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ABSTRACT
A fundamental task in computer vision is extracting low-level features from the image.
Since this is one of the first tasks executed by most vision-based systems, imprecisions and
errors committed during its execution are propagated to the next stages thus affecting the
system overall performance. Therefore, robust and precise feature extractors are mandatory
in computer vision. In the literature, two kinds of low-level features are commonly used:
natural features, and artificial patterns of features. Natural features are extractable only
from scenarios rich in textured elements. On the other hand, artificial patterns of features
can be easily crafted by using commodity printers, which permits its application in a
diversity of scenarios. Moreover, since the real dimensions of the pattern are known
beforehand, the usage of artificial patterns allows the construction of metric systems. This
thesis presents a new detection technique for patterns formed by roundish features. The
new technique is composed of two stages: the extraction of candidates for features of
the pattern; and the searching for the elements (among the candidates) that actually
constitute the pattern. Differently from the techniques found in the related literature, the
proposed one does not restrict the patterns to be rectangular grids of regularly-spaced
features, but it allows the creation of a variety of patterns through the use of graphs (the
pattern template). Experimental results collected from two case studies evidence that the
new technique is robust to uneven and low-lighting conditions.

Keywords: Detection. Pattern. Roundish Features. Blobs.



RESUMO
Em visão computacional, uma tarefa fundamental é a extração de características da
imagem. Por essa ser uma das primeiras etapas a serem realizadas na maioria dos sistemas
computacionais baseados em visão, imprecisões e erros cometidos durante sua realização
são propagados para as demais etapas afetando o resultado final obtido pelo sistema. Dessa
forma, extratores de características que sejam robustos e precisos são uma necessidade em
visão computacional. Na literatura, dois tipos de características são amplamente utilizados:
características naturais; e padrões artificiais de características. Características naturais são
extraíveis apenas de cenários ricos em elementos texturizados. Já padrões artificiais de ca-
racterísticas podem ser facilmente confeccionados com impressoras domésticas, permitindo
sua aplicação em diversos cenários. Além disso, o uso de padrões artificiais possibilita
que as medidas reais entre as características sejam previamente conhecidas (informação
essencial à construção de sistemas métricos). Esta tese apresenta uma nova técnica para
detecção de padrões artificiais formados por características arredondadas, sendo composta
de dois estágios: a extração de elementos candidatos a característica do padrão; e a busca
para encontrar quais elementos (dentre os candidatos) constituem o padrão de interesse.
Diferentemente das técnicas encontradas na literatura, a técnica proposta não é restrita a
detectar padrões retangulares formados por características uniformemente espaçadas; o
usuário é livre para criar o padrão da sua escolha através da construção de um grafo (o
gabarito do padrão). Experimentos realizados com imagens reais comprovam que a técnica
proposta é robusta a iluminação não uniforme e a baixo contraste.

Palavras-chave: Detecção. Padrão. Características Arredondadas. Regiões de Interesse.
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1 INTRODUCTION

Advances in computer science and robotics allowed the development of modern
systems which are able to perform daily human activities (talk, listen, smell, see, walk,
handle objects, etc.). Despite many of these activities being effortlessly fulfilled by humans,
they may be remarkably difficult for computers. In special, the human visual system can
accomplish feats such as easily locating and recognizing elements of interest among a
myriad of others, whilst a modern computer system would not be so efficient or effective
performing the same task (LI, 2015). This visual skill disparity (humans vs. computers) is
even bigger when modifications in the scene parameters/characteristics are allowed (i.e.,
when the scene is dynamic in some way). For example, even small changes in camera
viewpoint, illumination, or in objects placement would be enough to confuse a vision-based
computer system performing an image understanding task, whereas an untrained individual
would hardly be impaired by such changes.

Recent breakthroughs in computer vision and image processing fields allowed even
commodity computers equipped with webcams to mimic humans in some visual tasks. These
regard both theoretical (methods, techniques, and algorithms) and hardware (improved
optical devices/sensors, CPUs with more processing power, etc.) advances (BROWN,
2014), which caused the field of computer vision applications to increase over the last
years. Some modern applications are 3D reconstruction, autonomous cars, robot guidance,
tracking of objects, automated optical inspection for industrial purposes (also known as
machine vision), and recognition of faces, irises, fingerprints, and printed characters.

Computer vision developments also support some applications of well-researched
computer science areas such as augmented reality (AZUMA et al., 2001) and virtual
reality (EARNSHAW, 2014). In augmented reality applications, both intrinsic (calculated
by a camera calibration procedure) and extrinsic camera parameters (calculated by a
pose estimation algorithm, which can be aided by fiducial markers or not) are required
for coherently registering virtual objects into the real scene. In immersive virtual reality
systems, HMDs (Head Mounted Displays) are used for presenting virtual worlds to the user.
These systems must be aware of the user’s head pose for properly setting up the virtual
camera pose, which may be achieved by an optical head tracking system. Particularly for
the head tracking problem, since it has many practical applications, a number of optical
commercial solutions are available (ART, 2016b; PS-TECH, 2016a; NATURALPOINT,
2016; TRACKHAT, 2016; PINTO et al., 2008).

A fundamental task in computer vision is the extraction of low-level features
(or simply features) from the image. This task is performed in the early stages of the
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application execution providing summarized abstractions of image information; thereby
the following stages are benefited by focusing only on refined data of the image. A feature
is any piece of information extractable from images that is relevant for solving the problem
of interest. Ideally, a good feature must have a well-defined position in image space and
can be detected robustly. In the literature, diverse elements are used as features: edges,
corners, points, lines, circles/ellipses, rings, blobs, and ridges (KANGAS, 2011). Recently,
some authors also employed the more general term interest points when referring to corners
and blobs (the feature concept is further detailed in Section 2.1).

Many applications make use of features that are naturally present in the scene.
This is possible mainly when the scene is rich in terms of local information contents (i.e.,
it contains significant edges, corners, textured objects, or any other kind of detectable
feature). However, in such scenarios, there are no guarantees that the selected features
can be spatially related to each other in world space. For example, given that two features
were detected in image space, the real world distance between them is not necessarily
known. This lack of information has a notable impact on the system capabilities — it
precludes metric1 measurements of the scene elements. For example, the 3D reconstruction
system shown in Figure 1 can only produce 3D models up to a scale factor. A real world
measurement provided by the user would solve this impairment, although lessening the
system autonomy. In addition, since the natural features have not been specially designed
for the most robust detection, their extraction may not be very reliable.

On the other hand, there are scenarios where manufactured patterns of features
are intentionally placed into the scene. These patterns arise frequently in computer vision
because their structured geometry is well-suited for algorithmic detection and processing. In
addition, some techniques used in the patterns manufacturing favor their precise/accurate
detection, such as the usage of contrasting colors (usually black and white) and the
employment of a color hue that are not present in the scene. Figure 2 presents a scenario
where the usage of manufactured patterns is beneficial.

Despite the clear advantages of preferring manufactured patterns to natural features
(better detectability and the possibility of previously knowing the features measurements),
their usage is not always feasible. For example, in scenarios where intrusive elements are
not allowed or when the scene scale is huge, manufactured patterns usage is prohibitive. In
short, despite manufactured patterns not being always applicable, for some scenarios their
benefits prevail against their drawbacks, thus they yet play an important role in computer
vision.
1 Throughout this chapter, the term “metric” refers to measurements expressed in real-world units.

Therefore, a metric 3D reconstruction means that it includes the actual dimensions of objects.
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Source: The author

Figure 1 – The R3D (GRVM, 2016) 3D reconstruction system which is based on natural
features. On the left panel, the result of the features extraction stage is shown.
Since no metric information can be obtained from the extracted features, the
produced 3D model (right panel) is up to a scale factor.

Source: (OPENCV, 2016)

Figure 2 – A pose estimation algorithm based on manufactured patterns. The chessboard
pattern printed over the board makes its detection easier than if it had a “solid”
color. For augmented reality applications, this approach would produce more
precise/accurate pose estimations, which in turn reduce jitter effects.

1.1 Motivation
Since feature extraction is one of the first tasks of most computer vision systems,

any subsequent computation will be impacted by its precision/accuracy. From the practical
standpoint, this means that errors made by the feature extractor will be propagated
through the next execution stages, which, in turn, harms the overall quality of the system.
Therefore, a precise/accurate feature extraction algorithm is necessary for any computer
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vision system.

As previously mentioned, using manufactured patterns has advantages over natu-
ral features. Particularly, the possibility of achieving a better feature detectability and
the awareness of the features measurements. For example, if one has to develop a pho-
togrammetry system (SCHENK, 2005) to perform a metric 3D reconstruction of a scene,
manufactured patterns would probably be the best option for calibrating the camera. Be-
yond intrinsic and extrinsic camera calibration (ZHANG, 2001; ESCALERA; ARMINGOL,
2010; CARON; EYNARD, 2011), detecting patterns of features in images has a number
of other applications, such as medical (BRUYANT et al., 2005; WANG; KOBAYASHI;
SAKUMA, 2015), head tracking (MULDER; JANSEN; RHIJN, 2003), object pose estima-
tion (OPENCV, 2016), and oil exploration (PESSOA et al., 2015).

Since planar patterns are inexpensive and easy to craft by using commodity
printers, they are by far the most common kind of pattern. However, there are more
complex patterns whose features are not restricted to be disposed over a planar surface
(ART, 2016a). In addition, for increasing features contrast and consequently improving
their overall detectability, they may be coated with special reflective materials; or active
solutions based on LEDs may be used (PS-TECH, 2016b). Finally, approaches based on
non-visible light, such as infrared, also exist. The advantage of working with non-visible
light is that undesirable elements of the scene may be effortlessly suppressed from the
final image, making the features easier to detect. The usual infrared approach consists in
illuminating the scene with infrared light, coating the elements of interest (the features)
with retroreflective materials, and using an IR-pass filter mounted in front of the camera
lens (MEHLING, 2006).

Planar patterns are usually formed by primitives such as squares, circles, or rings
(Figure 3). Patterns formed by squares present features such as corners, edges, and lines.
At the same time, patterns formed by circles and rings will most likely present ellipses due
to the inherent projective distortions (unless the pattern is perfectly facing the camera).
Positional data from circles (and consequently from rings) are extracted by evaluating
their centroids.

Given the importance of detecting patterns of features for some computer science
fields, this Thesis proposes a new technique for achieving so. In special, the patterns of
interest here are formed by roundish features (such as the one depicted in Figure 3b).
The term “roundish” was propositionally employed because the pattern features are not
required to be perfect circles/ellipses. As it will be detailed in next chapters, the technique
makes no strict restriction about the shape of the features. This characteristic is what
makes the technique suitable for scenarios wherein patterns cannot be precisely crafted,
such as the one presented in Chapter 6 (in this scenario, the pattern was hand marked
over a cylindrical surface).
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(a) (b) (c)

Source: (HIGUCHI; DATTA; KANADE, 2016)

Figure 3 – Printed patterns of features formed by different primitives. Squares in (a),
circles in (b), and rings in (c).

Experiments (Chapter 5 and Chapter 6) evidence the proposed technique is robust
to uneven illumination conditions as well as to low contrast images. In addition, differently
from most techniques found in literature, the proposed one supports features arrangements
distinct from the conventional uniform rectangular grid, giving more freedom for creating
customized patterns.

1.2 Problem definition
The problem tackled in this Thesis is summarized as follows. Given a gray-scale

input image and a user-provided template of a pattern of features, one has to find in the
input image the features that constitute the pattern. Users are not allowed to provide any
hint about the pattern localization. Therefore, the system must be autonomous enough
for finding the pattern by its own means.

More formally, let an image be a mapping I : D → L. For a typical 8-bit gray-scale
digital image, the domain is D = {(x, y) ∈ Z2 : 0 ≤ x < W and 0 ≤ y < H} and its
range is L = {l ∈ Z : 0 ≤ l ≤ 255}, where W denotes the image width and H its height
(GONZALEZ; WOODS, 2006a).

The neighbors of a pixel p ∈ D with coordinate (x, y) are given by N(p) =
{(x+1, y), (x−1, y), (x, y+1), (x, y−1), (x+1, y+1), (x+1, y−1), (x−1, y+1), (x−1, y−1)}
(i.e., eight-neighborhood is adopted). Notice that pixels in the border of the image have
some neighbors lying outside the image domain. These pixels are excluded from the final
neighbors set.

For two pixels p and q, both in D, p ∈ N(q) if and only if q ∈ N(p) — if so, p and
q are denominated adjacent (denoted by pAq). A sequence of pixels (p, a1, a2, . . . , an, q) is
a path from p to q if and only if pAa1, aiAai+1 for i ∈ {1, . . . , n− 1}, and anAq (i.e., it is
a sequence of adjacent pixels). A connected component C is a subset of D such that for
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all p and q in C there is a path (p, a1, a2, . . . , an, q) and {a1, a2, . . . , an} ⊂ C.

The template of a pattern is represented by a finite, connected, unweighted, and
simple graph G = (V, E). Since it is a simple graph, loops and multiple edges are not
allowed. This graph has the set of vertices V as the set of pattern features and the set of
edges E as the set of immediate neighborhood relations. In addition, each vertex vi ∈ V

has a position, which is given by P(vi) = (xi, yi).

The problem consists in finding a mapping M : V → A that satisfies the geometrical
restrictions2 imposed by G, where A is the set of all possible connected components over
the image domain. See Figure 4 for an illustration of the problem. Because of the nature
of the patterns of interest, which prohibits features to overlap each other (be it a total or
partial overlapping), some remarks on this mapping can be made. Firstly, the mapping M
is an injective non-surjective function. Secondly, be the subset A′ ⊂ A the image of M, for
all Ci and Cj in A′ such that i 6= j, Ci ∩ Cj = ∅.
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Source: The author

Figure 4 – Illustration of the problem tackled in this Thesis. In (a), an input image
exhibiting a pattern of five circular features. In (c), an illustration of the
template of the pattern of interest (a graph where each vertex has a position).
For this example, a solution is the mapping that gives M(v1) = C5, M(v2) = C3,
M(v3) = C1, M(v4) = C4, and M(v5) = C2, where Ci is a connected component
depicted in (b).

For most applications, it only makes sense to find the pattern in an all-or-nothing
2 Note that since a position is attached to each vertex of G, not only topological but also geometrical

information is embedded into G. This geometrical data is essential for the algorithm operation and it
is what restricts wrong patterns to be detected.
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fashion3. However, in scenarios such as the one presented in Chapter 6, the partial detection
of the pattern is required, so this case will be also addressed by this Thesis (up to some
extent). This means that for such scenarios, the mapping sought is actually a partial
function (i.e., not all graph vertices will have a connected component mapped to).

As a final statement, it is worth emphasizing that the problem described here
cannot be solved by a singly binarization, thresholding, interest region extractor, or any
other kind of segmentation technique. While these techniques can indeed detect a region
in the input image for each feature of the pattern, they cannot establish the required
correspondences between the regions and the vertices of the pattern template.

1.3 Objectives
Given the aforementioned motivations, the general objective of this work is to

propose a new technique for detecting patterns of roundish features. In contrast to the
state-of-the-art, the proposed technique employs a more general mechanism for the pattern
specification, allowing users to create their own patterns. In addition, aspects such as
robustness to restricted lighting conditions and tolerance to lens distortion must also be
taken into account. The specific objectives of this work are:

1. To design the overall pattern detection technique;

2. To develop a blob extractor that is able to succeed under uneven and low-lighting
conditions;

3. To propose a suitable data structure for representing different-shaped patterns; and

4. To compare the proposed technique with techniques from the state-of-the-art under
different case studies.

1.4 Contributions
This Thesis presents a new detection technique for patterns formed by roundish

features. It does not restrict the patterns to be rectangular grids of regularly-spaced
features, but it allows the creation of a variety of patterns through the usage of graphs.
Therefore, regarding this aspect, the proposed technique is more general than the state-
of-the-art ones (refer to Figure 5 to see some examples of unusual patterns that can be
detected by the proposed technique).
3 For instance, if part of the pattern is not visible due to occlusion or a bad framing, it is not desired to

detect the non-occluded part of this pattern, even though it was visible.



Chapter 1. Introduction 22

(a) (b)

Source: The author

Figure 5 – Examples of unusual patterns that can be detected by the proposed technique.

Experimental results collected from two case studies evidence that the new technique
is robust to uneven and low-lighting conditions. In addition, by relying on short-range
geometrical constraints during the searching stage, the proposed technique is able to detect
deformed patterns.

Another contribution of this work is a new blob formulation which was built upon
the ideas of two blob extractors from the literature. This formulation has the advantage of
producing fewer outliers while at the same time creating representative blobs even when
the pattern is formed by non-perfectly circular features.

1.4.1 Publications

The following papers were published during this Thesis development.

• Saulo Pessoa, Vinicius Cesar, Bernardo Reis, Judith Kelner, and Ismael Santos.
A Segmentation Technique for Flexible Pipes in Deep Underwater En-
vironments. British Machine Vision Conference (BMVC), 2015 (PESSOA et al.,
2015).

• Ismael Santos, Eduardo Vardaro, Emerson de Goes, Volney Lopes, Alyson Vaillant,
Andre Palmeiro, Judith Kelner, Vinicius Cesar, Saulo Pessoa, and Bernardo Reis.
Real Time Radius of Curvature Measurement During DVC Operations
Based on Flexible Pipe 3D Reconstruction. Offshore Technology Conference
(OTC), 2015 (SANTOS et al., 2015).
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1.5 Thesis structure
This Thesis is structured as follows. Related work is presented in Chapter 2. This

chapter starts by covering the extraction of low-level features (giving special attention
to blob extractors) and, at the end, it addresses works that targeted the overall problem
of detecting patterns formed by circular features. Chapter 3 introduces the proposed
pattern detection technique providing in-depth technical details (a formal definition,
as well as implementation aspects, are discussed). The methodology employed in the
experiments is described in Chapter 4. Next, the proposed technique is assessed through
comparative experiments, which are conducted within two distinct case studies (Chapter 5
and Chapter 6). Finally, Chapter 7 draws the conclusions and presents open problems left
as future work.
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2 RELATED WORK

This chapter presents the works that are related to the technique proposed in this
Thesis. The first covered topic is concerned with the initial stage of the proposed technique
— the extraction of low-level features from the input image. For the context of this Thesis,
this stage comes down to extracting elements termed as blobs. The last section of this
chapter addresses the overall problem of detecting patterns formed by roundish features.

2.1 Low-level feature extraction
A typical computer vision system is composed of multiple sequential stages wherein

specific operations are performed. The initial stages are usually in charge of extracting
primitive visual elements that constitute the image — they are termed as low-level features
or simply as features. These elements are important because they are transformed into
entities of higher semantic level in the subsequent stages of the system (ARORA, 2007).
For instance, regarding the problem of detecting the pattern shown in Figure 3b, the black
circles are the low-level features and the pattern (as a whole) is the element of higher
semantic level.

Extracting low-level features from images is a broad problem. Not surprisingly, dif-
ferent kinds of feature extractors have been proposed and used in the literature (KANGAS,
2011). Regarding the problem of detecting manufactured patterns, the most pervasive
types of extractors are the ones based on corners, edges, or blobs.

Corners can be imagined as regions of the image that have large intensity changes
in more than one direction, such as in the intersection of two lines. The basic notion of a
corner is analog to a point (i.e., a geometric element without dimensional attributes). One
of the earliest corner detectors was presented by Moravec, which proposed determining
the changes that resulted from shifting a local window in the image by a small amount in
various directions (MORAVEC, 1980). This approach suffered from anisotropic responses,
which was later addressed by Harris and Stephens. Harris and Stephens also improved
the noise response of the operator, making this new detector known as the Harris Corner
Detector (HARRIS; STEPHENS, 1988).

Edges are elongated elements extracted from regions at which the image brightness
has discontinuities. They are analog to lines and represented by sets of connected pixels
which delimit the boundaries between disjoint regions. Edge detectors have many practical
applications in the computer vision field. A recent work evaluated edge detectors and
concluded that among Prewitt, Robert, Sobel, and Canny, Canny’s algorithm performs
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better for noisy image and additionally has a lower probability of extracting false edges
(KUMAR; SAXENA et al., 2013).

In any event, corners and edges are not the best kinds of feature for underlying the
detection of patterns formed by roundish features. Essentially, corners are zero-dimensional
elements, so they cannot capture the notion of area. The same applies for edges1, which
are one-dimensional elements.

On the other hand, corners and edges suit well for detecting chessboard patterns. In
a chessboard pattern, the regions wherein squares intersect each other are easily identified
by corner detectors (Figure 6a). Similarly, edge detectors are sensitive to square edges
(Figure 6b). If the image does not suffer from significant radial distortions, edges can
further be transformed into straight lines (Figure 6c), something that can be accomplished
by a Hough Transform algorithm (HART, 2009). For some scenarios, directly storing lines
is advantageous because it is a more compact representation (while edges are stored on a
per-pixel basis, each line requires only two scalar parameters).

 

(a) (b)

 

(c)

Source: The author

Figure 6 – In (a), the corners of a chessboard pattern are highlighted in red. In (b), the
edges extracted from the same pattern. Finally, in (c), edges are transformed
into straight lines.

Under those circumstances, this work does not go further reviewing corners and
edge detectors. For more detailed reviews, as well as comparative evaluations, refer to
some papers of reference (SCHMID; MOHR; BAUCKHAGE, 2000; MOKHTARIAN;
MOHANNA, 2006; TUYTELAARS; MIKOLAJCZYK, 2008; GAUGLITZ; HÖLLERER;
TURK, 2011; PATEL; PANCHAL, 2014; SUBBAN; PRABAKARAN, 2015).

2.1.1 Blob extraction

More relevant to this Thesis are blob extractors. A blob can be defined as a set
of connected pixels which share some property in common. Differently from corners and
1 As a matter of fact, edges can capture the notion of area if they form closed contours. However, from

the practical standpoint, the usage of edge detectors for extracting regions is limited because they are
subject to produce discontinued edges, and in such a situation contours would not be closed anymore.
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edges, blobs are regional entities (i.e., they extend over the image domain). Due to this
inherent characteristic, blobs are also referred to as regions of interest. The notion of a
roundish feature previously exposed in this Thesis (the low-level element of interest) is
formalized by the blob concept.

An important concern about blob extraction algorithms regards their ability to
tolerate changes in blobs size. A blob extractor is said to be scale invariant if it is able to
detect blobs over a range of scales without requiring a new parameterization for each scale
level. This characteristic is important because in many practical applications patterns
are allowed to be moved closer and away from the camera, and in such a situation the
size (in image space) of the features changes due to the various distortions involved in
the image formation process. For instance, during a camera calibration process features
can considerably increase in size when the pattern approaches the camera; conversely,
distancing the pattern from the camera has the opposite effect in features apparent size.

Several approaches have been proposed for extracting blobs. Many of them proceed
by analyzing the responses given by differential filters at different regions of the image. If
the filter produces a strong response at a region of the image, then the region is extracted
as a blob. One remark about this approach is that not only the operator location but also
its scale affects the overall extraction performance (a small windowed operator placed at
the center of a big feature does not produce a strong response, and vice versa). Thereby, it
is common to perform a multiple scale analysis of the image for ensuring differently sized
blobs are extracted (LINDEBERG, 1994).

The Laplacian of Gaussian (LoG) operator has been largely used for extracting
blobs. In particular, approximations of this operator were mostly aimed since they are
faster to compute. For instance, the Difference of Gaussians (DoG) operator is a good
approximation and is computationally less demanding. This operator consists in filtering
the original image with differently sized Gaussians and evaluating the difference between
consecutive smoothed images. If scale invariance is desired, then successive smoothing
operations are required for ensuring the whole range of blob sizes is covered. However, these
operations are known to decrease the signal amplitude, which in turn bias the operator
responses obtained from different scale levels. An appropriate normalization mechanism
compensates this decreasing (LINDEBERG, 1998).

Another operator found in the literature for extracting blobs is the Determinant of
the Hessian matrix (DoH). This operator is also coupled with a multiple scale analysis
and a normalization mechanism for achieving scale-invariant behavior (LINDEBERG,
1998). Blobs extracted by the DoH operator have better scale selection (as compared
to the Laplacian-based ones) when image undergo non-Euclidean affine transformations.
Additionally, a recent publication (LINDEBERG, 2015) compared different operators
and concluded that the DoH achieved the best features matching performance under
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perspective image transformations.

On the other hand of the blob extractors based on differential filters, there are
the ones that proceed by finding the local maxima and minima of the image function.
In particular, the notion of blob exposed by Lindeberg and Eklundh (LINDEBERG;
EKLUNDH, 1990) is intimately related to the one presented in this Thesis (Section 3.2).
By imagining the surface plot of a gray-scale image one can intuitively define this blob
as a region associated with a local extremum point. This region is permitted to grow, as
a descending path is followed, until the path assumes an ascending inclination toward
another local extremum point (i.e., a saddle point is reached). Figure 7 illustrates this
notion.
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Source: The author

Figure 7 – Illustration of the Lindeberg and Eklundh’s blob concept. The blobs at the
bottom of illustration are merely projections of the upper isolines (the dashed
elliptical lines in gray).

This blob notion was later formalized and an algorithmic procedure for its extraction
was presented (refer to the paper (LINDEBERG; EKLUNDH, 1991) and to the Lindeberg’s
Thesis (LINDEBERG, 1991)). It is worth noting that, in these works, the authors were
interested in something broader than the simple blob concept — the extraction of salient
structures from images without a priori information about the structures (i.e., how to
determine the scale of an object and where to search for it before knowing its size and where
it is located). For achieving so, they presented a multi-scale representation for gray-scale
images, which was termed the Scale-space Primal Sketch. This representation permitted
them to successively inspect structures/blobs from fine to coarse levels of scale. The most
salient ones were selected as being important regions of the image. Additional attention to
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the behavior of blobs in scale space was given in a posterior paper (LINDEBERG, 1992).

To the best knowledge of the author, no further developments regarding the
Lindeberg and Eklundh’s blob extractor were published. The posterior works mostly
comprised experiments with real imagery (LINDEBERG; EKLUNDH, 1992). The Scale-
space Primal Sketch concept was also employed in problems such as edge detection and
automatic peak detection in histograms (LINDEBERG, 1993), as well as PET data analysis
for cerebral blood flow measurements (LINDEBERG; LIDBERG; ROLAND, 1999).

Another important work related to blob extraction was presented by Matas et al.
(MATAS et al., 2004). They studied the problem of establishing correspondences between
elements extracted from a pair of images taken from different viewpoints. For such a thing,
they introduced a new set of image elements/features denominated as maximally stable
extremal regions (MSERs). Despite this different formulation and the absence of references
to the Lindeberg and Eklundh’s former work (LINDEBERG; EKLUNDH, 1990), MSERs
are very alike the blobs presented in Figure 7.

In essence, both works proceed by analyzing the isolines of a surface plot at different
levels and selecting the appropriate ones for extracting blobs. What differs them is basically
the selection criterion employed. While Lindeberg and Eklundh extract blobs from the
isolines that occur at saddle points, Matas et al. select the maximally stable isolines
(Figure 8). By “stable isoline” one means an isoline that is alike to others over a range of
nearby levels (more details about this topic are covered in Subsection 3.2.4).

 
Source: The author

Figure 8 – Multiple isolines at different levels of a surface plot. Essentially, these are the
elements analyzed by both the Lindeberg and Eklundh’s blob extractor; and
the Matas and coworkers’. Isolines in red are the ones selected by the former
blob extractor. The latter extractor selects the blue ones.

The blob extractor proposed in this Thesis was inspired by both Lindeberg and
Eklundh’s work (LINDEBERG; EKLUNDH, 1990); and Matas and coworkers’ (MATAS
et al., 2004). As is detailed in Section 3.2, the proposed extractor combines the best of
both worlds for achieving better results.
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As a final observation, there are many circle detection methods which are variants
of the Hough Transform that could be used as blob extractors (MUKHOPADHYAY;
CHAUDHURI, 2015). These methods are commonly used in the literature because they
have the advantage of being relatively unaffected by the presence of image noise. However,
since they demand considerable computational time and large storage (in particular, three-
dimensional accumulators are necessary for detecting circles with an arbitrary radius),
their application to some scenarios is limited.

2.1.2 Image segmentation techniques as blob extractors

Despite not being formally presented as blob extractors, many image segmentation
techniques (ZHU et al., 2016) can be used as so. These techniques work by partitioning
the image into disjoint sets of similar pixels. Since these sets contain pixels that share a
common characteristic, from the practical standpoint they can be considered as blobs.

However, at least for the scenarios analyzed in this Thesis, image segmentation
techniques are unlikely to produce comparable results to those obtained by blob extractors.
The main problematic is that most image segmentation techniques are too much general-
purpose and do not explore the specificities of the problem in hand to reach good results.

In an earlier presentation of the work presented in this Thesis (PESSOA et al., 2015),
some image thresholding techniques were comparatively evaluated against the proposed
blob extractor. Among the four assessed thresholding techniques, there was one that uses
a global threshold for all pixels (OTSU, 1975) and the other three were locally adaptive
methods (BERNSEN, 1986; BRADLEY; ROTH, 2007; SAUVOLA; PIETIKÄINEN, 2000).
The global method was not able to segment the features of interest in any of the tested
images. The adaptive methods achieved better results, although they did not match up in
performance with the proposed technique.

The main difficulty with the adaptive methods was that they require a specific
parameterization for each input image in order to achieve good results — if a small window
size is used then blobs with holes are produced, on the other hand, large windows fail to
separate blobs brought forth from close features. On top of these issues, it must be noted
that most of the thresholding techniques were created in the context of the document
image binarization problem, so there is an excuse for their deficient performance while
extracting blobs.

One general-purpose image segmentation technique considered for experimenta-
tion (see Chapters 4, 5, and 6) is the P-Algorithm (BEUCHER; MARCOTEGUI, 2009;
BEUCHER, 2013). In spite of P-Algorithm standing on the watershed transformation, it
does not suffer from the typical over-segmentation problem presented by implementations
based on the watershed principle (GONZALEZ; WOODS, 2006b). Another advantage
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of P-Algorithm is that it is self-adaptable to the changes that occur from one input
image to other (P-Algorithm is denominated as a parameterless technique). This last
advantage, in particular, makes P-Algorithm suitable for experimentation because this is
the way that blob extractors are expected to work — without requiring to be constantly
reparameterized.

2.2 Detection of patterns formed by roundish features
This section presents the works found in the literature that approached the problem

of detecting patterns formed by roundish features. Two different strategies have been used
for collecting these works: 1) backtracking, which consists in searching for the “cited by”
papers of a publication of reference; and 2), hand searches in the proceedings of relevant
conferences (IEEE, 2017a; IEEE, 2017b; IEEE, 2017c) and journals (ELSEVIER, 2017a;
ELSEVIER, 2017b), which comprehended the period from 2005 to 2016.

The OpenCV software library (BRADSKI, 2000) implements a blob extractor as
well as a circular pattern detector (the latter is powered by the former). The blob extractor
works by firstly applying consecutive ordinary thresholding operations to produce a set
of binary images. Afterward, in each binary image, connected white pixels are grouped
together creating a set of blobs. Next, close blobs from different thresholding levels are
merged producing the final set of feature candidates. Finally, the centroids and radii
of these candidates are evaluated. The pattern detector of the OpenCV can recognize
two types of patterns: the symmetric (a rectangular grid of circles) and the asymmetric
(similar to the symmetric one, although the odd rows of the pattern are offset). However,
experiments testify that the OpenCV detector is not suitable for scenarios with limited
lighting conditions (see Chapter 5).

Smith and Smith have used thresholding and regression analysis for detecting arrays
of equally spaced dots (SMITH; SMITH, 2005). The overall detection procedure begins by
extracting blobs and then computing their center of mass. After that, the correspondences
between the blobs and the dots of the array are established by a process that starts by
the nearest blob to the center of the image (the region with minimal radial distortion).
This process repeatedly utilizes regression analysis to predict the position of the blob to
correspond to the next dot of the array; the process ends by reaching the edge of the
image. Despite not discussed by the authors, the approach proposed by Smith and Smith
has issues. Firstly, since they have used a simplistic thresholding technique for extracting
blobs, the proposed detector can only succeed in evenly illuminated scenarios. Additionally,
the procedure used for establishing correspondences does not consider that some of the
extracted blobs may be outliers. By the way, the sample image used for experimentation
(refer to the paper) seems to be acquired from a carefully crafted scenario so that the
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mentioned issues were never a problem.

Kang et al. have detected regular patterns of circular features for camera calibration
purposes (KANG; HA; JEONG, 2008). They utilized the Otsu global thresholding technique
(OTSU, 1975) for selecting feature candidate regions. Since their system executed in an
industrial environment with uneven illumination and with the presence of occluders, the
image binarization stage was subject to miss many inliers. To overcome this limitation, they
supported partial detections of the pattern, which was achieved by selecting a reliable subset
of the features and estimating a transform from the pattern plane to the camera projection
plane (this transform has ultimately aided the detection of the remaining features). It
is worth noting that this approach was only possible because of the pattern regularity
(an evenly spaced rectangular grid). Later, Kang et al. built upon their work (KANG;
LEE, 2010) by employing the Sauvola’s adaptive thresholding technique (SAUVOLA;
PIETIKÄINEN, 2000). They accelerated the Sauvola’s technique by utilizing integral
images.

Yu et al. have detected patterns of circular features displayed in LCD monitors
(they focused on the asymmetric pattern of the OpenCV library). Their pattern detection
procedure can be roughly divided into three stages (YU et al., 2011). Firstly, it extracts
feature candidates by smoothing the input image with a Gaussian filter for reducing noise;
thresholding the smoothed image with an adaptive algorithm; obtaining enclosure regions;
calculating several statistics from the regions (such as area, radius, etc.); and filtering the
regions to obtain the final set of feature candidates. Secondly, the vicinity information
is used to evaluate a similarity metric between candidates and features, which produces
an initial correspondence set. Finally, a RANSAC (RANdom Sample And Consensus)
algorithm refines the initial correspondence set while the camera parameters are estimated.
The technique presented by Yu et al. has some issues that must be highlighted. First,
since the estimated camera parameters are used for detecting new features, the pattern
detection is dependent on the camera calibration process. In addition, in spite of the
testing scenarios always depicting patterns with good contrast (after all, LCD monitors
have light of their own), their technique was not always able to detect every feature of the
pattern.

Wang et al. have presented a coarse-to-fine approach (WANG; KOBAYASHI;
SAKUMA, 2015) for detecting dot array markers. Each marker is framed by a rectangular
shape for facilitating their initial detection (the goal of the coarse stage). The first step
performed during the coarse stage is to smooth the input image with a Gaussian filter. Next,
a thresholding operation is used for binarizing the smoothed image (the authors did not
expound on the thresholding operation, they limited to mention that a “simple threshold”
was used). Afterward, as an attempt to remove outliers, morphological operations (opening
and closing) are performed in the binarized image. The contours of the remaining blobs
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are then extracted in a hierarchical manner, which permits identifying holed blobs and
knowing what blobs are inside them. The marker is finally detected by searching for the
holed blob that contains the same amount of internal blobs as the number of dots in the
marker. Given the initial estimation of the dots contours obtained by the coarse stage, the
fine stage finds out the dots edges with sub-pixel precision by searching the zero-crossing
in the convolution of the marker image with a LoG (Laplacian-of-Gaussian) kernel. The
fine stage ends by fitting ellipses to the edge points and evaluating their centers. The chief
issue with the Wang and coworkers’ approach is that its coarse stage is clearly subject to
fail in more challenging scenarios (because of the simplistic feature extraction procedure).
Not to mention that the patterns used by this approach have the downside of requiring
some specificities (such as the surrounding frame).

Bergamasco et al. have proposed a pattern characterized by a circular arrangement
of dots that are at fixed angular positions in one or more concentric rings (BERGAMASCO
et al., 2011). This design has allowed the projective properties of both the atomic dots
and the rings to be beneficially exploited. In addition, Bergamasco et al. have chosen to
employ the mathematical framework of coding theory for empowering the patterns with
error-correcting capabilities. Experiments conducted with synthetic images have shown
that both of these features allowed the technique to achieve a strong occlusion resilience.
The main concern with the Bergamasco and coworkers’ approach is that it does not take
into account non-linear effects such as radial and tangential distortions. Since these effects
invalidate the assumed pinhole camera projective properties, it is supposed that such
distortions were previously removed from images for the experiments conducted with real
cameras (another option is that the distortions were negligible).

Habacher et al. have designed a pattern wherein the features (which are circular)
are disposed on two parallel planes (HABACHER; HARKER; O’LEARY, 2014). This
arrangement has enabled them to calibrate a camera from a single image. However, the
scenario presented in their work is overly simplistic — they conveniently placed LED
lamps close to the camera and utilized retro-reflectors for creating the features of the
pattern. As might be imaged, these circumstances made the features highlight from other
regions of the image turning the features extraction problem trivial.

2.3 Summary
This chapter presented the most relevant works that are related to the technique

proposed in this Thesis. For the extraction of blobs (the type of low-level feature in which
this Thesis is interested), the most relevant works that have been found in the literature
are the one presented by Lindeberg and Eklundh (LINDEBERG; EKLUNDH, 1990); and
the one introduced by Matas and coworkers (MATAS et al., 2004).
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Considering the overall problem of detecting patterns formed by roundish features,
none of the techniques found in the literature allows the same level of customization of the
pattern as the proposed one — most of them are restricted to rectangular shaped patterns
formed by regularly-spaced features. Another limitation observed in these techniques is
that they utilize generic approaches for extracting low-level features (adaptive thresholding
procedures are the preferred ones), thus prohibiting their application to scenarios with
limited lighting conditions.
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3 PROPOSED TECHNIQUE

This chapter presents the proposed detection technique in details. This technique
achieved significant results at detecting patterns in images captured under low-light
conditions (which reduces the image contrast) and with uneven illumination distribution.
It also succeeds when the pattern is visually deformed due to radial and perspective
distortions. These virtues were not achieved by chance, but they are the result of the
conscious decisions taken during the technique development, which are presented here.

3.1 Overview
In the literature, there is a myriad of scenarios where researchers approached the

pattern detection problem. Since each scenario has its own characteristics, unsurprisingly
distinct solutions have been proposed over the years. At first glance, developing specific
solutions for different instances of the same problem would not seem the ideal manner of
facing a problem. However, this is the natural way of achieving the best results because
it permits the peculiarities of each scenario to be beneficially exploited. Note that this
does not mean that developing solutions that are more general is less important than
developing specialized ones, neither vice versa, but that there is a trade-off between the
generality and the overall performance of a technique.

This Thesis addresses the pattern detection problem by prioritizing the performance
side of the trade-off (i.e., it relies on some specificities of the scenario in order to achieve the
best results). In addition, if performance was not impaired, advances in generality are also
targeted as a second priority. For example, instead of relying on the usual rectangular grids
of evenly spaced features, this work employs a more generic mechanism for representing
the patterns (Section 1.2), which enables the creation of patterns with more diverse forms.

As stated in the introductory chapters, this Thesis is focused on patterns formed by
roundish features. These patterns are usually man-made objects with known dimensions.
However, in opposition to what most would think, these patterns are not restricted to be
printed out on paper, as will be shown in the case study presented in Chapter 6.

The proposed detection technique is composed of two sequential stages. In the first
stage, regions that are potential features of the pattern (the so-called blobs) are extracted
from the image. In the second one, a search is performed for finding the blobs that actually
compose the pattern of interest.

The diagram shown in Figure 9 illustrates a fictional computer vision system
that implements the proposed technique. The boxes highlighted in orange represent the
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detection technique stages. The two initial stages of the system (in gray) are in charge of
preparing the input image for the subsequent stages. The image acquisition stage may rely
on different methods for obtaining images. For instance, it may access a frame grabber
for acquiring a live stream of video or it may load a recorded video from a file. While the
image acquisition stage is mandatory for this system to work, the image preprocessing one
is optional as the detection technique can operate over raw images. However, since even
simple preprocessing procedures (such as a low-pass filter) may benefit the overall system
operation, they are recommended. Results presented in Chapter 5 and in Chapter 6 were
obtained by employing a minimalist preprocessing procedure for enhancing the image
signal-to-noise ratio (see Section 4.1).

Image 
preprocessing 

Image 
acquisition 

Blob 
extraction 

Pattern 
searching 

Start End 

Source: The author

Figure 9 – The execution diagram of a system that implements the proposed technique.
After the system is started, it enters a loop and repeatedly processes images
until the execution ends.

3.2 Blob extraction
The goal of this stage is to extract from the input image elements that can represent

pattern features. These elements are called blobs and are considered candidates for the
pattern features.

Ideally, this stage should only extract the blobs that arise from features of the
pattern (these blobs are termed as inliers or as true positives). However, since at this
stage the only known information is that the elements of interest are rounded shapes, it is
natural to extract some blobs caused by elements other than the pattern features; these
are termed as outliers or as false positives. On top of these, a central idea concerning this
stage is to admit false positive errors in favor of avoiding false negative ones. In other
words, it is preferred extracting outliers than discarding inliers. This choice is justified
by the fact that, after this stage, the technique does not have mechanisms for recovering
missed inliers. Consequently, any overlooked inlier will be permanently lost.

The result of this stage is denoted by the set of blobs B = {bi}n
i=1 = {b1, b2, . . . , bn},

where each blob bi is a connected component over the image domain. As previously
mentioned, it is acceptable that B contains outliers. Additionally, the set B may contain
overlapping blobs (i.e., for two distinct blobs bi and bj it is possible that bi ∩ bj 6= ∅).
As it will be seen later in this section, for any two overlapping blobs bi and bj either
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bi ⊂ bj or bj ⊂ bi. From the practical standpoint, the set B can be represented by binary
images. If the set contains only non-overlapping blobs, then a single image is enough
for representing the set; otherwise, multiple images are required. These definitions are
illustrated in Figure 10.
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Figure 10 – Illustration of the set of blobs B = {b1, b2, . . . , b10}. Since b10 overlaps b4 and
b5, b10 has to be represented in a second binary image.

The technique used in the blob extraction stage was conceived to be robust,
addressing non-uniform illumination. This characteristic was set as a goal because the
natural lighting conditions of some scenarios are not enough to evenly illuminate the
scene. Moreover, these scenarios may also restrict the placement of artificial illuminators
as a countermeasure against the natural lighting deficit. For example, in the case study
presented in Chapter 6 the scenario is a deep underwater environment wherein no natural
light can reach. Additionally, due to its high depth, remotely operated vehicles equipped
with special camera systems have to be used. Illumination comes exclusively from spotlights
attached to these vehicles, which concentrates light energy in the regions near the camera.
All these limitations make the captured images lack in quality, as depicted in Figure 11.

Another important characteristic of the proposed blob extraction technique is that
it tends to extract each feature as a “disconnected blob”. In other words, any two distinct
features of the pattern are unlikely to be extracted as a unique blob. This trend is observed
even for close features separated by “shallow valleys” and is what makes the technique
suitable for low-contrast images.

3.2.1 Features and peaks

Before formally defining the concepts that underlie the blob extraction technique,
some intuitive ideas about the features of a pattern and the impact they cause in a 1D
image are presented. At the top of Figure 12 a 2D gray-scale image depicts four side-by-side
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Source: Petrobras

Figure 11 – Image captured in a deep underwater environment with limited lighting
conditions.

features (bright regions) under a non-uniform illumination condition. In this image, the
red line highlights the chosen row to be used as the 1D image. The intensity of the pixels of
this row can be modeled by a function whose plot is illustrated at the bottom of Figure 12.

The basic concept behind the proposed technique consists in finding peaks in this
plot. Notice that wherever there is a feature of the pattern in the image, a peak appears
in the plot. Therefore, one can assume that by collecting every peak from the image plot,
every feature will be collected as well. As suggested by the example presented in Figure 12,
this statement also stands true for images captured under uneven illumination conditions.
It is evident that some peaks will arise from elements other than pattern features, but
this is the preferred behavior at this stage (recall that false positive errors are tolerated in
favor of avoiding false negative ones).

3.2.2 Component trees for 1D images

The blob extractor presented in this Thesis operates over a data structure referred
to as component tree (JONES, 1997). This data structure is a tree-based representation for
gray-scale images, which links the image connected components from different gray-levels.
For a sake of simplicity, this data structure is firstly defined for 1D images. The 2D case
is covered in Subsection 3.2.3. Finally, in Subsection 3.2.4, it is presented how blobs are
extracted from component trees.

A 1D image can be denoted by the continuous function f : R→ R≥0 (notice that
pixels can assume only non-negative values). The non-negative region that is under the
plot of this function is denoted by the set of points S = {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)}.
Let also a parallel line to the x-axis be lb = {(x, y) ∈ R2 : y = b}, where b is its level.
Since the image function is strictly non-negative, only lines such that b ≥ 0 are considered.
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Figure 12 – Illustration of how the features of a pattern translate into peaks. Notice that
from left to right the overall pixel intensity gradually increases, suggesting
the image was captured in a scenario with uneven illumination conditions.

These lines slice the region S by applying the slicing operation denoted by S(lb) = S ∩ lb,
which produces a set of n ≥ 0 connected components1 S(lb) = {s1,b, s2,b, . . . , sn,b} such
that si,b = {(x, y) ∈ R2 : y = b}. The connected components generated by the slicing
operation are denominated slices; therefore, one may say that si,b is the i-th slice produced
by line lb. By considering the previous definitions, one can also say that S(l0) = {s1,0},
where s1,0 = l0 (i.e., the lowest line produces only a single slice that is equivalent to this
line). Finally, let the projection of slice si,b be s′i,b = {x ∈ R : (x, y) ∈ si,b}.

The presented slicing process has an interesting characteristic — for any si,b with
b > 0, there is one and only one sj,b−1 such that s′i,b ⊆ s′j,b−1. For example, in Figure 13a:
s′1,1 is a subset of s′1,0; s′1,2 and s′2,2 are subsets of s′1,1; s′1,3 is a subset of s′2,2; and so on.
Since this relationship can always be established between slices produced by consecutive
lines, one can construct a tree for representing this hierarchy (Figure 13b). The root of
this tree is always the slice s1,0, which is produced by l0. As might be imagined, this tree
is the aforementioned component tree.

3.2.3 Component trees for 2D images

The definitions for 2D images are similar to the ones introduced for 1D images. A
2D image can be denoted by the continuous function f : R2 → R≥0. The non-negative
region that is under the surface plot of this function is denoted by the set of points
S = {(x, y, z) ∈ R3 : 0 ≤ z ≤ f(x, y)}. The 2D case uses planes instead of lines for slicing
the region S. A plane is denoted by pb = {(x, y, z) ∈ R3 : z = b}, such that b ≥ 0 is its level.
The same previously defined chopping operation for 1D images is used in the 2D case, except
1 For the 1D case, the connected components produced by the slicing operation are line segments.
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Figure 13 – In (a), the region S (hatched area) is sliced with a set of horizontal lines
(slices produced are depicted in green). The lines l0, l1, l3, and l4 produce only
one slice, each. The line l2 produces two. Finally, the line l5 does not produce
any slice. In (b), the respective component tree.

that the 2D version of this operation receives a plane instead of a line, giving S(pb) = S∩pb.
The result of this operation2 is a set of n ≥ 0 slices S(pb) = {s1,b, s2,b, . . . , sn,b} such that
si,b = {(x, y, z) ∈ R3 : z = b}. The property S(p0) = {s1,0}, such that s1,0 = p0, also
applies here. Finally, the projection of a slice si,b is s′i,b = {(x, y) ∈ R2 : (x, y, z) ∈ si,b}.

The slices produced from 2D images have the same properties of the ones produced
from 1D images (i.e., the projection of upper slices are subsets of the projection of lower
ones). Therefore, the component tree of 2D images can be constructed by following the
same steps previously described for 1D images. Figure 14 illustrates the component tree
construction of a 2D image.

3.2.4 Extracting blobs from component trees

For now, an alternative representation of the input image was built — the component
tree. This representation allows the image to be traversed in a fashion that goes beyond a
merely per-pixel sampling. Such a traversing method is more appropriate for the feature
extraction problem as it makes the peaks extent explicit during the image analysis. Details
of how the notion of a peak is translated into a blob are presented next.

In short, the goal of this subsection is to establish a selection criterion for choosing
the nodes (or more precisely, the slices associated with them) of the component tree to
be transformed into blobs. This criterion is expected to select appropriate nodes so that
2 For the 2D case, the connected components produced by the slicing operation are closed regions.
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Figure 14 – In (a), the surface plot of a 2D image. The slices highlighted in green were
produced by applying the slicing operation with the planes p0, p1, p2, p3, and
p4 (these planes are not portrayed in the figure to make a cleaner view of the
slices). In (b), the constructed component tree.

representative blobs are created.

The proposed technique combines concepts from both Lindeberg and Eklundh’s
work (LINDEBERG; EKLUNDH, 1990); and Matas and coworkers’ (MATAS et al., 2004).
While the former proposed extracting the base slices of the topmost peaks (following a
top-down path, the base slice of a peak is the slice that occurs immediately before a merge
between peaks), the latter preferred the maximally stable ones.

Lindeberg and Eklundh’s approach has two remarkable drawbacks. 1) It tends to
miss inlier blobs (especially if images are noisy). In a noise-free image, the first peaks to
be traversed (the topmost ones) are probably the peaks produced by the pattern features,
thereby inlier blobs are extracted in such a situation (Figure 15a). However, when noise
comes on the scene undesirable results may occur. Close peaks arising from noise neutralize
each other preventing the traversal from reaching deeper levels wherein inlier blobs are
(recall that the Lindeberg and Eklundh’s approach regards only the topmost peaks).
Consequently, outlier blobs are extracted in place of inliers (Figure 15b). 2) The Lindeberg
and Eklundh’s approach also produces oversized blobs (Figure 15c) when the gaps between
peaks are comparable to or greater than their diameter — a possible situation considering
that a pattern with more spaced features may be required depending on the application.
Better representative blobs could be extracted if the upper slices were selected instead
(Figure 15d).

As previously stated, Matas et al. proposed selecting the maximally stable slices3

3 In their original work the term extremal regions was used instead of the word slice.
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Figure 15 – In (a), an image surface plot depicting two peaks that arise from features of a
pattern. The hatched regions beneath the plot illustrate the blobs extracted by
the Lindeberg and Eklundh’s approach. In (b), noise is added producing two
small peaks upon the bigger peak on the right. Notice that in this situation
two outlier blobs were extracted in place of the inlier one. Now in (c), the
size of the gap between the two peaks is substantially greater. As it turns out,
oversized blobs are extracted even though better representative ones could be
taken instead (d).

of the component tree. By a “stable slice” one means a slice that is alike to others over a
range of nearby levels. In other words, the stability of a slice is directly proportional to
the similarity of this slice with its upper and lower neighbors (Figure 16b). This approach
follows extracting blobs whenever a slice presents local maximum stability. As it turns out,
multiple blobs may be extracted from a single peak even though they are alike each other
(Figure 16a). The drawback here is that multiple equivalent blobs are output causing the
number of false positive results to increase.

The proposed selection criterion combines the best of the previously described
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Figure 16 – The right peak in (a) has only one slice with local maximum stability, resulting
in a single blob extraction. However, in the left peak, there are two slices with
such a property. Notice that the two slices extracted are sufficiently similar to
justify the discarding of one of them. In (b), the general notion of stability for
slices from different portions of two peaks.

works for achieving better results (at least for the kind of pattern being tackled by this
Thesis).

The first borrowed idea comes from the Lindeberg and Eklundh’s approach, which
relies on the occurrence of merges between peaks for signalizing the extraction of blobs.
This is a good approach as merges between peaks are good hints about the features extent
(in the intensity domain) and this notion can be used for preventing the extraction of
“redundant blobs” (such as in the example presented in Figure 16a). However, in order
to overcome the noise sensibility problem presented by the Lindeberg and Eklundh’s
approach, the technique proposed in this Thesis does not stop the component tree traversal
after reaching a merge node (merge nodes are depicted in Figure 17), that is, traversal
continues towards the root of the tree for extracting blobs from lower levels. The minimum
level reached during the traversal depends on a user-provided parameter that limits the
number of merge nodes permitted to be overleapt.

The other idea comes from the Matas and coworkers’ approach, which uses a
stability measurement for picking out those slices that can produce better representative
blobs. This measurement is useful for reducing the number of outliers as well. The adoption
of this stability measurement relied on the fact that the peaks arising from the features of
a pattern are likely to have a region wherein high stability slices exist (the upper peak in
Figure 16b portrays a typical peak that arises from pattern features). This is an expected
outcome since the patterns of interest of this Thesis are constructed with contrasting
colors giving sharp edges to the features. Therefore, if a peak does not have at least a
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short region of stability (such as the one at the bottom of Figure 16b), than it is likely to
produce an outlier blob and thereby may be discarded.

The stability of a slice si,b is formally defined by the expression

Q(si,b) =
Area(s′j,b+∆)

Area(s′i,b)
. (3.1)

From the component tree perspective the slice sj,b+∆ is a descendant node of the slice
si,b (i.e., s′j,b+∆ ⊆ s′i,b). The parameter ∆ determines how far these slices are from each
other in the level dimension. As might be imagined, the function Area evaluates the area
of a slice projection. The stability metric Q assumes values in the range [0, 1] (zero for
minimum stability and one for maximum stability). Additionally, leaf and merge nodes
are assumed to have stability equal to zero by definition.

Another metric used for restricting blobs extraction is the so-called mergewise
height, which is denoted by M. This is the metric in charge of controlling how deep the
component tree traversal will reach. This metric is evaluated for each node and, as its name
suggests, it is related to the height of a node. The height of a node (not the mergewise
height) is defined as the number of edges on the longest path between that node and a
descendant leaf. The mergewise height metric is similarly defined; however, it relies on a
per merge node analysis instead of a per edge analysis. The mergewise height of a node is
the maximum number of merge nodes found in a path from that node to a descendant
leaf. Figure 17 illustrates this definition.
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Figure 17 – Tree exhibiting the mergewise height of all nodes. Merge nodes are in red.

From the practical standpoint, blobs are extracted from the component tree while it
is traversed using a depth-first search. Nodes are processed in the post-order manner (i.e., it
is as if traversal was from leaves towards the root) and during this processing the stability
(Q) and the mergewise height (M) metrics are evaluated for each slice/node. Whenever
traversal visits a merge node, the extraction of blobs is triggered. In this situation, there are
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at least two segments of branch from which blobs can be extracted. Each of these segments
starts with a descendant of the merge node and ends either: in the closest descendant
node that is also a merge node; or in a leaf node. A maximum of one blob is produced per
branch segment. However, two conditions must hold true for the extraction of a blob to
materialize:

1. The mergewise height of the merge node shall not be greater than the user parameter
kMaxM; and,

2. The stability of the maximally stable slice in the branch segment shall not be lesser
than the user parameter kMinQ.

Provided that these conditions are satisfied, a blob is derived from the maximally stable
slice.

As a final observation, two tests regarding the shape of the derived blob are
performed before it is inserted into the final set. Until now, shape-related tests were
avoided throughout the blob extraction procedure. However, some pieces of evidences
regarding the blobs shape can be reliably used for further mitigating the occurrence of
false positives and improving the quality of the extracted elements.

The first test consists of evaluating whether the centroid of the blob is outside. If
so, this blob is not inserted into the final set. Something to notice here is that this test
regards only the outer contour of the blob. That is, even if a blob has inner contours
(i.e., it has holes) and its centroid is inside one of these contours, the centroid will be
considered to be inside that blob (see b̂2 in Figure 18 for an example of such a blob). In
addition, this blob has its holes filled before it is inserted into the final set. The following
reasoning motivated these decisions: the features of the pattern do not have holes and
thereupon they are expected to produce blobs without holes; however, if a blob with holes
is produced, then this blob may be the result of a pattern feature that suffered from
undesirable artifacts (such as noise); in that case, that blob is inserted into the final set for
not risking discarding inliers and its holes are filled so that its (predicted) original shape
is restored.

The second test is concerned with holed blobs that possess another blob inside
them (b̂4 in Figure 18 exemplifies such a blob). These blobs are also discarded because
they are considered overly complex to be produced by pattern features; a typical peak
produced by a pattern feature will hardly produce such blobs arrangement. A pseudocode
of the proposed blob extraction technique is in Algorithm 1.
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Figure 18 – The slices depicted in (a) were selected during the tree traversal for deriving
blobs. However, due to the two shape-related tests, some of the derived blobs
are not introduced into the final set shown in (b). In this example, blob b̂4
was discarded because it has an inner blob; b̂3 was discarded because of its
outer centroid. Notice also that b̂2 had its hole filled before its insertion into
the final set.

3.3 Search for the pattern of features
This section addresses the second (and final) part of the problem. It was originally

stated (see Section 1.2) as the creation of a mapping M : V → A that relates each vertex
of the pattern template with a connected component of the input image (V denotes the
set of vertices of the template and A denotes the set of all connected components over the
image domain). The main issue with this definition is that it poses a complex problem
because it involves checking all possible connected components of the image. Simply put,
the set A is a too large search space to be explored in feasible time, and that is the reason
why the proposed solution was divided into two stages — while the blob extractor (in the
first stage) resorts to a fast heuristic for discarding connected components that clearly fail
in representing pattern features, the search (in the second stage) is benefited by having a
reduced set of elements to analyze. All things considered, the final mapping to be created
has a much smaller searching space, resulting in M̂ : V → B.

The blobs in B do not have sufficient local information (e.g., shape and size)
for securely guiding the creation of the desired mapping — after all, pattern features
are equal-sized circles impossible to be differentiated. This limitation suggests that a
“more global” approach is required instead. The proposed solution takes into account the
relative placement between blobs as well as their relative sizes, but since only close blobs
are regarded, it cannot be considered as a complete global approach. This intermediate
approach turned out to produce the best trade-off; it restricts the pattern shape sufficiently
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Algorithm 1 The component tree traversal algorithm that extracts blobs.
Input: root . The component tree root node.
Output: B . The final set of blobs.

1: Traverse(root)

2: procedure Traverse(node)
3: if node.Degree = 1 then . Handles leaf nodes.
4: node.Q← 0 . By definition leaf nodes have stability equal to 0.
5: node.M← 0

6: else if node.Degree = 1 then . Handles single-child nodes.
7: Traverse(node.Child)

8: node.Q← Q(node)
9: node.M← child.M

10: else . Handles merge nodes.
11: max_m← 0
12: for all child ∈ node.Children do
13: Traverse(child)

14: if max_m > child.M then
15: max_m← child.M

16: if child.M ≤ kMaxM then
17: max_q_node← FindMaxQNode(child)
18: if max_q_node.Q ≥ kMinQ then
19: blob← NodeToBlob(max_q_node)
20: if TestShape(blob) then
21: B.Insert(blob)

22: node.Q← 0 . By definition merge nodes have stability equal to 0.
23: node.M← max_m + 1

24: function FindMaxQNode(node) . Finds maximally stable slice in the branch segment starting with node.
25: result← NULL

26: if node.Degree = 1 then
27: result← FindMaxQNode(node.Child)
28: else
29: result← node

30: if node.Q ≥ result.Q then . The lower node is preferred when stabilities are equal.
31: result← node

32: return result

to prevent mistaken detections, while it tolerates the deformities caused by radial and
perspective distortions.

The searching approach used for creating the mapping M̂ : V → B relies on a
backtracking algorithm. This searching is constrained by the graph that represents the
pattern of features; topological and geometrical aspects of the graph are regarded during
the search.
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3.3.1 Backtracking

Intuitively speaking, a backtracking algorithm works by incrementally building
solution candidates, which are abandoned (backtracked) as soon as it determines that
a candidate cannot be completed to a valid solution. A pseudocode of the implemented
backtracking algorithm is in Algorithm 2.

The backtracking proceeds by visiting all vertices in V ; for each vertex vj visited it
searches for a blob bi in B to be mapped to. A blob bi is mapped from a vertex vj if two
conditions are satisfied: 1) bi is not yet mapped from other vertex and 2) bi respects the
constraints imposed by vj and its neighbors that already have blobs mapped to. Notice that,
despite the constraints are ultimately determined by the topological and the geometrical
characteristics of the graph that represents the pattern (which are statically defined), there
is also a dynamic factor playing a role — the mapping state of the vertices (more details
about these constraints are in next subsection).

After mapping vj to bi, the algorithm follows to the next vertex and repeats the
same blob searching process for the new vertex. On the case that there are no blobs that
could be mapped from a given vertex (i.e., all blobs failed in satisfying the above conditions),
the algorithm steps back (backtracks) to the previous vertex and the searching for another
satisfiable blob continues from where it had stopped. Under favorable conditions, this
process is repeated until all vertices are mapped; that is, the pattern is detected in its
entirety. Otherwise, the algorithm concludes with the best partial solution found during
the search4.

Despite the backtracking algorithm would succeed by visiting the vertices in V

in any order, by carefully choosing this order one may spare some computing time. The
idea is to choose an order that favors premature backtrack events when non-promising
solution paths are taken, such as by first visiting vertices with stronger constraints. At the
earliest stage of the searching (i.e., while selecting the first vertex for visiting) all vertices
are equally good choices because all their neighbors are not mapped to blobs yet. This
condition also nullifies the tested constraints making the first selected vertex mappable to
any blob, regardless of the blob positioning and shape.

On the other hand, for all vertices other than the first one, the visiting order
affects performance; significant improvements can be observed even with the adoption
of non-strict ordering relations. For example, considering that the first vertex is already
selected, a good option for the second vertex would be any neighbor of the first vertex,
which would force the candidate blobs to satisfy the constraints imposed by the first vertex
before they would be mapped from that vertex. The same reasoning applies for choosing
the third vertex to be visited — the best option in this situation would be to opt for
4 Partially detecting patterns is useless for most scenarios, but since it is essential for the case study

described in Chapter 6, it was considered in this Thesis.
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any vertex that is simultaneously neighbor of the first and the second vertices, which
maximizes the number of constraints tested. Given these points, a BFS (Breadth-first
Search) was used for guiding the backtracking.

3.3.2 Constraints

Except by the first vertex (which is trivially mapped to any blob), the mapping
between a vertex and a candidate blob is conditioned to the successful meeting of some
constraints by this candidate. These constraints are tested regarding the vertices that are
at maximum two edges of distance from the current vertex being mapped (this short-range
inspection is the reason why it was considered a semi-global approach). Measurements of
angles and distances are evaluated for those vertices (using the space wherein the graph
was defined) and for the blobs related to them (using the image space). The mapping is
materialized if and only if all these measurements are compatible.

In the pseudocode of Algorithm 2 all the constraints that permit (or not)
the creation of a mapping from vertex v to blob b are encapsulated in the function
TestConstraints(v, b). The first three constraints tested take into account only the
current vertex being mapped and its neighbors. The last two constraints additionally
inspect the neighbors of the neighbors of the current vertex being mapped. Figure 19
depicts a convenient example for illustrating the used constraints.

The first constraint limits the distance between the centroid of the current candidate
blob and the centroid of the blobs mapped from the neighbors of the vertex being mapped.
For two blobs bi and bj this distance is denoted by the function Distance(bi, bj), which
is also used for measuring the distance between two vertices in the pseudocode (refer to
Figure 20a for an illustration of this measurement). The goal of this constraint is to discard
prematurely candidate blobs that are too apart from the ones already mapped to. The
parameter kMaxDist (specified in pixels) controls this constraint. In the example shown
in Figure 19, if the distance from b4 to b5 or the distance from b4 to b3 is greater than
kMaxDist, then b4 is promptly discarded and the algorithm iterates over the next blob.

The second constraint forbids that a candidate blob separated by a large gap be
mapped to the current vertex. This constraint regards the fact that close features form
the patterns of interest of this Thesis. The measurement used by this constraint is the
ratio of the length of the gap in between two blobs to their (centroids) distance. This
ratio is expected to be lesser than the parameter kMaxGapDistRatio, which ranges in the
interval [0, 1]. The inter-blob gap between blobs bi and bj is denoted by Gap(bi, bj) (refer
to Figure 20a). In the example shown in Figure 19, if the ratio measurement for b4 and
b5 or the ratio measurement for b4 and b3 is greater than kMaxGapDistRatio, then b4 is
discarded.
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Algorithm 2 Pseudocode of the pattern searching algorithm.
Input: B, G . The set of blobs and the graph that represents the pattern.
Output: M̂ . The resultant mapping.

1: temp . A temporary mapping to be worked on.

2: for all bi ∈ B do
3: v1 ← G.FirstVertex
4: temp.Map(v1, bi) . Starts the temporary mapping building by mapping v1 to bi.
5: pattern_complete← Process(G.NextVertexBfs(v1)) . Get the next vertex following a breadth-first

search order and processes it.
6: if pattern_complete then break
7: temp.Unmap(v1)

8: function Process(vj)
9: if vj = G.End then return TRUE . If all vertices were mapped, the pattern was completely detected.

10: for all bi ∈ B do
11: if temp.IsMapped(bi) then continue

12: success← TestConstraints(vj , bi);
13: if success then
14: temp.Map(vj , bi)
15: pattern_complete← Process(G.NextVertexBfs(vj)) . Returning from this function is the

same as backtracking.
16: if temp.Size > M̂.Size then
17: M̂← temp . Updates output with the best solution found so far.
18: if pattern_complete then return TRUE
19: temp.Unmap(vj)

20: return FALSE

21: function TestConstraints(v, b)
22: for all vi ∈ G.Neighbors(v) do
23: bk ← temp.GetMapped(vi)
24: if bk = NULL then continue

25: dist← Distance(b, bk)
26: if dist > kMaxDist then return FALSE

27: gap← Gap(b, bk)
28: if gap/dist > kMaxGapDistRatio then return FALSE

29: radius_b_bk ← Radius(b, bk)
30: radius_bk_b← Radius(bk, b)
31: radius_ratio← radius_b_bk/radius_bk_b
32: max_radius_ratio← 1.0 + kMaxRadiusRatioPercent
33: min_radius_ratio← 1.0/(1.0 + kMaxRadiusRatioPercent)
34: if min_radius_ratio < radius_ratio < max_radius_ratio then return FALSE

35: for all vj ∈ G.Neighbors(vi) do
36: bl ← temp.GetMapped(vj)
37: if bl = NULL then continue

38: blobs_dist_ratio← Distance(b, bk)/Distance(bk, bl)
39: vertices_dist_ratio← Distance(v, vi)/Distance(vi, vj)
40: dist_ratio← blobs_dist_ratio/vertices_dist_ratio
41: max_dist_ratio← 1.0 + kMaxDistRatioPercent
42: min_dist_ratio← 1.0/(1.0 + kMaxDistRatioPercent)
43: if min_dist_ratio < dist_ratio < max_dist_ratio then return FALSE

44: blobs_angle← Angle(b, bk, bl) . Angle measured in the range [0, 360) degrees.
45: vertices_angle← Angle(v, vi, vj)
46: angle_diff ← AngleDiff(blobs_angle, vertices_angle)
47: if angle_diff > kMaxAngleDiff then return FALSE

48: return TRUE
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• Visiting order: v1, v2, v4, v5, v3

• Mapping state: v1 → b5
v2 → b3
v3 → nil
v4 → nil
v5 → nil

• Current vertex being mapped/visited: v4

• Neighbors of the current vertex that are mapped: v1 and v2

• Current candidate blob: b4

Source: The author

Figure 19 – Example for illustrating the backtracking searching algorithm operation. The
graph that represents the pattern is in (a). The pattern is considered detected
when each vertex of this graph is mapped to a blob that is in (b). The
constraints imposed by that graph restricts this mapping. The frame at the
bottom shows the overall state of the searching algorithm at a given moment.

The third constraint determines a superior and an inferior limit for the radius of
the candidate blob. The radius of a blob is a relative measurement taken from a blob
of origin bi to a blob of destiny bj; it is denoted by Radius(bi, bj) (see Figure 20a). The
output of this function can be read as “the radius of bi relative to bj”, so the measurement
Radius(bi, bj) is not the same as Radius(bj, bi). The third constraint is controlled by the
parameter kMaxRadiusRatioPercent, which is a percentage value ranging in the interval
[0,∞). In the example shown in Figure 19, if the radius of b4 relative b5 is not compatible
with the radius of b5 relative to b4; or if the radius of b4 relative b3 is not compatible with
the radius of b3 relative to b4, then b4 is discarded.
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Figure 20 – The measurements Distance, Gap, and Radius in (a) regards only two
blobs (or vertices, when vertices apply). The Angle measurement in (b)
regards three.

The fourth constraint checks the proportion between distance measurements taken
from vertices and blobs. These measurements regard not only the neighbors of the current
vertex being visited, but also the neighbors of the neighbors of it. This constraint should
be clear from the example shown in Figure 19 — it is condition for the creation of the
mapping v4 → b4 and it is tested twice:

1. Distance(b4, b3) must be to Distance(b3, b5) as Distance(v4, v2) is to
Distance(v2, v1); and

2. Distance(b4, b5) must be to Distance(b5, b3) as Distance(v4, v1) is to
Distance(v1, v2).

The parameter kMaxDistRatioPercent is a percentage value that controls how permissive
this constraint is to disproportionalities.

The fifth (and last) constraint takes into account the difference in angles formed
by vertices and blobs. The function Angle(bi, bj, bk) is used for evaluating the oriented
angle subtended by bi and bk at bj (it is also used for measuring angles subtended by
vertices). This function outputs results in the range [0, 360), as depicted in Figure 20b.
This fifth constraint ultimately regards the shortest angular length between the angles ab

(formed by blobs) and av (formed by vertices), which is denoted by AngleDiff(ab, av).
The parameter kMaxAngleDiff (which ranges in the interval [0, 180] degrees) limits the
maximum angular difference permitted. In the example shown in Figure 19, the creation of
the mapping v4 → b4 is conditioned to: Angle(b4, b3, b5) be similar to Angle(v4, v2, v1);
and Angle(b4, b5, b3) be similar to Angle(v4, v1, v2).
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3.4 Summary
This chapter introduced the proposed detection technique and presented some

general ideas that directed its development. Next, the two stages of the technique were
detailed; they are executed sequentially for each input image.

The first stage is in charge of extracting candidates for features of the pattern. At
this stage, the main goal is to retrieve the maximum number of inliers possible, even if
it means producing some outliers. Ideas borrowed from two works of the literature were
used for developing a tailored blob extractor that suits better the nature of the problem
tackled in this Thesis.

The second stage establishes the elements that actually constitute the pattern. It
proceeds by traversing a graph data structure that represents the pattern of interest while a
number of constraints are tested to ensure the correct pattern is detected. These constraints
were made intentionally localized and “loose” so that allowing global deformations of
pattern to occur.
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4 METHODOLOGY OF THE EXPERI-
MENTS

This chapter is concerned with the initial part of the experiments — the methodology
used for assessing the proposed technique. The presented methodology addresses the blob
extraction stage in isolation as well as the overall pattern detection algorithm. The
covered topics include: an image preprocessing step, which is applied to every input image
beforehand; the hardware used for experimenting; the ground-truth creation method; and,
the metrics used for measuring the techniques performance.

Experiments were conducted in two distinct case studies. The first case study
(Chapter 5) deals with the usual scenarios in which printed patterns have to be detected.
Therefore, it is related to common computer vision tasks, such as camera calibration and
pose estimation.

The second case study (Chapter 6) covers a more atypical scenario, which consists
in a deep underwater environment with limited lighting conditions (the setting where
offshore oil exploration takes place). In this case, the elements of interest are flexible pipes
used for transporting fluids (oil, gas, and water).

The results obtained from both case studies were generated by using the same
computing device — a desktop computer fitted out with a Core i7-3960X CPU and a
GeForce GTX 560 Ti GPU, 24 GB of RAM, and running a Windows 7 64-bit operating
system. Since different camera systems were used in each case study, their specificities
were left to be detailed in the respective case study chapters.

4.1 Image preprocessing
A typical approach for improving the overall quality of a vision based system is

preprocessing input images before they are submitted to the system core functionality. A
preprocessing method is satisfactory if it improves images overall quality (for instance
by removing undesirable artifacts) without demanding many computational resources.
This preprocessing is illustrated as the second stage of the execution diagram depicted in
Figure 9.

More formally, the purpose of this preprocessing is to increase the signal-to-noise
ratio in the input image. One can achieve this by either amplifying the signal itself (the
portion of the image related to the features of the pattern) or by reducing the noise (the
undesired portion of the image). Despite existing many enhancement techniques that
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serve this purpose (GONZALEZ; WOODS, 2006c), the scenario-to-scenario specificities
produce distinctive artifacts over the captured images. For example, the model of the
camera system used, the lighting conditions, and the scene cluttering level surely have
an impact on the input image visual aspect. Consequently, this problem does not have a
single well-defined solution, but it requires a tailored one be developed for each scenario
(especially when the best results are desired).

In spite of the particularities inherent to each scenario, some primal characteristics
of most camera systems may be taken into account for developing a basic preprocessing
procedure that is beneficial for a variety of situations. Images captured by any camera
system are subject to noise at some degree. Most of these artifacts arise during the image
acquisition and/or its transmission (YAN, 2013; VERMA; ALI, 2013). While acquiring
images, the performance of an imaging sensor is affected by factors such as the area
size of the sensor and its temperature. Small sensors are remarkably prone to produce
noisy images when the scene is poorly illuminated. This happens because the sensor
tries to counterbalance the low-level signal by increasing the gain, which ends up also
accenting noise. Longer exposure times mitigate the effects of limited lighting conditions,
although this option is only applicable to still images acquisition. Due to interferences
in the channel, analogical transmissions are also subject to add noise to the image. The
incessant presence of these noise sources suggests that a noise reduction filter would be a
beneficial preprocessing method independently of the circumstance.

The noise that arises during the acquisition and/or transmission of an image can
be approximated by a Gaussian model (CATTIN, 2015). The Gaussian model is also
broadly used for noise removal because of its mathematical tractability in both spatial and
frequency domains. In many practical situations, a Gaussian filter is preferred over others
because of its well-behaved frequency response (FISHER et al., 2003). As any smoothing
filter, it removes high-frequency components of the image. However, its effect is more
gradual over the range of frequencies. From the lowest to the highest frequency, Gaussian
filters progressively attenuate bands1, whereas others have an oscillating behavior. In
addition to the noise removal effect, Gaussian filters can also smooth out small details of
the image.

Given that the image acquisition mechanism of cameras inevitably suffers from
some degree of noise, the image preprocessing approach adopted by this work is applying
a Gaussian filter. This filter suppresses high-frequency information from image making it
more easily tractable. For not risking losing valuable information, a conservative and small
kernel size was adopted. Empirical experiments evidence that a 3× 3 Gaussian kernel is
enough for achieving the desired results as well as it is also a size recurrently used in the
literature. The effect of this preprocessing can be observed in Figure 21.
1 The shape of a frequency response function of a Gaussian filter is itself a Gaussian.
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Figure 21 – In (a), a raw input image (on the left) and its surface plot (on the right). In
(b), the result of filtering the upper image with a 3×3 Gaussian kernel. Notice
that the overall shape of the features (the white markings) are preserved while
tiny and irrelevant details (possibly caused by noise) are suppressed.

Despite the techniques evaluated in this chapter do not require images to be
preprocessed, employing such a method is justified because it portrays a more trustworthy
usage scenario for the techniques (since many real applications employ it). Moreover,
once the same preprocessing method is used throughout all experiments, if this method is
affecting the techniques performance, then at least all techniques are equally affected, be
it positive or negatively. As an outcome, the techniques evaluation remains on a par with
each other.

4.2 Hand-labeled ground-truth
Experimenting with images captured from real-life scenarios implicates some diffi-

culties. One of them is that there is not an easy way to produce reliable ground-truths for
such images. In that case, the ground-truths used in the experiments had to be manually
crafted. This process was performed by different individuals; at its end, one hand-labeled
image was produced for each input image.
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In the context of this Thesis, two pieces of information are enough for evaluating a
pattern detector (and consequently a blob extractor):

1. A set of connected components specifying the regions covered by the features of the
pattern; and

2. A one-to-one set of correspondences that relates those connected components to the
pattern features.

Both of these are stored in the hand-labeled images. For example, Figure 22 depicts an
input image and its hand-labeled ground-truth. The ground-truth is a gray-scale image that
portrays the regions not covered by pattern features in black. Each non-black connected
component in the ground-truth image is filled with a constant color that uniquely identifies
the pattern features.

(a) (b)

Source: The author

Figure 22 – An input image (a) and its hand-labeled ground-truth (b).

4.3 Evaluating blob extractors
This section introduces the blob extractors that are evaluated in the next two

chapters and the metrics used for that. But before that, it is important to mention the
filtering mechanism employed by the evaluator in order to make the assessment equitable.

The mentioned filtering mechanism is simple and direct — it discards blobs that
are out of the size range of 21 to 3019 pixels in area (all tested images are 640× 480 sized).
These values were empirically defined so that no inlier blobs are risked to be rejected;
the minimum value is small enough for accepting the smallest inliers possible and the
maximum value is big enough for accepting the largest ones. Under those circumstances,
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the assessment of the techniques that do not have a built-in filtering mechanism is put on
a par with the assessment of the other techniques that have.

4.3.1 Algorithms

This subsection presents the blob extractors considered for evaluation. Additionally,
the configuration parameters used by each technique are detailed.

The basic concept that guided the techniques parameterization was to use the
same set of parameters for the maximum number of scenarios possible. The reason for
the adoption of this approach is two-fold. First, it mitigates the overwhelming burden of
selecting specific parameters for each scenario. At the same time, by proceeding so an
important characteristic of the techniques is put on test — how well they can handle
different conditions without user intervention.

In essence, both these reasons are related to the usability of each technique. After
all, a technique that requires being continuously fine-tuned is not as convenient as a
“self-adaptable” one (especially in scenarios subject to dynamic changes). In summary, for
each of the case studies presented next, all the experiments were conducted by using the
same set of parameters (i.e., the techniques parameterization was the same for all images
of a given case study). The parameters used in each case study were defined empirically
so that the techniques overall performance was maximized.

The first extractor evaluated was a Difference of Gaussian based one (this extractor
is referred to as dog henceforth). The implementation used was the one provided by
the package scikit-image (WALT et al., 2014) version 0.12.3 available for the Python
programming language. The parameters2 used with dog are in Table 1.

Table 1 – Parameters used with the blob extractor dog.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Pa
ra
m
et
er
s min_sigma 1.83 1.83

max_sigma 21.92 21.92
sigma_ratio 1.3 1.02
threshold 0.01 0.001
overlap 1.0 1.0

An extractor based on the Laplacian of Gaussian operator was also evaluated
(referred to as log). The implementation provided by the same previous package was used
with the parameters shown in Table 2.

The package scikit-image also provides an implementation of the Determinant
of Hessian method, which was initially considered for evaluation. However, the results
2 Refer to the libraries reference pages for a complete description of the parameters of each technique.
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Table 2 – Parameters used with the blob extractor log.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Pa
ra
m
et
er
s min_sigma 1.83 1.83

max_sigma 21.92 21.92
num_sigma 10 10
threshold 0.007 0.015
overlap 1.0 1.0

produced by this implementation/method were not satisfactory and for this reason it was
discarded. In short, different parameterizations were tried but this extractor always pro-
duced a disproportionate amount of outlier blobs (some hundreds), making the evaluation
process impracticable to be completed in a timely interval.

The open-source computer vision library VLFeat (VEDALDI; FULKERSON, 2008)
supplied the Maximally Stable Extremal Regions implementation (referred to as mser).
The version used was the 0.9.20 coupled with the API (Application Programming Interface)
for MATLAB. The parameters used are in Table 3.

Table 3 – Parameters used with the blob extractor mser.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Pa
ra
m
et
er
s

Delta 1 1
MaxArea 9.8277× 10−3 9.8277× 10−3

MinArea 6.9131× 10−5 6.9131× 10−5

MaxVariation 0.5 0.5
MinDiversity 0.7 0.7
BrightOnDark 1 1
DarkOnBright 0 0

The blob extractor provided by the OpenCV (BRADSKI, 2000), which is referred
to as ocv, was parameterized with the values shown in Table 4. The version 2.4.10.1 through
its native API (C/C++) was used.

The P-Algorithm segmentation technique was evaluated through the implementa-
tion provided by the version 2.0.1 of the Mamba Image library (BEUCHER; BEUCHER,
2016). This library is open-source and its functionalities are accessible through Python.
Since the technique is parameterless, only the following auxiliary parameters had to be
specified: gain = 2.0 and grid = SQUARE.

Additionally to the techniques found in the literature, two versions of the proposed
blob extractor were tested. The first one consists in the exact algorithm as presented in
Chapter 3; this is referred to as proposed. The other is a version adapted to work as the
Lindeberg extractor; it is referred to as mll (an acronym to Multi-level Lindeberg). The
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Table 4 – Parameters used with the blob extractor ocv.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Pa
ra
m
et
er
s

minThreshold 0 0
maxThreshold 255 255
thresholdStep 1 1
filterByArea true true
minArea 21.23 21.23
maxArea 3019.07 3019.07

filterByCircularity false false
filterByColor false false

filterByConvexity false false
filterByInertia false false

single change made to derive mll from proposed is in the slice selection criterion — while
mll selects the slice from the base of the peaks to create blobs, proposed prefers the most
stable one. The parameters used by both versions of the proposed extractor are in Table 5.

Table 5 – Parameters used with the blob extractors mll and proposed.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Pa
ra
m
et
er
s kMinArea 21.23 21.23

∆ 1 1
kMaxM 4 1
kMinQ 0.695 0.695

4.3.2 Metrics

The performance of blob extractors are evaluated by using different metrics. The
two first metrics regard the number of blobs extracted (inliers and outliers) as well as
the number of pattern features neglected during the extraction process. Essentially, they
measure how well a blob extractor performs in numbers of extracted elements.

The first metric is the Precision. It evaluates the fraction of extracted blobs that
are inliers. Letting the inlier blobs be referred to as true positives (tp) and the outlier ones
be referred to as false positives (fp), one has that

Precision = tp

tp + fp
. (4.1)

The second metric is the Recall, which evaluates the fraction of relevant elements
that are extracted. Therefore, this metric takes into account the number of false negative
(fn) results produced by the extractor (i.e., the number of pattern features missed). This
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metric is denoted by the expression

Recall = tp

tp + fn
. (4.2)

Before evaluating these metrics it is necessary to classify the extracted blobs either
as true positives or as false positives. Basically, a blob is considered a true positive if
it attains to a minimum spatial overlapping score with a connected component of the
ground-truth image. The overlapping score used is the Dice Similarity Coefficient (DSC)
(ZOU et al., 2004), which is expressed as

DSC = 2×Area(A ∩B)
Area(A) + Area(B) , (4.3)

where A is a connected component of the ground-truth image and B is a blob (Figure 23).

� � � � � � 

DSC = 0 DSC = 1 0 < DSC < 1

Source: The author

Figure 23 – The range of scores produced by the DSC. From left to right: it produces 0
when the elements do not overlap at all; when the elements partially overlap
the score is in the range (0, 1); and finally, under a complete overlapping 1 is
produced.

The overall procedure that evaluates the number of true positives, false positives,
and false negatives is as follows. For each connected component in the ground-truth image,
the DSC score is evaluated against all blobs extracted. If none of the blobs produced a
score greater than 0.5 at the end of the evaluation for a given connected component, then
a false negative result is accounted. Otherwise, a true positive is accounted and the blob
that produced the highest score is removed from the set of available blobs. At the end of
this procedure, the elements remaining in the set of available blobs determine the number
of false positives.

The last metric used is the arithmetic mean of the DSC scores obtained by the
connect components that attained to the minimum score requirement, which is denoted
by AMDSC. This metric can be imagined as a measurement of the inlier blobs quality.
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4.4 Evaluating pattern detectors
This section presents the pattern detectors considered for evaluation and the metrics

used for such a thing.

4.4.1 Algorithms

Besides the proposed pattern detector, the one provided by the OpenCV was
the only detector considered for evaluation (the same terms used for identifying the
corresponding blob extractors are used here; proposed and ocv). Two reasons justify this
option. Firstly, there are not many implementations of pattern detectors based on circular
features out there to be used. Secondly, in spite of using the same kind of feature (circles),
most of the detectors available are not compatible with each other. Simply put, it is
common that the features arrangement adopted by a detector is unique, which in turn does
not permit another detector to recognize that pattern. The proposed detector overcomes
this limitation by utilizing a graph data structure for representing the pattern of interest,
which enables it to be used with a variety of different patterns.

In addition to its availability, another reason that motivated selecting the ocv pattern
detector was that it supports a kind of pattern that can be detected unambiguously —
the asymmetrical circle pattern (more details in section Section 5.2). On the other hand,
ocv is not able to detect the pattern marked over the pipe used in the second case study
(Section 6.2), and no other detector with such an ability was found in the literature. For
this reason, the sole pattern detector evaluated in the second case study was proposed.

The ocv pattern detector was parameterized by using an instance of the blob
extractor constructed with the parameters show in Table 6. This instance is considerably
less sensitive than the one used for assessing that extractor (the reason for not using
the same parameterization is detailed in Section 5.5). For the pattern detector itself, in
addition to the flag CALIB_CB_ASYMMETRIC_GRID (which determines the kind
of pattern desired), it was also used the flag CALIB_CB_CLUSTERING to make the
detection more robust to perspective distortions. Without this last flag, it was noticed
that ocv occasionally failed in correctly detecting the pattern under oblique viewpoints.

The proposed pattern detector was configured with the data presented in Table 7.
Its blob extraction stage was parameterized in the same manner as while assessing the
proposed extractor (refer to Table 5). For its pattern searching stage, although the same
parameters were used in both case studies, different pattern templates were utilized in
each scenario (see them in Figures 26 and 70).
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Table 6 – Parameters used with the pattern detector ocv.

Case Study
1 (printed pattern)

Ex
tr
ac
to
r
Pa

ra
m
et
er
s

minThreshold 0
maxThreshold 255
thresholdStep 10
filterByArea true
minArea 21.23
maxArea 3019.07

filterByCircularity false
filterByColor true

filterByConvexity true
filterByInertia true

Detector Flags CALIB_CB_ASYMMETRIC_GRID |
CALIB_CB_CLUSTERING

Table 7 – Parameters used with the pattern detector proposed.

Case Study
1 (printed pattern) 2 (pipe in deep sea)

Extractor Parameters Table 5

D
et
ec
to
r
Pa

ra
m
s. kMaxDist 100 100

kMaxGapDistRatio 0.66 0.66
kMaxRadiusRatioPercent 2.0 2.0
kMaxDistRatioPercent 1.5 1.5

kMaxAngleDiff 40 40

4.4.2 Metrics

The detectors assessment is straightforward for the first case study. The fundamental
idea behind it consists in accounting the number of complete detections achieved by them.
That is, for a given number of frames processed, it is evaluated the total amount of
frames in which detectors succeeded in retrieving the whole pattern (partial detections3

are accounted as failures).

However, a different measurement is used for asserting true positive results while
assessing pattern detectors — the distance between centroids of blobs and centroids of
ground-truth regions. This measurement was preferred instead of the DSC score mainly
because of a characteristic of the ocv blob extractor, which is the tendency to underestimate
the real size of features (more details about it in Section 5.4). On top of that, the first
case study is more related to problems such as camera calibration and pose estimation,
which (for most cases) ultimately depend on positional information rather than on the
overall shape of the extracted features.
3 Since ocv can only detect the pattern as a whole, partial detections are pertinent only to the proposed

pattern detector.
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All things considered, for the first case study the evaluation procedure is as follows.
For a given input frame, it is estimated the centroid of each ground-truth region and
the centroid of the blobs resulting from the pattern detection (i.e., the blobs mapped as
representative of the pattern features). Next, the evaluation procedure utilizes the color of
each ground-truth region (which is unique) for identifying its corresponding blob; their
centroid distance is evaluated afterward. A successful detection happens if all ground-truth
regions are no more than three pixels distant from their respective corresponding blobs.
Otherwise, a detection failure is reported for that frame.

The second case study is evaluated differently because of its odd characteristics.
Firstly, the pattern marked over the pipe is not always expected to be detected in its
entirety — while the whole pattern is constituted of some tens of features, just a fraction of
them remain framed by the camera at some moments. Additionally, the pattern simplicity
does not permit it to be unambiguously detected (e.g., for any portion of the pipe being
framed at a given moment, the detector cannot distinguish if that portion is of the
beginning, of the means, or of the end of the pipe). As a final outcome, the proposed
detector usually does not produce an “exact” mapping between the vertices of the pattern
template and the features marked over the pipe (Figure 24).
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Figure 24 – Example in which the ambiguity of the pattern prevents the proposed detector
from producing an “exact” mapping between the vertices of the pattern
template and the features marked over the pipe. Observe that the detector
does not have means to know that the blob extracted from the first feature
framed by the camera is the sixth feature marked over the pipe (f6) instead
of the first one (f1). As a result, the first vertex of the pattern template will
be mapped to the blob extracted from f6, the second vertex will be mapped
to the blob extracted from f7, and so on.

Given these points, the assessment of the second case study is based on the
evaluation of the metrics Precision and Recall. However, opposed to the universe of
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all extracted blobs (as was with the blob extractors assessment), the metrics Precision
and Recall are evaluated regarding the universe of the blobs mapped by the detector.

4.5 Summary
This chapter presented the methodology that will be used for assessing the proposed

technique in the next two chapters (the case studies). This methodology involves a
comparative evaluation of existing algorithms from the literature against the proposed one.
For a better assessment, the evaluation is divided into two parts: first, the blob extractor is
evaluated in isolation; second, the pattern detector is evaluated as a whole. The algorithms
are fine-tuned for each case study by adjusting their parameters, although no special
adjustments are permitted to particular images from a given case study.

An image preprocessing procedure, which was implemented with a 3× 3 Gaussian
kernel, was included in the methodology for removing high-frequency noise from input
images. Ground-truth images hand-labeled by different individuals are used for verifying
whether the results output by the algorithms are correct. Three metrics (Precision,
Recall, and DSC) are the basic indexes used for assessing blob extractors and pattern
detectors. Whenever necessary, these metrics were adapted to address the specificities of
each case study.
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5 CASE STUDY 1 (PRINTED PATTERN)

This case study regards an usual computer vision problem — the detection of
manufactured patterns formed by circular features. These patterns can be easily crafted with
commodity printers and some important applications of them include camera calibration
and pose estimation. In order to find out the range of scenarios in which the evaluated
techniques can perform well, different image sets featuring distinct conditions (some of
them being purposely made severe) are used.

5.1 Scenario description
Most of the typical scenarios wherein a manufactured pattern has to be detected

involve arbitrarily positioning the camera so that images of the pattern are captured from
different viewpoints. For example, both of the aforementioned applications requires so —
while the optimization process of a camera calibration algorithm demands distinct views
of the pattern for properly finding the camera intrinsic parameters, it is natural that in a
pose estimation application the object of interest appears from different viewpoints.

However, this freedom of positioning can pose additional challenges for blob extrac-
tors as well as for pattern detection algorithms — the distortions caused by the cameras
image formation process. In a trivial case where the pattern is perfectly facing the camera,
perspective distortions change the pattern apparent size (it increases or decreases when the
pattern comes closer or farther from the camera, respectively). Distortions that are more
aggressive may occur when pattern is observed from oblique views. Since these viewpoints
produce non-uniform deformities over the pattern surface, they severally affect the pattern
shape. Additionally, perspective distortions affect not only the overall pattern shape, but
also the features themselves (circles appear as ellipses when observed from oblique views).
As shown above, a pattern observed from different viewpoints may not seem the same, and
under such a circumstance, the algorithms are yet expected to properly detect patterns.

Another factor that may impair algorithms performance is the scene lighting
condition. The overall lighting condition of a scene is influenced by both the light sources
(positioning and intensity) and the existence of occluding objects. It is true that the user
has a reasonable control over these elements in many habitual scenarios, but there are
others wherein such a control is limited. For instance, in industrial settings (KANG; HA;
JEONG, 2008) and in offshore environments (see Chapter 6) it is not always possible
to freely rearrange scene elements. As can be seen, every real-life scenario has its own
restrictions regarding the elements placement, therefore, it is expected that algorithms are
robust enough to handle some degree of lighting limitation.
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Finally, there are camera systems equipped with fisheye lens, which can capture
wide angle views of a scene. In addition to the distortions caused by the perspective
projection, these systems also feature radial and tangential distortions. These distortions
become more pronounced with an increase in the lens aperture angle and towards the
image edges.

All the previously mentioned issues were taken into account for creating the image
sets presented in Section 5.3. By doing so, a wide range of real-life scenarios is covered in
this case study.

5.2 Pattern of features
The pattern used in this case study has 54 circular features arranged in a specific

fashion. The pattern overall shape is rectangular and the features spacing is regular
(Figure 25a presents the details). The reason for this arrangement is to do not permit the
pattern to be detected in more than one way. More precisely, the intent is to make the
pattern unambiguous under rotation transforms.

The tangible pattern was crafted by using a printer and a flat wood board (Fig-
ure 25b). The wood board is intended for convenience of handling while maintaining the
pattern planarity.

2 cm 

2 cm 

2 cm 

2 cm 

Ø2 cm 

(a) (b)

Source: The author

Figure 25 – In (a), details of the pattern used throughout this case study. For achieving
the best image contrast, features are in black while the pattern background is
in white. This pattern is the same as a 6× 9 sized asymmetric circle pattern
provided by the OpenCV library. In (b), the final palpable pattern.

As previously stated in Section 3.3, the definition of a pattern template is invariant
under 2D transforms such as translations, rotations, and uniform scaling. Therefore, there
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are infinite ways to arrange the template vertices that are equivalent to each other. For a
sake of convenience, it was preferred to center the vertex at the bottom left corner of the
template at the coordinate (0, 0) and to align the longest edges of the template with the
x-axis (Figure 26). Vertices spacing was set to the same values presented in Figure 25a.

The vertices immediate neighborhood relations were established adopting an eight-
neighborhood-like connectivity (although border vertices have lower cardinality). Since
the detector algorithm envisages an edge as an additional restriction that must be met
by a candidate blob, having more edges leads to a greater likelihood of blobs not being
satisfactory. Therefore, this creates a more restrictive template than a four-neighborhood-
based one would do. As a natural outcome, more reliable detection results can be expected
by using such a template.
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Figure 26 – Template of the pattern used in this case study. Vertices are connected to
each other so that they have at maximum eight neighbors.

5.3 Image sets
Six image sets are used in this case study (refer to Figure 27 for some sample

images). They depict different conditions that applications may face in real-life scenarios.
Each set contains 20 images, resulting in a total of 120 images.

Images were captured using the rear-facing camera of an LG Nexus 4 E960 smart-
phone. The acquisition process of each image set was as follows. 1) Recording a video of
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distance
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low-
contrast

0002 0116 0233 0313

Source: The author

Figure 27 – Each row contains images sampled from one image set used in this case study.
The images are labeled with four-digit names drawn from their original frame
numbers in the video footage.

about 10 to 30 sec (approximately 300 to 900 frames) with the camera configured to SD
480p (the resolution of 720× 480 pixels). 2) Evenly sampling 20 images from the video
footage. 3) And finally, cropping the sampled images to the final size of 640× 480 pixels.
This size was preferred just for a consistency sake (the camera system used in the next
case study natively captures 640× 480 sized images).

The first image set is termed distance. It explores viewpoints from a close to mid-
range distance with the pattern facing the camera. Since the pattern appears to reduce
gradually in size over the images, this image set can also be imagined as the product of a
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uniform downscaling transform of the pattern. The outcome is that the pattern dimensions
in the last image is around one-fourth of the same measurements in the first image. The
features diameter also reduces in a similar manner, which in turn makes this image set a
good scenario for evaluating whether blob extractors are scale invariant.

The next image set is named rotation. As its name suggests, it regards a rotation
transform of the camera (more precisely, a complete rotation around the camera optical
axis). Similarly to the first image set, the pattern is also kept facing the camera over all
images. However, since in this case the camera to pattern distance is constant, pattern
dimensions (as well as features diameter) are preserved over images. This creates a condition
where, from the blob detectors perspective, all images of this set are equally good (or
bad) for processing. Therefore, this image set is more intended for evaluating the pattern
detection in overall (a rotated pattern may be ambiguous for some pattern detectors).

The obliquity image set explores viewpoints from where perspective distortions are
more pronounced. This set starts by a severe oblique viewpoint and reaches a neutral one
at the middle of the set. In the second half of the set, the camera follows towards the
antipodal viewpoint increasing obliquity again. The final camera trajectory is similar to
an (partial) orbit. In this image set distortions not only affect the pattern overall shape,
but also the features (they are distorted from circles into ellipses). Therefore, it poses a
challenge for pattern detectors as well as for blob extractors.

The fourth image set delve into radial-distortion effects (not surprisingly this set
was named radial distortion). Differently from perspective distortions, radial distortions do
not necessarily preserve straight lines (only vertical and horizontal lines passing through
the image center are preserved). This deformation transforms the pattern overall shape
from a perfect quadrilateral into a form with rounded sides (although yet resembling
a quadrilateral). Radial distortions are more apparent in images captured by cameras
equipped with a wide-angle lens and the effect increases from the image center to its
border. Therefore, for achieving the desired degree of distortion a 37mm 0.25× Super
Fisheye Lens with +12.5 Macro was attached to the camera prior to starting the recording.

The goal of the last two image sets is to explore changes in lighting conditions.
With the intent of isolating the impact of such changes, no viewpoint changes were made
during both recording sessions (except by the natural hand movements while holding a
camera). In the set uneven-contrast a non-uniform lighting condition was forced. It was
achieved by turning off the light sources present in the scenario and using a flashlight
for illuminating just some regions of the pattern. As a result, a single image of this set
features high contrast regions (the regions aimed by the flashlight central light beams)
as well as low to moderate contrast regions (the regions not directly illuminated and the
regions aimed by the peripheral light beams).

The final image set is named low-contrast. The scenario wherein the images of this
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set were captured was made as dark as possible. There was not any artificial light source
turned on and it was night by the time recording was made. These circumstances created
a challenging condition for blob detectors in which pattern features are barely visible in
the captured images (adjust the brightness/contrast of your monitor for a better view of
these images).

The complete sets of images (including the hand-labeled ground-truth images) are
in Appendix B. Note that these images were converted to a gray-scale format and filtered
with a 3× 3 Gaussian kernel (as described in Section 4.1) before experimentation begins.

5.4 Blob extraction results
This section evaluates the blob extractors introduced in Subsection 4.3.1 by using the

six image sets previously detailed. It starts by evaluating the metrics Precision, Recall,
and AMDSC on a per-image basis for each image set. At its end, the extractors overall
performance are summarized by regarding the mean of intra-set results. Supplementary
tables are provided in Appendix A.

5.4.1 Image set distance

The distance image set is characterized by the reduction in features apparent size
with the images progress. Refer to Table 9 for the per-image results obtained by extractors
in numerical values.

In overall, the dog extractor performed well over all images of the distance set
(Figure 28). It maxed out Recall at 1 (indicating that all pattern features were properly
extracted) while maintaining AMDSC high (values above 0.75 indicate the extracted
blobs are good representatives). The drawback of this extractor is that it is prone to
respond positively to regions of the image devoid of features, which made Precision low.
Another important conclusion that can be drawn from the results is that this extractor did
not suffer from the decreasing in features size (see the consistent Recall and AMDSC
results over the images). The reduction in Precision indicates only the camera is moving
to a more cluttered viewpoint.

The log extractor performed similarly to dog (Figure 29). There are only two
observations worthy of remark here. First, log is more prone to produce false positives
results than dog (lowering its Precision). And second, the noticeable drop in AMDSC
for the last images of the set (indicating that from this point the quality of blobs degrades
with the reduction in features size).

The mser extractor also retrieved all pattern features over all images (Figure 30).
However, this time the Precision results were superior to the ones obtained with the two
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Figure 28 – Results of blob extractor dog for image set distance. The result of each metric
is presented on a per-image basis. Images are identified by four-digit names
drawn from their original frame numbers in the video footage.
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Figure 29 – Results of blob extractor log for image set distance.

last extractors (the inferior standard deviation indicates a greater consistency as well).
Yet regarding the two last extractors, the quality of the inlier blobs extracted by mser
was inferior though.
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Figure 30 – Results of blob extractor mser for image set distance.

The ocv extractor performed poorly for most images of this set (Figure 31). Es-
sentially, the reason for such result is that this extractor underestimates the real size of
pattern features. In this case, the minimum score required for a blob to be considered a
true positive is not attained (Figure 32). As might be expected, all the tree metrics are
impacted when no true positive results are produced. While Precision and Recall drop
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to zero, AMDSC is absent. Another interesting remark about this extractor is that its
results alternate creating a pseudo-periodic wave-shaped chart. Two reasons are attributed
to this fact:

1. There is a variance in the size of the regions hand-labeled by individuals (i.e., while
creating ground-truth images, some individuals drew slightly bigger regions, others
drew slightly smaller regions1); and

2. The blobs produced by ocv have, in average, a deficit in size which produces DSC
scores compatible with the adopted cutoff value of 0.5 (notice that ocv AMDSC
results, when existent, are mostly about 0.5).
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Figure 31 – Results of blob extractor ocv for image set distance.

These two factors combined create a circumstance in which even a small variance
in the size of the ground-truth regions can change blobs classification from true positive
to false positive (and vice versa). In special for the ocv extractor, it is evident that smaller
hand-labeled regions bring benefits (it improves the likelihood of the minimum DSC score
be attained producing more true positive results), and it was what caused this extractor
to produce sporadic positive results.

The p-algo extractor achieved the best Precision results so far, although it
produced an inconsistent Recall reaction with only two images getting maximum
response (Figure 33). By visually inspecting the images output by this extractor it is easy
to identify the cause of the missing true positive results that lowered Recall. For some
reason, a number of extracted blobs are connected with their outer regions making these
blobs part of bigger connected components (i.e., disfigured blobs that cannot be recognized
as true positives anymore). Even a small failure in the encompassing contour of a blob
(e.g., an one pixel wide “crack”) is enough to ruin its DSC score. Figure 34 exemplifies this
problem. Despite all these issues, the inlier blobs produced by p-algo have good quality.

The mll extractor retrieved all features over all images at the same time that
false positive results were avoided (Figure 35). However, contradicting what was expected,
1 This is a natural outcome since distinct individuals are expected to have different levels of skills.
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(a) (b)

Source: The author

Figure 32 – The image in (a) shows how the blobs extracted by ocv from input image 0120
were classified by the analyzer. Contours in blue represent false positive results,
contours in red represent false negatives, and contours in green represent true
positives (dark ones are the extracted blobs and bright ones are the matched
ground-truth regions). In (b), the bottom left portion of the pattern is shown
in detail. Note that inside each false negative contour (in red) there is a false
positive one (in blue) that did not attain to the minimum DSC score.
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Figure 33 – Results of blob extractor p-algo for image set distance.

this extractor did not perform significantly worse than others considering the AMDSC
metric (remember that this extractor was expected to produce oversized blobs). This fact
is curious and has a tricky explanation. This time the explanation comes from a close
inspection of the input images, which reveals that the intensity of pixels at features edges
changes in an unexpected way (considering how a black to white transition, and vice versa,
should look like). By imagining the plot of a row of pixels that cross a feature through
its center, it is as if there were artifacts similar to road bumps exactly at the crossing
points (Figure 36). The author’s best guess is that these artifacts are unnaturally produced
by the camera built-in software, which supposedly applies a sharpening operator in an
attempt to enhance images overall quality. It has been noted that these “bumps” create
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Figure 34 – In (a), image output by p-algo from input image 0000. The red rectangle in (a)
is shown in detail in (b). Note that there is a one-pixel wide failure connecting
inner and outer regions (eight-neighborhood is considered here). In (c), colors
identify the resultant connected components.

barriers limiting blobs growth to a fraction of the expected size. As a final observation, the
Gaussian filter used to preprocess input images is not enough to wipe these artifacts away.
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Figure 35 – Results of blob extractor mll for image set distance.

The proposed extractor performed virtually identical to mll (Figure 37). As a
matter of fact, either selecting slices that are at the base of the peaks or selecting the
maximally stable ones (the only difference between both extractors) did not turn out to
produce major differences in AMDSC. Given these points, the two extractors are also
expected to perform similarly for the most part of the next image sets, since the same
camera system was used to produce them.

5.4.2 Image set rotation

The images of this set were captured with the camera placed at a fixed distance
from the pattern and by progressively rotating it around its optical axis (in fact, the camera
was unwittingly moved away from pattern during the recording, but it was subtle). These
circumstances made images alike each other from the blob extractors perspective (after
all, circular features are invariant under such a rotation transform). Therefore, consistent
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Figure 36 – In (a), a pattern feature in detail. Note the weird changes in pixels intensity
at feature edge. In (b), plot of a row of pixels depicting the “bumps” that
limit blob growth.
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Figure 37 – Results of blob extractor proposed for image set distance.

results over the images of this set are expected. In addition, it is plausible to argue that
images of the rotation set are alike the ones at the middle of the distance set, so it is also
possible to anticipate that extractors will perform similarly with both sets. The per-image
results obtained by each extractor with the rotation set are in Figure 38 and in Table 10.

As can be observed in those results, all extractors performed similarly for the image
sets rotation and distance, as expected. For this reason, no further detailing is needed on
the results obtained with the rotation set. The next paragraphs draw some noteworthy
observations about the variance in size of the regions hand-labeled by different individuals.

By closely inspecting the ground-truth images relative to input images 0000, 0240,
0400, and 0640 it is possible to testify that the hand-labeled regions do not cover the
pattern features in their entirety. It is important to make two points clear here though.
First, the non-covered portions of the features are small and usually not visible through
“naked eyes” (they are in general ring-shaped regions visible only under a magnifier).
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Figure 38 – Results of blob extractors for image set rotation.

Second, the boundaries of the features are not clear, permitting multiple interpretations
(even under intense magnification they may be nebulous). Regarding these points and
considering that individuals are allowed to make their own judgments about the features
extent, this variance issue is something practically impossible to be completely prevented.

Naturally, not only the ocv extractor is affected by the variance in size of the
hand-labeled regions, but all others as well. However, the impact over the other extractors
are not as pronounced as it was with ocv, which made Recall results cover the whole
range of possible values. To see the impact caused by the variance of the hand-labeled
regions on the extractors mser, mll, and proposed refer to the AMDSC results obtained
with the images 0000, 0240, 0400, and 0640 (Figure 38); the deviations in blobs quality
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Figure 38 – (cont.) Results of blob extractors for image set rotation.

observed for these images are actually fruit of the stated variance issue.

5.4.3 Image set obliquity

The obliquity image set is intended to evaluate the impact caused by distorted
features over the extractors. The hypothesis to be checked here is that extractors based on
circular blobs (dog, log, and ocv) will not perform well with this image set. In this set, the
effects of perspective distortions are more pronounced at the beginning and at the end of
the image sequence. Approaching the middle of the sequence pattern features are almost
free of distortions. Refer to Table 11 for the per-image results obtained by extractors in
numerical values.

The extractors dog and log did not maximize Recall over all images of this set
(Figure 39). Not surprisingly these extractors failed in extracting features exactly while
processing images of the sequence extremities (i.e., the images captured from severe oblique
viewpoints). When the increased obliquity did not make extractors produce false negative
results, it lowered the quality of true positive ones (notice that AMDSC decreases with
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the increase in obliquity). Therefore, the results corroborate the hypothesis previously
raised.
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Figure 39 – Results of blob extractors dog and log for image set obliquity.

There is not much to add about ocv except by one observation, it would suffer from
the same problem as the last two extractors if it would not be impaired by its inability to
estimate the features real size in first place. Results of ocv are in Figure 40.
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Figure 40 – Results of blob extractor ocv for image set obliquity.

Differently from the last three extractors, p-algo can produce blobs with arbitrary
shapes. This characteristic made this extractor to achieve good AMDSC results (the best
among all extractors). However, it did not perform well regarding Recall (Figure 41)
because of the same reasons detailed in the previous image set subsections.

The extractors mll and proposed once again presented virtually identical results
(Figure 42), as expected. However, a noteworthy observation regarding the subtle difference
in their Precision results (also observable in others image sets) is made here. It was stated
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Figure 41 – Results of blob extractor p-algo for image set obliquity.

that the slice selection criterion employed by each extractor is the only difference between
them — something that should not be enough to make these extractors to produce distinct
amounts of blobs. Therefore, provided that the extractors produced identical Recall
results, they should also produce the same Precision output, something that did not
turn out to be true. The reason for such divergence is attributed to two factors that affect
the amount of blobs considered by the evaluator. The first one is the culling mechanism
described at the end of Subsection 3.2.4, which may discard some blobs depending on
their shape. The second factor is the filtering mechanism used by the evaluator, which
may also discard blobs if their size is out of the stipulated range (Section 4.3).
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Figure 42 – Results of blob extractors mll and proposed for image set obliquity.

The mser extractor performed similarly to mll and proposed regarding Recall
and AMDSC (Figure 43). Although, these two last extractors outperformed the former
by a reasonable margin when considering Precision. While mll and proposed achieved
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results invariantly greater than 0.6 for this metric, mser did not surpass 0.4. In average
this difference is even bigger, with the two better extractors achieving results above 0.7
and the worse below 0.3.
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Figure 43 – Results of blob extractor mser for image set obliquity.

5.4.4 Image set radial-distortion

This image set explores the effects of radial distortions on the extractors performance.
In this set, the first images were captured from a close viewpoint producing high distorted
images. As the camera moved away from the pattern distortions reduced and the scene
background was made more evident. Strictly speaking, radial distortions are not the same
as perspective distortions, but they cause alike impacts over the blob extractors. In effect,
the results obtained with this image set are anticipated to be similar to those presented in
last subsection. Refer to Table 12 for the per-image results of this set in numerical values.

For the extractors that can only produce perfect circular blobs (dog and log are
included here, but not ocv because of its chronic problem (Figure 44)) it is possible to
notice an overall improvement in blobs quality with the decreasing of distortion (Figure 45).
Not to mention that dog and log once again failed in extracting some features from the most
distorted images. See Figure 46 for an illustration of how different from the ground-truth
regions are the blobs extracted by dog.
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Figure 44 – Results of blob extractor ocv for image set radial-distortion.
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Figure 45 – Results of blob extractors dog and log for image set radial-distortion.

Regarding the other extractors (Figure 47), p-algo performed poorly once more
(low Recall results). The extractors mser, mll, and proposed maximized Recall by
finding all pattern features. When comparing these three last extractors, mser produced
the worst Precision results, as usual.

(a) (b)

Source: The author

Figure 46 – The image in (a) shows how the blobs extracted from input image 0019 by
dog were classified by the analyzer. In (b), the bottom left portion of the
pattern is shown in detail. Note how loosely the true positive blobs (circles in
dark green) overlap with the ground-truth regions (ellipsis in bright green).
Observe also that distortions mislead dog to extract the two features at the
bottom left corner of the pattern as a single blob.
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Figure 47 – Results of blob extractors p-algo, mser, mll, and proposed for image set
radial-distortion.

As a final comment, all extractors (except ocv) presented a decreasing trend in
Precision that does not correlate with the decreasing in distortion. This behavior is
in fact related to the cluttered scene background, which is made more evident over the
images of this set.

5.4.5 Image set uneven-contrast

The two next image sets are characterized by limited lighting conditions. Despite
these conditions have been intentionally created for the purpose of the experiments,
they make good scenarios for assessing how well the extractors can perform in harsher
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environments. It is worth mentioning that, among all image sets, these are the ones that
most influenced the parameterization of the extractors driving it to a more sensitive
configuration. After all, features in poorly-lit images are less salient than in well-lit ones
requiring more acuity from the extractors.

In particular, the uneven-contrast set presents images captured from a non-uniform
illuminated scenario, which was created by using a flashlight. Despite all images of this set
depict the pattern features with variable contrast, the first half2 images were captured
with a better overall illumination than the second half. In the first half, some parts of the
pattern are illuminated by the peripheral light beans of the flashlight while the others are
not directly illuminated at all. In the second half, some parts are illuminated by the central
light beams while the others are illuminated by the peripheral beans. The per-image
results (in numerical values) obtained by each extractor with this image set are presented
in Table 13.

The dog extractor failed in extracting a few pattern features from some images of
the first half of this set (Figure 48). Therefore, the darker appearance of these images
impacted in some way on this extractor. For the second half images (images with a slight
better illumination) all features were extracted. The AMDSC metric does not seem to
be affected by the peculiar lighting condition of this set (in comparison with the other
better-lit scenarios). On the other hand, Precision was notably higher for this set than
it was for others (an expected outcome since poorly-lit images have fewer saliences that
can be extracted).
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Figure 48 – Results of blob extractor dog for image set uneven-contrast.

Regarding the log extractor, the inferior Precision results observed in other image
sets (in comparison with dog) are also observable in this set (Figure 49). However, in this
set log achieved slightly better Recall results missing just one feature from the image
0559.
2 The term “half” is used just for convenience of designation because it is not precisely at the middle of

the image sequence that the overall illumination condition changes.
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Figure 49 – Results of blob extractor log for image set uneven-contrast.

The mser extractor obtained remarkable results regarding the three metrics (Fig-
ure 50). As usual, Recall was maximized over all images and AMDSC was high.
Although, differently from the last image sets, this time Precision was high as well (in
average above 0.9). The mser extractor also turned out to be sensible to the illumination
change that occurs around the middle of the image sequence (notice the decreasing in
Precision from this point indicating that more false positive blobs were extracted).
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Figure 50 – Results of blob extractor mser for image set uneven-contrast.

As in other image sets, the extractors ocv and p-algo obtained inconsistent results
due to same reasons previously addressed (Figure 51).

The proposed extractor performed the best between all extractors. It maximized
Recall over all images and at the same time produced the best Precision results for
this set. The AMDSC was high as well (above 0.9 in average).

The mll extractor also did this set well. However, it is important to draw the
attention to the fact that in this set the difference between mll and proposed regarding
AMDSC was larger (Figure 52), with the latter extractor outperforming the former (more
details about it in next subsection).
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Figure 51 – Results of blob extractors ocv and p-algo for image set uneven-contrast.
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Figure 52 – Results of blob extractors mll and proposed for image set uneven-contrast.

5.4.6 Image set low-contrast

The low-contrast image set is characterized by the constant and deficient lighting
condition set for its recording. This condition caused insufficient contrast even between the
features and the base of the pattern, which were made in highly contrasting colors (black
and white, respectively). As a result, this set posed difficulties not only for the extractors
but also for the individuals in charge of the images hand-labeling.
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Interestingly enough, this image set made extractors to produce the best Precision
results over all image sets. At a first glance this outcome seems contradictory (after all, this
set is supposedly the most challenging one), but, as previously stated, poorly-lit images
have fewer saliences that can be extracted as blobs. In that case, the amount of false
positive results is reduced, consequently improving Precision. Refer to Table 14 for the
per-image results of this set in numerical values.

The extractors dog and log maximized Recall over all images, therefore performing
better than in the last image set (Figure 53). This outcome suggests that more salient
features positioned in inclined areas (i.e., the way that some pattern features are presented
in the last image set) are harder to be extracted than less salient features positioned in
planar areas (the way that every feature of this image set is presented). The AMDSC
metric was also high for both the extractors.
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Figure 53 – Results of blob extractors dog and log for image set low-contrast.

The extractors ocv and p-algo performed inconsistently as usual (Figure 54). In
special for p-algo, it was noticed that the uncanny results produced with image 0092
(maximum Recall and Precision close to zero) is fruit of the different number of
hierarchical level output by the technique. As a general rule, an inferior number of
hierarchical levels means that the image will be segmented into more regions. While
image 0092 caused the extractor to output level one, the others caused it to output two.
This unitary difference turned out to produce drastic changes in the segmentation degree
achieved by each image, which ranged from an under-segmented image (without some
important contours) to an over-segmented one (with lots of non-significant contours). Refer
to Figure 55 to visualize this variation.
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Figure 54 – Results of blob extractors ocv and p-algo for image set low-contrast.

(a) (b)

Source: The author

Figure 55 – Respectively in (a) and in (b), outputs produced by p-algo for input images 0077
and 0092. Even though these input images are consecutive (and consequently
similar to each other), one was under-segmented while the other was over-
segmented.

The only extractors to achieve maximum Recall and Precision over all images
of this set were mser, mll, and proposed (Figure 56). These extractors also obtained high
AMDSC results, with mser performing the best, proposed in second, and mll in third.

Similarly to what happened with the uneven-contrast set, the low-contrast set also
caused the extractors proposed and mll to produce more distinctive results, regarding the
AMDSC metric. This fact evidences that the (supposed) sharpening operator applied
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Figure 56 – Results of blob extractors mser, mll, and proposed for image set low-contrast.

by the camera is not as effective in preventing mll from overestimating the features real
size for images captured under low-lighting conditions as it was for well-lit scenarios.
This hypothesis sounds reasonable because many enhancing mechanisms are characterized
by being proportional to the image contrast ratio. In other words, the more contrasting
regions of an image are the more enhanced ones with greater “bumps”. Figure 57 shows
how the blobs extracted by mll compare with the ground-truth regions. Finally, it is worth
mentioning that the difference in AMDSC would be more pronounced if a pattern with a
greater ratio between features distance and features radius was used (e.g., if the pattern
used had its features reduced in size causing larger gaps between them).

5.4.7 Overall analysis

This subsection summarizes the results presented in the last subsections. This final
analysis is based on the per-set average results obtained by each extractor, which are
available in Figure 58 and in Table 15. At the end, hypothesis tests are conducted by using
the whole set of images.
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(a) (b)

Source: The author

Figure 57 – The image in (a) shows how the blobs extracted from input image 0272 by
mll were classified by the analyzer. In (b), the top right portion of the pattern
is shown in detail. Note that despite all blobs (regions in dark green) have
attained to the minimum score required to produce true positive results, they
are oversized when compared with the ground-truth regions (in bright green).

But before analyzing the extractors, it is important to detail some considerations
taken into account about the relevance of each metric. The Recall was considered the
foremost metric for the extractors assessment and therefore prevails over the others. This
decision is justified because, for most computer vision applications, the faults committed
during the feature extraction stage are not repaired by the subsequent ones. And in such
a circumstance, the system overall performance is inevitably impacted (e.g., in a pattern
detection system the inlier features overlooked by the extractor would make it impossible
to detect the pattern). The metrics Precision and AMDSC are of less importance than
Recall because of their reduced impact over a hypothetical system. However, these
are the metrics that ultimately permit extractors that equated in Recall to be ranked.
Finally, the metrics Precision and AMDSC were considered equal in importance to
each other.

The extractors dog e log performed well in overall, although they missed a few
features from some images of the sets obliquity, radial-distortion, and uneven-contrast.
Both these extractors were also characterized by low Precision results (in special for
well-lit images). It is true that this last issue was caused by the way that the extractors
were parameterized, which made them extremely sensitive to the images saliences. It is
also worth noting that it was a “necessary evil” to enable dog and log to work within the
poor-lit scenarios (but still not achieving maximum Recall over all images). Another
important remark about dog and log is that they can only produce circular blobs. This
characteristic makes them not suitable for scenarios in which the elements of interest
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Figure 58 – Mean of the three metrics evaluated for all blob extractors for all image sets
of the printed pattern experiments.
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have arbitrary shapes or even when these elements are circles and severe distortions apply
(recall image sets obliquity and radial-distortion).

Despite results pointing out ocv as the worst extractor among all, by closely
inspecting the images output by the analyzer one can notice that most of the pattern
features were properly extracted by this extractor (regarding all image sets). As previously
stated, the problem with ocv is its propensity to underestimate the features real size
leading the analyzer to make poor evaluations. If it had not occurred, ocv would have
achieved a much better evaluation.

The p-algo extractor achieved remarkable results regarding Precision and
AMDSC (the best for most image sets), but its performance was not considered satisfactory
because of the poor Recall results. Not to mention that p-algo at times produced
inconsistent results for similar images, with some images being under-segmented, others
over-segmented.

The most succeeded extractors were proposed, mll, and mser — they were the only
extractors to maximize Recall over all images of all sets. Among these three extractors,
proposed can be considered the best because of its superior Precision (in comparison
with mser) and higher AMDSC (in comparison with mll). For all image sets captured
from well-lit scenarios, proposed outperformed mser in Precision by at least 140% and
as much as 181%. For the others sets (the ones captured under limited lighting conditions)
these two extractors presented less discrepant Precision results. Regarding the quality of
blobs extracted by proposed and mll, it is known that the camera used in the experiments
produced artifacts that benefited mll. Therefore, the author believes that the results
obtained with this case study do not reflect the real difference that exists between the two
extractors. A case study conducted with a camera devoid of enhancing capabilities and
using a pattern with more scattered features would certainly cause mll to output inferior
AMDSC results, in which the reason for this would be oversized blobs.

Statistical hypothesis tests have been conducted for a better quantitative analysis
of the extractors mser, mll, and proposed. Since these extractors achieved identical Recall
results, only the metrics Precision and AMDSC were regarded for this purpose. The
images of the six sets were put together to achieve an appropriate sample size, resulting in
a single set of 120 images.

Before testing the techniques against each other, it must be verified whether the
data of each metric come from a population that is normally distributed. This hypothesis
was checked by using the Lilliefors test. As it turned out, for the both metrics Precision
and AMDSC, the normality hypothesis was rejected at the 1% significance level for at
least one of the extractors. Therefore, since the data normality cannot be assumed in all
cases, a non-parametric test was chosen; the Wilcoxon signed rank test for paired samples.



Chapter 5. Case Study 1 (Printed Pattern) 92

The first test is concerned with Precision results of mser and proposed; the null
hypothesis is that the median of Precision differences of mser and proposed is 0, which
is tested against the alternate that it is less than 0. The null hypothesis was rejected at
the 1% significance level (p-value was 6.47× 10−17). Therefore, there is enough statistical
evidence to conclude that the median of Precision obtained by mser is less than the
median of Precision obtained by proposed. A similar test was performed regarding the
AMDSC metric. Once again, it was concluded that, at the 1% significance level, the
median of AMDSC obtained by mser is less than the median of AMDSC obtained by
proposed (p-value was 1.54× 10−4).

Concerning Precision results of mll and proposed, the null hypothesis is that the
median of Precision differences of mll and proposed is 0; the alternate hypothesis is that
it is less than 0. The null hypothesis was rejected at the 1% significance level (p-value was
7.21× 10−7), which means that there is enough statistical evidence to conclude that the
median of Precision obtained by mll is less than the median of Precision obtained
by proposed. A similar test was performed regarding the AMDSC metric; p-value was
9.98× 10−22 indicating that, at the 1% significance level, the median of AMDSC obtained
by mll is less than the median of AMDSC obtained by proposed.

5.5 Pattern detection results
This section presents the results obtained by the two pattern detectors introduced

in Subsection 4.4.1 (ocv and proposed). The same six image sets previously used for
evaluating blob extractors are used here.

5.5.1 Image set distance

The proposed pattern detector succeeded over all images of the distance set (Fig-
ure 59). Therefore, the reduction in features apparent size which occurs over the images of
this set did not affect this detector.
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Figure 59 – Pattern detectors results for image set distance. The result of each detector
is presented on a per-image basis; the presence of a circle indicates that the
detector succeeded in that frame. Images are identified by four-digit names
drawn from their original frame numbers in the video footage.
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On the other hand, ocv failed in detecting the pattern from one image of this
set (image 0420). Interestingly enough, the failure occurred not in an image from the
extremities of the set, but from its means. The explanation for this fact is curious. By
inspecting the blobs extracted from the image that caused the failure, it is possible to
notice the presence of outlier blobs among the inlier ones (Figure 60c). And as was observed
while experimenting with the ocv detector, by some reason it can only tolerate the presence
of such undesirable elements when they are outside the pattern region. The presence of a
single outlier blob among inlier ones ultimately cause ocv detector to fail.

Still concerning the ocv detector failure, it was investigated why the image in
Figure 60a caused this problem but not others. It was noticed that the features apparent
size reaches a critical point from that image — from this size the “bumps” surrounding
neighbor features (recall it from Figure 36) start connecting to each other, creating a
favorable condition to the emergence of outlier blobs in the regions between these features
(Figure 60b). The images subsequent to 0420 have not caused this problem because of
a simple reason; the regions in between the pattern features reduce to a point of not
permitting the emergence of blobs with area superior to 21 pixels. In other words, the
outlier blobs that should appear in those regions are actually discarded because they do
not attain the minimum area requirement (recall the ocv extractor parameterization from
Subsection 4.4.1). For this reason, the last images of this set are free of such unwelcome
artifacts.

(a) (b) (c)

Source: The author

Figure 60 – The image 0420 of the distance set is in (a). In (b), the top right portion of the
pattern is shown in detail. Finally, the blobs extracted from that portion of
the image is shown in (c). Notice the presence of three outlier blobs (pointed
by red arrows) among the inliers.

As a final observation, the proposed blob extractor is as susceptible to produce
outlier blobs among the inliers as the ocv. However, since the pattern searching stage of
the proposed solution is robust to these unwanted elements, the proposed pattern detector
fared better than its competitor.



Chapter 5. Case Study 1 (Printed Pattern) 94

5.5.2 Image set rotation

The images of the rotation set have been flawlessly detected by both the detectors
(Figure 61). Therefore, the hypothesis that the images in which the pattern appears
upside-down could “confuse” detectors was not confirmed (i.e., detectors turned out to be
equally robust to such a rotation transform).
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Figure 61 – Pattern detectors results for image set rotation.

5.5.3 Image set obliquity

While the ocv detector has succeeded over all images of the obliquity set, proposed
has failed in the first and in the last image (Figure 62). It is worth noting that these
two failures were not caused by the absence of inlier blobs (after all, the proposed blob
extractor has maximized Recall for both the images), but by the pattern searching stage
which did not prosper in mapping all inlier blobs to the vertices of the pattern template.
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Figure 62 – Pattern detectors results for image set obliquity.

Those failures indicate that the parameterization used with the pattern searching
procedure was not permissive enough to accommodate the perspective distortions suffered
by those images. Relaxing parameters would make the pattern searching succeed, although,
for not risking it to produce wrong detections in other situations this idea was abandoned.
Refer to the images in Figure 63 for getting the notion of the level of distortion tolerated
by proposed.

5.5.4 Image set radial-distortion

The ocv detector failed in detecting the pattern from most images of the radial-
distortion set (as seen in Figure 64, it succeed in only 7 out of 20 images). Once more it
was investigated whether these failures were caused by the absence of inlier blobs, but this
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(a) (b)

Source: The author

Figure 63 – The input image 0070 (the first of the obliquity set) is in (a); it has not been
detected by the proposed detector because of its distortion. The next image of
the set (the image 0088) is in (b); from this image proposed succeed.

assumption was not confirmed (i.e., the problem resides in the pattern searching procedure
itself). An interesting observation that must be made here is that, while perspective
distortions seems to be innocuous to the ocv detector (recall that ocv succeed over all
images of the obliquity set), even small degrees of radial distortions can prevent ocv from
detecting the pattern (the first image of the radial-distortion set in which ocv succeed is
in Figure 65b, which shows a not very deformed pattern).
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Figure 64 – Pattern detectors results for image set radial-distortion.

The origin of the ocv detector failures seems to be related to the particularities
of the radial distortions and how they ultimately affect the shape of the imaged pattern.
Differently from perspective distortions, radial distortions do not preserve straight lines.
These effects become more evident as the object of interest approaches the image edges,
such as in the first images of the radial-distortion set (notice in Figure 65a how the rows
and columns of the pattern of features, which are straight, become curved close to the
image edges). The author’s best guess is that the ocv detector was not designed to bear
the effects of radial distortions unless they are mild deformities over the pattern extent
(such as in the last images of the set). The final observation about the ocv pattern detector
(and consequently about the OpenCV camera calibration functionality) is that it may not
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suit scenarios in which cameras are equipped with wide angle lens.

The proposed pattern detector achieved better results than ocv (Figure 64), although
not perfecting it (17 out of 20 images were detected). The proposed detector has succeeded
from the image in Figure 65a, which has a much greater degree of distortion than the
image in Figure 65b. Under those circumstances, it is possible to state that the proposed
searching procedure tolerates well the effects of radial distortions. The next case study
(Chapter 6) presents a scenario in which the pattern undergoes more severe arching; not
because of the camera lens optical characteristics, but because of actual changes in the
pattern/pipe shape due to its flexibility.

(a) (b)

Source: The author

Figure 65 – The input image 0047 is in (a); it was the first image of the radial-distortion
set in which the proposed detector succeeded. The image 0205 is in (b); the
first one to be detected by ocv.

5.5.5 Image set uneven-contrast

Differently from the last four image sets, the sets uneven-contrast and low-contrast
have been recorded by keeping the camera at a fixed viewpoint from the pattern of features
and with the pattern perfectly facing the camera. At first glance, this creates a convenient
circumstance for any pattern detector because the shape of the imaged pattern do not
change over the images and it is free of distortions. However, the lighting conditions forced
while recording these sets drastically affect the blob extractors, which ultimately impact
detectors overall performance.

While the proposed detector succeeded over all images of the uneven-contrast set
(Figure 66), ocv could only achieve the same feat with the last seven images of the set
(the better-lit ones). By inspecting the debug images output by the ocv detector, it is
possible to confirm that its failures have been caused by the lack of inlier blobs in the
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darker regions of the input images (i.e., the ocv blob extractor has missed the pattern
features not directly lit by the flashlight).
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Figure 66 – Pattern detectors results for image set uneven-contrast.

It has been tried to increase the ocv extractor sensitivity in the hope of overcoming
this problem, but it has caused another difficulty — the emergence of outlier blobs among
the inlier ones in the well-lit regions of the image (as was presented in Subsection 5.5.1). In
addition, if this increased sensitivity had used with the better-lit image sets, ocv detector
performance would have worsened for that sets.

5.5.6 Image set low-contrast

In view of the poor performance of the ocv detector with the darker images of the
uneven-contrast set, it is easy to predict that this detector is fated to be unsuccessful
with the low-contrast set as well. The ocv worst performance has been achieved with the
low-contrast set indeed — it failed with every image of this set. All these failures were
caused by the absence of inliers in the set of extracted blobs. On the other hand, the
proposed detector succeed over all images once more (Figure 67).
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Figure 67 – Pattern detectors results for image set low-contrast.

5.5.7 Overall analysis

No pattern detector perfected over all images. However, in the final quantitative
analysis proposed outperformed ocv by achieving a superior number of detections — while
proposed succeeded in 96% of the images processed, ocv achieved the mark of 61%.

The major characteristic that has harmed ocv performance is its inability to deal
with outlier blobs among the inliers. This creates a delicate circumstance in which the
benefit of increasing the extractor sensitivity (for maximizing the extraction of inliers)
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is easily outweighed by the risk of producing some intrusive outliers. This limitation is
naturally more harmful to images captured under non-uniform lighting conditions, although
it has impacted in trivial scenarios as well (such as in the distance image set). The ocv
pattern detector has also struggled with images radially distorted, as was evidenced with
the radial-distortion set.

According to the experiments, the single unfavorable point of the proposed detector
is its inferior tolerance to perspective distortions, although it was not possible to quantify
this disadvantage since the ocv failing point is unknown (ocv succeed over all images of the
obliquity set). For all other scenarios proposed has turned out to be a better detector than
its competitor. In special for scenarios with limited lighting conditions (the sets uneven-
and low-contrast), proposed presented valuable results by succeeding over all images.

As a final observation, the reference implementation of the detector proposed spent
2.96 seconds (in average) to process each of the well-lit images (the first four image sets)
and 0.92 seconds to the poor-lit ones (the last two sets). This difference in execution time
is due to the greater amount blobs extracted from the well-lit images (note in Figure 58
that the extractor proposed achieved inferior Precision results for these images).

5.6 Summary
This chapter presented the first part of the assessment of the technique proposed

in this Thesis. The case study used to serve this purpose regards the detection of a printed
pattern, which is commonly used in problems involving camera calibration and/or pose
estimation. To cover a broad range of scenarios, six image sets were utilized, totalizing
120 images. Each image set addresses a distinct circumstance that can occur in real-world
situations, such as the pattern viewed from different distances, the pattern rotated, the
pattern deformed by perspective or radial distortions, and the pattern under deficient
lighting conditions.

The analysis of the blob extractors indicated that the most succeeded ones were
proposed, mll, and mser. Among these extractors, proposed was considered the best because
of its superior Precision and AMDSC marks (confirmed by means of hypothesis tests).
Additionally, it is worth noting that the good results achieved by mll were only possible
because of the image enhancement feature of the camera system utilized in this case study.
Therefore, mll would not equally succeed if a camera without such a feature had been
used instead.

Regarding the evaluation of the pattern detectors, proposed outperformed its only
competitor (ocv) for most of the image sets tested. In special, for the last two image sets,
in which the lighting conditions were made as harsh as possible, proposed succeeded over
all images while ocv failed entirely.
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6 CASE STUDY 2 (PIPE IN DEEP SEA)

The purpose of this case study is to evaluate the proposed technique in a real
scenario with odd characteristics. As will be detailed next, one of the most distinctive
characteristics of the offshore scenario (regarding the pattern detection problem) is that
pipes are non-rigid structures. This fact has a significant impact on the problem addressed
— the pattern of interest changes over time. In addition, this case study also testifies that
the applicability of the technique is not limited to printed patterns.

6.1 Scenario description
Offshore operations are conducted in deep underwater environments (at times

surpassing 2000m in depth). Consequently, ROVs (Remotely Operated Vehicles) assist
most parts of the operations (WHITCOMB, 2000). There is no natural illumination in
this kind of environment and the only light sources available are the ones attached to the
ROV. Since illumination is scarce, ROVs are equipped with special underwater camera
systems, which can capture images in low-light conditions (10−3 lux). These images are
monochromatic, low resolution (usually NTSC or PAL standards), and tend to be blurred
due to the underwater light scattering.

In this environment devoid of natural lighting, suspended particles are everywhere.
Animals of the marine biome such as tiny fish and squid are also present, mainly in the
shallower depths. Besides, some equipment such as floaters may be sparsely attached to the
pipe. Buoyancy forces naturally compel floaters to position themselves strictly above the
pipe, but nothing is placed behind it. The emptiness behind the pipe and the restrictive
lighting conditions of the environment make the images background range from medium
gray to black. Hence, in the deep ocean, it is as if there was a permanent black backdrop
wherever you go.

In this harsh scenario, special flexible pipes are used for transporting oil and gas.
They are permanently oscillating due to waves and ocean currents, and, if the oscillation
reaches a critical amplitude, equipment installed at the pipe endings may be damaged (LI,
2012).

In order to mitigate the risks involved in such situations, a pipe monitoring tool
based on 3D reconstruction is being developed by Santos et al. (SANTOS et al., 2015).
This tool uses the proposed technique for detecting the pipe in images. Since the pipes
are non-rigid objects, a calibrated stereo rig is used. This setup requires that features are
extracted and matched across both images. Therefore, for each pair of captured images,
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the detection technique is independently executed for each image.

6.2 Pattern of features
The purpose of the detection technique in this case study is to provide features

that will be posteriorly matched across a pair of stereo images. However, since the pipes
are coated with a plastic of uniform color, it is almost impossible to distinguish features
over their surface.

In order to overcome this issue, regularly-spaced longitudinal sections of the pipe
are marked with an alternating black and white1 pattern (Figure 68). This can be easily
achieved by using colored adhesive tapes or by painting the pipe surface. Since the region
of the pipe that shall be monitored is short (about 15m), this manual task is affordable
(resulting in about 29 markings for a 35 cm diameter pipe). In this case, the white sections
marked over the pipe (the elements that will be extracted as features by the detection
technique) are also referred to as vertebrae. The reason for this is the resemblance of a
marked pipe with a vertebral column.

Source: The author

Figure 68 – Illustration of a flexible pipe marked with the suggested pattern of alternating
black and white sections.

The dimensions of the pipe markings are illustrated in Figure 69. These dimensions
have been determined for creating features as similar to circles as possible; the length of
the white markings is about the pipe diameter so that they look like squares when the
ROV is laterally observing the pipe (the usual viewpoint when the pipe is intended to
1 For a sake of convenience, some markings may be made in yellow instead of white. This change does

not alter the essence of the feature being marked (i.e., it is yet a bright region surrounded by a dark
rim), but reduces its contrast somewhat (white over black is more contrasting than yellow over black).
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be monitored); the Gaussian filter of the preprocessing stage (Section 4.1) gives the final
touch by rounding the corners of the white markings. The length of the black markings
has been set to be about quarter of the length of the white ones, which is long enough for
producing gaps when the pipe is about the intended monitoring distance2.
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Figure 69 – The dimensions of the markings for a pipe with a diameter equal to a. The
white markings have a length of about a and the black ones have a length of
about a/4.

This scenario has two interesting characteristics that would affect the technique
execution. Firstly, since a pipe is an elongated body, its markings create a one-dimensional
pattern. Nevertheless, this is naturally tackled by the proposed technique, provided that a
suitable pattern template is given.

Secondly, the pipes are non-rigid structures, thereby the patterns marked over
them are subject to change over time. Basically, pipes are incompressible and unexpansive
structures (at least not significantly), thus the size of the markings and the distances
between them are preserved. However, pipes are allowed to bend, and consequently the
pattern marked over them curves accordingly. The proposed technique is able to tackle
these changes just by relaxing the angular constraint parameter of the backtracking in
the searching stage. Thus, no special workarounds are required, such as creating multiple
pattern templates for covering all bending levels.

The pattern template used for generating the results of this case study is in
Figure 70. It has a total of 40 vertices sequentially connected to each other. This superior
number of vertices was purposely set for having room for all pipe vertebrae as well as
for some additional blobs expected to be included as outliers. Differently from the first
case study in which the pattern was expected to be detected in its entirety, in the pipe
experiments the pattern detector does not have reliable means for asserting such a thing.
Therefore, the detector has been configured with a different modus operandi causing it to
2 This case study has a noteworthy characteristic — solely marking the pipe is actually not enough for

detecting it with the proposed technique. In fact, it becomes detectable only when the dark background
of the image come on the scene. One can notice in Figure 69 that while the white markings are laterally
bounded by the black ones, their upper and bottom sides have no bounds. The dark background is
what creates the missing bounds.
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output the best partial mapping found during its searching stage (i.e., the longest chain of
blobs which satisfies the constraints imposed by the pattern template).
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Figure 70 – The one-dimensional pattern template used for detecting flexible pipes. Despite
describing a straight pattern, it is also able to detect bent pipes.

6.3 Image set
The image set used in this case study is termed as pipe and contains 20 images

captured during a real offshore operation. These images were sampled from five different
moments of the operation for a more comprehensive experiment. The camera system used
was the low-light underwater Kongsberg OE15-101c, which captures monochrome images
(8-bit depth) with 640 × 480 pixels in size. Additionally, the ROV was equipped with
independently adjustable spotlights. The images of the pipe set are shown in Figure 71,
the ground-truth images of this set are in Figure 82.

The first four images of the pipe set (Figure 71a) are characterized by the strong
presence of undesirable artifacts (mainly fish and floating particles) and by an uneven
illumination of the pipe surface (observe that the pipe markings are less contrasting at
the top of the image). In particular, for these images, the proximity of a spotlight to the
camera system is what makes the presence of undesirable artifacts so pronounced (notice
the intense shaft of light coming from the top left corner of the image and how the particles
in its path are brighter than others).

In the next four images (Figure 71b) there are fewer floating particles in comparison
with the previous ones (although some fish are yet visible). However, in spite of the overall
better lighting condition at the moment these images were captured, the second half of
the pipe surface (from left to right) has low contrast. This contrast reduction is caused by
the yellowish tone of that pipe region and ultimately reaches the point in which the pipe
completely fade out.

The images in Figure 71c are characterized by a low contrast and by a moderate
presence of floating particles. However, notice that the reduced contrast in these images is
not caused by a cutback in spotlights power, but by the lighting attenuation caused by
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Source: Petrobras

Figure 71 – The image set used in the pipe experiments. The images are labeled with four-
digit names and each row contains images captured from a specific moment of
the operation.

the superior distance that light has to travel in that circumstance (pipe was at a farther
distance from the camera by the time images were captured).

The images in Figure 71d explore oblique viewpoints of the pipe. It was noticed
that these images have distinctive characteristics that may affect algorithms performance.
Firstly, the features (the white markings over the pipe) are deformed into concave shapes
possibly creating difficulties for the blob extractors that are based on circles. Secondly,
for the images captured from viewpoints in which the second half of the pipe is closer to
the camera (images 0150, 0152, and 0153), a more uniform contrast over the whole pipe
extension is observed; the explanation for this fact is that the inferior distance from the
camera to that part of the pipe make up for the reduced contrast between the colors used
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to mark it (yellow and black).

Regarding the camera viewpoint and the lighting condition, the last four images
(Figure 71e) are similar to ones shown in Figure 71b. However, the images in Figure 71e
present a higher density of floating particles creating a harsher scenario for the algorithms
being tested.

6.4 Blob extraction results
The same methodology used for evaluating the blob extractors in the case study of

the printed pattern (Section 5.4) is used here. Refer to Table 16 for the per-image results
obtained by each extractor in numerical values.

The dog extractor achieved ordinary results overall (Figure 72). Firstly, Precision
was low indicating that many outliers were extracted (lesser than 0.1 over all images of the
set). Secondly, since dog can only produce perfect circular blobs, it did not output the best
representatives for the features marked over the pipe (although achieving an AMDSC
mark superior to 0.8 in average). Finally and foremost, dog did not achieve Recall results
as high as other extractors, such as log, mser, mll, and proposed. In special for the images
captured from oblique viewpoints (0150, 0151, 0152, and 0153), dog did not extract more
than a third part of the features, which suggests that this extractor is not robust to that
kind/level of distortion.
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Figure 72 – Results of blob extractor dog for image set pipe. The result of each metric
is presented on a per-image basis. Images are identified by four-digit names
drawn from their original frame numbers in the video footage.

The extractor log performed noticeably better than dog for the metrics Precision
and Recall (Figure 73). This is a curious fact since in the first case study the results
obtained by log were comparable to that obtained by dog. More interesting yet is that log
actually achieved the best Recall mark (in average) among all extractors — log managed
to maintain high Recall scores even for the images in Figure 71d (the ones that contain
the most distorted features). However, the quality of the blobs extracted by log was not
equally high (see Figure 74) reaching AMDSC values as lower as 0.7 for some images.
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Figure 73 – Results of blob extractor log for image set pipe.

(a) (b)

Source: The author

Figure 74 – The image in (a) shows how the blobs extracted by log from input image 0152
were classified by the analyzer. Despite log extracted all features marked over
the pipe, it is clear from (b) that there is a lack of quality in the inlier blobs;
notice that most inlier blobs (contours in dark green) are significantly smaller
than their respective ground-truth regions (contours in bright green).

The mser extractor performed well regarding the three metrics (Figure 75). Its
Precision is visibly superior in comparison with log results, indicating a cleaner extraction.
However, for the images with more undesirable artifacts (Figures 71a, 71c, and 71e) it
is possible to notice a drop in Precision. The Recall results achieved by mser was
comparable with log results, although mser produced blobs with superior quality rising its
AMDSC marks.

The ocv extractor retrieved only one feature from the image 0051 and another from
the image 0101; this was its worst performance among all image sets (Figure 76). The
same problem regarding undersized blobs that was observed while experimenting with the
previous image sets was the cause of such a poor performance (i.e., ocv extracts too small
blobs that do not attain to the minimum DSC score required for producing true positive
results).
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Figure 75 – Results of blob extractor mser for image set pipe.
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Figure 76 – Results of blob extractor ocv for image set pipe.

As seen in Figure 77, another extractor that performed poorly was p-algo (once
more). In spite of achieving the best Precision mark (in average) from among all
extractors, p-algo failed in extracting many of the features marked over the pipe (more
than a third of the features were missed overall). Not to mention that Precision was
inconsistent over the images and AMDSC was not satisfactory as well.
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Figure 77 – Results of blob extractor p-algo for image set pipe.

The extractors mll and proposed performed virtually identical (Figure 78), with a
marginal advantage to the former (in average, mll achieved slightly superior results for
the metrics Recall and AMDSC, but not for the Precision). It is curious that the
natural tendency of mll to extract oversized blobs has given it an advantage over proposed
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in this case study. This fact is attributed to some characteristics of pattern marked over
the pipe and how it ultimately looks like from the viewer perspective.
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Figure 78 – Results of blob extractors mll and proposed for image set pipe.

Firstly, the pattern created for the case study of the pipe has closer features than
the pattern used in the previous case study — for the pipe scenario, the ratio of the
features extent to the gaps separating them is 4 : 1 (Figure 69), for the printed pattern this
ratio is about 2.44 : 1 (Figure 25a). This condition favor mll because it reduces the amount
of space that blobs have to grow beyond the features bounds consequently preventing the
production of oversized blobs.

On the other hand, the imperfections of the white markings painted over the pipe,
coupled with the diffusion caused by the dense medium in which the pipe is immersed, blurs
the features edges lowering the acuteness of the stability measurement used by proposed
(recall from Figure 16). From the practical standpoint, this circumstance increases the
likelihood of extracting undersized blobs, which may either simply reduce the quality of
the blobs extracted (lowering AMDSC) or make the analyzer to consider some blobs
extracted from features as false positive results (lowering Recall).

6.4.1 Overall analysis

The blob extractors average results over the whole set of images are presented in
Figure 79. Refer to Table 17 to see these results in numerical values.

The ocv extractor performed the worst among all the extractors — it extracted
only two features over all images of the set. The ultimate conclusion that can be drawn
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about ocv is that it is not effective at extracting representative regions of interest, but it
is only suitable for retrieving the centroid of these regions.
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Figure 79 – Mean of the three metrics evaluated for all blob extractors for the pipe
experiments.

The extractors dog and p-algo achieved marginal to poor results (each of them
missed at least 33% of the features marked over the pipe, in average). While dog struggled
with images captured from oblique viewpoints, p-algo presented inconsistent results
independently of image characteristic.

Much better performances were achieved by log and mser, which have extracted
nothing less than 94% of the features. In particular, log achieved a slight better mark
regarding Recall. On the other hand, mser has had the advantage of extracting better
representative blobs (higher AMDSC) and producing fewer false positive results (superior
Precision).

As log and mser, mll and proposed also achieved valuable results (Recall marks
were virtually identical for these four extractors). However, the latter have the additional
benefit of producing less false positive results — the average Precision results show
that mll and proposed outperformed log in about 133% and mser in about 45%. Finally,
regarding AMDSC, mll achieved a slightly superior performance in comparison with
proposed.

Hypothesis tests have been performed for the Recall results obtained by log,
mser, mll, and proposed; the results of log (the highest in average) were tested against
the results of other extractors to verify whether this superiority is statistically significant.
The null hypothesis is that the median of Recall differences of log and one of the other
extractors is 0; the alternate is that it is greater than 0. The p-values of the tests involving
mser, mll, and proposed were respectively 0.1758, 0.2754, and 0.0190; therefore, at the 1%
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significance level, there is not enough statistical evidence to conclude that log was superior
to mser, mll, or proposed regarding the Recall metric.

In respect to the tiny advantage of proposed over mll regarding the Precision
metric (in average), it was tested whether this superiority is statistically significant. The
null hypothesis is that the median of Precision differences of mll and proposed is 0;
the alternate hypothesis is that it is less than 0. The null hypothesis was rejected at the
1% significance level (p-value was 0.0093), which means that there is enough statistical
evidence to conclude that the median of Precision obtained by mll is less than the
median of Precision obtained by proposed.

Finally, it was also tested whether the superior AMDSC result achieved by mll
(in comparison with proposed) is statistically significant. The null hypothesis is that the
median of AMDSC differences of mll and proposed is 0; the alternate hypothesis is that it
is greater than 0. Since p-value was 4.78× 10−5, the null hypothesis was rejected indicating
that there is enough statistical evidence to conclude that mll outperformed proposed
regarding the AMDSC metric.

6.5 Pattern detection results
This section presents the results obtained by the proposed pattern detector (as

previously stated, ocv was excluded from this evaluation because it is not able to detect
the kind of pattern marked over the pipe). The per-image results obtained by proposed
are presented in Figure 80 and in Table 18. The average results are in Table 8.
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Figure 80 – Proposed pattern detector results for image set pipe. Images are identified
by four-digit names drawn from their original frame numbers in the video
footage.

The proposed detector retrieved most of the features marked over the pipe (89%
in average). This result represents a drop of only 4.6% in comparison with the results
obtained by the respective blob extractor (recall that since the pattern searching stage
of the proposed detection algorithm cannot recover the features missed during the blob
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Table 8 – Mean of the proposed pattern detector results for the pipe image set. Results
are presented as x± y, where x is the mean value of the metric over all images
of the set and y is the standard deviation.

Image Set
pipe

proposed Precision 0.941±0.060
Recall 0.890±0.074

extraction stage, the Recall measured at the end of the pattern searching stage is
impossible to be greater than the one measured at the end of the blob extraction stage).

Additionally, just a small fraction of the elements detected by proposed were
classified as outliers (5.9% in average). This result indicates that the majority of the
outliers produced by the blob extractor were discarded during the pattern searching stage
(Precision results improved from 0.228 to 0.941).

Regarding execution time, proposed spent 1.1 seconds (in average) to process each
of the pipe images.

In spite of the valuable results achieved by the proposed pattern detector, some
problems were observed while processing specific images; these are detailed next.

There are basically two circumstances in which the proposed pattern detector
produces outliers; they are both related to false positive errors produced by the blob
extractor. The first circumstance occurs when undersized blobs are extracted from the
features marked over the pipe. Notice in Figure 81a that an undersized element at the
top of the image (contour in blue) was accounted as outlier because of its inferior size.
It is equally important to observe that a false negative result (contour in red) was also
produced in detriment of this fact. The second circumstance involves the blobs extracted
from the regions of the pipe not marked with the pattern of interest (Figure 81b). In
this case, two blobs that were extracted from that regions were detected by proposed and
accounted as outliers by the analyzer (contours in blue).

Another problem observed with proposed is related to the occurrence of false
negative results while extracting blobs. The image in Figure 81a shows a case in which
the proposed detector missed one feature of the pattern because of a failure of the blob
extractor at one of the pipe extremities. As might be expected, this kind of failure may
also occur at medial regions of the pipe creating discontinuities over the pipe extent, which
may implicate in graver consequences for the pattern detector. For example, in Figure 81b
only two out of the six false negative results were caused because of extraction failures
(the leftmost and the rightmost ones). The others (the intermediate ones) were actually
due to the discontinuity created by one of the extractor failures (the leftmost one), which
split the pipe into two parts. This problem could be mitigated by relaxing some of the
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Figure 81 – The debug images output by the pattern detector analyzer for the input
images 0001 (a), 0200 (b), 0051 (c), and 0202 (d). The analyzer draws in green
the regions confirmed as true positive results (ground-truth regions, in bright
green, are matched with elements detected by proposed, in dark green), in
blue are the false positive results, and in red are the false negative ones.

parameters that control the constraints tested by the pattern searching procedure, but
this could have the side effect of producing more false positive results. It is also relevant
to mention that in some situations the absence of a single blob (at medial regions of the
pipe) does not produce a significant discontinuity that could cause the mentioned problem,
such as in Figure 81c.

The last problem observed with proposed can be visualized in Figure 81d. Notice
that, in that occasion, the pattern searching procedure “preferred” a solution that has an
outlier blob as the leftmost element (the region in blue at the left extremity of the pipe).
The term “preferred” was used here because there was the option of choosing the correct
blob and preventing the false negative result (the region in red) at that pipe extremity.
That is, by inspecting the image output by the blob extractor analyzer, it is possible to see
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that the blob relative to that false negative result was correctly extracted. This problem
occurred because the searching procedure does not have means to judge which of two
equal-sized solutions is the best (see line 16 in Algorithm 2). Therefore, both solutions
seemed equally good and the algorithm opted for the first found.

6.6 Summary
This chapter presented the second and final part of the assessment of the proposed

technique. This time, the case study happened within an offshore scenario with flexible
pipes, which has some distinctive characteristics when compared with the scenario presented
in the previous case study. Among these characteristics, the most remarkable ones are:
the pattern is subject to deform over time, the pattern is one-dimensional, the pattern
is meant to be detected partially, and the features that constitute the pattern are not
perfectly circular. The image set created for the experiments has images captured at five
different moments of a real offshore operation, totalizing 20 images.

Since the features marked over the pipe are not perfectly circular, the blob extractors
based on circles clearly had a disadvantage here (in special with the images captured from
oblique viewpoints). Another observation made about the extractors was that mll achieved
slightly superior results in comparison with proposed. The superior performance of mll
was explained by a specificity of the pattern marked over the pipe — the nearness of the
features that did not permit neighbor blobs to overgrow.

The only pattern detector tested in the pipe case study was proposed because ocv is
not able to detect one-dimensional patterns. In overall, proposed achieved valuable results
by detecting most parts of the pipe with few outliers in the diverse situations. However, a
noteworthy problem was encountered with its pattern searching procedure — it may opt
for outlier blobs even if the correct inlier blob is available for selection.
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7 CONCLUSION

This Thesis presented a detection technique for patterns formed by roundish
features. The new technique is composed of two sequential stages; while the first is in
charge of selecting candidates for features of the pattern (the blob extraction stage), the
second finds out the candidates that actually constitute the pattern (the pattern searching
stage).

The blob extractor utilized in the first stage was built on concepts introduced by
two extractors of the literature. This tailored solution turned out to suit well the problem
of interest by producing fewer outliers and extracting blobs from multiple levels of scale.

The pattern searching stage was implemented as a backtracking procedure that
relies on the constraints imposed by a graph data structure (the pattern template). As
main advantage, it allows the proposed technique to detect patterns with a diversity of
shapes, something not observed in other detectors. Therefore, regarding this aspect, the
proposed technique is more general and applicable to a wider variety of scenarios when
compared with the state-of-the-art ones.

Experimental results collected from two case studies evidence that the new technique
is robust to uneven and low-lighting conditions. Particularly, for the last two image sets of
the printed pattern case study, in which the lighting conditions were made as harsh as
possible (individuals in charge of hand-labeling ground-truth images could barely see the
pattern features because of the images low contrast), the proposed technique succeeded
over all tested images.

Moreover, it is important to highlight the fact that the new technique is able
to detect patterns that have undergone deformations, which was possible through the
employment of a short-range constraint analysis strategy while executing the pattern
searching stage. The deformation tolerance was verified not only with a non-rigid object
(the flexible pipe), but also with distortions caused by camera optics (it included radial and
perspective distortions, which are relevant to the purpose of intrinsic camera calibration).
Regarding execution time, the reference implementation of the new technique achieved
at best 1.08 frames per second, which is not fast enough for real-time requirements but
would be satisfactory for most interactive applications.

The main contributions of this Thesis are:

1. The pattern detector algorithm;

2. The new blob formulation that was built upon the ideas of two existing blob
extractors;
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3. The utilization of a graph data structure for representing patterns; and

4. The comparative evaluation of some techniques from the literature (blob extractors
and pattern detectors) in scenarios relevant to the purpose of camera calibration.

7.1 Challenges faced
One challenge was in making the output of the techniques evaluated as blob

extractors compatible each other. Since most of the techniques output results in distinct
formats, this was a fundamental requirement to enable their comparison. For instance,
while blob extractors may output sets of circles (circles are mostly represented by a position
and a radius) or sets of contours (contours are usually represented by connected groups
of pixels), image segmentation techniques usually output binary images. An additional
complication regarding the adaptation of these techniques was the necessity of rewriting
code for three different programming languages — C/C++, Python, and MATLAB.

Another difficulty was related to the creation of the ground-truth images. During
the hand-labeling process, it was common for some individuals to commit mistakes that
could affect the experiments, such as: filling a single connected component with multiple
colors; repeating the same color for different connected components; accidentally painting
some non-black pixels in the background region; creating RGB images instead of gray-scale
ones. Therefore, all the ground-truth images had to be double-checked for ensuring their
proper condition.

In addition to the effort of creating the ground-truth images, the time spent by
the analyzer for executing the tests also interfered in the experiments. This fact not only
impacted the process of fine-tuning the techniques parameters (because repeating the
experiments used to consume too much time) but also influenced the decision of reducing
the number of images utilized in the second case study.

7.2 Future work
Despite the main objectives of this Thesis have been successfully achieved, there are

some advances that have been left for future developments. These include the addressing
of the issues observed while experimenting with the technique in the case studies as well
as some general improvements.

Regarding the blob extractor, a useful functionality that could be incorporated is
the ability to extract holed blobs, which would enable the proposed detector to identify
patterns formed by ringed features (such as the one in Figure 3c). In addition to the
benefit of supporting a different kind of pattern/feature, another advantage of working
with ringed features is that the extractor would produce fewer outliers (there is a natural
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tendency in most scenarios to the number of holed elements be much less than the number
of non-holed ones).

As noticed while experimenting with the images captured from the pipe scenario,
the pattern searching stage may opt for outlier blobs even if the correct inlier blob is
available for selection (it turned out that, although these blobs are outliers, they are
compatible with the constraints tested by the searching procedure). The ultimate effect of
this issue is that two distinct but equal-sized detection results (one containing an outlier
blob wherein the other contains an inlier) are indistinguishable regarding correctness. It is
worth mentioning that, in spite of being observed only in the pipe case study, this issue
could also happen with the printed pattern used in the first case study. An idea that
could overcome this problem is to take into account the residual error measured for each
constraint while testing candidate blobs; the hypothesis is that the accumulated residual
error can be used as metric for ranking equal-sized detections.

Concerning the usability aspect of the new detection technique, a valuable addition
would be to have a visual tool for assisting the creation of the pattern templates (i.e., a
tool for creating graphs). Whilst it is true that for the both case studies that have been
presented the pattern templates were easy to create (they were created procedurally), for
patterns with non-geometric shape the same approach would be impracticable.

Finally, there is room for improvements in the execution time of the proposed
technique. Regarding the blob extraction stage, it is known that the most time-consuming
operation of this stage is the component tree construction; traversing the tree for extracting
blobs is fast as each node of the tree needs to be visited at most once. Efficient algorithms
for constructing component trees have been proposed and evaluated comparatively (CAR-
LINET; GÉRAUD, 2014). Another rewarding research would be to investigate whether
the pattern searching stage can be modeled as a CSP (Constraint Satisfaction Problem).
If so, the A* (A-star) search algorithm could be used to solve it since all CSPs can be
viewed as graphs (POKORNY; VINCENT, 2013).
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APPENDIX A – TABLES

This appendix presents supplementary tables.

Table 9 – Blob extractors results for image set distance in numerical values.
Image

0000 0030 0060 0105 0120 0150 0180 0210 0240 0270 0300 0330 0360 0390 0420 0450 0480 0520 0550 0580

dog
Precision 0.26 0.22 0.19 0.16 0.15 0.13 0.12 0.13 0.13 0.11 0.11 0.10 0.08 0.09 0.09 0.10 0.10 0.09 0.09 0.09

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.96 0.86 0.88 0.89 0.88 0.90 0.93 0.93 0.85 0.96 0.88 0.92 0.94 0.87 0.89 0.89 0.84 0.87 0.87 0.83

log
Precision 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.95 0.94 0.86 0.85 0.92 0.83 0.96 0.96 0.95 0.77 0.96 0.93 0.95 0.89 0.80 0.66 0.91 0.61 0.59 0.56

mser
Precision 0.25 0.24 0.24 0.21 0.19 0.21 0.21 0.22 0.22 0.19 0.18 0.16 0.16 0.16 0.16 0.19 0.17 0.16 0.18 0.18

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.91 0.92 0.92 0.96 0.78 0.78 0.81 0.86 0.94 0.88 0.71 0.81 0.77 0.79 0.74 0.73 0.92 0.73 0.78 0.86

ocv
Precision 0.00 0.00 0.00 0.00 0.24 0.29 0.03 0.00 0.00 0.00 0.08 0.00 0.01 0.23 0.24 0.07 0.00 0.01 0.00 0.00

Recall 0.00 0.00 0.00 0.00 0.91 1.00 0.09 0.00 0.00 0.00 0.33 0.02 0.04 0.94 0.98 0.22 0.00 0.02 0.00 0.00
AMDSC - - - - 0.55 0.54 0.51 - - - 0.64 0.60 0.61 0.53 0.61 0.73 - 0.75 - -

p-algo
Precision 0.43 0.55 0.42 0.41 0.38 0.43 0.51 0.54 0.47 0.53 0.56 0.29 0.38 0.46 0.29 0.77 0.44 0.42 0.41 0.44

Recall 0.76 0.78 0.72 0.76 0.74 0.57 0.67 0.69 0.57 0.85 0.70 0.37 0.72 0.72 0.56 0.74 0.78 0.94 1.00 1.00
AMDSC 0.98 0.97 0.96 0.92 0.91 0.92 0.97 0.96 0.88 0.91 0.95 0.91 0.94 0.89 0.81 0.94 0.69 0.88 0.82 0.74

mll
Precision 0.78 0.72 0.59 0.52 0.49 0.54 0.58 0.61 0.65 0.47 0.38 0.36 0.38 0.35 0.39 0.45 0.47 0.44 0.47 0.43

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.91 0.92 0.91 0.95 0.78 0.78 0.81 0.85 0.93 0.88 0.71 0.81 0.77 0.78 0.73 0.64 0.91 0.71 0.74 0.82

proposed
Precision 0.71 0.65 0.57 0.51 0.49 0.54 0.56 0.63 0.69 0.49 0.41 0.39 0.39 0.39 0.42 0.48 0.49 0.47 0.53 0.47

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.93 0.93 0.93 0.96 0.81 0.80 0.83 0.86 0.94 0.88 0.71 0.82 0.78 0.79 0.74 0.66 0.94 0.73 0.78 0.86

Table 10 – Blob extractors results for image set rotation in numerical values.
Image

0000 0040 0080 0120 0160 0200 0240 0280 0320 0361 0400 0440 0480 0520 0560 0600 0640 0681 0717 0761

dog
Precision 0.14 0.13 0.11 0.12 0.11 0.12 0.08 0.10 0.10 0.09 0.08 0.10 0.11 0.12 0.11 0.08 0.08 0.10 0.09 0.11

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.88 0.89 0.88 0.91 0.95 0.85 0.88 0.92 0.95 0.96 0.84 0.91 0.96 0.97 0.96 0.97 0.72 0.83 0.86 0.88

log
Precision 0.05 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.02 0.02 0.04 0.03 0.04

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.89 0.91 0.95 0.93 0.87 0.96 0.77 0.80 0.78 0.75 0.88 0.81 0.76 0.75 0.74 0.72 0.96 0.69 0.85 0.74

mser
Precision 0.23 0.24 0.22 0.19 0.19 0.21 0.16 0.20 0.17 0.17 0.16 0.17 0.19 0.20 0.19 0.16 0.16 0.17 0.17 0.19

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.77 0.82 0.86 0.86 0.83 0.96 0.72 0.79 0.83 0.85 0.72 0.80 0.85 0.87 0.87 0.92 0.66 0.97 0.81 0.92

ocv
Precision 0.26 0.05 0.08 0.00 0.00 0.00 0.15 0.05 0.00 0.00 0.21 0.06 0.00 0.00 0.00 0.00 0.23 0.00 0.22 0.00

Recall 1.00 0.19 0.30 0.00 0.00 0.00 0.69 0.19 0.00 0.00 0.94 0.26 0.00 0.00 0.00 0.00 0.98 0.00 0.89 0.00
AMDSC 0.59 0.54 0.52 - - - 0.54 0.51 - - 0.56 0.51 - - - - 0.65 - 0.53 -

p-algo
Precision 0.46 0.46 0.62 0.72 0.58 0.36 0.59 0.48 0.64 0.42 0.52 0.46 0.49 0.60 0.49 0.66 0.55 0.43 0.51 0.53

Recall 0.44 0.35 0.70 0.89 0.74 0.44 0.72 0.50 0.65 0.50 0.48 0.31 0.46 0.56 0.31 0.78 0.69 0.78 0.83 0.35
AMDSC 0.94 0.97 0.94 0.93 0.96 0.81 0.92 0.96 0.94 0.87 0.92 0.96 0.93 0.90 0.88 0.84 0.89 0.78 0.93 0.83

mll
Precision 0.56 0.63 0.49 0.46 0.45 0.52 0.43 0.42 0.35 0.38 0.37 0.39 0.40 0.38 0.39 0.35 0.35 0.36 0.36 0.38

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.76 0.80 0.86 0.86 0.83 0.95 0.72 0.78 0.83 0.86 0.72 0.80 0.85 0.87 0.89 0.92 0.65 0.97 0.80 0.93

proposed
Precision 0.60 0.65 0.53 0.51 0.48 0.55 0.45 0.46 0.38 0.40 0.40 0.42 0.43 0.39 0.43 0.37 0.38 0.40 0.38 0.40

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.77 0.83 0.87 0.87 0.84 0.97 0.72 0.81 0.84 0.89 0.73 0.80 0.86 0.88 0.89 0.93 0.66 0.98 0.82 0.94
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Table 11 – Blob extractors results for image set obliquity in numerical values.
Image

0070 0088 0105 0122 0140 0163 0175 0210 0246 0262 0280 0315 0350 0385 0420 0456 0490 0525 0560 0595

dog
Precision 0.24 0.25 0.25 0.22 0.21 0.19 0.14 0.13 0.15 0.15 0.19 0.17 0.18 0.19 0.16 0.17 0.16 0.15 0.14 0.11

Recall 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
AMDSC 0.77 0.77 0.82 0.85 0.87 0.88 0.90 0.90 0.90 0.89 0.88 0.90 0.91 0.91 0.90 0.87 0.86 0.85 0.81 0.78

log
Precision 0.04 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
AMDSC 0.70 0.76 0.82 0.84 0.86 0.83 0.88 0.88 0.88 0.87 0.84 0.89 0.89 0.89 0.89 0.84 0.83 0.84 0.76 0.71

mser
Precision 0.33 0.33 0.30 0.33 0.35 0.34 0.28 0.28 0.30 0.29 0.30 0.29 0.26 0.28 0.27 0.24 0.25 0.26 0.26 0.26

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.95 0.74 0.83 0.88 0.87 0.96 0.87 0.84 0.89 0.90 0.94 0.81 0.84 0.89 0.85 0.96 0.95 0.86 0.91 0.93

ocv
Precision 0.01 0.33 0.14 0.05 0.06 0.00 0.05 0.07 0.00 0.00 0.00 0.18 0.05 0.00 0.05 0.00 0.00 0.03 0.00 0.01

Recall 0.02 0.78 0.39 0.15 0.17 0.00 0.13 0.19 0.00 0.00 0.00 0.48 0.13 0.00 0.13 0.00 0.00 0.07 0.00 0.02
AMDSC 0.51 0.57 0.53 0.52 0.52 - 0.51 0.52 - - - 0.53 0.52 - 0.51 - - 0.51 - 0.50

p-algo
Precision 0.96 0.96 0.96 1.00 0.98 0.96 0.92 0.80 0.89 0.92 0.95 1.00 0.89 0.84 0.94 0.90 0.77 0.86 0.87 0.81

Recall 0.93 0.87 0.87 0.91 0.91 0.83 0.67 0.67 0.57 0.67 0.76 0.74 0.61 0.59 0.54 0.70 0.69 0.67 0.48 0.70
AMDSC 0.84 0.92 0.97 0.94 0.95 0.87 0.96 0.97 0.95 0.95 0.89 0.95 0.98 0.96 0.97 0.87 0.87 0.95 0.90 0.85

mll
Precision 0.72 0.76 0.78 0.81 0.81 0.78 0.64 0.69 0.67 0.70 0.70 0.65 0.64 0.72 0.68 0.64 0.73 0.74 0.70 0.67

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.95 0.74 0.83 0.87 0.87 0.96 0.86 0.84 0.89 0.90 0.93 0.80 0.84 0.89 0.85 0.96 0.94 0.86 0.90 0.93

proposed
Precision 0.73 0.76 0.76 0.83 0.79 0.79 0.66 0.71 0.68 0.73 0.73 0.67 0.63 0.72 0.62 0.67 0.73 0.77 0.74 0.73

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.96 0.75 0.84 0.88 0.88 0.96 0.88 0.85 0.90 0.91 0.96 0.82 0.86 0.90 0.87 0.96 0.95 0.87 0.91 0.95

Table 12 – Blob extractors results for image set radial-distortion in numerical values.
Image

0019 0024 0031 0047 0067 0078 0130 0136 0142 0150 0157 0173 0189 0205 0221 0236 0252 0268 0284 0300

dog
Precision 0.37 0.38 0.25 0.25 0.23 0.25 0.21 0.21 0.19 0.17 0.15 0.13 0.13 0.11 0.11 0.11 0.10 0.10 0.09 0.09

Recall 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.81 0.83 0.83 0.84 0.83 0.85 0.86 0.85 0.85 0.87 0.87 0.89 0.89 0.91 0.86 0.92 0.93 0.92 0.89 0.88

log
Precision 0.07 0.08 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03

Recall 0.96 0.96 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.82 0.82 0.81 0.82 0.84 0.84 0.85 0.84 0.86 0.87 0.88 0.88 0.88 0.90 0.87 0.87 0.89 0.92 0.93 0.95

mser
Precision 0.27 0.28 0.26 0.25 0.25 0.27 0.27 0.25 0.24 0.24 0.24 0.23 0.21 0.19 0.21 0.21 0.20 0.18 0.18 0.18

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.83 0.94 0.94 0.91 0.82 0.92 0.92 0.95 0.88 0.92 0.82 0.91 0.91 0.91 0.73 0.87 0.88 0.92 0.84 0.90

ocv
Precision 0.11 0.00 0.01 0.03 0.18 0.01 0.00 0.00 0.08 0.00 0.15 0.00 0.00 0.00 0.24 0.02 0.02 0.00 0.10 0.01

Recall 0.30 0.00 0.02 0.07 0.44 0.04 0.00 0.00 0.20 0.00 0.41 0.00 0.00 0.00 0.85 0.07 0.07 0.00 0.41 0.04
AMDSC 0.56 - 0.50 0.52 0.54 0.52 - - 0.53 - 0.52 - - - 0.57 0.52 0.51 - 0.53 0.50

p-algo
Precision 0.82 0.86 0.85 0.84 0.79 0.77 0.67 0.70 0.78 0.81 0.74 0.70 0.49 0.53 0.53 0.46 0.39 0.36 0.51 0.39

Recall 0.67 0.46 0.72 0.57 0.61 0.67 0.59 0.69 0.72 0.70 0.80 0.59 0.63 0.57 0.61 0.70 0.72 0.59 0.72 0.59
AMDSC 0.95 0.93 0.94 0.97 0.94 0.97 0.96 0.93 0.94 0.96 0.94 0.96 0.95 0.95 0.88 0.96 0.95 0.90 0.96 0.91

mll
Precision 0.75 0.71 0.77 0.78 0.74 0.81 0.75 0.75 0.69 0.66 0.61 0.60 0.58 0.57 0.55 0.57 0.53 0.50 0.50 0.51

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.82 0.93 0.94 0.91 0.82 0.91 0.92 0.95 0.88 0.92 0.82 0.91 0.91 0.91 0.73 0.87 0.88 0.92 0.84 0.90

proposed
Precision 0.78 0.69 0.78 0.77 0.73 0.78 0.74 0.74 0.70 0.64 0.60 0.59 0.59 0.58 0.54 0.56 0.56 0.55 0.53 0.57

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.84 0.96 0.95 0.92 0.84 0.93 0.93 0.96 0.89 0.93 0.85 0.92 0.92 0.92 0.75 0.88 0.89 0.93 0.85 0.91

Table 13 – Blob extractors results for image set uneven-contrast in numerical values.
Image

0125 0168 0211 0255 0298 0342 0385 0428 0477 0515 0559 0602 0646 0689 0732 0750 0855 0879 0920 0950

dog
Precision 0.73 0.70 0.67 0.71 0.68 0.60 0.61 0.65 0.70 0.76 0.70 0.67 0.68 0.60 0.54 0.54 0.59 0.54 0.64 0.62

Recall 0.96 1.00 0.94 0.94 1.00 0.98 1.00 0.98 1.00 0.93 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.92 0.90 0.88 0.91 0.89 0.92 0.90 0.89 0.90 0.90 0.92 0.91 0.92 0.94 0.95 0.93 0.93 0.93 0.92 0.94

log
Precision 0.49 0.49 0.50 0.57 0.48 0.38 0.40 0.45 0.44 0.37 0.42 0.48 0.45 0.34 0.32 0.34 0.25 0.27 0.30 0.32

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.85 0.82 0.89 0.83 0.81 0.86 0.82 0.89 0.88 0.83 0.86 0.83 0.91 0.88 0.90 0.87 0.85 0.87 0.93 0.92

mser
Precision 1.00 0.98 1.00 0.98 0.98 0.98 1.00 0.98 1.00 1.00 1.00 1.00 0.93 0.78 0.83 0.86 0.78 0.83 0.83 0.89

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.93 0.95 0.83 0.95 0.91 0.88 0.93 0.83 0.87 0.91 0.92 0.92 0.81 0.86 0.83 0.86 0.89 0.87 0.80 0.82

ocv
Precision 0.15 0.03 0.40 0.10 0.00 0.00 0.03 0.48 0.32 0.07 0.14 0.05 0.09 0.00 0.00 0.00 0.00 0.00 0.27 0.10

Recall 0.17 0.04 0.43 0.11 0.00 0.00 0.04 0.57 0.35 0.07 0.15 0.06 0.09 0.00 0.00 0.00 0.00 0.00 0.31 0.11
AMDSC 0.54 0.51 0.56 0.53 - - 0.51 0.55 0.55 0.52 0.53 0.51 0.51 - - - - - 0.51 0.51

p-algo
Precision 0.15 0.39 0.25 0.36 0.33 0.33 0.36 0.34 0.22 0.24 0.23 0.18 1.00 1.00 1.00 1.00 0.25 0.15 1.00 1.00

Recall 0.50 0.56 0.56 0.57 1.00 1.00 0.98 0.98 0.98 0.59 0.56 0.69 0.43 0.50 0.89 0.87 0.96 0.98 0.85 0.72
AMDSC 0.92 0.91 0.88 0.94 0.92 0.95 0.92 0.90 0.94 0.92 0.95 0.94 0.95 0.96 0.96 0.94 0.93 0.94 0.95 0.97

mll
Precision 1.00 1.00 0.98 1.00 0.96 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.88 0.92 0.76 0.89 0.88 0.84 0.89 0.76 0.80 0.88 0.86 0.89 0.79 0.84 0.82 0.85 0.88 0.86 0.78 0.81

proposed
Precision 1.00 1.00 0.98 1.00 0.98 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.91 0.96 0.83 0.94 0.95 0.93 0.96 0.85 0.88 0.92 0.92 0.94 0.87 0.92 0.89 0.91 0.93 0.90 0.85 0.87
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Table 14 – Blob extractors results for image set low-contrast in numerical values.
Image

0002 0018 0038 0055 0077 0092 0116 0128 0155 0165 0194 0202 0233 0239 0257 0272 0276 0311 0313 0346

dog
Precision 0.79 0.84 0.77 0.78 0.75 0.71 0.74 0.77 0.76 0.75 0.71 0.75 0.87 0.83 0.82 0.77 0.76 0.76 0.68 0.82

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.91 0.92 0.85 0.93 0.91 0.92 0.91 0.86 0.80 0.87 0.88 0.87 0.89 0.90 0.90 0.85 0.90 0.88 0.84 0.89

log
Precision 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.94 0.95 0.88 0.95 0.95 0.95 0.94 0.89 0.82 0.90 0.95 0.93 0.89 0.93 0.92 0.85 0.93 0.89 0.79 0.93

mser
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.94 0.96 0.89 0.96 0.96 0.97 0.95 0.90 0.82 0.89 0.96 0.95 0.92 0.95 0.93 0.87 0.94 0.92 0.81 0.95

ocv
Precision 0.28 0.40 0.63 0.42 0.18 0.15 0.25 0.52 0.68 0.00 0.02 0.13 0.46 0.16 0.12 0.59 0.16 0.25 0.88 0.10

Recall 0.33 0.46 0.72 0.50 0.20 0.20 0.26 0.59 0.83 0.00 0.02 0.15 0.54 0.17 0.13 0.69 0.19 0.28 0.94 0.11
AMDSC 0.53 0.52 0.58 0.52 0.52 0.51 0.52 0.55 0.56 - 0.52 0.54 0.53 0.52 0.53 0.54 0.53 0.53 0.57 0.54

p-algo
Precision 1.00 1.00 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 0.22 0.50 0.44 0.65 0.72 1.00 0.69 0.74 0.56 0.70 0.81 0.69 0.22 0.26 0.54 0.57 0.69 0.83 0.80 0.50
AMDSC 0.94 0.96 0.87 0.96 0.96 0.97 0.95 0.89 0.82 0.89 0.96 0.96 0.88 0.94 0.94 0.87 0.95 0.92 0.82 0.94

mll
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.85 0.85 0.76 0.84 0.84 0.85 0.84 0.78 0.73 0.91 0.91 0.82 0.81 0.87 0.83 0.74 0.84 0.79 0.69 0.85

proposed
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AMDSC 0.89 0.90 0.81 0.90 0.90 0.93 0.91 0.83 0.75 0.93 0.94 0.89 0.86 0.90 0.89 0.81 0.91 0.86 0.75 0.89

Table 15 – Mean of the three metrics evaluated for all blob extractors for all image sets of
the printed pattern experiments in numerical values. Results are presented as
x± y, where x is the mean value of the metric over all images of the set and y
is the standard deviation.

Image Set

distance rotation obliquity radial-
distortion

uneven-
contrast low-contrast

dog
Precision 0.127±0.048 0.105±0.017 0.176±0.041 0.180±0.086 0.646±0.065 0.772±0.047

Recall 1.000±0.000 1.000±0.000 0.995±0.017 0.998±0.006 0.983±0.025 1.000±0.000
AMDSC 0.893±0.039 0.898±0.061 0.861±0.046 0.869±0.034 0.916±0.019 0.883±0.033

log
Precision 0.039±0.008 0.032±0.007 0.040±0.006 0.045±0.011 0.402±0.087 0.986±0.049

Recall 1.000±0.000 1.000±0.000 0.999±0.004 0.994±0.012 0.999±0.004 1.000±0.000
AMDSC 0.842±0.135 0.826±0.088 0.835±0.059 0.866±0.039 0.865±0.035 0.909±0.045

mser
Precision 0.194±0.029 0.187±0.022 0.290±0.031 0.232±0.033 0.932±0.082 1.000±0.000

Recall 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
AMDSC 0.829±0.078 0.834±0.079 0.883±0.057 0.887±0.054 0.879±0.049 0.922±0.044

ocv
Precision 0.060±0.100 0.065±0.093 0.051±0.081 0.049±0.072 0.112±0.145 0.319±0.242

Recall 0.228±0.385 0.271±0.388 0.132±0.202 0.146±0.227 0.125±0.165 0.366±0.277
AMDSC 0.606±0.083 0.550±0.047 0.522±0.019 0.525±0.020 0.526±0.016 0.534±0.019

p-algo
Precision 0.457±0.104 0.529±0.090 0.909±0.067 0.649±0.172 0.488±0.350 0.952±0.214

Recall 0.732±0.150 0.575±0.182 0.719±0.131 0.647±0.077 0.758±0.209 0.606±0.208
AMDSC 0.897±0.079 0.904±0.054 0.926±0.045 0.943±0.025 0.935±0.022 0.919±0.047

mll
Precision 0.504±0.121 0.421±0.077 0.712±0.054 0.647±0.105 0.993±0.011 1.000±0.000

Recall 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
AMDSC 0.817±0.089 0.832±0.081 0.880±0.056 0.886±0.054 0.844±0.047 0.821±0.057

proposed
Precision 0.513±0.098 0.450±0.080 0.722±0.056 0.652±0.094 0.995±0.008 1.000±0.000

Recall 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
AMDSC 0.834±0.087 0.845±0.081 0.892±0.057 0.899±0.052 0.907±0.038 0.873±0.054
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Table 16 – Blob extractors results for image set pipe in numerical values.
Image

0000 0001 0002 0003 0050 0051 0052 0053 0100 0101 0102 0103 0150 0151 0152 0153 0200 0201 0202 0203

dog
Precision 0.02 0.02 0.02 0.04 0.08 0.06 0.06 0.07 0.02 0.02 0.03 0.02 0.05 0.01 0.04 0.05 0.02 0.01 0.02 0.01

Recall 0.92 0.83 0.83 0.92 0.82 0.87 0.67 0.67 0.69 0.56 0.63 0.63 0.31 0.14 0.23 0.32 0.82 0.82 0.88 0.73
AMDSC 0.79 0.85 0.80 0.87 0.88 0.88 0.88 0.88 0.77 0.79 0.83 0.81 0.77 0.68 0.82 0.80 0.86 0.86 0.87 0.85

log
Precision 0.04 0.04 0.04 0.05 0.21 0.16 0.14 0.15 0.07 0.08 0.11 0.08 0.18 0.08 0.16 0.20 0.07 0.03 0.03 0.03

Recall 0.92 0.92 0.92 0.92 1.00 1.00 0.96 0.96 1.00 1.00 1.00 0.94 0.90 0.90 1.00 0.93 1.00 1.00 0.96 0.96
AMDSC 0.81 0.78 0.79 0.81 0.80 0.75 0.86 0.85 0.82 0.84 0.85 0.86 0.71 0.70 0.71 0.70 0.70 0.83 0.72 0.72

mser
Precision 0.08 0.09 0.07 0.11 0.31 0.24 0.26 0.24 0.09 0.09 0.14 0.11 0.28 0.19 0.27 0.29 0.08 0.05 0.05 0.05

Recall 0.92 1.00 0.92 1.00 0.86 0.96 0.92 0.88 1.00 0.88 0.94 1.00 0.93 0.86 1.00 1.00 0.91 0.95 1.00 1.00
AMDSC 0.90 0.86 0.90 0.87 0.82 0.88 0.87 0.83 0.78 0.74 0.81 0.82 0.85 0.80 0.86 0.83 0.84 0.89 0.82 0.82

ocv
Precision 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Recall 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AMDSC - - - - - 0.67 - - - 0.51 - - - - - - - - - -

p-algo
Precision 0.22 0.12 0.17 0.22 0.45 0.68 0.70 0.80 0.39 0.20 0.21 0.26 0.67 0.38 0.54 0.94 0.10 0.94 0.89 0.84

Recall 0.33 0.58 0.58 0.33 0.77 0.57 0.67 0.67 0.56 0.63 0.69 0.69 0.76 0.52 0.73 0.57 0.82 0.68 0.67 0.62
AMDSC 0.76 0.80 0.78 0.78 0.68 0.76 0.80 0.84 0.72 0.66 0.67 0.65 0.71 0.77 0.76 0.74 0.75 0.85 0.81 0.80

mll
Precision 0.09 0.11 0.09 0.14 0.50 0.35 0.35 0.31 0.13 0.13 0.21 0.14 0.44 0.29 0.42 0.47 0.10 0.06 0.06 0.08

Recall 0.92 1.00 0.92 1.00 0.86 0.96 0.92 0.92 1.00 0.94 1.00 0.94 0.93 0.86 1.00 1.00 0.95 0.95 0.96 0.96
AMDSC 0.90 0.88 0.90 0.89 0.86 0.88 0.91 0.89 0.83 0.82 0.86 0.86 0.89 0.89 0.90 0.89 0.87 0.91 0.88 0.88

proposed
Precision 0.10 0.11 0.10 0.14 0.51 0.34 0.34 0.33 0.14 0.14 0.22 0.15 0.44 0.31 0.43 0.47 0.10 0.06 0.06 0.08

Recall 0.92 0.92 0.92 1.00 0.86 0.96 0.92 0.92 1.00 0.94 0.94 0.94 0.90 0.90 1.00 0.96 0.91 0.95 0.96 0.92
AMDSC 0.89 0.86 0.89 0.85 0.82 0.86 0.90 0.89 0.81 0.80 0.74 0.78 0.80 0.85 0.86 0.79 0.86 0.88 0.87 0.86

Table 17 – Mean of the three metrics evaluated for all blob extractors for the pipe experi-
ments in numerical values. Results are presented as x± y, where x is the mean
value of the metric over all images of the set and y is the standard deviation.

Image Set
pipe

dog
Precision 0.034±0.021

Recall 0.664±0.236
AMDSC 0.827±0.051

log
Precision 0.096±0.061

Recall 0.959±0.039
AMDSC 0.781±0.060

mser
Precision 0.154±0.093

Recall 0.945±0.053
AMDSC 0.841±0.041

ocv
Precision 0.001±0.005

Recall 0.005±0.017
AMDSC 0.588±0.112

p-algo
Precision 0.486±0.296

Recall 0.622±0.125
AMDSC 0.754±0.057

mll
Precision 0.224±0.151

Recall 0.949±0.044
AMDSC 0.880±0.024

proposed
Precision 0.228±0.153

Recall 0.936±0.036
AMDSC 0.843±0.044

Table 18 – Proposed pattern detector results for image set pipe in numerical values.
Image

0000 0001 0002 0003 0050 0051 0052 0053 0100 0101 0102 0103 0150 0151 0152 0153 0200 0201 0202 0203

proposed Precision 1.00 0.92 0.92 1.00 1.00 0.96 0.83 0.87 1.00 1.00 0.94 1.00 0.93 1.00 0.97 0.96 0.89 0.82 0.87 0.96
Recall 0.92 0.92 0.92 1.00 0.82 0.96 0.79 0.83 1.00 0.94 0.94 0.88 0.90 0.86 0.97 0.96 0.73 0.82 0.83 0.85
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APPENDIX B – FIGURES

This appendix groups supplementary figures that were subtracted from the main
body of the Thesis for a better readability.

0000 0001 0002 0003

0050 0051 0052 0053

0100 0101 0102 0103

0150 0151 0152 0153

0200 0201 0202 0203

Source: The author

Figure 82 – The hand-labeled ground-truth images of the pipe image set.
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0000 0030 0060 0105 0120

0150 0180 0210 0240 0270

0300 0330 0360 0390 0420

0450 0480 0520 0550 0580

Source: The author

Figure 83 – The input images of the distance image set.

0000 0030 0060 0105 0120

0150 0180 0210 0240 0270

0300 0330 0360 0390 0420

0450 0480 0520 0550 0580

Source: The author

Figure 84 – The hand-labeled ground-truth images of the distance image set.
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0000 0040 0080 0120 0160

0200 0240 0280 0320 0361

0400 0440 0480 0520 0560

0600 0640 0681 0717 0761

Source: The author

Figure 85 – The input images of the rotation image set.

0000 0040 0080 0120 0160

0200 0240 0280 0320 0361

0400 0440 0480 0520 0560

0600 0640 0681 0717 0761

Source: The author

Figure 86 – The hand-labeled ground-truth images of the rotation image set.
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0070 0088 0105 0122 0140

0163 0175 0210 0246 0262

0280 0315 0350 0385 0420

0456 0490 0525 0560 0595

Source: The author

Figure 87 – The input images of the obliquity image set.

0070 0088 0105 0122 0140

0163 0175 0210 0246 0262

0280 0315 0350 0385 0420

0456 0490 0525 0560 0595

Source: The author

Figure 88 – The hand-labeled ground-truth images of the obliquity image set.
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0019 0024 0031 0047 0067

0078 0130 0136 0142 0150

0157 0173 0189 0205 0221

0236 0252 0268 0284 0300

Source: The author

Figure 89 – The input images of the radial-distortion image set.

0019 0024 0031 0047 0067

0078 0130 0136 0142 0150

0157 0173 0189 0205 0221

0236 0252 0268 0284 0300

Source: The author

Figure 90 – The hand-labeled ground-truth images of the radial-distortion image set.
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0125 0168 0211 0255 0298

0342 0385 0428 0477 0515

0559 0602 0646 0689 0732

0750 0855 0879 0920 0950

Source: The author

Figure 91 – The input images of the uneven-contrast image set.

0125 0168 0211 0255 0298

0342 0385 0428 0477 0515

0559 0602 0646 0689 0732

0750 0855 0879 0920 0950

Source: The author

Figure 92 – The hand-labeled ground-truth images of the uneven-contrast image set.
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0002 0018 0038 0055 0077

0092 0116 0128 0155 0165

0194 0202 0233 0239 0257

0272 0276 0311 0313 0346

Source: The author

Figure 93 – The input images of the low-contrast image set.

0002 0018 0038 0055 0077

0092 0116 0128 0155 0165

0194 0202 0233 0239 0257

0272 0276 0311 0313 0346

Source: The author

Figure 94 – The hand-labeled ground-truth images of the low-contrast image set.
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