forecasting. Since time series concepts are characterized by a feature vector
that defines its behavior, the natural way of selecting a forecasting model to forecast
future values in some instant is to select the one which was trained in a similar
context to the current one. So, in order to answer the fourth question, we proposed
an adaptive learning which keeps a pool of forecasting models and selects the more
appropriate model at each instant. The proposed method is compared with some
active and passive adaptive learning strategies in terms of forecasting performance.

1.4 Organization of the Thesis
This thesis is organized as follows. In this chapter, the motivations for carrying out

this research were presented together with the problem formulation and the main research
questions, hypothesis and objectives.

Chapter 2 discusses the three fundamental concepts for the present research,
namely time series, data streams and concept drift. The main time series components and
characteristics are presented. Several time series models, both statistical and intelligent
methods, are described in that chapter. Following, the concept of data stream and the
main challenges imposed by data streams to conventional machine learning methods are
discussed. The main challenge of learning data streams, the phenomenon called concept
drift, is presented. This chapter also includes a discussion of the main kinds of methods
proposed in the literature to cope with concept drift: the active and passive adaptive
learning methods.

Chapter 3 reviews some approaches proposed to handle concept drift in time series
analysis. The proposed methods were divided into active and passive adaptive learning
methods, according to its behavior. The active methods are classified into residual-based
methods and methods that monitor time series raw observations directly. A discussion
about the main issues and drawbacks of each class of approaches is presented in this
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chapter. After the analysis of the reviewed methods, the requirements of an ideal adaptive
learning system are defined.

Chapter 4 presents the main contribution of this thesis: a novel adaptive learning
system for time series forecasting which employs an online explicit drift detection method.
This method, called Feature Extraction and Weighting for Explicit Concept Drift Detection
(FW-FEDD), monitors some statistical features of the time series in order to identify
changes in the underlying data generation process. The proposed system implements a
forecasting module composed by a set of individual models specialized in different time
series concepts. In that chapter, FW-FEDD functioning and algorithms are described in
detail.

Chapter 5 presents the experiments conducted in order to validate the research
hypotheses formulated in this thesis. In that chapter the experimental setup, the data
sets used, and figure of merits employed are explained and the main results obtained are
presented and discussed.

Chapter 6 concludes the thesis with a summary of the main results and contributions
of this research. This chapter also gives directions for further research.

Some of the material presented in this thesis were published in (or will be submitted
to) the following papers:

1. Cavalcante, R. C. and Oliveira, A. L. (2014). An Autonomous Trader Agent
for the Stock Market Based on Online Sequential Extreme Learning Machine En-
semble. Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN14), pp. 1424-1431.

2. Cavalcante, R. C. and Oliveira, A. L. (2015). An Approach to Handle Concept
Drift in Financial Time Series Based on Extreme Learning Machines and Explicit
Drift Detection. Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN15), pp. 1-8.

3. Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., and
Oliveira, A. L. (2016). Computational Intelligence and Financial Markets: A
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2 BACKGROUND

This chapter discusses some fundamental concepts for this thesis. This thesis has as
main goal the construction of an adaptive learning system specifically designed for forecast
time series that eventually present concept drift. A time series is a sequence of numeric
observations collected over fixed sampling intervals (COWPERTWAIT; METCALFE,
2009). Several dynamic processes can be modeled as time series, such as stock price
movements, monthly sales of a company, daily temperature of a city, exchange rates,
among others.

In the last decades, several approaches have been proposed for time series analysis
and forecasting. Two major classes of these approaches are the traditional statistical models
and the computational intelligence approaches (WANG et al., 2011). Statistical models,
such as linear regression, exponential smoothing and autoregressive integrated moving
average (ARIMA), among others, assume that the time series under study is generated
from a linear process (KUMAR; MURUGAN, 2013). Computational intelligence methods,
such as expert systems, fuzzy systems and artificial neural networks (ANNs), have been
applied with relative success in modeling and forecasting time series (LEE, 2009). These
methods are data-driven, self-adaptive methods able to capture nonlinear behavior of time
series without statistical assumptions about the data (LU; LEE; CHIU, 2009). Section 2.1
provides a formal definition of time series and explains the background literature on time
series analysis.

Despite the fact that there is a vast literature on time series analysis, the majority
of the existing approaches does not take into account that a time series is a special kind of
data stream (CAVALCANTE et al., 2016). In data stream process, data continuously flow
at high-speed and in potentially unexpected frequency. Dynamism is an inherent feature
of data streams. This dynamism implies that patterns in the data stream may evolve over
time, which introduces a big challenge to traditional batch learning algorithms, which is
the ability to permanently maintain an accurate decision model even in the presence of
changes in the data stream. These changes are known as concept drifts (GAMA, 2012).
Section 2.2 provides a formal definition of data streams and concept drift and gives an
introduction to the literature in this area.

Concept drifts have been widely studied in classification problems (DITZLER et
al., 2015). The methods proposed for handling concept drifts can be divided into two main
groups: (i) passive adaptive methods and (ii) active adaptive methods methods. Passive
methods (KOLTER; MALOOF, 2007; SOARES; ARAÚJO, 2015) are those that update
the decision model in regular intervals, independent of the occurrence of concept drifts.
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Active methods (GAMA et al., 2004; ROSS et al., 2012), are those that monitor some
statistics of the data stream in order to detect concept drifts. However, despite there is
a considerably literature on concept drift in classification problems, just few approaches
addressed this problem in time series analysis.

2.1 Time Series Analysis
A time series is an ordered sequence of observations, usually ordered by time (WEI,

2006), in which the intervals of observations can be equally spaced or not. A widely studied
kind of time series is that represented by S = {x1, ..., xi, ...}, xi ∈ R (BROCKWELL;
DAVIS, 2002), in which each observation is measured at fixed, equally spaced time intervals,
called sample intervals (COWPERTWAIT; METCALFE, 2009). A time series of length n

can be represented by {xt} = {x1, x2, ..., xn}, or simply by {xt}, for short. Data obtained
from observations collected sequentially over time are encountered in several branches of
engineering, science, sociology, economics, in the analysis and forecasting of data such as
interest rates (OH; HAN, 2000), stock prices (CHEN, 2010), exchange rates (D’URSO
et al., 2013), sales records (DOGANIS et al., 2006), crude oil prices (BAO et al., 2011),
temperature (CHEN; HWANG, 2000), precipitation (PARTAL; KISI, 2007), wind speeds
(SFETSOS, 2002), demographic studies (HYNDMAN; BOOTH; YASMEEN, 2013), among
others.

Due to the vast number of applications, time series analysis has attracted attention
of statisticians, engineers, politicians, traders and scientists. One of the main objectives
of time series analysis is to understand the dynamic process that generates the time
series observations, which may help in decision-making. According to Palit and Popovic
(2006), some important tasks of time series analysis are: (i) definition, classification and
description of time series, (ii) model building and (iii) forecasting of future values. In the
next sections, we briefly describe these activities.

2.1.1 Time Series Definition, Classification and Description
Time series definition, classification and description are activities related to the

identification of some important components of a time series or its main behavior. The
main components of a time series are trend, seasonal pattern, and noise observations and
outliers. A trend can be defined as a systematic change in a time series that does not
appear to be periodic (COWPERTWAIT; METCALFE, 2009). It is a long-term feature
which can be observed as an increase or decrease in the level of sequential data values.
Trend analysis is an important task of time series analysis, since it gives an idea of global
or local time series behaviors.

Seasonality is a repeating pattern that may happen within fixed our variable
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periods (COWPERTWAIT; METCALFE, 2009). Many real-world time series are affected
by seasonal patterns, such as climate time series and sales time series, in which a known
pattern may repeat hourly, daily, weekly, monthly, yearly, etc. Seasonal analysis is another
important task of time series analysis, since it helps in understanding the periodical
behaviors of the underlying process. Figure 1 illustrates a time series and the identification
of the trend and seasonal patterns. Trends and seasonal components are frequently
interpreted as deterministic components of a time series and modeled with mathematical
functions. However, in more complex environments, such as financial applications, time
series frequently present a random or stochastic trend. In other environments, these
components may not be visible or simply do not exist.

Figure 1 – Original time series (left) and its decomposition in trend and seasonality (right).
In the figure on right, the continuous line represents the trend component and
the dashed line represents the seasonal component.

Source: elaborated by the author.

Noise, outliers and missing-values are data observations often found in real-world
time series. Noise and outliers are time series data observations that are very different from
previous and subsequent observations of the time series. They can be considered anomalous
observations. It is worth to mention that noise data in this context is a time series data
observation and not the residual component resulting from the removing of trend and
seasonality components of a time series. The main difference between noise observations
and outliers is that noise are observations not genuinely generated by the underlying
process, while outliers are genuine data points that may represent some peculiar situation
in the time series processes. Missing-values are values not registered in the fixed time
interval of the time series. Noise observations and missing-values are generally originated
due to errors in the data collection process, such as failures in meters or to human error.
For example, a daily temperature of a city may have a observation much higher than
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the previous and subsequent days due to failure in the thermometer. Both noise and
missing-values can difficult the time series analysis and they are typically disregarded by
the analysts. Different from noise, outliers may be of particular interest and should not be
excluded from the analysis.

According to the time series behavior, it can be classified as linear or non-linear,
stationary or non-stationary (PALIT; POPOVIC, 2006). Linear process interpret all regular
structure in a data set through linear correlations. This means that the intrinsic dynamics
of the system are governed by the linear paradigm that small causes lead to small effects
(KANTZ; SCHREIBER, 2004). All irregular behaviors or the system are attributed to
random factors. So, linear time series are generated by a linear combination of the present
and past values and a random factor and summarized by a linear model, such as a set
of ordinary differential equations. Nonlinear time series, on the other hand, are those in
which the time series observations result of a nonlinear combination of past values and
random factors. In the case of a non-linear system analysis, no tools or methodology is
universally applicable (VIDYASAGAR, 2002).

A time series is said to be stationary if its statistical properties are the same along
the whole time series observation process. The underlying stochastic process is in a state
of statistical equilibrium. In practical terms, the mean and variance of the time series
observations are constant for {xt} and {xt−k}, for any lag k. This kind of time series
presents no trends and seasonal patterns. Non-stationary time series, on the other hand,
are those with different statistical properties along the generation process. This kind of
time series is more common in engineering, business and economic fields. It is important to
discuss that there are some ways to estimate and remove certain non-stationarity aspects
of a time series, such as the trends and seasonality, in order to make the analysis easier.
The simplest way to soften the non-stationary effects of trends and seasonality in time
series is by taking the differences between successive data values xt and xt+1.

An important characteristic present in some non-linear time series data generation
process is the chaotic property. Chaos is a behavior of dynamical systems that are highly
sensitive to initial conditions. Over time, chaotic systems can produce unpredictable,
divergent and infinitely detailed and self-similar behavior (without ever actually repeating)
due to that sensitivity (BOEING, 2016). The observations of a chaotic time series may be
randomly repeated several times without maintaining any definite periodicity (PALIT;
POPOVIC, 2006).

2.1.2 Time Series Modeling and Forecasting
A second important activity of time series analysis is the building of a model from

the data. Model estimation can be used for providing a compact description of the data
or to allow forecasting and simulations. Model building can be considered one of the
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main time series analysis tasks, since a fitted model helps to understand the past and
to predict the future, enabling managers or policy makers to make properly informed
decisions (COWPERTWAIT; METCALFE, 2009). According to Shumway and Stoffer
(2010), the one of the main objectives of time series analysis is to develop mathematical
models able to describe the sample data. The fitted model provides a summary of the
main characteristics of a time series.

Different from conventional data modeling, estimating a probability model for a
time series is a particular task (SHUMWAY; STOFFER, 2010) due to the presence of a
unique feature of time series, namely the serial correlation of adjacent points in time. The
serial correlation restricts the applicability of many conventional statistical methods, which
rely on the main assumption that the data observations are independent and identically
distributed (CRYER; CHAN, 2008). So, statistical models used to describe time series
need to incorporate the serial dependence in order to be adequate for forecasting future
values. This serial dependence originates other characteristics that need to be addressed by
the time series modeling process, such as the presence of trends and seasonality, stationary
or non-stationary behaviors, linearity and non-linearity, the presence of outliers among
others. Some of these features can be identified by looking carefully the time series plots.
Others are identified by correlation analysis.

Due to its wide applicability, time series modeling has been investigated by both
statisticians and machine learning researchers. Statisticians attempt to describe time series
behavior through mathematical relations among time series components. Machine learning
approaches attempt to automatically extract the relationship that define time series
behaviors without prior statistical assumptions about the data. According to Shumway
and Stoffer (2010), the traditional statistical time series models can be divided into two
main groups: (i) time domain models, which attempt to describe the behaviors of the
time series as a parametric function of current and past values; and (ii) frequency domain
models, which assume that the primary characteristic of interest in time series is the
periodic or sinusoidal variations. Despite the fact that time domain approaches are mostly
used in engineering practice (PALIT; POPOVIC, 2006), these two approaches are not
mutually exclusive and can be used in combination to improve the modeling.

A common time domain modeling approach used in literature consists in decompos-
ing the time series into deterministic and non-deterministic components. This approach is
based on quantifying these main components of the time series and the random variation
or residuals (COWPERTWAIT; METCALFE, 2009). The deterministic components are
the trend and seasonal patterns, which can be modeled with mathematical functions of
time. When the trend and seasonal components are modeled, they can be removed from
the original time series and which results in the random component. Then another model
can be fitted to the residuals and the forecasting can be achieved by forecasting just the
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residuals. The predicted value is then obtained by adding the forecasting residuals to the
deterministic trend and seasonal models (BROCKWELL; DAVIS, 2002).

This scheme may not be properly used in time series which present no well defined
trends and seasonal patterns, such as financial data, since in these cases it is unrealistic
to assume any deterministic component. In these cases, the simple differencing may be
useful to isolate the time series residuals, since this approach does not rely on a priori
assumptions about the trend and seasonal patterns or even the assumption that these
components remain fixed throughout the observation period (BROCKWELL; DAVIS,
2002).

Model building is a challenging task. Box and Jenkins (1976) proposed a general
multi-step model-building strategy to guide the time series model estimation task. The
three main steps of this process are: (i) model specification or identification, (ii) model
fitting and (iii) model diagnostics. In the first step, a particular model needs to be chosen
considering the characteristic of the time series to be modeled (the assumptions about
the data). There are several families of statistical and computational intelligence models
available in the literature. Examples of these main models are the simple zero-mean models,
models which consider trend and seasonality, linear models, non-linear complex models,
volatility models, frequency domain models and intelligent models. (PALIT; POPOVIC,
2006). Some of these models are described in more detail below in this section.

In order to help in identifying the most appropriate model, we can use some
knowledge of the domain to be modeled or we can perform an analysis of the time series
features through the time series plots, scatter plots, autocorrelation function, among other
tools (COWPERTWAIT; METCALFE, 2009). An important requirement is that the chosen
model should have few parameters to be adjusted. The adjustment of several parameters
may result in an overfitting of the model to the historical data and consequently it would
present poor extrapolation ability (BERGMEIR; BENÍTEZ, 2012). Methods with a high
number of parameters are more sensitive to incorrect settings of the parameters, which
may hinder the process of finding the true patterns in data. So, higher-order polynomials,
for example, may give a good fit to the historic time series, but they should not have good
accuracy in forecasting unseen time series observations.

The second and third steps of the model building are the model fitting and model
diagnosis. After an appropriate model has been chosen, the model parameters are estimated.
Model fitting consists in finding the best parameters to describe the observed data. Methods
such as least squares and maximum likelihood are useful approaches for model fitting. The
model diagnosis consists in assessing the quality of the estimated model. Some accuracy
metrics should be used in order to measure this quality. If some inadequacies are found in
the built method, the process should return to the first step. The process needs to restart
until an adequate model is built, according to the objective criteria defined.
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2.1.2.1 Traditional Statistical Models

The statistics literature proposed several mathematical time series models. Each
family of statistical models has its particularities and it is designed to model specific time
series behaviors. The simplest model for a time series is the white noise, which is designed
to time series with no trend and seasonal components and in which the observations are
independent and identically distributed (iid) random variables with zero mean and finite
variance. Time series generated from uncorrelated variables can be described as a Gaussian
white noise model {wt}, in which wt ∼ N(0, σ2

w). Figure 2 illustrates the behavior of
a Gaussian white noise time series. If the stochastic behavior of a time series could be
explained in terms of the white noise model, classical statistical methods would suffice to
describe that time series (SHUMWAY; STOFFER, 2010). The Gaussian white noise model
plays an important role in the analysis of residuals of a time series model (BROCKWELL;
DAVIS, 2002).

Figure 2 – White noise time series.

Source: elaborated by the author.

In the increasing scale of model complexity, the random walk model is obtained by
cumulatively summing white noise observations. A random walk with zero mean is obtained
by the eq. 2.1, where {wt} is a white noise. A random walk generally provides a good
fit to data with stochastic trends and no defined seasonal patterns (COWPERTWAIT;
METCALFE, 2009), such as financial time series. The random walk behavior can be
observed in Figure 3.

xt = xt−1 + wt, (2.1)
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Figure 3 – Random walk time series.

Source: elaborated by the author.

Another important linear model is the autoregressive (AR) model. A time series
{xt} can be modeled by an autoregressive process of order p, abbreviated as AR(p), if its
points can be defined as in eq. 2.2, where α1, ..., αp are the model parameters and {wt} is
a white noise (COWPERTWAIT; METCALFE, 2009). The random walk is an special
kind of AR(1) process with α1 = 1. The shape of an AR(4) time series with parameters
α = [0.9; −0.2; 0.8; −0.5] can be visualized in Figure 4.

xt = α1xt−1 + α2xt−2 + ... + αpxt−p + wt (2.2)

A linear model suitable for stationary time series is the moving average process. A
time series {xt} is a moving average (MA(q)) process of order q if its observations can be
obtained by a linear combination of the current white noise and the q most recent past
white noise observations, as defined in eq. 2.3. The shape of a MA(3) time series with
parameters β = [0.8; 0.6; 0.4] can be visualized in Figure 5.

xt = wt + β1wt−1 + β2wt−2 + ... + βqwt−q (2.3)

The autoregressive integrated moving average (ARIMA) model is a general class of
linear models that integrates the autoregressive (AR(p)) and moving averages (MA(q))
process. A time series {xt} follows an ARIMA(p, d, q) process if the dth differences of
{xt} is an ARMA(p, q) process. An ARIMA(1,1,1) time series can be visualized in Figure
6. This model is widely used in the literature to model and forecasting time series (WANG;
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Figure 4 – AR(4) time series.

Source: elaborated by the author.

Figure 5 – MA(3) time series.

Source: elaborated by the author.

HUANG; WANG, 2012). An improvement of ARIMA for modeling time series with seasonal
effects is the seasonal ARIMA (SARIMA). SARIMA model uses differencing at a lag equal
to the number of seasons to remove additive seasonal effects.

A statistical time series model widely used in financial applications, for example, is
the Generalized Autoregressive Conditional Heteroskedastic (GARCH) model. In some
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Figure 6 – ARIMA(1,1,1) time series.

Source: elaborated by the author.

cases, it is more realistic to consider that the residuals resulting of fitting a model to a time
series have no zero mean and constant variance (such as in ARIMA), but they are serially
correlated and can be modeled by an AR process (GARCIA et al., 2005). In financial time
series forecasting, GARCH is typically used to model volatility in financial prices. GARCH
is an extension of the Autoregressive Conditional Heteroskedastic (ARCH) model, which
models the conditional changes in variance (COWPERTWAIT; METCALFE, 2009). A
series {�t} is first-order autoregressive conditional heteroskedastic, denoted ARCH(1), if
its observations are defined as in eq. 2.4, where {wt} is white noise with zero mean and unit
variance and α0 and α1 are model parameters. The ARCH model should only be applied
to a residual series {�t} that is uncorrelated and contains no trends or seasonal changes,
such that resulting after fitting a satisfactory model. A series {�t} is GARCH(p, q) if it
can be defined as in eq. 2.5, where ht is given by eq. 2.6.

�t = wt

�
α0 + α1�2

t−1 (2.4)

�t = wt

�
ht (2.5)

ht = α0 +
p�

i=1
αi�

2
t−i +

q�

j=1
βjht−j (2.6)

In addition to the methods described herein, several other statistical models have
been proposed in the literature. Despite the fact that traditional statistical time series
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models have been widely used to model and forecast time series, there are some issues
that prevent the use of these methods on a large number of real-world time series. One
of them is the difficult to automatize the model specification task (in the first phase of
the general model-building process). The task of choosing a suited model to a time series
generally involves the analysis of plots and autocorrelations, making assumptions about
the time series behaviors and even the need of some knowledge of the modeled field. These
tasks sometimes difficult the automation of the time series modeling. Another important
issue is that traditional models generally assume that the time series under study are
generated from a linear process (KUMAR; MURUGAN, 2013). However, several time
series, mainly in the financial and economical fields are essentially complex, highly noisy,
dynamic, nonlinear, and chaotic in nature (SI; YIN, 2013). A third issue is the risk of
overfitting of the model to the training data. Some complex time series requires high-order
polynomials to better define the time series behaviors. However many parameters may
imply in over adjustment of the model to the data, and consequently it may result in bad
forecasting accuracy.

2.1.2.2 Computational Intelligence Models

In the last years, computational intelligence methods have been applied with
relative success in modeling and forecasting time series (LEE, 2009). These techniques are
more adaptive and flexible, since they are able to capture linear and nonlinear relationship
between relevant factors with no prior knowledge about the input data (ATSALAKIS;
VALAVANIS, 2009). Among these techniques, artificial neural networks (ANN), support
vector machines (SVM) and hybrid methods, have been widely used in forecasting time
series, since they are able to estimate time series behaviors without any prior statistical
assumptions about the data (TAY; CAO, 2001; LU; LEE; CHIU, 2009). They generally
exhibit high tolerance to imprecision and perform relatively well in noisy environments;
they are numeric, data-driven, non-parametric and self-adaptive mechanisms; they require
less historical data than traditional statistical models (CHENG; WEI, 2014). According to
Liang et al. (2009), it is generally believed that non-parametric methods outperform the
parametric methods in forecasting complex time series, such as financial time series, for
example.

Palit and Popovic (2006) describes a systematic procedure, similar to that proposed
by Box and Jenkins (1976), to forecast time series with computational intelligence methods.
This procedure includes the following operational steps: (i) data preparation, (ii) algorithm
definition, (iii) training and (iv) forecasting evaluation. Figure 7 summarizes these four
steps of the machine learning modeling and forecasting methodology.

Data preparation is the first step of the time series modeling and forecasting process.
Data preparation starts by acquiring the data to be learned and modeled. After the data
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Figure 7 – Time series modeling and forecasting methodology using computational intelli-
gent methods.

Source: elaborated by the author.

acquisition, the application of some preprocessing procedure on these data may be very
useful, since they may be used to improve the accuracy of an intelligent predictor in several
ways. Feature selection or extraction methods can be applied to a dataset in order to
select the best representative features of the input data which reduce the input dimension
and consequently minimize the training time. Preprocessing mechanisms can be used to
filter irrelevant features and noise from input data or detect and correct outliers. Methods
such as Principal Component Analysis (PCA) (TSAI; HSIAO, 2010; WANG; WANG,
2015), Independent Component Analysis (ICA) and its nonlinear variant (NICA) (LU;
LEE; CHIU, 2009; DAI; WU; LU, 2012; KAO et al., 2013) and Wavelet Transform (WT)
(GRANÉ; VEIGA, 2010; WANG et al., 2011) have been used in literature to filter noise
from data, detect outliers and correct them as a preprocessing step of time series modeling.

The normalization task consists in scaling the attribute values for the use in training
step of the machine learning method. Structuring data means to organize the available
data for supervised learning and consists in activities such as dividing the data in training,
validation and test, defining the past lags to be used as input and the future lags to be
forecasted, among other activities.

Model definition consists in choosing the forecasting method to be used and
configuring its architecture. Several machine learning models have been proposed in the
literature to model and forecast time series, such as artificial neural networks, support
vector regression, fuzzy systems, ensemble techniques, among several others (PALIT;
POPOVIC, 2006). The architecture configuration is the definition of intrinsic model
properties. For a multilayer perceptron (MLP), for example, in this phase the designer
should define the number of input, output and hidden nodes, the number of hidden layers,
the activation function to be used, among other architectural aspects.
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In order to forecast future time series values, several artificial neural network models
have been used in the last decades, such as the MLP trained with backpropagation (DHAR;
MUKHERJEE; GHOSHAL, 2010; KAYAL, 2010; OLIVEIRA et al., 2011), Functional Link
Artificial Neural Network (FLANN) (MAJHI; PANDA; SAHOO, 2009), Self-Organized
MLP (SOMLP) (MAHDI; HUSSAIN; AL-JUMEILY, 2009), Radial Basis Function (RBF)
Neural Network with Gaussian radial function, Legendre Neural Network (LIU; WANG,
2012), Bayesian Neura Networks (TICKNOR, 2013), among others.

Support Vector Machines (SVM) are computational intelligent learning methods
that have been widely used as an alternative for ANN in pattern recognition tasks. SVM
learning mechanism implements a risk function that considers the empirical error and a
regularized term based on the structural risk minimization principle (CHEN, 2010). SVM
constructs a hyperplane as the decision surface such that the margin of separation between
points in different classes is maximized. Decisions are made based on support vectors which
are data points that define the classification boundaries in the training set. In contrast to
the empirical risk minimization principle, which tries to minimize the miss-classification
error, the structural risk minimization principle implemented by SVM seeks to minimize
an upper bound for the generalization error. According to Yuan (2013), the solution of
SVM may be the global optimum, while conventional ANNs tend to produce just local
optimum solution. Due to its strongly nonlinear approximation ability, SVM have been
applied both in classification (SVC) and regression problems (SVR) (GUO-QIANG, 2011).
In time series forecasting, several authors have been used SVM (CHEN, 2010; LUO; WU;
YAN, 2010; BAO et al., 2011; CHAO; LI-LI; TING-TING, 2012) as forecasting model.

Several researchers proposed the use of hybrid mechanisms, in order to combine
individual solutions of different intelligent algorithms to forecast time series (TRESP,
2001). The combination of individual approaches may allow the reduction of uncertainties
in parameter adjustment and the stochasticity in training (KOURENTZES; BARROW;
CRONE, 2014). By facing the forecasting problem with dividing and conquer approach,
two or more intelligent approaches may contribute with their individual knowledge to
improve the forecasting performance of the whole group. Liang et al. (2009) proposed
a cascade hybrid method in which a statistical model is fitted to time series trend and
a computational intelligence method is used to learn the residuals of the statistical
model. (WU; SHAHIDEHPOUR, 2010) proposed a hybrid mechanism that combines an
Autoregressive Moving Average with Exogenous Variables (ARMAX) model, GARCH
and Adaptive Wavelet Neural Network (AWNN). (ZHU; WEI, 2013) proposed a hybrid
approach in which an ARIMA and Least Squared Support Vector Machine (LSSVM) are
used to model linear and a nonlinear components of a time series. Nayak, Mishra and Rath
(2015) presented a hybrid model that integrates SVM with K-Nearest Neighbor (KNN)
approach.
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Several researchers have used a different strategy of combining individual expert
knowledge to model and forecasting time series, called ensemble learning. The motivation
to use ensembles is to combine individual learning algorithms instead of using a single
algorithm to improve the modeling of an environment. There are several strategies to
build ensemble methods, such as training the individual models with the same data in
order to reduce training problems, or training individual models with instances located in
different positions of the feature space. Ensembles can be constructed with algorithms of
the same type or with different learning algorithms. Neto et al. (2010) investigated the use
of ensemble of MLPs and RBF networks to forecast time series. Cavalcante and Oliveira
(2014) compared the use of Extreme Learning Machine (ELM) and Online-Sequential
Extreme Learning Machine (OS-ELM) ensembles in this context. Ballings et al. (2015)
provided a comparative study on evaluation performance of ensemble methods, namely
the random forest, adaboost and kernel factory, against single classifier models, namely
ANN, logistic regression, SVM and KNN.

After choosing the intelligent model, we need to train it with the available time
series data. The training phase consists in selecting the training algorithm, adjusting
training parameters and executing the training procedure in order to estimate a model of
the learned data. The training algorithm defines a set of rules to fit the chosen model to
the training data. Since every training algorithm has a set of parameters to be set, the
designer should define how to adjust these parameters in order to improve the forecasting
performance. When using a MLP trained with backpropagation, for example, the designer
needs to define the learning rate, the number of training epochs, the stopping criteria
for the training, among other aspects. After these definitions, the training needs to be
performed in order to fit the data.

The parameters to be set for a computational intelligence algorithm pose an
important challenge to the use of these methods, since some of these parameters can
highly influence the forecasting accuracy. In order to avoid this issue, some researchers
have investigated the use of optimization algorithms to find the best parameter setting
for a machine learning algorithm and improve forecasting accuracy, such as Artificial
Bee Colony (ABC) (BRASILEIRO et al., 2013), Genetic Algorithms (GA) (HUANG,
2012; EVANS; PAPPAS; XHAFA, 2013), Particle Swarm Optimization (PSO) (ABDUAL-
SALAM; ABDUL-KADER; ABDEL-WAHED, 2010; PULIDO; MELIN; CASTILLO,
2014), among others.

The last phase (evaluation) consists in defining the evaluation metrics and in
measuring the accuracy of the results obtained by running the trained method on the test
data. Forecasting evaluation can be performed by using machine learning regression error
measures, such as Mean Absolute Error (MAE) (eq 2.7), Mean Absolute Percentage Error
(MAPE) (eq 2.8) and Root Mean Square Error (RMSE) (eq 2.9), where yi is the actual
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value, ŷi is the forecasting value and n is the number of predictions made (BERGMEIR;
BENÍTEZ, 2012). These metrics are the most commonly used as figures of merit in time
series forecasting studies in literature.

MAE = 1
n
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i=1
|ŷi − yi| (2.7)
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n
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2.2 Data Streams
The machine learning field has been dedicated to develop learning algorithms

able to learn about specific problems with experience and helping people in decision-
making (MITCHELL et al., 1997). Machine learning methods try to automatically acquire
knowledge of a specific domain aiming at improving the solution of automatic tasks by
means of experience (GAMA, 2012). The machine learning literature may be divided some
groups of approaches, such supervised, unsupervised and reinforcement learning approaches
(DUDA; HART; STORK, 2012), through different paradigms, such as symbolic, statistical,
based on examples, evolutionary, among others. In the last decades, the supervised
machine learning literature has concentrated in batch learning algorithms to model small
persistent data sets (GAMA, 2010). In this learning scheme, the whole training data is
available to the algorithm, and the training process can consult these data in several
steps. The main assumption of batch learning algorithms is that the modeled data is
independent and identically distributed and generated from an immutable distribution
(GAMA; SEBASTIÃO; RODRIGUES, 2009). So, the modeling task consists in extracting
some relationships about instance attributes (or descriptors) and outputs of the data set
instances. The model learned is then used for solving future unseen cases of the same
problem.

With the recent advances in information systems and technologies, there has been
an increase in the amount of information continuously collected by these systems. In
many applications, such as credit card activity analysis, financial markets, sensors network,
web mining, telecommunications, network monitoring, the volume of collected data is
so large that it imposes some restriction to process and store these data (AGGARWAL,
2007). In these information systems, data continuously flow possibly at high-speed and in
potentially unexpected frequency. A representative example of application that handle
continuous streaming of data is the detection of fraudulent credit card activities. Several
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credit card operations occur simultaneously and with no regularity in the frequency of the
transactions. The number of credit transactions increases indefinitely in a continuous flow
and at a high-speed.

In these real-world applications, the huge volume of data makes impossible the
storage of all historic data, and consequently, it makes impossible to process the data
efficiently in multiple passes (AGGARWAL, 2007). Data streams introduce several chal-
lenges to machine learning methods. Besides the large volume of data, frequently data
streams are dynamic and time-changing. So, these data frequently present patterns that
evolve over time, which prevents the direct use of batch learning algorithms. Due to the
inherent dynamics, the main assumption of stationarity may not hold for several industrial
applications which deals with streaming of continuous data. As a result, a static decision
model is a problem in data streams.

We can illustrate some issues of applying conventional batch learning in dynamic
data streams with the modeling of a classical problem of machine learning, which is the spam
filtering. Spam is an unsolicited commercial communication which causes inconveniences
to email users. Due to the importance of this problem, several machine learning techniques
have been applied to model the problem of deciding which is a legitimate or a spam
message. In a batch learning scheme, a set of pre-classified messages is presented to a
machine learning algorithm, which attempts to extract a model of the explicit and implicit
the relationship among message features and the label of the message. In this problem,
there is a high cost associated to false positives, which is to classify a legitimate message as
a spam and block the message (FDEZ-RIVEROLA et al., 2007). However this environment
is dynamic, and the true label of a message can change due to changes in the spammers
activities, or even due to changes in the users interests. In case of environment changes,
batch learning algorithms will commit several classification mistakes.

Gama (2010) listed several differences between processing data streams and conven-
tional data sets. Data streams are better modeled as transient data rather than persistent
tables, since the data elements arrive online. Due to the high-frequency in which data
arrives, it is impossible to store all data in the disk. Besides, it is not possible to control or
even known a priori the order in which data elements arrive in the system. Data streams
are potentially unbound in size, or in other words, they are open-ended data sets.

These characteristics of data streams demand a different paradigm of effective
mining algorithms. One of the main challenges is that the underlying regularities in data
may evolve over time rather than being stable. So, the data cannot be considered identically
distributed along the data stream mining process (GAMA; SEBASTIÃO; RODRIGUES,
2009). Robust data mining methods applied to data streams must have mechanisms to
monitoring incoming data, detect changes and incorporate these changes in the learned
model. These changes are referred in the literatures as concept drifts (GAMA, 2012).
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Concept drift causes a degradation in predictive accuracy of conventional machine learning
models (GAMA et al., 2004).

The high speed nature of data streams requires faster algorithms to process this
kind of data. These algorithms should be able to take decisions and eventually adapt
themselves as fast as the rate of data arrival (GABER; ZASLAVSKY; KRISHNASWAMY,
2007). This imposes a restriction that data cannot be scanned more than once. Once an
element has been processed, it should be discarded or archived, and not retrieved easily.
As a result, online and adaptive mining algorithms are required to solve both concept drift
and high speed issues. However, these objectives are conflicting, since more adaptation
implies in better accuracy, but requires more processing time. A tradeoff between accuracy
and efficiency in terms of processing and memory should be pursued.

Learning from evolving data streams has become a hot topic in the last years. The
main machine learning applications, namely classification, regression, clustering, frequent
pattern mining, among others, need to address space, learning time and generalization
restrictions imposed by data streams. However, despite the increasing interest in adaptive
systems designed for data streams, they are still rarely deployed in real-world applications
in practice (ZLIOBAITE et al., 2012). Zliobaite et al. (2012) summarize six main challenges
in building practical adaptive learning systems: (i) making adaptive systems scalable,
(ii) dealing with realistic data, (iii) improving usability and trust, (iv) integrating expert
knowledge, (v) taking into account various applications needs, and (vi) moving from
adaptive algorithms towards adaptive tools.

Among these challenges, the improvement of usability and trust can be one of
the main factors that still prevents wide use of adaptive learning systems in industrial
applications. Most of the proposed adaptive learning methods have a huge number of user
adjustable parameters. The tunning of these parameters is often a difficult task, which
affects negatively the usability of the model. It also decreases the trust of users on the
system, since the model may be updated thousands of times by means of retraining and, at
every retraining, the parameters need to be tuned again. Since these methods perform in
an online mode, the parameters should be optimized automatically. Industrial applications
strongly require models with a few adjustable parameters as possible (ZLIOBAITE et al.,
2012). A possible solution is the design of self-adjusting parameters, but it is not an easy
and computationally cheap task.

2.3 Concept Drift
Concept drift is the problem associated with supervised learning in which the

relation between input attributes and target variable changes over time (GAMA et al.,
2014). Traditional machine learning and data mining have not to face this problem, since
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they have been performed in an offline way and usually to model relative small data sets.
In this scenario, model building consists in a process of inducing a model by several passes
on the training data subset, and this model could be used to estimating outputs. The
training phase, generally using a smaller testing set, is then performed to assess the model
accuracy.

However, the traditional mining approach may not be effective when applied to
model high-frequency, open-ended, continuous data streams. The main assumption of
stationarity in data can not be sustained due to dynamism inherent to data streams. The
changes in data can be due to seasonality or periodicity effects, changes in user behavior or
psychology, climate changes, among others (DITZLER et al., 2015). In these environments,
it is required that the learning algorithms be able to change the learned model in order
incorporate the new states of the data. More than just adapt, learning algorithms need to
be able to track and analyze the nature of these changes (AGGARWAL, 2007), since they
can be very useful for the users.

According to what actually changes in the data stream, the literature makes a
distinction among two kinds of concept drifts (GAMA et al., 2014): (i) real concept drift,
which refers to changes in the conditional distribution of the target variables given the input
variables (p(y|X)), and (ii) virtual concept drift, which refers to changes in the incoming
data distribution (p(X)) without affect the conditional distribution (p(y|X)). Figure 8
illustrates the differences between real and virtual concept drifts in the classification
context for a two-dimensional problem. It is good to mention that, in practice, changes
in p(X) may be associated to changes in p(y|X). This may be frequently the case in
classification, and can be particularly the case in time series forecasting, given that X is
computed based on previous y values.

Figure 8 – Real and virtual concept drifts.

Source: adapted from Gama et al. (2014).

According to the speed at which the change occurs, drifts can fall into two categories:
(i) abrupt concept drifts, in which the incoming data distribution changes suddenly in a
few time steps, and (ii) gradual concept drift, in which the changes are slow and take more
time to be complete. Abrupt concept drifts may be easier to be detected than gradual
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drifts. Several researchers, such as Goncalves and Barros (2013) and Alippi, Boracchi and
Roveri (2013b), investigated another class of concept drift: the recurring concept drift, in
which concepts tend to repeat along the time. In these cases, some memory of past drifts
may be useful to improve the system performance. In recurring concept drifts, the speed
of change can be abrupt or gradual.

According to Minku, White and Yao (2010), these denominations are not sufficient
to classify the kinds of drifts that can occur in data streams, since this classification results
in heterogeneous categories of drifts. Authors claim that when analyzing drifts in isolation,
it can be observed that different drifts can cause different amount of changes, and these
changes can take more or less time to be completed. To analyze drifts in isolation, they
proposed a categorization of drifts based on two criteria, namely (i) severity, which is the
amount of changes that a new concept causes, and (ii) speed, which is the inverse of the
time taken for a new concept to completely replace the old one. A further division is made
in the level of class or feature changes. Class severity reflects the changes in the prior (p(y))
or posterior probabilities (p(y|X)). Feature severity criterion covers the changes in the
unconditional (p(X)) and class-conditional (p(x|y)) probabilities. In terms of class severity,
a drift is considered severe when all examples in the input space change the target class
when the drift occurs. On the other hand, if part of the input space has the same target
class in the old and new concepts, then the drift is said intersected. In terms of feature
severity, drifts are said severe when the probabilities associated to the whole input space
are modified and intersected if part of the input space maintains the same probability.

Minku, White and Yao (2010) also proposed a categorization when analyzing drift
sequences by means of three criteria: (i) predictability, (ii) frequency and (iii) recurrence.
According to the predictability criterion, drifts can be divided into random and predictable.
Predictable drifts are those in which the sequence of changes can be learned to predict
future changes. The frequency defines how often concept drifts happen in data. According
to the frequency criterion, drifts can be divided into periodic and non-periodic. Concept
drifts that take place at every t time steps are considered periodic. Otherwise they are
non-periodic. The recurrence criterion, as discussed previously, divides drifts into recurrent,
if they returns to previous concepts, and non-recurrent, otherwise. Recurrent drifts may
present cyclic (periodic) or unordered behavior.

There are several methods proposed to cope with concept drift in data streams.
Recently, Ditzler et al. (2015) proposed a valuable discussion about the existing methods.
According to these authors, the adaptive mechanisms to cope with concept drift can be
divided into two main groups: (i) passive adaptive approaches, which are adaptive learning
systems that continuously update the model over time, without requiring an explicit
detection of change, and (ii) active adaptive approaches, which are learning systems which
rely on an explicit detection of the change in data distribution to activate an adaptation
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to the change. In the rest of this chapter we discuss these two main categories of methods.

2.3.1 Passive Adaptive Methods
Passive approaches, also called implicit or blind methods (KOLTER; MALOOF,

2007; FDEZ-RIVEROLA et al., 2007; TSYMBAL et al., 2008; SOARES; ARAÚJO, 2015;
MIRZA; LIN; LIU, 2015) are those that update the decision model at regular intervals,
independent of the occurrence of concept drifts. Two major passive learning approaches
are (i) the online and incremental methods, and (ii) the dynamic ensemble approaches.
The methods which rely on an online or incremental learning approach are those in which,
for each new example xt arriving from the data stream, the decision model is used to
predict the class ŷt of the example and, when the true label yt of that example is available,
the method updates the learning model to incorporate the new knowledge in case of error
(GAMA et al., 2014).

Dynamic ensemble learning has been used to handle concept drift in data streams
with relative success (DITZLER et al., 2015). Ensembles are methods that employ several
individual decision models to produce a global prediction. Ensemble methods handle
concept drift by dynamically adding and removing individual models according to their
individual prediction performance. The dynamics of ensembles implements two important
features for handling concept drift: the forgetting mechanism and the incremental learning.
The removing of individual decision models which have bad performance implements the
forgetting mechanism, since the disposal of models means forgetting older information,
probably from a previous concept. The adding of new individual models implements the
incremental learning, since new decision models are trained with the more recent examples
from the data stream.

An important challenge that needs to be addressed in building adaptive methods
which rely on online learning or dynamic ensembles is the definition of which recent
examples from the data stream should be used for updating or training new decision
models. Since these methods implement no explicit drift detection mechanisms, they cannot
precise the exact instant in which a concept drift happened. So, the task of defining which
examples should be used to model the new concept is critical to these approaches. In the
literature, some methods have been handling this issue by means of instance weighting
and instance selection strategies (FDEZ-RIVEROLA et al., 2007). The instance weighting
mechanism consists in assigning weights to the examples according to their age or utility for
defining the new concept (SOARES; ARAÚJO, 2015). These weights are used internally by
the adaptive learning system in order to update the learning model. In ensemble methods,
for example, the instance weights may be used to define the performance of the individual
models and for deciding which of them will be removed from the ensemble. Models that
commit mistakes to classify instances with higher weights are more likely to be excluded
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from the ensemble.

Instance selection consists in defining the subset of examples that should be used for
retraining. This is a very simple adaptation scheme to work in non-stationary environments
(ALIPPI; BORACCHI; ROVERI, 2011). The simplest instance selection scheme is the
use of a sliding window of fixed size which slides over the data stream instances. The
instances in the window are used to retrain or update the learned model and older data are
discarded as the window slides (ZHANG et al., 2009). Since the sliding window contains
the more recent data arrived from the data stream, it is expected that concept drift would
be handled implicitly by successively retraining the decision model with the more recent
data. The main issue of using sliding windows of fixed size is the definition of the window
size. If the window size is large, old instances, perhaps from a previous concept, may be
included in the window, which can hinder the learning process. Besides, more memory
is needed to store the instances in the window. On the other hand, if the window size is
small, the instances in the window may be insufficient to define the new context (GU;
TAN; HE, 2013). Fdez-Riverola et al. (2007) investigated how to handle concept drift in
the spam filtering problem by means of an instance selection strategy based on the sliding
window scheme.

There are two important issues of the passive adaptive approaches that need to be
discussed. The first of them is that passive approaches handle concept drift in an implicit
way, and the user is unaware of changes in the data stream. In some applications, it is
useful for the user to know when changes occurs. Explicitly detecting and informing the
users about concept drifts may increase the trust in the adaptive system. Users could make
certain decisions based on the knowledge that a change has been occurred. The second
important issue is that passive methods handle concept drift by successive adaptations in
the learning model. Excessive adaptation may represent a waste of resources and provide
only incremental insignificant benefits towards the prediction performance (ZLIOBAITĖ;
BUDKA; STAHL, 2015). Some applications, such as the forecasting of high-frequency
trading markets (HFT) (CHORDIA et al., 2013) and prediction of conditional branch
outcomes in microprocessors (FERN; GIVAN, 2003), require efficiency in decisions and
this implies in efficient adaptive learning methods. In other applications that have no
frequent changes, the successive adaptation represents a constant computational cost, but
does not result in improvements in prediction accuracy.

2.3.2 Active Adaptive Methods
Active adaptive learning methods (GAMA et al., 2004; ALIPPI; BORACCHI;

ROVERI, 2011; ROSS et al., 2012; GONCALVES; BARROS, 2013) are the adaptive
learning systems that rely on a explicit concept drift detection mechanism, reacting to
changes by updating the existing model or building a new one. At this point it is important
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to distinguish the term active adaptive learning from the term active learning. Active
learning is a set of algorithms and heuristics that select which data points are used in
the training set in order to reduce the number of data points used in training and/or to
improve the generalization performance of a learning method (ROY; MCCALLUM, 2001;
BACH, 2006). Active adaptive learning is a detect-to-react learning scheme used to cope
with concept drifts in data stream learning.

An advantage of detecting-and-reacting approaches is that this adaptive learning
scheme is transparent, by informing the user about the occurrence of concept drifts. The
learned model may be updated just after a drift detection, which can save computational
resources of the adaptive model. Two main explicit drift detection approaches are those
that monitor the residuals of a fitted model and those that monitor features extracted
from the data generating process. Methods that monitor the residuals of a fitted model
rely on the assumption that when the distribution of incoming instances to be predicted is
immutable, it is expected that the residuals of the fitted model are constant or decrease
as the number of predicted instances increases (GAMA et al., 2004). On the other hand,
when a change in the data distribution occurs, which configures a concept drift, it is
expected that the residual level increases. So, in order to monitor changes in the residual
level, these methods implement statistical tests to identify statistically significant changes
before firing a concept drift. When a concept drift is identified, a drift signal is triggered,
which indicates that the decision model needs to be updated to reflect the new concept.

Examples of explicit concept drift detection mechanisms based on monitoring
classification errors are the Drift Detection Mechanism (DDM) (GAMA et al., 2004), the
Early Drift Detection Mechanism (EDDM), the Exponentially Weighted Moving Average
for Concept Drift Detection (ECDD) (ROSS et al., 2012) and the Page-Hinkley test (PHt)
(PAGE, 1954). The main assumption of these methods is that a change in the distribution
of the online error-rate may indicate a change in the incoming data distribution. The main
difference between these methods is the way of identifying a concept drift. DDM compares
the mean and standard deviation of the errors with the minimum mean and standard
deviation up to the considered instances. EDDM monitors the distance between two
consecutive errors. ECDD compares the exponentially weighted moving average (EWMA)
of the error with the simple average of the error. PHt monitors the cumulative sum of the
error means. An important work, proposed by Goncalves et al. (2014), compared eight of
the most cited error-based explicit drift detection methods, namely the DDM, EDDM,
PHt, ECDD, Adaptive Windowing (ADWIN), Paired Learners (PL), Statistical Test of
Equal Proportions (STEPD) and Degree of Drift (DOF) in the context of data stream
classification. DDM was the best method in terms of accuracy.

Minku and Yao (2012) proposed an ensemble method for handling drift detection
which employs a mechanism for explicit drift detection, instead of handling changes
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implicitly. The main idea of the proposed method, called Diversity for Dealing with Drifts
(DDD), is to maintain ensembles with different levels of diversity in order to achieve
robustness to different types of concept drift. DDD is also based on the idea that drifts
should be detected as soon as possible in order to obtain fast adaptation. As early drift
detection can usually be achieved at the cost of an increased number of false alarms, DDD
was also designed to achieve robustness to false alarms by keeping different ensembles.
The drift detection method used by DDD is the EDDM drift test, even though other
drift detection methods are also applicable. Experimental results performed on that paper
showed that DDD presented good drift accuracy in comparison to other explicit and
ensemble methods.

Despite the fact that explicit drift detection method based on residuals of a fitted
model have been extensively used in the literature, they present some drawbacks. The
main issue of these approaches is that the residual levels may not properly reflect concept
drifts. As discussed by Kuncheva and Faithfull (2014), in some cases, the same model
may have a good accuracy even when the data distribution changes. This phenomenon
is illustrated in Figure 9. In other cases, if a poor training process is used to build the
decision model, the accuracy may remain bad even in the presence of changes in data
distribution. In these cases (Figure 10) the concept drift will not be detected either.

Figure 9 – The data changes but the classification accuracy remains good. The original
data is on the left. In the other cases, the points in black appeared after a
concept drift. The error-rate remains the same in all cases and does not indicate
concept drift.

Source: adapted from Kuncheva and Faithfull (2014).

Explicit drift detection methods which monitor some features extracted from the
data stream are expected to provide better drift detection accuracy in theory. This kind
of explicit drift detection may provide a better understanding of how concepts evolve
over time than those based on monitoring the prediction error. Since they monitor data
distribution features, the drift detection process relies just in the statistical test that assess
the evolving of the data distribution and in the feature set used to describe the data.

An important distinction among explicit drift detection approaches based on
monitoring extracted features is related to the delay of detection presented by these methods.
The majority of the proposed drift detection methods that monitor data distribution or
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Figure 10 – The data changes but the classification accuracy remains bad. The original
data is on the left. The error-rate remains the same in all cases and does not
indicate concept drift.

Source: elaborated by the author.

statistical behaviors perform a retrospective drift detection (GOMBAY; SERBAN, 2009).
In this kind of explicit detection, the whole data stream needs to be available and the
drift identification process consists in search for change-points or structural breaks in
the data stream behavior. These methods are very useful in applications which require
some explanation about data generation process behaviors, such as in climate time series
applications (WERNER et al., 2015), interest rates analysis (OH; HAN, 2000), among
others.

Very few methods have been designed to detect concept drifts based on features in
real-time. For example, Alippi, Boracchi and Roveri (2011) proposed an adaptive classifier
which implements an explicit drift detection test based on the Intersection of Confidence
Intervals (ICI) rule. In this approach, an initial data subset (training set), assumed to be
stable, is used to model the initial concept. Then, the stationarity of the data generator
mechanism is monitored online by means of a set of features which are independent and
identically distributed and follows a Gaussian distribution. A change in this data stream
is detected by inspecting each feature separately using the ICI rule. In stable conditions,
it is expected that feature values are also stable. The ICI rule is used to assess variations
in the expected value of each feature. During the operational phase, the test computes
for each instant the zeroth-order polynomial fit for each feature, and the ICI rule is used
to verify if the intersection of all confidence intervals for a feature differs from the empty
set. When this intersection is an empty set, the ICI rule identifies a non-stationarity in
the data stream. When a drift is detected the classifier is reconfigured to the new process
state.

In a subsequent work, Alippi, Boracchi and Roveri (2013b) extended the proposed
explicit drift detection method to cope with recurrent concepts. The main idea is to create
representations for the concepts identified during the processing of the data stream. Once
a concept drift is identified, the concept representation is created and compared with
the stored representations of concepts. When a new concept is similar to a previously
seen concept, its supervised samples are used to reconfigure the classifier, in order to
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improve the classification of the new concept. The proposed classifier detects concept drift
by means of two concept drift tests monitoring the distribution of input data and the
classification error. According to the authors, this method reduces false positive detections.
The ICI-based concept drift test is used to detect concept drifts in the monitored variables.
A main issue of this approach is that the representation of the already seen concepts is
based on storing the supervised examples and the features that characterize the concept,
which requires an amount of extra memory.

Goncalves and Barros (2013) combines both feature extraction and residual mon-
itoring to handle recurring concept drifts. The proposed method stores a collection of
individual classification models trained to different concepts and the data samples used to
build them. Two error-based explicit drift detection tests, namely DDM and EDDM, were
used to identify concept drifts. When a concept drift is detected, the proposed method
compares the current data distribution to the several stored data distribution samples
in order to verify whether the new concept was previously seen or is a new context. A
multivariate non-parametric statistical test is used to check the similarity of two data
distributions. In case of the current concept has already been seen above, the classifier
built for that concept is recovered from the pool of stored classifiers to be used. On the
other hand, if the data configures a new context, the incoming data is used to build a new
classifier. Several experiments were made to compare the proposed framework with some
drift mechanisms proposed in literature and results showed an equivalent performance of
the proposed approach.

Figure 11 relates the different types of methods for dealing with concept drift
proposed so far in the literature. As discussed before, the adaptive learning schemes can be
divided into passive and active methods. The passive approaches are those that relies in an
online or incremental learning or in an adaptive ensemble scheme. These passive approaches
generally implement instance selection or instance weighting to define how retrain or add
a new model to the system. The active methods, on the other hand, implement an explicit
drift detection scheme that monitors the residuals of a fitted model or some features of the
incoming data distribution. In relation to the delay in handling the changes, the methods
can be divided into real-time or retrospective approaches. All the passive methods operate
in real-time, since they adapt the learned model continuously. The active methods may
operate in real-time or in a retrospective manner.

2.4 Summary
In this chapter we discuss the three main concepts which represent the fundamentals

for this thesis. We started by discussing about time series theory, models and applications.
A time series is a sequence of observations, typically collected over fixed sampling intervals.
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Figure 11 – Categorization of the concept drift handling methods.

Source: elaborated by the author.

Several dynamic processes can be modeled as time series, such as stock price movements,
monthly sales of a company, the temperature of a city, exchange rates, among others.
Time series analysis and forecasting can be considered two of the main challenges in the
computational intelligence literature. In the last decades, several approaches have been
proposed for time series analysis. Two major classes of these approaches are the traditional
statistical models and the computational intelligence approaches. Many statistical models
generally assume that the time series under study is generated from a linear process.
Computational intelligence techniques, on the other hand, are data-driven, self-adaptive
methods able to capture nonlinear behavior of time series without any a priori statistical
assumption about the data.

This chapter has also discussed that despite the fact that there is a vast literature
on time series analysis, the majority of the existing approaches does not take into account
that a time series is a special kind of data stream. So, this chapter briefly described
the concept of data streams, which is a set of data observations that arrive sequentially
item by item. Dynamism is an inherent feature of data streams. This dynamism implies
that patterns in a data stream may evolve over time and introduces a big challenge to
traditional batch learning algorithms, which is the ability to permanently maintain an
accurate decision model even in the presence of changes in the data stream.

This chapter has also discussed that most of the approaches designed to time
series analysis assume that there is no occurrence of concept drifts in the data generation
process. These methods are based on the main assumption that time series concepts
are stable in such a way that the time series observations follow a fixed and immutable
probability distribution. This assumption, however, may not hold for several industrial
time series applications. For example, the time series of the sales of a product may change
its behavior due to changes in government regulations or advertising campaigns. The time
series of stock prices of a company may change its behavior due to changes in political and
economical factors or due to changes in the investors psychology or expectations. In the
next chapter, some approaches that investigate the concept drift problem in time series
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forecasting are reported and discussed.
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3 CONCEPT DRIFT IN TIME SERIES

Despite the fact that there is a considerable number of studies which investigate
the concept drift problem in data streams, little attention has been given to the problem
of concept drift in time series. What makes time series data unique and prevents the direct
application of conventional adaptive learners to time series is the temporal correlation of
the data observations. In this chapter, we discuss some of the main articles that investigate
this problem in time series data streams. Following the classification proposed by Ditzler
et al. (2015), the existing approaches to handle concept drift in time series are divided
into active and passive adaptive learning methods.

3.1 Passive Adaptive Learning Methods
The passive adaptive learning methods assume the fact that the underlying data

generation process is not stable, but evolve over time. To accommodate changes in the
data over time, these methods perform a continuous adaptation in the learned models,
in order to keep them up-to-date and avoid loss in forecasting accuracy. The two main
categories of passive approaches are the online and incremental learning algorithms and
the dynamic ensemble methods. Recently some proposed approaches have been employing
these techniques to handle concept drifts in time series.

Guajardo, Weber and Miranda (2010) proposed an implicit concept drift handling
method for time series forecasting which is based on moving window instance selection and
support vector regression (SVR) with retraining. A moving window slides through the time
series data stream in order to define the training and test sets. At each step the window
moves, SVR is retrained with the portion of the window reserved for training and applied
to the test set. The window size is adjusted to fit seasonal patterns of the time series and
slides considering these cycles. An issue of this approach is that the seasonal patterns of a
time series is typically not known a priori in the general case. Besides, several real time
series have no well defined seasonal patterns, which prevents a widespread application of
this method.

Gu, Tan and He (2013) used the similar idea of having a moving window for
handling concept drift in time series implicitly by updating a forecasting model. In that
work, the window has a variable size which is adjusted by a probabilistic model that
defines which instances should be in the retraining window. The probabilistic model gives
more weight to more recent samples and to the samples more similar to the samples to be
predicted. Samples with higher weights are used to fill the window. The proposed model
was combined with the autoregressive (AR) model and with multi-layer feed-forward neural
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networks (MLP) trained with backpropagation. In the experiments, authors compared the
error-rate of the proposed adaptive learning method, which combines instance weighting
with AR and with MLP against the simple AR and simple MLP. Results showed that the
proposed approach was able to improve forecasting performance of the single forecasting
models.

3.2 Active Adaptive Learning Methods
Active adaptive learning systems are those which update the learned model just

after explicitly detecting a concept drift in the underlying time series data generation
process. Change detection mechanisms designed to time series are typically carried out by
inspecting the residuals of a fitted model. In these approaches, a statistical or a machine
learning model is adjusted to the data and used to forecast new observations. The residuals
of the forecasting are used to identify drifts in the underlying data generation process. As
discussed earlier in Chapter 2, this approach presents some drawbacks that affects drift
detection accuracy, since residuals may not properly reflect changes due to problems in
training the model used.

Some researchers have investigated how to detect concept drifts in time series by
monitoring raw time series observations directly. The proposed approaches are typically
based on a retrospective statistical analysis of the time series observations in order to
identify change points in the series. In a retrospective analysis, the drift detection is
done just after receiving several samples from the data stream. Industrial applications
typically require a real-time drift detection, since it allows a fast updating of the decision
model and, consequently, the minimization of forecasting performance losses. Besides,
these change-point methods (CPM) that monitor raw time series observations are able
to discover changes in just the mean or variance of the time series observations in order
to identify structural breaks. These changes not always imply in the need for updating a
forecasting model in order to keep the forecasting accuracy. In the rest of this section, we
discuss some of these two kinds of concept drift detection methods in time series.

3.2.1 Residual-Based Concept Drift Detection
Auret and Aldrich (2010) proposed a retrospective mechanism to explicitly identify

change-points in time series using random forests. Random forests are ensembles of
regression or classification trees in which each tree depends on a random vector sampled
independently from the data. A classification or regression tree divides the feature space
into recursive binary partitions and assigns a class label or a regression value for each
partition. The proposed method constructs a random forest to model an initial time series
segment which is considered the normal process or the known concept. This interval is
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defined by a moving window of length w. For the data into the moving window, the method
constructs a subspace of extracted features, represented by a lagged trajectory matrix. As
the moving window slides w instances, the approach computes a test matrix for the new
data and compares the distance between the reference matrix and the test matrix. The
mean sum of squared residuals, measured by the Euclidean distance, is used to measure
this distance. When this difference is significant, a concept drift is identified.

Alippi, Boracchi and Roveri (2013a) proposed an ensemble of CPMs to detect
changes in the residuals of a fitted model in a retrospective manner. The proposed ensemble
aggregates several individual estimates of the change point, each obtained by running a
CPM on a subsequence of the residuals defined by random sampling. The idea behind
the ensemble is to improve the change-point identification compared to a single CPM.
The Lepage statistical test (LEPAGE, 1971) was used to detect drifts since it is able to
detect changes in mean and variance of the residuals. Different aggregation mechanisms of
the ensemble have been investigated in this work in order to combine the outputs of the
CPMs.

Fokianos, Gombay and Hussein (2014) also proposed an explicit, retrospective CPM
for binary time series. The proposed method searches for changes in the coefficients of a
logistic regression model adjusted to time series with an autoregressive-type dependence.
The statistical procedure for testing possible change-points is based on computing stan-
dardized scores of the time series observations obtained via a partial likelihood function.
Experiments were performed with two time series: one composed of mortality rates after
a cardiac surgery and another one composed of IBM share transactions. However the
proposed method was not compared with other approaches.

Brodersen et al. (2015) proposed a retrospective approach to measure effectiveness
of the introduction of discrete market events, such as the release of a new product or an
advertising campaign, in modifying market behaviors. In this work, a metric of interest,
such as clicks in a web site is modeled as a time series. In some instant, the intervention in
the market is performed and the causal impact of that intervention needs to be confirmed.
The causal impact is confirmed if the difference between the observed time series after
the introduction of the event and the values that would have been obtained without the
intervention is statistically significant. This is an special case of the explicit concept drift
detection problem in which the probable drift point is known in advance and just needs
to be confirmed. In order to confirm that the intervention causes a change in the time
series behavior, the proposed approach uses three sources of information: (i) the normal
behavior of the time series before intervention, (ii) other time series related to the time
series under study and (iii) the prior knowledge about the Bayesian model parameters.
These information are combined using a state-space time series model, where one of the
components of state is a linear regression approach. The proposed approach is then fitted
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to the time series prior to the intervention and used to forecast values after the intervention.
The difference between the observed and predicted values gives a semiparametric Bayesian
posterior distribution for the causal effect.

Werner et al. (2015) proposed an explicit, retrospective method for detecting
structural break points in climate time series. In this approach, linear piecewise regression
is used to model the time series data. For a given predefined number of breaking points
to be located, the residual squared sum of the model fitted to data is calculated for all
possible break point locations. A hypothesis test is performed in each detected break point
in order to assess the significance of the residual differences in the data divided by that
break point. The main issue of this approach is that it is a retrospective change detection
in which the number of possible breaking points should be defined beforehand by user. In
the general case, it is not possible to know this information in advance.

Some authors have investigated the use of online, explicit concept drift detection in
time series based on residuals of a fitted model. Yamanishi and Takeuchi (2002) proposed
an online, explicit method for both outlier and concept drift detection in time series. The
proposed approach fits an AR model to the data and updates its parameters incrementally
so that the effect of past examples is gradually discounted. Each data observation receives
a score computed by a prediction loss function. This score is a measure of deviation of the
data observation from the fitted model. Higher scores indicate a high possibility of the
observation being an outlier. Concept drift detection is done by monitoring the moving
average losses of the time series observations. The main issue of this approach is that it is
limited to time series that present an autoregressive behavior. This supposition may not
hold for several real-world time series.

Kirch and Kamgaing (2015) proposed an online, explicit drift detection method
for time series which is based on function estimation. This method estimates the initial
set of function parameters which defines a stable historic data set (known concept).
This function estimation procedure is similar to those used to derive estimators such as
maximum likelihood estimators, least-squares estimators, among others. After this initial
function estimation, the new incoming observations are monitored for a change in the
estimated parameters. When no change occurs in data, it is expected that the sum of
residuals of the estimated function on the unseen data is close to 0, and different from
0 otherwise. When the partial sum of residuals weighted by a weighted function defined
by the user is higher than a critical value, a change point is detected. The choice of the
weight function determines the detection delay. The detection accuracy of the method is
highly influenced by the choice of the monitoring function. Several estimating functions
were tuned and tested in several linear and non-linear time series, binary models, Poisson
autoregressive time series, among others.

In a recent work (CAVALCANTE; OLIVEIRA, 2015), we investigated the use of
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an online, explicit drift detection method to handle concept drift in financial time series. In
that work, we compared the use of DDM and ECDD drift tests in combination with ELM
and OS-ELM learning methods. A first set of experiments showed that the combination of
ELM with drift detection is able to improve the accuracy the batch learning algorithm
when applied to time series with concept drift. In a second set of experiments, it was
showed that combining OS-ELM with drift detection tests could reduce the processing
time of the online learning system while maintaining the forecasting accuracy.

Gombay and Serban (2009) proposed a different online, explicit drift detection
method for AR time series, which is not based on monitoring the residuals of a fitted model,
but based on monitoring the parameters of the model themselves. The Page’s cumulative
sum (CUSUM) process for detecting changes in the mean of independent observations was
adapted to detect changes in the parameters of an AR time series, namely µ, σ2, α1, ..., αp.
Initially, any parameter or set of parameters have a set of values θ0 estimated by past
samples. The main idea is use the CUSUM test to detect a change in these parameters
by monitoring the departure of the current values of the parameters θ from the initial
values θ0. The null-hypothesis H0 : θ = θ0 is tested after each new observation arrives
sequentially in time. A critical value is used to define a threshold for drift detection. The
main issue of the proposed approach is that it is limited to drift detection in AR time
series. However, several real-world time series such as economical and financial time series
present a nonlinear behavior.

3.2.2 Methods Based on Monitoring Time Series Observations
Oh and Han (2000) investigated the change-point detection problem in interest

rates time series. Since in every country governments monitor and heavily interfere in
interest rates through monetary policies, these kind of data typically present change points.
The change-point detection is performed with the Pettitt test, which is a non-parametric
CPM performed in a retrospective way (PETTITT, 1980). For each observation in the time
series, this test verifies if that point divides the time series into two segments in which the
null-hypothesis of no changes in the distributions is rejected. The number of change-points
to be searched by this method is defined by the user. After identifying the change-points,
the proposed method groups the time series segments limited by the change-points and
uses these intervals to model artificial neural networks specific for each group. An issue of
this approach is that the number of changing points to be searched should be defined by
the user, which may require a priori knowledge about the analyzed time series.

Liu et al. (2013) proposed an explicit, retrospective change-point detection for time
series which relies on a statistical test based on non-parametric divergence estimation
between time series samples from two consecutive segments. The relative Pearson divergence
dissimilarity measure is used to measure the differences between two segments and identify
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drift points. This dissimilarity measure is estimated by a direct density-ratio estimation
method called the unconstrained least-squares importance fitting (uLSIF). Authors also
improved the drift detection method by using an extension of the uLSIF called relative
uLSIF (RuLSIF), which corrects a weakness of uLSIF, which is the possibility of having
unbounded density-ratio when the denominator density is not well-defined. Authors
compare the uLSIF-based change point detection with the RuLSIF version as well as with
the Kullback-Leibler importance estimation procedure (KLIEP), which is another direct
density estimation proposed in the literature. Experiments with artificial and real-world
time series showed that RuLSIF based change-point detection method presented better
change-point detection accuracy.

Yamada et al. (2013) proposed an explicit, retrospective change-point detection
for high-dimensional time series which incorporates feature selection to improve the
drift detection. In this work, authors propose a supervised drift detection method that
works as follows. Let two non-overlapping windows xw(t) = {xt−n+1, ..., xt} and xw(t +
n) = {xt+1, ..., xt+n} of size n extracted from time series {xt}. A pseudo binary label
yi ∈ {−1, +1} is assigned to time series observations. The observations xi within xw(t)
receive label y = 1 and observations xi within xw(t + n) receive y = −1. The change-point
detection strategy consists in computing a dependency score between input xi and output
y of the data in Z(t) = {xw(t) ∪ xw(t + n)}. In the case where the dependency measure
takes a large value, it means the data in xw(t) and xw(t + n) are separable, or in other
words, their samples come from different distributions, so a concept drift is detected.
Authors claim that in high-dimensional environments, noise and outliers may disrupt the
drift detection. So, in order to cope with high-dimensionality, they propose the use of a
feature selection approach, in order to improve the drift detection.

Ross (2013) describes some parametric and nonparametric online change detection
methods implemented in the R language. In this work, the author describes how to identify
multiple change points in a foreign exchange time series. The time series is pre-processed
with the first order differencing to remove the correlation between the observations. Then
the Mood change point method (MOOD, 1954), a nonparametric change detector, is
applied to the differenced time series observations. A similar work, which also describes
an R package to discover change points in time series, is proposed by Killick and Eckley
(2014). The main issues of these methods is that they are retrospective change detection
methods and the fact that they are limited to find changes in the mean and/or variance of
the time series, disregarding other important sources of changes in the time series.

Blythe et al. (2012) proposed a retrospective change-point detection approach based
on Stationary Subspace Analysis (SSA) for multivariate time series. According to these
authors, not all directions in the high-dimensional signal space are informative for change-
point detection, since there is a subspace in which the distribution of the data remains
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immutable over time. So, in this work, authors use SSA to reduce the dimensionality of the
data by identifying which are the most non-stationary directions, since they are considered
more informative for detecting changes in the time series. SSA receives a multivariate
signal and factorizes it into stationary and non-stationary sources. Then the proposed
approach finds the projection to the most non-stationary sources and considers just them
to find changing points. Results obtained by the performed computational experiments
showed that the SSA preprocessing was able to improve the change-point identification.

3.3 Summary and Discussion
In the literature, we can find some approaches dedicated to handle concept drift

in regression problems and in time series forecasting. In this chapter we review some of
these work. Table 1 summarizes the main approaches designed to handle the concept
drift in time series analysis. In this table, the approaches were classified according to
the following aspects: (i) the transparency for the user in handling drift, which can be
passive or active; (ii) the drift detection delay, which can be online or retrospective; (iii)
the method employed to handle drift, which can be just passively retraining/updating,
the monitoring of statistical features of data or the residuals of a fitted model; and (iv)
the main goal of approach, which can be just the detection of change-points or improving
the forecasting performance.

As we discussed throughout this chapter, some of these approaches handle concept
drifts in an implicit way, by means of online or incremental learning schemes which
generally rely on instance selection or instance weighting. As discussed previously, there
are some disadvantages of using implicit methods for handling concept drift. The main
issue of these approaches is the lack of transparency for the user. Explicit drift detections
can be themselves useful for decision-support. Another issue of implicit methods is the
potential resource consumption to update the learned model successive times. Excessive
adaptation may be a waste of computational resources (ZLIOBAITĖ; BUDKA; STAHL,
2015).Since these methods are unaware of drifts, the successive retraining continues even
when the new instances comes from the same data distribution.

Table 1 shows that some proposed approaches implement an explicit, retrospective
drift detection. Since these methods generally work with the complete time series under
study, they implement a drift detection method that search for possible breaking points,
which are points that divide the data into subsequences with different distributions. So,
these methods rely on monitoring the differences in data distributions separated by possible
changing points. Despite that these methods are very useful to help in understanding time
series, they are not suitable for real-time applications. According to Liu et al. (2013), the
retrospective drift detection tends to provide better detection accuracy than the online
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Table 1 – Comparison of drift handling methods in time series analysis.

Work Transparency Delay Method Main goal
Guajardo, Weber and Miranda (2010) Passive Online Instance selection Forecasting

and retraining
Gu, Tan and He (2013) Passive Online Instance weighting Forecasting

and retraining
Auret and Aldrich (2010) Active Retrospective Residual- Change-point

based detection
Alippi, Boracchi and Roveri (2013a) Active Retrospective Residual- Change-point

based detection
Fokianos, Gombay and Hussein (2014) Active Retrospective Residual- Change-point

based detection
Werner et al. (2015) Active Retrospective Residual- Change-point

based detection
Brodersen et al. (2015) Active Retrospective Residual- Causal Impact

based
Yamanishi and Takeuchi (2002) Active Online Residual- Change-point

based detection
Gombay and Serban (2009) Active Online Residual- Change-point

based detection
Kirch and Kamgaing (2015) Active Online Residual- Change-point

based detection
Cavalcante and Oliveira (2015) Active Online Residual- Forecasting

based
Oh and Han (2000) Active Retrospective Monitoring Change-point

observations detection
Liu et al. (2013) Active Retrospective Monitoring Change-point

observations detection
Yamada et al. (2013) Active Retrospective Monitoring Change-point

observations detection
Ross (2013) Active Retrospective Monitoring Change-point

observations detection
Killick and Eckley (2014) Active Retrospective Monitoring Change-point

observations detection
Boracchi and Roveri (2014) Active Online Feature-based Change-point

detection
This thesis Active Online Feature extraction Forecasting

and weighting
Source: elaborated by the author.

drift detection, since the approach knows the entire time series behavior. However, as
stated by Yamanishi and Takeuchi (2002), one important requirement of drift detection
methods is that it should be online, in such a way that the drift point should be detected
immediately after a change happens in data. Real-time systems, such as autonomous
trading systems, robot control, among others, require a drift detection which is able to
minimize the delay of detection. In these applications, the drift detection mechanism is
usually embedded in adaptive learning systems, which should be able to adapt quickly
and adequately to accommodate possible changes (MINKU; YAO, 2012).

The online explicit drift detection methods are ideal to be used in adaptive learning
systems applied in real-time problems. The majority of these approaches discussed in
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this chapter relies on monitoring the residuals of a fitted model. In these approaches, a
statistical model or a machine learning model is fitted to a subset of time series observations
that represent the reference to the known concept. The main assumption is that if there is
no concept drift, these residuals tend to be stationary. In case of drifts, these residuals
tend to increase, since the learned model is outdated and is not effective to take decisions
about the new concept.

There are some disadvantages of using residual-based explicit drift detection meth-
ods. Since these methods rely on the forecasting accuracy of the model, problems in the
parameter adjustment process of the model or in the training process, in case of machine
learning modeling, may imply in a bad drift detection. In some cases, the concept may
change and the residual level keep high and constant due to generalization problems such as
overfitting. In these cases, the residuals may not properly reflect concept drifts. According
to Alippi, Boracchi and Roveri (2013b), in practice, the residuals of a fitted model are
not independent and identically distributed, even before a concept drift. Instead, they are
correlated and influenced by the dynamic of the original signal. In theory, monitoring some
data features directly may provide more robust concept drift identification in time series.
However the majority of discussed work monitor time series raw data directly. Although
this approach is useful to identify breaking points in time series, it is not useful to identify
when there is the need to update the time series model used to forecast future values.

Just a few studies consider time series features to identify concept drifts. Boracchi
and Roveri (2014) proposed an online concept drift detection for time series that is based
on a time series feature, namely the self-similarity. In the proposed approach, at each
time instant, a data sequence of fixed size is extracted from the incoming data and the
most similar previously seen data sequence is recovered from memory. A change indicator
variable x(t) is computed as the difference between the two time series sequences. When the
arriving data sequence differs significantly from previously seen sequences, the distribution
of x(t) changes, and a drift is detected. The intersection of confidence intervals (ICI) drift
detection test (ALIPPI; BORACCHI; ROVERI, 2011) is used to detect changes in the
distribution of x(t). The main issue of this approach is that it is specifically designed to
time series that present self-similarity and periodicity. So, the proposed approach addresses
the problem of detecting structural changes in the time series. Besides, this approach
presents considerable memory consumption to store the data sequences which define the
regular or stable time series behavior.

In Table 1 one can see that in terms of the main goal of the reviewed methods, just
a few of them has as the main objective the improvement of the forecasting accuracy. In
real-time adaptive systems, the main goal of the learning method is to adapt to changes
as soon as possible in order to keep the performance of the system. In this approach, the
drift detection is just an intermediate activity that indicates when a change occurs in the
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modeled environment, triggering an event for retraining or updating the learned model.

So, an ideal adaptive learning method able to handle concept drift in time series
should:

• be transparent to the user, in the sense of explicitly detect and inform about the
occurrence of drifts (active method). In financial applications, for example, in which
the trader uses forecasting to take investment decisions of buying or selling stocks,
this information may indicate the need to reduce market positions or to avoid buying
new stocks;

• operate in an online way, reducing the delay to update the forecasting model in order
to keep the forecasting accuracy even in face of concept changes. In high-frequency
data streams, this requirement is crucial;

• be based on time series features that properly reflect the time series concepts, which
helps to improve the concept drift detection;

• combine drift detection techniques with forecasting techniques, acting to improve
the adaptability and consequently the accuracy of the method.

As we can see from Table 1, none of the approaches satisfy these requirements.
This thesis is an attempt to fill this gap in the literature. In this work we investigate how
to detect concept drifts based on time series specific features and how to improve the
forecasting by integrating this drift detection mechanism with an adaptive forecasting
model, as explained in Section 1.3. We believe that monitoring time series specific features
would provide a better description of the concept drifts in the time series and allow faster
recovery from these changes keeping the forecasting accuracy of the system.
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4 THE PROPOSED ADAPTIVE LEARNING
SYSTEM

In Chapter 3, we discussed several approaches proposed to handle concept drift in
time series forecasting, such as the passive approaches, and the active approaches based on
monitoring the residuals of a fitted model and those which monitor the time series raw data.
In that chapter we also discussed the main issues of each approach and gave directions
on how to better address the concept drift detection problem in order to overcome the
issues of the existing methods. Based on the assumption that p(X) and p(y) are expected
to be generated by the same underlying process S, we believe that changes in p(y) will be
always reflected by some changes in p(X) with some delay. The methods that monitor
raw data consider that every change in p(X) will imply in changes in p(y|X), however
this is not always true. On the other hand, if we monitor some statistical time series
features that describe the behaviors of the inputs X and their temporal correlation, we are
able to better characterize time series concepts. The time series features are pre-defined
descriptive statistics automatically calculated from the time series data which describe
several aspects of the time series underlying data generation process. With this approach,
we can detect changes in these concepts in a faster and more reliable way.

The main contribution of this thesis is an adaptive learning system for time series
forecasting that employs an online, explicit concept drift detection method based on
time series features. The proposed system, called Feature Extraction and Weighting for
Explicit Concept Drift Detection (FW-FEDD), identifies the occurrence of concept drifts
by monitoring the evolution of these features. An unsupervised weighting strategy is used
to compute the importance of the features monitored in order to improve the drift detection
accuracy. The forecasting method of the system is composed of a pool of forecasting models
in which each individual model is designed to represent a particular time series concept.

4.1 General Architecture
The Figure 12 presents the general architecture of the proposed adaptive learning

system. The proposed FW-FEDD has four main modules: (i) the Feature Extraction (FE)
module, (ii) the Feature Weighting (FW) module, (iii) the Drift Detection (DD) module
and (iv) the Forecasting Module (FM). We can organize these modules in two packages,
one responsible for drift identification, composed of the FE, FW and DD modules, and
one for drift handling, composed of the forecasting module.

The drift identification package receives the time series observations sequentially
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Figure 12 – General architecture of the proposed system.

Source: elaborated by the author.

and processes them in order to identify changes in the time series generation process. The
FE module is responsible for extracting time series features. The FW module is responsible
for computing the importance of the features to the drift detection process. The DD
module monitors the evolution of the time series features along the process and tests the
occurrence of concept drifts, considering the importance of the features. Initially, a feature
vector is extracted from the available time series observations. It is assumed that these
initial time series observations have no concept drifts. This initial vector describes the
in-control state of the time series, that represents the known concept. A moving window
that slides whenever a new sample is available is used by the FE module. Features are
computed on the current window and the feature vector on that window is compared with
the initial feature vector. A weighted distance function is used to compute the dissimilarity
between these two vectors. When the two feature vectors present a statistically significant
difference, the DD module identifies it as a concept drift.

FW-FEDD is an online method since it is able to sequentially inspect incoming time
series observations, one at time, in order to decide whether or not there is a change. Even
though the sequential processing starts only after the initial feature vector is extracted,
this is different from retrospective methods, where changes can only be detected in a past
fixed-length sequence that has already been received as a whole.

After the drift identification, the forecasting module is responsible for handling
eventual concept drifts. This module is composed of a set of forecasting models. Each
individual model is represents the knowledge of a different time series concept. Initially,
just one model is trained with the time series data available for the system. This individual
model is used to forecast new observations until a concept drift be identified. In this point,
the system identifies whether the existing models are able to handle the new concept or
whether there is the need to create a new one to be specialized in this new concept faced



Chapter 4. THE PROPOSED ADAPTIVE LEARNING SYSTEM 71

by the system. This module implements a function to decide how the existing models
should be combined to better handling the time series concepts in order to improve the
forecasting accuracy of the system. In the next sections, we describe the modules of the
proposed system, following the division in drift identification and drift handling packages.

4.2 Drift Identification

4.2.1 The Feature Extraction Module
Several statistical features can be used to characterize time series behaviors. In the

literature, the analysis of statistical descriptive time series features has been used to solve
important machine learning problems, such as time series classification (PRUDÊNCIO; LU-
DERMIR; CARVALHO, 2004), time series clustering (WANG; SMITH; HYNDMAN, 2006;
AGHABOZORGI; SHIRKHORSHIDI; WAH, 2015), time series meta-learning (PRUDÊN-
CIO; LUDERMIR, 2004), among others. Different from conventional input attributes
used in a machine learning algorithm, time series features are derivative statistics able
characterize some relationship about time series observations. We believe that some time
series features can be used to define time series concepts. In stable conditions, the time
series feature values are expected to be constant. Whenever these features evolve over time,
it can be interpreted as a concept drift. In this context, it is worth to make a distinction
between the terms feature extraction and feature selection. Feature selection mechanisms,
also called feature subset selection, identify the input variables that are not relevant for
modeling the data to be learned. Feature extraction mechanisms, on the other hand, try
to find a transformation from the original data to a different feature space (WEBB, 2003).

In Chapter 2, we discussed that time series can be classified according to their
behavior in stationary or non-stationary, linear or non-linear, among others. We also
discussed some characteristics that describe important aspects of the series, such as the
presence of trends and/or seasonal patterns, outliers, among others. In order to build a
general drift detection method, and capture powerful characteristics to describe concepts
in time series, the FE module uses feature extraction to compute eleven time series features
from the original univariate time series data to describe the time series concepts. These
features can be divided into four groups: (i) deterministic pattern features, (ii) linear
features, (iii) descriptive statistic features and (iv) non-linear features. The deterministic
pattern features are as follows:

1. Trend degree, which describes the degree of presence of trend in the time series;

2. Seasonal degree, which describes the degree of presence of seasonality in the time
series.
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Trend and seasonality are common features of time series (WANG; SMITH; HYN-
DMAN, 2006). The degree of trend and seasonality are very informative about changes in
time series behavior. Typically these features are referred in literature as deterministic
components, since they represent systematic behaviors in the time series. When trend and
seasonal patterns are removed from the time series, the result is a residual time series,
which represents the stochastic component of the original time series.

In the literature, there are several ways of estimating trend (Txt), seasonal (Sxt)
and residual (Rxt) components of a time series {xt}. For estimating trend, we used local
regression smoothing process which implements weighted linear last squares to smooth the
data. After estimating the trend component, we additively remove the trend and apply
a seasonal filter to the detrended series in order to identify the seasonal factors of the
detrended series. Finally, the residuals are calculated by removing the estimated seasonal
effects from the detrended time series. It is important to note that these residuals are the
random variations after removing trend and seasonality and should not be confused with
the residuals that define the error of a fitted model.

Since we need a univariate signal to define each time series feature, we compute
the trend degree and seasonal degree of the time series. The trend degree (td) is computed
as td = 1 − var(Rxt )

var(xt−Sxt ) and the seasonal degree (sd) is computed as sd = 1 − var(Rxt )
var(xt−Txt ) .

These features give an indication of the presence of these deterministic patterns in a time
series. These features can assume values in the range [0,1]. Values close to 1 indicate
higher presence of the corresponding feature. Time series generated by relatively controlled
physical phenomena, such as temperatures, sales and behaviors of some industrial machines,
may present trend and seasonal degrees close to 1. On the other hand, series of financial
markets and exchange rates, for example, should have lower trend and seasonal degrees
and more influence of the stochastic component.

The linear features used in this work are:

1. Autocorrelation, which describes the similarity between observations in function of
some lag;

2. Partial autocorrelation of the residuals, which describes the correlation that results
after removing the effects of any correlations due to terms at shorter lags;

The correlation of a variable with itself at different time instants is called auto-
correlation or serial correlation. The number of time steps separating them is called lag
(COWPERTWAIT; METCALFE, 2009). The autocorrelation is a measure of similarity
between observations xt and xt+k as a function of the lags k between them. The auto-
correlation at the lag 0 is 1 (maximum value), since it gives the autocorrelation between
the observations with themselves. A high correlation in the first lags indicates that there
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is a high dependence of each time series point with the recent past points (PRUDÊNCIO;
LUDERMIR, 2004). The formula for estimating the autocorrelation at lag k is given by
ρk = ck

c0
, ck is computed as in eq. 4.1, where c0 is the sample variance of the time series and

n is the time series size. The autocorrelations at the first five lags were used by FW-FEDD.
This number was chosen empirically and not optimized.

ck = 1
n − 1

n−k�

t=1
(xt − x)(xt+k − x) (4.1)

The partial autocorrelation function may be defined as the correlation between
xt and xt−k after removing the effect of the intervening variables xt−1, xt−2, xt−3,...,
xt−k+1 (CRYER; CHAN, 2008). In general, the partial autocorrelation at lag k is the kth
coefficient of a fitted AR(k) model. If the underlying process is AR(p), then the coefficients
αk will be zero for all k > p (COWPERTWAIT; METCALFE, 2009). So, the partial
autocorrelation function can be used to estimate the order of autoregressive models. The
partial autocorrelations of the residuals resulting after removing trend and seasonality at
the first five lags were used in FW-FEDD.

The descriptive statistic features subset extracted by FW-FEDD are:

1. Standard deviation of the residuals, which describes the degree of instability of the
residual time series;

2. Skewness coefficient of the residuals, which describes the asymmetry of the data
around the sample mean;

3. Kurtosis coefficient of the residuals, which describes how outlier-prone a data distri-
bution is;

4. Periodicity, which estimates the length of a seasonal pattern;

5. Turning points rate, which describes the degree of oscillation of the time series.

The skewness coefficient is a measure of the asymmetry of data around the sample
mean. A data set is symmetric if it looks the same to the left and the right of the center
point (WANG; SMITH; HYNDMAN, 2006). The skewness of any perfectly symmetric
distribution, such as the normal distribution, is zero. If skewness is negative, the left tail
of the distribution is long relative to the right tail. In other words, the data are spread out
more to the left of the mean than to the right. If skewness is positive, then, the right tail of
the distribution longer than the left tail. The skewness measure is computed as in eq 4.2.

τ = µ3

σ3 = E[(x − µ)3]
E[(x − µ)2]3/2 =

1
n

�n
i=1(xi − µ)3

(
�

1
n

�n
i=1(xi − µ)2)3

(4.2)
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Similarly to skewness, the kurtosis coefficient is a description of the shape of the
probability distribution of the data. The kurtosis coefficient is informative about the tail
behavior of a series (BAI; NG, 2005). A dataset with high kurtosis tends to have heavy
tails. Datasets with low kurtosis tend to have a flat top near the mean rather than a sharp
peak (WANG; SMITH; HYNDMAN, 2006). The kurtosis of the normal distribution is
3. Distributions which are more outlier-prone than the normal distribution have kurtosis
greater than 3. Kurtosis is the fourth standardized moment of a variable and is computed
as in eq. 4.3.

κ = µ4

σ4 = E[(X − µ)4]
(E[(X − µ)2])2 =

1
n

�n
i=1(xi − µ)4

( 1
n

�n
i=1(xi − µ)2)2 (4.3)

The periodicity and turning points rate features describe the oscillation behavior of
the time series. Periodicity is the length of a seasonal pattern. Wang, Smith and Hyndman
(2006) state that seasonality is different from periodicity. According to these authors,
periodicity varies in frequency length, but seasonality has fixed length over each period.
FW-FEDD estimates the periodicity using the scheme proposed by Wang, Smith-Miles
and Hyndman (2009): find the first autocorrelations of the residuals and then find the first
peak in the autocorrelations which (i) has a trough before it; (ii) the difference between
peak and trough is at least 0.1; and (iii) the peak corresponds to positive correlation.

The turning points rate measures the degree of oscillation of a time series (PRUDÊN-
CIO; LUDERMIR, 2004). A time series point xt is a turning point if xt−1 < xt > xt+1, or
xt−1 > xt < xt+1. The presence of a very high or a very low number of turning points in a
series suggests that the series is not generated by a purely random process. The percentage
of turning points in the time series is computed as 100 ∗ nz, where, nz is number of turning
points divided by the length of the series.

The nonlinear features attempt to describe the nonlinear behavior of a time series,
which are common in real-world time series. The computed nonlinear features are as
follows:

1. The bicorrelation, or three-point autocorrelation;

2. The mutual information.

The bicorrelation, also called three-point autocorrelation, is a measure of nonlinear
autocorrelation (KUGIUMTZIS, 2008). This metric is an extension of the standard
autocorrelation and estimates a high order correlation feature which is described by the
joint moment of three variables formed from the time series in terms of two delays s1 and
s2 (KUGIUMTZIS; TSIMPIRIS, 2010). The bicorrelation at two positive lags k1 and k2

(k1 < k2) is given by the eq. 4.4. A simplified scenario for the delays is when k2 = 2k1, in
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which the measure becomes a function of the delay k1 The bicorrelations of the residuals
at the first three lags were used in the proposed approach.

B(k1, k2) = (n − k2)−1
(n−k2)�

t=1
xt ∗ xt+k1 ∗ xt+k2 (4.4)

The mutual information for two variables X and Y is defined as the amount
of information that is known of one variable when the other is given (KUGIUMTZIS;
TSIMPIRIS, 2010). The mutual information is an entropy-based measure that estimates
the general correlation between xt and xt−k for different lags k (KUGIUMTZIS, 2008).
This measure can be considered as a correlation metric that measures the linear and
nonlinear autocorrelation of a time series. There are several ways to estimate mutual
information. The histogram-based estimate, which was used in this work, can be computed
as in eq. 4.5, where i is the number of bins of the partition of the data, pi is the estimated
probability that a data point xt is in bin i, pj is the estimated probability that a data
point xt+k is in bin j, and pi,j is the estimated joint probability that that xt is in bin i

and xt−k is in bin j. The mutual information of the series at the first three lags were used
in this work.

I(k) =
�

i,j

pilog
pi,j

pipj

(4.5)

The FE module receives a time series segment {xt−mf
, ..., xt}, of size mf , as

input and computes a feature vector containing the values for all eleven features, which
totals 23 attributes: trend degree, seasonal degree, 5 first autocorrelations, 5 first partial
autocorrelations, periodicity, standard deviation, skewness, kurtosis, turning points rate,
bicorrelation at 3 first lags and mutual information at 3 first lags. These values 3 and 5
were empirically chosen and not optimized.

4.2.2 The Feature Weighting Module
Time series from different domains may present different behaviors. So, for different

time series behaviors, some features may be informative about these behaviors and some
features may be uninformative. One example is the periodicity, which is a feature that
identifies the size of the time series seasonality or cycles. Some time series present no
seasonality and, in these cases, the periodicity feature is not informative to describe its
behavior. Time series from different domains may also present different concept drifts. In
these cases, some features may be more important than others in describing the concept
drifts that can eventually happen. Besides this, the importance of the features may also
change due to concept drifts. A time series that has no periodicity may start to present some
seasonal pattern after a concept drift. So, the periodicity feature becomes very important
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for identifying the concept drift. Due to these situations, it would be of utmost importance
if we could, automatically and in an online way, be able to detect the importance of the
features to the detection of concept drifts.

According to Kuncheva and Faithfull (2014), features with lowest variance are more
likely to be affected by a change than features with higher variance. In that work, authors
intended to detect concept drifts in multivariate time series, so the term feature in that
work refers to the input dimensions of the time series. Their proposed approach monitors
raw observations in each dimension of the time series to discover concept drifts. We can
bring this idea to our context of monitoring statistical descriptive features of a univariate
time series. For example, a time series that presents no seasonal pattern has seasonal
degree equal zero on average with zero variance. However, if it suddenly starts to present
some cyclic pattern, the seasonal degree tends to increase. This change in a feature that
was presenting values close to zero variance is very important to define the concept drift.

Based on this statement, we propose a heuristic weighting strategy to consider the
variability of the features during the computation of the distances between the feature
vectors. The idea is to give more importance to the features with lower variability, believing
that these features will be more informative about eventual concept drifts in the time
series. We also believe that with this strategy we can build a general approach for handling
concept drifts in time series of every domain. This approach also allows the addiction of
more features without loss of generality of the method. This unsupervised feature weighting
is independent of external information or human intervention.

Kuncheva and Faithfull (2014) proposed to compute the principal components
of the feature set using Principal Component Analysis (PCA) and consider the least
important components as the more indicative of concept drifts. We use the same idea,
but applied to the features extracted from the time series. Single Value Decomposition
(SVD) was used to compute PCA since it calculates both the principal components and
the coefficients. At every instant we compute the norms of the eigenvector coefficients in
the new space. The principal components are those with high norms (and high variation).
The less important components, which have lower norms (lower variation), are considered
more important to indicate concept drifts. Based on this, the weights of the features are
given by the inverse of the norms computed by the PCA.

A problem with this weighting function is that PCA has a high computational cost,
which may become an impediment in real-time applications with a high set of features to
be considered or in which time series observations arrive at a high speed. So, in this work,
we propose another heuristic weighting function which considers the weight of a feature
as the inverse of the standard deviation of the feature. This strategy is computationally
cheap, since the variance and standard deviation can be computed in O(mf ), where mf

is the number of initial observations, and it can updated online in O(1) time. With this
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strategy, features with high standard deviations have less influence in the computation of
the distances between the feature vectors. On the other hand, features with low standard
deviation, which are more influenced by eventual concept drifts, have higher weights since
they are more effective to indicate concept drifts. We expect that this approach is able to
improve the concept drift detection with less computational cost.

4.2.3 The Drift Detection Module
The DD module is responsible for monitoring the time series features and for

identifying when a concept drift happens. It receives a feature vector from the FE module,
the feature weights from the FW module, and analyzes whether there is a change in
the time series. The main problem of applying a CDT on features individually (even
considering the importance of the features) is the high number of false positives that will
be potentially detected. If each feature is monitored separately, a change in at least one
feature causes the test to identify a change in the underlying time series generation process.
As discussed by Alippi, Boracchi and Roveri (2011), increasing the number of features
analyzed also increases the probability of having false positives.

In order to tackle this problem and improve the concept drift detection, we propose
to consider the time series features in combination instead of individually. The idea is to
detect concept drifts only when there is stronger evidence, supported by more than one
time series feature. So, the proposed method monitors the differences between an initial
feature vector, extracted from the time series when it is in-control state, and the current
feature vector extracted at each time instant of the time series processing. This approach
has two main advantages: (i) it reduces the problem of monitoring the distribution of
several features to the problem of monitoring just a univariate signal, which is the distances
between vectors; (ii) it is expected to reduce the false alarms caused by variations in few
features individually.

As shown in Figure 12, the DD module consists of two main components: (i) a
distance function, which computes the dissimilarity among two feature vectors, and (ii)
a CDT, which tests the occurrence of significant changes in the distance level over time.
In a time series without concept drift, the distance between feature vectors is expected
to be small and constant. When a concept drift happens, the time series is expected to
behave differently from before the change, and this different behavior will be reflected in
its features. So, it is expected that the distance between the feature vectors increase from
the drift point.

In this work, we use the Pearson correlation distance metric (STREHL; GHOSH;
MOONEY, 2000) to compute the distances between the feature vectors. This distance
metric was chosen because it is not influenced by the range of possible values each feature
can assume. This is a requirement of the method, because the time series features have
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different scales. Since FW-FEDD is designed to perform in open-ended data streams, it
is not possible to use conventional normalization methods for rescaling the attributes,
due to impossibility of finding maximum and minimum values, or the mean and standard
deviations for the whole time series.

The Pearson distance is a dissimilarity metric based on Pearson’s product-momentum
correlation coefficient of two vectors. This metric describes the similarity in shape between
the two vectors. In practical terms, it measures the degree of correlation between two
vectors. When two vectors are very similar, the correlation is high. As we need a weighted
distance metric, we implemented the weighted Pearson correlation distance metric to
take into consideration the importance of each feature. The weighted Pearson correlation
coefficient for two vectors x and y of size d and weights w is implemented as follows:

corr(x, y, w) = cov(x, y, w)�
cov(x, x, w)cov(y, y, w)

,

where

cov(x, y, w) =
�d

i wi(xi − m(x, w))(yi − m(y, w))
�d

i wi

and

m(x, w) =
�d

i wixi�d
i wi

.

The second component of the DD module is the drift detection test. In the literature
there are several CDTs. The majority of them was proposed to solve the concept drift
detection problem in the context of classification. In this work, we investigate three CDTs
which are widely used in the literature, namely the Exponentially Weighted Moving Average
for Concept Drift Detection (ECDD) (ROSS et al., 2012), the Page-Hinkley test (PHt)
(PAGE, 1954) and the Intersection of Confidence Intervals (ICI) based CDT (ALIPPI;
BORACCHI; ROVERI, 2010; ALIPPI; BORACCHI; ROVERI, 2011). These tests were
chosen because they operate in a sequential mode, since we want to handle drifts in an
online way. The DD module uses one of these tests to monitor the distances between an
initial feature vector and the current feature vector. When the test identifies a change in
the distances, the process is restarted in order to handle future drifts.

The ECDD analyses the exponentially weighted moving average (EWMA) of a
variable to identify changes in its values. EWMA is an estimator of the mean of a sequence
of values of a variable which gives more importance to recent data, whereas older data is
being progressively downweighted. Suppose a set of values for a variable {x1, ..., xn} which
presents a mean µ0 and standard deviation σx. The EWMA estimators for the variable are
Z0 = µ0 and Zt = (1 − λ)Zt−1 + λxt, t > 0. The parameter λ indicates the weight given to
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recent data when compared to older data. The mean and standard deviations of Zt are
µZt and σZt =

�
( λ

2−λ
(1 − (1 − λ)2t)σx, respectively. Ross et al. (2012) defined two rules

to monitor concept drift based on EWMA. When Zt > µ0 + WσZt , a warning signal is
triggered. When Zt > µ0 + CσZt , a change signal is triggered. The warning threshold and
control limit, W and C respectively, are parameters of the method.

The Page-Hinkley test (PHt) is a sequential analysis technique originally used for
change detection in signal processing (GAMA et al., 2014). PHt monitors the difference
between the observation at each time instant and the mean of observations up to the
current time. It is expected that if the incoming data distribution is immutable, the
current data observations are close to the data average. On the other hand, if a concept
drift occurs, the data values increase and the current values move away from the average,
increasing the cumulative difference between these two values. Mathematically, at each
instant t, PHt computes the cumulative difference between the value xt and its mean xT ,
given by mt = �T

t=1(xt − xT − δ), where δ is a discount factor. The minimum mt, defined
as MT = min(mt, t = 1...T ), found during the process is kept in memory. PHt tests for
the difference between MT and mt and uses this difference to define a threshold. When
mt − MT > C, a change signal is triggered, and the learned model needs to be retrained
with recent data. The constant δ is a parameter of the method.

The ICI-based CDT is an online drift detection test that makes no a priori as-
sumptions about the distribution of the process generating data. This test is based on
the ICI rule, which operates on sequences of data having expectation µ(t) and standard
deviation σ. At each instant, the ICI rule adaptively identifies an optimal neighborhood
U+

i (t) and regularizes the data with an estimate µ̂(t) of µ(t), obtained by least squared
error polynomial fit of the data belonging to the optimal neighborhood. The ICI rule
estimates the confidence intervals Ii of µ̂i(t) as Ii = [µ̂i(t) − Γσi(t); µ̂i(t) + Γσi(t)], where
Γ > 0 is a parameter of the method. In the operational phase, the ICI rule identifies a
change in the observed data when the intersection of confidence intervals is an empty set.

4.2.4 The Drift Detection Algorithm
Since the drift identification process proposed in this thesis can be used with any

forecasting method or even alone (in cases where we just want to discover concept drifts
in time series), we present the algorithm that describes this process separately from the
forecasting method. The steps of the drift identification algorithm are detailed in Algorithm
1. The inputs of the algorithm are (Step 1): an initial subset of observations of the time
series S0 = {x1, ..., xi, ..., xmf

}, where xi ∈ R is a time series sample, the window size mf ,
the drift thresholds for the test Δ, which vary according to the test used. In Step 2, the
initialization of the variable s, which denotes the start of the known time series concept
is done. Steps 3 to 17 is repeated for every instant a new sample from the time series
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becomes available. If the difference between the current time instant t and the start of the
current known concept is less than mf observations, the algorithm does nothing, since the
moving window is not yet filled. When the difference t − s is equal to the window size mf

(Step 4), then FE computes the initial feature vector fv0 for the time series samples in
the moving window {xs, ..., xt}, where s = 1 for this initial vector (Step 5). The feature
vector fv0 is used as a reference feature vector for the drift test, since it represents the
known concept.

Algorithm 1: The FW-FEDD algorithm.
1: Inputs: S0 = {x1, ..., xmf

}, mf , Δ.
2: s = 1
3: for (each instant t a new instance xt arrives) do
4: if (t − s == mf ) then
5: fv0 = FE.extractFetures({xs, ..., xt})
6: else if (t − s > mf ) then
7: fvt = FE.extractFetures({xt−mf

..., xt})
8: w = FW.computeFeatureWeigths(fvt)
9: dt = DD.weightedPearsonDistance(fv0, fvt, w)

10: statistics = DD.computeTestStatistics(dt)
11: if (DD.cdt(statistics,Δ) detects drift) then
12: trigger a drift signal
13: s = t + 1
14: fv0 = [ ]
15: end if
16: end if
17: end for

When t − s > mf (Step 6), the algorithm starts the online processing of the time
series. In Step 7, the current feature vector fvt is firstly computed by the FE module for
the instances in the moving window. In Step 8, the weights w of the features are computed
by the FW module. In Step 9, the weighted distance between the initial feature vector
and the current feature vector in time t (dt) is computed using the weighted Pearson
correlation distance.

In Step 10, the statistics used by the chosen test are computed. This step is specific
for each of the three tests investigated in this work. For ECDD, the statistics are the
averaged distances (µd), the EWMA estimator of the distances (Zd

t ) and the standard
deviation of Zd

t , denoted by σZd
t
. For PHt, the statistics are the averaged distances (µd),

the cumulative differences mt and the minimum cumulative difference MT . For the ICI,
the statistics are the confidence intervals Ii of the averaged mean of distances µd.

In Step 11, the CDT is run over the computed statistics in order to detect whether
a concept drift happen in the distribution of distances. In case of drift detection, a drift
signal is triggered and the process is restarted. The algorithm sets the start of the new
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concept as t + 1 and reset the feature vector that represents the current concept (fv0),
which will be calculated when the algorithm receives mf new observations of the new
concept (Steps 4 and 5). The online processing of the time series is repeated until no more
time series observations are received.

4.3 Forecasting and Handling Drifts
There are several ways of handling a concept drift in a data stream in order to keep

the forecasting performance of the system. As discussed early in Chapter 2, this handling
can be explicit or implicit. The simpler implicit handling approach is to use an online
or incremental learning method, which updates the learned model at every new data or
chunk of data received (GU; TAN; HE, 2013). The main advantage of this approach is
the ability to handle drifts as fast as possible, however at a high computational cost to
update the model at every instant a new observation is available. Another implicit way to
handle concept drifts is to keep a weighted ensemble of methods, in which the weights are
computed dynamically based on the accuracy of methods (SOARES; ARAÚJO, 2015).
These ensembles generally use some strategies to add and remove individual models in
order to handle changes in data. This approach may improve the forecasting accuracy, but
it can also increase the computational costs.

The simpler way to actively handle concept drifts is to create an individual model
of data with a learning algorithm and use an explicit drift detection method. Whenever a
drift is detected, the learned model is dropped and a new one is built to model the new
concept (GAMA et al., 2004). Towards building an active adaptive learning system with
minimum requirements of processing costs, we proposed a method that combines both
active and passive drift handling approaches. The idea is to build a forecasting mechanism
composed of a set of individual forecasting models in which each model is designed to
handle a particular time series concept. This approach builds a new forecasting model just
when none of the existing models in the system is able to handle a new time series concept
faced by the system. The individual models employ online learning in order to specialize
in a different concept drift and handle small changes in a concept.

There are two main design questions to be answered in order to build this forecasting
module: (i) the intelligent forecasting method and the learning algorithm used to train
it and (ii) the scheme to combine the individual models in order to make forecasting. In
this work, we used a single hidden layer feedforward network (SLFN) trained with the
Online-Sequential Extreme Learning Machines (OS-ELM) (LIANG et al., 2006). SLFNs
have been widely used in the literature, being applied in many fields such as pattern
recognition, signal processing short-term forecasting and so on (HUANG; ZHU; SIEW,
2004). OS-ELM is a variant of ELM that can learn data one-by-one or chunk-by-chunk
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(blocks of data) with fixed or varying chunk size. OS-ELM combines the advantages of
ELM, such as speed and generalization performance, with a sequential learning process.
This algorithm randomly chooses the input weight matrix (which links input and hidden
nodes) and the biases and analytically determines the output weight matrix of the SLFN.
In the online processing, at any time, the newly arrived single or chunk data is used for
updating the initial learned model. It is important to argue that other intelligent methods
could be used instead of this.

So, initially, an individual SLFN is built from an initial amount of time series
observations available using the OS-ELM training algorithm. This model is associated
to the feature vector that describes those time series observations in order to define the
context (concept) in which the model was created. In the online processing, the FW-FEDD
monitors the time series and, when a concept drift is detected, the feature vector that
defines the new concept is extracted and the forecasting module tries to identify if there is
a forecasting model able to handle that concept. This is done by comparing the similarity
between feature vectors associated with the models created and the current feature vector.
In positive case, the forecasting module will use the existing models to make the forecasting
according to the combination scheme used (as described further). On the other hand, if
none of the models are able to answer that concept properly, a new SLFN is built to model
the new concept. This decision on whether there is a forecasting model able to answer for
a new concept is done by comparing the similarity of the feature vectors associated with
the existing forecasting models with a threshold θ defined by the user.

In this work, we investigated two ways of combining the individual forecasting
models created during the processing of a time series. The first and simpler scheme is
to select the individual model which was created in the more similar context (concept)
of the current time series observations. In this scheme, just the model with the feature
vector closest to the current feature vector is able to perform the forecasting. The second
strategy investigated was to consider the forecasting outputs of all the forecasting models
created and compute the importance of each output as the inverse of the distance of the
feature vector of each forecasting model to the current feature vector at each instant. So,
models created in contexts more similar to the current one receive more weights than
models created in more dissimilar contexts.

The functioning of the proposed adaptive learning method, now integrated with the
drift identification is described in Algorithm 2. The inputs of the algorithm (Step 1) are:
the window size that indicates time series observations used for feature extraction mf , the
window size that indicates time series observations used for building a forecasting model
mm, the drift thresholds for the test Δ, the threshold for inserting a new forecasting model
θ, the lag that defines the forecasting inputs of the SLFN k, the forecasting algorithm Φ
and the forecasting algorithm parameters ψ. In Step 2, the initialization of some variables
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is done. Variable s marks the start of the current concept. M is the set of forecasting
models in the pool, F is the set of feature vectors associated with models in M, both M
and F are initially empty. Variable η stores a boolean value that indicates the need to
build a new forecasting model and starts with value true to indicate the need for including
a new model when it receives the minimum number of time series observations required
for model building.

Algorithm 2: The adaptive learning system algorithm.
1: Inputs: mf , mm, Δ, θ, k, Φ, ψ
2: s=1, M = ∅, F = ∅, η = 1;
3: for (each instant t a new instance xt arrives) do
4: if (t − s == mf ) then
5: fvc = FE.extractFeatures({xt−s, ..., xt})
6: else if (t − s > mf ) then
7: fvt = FE.extractFeatures({xt−mf

, ..., xt})
8: if (t − s == mm) then
9: if (η == 1) then

10: φi = FM.train(Φ,{xt−mm , ..., xt},ψ)
11: fvφi

= FE.extractFeatures({xt−mm , ..., xt})
12: M.addModel(φi)
13: F.addFeatureVector(φi)
14: η = 0
15: end if
16: end if
17: w = FW.computeFeatureWeigths({xt−s, ..., xt})
18: dt = DD.weightedPearsonDistance(fvc, fvt, w)
19: statistics = DD.computeCDTStatistics(dt)
20: if (DD.cdt(statistics, Δ) == drift) then
21: trigger a drift signal
22: s = t + 1
23: for (each feature vector i in F) do
24: dists(i) = FM.PearsonDistance(fvt, fvi)
25: end for
26: mindist = argmin{dists}
27: if (mindist > θ) then
28: η = 1;
29: end if
30: end if
31: end if
32: if (M != ∅) then
33: for (each feature vector i in F) do
34: dists(i) = FM.PearsonDistance(fvt, fvi)
35: end for
36: ŷ(t + 1) = FM.forecasting(M, dists, {xt−k, ..., xt})
37: end if
38: end for
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Step 3 is repeated when a new sample from the time series becomes available.
When the method has received at mf observations (Step 4), then the feature vector that
describes the known time series concept fvc is computed (Step 5). When the method
has received more mf observations (Step 6), it computes the feature vector that defines
the time series observations on the current window (Step 7). When mm observations are
received, the algorithm verifies whether there is the need to include a new forecasting
model (Step 8). In case of needing a new model, then a new model φi is created with the
time series observations in the model window and with the model parameters (Step 10),
the feature vector that defines the concept used to train the new model is computed (Step
11), the new model and the associated feature vector are stored (Steps 12 and 13). In Step
14, the variable η, which indicates the need to add a new model is set to 0.

In Step 17, the weights w of the features are computed based on one of the two
weighting strategies explained in Section 4.2.2. In Step 18, the weighted distance (dt)
between the reference feature vector, which defines the known concept (fvc), and the
current feature vector in time t (fvt) is computed using the weighted Pearson correlation
distance. In Step 19, the statistics used by the CDT are updated with the new distance
received, and in Step 20 the algorithm verifies if the statistics monitored are higher then
the drift threshold Δ. This step is different for the three CDTs investigated. If a drift is
detected, then a drift signal is triggered (Step 21) and the start of the new concept is
updated to t + 1 (Step 22).

In Steps 23 to 25, the algorithm computes the minimum distance between the
current feature vector and the feature vectors associated to the models already created. If
the distance between the current feature vector and the closest feature vector stored is
higher than a threshold θ (Step 27), then the algorithm identifies that there is the need to
add a new forecasting model (Step 28), since the existing ones are not able to handle the
new concept faced properly. So, as soon as the method received mm observations of the
new concept, a new forecasting model should be created and stored in M.

In Step 32, the algorithm verifies if there is at least one forecasting model to make
the prediction of the future observation ŷ. In positive case, the algorithm computes the
distances between the feature vectors associated to the existing forecasting models (Step
33 to 35) and makes the forecast of ŷ based on the existing models and using one of the
two investigated schemes of output combination (Step 36). The distances computed are
used by this function to compute the outputs.

4.4 Summary
In this chapter we introduced the proposed adaptive learning system for time series

forecasting, FW-FEDD, which is composed by a novel explicit concept drift detection
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module and a forecasting module, which is a pool of OS-ELMs. FW-FEDD is an online
feature-based drift detection method which detects changes in time series by monitoring the
features that describe concepts. The forecasting module is composed by several individual
models associated with feature vectors that describe the concepts in which the models
were created. The main idea is that each forecasting model is responsible for forecasting a
particular time series concept. This approach allows handling recurring concepts without
increasing the computational complexity of the method. In case of a recurring concept
appears, the model created in the past to handle that concept is ready for use.

The main contributions of this thesis are (i) the use of statistical time series features
to explicitly detect concept drifts in time series, which attempts to answer the first and
second research questions described in Chapter 1; (ii) a heuristic feature weighting function
to determine the importance of the features to the drift detection process, which attempts
to answer the second research question; and (iii) a forecasting method that uses a pool of
forecasting models specialized in different concept drifts, which attempts to answer the
fourth research question.
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5 COMPUTATIONAL EXPERIMENTS

In this chapter we describe the computational experiments performed in order to
evaluate the proposed method discussed in Chapter 4 in both artificial and real-world
datasets. In this chapter, we discuss the experimental objectives, design, parameter setting,
figures of merit and the data sets used in order to make this investigation reproducible.
Then, we present and analyze the main results obtained in these experiments and how
they induce the validation of the hypotheses formulated in Chapter 1.

5.1 Experimental Objectives, Design and Measures Analyzed
The objectives of the experiments described in this chapter are to answer the four

research questions investigated in this thesis and validate the formulated hypothesis, as
presented before in Section 1.3. The first question concerns whether using time series
features to identify concept drifts is more effective than using the time series data directly
or monitoring the error of a forecasting model. In order to do so, in Section 5.3.1 we analyze
the concept drift detection accuracy achieved by applying the ICI-based CDT on the set
of features described in Section 4.2.1 individually in comparison to (i) approaches based
on monitoring time series raw data, namely the approach proposed by Ross (2013), which
used the Mood non-parametric statistical test (MOOD, 1954) as a change point method,
and with a similar approach but using Lepage statistical test (LEPAGE, 1971) instead
Mood; and (ii) approaches based on monitoring the residuals of a fitted model, namely at
the ECDD, the PHt, and the ICI-based CDT applied on the error of the Extreme Learning
Machine (ELM). The choice of ELM as the algorithm used to build regression models is
due to the fact that ELM has been widely used in regression and time series forecasting
with good generalization performance, besides presenting a very fast training (HUANG
et al., 2012). The concept drift tests were adapted to work with regression errors of time
series forecasting, instead of classification.

The second objective of the experiments is to evaluate whether we can improve the
feature-based drift detection by applying a concept drift test on the features in combination,
as described in Section 4.2.3 instead of individually. We expect that this approach is able
to reduce the number of false alarms of the method, by reducing the sensitivity of the drift
detection. In order to do so, in Section 5.3.2 we investigate the application of ECDD, PHt
and ICI on the distances between feature vectors against the approach that applies ICI on
features in isolation and against the methods based on forecasting error.

The third objective is to evaluate if the proposed feature weighting strategies
described in Section 4.2.2 are able to improve the concept drift detection of the methods
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which analyze features in combination. The weighting strategy heuristic gives more
importance to features that best describes the time series concepts. So, in Section 5.3.3
we compare each concept drift test applied on combined features with and without the
weighting strategies.

The fourth objective of the experiments is to evaluate if the proposed forecasting
approach integrated with the proposed explicit drift detection which uses feature extraction
and feature weighting to compose the adaptive learning system is effective in forecasting
time series. In order to do so, in Section 5.4 we perform two sets of experiments, one to
evaluate the best scheme of combination of individual forecasters and another two evaluate
the performance of the proposed method in comparison to passive and active adaptive
learning systems.

Since the three first questions are related to drift detection performance and the
fourth is related to forecasting accuracy, we divided the experiments into two parts: (i)
drift detection evaluation (Section 5.3) and (ii) forecasting evaluation (Section 5.4).

The performance metrics used to evaluate the drift detection accuracy of the
compared methods are: (i) the number of false alarms, (ii) the number of miss-detections
and (iii) the drift detection delay. These metrics are computed for each method in each time
series individually. A false alarm is a false positive detection (type-I error), and consists in
the detection of a drift in an instant that there is no drift occurrence. A false alarm is
computed when the method detects a concept drift before the instant a real drift occurs
in data. A miss-detection is a failure in detecting a drift when it actually happens in the
data stream, configuring a type-II error. The drift detection delay is the amount of time
instants the algorithm needed until detecting the occurrence of a drift. The drift delay is
calculated as the average of the delays presented by the method considering all drifts that
exist in the time series. When a miss-detection occurs, all the time series observations that
belong to the missed concept are counted as delay of the method. It is worth noting that,
despite the fact that miss-detection and detection delay are related metrics, they describe
different aspects of the detection process. The metric used to evaluate the forecasting
accuracy is the Mean Absolute Percentage Error (MAPE) which measures the percentage
regression error. MAPE was chosen because it is a popular regression error measure in the
literature. We also evaluate the number of individual forecasting models created during
the time series processing. This metric is an indicative of the computational complexity of
approaches that use more than one forecasting model.

5.2 Data Sets
Despite the fact that concept drift is not a new research area, the effects of concept

drift in time series are not widely studied. There is a lack of appropriate data sets aimed
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for studies of concept drift in regression tasks (SOARES; ARAÚJO, 2015) as well as in
time series analysis. By working with real-world data sets, it is not possible to know exactly
when a drift effectively occurs, the kind of drift or even if there is a drift on the data
(MINKU; YAO, 2012). Artificial data sets, on the other hand, allow an effective analysis
of the drift detection performance. In order to evaluate the drift detection accuracy of
the FW-FEDD, we first used artificial datasets. Then, in order to reaffirm the analysis of
FW-FEDD, we performed experiments using seven real-world time series. Section 5.2.1
describes the artificial data sets created in this thesis and Section 5.2.2 describes the
real-world data sets.

5.2.1 Artificial Data Sets
In this work, we create artificial datasets which comprise time series with linear

and nonlinear behaviors affected by abrupt concept drifts (Table 2). The simulated
time series have 11.000 data points and present 10 concept drifts in the instants T ∗ ∈
{1000, 2000, 3000, ..., 9000, 10000}. These artificial time series are grouped in four datasets:
(i) autoregressive time series (AR), (ii) linear seasonal time series (LS), (iii) nonlinear time
series (NL) and (iv) random walk-autoregressive-nonlinear time series (RW-AR-NL). The
different types of time series were briefly described in Chapter 2. Each time series group is
composed of 20 time series randomly generated by the same time series model. For each
time series group, six different concepts are simulated and the changes follow a pendulum
motion scheme, in which concepts changes from the first to the second to the third, until
the sixth concept, and then from the sixth to the fifth and to fourth, and so one. The
idea of using the pendulum motion scheme (Figure 13) is to evaluate the behavior of
the methods in the presence of recurrent concept drifts. This scheme was used by Nasiri,
Meybodi and Ebadzadeh (2016) to evaluate a particle swarm optimization (PSO) method
with memory in changing environments.

Figure 13 – Pendulum motion of concepts.

Source: adapted from Nasiri, Meybodi and Ebadzadeh (2016).

The AR time series group is composed of time series simulated by an autoregressive
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process to generate the time series points. A time series {xt} is an autoregressive process
of order p, abbreviated as AR(p), if its points can be defined as xt = α1xt−1 + α2xt−2 +
... + αpxt−p + wt, where α1, ..., αp are the model parameters and {wt : t = 1, ..., n} is
a Gaussian white noise time series where the variables w1, ..., wn are independent and
identically distributed and follow a normal distribution (wt ∼ N(0, σ2)) (COWPERTWAIT;
METCALFE, 2009). Concept drifts were simulated by (i) changing the parameters αi

of the AR process and (ii) changing the order p of the process. The white noise random
factor makes the 20 time series of this group be different from each other. The parameters
of the AR that defines each concept are described in Table 2. Figure 14a illustrates an
example of time series of this group. The vertical red bars indicate concept drift points.

Figure 14 – Artificial time series.

(a) AR time series (b) LS time series

(c) NL time series (d) RW-AR-NL

Source: elaborated by the author.

The LS time series group is composed of time series simulated by a linear model
with seasonal variables of s seasons. A linear seasonal model containing s seasons can be
defined as xt = mt + st + wt, where mt is the trend component, st is the seasonal factors
and wt is a Gaussian noise. The model used to generate the 20 time series of this group
has trend mt = 0 and st = βi. We can rewrite this model as xt = mt + β1+mod(t−1,s) + wt

(t = 1, ..., n; i = 1, ..., s). Concept drifts were simulated by (i) changing the parameters βi

and (ii) changing the number of seasons s of the model, as described in Table 2. The white
noise random factor makes the 20 time series of this group be different from each other.
Figure 14b illustrates an example of time series of this group.

The NL time series group is composed of time series simulated by two smooth
autoregressive nonlinear time series models adapted from Zhang, Patuwo and Hu (2001).
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Concept drifts were simulated by changing (i) the parameters α and the nonlinear model.
The first three concepts were generated by smooth nonlinear model 1 (eq. 5.1) defined
by and the other three concepts were generated by smooth nonlinear model 2 (eq. 5.2).
The white noise random factor makes the 20 time series of this group be different from
each other. The parameters of the NL that defines each concept are described in Table 2.
Figure 14c illustrates an example of time series of this group.

xt = [α1xt−1 + α2xt−2 + α3xt−3 + α4xt−4] ∗ [1 − exp(−10xt−1)]−1 + wt (5.1)

xt = α1xt−1 + α2xt−2 + [α3xt−1 + α4xt−2] ∗ [1 − exp(−10xt−1)]−1 + wt (5.2)

The RW-AR-NL time series group is composed of time series simulated by a
combination of random walk (RW), AR of order p and nonlinear time series models. The
random walk is an AR(1) time series model. Concept drifts were simulated by changing
the time series model and the parameters of the model. So, the data points of the first
concept is generated by an AR(1) proces. Then the second concept is generated by an
AR(4) process. The the third concept is generated by the smooth nonlinear model 1 and so
on, as described in Table 2. Figure 14d illustrates an example of time series of this group.

5.2.2 Real-World Data Sets
In the literature there is a lack of open real-world datasets of time series with

concept drifts. Most of the existing real-world time series used in concept drift studies
are time series in which the drifts consist in simple changes in the mean and/or variance
of the data points. In this work, we use two real-world datasets: (i) daily temperatures
time series and (ii) stock indices time series. The first data set was inspired by the ideas
proposed by Boracchi and Roveri (2014). In that work, authors investigated a specific kind
of real world time series which present well defined seasonal pattern. Those time series
describe the water demand in Barcelona city. Concept drifts were simulated in those time
series with some different strategies: (i) simulating leaks in pipes or junction by adding a
factor to the time series observations; (ii) sensor degradation, by adding a Gaussian noise
to time series observations and (iii) source changes, by juxtaposing two different time
series. We use this third strategy, the source changes, to build the daily temperatures time
series dataset. To do so, we chose some time series from the same domain and which are
similar in behavior, but not identical, and we juxtaposed them. With this approach, we
know in advance where the concept drifts happen in the time series and the drift detection
methods can be properly evaluated. The chosen series are of daily temperatures obtained
in DataMarket Time Series Data Library1. Figure 15 shows some examples of the resulting
time series dataset after juxtaposition. This dataset is composed by 13 time series.
1 https://datamarket.com/data/list/?q=provider:tsdl
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Figure 15 – Daily temperature time series.

(a) Fisher River and Hveravellir (b) Fisher River and Oldman River

(c) Fisher River and Saugeen River (d) Hveravellir and Oldman River

(e) Hveravellir and Saugeen River (f) Oldman River and Saugeen River

(g) Melbourne maximum and minimum
temperatures

Source: elaborated by the author.
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Table 2 – Artificial time series data set description.

Group Cpt Parameters
α p

1 {1.5, −0.4, −0.3, −0.2} 4
2 {1.2, −0.3, 0.1} 3

AR 3 {0.9, −0.2, 0.8, −0.5} 4
4 {1.1, −0.6, 0.8, −0.5, −0.1, 0.3} 6
5 {−0.1, 1.4, 0.4, −0.7} 4
6 {0.9, 0.1} 2

β s
1 {34, 32, 30, 28, 26, 24, 22, 24, 26, 28, 30, 32} 12
2 {34, 26, 18, 10, 18, 26} 6

LS 3 {34, 26, 18, 10, 2, −6, −14, −6, 2, 10, 18, 26} 12
4 {34, 10, −14, 10} 4
5 {38, 28, 18, 8, 0, −8, −18, −8, 0, 8, 18, 28} 12
6 {38, 18, 0, −16, 0, 16, 32} 6

α Model
1 {0.9, −0.2, 0.8, −0.5} smooth1
2 {−0.3, 1.4, 0.4, −0.5} smooth1

NL 3 {1.5, −0.4, −0.3, 0.2} smooth1
4 {−0.1, 1.4, 0.4, −0.7} smooth2
5 {0.2, 0.3, 0.6, −0.1} smooth2
6 {−0.1, 0.8, 0.5, −0.2} smooth2

α Model
1 {1} RW

RW- 2 {0.9, −0.2, 0.8, −0.5} AR
AR- 3 {−0.3, 1.4, 0.4, −0.5} smooth1
NL 4 {1.5, −0.4, −0.3, 0.2} AR

5 {−0.1, 1.4, 0.4, −0.7} smooth2
6 {0.2, 0.3, 0.6, −0.1} smooth1

Source: elaborated by the author.

The second dataset is composed by 10 time series of the main stock indices in the
world, namely the BVSP (São Paulo), CAC 40 (Paris), DAX-30 (Frankfurt), S&P500, HSI
(Hong Kong), Nasdaq index, KOSPI (Korea), Nikkei 225 (Tokio), SSE (Shanghai), SMI
(Swiss). All time series data were collected in Yahoo Finance repository2 from 03/01/2000
to 04/11/2016. Each time series have approximately 4300 data observations (they have
not exactly the same number of data points due to differences in the number of working
days in each country). These time series are plotted in Figure 16. In these time series, we
cannot know in advance when the drifts happen, an even whether there is concept drifts
in these time series. So these series were used just in the evaluation of the forecasting
module.
2 https://finance.yahoo.com
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Figure 16 – Stock indices time series.

(a) BVSP (b) CAC 40 (c) DAX-30

(d) S&P500 (e) HSI (f) Nasdaq

(g) KOSPI (h) Nikkei (i) SSE

(j) SMI

Source: elaborated by the author.
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Since we cannot known in advance the existence or absence of concept drifts in
these real-world time series, we simulated 3 changes in the behaviors of these series to
create 10 more time series with known concept drifts. These changes happen in instants
t = {1000, 2000, 3000}. The simulated changes are: (i) the addition of a seasonal factor to
the time series points, computed as in eq 5.3, where xt are the original time series points,
xseas

t are the modified time series points, β = {20, 15, 10, 5, 0, −5, −1, −5, 0, 5, 10, 15} and
s = 12; (ii) the addition of a nonlinear time series behavior xnlin to the time series points,
where xnlin is computed as in eq 5.1 using α = {0.9, −0.2, 0.8, −0.5}; and (iii) the addition
of a harmonic time series behavior to the time series points, as computed in eq. 5.4.
The resulting time series are shown in Figure 17. Vertical bars indicate the concept drift
instants. These time series were also used just to evaluate the forecasting module, due to
the fact that we do not known if there are more drifts other than the artificially introduced
ones.

xseas
t = xt + β1+mod(t−1,s), t = 1, ..., n; i = 1, ...s) (5.3)

xharm
t = xt + sin(2 ∗ π ∗ t/12) (5.4)

5.3 Experimental Results of the Drift Detection Evaluation

5.3.1 Using Features to Detect Concept Drift
In these experiments, we evaluate whether the concept drift approach based on

monitoring time series features is more accurate than those methods based on monitoring
time series raw data or based on monitoring the forecasting error of a forecasting model. In
order to do so, we compare the ICI-based CDT applied on features in isolation (ICI_ind−feat)
with Mood, Lepage and with the application of ECDD, PHt and ICI on the forecasting
errors of ELM (ECDD_ELM , PHt_ELM , and ICI_ELM , respectively). Since Mood is a non-
parametric statistical test which assesses just changes in the variance, we also include a
similar approach but using the Lepage test, which assesses both changes affecting the mean
and variance. The Lepage test was used by Alippi, Boracchi and Roveri (2013b) to identify
change-points using an ensemble of change-point methods. The Mood and Lepage-based
approaches are applied to the de-trended time series (using first order differencing), since
they are based on the assumption that the monitored signal is independent and identically
distributed. This is the same approach as used by Ross (2013). ICI_ind−feat detects a
concept drift as soon as the first feature fires a change.

In order to assess the statistical significance of the results, we use the Friedman
non-parametric test (FRIEDMAN, 1940), with confidence level α = 0.05, according to the
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Figure 17 – Stock indices time series with simulated concept drifts.

(a) BVSP (b) CAC 40 (c) DAX-30

(d) S&P500 (e) HSI (f) Nasdaq

(g) KOSPI (h) Nikkei (i) SSE

(j) SMI

Source: elaborated by the author.
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Table 3 – Parameter values used in grid search of drift detection.

Parameter Methods Values
ARL0 Mood {100, 200, 300, 400, 500}

γ ICIind_feat, ICIfeat {2.0, 2.5, 3.0}
TS ICIind_feat, ICIfeat, {100, 200, 300, 400}

ICIELM

λ ECDDELM , ECDDfeat {0.1, 0.2, 0.3}
δ PHtELM ,PHtfeat {0.005, 0.01, 0.03, 0.05}

W ECDDELM , PHtELM , {0.5, 1.0, 1.5, 2.0}
ECDDfeat, PHtfeat

C ECDDELM , PHtELM , {1.0, 1.5, 2.0, 2.5}
ECDDfeat, PHtfeat

mf ICIind_feat, ICIfeat {100, 150, 200, 250}
ECDDfeat, PHtfeat

mm ECDDELM , PHtELM , {100, 200, 300}
ICIELM

Source: elaborated by the author.

approach proposed by (DEMSAR, 2006). This evaluation approach allows the simultaneous
comparison of several methods considering different data sets. The null-hypothesis is that
there is no significant differences between the approaches across datasets. If the null-
hypothesis is rejected, the Nemenyi post hoc test (NEMENYI, 1962) with 95% confidence
is used to identify the best results.

We performed a grid search to identify the best parameter settings for each method
compared. The best parameters for a method are those which minimize the number of
drift detection errors, computed as the sum of false alarms and miss-detections. In case of
ties, the parameter setting which provides the lower number of miss-detections is chosen.
If the tie still remains, then the lowest drift detection delay is used in the tiebreaker. The
sets of parameter ranges considered for the grid search are shown in Table 3. ARL0, used
in Mood and Lepage, corresponds to the average number of observations before a false
positive occurs. The parameter γ is the confidence parameter used in ICI-based methods.
TS defines the amount of observations used to model the initial confidence intervals of ICI.
λ indicates the weight given to recent data when compared to older data in computing
the EWMA on ECDD. δ is the discount factor is computing the cumulative differences
of PHt. W and C are the warning and drift threshold, respectively, used in both ECDD
and PHt. mf is the window size used in the feature-based methods. mm is the amount of
observations used to model building in the error-based methods.

Figure 18 presents the Friedman ranks with the Nemenyi critical difference for the
three metrics evaluated for the artificial time series dataset (on left) and real-world time
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Figure 18 – Comparison of ICI_ind−feat, Mood, Lepage, ECDD_ELM , PHt_ELM and
ICI_ELM against each other with the Nemenyi test. Groups of classifiers
that are not significantly different (at α = 0.05) are connected.

(a) False Alarms: artificial (b) False Alarms: real-world

(c) Miss-detections: artificial (d) Miss-detections: real-world

(e) Delay: artificial (f) Delay: real-world

Source: elaborated by the author.

series (on the right). Methods that are not significantly different (at p = 0.05) have ranks
which differ by at least the critical difference (CD). In terms of false alarms, the ELM-based
methods presented better results in both artificial and real-world datasets. Mood and
Lepage presented the highest number of false alarms, followed by the ICI_ind−feat. The high
number of false alarms causes a decrease in the number of miss-detections, since some of
these false alarms may coincide with legitimate drifts. So, ICI_ind−feat, Mood and Lepage
presented the best ranks in terms of miss-detections. In terms of drift detection delay,
Lepage presented the best result, followed by Mood and ICI_ELM . The residual-based
presented a high delay. This is due to the fact that these methods are based on the
forecasting error, that needs to reach certain levels before firing a concept drift, which may
increase the detection delay. It is important to note that in the real-world time series, the
results are almost always statistically equivalent to each other. This is due to the fact that
the CD is higher in these tests due to the lesser number of series evaluated.

These results show that the ICI applied on individual features present a higher
number of false alarms compared to the error-based methods. This is due to the fact that
this approach is very sensitive to changes in one or in a small set of features. The Mood
and Lepage methods presented the lowest delay, but with the highest number of false
alarms. Among the ELM-based drift detection methods, the ICI_ELM presented the best
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trade-off between false alarms and miss-detections, so it can be considered the method
with the best results over all datasets. We can conclude from these results that the ICI
applied on features individually provided better results than Mood and Lepage, which
tries to detect drifts directly on time series data, but was not better than monitoring
forecasting error.

5.3.2 Using features in Combination Instead of Individually
The results presented in previous section confirmed what was expected about

applying a CDT on features individually: it fires a high number of false alarms in comparison
with monitoring the error, but it is better than monitoring the raw time series observations.
In order to tackle this problem, we propose to consider time series features in combination
instead of individually, as described in Section 4.2.3. In order to answer the question
whether monitoring features in combination is better then monitoring features individually,
we compare the application of concept drift tests on the distances between feature vectors
against the version applied on features individually. As a second goal of these experiments,
we also compared this approach with the error-based drift detection methods. Since by
working with distances we have just a univariate signal, we applied other concept drift
tests on the distances besides the ICI, namely the ECDD and PHt, in order to make a
fair comparison with the error-based methods. These tests applied on distances between
feature vectors are referred as ICI_feat, ELM_feat and PHt_feat.

Figure 19 presents the Friedman ranks with the Nemenyi critical difference for the
three metrics evaluated in both artificial and real-world time series. Methods that are
significantly different (at p = 0.05) have ranks which differ by at least the critical difference.
In terms of false alarms, the ICI_feat presented statistically the best overall results in the
artificial time series and statistically equivalent results in the real-world ones. The other
feature-based methods applied on features in combination and the error-based methods
presented statistically equivalent results to each other in both artificial and real-world
cases. The ICI_ind−feat presented the overall worst results. In terms of miss-detections,
the feature-based methods presented the best results. Again, the ICI_ind−feat presented
small number of miss-detections because of the high number of false alarms. ICI_feat and
ECDD_feat presented the lower drift detection delay among all compared methods in
the artificial datasets. In the real-world datasets, ICI_feat presented the best ranks, but
statistically equivalent to the other methods.

These results show that, as we expected, the application of a concept drift test to
features in combination is able to reduce the number of false alarms in comparison to the
approach that monitors features in isolation. The use of concept drift tests on features
in combination presented better results than the error-based drift detection methods.
The features that describe time series are more appropriate to indicate changes in the
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Figure 19 – Comparison of ICI_ind−feat,ECDD_feat, PHt_feat, and ICI_feat, ECDD_ELM ,
PHt_ELM , and ICI_ELM against each other with the Nemenyi test. Groups of
classifiers that are not significantly different (at α = 0.05) are connected.

(a) False Alarms: artificial (b) False Alarms: real-world

(c) Miss-detections: artificial (d) Miss-detections: real-world

(e) Delay: artificial (f) Delay: real-world

Source: elaborated by the author.

underlying data distribution than the error of a forecasting method. It also allows the
reduction of the detection delay compared to error-based methods. These results also show
that the ICI applied on features in combination presented the best overall ranks for all
three metrics in the artificial datasets, and good ranks in the real-world datasets. Among
the error-based methods, the one using ICI-based CDT present a better trade-off between
false alarms, miss-detections and drift detection delay than the other methods.

5.3.3 Feature Weighting Improvement
The results on Figure 19, showed that applying a concept drift test on features

in combination is more effective than applying the test on features individually or on
error of a forecasting method. However, as discussed before (see Section 4.2.2), not all
features are informative about concept drifts all the time. Seeking to further improve the
concept drift detection, we apply the two feature weighting methods, namely the feature
weighting based on PCA and the one based on standard deviation described in Section
4.2.2 to the concept drift tests investigated in this work, (ECDD, PHt, and ICI) in order
to monitor features in combination. The goal of these experiments is to identify whether
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the feature weighting is able to improve the concept drift detection of these tests in one or
more metrics evaluated (delay, false alarms and miss-detections).

5.3.3.1 ECDD and Feature Weighting

Figure 20 present the Friedman ranks with the Nemenyi critical difference for the
comparison of ECDD with and without feature weighting for the three metrics evaluated.
Methods that are not significantly different (at p = 0.05) have ranks which differ by at
least the critical difference. In terms of false alarms, the weighting strategies presented
statistically better results than the no weighting strategy in the artificial datasets and
exactly the same results in the real-world datasets. In terms of miss-detections, the results
provided by the weighting strategies and the no weighting strategy were statistically
equivalent. In terms of delay, the ECDD with no weighting strategy and with the std
weighting presented statistically equivalent results in the artificial time series, and the
results were statistically equivalent for the real-world time series.

The hypothesis tests indicate that the std weighting was able to reduce the number
of false alarms while keeping the number of miss-detections and drift detection delay
equivalent to the no weighting strategy. The PCA weighting strategy was able to reduce
the number of false alarms compared to the no weighting strategy, however it increased
the drift detection delay of the CDT. Two facts may contribute to the results in the
real-world time series be equivalent for all three metrics. The first of them is that this
data-set contains less time series, which increase the CD of the Nemenyi test. The second
one is the time series in this group have just one drift. In time series with more drifts,
the wrong identification of a concept drift (false alarm or miss-detection) lead to more
errors in the next drifts which happens in the time series. Figure 21 illustrates an example
of what a wrong drift detection can cause in datasets sequential drifts. So, a bad drift
detection method present very different results than a good one.

The ECDD test compares the differences between the EWMA and the simple mean
of the distances of feature vectors. When the differences between these values are higher
than a threshold, a concept drift is detected. The weighting strategies give more weights
to features with lower variance. These mechanisms reduce the variance of the distances
and avoid suddenly divergences among EWMA and the simple mean of distances, which
consequently reduces the number of false alarms. Figure 22 illustrates the effects of std
and PCA weighting strategies on distances between vectors when applied with ECDD test
on the first time series of the AR time series group. The dashed lines indicates the concept
drift instants. The effects of the weighting strategies on the distances are the same for the
other tests investigated in this research.

Figure 23 allows a more detailed analysis of the improvements of the weighting
std strategy for each time series (x−axis) of each dataset (AR, LS, NL, RW-AR-NL and
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Figure 20 – Comparison of ECDD without weighting and with PCA feature weighting and
with std feature weighting against each other with the Nemenyi test. Groups
of classifiers that are not significantly different (at α = 0.05) are connected.

(a) False Alarms: artificial (b) False Alarms: real

(c) Miss-detections: artificial (d) Miss-detections: real

(e) Delay: artificial (f) Delay: real

Source: elaborated by the author.

real-world) in terms of the three metrics. These plots show the differences between the
results provided by the weighting strategy and the no weighting strategy. In case of the std
weighting strategy have presented better result for a metric in a time series, the difference
is negative, which indicates that std weighting was able to reduce the value for that metric.

Figure 21 – Example of cascade errors due to a erroneous drift identification. The vertical
bars indicate concept drift instants. A false alarm (FA) causes a wrong modeling
(mod) of the next concept and consequently an increase in the delay of the
true detection (TD), then another wrong modeling, then a miss-detection
(MD).

Source: elaborated by the author.
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Figure 22 – Distances between feature vectors during time series processing with ECDD
(a) without, (b) with std and (c) with PCA feature weighting strategy. The
dashed lines indicate concept drift instants. The weighting strategies smooths
the distances between vectors, making easier the drift detection.

(a) No weighting (b) Std weighting (c) PCA weighting

Source: elaborated by the author.

If the bar is positive, it indicates that the std weighting strategy worsened the results
compared to the no weighting strategy. If the difference is 0, then the result for both
strategies were equal.

In the AR time series, std the weighting strategy triggered equal or less false alarms
in 80% of the time series (Figure 23a) and presented equal or less miss-detections in 75%
of the cases (Figure 23b). In terms of drift detection delay, the std weighting strategy was
able to improve the results in 65% of the time series(Figure 23c). The magnitudes of the
improvement provided by the std strategy in most of cases are higher than in cases where
it worsened the delay.

In the LS time series, the weighting strategy provided the same number of false
alarms (Figure 23d) and miss-detections (Figure 23e) than the no weighting strategy, but
with a little increase in the delay in all time series of this group. This increase in the
delay may be explained by the fact that, since the weighting smooths the variance of the
distances, and consequently the differences between EWMA and the simple mean of the
distances, so more observations are needed to confirm the concept drift.

In the NL and in the RW-AR-NL time series, the weighting strategy presented
equal or better number of false alarms in 95% of the time series (Figures 23g and 23j),
and in terms of miss-detections, the weighting strategy present equal or better results
in 90% of the cases (Figures 23h and 23k). The drift delay was increased in some cases
of both time series groups due to the smooth in the distances, as explained before. The
std weighting strategy provided a higher reduction in the number of false alarms in these
groups of time series, compared to the AR time series. This is due to the fact that concept
drifts are more well defined in these time series, which changes not just the parameters
of the model that generates the time series observations but also the time series model
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Figure 23 – Differences between the results provided by ECDD with std weighting and
with no weighting for all time series. Values below 0 indicate an improvement
of the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) : Miss-detections (i) NL: Delay

(j) RW-AR-NL: False
alarms

(k) RW-AR-NL:
Miss-detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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itself. So, features may present some changes that do not effectively imply in a concept
drift. The weighting strategy then is able to identify which features are really important
to identify changes.

In the real-world time series, the weighting strategy presented the same number of
false alarms than the no weighting strategy (Figure 23m), and the same number of miss-
detections (Figure 23n). The weighting strategy was able to improve the drift detection
delay in 5 of the 7 time series. For one series, the magnitudes of the improvements was
much higher than in the cases where results were worse.

Figure 24 illustrates the improvement done by the PCA weighting strategy compared
to the no weighting strategy for each time series of each dataset. In the AR time series,
the PCA weighting strategy was able to reduce the number of false alarms in 90% of the
time series (Figure 24a), but increased the number of miss-detections (Figure 24b) and
drift detection delay (Figure 24c) in almost all of them.

In the LS time series, the PCA provided equal or worse results than the no weighting
strategy for all three metrics. In terms of false alarms (Figure 24d), the results were worse
using PCA in 50% of the cases. In terms of miss-detections (Figure 24e), in just one time
series the PCA weighting increased the number of false alarms. In terms of drift detection
delay (Figure 24f), in all time series, the PCA weighting strategy increased the delay.

For the NL time series, the results achieved by PCA were equal or better than the
no weighting strategy in 95% of the cases for both the number of false alarms (Figure 24g)
and miss-detections (Figure 24h). However, the drift detection delay was increased in in
60% of the cases.

In the RW-AR-NL data set, the PCA weighting strategy presented its better
results than in other time series group. In terms of false alarms (Figure 24j), it presented
equal or better results than the no weighting strategy in all the time series. In terms of
miss-detections (Figure 24k) it was worse than the no weighting strategy in just one case.
And in terms of drift detection delay (Figure 24l), PCA provided equal or better results in
75% of the cases.

In the real-world time series, one can see that PCA was not able to improve the
number of false alarms compared to the no weighting strategy (Figure 24m), but it was
able to reduce the number of miss-detections in one case (Figure 24h). In terms of detection
delay, the PCA strategy improved the results in four time series, but increased the delay
in three.

These experiments showed that the std weighting strategy was able to improvement
the concept drift detection of the ECDD, being able to reduce the number of false alarms
meanwhile keeping the number of miss-detections and drift detection delay constant
compared to the no weighting strategy. As explained before, the std weighting strategy is
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Figure 24 – Differences between the results provided by ECDD with PCA weighting and
with no weighting for all time series. Values below 0 indicate an improvement
of the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) NL: Miss-detections (i) NL: Delay

(j) RW-AR-NL: False
alarms

(k) RW-AR-NL:
Miss-detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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able to reduce the variability of the distances, which avoids some false positive detections.
However, as a consequence, it may increase the drift detection delay in some cases and
eventually cause miss-detections. Some false alarms may be introduced by some error in
the online modeling of the new concept after a change. The PCA weighting strategy was
not effective in improving the results mainly in the AR and LS time series, where the
strategy worsened the results. For the NL and RW-AR-NL, the PCA strategy was able to
improve the results.

5.3.3.2 PHt and Feature Weighting

In this section we describe similar experiments to the last section but analyzing
the improvement of the weighting strategies combined with PHt CDT. Figure 25 presents
the Friedman ranks with the Nemenyi critical difference for the comparison of PHT
with and without feature weighting for the three metrics evaluated. Methods that are
not significantly different (at p = 0.05) have ranks which differ by at least the critical
difference. In terms of false alarms, the weighting strategies presented statistically better
results than the no weighting strategy in artificial data sets, and statistically equivalent
results in the real-world datasets. In terms of miss-detections, the weighting strategies
and the no weighting strategy presented statistically similar results for both artificial and
real-world datasets. But, in terms of drift detection delay, the test indicates that the results
achieved by the std weighting strategy and the no weighting strategy are statistically
equivalent and both are better than the PCA weighting strategy for the artificial datasets.
In the real-world datasets, the results were equivalent. Similarly to the case with ECDD
CDT, the hypothesis tests indicate that the std weighting was able to improve the number
of false alarms while keeping the number of miss-detections and drift detection delay
equivalent to the no weighting strategy. The PCA weighting strategy was able to improve
the number of false alarms compared to the no weighting strategy, however it increased
the drift detection delay of the CDT.

The PHt monitors the cumulative differences between the average of distances and
the minimum average distances. When this cumulative differences increase and is higher
than a threshold, then the test identifies a concept drift. The weighting strategy smooths
the variation of the cumulative distances, which can reduce the number of false alarms,
similarly to ECDD. However, similarly, it can introduce some delay and miss-detections.

Figure 26 allows a more detailed analysis of the improvements of the std weighting
strategy for each time series in each dataset in terms of the three metrics. In the AR time
series, the weighting strategy provided equal or better number of false alarms in 80% of
the time series (Figure 26a) and equal or better number of miss-detections in 85% of the
cases (Figure 26b). The weighting strategy improved the detection delay in 65% of the
time series (Figure 26c). The magnitudes of the improvements were higher than in cases
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Figure 25 – Comparison of PHT without weighting and with PCA feature weighting and
with std feature weighting against each other with the Nemenyi test. Groups
of classifiers that are not significantly different (at α = 0.05) are connected.

(a) False Alarms: artificial (b) False Alarms: real

(c) Miss-detections: artificial (d) Miss-detections: real

(e) Delay: artificial (f) Delay: real

Source: elaborated by the author.

where there was deterioration in results.

In the LS time series, the weighting strategy presented a small improvement in the
drift delay in almost all time series (Figure 26f). This little reduction in the delay can be
explained by the fact that the PHt compares averaged distances with the minimum averaged
distances. The LS time series present well defined trend, seasonality and periodicity, and
these features are very important to define drifts. Since the weighting strategy gives more
importance to these features and less importance to non informative features, any changes
in these features cause a significant difference between the averaged distances and the
minimum averaged distances, and consequently a reduction in the drift detection delay. In
terms of false alarms and drift detection delay, the results were equal.

In the NL time series, the weighting strategy provided equal or better number
of false alarms in 95% time series (Figure 26g), meanwhile keeping equal number of
miss-detections (Figure 26h). However, it increased the drift detection delay in almost
all time series (Figure 26i). Since these time series are not so well defined as the LS, the
weighting strategy needs some more observations to confirm a concept drift.

In the RW-AR-NL time series, in terms of false-alarms (Figure 26j) and miss-
detections (Figure 26k), the weighting strategy was able to provide equal or better results
in 85% and 100% of the time series, respectively. The improvement in the delay was higher
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Figure 26 – Differences between the results provided by PHt with std weighting and with
no weighting for all time series. Values below 0 indicate an improvement of
the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) NL: Miss-detections (i) NL: Delay

(j) RW-AR-NL: False
alarms

(k) RW-AR-NL:
Miss-detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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than in the NL time series (Figure 26l). The reason for this is the fact that concept drifts
in these time series are easier to detect, since there is a change in both parameters of the
time series models as in the models themselves. In this case, the weighting strategy is able
to identify the more important features and detect changes more precisely.

In the real-world time series, the weighting strategy presented no significant im-
provements in the drift detection. In the time series 6, it was able to reduce the number of
false alarms (Figure 26m), but added a miss-detection (Figure 26n). This miss-detection
increased the drift detection delay in time series 6. In the other time series, the results
were equal in terms of false alarms and miss-detections.

Figure 27 illustrates a similar analysis but applying PCA weighting strategy to PHt
CDT. In the AR time series, the PCA weighting strategy was able to reduce the number
of false alarms compared to the no weighting strategy in almost all time series (Figure
27a), however it introduced some miss-detections in several time series (Figure 27b). The
PCA strategy also increased the drift detection delay in most of the cases. These results
show that PCA delayed or made it difficult to detect the changes.

In the LS time series, the PCA strategy was not effective in improving the detection
of PHt. In terms of false alarms (Figure 27d) and miss-detections (Figure 27b), the results
were very similar, with no improvement. However, in terms of delay (Figure 27f), the
weighting strategy worsened the results, increasing the drift detection delay.

For the NL and RW-AR-NL time series, the PCA weighting strategy behaves in a
similar way. It was able to reduce the number of false alarms (Figures 27g and 27j) and
increased the drift detection delay (Figures 27i and 27l) in most of time series of both
groups. In terms of miss-detections, in the NL time series, the results provided by PCA
and the no weighting strategy were exactly the same. In the RW-AR-NL, on the other
hand, some miss-detections were introduced by the PCA strategy in some series and it
reduced this number in other series.

In the real-world time series, the PCA weighting strategy reduced the number of
false alarms in one of the seven time series (Figure 27g), however it increased the number
of false alarms in two time series (Figure 27n). In terms of delay, the PCA weighting
strategy increased the delay in four of the seven time series.

These experiments showed that the std weighting strategy was able to improve
the concept drift detection of PHt, mainly in terms of false alarms and miss-detections.
The identification of important features done by the weighting is able to improve the
computation of differences between the averaged distances and minimum averaged distances
monitored by PHt, resulting in the reduction of the number of false alarms. The PCA
weighting strategy, on the other hand, was not able to improve the concept drift detection
of PHt, similarly to what happened with ECDD CDT.
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Figure 27 – Differences between the results provided by PHt with PCA weighting and
with no weighting for all time series. Values below 0 indicate an improvement
of the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) NL: Miss-detections (i) NL: Delay

(j) RW-AR-NL: False
alarms

(k) RW-AR-NL:
Miss-detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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5.3.3.3 ICI and Feature Weighting

In this section we describe the same analysis of applying the weighting strategies but
with the ICI-based CDT. Figure 28 presents the Friedman ranks with the Nemenyi critical
difference for the comparison of comparison of ICI with and without feature weighting
for the three metrics evaluated. Methods that are not significantly different (at p = 0.05)
have ranks which differ by at least the critical difference.

Different from ECDD and PHt, in this case, the weighting strategies provided
statistically equivalent number of false-alarms and miss-detections than the no weighting
strategy. However, the std weighting strategy was able to improve the drift detection delay
of the CDT in the real-world time series. The PCA was not able to improve the results
compared to the no weighting strategy. One reason for the lower improvement in terms of
false alarms and miss-detections provided by the weighting strategies is that the ICI-based
concept drift test in its original version already presents a very good detection accuracy,
with numbers of false alarms and miss-detections close to 0. Maybe, the false alarms and
miss-detections that occur in this case are unavoidable considering the feature set we
are using in this work. The ICI models the confidence intervals for the distances using
an initial set of observations in an offline mode and in the online processing, it tries to
identify when the confidence intervals for these distances have no intersection with the
initial one. When this happens, a concept drift is detected. The std weighting strategy
is able to reduce the drift detection delay because, since it smooths the variance of the
distances between feature vectors, the intervals become more narrowed and the concept
drifts are detected faster. Although PCA is another way of smoothing the variance of the
distances, it was not able to provide a general improvement in any of the three CDTs
investigated.

Figure 29 allows a more detailed analysis of the comparison of the weighting
strategy and the no weighting strategy for each time series in each dataset in terms of
the three metrics. In the AR time series, the weighting strategy provided equal or better
results in 85% of the time series for the number of false alarms (Figure 29a) and equal or
better results in 80% of the time series in terms of miss-detections (Figure 29b). Some
false alarms may be introduced by the weighting strategy due to problems in modeling
the initial confidence intervals or due to spurious attribution of weights to features. In
terms of detection delay, the weighting strategy was able to improve the results in 65% of
the time series (Figure 29c).

In the LS time series, the weighting strategy provided the same number of false
alarms (Figure 29d) and miss-detections (Figure 29e) than the no weighting strategy, but
with a small improvement in the delay in all time series (Figure 29f). This behavior was
similar to the case of PHt.
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Figure 28 – Comparison of ICI without weighting and with PCA feature weighting and
with std feature weighting against each other with the Nemenyi test. Groups
of classifiers that are not significantly different (at α = 0.05) are connected.

(a) False Alarms: artificial (b) False Alarms: real

(c) Miss-detections: artificial (d) Miss-detections: real

(e) Delay: artificial (f) Delay: real

Source: elaborated by the author.

In the NL time series, in terms of false alarms, in just one case, the weighting
strategy presented worse results than no weighting (Figure 29g), and in terms of miss-
detections, in just two cases, the weighting strategy was not able to provide equal or better
results (Figure 29h). In terms of delay, the weighting strategy improved the results in 55%
of the cases (Figure 29i).

In the RW-AR-NL time series, in terms of false alarms, in one case the weighting
strategy worsened the results compared to the no weighting strategy (Figure 29j). In terms
of miss-detections, in three cases, the weighting strategy introduced one miss-detection
(Figure 29k). The weighting strategy presented equal or better drift detection delay in
60% of the time series (Figure 29l). However, in some cases such as the time series 3 and 9
it increased the drift delay. This was due to the addiction of a miss-detection occurred in
these time series.

In the real-world time series, the weighting strategy was able to provide equal or
better results in terms of false alarms in all time series, reducing the false alarms in two
of them (Figure 29m). In terms of miss-detections, the results were the same for both
strategies (Figure 29n). The weighting strategy was able to reduce the drift detection delay
in four of the seven time series (Figure 29o).

Figure 30 reports the results of a similar analysis but applying PCA weighting
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Figure 29 – Differences between the results provided by ICI with std weighting and with
no weighting for all time series. Values below 0 indicate an improvement of
the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) NL: Miss-detections (i) NL: Delay

(j) RW-AR-NL: False alarms
(k) RW-AR-NL: Miss-

detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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strategy to ICI-based CDT. Similarly to cases with ECDD and PHt CDT, the weighting
strategy based on PCA was not able to improve the drift detection, but it worsened the
results in most cases. In the AR time series PCA weighting was able to improve the results
in terms of false alarms (Figure 30a) in just three time series and the miss-detections in
just six time series, meanwhile it increased the drift detection delay in 65% of the time
series.

In the LS time series, there was no improvement done by PCA strategy. In terms
of false alarms (Figure 30d) and miss-detections (Figure 30e) results provided by PCA
were almost the same than the no weighting strategy, but PCA strategy increased the
drift detection delay in almost all time series (Figure 30f). For the NL and RW-AR-NL
time series, the behavior of PCA weighting strategy was similar. No relevant improvement
was made in terms of false alarms and miss-detections, but the drift detection delay was
increased by the weighting strategy when compared to the no weighting strategy. In the
real-world time series a small improvement was done in terms of false alarms, but the
overall results in terms of miss-detections and drift detection delay was similar to the no
weighting strategy, which indicates no improvement by using the PCA weighting strategy.

These results indicate that the std weighting strategy is able to improve the results
of the ICI applied to features in combination, since it provides equivalent number of false-
alarms and miss-detections, but with lower drift detection delay. Reducing the detection
delay is important since it allows a faster handling of concept drifts in a real-world
forecasting application. Again, the PCA weighting strategy was not able to improve the
drift detection process.

5.3.4 Feature-based CDTs with Weighting Strategies and Error-based CDTs
We further compare the results of these methods with the std weighting strategy

and without weighting against each other and with the error-based CDTs discussed before.
The goal of this last comparison is to evaluate which is the overall best concept drift
detection method over all datasets. Since the PCA weighting strategy was not able to
provide a significant improvement, but on the contrary, it worsened the results, it was
not included in this comparison. Figure 31 shows the Friedman ranks and associated
Nemenyi critical distances of the results. The Friedman test showed statistically significant
differences among the results for all the three metrics evaluated. The ICI-based CDT
applied on features in combination with weighting strategy (ICI_feat−std) presented the best
ranks for all three metrics. In terms of false alarms, the ICI_feat−std and the version without
weighting (ICI_feat) presented statistically the best results. In terms of miss-detections, the
methods based on features presented statistically better results than the other methods.
In terms of drift detection delay, the ICI_feat−std and ICI_feat presented the better results.
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Figure 30 – Differences between the results provided by ICI with PCA weighting and with
no weighting for all time series. Values below 0 indicate an improvement of
the weighting strategy.

(a) AR: False alarms (b) AR: Miss-detections (c) AR: Delay

(d) LS: False alarms (e) LS: Miss-detections (f) LS: Delay

(g) NL: False alarms (h) NL: Miss-detections (i) NL: Delay

(j) RW-AR-NL: False
alarms

(k) RW-AR-NL: Miss-
detections (l) RW-AR-NL: Delay

(m) Real: False alarms (n) Real: Miss-detections (o) Real: Delay

Source: elaborated by the author.
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Figure 31 – Comparison of ECDD_feat, PHt_feat, and ICI_feat with and without weighting,
ECDD_ELM , PHt_ELM , and ICI_ELM against each other with the Nemenyi
test. Groups of classifiers that are not significantly different (at α = 0.05) are
connected.

(a) False Alarms

(b) Miss-detections

(c) Delay

Source: elaborated by the author.

5.4 Forecasting Evaluation
The experiments reported in this section have the goal of answering the fourth

research question formulated in Chapter 1.3 which asks how to better build the active
adaptive learning system which implements a feature-based drift detection in order to
improve the forecasting accuracy. Our hypothesis is that we can use a pool of individual
models in which each model is built to represent a different concept. This approach combines
the advantages of active and passive methods meanwhile it avoids some drawbacks of these
approaches. So, there are three main subgoals of these experiments with the forecasting
module. The first is to investigate which is the best way of combining the individual
forecasting models, whether is to select just the “most appropriate” method to make the
forecasting or combine the existing individual models to make the forecasting based on
their suitability to make that forecasting. In order to do so, we compared the two combining
schemes described in Section 4.3. These experiments are described in Section 5.4.1. After
choosing the best way of combining the set of individual models, a second subgoal of these
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experiments is performed in order to understand the importance of the parameters of the
proposed model. So, we performed a sensitivity analysis of the parameters in order to
study the effects of the parameter setting on the predictive performance of the method.
The results of these experiments are presented and discussed in Section 5.4.2. The third
subgoal of these experiments is to evaluate if the proposed forecasting module is more
accurate than the other ways of handling concept drifts. In order to do so, we compare
the proposed method with passive and active adaptive approaches existing in literature.
Results of these experiments are discussed in Section 5.4.3.

5.4.1 Combining Individual Models
In these experiments we investigated what is the best way of combining the

individual models in order to improve the forecasting accuracy. So, to ensure a reliable
comparison, we simulate an oracle drift detection method in order to compare just the
forecasting combination scheme of the forecasting module independently of the drift
detection performance. This oracle method knows exactly where the drifts occurs. Two
combination approaches were evaluated as possible candidates: (i) a dynamic weighted
ensemble approach, in which the individual models are specialized in a different time
series concepts and, at each instant a new observation needs to be predicted, all methods
make the forecasting and the final output is weighted by considering how the models are
specialized in the current time series concept; and (ii) a pool of individual models, also
specialized on different time series concepts and, at every instant a new observation needs
to be predicted, just the model which is more specialized in the current concept makes the
forecasting. These methods are hereinafter referred to as ens_oracle and closer_oracle,
respectively.

We performed a grid search to identify the best parameter settings for each method
compared. Both methods have just two parameters: the threshold to include new models in
the set of forecasting models Θ and the window size that defines the time series observations
considered to define the current concept mf . Table 4 show the parameter values considered
for the grid search. The best set of parameters for a method is the one that minimizes the
forecasting error. For each parameter setting, the methods were executed 10 times and
the mean of each execution was computed. The window that defines which time series
observations are used for building new models mm was kept fixed with value mm = 200.
So, after a concept drift is detected by the oracle, the system waits for receiving 200 new
time series observations to create a new model, if it is necessary. During this time, the
existing models make forecasting according to the combination scheme implemented by
the system. Just the artificial time series were used in this comparison, since we know in
advance where the concept drifts happen, so we can simulate the oracle drift detector. The
following parameters were defined empirically and not optimized: the lag which defines
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the number of inputs used in the forecasting was set to k = 5, and the number of hidden
neurons of OS-ELM was set to hid = 10.

Table 4 – Parameter values used in grid search.

Parameter Values
θ {0.0, 0.01, 0.05, 0.10, 0.2, 0.3}

mf {100, 150, 200}
Source: elaborated by the author.

Figure 32 shows the comparison of the results in terms of MAPE provided by the
ens_oracle and the closest_oracle for each time series group. These plots show the paired
results of each method for each time series. If the point is on the left of the diagonal line, it
indicates that the forecasting error of the ens_oracle was higher and the closest_oracle

performed better. On the other hand, closest_oracle presented higher forecasting error
and consequently the ens_oracle performed better. As one can see, the closest_oracle,
presented better results for all time series of each time series group. The differences were
higher in the LS time series, were the closest_oracle performed much better than the
ens_oracle.

In order to assess the statistical validity of these results, we run a hypothesis test
on these results. Since the methods are compared pairwise, we follow the recommendation
of Demsar (2006) and use the Wilcoxon signed-ranks test, to compare two methods over
multiple datasets. The p-value of the test was 8.1524e-15, which indicates that with
confidence level α = 0.05, the results are statistically different. So, we can conclude that
the approach that uses just the closest method to make the forecasting is statistically
superior than the weighted ensemble combination of the existing methods. One explanation
for this is that in this approach, a new model is created just when the new time series
concept faced by the method is very different from the concept drifts already seen. So, each
model is very specialized in the concept it was fitted to. Therefore, using the forecasting
answer of different models, even they are weighted, increases the error, since a specialist
gives an opinion on a context entirely different from his specialty.

With these results obtained until this section, we tested the best way of building
the four main modules of the proposed adaptive learning system: (i) the feature extracted
from the time series are considered in combination instead in isolation; (ii) the std feature
weighting is used to improve the drift detection; (iii) the ICI-based CDT is used to detect
changes; and (iv) the forecasting module uses a pool of specialized forecasting models and
just the more specialized models is responsible for answering for a faced time series concept.
Hereinafter, the proposed method with these characteristics is referred to as FW-FEDD.
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Figure 32 – Comparison between ens_oracle and the closest_oracle in terms of MAPE.

(a) AR (b) LS

(c) NL (d) RW-AR-NL

Source: elaborated by the author.

5.4.2 Sensitivity Analysis of the FW-FEDD Parameters
In this section, we investigate the effect of the parameters on the learning ability

of the proposed method. The FW-FEDD has four parameters, namely θ, which is used in
the forecasting module, and three parameters used in the ICIfeat−std drift detection as
explained in Section 5.3 (Γ, TS and mf ). In order to investigate the sensibility of the method
to these parameters, we performed analysis of variance (ANOVA) (MONTGOMERY, 2004)
to analyze the influence of each parameter mentioned on the forecasting performance,
measured through the MAPE. ANOVA is a set of statistical methods that can be used to
test the hypothesis about the effect of different factors on a response variable. ANOVA
was chosen instead other tests, since it allows the investigation of multiple factors and
interactions at the same time. Tests such as Friedman are not appropriate for this kind of
investigation.

In the ANOVA, the parameters of the method are called factors, and the different
values that these parameters assume on the experiment are called factor levels. The
statistical analysis can use the null hypothesis that there is no difference in the response
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when using different factor levels and the alternative hypothesis that there is difference.
Factors can be classified as within-subject or between-subject. Within-subject factors
involve comparisons of the same subjects under different conditions (factor-levels). Between-
subject factors are factors in which different groups of subjects are used for each factor
level. When more than one kind of factor is used, we have a split-plot (mixed) design,
which involves both between-subject and withing-subject factors. This type of ANOVA is
used in this thesis.

The main assumption done by split-plot ANOVA is the sphericity (DEMSAR, 2006).
If the sphericity assumption is violated, the split-plot ANOVA can get high type I error
(reject the null hypothesis when it was true) (DEMSAR, 2006). Mauchly’s test (MAUCHLY,
1940) can be used to detect violations of the spphericity assumption. If violations are
detected, corrections such as Greenhouse-Geisser (GREENHOUSE; GEISSER, 1959) can
be applied to the ANOVA’s p-value so that the type I error wil not be increased. In
addition to ANOVA, measures of effect size such as partial eta-squared can be used to
determine whether the effect of a certain factor or interaction between factors is higher
than the effect of another factor or interaction. The higher the eta-squared, the greater
the relevance of the corresponding factor or interaction on the response.

In this study, the between-subject factor is the type of the time series, which
varies among four different levels (AR, LS, NL and RW-AR-NL). The within-subject
factors are θ, Γ, TS and mf . All factors vary among three levels: θ = {0.0, 0.01, 0.10},
Γ = {2.0, 2.5, 3.0}, ts = {100, 200, 300}, mf = {100, 150, 200}. Mauchly’s tests of sphericity
detected violations of the sphericity assumption (null hypothesis always rejected with
p-value less than 0.001), as can be seen in Table 5. So Greenhouse-Geisser corrections
were used.

Table 6 shows the results of the ANOVA for the within-subjects and for the between
subjects using the Greenhouse-Geisser corrections, since Mauchly’s tests of sphericity
detected violations of this assumption. The table presents the type III sum of squares
(SS), degrees of freedom (DF), mean squares (MS), test F statistics, the p-value (Sig.)
and eta-squared (ETA). Interactions between 2 factors are represented by factor1*factor2.
P-values less than 0.01 represent rejection of the null hypothesis that the average response
is statistically equal at all the levels of the corresponding factors, considering significance
level of 1%. Factors/interactions with large effect size (eta-squared higher than 0.10) are
shown in boldface. Results ordered in decreasing order of effect size.

The interaction θ and the time series type presented the larger effect size on
the forecasting error followed by the factor θ. The factor TS, which defines the number
of distance observations used to model the initial confidence interval of ICI also has a
large effect size when interacting with the between-subject factor type and alone. Some
interactions which evolve θ, mf , TS and type has also a significant effect size on the
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Table 5 – Mauchly’s test of sphericity.

Within Subject Mauchly’s Approx. Chi- df Sig. Greenhouse-
Effect W Squared Geisser
θ 0.877 315.337 2 0.000 0.890
Γ 0.894 267.374 2 0.000 0.904
TS 0.926 183.521 2 0.000 0.931
mf 0.885 291.567 2 0.000 0.897
θ * Γ 0.935 160.851 9 0.000 0.967
θ * TS 0.929 177.163 9 0.000 0.963
Γ * TS 0.728 759.798 9 0.000 0.874
θ * Γ * TS 0.709 822.831 35 0.000 0.914
θ * mf 0.542 1467.950 9 0.000 0.788
Γ * mf 0.662 987.930 9 0.000 0.844
θ * Γ * mf 0.646 1045.049 35 0.000 0.886
TS * mf 0.687 899.232 9 0.000 0.848
θ * TS * mf 0.661 991.893 35 0.000 0.904
Γ * TS * mf 0.576 1319.767 35 0.000 0.887
θ * Γ * TS * mf 0.420 2073.281 135 0.000 0.902

Source: elaborated by the author.

forecasting error of the method. The parameter Γ, was the factor with the smallest effect
size on the response. The table also shows that the between-subject type has a high effect
size on the response.

Since the effects of the interaction θ*mf*type on the forecasting error has a large
effect size, we generated plots of marginal means of this interaction in order to analyze
the 2-way interactions and single factors involving these factors. The plots are shown
in Figure 33. According to the plots, as the value of θ increases, there is an increase in
the forecasting error, except in the case of type=3 (NL time series), in which θ = 0.01
was better than θ = 0 on average. The parameter θ indicates the minimum distances for
including new models in the pool of forecasters. So, these results indicate that the best
results are achieved by including a new model every time a new concept drift happens,
rather than reusing an existing model specialized on a similar concept. This is the ideal
scenario. However, when facing real-world problems with limited computational resources,
the user needs to balance the trade-off between accuracy and computational costs.

As it can be observed in these plots, the effects of mf varies according to the
type of the series. The parameter mf indicates the size of the window of data used to
extract time series features at each instant in order to detect drifts. In the AR time series
(Figure 33a), mf = 150 provide lower forecasting error. In the LS time series (Figure 33b)
setting mf = 100, combined with θ = 0 provide better forecasting accuracy on average.
This may be due to the fact that these time series present well defined features, such as
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Table 6 – Tests of within-subjects and between-subjects effects.

Factor SS DF MS F Sig. Eta
Within-subjects effects

θ * type 42116.090 5.341 7885.292 9364.609 0.000 0.921
θ 20536.775 1.780 11535.150 13699.197 0.000 0.851
TS * type 11292.891 5.588 2020.984 806.492 0.000 0.502
TS 4259.805 1.863 2287.014 912.653 0.000 0.276
θ*mf*type 2943.871 9.461 311.155 262.588 0.000 0.247
mf * type 5311.420 5.383 986.704 253.359 0.000 0.241
TS*mf * type 1884.206 10.172 185.233 98.094 0.000 0.109
θ*mf 999.384 3.154 316.892 267.430 0.000 0.100
mf 1681.771 1.794 937.269 240.666 0.000 0.091
Γ*TS*mf* type 1186.327 21.277 55.756 49.455 0.000 0.058
TS*mf 698.300 3.391 205.946 109.064 0.000 0.044
θ*TS*mf*type 456.458 21.707 21.029 32.902 0.000 0.040
θ*TS*type 168.040 11.551 14.548 25.906 0.000 0.031
Γ*TS*type 368.381 10.491 35.115 24.413 0.000 0.030
Γ*TS*mf 390.336 7.092 55.036 48.816 0.000 0.020
Γ*mf*type 227.237 10.125 22.444 15.597 0.000 0.019
θ*Γ*mf*type 191.713 21.264 9.016 14.139 0.000 0.017
θ*Γ*TS*mf*type 253.786 43.300 5.861 10.280 0.000 0.013
θ*TS*mf 123.919 7.236 17.127 26.797 0.000 0.011
θ*Γ*TS*type 114.111 21.947 5.200 8.514 0.000 0.011
Γ*TS 117.320 3.497 33.550 23.325 0.000 0.010
θ*TS 49.407 3.850 12.832 22.851 0.000 0.009
θ*Γ*mf 99.139 7.088 13.987 21.935 0.000 0.009
θ*Γ*type 42.404 11.603 3.655 6.751 0.000 0.008
Γ * type 30.520 5.427 5.624 3.725 0.002 0.005
Γ*mf 59.096 3.375 17.510 12.169 0.000 0.005
θ*Γ*TS 57.680 7.316 7.885 12.911 0.000 0.005
θ*Γ*TS*mf 93.717 14.433 6.493 11.389 0.000 0.005
θ*Γ 16.416 3.868 4.244 7.841 0.000 0.003
Γ 13.812 1.809 7.635 5.057 0.008 0.002

Between-subjects effects
type 6604480.626 3 2201493.542 34389.538 0.000 0.977

Source: elaborated by the author.
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Figure 33 – Plots of marginal means for the effect of θ*mf*type on the forecasting error.

(a) AR (b) LS

(c) NL (d) RW-AR-NL

Source: elaborated by the author.

seasonality and periodicity, so the method does not need much observations to identify
changes. Therefore, it does not need a wide sliding window. In the NL and RW-AR-NL
time series, best results are achieved by setting mf = 150 and θ = 0. The explanation
for these results may be the fact that mf = 150 is an intermediate size for the window
of observations used to extract features, which is neither so wide that can cause drift
detection delay, nor so narrow that prevents a reliable characterization of the current time
series concept.

The plots on Figure 33a also show that the factor type has a large effect size. The
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average forecasting error is higher in the LS time series series type than in the others, on
average. This may be due to the fact that these time series have concept drifts that change
the periodicity of the time series. Since the lagged inputs used in the forecasting model
are fixed, maybe these time series concepts become difficult to model in these conditions.
The error is small on AR and RW-AR-NL time series.

We also further investigate the effects of the interaction TS*mf*type on the
forecasting error (Figure 34), due to its large effect size. As it can be observed from these
plots, excepting for the LS time series type, the differences of forecasting error achieved
by the different combinations of values for the factors TS and mf are not so high as in
the interaction θ*mf*type. One can also see that the interactions between TS and mf

do not demonstrates a common pattern over all time series types. In the AR time series,
the forecasting error is better by using TS = 100 in combination with mf = 150. In the
other cases, TS = 300 presents the lowest forecasting error compared to the other factor
levels. The TS defines the number of distance observations used to estimate the initial
confidence interval used by the ICI-based CDT. So, these results show that the higher the
number of observations used to model the initial interval, the better is the drift detection
and consequently the forecasting accuracy. In the LS time series, is better to set mf = 100
as explained before. In the NL and in RW-AR-NL, is better using mf = 150 or mf = 200.

5.4.3 Comparing FW-FEDD with Passive and Active Adaptive Approaches
The experiments in this section are performed in order to evaluate if and when the

proposed method is better than some existing passive and active adaptive learning systems
and with methods which are unaware of concept drifts. In order to do so, we compare the
proposed method with: (i) the ELM without drift detection, which allows we evaluate how
the methods perform compared to a batch learning algorithm unaware of drift occurrence;
(ii) the random-walk (RW) method, also called naive forecasting, in which the forecast
yt = xt−1, i.e, the last observation; (iii) the OS-ELM, which is an implicit online learning
method; (iv) the Dynamic Weighted Majority (DWM) (KOLTER; MALOOF, 2007), which
is an online ensemble learning method; (v) the Online Weighted Ensemble of Regressor
Models (OWE) (SOARES; ARAÚJO, 2015), another online ensemble learning method;
and (vi) ELM combined with ICI (ICIELM ), which was the active adaptive learning method
which provided the best drift detection accuracy in the experiments on Section 5.3.

DWM is an ensemble learning approach originally proposed for classification
problems. The basic idea of DWM is to keep a set of online classification models and assign
weights to these models based on their individual performance. The majority voting is
used to combine the outputs of the individual models. DWM also implements a mechanism
to add and remove individual learners based on the global performance of the ensemble. In
order to handle regression problems, we changed the original DWM in some ways. Firstly,
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Figure 34 – Plots of marginal means for the effect of θ*TS*type on the forecasting error.

(a) AR (b) LS

(c) NL (d) RW-AR-NL

Source: elaborated by the author.

we changed the classification models for OS-ELMs, which are also online learning methods
and can be used for regression. Secondly, we changed the majority voting combination
scheme for the weighted averaging of the individual regression outputs. The original DWM
uses the classification error of the ensemble to decide when to add a new individual model
to the ensemble. We implement a discretization scheme based on a threshold γ in order to
handle regression. If the absolute regression error is higher than γ, a new model is added
to the ensemble. This γ becomes a parameter of the method. The remain parameters
of DWM are the factor for decreasing weights (β), the threshold for deleting individual
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models (δ), the period between individual models removal, creation and weight update
(P ).

The OWE is a more recent ensemble method for handling concept drift, but
originally proposed for regression problems. OWE implements three adaptive mechanisms
to handle drift: instance selection, instance weighting and ensemble learning itself. A set
of individual regressor models are kept in the ensemble. Each regressor has an associated
weight and this weight represents the contribution of the individual outputs for the overall
output of the ensemble. These weights are dynamically updated according to the individual
regression accuracy. OWE also implements a dynamic inclusion and exclusion of individual
regressors to the ensemble. The original implementation made available by the authors
was used in this comparison. The parameters of this method are the window size mm,
the factor for demarcating correct and incorrect predictions (γ), the factor to control the
inclusion of new models (α), the discount factor (κ) and the maximum number of models
in the ensemble (B).

Random-walk model was included in this comparison since it is usually used as a
benchmark in time series forecasting (HYNDMAN; KOEHLER, 2006). The random-walk
model can be considered a passive adaptive model, since every change is automatically
incorporated by the model. We performed a grid search to identify the best parameter
settings for each method compared. The number of hidden neurons of ELM and OS-ELM
was fixed to hid = 10 and not optimized. Table 7 show the parameter ranges considered
for the grid search of each compared method. For each parameter setting in each time
series, we ran the methods 10 times. Both the artificial and real-world time series were
used in these experiments.

Table 7 – Parameter values used in grid search.

Parameter Methods Values
β DWM {0.6, 0.7, 0.8, 0.9}
δ DWM {0.1, 0.2, 0.3, 0.4}
γ DWM and OWE {0.03, 0.05, 0.07}
κ OWE {0.1, 0.2, 0.3}
α OWE {0.2, 0.3, 0.4}

mm OWE and ICIELM {100, 200, 300}
ts ICIELM and FW-FEDD {100, 150, 200}
Γ ICIELM and FW-FEDD {2.0, 2.5, 3.0}

mf FW-FEDD {100, 150, 200}
Source: elaborated by the author.

Table 8 shows the averaged results in terms of MAPE with associated standard
deviation for each time series group. Best results are in bold. These results show that, on
average, the proposed FW-FEDD presented the best results for every time series group,
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Table 8 – Average MAPE of the methods in each time series group.

Time Series ELM RW OS-ELM DWM OWE ICIELM FW-FEDD
AR 37.61(19.3) 3.93(1.9) 2.45(0.8) 1.84(0.6) 2.31(0.7) 3.70(1.1) 1.75(0.6)
LS 110.4(21.2) 53.0(2.2) 27.9(1.3) 16.9(0.7) 19.6(1.1) 17.8(0.8) 13.1(0.8)
NL 41.70(26.8) 4.95(1.5) 3.50(1.3) 3.06(1.2) 3.73(1.3) 5.22(2.0) 3.03(1.2)

RW-AR-NL 38.04(25.6) 3.13(1.1) 2.42(0.6) 2.13(0.5) 2.50(0.5) 4.09(1.1) 2.04(0.5)
Temperatures 13.07(4.1) 10.82(2.2) 11.07(2.0) 10.94(1.9) 10.91(1.9) 11.45(1.9) 10.95(2.7)

Indices 13.87(13.6) 2.38 (1.5) 2.09(1.1) 1.84(0.9) 2.07(1.0) 3.16(1.3) 1.80(0.8)
Source: elaborated by the author.

excepting the temperatures time series dataset, followed by the DWM. The simple ELM,
which is unaware of concept drifts presented very high forecasting errors, mainly in the
artificial time series. Since ELM is a batch learning method which never updates its
learned model, the high number of drifts in these artificial time series degrades severely
the forecasting performance of this method. The random-walk forecasting model, which is
a simpled naive passive adaptive method, which uses the last observation as the forecast,
presented better results than ELM. The OS-ELM presented better results than ELM
and RW and even better results than ICIELM in most of the cases. Among the ensemble
methods, DWM was better than OWE in almost all time series groups.

Figure 35 shows the paired comparison of forecasting error of each method against
the FW-FEDD in each time series group. These plots allow a more detailed comparison
among the methods in each time series individually. The ELM results were omitted since
they are much higher than the others and its inclusion would difficult the visualization of
these results. In the AR time series (Figure 35a), none of the methods presented better
results than FW-FEDD. DWM presented the closest results to FW-FEDD, while ICIELM

and random-walk presented the worst results.

In the LS time series (Figure 35b), the forecasting error of all the methods were
higher than in the AR time series. This may be due to problems in the parameters of
the learning algorithm which models the time series. Since the periodicity of linear time
series model that simulates these time series is variable for different concepts, the fixed
lagged inputs k = 5 may not not appropriate for predicting every concept. In this case, the
difference between the results provided by FW-FEDD and the other methods were also
higher than in the AR time series. So, our proposed method presented higher accuracy
even when there are some modeling problems. In this case, the RW presented the worst
results, followed by the OS-ELM. RW presented the worst results due to the differences
between the high differences between the adjacent values of the series, which increase
the error. OS-ELM presented bad results due to the fact that OS-ELM has no forgetting
mechanism. So, in the presence of more severe drifts, it presents the worst recovery from
changes.
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Figure 35 – Comparison of RW, OS-ELM, DWM, OWE, ICIELM against FW-FEDD
regarding forecasting error (MAPE). Results on the right of the diagonal line
indicate that the FW-FEDD presented smaller error. Results on the left of
the diagonal line indicate that the other methods presented smaller error.

(a) AR (b) LS

(c) NL (d) RW-AR-NL

(e) Daily temperatures (f) Financial indices

Source: elaborated by the author.
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In the NL (Figure 35c) and RW-AR-NL (Figure 35d) time series, the methods pre-
sented similar behavior regarding the forecasting error. In these time series, the differences
between the results were smaller than in the LS time series. FW-FEDD presented better
results, followed by the DWM, which presented very similar results, being better in a few
cases. The ICIELM presented the worst results, which can be justified by the inaccurate
drift detection process of this method, that may introduce some drift detection delay and
miss-detections.

We plot the results of the real-world time series separately due to the different
natures of the real-world time series used in this work. In the daily-temperatures time series
(Figure 35e), the methods presented very similar results and, in some cases, even better
results than the proposed FW-FEDD. This is due to the fact that the approaches needed
just one or two models to provide the best results they can do, since there is just one
concept drift in these series. So, in this case use one online/incremental learning algorithm
or a drop-and-retrain active adaptive method is enough to achieve good accuracy. In the
stock indices time series (Figure 35e), the proposed method presented the best results.
DWM presented very similar results to the proposed FW-FEDD, followed by OWE. Again,
the ICIELM presented the worst results.

Figure 36 presents the Friedman ranks with the Nemenyi critical difference for the
forecasting error of the four methods with best overall results, namely the OS-ELM, OWE,
DWM and FW-FEDD. Methods that are significantly different (at α = 0.05) have ranks
which differ by at least the critical difference. In the artificial datasets, the hypothesis test
indicates the statistically signficant superiority of the proposed FW-FEDD, compared to
the other three methods, followed by the DWM. In the real-world dataset, the proposed
FW-FEDD was statistically equivalent to DWM and OWE. The OS-ELM presented the
worst ranks in both datasets.

Figure 36 – Comparison of OS-ELM DWM, OWE and FW-FEDD against each other with
the Nenenyi test regarding the forecasting error. Groups of classifiers that are
not significantly different (at α = 0.05) are connected.

(a) Artificial dataset (b) Real-world dataset

Source: elaborated by the author.

We also evaluated the models in terms of the number of models created during
the processing of the time series. As discussed before, this metric is an indicative of
the computational cost of the method, since more training implies in the need of more
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computations. Table 9 shows the number of models, on average, created by each model.
The ELM, random-walk and OS-ELM create just one model during the process of a time
series. As can be observed, the proposed FW-FEDD needed to create less models than
DWM or OWE, on average.

Table 9 – Average number of models created by the methods in each time series group.

Time Series ELM RW OS-ELM DWM OWE ICIELM FW-FEDD
AR 1(0) 1(0) 1(0) 17.8(9.4) 43.3(37.3) 13.5(3.0) 11.75(3.1)
LS 1(0) 1(0) 1(0) 14.9(1.1) 489.9(44.9) 11.4(0.7) 12.1(2.4)
NL 1(0) 1(0) 1(0) 25.3(13.3) 82.7(62.8) 12.0(2.17) 10.85(3.5)

RW-AR-NL 1(0) 1(0) 1(0) 18.4(10.2) 49.2(77.9) 12.8(3.0) 12.4(2.6)
Temperatures 1(0) 1(0) 1(0) 4.6(11.4) 87.0(39.2) 1.6(1.1) 1.0(1.6)

Indices 1(0) 1(0) 1(0) 7.09(6.6) 59.1(80.1) 4.85(1.4) 3.25(1.9)
Source: elaborated by the author.

Figure 37 shows the paired comparison of number of models created by each method
against the FW-FEDD in each time series group. The OWE results were omitted since
they are very higher than the others and it difficult the visualization of these results. The
plots show that RW, ELM and OS-ELM always present better results, since they use just
one model to process a time series. Plots also show that in a small number of cases the
DWM and the ICIELM present smaller number of models than the FW-FEDD, but in the
majority of the cases, DWM requires much more models than FW-FEDD.

Figure 38 presents the Friedman ranks with the Nemenyi critical differences for the
number of models created by the methods which the best forecasting performance, namely
the OS-ELM, OWE, DWM and FW-FEDD. The test indicates that FW-FEDD presents
statistically better results than all the other methods, excepting the OS-ELM, which uses
just one model. So, these results show that the proposed method was able to provide the
best forecasting accuracy while requiring a small number of forecasting models, which
demonstrates the superiority of the proposed method.

5.5 Summary
The experiments in this chapter were performed to answer the research questions

described in Chapter 1. The first research question asked whether a set of time series
features is a better source of information for drift detection than residuals of a fitted
model or the raw time series data. In Section 5.3.1, we first compared the application
of the ICI-based CDT on features individually against the application of some CDTs
to error of an ELM forecasting method and against the Mood and Lepage approaches.
The results showed that the use of features individually presented a high number of false
alarms compared to the other methods. This is due to the fact that the method becomes
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Figure 37 – Comparison of ELM, RW, OS-ELM, DWM and ICIELM against FW-FEDD
regarding number of models created. Results on the right of the diagonal line
indicate that the FW-FEDD presented smaller number of models. Results on
the left of the diagonal line indicate that the other methods presented smaller
number of models.

(a) AR (b) LS

(c) NL (d) RW-AR-NL

(e) Temperature time series (f) Indices time series

Source: elaborated by the author.



Chapter 5. COMPUTATIONAL EXPERIMENTS 132

Figure 38 – Comparison of the forecasting methods against each other with the Nenenyi
test regarding the number of created models. Groups of classifiers that are
not significantly different (at α = 0.05) are connected.

(a) Artificial dataset (b) Real-world dataset

Source: elaborated by the author.

very sensitive to changes in a small subset of features. The Mood and Lepage methods
presented the worst performance in terms of false alarms.

Our second research question was whether the use of features in combination could
reduce the number of false alarms and improve the overall performance of this approach.
To answer that question we proposed the use of features in combination by monitoring the
distances among feature vectors that describes the time series during the online processing.
In Section 5.3.2 we compared the use of some CDTs applied on distances between feature
vectors with error-based approaches. The results indicated that our hypothesis that using
features in combination improves concept drift detection can be accepted.

Our third research question was whether we could improve drift detection by
identifying the importance of features to detect drifts. We then proposed a weighting
strategy that considers the variance of features to compute the importance of these features.
The experiments in Section 5.3.3 showed that the weighting strategy gets usually similar or
better accuracy than the no weighting strategy for the three concept drift tests investigated.
In case of ECDD, the weighting strategy was able to reduce the number of false alarms of
the drift detection. For PHt, the proposed weighting strategy reduced both false alarms
and miss-detections. For ICI-based CDT, it reduced the drift detection delay. The last
comparison among the methods (Section 5.3.4) showed that the monitoring of features
combined with weighting strategy presented better performance than the no weighting
strategies and than the error-based drift detection methods.

Our fourth research question was how to build a forecasting method that used the
feature-based drift detection information in order to improve the forecasting accuracy. Our
hypothesis was that we could use a set of individual forecasting models in which each model
is specialized in a different time series concept. We then compared two ways of combining
the individual forecasting models and found out that using just the more specialized model
to answer a time series concept is better than combining the forecasting of the existing
models in the model set (Section 5.4.1). So, we built an adaptive learning system which
uses the ICI-based CDT in combination to the proposed std feature weighting based on
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the distance between feature vectors as the explicit drift detection and a pool of individual
specialized forecasting methods. Section 5.4.3 showed that the proposed method provides
better forecasting accuracy than some implicit and explicit forecasting methods while
using a relatively low number of model creating during the processing of the time series.
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6 CONCLUSION AND FUTURE WORK

This thesis introduced a new adaptive learning system to forecast time series which
are eventually affected by concept drifts: the feature selection and weighting for drift
detection in time series (FW-FEDD). The proposed adaptive learning system employs
an online, explicit drift detection method which monitors a set of statistical time series
features in order to detect concept drifts in real-time. An unsupervised feature weighting
heuristic was proposed in order to identify the more relevant features at each time instant
and refine the drift detection process. A forecasting module composed by a set of individual
forecasting models is responsible for handle the drifts identified. Each individual model is
specialized in a different time series concept. So, at each instant a new forecasting should
be performed, the method identifies the current time series concept and chooses the more
appropriate method to perform that forecasting.

The main contribution of this thesis is the new explicit drift detection based
on feature extraction and feature weighting for time series. The majority of existing
approaches are based on identification of change points, which are time instants in which
the mean and/or variance of the time series observations change. Although these methods
are very useful for posterior identification of structural breaks in time series, they are not
suitable for the identification of changes that affect p(y|X), which implies in the need for
retraining or updating the forecasting model. Other approaches are based on monitoring
the forecasting error of a forecaster method. Although these methods are focused on when
the forecasting model is outdated and is no longer effective for make forecasting, they may
not provide a reliable comprehension about the time series concepts. Problems such as
poor generalization may make the drift detection process not reliable.

The proposed FW-FEDD explores the comprehension about time series concepts
to provide a reliable concept drift detection. To do so, it is based on monitoring of a
set of linear and non-linear time series features that describe the relationship about the
time series temporal observations. However, not all of these features are informative
about concept drifts for every kind of time series and for every possible concept drifts.
So, the proposed feature weighting strategy is used as an attempt to identify which of
these features are more informative about concept drifts at a given moment. This feature
weighting strategy is an attempt to build a general time series drift detection method.

Several experiments were performed to identify the best way to build the proposed
method and to compare it with existing concept drift detection methods proposed for
time series. The experiments had the goal of answering four main research questions:
(i) monitoring time series specific features is better than monitoring the raw time series
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observations or the forecasting error to detect concept drifts? (ii) using features in com-
bination is better than using features individually? (iii) there is a way of identifying the
time series features more informative for drift detection? (iv) how is the best way of build
a forecasting module based on a set of individual models? We formulate some hypotheses
for each of these research questions and the computational results showed an indication of
the validity of our hypotheses. Table 10 summarizes the main conclusions obtained in this
study.

Table 10 – Summary of the research questions and answers obtained in this study.

Research Questions and Answers
I. Monitoring time series features is better than monitoring the raw time series
observations or the forecasting error to detect concept drifts?
Features are reliable sources of information for drift detection, but when they
are inspected individually it generates lots of false alarms (false positives).
II. Using features in combination is better than using features individually?
Yes. It allows a more accurate detection than using features individually and than
using raw time series observations or residuals of a fitted model.
III. There is a way of identifying the time series features more informative for
drift detection?
Experiments showed that the proposed feature weighting function that considers
features variance was able to improve drift detection.
IV. How is the best way of building a forecasting module based on a set of individual
models?
Results showed that using a pool of forecasting models specialized in different
concept drifts presented better performance than some passive and active adaptive
methods.

Source: elaborated by the author.

6.1 Limitations of the Proposed Method
Although the results showed superior performance of the proposed method, there

are some limitations that prevents it to perform better in terms of both drift detection
accuracy, forecasting accuracy and computational cost. One of these limitations is the
problem of sequential drifts. In some cases, an erroneous drift identification (a false alarm
or a miss-detection) can cause the erroneous identification of subsequent drifts. An example
of this situation is when a miss-detection happens and due to this, the method identifies
the drift with some delay. If that drift is identified very close to another delay point,
probably observations from the old and the true new concept will be used to create
the representation of the new concept. This can generate a series of new erroneous drift
identifications. These series of erroneous drift identifications can severely degrade the
forecasting accuracy of the proposed method. A way to overcome this limitation is to add
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a drift confirmation mechanism to the proposed method. This confirmation mechanism
could implement a retrospective concept drift test and in parallel to the online processing
it could try to confirm if a detected change was a legitimate drift or a false alarms and
correcting the representation of the current concept.

A second limitation of the method is that it does not implement a mechanism to
deal with gradual concept drifts. Since gradual drifts take more time instants to happen,
the proposed method may present high drift detection delay to identify these concept
drifts. A simpler way to overcome this limitation is to include a mechanism to monitor the
continuous increasing of the distances between features vectors and fires an early detection
of the drift, without waiting for the gradual change finishes. The drift confirmation method
should posteriorly confirm if the gradual drift actually happened or it was a false alarm.

A third important limitation of the method is the computational cost to update the
values of the features extracted from the time series when the window slides to incorporate
a new time series observation arriving from the data stream. Some of the features used
in this work need to be recomputed from scratch for all the observations in the current
sliding window. So, the larger the window, the more costly is the computation of the time
series features. In the case of working on high-frequency data streams, the method may
present some computation delay and require a hardware with high processing power.

6.2 Future Work
There are several ways to go further with this research, besides overcoming the

limitations of the proposed method. Following, there are some interesting points to be
investigated:

• Feature-based and residual-based drift detection. Although the residuals of
a fitted model are not so effective in detecting changes, it can be a good source of
information for improving concept drift detection of a feature-based method. An
interesting investigation would be the combination of these two sources of information
to improve concept drift detection.

• Distance metrics. The distance metric used to compute the dissimilarity among
the feature vectors has a high influence in the concept drift detection accuracy of
the method. If a higher space of features used to characterize time series is used,
perhaps some distance metrics may make the method less sensitive to drifts. So,
an investigation about other distance metrics, as well as some divergence metrics
arising from information theory, such the Kullback-Leibler (KULLBACK; LEIBLER,
1951) and Jensen-Shannon (LIN, 1991) divergence metrics, and its effects on drift
detections would be an interesting future investigation.
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• Multivariate time series. The present study was focused on univariate time
series. However, many time series are better analyzed not as just one source of
time-dependent observations, but as components of some vector-valued sources,
in which there is also an interdependence between the different component series
(BROCKWELL; DAVIS, 2002). The covariation of time series which present similar
time-based patterns is a source of information that may improve the time series
analysis (Du Preez; WITT, 2003). In the financial context multivariate time series
are very common. In this context, a stock price time series is always related to other
stocks on the same market segment, and with national and international financial
indices. This source of extra information could be used to improve the drift detection
in time series. In particular, the multivariate analysis could be useful in both early
drift detection and in drift confirmation.

• Deep-Learning. Recently, the attention of the machine learning and pattern recog-
nition communities has been devoted to applying different methods to hierarchically
learn useful features from a large amount of data (BENGIO; COURVILLE; VIN-
CENT, 2013). The main goal of these approaches is to model complex real-world data
by extracting robust features that capture the relevant information (HINTON; OSIN-
DERO; TEH, 2006). The extraction and recognition of the patterns occur through a
deep nonlinear network topology, in which the layers of feature representations can
be stacked to create deep networks capable of modeling complex structures in the
data (Le Roux; BENGIO, 2008). The deep learning approach has been successfully
applied to tasks such as classification (LEE et al., 2009), speech recognition (ZHANG;
WU, 2013) and dimensionality reduction (HINTON; SALAKHUTDINOV, 2006).
The mainstream deep machine learning approaches include convolutional neural
networks (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), deep belief networks
(HINTON; OSINDERO; TEH, 2006) and stacked auto-encoders (VINCENT et al.,
2008). Perhaps a promising future research would be the use of deep learning to
characterize time series concepts and improve the concept drift detection.
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