

Pós-Graduação em Ciência da Computação

JULIANA DANTAS RIBEIRO VIANA DE MEDEIROS

AN APPROACH TO SUPPORT THE REQUIREMENTS SPECIFICATION IN

AGILE SOFTWARE DEVELOPMENT

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE

2017

Juliana Dantas Ribeiro Viana de Medeiros

An Approach to Support the Requirements Specification in Agile

Software Development

Thesis presented to the Post-Graduate Program in

Computer Science of the Federal University of Per-

nambuco as partial fulfillment of the requirements

for the PhD Degree in Computer Science.

Advisor: Alexandre Marcos Lins de Vasconcelos

Co-Advisor: Carla Taciana Lima Lourenco Silva Schuenemann

Co-Advisor: Miguel Carlos Pacheco Afonso Goulão

RECIFE

2017

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

M488a Medeiros, Juliana Dantas Ribeiro Viana de

An approach to support the requirements specification in agile software
development / Juliana Dantas Ribeiro Viana de Medeiros. – 2017.

 180 f.:il., fig., tab.

 Orientador: Alexandre Marcos Lins de Vasconcelos.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2017.
 Inclui referências e apêndices.

 1. Engenharia de software. 2. Desenvolvimento de software. 3. Requisitos
de software. I. Vasconcelos, Alexandre Marcos Lins de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2017-149

Juliana Dantas Ribeiro Viana de Medeiros

An approach to support the Requirements Specification in Agile
Software Development

 Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Doutora em Ciência da

Computação

Aprovado em: 13/03/2017.

__
Orientador: Prof. Dr. Alexandre Marcos Lins de Vasconcelos

BANCA EXAMINADORA

__

Prof. Dr. Fabio Queda Bueno da Silva

Centro de Informática / UFPE

 __

Prof. Dr. Hermano Perrelli de Moura

Centro de Informática / UFPE

Prof. Dr. Sandro Ronaldo Bezerra Oliveira

Departamento de Informática / UFPI

Profa. Dra. Fernanda Maria Ribeiro de Alencar

Departamento de Eletrônica e Sistemas / UFPE

 Profa. Dra. Teresa Maria de Medeiros Maciel

Departamento de Estatística e Informática / UFRPE

To GOD

Acknowledgments

I thank God for giving me health and disposition to carry out this work.

Special thanks to my husband, José Medeiros, who has provided the most appropri-

ate environment for my professional growth.

To my children, Vitor, Gabriela, and Lucas, who had grown up living with my absence

when I needed to work and study.

To my parents and brothers, who have always been the resting place in times of diffi-

culty.

To Alexandre Vasconcelos and Carla Silva for the availability and guidance on how

to best conduct this work.

To Miguel Goulão and the BE Mundus program, for the opportunity to develop part of

the research at the New University of Lisbon, Faculty of Sciences and Technology

(FCT) in Portugal. And, to the new friends I made at the FCT who welcomed me with

great affection during the study period.

Thanks also for the availability of all participants of our research.

The Federal Institute of Education, Science and Technology of Paraíba (IFPB), the

teachers and co-workers, who contributed to carrying out this research.

To my friends, who encouraged me throughout this project.

Abstract

Although Agile Software Development (ASD) has grown in recent years, research

evidence points out several limitations concerning its requirements engineering ac-

tivities. It was observed that an inadequate specification acts as a catalyst to others

problems, such as low productivity of the team and difficulty in maintaining software.

Improving the quality of Software Requirements Specifications (SRS) may help gain-

ing a competitive advantage in the software industry. The goal of this study is to in-

vestigate the phenomenon of the requirements specification activity in ASD, discuss

relevant findings of this phenomenon to industrial practice, and propose practices to

write a SRS targeted to development team. First, a Systematic Mapping (SM) study

was conducted to characterize the landscape of requirements engineering in ASD.

The thematic synthesis method was used to code and synthesize the data collected

from the primary studies selected. After that, some of the challenges pointed out in

the SM were investigated in more depth in six industrial case studies. Data collected

from documents, observations, and interviews with software engineers were triangu-

lated, analyzed, and synthesized using techniques of grounded theory and meta-

ethnography. The analysis and cross-synthesis of the case studies resulted in a

model that defines the simplicity and objectivity as essential quality factors of SRS in

ASD. The main factors that affect the quality are related to the customer-driven na-

ture that tends to leave the prolix SRS, hindering the understanding of the software

engineers, as they are, at the same time, insufficient to support coding, testing and

maintenance tasks. One approach was proposed to provide a SRS closer to the de-

velopment needs, addressing some of the quality factors of the model. Empirical

studies that evaluated the approach show that the design practices used in the pro-

posed approach have the potential to reduce the gap between the problem and the

solution domains, producing an objective SRS that is team-driven and closer to that

will be implemented.

Keywords: Agile Software Development. Software Requirements Specification. Em-

pirical Software Engineering.

Resumo

Embora o Desenvolvimento Ágil de Software (DAS) tenha crescido nos últimos anos,

estudos empíricos apontam vários problemas relacionados com as atividades de en-

genharia de requisitos. Observou-se que a especificação inadequada age como um

catalizador para outros problemas, como por exemplo, baixa produtividade da equi-

pe e dificuldades na manutenção do software. Melhorar a qualidade da Especifica-

ção de Requisitos de Software (ERS) pode ajudar a ganhar uma vantagem competi-

tiva na indústria de software. O objetivo deste estudo é investigar o fenômeno da

especificação de requisitos no DAS, discutir relevantes implicações desse fenômeno

para a indústria, e propor práticas para escrever ERS voltadas para a equipe de de-

senvolvimento. Primeiro, um Mapeamento Sistemático (MS) foi realizado para carac-

terizar o panorama da engenharia de requisitos no DAS. O método de síntese temá-

tica foi utilizado para codificar e sintetizar os dados coletados a partir dos estudos

primários selecionados. Em seguida, alguns dos desafios apontados no MS foram

investigados com mais profundidade em seis estudos de caso industriais. Os dados

coletados a partir de documentos, observações e entrevistas com engenheiros de

software foram triangulados, analisados e sintetizados usando técnicas de teoria

fundamentada e meta-etnografia. A análise e síntese cruzada dos estudos de caso

resultaram em um modelo de qualidade que define a simplicidade e objetividade

como fatores essenciais na ERS no DAS. Os principais fatores que afetam a quali-

dade estão relacionados à natureza orientada para o cliente que tende a deixar a

ERS prolixa, dificultando a compreensão do engenheiro de software, ao mesmo

tempo que é insuficiente para a codificação, testes e manutenção. Uma abordagem

foi proposta para fornecer uma especificação de requisitos mais próxima das neces-

sidades de desenvolvimento, atendendo alguns dos fatores de qualidade do modelo.

Os estudos empíricos que avaliaram a abordagem demonstram que as práticas de

design utilizadas pela abordagem tem o potencial de reduzir a distância entre o do-

mínio do problema e o da solução, produzindo uma ERS objetiva, voltada para o de-

senvolvedor, e próxima do que vai ser implementado.

Palavras-chave: Desenvolvimento Ágil de Software. Especificação de Requisitos de

Software. Engenharia de Software Empírica.

List of Figures

Figure 1.1 Some problems related to the requirements engineering in ASD 16

Figure 1.2 Research Steps .. 21

Figure 2.1 "Subway map" Agile Practices adapted from (Agile Alliance, 2016) 28

Figure 3.1 Systematic Mapping Steps ... 35

Figure 3.2 Primary studies selected by phase ... 37

Figure 4.1 Factors building example ... 48

Figure 4.2 Quality Factors of SRS in ASD – case 1 .. 53

Figure 4.3 Quality Factors of SRS in ASD – case 2 .. 57

Figure 4.4 Quality Factors of SRS in ASD – case 3 .. 61

Figure 4.5 Quality Factors of SRS in ASD – case 4 .. 64

Figure 4.6 Quality Factors of SRS in ASD – case 5 .. 66

Figure 4.7 Quality Factors of SRS in ASD – case 6 .. 69

Figure 5.1 Cross-case analysis and synthesis steps ... 71

Figure 5.2 Overview of SRS quality factors in case studies investigated 73

Figure 5.3 Model on quality of SRS in ASD ... 85

Figure 6.1: Quality Factors addressed by RSD approach 101

Figure 6.2: Metamodel of RSD approach .. 102

Figure 6.3: State Diagram of an AC+ .. 104

Figure 6.4: Practices of RSD approach in each sprint ... 105

Figure 6.5: Example of a Conceptual Model.. 107

Figure 6.6: Example of a Mockup .. 109

Figure 6.7: Example of an SRS using RSD approach ... 113

Figure 6.8 Related Works .. 116

Figure 7.1: Summary of the content evaluation by quality factor 127

Figure 7.2: Evaluation of RSD structure by quality factor .. 129

Figure 8.1: Timeline of publications ... 149

Figure A.1 Thematic synthesis process, adapted from Cruzes and Dyba (2011) 167

List of Tables

Table 1.1 – Research Questions x Research Steps .. 22

Table 1.2 – Methodological Classification of the Research 23

Table 2.1 – Differences between AC and AC+ .. 30

Table 2.2 – Relationship among some agile practices .. 30

Table 3.1 – Methodological Framework of the Systematic Mapping 35

Table 3.2 – Primary Studies versus approach for requirements elicitation 38

Table 3.3 – Primary Studies versus approach for requirements specification 39

Table 3.4 – Requirements engineering challenges in agile projects 40

Table 3.5 – Primary studies versus challenges of RE activities in ASD 41

Table 5.1 – Context of the companies ... 72

Table 5.2 – Quality factors by case studies ... 74

Table 5.3 – Examples of concepts translations ... 80

Table 5.4 – Quality factors by categories .. 82

Table 5.5 – Translation of Propositions ... 84

Table 5.6 – Compliance between factors (SM and Cross-case synthesis) 88

Table 6.1 – Acceptance Criteria+ Type ... 103

Table 6.2 – Summary of the practice MODELING CONCEPTS 108

Table 6.3 – Summary of the practice MODELING MOCKUPS................................ 110

Table 6.4 – Acceptance Criteria Examples ... 111

Table 6.5 – Summary of the practice SPECIFY THE AC+ 112

Table 7.1 – Data collected by source .. 123

Table 7.2 – Content evaluation of each RSD .. 127

Table 7.3 – Types of Non-Conformities (NC) .. 133

Table 7.4 – Excerpt of the most reused Acceptance Criteria+ 135

Table 7.5 – Evaluation of the RSD approach by quality factor – second evaluation 139

Table 7.6 – Context of the empirical studies that evaluated the RSD approach 141

Table 7.7 – How the teams evaluate the SRS produced using the RSD approach . 142

Table 7.8 – How the RSD approach affects the work of the teams 144

Table 8.1 – Publications of this research ... 149

Table A.1 – SM Protocol - Search terms, synonyms or related words 164

Table A.2 – SM Protocol - Inclusion and Exclusion Criteria 165

Table A.3 – SM Protocol - Questions for Quality Assessment................................. 166

Table A.4 – SM Protocol - Form for Data Collection .. 167

Table D.1 – Profile of the software engineers interviewed 174

Table D.2 – Translation strategies for first level concepts adapted from FRANÇA et

al. (2014) ... 175

Table D.3 – Translation strategies for propositions adapted from FRANÇA et al.

(2014) .. 175

List of Acronyms

AC Acceptance Criteria

AC+ Acceptance Criteria Plus (proposed by RSD approach)

API Application Programming Interface

ASD Agile Software Development

AT Acceptance Testing

ATDD Acceptance Test Driven Development

BDD Behavior Driven Development

CR Change Request

EFT Electronic Funds Transfer

MDD Model-Driven Development

NFR Non-Functional Requirements

NC Non-Conformities

PO Product Owner

PS Primary Studies

RAC Repository of Acceptance Criteria

RE Requirements Engineering

RQ Research Question

RSD Requirements Specification for Development

RUP Rational Unified Process

SM Systematic Mapping

SRS Software Requirements Specification

SRQ Specific Research Questions

TM Traceability Matrix

TDD Test-Driven Development

UFPE Universidade Federal de Pernambuco

US User Stories

XP Extreme Programming

Contents

1 INTRODUCTION ... 15

1.1 Motivation... 15
1.2 Goals and Research Questions ... 19
1.3 Research Methodology ... 19
1.4 The Structure of the Thesis .. 23

2 THEORETICAL BACKGROUND ... 24

2.1 Software Requirements Specification Quality ... 24
2.2 Agile Software Development .. 27
2.3 Design Practices ... 29
2.3.1 Acceptance Criteria+ .. 29
2.3.2 Conceptual Modeling .. 31
2.3.3 Prototyping the User Interface ... 32
2.4 Summary .. 33

3 LITERATURE REVIEW .. 34

3.1 Study Design ... 34
3.2 Procedures ... 35
3.3 Results.. 37
3.4 Threats to Validity ... 43
3.5 Lessons Learned ... 43
3.6 Summary .. 44

4 INVESTIGATION IN THE INDUSTRIAL PRACTICE ... 45

4.1 Design ... 45
4.1.1 The Sample .. 46
4.2 Procedures ... 46
4.2.1 Data Collection .. 46
4.2.2 Data Analysis in each case study .. 48
4.3 Results in each case study .. 49
4.3.1 Case Study 1 (a government public software organization) ... 49
4.3.2 Case Study 2 (a mature private organization) .. 53
4.3.3 Case Study 3 (A young institute of research and innovation).. 57
4.3.4 Case Study 4 (a micro software company) ... 61
4.3.5 Case Study 5 (A mature and very large software company) .. 64
4.3.6 Case Study 6 (A company whose core business is not software) 67
4.4 Summary .. 69

5 A MODEL ABOUT QUALITY OF SRS IN AGILE PROJECTS ... 70

5.1 Procedures for cross-case analysis and synthesis .. 70
5.2 Searching for cross-case patterns .. 71
5.2.1 Similarities between the studies .. 72
5.2.2 Explaining the differences between the studies .. 75
5.3 Translate the concepts ... 79
5.3.1 Identifying the constructs .. 80
5.3.2 Outcomes ... 83

5.4 Translate the propositions ... 83
5.5 Building the model .. 85
5.6 Enfolding Literature .. 87
5.6.1 Systematic Mapping .. 88
5.6.2 Agile Practices ... 90
5.6.3 Traditional Development .. 91
5.6.4 Related Works ... 94
5.7 Findings.. 95
5.8 Threats to Validity ... 96
5.8.1 Internal.……………………………………………………………………………………………… 96
5.8.2 Reliability.. 97
5.8.3 External Validity .. 97
5.9 Summary .. 98

6 AN APPROACH TO SPECIFY REQUIREMENTS IN ASD .. 99

6.1 Derivation of the RSD approach .. 99
6.2 MetaModel .. 102
6.3 Systematizing the use of Design Practices .. 104
6.3.1 Modeling Concepts ... 106
6.3.2 Modeling Mockups .. 108
6.3.3 Specifying the Acceptance Criteria+ ... 110
6.4 Structure of RSD ... 112
6.5 Extensions ... 114
6.6 Related Works ... 115
6.7 Summary .. 118

7 EVALUATIONS ... 120

7.1 The evaluation method ... 120
7.2 Design and Preparation .. 121
7.2.1 The Sample .. 122
7.2.2 Preparation .. 122
7.3 Procedure for collecting and analyzing data.. 123
7.3.1 Observations ... 123
7.3.2 Documents ... 124
7.3.3 Interviews ... 124
7.4 Results.. 125
7.4.1 First Evaluation ... 125
7.4.2 Second Evaluation .. 136
7.5 Discussions ... 141
7.6 Threats to Validity ... 144
7.7 Summary .. 145

8 CONCLUSIONS .. 147

8.1 Review of the contributions ... 147
8.2 Limitations ... 150
8.3 Future Works ... 151
8.4 Opportunities for new researches ... 152

 REFERENCES .. 154

 APPENDICES ... 163

 Appendix A - Systematic Mapping Protocol .. 163
 Appendix B - Selected Primary Studies ... 168
 Appendix C - Interview Guide to investigate the phenomenon in practice 170
 Appendix D - Cross-case analysis and synthesis ... 174
 Appendix E - Interview Guide to evaluate the RSD approach .. 176

15

1

INTRODUCTION

This introductory chapter discusses some aspects that characterize and justify

the research conducted in this thesis. Firstly, Section 1.1 presents a motivation for

this research, highlighting some problems related to the Requirements Engineering

(RE) in Agile Software Development (ASD). The statement of the goals, sub-goals

and research questions are presented in Section 1.2. Section 1.3 describes the

methodological classification of the research and the steps used to achieve the ob-

jectives of the thesis. A summary of the thesis structure is presented in Section 1.4.

1.1 Motivation

According to Thayer and Dorfman (1997), Requirements Engineering (RE)

provides the appropriate mechanism to understand what the customer wants, analyz-

ing the needs, verifying the feasibility, negotiating solutions, specifying and managing

their changes.

The quality of the Software Requirements Specification (SRS) has been rec-

ognized as an important condition to gain a competitive advantage in the software

industry (SAITO et al., 2013). SRS is a structured collection of software requirements

(functions, performance, design constraints, and attributes) and its external interfaces

(ISO-IEEE 830, 1998).

The adoption of agile methods to develop software has emerged as an alter-

native to traditional development. Agile methods treat the RE very differently from

traditional methods (HEIKKILA et al., 2015). An Agile Software Development (ASD)

begins with only a general overview of the problem without further details. Require-

ments understanding is done throughout the project, in an iterative and incremental

 16

way based on customer feedback. This suggests that the notion of quality of SRS in

ASD is different from the notion of quality in the traditional development (HECK and

ZAIDMAN, 2014). Despite the importance of RE in the success of software develop-

ment, RE is seen in agile methods as bureaucratic, that makes the process less agile

(PAETSCH et al., 2003). One of the values defined in the Agile Manifesto (2001)

supports “working software over comprehensive documentation”.

A survey conducted by VersionOne (2015), involving about 4000 people,

shows that 45% of respondents use agile methods in most projects. However, empir-

ical studies conducted in the industry point out several problems related to require-

ments engineering in ASD (HEIKKILA et al., 2015; DANEVA et al., 2013; READ and

BRIGGS, 2012), such as low availability of the customer, poor quality of SRS, inade-

quate management and prioritization of the requirements, among others, as shown in

Figure 1.1.

Figure 1.1 Some problems related to the requirements engineering in ASD

The scope of this research focus on investigating and proposing contributions

to the problems related to the quality of SRS in the context of the ASD. Although the

Agile Manifesto (2001) recommends validating requirements through frequent soft-

ware releases, in current agile approaches, the SRS continues to be written in a lan-

guage intended for the customer, instead of being directed to the software engineers.

Besides compromising team productivity, an inadequate requirements specification

acts as a catalyst for others problems, often overshadowed, but that have a very

large impact on the failure of projects, as shown below:

• No scalable architecture: in ASD the understanding of customer

needs is obtained incrementally, from frequent deliveries and valida-

 17

tions with the user. However, the design activity is neglected in the re-

quirements specification (HECK and ZAIDMAN, 2016), producing a

complex and fragmented architecture that hinders its scalability

(RUDOFER et al., 2012; BJARNASON et al., 2012);

• Difficulty in maintaining software: one of the agile values is that

teams respond quickly to changes (AGILE MANIFESTO, 2001), how-

ever some studies point challenges related to the software maintenance

in ASD (BATOOL et al., 2013; HAUGSET and STALHANE, 2012). In

fact, some changes are easily incorporated, such as changing the posi-

tion of a field on the screen, removing a validation rule or creating a

new report. However, there are client requests that imply structural

changes. In such cases, the response to requests is not so fast, espe-

cially if the documentation is inadequate. Sometimes, it is not worth to

refactor the existing code. It is better to implement all the code again;

• Difficulty in knowledge sharing when turnover: software develop-

ment companies have one of the largest professional turnover rates

(TECHREPUBLIC, 2015). The departure of some staff person can lead

to loose important knowledge if information such as business rules, da-

ta model, and architecture are only in the minds of these people. The

entry of new people in the team requires that some people interrupt

their activities to pass on knowledge to the new members.

Recent studies show that the SRS in ASD is considered superficial, insufficient

and inadequate to be implemented (HEIKKILA et al., 2015; HECK and ZAIDMAN,

2016). User stories (US) are a widely adopted requirements notation in agile software

development. Yet, user stories are too often poorly written in practice and exhibit in-

herent quality defects (LUCASSEN et al., 2016). Developers consider that the SRS

based on user stories are brief, vague, ambiguous and insufficient for capturing the

complexities of the up-front design (ABDULLAH et al., 2011; READ and BRIGGS,

2012). US are written in the language of the problem domain and its format leads to a

high level description of the software requirements, targeting the customer. User sto-

ries lack the power of expression to describe design requirements (HEIKKILA et al.,

2015).

 18

The existing gap between the specifications of the customer’s needs and the

details required to produce the solution is a challenge that jeopardizes the develop-

ment process in agile projects (RUDORFER et al., 2012). Agile projects are those

guided by the values and principles of the agile manifesto (AGILE MANIFESTO,

2001).

Only simple, customer visible functional requirements can be described as

basic user stories. When the software system is large and complex or hardware-

dependent, user stories do not convey enough information for software design, and

separate system and subsystem requirements are required (HEIKKILA et al., 2015).

The focus on functional requirements often leads to overlooking design information

such as technical and validation constraints, making their development harder at later

stage (HAUGSET and STALHANE, 2014). Even with the continuous presence of the

client during the software development, the design information cannot be gathered

because the client is not capable of perceiving it.

Story cards are extensions of user stories and it is also being used to specify

requirements in agile projects. A story card is like an iceberg: what you see is only a

small part of what you will get (NAWROCKI et al., 2002). Sharp et al. (2009) consider

that story cards have an incomplete and partial view of the requirements, which

hampers the development from them. Use cases and scenarios (JACOBSON et al.,

1992) are used less frequently in agile projects. However, they also have limitations

to describe technical aspects and are difficult to interpret (THOMSON et al., 2008).

Use cases permit a complete cataloguing of user tasks for different classes of users

but say little or nothing about how these tasks are presented to the user or how they

should be prioritized in the interface (LOSADA et al., 2013).

The research about the requirements specification activity has been devel-

oped for more than 20 years and has produced important knowledge. However, the

vast majority of the previous studies were not conducted in the context of ASD. Lucia

and Abdallah (2010) discusses some problems related to the requirements activities

in ASD. However, the assumptions are not based on empirical studies. Heck and

Zaidman (2014) and Lucassen et al. (2016) describe some criteria that should be

considered in the SRS in ASD, but their goal was only to evaluate the final quality of

SRS. Results of these studies lack explanatory power because they do not analyze

the factors that affect the quality of SRS and neither the relationship between them.

 19

1.2 Goals and Research Questions

Considering the challenges related to the phenomenon of the requirements

specification activity in ASD, the goal of this thesis is

to propose practices to provide a SRS with information tar-

geted to the development team supporting the agile software

development.

The sub-goals are as follows:

• Investigating in the literature how the requirements engineering has

been conducted in projects that adopt agile methods;

• Investigating the phenomenon in different agile contexts in the industry;

• Building an explanatory model from the industry investigation providing

a deeper description about the factors that should be considered to

write more useful SRS in agile projects;

• From the results of the investigations, proposing practices to provide a

SRS containing design information targeted to development team in

ASD;

• Evaluating how the proposed practices work in real projects.

The Research Questions (RQ) that guide this study are the following:

• RQ1: How the requirements engineering has been conducted in pro-

jects that adopt agile methods?

• RQ2: What factors affect the quality of SRS in ASD and how these fac-

tors affect the work of the software engineers?

• RQ3: How to produce an SRS with a single integrated view of the re-

quirements and design information directed to the development team in

ASD?

1.3 Research Methodology

The general purpose of this research is to pursue answers for questions that

are, in its essence, exploratory. Exploratory questions are designed to gain deeper

knowledge about some phenomenon, and discuss useful issues that help to clarify

 20

the understanding of that phenomenon (EASTERBROOK et al., 2008). The phenom-

enon in question is the requirements specification activity in ASD.

The philosophical stance chosen for the study affects the methods that should

be used to answer the research questions and what can be accepted as truth. In this

research, the constructivist stance was chosen which “concentrates less on verifying

theories, and more on understanding how different people make sense of the world,

and how they assign meaning to actions” (EASTERBROOK et al., 2008). In such

studies, scientific knowledge is attached to the context from where it was created.

Constructivists prefer methods that collect rich qualitative data about human activi-

ties.

A mixed method research strategy was used in order to investigate the phe-

nomenon in the literature and industrial practice and build a rich description about it.

First, a systematic mapping (SM) was conducted, and then a cross-case analysis

was performed from data collected from six software organizations. Case studies

were chosen as the research method because they offer the opportunity to obtain a

thorough understanding of how and why the phenomena occur in practice. We set

out from the principle that finding out how to solve a problem cannot be separated

from the human context. Accordingly, we use a qualitative approach.

Qualitative research methods, such as case studies, offer rich data, and tend

to be well-suited for our purposes. They help researchers building tentative theories

(EASTERBROOK et al., 2008; YIN, 2009; MERRIAM, 2009). According to Marconi

and Lakatos (2008), qualitative research is concerned to analyze and interpret the

deeper aspects, describing the complexity of human behavior by providing more de-

tailed analysis of the investigations, habits, attitudes and behavioral tendencies.

Qualitative researchers study phenomena in their natural settings, attempting to

make sense of, or interpret, phenomena regarding the meanings people bring to

them (MERRIAN, 2009).

To carry out the research, we opted to an inductive approach. An inductive

approach is a mental process that departs from particular data, sufficiently observed,

and infers a general truth or universal, not contained in the examined parts

(MARCONI and LAKATOS, 2003). In the inductive process, the researchers gather

data to build concepts, hypotheses, or theories rather than deductively testing hy-

potheses as in positivist stance. The induction is performed in three steps (MARCONI

and LAKATOS, 2003):

 21

• Observation of the phenomenon - observe and analyze, in order to
discover the causes of their manifestation;

• Discovery of the relationship between facts - compare and collate
the facts to discover the constant relationship between them;

• Generalization of the relationship - generalizing the relationship
found between similar facts and phenomena.

This research is broadly based on empirical software engineering methods

and guidelines. Empirical Software Engineering is a research paradigm that makes

use of well-proven research methods to plan and carry out investigations, enhancing

their scientific nature. Empirical research explores, describes, predicts, and explains

natural, social, or cognitive phenomena by using scientific methods and evidence-

based experience (SJOBERG et al., 2007). Evidence is any observable event that

tends to establish or disprove a fact (KITCHENHAM et al., 2005). This research was

conducted following the steps as shown in Figure 1.2

Figure 1.2 Research Steps

• Step 1- Investigating of the phenomenon in the literature: first, a

Systematic Mapping (SM) was conducted to investigate the require-

ments engineering in ASD. Primary studies were selected, analyzed

and synthesized to provide a comprehensive and updated view of the

state of the art on this subject, as well as to identify research gaps;

 22

• Step 2- Investigating of the phenomenon in the industrial practice:

the results of the SM pointed out gaps related to the management, veri-

fication, validation and specification of the requirements. This step

aimed at investigating in practice the gaps related to the requirements

specification activity in ASD. So, six industrial case studies were con-

ducted to understand and explain the phenomenon;

• Step 3- Building a model: A model was built from the cross-case syn-

thesis of the six companies, providing a deeper understanding of the

quality of SRS in ASD, and pointing out some implications for the indus-

try and research;

• Step 4 - Proposing an approach: based on the findings of investiga-

tions carried out in the literature and industry, we developed an ap-

proach that is a set of practices to specify requirements in agile projects

targeted to development team. The approach was named as RSD (Re-

quirements Specification for Developer) and it is the main contribution

of this research;

• Step 5: Evaluation: we conducted two empirical studies to evaluate in

practice the use of the proposed approach. Two case studies investi-

gated the perception of the software engineers concerning the content

and structure of RSD, the effort required to specify and implement using

the RSD approach and the difficulties found.

Table 1.1 shows in which steps the research questions (defined in Section 1.1)

will be addressed.

Table 1.1 – Research Questions x Research Steps
 Steps
Research Question 1 2 3 4 5
RQ1 X
RQ2 X X X
RQ3 X X

The thematic synthesis (CRUZES and DYBA, 2011) method was used to ana-

lyze and synthesize the data collected from the primary studies in the systematic

mapping. For the investigation in the industry, the interviews were transcribed, and

then techniques of ground theory (SJØBERG et al., 2008) proposed by the constant

comparison method (SEAMAN, 2008) was used to code, categorize and synthesize

 23

the data in each study. Meta-ethnography procedures were used to translate con-

cepts and propositions during the cross-case synthesis (NOBLIT and HARE, 1988).

Each step is described in a specific chapter of this thesis. The methods and proce-

dures used in each step are detailed in the respective chapters. Table 1.2 shows the

methodological classification of this research.

Table 1.2 – Methodological Classification of the Research
Questions Type Exploratory
Philosophical Stance Constructivist
Data analysis Qualitative
Approach Inductive
Research Method Systematic Mapping and Case Studies
Synthesis Method Thematic Synthesis, Grounded Theory, Meta-ethnography

1.4 The Structure of the Thesis

We organize the remainder of this work as follows:

• Chapter 2 reviews essential concepts used throughout this research;

• Chapter 3 presents the summary of the protocol, procedures and results of

the systematic mapping that investigated in the literature how the require-

ments engineering has been conducted in ASD;

• Chapter 4 carefully explains the six industrial case studies performed in order

to investigate in practice the phenomenon of the requirements specification

activity in ASD. The research method, data collection and analysis procedures

are described, as well as the context and the findings of each case study;

• Chapter 5 reports the steps to conduct the cross-case analysis and synthesis,

as well as the resulting model from this analysis. The model is compared

against similar and conflicting evidence from the studies available in the litera-

ture, enfolding the experience provided by them;

• Chapter 6 carefully describes the metamodel and practices of the approach

proposed to specify requirements in ASD. Also, compares the approach with

some related works;

• Chapter 7 describes the research design, procedures, results and threats to

validity of two empirical studies performed to evaluate the proposed approach;

• Chapter 8 presents the concluding remarks, reviews the contributions of this

research, details future works and enumerates suggestions for new research-

es.

 24

2

THEORETICAL BACKGROUND

This chapter presents the theoretical background on which this research is

based. The quality of Software Requirements Specification (SRS) is discussed in

Section 2.1. Section 2.2 presents the essential concepts about Agile Software Devel-

opment (ASD). Finally, Section 2.3 discusses some design practices.

2.1 Software Requirements Specification Quality

One of the most cited reasons for failure in software projects is poor require-

ments gathering techniques (KASSAB, 2015). According to SAITO (2013), the suc-

cessful development of software depends on the quality of SRS. The SRS may con-

tribute to the sharing of knowledge among stakeholders and in distributed projects.

Also, it can reduce the loss of knowledge when a stakeholder becomes unavailable,

thereby facilitating software maintenance in the future. In large teams, it might be bet-

ter to have an appropriate SRS instead of explaining the same thing many times to

different people (PAETSCH, 2003).

The quality of SRS is a widely discussed concept in the literature. An explora-

tory study of various models for SRS quality evaluation is presented in (SAAVEDRA,

2013), which analyzes in detail the nine most referenced models in the literature. All

these nine models are based on the standard ISO-IEEE 830 (1998) that is the stand-

ard body of work on this subject, defining a set of eight quality characteristics for a

good SRS:

• Correct: A SRS is correct if, and only if, every requirement stated there-

in is one that the software shall meet;

 25

• Unambiguous: A SRS is unambiguous if, and only if, every require-

ment stated therein has only one interpretation;

• Complete: The SRS needs no further amplification because it is meas-

urable and sufficiently describes the capability and characteristics to

meet the stakeholder’s need;

• Consistent: It refers to internal consistency. If an SRS does not agree

with some higher-level document, such as a system requirements spec-

ification, then it is not correct;

• Ranked for importance and stability: A SRS is ranked for importance

and/or stability if each requirement in it has an identifier to indicate ei-

ther the importance or stability of that particular requirement;

• Verifiable: A SRS is verifiable if, and only if, every requirement stated

therein is verifiable. A requirement is verifiable if, and only if, there ex-

ists some finite cost-effective process with which a person or machine

can check that the software product meets the requirement;

• Modifiable: A SRS is modifiable if, and only if, its structure and style

are such that any changes to the requirements can be made easily,

completely, and consistently while retaining the structure and style;

• Traceable: A SRS is traceable if the origin of each of its requirements is

clear and if it facilitates the referencing of each requirement in future

development or enhancement documentation.

In 2011, the ISO-IEEE 830 (1998) was replaced by the standard ISO-IEEE

29148 (2011), which introduces feasibility, necessity, free of implementation, and

singularity as new characteristics for requirements while removing prioritization

(ranked for importance), correctness, and modifiability:

• Feasible: The requirement is technically achievable, does not require

major technology advances, and fits within system constraints (e.g.,

cost, schedule, technical, legal, regulatory) with acceptable risk;

• Necessary: The requirement defines an essential capability, character-

istic, constraint, and/or quality factor. If it is removed or deleted, a defi-

ciency will exist, which cannot be fulfilled by other capabilities of the

product or process;

 26

• Implementation Free: Avoid placing unnecessary constraints on the

architectural design. The objective is to be implementation-

independent. The SRS states what is required, not how the requirement

should be met;

• Singular: The requirement statement includes only one requirement

with no use of conjunctions.

Furthermore, the new standard distinguishes between individual and a set of

requirements. A set of requirements shall be complete, consistent, affordable, and

bounded, as follows. These can be fulfilled by satisfying the individual ones.

• Complete: The set of requirements needs no further amplification be-

cause it contains everything pertinent to the definition of the system or

system element being specified;

• Consistent: The set of requirements does not have individual require-

ments which are contradictory. Requirements are not duplicated. The

same term is used for the same item in all requirements;

• Affordable: The complete set of requirements can be satisfied by a so-

lution that is obtainable/feasible within life cycle constraints (e.g., cost,

schedule, technical, legal, regulatory);

• Bounded: The set of requirements maintains the identified scope for

the intended solution without increasing beyond what is needed to sat-

isfy user needs.

According to Lucassen (2016), unfortunately, most requirements specifications

are unable to adhere to ISO-IEEE 29148 (2011) in practice, although evidence

shows a correlation between high-quality requirements and project success. These

quality attributes of ISO-IEEE are widely used in the traditional development. The

novelty of our study is to investigate how these attributes work in ASD and identify

what other factors affect the quality of SRS in ASD.

The characteristics whose absence or presence denote quality are completely

dependent upon the situation surrounding each product (BROWN, 1997). In essence,

quality is relative. Our research investigated the quality concept of SRS in the context

of the ASD.

 27

2.2 Agile Software Development

In 2001, the publication of the Agile Manifesto (2001) was a milestone for Agile

Software Development (ASD). A group of 17 experts proposed practices to improve

software development by defining values and principles to guide the agile methods.

They considered that traditional approaches were heavy and made the development

process very bureaucratic. In this context, the adoption of agile methods has

emerged as an alternative to traditional models (VERSIONE, 2016). The Agile Mani-

festo establishes four values (AGILE MANIFESTO, 2001):

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation;
• Responding to change over following a plan.

The Agile Manifesto proposes the adoption of flexible and adaptive processes

to accept the changes as an inseparable part of its development process. A set of 12

agile principles were defined and should be followed to minimize the risks caused by

the frequent changes in requirements (AGILE MANIFESTO, 2001):

• Our highest priority is to satisfy the customer through early and continu-
ous delivery of valuable software;

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer's competitive advantage;

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale;

• Business people and developers must work together daily throughout
the project;

• Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done;

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation;

• Working software is the primary measure of progress;
• Agile processes promote sustainable development. The sponsors, de-

velopers, and users should be able to maintain a constant pace indefi-
nitely;

• Continuous attention to technical excellence and good design enhances
agility;

• Simplicity is the art of maximizing the amount of work not done;
• The best architectures, requirements, and designs emerge from self-

organizing teams;

 28

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Based on the principles and values of the Agile Manifesto, several methods

have been proposed, such as Adaptive Software Development (ASD), Crystal, Dy-

namic Systems Method (DSDM1), eXtreme Programming-XP (BECK, 1999), Feature

Driven Development (FDD2), Lean Development (LD) and Scrum (SCHWABER,

2001). Several practices have been proposed for use in ASD as shown in Figure 2.1.

Figure 2.1 "Subway map" Agile Practices adapted from (Agile Alliance, 2016)

The approach proposed (RSD) in this thesis follows some agile practices,

such as the fundamental practices (gray line): Iterative Development and Incremental

Development. RSD approach (described in Chapter 6) uses two eXtreme Program-

ming practices (blue line): Iterations and Frequent Releases, and also uses the

Backlog concept of Lean (salmon line). Besides, RSD approach introduces three de-

sign practices (purple line): Conceptual Modeling, Mockups, and Acceptance Criteria.

This latter adds the definition of technical aspects together with some of the concepts

of the testing practices like Behavior Driven Development (BDD), Acceptance Test

Driven Development (ATDD) and Acceptance Testing (AT) (AGILE ALLIANCE,

1 https://www.dsdm.org/
2 http://agilemodeling.com/essays/fdd.htm

 29

2016). In next section, we present a brief description of the design practices used by

the RSD approach.

2.3 Design Practices

In the scope of this work, design information is related to the solution domain

and therefore focuses on describing how functional, non-functional and system re-

quirements should be implemented.

An SRS closer to what is implemented may reduce the effort required to cod-

ing, testing and maintaining (BJARNASON et al., 2011). The existing gap between

the specifications of the customer’s needs and the details required to produce the

solution is a challenge that compromises the ASD (RUDORFER et al., 2012). Ac-

cording to Heikkila et al. (2015), the design information is neglected in SRS in ASD.

Agile methods tend to focus on functional requirements. Technical aspects are over-

looked in the early phases and have no detailed design. This makes it harder to im-

plement it later in the process (HAUGSET and STALHANE, 2012). The design prac-

tices help to bridge the gap between the problem and the solution domains, providing

a better understanding for the developer who will implement a feature.

2.3.1 Acceptance Criteria+

The Test-Driven Development (TDD) is an agile practice that has been grow-

ing in companies, and it refers to a style of programming in which 3 activities are

tightly interwoven: coding, testing (in the form of writing unit tests) and design (in the

form of refactoring) (ALLIANCE, 2016). According to Beck (2002), test-first coding is

not new. It is nearly as old as programming. It is an analysis and design technique.

RSD approach adopts the Acceptance Criteria (AC) used in User Stories (US).

AC is based on the concept of the Acceptance Tests (AT) introduced in XP (BECK,

1999), which defines constraints for the US. Since we have changed some original

concepts from AC, we defined the AC+ notation with the aim to distinguish it from the

AC. AC+ is an atomic statement that defines any need or constraint on the operation

of the system. As with AC, an AC+ is generally understood to have a binary result:

pass or fail, in which a failure suggests the presence of a defect. However, the AC+

has some differences regarding the AC as show in Table 2.1.

 30

Table 2.1 – Differences between AC and AC+
 AC AC+

Link Specific to a single user story
(WHICHARD, 2016); Can be reused by several requirements;

Scope Focus on constraints related to the busi-
ness rules (BECK, 1999);

Can be a business rule, interface, validation,
technical or any other type of constraint;

Oriented
to

Directed to the customer and described
at high level, without much detail to de-
veloper (MAMOLI, 2016);

Directed to developer and technical jargon
can be used;

Writer Should be written by customers (BECK,
1999); Any stakeholder;

Domain Problem (POVILAITIS, 2016). Problem and solution.

Like TDD, Acceptance Test Driven Development (ATDD) also involves creat-

ing tests before coding, and these tests represent expected behavior of the software.

In ATDD, the team creates one or more acceptance-level tests for a feature before

implementing it. Typically these tests are discussed and captured when the team col-

laborates with the business stakeholder(s) to understand a story in the backlog.

ATDD changes the purpose of testing by creating concrete examples of business

rules for clarifying and documenting requirements.

Behavior Driven Development (BDD) is a synthesis and refinement of practic-

es stemming from TDD and ATDD (AGILE ALLIANCE, 2016). BDD focuses on the

behavioral aspect while the TDD focuses on the implementation aspect. BDD is usu-

ally done in the language of the domain experts to facilitate understanding rather

than exposing the code level tests. It’s defined in a GIVEN, WHEN & THEN format in

order to structure the test definition.

AC+ uses concrete examples as a strategy to clarify the understanding of

complex rules, like ATDD and BDD. However, AC+ uses a language aimed at the

developer and also includes NFR and technical aspects, and not only functional re-

quirements as ATDD and BDD. Table 2.2 illustrates the relationship among the AC+

and others agile practices.

Table 2.2 – Relationship among some agile practices
Agile Practices

TDD AT ATDD
GIVEN
THAN
THAT

BDD
AC
+

Scope
Coding of Acceptance Tests
(Programming Language) X X

Acceptance testes for Functional Requirements
(Customer-oriented) X X X X

Concrete Examples X X X
Structuration of Acceptance Tests X X
Acceptance testes for NFR and technical as-
pects (team-oriented) X

 31

2.3.2 Conceptual Modeling

Traditionally an information system is defined regarding two perspectives: one

related to its function and the other to its structure (HIRSCHHEIM, 1995). The func-

tional perspective of a system results in a high-level description of the system's func-

tionality from a user's point of view. From a structural perspective, a system is de-

picted regarding entities, static relationships, and constraints. Conceptual modeling is

the systematic activity of describing some aspects of the physical and social world

around for purposes of understanding and communication (LOUCOPOULOS, 1992).

According to Olivé (2007), conceptual models are needed to achieve a common un-

derstanding of the system domain among all stakeholders.

Although the Conceptual Modeling is an established practice in traditional ap-

proaches, it is not systematically used in popular agile methods, such as scrum

(SCHWABER, 2001) and XP (BECK, 1999). The requirements approaches employed

in ASD, such as US, focus on functional modeling. There is no concern in defining

the conceptual model in a systematic way together with US. Sometimes, the data en-

tities are generated from the classes defined in the source code. It may end up creat-

ing an unstable data model. An inadequate conceptual model can hinder the inclu-

sion of new features, the incorporation of changes and the provision of data for busi-

ness intelligence systems. Some changes in the conceptual model have an enor-

mous impact on code. Hence the importance of dedicating time to design the con-

ceptual model. The identification of the concepts (actors) and information on the pro-

file of each actor is proposed in Cohn (2004). However, it does not treat other con-

cepts involved in the business domain and not address the relationship between the-

se actors, it treats only actors.

The conceptual modeling is not part of the agile methods, an exception can be

found in FDD which is an agile method where the functional requirements are de-

scribed by features, sequence diagrams, and the conceptual modeling is used

through an object model that evolves into a class model with attributes and opera-

tions. However, FDD treats only functional requirements. NFR and other system re-

quirements are not addressed.

The approach proposed in this thesis links the functional and structural per-

spectives in order to have a single view. The acceptance criteria (AC+) define func-

tional requirements, non-functional and technical aspects under the developer's point

 32

of view. The structural perspective is obtained from the representation of concepts

(entities) and their relationships without defining operations. The prototype of the us-

er interface, where applicable, interconnects the other two perspectives.

2.3.3 Prototyping the User Interface

User interface prototypes (also known as mockups or wireframes) are draw-

ings that show how the user interface of the software is supposed to look during the

interaction between that software and the end-user. Mockups may be very simple,

just to help the presentation of the user-system interactions, or more detailed with

rich graphics, whenever specific constraints on the graphical user interface are high-

lighted, e.g., specific logos or branding related colors (RICCA, 2014). Although many

tools3 exist for drawing screen mockups, several professionals prefer to sketch

screen mockups on paper.

Mockups have proven an efficient practice to capture and defining functional

requirements (INAYAT, 2015; RICCA, 2014). Mockups improve requirements gather-

ing, without implying an additional effort in the process. One of their advantages is

that they are technically valuable for developers and, at the same time, fully under-

standable by end-users (RIVERO, 2014).

Many agile projects require user interaction design, but the integration of

mockups into ASD is not well understood (NEBE, 2016). The popular agile methods

do not use mockups as part of their process, an exception can be found in DSDM

that is also one of the agile methods whose authors contributed to the definition of

the Agile Manifesto (2001). DSDM is considered the heaviest agile method because

it uses thirteen roles and establishes 14 artifacts to be produced during the develop-

ment process. Hence its adoption in the industry has been very low compared to oth-

er methods such as Scrum and XP (VERSIONE, 2016). So, the companies need to

adapt their processes to integrate the mockups in ASD.

The technique proposed in this thesis uses mockups in order to interconnect

the acceptance criteria (AC+) and conceptual models, and thus facilitate the under-

standing of the developers.

3 http://www.creativebloq.com/wireframes/top-wireframing-tools-11121302

 33

2.4 Summary

In this chapter, essential concepts about the quality of SRS and some practic-

es used in ASD were reviewed, such as AT, TDD, ATDD and BDD. The concept of

AC+ based in these practices was introduced.

The benefits of design practices consolidated in traditional development, such

as conceptual modeling and mockups, were discussed in the context of ASD. Next

chapter presents the study conducted in the literature to investigate these concepts

and the phenomenon of the requirements specification activity in ASD in order to

identify the initial theoretical background of this thesis.

 34

3

LITERATURE REVIEW

This chapter describes the Systematic Mapping (SM) that investigated in the

literature how the requirements engineering has been conducted in agile projects.

First, in Section 3.1, the study design is described. Section 3.2 presents a summary

of the research protocol describing the procedures used to select, collect, and ana-

lyze data. Section 3.3 presents and discusses a summary of the results. Finally, Sec-

tion 3.4 presents the threats do validity of the SM.

3.1 Study Design

The SM was conducted to investigate how RE is used in projects that adopt

agile methods. This exploratory study aimed identifies the RE approaches that were

being running in ASD, as well as the problems and challenges related. The scope of

the study focused on primary research papers describing work validated empirically.

The relevant studies identified were analyzed and interpreted to answer the research

questions defined in Section 3.2.

This study followed the guidelines suggested by Kitchenham and Charters

(2007), and Travassos and Biolchini (2007) to leave the results more reliable, audita-

ble and able to be replicated by other researchers. The procedure method defined for

this study was the thematic synthesis (CRUZES and Dyba, 2011), which aims to

identify the themes or recurrent matters in several studies. Moreover, the method de-

fines procedures to interpret, explain and draw conclusions from review results as

described in Appendix A (Section 5.6).

According to Marconi and Lakatos (2008), the variables of a study can be con-

sidered independent or dependent. The independent determine the condition or

cause for a result, affecting or determining the dependent variables. In this study, the

 35

independent variables are requirements engineering and agile methods. The de-

pendent variables are approaches for the elicitation and specification of the require-

ments and the challenges of the requirements engineering in ASD. The methodologi-

cal framework of the SM is shown in Table 3.1.

Table 3.1 – Methodological Framework of the Systematic Mapping

Approach Method Inductive
Analysis Qualitative
Procedure Method Synthesis thematic
Independent variables (X) Requirements engineering and Agile methods

Dependent variables (Y) Approaches for the elicitation and specification of the requirements
and the challenges of the requirements engineering in ASD

3.2 Procedures

The SM was conducted in seven phases as shown in Figure 3.1, also had the

participation of two other researchers (master students) during all the process. A

summary of the procedures executed is described in this section. The search string

and the complete research protocol can be found in Appendix A. The main results of

the analysis and synthesis are detailed in Section 3.3. All procedures executed and

the complete results are described in Medeiros et al. (2015) and Alves (2015).

Figure 3.1 Systematic Mapping Steps

At the planning stage, the research protocol was developed describing the re-

search questions, procedures, and methods used to perform the study. The SM

seeks answers to RQ1 defined in Section 1.2: How the requirements engineering has

been conducted in projects that adopt agile methods?. Specific Research Questions

(SRQ) were defined to guide the extraction, analysis and synthesis:

 36

• SRQ1: What approaches are being used to elicit requirements in pro-
jects that adopt agile methods?

• SRQ2: What approaches are being used to specify requirements in
projects that adopt agile methods?

• SRQ3: What are the challenges and limitations regarding the require-
ments engineering activities in agile projects?

• SRQ4: What are the implications for the software industry and acade-
my arising from requirements practices currently used in agile projects?

The automated search was conducted through the Reviewer4 tool that execut-

ed the string search simultaneously in all the sources (IEEE Xplore Library, ACM Li-

brary, Science Direct, Springer Link and Scopus). Before starting the SM, some tests

were performed, running the search string in order to validate and adjust the mapping

protocol. The manual search was conducted in the proceedings of the following con-

ferences on requirements engineering and agile methods: Requirements Engineering

Conference and Agile Development Conference. In the third phase, the criteria for

inclusion and exclusion (Appendix A, Table A.2) were applied by reading the titles

and abstracts. One of the criteria used to select the papers was that the study should

have some empirical validation.

In the fourth phase, the same criteria were applied by reading the introduction

and conclusion of the resulting studies of the third phase. In the fifth phase, all sec-

tions of the papers were read to assess the quality of the papers from the previous

stage. A questionnaire adapted from Dyba and Dingsoyr (2008) was used, which had

ten questions to guide the evaluation (Appendix A, Table A.3). One of them assessed

if the papers were the result of research, or were merely a consolidation of lessons

learned based on the opinion of an expert. Another question assessed whether the

paper had a discussion about the contribution to practice or literature. A three-point

scale of Likert was used to evaluate the papers: 0 (Nothing meets the criteria evalu-

ated); 0.5 (The paper does not make clear whether or not meet the criteria) and 1

(Paper meets the criteria evaluated). Once calculate the sum of the scores of all the

questions, the paper was classified into one of the four groups: low, medium, high or

very high quality. Studies with low quality (the sum less than three) were excluded.

The next stages were the extraction and synthesis of the papers selected in

the previous phases. The papers were divided among the three researchers to per-

4Reviewer (https://github.com/bfsc/reviewer)

 37

form the extraction using a standard form (Appendix A, Table A.4). The synthesis

was conducted by a researcher and then reviewed by another. The thematic synthe-

sis technique was used following the guidelines suggested by Cruzes and Dyba

(2011). The coding procedure was done from the reading of the forms containing the

extracted data. For SRQ3 synthesis, the challenges were identified with a code.

Then, the codes were grouped into themes. A review of the codes was performed

trying to identify similarities, duplicate and undue codes. The next step was the

grouping of subjects into categories (or high-level themes). The codes, themes, and

categories were successively revised until you get the results presented in Section

3.3. The results were analyzed with MS Excel® software support, which was also

used to generate the graphs and tables.

3.3 Results

We retrieved a total of 2852 papers from the automated (2501) and manual

(351) search. After the fifth phase, 24 Primary Studies (PS) remained for a deeper

analysis, as show in Figure 3.2. The SM collected and analyzed evidence from 68

companies, involving a total of 270 people from the 24 PS. Appendix B presents the

list of the 24 PS.

Figure 3.2 Primary studies selected by phase

A summary of the results is presented as follows by research question.

SRQ1: What approaches are being used to elicit requirements in pro-

jects that adopt agile methods?

 38

Requirements Elicitation is a process through which the acquirer and the sup-

pliers of a system discover, review, articulate, understand, and document the re-

quirements of the system and the life cycle processes (ISO-IEEE 830, 1998).

The synthesis of the PS pointed out that seven different approaches are being

used to requirements elicitation in agile projects, as shown in Table 3.2. Of the 24

papers analyzed, only ten papers reported the approach used to elicit requirements.

Interview with the client is the most used approach. JAD (Joint Application Develop-

ment), Focus Group, Brainstorm, Questionnaire, Trawling5 and Workshop also were

cited as approaches for gathering requirements. Some primary studies reported the

use of more than one approach, for example, PS05 (Primary Study #5) reported the

use of 4 approaches: Interviews, Questionnaires, Trawling, and Workshops.

Table 3.2 – Primary Studies versus approach for requirements elicitation

SRQ2: What approaches are being used to specify requirements in pro-

jects that adopt agile methods?

Eighteen different approaches to specify requirements have been reported in

primary studies analyzed, as shown in Table 3.3. The most widely used approach is

User Story. It was reported by more than 80% of the papers (20). Mockup is the se-

cond most used approach (10). Five papers reported using more traditional ap-

proaches such as Use Case\Scenarios (PS1, PS3, PS10, PS16 and PS17). One pa-

per (PS10) reported the use of five approaches. Although nine approaches have

been reported in only one paper, they were considered in this study, given that the

5Trawling (from Mike Cohn’s book “Agile planning and estimating”)

 39

paper presented evidence that they have been validated empirically in the industry.

These approaches are: XXM (eXtreme X-Machine), AUC (Agile Use Case), ALC (Ag-

ile Loose Case), ACC (Agile Choose Case), INVEST (Independent, Negotiable, Val-

uable, Estimable, Small and Testable), Activity Diagram, Mind Map, GPM (Goal Pref-

erence Model) and Cucumber6. In fact, AUC, ALC, ACC are extensions of Uses Cas-

es, and INVEST are principles for writing good User Stories.

Table 3.3 – Primary Studies versus approach for requirements specification

SRQ3: What are the challenges and limitations regarding the require-

ments engineering activities in agile projects?

The recommendations of Cruzes and Dyba (2011) were followed to map out

the challenges of requirements activities in agile projects. Initially, 115 codes (chal-

lenges), 15 themes and 7 categories were identified. After revisions and successive

refinements, eliminating duplication and grouping similarities, we reached a total of

49 codes, 9 themes, and 3 categories. Table 3.4 shows the challenges (factors) that

6https://cukes.info/

 40

have been mapped by category and theme showing the number of occurrences with-

in the parentheses. Each code received an identifier to facilitate its identification.

Table 3.4 – Requirements engineering challenges in agile projects

 41

It is important to notice that the number of occurrences do not reflect the im-

portance of the theme\category, but only the sum of papers that the challenges were

cited. Although 49 challenges have been mapped, some of them were reported in

several papers, as shown in Table 3.5. For example, challenge #15 (Insufficient SRS

for coding and maintenance) was reported in nine primary studies. Thus, a total of

128 occurrences of challenges were counted.

Table 3.5 – Primary studies versus challenges of RE activities in ASD

The themes Changes (30) and Customer (21) have the highest occurrences

of problems – 30 and 21, respectively. It is important to highlight the code #25 (Low

availability of the customer) with 6 occurrences in the Customer category and #36

(Control of changes in requirements is insufficient), with 10 occurrences in the cate-

gory changes. It signals that the agile principles “Teams adapt quickly to changes”

and “Continuous interaction with the customer” are not practices consolidated in the

companies investigated in the primary studies.

Looking at the categories it can also be noticed a lot of occurrences of issues

in techniques (50) used for requirements specification, mainly User Stories/Cards

(14) and Scenarios/Use Cases (5). The General category (25) groups the challenges

that are not specific to a particular technique, i.e., apply to all techniques used to

specify requirements in ASD. The studies PS08 (ABDULLAH, 2011), PS18 (READ,

2012) and PS21 (SAVOLAINEN, 2010) identified that User Stories are customer-

oriented and therefore tend to be described in a prolix and ambiguous way (#1). Oth-

er studies, PS12 (GREGORIO 2012), PS13 (LORBER 2013) and PS09 (BATOOL

2013) reported that the level of detail of the User Stories is inappropriate, (#3). The

 42

PS19 (SHARP, 2009) considers that Story Card is an incomplete notation (#5). Ac-

cording to PS03 (THOMSON, 2008), Use cases have too much information present-

ed, a lot of irrelevant information (#10) and the PS17 (OBENDORF, 2008) reported

difficulties to include technical aspects in the Scenarios (#8).

Only one paper PS22 (BATOOL, 2013) reported problems regarding the au-

tomated support to specify requirements in ASD (#30). Thirteen primary studies re-

ported the use of some practice for requirements validation (TDD, Acceptance Tests

or Test Cases). In these studies, some problems were reported about requirements

validation (#27, #28 and #29).

A more detailed discussion of these challenges is presented in Alves (2015)

and Medeiros (2015) who used a different numbering for codes as well as a different

grouping of categories and themes.

SRQ4: What are the implications for the software industry and academy

arising from requirements practices currently used in agile projects?

The findings raise some gaps that require further research in this area, such

as:

• What factors affect the quality of SRS in ASD and how those factors af-

fect the work of the software engineers?

• What adjustments can to be made in the current approaches used to

specify requirements in agile projects?

• Is the productivity of teams compromised by the adoption of RE in agile

projects?

• Is it worse the quality of SRS in agile projects when compared to SRS

in traditional projects?

Another question that deserves attention from the academic community is the

low quality of the papers. Initially, 31 papers would be used for data extraction. How-

ever, during the quality analysis stage, 23% of papers (7) were excluded due to low

quality. Of the 24 papers selected, only 3 papers had a very high quality (PS03,

PS04, PS06). Only one paper appropriately considered the relationship between the

researcher and the other people involved in the research. This point requires closer

attention from researchers in the conduction of their studies for the results to be ef-

fectively used. An interesting fact is that the vast majority, 20 papers, are academic

studies, but with validations in real projects in the industry.

 43

Based on the results obtained, it is observed that as in the traditional devel-

opment, the ASD also presents a significant number of issues, mainly related to the

requirements management and techniques used. Of a total of 128 occurrences of

problems, 57 are related to the requirements management: Process, Changes, Peo-

ple, and Scope. This signals the need for more in-depth investigations into compa-

nies to analyze the development practices that entail such bottlenecks and compro-

mise the productivity of the teams, the quality of SRS, the motivation of teams and

appropriate collaboration with the customer.

3.4 Threats to Validity

A common threat of systematic mappings is the difficulty of finding all the rele-

vant existing papers. To minimize this problem, we used multiple sources of data,

automatic and manual. Among the automatic, are the four major search engines of

software engineering, cited by Kitchenham and Charters (2007) and Dybå and Ding-

soyr (2008).

Pilot tests were performed before starting the stages of research. The selec-

tion of the studies was conducted by more than one researcher in order to avoid bias.

When there were differences of opinion among researchers, they were confronted

and resolved with the participation of another researcher.

3.5 Lessons Learned

The use of the Reviewer tool for automated search facilitated the initial analy-

sis from the title and abstract. The tool generated a spreadsheet with this information

so that there was no need to download the papers.

Initial planning predicted the participation of four undergraduate students to

work in the first phase of the mapping. However, the evaluation carried out by under-

graduate students presented many divergences between them. In this way, one of

the three researchers needed to mediate the conflict which required a lot of effort.

Thus, the participation of the undergraduate students was canceled given that it was

not worth it.

 44

3.6 Summary

In this chapter, we presented a summary of the protocol, procedures, and re-

sults of the systematic mapping that investigated in the literature how the require-

ments engineering has been conducted in software projects that adopt agile meth-

ods. The SM was also published in an international conference (MEDEIROS et al.,

2015) and in a Brazilian journal (MEDEIROS et al., 2015c).

We mapped the approaches used to elicit and specify requirements and 49

challenges that affect the requirements engineering activities in ASD. According to

the data collected, the most used approach to elicit requirements is the interview.

User Stories was reported by more than 80% of the papers, as the most used ap-

proach to specifying requirements. The studies indicate several problems due to Fre-

quent Changes in Requirements (Changes Theme), Low Involvement of the Cus-

tomer (Customer Theme) and regarding to the approaches used to requirements

specification (Techniques category).

The findings of the systematic mapping were used as input to the investigation

of the phenomenon in the industry, as shown in next chapter. In case studies, we in-

vestigated whether the challenges of the Techniques category affect the quality of

SRS in ASD, how these challenges are related and how they affect the work of the

software engineers. Also, we attempted to identify new factors that compromise the

requirements specification activity in ASD.

 45

4

INVESTIGATION IN THE INDUSTRIAL PRACTICE

This chapter carefully explains the empirical studies conducted to investigate the re-

quirements specification activity in the context of ASD at six companies. Section 4.1

describes the research design. Data collection and analysis procedures are de-

scribed in Section 4.2. The results of each case study are presented in section 4.3.

4.1 Design

The Systematic Mapping (SM) presented some challenges related to RE in

ASD and some gaps that demand more investigations. Moreover, the literature re-

view conducted by Inayat et al. (2014) shows that there is a need for more empirical

studies using agile methods. So, this study aims to investigate the phenomenon of

the requirements specification activity in different agile contexts and then build an

explanatory model providing a deeper description to point out the factors that should

be considered to write more useful SRS in ASD. More specifically, our goal is to find

answers to the Research Question 2 (RQ2) defined in Section 1.2: What factors af-

fect the quality of SRS in ASD and how those factors affect the work of the team?.

A multi-case study was conducted in six companies to investigate the phe-

nomenon in industrial practice and gather data to evaluate the initial theoretical

background identified in SM. The case studies are classified as instrumental since

our goal is to understand the constructs and then build a model (described in Chapter

5). Six independent case studies were conducted following a single standard protocol

and the guidelines suggested by Runeson and Martin (2009) composed of five steps:

Planning; Preparation; Collecting evidence; Analyzing the data collected; and Syn-

thesis. The phenomenon was investigated from the perception of the software engi-

neers (analysts, developers, testers, among others).

 46

4.1.1 The Sample

Usually, two levels of sampling are necessary in qualitative case studies: the

cases that will be investigated and the participants (FRANÇA et al., 2014). The pre-

condition for selection of cases was the use of agile practices in the software devel-

opment. To increase data diversity, we looked for companies with different character-

istics regarding the size, sector of activity, the maturity and core business. To con-

duct the research, we depended on acceptance and willingness of the companies.

The initial sampling was formed by companies that the researchers had contact with

the directors or software engineers. Six companies fulfilled the preconditions. The

projects investigated were selected by the companies.

The second level of sampling defines the software engineers participating in

each case study. All the software engineers of the projects selected by the compa-

nies were pre-assigned to participate in the study. Although all have participated in

the observation activities, we did not interview all the pre-assigned software engi-

neers due to the unavailability of some (vacation, travel, sick, etc.), while in others we

had already reached a satisfactory understanding of the phenomenon in the compa-

ny. So, conducting more interviews would not add new information relevant to our

study. However, we tried to achieve a good coverage (i.e. diversity) of age, back-

ground and education, years of experience and employment in the company, work

experience on different activities within software development, among others, to en-

sure a fertile sample (See Appendix D, Table D.1).

4.2 Procedures

First, the study protocol was created describing the procedures to collect and

analyze the data, as described in next sub-sections. For 10 months, we conducted

observations, interviews, and document analysis to collect and analyze data.

4.2.1 Data Collection

Observations

Even being agile projects, the daily team meetings were not mandatory in all

companies. They occurred whenever necessary and at least, once a week. Meetings

aimed to share best practices, problems and difficulties faced by the team. The re-

 47

searchers (the author and a master student) participated in some meetings acting as

observers, taking notes, perceiving how software engineers were using the SRS and

the difficulties faced. The researchers did not interfere in the way the project was be-

ing conducted (for example, making suggestions or criticisms).

Interviews

A questionnaire was elaborated to guide the interviews (See Appendix C). The

questions were presented in a funnel format, beginning with general questions and

moving towards more specific ones (RUNESON and MARTIN, 2009). A pre-test was

conducted with two pilot interviews. The initial version of the questionnaire had 30

questions. After the first case study, we reviewed the questionnaire, and excluded 5

questions because their answers turned out not to be useful to our investigation. The

remaining 25 questions were used in the subsequent case studies.

After obtaining the authorization of the companies to contact directly each po-

tential participant, an initial contact with them was established via email inviting them

to participate in the study. The interviews were scheduled and conducted individually.

Before each interview, the purpose of the study was clarified with the participants.

We made the interviewee aware of the importance to detail the answers as much as

possible. In addition to registering answers, we also recorded the interviewee’s ob-

servations that were out of the original questions list but were useful for the study. At

the end of each interview, the questionnaire was reviewed with the interviewee to

confirm that the answers had been correctly noted, and to capture complementary

information, if needed.

Analysis of Documents

Documents are an important source of data for qualitative research

(MERRIAM, 2009). Documentation helped in the analysis of data collected during

the interviews. The companies elaborated such documentation before the study.

Therefore, it had no kind of bias from this research. The researchers analyzed differ-

ent artifacts, such as User Stories (US), use cases, diagrams, among others. In some

projects due to confidentiality constraints, the documents were analyzed with the

presence of a member of the team. In these projects, the company did not provide a

copy of the artifacts to the researchers.

 48

4.2.2 Data Analysis in each case study

Data analysis is the process of making sense out of the data (MERRIAM,

2009). It involves consolidating, reducing, and interpreting what people have said and

what has been seen and read. The goal of data analysis is to find answers to re-

search questions. The data collection and analysis were conducted simultaneously,

in incremental and iterative steps.

The interviews were transcribed, and then techniques of ground theory

(SJØBERG et al., 2008) proposed by the constant comparison method (SEAMAN,

2008) was used to code, categorize and synthesize the data in each study. The pro-

cess begins with an open coding of the field notes, which involves attaching codes,

or labels, to pieces of text that are relevant to a particular theme or idea of interest in

the study. After coding the transcriptions, the codes were reviewed to identify similari-

ties, duplicates, and undue codes. The codes arising from each interview were con-

stantly compared to codes in the same interview and from other interviews. From the

constant comparisons of the codes, we grouped them into categories that represent

factors that affect the quality of SRS in ASD. Figure 4.1 shows an example of the

codes building process. The data collected in the interviews were triangulated with

the data obtained from the analysis of documents and observations in order to in-

crease the credibility of the data. The triangulation technique prevents the influence

of individual analysis based on interviewer-researcher’s personal opinion

(NORTHCUTT and MCCOY, 2004).

Figure 4.1 Factors building example

Then, the relationships among factors were analyzed, leading to explanatory

propositions. Propositions are causal relationships among concepts that offer an ex-

planation of a phenomenon (PANDIT, 1996). Although the grounded approach pro-

 49

duces conceptual rather than measured relationships, propositions can and should

be subject to empirical verification. Finally, we created the story for each case study.

A story is simply a narrative about the phenomenon of study (PANDIT, 1996).

4.3 Results in each case study

This section describes the context of the companies and the story line about

the factors that affect the quality of SRS in the projects investigated.

4.3.1 Case Study 1 (a government public software organization)

a) Context

This case study was carried out with software engineers from a company es-

tablished over 40 years ago by the Federal Government of Brazil. Its core mission is

to provide information and communication technology solutions for the improvement

and implementation of social policies of the Brazilian state. The company has devel-

opment units in five states. As a government-owned organization, it is regulated by

the laws and norms of the Brazilian public sector.

The entire organization has 3800 employees, 1381 of which compose the

software engineering workforce. The case study was conducted with software engi-

neers of two agile projects carried out in one of the development units. Only perma-

nent employees, i.e., no trainees, were involved. The fourteen interviewees had an

average of 11 years of experience with software development. The team profile is

described in Appendix D (Table D.1). Part of the development was geographically

distributed in three cities.

One of the projects aimed to develop an information system. The other intend-

ed to construct an On-Line Analytical Processing (OLAP) solution. In the past, the

organization used a process based on RUP (Rational Unified Process), but in the last

two years it has been adopting ASD in some projects, including the two investigated

in this study. Each sprint lasted at most one month. At the end of each sprint, a ver-

sion was released to validation by the internal Product Owner (PO). However, a ver-

sion was released to the customer only every two or three months.

Some agile principles were well consolidated in the company, such as priority

on customer satisfaction and changes in requirements treated as a competitive ad-

vantage. The agile projects used practices such as iterations, user stories, version

 50

control, refactoring and continuous integration (AGILE ALLIANCE, 2016). Customers

and development team did not work together daily throughout the project. However,

the team pointed out that the participation of the customer was adequate and did not

affect the team.

b) The Story Line

The requirements were detailed and coded iteratively and incrementally in

each sprint, according to the priorities defined by the customer. In each sprint, the

coding activity was started when the first requirement was detailed. There was no

need to wait for the detailing of all sprint requirements. The SRS had the description

of US, rules, mockups, and test cases. This description was fragmented in various

artifacts. The developer needed to consult several artifacts to have a complete un-

derstanding of a requirement. The analyst had to maintain the consistency of a re-

quirement in various artifacts, as follows:

“We spend a lot of time to prepare and maintain the consistency
among many artifacts. The ideal would be to have fewer artifacts.”

The SRS had technical aspects identified as positive factors, such as valida-

tion and interface rules, error messages, mapping source-destination database and

default content of some fields on the forms. Acceptance criteria (AC) and NFR also

were considered important for developers. However, they pointed out that the AC

should be defined inside the US. The AC were not enough because they were very

focused on the business rules, and did not address the technical aspects, as follows:

“It would be much easier to code and testing if the acceptance criteria
were better defined and did not cover only business rules."

The developers pointed out that the use of examples could help to clarify un-

derstanding of complex rules, as follows:

“In the specification of some rules, it is more appropriate to use exam-
ples where [we can] already see clearly all possible values of an attrib-
ute. When this is done only through a simple description, it is more like-
ly to fail due to not restrict some value that should not be allowed.”

Although software engineers had many years of experience with the traditional

software development, they had little experience with ASD. Often the requirements

were not written clearly. Many systems analysts had difficulty in defining what was

relevant to include in the SRS. Some artifacts had excessive details and redundant

information which made it difficult to understand, as reported by some developers:

 51

“The analysts have no experience to specify in an agile way. Although
the analysts are experienced, some agile practices have not yet been
absorbed. They have no ability to simplify and define what is relevant
to the developer.”

“Artifacts with confusing structure and repetitive information entail low
productivity for the developer. I should not spend time trying to under-
stand what the specification means.”

The process to release a version for the customer required five different envi-

ronments (local, development, testing, approval and production). The software vali-

dations were face-to-face, but the customer was located in another city. So, part of

the team needed to travel to validate partial versions with the customer. In this con-

text, the company considered that it was not worth to conduct the software valida-

tions at the end of each sprint. Usually, a version released to the customer validation

consolidated the requirements of two or three sprints. At shorter intervals, validation

of requirements was made through the SRS. So, the SRS was focused on the cus-

tomer in order to facilitate understanding (particularly in requirements validation).

The software validations usually entailed many changes, refactoring, and re-

test. Some changes in the database structure had a great impact to the development

team, and it was necessary to make a formal request justifying the desired change.

This request was analyzed by DataBase Administrator (DBA). If approved, the

change was made by the DBA according to the queue of requests for all projects of

the company. This process distances the development from the agile principles and

entails a bottleneck in the project schedule.

Requirements artifacts were elaborated in Caliber7, a specialized tool for the

requirements activities. The relationship between the requirements was generated

automatically by the tool, which helped on the traceability of the requirements and in

the impact analysis of change requests. Other tools like Mantis8 and Trello9 were

used for project management, bug-tracking, and communication. Some developers

pointed out the need for integration between the tools. Caliber also controlled the his-

tory of the changes made in the artifacts. The teams had difficulty in maintaining the

SRS updated due to the large number of artifacts that had to be maintained. Moreo-

7 https://www.microfocus.com/products/requirements-management/caliber/
8 https://www.mantisbt.org/
9 https://trello.com/

 52

ver, the large number of changes had a negative impact on team motivation and in

the reliability of the SRS, as described as follows:

“Many changes make the work tiring and cause dismay in the team be-
cause they result in refactoring and work being thrown away.”

“The lack of update causes the documentation to become unreliable.”

The contracts established that the payment was made by functionality deliv-

ered according to the number of function points, despite having a pre-defined global

value. The customer only paid for functionality that he/she had requested. So, the

company had a great concern for not wasting time specifying and developing fea-

tures that would not be paid. Customers were also Brazilian public institutions and

they followed the laws of the public sector. The contracts agreements established

that all the artifacts should be approved by the customer.

The SRS was important to transfer knowledge when new engineers were allo-

cated to the development teams and also for the teams responsible for the mainte-

nance after the end of development. There was a lot of turnover of people between

the teams, especially when a project was finished or when more resources were

needed to meet the schedule.

Some disagreements between the software engineers (developers and ana-

lysts) were found. One of the differences concerns the level of detail for the SRS. All

developers pointed out that an objective SRS, without prolix details, facilitates the

understanding and improves the productivity. However, some analysts considered

that the SRS should be as detailed as possible. Certain characteristics of the process

can explain these disagreements. First, the SRS was used to validate requirements

with the customer. Second, the SRS was provided to the customer as set out in the

contract. Moreover, the traditional culture of development was still present in some

people who could not think “agile” and they believed that a more detailed SRS would

be better for the customer.

We also identified differences of opinion on the best way to perform the ac-

ceptance tests. Some software engineers advocated that the functional tests must be

conducted from the SRS without using another particular artifact, but others software

engineers did not agree. The justification given was that the tests were carried out by

a specialized team with a different profile and that the SRS did not have enough cov-

erage to conduct the tests, which would limit the test results.

 53

c) Summary

Figure 4.2 summarizes the factors that affect the quality of SRS in this case

study. The company opted for not validating the versions at the end of each sprint

due to some Characteristics of the Process which establish a large number of envi-

ronments to release a version and due to the trips required to do the face-to-face val-

idations. But, the Late Validation by Software has led to Excessive Changes in the

requirements. The SRS was Customer-Oriented because it was used to perform in-

termediate validations, as established in the Contract Agreements and due to the late

validations through software.

Figure 4.2 Quality Factors of SRS in ASD – case 1

The Inadequate team experience with ASD contributed to Prolix descriptions

that difficult the clearness and Readability for the developers. User stories, mockups,

conceptual model, Technical aspects and RNF were positive factors, although de-

scribed in a Fragmented manner, without being related to the acceptance criteria and

without examples. A considerable effort was required to create and maintain a large

amount of artifacts, making it often Outdated. A specialized tool provided the re-

quirements Traceability and the Change History.

4.3.2 Case Study 2 (a mature private organization)

a) Context

The study was conducted in a private software organization in Brazil. The

company develops solutions for capturing, processing and management of Electronic

 54

Funds Transfer (EFT) with a focus on banks, telephone operators, and commercial

establishments that perform sales with credit and debit cards. The company has an

application framework for this area. A team of 46 software engineers included new

features in these applications as well as develop new software for the framework.

There was a great diversity in the profile of employees. Regarding the aca-

demic formation, the vast majority had only an undergraduate degree, but there were

some masters and undergraduate students (trainees). Some engineers had only a

few months of experience with software development, while others had more than 20

years. Considering only the software engineers, the average number of years of pro-

fessional experience was 6 years. Except for two project coordinators, all fourteen

interviewees worked as developers. Some of these also played the analyst role.

The company has over 19 years of existence, and it was certified in Mps.Br

(2012) and CMMI (2010). Agile development was introduced using Scrum around

2008. Currently, the company has used agile practices like user stories, story split-

ting, iterations, continuous integration, code reviews, version control, daily meetings

and automated builds (AGILE ALLIANCE, 2016). Each sprint lasted from 2 to 4

weeks. The customer validations were made face-to-face or remotely, depending on

customer needs. The company operates a payment system for fixed price. The cus-

tomer paid after the software validation in the productive environment.

b) The Story Line

The company adopted different strategies to specify requirements depending

on the type and size of the project. For complex projects lasting more than a year,

the functionalities, AC, mockups, field restrictions and execution flows were de-

scribed in a requirements document. This artifact was used to validate the require-

ments with the customer and was also used by the development and test teams. The

requirements document was not elaborated in the small and simple projects which

had a maximum of six months duration. In these projects, the team wrote the user

stories directly from conversations with the customer or the internal business area. A

requirement was divided into multiple US, and if necessary, the developers broke

down into tasks that were registered in Redmine10, a project management tool.

10 http://www.redmine.org/

 55

The company had short sprints, but, in large projects, the software validations

were not so frequent, occurring every two or three months. The type of software re-

quired a certification process carried out by external bodies in agreement with Brazil-

ian law. At the end of each sprint, a specialized team performed internal validations.

Next, the partial versions were certified by the customer or by third-party companies.

Then, the versions were released on a homologation environment to verify their in-

tegrity and compatibility with other systems. Given the maturity of the framework, the

customer validations resulted in just a few change requests. In this context, the com-

pany considered that it was not worth performing validations in shorter periods due to

the expensive certification process required.

Software engineers pointed out some difficulties in the use of the same docu-

ment to validate the requirements with the customer and to develop the software.

The language used to describe the requirements was not targeted to the developers,

leaving the SRS with extensive texts and a lot of unnecessary information, as follows:

“The SRS uses long texts, which most often leads to misinterpretation.
It is necessary to write the SRS in a more objective way.”

“Obvious things are repeated, and practically a dissertation is written to
make the text more presentable to the customer.”

The developers pointed out that the lack of examples of error messages and

iteration with the user in the SRS delays the coding activities, as follows:

“It would facilitate to the developer if the SRS had examples of mes-
sages of error and request/response with the user.”

Objective and unambiguous descriptions were identified as a key factor to

avoid waste of time trying to understand the SRS, as described as follows:

“The developer should not waste time interpreting the text. We should
have clear requirements, simple, and direct.”

The company adopted other artifacts beyond the requirements document,

such as user stories, architecture document and test scripts. Technical descriptions

also were described, such as tables and fields, and log operations to be performed.

But these artifacts were not available to the customer. They were only used by the

development team. However, the developers preferred a consolidated SRS instead

of wasting time trying to locate the information in many artifacts:

“It is unproductive having to switch between artifacts. It is easier to find
what you need in a few artifacts.”

 56

“We have information spread in various artifacts. It would be more pro-
ductive to have the most consolidated information.”

The use of various artifacts also hindered the update of the SRS. Often the

SRS was prepared in parallel with the coding activity. It also contributed to the SRS

become outdated. In the opinion of all developers, inadequate experience of people

in carrying out the requirements activities was a factor which affected the quality of

the SRS. The company did not use a specialized tool for the specification and man-

agement of requirements. All artifacts were constructed in a general-purpose word

processor (like MS Word) which brought many problems. The most experienced de-

velopers pointed out that a specialized tool could help improve the team productivity,

the readability, and the traceability of the requirements, as described as follows:

“We need to automate how the revisions of artifacts are done. Some
tools could help to control the change history and the readability.”

“An automated support facilitates the tracking of information when
changes occur in the requirements.”

The company did not keep information on the dependency relationships be-

tween requirements. When there was a change request in the requirements, the

team met to discuss how the change would be incorporated and the associated im-

pact. The consistency of the SRS did not appear to be something that worries the

developers. Eventually, if a problem was identified, it was cleared up quickly by

communicating with the person who had knowledge of the requirement. Software en-

gineers did not consider that it compromised in their productivity.

The face-to-face communication was an established practice. Every day, the

teams met to track the progress of activities, discuss problems, and sharing best

practices. The customers were not integrated with the development team. The com-

munication with them was not frequent, but all interviewees consider that it was ap-

propriate, and the quality of SRS was not compromised. Communication with the

customer was on demand, whenever the team needed clarifying any doubts.

c) Summary

Figure 4.3 summarizes the factors that affect the quality of SRS. Given the

stability of the applications framework and the characteristics of software, the com-

pany adopted a strategy to delay the validation of the partial versions. The SRS was

used to validate requirements. The customer-oriented SRS and the inadequate expe-

 57

rience of the team entailed an SRS with unnecessary details that affected the clarity

and readability. US, AC, conceptual model, mockups, technical aspects, and NFR

were positive factors. However, this information was fragmented into various artifacts

which made it difficult to understand and update. The lack of examples, traceability

and change history, and the inadequate automated support were negative factors.

Figure 4.3 Quality Factors of SRS in ASD – case 2

4.3.3 Case Study 3 (A young institute of research and innovation)

a) Context

The case study was conducted in an innovation institute in Brazil. The institute

has a year of existence, with focus on value creation and competitive advantage for

large industrial companies. The customer portfolio has more than ten multinational

and national companies from various sectors, such as smartphones, entertainment,

health, and safety.

The institute has 155 employees among graduates, specialists, Masters, and

Ph.Ds. The average years of experience with professional software development of

the interviewees were 4 years. The case study was conducted in projects to develop

mobile applications for 3 different customers, all smartphone manufacturers. In these

projects, the payment system was not based on delivered functionality. There was a

pre-agreed value, and fixed payments were made throughout of the development.

Since the foundation of the institute the ASD has been adopted using Scrum.

Software engineers had experience with ASD. Several agile practices were well es-

 58

tablished, such as backlog, frequent prioritization of requirements, iterations, daily

meeting, kanban board, planning poker, peer review, version control, continuous in-

tegration and automated build. The sprints lasted for 1 to 2 weeks. The partial ver-

sions were released at the end of each sprint to be validated remotely by the cus-

tomer.

The institute was organized in development units and the projects were

grouped by customer. The units had autonomy to adopt procedures, practices, and

tools according to the needs of each customer. Many of the institute's customers

were competitor players in the smartphones industry. To ensure customers' confiden-

tiality, the institute had separate development teams to serve each customer. Thus, a

team had no knowledge of the features that were being developed in teams serving

other customers. Even the internal tests were performed privately for each customer.

Testers of a project did not perform tests on applications of other customers.

b) The Story Line

The SRS was based on use cases, mockups, business rules and NFR. The

SRS was not used to validate requirements, but it was more focused on the client

because the artifacts were provided to him/her, as set out in the contract. The team

pointed out that the SRS needed more technical information, for example, examples

of interface constraints. The productivity was undermined because the SRS was not

enough to the developer, as described as follows:

“The SRS lacks details. For example, in mobile apps, when the user
enters in a screen, should the keyboard appear automatically or only
when you select a text edit field?”

The institute had a team of designers responsible for the specification of visual

requirements. Due to the lack of the designers’ experience with the requirements

specification activity, the SRS was not clear, which made it difficult to understand, as

follows:

“The SRS is not clear. It has ambiguities, and the functionality is not
adequately detailed. The SRS could be more understandable. I believe
that this is due to lack of time and the lack of designers’ experience.”

Customers and development team were located in widely separated cities.

The Institute maintained a continuous schedule of meetings to encourage greater

iteration with the clients. In general, the features were requested by email, but it also

occurred through video conferences or telephone calls. The versions were released

 59

remotely at the end of each sprint and the results of validations were sent by email to

the team. The low availability of the customer impaired the detailing of the features,

the clarification of doubts and the validation of the partial versions, as follows:

“The customer feedback is not adequate and affects the understanding
of the needs and the direction of the project. Usually, take time to ana-
lyze the doubts that arise during the development cycle.”

The type of software developed affected the requirements activities. The mo-

bile applications had many innovations features. The customers delegated to devel-

opment teams the identification of the innovation aspects and the requirements of

user interfaces. Some characteristics of mobile apps and inadequate availability of

the customer entailed a lot of changes in the requirements, as described as follows:

“The mobile applications change the interface too often. Much effort is
required.”

“Communication with the customer is not always as frequent as it
should, which makes several changes to be postponed to the next
sprints.”

The applications had a limited use of database management systems (DBMS).

Some projects used NoSQL database and others used SQLite. The developers had

autonomy to change the database structure. However, wrong changes entailed an

enormous impact on the productivity because they implied evolving the source code

accordingly, and then to repeat the test cycles.

To analyze the change requests, first, the internal PO and the team assessed

the impact of changes. Then, a meeting was made with the customer to align the

changes and sometimes to reevaluate the scope. Usually, the duration of a sprint

was not modified due to a change request. It only happened in exceptional cases, if it

was not possible to relocate some functionality for a future sprint. Just one project

had information on the dependency relationships among the requirements. The re-

maining projects had no traceability of the requirements to support the analysis, but

this absence was not pointed out as a negative factor. Given that software deliveries

were frequent, the impact of changes was minimized, but, they affected the team per-

formance and the project management. The updating of the user interface require-

ments was made by designers who usually worked on several projects at the same

time. Overloading of the designers affected the update of the SRS.

The projects used different strategies for testing. In some projects, the tests

were conducted directly from the use cases. In other projects, the functional, unit,

 60

load, and stress tests were automated. In these projects, another artifact was drawn

up from the use cases given that the SRS was insufficient to automate the tests.

None of the projects adopted strategies of TDD, such as ATDD or BDD. There were

no acceptance criteria in these projects. In all projects, the team pointed out that it

was necessary to enhance the SRS to facilitate the test.

Software engineers pointed out that the structure based on few artifacts was

essential because the developer did not waste much time to find information, and it

was easier to update the SRS and avoid inconsistencies, as described as follows:

“The SRS with few artifacts helps the team, because we have fewer
sources and therefore less chance of inconsistencies.”

“A reduced SRS favors productivity because the team does not waste
a lot of time searching information and updating various artifacts.”

The company did not use a specialized tool for requirements activities. Some

projects used the Tuleap tool11 for project management, and others used the Taiga

tool12. However, software engineers did not identify the need for a specialized tool to

improve the quality of the SRS. However, some engineers pointed out the need to

have better control over the changes in the requirements. None of the engineers had

previously worked on projects that used any specialized tool for requirements.

c) Summary

Figure 4.4 summarizes the factors that affect the quality. The functional re-

quirements were represented by use cases and prototypes of UI. NFR also were de-

scribed. However, the SRS was not intended for the developer given that the artifacts

were provided to the customers, as set out in the contract agreements. The superfi-

cial details of the functional requirements, the lack of description of technical aspects,

acceptance criteria and examples have been identified as negative factors.

The small customer availability compromised the breakdown of the require-

ments, the clarification of doubts and the validation of the partial versions. The inad-

equate customer collaboration and innovation aspects of mobile applications contrib-

uted to a high number of changing requirements. The lack of control of changes in

the requirements impaired the SRS. Sometimes, the SRS was outdated due to fre-

11 https://www.tuleap.org/
12 https://taiga.io/

 61

quent changes. The small experience of the team also impaired the detailing of the

requirements, the clarity and the readability of SRS.

Figure 4.4 Quality Factors of SRS in ASD – case 3

4.3.4 Case Study 4 (a micro software company)

a) Context

This case study was conducted in a software micro-company of England that

operates in the education sector. The company had a small team composed of only 7

software engineers. The company has been using ASD since its founding in 2011

and has adopted agile practices, such as iteration, frequent releases, daily meetings,

user stories, retrospective, pair programming and continuous integration. Over the

past 5 years, the company has developed an integrated solution that is operating in

over a dozen educational institutions in Europe. The team worked only in the evolu-

tion of this application. New versions were released to evolve the functionalities or to

fix critical bugs. No other application was being developed. Sprints lasted a week.

The company used a fixed monthly payment system based on the number of

user licenses with unlimited access to application functionality. Customer validations

were made remotely. The entire company worked remotely. Software engineers

worked in multiple different locations. All communication was done remotely, either

with employees or with customers when necessary. Every day, with a fixed schedule,

the development team used virtual meetings to monitor the project status.

b) The Story Line

 62

The company used a reduced SRS based on user stories and mockups.

Sometimes scenarios were described in the US. The description of the AC within the

user story facilitated the coding and testing. The SRS was directed to the team. It

was written by and for the developer in a very clear and objective way. The company

did not use the SRS to validate requirements. Validations were conducted through

frequent software deliveries. The software processes were frequently changing, and

the company was aligned with the agile value which states that individuals and inter-

actions are more important than processes and tools, as follows:

“We do not write anything "in stone". Our processes often change to
adapt to the current culture and strategic planning of the quarter.”

The CEO played the role of PO and also participated in the coding activity.

The stories were written from conversations between developers and PO. All team

members played the analyst and developer roles simultaneously. The principle of

simplicity guided the company. The team had the culture of writing the stories as

simple as possible, containing only the necessary to code, and without ambiguities.

They had autonomy to refine or split stories to facilitate coding, as follows:

“Extensive and bureaucratic SRS hinder rather than help. The stories
are simple enough to facilitate coding, allowing a feature can be deliv-
ered as soon as possible. We use the "divide and conquer" approach.
The smaller a story, the higher the success rate.”

The company did not use a specialized tool for supporting requirements-

related activities, but this was not pointed out as a negative factor. The Asana tool13

was used to track the team tasks and to write the US. The company has a well-

defined scope of operation based on the evolution of a stable application. In this con-

text, some agile practices did not make much sense for them, such as developers

and customers working together daily. Due to the type of development, it was not

necessary to have daily communication with the customer. The developers had little

contact with the end user. The PO made the bridge with the customer. The discovery

sessions were conducted to understand the client's goals and requirements of the

business. Only the PO participated in the discovery sessions. Rarely, the developer

needed to meet with the customer to code a particular feature. The low frequency of

communication was not considered inappropriate and did not impair the SRS.

13 https://asana.com/

 63

The company's development process did not address the changes as a com-

petitive advantage for the customer, as set out in agile manifesto. The company

avoided making specific customizations for a particular customer. These were done

only in exceptional cases. The company did not maintain information on the relation-

ships among the requirements. However, this absence was not critical given that the

software development was just to evolve a stable application. Thus, changes were

neither structural nor frequent.

The minimal SRS directed to the team contributed to it to stay updated, most

of the time. In each sprint, before coding activity, the software engineers performed a

design activity to analyze the best solution to coding the requirements. The average

of years of experience of the developers with coding was high, but the novice devel-

opers had little experience with ASD and with the specification of the requirements

which entailed in prolix descriptions that hindered the clarity and legibility of the SRS,

sometimes. Given the nature of development restricted to evolve one mature soft-

ware, the description of NFR and the conceptual models were not used in the current

stage. Also, some technical descriptions were delegated to each developer, such as

the content to fill the combobox widgets, necessary validations between some fields,

and secondary operations to persist the data in the database. The lack of such de-

scriptions in the SRS undermined the coding activity for the novices.

c) Summary

Figure 4.5 summarizes the factors that affected the SRS. Despite being oper-

ated entirely remotely, the company used a minimal SRS to evolve a mature applica-

tion. The SRS was objective, unambiguous and focused on the development team

which improved readability for it. Validations were made through frequent releases.

The SRS was not used to validate requirements.

The functional requirements were represented by mockups, US, and AC. The

lack of technical aspects was a negative factor. The company adopted a strategy of

avoiding customizations to meet specific demands of a customer. The company did

not maintain information on the traceability of requirements, such information was

required, but only at the strategic level. The small experience of novice developers

led to prolix descriptions, sometimes.

 64

Figure 4.5 Quality Factors of SRS in ASD – case 4

4.3.5 Case Study 5 (A mature and very large software company)

a) Context
The case study was performed with fifteen software engineers in a very large

company that had more than 40,000 employees and operated in more than 100

countries. The company had over 20 years of existence and offered solutions for var-

ious sectors, such as public administration, security, transport, energy, and financial

services. The case study was carried out with software engineers who worked on two

agile projects in a development unit located in one of the states of Brazil. In this unit,

the ASD was introduced just 3 years ago.

The average experience of interviewees was five years. The development

process used XP and Scrum practices, such as iterations, frequent releases, kanban

board, standup meetings, refactoring, and pair programming. The sprints lasted from

2 to 4 weeks. Some agile principles were well established, such as frequent commu-

nication with the customer and acceptance of change as a competitive advantage.

The customer did not work on the same site of the team, but communication was fre-

quent using the Slack tool14, email or phone.

b) The Story Line

The SRS was based on use cases, business rules, mockups and conceptual

model. In some projects, the use cases were broken down into user stories. The ac-

ceptance criteria were defined in another artifact that aimed to describe the quality

14 https://slack.com/

 65

metrics of the source code. NFR were described in the architecture document. The

SRS was not used to validate requirements. Validations were made through frequent

software deliveries.

The little experience of analysts entailed prolix and unnecessary texts to the

developer. The specification and coding activities were not performed by the same

person; there was a distinction between analysts and developers. Many analysts did

not have the proper perception of what was necessary to the developer, as described

as follows:

“The SRS is prolix due to the lack of experience of the analysts. I think
they have never worked as a developer. There is a lot of information di-
rected to the customers that does not add value to the developer.
There are business rules that are written with large texts, but often only
one paragraph is enough.”

The information conveyed by the SRS was considered insufficient for support-

ing the implementation. Developers pointed out that the technical information, such

as validation rules, tables, and fields were not described in the SRS that was consid-

ered insufficient for developers, as described as follows:

“Often, the SRS is not sufficient. It is incomplete leaving many doubts,
making it more complicated the coding activity.”

The development unit was exclusively directed to develop software for public

administration. Customers followed the laws of the Brazilian public sector. The con-

tract required some specific artifacts, and it established that all SRSs had to be pro-

vided to the customer. The projects produced many artifacts to address different

stakeholders. So, the SRS was intended for the customer. The contract also estab-

lished a payment system by product delivered. In addition to the incremental versions

in each sprint, the SRS was also considered a software product for payment purpos-

es and had a different pricing.

The company had a specialized department for testing. The testers considered

that the acceptance criteria were insufficient, so another artifact was prepared (test

cases). At the end of each sprint, the partial versions were internally tested and then

released for the client. There was not a consensus in the team about the best way to

structure the SRS. Analysts and testers considered that the SRS divided into various

artifacts was more appropriate because each artifact had its characteristics. But, de-

velopers pointed out that a consolidated view facilitated the general understanding of

the requirements, and it was easier to find information, as described as follows:

 66

“The description of the requirements had different views, so, the struc-
turing in various artifacts is more appropriate than consolidated.”

“A consolidated documentation is better for the developer because it
makes it easier to find the information.”

The SRS more focused on the customer and with unnecessary details for the

developer impaired the clearness and understanding, as described as follows:

“The SRS contains gaps that make understanding it difficult. It should
be more straightforward and direct. Many times the SRS is unclear, al-
lowing different interpretations.”

The customer communication was appropriate. However, given that the SRS

was insufficient to the developer, a strong communication was needed with the ana-

lysts to clarify doubts, so, the team productivity was impaired. Much information was

obtained from the daily meeting, but it was not enough. During the internal tests,

many of detected Non-Conformities (NC) could be traced back to a misunderstanding

of the SRS. Developers’ productivity was impaired because they often needed to fix

these NC. The SRS was elaborated in MS Word. The developers pointed out that a

specialized tool could help control and maintain the change history.

c) Summary

The Figure 4.6 depicts the factors that affect the SRS.

Figure 4.6 Quality Factors of SRS in ASD – case 5

The SRS was not used to validate requirements, but it was customer-oriented

due to the contract. Sometimes, the inadequate experience of the analysts entailed

unnecessary details that affected the SRS clarity and legibility. Functional require-

ments were represented by use cases, screens, and conceptual models. Despite de-

 67

scribing the NFRs, the SRS did not explain technical aspects. The acceptance crite-

ria were inadequate for code and tests activities. A lot of artifacts impaired the under-

standing of the developer. The absence of a specialized tool made it difficult to con-

trol changes in requirements.

4.3.6 Case Study 6 (A company whose core business is not software)

a) Context

The case study was conducted in a large private company that operates in the

mortgage sector in the Netherlands for the past 20 years. The core business of the

company is not software development. The customer and the end-users are employ-

ees of other sectors of the company. The development team had around 150 soft-

ware engineers to develop applications only for internal use. The software engineers

had many years of experience with the software development. One of them had more

than 35 years of experience, and the others had more than 15. However, they had

little experience with ASD. For many years, they had used traditional development

(waterfall), but since the last 3 years, ASD was adopted in all projects. They adopted

practices, such as kanban, backlog, user stories, planning poker, iterations, ac-

ceptance testing, code review, daily stand up, and frequent releases, among others.

b) The Story Line

The SRS was based on user stories, conceptual model, and business rules.

Despite having a small SRS that facilitated the readability, the SRS was very focused

on the customer, as follows:

“The SRS is written in a waterfall method while running in agile pro-
jects. Often the SRS is difficult to understand. Written for the end user,
not for programmer.”

The SRS was insufficient and did not have the information required for coding.

Software engineers pointed out the need to describe NFRs and also be able to trans-

late the functional requirements into technical requirements, as described as de-

scribed as follows:

“The functional requirements need to be translated into technical re-
quirements and have a good division between functional and NFR.”

The software engineers pointed out that the acceptance criteria should be de-

scribed in a more efficient way to decrease the effort to perform the tests. To achieve

 68

this, all requirements should be considered, not just the functional requirements, as

follows:

“Create more understanding of our system with designers. Being
smarter in acceptance criteria. An adequate SRS for the developer
should contain acceptance criteria, functional and NFR.”

The little experience of the team and company with ASD impaired the simplici-

ty and legibility of the SRS. Prolix descriptions unnecessary for the developer was a

negative factor, as described as follows:

“The requirements specification must be as simple as possible and
have a unique interpretation. It is necessary to standardize and write
the SRS in a more objective way.”

The communication with the end user was done exclusively by the PO. Every

two weeks, new versions of applications were available for the user validation. How-

ever, the users took a long time to validate the software, causing a bottleneck in the

development process because the backlog of the sprints was open waiting for cus-

tomer feedback, as described as follows:

 “We lost sight of the stories. Sometimes, the user complains that a
problem is not fixed, but actually, it is waiting for his validation. This
costs time and rework.”

There was no standard for the testing activity. Some projects performed the

tests directly from the SRS, but, other projects prepared another artifact for testing. In

both cases, the tests were made in a non-automated way. The team suggested

adopting TDD and automation to enhance the SRS and hence the tests, as follows:

 “Testing would be better if there is a default test set (automated) in
combination with test-driven development.”

Jira tool15 was used to support project management. The company did not use

any specialized tool to support the requirements activities. The stories also were de-

scribed in Jira, but none of the interviewees pointed out that this affected the quality

of the SRS.

The company developed new applications and had a constant activity of

maintenance of the existing applications. There were some maintenance teams to

add new features and fix bugs in these applications. Some older applications had no

SRS. The business rules were only in the minds of some people. Sometimes, the

15 http://technologyadvice.com/products/atlassian-jira-reviews/

 69

software engineers wasted a lot of time to find relevant information. Other times,

there was a lot of unnecessary information, as follows:

“There's a lot of knowledge not written on paper, but it is in the heads
of colleagues.”

“Often, old projects don’t have a relevant SRS. We lose a lot of time
when we need to maintain these projects.”

c) Summary

Figure 4.7 summarizes the factors that affected the SRS. Despite the frequent

software releases, the end users took a long time to validate these releases, which

caused problems in the requirements management. The SRS was not used to vali-

date requirements. The company and team had little experience with ASD which af-

fected the simplicity of SRS. The SRS were very focused on the end user. It had un-

necessary details for the developer (prolix), and it lacked technical aspects and

NFRs. The acceptance criteria were not described properly.

Figure 4.7 Quality Factors of SRS in ASD – case 6

4.4 Summary

In this chapter, we present the procedures performed in six companies to in-

vestigate the phenomenon of the specification of requirements in ASD. The individual

results of each study are presented, describing the factors that affect the quality of

SRS in each company, and how the factors affect the work of the development team.

In next chapter, we answered the RQ2 (defined in Section 1.2) by presenting

the model that emerged from the cross-case synthesis of the data collected in the six

companies. Threats to the validity of case studies are also presented in Chapter 5.

 70

5

A MODEL ABOUT QUALITY OF SRS IN AGILE PROJECTS

This chapter presents the model emerged from the investigation into the in-

dustrial practice described in Chapter 4. Section 5.1 describes the steps to conduct

the cross-case analysis and synthesis. The results of the cross-analysis of the data

are described in Sections 5.2, 5.3 and 5.4. The model resulting from the data synthe-

sis is presented in Section 5.5. In Section 5.6, the model is compared to the SM and

others studies. The findings of the cross-case synthesis are discussed in Section 5.7.

5.1 Procedures for cross-case analysis and synthesis

A cross-case analysis was conducted to achieve synthesis through subsuming

the concepts identified in case studies. The idea behind the searching for cross-case

patterns is to force the investigators to go beyond initial impressions, in particular

through the use of structured and diverse lenses on the data (EISENHARDT, 1989).

The key to good cross-case comparisons is to look at the data in many divergent

ways. This improves the likelihood of an accurate and reliable model. Cross-case

analysis enhances the probability of capturing novel findings which may already exist

in the data. This is also consistent with our goal of building a model about the phe-

nomenon that explains similarities and contradictions among different cases.

Models are used to facilitate a clear understanding of phenomena. They are

one of the main instruments of modern science (FRIGG and HARTMANN, 2012). A

model is a physical, symbolical, or verbal representation of a concept, which consti-

tutes an appropriate scientific mechanism to guide the search and the explanation of

facts. These representations are useful because they help organizing and narrowing

down the scope of the phenomena, predicting new facts and relationships based on

previously known facts and relationships, and identifying facts that have not been

 71

convincingly explained (FRANÇA et al., 2014). A solid model of quality of SRS in the

context of the ASD would represent a relevant and timely contribution.

To build the model, we followed the guidelines proposed by Eisenhardt (1989)

to build theories: Getting started; Selecting cases; Crafting instruments\protocols; En-

tering the field; Analyzing data; Shaping the theory; Enfolding literature. The first four

activities were described in Chapter 4. This chapter describes the other activities.

Procedures of meta-ethnography (NOBLIT and HARE, 1988) were used to

translate the concepts and propositions of the case studies during the cross-case

synthesis. Meta-ethnography is an approach that enables a rigorous procedure for

deriving substantive interpretations about any set of constructive studies. It involves

some degree of induction and interpretation, which is consistent with the nature of

the qualitative case studies that we want to analyze and synthesize (FRANÇA et al.,

2014).

As shown in Figure 5.1, initially, we reviewed each case to understand the

concepts and their relationships. Then, we searched for cross-case patterns inter-

preting and summarizing the core similarities and differences between the studies in

order to extend our understanding of the phenomenon in different contexts, and to

explain it. Next, we translated the concepts and propositions from individual case

studies. Finally, we build a model considering the concepts and propositions, and

compared it to the others studies in the literature.

Figure 5.1 Cross-case analysis and synthesis steps

5.2 Searching for cross-case patterns

To have a maximum variation sampling strategy, different companies were

chosen, as described in detail in Chapter 4 and summarized in Table 5.1. Public and

private companies of different sizes were investigated. Young companies with only

one year of existence and enterprises with more than 40 years of experience in soft-

ware development. Three of the companies are headquartered in Brazil and provide

services to clients located in it. The other 3 companies have headquarters in Europe,

but one of them has a branch in Brazil (fifth case study - cs5).

 72

Table 5.1 – Context of the companies

Characteristics cs1 cs2 cs3 cs4 cs5 cs6

Years of Existence 42 19 1 5 23 19
Size Large Small Medium Micro Very Large Large
Area of Operation Brazil Brazil Brazil Europe +100 countries Netherlands
Nature of Sector Public Private Public Private Private Private
Type of Customer Public Private Private Private Public Private

Core business
Solutions for
Government Solutions for EFT

Innovation Solutions
for various sectors

Solutions for educa-
tion sector

Solutions for
various sectors

Solutions for
mortgage sector

Nature of Products
Information Sys-
tems and BI

Applications for
mobile devices

Applications for
smartphones Information Systems

Information Sys-
tems

Information Sys-
tems and BI

Number of Employees
 Entire Company 3800 71 155 12 +40000 600
 Unit investigated 200 71 155 12 +100 600
 Software Engineers 183 46 135 7 90 150
 Case Study Participants 26 20 25 7 15 10
 Interviewees 14 14 15 3 9 4
Average team experience 11 years 6 years 4 years 8 years 5 years 21 years
Experience with ASD 2 years 8 years Since its foundation Since its foundation 2,5 years 3 years
Duration of sprints 4 weeks 2/4 weeks 1/2 weeks 1 week 2/4 weeks 2 weeks
Client communication Product-Owner Product-Owner Project Manager Product-Owner Team Product-Owner
SRS based on User Stories Use Stories Use Cases Use Stories Use Cases Use Stories
Requirements Validation
 By SRS Always In most projects Not used Not used Not used Not used

 By Software Running Every 2/3 sprints Every 2/3 sprints Every sprint Every sprint Every sprint Not often (depend
on the user)

 Type Face-to-face Face-to-face and
Remote

Remote Remote Face-to-face Face-to-face and
Remote

SRS directed to Customer Customer Customer Team Customer Customer
Payment System Value-based Fixed price Fixed price User-based Value-based Not applicable

The companies operate in different business segments. In most of them, the

software development is the primary activity of the company, except one that works

in the mortgage market (cs6). In all companies, the customer was located in different

cities of the development team. Software validations were done face-to-face or re-

motely. In one of the companies, the development team works completely distributed

(cs4). All companies adopt short sprints, ranging from 1 to 4 weeks. However, the

frequency of software validation was different.

We interviewed software engineers with university graduation, specialization,

master, as well as graduate students. In three companies, most interviewees were

male, and in one enterprise the majority was female. In two companies, all respond-

ents were male. We interviewed software engineers who were acting as developer,

system analyst, tester and solution architect. Although not being part of the analysis

unit, some managers were also interviewed to clarify doubts about the context. The

profile of software engineers is summarized in Appendix D (Table D.1).

5.2.1 Similarities between the studies

The collected data were analyzed to capture the similarities and discrepan-

cies, and to find ways to explain them. Similarities in the findings of the case studies

increase their reliability and external validity (FRANÇA et al., 2014). Despite the di-

 73

versity in the context of companies and in the profile of the software engineers, we

identified several similarities, which can be grouped into two categories, as shown in

Figure 5.2: Insufficient content for the developer and Difficulty of understanding the

SRS due to how the requirements are described. The difficulty of understanding is

due to prolix texts, which are customer-oriented and unnecessary for the developer.

Ambiguous descriptions and fragmented in various artifacts also undermine the un-

derstanding.

Figure 5.2 Overview of SRS quality factors in case studies investigated

Regarding the content, the functional requirements were described by US, use

cases, conceptual model, and mockups. Regardless of the form of representation,

the developers pointed out that much effort is required to clarify doubts when the

SRS is insufficient and focus only on the functional requirements. The lack of NFRs,

technical aspects such as constraints of design and interface, validation rules were

pointed out as a negative factor. The lack of examples impaired the understanding of

the complex rules. The history of changes and the dependency relationship between

the requirements were important to analyze the impact of the change request. Some-

times, the content is impaired due to insufficient detail. The lack or inadequacy of ac-

ceptance criteria was also identified as a negative factor.

It is important to emphasize that in none of the companies the client worked in

an integrated way on the same site with the development team. All software engi-

neers pointed out that the customer's availability is important to detail the require-

ments, clarify doubts and validate the functionality, but it is not required the daily

presence of the customer for this. The customer should be available when the team

needs. In two of the companies, the customer availability was inadequate, and this

was perceived as detrimental for the contents of the SRS and software validation.

Insufficient experience with ASD and with the activity of requirements specifi-

cation affected the content and how the requirements were described. Some compa-

ny used the SRS to validate requirements with the customer aiming to meet some

 74

contract clause or due to the impossibility of carrying out frequent validations through

software. As a result, the SRS was customer-oriented, which made it inadequate for

the developer. The SRS was insufficient for supporting coding because technical as-

pects and NFRs were not described; the focus was only on the functional require-

ments. Insufficient SRS for the developer and the difficulty in understanding it in-

creased the effort to coding, testing, and maintaining. The SRS fragmented on many

artifacts increased effort to specify the requirements and made it difficult to update.

The list of the factors identified in each case study is shown in Table 5.2. The

factors that affected positively and improved the quality of SRS are represented as

‘+’. The factors that jeopardized the quality are represented as ‘–’.

Table 5.2 – Quality factors by case studies

Factor
Impact

Case Studies

1 2 3 4 5 6
«Customer-oriented» - � � � � �
«Team-oriented» + �
«Automated Support» + �
«Inadequate Automated Support» - � �
«Fragmented Information» - � � �
«Simplicity» + � � �
«Unclear» - � � � � �
«Clearness» + �
«Difficult Readability» - � � �
«Readability» + � � �
«Objectivity» + � �
«Prolix» - � � � � �
«Completeness “agile”» + � � � � � �
«Insufficient Detail» - �
«NFR» + � � � �
«Lack of NFR» - �
«Technical aspects» + � �
«Lack of Technical aspects» - � � � �
«Traceability» + �
«Lack of Traceability» - � �
«Change History» + �
«Lack of Change History» - � � �
«Acceptance Criteria» + � �
«Inadequate Acceptance Criteria» - � � �
«Lack of Acceptance Criteria» - �
«Prototypes of User Interface» + � � � � �
«User Stories» + � � � �
«Use Cases» + � �
«Business Rules» + � � � � �
«Conceptual Model» + � � � �
«Lack of Examples» - � � �
«Characteristics of mobile applications» - �
«Characteristics of financial software» - �
«Characteristics of Process» - �
«Inadequate Customer Collaboration» - �
«Inadequate Customer Collaboration to validate» - �
«Inadequate Experience with ASD» - � � �
«Inadequate Experience with Specification» - � � � �
«Late validation by SW» - � �
«Outdated». - � � � �
«Excessive changes» - � �
«SRS used to requirements validation» - � �
«Contract agreements» - � � �
«Overlooked Requirements» - � �

 (+) Positive effect, improve quality; (-) Negative effect, jeopardize quality

 75

5.2.2 Explaining the differences between the studies

The diversity of the companies, processes and the type of developed software

opens the opportunity for explanations based on the contextual differences, thus en-

riching the understanding of the phenomenon in highly distinct environments. The

main differences between the case studies are briefly described as follows.

a) SRS used to validate requirements

Two companies used the SRS to validate requirements, instead of performing

validations through frequent software deliveries. Some peculiarities explain the adop-

tion of this strategy. In both companies, the effort required to make available a ver-

sion to the customer is very high due to the characteristics of the process and of the

software. The company of the second case study (cs2) develops software that in-

volves EFT, so the software must be tested and certified by control bodies in Brazil.

In the first case study (cs1), to provide a version for customer validation requires a

prior validation process in the local, development, testing, and homologation envi-

ronments. Also, the contract agreements establish that the SRS must be validated by

the customer before the coding.

In both contexts, the companies consider that is not worth to validate versions

at the end of each sprint. The versions are available only for internal testing. Thus,

the SRS is used as a mechanism to perform intermediate validations with customers.

In these companies, the validations of partial versions occurred every two/three

months, at least. In the first case study, the late validations entailed many changes in

applications. In the second case study, given that the development aimed to evolve a

stable framework that was already working on several clients, late validation did not

bring big troubles to the development team.

b) Maturity of the companies and Experience of the teams

The older companies (cs1, cs2, cs5, cs6) still have some vestiges of traditional

development. Some artifacts were maintained to meet different stakeholders’ needs.

The exception is the company of the sixth case study: despite being over 19 years

old and having three years adopting the ASD, it used a simple SRS with few artifacts.

In this case, it is important to note that the end users and the customer were internal,

given that the software developed by the company was for their own use.

 76

The adoption of ASD is recent in companies. The interviewed software engi-

neers pointed out problems with SRS described in a prolix way because of small ex-

perience of some engineers with the activity of requirements specification and with

ASD. The company of the third case study did not identify problems arising from ex-

cessive detail, but, the lack of experience of the team entailed an SRS with ambigui-

ty. Also, the low customer availability undermined the detailing of the features.

c) Billing system for software products

Companies used different billing systems: value-based, fixed-price and user-

based. In the company of the sixth case study, the software was developed for inter-

nal use only, i.e. the software was not sold.

Two companies used a payment system based on delivered functionality (val-

ue-based), but they had some different characteristics. The company of the first case

used the SRS to validate the requirements with the customer before coding, as set

out in the contract. The customer only paid for the features requested by him/her and

after the software validation. Thus, there was a great concern not to lose time speci-

fying and developing features that were not requested by the customer. In the com-

pany of the fifth case, the SRS was not used to validate requirements with the cus-

tomer, but it was considered a software product and the customer paid for it and for

the functionality available in the software.

Two companies (cs2 and cs3) adopted a system of monthly payments of fixed

price, regardless the functionality delivered in the sprint. Sometimes, features not re-

quested directly by the customer were added to enhance the operation to it or to fa-

cilitate the inclusion of new requirements in the future. This practice is contrary to the

agile principle of maximizing the amount of work not done, but it was an approach

that aimed at improving customer satisfaction.

In the fourth study, the company uses a payment system based on the number

of users of the application (user-based). In this case, the company avoided making

customizations aimed to meet demands of a particular customer. The features were

only included if they made sense for the evolution of the application as a product.

d) Sector of activity of companies and customers

Two companies are public institutions (cs1, cs3) and four are private. Howev-

er, one of the public companies only had private customers (cs3), and one of the pri-

 77

vate companies was providing services only to public institutions (cs5). Public and

private companies that provide services to public institutions were required to follow

the sector legislation in Brazil. In these cases, the SRS was made available to the

customer and regulatory agencies to meet the contractual agreements. Thus, the

SRS was written in a language customer-oriented, and not to the team. Neverthe-

less, the private company that had public clients adopted a simple SRS (but custom-

er-oriented), based on few artifacts, unlike public companies that used an extensive

documentation.

e) Type of Software

Most companies were engaged in the development of information and man-

agement systems. Two companies developed applications for mobile devices. The

applications for smartphones developed in the third case study had many innovation

requirements. Many changes were requested after customer validation, which was

pointed out as a negative factor by software engineers. According to them, the high

number of changes occurred as a result of these characteristics of the software com-

bined with the small customer availability to clarify doubts, detail the requirements

and to validate the partial versions.

The company of the second case study works in the evolution of an applica-

tion framework for capturing EFT. In the fourth case study, software engineers

worked on the evolution of a single application focused on the education sector.

Common to these two companies is the maturity of the applications that are already

in operation in several clients for some years. Thus, few changes were requested

when new features were available for customer validation. Changes in database

structure were minimal and also had no significant impact on the development team.

Although only a few mobile applications of the third case study used database,

these projects had many rework problems arising from change requests that involved

in changes in database structure.

f) Requirements validation (face-to-face/remotely)

We found some differences regarding how the software validations were con-

ducted. Two companies (cs1 and cs5) performed only validation face to face with the

customer. In two other companies, the validations were conducted only remotely by

the customers, without the participation of the development team (cs3 and cs4). Two

 78

companies performed validations face-to-face and remotely, depending on the needs

of the project or stakeholders (cs2 and cs6).

In two of the four companies (cs3 and cs6) that perform validations remotely,

the customer had limited availability to clarify doubts, detailing requirements or vali-

dating the software. Thus, the remote validations entailed problems for the project

because the customer often took a long time to verify the partial versions. Although

the quality of the SRS was not affected, this practice hindered the planning of the

next sprints, because some requirements were forgotten without being validated by

the customer, leaving the product backlog with uncompleted tasks, waiting for the

customer feedback.

Enterprises that perform the validations face-to-face had no such problems

because the dates of the meetings were agreed between the stakeholders. The re-

mote validations also did not affect the project execution when the customer had an

adequate collaboration (cs2 and cs4).

g) Specialized Automated Support

There was no unanimity among software engineers interviewed about the im-

portance of using a particular tool for the quality of SRS. We presume that the im-

portance of tool depends on the complexity level of the SRS.

Only the company of the first case study used a specialized tool (Caliber) to

specify and manage requirements. The SRS was extensive and fragmented into var-

ious artifacts. Thus, the use of the tool was pointed out as a positive factor because it

provided information on the history of changes and it was also crucial in the analysis

of change requests because it provides information about the dependency relation-

ship between the requirements automatically.

Companies from second and fifth case studies did not use any particular tool

but pointed out that the absence of such a tool affected the quality of SRS. These

companies also had an SRS fragmented on various artifacts.

On the other hand, in the remaining case studies (cs3, cs4 and cs6), no tools

were used, but the team did not consider that this compromised the quality of the

SRS. These companies adopt a simple documentation, based on a few artifacts. De-

spite considering that the absence of a tool had no impact on the SRS, in the third

and fourth case studies, the teams considered important to have information about

the historical changes and the traceability of requirements, respectively.

 79

h) Using the SRS for the tests

Although investigating the factors that affect the tests of software is beyond

the scope of this study, we tried to understand whether the content of SRS could

contribute in some way with that activity. In none of the companies, there was an in-

ternal consensus among software engineers about the SRS to be used to guide the

tests without the need of a particular artifact for this activity. Some software engi-

neers consider that it is more appropriate to draw up a specific artifact because the

test activities have their particular characteristics, and the tester and the developer

have different needs. However, other software engineers consider that it is more pro-

ductive to have a single artifact describing AC adequately and closer to what will be

implemented and tested.

TDD is an agile practice that has been growing in companies. It establishes

the use of tests as a mechanism to specify requirements to create executable speci-

fications. This movement started at the end of the 90s, and then grew through other

initiatives such as ATDD and BDD (ALLIANCE, 2016). These initiatives require a re-

formulation in the SRS to be used effectively to code and to perform the tests. These

initiatives were not identified in the case studies. Despite the differences regarding

the use or not of a particular document to guide the tests, the software engineers

agreed on the need to automate the tests.

5.3 Translate the concepts

After analyzing the context, the story line of each study, the similarities, and

differences, we performed the translation of concepts from the cases to unify the no-

menclature of factors presented in Table 5.2. To anticipate possible situations that

could occur when translating the concepts from one case to another, we adopted the

strategy used by FRANÇA et al. (2014) based on principles of meta-ethnography to

generalize and rename concepts, as described in Appendix D (Table D.2). It is im-

portant to remark that this strategy could entail some degree of threat to validity. Fur-

ther, it is debatable that, from a pure interpretive or constructive stance, this type of

generalization is appropriate. Therefore, we used this type of translation with parsi-

mony and tried to be careful with the claims we based on it. Additionally, we antici-

pated that refutations could arise, but did not find any instance in this current study.

 80

Identical and Localization translations (Appendix D, Table D.2) were trivial. In

the former case, the names and meanings of the concepts were the same. In the lat-

ter there was no translation because the concept is context dependent. Renaming

and Generalization required a bigger challenge. In Table 5.3, we present some trans-

lations performed and a brief definition is presented below. For example, in some

cases, the use of the «Acceptance Criteria» improved the quality of SRS. However,

in others cases the «Inadequate Acceptance Criteria» and «Lack of Acceptance Cri-

teria» were pointed out as negative factors. So, these concepts were renamed in

«Acceptance Criteria» concept that has a positive effect in SRS (Table 5.3, id #4).

Table 5.3 – Examples of concepts translations

Concepts Type Translation id

 Inadequate Team Experience with Specification Identical Inadequate Team Experience with Specification #1
 Outdated Identical Outdated #2
 Technical Aspects (+) and Lack of Technical Aspects (-) Renaming Technical Aspects (+) #3
 Acceptance Criteria(+), Inadequate Acceptance Criteria(-) and Lack of Acceptance Criteria(-) Renaming Acceptance Criteria (+) #4
 Clearness (+) and Unclear (-) Renaming Clearness (+) #5
 Insufficient Detail (-) and Completeness Agile (+) Renaming Completeness Agile (+) #6
 User Stories, Use Cases, Conceptual Model, Prototypes of UI, Examples and Business Rules Generalization Functional Requirements (+) #7
 Characteristics of Mobile Apps and Characteristics of Financial Software Generalization Characteristics of Software #9
 Low Customer Availability to validation and Low Customer Availability to detail and test Generalization Inadequate Customer Availability #9
 Characteristics of process (c1) Localization Characteristics of process (c1) #10
 Overlooked Requirements Not applicable - #11

«User Stories», «Use Cases», «Conceptual Model», «Prototypes of UI», «Ex-

amples» and «Business Rules» were generalized in «Functional Requirements»

concept (#7). The «Overlooked Requirements» factor was reported by some soft-

ware engineers (cs3, cs6), but it was not included in the model because although it is

a problem that affects the project management, it is not a problem related to the con-

tent or how the requirements are described in the SRS (#11).

5.3.1 Identifying the constructs

According to the cross-case synthesis, the factors that can improve the quality

of SRS in the perception of software engineers are:

• «Team-oriented»: The requirements are described using a language
directed to the developer. Technical terms and jargon are used, if
needed;

• «Clearness»: The requirements are described in a clear way, without
ambiguities. Each requirement can only have a single interpretation;

• «Readability»: The description of the requirements is easy to under-
stand;

• «Objectivity»: The requirements are described in an objective manner,
without long, prolix, redundant and unnecessary details to developer;

 81

• «Simplicity»: It is the art of maximizing the amount of work not done
(AGILE MANIFESTO, 2001). In the context of the requirements specifi-
cation activities, simplicity is to describe the requirements in the sim-
plest way as possible, with few representations, models, and structures;

• «Completeness “agile”»: The requirement description is enough to be
coded without the need to consult complementary sources. The com-
pleteness should be evaluated under the perception of the developer in
the scope of each sprint, and not the whole project;

• «Technical aspects»: Consist of the description of the design and in-
terface constraints, validation rules, error messages or any other tech-
nical information for the operationalization of the requirements;

• «Acceptance Criteria»: It is a description of criteria that support the
acceptance, or not, of a requirement;

• «Functional Requirements»: It is the description of the functions or
tasks to be performed by the system. Requirements can be represented
using a textual format, for example, by user stories, use cases, busi-
ness rules and concrete examples; or using a visual representation,
such as conceptual models and mockups, or others representations;

• «Non-Functional Requirements (NFR)»: Consist of the description of
the requirements to operate the system, such as security, performance,
multilingual support, among others;

• «Traceability»: Consists of the description of the source of each re-
quirement, as well as, the dependency relationships between them;

• «History of Change»: It is the history of changes made in the require-
ments;

• «Automated Support»: The activities of specification and management
of requirements are carried out with the support of a specialized tool;

The factors that jeopardize the quality of SRS:

• «Inadequate Customer Availability»: The availability of the customer
to collaborate with the development team or to validate the software is
not adequate;

• «Inadequate Team Experience with ASD»: The development team
has little experience with the values, principles, and practices of the
ASD;

• «Inadequate Team Experience with Specification»: The develop-
ment team has little experience with the requirements specification ac-
tivity;

• «Late validation by SW»: Partial software versions are not released to
customer at the end of each sprint, which delays the software valida-
tion;

• «SRS used to requirements validation»: SRS is used to validate re-
quirements with the customer and the end user;

 82

• «Contract agreements»: Contractual clauses that establish the availa-
bility, validation or approval of the SRS by the customer;

• «Outdated»: The description of the requirements is outdated, no longer
corresponds to the needs requested by the customer;

• «Excessive changes»: The development team receives many re-
quests for changes in partial versions of the application;

• «Fragmented Information»: The requirements are described in a
fragmented manner in various artifacts that have different and comple-
mentary views;

• «Characteristics of software»: Intrinsic characteristics of the type of
software developed or business area that the application is turned re-
quiring an additional effort for the team;

• «Characteristics of process»: Bureaucratic practices used to release,
validate and certificate partial versions of software, and control changes
in requirements which require an additional effort from the team.

The factors were grouped according to the manner they affect the quality of

SRS (direct or indirect), as shown in Table 5.4.

Table 5.4 – Quality factors by categories

 Category Factor

D
IR

E
C

T

Content
(C)

 + «Team-oriented»
 + «Clearness»
 + «Readability»

 + «Objectivity»
 + «Completeness “agile”»
 - «Outdated»

Structure
(S)

Type of
information

+ «Functional Requirements»
+ «Technical aspects»
+ «Acceptance Criteria»
+ «NFR»
+ «Traceability»
+ «Change History»

How
+ «Simplicity»
- «Fragmented Information»

IN
D

IR
E

C
T

staKeholders
(K)

 - «Inadequate Customer Collaboration»
 - «Inadequate Team Experience with ASD»
 - «Inadequate Team Experience with Specification»

Organizational
(O)

 - «Late validation by SW»
 - «SRS used to requirements validation»
 - «Characteristics of process»
 + «Automated Support»

External
(E)

 - «Characteristics of software»
 - «Contract agreements»
 - «Excessive changes»

Factors affecting quality directly are grouped into two categories: Content (C)

and Structure (S). The Content category groups the factors related to how the re-

quirements are described. The Structure category groups the factors related to the

type of information contained in the SRS and how the structure is organized. Factors

affecting quality indirectly are grouped into three categories: staKeholders (K), Or-

ganizational (O) and External (E). The factors represented as ‘+’ mean that their

 83

presence can improve the quality of SRS and their absence can impair it. The factors

represented as ‘-’ mean that the presence can jeopardize the quality of SRS and the

absence can improve the quality. We did not find contradictory concepts between

studies, but those may be found in other cross-case analysis.

5.3.2 Outcomes

The presence or absence of these factors affects the quality of SRS and con-

sequently affects the ASD in a positive or negative way, as follows:

• «Effort required to specify»: The effort required for the development
team to elaborate the SRS, with or without the presence of the client;

• «Effort required to code»: The effort required for the development
team to conduct the coding activity;

• «Effort required to test»: The effort required for the development team
to test the software;

• «Dependence between stakeholders»: Level of dependency that ex-
ists among stakeholders due to content of SRS or how it is specified;

• «Non-conformities in the software»: Quantity and type of noncon-
formities detected in the software due to SRS problems;

• «Knowledge Transfer»: The capacity of the SRS to be used as a
mechanism for knowledge transfer among stakeholders, especially
when there is turnover, and in distributed and maintenance teams;

• «Impact Analysis»: The capacity of the SRS to support the analysis of
the impact of requests for changes in requirements;

• «Reuse»: The capacity of the SRS to contribute to the reuse of re-
quirements during the specification and coding activities.

5.4 Translate the propositions

After the unification of concepts, the relationships among the factors (proposi-

tions) were analyzed to translate it across the case studies. The propositions were

translated using the strategies proposed in meta-ethnography according to FRANÇA

et al. (2014), and we add the Localization type, as described in Appendix D (Table

D.3). As a result of cross-case analysis and synthesis, we extracted eleven proposi-

tions as shown in Table 5.5. The propositions translated received a sequential num-

bering different from that defined in the individual studies.

 84

We did not find refutation instances in this study, but we believe it can be

found in other cross-case analysis. The propositions identified only in the context of a

particular case study were maintained. For example, the proposition number seven

(#P7) in Table 5.5, in the third case study, the proposition 8 (C3P8) relates the inad-

equate customer collaboration with an insufficient SRS resulting in excessive chang-

es in requirements. The reciprocal translations (RTA) were also trivial since we need

only rewrite the propositions after the unification of the constructs (#P1, #P2, #P4,

#P5, #P6 and #P9).

Table 5.5 – Translation of Propositions

Proposition Proposition Translation Type

C5P7: A «customer-oriented» SRS entails
«prolix» descriptions which lead to a SRS
with «difficult readability».

C4P5: A «team-oriented» SRS tends to
have more «objectivity» which facilitates
the «readability».

The «team-oriented» SRS contributes to the re-
quirements to be described a more «objectivity» way
which facilitates the «readability» for the developer.

RTA #P1

C1P6: The «completeness "agile"» is
obtained from the description of the «func-
tional requirements», «technical aspects»
and «non-functional requirements».

C3P5: «Insufficient Detail» undermines
the «completeness» of SRS.

The «completeness "agile"» is obtained from the
description of the «functional requirements», «ac-
ceptance criteria», «technical aspects» and «non-
functional requirements». The content is undermined
when the requirements have «insufficient detail».

RTA #P2

C4P6: The «acceptance criteria» improves
the «completeness» of SRS.

C6P10: The «inadequate acceptance
criteria» compromises the «complete-
ness» of SRS.

The description of «acceptance criteria» related to
«technical aspects», «non-functional requirements»
and «functional requirements» contribute to the SRS
becomes more «team-oriented».

LOA #P3

C3P7: The «simplicity» and «objectivity» of
SRS facilitate the «readability» for the
developer.

C5P2: «Prolix» descriptions and «frag-
mented information» difficult the «reada-
bility» for the developer and compromise
the «clearness».

C1P2: «Fragmented information» con-
tributes to the SRS become «outdated».

The «simplicity» and «clearness» of SRS facilitate
the «readability» for the developer. On the other
hand, The «fragmented information» in various
artifacts hinders overall understanding of the re-
quirements and contributes to the SRS become
«outdated».

RTA #P4

C1P4: «Inadequate team experience with
ASD» entails «prolix» descriptions that
undermine the «clearness».

C4P7: «Inadequate team experience with
specification» entails «prolix» descrip-
tions.

C3P4: The «objectivity» of SRS influ-
ences in the «clearness».

«Inadequate team experience with ASD» and «inad-
equate team experience with requirements activities»
compromise the «objectivity» of SRS that influences
in the «clearness».

RTA #P5

C1P9: Some «characteristics of the pro-
cess» contributes to «late validation
through software».

C2P8: Some «characteristics of the
process» contributes to «late validation
through software».

Some «characteristics of the process» and «charac-
teristics of the software» may contribute to the valida-
tions through software running happen at longer time
intervals than the duration of sprints.

RTA #P6

C3P8: «Inadequate availability of the
customer» undermines the breakdown of
the requirements, the clarifying of doubts
and the validation of the partial versions.
As a result, the SRS gets with «insufficient
detail» with for the developer and «exces-
sive changes» are requested.

-

«Inadequate availability of the customer» undermines
the breakdown of the requirements, the clarifying of
doubts and the validation of the partial versions. As a
result, the SRS affects the «completeness “agile”»
and «excessive changes» are requested.

LOC #P7

C3P1: «Characteristics of mobile apps»
and «inadequate customer collaboration»
lead to «excessive changes» which affect
the quality of SRS.

C1P3: «Late validation through software»
leads to «excessive changes» which
affect the quality of SRS.

«Excessive changes» contribute to the SRS become
«outdated». «Excessive changes» could be due to
some «characteristics of software», the «late valida-
tion through software», or due to «inadequate cus-
tomer collaboration»

LOC #P8

C2P9: «Inadequate automated support»
contributes to the «lack of traceability» and
«lack of change history» that impaired the
«completeness» of SRS.

C1P11: «Automated support» can provide
the «traceability» and «change history».

«Automated support» can provide the «traceability»
and «change history» that enhance the «complete-
ness “agile”» of SRS.

RTA #P9

The «automated support» facilitates the «readability»
of SRS. LOA #P10

C1P12: «Contractual agreements» and the
«late validation through software» require
the use of «SRS to validate the require-
ments» which makes the SRS customer-
oriented with «prolix» descriptions.

C5P5: «Contractual agreements» re-
quires a SRS customer-oriented resulting
in «prolix» descriptions.

Sometimes, «contractual agreements» and the «late
validation through software» require the use of «SRS
to validate the requirements» leading to a SRS less
«team-oriented» and «objective».

LOC #P11

Translations of Line-of-Argument type (LOA) demanded a greater effort of in-

terpretation and induction. For example #P3, the presence of AC in the SRS was cit-

 85

ed as a positive factor (C4P6). However, the inappropriate use of AC was pointed out

as a negative factor which affected the completeness of the SRS (C6P10). Analyzing

the data collected and the story line, we have identified a new proposition relating the

acceptance criteria to NFR and technical aspects.

5.5 Building the model

The model illustrated in Figure 5.3 shows the factors that improve the quality

of SRS (+ effect) and those that impair the quality (- effect). The relationship between

the factors (propositions) and the outcomes resulting from the impact of these factors

are also presented in the model. On the left side of each factor is displayed the acro-

nym (C, S, K, O, E) corresponding to its category (Table 5.4). The right side shows in

how many case studies the factor was pointed out (Table 5.2). The arrows (RTA,

LOC, LOA) follow the nomenclature defined in Appendix D (Table D.3).

Figure 5.3 Model on quality of SRS in ASD

Following the agile principle that the SRS should not be used to validate re-

quirements with the customer, a «team-oriented» SRS is a key factor to improve the

quality of SRS in ASD. The description of the «functional requirements» is essential,

 86

but it is not sufficient for the coding activity. The description of the «technical as-

pects» and «non-functional requirements» makes the SRS closer to what will be

coded, thus reducing the «effort required to coding». The specification of a require-

ment should also describe how it can be verified (ISO 29148, 2011). This information

improves the understanding of the requirement and the performance of coding and

testing activities. Defining adequate «acceptance criteria» supports an objective ap-

proach to conduct the acceptance tests of software with the customer. This infor-

mation contributes to the completeness of the content.

The «completeness "agile"» had a different meaning compared to traditional

development. First, in ASD, the completeness of the SRS should be evaluated under

the scope of the developer perception. The SRS should not be used as a communi-

cation mechanism with the customer aiming at the validation of requirements. The

SRS should be designed to be used by the developer for coding. Moreover, in ASD,

the concept of completeness refers to detail the prioritized requirements for a given

development cycle (sprint). In contrast, in waterfall development, all requirements are

exhaustively detailed and validated, before starting the coding activity. In other tradi-

tional methods like RUP, the requirements are detailed only by iteration as ASD, but

the SRS is used to requirements validation.

A «team-oriented» SRS becomes more objective with fewer redundancies and

facilitates the «readability» for the developer. The «simplicity» and «clearness» of an

SRS are also essential for the understanding of the developer. The customer-

oriented SRS lead to excessive details, unnecessary to the developer, which impair

the readability. The «inadequate experience with ASD», the «inadequate experience

with specification», and the use of the «SRS to validate requirements» resulting in a

SRS customer-oriented affecting the «objectivity» for the developer.

The ASD community does not recommend the requirements validation through

SRS. However, sometimes this practice is carried out to satisfy «contractual agree-

ments», due to the «characteristics of the process» or «characteristics of the soft-

ware» that lead the company to choose to make a late validation through software,

as previously detailed in Section 5.2.2 (a).

Late validations and «inadequate customer availability» can lead to «exces-

sive changes». Low customer availability to detail requirements and clarify doubts

often leads to excessive requests for changes in the partial versions. When the cus-

tomer's unavailability is to validate the partial versions, the main problem is with the

 87

requirements overlooked. Although ASD builds on the notion that changes are oppor-

tunities for the companies, «excessive changes» may impair the team productivity

and contribute to SRS becoming «outdated».

The impact of automated support on quality of SRS depends greatly on the

complexity of the documentation used. «Automated support» specialized is not con-

sidered as essential. However, it can provide information such as «traceability» of

requirements and control of «change history» that are important in managing com-

plex projects or with large teams. The description of the stakeholder who requested

the requirement (source) and the relationships among requirements are essential to

analyze the impact that the changes may cause in the project. These «traceability»

allows the team to have a better understanding of time and people resources that

need to be allocated to implement a given change. The «traceability» can also in-

crease the «reuse» of requirements. The analysis of the relationships between re-

quirements can point out those that are much referenced and therefore have the po-

tential to be reused.

Documentation with details fragmented in various artifacts tends to be more

complex and redundant, which undermines the understanding of the developer. Also,

a greater effort is required to elaborate and maintain the artifacts updated. An «out-

dated» SRS jeopardized the quality and entailed more rework for the team. The SRS

can reduce the «dependence among stakeholders». An adequate SRS avoid that the

developers interrupt their activities to clarify doubts. Similarly, an SRS of quality can

be used to «knowledge transfer», especially when new collaborators are introduced

to the team and in distributed teams. Requirements described in a clear and straight-

forward way, and closer to what will be implemented facilitates the understanding of

the developer and can reduce the «non-conformities in the software» arising from the

erroneous interpretation of the SRS.

5.6 Enfolding Literature

An essential feature of the theory building is the comparison of the emergent

concepts, propositions, or hypotheses with the extant literature (EISENHARDT,

1989). This involves asking what is similar to, what does it contradict, and why. So,

we compare the findings of the cross-case synthesis with the systematic mapping

(Section 5.6.1), values and principles of ASD (5.6.2), with practices of traditional de-

 88

velopment (5.6.3) and some related works (5.6.4), discussing similarities and differ-

ences.

5.6.1 Systematic Mapping

The investigation of the phenomenon in the literature identified twenty-one fac-

tors that affect the requirements specification activity in ASD as described in Chapter

3. The case studies investigated in the industrial practice, the factors of the Tech-

niques Category, as shown in Table 5.6. In column “=”, we identified the factors pre-

sent in the SM and the case studies. Column “!” shows the factors that the investiga-

tion in the industry showed some conflict with the SM. Factors that were not evaluat-

ed during the case studies are identified in the last column (?).

Table 5.6 – Compliance between factors (SM and Cross-case synthesis)

Category ID Factor Description = ! ?

TECHNIQUES

1 User stories are ambiguous �
2 Beginners professionals have much difficulty in writing useful stories �
3 The level of detail of user stories is inadequate �
4 Stories are inadequate to describe technical aspects �
5 Story cards are an incomplete notation �
6 Stories require the daily presence of the customer �
7 Use cases require a daily collaboration with the client �
8 Difficult to include technical aspects in the scenarios �
9 Much effort is required to write scenarios �
10 Use cases have too much information presented �
11 Difficulty in identifying what is relevant in the specification �
12 Developers are not accustomed to writing tests before coding �
13 TDD requires a daily collaboration with the customer �
14 TDD requires a thorough understanding of requirement �
15 Insufficient SRS for coding and maintenance �
16 SRS is not appropriate for knowledge transfer �
17 Documentation is not useful for identifying faults �
18 Difficulty understanding the documentation �
19 Lack of clarity between the customer needs and the solution �
20 The structure of SRS leads to ambiguous requirements �
21 Inadequate to represent Non-Functional Requirements �

CUSTOMER

22 Customer expectations are not met �
23 Inadequate user-developer interaction �
24 Users don't know what they want �
25 Low availability of customer �
26 Tedious scoping sessions with customers �

MANAGEMENT

27 Validation without the customer's perspective �
28 Requirements are not agreed with the team �
29 Inefficiency in the requirements analysis and inspection �
30 Inadequate automated support to specify requirements �
31 Overscoping �
32 Inefficient sharing of documentation �
33 Tendency to omit architectural issues �
34 Reusability of requirements does not occur adequately �
35 Team unmotivated because of constants changes �
36 The control in changing requirements is inefficient �
37 Architectures are not scalable due to constant changes �
38 Much time spent with changes in requirements �
39 Difficulty in creating estimates accurate of cost, schedule, performance �
40 Frequent reprioritization of requirements �
41 Difficulty in keeping the updated SRS �
42 Conflicts due to many sources of requirements �
43 Communication gaps �

 89

44 Difficulties with Distributed Teams �
45 Difficulty in promoting the sustainability of teams �
46 Misunderstandings due to the absence of key people �
47 Difficulty in the managing large backlogs �
48 Extra effort to integrate the requirements �
49 Essential Requirements are not adequately treated �

None of the analyzed projects used TDD. Thus, it was not possible to analyze

the factors #12, #13, and #14. None of the interviewees in the six companies consid-

ered that the daily presence of the customer was required. Software engineers point-

ed out that the SRS based on user stories and use cases was insufficient because it

was focused on functional requirements. But they did not point out that daily custom-

er participation was required. Regarding the functional requirements, the doubts were

initially cleared with the internal PO, and then with the customer, if necessary. Thus,

the investigation in practice showed contradictory findings with the factors #6 and #7

of the SM. The results of the cross-case analysis confirmed that all other factors re-

lated to Techniques category identified in SM affect the quality of SRS in ASD.

The factors related to the customer and the management requirements were

not part of the scope of the investigation in the case studies (#22 to #49). Neverthe-

less, it was possible to confirm the impact of some of them. In two case studies, soft-

ware engineers pointed out problems arising from low availability (#25) and inade-

quate iteration with the customer (#23). Excessive changes in requirements have

been identified as a factor that contributed to the SRS become outdated (#41). Also,

the productivity (#38) and the motivation of the development team (#35) were affect-

ed due to excessive changes. Inadequate control of changes was also mentioned as

a negative factor (#36). In all case studies, reuse depended in large part on prior

knowledge of the existence of a requirement or business rule. Reuse only happen in

requirements specified by the same software engineer. There was not an established

practice for a systematic reuse of the requirements (#34).

The case studies also showed contradictory results with SM regarding the

SRS in the distributed teams (#44). One company worked in a fully distributed man-

ner. Another company had part of the development team distributed. In all compa-

nies, the customer and the development team stayed in different cities. Only in two

companies, the validations were conducted in a face-to-face way. However, the dis-

tribution of stakeholders in different locations was not pointed out as a negative fac-

tor.

 90

The investigation of the phenomenon in practice introduced new factors that

had not been pointed out in primary studies analyzed in SM as follows: lack of ac-

ceptance criteria, examples, and traceability of requirements. Also, some characteris-

tics of the software and the process, late software validation, SRS used to require-

ments validation, contract agreements, and the SRS structured in many artifacts.

5.6.2 Agile Practices

The findings of cross-case synthesis pointed out accordance with all agile val-

ues and with ten principles of Agile Manifesto (2001). However, we identified conflicts

with two agile principles. In all cases studies, we found disagreements regarding the

principle that says “Business people and developers must work together daily

throughout the project”, as mentioned previously. The customer's presence is im-

portant to understand “what” he/she needed. However, the software engineers con-

duct other technical activities to design “how to” implement the requirements. During

these activities, the client's presence is not necessary. The customer's presence in

these activities would damage their performance because would be an additional

communication channel.

Another conflict is regarding the principle that says “The most efficient and ef-

fective method of conveying information to and within a development team is the

face-to-face conversation”. The face-to-face conversations are used to share best

practices, problems, solutions, and impediments. However, sometimes, the SRS is,

in fact, the most appropriate way to transfer knowledge. There is a very high turnover

in development teams (TECHREPUBLIC, 2015). So, knowledge could be lost if rele-

vant information is only in the minds of some people. Whenever new people are allo-

cated to the team, some software engineers interrupt their activities to pass on

knowledge to the new members. Geographically distributed development teams may

work in different time zones and schedules, making it harder to establish face-to-face

conversations. In some companies, after the end of the project, the teams are allo-

cated to other projects. Changes and new requirements are made by another team,

responsible for the maintenance of all software. In these cases, the SRS plays a fun-

damental role in knowledge transfer from the development to the maintenance

teams.

 91

The user story is the most used technique in ASD (LUCASSEN et al., 2016).

XP argues that stories focus on business rules, the description must be made in the

customer's language, without describing technical details (BECK, 1999). According to

Cohn (2004), stories must be written in the language of the business, not in technical

jargon. However, the findings of case studies differ from these assertions of Lu-

cassen, Beck and Cohn. In the other hand, according to Ambler (2016), the goal of

the ASD is to implement requirements, not document them. He argues that the SRS

should capture design details. Bjarnason et al. (2011) argues that an SRS closer to

what will be implemented may reduce the effort required to gather information for

coding, testing, and maintenance. Our findings are in accordance with these asser-

tions of Ambler and Bjarnoson. The model argues that «acceptance criteria», and

«technical aspects» are essential to ensure a «team-oriented» SRS and the «com-

pleteness». These descriptions are closer to what will be implemented, reduce the

gap between the customer’s needs and the details required to produce the solution,

and thus, optimize the time required for the coding activity.

One of the principles of the Agile Manifesto is “Welcome changing require-

ments, even late in development. Agile processes harness change for the customer's

competitive advantage”. Changes can be requested due to support legislation, in the

customer's business process, new customer needs, among others. The changes re-

quire the evaluation the impact in resources, schedule, personnel, budget, and infra-

structure, among others. Requirements traceability can help to conduct this analysis.

Maintaining the requirements traceability requires a great effort. According to Ambler

(2016), maintaining the requirements traceability makes sense only in the following

situations: 1) Automated tooling support exists; 2) Complex domains; 3) Large teams

or geographically distributed teams, and 4) Regulatory compliance. Otherwise, it is

simpler and makes more sense to ask some people familiar with the system, to esti-

mate the change, rather than devote time to updating the traceability, he argues. The

traceability is a positive factor when there is an automated support.

5.6.3 Traditional Development

The goal of this study was to investigate the quality of SRS in ASD, and as a

result, to build a model that describes the factors that affect the quality and how they

influence the work of software engineers. Some of the factors identified in the model

 92

also affect the SRS in the traditional development, such as the low availability of the

customer, the outdated documentation, the inadequate experience of the team, the

lack of clarity and of automated support. However, the model has many factors that

are peculiar to the ASD, as explained following.

The ISO quality attributes (ISO 29148, 2011) are widely adopted in traditional

development, where the SRS is used to validate requirements. However, in ASD, the

requirements validation is often done upon frequent software deliveries. Thus, the

perception of quality of SRS tends to be different. We identified some agreements

and differences between the ISO attributes and the quality factors of the model. The

model address Unambiguous, Traceable, Complete, and Verifiable ISO attributes.

The main difference between the model and ISO attributes is about the SRS to be

«team-oriented» describing «technical aspects» to have an SRS closer than what

would be implemented. These factors are conflicting with the Implementation Free

attribute which lays down that “The requirement while addressing what is necessary

and sufficient in the system, avoids placing unnecessary constraints on the architec-

tural design. The objective is to be implementation-independent. The requirement

states what is required, not how the requirement should be met”.

Specifying the requirements using a language focused on the developer is one

of the main factors in the model that is particular to ASD. The description of technical

aspects and acceptance criteria were identified as factors that are closer to what will

be implemented. However, in traditional development, the SRS focuses on describ-

ing what the customer needs, rather than how the requirements must be met. Moreo-

ver, it is not recommended to use technical terms and jargon because the SRS is

used to validate the requirements, thus, it should use a language oriented to the cus-

tomer. In traditional development, the SRS often has prolix texts to facilitate the un-

derstanding of the customer, but that are unnecessary to the developer. In the model,

the objectivity of SRS is defined as one of the factors that facilitates the understand-

ing of the developer and improves his/her productivity.

Singular and Feasible attributes were not identified as significant factors in the

case studies. At the beginning of the interviews, we asked developers about what

they considered a high-quality SRS and which attributes they would like to find in an

SRS to implement a feature. These attributes were not mentioned by any of the in-

terviewed software engineers in the six companies. In a second stage, when we ex-

plained each of these attributes to the developers, and then we asked them about the

 93

importance of each attribute, none of the interviewees considered that the Single and

Feasible attribute were relevant in ASD.

Regarding the Necessary attribute, the developers did not have a clear per-

ception of the extent to which a requirement was necessary for the client. So it was

not pointed out by the interviewed software engineers as something that affected the

quality of SRS. However, this attribute was relevant in the companies that adopted a

payment system functionality delivered, given that only necessary requirements were

paid by the customer. Software engineers had difficulties in maintaining the con-

sistency of a requirement when it was described in a fragmented way in various arti-

facts. However, in neither case study, software engineers were concerned to main-

tain or check the consistency between requirements. When the sprints have a short

duration, and the validations were frequent, this attribute was not considered critical.

In non-agile approaches that adopt an iterative and incremental development,

such as the RUP, it is common to use the SRS to validate the requirements before

starting the coding activity. Thus, the validation of partial versions is not as frequent

as in ASD. In the model, late validation is pointed out as a factor that compromises

the ASD, since it causes excessive changes in the SRS and the application. The late

validation through software implies the use of the SRS to validate the requirements

partially, which compromises the adequacy of the SRS to the development team be-

cause it requires the use of a language oriented to the customer.

The use of an extensive documentation containing several models, structures,

and artifacts is common in traditional software development to represent various

views of the requirements to meet the needs of different stakeholders, unlike what is

recommended in ASD. In accordance with the agile manifesto, one of the factors

identified in the model is the simplicity which favors minimum documentation with few

structures, describing just what is needed for the coding activity, taking the develop-

er's perspective.

One of the four values of the agile manifesto is “Customer collaboration over

contract negotiation”. According to the model, contracts can have a negative impact

in ASD, when they establish that the SRS must be validated by the customer before

coding starts, or when they require that the SRS should be customer-oriented. How-

ever, in traditional development, the contract is seen as a key factor, because it es-

tablishes the conditions for the development of the software and is a legal guarantee

for the parties involved, especially for government agencies.

 94

5.6.4 Related Works

Heck and Zaidman (2014) proposed a framework for verification of the quality

of requirements. Twenty-one verification criteria are classified under three high-levels

criteria: i) completeness; ii) uniformity and iii) consistency & correctness. The frame-

work was not designed specifically for ASD. The framework is based on a certifica-

tion model of software products previously proposed by one of the authors, rather

than designed specifically for ASD. The framework is based only on literature stud-

ies. It is not based on studies conducted in agile projects in the industry. Regarding

the content, the model presents accordance with the framework in the use of AC,

mockups, conceptual model and description of possible solutions. However, the

framework does not define criteria related to readability, the language used, struc-

ture, traceability and or level of detail as defined in the model (see Table 5.4). Fur-

thermore, given that the framework evaluates only the final quality of SRS, factors

that affect the quality indirectly as defined in model are also not considered by it.

Lucassen et al. (2016) proposed a framework that defines a collection of 13

criteria to assess the quality of user stories regarding syntax, pragmatics, and se-

mantics. However, the framework focuses on the intrinsic quality of the user story

text. In addition, it does not consider characteristics of the teams and companies that

can affect the quality of the SRS. One of the criteria is problem-oriented which states

that a user story must only specify the problem, not the solution to it. This criterion is

conflicting with the factors identified in our model aimed at making the team-oriented

SRS and closer to what will be implemented. In agreement, we identify the Unambig-

uous criteria, Minimal (simplicity) and Complete. The framework also does not ad-

dress factors that affect the quality of SRS an indirect way, as defined in the model.

Although Heck and Zaidman (2014) and Lucassen et al. (2016) describe some

criteria that should be considered in the SRS in ASD, their goal is to evaluate the fi-

nal quality of SRS. Unlike our study, their purpose is not to investigate how these cri-

teria relate. Those frameworks do not cover Organizational, Stakeholders and Exter-

nal factors as defined in the model which also affect the quality of the SRS. Moreo-

ver, they do not investigate how the criteria influence the work of the team. These

previous studies lack in explanatory power about the factors that affect the SRS in

ASD, are inconclusive or have been of limited use in practice.

 95

5.7 Findings
The cross-case synthesis reveals ten findings (F) that can have implications

for software organizations in their quest to create better work environments and

teams, and thus to improve the quality of SRS in ASD, as follows:

• F1: The SRS should not be used as a mechanism for requirements val-
idation, which in turn must be done through frequent software deliveries
as established in agile manifesto. If this practice is not possible due to
some limitation or characteristics of the process or the software, the val-
idation must be done through the same SRS used by the developer.

• F2: The SRS should not be focused on the customer; instead, it should
be directed to the development team and closer to what is implemented
describing technical aspects, NFR, acceptance criteria, as well as func-
tional requirements;

• F3: The use of acceptance criteria is an excellent strategy to make the
SRS more directed to the developer. This practice also facilitates exe-
cution of tests. However, the AC must address all types of requirements
and technical aspects, and not just the functional requirements;

• F4: A fragmented SRS structured in various artifacts tends to be more
complex and hard to maintain. Independent of the form of representa-
tion of requirements (user stories, rules, use cases, etc.), the organiza-
tion must describe the information required for coding, in an integrated
way and with few artifacts;

• F5: The experience of software engineers with ASD affects the quality
of the SRS. Companies need to promote the sharing of best practices
to help software engineers obtaining experience on how to specify re-
quirements in ASD;

• F6: Smaller requirements are easier to estimate and implement. Sprints
of short duration with smaller requirements tend to produce a simpler,
clearer and readable SRS. Long sprints tend to produce an unneces-
sarily detailed SRS;

• F7: Contractual agreements must consider the values and principles of
ASD. Thus, a contract must establish that the working software is the
mechanism for requirements validation, instead of the SRS. In cases
where the availability of documentation for the customer or regulatory
agencies (e.g., government) is required, the same SRS produced for
the developer should be provided. The team should not waste time pre-
paring different artifacts for several stakeholders;

• F8: Specific tools to support the requirements activity are not mandato-
ry, but it can improve the traceability and the change history of require-
ments and thereby facilitating the impact analysis of requirements
changes, especially in complex projects or large teams. It also can im-
prove the reuse, integration and consistency of requirements and re-
duce the effort required to elaborate the SRS;

 96

• F9: When customer collaboration is inadequate, the adoption of valida-
tions face-to-face tends to be more appropriate than remote validations.
Remote validations are aimed at giving greater flexibility to the custom-
er and also at reducing stakeholders travel costs, if they are based in
geographically far sites. A too loose collaboration with the customer en-
tails a bottleneck in the project, and this challenge can be better faced
with face-to-face communication;

• F10: The daily presence of the customer integrated into the develop-
ment team is not essential, and can sometimes be detrimental to the
development process. The customer's availability for answering ques-
tions, detailing requirements and validating the partial versions accord-
ing to the team's demand is more relevant, which can also be per-
formed remotely through email, phone, instant messaging or other
communication tools.

5.8 Threats to Validity

5.8.1 Internal

Regarding the internal validity, to ensure that the results represent the reality,

we interviewed team members with different roles in each study. Moreover, we ana-

lyzed the meanings attributed by the participants in their answers to the question-

naire. This analysis was triangulated with the data collected from the documents and

with the notes collect in meetings that the researchers acted as observers. In each

study, we tried to ensure that the concepts that emerged from the coding process

faithfully represented the reality of the projects investigated.

In the translation and synthesis of concepts, the generalization of six different

concepts that emerged from different realities was a threat. The concept translated

could not accurately represent the six realities (companies), or worse, would any of

them. To address this threat, we coded the data, including transcription of fragments,

and we used the strategies recommended in meta-ethnography. We also consulted

the literature to validate the translated names and meanings.

To increase the credibility, we used member checking (MERRIAM, 2009), also

known as respondent validation, to avoid misinterpretations of what participants said.

We devoted special attention to data collection and analysis, to allow the identifica-

tion of contradicting evidence and complementary explanations. The results of this

work were frequently scrutinized in follow-up meetings with company representatives,

to ensure its validity with their help.

 97

5.8.2 Reliability

An important question in qualitative research is whether the findings are con-

sistent with the data collected (MERRIAM, 2009). Reliability is related to the extent to

which the research findings can be replicated by the same or other researchers. The

question is not whether findings will be found again but whether the results are con-

sistent with the data collected. Therefore, we hope to achieve the consistency be-

tween our findings and the data collected in each study.

We do not expect that the results of each study will be reproduced. Even if we

repeat the same protocol, in the same companies, with a similar set of participants,

their perception of quality of SRS in ASD and the organizational context are likely to

have evolved. To increase the reliability, we used data triangulation and peer review

of the findings by another researcher. Also, we described a detailed account of the

methods, procedures, and decision points in carrying out the studies.

5.8.3 External Validity

External validity is concerned with the extent to which the research findings

can be applied or used in contexts different from those in which the study was first

conducted (MERRIAM, 2009). This is related to how generalizable the results are. In

qualitative research, it is the reader or user of the study that should primarily be en-

gaged in the generalization of the research findings. They are best equipped to de-

cide to what extent the findings can be applied to their own situations.

We used two strategies to promote the transferability of results. First, the re-

search method was detailed, so that other researchers can use the procedures to

produce similar and comparable studies. The research instruments were tested in six

studies. We provided rich descriptions of each context investigated to contextualize

the study such that readers will be able to determine the extent to which their situa-

tions match the research context, and, hence, whether findings can be transferred.

We conducted a deeper investigation of the differences between the six contexts to

build the integration of the studies. In addition, we sampled the participants to

achieve maximum variation since this would provide richer data and a richer model.

 98

5.9 Summary

From the initial theoretical background identified in SM, we conducted an in-

vestigation in the industry through a cross-case analysis of six companies with dis-

tinct characteristics to achieve high data variation and richness of results. A model

emerged from this analysis that provides a deeper understanding of the phenomenon

describing the factors that affect the quality of SRS in ASD and how the factors affect

the work of the software engineers. The initial findings from the synthesis of two case

studies were published at an international conference (MEDEIROS et al., 2016b).

The complete model was described in a paper that is under review by an internation-

al journal.

The model establishes that the SRS in ASD should be directed to the devel-

opment team, so it should be closer to what will be implemented. A simple SRS that

is written clearly, without ambiguity and redundancies was also considered a relevant

quality factor. On the other hand, the description of the requirements fragmented in

various artifacts and prolix compromise the quality of the SRS. Further, the model

shows that the quality of SRS is also affected indirectly by Stakeholders factors such

as the inadequate experience of the team, low customer availability; Organizational

factors such as the use of SRS to validate requirements, late validations, and Exter-

nal factors such as contract agreements and characteristics of the kind of software.

Finally, we compared the model with some studies in the literature discussing

similarities and differences. Based on the findings and factors of the model, in the

next chapter, we propose an approach, designed to advance and solidify our current

knowledge in this area, and to support the activity of the requirements specification in

ASD.

 99

6

AN APPROACH TO SPECIFY REQUIREMENTS IN ASD

This chapter details the Requirements Specification for Developer (RSD) ap-

proach proposed to support the requirements specification activity in ASD. Section

6.1 describes how the RSD approach was derived from the results of systematic

mapping and industrial case studies. Section 6.2 introduces the approach and de-

scribes its related metamodel. The practices of RSD approach are detailed in Section

6.3. Section 6.4 presents the structure of the RSD. Some possibilities for extending

the approach are described in the Section 6.5. Finally, the related works are dis-

cussed in Section 6.6.

6.1 Derivation of the RSD approach

The SM pointed out several factors related to the software requirements speci-

fication in ASD (Chapter 3) which have been confirmed in the investigation in the in-

dustry (Chapters 4 and 5) as previously summarized in Table 5.6. Among these fac-

tors, we highlight the client-oriented SRS that lacks design information needed for

coding activities. The findings of these investigations are also reinforced by other

studies that indicate that the SRS used in agile projects is insufficient for the coding

activity (HEIKKILA et al., 2015; INAYAT et al., 2014). Even with the continuous pres-

ence of the customer during the software develop, the design information cannot be

gathered because the client is not capable of perceiving it. The design information is

neglected in user stories (HEIKKILA et al., 2015), making it difficult the activities of

coding, testing and maintaining (BJARNOSON et al., 2011) as well as the knowledge

transfer in distributed development and high turnover teams (INAYAT et al., 2014).

 100

We based in these findings to propose an approach that aimed to produce an

SRS with a single integrated view of functional requirements and design information

directed to the software engineers in ASD, answering the RQ3 defined in Section 1.2.

The approach was named as Requirements Specification for Developers (RSD).

The definition of the approach was guided by the model (Chapter 5) and the

agile manifesto that establishes the validation of requirements through the frequent

software deliveries, rather than using the SRS for that purpose. Thus, the SRS

should be directed to the software engineers, rather than the customer. In this con-

text, the approach proposes the adoption of three well-established design practices

that make the SRS targeted to the software engineer: Specification of Acceptance

Criteria+, Conceptual Modeling and Mockups Modeling.

According to the systematic mapping and the case studies, the SRS currently

used in ASD focuses only on functional requirements. NFR and other restriction nec-

essary for the operation of the system are not adequately described in SRS. In order

to support the coding activities, the RSD approach adopts concepts of ATDD and

BDD through the acceptance criteria (AC+) to describe customer needs and system

requirements using a single integrated view of the requirements, as defined in Sec-

tion 2.3.1 and detailed in Section 6.3.3.

The findings of the literature and industry investigations also pointed out that

the constant change requests are factors that compromise the productivity of the de-

velopment team because the software architectures usually present scalability prob-

lems resulting from the negligence in the design activities. To reduce these problems,

the RSD approach adopts the conceptual modeling to identify the business concepts

(entities, attributes, and relationships). This practice contributes to building a more

scalable architecture and reduces the rework required to meet the constant changes.

The mockups modeling practice identifies the visual interface elements be-

tween the system and the user. The conceptual modeling and the use of mockups

are consolidated practices in traditional development. Although not part of the main

agile methods, these practices are used in many agile projects, although neither in a

systematic way (FERREIRA et al., 2007), nor integrated into the functional require-

ments outlined by the user stories. The innovation of our approach is to systematize

the use of these practices in ASD, and integrate the description of the functional and

system requirements in a single view in order to provide a SRS with the information

required for coding.

 101

RSD approach attempts to address some of the factors identified in the model

resulting from the cross-case synthesis detailed in Chapter 5 and reviewed in Figure

6.1 (adapted from Figure 5.3). The RSD approach addresses some factors of Con-

tent and Structure categories that directly affect the quality of SRS, as described in

Section 5.3.1.

Figure 6.1: Quality Factors addressed by RSD approach

The structure of RSD is oriented to the developer which makes it very objec-

tive and thus contributes to having clearer requirements. However, the acceptance

criteria are described using a natural language, so, it is possible only merely reduce

the ambiguity and not prevent it entirely. Moreover, the clearness of the SRS also

depends deeply on the experience of those who write the requirements.

As described in Table 5.4, the model also points out other factors that indirect-

ly affect the quality of SRS. However, the RSD practices are not intended to address

these factors. For example, i) Inadequate participation of the client and Inadequate

team experience factors (category Stakeholders), ii) Characteristics of the process,

the late software validation and the use of SRS to requirements validation factors

(Organizational category) and iii) Characteristics of the software and contractual

agreements factors that depend on external issues the organization (External catego-

 102

ry). These factors are related to the companies’ context and affect the quality of SRS,

regardless of the approach used to specify the requirements (user stories, use cases

or RSD, for example). Thus, these factors are not addressed by RSD approach.

The three factors (Automated Support, Traceability and Change History) high-

lighted in red (Figure 6.1) will be addressed in the future through a tool that will pro-

vide an automated support to elaborate the RSD, generate the traceability of the re-

quirements and control of change history, among others features, as described in

Section 8.3. The RSD approach address some of the findings (F2, F3, F4 and F5)

pointed out in cross-case synthesis (See Section 5.7). The other findings are related

to organizational factors, external or related to stakeholders.

6.2 MetaModel

According to Gonzalez-Perez and Henderson-Sellers (2008), a metamodel is

a domain-specific language oriented towards the representation of software devel-

opment methodologies and endeavors. The metamodel shown in Figure 6.2 summa-

rizes the constructs and rules needed to build SRS using the RSD approach.

Figure 6.2: Metamodel of RSD approach

 103

In the RSD metamodel, the Requirement element (functional or non-

functional) is identified by a label and has a high-level description that succinctly

describes a user or system requirement. An example of a requirement described us-

ing the metamodel is presented in Section 6.4. Each requirement is detailed through

the description of the Concepts (from the conceptual model), Mockup, and the Ac-

ceptance Criteria (AC+) related, as defined in Section 2.3.1.

The Product Backlog (PB) contains a set of requirements that are allocated

to Sprints (cycles of development) according to the customer Priority (low critical,

regular, critical, very critical). A requirement may have zero or more related Mockups.

In fact, mockups are not mandatory, since there may be requirements that do not re-

quire a visual interface to the user. The requirements and AC+ are defined by a

Stakeholder, who can be a customer (or representative), or any member of the de-

velopment team. The following assertive should be considered:

• AC+ may be applied to more than one requirement;

• All requirements must have at least one associated AC+;

• A requirement might have AC+ with different priorities that can be allo-

cated to different sprints;

• AC+ does not need to be associated with a Mockup.

An AC+ is categorized as General (G) when it has the potential to be reused.

Otherwise, it is categorized as Specific (S) to a particular requirement. To have an

SRS targeted for the developer, the AC+ defines not only business rules, but also

validation rules, interface, technical or any other type of constraint necessary for the

system coding. An AC+ can be classified into six types as shown in Table 6.1.

Table 6.1 – Acceptance Criteria+ Type

Type Description
Business
(B)

Represents a restriction related on to intrinsic nature of the business. For example: All
foreign athlete must have a number of passport;

Validation
(V)

Represents a validation that the application needs to perform, but that is not directly
related to the core business. For example: The athlete's email address must be valid;

Interface
(I)

Represents any restriction related to the user interface. A widget must be enabled (or
disabled) depending on some condition or the content of another widget. For example:
The list of cities depends on the selected state.

Technical
(T)

Represents a technical restriction on how the solution should be implemented. Most of
the time, they are rules associated with the confirmation action buttons. For example:
Before including an athlete, the application should automatically include the corre-
sponding person.

Non-
Functional
(N)

Represents concerns about tracking quality, e.g., performance constraints, reliability
constraints.

Other (O) When it does not fit in any of the previous types.

 104

A requirement may have AC+s with different priorities that can also be allocat-

ed to different sprints. In addition, new AC+ can be identified in any sprint throughout

the development process.

The state diagram of an AC+ is shown in Figure 6.3. The initial status of an

AC+ is Specified and it occurs when it is identified by any stakeholder. The status is

Coding when the implementation starts. The status is Implemented when the devel-

oper considers that the implementation was finalized. The status is Awaiting Fixes if

the acceptance tests identify any non-compliance, otherwise the status is Approved.

The status is Modified when any change is made after approval. The status is Can-

celed if the AC+ is deemed not applicable.

Figure 6.3: State Diagram of an AC+

6.3 Systematizing the use of Design Practices

RSD approach can replace other techniques used in ASD, such as user sto-

ries (US) and use cases, but overcoming the limitations described previously. Thus,

RSD can be used with XP, Scrum, or any other agile method where the client vali-

dates the requirements through working software, as established in the Agile Mani-

festo (2001). Based on this agile principle, RSD approach focus on the development

team and the SRS produced is not intended to be used as mechanism to require-

ments validation with the customer.

In RSD approach, the customer is involved throughout the development pro-

cess, describing and prioritizing his/her needs, and validating software deliveries,

frequently. In the RSD structure, customer needs and system requirements are rep-

resented using a single view that integrates the design practices.

 105

RSD provides an integrated view of the requirements, linking in a systematic

way, the benefits of the identification of the problem domain concepts (conceptual

modeling), the visual representation of interface requirements (mockups), the busi-

ness rules, NFR and technical constraints (acceptance criteria). The three design

practices provide a wider requirements coverage when compared to US, which only

addresses user requirements.

The practices of RSD aim to detail each requirement. As shown in Figure 6.4,

the process of detailing starts with the creation of the conceptual model which should

be done considering all requirements of a sprint.

Figure 6.4: Practices of RSD approach in each sprint

Then, the mockups are modeled, and the acceptance criteria are specified, in

parallel. Depending on the size of the team, the sprint backlog, and schedule, there

can be multiple instances of Modeling Mockups and Specify AC+ practices being car-

ried out in parallel, one instance for each requirement of the sprint. The coding of

each requirement starts as soon as an initial set of the AC+ and related mockups are

specified. There is no need to wait for the detailing of all AC+ neither all requirements

of the sprint.

The frequency of performing these practices depends on customer availability

and duration of sprints. When the client is integrated into the development team, the-

se two practices can be carried out every day and start coding immediately. When

the customer availability is limited, these practices can be conducted once a week,

for example.

 106

Usually, at the end of this process it is expected that there is one RSD (docu-

ment) for each requirement. However, it is not mandatory; the team may consider

dividing a requirement into several RSDs. In this case, it is worth to asses if it would

be more appropriate to modify the PB as a means of sub-dividing the requirement, so

that each requirement has only one RSD associated. Moreover, the approach rec-

ommends that each RSD describes only one requirement in order to facilitate the

readability. But this is also a team choice.

There are companies that adopt the strategy of all team members interact with

the customer to identify and specify the needs, and also work in coding activity.

Some companies assign the analyst and developer roles to different people. The

RSD approach applies equally in both situations.

6.3.1 Modeling Concepts

This practice aims to model the concepts (data entities) related to the require-

ments and should be performed at the start of each sprint. The conceptual modeling

is one of the differentials of RSD compared to other agile approaches. As previously

reported (Section 2.3.2), the current agile approaches focus on behavioral modeling.

There is no concern in defining the conceptual model in a systematic way together

with the specification of user stories. An inadequate data model can hinder the inclu-

sion of new features, the incorporation of changes and the provision of data for busi-

ness intelligence systems. Some changes in the data model have a very large impact

on implementation, for example, changes in the multiplicity of relationship between

data structures. Hence the importance of dedicating time to properly design the ap-

plication's data model.

It is crucial that the modeling includes all requirements of a sprint. The re-

quirements should not be analyzed in isolation. The joint analysis contributes to the

data model become more structured to meet future changes. It is recommended that

before meeting with the customer, the team reviews the PB and the notes to identify

potential problems that need to be clarified with the client. Together with the custom-

er, the analyst should sketch a model of the concepts. However, if the customer

availability is limited, the team should at least make notes on the business rules so

that the concepts modeling can be done later without the customer's presence.

 107

The modeling can be performed using any tool or may be drawn on paper to-

gether with the customers. RSD approach not restricts the use of any tool in particu-

lar. However, some tools16 have additional features that allow the generation of the

database structure in SQL format, for example.

As opposed to what is laid down in traditional approaches, RSD approach rec-

ommends that the constraints of the technologies being used in the project such as

DBMS (Database Management Systems), programming languages, and persistence

frameworks should be considered in this stage. This minimizes rework in the devel-

opment phase, thereby increasing the agility.

The initial data structure is based on the requirements allocated to the first

sprint and others that the team may, due to their background experience, have

knowledge of or that can have an impact on the architecture. It is not mandatory to

change the data entities in each sprint; it depends on the requirements allocated to it.

The conceptual model that is expected as a result of this task can be repre-

sented by a class, conceptual or entity-relationship diagram, depending on the com-

pany’s culture. Figure 6.5 shows an entity-relationship diagram as example of output

for this practice. This example shows the data concepts of the requirements allocated

to a sprint of a doping control system (PETRONIO et al., 2016).

Figure 6.5: Example of a Conceptual Model

16 http://www.databaseanswers.org/modelling_tools.htm

 108

Although this practice does not aim to identify AC+, if the stakeholders per-

ceive the existence of any AC+, they must be registered in the RAC (Repository of

Acceptance Criteria+), even if it is not possible yet to identify to which requirement it

is related to. Also, if new requirements or changes are identified, they must be regis-

tered in PB in order to be analyzed.

Once the conceptual model has been created covering all requirements of the

sprint, the development team must model mockups and specify the AC+. These ac-

tivities must be performed at the same time and must be repeated for each require-

ment allocated to sprint, following the priority previously established by the customer.

 A summary of the modeling concepts practice is presented in Table 6.2.

Table 6.2 – Summary of the practice MODELING CONCEPTS

MODELING CONCEPTS
Purpose: Model the concepts which represent the requirements of a sprint
Precondition: Planning of the backlog has been done
Inputs: Product Backlog
Outputs: • RSD (Conceptual Model)

Actions:

• Review the requirements previously and identify doubts;
• Identifying data entities together with the client;
• Analyze requirements that are allocated to the upcoming sprints if they have a

strong impact on the conceptual model;
• Register any AC+ that have been identified;
• Register new requirements (or changes) that have been identified;
• Create conceptual model.

Tools: • Whatever data modeling Tool;

6.3.2 Modeling Mockups

This practice aims to model the mockups of the requirements that require

some interaction between a user and the application. As previously described in Sec-

tion 2.3.3, mockups have proven an efficient practice to capture and defining func-

tional requirements (INAYAT et al., 2015; RICCA et al., 2014). Mockups improve re-

quirements gathering, without implying an additional effort in the process. One of

their advantages is that they are technically valuable for developers and, at the same

time, fully understandable by end-users (RIVERO et al., 2014).

Usually, each RSD has only one associated mockup, but some requirements

may have no associated mockup. On the other hand, some requirements may have

more than one associated mockup. In these situations, it is worth assessing whether

it would be more appropriate sub-dividing the requirement.

 109

The development team should conduct this practice together with the custom-

er. The mockups can be drawn using a piece of paper or on a chalkboard. In this

case, photos can be incorporated into the RSD. Also, the software engineers can use

any tool that he/she has knowledge. RSD approach does not restrict the use of any

tool in particular to the creation of mockups. However, some tools17 have additional

features that allow exporting mockups to PNG, or HTML, for example. The develop-

ment team must validate the mockups with the customer, making the necessary cor-

rections that may be requested.

Depending on the availability of the client, the team can sketch an initial ver-

sion of the mockups, taking into consideration the conceptual model. If new require-

ments or changes are identified, they must be registered in PB to be analyzed during

the most convenient time. If it is required to make changes in the conceptual model,

they should perform the guidelines described previously.

Figure 6.6 shows an example of the mockup related to a requirement labeled

as “Registration of athlete” of a doping control system (PETRONIO et al., 2016). The

high-level description of this requirement is “The system should enable the inclusion

and updating of data of national and foreign athletes of sports federations recognized

by the International Olympic Committee”.

Figure 6.6: Example of a Mockup

A summary of this practice is presented in Table 6.3. The development team

must identify and specify the related AC+ simultaneously with this practice.

17 http://www.creativebloq.com/wireframes/top-wireframing-tools-11121302

 110

Table 6.3 – Summary of the practice MODELING MOCKUPS

MODELING MOCKUPS

Purpose: Model the mockups of the requirements that require some interaction between a
user and the application

Precondition: The data model has been constructed
Inputs: Product Backlog, RSD (Conceptual Model)
Outputs: RSD (mockups)

Actions:
• Sketch an early version of mockups from the conceptual model;
• Elaborate and validate the mockups with the customer, making the necessary

corrections that may be requested.
Tools: • Whatever Prototyping Tool.

6.3.3 Specifying the Acceptance Criteria+

This practice aims to identify or specifying the AC+ associated with a require-

ment. The RSD approach is based on the agile principle that the understanding of

requirements is obtained in an iterative and incremental manner as the client vali-

dates partial versions of the software. In this way, the team should not waste too

much time trying to identify all the acceptance criteria exhaustively. The identification

of new criteria throughout the development cycle is part of agile development.

The specification of the AC+ should be performed in parallel with the Modeling

Mockups practice. The team and the customer should specify the AC+ together.

However, to optimize time, the team can specify some AC+ without the customer,

taking into consideration the conceptual model and the knowledge gathered from

other conversations with the customer. In fact, most of the AC+ provided by the cus-

tomer are of the business type (Table 6.1). However, the team can extract other AC+

from the conceptual model and the knowledge gained from other conversations with

the customer. Moreover, many technical, interface, NFR, and validation rules can be

reused from other requirements. AC+ of this type can also be identified by develop-

ers during the coding activity.

AC+s are described in natural language (textual). The RSD approach does not

define a particular format (structure) to write the AC+, unlike user stories that have a

standard format (As a <role>, I want <desire> [so that <benefit>]). The AC+ must be

described in objective way directed to the developer, without prolix texts. The smaller

the better, and should have a binary result: pass or fail.

Terzakis (2016) offers a detailed checklist to detect ambiguity during descrip-

tion of textual requirements, such as vagueness and subjectivity. Also, ISO 29148

(2011) provides some terms, such as superlatives or vague pronouns, which should

 111

be prevented to ensure bound and ambiguity. Moreover, there are some tools availa-

ble in the industry and academia that assess the quality of textual requirements and

signal when a review is necessary. The teams can use some of these practices and

tools to improve the quality of AC+. Génova et al. (2001) has developed a tool (called

RQA) and compared it with seven other tools. The RQA tool assesses textual re-

quirements described in Microsoft Excel format using the following indicators:

• Size (characters, words, sentences, paragraphs);
• Readability based on average syllables per word;
• Punctuations per sentences and quantity of acronyms/abbreviations;
• Imprecise terms and usage of verbal forms;
• Dependences and overlapping with other requirements.

Some examples of AC+ are presented in Table 6.4. These AC+ are related to

“Registration of athlete” cited in previous section. The Type column refers to one of

the types defined in Table 6.1. The last column defines whether the AC+ is of the

General category (G) because it has the potential to be reused, or if it is Specific (S)

of a requirement. AC+ initially classified as Specific may be reclassified as General

when the opportunity for reuse is identified later.

Table 6.4 – Acceptance Criteria Examples

ID Description Type Cat.

AC01 The email address must be valid. V G
AC03 To save, it is necessary that all required fields (*) are filled. V G
AC04 Only active records must be displayed. V G
AC07 The age must be calculated from the date of birth. V G

AC08 The routine to save an athlete should also save the corresponding addresses T S

AC09
The operation to read and write files in the file system should be done through
relative address.

T G

AC12 The sequential code to identify the record must be generated by the database T G

AC13
The initials of the athlete must be extracted from the athlete’s name, e.g., if the
name is “Fabiana de Almeida Murer”, initials must be “F.A.M”.

T S

AC17 All foreign athletes must have a passport number. B S

AC20
The drop-down list must only display the confederations that the user logged has
access permission in your profile.

B G

AC21
There cannot be two athletes with the same registration number in the same
confederation.

B S

AC50 The label must use the multilingual resource. N G
AC90 The widget is read-only. It cannot be changed by the user. I G

The AC+s must be stored in RAC to encourage the reuse during the specifica-

tion and coding activities. The RAC can be operationalized through a shared docu-

ment among stakeholders or using any tool to support the requirements activities or

 112

even the project management that provides features for registering the needs of

stakeholders. The approach does not restrict the adoption of any particular tool.

A summary of this practice is presented in Table 6.5. Acceptance criteria+ be-

sides being used to specify and implement the requirements can also be used to

guide the testing activity.

Table 6.5 – Summary of the practice SPECIFY THE AC+

SPECIFY THE ACCEPTANCE CRITERIA+
Purpose: Specify the AC+ of a Requirement
Precondition: The conceptual model has been identified
Inputs: Product Backlog, RSD (Conceptual Model, Mockups)
Outputs: RSD (Conceptual Model, Mockups, AC+)

Actions:

• Identify AC+ from the conversation with the customer;
• Extract AC+ from the conceptual model;
• Identify AC+ that can be reused from other requirements;
• Elaborate the RSD.

Tools: • Whatever Tool.

6.4 Structure of RSD

The structure of RSD joins the concepts, mockups and AC+ offering an inte-

grated vision for the developer. To illustrate, Figure 6.7 shows the RSD related to

“Registration of athlete” requirement. The RSD is divided into five parts.

The first part (top) identifies the requirement through the label, high-level de-

scription, priority, requestor stakeholder, and sprint, as defined in the metamodel.

The second part shows the mockups associated with the requirement, if applicable.

Notice in the example that the use of the mockup allows the visualization of the data

of the athletes and how they will be presented in the system, which facilitates the us-

er validation while he/her is detailing the requirement with the development team.

The third part (the left column in the table) presents widgets that are present on the

mockup. The fourth part (center column) shows the data entities and attributes ex-

tracted from the conceptual model which relate to each widget. The widgets are also

in the conceptual model related to the requirement. However, this information (left

and center column) is targeted to the developer who will code the requirement.

Finally, the fifth part (right column) shows the AC+s related to the widgets and

the data entities. AC+ may be reused for different requirements. Reuse may also oc-

cur several times in the same SRS, for example, AC90. AC+ does not have to be as-

sociated to a data entity (e.g. AC3) nor to a widget (e.g. AC12). In general, AC+s

which describe NFR, web services or algorithms have no relation with widgets. In this

 113

example, note that the AC+ could be used to detail business-related needs (AC17

and AC21), but also to describe information that is closer to what will be implement-

ed, such as validation constraints (AC01), interface (AC90), technical (AC09) and

NFR (AC50). RSD allows all these requirements to be represented in a single and

integrated form which may facilitate the understanding of the developer.

Figure 6.7: Example of an SRS using RSD approach

 114

Although SRS are not intended to be used as a requirements validation mech-

anism, mockups allow validating the understanding of the needs during the identifica-

tion of the AC+ with the customer. AC20 is a business need requested by the client,

but note that it is used the term “dropdown”. RSD does not restrict the adoption of

technical terms, given that the SRS is not used to validate requirements with the cli-

ent. As said before, the validation in ASD methods, such as RSD, is done by frequent

software deliveries. Besides, the AC+ can exemplify some rules to clarify understand-

ing for the team (e.g. AC13).

If user stories were used to describe this requirement, the language used

would be customer-oriented and focused only on business requirements. As a com-

plement to the user stories, the company could use mockups and the conceptual

model, but in this case, the use of such practices would not be associated with the

AC+. The integration of mockups, conceptual model and AC+ is only possible using

the RSD approach. Besides, the AC+ considers other constraints beyond the busi-

ness type. In RSD, the requirements are not identified and detailed by role, as hap-

pens when using user stories, but by business need, regardless the roles related to

them. Thus, the AC+ can be related to more than one stakeholder and to more than

one requirement, unlike the USs.

RSD aims to facilitate the understanding of the developer through the link be-

tween the AC+, the mockup of widgets and the conceptual model. Besides, the adop-

tion of AC+ allows that the internal tests performed by the team and the acceptance

tests performed by the customer can be extracted directly from the RSD, without the

need to prepare another artifact for this purpose.

6.5 Extensions

The use of the RSD practices can be adapted according to the type of project,

software developed or to meet any particularity of the development teams. The mod-

eling of mockups is a practice that fits perfectly in some types of projects, such as

development of information systems and mobile applications. However, some soft-

ware does not have much visual interaction with the user, such as web services and

batch processing applications. In these cases, the RSD approach can be more fo-

cused on modeling the concepts and specifying the AC+. The same applies to some

companies use frameworks to generate a basic user interface from the data model.

 115

Some projects aim the maintenance and the evolution of existing applications.

Typically these projects have a stable data model, so, the development activities fo-

cus on the inclusion of new features and bug fixes. In these types of projects that do

not yet have a RSD and the application is already running in production, the use of

the approach can be simplified to just describe new concepts, widgets and AC+ and

those that will be changed. Instead of describing all the widgets and concepts that

are already implemented in the software.

The RSD structure can also be adapted to meet the particular needs of the

teams. In the doping control project (PETRONIO et al., 2016), the development team

defined a new notation (*) in the RSD structure to identify in a visual way fields that

require a mandatory fill. And other notation (#) to identify fields that did not permit

editing, i.e., they are read-only. Moreover, the company adopted a notation to high-

light the AC+ that should be implemented in a different Sprint. For example, the

AC092, where the number 2 identifies that the AC+ should be coded in the second

Sprint.

As described in Section 2.1, ISO 29148 (2011) removed the prioritization at-

tribute (ranked for importance). The initial RSD structure did not represent the AC+

priority. However, the software engineers of the first case study extended the ap-

proach to representing the priority of the criteria to help in the planning of sprints, as

described in Section 7.4.1. Thus, the AC+ priority has been incorporated into the

RSD approach.

The approach suggests that the AC+ be classified into some types to encour-

age reuse as defined in Table 6.1. This classification can and should be adapted ac-

cording to the particularities of each company. For example, the second company

that evaluated the approach (see Section 7.4.2) chose to unify the Validation (V), In-

terface (I) and Technical (T) types into a single type called System (S). The team also

created a new attribute to order the priority of an AC+ in the coding activity in each

sprint.

6.6 Related Works

Faced with the challenges related to RE in agile projects, this thesis proposes

a new approach (RSD) in order to support the requirements specification activity in

ASD given the limitations of the User Stories and Use Cases previously described. In

 116

this context, six studies related to this research were identified: (NAWROCKI et al.,

2002), (LOSADA et al., 2012), (BATOOL et al., 2013), (RIVERO et al., 2014),

(GEBHART et al., 2014) and (WANDERLEY et al., 2014).

These studies were analyzed according to some quality factors of the model

defined in Chapter 5. Each factor was evaluated as: i) Addressed (+): if the factor

was fully addressed; ii) Partially Addressed (0): if the factor was addressed partially;

iii) Not Addressed (-): if the factor was not addressed. Figure 6.8 summarizes the re-

sults of this analysis.

Figure 6.8 Related Works

Nawrocki et al. (2002) proposes an extension of the XP (eXtreme Program-

ming) by introducing new RE practices. He asserts that an SRS based on user sto-

ries is not enough for the developer. Based on some practices of CMMI (2010) and

some quality attributes of ISO 830 (2001), the authors argue to link tests cases to

requirements and include the use of scenarios. The extension suggests the adoption

of user interface prototypes and practices to identify the RNF. The SRS is directed to

the client because it is used to validate requirements with it. The conceptual model-

ing and technical aspects are not address by the extension.

InterMod (LOSADA et al., 2012) is a methodology that uses Model-Driven De-

velopment (MDD), and user-centered design to agile development. The methodology

is guided by User Objectives (UO) that are user desires. UO can fit with one or more

functional requirements (use cases). The eight models proposed offer different views

 117

of the requirements but end up compromising the agility of the process. There is no

integration between the models which are customer-driven. NFRs can be described

in the system model. The user model is adopted to describe color preferences, font,

size, among others. However, other technical aspects such as validation rules are

not described. Acceptance criteria are not included in the methodology.

Batool et al. (2013) proposed a scrum framework to improve the RE process.

The framework is based on User Stories to describe functional requirements. Class

diagrams and user interface prototypes are used, but the SRS lacks non-functional

requirements and technical aspects. The framework also adopts other artifacts such

as story cards, index cards, and vision document.

ELECTRA (Extensible modeLdriven Enduser CenTRic API) is an approach

that allows capturing requirements related to APIs (Application Programming Inter-

face) using mockups (RIVERO et al., 2014). The ELECTRA process is an adaptation

of Scrum, and it mandatorily requires building mockups with essential end-user par-

ticipation to specify the stories targeted to he/she. After all User Stories are associat-

ed to mockups, developers use a tool to tag the mockups with API-related annota-

tions. Constraint annotations enable the definition of business rules and action anno-

tations. Technical specifications can be described as annotation. The approach does

not use conceptual modeling, and neither defines acceptance criteria.

Gebhart et al. (2014) argues that scenarios are an appropriate way to describe

a system from the user’s point of view in ASD, and presents an enhancement of ex-

isting scenario-based requirements engineering techniques to fulfill the quality char-

acteristics of the international standard ISO 29148 (2011). The methodology estab-

lishes three initial activities for the identification of stakeholders, identification and

prioritization of goals. The goals are realized through scenarios that are customer-

oriented, free of implementation details and do not contain architectural decisions.

The methodology also requires the construction of other artifacts, such as Glossary,

Constraints, Scenarios for RNF, and Derivation of the acceptance criteria from the

scenarios. A lot of artifacts ends up compromising the simplicity of SRS and the agili-

ty of the process.

SnapMind provides a visual requirements language based on mind maps to

represent both user stories and domain models for agile development (WANDERLEY

et al., 2014). The framework aims to make the requirements modeling process more

user-centered. The process is composed of three activities. The first activity is the

 118

software specification (containing the definition of the domain model and the user

story as sub-activities). In the second activity, the SRS is validated by end-user. The

third activity is conducted by software engineers to verify the consistence between

requirements models. The framework does not treat NFR, mockups and AC and it

does not support technical constraints.

In all of these approaches, the SRS is used to requirements validation with the

customer, although the ASD suggests the use of frequent releases through software

running for this pursuit. This strategy entails an SRS directed to the customer, rather

than to the developer. Except for the ELECTRA approach, the SRS focus in the de-

scription of functional requirements and do not address technical and design con-

straints adequately.

The innovation of the RSD approach is to provide a SRS targeted to the de-

velopment team that systematizes the use of acceptance criteria, mockups and con-

ceptual modeling in ASD and integrates the description of the functional and tech-

nical requirements in a single view providing an SRS with the information required for

coding. According to some software engineers who evaluated the RSD approach, the

description of NFR could be improved if the approach provided an RNF catalog (See

Section 7.4.1).

6.7 Summary

In order to answer the RQ3 (How to produce an SRS with a single integrated

view of functional requirements and design information directed to the development

team in ASD?) defined in Section 1.2, this chapter detailed the RSD approach pro-

posed to support the requirements specification activity in ASD addressing some fac-

tors of the model and some findings described in Chapter 5. The metamodel pre-

sents the constructs and rules needed to build SRS using the RSD approach.

The three design practices of RSD approach are detailed. The practices are

conducted with the customer collaboration. The first practice aims to identify the con-

cepts in order to produce a data model and to facilitate the changes of the require-

ments that are frequent in ASD. The second and third practices are conducted in

parallel. The second practice aims to model the mockups in order to capture the vis-

ual requirements. The third practice aims to specify the AC+ related to each require-

ment. But, not only functional requirements, technical aspects, system requirements

 119

and NFR are also specified. AC+ is based on the concepts of ATDD and BDD that

aim to create tests for the requirements before implement it.

The innovation of the approach is to systematize the use of these practices in

ASD, and integrate the description of the functional and system requirements in a

single view providing a wider requirements coverage when compared to US, which

only addresses user requirements. RSD is based on the principle that frequent soft-

ware deliveries are used to validate requirements. Thus the RSD is not intended to

requirements validation with the customer. RSD approach is directed to developer

and recommends an SRS very objective, without prolix and unnecessary descriptions

to the developer.

An example was used to illustrate the structure of the RSD. Following the sim-

plicity principle, the approach adopts an SRS with few models integrated into a single

artifact.

A paper detailing the RSD approach was accepted at 32nd ACM Symposium

on Applied Computing - SAC (See Table 8.1, #1). An outline of the proposed ap-

proach was also previously published in an international journal (MEDEIROS et al.,

2016) as a partial result of the investigations carried out in this thesis.

Next chapter details the empirical studies that evaluated the RSD approach in

practice.

 120

7

EVALUATIONS

This chapter describes the design, procedures and results of two empirical studies

conducted to assess how the RSD approach works in the industrial practice. First,

Section 7.1 explains the choice of the evaluation method. Section 7.2 presents the

design of the empirical studies. Section 7.3 presents the procedures conducted to

collect and analyze the data. The results of the evaluations are presented in Section

7.4 and discussed in the Section 7.5. Finally, Section 7.6 presents the threats to va-

lidity of the evaluations.

7.1 The evaluation method

Experiments are essentially reductionist – they reduce complexity by allowing

only a few variables of interest to vary in a controlled manner while controlling all

other variables. If critical variables are ignored or controlled, the experimental results

might not generalize to real-world settings (EASTERBROOK et al., 2008). Formal

experiments are sometimes difficult to conduct when the degree of control is limited.

To impose full control, formal experiments are often small, which is a problem when

you try to increase the scale from the laboratory to a real project (KITCHENHAM et

al., 1995). We did not choose experiments as the research method to evaluate the

use of the RSD approach because the real context in practice is essential in the

evaluation process and we do not have control over some variables. The evaluation

only through a controlled experiment would not be enough because it would not con-

sider the following variables of the real-world:

• The RSD is built collaboratively with the customer following the princi-

ples of the Agile Manifesto. In addition, collaboration with the customer

is also required to clarify doubts during the coding activity and to vali-

 121

date partial versions of the software. Thus, the iteration with the cus-

tomer is an important variable in ASD;

• To assess the use of RSD approach, it is also essential to observe the

difficulties and facilities to code and test from the RSD. We cannot ob-

serve properly these activities evaluating the requirements in an isolat-

ed manner. Thus, it is necessary to investigate, in an integrated way,

the entire development cycle;

• Reuse of requirements, dependence among stakeholders, rework, im-

pact analysis of change requests, and knowledge transfer are variables

that require the observation of the use of the approach in a real-world

setting for some months and involving several sprints. We cannot as-

sess these variables easily through controlled experiments.

We set out from the principle that the assessment of the RSD approach can-

not be separated from the real context. Thus, we conducted two empirical qualitative

studies to assess how the RSD approach works in practice and gather insights to

enhance it. The strength of qualitative approaches is that they account for and in-

clude differences - ideologically, epistemologically, methodologically - and most im-

portantly, humanly. They do not attempt to eliminate what cannot be discounted.

They do not attempt to simplify what cannot be simplified (MERRIAM, 2009). The

empirical studies were conducted following the guidelines suggested by Runeson

and Martin (2012) composed of five steps: Planning; Preparation; Collecting evi-

dence; Analyzing the data collected; and Synthesis.

7.2 Design and Preparation

The studies had an explanatory purpose (RUNESON and MARTIN, 2012).

The evaluations were conducted in two companies following a single standard proto-

col. The unit of analysis was the software engineers.

The goal of the empirical studies was to assess how RSD works in practice.

The following Specific Research Questions (SRQ) were defined:

• SRQ1: How the team evaluates the SRS produced using the RSD ap-
proach?

• SRQ2: How the RSD approach affects the work of the team?

 122

7.2.1 The Sample

The selection of the companies was done very carefully to provide relevant da-

ta to evaluation. The precondition for selection of the companies was the use of agile

practices in the software development. To conduct the investigation, we were condi-

tioned on acceptance and willingness of companies to use the RSD approach in one

of their projects. We got two enterprises that fitted in these preconditions. The com-

panies selected the projects to be investigated according to these prerequisites. We

interviewed all software engineers of the teams investigated in the two companies.

The first evaluation was conducted over 12 months in the development of an

information system for doping control (PETRONIO et al., 2016) for a federation affili-

ated to the IAAF (International Association of Athletics Federations) which is the

maximum worldwide athletics association and is recognized by the International

Olympic Committee (IOC). The project covered features from the registration of the

athlete to the judgment when the test result is positive. The development team con-

sisted of ten software engineers (two system analysts and eight developers).

The second evaluation was conducted over 3 months in a small software

company established in 2004. The investigation was carried out in the scope of one

of the three development teams of the company that had four software engineers (all

developers) responsible for the evolution and maintenance of three information sys-

tems. An information system for the management of residential condominiums that is

running on more than 40 customers. An information system for a financial coopera-

tive, and another for the company's internal administrative control.

7.2.2 Preparation

Before the empirical study be initiated in each company, we talked to the team

about their expectations about adopting a new approach to replace user stories.

Then, the studies protocol was elaborated describing the procedures to collect and

analyze the data. A questionnaire was designed to guide the interviews with software

engineers (See Appendix E).

In the final stage of preparation, a training was conducted in each empirical

study to introduce the RSD approach to teams. The RSD practices were detailed for

software engineers. Then, a pilot was performed with some requirements that were

 123

specified using the RSD approach and then implemented. The pilot aimed to clarify

doubts, and familiarize the team with the new approach.

7.3 Procedure for collecting and analyzing data

In each empirical study, data were collected and analyzed simultaneously, in

incremental and iterative steps in order to answer the research questions outlined in

Section 7.1. As described in Section 6.1, the RSD approach aims to address some of

the quality factors established in the model detailed in Chapter 5. Thus, part of the

evaluation of RSD approach was done using these factors as a reference. We used

three data collection sources: observations, analysis of documents and interviews.

To increase the credibility of the internal results, we did a triangulation of the data

obtained from the sources, as shown in Table 7.1 . The data collected and analyzed

were reviewed by another researcher (master student).

Table 7.1 – Data collected by source

7.3.1 Observations

The researchers did not work on the activities of the development process, not

interfered in the way that the projects were being conducted, nor made any sugges-

tions or criticisms. The researchers participated as observers in some activities car-

ried out by the team to perceive how software engineers were using RSD approach

and the difficulties faced. For example:

• Discovery sessions with the customer to detail their needs, specify the
AC+, mockups, and the conceptual model;

• Team meetings to share better practices, problems and difficulties that
compromised in the specification, coding and test activities;

 124

• Meetings involving the development team, the PO and the customer to
perform acceptance tests;

• Meetings to discuss and analyze the impact of change requests to re-
quirements.

7.3.2 Documents

The analysis of the documents helped to understand the difficulties pointed out

by the stakeholders during the meetings and interviews. Data were collected from

documents, such as RSD, the repository of AC+ and the results of acceptance tests

(when they were registered). In the first evaluation, the RSD was elaborated by the

systems analyst in collaboration with the PO, and sometimes by the customer. In the

second empirical study, the RSD was always elaborated by the PO.

Each RSD was evaluated by the software engineer responsible for its coding.

They evaluated how the content of each RSD was specified according to six quality

factors (Table 5.4): Team-Oriented, Objectivity, Readability, Clearness, Complete-

ness and Outdated. Each factor was assessed as in Compliance (1) or Non-

Compliance (0). The others quality factors of the model were evaluated during the

interviews.

7.3.3 Interviews

The interviews were conducted individually with each software engineer at the

end of each evaluation. Before each interview, we clarified that the purpose of the

interview was to evaluate the approach and propose improvements to it. We made

the interviewee aware of the importance to detail the answers as much as possible.

The questionnaire described in Appendix E was used to guide the interviews.

It has 34 questions (Q) addressing the following aspects:

• Experience of the Interviewee (Q1 to Q5);
• Learning in using the RSD approach (Q6 to Q8);
• Content and structure of the RSDs (Q9 and Q14);
• Effects of the RSD approach on works of the team (Q15 to Q17);
• Dependence between stakeholders (Q18 to Q19);
• Effort required to specify, coding and testing using the RSD approach

(Q20 to Q27);
• Impact analysis of change requests (Q28 to Q30);
• Opportunities for Improvement the RSD approach (Q31 to Q34).

 125

As previously described, the content of each RSD was evaluated only by the

software engineer responsible for its coding. Unlike, the RSD structure was evaluat-

ed by the entire team. During the interviews, the RSD structure was evaluated ac-

cording to some quality factors of the model described in Chapter 5 (Section 5.5):

Simplicity, Acceptance Criteria, NFR, Technical Aspects, Functional Requirements,

Consolidated/Fragmented Information, Automated Support, Traceability and Change

History. As described in Section 6.1, these last three factors are not address by the

RSD practices. These factors will be addressed by the tool to be developed as future

work of this thesis. However, they were also investigated in order to identify their im-

portance in the context of the projects investigated. Each factor was assessed as be-

ing in Compliance, Partial Compliance or Non-Compliance.

The interviews were transcribed and open coded (MERRIAM, 2009). The con-

stant comparison method was used to synthesize the data and to explain how the

RSD approach works in practice. After coding of the transcriptions, a review of the

codes was performed trying to identify similarities, duplicates and undue codes. The

codes were successively revised until getting the results presented in next section.

7.4 Results

This section presents the results of the evaluation of the RSD approach con-

ducted in each company.

7.4.1 First Evaluation

a) Context
The RSD approach was adopted since the beginning of the project. Each

sprint lasted for a month, but partial versions of the software were released every

week for the internal acceptance testing. Several agile practices were well estab-

lished in the project, such as backlog, iterations, frequent releases, version control,

continuous integration, refactoring, automated build and retrospective (AGILE

ALLIANCE, 2016). Daily meetings were conducted to monitor the project status, to

share better practices, and to discuss the problems and difficulties faced in the de-

velopment process.

The project used different people to play the roles of analyst and developer.

The development team was composed of 10 software engineers: 8 developers and 2

system analysts. One of the analysts and six developers worked together on other

 126

projects. However, one of the analysts and two trainees (developers) were novice in

the team. Except for the two trainees, all other team members had more than four

years of experience with ASD. All developers have already played the role of system

analysts in other projects, as well as both analysts have already worked as develop-

ers. The most experienced developer played the roles of architect and configuration

engineer. He was responsible for conducting deploys weekly.

The analysts elaborated the RSD in collaboration with the PO and the cus-

tomer during the weekly discovery sessions. The Microsoft Word was used to elabo-

rate the RSD. The Java language was used to code the requirements. The PB was

controlled through a Microsoft Excel spreadsheet. Redmine tool was used for the

project management and to report the results of acceptance tests. The analysts used

Pencil tool18 for modeling the mockups and Astah tool19 for the conceptual modeling.

The evaluation results are presented as follows by research questions.

b) RQ1: How the team evaluates the SRS produced using the RSD ap-

proach?

The development team evaluated the RSD from two aspects: content and

structure (type and organization of information).

Content

The developer evaluated all 39 RSD and 257 AC+ produced during the empir-

ical study, as summarized in Table 7.2. Some RSDs specified more than one re-

quirement. All RSDs were evaluated as in compliance with Team-oriented and Up-

dated (Outdated) factors, but they were not included in Table 7.2.

The first four columns show the evaluation performed by the developers ac-

cording to the quality factors. The Non-Conformities (NC) found by PO in the ac-

ceptance tests are shown in the fifth column (NC related to RSD failures) and the

sixth column (other types of NC). The last column shows the quantity of changes per-

formed in each RSD (volatility) in order to fix or improve it and meet the needs of

stakeholders. The change history was listed on the back cover of each RSD.

18 http://pencil.evolus.vn/
19 http://astah.net/editions/professional

 127

Table 7.2 – Content evaluation of each RSD

 0 (non-compliance) 1(compliance)

Eleven RSDs (28%) presented non-compliance with at least one quality factor.

Most of RSDs (72%) were evaluated in compliance with all factors. A summary of the

evaluation by quality factor is presented in Figure 7.1. According to the developers,

95% of RSD (37) was objective. Two RSDs were considered non-objective because

they had redundant information, unnecessary for the developer. Despite this, the ac-

ceptance tests did not present any NC in the functionalities related to these two

RSDs. According to the interviews (Question #22 in Appendix E, Q22), the analysts'

experience contributed to writing the AC+ in an objective way for the developer.

Figure 7.1: Summary of the content evaluation by quality factor

 128

Most of RSDs (92%) were considered easy to understand by the team. Read-

ability factor was considered compromised in three RSDs that described more than

one requirement in the same document. For example, the requirements Solicitation

of a Doping Kit, Search of Solicitations, and Approve a Solicitation have been de-

scribed in the same document. In the opinion of developers (Q32), each requirement

of the product backlog should be specified in a separate RSD.

The requirements were described clearly (without ambiguity) in 95% (37) of

the RSDs. Two RSDs were considered in non-compliance with the Clearness factor.

One RSD did not clearly define how the data access restriction should be done. In

the other RSD, it was not clear whether the data should be persisted in the database

or not. Two RSDs considered ambiguous were also evaluated as non-compliance in

Readability factor because they had more than one requirement described in the

same document. Regarding the 257 AC+ specified during the period of the empirical

study, only 6% (15) presented problems of lack of clarity.

Regarding the Completeness factor, 85% of the RSD were considered suffi-

cient for the developer to code, without the need to consult complementary sources.

Six RSDs were evaluated as incomplete due to lack of information needed to code

some feature. We observed that the two RSDs that had prolix descriptions unneces-

sary for the developer were also evaluated as incomplete. Thus, the descriptions with

excessive detail did not contribute to make a complete documentation. Although the

acceptance tests related to these RSDs did not find NC in the software, the lack of

objectivity and completeness of these RSDs affected the productivity of the team giv-

en that the developers needed to talk with other stakeholders or to look for other

sources to clarify related doubts, as reported by one developer (Q21):

“Sometimes we identify that the SRS is incomplete, lacks some AC+.
So, we lose a lot of time because we need to get the information with
the analyst or wait for the documentation to be updated.”

In the interviews, we inquired the ten software engineers about the content of

the RSDs compared to the content of the SRSs used in other projects (Q13). User

stories and use cases were cited by more than 70% of respondents as techniques

that they had used previously. Regarding the Completeness factor, nine software en-

gineers assessed RSD as better, just one considered as worse. Regarding the

Clearness factor, half of the respondents considered that the RSD is better than oth-

er approaches used by them. The other half considered that RSD has the same qual-

 129

ity. All respondents pointed out that the Objectivity and Readability of RSD is better

than when using other approaches.

Finally, we analyzed the changes (volatility) that were made in RSDs to meet

the needs of stakeholders. A total of 72 changes were identified, some RSDs were

changed more than once, as shown in Table 7.2 (last column). A large number of

changes do not mean that the RSD became more complete, nor that the software

had little NC in the acceptance tests. For example, RSD #5 had many changes, but

also presented a lot of NC in the software. Although some changes were made in the

RSD #29, they were not enough, since the developer has assessed it as incomplete.

In such requirements, it is possible that the team did not have the necessary under-

standing of customer needs. Although many changes have been made in the RSD

over these requirements, the RSD was not considered complete and produced a lot

of NC. Thirteen RSDs (33%) did not have their content changed.

Structure

The software engineers also were interviewed about how they assessed the

RSD structure based on mockups, concepts and AC+ (Q9). Then, they evaluated the

RSD using a scale from 1-Inadequate to 5-Very Adequate (Q10). In general, the

structure of RSD is Very Adequate in the opinion of most respondents (8). The re-

maining respondents evaluated it as Adequate. Then, the team was inquired about

each quality factors (Q11). All ten software engineers pointed out that the structure

was in compliance with the Simplicity, Acceptance Criteria, Technical Aspects and

Functional Requirements factors, as summarized in Figure 7.2.

Figure 7.2: Evaluation of RSD structure by quality factor

 130

One system analyst evaluated the Non-Functional Requirements factor as in

Partial Compliance (Q11). He suggested (Q31) the definition of an initial catalog of

the NFRs to improve the adoption of the RSD approach, as follow:

 “Although the structure predicts the NFR type to describe acceptance
criteria, in practice, the team generally neglected the specification of
these requirements. The project repository had few acceptance criteria
of this type. The approach could suggest a catalog with generic NFRs
to be part of the initial repository of each project.”

As described in Chapter 6, the RSD approach does not restrict the adoption of

a particular tool for the specification of AC+, construction of mockups and the con-

ceptual model. It is up to each company to use the tools according to their needs,

processes, and methodologies. The development team reported (Q17) no problems

regarding the use of the Pencil for the elaboration of mockups and the use of Astah

to conceptual modelling. However, the team reported difficulties regarding the use of

Microsoft Word to store and control the repository of AC+, and to elaborate the RSD.

In the opinion of system analysts (Q17), the operationalization of the reposito-

ry through a text document does not facilitate the search for AC+ to be reused.

Moreover, traceability has been undermined because the relationship between re-

quirements and acceptance criteria was made manually using an MS Excel work-

sheet instead of being generated automatically. Thus, two analysts and four devel-

opers (6) pointed out non-compliance with the Traceability factor and partial compli-

ance with the Automated Support factor, as shown in Figure 7.2.

The changes control in requirements was done through MS Word and by the

SVN tool used for version control. Two developers pointed out non-compliance with

the Change History factor. The remaining of the team evaluated it as partially compli-

ant. A developer reported partial compliance with the Consolidated (Fragmented) In-

formation factor. In his opinion (Q13), the RSD should provide a hyperlink to access

each AC+ more quickly given that they were defined in a separate document.

Finally, we investigated the structure of RSD compared with other approaches

previously used by the software engineer (Q12). Six interviewees pointed out that the

RSD structure is more appropriate than the structure of the other approaches. No

interviewee indicated that the RSD structure was worse than other approaches. In

the comparative evaluation by quality factor (Q13), the majority of interviewees con-

sidered that the RSD structure is better in Simplicity, Acceptance Criteria, Technical

Aspects and Consolidated (Fragmented) Information factors, and equal in the others

 131

factors: NFR, Automated Support, Traceability, Functional Requirements and

Change History.

The initial RSD structure did not represent the AC+ priority. If an AC+ had a

different priority or it had to be implemented in another sprint, the analyst registered

this information as a note in Redmine. After the second month of use of the ap-

proach, the team modified the RSD structure in order to highlight the priority of the

acceptance criteria in the RSD itself (Q31). One developer pointed out this as a limi-

tation of the approach (Q21), as follows:

“The priority of acceptance criteria should be described in the RSD, in-
stead of Redmine. If the developer has no attention to look at the note
written in the Redmine, he/she loses time coding AC+ allocated to an-
other sprint.”

The AC+s were categorized by the system analysts in General (potential to be

reused in other requirements) and Specific to a particular requirement. This categori-

zation was not part of the structure initially defined for RSD. However, analysts

adopted this practice to facilitate the search for AC+ in the RAC and improve the re-

use (Q22/Q33). In fact, the priority and categorization of the AC+ improve the RSD

structure and therefore has been incorporated into the RSD approach after the first

case study, as defined in metamodel presented in Section 6.2.

The results of the interviews (Q14) showed that RSD met the expectations of

the software engineers regarding the structure of the RSD, as follows:

“The description of the functional and system requirements through ac-
ceptance criteria leads to a developer-oriented SRS containing de-
scriptions on how the requirement should be implemented. This helps
us in the coding activity.”

“The RSD structure allows a more integrated view of the rules and
constraints applied to a particular requirement. In previous projects,
user stories were described independently and unrelated; we did not
have an integrated view of a particular requirement.”

c) RQ2: How the RSD approach affects the team work?

The model outcomes defined in Section 5.3.2 were used as reference to guide

the analysis on how RSD approach affects the work of the team. The results of this

analysis are presented below:

Effort required to specify, code and testing

The RSD approach was quickly absorbed by the team that presented no diffi-

culties in their learning (Q6). The RSD approach introduces new practices to specify

 132

requirements in ASD. Thus, we formulated the following hypothesis: The effort re-

quired to specify requirements using RSD is higher than using other approaches, but

the effort to implement using RSD is lower than when implementing using other ap-

proaches. However, in the opinion of the interviewees (Q24 to Q26), the effort re-

quired for using the RSD is not higher than using other approaches. One analyst

considered that less effort was required. The other analyst believes that it is the

same. Half of developers considered that RSD required either less effort to code than

other approaches. The other half considered that it requires the same amount. Ac-

cording to most of the software engineers (7), implementing RSD requires a reason-

able effort; the other software engineers (3) consider that implementing from RSD

requires little effort (Q23).

The interviews results showed that the approach met the expectations of the

developers regarding their productivity and proved to be a very simple and objective

SRS, suitable for coding activities, as follows (Q27):

 “The detailing of the requirements through the AC+ makes the SRS
more straightforward and objective for the developer.”

According to the analysts (Q21), the Traceability Matrix (TM) was not useful in

the project due to the high effort required to keep it up-to-date. The TM presents the

relationship between requirements and AC+, so it helped in the impact analysis of

change requests in requirements. The matrix is not an artifact defined by the RSD

approach. It was adopted by the company to manage the requirements. In parallel to

drawing up the RSD, the TM had to be updated manually. The same happened when

the team needed to change an AC+ and/or a requirement. We identified that the TM

was almost always out of date. Only ten requirements were updated in TM. Some

tools available in the market, such as Caliber, generate the traceability of require-

ments automatically. However, the project did not use any of these tools. Instead, the

TM was operationalized by using a spreadsheet shared among the team. Below is

the statement of a system analyst on the issue:

“The traceability matrix is not being properly used in the project be-
cause the manual update requires much effort. I do not think it's worth
wasting time on this. The matrix should be extracted automatically from
the SRS.”

The acceptance tests were conducted by the PO using the RSD as a refer-

ence. This was pointed out as a good practice (Q22). The tester validates whether

the software complies with each AC+. However, the analyst had to register manually

 133

in Redmine each NC found, and forward it to the responsible person for the fix.

Sometimes, the analyst did not register the AC+ related. As a result, the developer

lost a long time analyzing the problem, and clarifying doubts.

Analyzing the difficulties reported by the team during the acceptance tests and

from the interview results (Q15), we believe that the test can be optimized by using a

tool to generate a roadmap (checklist) automatically from AC+. The tester needs only

to check or uncheck the checklist, according to the test result. In addition to making

the register of NC by associating the AC+ related, the tool can send an email notifica-

tion to the responsible to make the necessary corrections. The software adoption will

optimize the time of the team. Furthermore, the use of the checklist prevents the

tester to forget validating an AC+, thus contributing to improve the testing quality.

Non-conformities in the Software due to issues in the SRS

As previously mentioned, the acceptance tests were conducted weekly to veri-

fy the compliance of the software with customer needs. At the beginning of the pro-

ject, the stakeholders did not have a complete understanding of all customer needs

given that the software development was done iteratively and incrementally following

the agile principles. The customer's needs were obtained and detailed through partial

validations of the software in each sprint. From the analysis of the Redmine records,

six types of NC in the software were identified as shown in Table 7.3.

Table 7.3 – Types of Non-Conformities (NC)

 ID Type of Non-Conformity

Bugs
#1 Problems of legibility, clarity or completeness in RSD
#2 Customer's needs not represented correctly in the RSD
#3 Requirement not implemented according to RSD

Improvements #4 New requirements not previously captured but essential for the customer
#5 Additional features in the requirements already validated by the customer

Changes #6 Changes in the requirements already validated by the customer

As detailed in Table 7.2, 157 NCs were found during the case study period.

20% (31) of these NC+ were due to issues in RSD (Table 7.3, items #1 and #2)

which required corrections in it. The other NCs (126) are not related to RSD failures.

They refer to bugs arising from the implementation of the requirement differently from

what was defined in the RSD (#3), improvements (items #4 and #5), and changes in

functionality previously requested and already validated by the customer (#6).

It was not possible to assess whether the use of the RSD approach reduced

the NCs resulting from problems in the SRS because the acceptance tests were

 134

conducted in a different way in the previous projects. Another document (test cases)

was used to guide the tests before the adoption of the RSD approach. Moreover, the

test results were grouped by tested functionality, and a single issue was recorded in

Redmine describing all NCs found. After the introduction of the approach, the com-

pany decided to conduct the tests from the AC+ and registering the result by it, in-

stead of grouping by functionality.

Impact analysis of change requests

The requests for improvements or changes in requirements were analyzed by

the PO, the analyst, and the developer responsible for the coding. They discuss the

impact on the project schedule. The TM was not used by them to support the impact

analysis of change requests because it was outdated most of the time (Q29).

Depending on the impact of the request, new prioritizations and distributions of

requirements were made for the next sprints. However, the initial duration of the

sprints was always maintained. It was not modified as a result of the requests. During

the case study, the project received a total of 54 change requests − 69% of RSDs

(27) received change requests. These changes were requested during acceptance

tests or at weekly customer meetings.

The changes in the RSDs were not appointed as a negative factor. According

to the team (Q28, Q30), despite the large number of change requests, the impact

was reduced given that the software validations were frequent and the project archi-

tecture was scalable. The team pointed out that the conceptual modeling was a posi-

tive factor that contributed to the construction of a more stable data model. So, little

changes were required in the structure of the data model during the sprints, which

reduced the impact of the rework in software.

Reuse

The team reported that due to the TM being outdated, they did not use it to

identify AC+ that could be reused (Q16). At the end of the case study, the TM was

updated to examine the reuse rate of the AC+. Many AC+ were reused in several

requirements, especially the AC+ of validation, technical, and interface types, result-

ing in a reuse rate greater than 60% which improved the productivity, as follows:

“The RSD approach has contributed to the reuse of AC+ used in other
requirements, which improves our productivity.”

 135

By analyzing the TM, it was possible to identify that reuse depended largely on

knowledge about the existence of AC+s. There were high reuse rates of the AC+s

specified by the same analyst. However, the reuse rate of the AC+ specified by dif-

ferent analysts was much lower. Analysts have reported difficulties to find opportuni-

ties for reuse because AC+s were stored as a text document (Q21). A more efficient

mechanism is required to share and find AC+s. The support of a tool can increase

reuse rates. Besides storing the AC+s in a database, a tool could provide features to

locate them more efficiently. Despite the difficulties previously presented, the ana-

lysts consider that the reuse of AC+s improved their performance (Q22). Table 7.4

shows the top five most reused AC+. AC90 was the most reused, it was used in 82%

of requirements.

Table 7.4 – Excerpt of the most reused Acceptance Criteria+

ID Description of the AC+ % reuse
AC90 The widget is read-only. It cannot be changed by the user. 82%
AC04 Only active records must be displayed 79%
AC03 To save, it is necessary that all required fields (*) are filled. 74%

AC20
The drop-down list must only display the confederations that the user logged has
access permission in your profile.

74%

AC44
It is necessary to include the log by registering the user logged, the current
date\time and the operation performed.

62%

… … …

Knowledge transfer, Customer collaboration and Dependence between

stakeholders

During the the case study, the trainees were replaced twice. The RSDs were

used to reduce the effort to transfer knowledge. So, the rest of team did not have to

interrupt their activities frequently to impart knowledge to new members. Although the

team held daily meetings, the RSD was the main source for developers to code the

requirements.

The customer lived in a different city from the development team. Despite this,

the customer collaboration was adequate in the team opinion (Q18). Communication

with the customer was made on demand through the analysts or PO whenever it was

necessary to detail or clarify any requirements. The analysts and developers had a

frequent iteration. In the opinion of the team (Q19), the frequency and type of com-

munication used by stakeholders were very adequate.

 136

7.4.2 Second Evaluation

a) Context

The company has adopted Scrum since 2013 using practices such as product

backlog, planning poker, frequent prioritization of requirements, retrospective, itera-

tions and daily meetings. The development team consisted of four members: two

software engineers, with more than three years of professional experience, and two

trainees (university students). All members worked in the same activities, there were

no different roles. They were responsible for the evolution and maintenance of three

applications, one of which is the company's main product that is in operation in more

than forty customers.

Before the company adopts the RSD approach, the requirements were speci-

fied through stories. In sprint planning, if a story had an estimate of effort greater than

13 points, it was necessary to divide it into two or more stories. Each user story was

registered as a ticket in Redmine. The dependency relationships between the user

stories were not registered although the Redmine have a resource for this purpose.

Regarding the adoption of a new approach to specify requirements, software

engineers had different (but not conflicting) expectations. The most experienced

software engineers pointed out that the management of requirements needed to be

improved. The tickets (user stories) were closed after the validation of the software

with the customer. If it was necessary to modify some functionality (e.g., an interest

calculation), the team registered a new ticket describing how the new calculation

should be, instead of finding and changing the original story.

Trainees often needed to consult senior engineers for additional technical in-

formation not described in the stories. Therefore, they pointed out the need to have a

more complete SRS containing the information needed to code. The trainees also

pointed out that they had difficulty in having a general understanding of a require-

ment because the user stories provided only a limited view of a functionality.

From October 2016, the RSD approach has been introduced in one of three

development teams to replace the user stories. The approach was used to specify

new requirements and change the existing requirements in the three applications.

However, the user stories have been preserved for the team to consult them when

necessary. The team continued using the same tools that used before the introduc-

tion of the approach. The Redmine tool was used to control the product backlog and

 137

elaborate the RSD. In this context, the practice of conceptual modeling did not re-

quire much effort from the team. Usually, the user interface layout was automatically

generated by the ScriptCase tool20 from the data entities. The layout was only modi-

fied after user validation, if necessary. Thus, the practice of modeling mockups had a

secondary importance. The specification of the AC+ was the most commonly used

practice and the PHP language was used to code the requirements.

The sprints had monthly duration. The sprint planning considered the product

backlog of the three applications, since the team was the same. Most of the AC+

were specified by the team during the sprint planning. Sometimes, other AC+ were

specified later by the developers.

a) RQ1: How the team evaluate the SRS produced using the RSD ap-

proach?

Content
During the three months of the case study, the team worked in 68 require-

ments. Most of them (51) already existed previously. The team worked in their evolu-

tion. The remainder (17) represented new requirements included in the product back-

log of the three applications after the adoption of the RSD approach.

The conceptual modeling was necessary in 26 requirements. The modeling of

mockups was necessary in 9 requirements. In the other requirements, no mockup

was associated with RSD because the team used the user interface generated by

ScriptCase. 122 AC+ were specified by the team during the investigation period.

Most of them described new needs of stakeholders (96). The remainder represented

changes in functionalities previously described through user stories (26). Sometimes

during coding activity, the software engineer identified new System-type AC+ and

registered them in the RSD. This occurred in 26 RSDs.

The user stories previously used by the team were written in a very objective

and clear way directed to the development team. According to software engineers,

these characteristics remained present in the requirements described using the RSD

approach. Software engineers perceived that the RSD approach has improved the

completeness and readability of the SRSs. The SRS became more complete by the

description of the AC+ with technical aspects that were not previously described us-

20 http://www.scriptcase.net/

 138

ing user stories. These information were not documented, they were only in the

minds of the most experienced software engineers.

According to the team, the grouping of AC+ by functionality provided a consol-

idated view of a requirement facilitating a general understanding of it (Q14). The

readability of the RSDs was considered better than the user stories.

Analyzing the changes made in the RSDs (volatility), we observed that only

three RSDs were corrected during the period of investigation. Regarding the outdat-

ed factor, the team considered that the RSDs were up to date.

Structure

Each RSD was represented in Redmine describing a requirement as a ticket

and the AC+ as sub-tickets. Mockups were attached to the ticket as a file, if neces-

sary. The association between the widgets, data entities and AC+ was made in the

description field of the ticket. The team relaxed this association that was only made

when there were new widgets, data entities or when there was some related AC+,

rather than describing all widgets and data entities, as defined by RSD approach.

The Redmine was customized to classify the AC+ according to the potential to

be reused (Specific or General) as suggested in the first case study and incorporated

into RSD approach (Section 6.2) and to identify the AC+ types (Table 6.1). However,

the team unified the Validation, Interface and Technical types into a single type called

System to facilitate the adoption of the approach in practice (Q31). AC+ of the Sys-

tem type decreased the dependency among the team members helping to meet

some expectations of the trainees (Q14). To facilitate the planning and coding activi-

ties (Q31), the team extended the approach by creating a new field (Order) in

Redmine to identify the order that the AC+ should be coded within the sprint.

The Technical Aspects and Acceptance Criteria factors were evaluated as

Very Adequate (Q10). In the opinion of the team (Q13) regarding these factors, the

structure of the RSD approach has improved over the previously used approach. De-

spite the Simplicity, Functional Requirements and Consolidated (Fragmented) Infor-

mation factors have been evaluated as in compliance (Q11), the team considered

that there was no improvement over the previously used practice (Q13).

NFRs such as security, accessibility, and storage constraints were defined on-

ly at the beginning of projects. The team reported not being able to evaluate the NFR

factor because no NFRs were specified during the investigation period.

 139

The change control in the RSDs was done through Redmine. The Change His-

tory factor was evaluated as partial compliance (Q11). The team pointed out that the

Redmine query to view changes made in the RSDs only had the option to filter by

date. It was not possible to search the AC+ that had the only the description field

modified, for example.

The structure of the approach was considered non-compliance in the Tracea-

bility factor because the relationship between the RSDs had to be done manually. In

addition, Redmine did not provide any report showing the relationships between

RSDs, neither relationships between requirements and AC+. Table 7.5 summarizes

the assessment of the approach according to the quality factors and compared to the

previously used approach.

Table 7.5 – Evaluation of the RSD approach by quality factor – second evaluation

 Compliance Non-Compliance Partial Compliance Not assessed

Better Acceptance Criteria, Technical
Aspects, Completeness, Readability - Change History,

Automated Support -

Equal

Team-oriented, Simplicity, Func-
tional Requirements, Objectivity,
Clearness, Outdated (updated),

Consolidated Information

Traceability - -

Worse - - - -
Not
assessed - - - NFR

b) RQ2: How the RSD approach affects the work of team?

Effort required to specify, code and testing

The grouping of the AC+ by requirement made it easier to find the specifica-

tion of a feature to be changed (Q20). As a consequence, the team modified the

strategy to specify changes in the existing requirements (Q28). Instead of including a

new ticket to specify a change as it was previously done, the new strategy dictated

that the software engineer must locate the original ticket and make the change in the

related AC+ or include a new AC+. In addition, the AC+ were not finalized after the

software validation, they remained active throughout the software lifecycle. This new

strategy improved the management of requirements.

In the opinion of trainees (Q26), the description of the AC+ with technical as-

pects (system type) reduced the effort to codify the requirements because they did

not need to interrupt the team activities to obtain missing information in the SRS.

 140

Previously, the PO conducted the acceptance tests in an exploratory and ad-

hoc manner. The adoption of the RSD approach systematized the tests from the

AC+, reducing the required effort.

Non-conformities in the Software due to issues in the SRS

Although the AC+s have helped in performing the tests, the team pointed out

that the testing activity still is not performed properly in the company and needs to be

improved (Q32). Often, features are made available to the customer only with internal

tests performed by the developer who coded the functionality, without the PO per-

forming the acceptance tests. In these cases, the developer fixed the identified NCs

without registering them. Therefore, we cannot investigate the NCs in the software

resulting from problems in the RSDs because there was no recording of these NCs.

Impact analysis of change requests

The impact analysis of changes was done by the PO and the senior software

engineer. As a result of this analysis, the priority of the requirements and the AC+

was rescheduled, if necessary.

As previously mentioned, the projects had no information on the traceability of

requirements and AC+. However, the PO pointed out that the absence of this infor-

mation did not affect the analysis because he and the senior engineer had a thor-

ough knowledge of the applications.

Reuse

We observed that the percentage of the AC+ reused was very low, less than

15%. As previously mentioned, the projects were already in progress when the ap-

proach was introduced, so the focus was on the evolution of applications. Often, sev-

eral constraints were grouped into one AC+ rather than each AC+ representing only

a single constraint. This made it difficult to reuse AC+.

As stated earlier, the team did not have good visibility on the relationship be-

tween the AC+ and the requirements. Perhaps, access to this kind of information

could help software engineers identify and reuse AC+ used in similar requirements.

It is necessary to investigate over a longer period and in new projects to have

a more effective evaluation if the RSD approach can contribute to the reusability of

AC+ in the company.

 141

Knowledge transfer, Customer collaboration and Dependence between

stakeholders

Although the AC+ of the system type has reduced stakeholder dependence

and the effort required to codify a requirement, in the opinion of trainees (Q19), daily

meetings continued to be essential to clarify doubts related to AC+ of the business

type and to share difficulties with other team members. In the opinion of the two most

experienced software engineers, the RSD was the main source of information they

used to code a feature.

According to the team (Q18), the communication with the customer was ade-

quate. All team members interacted with the customer whenever necessary, or at

least once a week. The most frequent communication was via email, telephone, and

instant messaging applications. The RSD was not used to validate requirements with

customers. The validations were always done through frequent software deliveries.

7.5 Discussions

Table 7.6 summarizes the context of the two empirical studies which evaluated

the RSD approach.

Table 7.6 – Context of the empirical studies that evaluated the RSD approach

 Empirical Study 1 Empirical Study 2
Company Size Small Small

Period Investigation 12 months 3 months

Projects Investigated 1 3

Type of Software
Developed Information System Information Systems

Project stage when
approach was intro-
duced

The project was still in the planning
stage

The projects were already in progress
and working on more than 40 customers

Development Team 10 software engineers (2 trainees) 4 software engineers (2 trainees)

Roles System Analysts (2) and Developers (8) There was no division of roles

Agile practices used
Backlog, frequent releases, iterations,
version control, continuous integration,

automated build, refactoring

Backlog, planning poker, frequent priori-
tization of requirements, iterations, ver-

sion control, retrospective, daily meetings

RSD practices
Use of the three practices equally

(Modeling Concepts, Modeling
Mockups and Specify AC+)

Focus on the specification of AC+

Tools used to specify
the requirements MS Word Redmine

Sprint Duration Monthly Monthly

Internal Releases Weekly Monthly

Acceptance Tests Weekly Not frequent

 142

Some characteristics are common to both companies, such as size, type of

software developed and sprint duration. However, there are some differences in the

context of the two assessments conducted. In the first company, the RSD approach

has been used since the beginning of the project and for a longer period (12 months).

On the other hand, the second company introduced the approach in three projects

that were already in operation in more than 40 customers and the evaluation was

carried out only for three months. We can highlight other differences such as the

tools used to specify requirements, the RSD practices used, the team size, and the

roles within the development team.

Despite the differences in the context of the two studies, we identified some

similarities. Table 7.7 summarizes how the teams evaluate the SRS produced using

RSD approach (RQ1) according to the evaluations conducted in the two companies.

The table was organized according to the categories of the model defined in Chapter

5 (Table 5.4) to facilitate the analysis of the results in relation to the model. Some

factors had a positive (+) effect, improving the team performance and others had a

negative (-) effect, undermining the team performance.

Table 7.7 – How the teams evaluate the SRS produced using the RSD approach

 id Factors Empirical
Study 1

Empirical
Study 2

Structure

#1 Integration of the AC+, Mockups and Concepts + +
#2 Grouping AC+ by functionality + +
#3 AC+ describing system and business requirements + +

#4 Inadequate support to register the acceptance tests by
AC+ - -

#5 Inadequate support to track the AC+ - -
#6 Representation of AC+ Priority -

Content

#7 Readability + +
#8 Completeness + +
#9 Clearness +
#10 Objectivity +
#11 RSD describing multiple requirements -
#12 AC+ grouping several constraints -

Others

#13 Reuse of AC+ +
#14 Difficulty finding the AC+ in the repository -
#15 Acceptance Tests from AC+ + +
#16 Learning curve to use the RSD approach + +
#17 Adapting the RSD approach to the company process + +

 + (positive effect) - (negative effect)

Regarding the structure of the approach, in the two empirical studies, the inte-

grated view of AC+, mockups and data entities (Table 7.7, #1) and the grouping of

AC+ by functionality (#2) improved the readability of RSD (#7) and the understanding

on how to code a requirement. Another positive factor was the use of AC+ describing

 143

the business and system requirements in an integrated manner (#3), which left the

SRS more complete (#8) and targeted to the developers.

Although the AC+ contributed to systematize and improve the performance of

the acceptance tests (#15), the two companies presented difficulties in registering the

test results (#4) without the support of a specialized tool. Another negative factor was

the inadequate support to track the AC+ (#5).

The teams did not have difficulties in using the RSD approach. The learning

was very fast (#16). The conceptual modeling and the modeling of mockups were

already practices utilized in both companies but were not integrated into the user sto-

ries. The innovation in the two companies was the specification of the AC+ and their

integration with the mockups and data entities.

In the first study, the team extended the approach to represent the priority of

AC + that was not represented in the initial structure of the approach (#6). And to fa-

cilitate reuse, the team categorized the AC + into Specific and General. These im-

provements were incorporated into the approach, so they were not reported in the

second case study. The team from the first empirical study also created new nota-

tions to represent mandatory and read-only widgets. In the second empirical study,

the association between the AC+, widgets and data entities was relaxed and was on-

ly made when it was necessary to describe some AC+ or if a new data entity or

widget was identified. This flexibility in adapting the approach to the development

process used by the company (#17) was also pointed as a positive factor.

The other characteristics pointed out in Table 7.7 were only identified in one of

the studies. For example, the description of the requirements in a clear (#9) and ob-

jective (#10) manner was highlighted in the first empirical study as a factor that has

contributed to improve the developer productivity. Although these features were also

present in the RSDs of the second empirical study, the team pointed out that they

were also present in the user stories previously used.

In the first empirical study, legibility was compromised when several require-

ments were described in the same RSD (#11), which undermined the productivity of

the developers. The specification tool (Redmine) used in the second empirical study

avoided this problem because each requirement was described as an independent

ticket. On the other hand, in the second empirical study, often the AC+ grouped sev-

eral constraints (#12), rather than describing each constraint as one AC+ in a singu-

lar way with a binary result as specified in the first empirical study.

 144

The reuse of AC + (#13) was pointed out as a factor that contributed to im-

prove the productivity of the team in the first empirical study. However, the reuse de-

pended largely on knowledge about the existence of AC+s. There were high reuse

rates of the AC+s specified by the same analyst. The reuse rate of the AC+ specified

by different analysts was much lower because the Analysts had difficulties to find

AC+s in the repository operationalized by a text document (#14). A more efficient

mechanism was required to share and find AC+s. This problem was not reported in

the second empirical study because the reusability of requirements was very low.

Table 7.8 summarized how the RSD approach affects the work of the teams (RQ2).

Table 7.8 – How the RSD approach affects the work of the teams

7.6 Threats to Validity

The quality of the data extraction was a potential threat to the validity. To miti-

gate it, data were triangulated (interviews, observations, and analysis of documents)

and another researcher (master student) checked the results. This was the main

strategy for increasing credibility.

The subjectivity inherent in categorizing and classifying the factors that affect-

ed the SRS based on the team’s perception was another threat. The constructs de-

fined in the model (Section 5.3.1) were used to minimize the impact of subjectivity.

The approach could have been evaluated by other researchers or by using

another research method. These might have reduced any bias in the results that may

have resulted from the authors conducting the evaluation. The objective of the re-

 145

searchers, who themselves conducted the empirical study, was to identify in loco the

limitations and the difficulties that the team had in using the approach, and also to

identify best practices and strengths. Certainly, the level of detail captured might be

different from an evaluation carried out by others.

Another threat was the software engineers answer what researchers wanted

to hear, rather than responding to real opinion of them. To minimize this threat, the

interviewees were encouraged to critique and point out the difficulties and limitations

of the approach to improve it and the work of the team. The researchers had no per-

sonal or professional relationship with the software engineers. It was reinforced dur-

ing the interviews the importance to detail the answers as much as possible. Also,

leading questions were avoided, and probes were defined with the objective of deep-

ening the respondent's answers, avoiding direct, vague and superficial responses.

Thus, we tried to get arguments, examples, and details to help understanding the

perception of each software engineer.

7.7 Summary

The goal of the empirical studies was to evaluate the use of the RSD in prac-

tice and identify its strengths and limitations. We did not have the intention of making

a comparative assessment of the RSD with other approaches, although a few ques-

tions were asked about it.

The results showed that RSD met the developer's expectations and proved to

be a very objective SRS, suitable for coding activities. The practices introduced did

not adversely affect the process agility. The results support that RSD has the poten-

tial to reduce the gap between the problem and solution domains, thereby enabling

the developer to acquire a better understanding of the feature to be implemented.

Also, RSD approach produces an SRS that is closer to what will be implemented and

allows technical aspects to be represented in an integrated manner with the function-

al requirements. The feedback collected through interviews suggests that RSD does

not add extra effort or may even help to reduce the effort involved in coding, testing

and maintenance. The performance of the tests from the AC+ was also pointed out

as a positive factor.

Regarding the challenges using the RSD approach, the productivity of the

teams was compromised when several requirements were specified in the same

 146

RSD or when an AC+ was grouping several constraints. The mechanism to search

the AC+ in the repository is inefficient, which makes reusability difficult. The teams

also pointed out the inadequate support to track the AC+ and to register the ac-

ceptance tests by AC+.

The evaluations showed some improvement opportunities in the RSD ap-

proach like prioritization and categorization of the AC+, and the need of an automat-

ed support to elaborate the RSDs. Some of these improvements have already been

incorporated in the approach, and the others were allocated for future works, as de-

tailed in Chapter 8 (Section 8.3).

A paper detailing partial results of the first evaluation was accepted at 32nd

ACM Symposium on Applied Computing - SAC (See Table 8.1, #1).

 147

8

CONCLUSIONS

This chapter presents the concluding remarks. Section 8.1 reviews the contributions

of this research. Some limitations of this research are presented in Section 8.2. Sec-

tion 8.3 presents our future works. Finally, Section 8.4 presents opportunities for new

researches.

8.1 Review of the contributions

To support the requirements specification activity in agile software develop-

ment, this research brings the following contributions:

• RSD Approach (described in Chapter 6) advances the knowledge on

the field through the design practices that are proposed to support the

development team in requirements specification activity in ASD acting

on the problems pointed out in the Figure 1.1. Unlike the current exist-

ing approaches, RSD is designed for the developer, and not to validate

requirements with customers. RSD provides an integrated view of the

requirements linking in a systematic way the benefits of the identifica-

tion of the problem domain concepts (conceptual modeling), the visual

representation of interface requirements (mockups), the business rules,

NFR and technical constraints (acceptance criteria). Although these

views are meant to capture requirements, they are very close to the

field of implementation helping in the software maintenance and trans-

fer knowledge. The RSD approach is the main contribution of the re-

search. A paper detailing the approach was accepted in an important

international conference (see Table 8.1, #1). The RSD approach an-

swer the RQ3 defined in Section 1.2;

 148

• An explanatory model (described in Chapter 5) that contributes to the

state of the art by providing a deeper understanding about factors which

affect the quality of SRS in ASD and how they affect the work of the

software engineers. The cross-case synthesis supports the require-

ments specification activity in ASD revealing findings that have implica-

tions for software organizations in their quest to create better work envi-

ronments and teams. An initial version of the model that emerged from

the synthesis of two case studies was published in an international con-

ference (see Table 8.1, #2). The model answer the RQ1 defined in Sec-

tion 1.2;

• A systematic mapping (described in Chapter 3) of literature about how

requirements engineering is being conducted in ASD. A qualitative re-

search investigated 24 primary studies collecting and analyzing evi-

dences of 68 companies, involving a total of 270 people in these com-

panies. The SM presented an investigation of the techniques currently

used to elicit and specify requirements in agile projects. It contributes to

the state of the art by synthesizing 49 challenges related to require-

ments engineering in ASD and identifying research gaps. The SM was

published in an international conference and in a Brazilian journal, as

shown in Table 8.1, items #3 and #4, respectively. The systematic

mapping answer the RQ1 defined in Section 1.2;

• Six exploratory industrial case studies (described in Chapter 4) were

conducted to investigate the requirements specification activity in the

context of agile projects. The case studies followed a multi-case design

with a precisely defined research protocol that has been tested in prac-

tice. The study design and procedures were published in an interna-

tional conference (see Table 8.1, #2). Other researchers in other con-

texts can develop similar studies based on our protocol. Further integra-

tion of results from other case studies would be important to improve

our understanding of the quality of SRS in agile projects;

• Two empirical studies (described in Chapter 7) evaluated how the

RSD approach works in practice. The design and procedures employed

to conduct these empirical studies were described in detail and they

can be used by other researchers in other contexts and situations in or-

 149

der to develop new studies. A paper detailing partial results of the first

evaluation was accepted in an important international conference (see

Table 8.1, #1).

Table 8.1 summarizes the publications that have been produced so far. The

timeline of publications is shown in Figure 8.1. The complete results of the cross-

case analysis and the model emerged from it were detailed in a paper that is under

review to be submitted to an international journal.

Table 8.1 – Publications of this research

 Conference/Journal Type Content of publication

#1
SAC 2017- 32nd ACM Symposium on Applied
Computing. April 03-07, Marrakech, Morocco.
doi:http://dx.doi.org/10.1145/3019612.3019753

Conference
RSD Approach and partial
results of the first evalua-

tion

#2

QUATIC - 10th International Conference on the
Quality of Information and Communications
Technology. doi: 10.1109/QUATIC.2016.49
(MEDEIROS et al., 2016b)

Conference First version of model

#3 ESELAW - 12th Workshop on Experimental
Software Engineering. (MEDEIROS et al., 2015) Conference Systematic Mapping

#4

PRINCIPIA - ISSN 1517-0306
doi: http://dx.doi.org/10.18265/1517-
03062015v1n28p11-24. (MEDEIROS et al.,
2015c)

Journal Systematic Mapping de-
tailed

#5

NAIST - New Advances in Information Systems
and Technologies, Springer, ISSN 2194-5357
doi: 10.1007/978-3-319-31232-3_35
(MEDEIROS et al., 2016)

Journal Outline of RSD approach

#6
CIBSE – 18th Ibero-American Conference on
Software Engineering. Doctoral Symposium.
(MEDEIROS et al., 2015b)

Conference Thesis Proposal

#7
CBSOFT – 5th Brazilian Conference on Soft-
ware: Theory and Practice. Thesis and Disser-
tation Workshop. (MEDEIROS et al., 2014)

Conference Thesis Proposal

#8 Thesis Qualification
Partial require-

ment for the Phd
Degree

Thesis Proposal

Figure 8.1: Timeline of publications

 150

In Section 8.4, we pointed out other crucial questions attached to SRS in ASD,

which are worthy of further investigation, serving, thus, as a basis to substantiate and

organize new researches in this area.

8.2 Limitations

This work presents a series of limitations, regarding the following aspects:

• Systematic Mapping

o The SM did not consider papers published in 2014 because the

research was under way;

o Approximately 6% of selected papers could not be analyzed be-

cause they were not available for download on the network of

UFPE and there was no success in attempts to get the items di-

rectly from the authors. So, it is possible that some relevant pa-

per has not been included for analysis;

o It was not made a conceptual analysis to identify possible varia-

tions and interposition of the elicitation techniques and specifica-

tion of the requirements identified by the first two research ques-

tions. For example, variations between the JAD and Brainstorm

techniques of elicitation (see Section 3.3);

• Model on quality factors of SRS in ASD

o The companies investigated did not provide historical data on

quality and productivity (e.g., man-hours, non-conformities,

among others). The outcomes described in the model reflect the

results of the analysis that considered the opinion of software

engineers, artifacts and the comments that were made during

the period of observation in the development environment of the

projects. We did not collect metrics to assess the extent of effec-

tiveness of these outcomes;

• RSD Approach

o The specification of mockups is one of the three practices used

by the approach. The approach may have its benefits reduced

when used in software projects that do not have a visual user in-

terface, such as web services, or batch processing. The RSD

 151

approach has not yet been evaluated in the context of these

types of projects;

o The evaluation of the approach aimed at identifying strengths

and weaknesses. No quantitative evaluation was done to com-

pare RSD with other approaches, although some questions have

been asked about it during the interviews;

o The approach does not require the use of a specialized tool to

support the elaboration of acceptance criteria, mockups, and

conceptual model. However, reuse and traceability of require-

ments are compromised when there is no support of an appro-

priate tool.

8.3 Future Works

Regarding the opportunities to improve the current knowledge about the re-

quirements specification activity in ASD, we expect to continue this research with the

following actions:

• Publish the results of the second case study that evaluated the ap-

proach, comparing with the results of the first case study;

• Develop a tool to support the adoption of RSD approach in practice,

providing the following features:

o Automatic extraction of widgets from mockups, and the entities

and fields from the conceptual model;

o An editor to describe the AC+, as well as, to control their status

(life cycle) illustrated in Figure 6.3;

o Mechanisms to search the AC+ in the repository, encouraging

reuse;

o Automatic generation of traceability between requirements and

AC+;

o Automatic generation of the skeleton (source-code) of the busi-

ness classes from the conceptual model.

o Automatic generation of a roadmap (checklist) from AC+ to sup-

port the acceptance testing and the registering of results;

 152

o Provide a checklist with the quality factors of the Content and

Structure categories so that the team can evaluate the RSD ac-

cording to these quality factors;

o Track the history of changes in requirements;

o Integration with project management tools, such as Redmine in

order to facilitate the adoption in the industry;

o Integration with tools that assess the quality of textual require-

ments, such as the RQA tool (Requirements Query Analyzer)

(GÉNOVA et al., 2011).

• Conduct further assessments of the RSD approach in other agile con-

texts (e.g., projects for the development of mobile applications and pro-

jects with distributed teams) to identify the points of convergence and

divergence regarding the two empirical studies conducted and to im-

prove the RSD approach.

8.4 Opportunities for new researches

The requirements specification activity in ASD still leaves many open ques-

tions and opportunities for new researches. So, we recommend that future research-

es should also evolve in the following directions:

• Systematic Mapping

o Investigate in the industry the challenges related to the Customer

and Requirements Management categories identified in SM.

These categories were not investigated in the six industrial case

studies carried out in this work;

• Model on quality factors of SRS in ASD

o Based on the model, new studies can be performed to propose

other practices to improve the requirements specification in ASD;

o Conduct experiments to compare customer-oriented SRS versus

developer-oriented SRS;

o Define metrics to evaluate more objectively some of the quality

factors defined in the model;

 153

o Conduct experiments to investigate whether there are statistically

significant correlations between the quality factors and the out-

comes appointed in the model. For example, to investigate if a

complete SRS entails a total development effort (specification

and code time) smaller than an incomplete SRS;

o Conduct confirmatory case studies to test part of the model. For

example, to test the factors of the External category (see Table

5.4);

o Conduct other studies, similar to ours, in different contexts and

development platforms. This extension to different contexts is

likely to yield some common results, increasing our ability to infer

that those results are applicable to a broader range of contexts.

Similarly, it may also lead to some conflicting results with deep

and rich explanations of localized contexts. It will give us a bet-

ter understanding of reality, albeit a very small part of it;

• RSD Approach

o Conduct a controlled experiment to evaluate the RSD quantita-

tively in comparison to other approaches regarding the team

productivity and quality of SRS;

o Investigate how the approach behaves in projects that require

the requirements validation with the customer through the SRS.

 154

REFERENCES

ABDULLAH, B.N.N., HONIDEN, S., SHARP, H., NUSEIBEH, B., NOTKIN, D.

Communication patterns of agile requirements engineering. In

Proceedings of the 1st Workshop on Agile Requirements Engineering

(AREW). ACM, New York, USA, 2011.

AGILE ALLIANCE. Subway Map to Agile Practices. Available at:

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/.

Accessed: 18/12/2016.

AGILE MANIFESTO. Manifesto for Agile Software Development. Agile Aliance,

Available at: http://www.agilemanifesto.org/. Accessed: 18/12/2016. 2001.

ALVES, D.C.P. Engenharia de Requisitos em Projetos Ágeis: Um mapeamento

sistemático baseado em evidências da indústria. Masters Dissertation,

Universidade Federal de Pernambuco, Centro de Informática. July, 2015.

AMBLER, S. W. Agile Requirements Best Practices. Available at:

http://agilemodeling.com/essays/agileRequirementsBestPractices.htm.

Accessed: 18/12/2016.

BECK, K. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA,1999.

BECK, K. Test Driven Development: By Example. Ed. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

BATOOL, A., MOTLA, Y.H., HAMID, B., ASGHAR, S., RIAZ, M., MUKHTAR, M.,

AHMED, M. Comparative study of traditional requirement engineering

and Agile requirement engineering. Advanced Communication Technology

(ICACT), 15th International Conference, pp.1006-1014, 2013.

 155

BJARNASON, E., WNUK, K., REGNELL, B. Are you biting off more than you can

chew? A case study on causes and effects of overscoping in large-scale

software engineering. Inf. Softw. Technol. 54, 10, 1107-1124.

DOI=10.1016/j.infsof.2012.04.006, 2012.

BJARNASON, E., WNUK, K., REGNELL, B. A case study on benefits and side-

effects of agile practices in large-scale requirements engineering. In

Proceedings of the 1st Workshop on Agile Requirements Engineering

(AREW). ACM, New York, NY, USA, Article 3, 2011.

BROWN, B.B. Assurance of Software Quality. SEI-CM-7, 1987.

CMMI. CMMI for Development. Version 1.3 (CMU/SEI-2010-TR-033). Software

Engineering Institute, Carnegie Mellon University.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661, 2010.

COHN, M. User stories applied for Agile Software Development. Addison-

Wesley, 2004.

CRUZES, D.S., DYBA, T. Recommended Steps for Thematic Synthesis in Soft-

ware Engineering. International Symposium on Empirical Software Engi-

neering and Measurement. Banff, AB, 2011, pp. 275-284. doi:

10.1109/ESEM.2011.36, 2011.

DANEVA, M., VAN DER VEEN, E., AMRIT, C., GHAISAS, S., SIKKEL, K., KUMAR,

R., AJMERI, N., WIERINGA, R. Agile requirements prioritization in large-

scale outsourced system projects: An empirical study. J. Syst. Soft. 86, 5,

1333-1353, 2013.

DYBA, T., DINGSOYR, T. Empirical studies of agile software development: A

systematic review. Information and Software Technology,

doi:10.1016/j.infsof.2008.01.006, USA, 2008.

EASTERBROOK, S., SINGER, J., STOREY, M-A., DAMIAN, D. Selecting Empirical

Methods for Software Engineering Research, In: Shull F et al (ed) Guide to

advanced empirical software engineering, Chapter 11. Springer-Verlag, Lon-

don, 2008.

EISENHARDT, K. M. Building theories from case study research. Academy of

Management Review, 14: 532–550, 1989.

FERREIRA, J., NOBLE, J., BIDDLE, R. Agile Development Iterations and UI De-

sign. Agile Conference (AGILE), Washington, DC, pp. 50-58. doi:

10.1109/AGILE.2007.8, 2007.

 156

FLYVBJERG, B. Five Misunderstandings About Case-Study Research. Qualita-

tive Inquiry, v. 12, n. 2, p. 219-245, 2006.

FRANÇA, A. C. C., SILVA, F. Q. B., FELIX, A.L. C., CARNEIRO, D. E. S. Motivation

in software engineering industrial practice: A cross-case analysis of two

software organisations. Inf. Softw. Technol. 56, 1, 79-101.

DOI=http://dx.doi.org/10.1016/j.infsof.2013.06.006, 2014.

FRIGG, R., HARTMANN, S. Models in Science. The Stanford Encyclopedia of Phi-

losophy, Edward N. Zalta (ed.),

http://plato.stanford.edu/archives/fall2012/entries/models-science/, 2012.

GEBHART, M., GIESSLER, P., BURKHARDT, P., ABECK, S. Quality-Oriented

Requirements Engineering for Agile Development of RESTful

Participation Service. ICSEA: The Ninth International Conference on

Software Engineering Advances, 2014.

GÉNOVA, G., FUENTES, J., LLORENS, J., HURTADO, O., MORENO, V. A frame-

work to measure and improve the quality of textual requirements. Re-

quirements Engineering, vol. 18, no. 1, pp. 25–41, 2013.

GONZALEZ-PEREZ, C., HENDERSON-SELLERS, B. Metamodelling for Software

Engineering. John Wiley & Sons, Ltd, ISBN 978-0-470-03036-3, 2008.

HAUGSET, B., STALHANE, T. Automated Acceptance Testing as an Agile

Requirements Engineering Practice. System Science (HICSS), 45th Hawaii

International Conference on, Maui, HI, pp. 5289-5298, doi:

10.1109/HICSS.2012.127, 2012.

HECK, P., ZAIDMAN, A. A Quality Framework for Agile Requirements: A

Practitioner’s Perspective. arXiv preprint arXiv:1406.4692, 2014.

HECK, P., ZAIDMAN, A. A systematic literature review on quality criteria for

agile requirements specifications. Software Qual J. Springer

Science+Business Media New York. DOI 10.1007/s11219-016-9336-4, 2016.

HEIKKILÄ, V. T., DAMIAN, D., LASSENIUS, C., PAASIVAARA, M. A Mapping

Study on Requirements Engineering in Agile Software Development. 41st

Euromicro Conference on Software Engineering and Advanced Applications,

Funchal, pp. 199-207. doi: 10.1109/SEAA.2015.70, 2015

HIRSCHHEIM, R., KLEIN, K., LYYTINEN, K. Information Systems Development

and Data Modeling: Conceptual and Philosophical Foundations.

Cambridge University Press, New York, NY, USA, 1995.

 157

INAYAT, I., SALIM, S.S., MARCZAK, S., DANEVA, M., SHAMSHIRBAND, S. A sys-

tematic literature review on agile requirements engineering practices and

challenges. Comput. Hum. Behav. 51, PB, October, 915-929. DOI:

http://dx.doi.org/10.1016/j.chb.2014.10.046, 2015.

ISO-IEEE 830-1998 - IEEE Recommended Practice for Software Requirements

Specifications, IEEE, 1998.

ISO-IEEE 29148:2011 - Systems and software engineering - Life cycle

processes - Requirements engineering, IEEE, 2011.

JACOBSON. I., CHRISTERSON, M., JONSSON , P., OEVERGAARD, G. Object

Oriented Software Engineering: a Use Case Driven Approach. Addison-

Wesley, 1992.

KASSAB, M. The changing landscape of requirements engineering practices

over the past decade. In: Proceedings of the IEEE international workshop on

empirical requirements engineering (EmpiRE). IEEE, pp 1–8, 2015.

KITCHENHAM, B.A., PICKARD, L.M. and PFLEEGER, S.L. Case Studies for

Method and Tool Evaluation. IEEE Software, 12(4):52–62, 1995.

KITCHENHAM, B., BUDGEN, D., BRERETON, P., LINKMAN, S. H. Realising evi-

dence-based software engineering. In Proceedings of the 2005 workshop

on Realising evidence-based software engineering (REBSE '05). ACM, New

York, NY, USA, 1-3. DOI=http://dx.doi.org/10.1145/1082983.1083175. 2005.

KITCHENHAM, B., CHARTERS, S. Guidelines for performing Systematic

Literature Reviews in Software Engineering. Vol 2.3, EBSE-2007-01,

Keele, UK, 2007.

LOSADA, B., URRETAVIZCAYA, M., FERNÁNDEZ-CASTRO, I. A guide to agile

development of interactive software with a User Objectives-driven

methodology. Science of Computer Programming, Volume 78, Issue 11, 1.

Pages 2268-2281, 2013.

LOUCOPOULOS, P., ZICARI, R. Conceptual Modeling, Databases and CASE: An

Integrated View of Information System Development. John Wiley & Sons,

New York, USA, 1992.

LUCASSEN, G., DALPIAZ, F., WERF, J.M.E.M., BRINKKEMPER, S. Improving ag-

ile requirements: the Quality User Story framework and tool. DOI

10.1007/s00766-016-0250-x. pp 1-21, 2016.

 158

LUCIA, A. D., ABDALLAH, O. Requirements engineering in agile software devel-

opment. Journal of Emerging Technologies in Web Intelligence, vol. 3,

pp.212-220, 2010.

MARCONI, M., LAKATOS, E. M. Fundamentos de metodologia científica. 5. ed. -

São Paulo: Atlas, 2003.

MARCONI, M., LAKATOS, E. M. Metodologia Científica. 6. ed. São Paulo: Atlas,

2008.

MAMOLI, S. On Acceptance Criteria for User Stories. Available:

http://nomad8.com/acceptance_criteria/. Acessed: 18/12/2016.

MEDEIROS, F., MEDEIROS, J.D.R.V, AYRES, F., VIANA, C., ROCHA, J., VIEGAS,

V., MENDES, E., SANTOS, A.. An Agile Approach to Developing an Infor-

mation System for Anti-doping Control in Brazil. NAIST - New Advances in

Information Systems and Technologies. 1ed.: Springer International Publish-

ing, ISSN 2194-5357, doi: 10.1007/978-3-319-31232-3_35, p. 369-378, 2016.

MEDEIROS, J.D.R.V, GOULÃO, M., VASCONCELOS, A., SILVA, C. 2016. Towards

a model about quality of software requirements specification in agile

projects. 10th International Conference on the Quality of Information and

Communications Technology (QUATIC). doi: 10.1109/QUATIC.2016.49, Lis-

bon, Portugal, 2016b.

MEDEIROS, J.D.R.V., ALVES, D.C., WANDERLY, E., VASCONCELOS, A.M.L. and

SILVA, C. Requirements Engineering in Agile Projects: A Systematic

Mapping based in Evidences of Industry. 12th Workshop on Experimental

Software Engineering (ESELAW) in XVIII CIBSE Ibero-American Conference

on Software Engineering. 2015.

MEDEIROS, J.D.R.V., VASCONCELOS, A.M.L., SILVA, C. Integration of Agile

Practices: An approach to improve the quality of software specifications.

XVIII CIBSE Ibero-American Conference on Software Engineering– Doctoral

Symposium. 2015b.

MEDEIROS, J.D.R.V., ALVES, D.C., WANDERLY, E., VASCONCELOS, A.M.L.,

SILVA, C. Engenharia de requisitos em projetos ágeis: uma revisão

sistemática da literatura. ISSN 1517-0306, Principia Journal,

http://dx.doi.org/10.18265/1517-03062015v1n28p11-24. 2015c.

MEDEIROS, J.D.R.V., VASCONCELOS, A.M.L., SILVA, C. Integração de Práticas

Ágeis: Uma abordagem para melhorar a qualidade de especificações de

 159

software em projetos mobile. IV Thesis and Dissertation Workshop

(WTDSoft) of CBSoft (Brazilian Conference on Software), 2014.

MERRIAM, S.B. Qualitative Research: A Guide to Design and Implementation.

ISBN: 978-1-118-94701-2. Jossey-Bass, 2009.

MPS.BR. Melhoria de Processo de Software Brasileiro. SOFTEX. Available at:

http://www.softex.br/mpsbr. Accessed: 18/12/2016, 2012.

NAWROCKI, J., JASINSKI, M., WALTER, B., WOJCIECHOWSKI, A. Extreme

programming modified: embrace requirements engineering practices.

IEEE Joint International Conference, pp. 303-310, 2002.

NEBE, K., SNIGDHA, B. Agile Human-Centred Design: A Conformance Check-

list. 18th International Conference, HCI International, Toronto, Canada, July

17-22, Part I, pp 442-453. doi=10.1007/978-3-319-40349-6_42, 2016.

NOBLIT, G.W., HARE, R. D. Meta-Ethnography: Synthesizing Qualitative Studies

(Qualitative Research Methods), Sage Publications Inc., 1988.

NORTHCUTT, N., and MCCOY, D. Interactive qualitative analysis: a systems

method for qualitative research. Thousand Oaks, CA: SAGE Publications,

2004.

OLIVÉ, A. Conceptual Modeling of Information Systems. Springer Verlag, ISBN

978-3-540-39389-7. doi 10.1007/978-3-540-39390-0, 2007.

PAETSH, F., EBERLEIN, A., MAURER, F. Requirements Engineering and Agile

Software Development. In: 12th IEEE International WETICE 03, IEEE CS

Press, 2003.

PANDIT, N.R. The Creation of Theory: A Recent Application of the Grounded

Theory Method. The Qualitative Report, Volume 2, Number 4, December,

1996.

PERRY, D. E.; SIM, S. E.; EASTERBROOK, S. M. Case Studies for Software En-

gineers. Proceedings of the 26th International Conference on Software Engi-

neering. [S.l.]: [s.n.], 2004.

PETRONIO, F., MEDEIROS, J.D.R.V, AYRES, F., VIANA, C., ROCHA, J., VIEGAS,

V., MENDES, E., SANTOS, A. An Information System to Support the Anti-

doping Process. Lecture Notes in Electrical Engineering. 1ed.: Springer Sin-

gapore, v. 1, p. 97-107. DOI = 10.1007/978-981-10-0557-2_10, 2016.

 160

POVILAITIS, S. Acceptance Criteria. Available at:

http://www.leadingagile.com/2014/09/acceptance-criteria/. Accessed:

18/12/2016.

READ, A., BRIGGS, R.O. The Many Lives of an Agile Story: Design Processes,

Design Products, and Understandings in a Large-Scale Agile

Development Project. System Science (HICSS), 45th Hawaii International

Conference on, Maui, HI, pp. 5319-5328. doi: 10.1109/HICSS.2012.684, 2012.

RICCA, F., SCANNIELLO, G., TORCHIANO, M., REGGIO, G., ASTESIANO, E. As-

sessing the Effect of Screen Mockups on the Comprehension of Func-

tional Requirements. ACM Trans. Softw. Eng. Methodol. 24, 1, Article 1, Oc-

tober, 38 pages. DOI: http://dx.doi.org/10.1145/2629457, 2014.

RIVERO, J.M., GRIGERA, J., ROSSI, G., LUNA, E. R., MONTERO, F., GAEDKE, M.

Mockup-Driven Development: Providing agile support for Model-Driven

Web Engineering. Information and Software Technology, Volume 56, Issue 6,

June Pages 670-687, ISSN 0950-5849,

http://dx.doi.org/10.1016/j.infsof.2014.01.011, 2014.

RUDORFER, A., STENZEL, T., HEROLD, G. A Business Case for Feature-

Oriented Requirements Engineering. IEEE Software, vol. 29, no. 5, pp. 54-

59, Sept.-Oct. doi: 10.1109/MS.2012.106, 2012.

RUNESON, P., MARTIN, H. Guidelines for conducting and reporting case study

research in software engineering. Empirical Software. 14, 2, 131-164.

http://dx.doi.org/10.1007/s10664-008-9102-8, 2009.

SAAVEDRA, R., BALLEJOS, L., ALE, M. Software Requirements Quality Evalua-

tion: State of the art and research challenges. 14th Argentine Symposium

on Software Engineering, ASSE, 2013.

SAITO, S., TAKEUCHI, M., HIRAOKA, M., KITANI, T., AOYAMA, M. Requirements

clinic: Third party inspection methodology and practice for improving

the quality of software requirements specifications. Requirements

Engineering Conference (RE), 21st IEEE International, pp.290-295. doi:

10.1109/RE.2013.6636732, 2013.

SCHWABER, K., BEEDLE, M. Agile Software Development with Scrum. Prentice

Hall PTR, NJ, USA, 2001.

 161

SEAMAN, C.B., Qualitative Methods, in: F. Shull, J. Singer, D.I.K. Sjøberg (Eds.),

Guide to Advanced Empirical Software Engineering, Springer, pp. 35–62.

Chapter 2, 2008.

SHARP, H., ROBINSON, H., PETRE, M. The role of physical artefacts in agile

software development: Two complementary perspectives. Interact.

Comput. 21, 1-2, 108-116. doi=http://dx.doi.org/10.1016/j.intcom.2008.10.006,

2009.

SCHÖN, E-M, THOMASCHEWSKI, J, ESCALONA, M. J. Agile Requirements

Engineering: A systematic literature review, Computer Standards &

Interfaces, Volume 49, January 2017, Pages 79-91, ISSN 0920-5489,

http://dx.doi.org/10.1016/j.csi.2016.08.011.

SJØBERG, D.I.K., DYBÅ, T., JORGENSEN, M. The Future of Empirical Methods

in Software Engineering Research. Proceedings of the Future of Software

Engineering (FOSE '07). [S.l.]: IEEE, 2007.

SJØBERG, D.I.K., DYBÅ, T., ANDA, B.C.D., HANNAY, J.E. Building theories in

software engineering, in: F. Shull, J. Singer, D.I.K. Sjøberg (Eds.), Guide to

Advanced Empirical Software Engineering, Springer, pp. 312–336. Chapter

12, 2008.

TECHREPUBLIC. Tech companies have highest turnover rate. Available:

http://www.techrepublic.com/blog/career-management/tech-companies-have-

highest-turnover-rate/. Accessed in: 19/02/2015.

TERZAKIS, J. Tutorial writing higher quality software requirements. ICCGI,

http://www.iaria.org/conferences2010/filesICCGI10/ICCGI_Software_Require

ments_Tutorial.pdf. pp 37-38. Accessed in: 18/12/2016.

THAYER, R.H., DORFMAN, M. Software Requirements Engineering. IEEE

Computer Society Press, 2d ed., 1997.

THOMSON, C., HOLCOME, M., COWLING, T., SIMONS, T., MICHAELIDES, G. A

pilot study of comparative customer comprehension between extreme x-

machine and uml models. Empirical software engineering and measurement.

ESEM’08, ACM, New York, pp. 270–272

http://dx.doi.org/10.1145/1414004.1414048, 2008.

TRAVASSOS, G., BIOLCHINI J. Revisões Sistemáticas Aplicadas a Engenharia

de Software. In: XXI SBES - Brazilian Symposium on Software Engineering,

João Pessoa, PB, Brazil, 2007.

 162

VERSIONONE, 10th Annual State of Agile Survey. Available at:

https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf.

Accessed in: 18/12/2016.

WANDERLEY, F., SILVA, A., ARAUJO, J., SILVEIRA, D. S. SnapMind: A frame-

work to support consistency and validation of model-based require-

ments in agile development. IEEE 4th MoDRE, Karlskrona, Sweden. 2014.

WHICHARD, G. Definition of Done vs. Acceptance Criteria. Available in

http://www.governmentciomagazine.com/2014/08/definition-done-vs-

acceptance-criteria. Accessed in: 18/12/2016.

WOHLIN, C., HÖST, M., HENNINGSSON, K. Empirical Research Methods in

Software Engineering. Lecture notes in Computer Science, 2765 7-23. 2003.

INAYAT, I., SALIM, S. S., Marczak, S., Daneva, M., Shamshirband, S., A systematic

literature review on agile requirements engineering practices and chal-

lenges, Computers in Human Behavior, Volume 51, Part B, October, Pages

915-929, ISSN 0747-5632, http://dx.doi.org/10.1016/j.chb.2014.10.046, 2015.

YIN, R. K. Case Study Research: Design and Methods. 4th. ed. Thousand Oaks,

California: SAGE Publications, v. Applied Social Research Methods Series,

Volume 5, ISBN 978-1-4129-6099-1, 2009.

 163

APPENDICES

Appendix A - Systematic Mapping Protocol

This appendix contains the protocol of the Systematic Mapping performed in this re-
search, as described in Chapter 3.

1. Objectives and Research Questions

The general goal of this study is to investigate how the requirements engineer-
ing has been conducted in projects that adopt agile methods. To achieve the objec-
tives, the following Principal Research Question (PRQ) was defined:

• How is the requirements engineering has been conducted in projects
that adopt agile methods?

The following Specific Research Questions (SRQ) were defined to guide the
extraction, analysis and synthesis of results:

• SRQ1: What approaches are being used to elicit requirements in pro-
jects that adopt agile methods?

• SRQ2: What approaches are being used to specify requirements in pro-
jects that adopt agile methods?

• SRQ3: What are the implications for the software industry and academ-
ia, reported in the current studies involving the requirements engineer-
ing in agile projects?

• SRQ4: What are the implications for the software industry and academ-
ia, reported in the current studies involving the Requirements Engineer-
ing in Agile projects?

 164

2. Search Strategy

According to Kitchenham (2007), a strategy must be used for the selection of
primary studies from the definition of keywords, digital libraries, journals, and confer-
ences. The search terms have been identified from the structure of research ques-
tions. As recommended by Dyba and Dingsoyr (2008), the terms used in the con-
struction of the string was as inclusive as possible in order to return a greater number
of papers and to avoid the loss of relevant studies, for this reason, the PICO method
is not used. The wide-ranging search aims to eliminate the bias in the selection of the
primary studies for this research. The search terms, synonyms or related words are
presented in Table A.1.

Table A.1 – SM Protocol - Search terms, synonyms or related words

Search terms Synonyms or related words
Software Software, information system development, information system engineering.
Agile methods Agile, agility, scrum, extreme programming, xp, dynamic system development,

dsdm, crystal methodologies, crystal clear, crystal orange, crystal red, crystal
blue, feature driven development, fdd, lean software development, adaptive
software development, test driven development.

Requirements Requirements, use case, user stories.

According to Kitchenham (2007), the search strings must be derived from the
research questions and search terms. Thus, the search string was generated from
the combination of search terms, their synonyms or related words, concatenating
them through the Boolean operators "OR" and "AND". The following String Search
was defined:

(("requirements" OR "use case" OR "use cases" OR "user stories")
AND ("agile" OR "agility") AND ("scrum" OR "extreme programming"
OR "xp" OR "dynamic system development" OR "dsdm" OR "crystal
methodologies" OR "crystal clear" OR "crystal orange" OR "crystal
red" OR "crystal blue" OR "feature driven development" OR "fdd"
OR "lean software development" OR "adaptive software development"
OR "test driven development" OR "tdd") AND ("software" OR "infor-
mation system development" OR "information system engineering"))

3. Data Sources

The search will be performed using both automatic and manual approach. The
following search engines will be used: IEEExplore Library, ACM Library, ScienceDi-
rect, SpringerLink, and Scopus. The manual search will be done in the Proceedings
of International Requirements Engineering Conference and Agile Development Con-
ference covering the period from 2009 to 2013.

 165

4. Selection Criteria

The studies should be selected according to the inclusion and exclusion crite-
ria, as described in Table A.2. A study should be included if it fulfills all the inclusion
criteria. A paper must be excluded if at least one of the exclusion criteria is met.

Table A.2 – SM Protocol - Inclusion and Exclusion Criteria

Inclusion
Criteria

IC1. Studies addressing requirements on software projects using agile methodologies
IC2. Studies validated in the industry
IC3. Qualitative or quantitative research
IC4. Primary or secondary studies

Exclusion
Criteria

EC1. Studies written in a language other than English
EC2. Duplicated study report, with no extra information
EC3. Studies that do not address on elicitation, specification or modeling software
requirements
EC4. Incomplete studies, prefaces, slides or summaries
EC5. Tertiary studies
EC6. Studies that address only the teaching of agile or requirements
EC7. Studies that do not address at least an agile methodology
EC8. Papers not available for download in institutional environments UFPE or IFPB.
EC9. Studies that no present empirical data

5. Study Selection Procedures

This research will be conducted by at least two researchers. The selection
process should be performed following the six steps below.

5.1 Automated and manual search

A researcher shall perform the search using the Reviewer21 tool to execute the
string simultaneously in all search engines. The result will be exported to an Excel
spreadsheet which should be used in the next steps. Then the manual search will be
conducted in order to add studies to the list obtained from the automated search.

5.2 Selection by Title and Abstract

Each study selected in the previous step should be examined by a pair of re-
searchers. The titles and abstracts should be read, and the inclusion and exclusion
criteria should be applied. If, after examination of the researchers, doubts exist about
the relevance of the study, it must be included. The papers selected in this stage
should be recorded in a list of potentially relevant articles in order to be analyzed in
the following steps.

5.3 Selection by Introduction and Conclusion:

Each study selected in the previous step should be analyzed by a pair of re-
searchers, preferably different from the previous step. The criteria should be applied

21 https://github.com/bfsc/reviewer

 166

based on the reading of the introduction and conclusion of the studies resulting from
the previous phase. If necessary, the remaining sections of the papers can be read to
help in judging whether the criteria should be applied. In the case of disagreement
among researchers about the inclusion or exclusion of a study, a consensus meeting
should be made, and if the conflict persists should consider the opinion of a third in-
vestigator.

5.4 Quality assessment

The assessment of the quality of primary studies should be performed after
the application of the criteria (inclusion and exclusion), and two researchers should
read all sections of the papers. The evaluation should be done using a questionnaire
adapted from Dyba (2008). The applied questions are presented in Table A.2. A
three-point scale of Likert should be used to evaluate the papers: 0 (Nothing in the
paper that meets the criteria evaluated); 0.5 (The paper does not make clear whether
or not meet the criteria) and 1 (Paper meets the criteria evaluated).

Table A.3 – SM Protocol - Questions for Quality Assessment

1. It is a research paper?
2. Is there a clear statement of the aims of the research?
3. Is there a description of the context in which the research was carried out?
4. Was the research design appropriate to address the aims of the research?
5. Was the recruitment strategy appropriate to the aims of the research?
6. Was the data collected in a way that addressed the research questions?
7. Was the data analysis sufficiently rigorous?
8. Has the relationship between researcher and participants been considered?
9. Is there a clear statement of findings?
10. Is the study of value for research of practice?

The answers to the questionnaires should be tabulated so that the researchers
can compare, discuss and find a consensus. The scores of all the questions should
be summarized and the papers should be classified into four quality groups: low
(score < = 2), medium (score> = 8.5), high (8 <= score> = 6) or very high (score> =
8.5). The papers with a low quality (score < = 2) should be discarded.

5.5 Extraction

The papers resulting from the previous stage must be divided among the re-
searchers to perform the extraction. Each researcher must analyze the data extract-
ed by the other. This review is necessary to enhance the quality of the data collected.
The extraction should follow the guidelines of Cruzes (2011) who argue that the ex-
traction of data is a key part in systematic reviews. To extract the data from the rele-
vant primary studies in a structured way should be used in the form below:

 167

Table A.4 – SM Protocol - Form for Data Collection

Form for Data Collection
ID: Title: Field:

General Overview:
Collaboration with Customer:
Characteristics of the Development Team:

Evidence related to the Research Questions
SRQ1 - What approaches are being used to elicit requirements in projects that adopt agile methods?
SRQ2 - What approaches are being used to specify requirements in projects that adopt agile meth-
ods?
SRQ3 - What are the implications for the software industry and academia, reported in the current
studies involving the requirements engineering in agile projects?

Evidence related to the Context
Publication Context Data

Year and source
Study
Type

Research
Method

Data
Collect

Data
Analysis

Sample
Agile

Methods
Country

5.6 Synthesis

The analysis and synthesis of the data will be conducted following a qualitative
approach to answering the research questions about the requirements engineering in
agile software development. A thematic synthesis and data analysis will be carried
out according to the process recommended by Cruzes and Dyba (2011), which can
be seen in Figure A.

Figure A.1 Thematic synthesis process, adapted from Cruzes and Dyba (2011)

Briefly, the process starts with an initial reading of the texts, then extract spe-
cific segments of text which are labeled with codes. These codes are translated into
themes, and then identified the themes of higher order (categories) to create the
model to explain the phenomenon or research questions. This process will conduct
by a researcher and then reviewed by another researcher.

 168

Appendix B - Selected Primary Studies

This appendix contains the Primary Studies (PS) that it was selected and analyzed in
Systematic Mapping.

ID YEAR SOURCE REFERENCE

PS01 2012 IEEE
Rudorfer, A., Stenzel, T., Herold, G. A Business Case for Feature-
Oriented Requirements Engineering. Software, vol.29, no.5, pp.54,59,
Sept.-Oct. doi: 10.1109/MS.2012.106.

PS02 2011 ACM

Bjarnason, E., Wnuk, K., Regnell, B. A case study on benefits and side-
effects of agile practices in large-scale requirements engineering. 1st
Workshop on Agile Requirements Engineering (AREW '11). New York,
USA, Article 3, 5 pages. doi=10.1145/2068783.2068786.

PS03 2008 ACM

Thomson, C., Holcome, M., Cowling, T., Simons, T., Michaelides, G. A
pilot study of comparative customer comprehension between extreme x-
machine and uml models. Second ACM-IEEE international symposium
on Empirical software engineering and measurement (ESEM '08). New
York, USA, 270-272. doi=10.1145/1414004.1414048.

PS04 2008 SCOPUS Cao, L.A., Ramesh, B. B. Agile requirements engineering practices: An
empirical study. IEEE, Vol.25, no.1, pp.60,67. doi: 10.1109/MS.2008.1.

PS05 2007 ACM
Bang, T.J. An agile approach to requirement specification. 8th interna-
tional conference on Agile processes in software engineering and ex-
treme programming (XP'07. Springer-Verlag, Berlin, Heidelberg, 193-197.

PS06 2012 SCIENCE
DIRECT

Bjarnason, E., Wnuk, K., Regnell, B. Are you biting off more than you can
chew? A case study on causes and effects of overscoping in large-scale
software engineering. Inf. Software Technol. 54, 10, 1107-1124.
doi=10.1016/j.infsof.2012.04.006.

PS07 2012 IEEE

Haugset, B., Stalhane, T. Automated Acceptance Testing as an Agile
Requirements Engineering Practice. System Science (HICSS), 2012 45th
Hawaii International Conference on pp.5289,5298. doi:
10.1109/HICSS.2012.127.

PS08 2012 ACM

Abdullah, B.N.N., Honiden, S., Sharp, H., Nuseibeh, B., Notkin, D. Com-
munication patterns of agile requirements engineering. In Proceedings of
the 1st Workshop on Agile Requirements Engineering (AREW '11). New
York, USA, Article 1, 4 pages. doi=10.1145/2068783.2068784.

PS09 2013 SCOPUS

Batool, A., Motla, Y.H., Hamid, B., Asghar, S., Riaz, M., Mukhtar, M.,
Ahmed, M. Comparative study of traditional requirement engineering and
Agile requirement engineering. Advanced Communication Technology
(ICACT), 15th International Conference on pp.1006,1014, 27-30.

PS10 2011 ACM

Lee,J.C, Judge,T.K, McCrickard, D.S. Evaluating eXtreme scenario-
based design in a distributed agile team. In CHI '11 Extended Abstracts
on Human Factors in Computing Systems (CHI EA '11). New York, USA,
863-877. doi=10.1145/1979742.1979681.

PS11 2006 IEEE

Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J. High-Speed Soft-
ware Development Practices: What Works, What Doesn't. IT Professional
, vol.8, no.4, pp.29,36,
doi: 10.1109/MITP.2006.86.

PS12 2012 IEEE
Gregorio, D.D. How the Business Analyst supports and encourages col-
laboration on agile projects. Systems Conference (SysCon), pp.1,4. doi:
10.1109/SysCon.2012.6189437.

PS13 2013 IEEE
Lorber, A.A., Mish, K.D. How We Successfully Adapted Agile for a Re-
search-Heavy Engineering Software Team. Systems Conference, pp.1,4.
doi: 10.1109/SysCon.2012.6189437.

PS14 2011 IEEE Mahmud, I., Veneziano, V.: Mind-mapping: An effective technique to
facilitate requirements engineering in agile software development

PS15 2012 SCOPUS Farid, W.M., Mitropoulos, F.J.: Novel lightweight engineering artifacts for
modeling non-functional requirements in agile processes

 169

PS16 2013 ACM Abdallah, A., Hassan, R., Azim, M.A.: Quantified extreme scenario based
design approach

PS17 2008 ACM Obendorf,H., Finck, M.: Scenario-based usability engineering techniques
in agile development processes

PS18 2012 IEEE
Read, A., Briggs, R.O.: The Many Lives of an Agile Story: Design Pro-
cesses, Design Products, and Understandings in a Large-Scale Agile
Development Project

PS19 2009 SCIENCE
DIRECT

Sharp,H., Robinson,H., Petre, M.: The role of physical artefacts in agile
software development: Two complementary perspectives

PS20 2004 IEEE Martin, A., Biddle, R., Noble, J.: The XP customer role in practice: three
studies

PS21 2010 REC Savolainen,J., Kuusela,J., Vilavaara, A.: Transition to Agile Development
- Rediscovery of Important Requirements Engineering Practices

PS22 2013 Snowball-
ing

Batool, A., Hafeez, Y., Asghar, S., Abbas, M.A., Hassan, M.S.: A Scrum
Framework for Requirement Engineering Practices

PS23 2010 Snowball-
ing

Sem A.M., Hemachandran, K.: Elicitation of Goals in Requirements En-
gineering using Agile Methods

PS24 2010 Snowball-
ing

Hoda, R., Noble,J., Marshall, S.: Agile Undercover: When Customers
Don’t Collaborate

 170

Appendix C - Interview Guide to investigate the phenomenon in

practice

This appendix contains guides to interviewing the software engineers as data collec-
tion instrument for the six case studies described in Chapter 4.

PRESENTATION

• Greetings and introduction.

• Thank the participant.

INTRODUCTION

The purpose of our research is to investigate the phenomenon of the quality of

SRS in different agile contexts and build an explanatory model providing a deeper

description in order to point out the factors that should be considered to write more

useful SRS in agile projects.

We would be very grateful for your input to this research. This would include

participating in this interview. As a retribution for your participation, we will provide

your company with an analysis of strengths and potential fragilities of the practices

related to specifying of requirements in agile projects. This information may be useful

for you and your team as you looks for opportunities to improve.

All your responses will be kept strictly confidential. Your participation is volun-

tary. You will not, in any way, be penalized if you choose not to participate in the

study. Do you have any questions regarding this interview?

ABOUT THE ANSWERS

There are no rights or wrongs answers for most of the questions in this inter-

view. My goal is to collect your impressions, opinions, and feelings about the various

subjects addressed. So, please answer the questions as spontaneously and honestly

as possible, knowing that your answers will not be, in any way, disclosed to other in-

dividuals inside or outside your company.

May we start?

 171

Questions

S - Questions applied to software engineers

Team Member Background - TMB
ID Questions Type
S1 Gender: O Male O Female Profile
S2 What is your current role?

 O System Analyst O Tester
 O Developer O Project Manager O Other _________

Profile

S3

What is your academic background?
O University Graduate O Master
O Ph.D. O Others

Background

S4 How many years of experience do you have in this role? Experience

Now we will talk about the concept of quality of SRS in agile projects.
Concept of quality of SRS - CQUA

ID Questions Type
S5 What do you consider a Software Requirements Specification (SRS) with qual-

ity? In other words, in order to code a feature, which attributes (characteristics)
you would like to find in the SRS?
Probe: Why?

Opinion

S6 What factors affect the quality of the SRS?
Probe: Why? Opinion

S7 In the current project, how do you assess the impact of the following factors in
the quality of SRS and your performance? Compromise (impairs) or Not Af-
fect?
• Little team experience in requirements specification
• Little team experience with agile development
• Documentation structure used by the company
• The lack of support tool to automate the activities of requirements
• A more focused SRS for the client than to the development team
• Changes in the data model
Probe: Why?

Opinion

S8 Do you think an SRS divided in various artifacts facilitates the understanding
or is it more productive for the programmer to obtain information in a consoli-
dated manner from a few artifacts?
Probe: Why?

Opinion

Now we will talk about the content used to specify requirements in your current pro-
ject.

Content of SRS - CON
ID Questions Type
S9 In the current project, which artifacts are used by a programmer to code a

feature?
Probe: Use Cases \ Scenarios, Features, User Stories, Goals, Interface Prototype,
Diagram of Classes, Diagram of Activities, Data Model, Rules, Without SRS, …?

Context

S10 What other information is not present in the SRS currently used, but are nec-
essary to code a requirement?
Probe: Why?

Context

S11 How these artifacts help the programmer to code a requirement?
Probe: Why? Opinion

S12 Is the SRS sufficient for the developer to produce code, or does the developer
frequently need to consult other sources of information (e.g. people, docu-
ments, etc.) to answer questions?
Probe: If the SRS is not sufficient, what you think the developer is normally missing?

Opinion

S13 Do you consider that the SRS has information unnecessary that is not useful Opinion

 172

for the execution of your activities?
Probe: If you do, what kind of information you consider unnecessary?

S14 Do you consider that the SRS has redundant or duplicate information?
Probe: If you do, why do you think that the SRS is written in this way? Opinion

S15 What do you consider that contributes to making the SRS outdated?
Probe: Why? Opinion

The next questions are about how the SRS is described in your current project.

Quality of Specification - QUA
ID Questions Type
S16 In the current project, is the SRS hard to read and understand?

Probe: If YES, why do you think that the SRS is written in this way?
Opinion

S17 In the current project, do you consider that the SRS is ambiguous, that is, un-
clear and subject to more than one interpretation?
Probe: If YES, what do you think contributes to the SRS be written in this way?

Opinion

S18 In the current project, do you consider that the SRS presents problems of con-
sistency between the requirements or between artifacts?
Probe: If YES, why do you think this happens?

Opinion

Now we will talk about the software process used in your current project.

Context of Development Process- CTX
ID Questions Type
S19 What is the frequency of communication with the customer? Context
S20 Do you consider that the communication with the customer is suitable or

compromises the execution of your activities?
Probe: Why?

Opinion

S21 What are the tools used to support the requirements activities? What are the
benefits they provide?

Context and
opinion

S22 Are the tests made directly from the SRS, or is it necessary to elaborate a
specific document only for the tests? Do you consider that the tests are be-
ing done properly?

Context and
opinion

S23 Does the project hold information about the dependency relationships be-
tween requirements?
Probe: If yes, how is this information updated throughout the development?

Context

Now we will talk about your suggestions to improve the SRS.

Suggestions for Improvements - SUG
ID Questions Type
S24 What good practices could be used in other projects because they improve

the performance of your activities?
Probe: Why? How?

Opinion

S25 What changes in the SRS and / or the requirements activities do you suggest
in order to improve the development of future projects?
Probe: Why? How?

Opinion

M - Questions applied to project managers

Profile of the Company - PCO
ID Questions Type
M1 Currently, how many employees work in the company? How many of them

exclusively work in software development (analysis, implementation, testing,
quality, project management, etc.)?

Context

M2 What agile practices you consider that the company uses in its software de- Context

 173

velopment process? How long these practices have been used in the compa-
ny?

M3 What documents (artifacts) the team uses to develop software? Are these
available to customers? Context

M4 Is the validation of requirements done by means of frequent software deliver-
ies or by means of documentation? Are the validations conducted face-to-face
with customer or remotely?

Context

M5 In general, how long is each sprint (development cycle)? Are the validations of
software with customer done at the end of each sprint?
Probe: If not, how often?

Context

M6 How is it done the impact analysis when changes are requested in the soft-
ware requirements? Context

M7 Does the project hold information about the dependency relationships be-
tween requirements?
Probe: If yes, how is this information updated throughout the development?

Context

M8 In your opinion, what are the factors that affect the quality of the SRS?
Probe: Why? Context

M9 Which good practices could be used in projects to improve the team perfor-
mance?
Probe: How?

Context

M10 Are the payments for the provision of customer’s services related to the deliv-
ered functionality or are these payments based on fixed values no matter what
is available in each delivery?

Context

 174

Appendix D - Cross-case analysis and synthesis

Table D.1 – Profile of the software engineers interviewed

Software Engineers Gender Years in the Profession Education Functional Role
(a) Interviewees in Case Study 1
#1 Female 13 University Graduate System Analyst
#2 Female 10 University Graduate System Analyst
#3 Female 18 University Graduate System Analyst
#4 Male 9 Master Degree Developer
#5 Male 9 Master Degree Developer
#6 Male 8 Master Degree System Analyst
#7 Female 10 University Graduate Developer
#8 Male 11 University Graduate Developer
#9 Female 9 University Graduate Developer
#10 Female 9 Master Degree System Analyst
#11 Female 5 University Graduate Tester
#12 Female 16 Master Degree Developer
#13 Male 16 Master Degree Developer
#14 Female 13 University Graduate System Analyst
(b) Interviewees in Case Study 2
#1 Male 9 University Graduate Developer and System Analyst
#2 Male 7 University Graduate Developer and System Analyst
#3 Male 1 University Student Developer
#4 Male 7 Specialist Degree Developer and System Analyst
#5 Male 10 University Graduate Developer and System Analyst
#6 Male 1 University Graduate Developer
#7 Male 20 University Graduate Developer
#8 Male 6 University Graduate Developer and System Analyst
#9 Male 6 University Graduate Developer
#10 Male 5 Master Degree Developer
#11 Male 3 University Graduate Developer and System Analyst
#12 Male 5 University Graduate Developer
#13 Male 6 University Graduate Developer
#14 Female 2 University Graduate Developer
(c) Interviewees in Case Study 3
#1 Male 3 University Graduate Developer
#2 Male 6 Master Degree Developer
#3 Male 4 University Graduate Developer and System Analyst
#4 Male 5 Specialist Degree Tester
#5 Male 3 Specialist Degree Developer and System Analyst
#6 Male 4 University Graduate Developer and System Analyst
#7 Male 3 University Graduate Developer
#8 Male 2 University Graduate Developer
#9 Male 4 University Graduate Developer and System Analyst
#10 Male 3 University Graduate Tester
#11 Male 2 University Graduate Developer
#12 Male 1.5 Specialist Degree Tester
#13 Male 6 University Graduate Developer and System Analyst
#14 Male 5 University Graduate Developer and System Analyst
#15 Female 4 Master Student Tester
(d) Interviewees in Case Study 4
#1 Male 8 University Graduate Developer and System Analyst
#2 Male 6 Specialist Degree Developer and System Analyst
#3 Male 7 University Graduate Developer and System Analyst
(e) Interviewees in Case Study 5
#1 Female 12 Master Degree System Analyst
#2 Male 3 University Graduate Tester
#3 Male 3 University Graduate Developer
#4 Male 10 University Graduate Developer and System Analyst
#5 Male 5 Specialist Degree Developer and System Analyst
#6 Female 2 University Graduate Tester
#7 Male 3 University Graduate Developer
#8 Male 3 University Graduate Developer
#9 Male 2.5 University Graduate Developer
(f) Interviewees in Case Study 6
#1 Male 18 University Graduate Developer
#2 Male 36 Specialist Degree Developer
#3 Male 15 Master Degree Tester
#4 Male 15 Master Degree Solution Architect

 175

Table D.2 – Translation strategies for first level concepts adapted from

FRANÇA et al. (2014)

Type of
translation

Situation Strategy

Identical The same label and definition were used for a
concept in cases studies

We simply repeated the concept as the trans-
lation

Renaming Different labels were used for a concept in each
study, but the definitions were equivalent

We chose the label that better expressed the
meaning, consulting the thesaurus, dictionar-
ies, and the literature to support the choice

Generali-
zation

Different concepts were found in each case, with
different names and definitions, but one concept
could be interpreted as a generalization, or ab-
straction, that included one or more concepts in
the others studies

We used the more general concept as the
translation whenever it expressed the find-
ings of case studies

Localiza-
tion

A concept was found in one study but not in the
others

We kept the concept as the translation with a
remark that it was context dependent and
associated the concept to its context

Refuta-
tion*

A concept in one study contradicted a concept in
another study

We tried to understand and explain the refu-
tation based on
contextual data and added the explanation to
the translation

Not appli-
cable

A concept was found in some studies but is not
directly related to the phenomenon. The concept was not kept in the model

* We did not identify refutation instances in cross-case analysis

Table D.3 – Translation strategies for propositions adapted from FRANÇA et al.

(2014)

Type of
translation

Situation Strategy

Reciprocal
(RTA)

Propositions related the concepts by similar
or comparable causal relationships

We identified the common aspects between
the cases studies and translated into a con-
sistent proposition with them

Refutational
(RFA)*

Propositions related the concepts in oppos-
ing or contradicting relationships

Contextual information would be used to ex-
plain the refutations enriching our understand-
ing of the varying conditions under which the
local propositions would hold or fail

Line-of-
argument
(LOA)

Propositions related a different set of con-
cepts, with enough intersection and without
refutation, allowing the construction of a line-
of-argument that could explain the different
situations

Higher degree of inductive inference and inter-
pretation was used to build the translations
than in the reciprocal case

Localization
(LOC)

Proposition not identified in all cases studies
where the concepts were presented. Thus it
is dependent on the context.

The proposition was maintained with a remark
that represents a relationship dependent-
context.

* We did not identify RFA instances in cross-case analysis

 176

Appendix E - Interview Guide to evaluate the RSD approach

This appendix contains guides to interviewing the software engineers as data collec-
tion instrument for the empirical studies described in Chapter 7.

PRESENTATION

• Greetings and introduction.

• Thank the participant.

• Could you please tell me your full name and email?

PARTICIPANT INFORMATION

Name
Email

INTRODUCTION

The long term objective of our research is to assess how the team used RSD,

which the best practices, difficulties and limitations of the proposed approach. We

believe that this study is essential to improve the adoption of the approach in prac-

tice.

We would be very grateful for your input to this research. This would include

participating in this interview. As a retribution for your participation, we will provide

your company with an analysis of strengths and potential fragilities of the practices

related to specifying of requirements in agile projects using RSD. This information

may be useful for you and your team as you looks for opportunities to improve.

All your responses will be kept strictly confidential. Your participation is volun-

tary. You will not, in any way, be penalized if you choose not to participate in the

study. Do you have any questions regarding this interview?

ABOUT THE ANSWERS

There are no rights or wrongs answers for most of the questions in this inter-

view. My goal is to collect your impressions, opinions, and feelings about the various

subjects addressed. So, please answer the questions as spontaneously and honestly

as possible, knowing that your answers will not be, in any way, disclosed to other in-

dividuals inside or outside your company.

May we start?

 177

Questions

Team Member Background - BCK
ID Questions Type

Q1 What roles did you play in the project?
 System Analyst Developer Scrum Master Others____ Background

Q2 How long have you been working in this role? Experience
Q3 How do you describe your experience in this role? Experience

Q4
How were the requirements specified in the projects you worked on previous-
ly? Probe: What approaches? Use Cases\Scenarios, Features, User Stories, Goals,
Interface Prototype, Diagram of Classes, Diagram of Activities, Business Rules, …?

Background

Q5 Would you describe what you think is the ideal SRS for the developer?
Probe: Why?

Opinion

Now we will talk about the process of learning the RSD approach.

Learning of Approach- LEA
ID Questions Type
Q6 How was the process of learning the RSD approach? Opinion
Q7 What helped you in this process of learning approach?

Probe: Why?
Opinion

Q8 What hindered you in this process of learning approach?
Probe: Why?

Opinion

The next questions are about the structure and content of the RSD.

Structure and content of RSD - STR

ID Questions Type

Q9

How do you assess the RSD structured through mockups, concepts and ac-
ceptance criteria (the type of information)?
 Probe: Why?

Opinion

Q10

On a scale of one (inadequate) to five (very adequate), how do you assess the
structure of RSD (the type of information)?
Probe: Why?

Opinion

Q11

Using a discrete scale (compliance, partial compliance, non compliance), how
do you evaluate the compliance of RSD with each quality factor?
Team-oriented
Simplicity
Consolidated Information
Functional Requirements
Technical aspects
Acceptance Criteria
Non-Functional Requirements
Automated Support
Traceability
Change History
Probe: Why?

Opinion

Q12 Regarding the structure (type of information), what are the differences be-
tween RSD and other approaches that you used before? Opinion

Q13

Using a discrete scale (worse, equal, better) in each quality factor, how do you
evaluate RSD approach compared to others approaches you have used be-
fore?
Team-oriented
Simplicity
Consolidated Information
Functional Requirements

Opinion

 178

Technical aspects
Acceptance Criteria
Non-Functional Requirements
Automated Support
Traceability
Change History
Completeness
Clearness
Objectivity
Readability
Probe: Why?

Q14 Was the quality of the RSD different from what you expected?
Probe: What?

Now we will talk about how the activities of the development team were carried out
using RSD.

Effect of RSD approach on Team Works - ETW
ID Questions Type

Q15 How do you assess the strategy adopted to perform the acceptance tests?
Probe: Why? Opinion

Q16 How do you assess the reuse of requirements in the project?
Probe: Why? Opinion

Q17 How do you assess the tools used to support the requirements activities?
Probe: Why? Opinion

Q18 How is the customer's participation in the project?
Probe: Frequency? Adequate? Opinion

Q19
How is the collaboration between the stakeholders of the development
team?
Probe: Frequency? Adequate?

Opinion

Now we will talk about the effort required to use the RSD approach.

Effort required to using RSD – EFF
ID Questions Type

Q20 Regarding the effort required, what are the differences between the RSD and
other approaches you have used before? Opinion

Q21 What practices used in the project hinder your performance?
Probe: How? Opinion

Q22 What practices used in the project improve your performance?
Probe: How? Opinion

Q23
Using a discrete scale (much, reasonable, little), how do you evaluate the ef-
fort required to use the RSD approach?
Probe: Why?

Opinion

Q24

Using a discrete scale (lower, equal, higher), how do you evaluate the effort
required to specify using RSD approach compared to others approaches you
have used before?
Probe: Why?

Opinion

Q25

Using a discrete scale (lower, equal, higher), how do you evaluate the effort
required to code from RSD compared to others approaches you have used
before?
Probe: Why?

Opinion

Q26

Using a discrete scale (lower, equal, higher), how do you evaluate the effort
required to test from RSD compared to others approaches you have used
before?
Probe: Why?

Opinion

Q27 Is the effort required to use RSD different from what you expected?
Probe: Why? Opinion

 179

Now we will talk about the changes in requirements.

Changes in requirements - CHA
ID Questions Type

Q28
How do you assess the strategy adopted to analyze the change requests in
the requirements?
Probe: Why?

Opinion

Q29 How do changes affect your work? Opinion

Q30
How do you assess the impact of these changes compared to other ap-
proaches that you used previously?
Probe: Why?

Opinion

Finally, we will talk about opportunities to improve the adoption of RSD approach.

Opportunities for improvement - IMP
ID Questions Type

Q31 What changes would you like to make in RSD approach?
Probe: Why? Opinion

Q32 What are the practices you do not recommend using in future projects?
Probe: Why? Opinion

Q33 What practices do you recommend to use in future projects?
Probe: Why? Opinion

Q34 What other difficulties did you have using RSD approach?
Probe: Why? Opinion

Thanks

Thank you so much. Your participation was very important to this research.

