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Once you eliminate the impossible, whatever remains, no matter how improbable, must

be the truth.
— Sherlock Holmes in The Sign of the Four.

- Sir. Arthur Conan Doyle.



Abstract

In this dissertation, we study through numerical simulation, properties of the vortex

matter in superconductors. In non-homogeneous superconductors, the penetration

of magnetic flux (provided by the vortex entry) within the sample is theoretically

described by the macroscopic critical state models, where due to interaction with

material impurities (pinning centres), the vortex density is high near the edges and

decreases as we approach the center of the sample. Although extensively studied, the

critical state models do not explain in detail how the microscopic events lead to the

global behavior predicted by the macroscopic models , especially nearby the surfaces,

where the vortex currents are deformed to satisfy the boundary conditions. We simulate

through molecular dynamics methods the penetration and the microscopic dynamics of

vortices in a superconducting slab subjected to a parallel applied magnetic field. We

explicitly take into account the often neglected vortex-surface interaction and analyse

how this can influence the dynamics and the critical state configurations. We then verify

which of the various critical state models best describes the system. Nearby the surfaces,

we observed regions with zero density of vortices, which arise due to the energetic

barrier that hinders the vortex entry and exit. Such regions, known as flux free regions,

have a thickness which depends on the strength of the applied magnetic field and the

level of pinning forces in the material. We also analyse the temporal evolution of the

flux front inside the superconductor and the hysteresis cycles of the magnetization

due to an external field variation, and compare with results known in the literature.

Another topic of broad interest concerns the possible ordered structures that the vortex

lattice can form. In situations of uniform density the system of vortices converges

to a minimum of energy and tends to be ordered as a triangular lattice (Abrikosov

lattice). However, in situations where the vortices may form nonuniform distributions,

due to variations in sample thickness, interactions with material inhomogeneities,

among other ways, the triangular Abrikosov lattice will not satisfy the minimum energy

condition. The question is whether the nonuniform distribution of vortices presents

a structure of small domains of different densities, i.e., a nonuniform glass, or a new

ordered structure emerges. We obtain evidences of conformal crystals as possible, stable

nonuniform vortex configurations in a superconductor. Such configuration is an example

of ordered crystallization in a nonuniform particle distribution. These ordered structures,



although can present local inhomogeneities, preserve the topological order and can be

mathematically mapped into a triangular lattice through a conformal transformation.

We propose a simple method to obtain the particle density required to observe such

structures and suggest possible experimental realizations in which conformal (or quasi-

conformal) vortex crystals could be observed in bulk superconductors or thin films.

Keywords: Superconductivity. Vortices. Critical state. Conformal crystals.



Resumo

Nesta dissertação, estudamos através de simulação computacional, propriedades

da matéria de vórtices em supercondutores. Em supercondutores não homogêneos, a

penetração do fluxo magnético (proporcionada pela entrada de vórtices) no interior

da amostra é descrita teoricamente pelos modelos macroscópicos de estado crítico,

onde devido à interação com as impurezas do material, a densidade de vórtices é alta

próximo às bordas e decresce à medida que nos aproximamos do centro da amostra.

Apesar de terem sido bastante estudados, os modelos de estado crítico não respondem

detalhadamente qual a conexão dos eventos microscópicos com os resultados dos

modelos macroscópicos, principalmente nas imediações da superfície, onde as correntes

dos vórtices são deformadas para satisfazer as condições de contorno. Simulamos

através de métodos de dinâmica molecular a penetração e a dinâmica microscópica

de vórtices em um filme supercondutor devido à presença de um campo magnético

aplicado paralelamente à sua superfície. Reproduzimos a interação dos vórtices com a

superfície do supercondutor e analisamos como isso pode influenciar na dinâmica e

nas configurações de estado crítico. Verificamos então qual dentre os vários modelos de

estado crítico descreve melhor o sistema. Nas imediações da superfície, observamos

regiões com densidade nula de vórtices, as quais surgem devido a barreira energética

que retarda a entrada e a saída das linhas de fluxo no supercondutor. Tais regiões,

conhecidas como flux free regions, têm uma espessura que depende da intensidade do

campo magnético aplicado e do nível de impurezas do material. Analisamos também a

evolução temporal da frente de fluxo dentro do supercondutor e os ciclos de histerese

da magnetização devidos à variação de um campo magnético externo e comparamos

com resultados conhecidos na literatura. Outro olhar interessante é em relação as

possíveis estruturas ordenadas que a rede de vórtices pode formar. Em situações de

densidade uniforme, o sistema converge para um mínimo de energia e tende a se

ordenar como uma rede triangular (rede de Abrikosov). Entretanto, em situações

em que os vórtices podem formar distribuições não uniformes, devido variações na

espessura da amostra, interações com inomogeneidades do material, dentre outras

maneiras, a rede triangular de Abrikosov não satisfará a condição de mínima energia.

A questão é se a distribuição não uniforme de vórtices apresenta uma estrutura de

pequenos domínios de diferentes densidades, i.e., um vidro não uniforme, ou se uma



nova estrutura ordenada emerge. Obtemos evidências da formação de cristais conformes

como uma rede estável de vórtices em um supercondutor. Tal formação é um exemplo

de cristalização ordenada da rede em uma distribuição de partículas não uniforme. Estas

estruturas ordenadas, embora possam apresentar inomogeneidades locais, preservam a

ordem topológica e podem ser matematicamente mapeadas em uma rede triangular

através de uma transformação conforme. Propomos um método simples para gerar a

densidade de partículas necessária para a observação de tais estruturas e sugerimos

possíveis experimentos nos quais cristais conformes de vórtices, ou quase conformes,

poderiam ser observados em supercondutores volumosos e filmes finos.

Palavras-chave: Supercondutividade. Vórtices. Estado crítico. Cristais conformes.
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1 Introduction

The theory of vortices in superconductors has been exhaustively studied over the

past six decades since Alexei Abrikosov (1957) demonstrated that, when subjected

to sufficiently high magnetic fields, some superconducting materials are threaded by

quantized flux lines, which induce circular screening currents (or vortices of currents)

around it in order to preserve the superconductivity in the rest of the material. Such

vortices interact repulsively with each other as well as interact with applied currents

in the material. Abrikosov then classified the superconducting materials in two types:

type-I, those materials that do not allow partial flux penetration, and type-II, materials

that allow partial flux penetration and consequently the formation of vortices. The vast

majority of superconductors are type-II, which makes this type of superconductor of

greater technological interest. Several metal alloys and various composite systems are

of this type of superconductivity, and are also present in electronic devices and medical

equipments. The vortex dynamics influences directly in most physical properties of the

system such as resistivity and magnetization, such that a study on the vortex matter

becomes relevant for all applications.

Abrikosov also showed that the vortices that permeate a homogeneous superconductor

arrange themselves in a regular lattice. We now know that, in this case, the vortices are

organized in a triangular lattice. However, structural defects in the material, whether

natural or artificially produced, act as attractive centres for the vortices, and are usually

called pinning centres. The vortex-pinning interaction deforms the homogeneous lattice

and is able to form disordered structures or even nonuniform vortex distributions.

Other factors such as temperature and geometry of the sample also play a relevant role

in the deformation of the vortex lattice.

The flux line (or vortex) dynamics in a superconductor is usually described by

its two-dimensional motion on the physical plane perpendicular to the applied field

direction. In some situations ( e.g. for thin superconducting films or when the vortices

are practically straight lines), the vortex system can be treated as pointlike particles

interacting in a two-dimensional dynamics. Thus, an arrangement of vortices in a
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superconductor resembles several systems of interacting particles on a substrate, e.g.,

colloids, plasma and Wigner crystals. In this way, a study on vortex matter may also

bring solutions to problems in other areas.

In situations of nonuniform density of vortices, little is known about which structures

the vortex lattice can form, especially if ordered configurations are possible or not. In

this work we propose an attempt to find the so-called conformal crystals as possible

minimum energy configurations for nonuniform vortex distributions. A conformal

crystal is a nonuniform ordered structure in which the position of its particles can

be mapped via a conformal transformation from a regular hexagonal lattice. In the

following chapters we review the theory of vortices in superconductors (chapter 2)

and study, through numerical simulations, situations of nonuniform vortex densities

(chapter 3 and chapter 4). In chapter 3 we discuss the nonuniform vortex distributions

produced by the competition between the flux penetration and the pinning force in the

so-called critical state problem, where we study how the surface effects can influence

on the vortex distribution. Then, in chapter 4, we model the necessary conditions to

obtain the conformal vortex crystals, study the properties of this exotic configuration,

and suggest the possible experimental realizations. The main conclusions of this work

are summarized in chapter 5.
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2 Vortex State in Superconductors

In this chapter we review some basic theories of superconductivity, starting from the first

mathematical explanations of how the magnetic flux penetrates into a superconducting

sample, towards describing the vortex lattice. We will discuss the types of supercon-

ductors and study how the magnetic flux can be quantized inside the material, thus

forming the vortices. Then we will see how the flux lines interact with the structural

defects of the superconducting crystal and how it can produce a nonuniform vortex

density in the so-called critical state. Finally, we discuss the possibility of the vortex

lattice be treated as a two dimensional crystal.

2.1 Historical overview

The fascinating phenomenon of superconductivity was revealed to human eyes for the

first time in 1911, when the Dutch physicist Heike Kamerlingh Onnes, a pioneer in

cooling techniques, having already liquefied helium in 1908 in his laboratory at Leiden

University, realized that the resistance of mercury dropped to zero for temperatures

below 4.15K [1]. This finding resulted in the birth of the field of superconductivity.

It did not take long until other experiments were made for different materials and it

was found that some of them have the same behaviour when submitted to very low

temperatures. Each of them is characterized by a specific critical temperature Tc, that

determines the phase transition between the normal and superconductor states.

Later, in 1913, Onnes also discovered that the superconductivity can be destroyed

above a critical current density Jc [2], and subsequently, he found that there is a critical

magnetic field Bc limiting the superconducting state [3]. Therefore the superconductivity

occurs under the conditions T < Tc, B < Bc, J < Jc. But it was just in 1933 that Meissner

and Ochsenfeld [4] found the second most important property of a superconductor,

the total exclusion of magnetic field inside the material for temperatures below Tc, i.e.,

the superconductor behaves like a perfect diamagnetic, expelling the magnetic field
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from inside of it. This effect, known as Meissner effect, can not be explained by a

perfect conductor, which would shield the magnetic field if subjected to a magnetic flux

variation, but once an internal magnetic flux has been established, this flux would not

be expelled below Tc.

The first mathematical explanation of superconductivity was proposed by the brothers

F. and L. London, in 1935 [5]. They proposed equations to explain the behaviour of

electric and magnetic fields and current density inside a superconductor. They also

predicted how far an external magnetic field can penetrate into a superconductor. The

next superconductivity theory came fifteen years latter when Ginzburg and Landau

formulated a successful phenomenological theory describing the superconductivity

in terms of an order parameter that represents the density of super electrons (later

known as cooper pairs) [6]. Particularly, other scientist Alexei Abrikosov showed that

Ginzburg-Landau theory predicts the division of superconductors into two distinct

groups, Type I and Type II. Type I superconductors, in the presence of an applied

magnetic field, have only one phase transition between normal and Meissner states,

while type II superconductors are characterized by two critical fields, which depend

on temperature. In between such field values a type II superconductor manifests a

peculiar state, called mixed state, where partial penetration of magnetic flux occurs, but

preserving the material’s superconductivity. The mixed state is characterized by the

presence of superconducting vortices, which are the main subject of this work.

In 1950, the same year of the Ginzburg-Landau theory, Maxwell and Reynolds

observed that the critical temperature of mercury isotopes depends on the isotopic

mass. This result indicates the electron-phonon interaction as a microscopic mechanism

responsible for superconductivity. This effect, called the isotope effect, was proposed

theoretically by Frölich [7] in the same year and is considered an important step towards

a microscopic superconductivity theory.

The BCS theory [8], proposed by Bardeen, Cooper and Schriffer (1957), brought a

complete quantum microscopic explanation of superconductivity. This theory assumes

that the supercurrents are carried by electron pairs, called cooper pairs. The electron-

phonon interaction produces a net attractive force between the electrons which are

organized in pairs and an energy gap is created between the normal and superconductor

states. The BCS theory satisfactorily explains almost all the microscopic properties of

elementary superconductors and it is in accordance with the London and Ginzburg-

Landau results.
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In this chapter we review some basic theories of superconductivity in order to

describe the physics of superconducting vortices. A detailed study of the microscopic

effects becomes unnecessary here, since the phenomenological theories of London and

Ginzburg-Landau satisfactorily describe the dynamics of superconducting vortices.

2.2 London equations

The London equations were proposed to explain the behaviour of electromagnetic fields

inside a superconductor. The first equation establishes the relation between the local

eletric field, E, and current density, J, while the second one relates the current density

to the local magnetic induction B,

E = µ0λ2
L

∂J
∂t

, (2.1)

B = −µ0λ2
L∇× J, (2.2)

where λL is the London penetration depth, a phenomenological parameter that can

be written as λL =
√

m∗/µ0e∗2ns, with m∗, e∗ and ns the mass, charge and density,

respectively, of the superelectrons (or "superconducting carriers", known later as cooper

pairs) . The first equation represents the perfect conductivity, i.e., any electric field can

accelerate the superelectrons. From the Ampère’s law, we can rewrite de current density

as µ0J = ∇× B. Using this expression in Eq.(2.2) we obtain

∇2B =
B
λ2

L
, (2.3)

where we also used the identity ∇×∇×B = ∇(∇ ·B)−∇2B and Gauss’ law ∇ ·B = 0.

Eq.(2.3) corresponds to a Helmholtz equation and has well known solutions for some

symmetries.

2.2.1 Magnetic field inside superconductor

Consider an infinite superconducting film on the y-z plane of thickness d, i.e., at

−d/2 < x < d/2, under a constant applied magnetic field in z direction B = B0ẑ,

as illustrated in Fig. 2.1. In this case the local magnetic induction must satisfy the
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Figure 2.1: Field and current representation in the London theory for an infinite superconducting film

of thickness d.

boundary conditions Bz(x = −d/2) = Bz(x = d/2) = B0 and the solution to London

equation becomes

Bz(x) =
B0 cosh( x

λL
)

cosh( d
2λL

)
, −d

2
< x <

d
2

. (2.4)

Note that for d � λL this solution is reduced to Bz(x) = B0 exp(−(d/2−|x|)
λL

) and the

magnetic field inside the superconductor decreases to zero in a characteristic length λL

from the surface. Observe that Eq.(2.4) represents the Meissner effect.

2.2.2 Shielding current

The shielding current can be easily calculated from Ampere’s law. For B in z direction

we have J = − 1
µ0

∂Bz
∂x ŷ. Using Bz(x) from Eq.(2.4)

Jy(x) = − B0

µ0λL

sinh( x
λL

)

cosh( d
2λL

)
, −d

2
< x <

d
2

(2.5)

Thus the absolute value of current density also decrease from the surface with the

same characteristic length λL. Note that J is perpendicular to the magnetic field and is

oriented in a way as to shield the flux density, as illustrated in Fig. 2.1. For d� λL, the
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magnetic flux penetration reaches the middle of the sample and the shielding currents

surround all material, with more intensity near the surface and decreasing towards the

center. Empirically, the penetration depth depends on temperature by the expression

λL(T) ≈ λL(0)
[
1− (T/Tc)4

]− 1
2 . (2.6)

Although the London theory can explain the perfect conductivity and Meissner effect,

it has limitations. For example the density of superelectrons is considered uniform

in all material, it does not yield the upper critical field or critical current density for

superconductivity, and it does not describe the mixed state in its original form. The

Ginzburg-Landau theory brought the answers to these problems, as we shall see below.

2.3 Ginzburg-Landau theory

Based on the second-order phase transition theory of Landau, the Guinzburg-Landau

(GL) theory describes the macroscopic behaviour of superconductors using the total

free energy of the system, contrary to the BCS theory, where the microscopic excitations

are considered. Thus, the GL theory describes more easily situations in which there

are spatial inomogeneities in the density of superelectrons and will be sufficient to

describe the superconducting vortices. The authors introduced a pseudo wave function

ψ(r) = |ψ(r)|eiϕ(r) as a complex order parameter, where |ψ(r)|2 represents the density of

superconducting electrons, ns(r). In that way the electrons are treated as a quantum

fluid and, differently from the London theory, their density ,ns, can assume non-uniform

values.

At first, this theory had limited attention in the literature due to its phenomenological

foundations. But, in 1959 Gor’Kov [9] showed that the GL theory derives from a

particular case of the miscroscopic theory for temperatures close to Tc and with ψ(r)

varying slowly in space.

2.3.1 Order parameter

Some systems in nature can be characterized by two distinct behaviours: disordered,

when subjected to high temperatures and ordered for low temperatures. The order

parameter of a system is a physical parameter that can represents the transition between
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these two phases. For example, in ferromagnetic materials, the magnetization can be

taken as an order parameter, since it is equal to zero for high temperatures (spins

randomly oriented) and is nonzero for low temperatures (aligned spins). Similarly, the

superconducting order parameter might be associated to the density of superelectrons,

which is zero only for temperatures above Tc. In that way, the order parameter describes

the phase transition between the normal and the superconducting states.

2.3.2 Free Energy and the Ginzburg-Landau equations

At first, consider |ψ(r)|2 uniform everywhere in the material for zero magnetic field,

Bext = 0. According to Landau’s theory of second-order phase transitions, we can

expand the free energy density of a superconductor fs in terms of the order parameter

|ψ(r)|2

fs = fn + α(T)|ψ(r)|2+β(T)|ψ(r)|4+γ(T)|ψ(r)|6+... (2.7)

As we saw above, the order parameter represents the number of electrons that

condensed in the superconducting state. Then, for |ψ(r)|2−→ 0, Eq.(2.7) results in the

free energy density of the normal state, fn. Considering temperatures near Tc, we can

approximate the expansion of Eq.(2.7) as fs = fn + α(T)|ψ(r)|2+β(T)|ψ(r)|4, where we

preserved the third term in order to avoid an unique and trivial solution ψ = 0. The

Landau’s theory is summarized in finding a equilibrium state that minimizes the global

Gibbs free energy, which is equal to the Helmholtz energy for zero field, F =
∫

dr3 fs(ψ(r)).

For this we make use of variational calculus to minimize the functional of energy in

relation to the order parameter. This results in a expression that the parameters must

satisfy at a minimum , αψ + β|ψ|2ψ = 0. Immediately, we conclude that β must assume

positive values, otherwise the energy would not have a global minimum within the

domain that validates the expansion. In that way ψ assumes the possible solutions

ψ = 0 , |ψ|=
√
−α

β
(2.8)

Let us now define |ψ∞|2≡ −α/β as the value of |ψ(r)|2 deep inside the superconductor,

where the order parameter assumes an uniform value for any applied magnetic field, this

will be useful later. Note that, once β is positive, α(T) defines the critical temperature,

i.e., α > 0 results on the unique solution ψ = 0, and the system stays in the normal
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state, on the other hand, for α < 0 the other solutions from Eq.(2.8) become possible

and the superconductor state is energetically favorable. Empirically, α(T) depends on

temperature by α(T) ∼ (T − Tc). These results are analogous to the Bragg-Williams free

energy for the Ising model with zero magnetic field, where the order parameter is the

magnetization. A more detailed explanation can be found in (P. Chaikin et al,1995 [10]).

Let us now assume that |ψ| varies slowly in space and the superconductor is under

an applied magnetic field Bext 6= 0. In this case, the GL theory adds two new terms in

the free energy

fs = fn + α(T)|ψ(r)|2+β(T)|ψ(r)|4+
1

2m∗
|[−ih̄∇− e∗A(r)]ψ(r)|2+

b2

2µ0
, (2.9)

where A(r) is the vector potential operator, that is related to the magnetic field by the

expression b = ∇×A. The fourth term of Eq.2.9 represents the kinetic energy and can

be read as P2/2m∗, where P = −ih̄∇− e∗A(r) is the physical momentum operator. The

latter term represents the magnetic field energy in the vacuum. Obviously, when ψ = 0,

the normal free energy density remains fn + b2/2µ0.

To derive the GL equations, we must minimize the global free energy, similar to the

zero field case that we saw above, but note that now the Gibbs free energy differs from

the Helmholtz free energy, integrated in the volume V, by a term as in the following

expression

Gs[ψ, A] =
∫

dV fs(ψ, A)−VH · B, (2.10)

Observe that Gs is a functional and we can minimize it by using variational calculus.

We obtain the first GL equation by minimizing Gs with respect to ψ∗, i.e.,

δGs

δψ∗
= αψ + β|ψ|2ψ +

1
2m∗

(−ih̄∇− e∗A)2ψ = 0, (2.11)

which is similar to the Schrödinger equation, differing only by a nonlinear term, with ψ

being the wave function and α the energy eigenvalue.

In the same way, minimizing Gs with respect to A and simplifying algebraically the

expression, we obtain the second GL equation

js = − ih̄e∗

2m∗
(ψ∗∇ψ− ψ∇ψ∗)− e∗2

m∗
|ψ|2A. (2.12)

These two equations can be solved to obtain the spatial variation of the order parame-

ter and the current density of the superelectrons.
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2.3.3 Characteristic lengths

The Ginzburg Landau theory introduces two fundamental length scales associated with

superconductivity. To understand them let us consider now a normal-superconductor

interface in a three-dimensional Euclidean space with x < 0 representing a normal

material and x > 0 a superconductor. Assuming that there are no fields and currents

applied, we can use A = 0 in Eqs.(2.11) and (2.12), such that, all coefficients of the first

GL equation become real. From the second equation we find that, in that case, ∇ϕ = 0.

Therefore the phase is everywhere constant and can be set to zero without changing

the physics of this problem. In that way ψ = ψ(x) is real and we can rewrite Eq.(2.11) in

unidimensional form

−h̄2

2m∗
d2

dx2 ψ + αψ + β|ψ|2ψ = 0 (2.13)

For a homogeneous superconductor, we expected that for x � 0 the order parameter

becomes uniform and the magnetic field vanish, leading us to the case ψ2 = ψ2
∞ = −α/β,

as we saw before. We are interested here in how the order parameter differs from ψ∞

in the non-uniform regions near the surface. For this purpose, let us rewrite the above

equation in terms of the parameter f = ψ/ψ∞

−h̄2

2m∗|α|
d2

dx2 f + f (1− f 2) = 0. (2.14)

Now, it is convenient to define the first fundamental length ξ2 ≡ h̄2/2m∗|α(T)|, known

as coherence length. In that way, It may be easily verified that Eq.(2.14) has the solution

f (x) = tanh(x/
√

2ξ). Rewriting in terms of ψ, we find.

ψ(x) = ψ∞ tanh(
x√
2ξ

) (2.15)

Note that ψ(x) −→ ψ∞ when x � ξ and ψ(x) = 0 at the normal-superconductor

interface. Therefore, ξ determines the characteristic distance in which the order param-

eter vary in the transition from a superconductor to a normal region. Also note that

ξ depends on temperature by α(T), i.e., ξ2(T) ' ξ2(0)/(1− T/Tc), which diverges for

T −→ Tc, when the superconductivity vanishes.

The second fundamental length is related to the characteristic distance in which the

magnetic field can penetrate into the superconducting region. Beforehand, let us define
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Figure 2.2: characteristic lengths for the field (red) and order parameter (green) variations in a normal-

superconductor interface.

it as the penetration depth, which in analogy to the London theory we will represent

by the Greek letter λ (Fig.2.2).

Considering low temperatures and weak magnetic fields, such that |ψ|2 is practically

its value in the absence of fields, |ψ∞|2, we can assume ψ∗∇ψ− ψ∇ψ∗ ' 0 (note that

this expression is valid for a constant phase,∇ϕ = 0 ), the second GL-equation is reduced

to

js = − e∗2|ψ|2
m∗

A(x). (2.16)

Using the Ampère’s law µ0j = ∇× B, and applying the curl operator to both sides

of the above expression, we easily obtain the London Equation, Eq. (2.2), where the

penetration depth will be given by

λ2 =
m∗

µ0e∗2|ψ|2 =
m∗β

µ0e∗2|α| '
λ2(0)

1− T/Tc
. (2.17)

For T = 0, λ is reduced to the London penetration depth, λ(0) = λL, when all the

electrons become superconductors and |ψ|2= |ψ∞|2= ns = const.

So, we also obtain that for x � ξ, when ψ ' ψ∞, the fields and currents basically

follow the London solution, differing only near the normal-superconductor interface.

For 0 < x � ξ we can expand ψ(x) as ψ(x) ' ψ∞
x√
2ξ

=⇒ |ψ(x)|2= |ψ∞x√
2ξ
|2. Looking back

to Eqs. (2.16) and (2.17), λ is no longer constant and the fields and currents will suffer

a correction near the surface, as illustrated in Fig.2.3. Note that, x −→ 0 implies that

Bz −→ B0 = const., and the current density vanishes.

Another parameter that can be defined here is the so-called Ginzburg-Landau param-

eter, κ = λ(T)/ξ(T), which describes the relationship between the flux penetration in a
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Figure 2.3: Fields and currents from the GL_theory for a normal-superconductor interface. Note that

for x � ξ it follows the London solution. (Figure taken from [11]).

superconducting material and the coherence of its superconductivity. Since λ and ξ

have, in general, the same dependence on T, κ is a constant close to Tc.

The GL theory, although had been formulated for T near Tc, presents satisfactory

results even when T � Tc. De Gennes [12], showed that the Ginzburg-Landau theory

works for any temperature in strong magnetic fields.

2.4 Fluxoid quantization and the vortex state

Now we will proceed to investigate the situation when the sample is under an applied

magnetic field. We saw before what happens with fields and currents near the surface

when the superconductor is under a parallel applied magnetic field. Assume now that

the magnetic flux penetrates deep inside the superconductor in an arbitrary region, S0,

far from the surface. We will see in this section that the magnetic flux crossing S0 is

quantized and vortices of currents will arise in order to preserve the superconductivity

in the rest of the material.
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2.4.1 Fluxoid quantization

Assume an arbitrary magnetic flux, Φ, crossing S0. If we consider ψ(r) = |ψ(r)|eiϕ(r) in

the second GL-equation, we obtain

js =
e∗h̄
m∗
|ψ|2∇ϕ(r)− e∗2

m∗
|ψ|2A. (2.18)

Then, taking the line integral around a closed contour Γ0 surrounding S0 (with Γ0

far from S0 and surfaces), the left side of the above expression goes to zero, since in

the region between S0 and the boundary there is no local magnetic fields or currents.

Reorganizing the terms, it results in

∮
Γ0

A · dl =
h̄
2e

∮
Γ0

∇ϕ · dl, (2.19)

where we used e∗ = 2e. Once ψ is single-valued, the integral in the right must be equal

to a multiple of 2π. On the other hand, the integral in the left gives us the magnetic

flux inside the region surrounded by Γ0. So we obtain the relation

Φ = nφ0, (2.20)

with φ0 = h/2e the quantum of magnetic flux. Therefore, the magnetic flux crossing S0 is

quantized in multiples of φ0 ' 2, 07× 10−15Tm2. This result was experimentally proven

by R. Doll et al [13] and B. S. Deaver et al [14] in the same year, by independent research.

2.4.2 Type I and type II superconductivity

The presence of a critical field for superconductivity is a natural consequence of thermo-

dynamics in the Gibbs formalism, where the destruction of the superconducting state

is associated with the energy required to keep the field outside the material, µ0H2/2,

where H is the applied field. When H reaches a critical field, Hc, the superconductivity

is abruptly broken in a first order phase transition to the normal state. If we consider

two superconducting states differing only by the applied magnetic field, zero for one

and H 6= 0 for the other, the difference in the Gibbs free energy density between these

two states will be given by gs(T, H)− gs(T, 0) = µ0H2/2. Remember that, in the phase

transition, the Gibbs free energy is continuous, i.e., gs(T, Hc) = gn(T, Hc). Since the

normal material has negligible magnetic susceptibility, the field contribution to the free
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energy in normal state is negligible and gn(T, Hc) = gn(T, 0). Rewriting the difference in

energy for H = Hc we obtain

∆g(T) = gn(T, 0)− gs(T, 0) =
µ0H2

c
2

. (2.21)

Note that, ∆g(T) is the energy required to bring all electrons to the normal state, or,

the condensation energy of the superconducting state at zero field. Empirically, Hc

depends on temperature as

Hc(T) = Hc(0)
(

1− T
Tc

)2

, (2.22)

as sketched in Fig.2.4.a.

Figure 2.4: (a) Phase diagram for type-I superconductors, which presents only normal and Meissner

states limited by Hc(T).(b) Phase diagram for type-II. Here we can observe the vortex

(mixed) state between the two critical fields Hc1(T) and Hc2(T). (c) Magnetization curve

for type I superconductor, above Hc the magnetization goes to zero with the abruptly field

penetration. (d) Magnetization curve for type-II. The partial flux penetration results in a

smooth decay of the magnetization until reaching zero in H = Hc2.

This kind of superconductor that we described above is called "Type I superconductor".

Until 1957 it was the only form of superconductivity theoretically studied, when Alexei

Abrikosov [15] investigated the behavior of superconductors with the coherence length
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smaller than the penetration depth in the presence of magnetic field. In this case, the

penetration of magnetic flux below Hc is energetically favourable, since the surface

energy becomes negative for ξ < λ. According to Abrikosov, this flux would be broken

in as many parts as possible in order to minimize energy, the ground state would

be the one in which each part would have exactly one quantum of magnetic flux,

being therefore indivisible. Thus, along the flux lines, the superconductivity will be

locally broken, and consequently, circular shield currents, or vortices of currents, will

emerge around those regions in order to isolate the affected areas and preserve the

superconductivity in the rest of the material. In this situation, the superconductor

is said to be in the mixed state, and the superconductivity is called type II, which is

characterized by two critical fields, Hc1 and Hc2.

The lower critical field, Hc1, is related to the energy needed to nucleate a single vortex

inside superconductor. That is, below Hc1 the superconductor is still in Meissner state

(zero magnetic flux inside it). Then, above this field value and below Hc2, vortices will

penetrate, i.e., the mixed state appears until H = Hc2 when the material is completely

filled by the flux lines and finally becomes in normal state (Fig.2.4.b). Hc1 can be

expressed by the following relation

Hc1(T) = εv(T)/φ0, (2.23)

where εv(T) is the vortex-line energy. In the next topic we will see that, for κ � 1, εv

depends on temperature as λ−2(T) ∼ (1− T/Tc)2.

The upper critical field, Hc2, can be calculated from the first GL-equation, considering

an infinite sample under an uniform magnetic field. If H −→ Hc2 , |ψ| becomes small

and we can rewrite Eq.(11) in its linearized form, despising the term β|ψ|2. In that way,

the problem is reduced to solve a Schrodinger-like equation for a free particle of mass

m∗ and charge e∗ = 2e, under an uniform magnetic field H, where, from the eigenvalues

of energy, we obtain that the magnetic field H has a maximum possible value given by

Hc2(T) =
φ0

2πµ0ξ2(T)
=
√

2κHc(T). (2.24)

Note that, κ < 1/
√

2 implies in a upper critical field less than Hc. In this case the mixed

state does not make sense, since in that field value the system do not have the energy

required to bring all electrons to the normal state, which is only reached in H = Hc.

Therefore, in this case the superconductor will be of type-I. For κ > 1/
√

2 the mixed state
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becomes possible and the superconductivity is of type-II. Fig.2.4.(c) and (d) illustrate the

magnetization, M = B
µ0
− H, for type I and II, respectively. Observe that, in the Meissner

state B = 0, therefore M = −H for both kinds of superconductivity. However, apart from

surface effects, the magnetic flux abruptly penetrates type-I samples at H = Hc, making

B = µ0H, and consequently M = 0. For type-II materials, the penetration is gradual,

and the density of magnetic flux increases smoothly as the vortices are accommodated

inside the sample, resulting in a soft decay of the magnetization until reaching zero in

H = Hc2.

2.4.3 The vortex at the limit κ � 1

Like a tunnel crossing a mountain, the Abrikosov vortex leads the flux line from one

side to another of the superconductor, shielding it, since along the flux line the super-

conductivity is locally broken. Analogously to the normal-superconductor interface,

the fields and currents will vary radially within a characteristic length λ, and the order

parameter in a coherence length ξ, as sketched in Fig.2.5. We call vortex core the region

of radius ξ around the flux line, where the order parameter varies quickly. We will see

along this section that is energetically favourable for the vortex to assume a linear shape

and carry a single magnetic flux quantum φ0 , i.e., n = 1 in Eq. (2.20).

The vast majority of type-II superconductors have λ� ξ. Such property simplifies

our calculations about superconducting vortices, since for small values of ξ, the order

parameter is basically constant outside the vortex cores. Therefore, making |ψ|2= |ψ∞|2

in Eq. (2.18), using Ampere’s law , and taking the curl operator in both sides of the

equation, we obtain the following expression to the local magnetic field

−λ2∇2b + b =
φ0

2π
∇×∇ϕ. (2.25)

This is basically the London equation plus a term due to the flux penetration. Then, if

we consider a linear isolated vortex positioned at the origin of the xy plane and oriented

in the z direction, in a bulk infinite superconducting sample, the integral of the right

side of the Eq.(2.25) will give us the magnetic flux of the vortex. Note that, the integral

of ∇×∇ϕ on the area, by Stokes theorem, becomes the line integral in the right-hand

side of Eq. (2.19). As mentioned before, it must be equal to 2πn, with n an integer

number. Therefore, the right side of Eq.(2.25) can be rewritten in terms of a Dirac delta

function, ∇×∇ϕ = 2πnδ(r)ẑ, where r = 0 is the vortex position. The parameter nδ(r)ẑ
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is know as the vorticity of the vortex, ν(r), that represent the direction, position and the

number of magnetic quanta carried by the vortex. Now, Eq.(2.25) can be easily solved

by Fourier transform. Using b(r) = b(r)ẑ, we have

−λ2(−iq)2b(q) + b(q) = nφ0, (2.26)

and

b(q) =
nφ0

λ2q2 + 1
. (2.27)

Taking the inverse transform, we obtain

b(r) =
nφ0

2πλ2 K0

( r
λ

)
, (2.28)

where K0 is the zeroth-order modified Bessel function of the second kind. This function

has asymptotic behaviour given by

K0

( r
λ

)
≈ ln

(
1.123λ

r

)
, r � λ (2.29)

K0

( r
λ

)
≈ exp(−r/λ)

(2r/πλ)
1
2

, r � λ. (2.30)

Note that b(r) diverges for r −→ 0. This divergence occurs because we did not

consider the vortex core and it is usually solved by taking a cutoff in r ∼ ξ. To preserve

the continuity of b(r) and avoid the divergence near the vortex core, J.R. Clem [16],

proposed the following correction in the radial coordinate, r −→
√

r2 + 2ξ2 . This is a

good approximation valid for κ � 1. Fig.2.5 illustrates b(r) and |ψ(r)|2 for an isolated

vortex.

The free energy density of a superconductor with an isolated vortex inside can be

written as (see Eq. (2.9))

fs = fM +
1
2

mv2
s |ψ|2+

b2

2µ0
, (2.31)

where fM is the free energy density in the Meissner state and vs is the modulus of the

superfluid velocity. vs is related to the momentum operator by P = −ih̄∇− e∗A(r) =

m∗vs, where, substituting this relation in the second GL equation, we obtain that

vs = js/2e|ψ|2. Looking back at Eq.(2.31), the energy cost of a vortex will be given by

Ev =
∫

dr( fs − fM). (2.32)
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Figure 2.5: Left: Hexagonal arrangement for linear vortices in an Abrikosov lattice. Right: Isolated

vortex structure, showing the spatial variations of the induced magnetic field and order

parameter. Note that we used the Clem approximation r −→
√

r2 + 2ξ2 in order to avoid

the divergence of b(r) near the vortex core.

Substituting vs in Eq.(2.31) and considering de region r > ξ, i.e.,|ψ|= |ψ∞|, Eq.(2.32)

becomes

Ev =
1

2µ0

∫
r>ξ

dr[λ2(∇× b)2 + b2]. (2.33)

Using the identity ∇ · (a× b) = b · (∇× a)− a · (∇× b), with a = ∇× b, Eq.(2.33) can

be rewritten as

Ev =
1

2µ0

∫
r>ξ

dr(b · [−λ2∇2b + b]) +
λ2

2µ0

∫
dr∇ · [b×∇× b]. (2.34)

As we know, −λ2∇2b + b = φ0nδ(r), therefore the first integral vanishes for r > ξ.

The second integral can be transformed in a surface integral by the divergence theorem,

to be performed in the surfaces r = ξ and r = ∞. The contribution of the second integral

is negligible since b goes to zero when r −→ ∞. Using the asymptotic approximation

(Eq. (2.29)) the integral results in

εv =
Ev

L
= n2 φ2

0
4πµ0λ2 ln κ = n2ε0 ln κ, (2.35)

where L is the length of the vortex. Note that the energy of the vortex is proportional to

its length and to n2. Therefore, it is energetically favourable for the vortex to assume a

linear shape along the same direction of the applied field, and with magnetic flux φ0
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,i.e., n = 1 in Eq.(2.22). We will see in the next topic that this is true even considering

the interaction energy between the vortices.

2.4.4 Vortex-vortex interaction

Consider now two linear vortices oriented in the z direction and positioned in r1 and r2

on the xy plane. Each vortex interact with the other through their current distributions.

The vortex 1 suffers a Lorentz force per unit of length, f12, due to the currents of the

vortex 2, j2, given by

f12 = j2(r12)× (φ0ẑ), (2.36)

where r12 = |r1 − r2| is the distance between the vortices. We know that µ0j = ∇× b,

and using Eq.(2.28) for b in z direction, we obtain

f12 = −
φ2

0
2πµ0λ2

∂K0(r12/λ)
∂r12

=
φ2

0
2πµ0λ3 K1(r12/λ), (2.37)

where K1 is the first-order modified Bessel function. The energy per unit length, similar

to the isolated vortex, can be calculated from Eq.(2.33), but now b(r) = b1(r) + b2(r) and

the surface integral will be taken avoiding the two cores. The resulting energy for the

two-vortex system is

ε2v = 2εv + 2ε0K0(r12/λ), (2.38)

where the second term on the right side gives us the interaction energy. At the limit

r12 = ξ, using Eq. (2.29), we have K0(ξ/λ) ' ln κ, and the above expression becomes

ε2v ' 4ε0 ln κ. If we consider a vortex with two quanta of magnetic flux, i.e., n = 2 in

Eq. (2.35), we obtain εn=2
v = 4ε0 ln κ. Therefore, since at r12 = ξ the interaction term has

the maximum value, ε2v ≤ εn=2
v . Consequently, for H � Hc2, when the vortices are

separated by distances greater than ξ, the ground state is the one in which each vortex

has one quantum of magnetic flux.

The repulsive force between the flux lines results in a periodic solution for the

positions of the vortices in an homogeneous superconductor, i.e., the ground state is a

periodic vortex-lattice, where the hexagonal lattice ( or Abrikosov lattice) presents the

lowest energy (Fig. 2.5).
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2.4.5 Thin films

Consider a superconducting film of thickness d � λ under a perpendicular applied

magnetic field. In this case, local fields and currents are practically constant along the

thickness and the vortices are basically punctual in the London approximation. In this

case, it is convenient to treat this problem using the vector potential, A, rather than

the magnetic field. Similarly to the bulk sample we start from Eq.(2.25), rewriting it in

terms of A,

∇× (A + µ0λ2js) = φ0δ(r)ẑ, (2.39)

where we can define Φ ≡ A + µ0λ2js with the condition ∇×Φ = φ0δ(r)ẑ. Using that

∇× (θ̂/r) = 2πδ(r)ẑ, we have Φ = (φ0/2πr)θ̂. Now, taking the average over the thickness

d, we define the sheet current J =
∫

jsdz = jsd. Organizing the terms it results in

J =
1

µ0λe f f
(Φ−A) for |z|≤ d

2
, (2.40)

where λe f f = λ2/d is the effective penetration depth of the film. If we assume a sheet

current flowing only in the z = 0 plane, i.e., δ(z)J. Then we rewrite Eq.(2.40) as

−∇2A +
δ(z)A
λe f f

=
δ(z)Φ
λe f f

(2.41)

Note that we used the relation ∇×∇× A = −∇2A = µ0J, in the London gauge.

Eq.(2.41) can be solved by the Fourier transform method (De Gennes [17]), and has the

solution in the Fourier space given by

Jq =
1

λe f f

(
Φq −

Φq

1 + 2qλe f f

)
, (2.42)

where Φq is the Fourier transform of Φ. The interaction energy between two vortices

will be determined by the Lorentz force F(r) = J(r)× (φ0ẑ). Substituting J and using that

in the Fourier space F(q) = −iqEvv(q), we obtain

Evv(q) =
φ2

0
qµ0

1
1 + 2qλe f f

. (2.43)
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At small distances, r � λe f f , or q� λ−1
e f f , Eq.(2.43) is reduced to Evv(q) = φ2

0/2q2µ0λe f f ,

returning to the original space

Evv(r) =
φ2

0
2πµ0λe f f

ln
(

λe f f

r

)
. (2.44)

The self energy of the vortex can be calculated similarly to the bulk sample (Eq. (2.35)),

just replacing λ by λe f f .

2.4.6 Vortex motion

The dynamics of the flux lines within the superconductor will be governed by the forces

acting on the system. For a vortex in a homogeneous superconductors , the movement

will be determined by the Lorentz force FL = j× (φ0ẑ), where j can come from any

current source. The Lorentz force pushes the flux line through the material. During

this movement, a viscous force opposing the motion arises. Such force is due to the

scattering processes suffered by the normal electrons inside the vortex core. In this

case, the vortex moves with terminal velocity (overdamped motion) determined by the

coefficient η, i.e., FL = ηv, where v is the terminal velocity of the motion. Thus, the

equation of motion for the vortex is given by

ηv = φ0j× ẑ. (2.45)

This regime in which the vortices are in linear motion is called flux flow. Note that,

when the magnetic flux φ0 starts to move, an electric field appear, which follows from

the relation E = φ0 ẑ
A × v, where A is the area of the vortex core in xy plane. In this way

an electrical resistance is also associated to the movement, with resistivity ρ f f (flux flow

resistivity) given by E = ρ f f j. Substituting v in terms of E in Eq.(2.45) we can write

ρ f f = Bφ0/η. Thus, the superconductor loses one of its main characteristics when the

vortex motion occurs: the null electrical resistivity. In 1965, Bardeen and Stephen [18]

assumed that the dissipation results from a purely resistive process inside the vortex

core and found that, in this case, η = φ0Bc2/ρn, where ρn is the resistivity in the normal

state extrapolated for the specific temperature.

The above situation refers to a homogeneous superconductor. However, most su-

perconductors present structural defects that act as pinning centers for vortices. Such

inhomogeneities can be taken into account by an effective pinning potential, Up, rep-
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resenting the interaction between vortices and the pinning centers. Thus, if we also

consider a thermal shaking, we obtain the Langevin equation

ηv = φ0j× ẑ−∇Up + Γ(T, t), (2.46)

where Γ(T, t) is the stochastic Langevin force representing the effect of the collisions

with the atoms of the superconducting crystal at a temperature T, as in the Brownian

motion of microscopic particles diluted in a fluid. The regime in which the vortices are

initially pinned but, due to a small applied current and the thermal shaking, can detach

from a pinning site to another, is called flux creep. In this situation, the resistivity ρ f c is

less than ρ f f , since the dissipated energy is related to the velocity of the vortices. In the

situation where the thermal fluctuations are negligible, the vortex motion only occurs

when j produces a force greater than the pinning force.

Eq.(2.46) can be used in several situations even for different kinds of particles, but

we have to pay attention to satisfy some conditions before using it. For example, the

dynamics needs to be overdamped; the temperature must be homogeneous, or a well-

know T(r); the vortex cores must be able to be treated as punctual, in order to follow

the Brownian motion; and the vortex can not move so fast, otherwise there would not

be enough time for the cooper pairs to recombine after the vortex passage; these among

other precautions.

2.5 Flux penetration in inhomogeneous superconductors

In the previous section we saw that inhomogeneities in the material can imprison the

vortices, which can move in a flux creep motion under a low applied current. Consider

now a slab superconducting sample with a strong pinning potential, which may be

either naturally or artificially produced [19]. In this case the vortex will move only if the

local current reaches a critical value, jc, where the Lorentz force becomes greater than

the pinning forces. It is convenient now to look at the whole system macroscopically,

since each vortex have a particular, irregular, motion determined by the local pinnnig

sites. Thus, we must observe the flux moving in bundles, where the driving force per

unit volume exceeds the pinning forces available in the same volume.
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2.5.1 Critical state

Imagine the sample is submitted to a parallel applied magnetic field. As we saw before,

the vortices will penetrate through the vacuum-superconductor interface for H > Hc1,

but note that they will accumulate in the pinning sites. Therefore, we must expect a high

density of vortices near the surface which decays toward the center of the sample. If the

local current density j (which depends on the Meissner and vortices current) is higher

than jc, the vortices keep moving through the sample until they find a comfortable

position, where j < jc.

The Bean model [20], assumes that regardless of the applied magnetic field , at the

equilibrium, the current density in the vortex gradient region is constant and equal to jc,

i.e., b(x) has constant inclination. Fig.2.6. shows b(x) for different values of applied field,

increasing and decreasing it. When the field is decreased the vortices near the surface

leave the sample, thus forming a gradient with the opposite sign of the penetration case.

Figure 2.6: Magnetic field profiles for the Bean Model, increasing (left) and decreasing (right) the

external applied field. The critical current is considered constant in all the vortex gradient

region. (This figure was taken from [21]).

Note that in the decreasing-field process there is always magnetic flux inside the

superconductor, even for H = 0. This occurs because some vortices are still pinned in

the inhomogeneities of the material. Thus, the magnetization assumes different values

for the same applied field H, depending on the magnetic history of the system, resulting

in a hysteresis loop.

The Bean model is the simplest and the most used among the critical state models

that have been proposed to describe the flux penetration in an inhomogeneous super-

conductor. But, even though it can satisfactorily describe the low-field cases with several
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experimental confirmations, it starts to fail when the magnetic field grows enough

to reach the center of the sample. Each critical state model is based on a particular

assumed relationship between the internal field and the critical current density. Table

2.1 presents the most used critical-state models. All of them depends on the parameters

Bk and Jk associated with the internal field and current density.

Equation Model

j(b) = jc Bean [22]

j(b) = Jk
|b(x)|/Bk

Fixed pinning [23]

j(b) = Jk

|b(x)/Bk|1/2 Square root [23]

j(b) = Jk
1+|b(x)|/Bk

Kim [24]

j(b) = Jc exp(− |b(x)| /Bk) Exponential [25]

j(b) = Jk
1+[|b(x)|/Bk]2 Quadratic [11]

Table 2.1: The most used critical-state models. Observe that the Kim, Quadratic and Exponential models

are reduced to the Bean model when |b(x)|� Bk.

Fig.2.7 illustrates the typical high-field magnetization loops for zero and strong

pinning potentials. Shimizu and Ito (1989) [26], proposed an indirect method of

measuring Jc using hysteresis loops, where they found that the critical current is

proportional to the width of the magnetization hysteresis curve, ∆M. Thus, looking at

Fig.2.7, we also expect Jc to depend on the magnetic field.

Figure 2.7: Typical high-field magnetization loop for zero (cyan) and strong (red) pinning potentials.

The green line represents the so-called "virgin branch", when there is no flux penetration

yet and the superconductor is still in the Meissner state.
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2.6 Vortex lattice as a 2D crystal

Due to their repulsive interactions, the vortices tend to form a regular lattice which can

be compared to several interacting particle systems. Even the vortex having the geometry

of a line, on the xy-plane it can be approximately seen as a point-like particle, where we

have to pay attention on the elasticity of the lattice before assume this approximation.

The three-dimensional vortex lattice has basically three elastic modes: compression, shear

and tilt [19, 27]. For thin films, where the length of the vortex is negligible, and for

perfectly linear vortices, the elastic modes are reduced to those of a two-dimensional

crystal: compression and shear. Fig.2.8 presents an artistic representation of the graphene

as a 2D crystal [28], and a scanning tunnel microscopy (STM) image of the vortex lattice

in a sample of NbSe2 [29].

Figure 2.8: a) Artistic representation of the graphene structure (figure taken from [28]). Note that if we

imagine a particle positioned inside each graphene cells we obtain the hexagonal lattice. b)

STM image of a vortex lattice in NbSe2, 1989 (figure taken from [29]).

2.6.1 Vortex lattice melting

If we increase sufficiently the thermal shaking, the Abrikosov lattice will lose the

positional and topological order, becoming the so-called liquid of vortices. In this phase,

the shear elastic-mode is null and the system forms a kind of vortex-soup. Although

the melting of the vortex lattice has been studied for some decades, a complete theory

of this transition has not been formulated yet. Some works about this theme can be

found in [30–34]. Fig.2.9 presents the scanning tunnelling spectroscopy (STS) images of
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the vortex lattice, before and after melting in a W-based superconducting thin film [35].

The phase diagram for a homogeneous superconductor is sketched in Fig.2.9.c.

Figure 2.9: (a) Vortex lattice at 1.2 K, before melting (b) the same system at 3.0 K, no isolated vortices

are seen, the vortex lattice formed an isotropic liquid.(figures taken from [35]). (c) Phase

diagram for the vortex lattice for a homogeneous superconductor. The solid line indicates an

abrupt first order phase transition, while the dashed line indicates a continuous transition.

To estimate the melting temperature we can rely on Lindemann’s criterion [36], which

assumes that the melting is expected when the vibration root mean square amplitude

of the particles,
√
〈u2〉 , exceeds a threshold value proportional to the typical distance

between the particles, α (e.g.,for a hexagonal lattice α is the edge of the hexagon). In

other words, the melting temperature will be given by

〈u2(Tf )〉 = c2
Lα2, (2.47)

where, cL is a constant of empiric value cL ∼ 0.1− 0.2. Even though elasticity theory

fails in describing the nature of the phase transition, since it loses its validity near the

transition, it can be used to calculate 〈u2〉. Frey, Nelson and Fisher (1994) [37], proposed

an elastic model, known as cage model, that simplifies the calculation of the vibration

root mean square. They assumed a central vortex that can be deformed, i.e., u 6= 0,

surrounded by linear vortices that do not suffer distortions and produce a cage-potential

on the central vortex. In this way they could find the relation 〈u2〉 ≈ kBT/
√

κεv.

Returning to the Lindemann’s criterion we obtain

kBTf ≈ c2
L
√

εvκα2. (2.48)
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From Frey et al [37], κ ' [∂2Evv/∂r2]r=α. In the cases λ� α and λ� α, the interaction

energy becomes Evv = −ε0 ln(r/λ) and Evv = ε0
√

πλ/2r exp(−r/λ) respectively, and

Eq.2.48 assumes the asymptotic expressions

kBTf ≈ c2
Lε0α = c2

L

√
2
3

φ
− 1

2
0

4πµ0λ2 B−
1
2 , λ� α, (2.49)

kBTf ≈ c2
Lε0α

( α

λ

) 3
4 e−α/λ , λ� α, (2.50)

where we used B = nφ0 with n = 2/
√

3α2 for the hexagonal lattice. For low field values,

B & µ0Hc1, the vortices interact weakly and are separated by α & λ. In this case Tf (B) is

given by Eq.(2.50). For intermediary field values, µ0Hc1 � B� µ0Hc2, the vortices are

closer (ξ � α � λ) and Tf (B) is given by Eq.(2.49). Fig. 2.9 shows Tf (B) in the phase

diagram for the vortex lattice for a homogeneous superconductor.
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3 Vortex Dynamics and Surface Effects

in the Critical State

In the previous chapter we studied the structure of isolated vortices deep inside the

superconductor and how they form an hexagonal lattice. But, what happens when

the vortex is near the surface? In this chapter we analyse the surface effects on the

vortex dynamics and configurations. We perform numerical simulations for the vortex

penetration and analyse the nonuniform distributions of the critical state and how it

can be changed by the pinning potential and surface effects. In what follows we assume

the London approximation (κ � 1).

3.1 Entry barriers

3.1.1 Bean-Livingston surface barrier

At first, let us consider a linear vortex in an infinite superconducting sample. As

described in the previous chapter, the shielding currents encircling a straight vortex line

deep inside a bulk superconductor flows symmetrically in circular paths. In contrast,

when the vortex is near the vacuum-superconductor interface, the shielding currents

will be deformed to satisfy the boundary conditions, which imposes that the current

does not have normal components on the surface, since it can not pass through the

boundary(see Fig. 3.1). This deformation results in a force pulling the vortex out of the

sample, which can be compared to the Magnus force in hydrodynamics [38], where the

difference in fluid velocities (in our case a quantum fluid of cooper-pairs) produce a

resultant force on the object.

To solve this problem, i.e., find the currents and fields distributions, we can make

use of the method of images (Jackson, 1999 [39]), where in analogy to a point charge

located near an infinite grounded conducting plane, we can imagine an antivortex
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Figure 3.1: Vortex near the surface. The currents are deformed in order to satisfy the boundary

conditions. To simulate this deformation we can assume an antivortex, symmet-

rically distanced from the surface, as a mirror reflect of the original vortex in the

other side of the interface. The dot (red) represents the vortex core position and the

x (blue) represents the antivortex core position

symmetrically distanced from the surface as a mirror reflection of the original vortex,

in the other side of the interface (Fig. 3.1). The current of the antivortex rotates in an

opposite direction in order to cancel the vortex current at the surface. In this case, and

considering x > 0 the superconductor and x < 0 the vacuum region, where the vortex is

positioned in (xv, yv) and the antivortex in (−xv, yv), we obtain that the field distribution

due to the vortex is given by

bv(r, rv) =
φ0

2πλ2

[
K0

(√
(x− xv)2 + (y− yv)2

λ

)
− K0

(√
(x + xv)2 + (y− yv)2

λ

)]
, x > 0.

(3.1)

Note that the magnetic flux, Φ, carried by the vortex is also reduced depending on

its distance from the surface. This flux can be calculated by integrating Eq.(3.1). With

the help of the Fourier method, one can easily obtain Φ(xv) = φ0(1− e−xv/λ), where for

xv � λ we have Φ = φ0. Naturally, we must expect a reduction in the self energy of the

vortex when xv −→ 0. The self energy as a function of xv can be written as

εv(rv) =
1

2µ0
φ0bv(r, rv)|r=rv , (3.2)

where b(r, rv) is calculated in the vortex position and we consider the Clem approx-

imation r −→
√

r2 + 2ξ2 when the argument of K0 goes to zero, in order to avoid
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Figure 3.2: Bean-Livingston surface barrier. Due to the surface interaction the vortex can not

penetrate before H = Hen, where Hen is a entry field value. Also observe that the

vortices inside the superconductor cant go out for H > Hex, even the minimum of

energy being out side of the sample, where Hex is the exit field.

the divergence in the vortex core (Fig 2.5). This method is equivalent to integrating

Eq. (2.33). In this way, Eq.(3.2) can be rewritten as

εv(xv) = −ε0

[
K0

(
2xv

λ

)
− K0

(√
2ξ

λ

)]
, (3.3)

with ε0 = φ2
0/4πµ0λ2. Note that for xv � λ the first term in the right side of the above

equation goes to zero and , using the asymptotic approximation (Eq. (2.29)), Eq.(3.3)

results in the self energy of an isolated vortex εv = ε0 ln κ. Since the self-energy depends

on the vortex position, the interaction with the surface results in a force given by

fsel f (xv) = −∂εv(xv)
∂xv

x̂ = −
φ2

0
2πµ0λ3 K1

(
2xv

λ

)
x̂, (3.4)

which tends to pull the vortex out of the sample. Considering the interaction energy

between the vortex and the Meissner field, bM(xv), the total energy of the vortex becomes

ε(xv) = εv(xv) +
φ0

µ0
bM(xv) = −ε0

[
K0

(
2xv

λ

)
− K0

(√
2ξ

λ

)]
+ φ0He−xv/λ, (3.5)
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where we used bM(xv) = µ0He−xv/λ for a parallel applied field. Consequently, the

resultant force acting on the vortex is

fx(xv) = −
φ2

0
2πµ0λ3 K1

(
2xv

λ

)
+

φ0

λ
He−xv/λ. (3.6)

Observe that the Meissner force pushes the vortex into the sample while the self-force

pulls it out. Thus, fx(xv) can be positive or negative depending on which term is

dominant. Now, imagine the situation in which the superconductor is initially in the

Meissner state. Then, increasing the applied field we allow the vortex to nucleate at

the surface. Note that, even though a minimum of energy is available deep inside the

sample, the vortex needs to cross an energetic barrier created by the competition between

the attractive energy, due to the interaction with the surface, and the repulsive energy of

the Meissner field (Fig. 3.2). This energetic barrier is known as Bean-Livingston surface

barrier [40].

Let us consider that the vortex is completely penetrated at a distance ξ from the

surface. In this case the vortex remains into the sample only if fx(ξ) ≥ 0. In other words,

H ≥ φ0

2πµ0λ2 K1

(
2ξ

λ

)
eξ/λ ≡ Hen. (3.7)

Here we defined the entry field Hen, at which the vortex can overcome the surface

barrier. In non-homogeneous superconductors, as we will see during this chapter,

the pinning sites can hold the vortices inside the material even for low applied fields,

resulting in a entry field smaller than in the homogeneous case.

3.1.2 Geometrical barrier

For thin films under a perpendicular applied field another surface effect becomes

relevant. Due to the high demagnetization effect, i.e., the field deformation that

concentrate a high density of flux lines on the lateral surface (Fig. 3.3), the vortex

penetration occurs first at the edges, where the field values are larger. Fig.3.3 illustrates

the penetration process of a vortex in three different times, the chronological sequence

is indicated by the colors. Starting by the edges (red lines), the flux line crosses the

sample in two parts. The penetration keeps going until both parts touch each other

(blue) and finally the vortex assumes the straight shape with energy E = εvd (green).

Note that during the penetration the vortex assumes different lengths, with maximum
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Figure 3.3: Geometrical barrier. The colors indicate different times of the penetration: Penetra-

tion begins (red); middle time (blue); penetration completed (green).

length approximately equals to
√

2d (blue line). In that way, although the minimum of

energy being inside the material, to penetrate, the vortex needs to assume an energy

greater than εv
√

2d. This energetic barrier is known as geometrical or edge barrier.

Some other surface or edge barriers for the flux penetration into thin superconductors

are discussed in Brandt,1995 [19]. However, in this chapter we are interested on the

longitudinal geometry, where this kind of barrier is negligible due to the infinite

longitudinal dimension.

3.2 Model and simulation details

In this section we give the details of the model and numerical methods used to simulate

a vortex system in an inhomogeneous superconducting slab. We are interested here

in analysing the surface effects on the vortex lattice and how it influences the critical

state. For this, we model an infinite superconducting slab with thickness D = 30λ (such

that we can assume the approximation D � λ) under a parallel applied magnetic field

(Fig 3.4.a). We consider that the vortices are rigid straight lines oriented parallel to the

applied field, such that the energy of a vortex will be given by Eq. 3.5, where the surface

effect is explicitly taken into account by the method of images. Thus, the problem can

be reduced to calculating the two-dimensional dynamics of the vortex lines in the xy

plane, in which case we can make use of the Langevin equation for the vortex motion.
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Figure 3.4: a) Infinite superconducting slab of thickness D = 30λ under a parallel applied field.

b) Simulated region. The simulation box assumes periodic boundary conditions

along the y direction and is bounded by the surfaces on the x direction. c) Pinning

potential representation. It was generated by a bilinear interpolation of an array of

pinning with 150 points per λ. The colors bar indicates the depth of the potential

wells.

The simulation box is bounded by two surfaces on the x-axis, at x = 0 and x = 30λ,

and periodic boundary conditions along the y-axis are used in order to simulate the

infinite dimension (Fig 3.4.b.). The two-dimensional dynamics is determined by the

Langevin equation (Eq. 2.46), which for the ith vortex can be written as

ηvi = −∇ε(ri)−∇Up(ri) + ∑
j

fij(rij) + Γi(T, t), (3.8)

where ε(ri) represents the self and Meissner energies (Eq. (3.5)), and ∑j fij(rij) is the

contribution of the interaction forces between the vortices (fij is given by Eq. (2.37)).

To simulate the vortex-pinning interaction, we modelled a pinning potential, Up(x, y),

which consists in a superposition of a large number of Gaussian potential wells, up =

−ε0U0 exp[(x2 + y2)/2ξ2], randomly distributed throughout the sample (see e.g. [41]),

where U0 is the root-mean-square height of the pinning potential. In this way the

vortices move through a resultant potential that resembles a rough surface (Fig. 3.4.c),

where the value of U0 determines if it will be strong or weak pinning.

The simulation consists in integrating de Langevin equation for each vortex inside

the sample, which we are representing by a simulation box with size Lx = D = 30λ



52

and Ly = 30λ. In our simulation we used ξ = 0.05λ, that implies in κ = 20, which is

close to some materials ( e.g., Nb3Sn, Nb3Ge and V3Si), and can be treated within the

high kappa approximation. Starting from the Meissner state, with H = 0 and zero

vortices, the field is increased to a chosen value greater than the entry field, but much

less than Hc2, and then, it is decreased down to zero again in order to complete a half

loop of a magnetization curve (Fig. 3.5). The penetration process is performed by the

following steps: at each time step, a position (x0, y0) is randomly chosen, where x0 = ξ

or x0 = D− ξ and 0 < y0 < Ly. We then calculate the resultant force that would act

on the vortex if it were positioned at (x0, y0), i.e., the self-force plus Meissner force,

which constitute the surface barrier, added to the interaction force due to all vortices

inside the sample. If this force has component fx pushing the vortex into the sample,

a vortex is added at (x0, y0), otherwise it is rejected and the dynamics proceeds with

the same number of vortices (N). If an already accepted vortex, in some step of time,

assumes the position x < ξ or x > D− ξ, it will be removed from the dynamics, which

continues with N − 1 vortices. Since D � λ, for x > ξ, the Meissner field is given by

bM ' µ0H(e−x/λ + e−(D−x)/λ). In the high kappa approximation (Sec. 2.4.3) the induced

magnetic field of the vortex is given by b(r) = (φ0/2πλ2)K0(
√

r2 + 2ξ2/λ), which also

decay exponentially for r � λ. Thus, the forces acting on the system are all short-range,

and we can assume a cutoff distance for the interactions, that we chose as Rcuto f f = 10λ

(where it was verified that for higher values of Rcuto f f the changes on the dynamics are

negligible). Note that we are using the Clem approximation r −→
√

r2 + 2ξ2 in order to

avoid the divergence of b(r) near the vortex cores. In this chapter we also assume zero

temperature, T = 0, to avoid the flux creep effect and focus on static critical state profiles.

Accordingly, the thermal shaking term of the Langevin equation can be discarded.

The integration of the Eq. (3.8) (with T = 0) is numerically solved by discretizing the

time variable, t, in small steps of size dt ( in our case dt = 0.001ηλ2/ε0) and evaluating

the time dependent functions on the new time t′ = t + dt. This procedure corresponds

to the so-called Euler method, usually used to solve differential equations numerically.

Thus, the position of the ith vortex as a function of time is simply given by

ri(tn+1) = ri(tn) + vi(tn)dt (3.9)

where n = 0, 1, 2, 3... represents the number of steps of time. The simulations were

performed for different intensities of the pinning potential: U0 = 0.000; U0 = 0.002;
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U0 = 0.004; U0 = 0.008; U0 = 0.016; U0 = 0.032 and U0 = 0.064, covering the strong and

weak pinning domains (as shown in Fig.3.5).

3.2.1 Results and discussion

We increased the applied field in steps of ∆H = H0, where H0 = φ0/2πµ0λ2, with a

time step ∆t carefully chosen such that after each ∆t the configuration is stabilized. In

accordance with Eq. (3.7), for ξ = 0.05λ, Hen ' 10.4H0. Fig. 3.5 shows the magnetization

curves obtained in the simulations for different values of U0.

The flux density profiles, B(x), obtained during the simulations for U0 = 0.016 are

presented in Fig. 3.6.a, where we took the average value of the flux density in the y-

direction for each chosen value of x. Observe that the density of vortices has maximum

values near the surfaces and decays as soon as it approaches the middle of the sample,

in agreement with the classical critical state models.

Note that the critical current density is given by taking the derivative of the flux

density profiles with respect to the x-coordinate. Fig. 3.6.b shows Jc(B) derived from

Fig. 3.6.a. Before taking the derivative, we took the average value of the flux evaluated

at symmetrical positions with respect to the sample center in order to reduce noise.

Figure 3.5: Simulation result: magnetization as a function of the applied field, H, for different

values of U0. Comparing with Fig. 2.7 we easily classify U0 = 0.004 and U0 = 0.032

as weak and strong pinning, respectively.
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Figure 3.6: Simulation results: a) Flux density profiles for some values of H. The arrow

indicates an increasing of the applied field from H = 14H0 to H = 42H0 in steps of

∆H = H0 = φ0/2πµ0λ2. Note that the inclination of each flux density profile give us

the local critical current density. b) Current density as a function of B . The points

outside the dashed region represent the change of concavity of the flux density

profiles at the center of the sample and will be disregarded from the numerical fit.

Note that the flux density profiles have greater slope in the central part of the sample,

where the value of B is small, than near the surfaces where B is larger, which implies in

a current density that decreases as B increases.

To check which critical state model best describes the system, we numerically fitted

(for each model of table 2.1) the data points indicated in Fig. 3.6.b. The results are

shown in Fig. 3.7. Observe that the Bean model is not an accurate approximation for the

critical state that we obtained and, among the studied models, the model of Kim had

the best fitting result. This model, proposed by Kim et al,1963 [42, 43]), was deduced

empirically for high-field superconducting materials as Nb3Sn and 3Nb-Zr. It also had

satisfactory results from simulations (Richardson et al,1994 [44]) of an unidimensional

vortex system, without surface effects. Our simulation describes the physical problem in

a more realistic approach when compared with [44] and other numerical results known

in literature, and also confirms that the Kim model presents the most satisfactory results

among the studied models.

Now, let us look at what happens near the surfaces. In our simulations we observed

a peculiar phenomenon: regions with no vortices nearby the surfaces appear for some

pinning potentials and applied fields.
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Figure 3.7: Numerical fit of the data points indicated in Fig 3.6.b for each critical state model

of table 2.1. (a) Kim (b) Exponential (c) Bean (d) Square root (e) Fixed pinning (f)

Quadratic. Observe that the Bean model is not an accurate approximation for our

sample and, among the studied models, the model of Kim had the best fitting.

J. Clem [45] predicted these so-called flux free regions studying the Gibbs free energy

for the Bean-Livingston surface barrier for the case of a homogeneous (pin-free) slab

with a flux distribution in the sample. Using a continuum approximation, he predicted

that the thickness of the flux free regions, x f f , for homogeneous superconductors,
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follows the expression: x f f = λ cosh−1(H/B), where B is the total magnetic field inside

the sample. Our simulation results for x f f are sketched in Fig 3.8. Note that the

thickness of the flux free regions tends to ξ, independent of the applied field, when

U0 assumes values greater than 0.064, and the surface barrier has limited influence

compared with the pinning forces. But, for weak pinning, it becomes relevant.

Figure 3.8: Simulation results: a) Vortices positions for U0 = 0.008. The flux free regions are

indicated. b) x f f in function of U0 for some different values of H. Observe that x f f

decays for high fields and strong pinning. Note That for H = 10H0, x f f diverges

when U0 = 0, since in that condition the entry field is greater than 10H0 and there is

no vortex inside the sample. The values of U0 were specified in pag. 73 .

Due to the surface interaction, the resultant force acting on the penetrating vortex,

fx(ξ), is weak for H close to Hen (zero for H = Hen). Therefore, when the number of

vortices inside the superconductor is large enough, the repulsive force from the inside

vortices can be sufficient to make fx(ξ) < 0 and the vortices can not penetrate anymore.

The Fig. 3.9 shows the flux density profiles for U0 = 0.008. Observe that in this case the

flux density decays abruptly in the flux free regions before following the Kim model. In

these regions it assumes only the Meissner field, since there is no vortex over there.

Our simulation results are in agreement with the Kim model for all studied values

of U0 6= 0. Also our results agree with the Clem expression for x f f when U0 = 0,

confirming the predicted flux free regions and its dependence on H proposed by Clem’s

microscopic model. They also showed that x f f depends on the pinning level and for

which values of U0 the surface effects are relevant or not, as well as the influence of the

surface effects on the critical state profiles.
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Other phenomenon that can be studied here is the time evolution of the flux front

and how it behaves for different values of pinning. Let us define the front position

Figure 3.9: Simulation results: a) Flux density profiles for U0 = 0.008. The surface effects induce

an abruptly decay on the critical state profiles near the surface. Note that the size of

the flux gap near the surface decrease for high fields, when the flux free regions are

smaller. For x > x f f and x < D− x f f , it follows the Kim model. b) Numerical fit

confirmation of the Kim model for the U0 = 0.008 flux density profiles.

as the x coordinate of the most advanced vortex, which we are going to call xp. For

strong pinning, it is harder for the vortex to reach the middle of the sample, since it

gets stuck on the pinning sites. The flux front evolution for the different values of U0 is

shown in Fig. 3.10.a.

The flux front grows initially with time as approximately t0.6, and eventually saturates

at long times to a value x∗p , which depends on the pinning potential. Note that the

initial dependence on t does not change for any chosen value of U0. In Fig. 3.10.b we

show that this initial velocity also does not change for different values of the applied

field. The temporal depence of xp, within the used boudary conditions, was expected to

be t1/2, since in these conditions, the flux front penetration is described by the diffusion

equation (see Bryskin et al,1993 [46] and Gilchrist et al,1994 [47]). Simulations of the

flux front temporal dependence were also performed by Moreira et al [48]. In that case,

an injection of magnetic flux was simulated by concentrating a number of flux lines

(depending on the boundary conditions) at the beginning of the simulation in a small

strip, parallel to the y direction. Their simulation results for the flux front propagation

also fit well with the temporal dependence xp ∝ t1/2. However, none of the cited works

considered surface barriers, which are perhaps causing this difference in the initial
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Figure 3.10: Simulation results: a) Flux front position in function of time for H = 12H0 with

different values of U0. xp grows initially with time as approximately t0.6, and

eventually saturates at a distance x∗p from the surfaces that decreases when U0

increases. b) Flux front position in function of time for U0 = 0.016 with different

values of H. Note that xp grows initially with time as t0.6 independently of the

pinning value or applied field.

velocity of the observed flux front. However, this assumption needs a more detailed

study, not performed in this work. One possible attempt consists in simply simulate

the same flux penetration process with and without the surface barrier and verify if the

temporal dependence of xp changes.
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4 Conformal Vortex Crystals

In this chapter we investigate the possible ordered structures that can be formed by

nonuniform vortex distributions in a type-II superconductor. In situations of uniform

density, the system of vortices converges to a minimum energy structure which tends

to be ordered as a triangular lattice (Abrikosov lattice). However, in situations where

the vortices may form nonuniform distributions, due to variations in sample thickness,

interactions with material inhomogeneities, among other ways, the Abrikosov lattice

does not satisfy the minimum energy condition. The question is whether the nonuniform

vortex distribution assumes a structure of small domains of different densities, i.e., a

nonuniform glass, or if a new ordered structure emerges. In this chapter we review

the concept of conformal crystals and investigate the possibilities to observe this kind

of structure in an arrangement of superconducting vortices, and whether it is an

energetically favourable configuration. We perform numerical simulations and propose

a simple method to calculate the external potential capable of equilibrating the conformal

structures. Finally, we discuss in detail the properties of the observed configurations

and suggest possible experiments to observe them.

4.1 Conformal crystals: general properties

4.1.1 The gravity rainbow experiment

In 1989, experimenting with a system of magnetized spheres, P. Pierański [49] observed

a peculiar nonuniform ordered structure. This structure, whose properties will be

discussed during this chapter, motivated the study of the so-called conformal crystals .

The experiment was performed as follows: a few hundred steel spheres, of diameter

δ = 1mm, were placed within a flat, rectangular box bounded by two sheets of glass

(Fig. 4.1.a). The system was subjected to a perpendicular magnetic field produced by a

pair of Helmholtz coils, such that the magnetic moment induced in each sphere made
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Figure 4.1: a) Experimental set-up. G- glass plates; C-cardboard spacer; S-steel spheres; H-

Helmholtz coils. b) Gravity rainbow configuration. Typical final configuration of

the steel spheres observed in the experiment (figures taken from [49]).

them repel each other with a repulsive potential, V(r), given by the magnetic dipole

interaction, V(r) ∼ 1/r3. When the box surface was oriented horizontally, the spheres

tended to form a regular hexagonal lattice, except for some deformations due to the

rectangular geometry of the box. Then, the system was slightly tilted in order to include

a gravitational contribution on the spheres motion. The gravitational field pulls all

spheres to one side of the box. In this situation, the hexagonal lattice is no longer the

minimum of energy, and a nonuniform sphere distribution arises. Fig 4.1.b shows one

of the observed structures (after a delicate shaking in order to help the system to find

a minimum energy structure). This exotic/beautiful configuration was named by the

author as gravity rainbow.

Analysing the Fig 4.1.b, one can note that the angles at which the lattice lines cross

each other stay always close to π/3 (as in the hexagonal lattice). It was this angle

conservation property that led the author to search for a conformal transformation

which maps the gravity rainbow configuration to a uniform hexagonal lattice. As we

shall see below, among the conformal transformations, the logarithm map is the only

one that suits this purpose.

4.1.2 Conformal lattices

Conformal mapping is a well-studied theme in complex analysis, where it is defined

as a mathematical function that transforms a number of the complex plane z = x + iy

to another complex number w(z) = u(x, y) + iv(x, y), such that the angle between any

two curves that intersect z is preserved. The first experiments on conformal crystals
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Figure 4.2: Left: A semiannular section of the regular hexagonal lattice on the z plane.

Right: The conformal mapping of the left figure under the transformation

w(z) = (1/iα) ln(iαz) with α = π/L in order to fit the semiannular geometry (the

specific value of α will be discussed later in Eq. (4.48)). The letters in red are guides

to identify where each region is mapped

indicated the conformal logarithm map w(z) = (1/iα) ln(iαz) of the regular hexagonal

lattice as a possible solution to explain the gravity rainbow configuration (Fig. 4.2).

The perfect or strictly conformal crystal (Rothen et al. 1993 [50] and 1995 [51]) has

to fulfill some conditions to stay in accordance with the analyticity of the conformal

mapping that defines it. In this section we review the general properties of conformal

structures (where some reference works can be found in [50–54]) by reproducing the

procedures used to calculate the mechanical equilibrium of conformal crystals (see [51]).

This review will be useful to support the discussion on the next section.

First, consider a group of pointlike particles interacting through isotropic, power

law forces and arranged in a regular hexagonal lattice. Let us analyse how the system

behaves under a conformal mapping and what conditions a group of particles has to

satisfy to be considered a conformal crystal.

Now, consider an arbitrary conformal transformation, given by

w = f (z) = u(x, y) + iv(x, y), (4.1)

which maps a perfect hexagonal lattice from the z-plane to a conformal lattice on the w-

plane. Due to the transformation, the distances between the particles will be changed

according to the metric of the transformed space, given by
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ds2
w = du2 + dv2, (4.2)

where we can rewrite du and dv as

du =
∂u
∂x

dx +
∂u
∂y

dy ; dv =
∂v
∂x

dx +
∂v
∂y

dy. (4.3)

f (z) is said to be conformal if, and only if, f is an analytic function of z, i.e., f (z) has to

satisfy the Cauchy–Riemann relations [55]

∂u
∂x

=
∂v
∂y

,
∂u
∂y

= −∂v
∂x

. (4.4)

In this way, substituting Eq.(4.3) into Eq.(4.2) and using the Cauchy relations, one can

find that

ds2
w =

∣∣∣∣dw
dz

∣∣∣∣2 ds2
z , (4.5)

where ds2
z = dx2 + dy2 is the metric of the original space. Note that Eq.(4.5) also implies

in a relation between the elements of area of each space, given by daw = |dw/dz|2daz.

Consequently, since the local density of particles is given by the number of lattice sites

per unit area, the conformal lattice presents a density of particles given by

nw = nz

∣∣∣∣ dz
dw

∣∣∣∣2 , (4.6)

where nz is the density of particles of the original lattice. For a hexagonal lattice

nz = 2/
√

3b2, where b is the distance between the nearest neighbours (the edge of the

hexagons).

Note that the derivative of w with respect to z, that we are going to define as

ζ(w) ≡ dw/dz, contains all information about the geometry of the conformal lattice

around w. Rothen et al. [51] refer to ζ(w) as the complex distortion, which can be rewritten

as

ζ(w) = |ζ|eiϕ, (4.7)

where ϕ is a complex phase. Now, let ∆z be a vector on the z plane connecting two

neighboring points, and ∆w the same vector through the transformation w = f (z),

∆z = |∆z|eiϕz ,

∆w = |∆w|eiϕw .
(4.8)
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Expanding ∆w with respect to ∆z we obtain

|∆w|eiϕw = ∆w =
dw
dz

∆z + O(∆z2). (4.9)

Remember that dw/dz = ζ(w). Considering ∆z much smaller than the characteristic

length in which the function w(z) changes appreciably and using Eqs.(4.7) and (4.8),

Eq.(4.9) becomes

|∆w|eiϕw ≈ |ζ||∆z|ei(ϕz+ϕ) (4.10)

Therefore, ϕ is directly related to the angle at which the hexagon of the conformal lattice

has been turned with respect to the corresponding hexagon of the original lattice, and

|ζ| indicates the dilatation of the distances between the particles in the neighborhood of

w.

4.1.3 Strictly conformal crystals

A group of particles is said to form a strictly conformal crystal (SCC) if each particle is

positioned exactly on the conformal lattice sites. Consider a pair of particles, that we

are going to call i and j, belonging to a SCC and interacting through an isotropic, power

law force, Fij, given by

Fij = A
wj − wi

|wj − wi|k+2 , (4.11)

where k is a fixed exponent and A is a positive constant. Let us calculate the total

force that the particles positioned at the vertices of a conformally transformed hexagon

{wl}, l = 1, 2, ..., 6 exert in a particle positioned at the center of the same hexagon

(Fig. 4.3(right)).

The original hexagon, on the z plane, is illustrated in Fig. 4.3(left), where we denote

zl as the vertices positions and z as the central position. Note that we can rewrite zl as

zl = z + beiαl , (4.12)

where b is the distance between the center and the vertices of the hexagon and αl = lπ/3,

l = 1, 2, ..., 6. In other words, ∆z = zl − z = beiαl . In what follows we assume b much

smaller than the characteristic length, r, in which the function w(z) changes appreciably,

i.e.,

1
|w|

∣∣∣∣dw
dz

∣∣∣∣ ≈ 1
r

and
b
r
� 1. (4.13)



64

Figure 4.3: Left: Original hexagon on the z plane. Right: example of a conformally transformed

hexagon on the w plane .

Similar to Eq. (4.9), we can expand ∆w as

wl − w = ∆w =
dw
dz

∆z +
1
2

d2w
dz2 (∆z)2 + ... (4.14)

Defining η(w) ≡ d2w/dz2 = |η|eiψ and using Eq. (4.12), Eq.(4.14) can be rewritten as

wl − w = |ζ|bei(αl+ϕ) +
1
2
|η|b2ei(2αl+ψ) + ... (4.15)

and,

1
|wl − w|k+2 =

[
1

b|ζ|

]k+2 [
1− k + 2

2
b
∣∣∣∣ηζ
∣∣∣∣ cos(αl + ψ− ϕ)

]
+ ..., (4.16)

where we used the binomial expansion. The force acting on the central particle due to

the particle positioned in wl can be written as

Fl = A
w− wl

|w− wl|k+2 = Fu
l + iFv

l . (4.17)

Therefore, the total force due to all particles located on the hexagon (w1, w2, ..., w6) is

given by Fhex = ∑6
l=1 Fl. Using Eqs. (4.15), (4.16) and (4.17), we easily obtain

Fhex =
6

∑
l=1

Fl = −A
6

∑
l=1

[
1

b|ζ|

]k+1 [
ei(αl+ϕ) +

b|η|
2|ζ| e

i(2αl+ψ)
] [

1− k + 2
2

b
∣∣∣∣ηζ
∣∣∣∣ cos(αl + ψ− ϕ)

]
+ ...

(4.18)

Since ∑6
l=1 eiαl = ∑6

l=1 ei2αl = 0, the leading nonvanishing term of Eq. (4.18) corresponds

to the product ei(αl+ϕ) cos(αl + ψ− ϕ), i.e.,

Fhex = A
k + 2

2
|η|

bk|ζ|k+2

6

∑
l=1

cos(αl + ψ− ϕ)ei(αl+ϕ) + O(b/r) (4.19)
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Rewriting the cosine in the form cos(θ) = (eiθ + e−iθ)/2 and calculating the summation,

Eq. (4.19) results in

Fhex = A
k + 2

2
|η|

bk|ζ|k+2 3ei(2ϕ−ψ) + O(b/r) = Fu
hex + iFv

hex. (4.20)

Looking at Eq.(4.20), we can note that Fhex depends explicitly on the specific hexagon

orientation, ϕ. However, such explicit dependence can be avoided if we rewrite Fhex

in terms of the density of particles. For this, let us try to write down the density

gradient of the SCC, ∇nw. Defining the gradient operator on the complex w-plane as

∇ = ∂/∂u + i∂/∂v and using Eq (4.6), we have

∇nw = nz
∂

∂u

∣∣∣∣ dz
dw

∣∣∣∣2 + inz
∂

∂v

∣∣∣∣ dz
dw

∣∣∣∣2 , (4.21)

where,

∂

∂u

∣∣∣∣ dz
dw

∣∣∣∣2 =
∂

∂u

[
dz
dw

(
dz
dw

)∗]
=

∂w
∂u

d2z
dw2

(
dz
dw

)∗
+ c.c. (4.22)

Here, a∗ is the complex conjugate of a. Using that ∂w/∂u = 1, we obtain

∂

∂u

∣∣∣∣ dz
dw

∣∣∣∣2 =
d2z
dw2

(
dz
dw

)∗
+
[

d2z
dw2

(
dz
dw

)∗]∗
. (4.23)

In the same way,

∂

∂v

∣∣∣∣ dz
dw

∣∣∣∣2 = i
d2z
dw2

(
dz
dw

)∗
− i
[

d2z
dw2

(
dz
dw

)∗]∗
. (4.24)

Therefore, using Eqs. (4.21), (4.23), (4.24) and nz = 2/
√

3b2 for a hexagonal lattice, we

obtain

∇nw =
4√
3b2

[
d2z
dw2

(
dz
dw

)∗]∗
, (4.25)

where,

d2z
dw2 =

d
dw

(
dz
dw

)
=

dz
dw

[
d
dz

(
dz
dw

)]
= −d2w

dz2

(
dw
dz

)−3

. (4.26)

Finally, using that d2w/dz2 = |η|eiψ and dw/dz = |ζ|eiϕ, the density gradient of the SCC

can be written as

∇nw = − 4√
3b2

|η|
|ζ|4 ei(2ϕ−ψ). (4.27)
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In the same way we can obtain the expression for ∇(nk/2
w ) = (k/2)n(k/2)−1

w ∇nw. Compar-

ing with Eq. 4.20, after a simple calculation, we obtain

~Fhex = −A
(k + 2)

k
3(k+4)/4

2(k+2)/2
~∇(nk/2

w ), (4.28)

where now we are going to consider the complex plane as the physical xy-plane, i.e.,

~a = (au, av) represents a vector in Cartesian coordinates. Observe that now Fhex depends

only on the kind of interaction force (given by A and k) and the density gradient of the

SCC.

Now, let us recap what we have done so far. Eq. (4.28) represents the force acting on a

particle of the SCC due to its six nearest neighbors. To compute the contribution of the

remaining particles we can decompose the lattice in concentric hexagons of different

sizes and orientations, as illustrated in Fig. 4.4. Thus, the contribution of each hexagon

will be given by Eq. (4.28) rescaled for the correspondent sizes. A hexagon in which the

distance, d, from the center differs from b by a multiplicative factor, α, i.e., d = αb, has

contribution (1/αk)Fhex (see Eq. (4.20)). For example, defining the families of hexagons

H1, H2... as illustrated in Fig 4.4, the first family, H1, has only one hexagon which exerts

a force Fhex on the central particle; the second one, H2, contribute with two hexagons,

one with side d = 2b and the other with d =
√

3b, so that the contribution of H2 to the

total force, Fint, is given by (1/2k)Fhex + (1/3k/2)Fhex. In the same reasoning, the family Hn

has n hexagons with sizes between d = (
√

3/2)nb and d = nb, such that, the contribution

of the family Hn, for n > 2, to the total force is not larger than n[1/(n
√

3/2)k]Fhex. In

this way , the total force acting on the central particle can be expressed as

~Fint = f (k)~Fhex, (4.29)

where,

1 < f (k) < 1 +
1
2k +

1
3k/2

+
∞

∑
n=3

n
(

2
n
√

3

)k
≡ g(k). (4.30)

Note that g(k) converges only for k > 2. Looking at Eq. (4.28), we can rewrite the total

force as

~Fint = −AJ(k)~∇(nk/2
w ) , k > 2, (4.31)

where,

J(k) ∼=
(k + 2)

k
3(k+4)/4

2(k+2)/2
g(k) , k > 2. (4.32)
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Figure 4.4: Schematic representation of the families of hexagons that are centred at the position

z. Note that Hn contains n hexagons with sizes between d = (
√

3/2)nb and d = nb.

The three possibilities of H3 are shown (figure taken from Rothen et al [51]).

Observe that Eq. (4.31) is a reasonable approximation for particles interacting through

a short-range potential (k > 2), when the influence of the nearest neighbors is much

larger than the influence of the further particles, and the hexagons with d/r not much

smaller than 1 (condition assumed in Eq. (4.13)) have negligible influence. For example,

in the gravity rainbow experiment, the magnetized spheres interact through a potential

V ∼ 1/r3, which implies in k = 3. Also note that, for a finite number of particles, the

summation in g(k), Eq. (4.30), should also be finite.

Eq. (4.31) was calculated considering w(z), and dw/dz, analytic functions of z. In this

way, there must be ϕ(w) such that ζ(w) = |ζ|eiϕ is an analytic function of w. Therefore,

we can write the Cauchy-Riemann relations (Eq (4.4)) as

∂|ζ|
∂u

= |ζ|∂ϕ

∂v
;

∂|ζ|
∂v

= −|ζ|∂ϕ

∂u
.

(4.33)

From the Cauchy-Riemann relations we obtain that

∇2 ln|ζ|≡ ∂2

∂u2 ln|ζ|+ ∂2

∂v2 ln|ζ|= 0. (4.34)

Using that, apart from a constant factor nw = |ζ|−2 (see Eq (4.6)), Eq. (4.34) results in

∇2 ln(nw) = 0. (4.35)
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Comparing the above equation with Eq. (4.31), we also obtain

∇ ·
(

~Fint

Ank/2
w

)
= 0. (4.36)

Eqs. (4.35) and (4.36) represent the conditions in which the internal forces and density of

particles have to satisfy to stay in accordance with the analyticity of the conformal map.

The external force field needed to stabilize the SCC is then determined by ~Fint + ~Fext = 0.

From Eqs. (4.31) and (4.36), we have

~Fext = AJ(k)~∇(nk/2
w ), (4.37)

∇ ·
(

~Fext

Ank/2
w

)
= 0. (4.38)

These two equations define the external force field needed to stabilize the SCC. Rothen

et al [51] showed, by using numerical simulations, that Eqs (4.37) and (4.38) successfully

describe the equilibrium forces on a SCC in different symmetries (planar and radial) for

V(r) ∼ 1/r3.

Now, let us recap the results presented in this literature review: Eq.(4.35) gives us

the particle density distribution of a SCC for any conformal mapping, while Eq.(4.37)

gives us the external force field required to equilibrate it. However, the expression

obtained for the force field (Eq.(4.37)) is quite limited, being valid only in the limit of

small distances between the particles (see Eq.(4.13)) and for power law interaction forces

with k > 2 (see Eq.(4.11)). Thus, it does not cover some important interaction laws,

such as Coulomb interaction and logarithmic interaction, let alone interactions between

vortices, either in bulk materials or in thin films. Therefore, a more comprehensive

theory becomes necessary.

4.1.4 Strictly conformal crystals - planar symmetry

In the previous section we obtained some properties of a strictly conformal crystal for

any conformal map. Now, let us consider the case in which the SCC can be stabilized

by an unidirectional force field ~Fext = (0,−Fv) compressing the particles in a hard wall

located at v = 0 (Fig. 4.5) (the same symmetry of the gravity rainbow, produced by the
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gravitational field). In this case the density of particles changes only on the v direction,

and due to Eqs. (4.35) and (4.37), we obtain

∂2

∂v2 ln(nw) = 0, (4.39)

Fv = −AJ(k)
∂

∂v
(nk/2

w ), (4.40)

Eq. (4.39) results in

nw(v) = nw(0)e−βv, (4.41)

where β is a positive constant. Consequently,

Fv = AJ(k)[nw(0)]k/2 βk
2

e−(βk/2)v, k > 2. (4.42)

Therefore, to stabilize a SCC of planar symmetry, the external force field must decay

exponentially. Observe that this is not the case of the gravity rainbow experiment, in

which the gravitational field is constant, thus forming a non-strictly, but approximated,

conformal crystal structure.

Now, let us analyse a confined and finite SCC. Consider a finite number of particles,

N, forming a SCC confined in a two dimensional box of size LuxLv. The finite system

defines the parameters of Eqs. (4.41) and (4.42). For example, nw(0) is given by the

condition

nw(0) =
N∫

box
e−βvdu dv

=
Nβ

Lu(1− e−βLv)
, (4.43)

where we used Eq. (4.41) integrated on the area of the box. To fit the box boundary

conditions in u direction (where could be hard walls or periodic boundary conditions),

the difference on the orientation, ∆ϕ, of those hexagons located at u = Lu and u = 0 has

to assume a value equal to some multiple of π/3. From Eq. (4.33) we can write

∂ϕ

∂u
= − ∂

∂v
ln|ζ|= − ∂

∂v
ln(n−1/2

w ) = −β

2
, (4.44)

where we used Eq. (4.41). Thus, integrating from u = 0 to u = Lu, we obtain

ϕ(Lu)− ϕ(0) = −βLu

2
≡ −π

3
l, (4.45)

with l = 1, 2, 3... . Consequently, the parameter β is also determined and the density of

particles finally becomes

nw(v) = nw(0)e−(2πl/3Lu)v. (4.46)
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Figure 4.5: Structure of a SCC stabilized by an unidirectional force field ~Fext = (0,−Fv). This structure

can be mapped from a hexagonal lattice by the conformal map obtained in Eq. 4.48. Note

that the factor l defines the number of arcs that fits into the box boundaries (figure edited

from Rothen et al [51]).

From Eqs. (4.6) and (4.46), the conformal map has to satisfy

dw
dz

= e−(iπl/3Lu)w, (4.47)

and then

w(z) =
1
iα

ln(iαz), α =
πl

3Lu
. (4.48)

Fig. 4.2 shows the conformal mapping of a semiannular section of the regular hexagonal

lattice through Eq. (4.48). Note that α = π/Lu fits exactly in a semiannular section of

the z plane specified by Im(z) ≥ 0 and rin ≤ |z|≤ rout. In general, the factor α gives us

the size of the angular section in the z plane (Fig. 4.2) and the number of arcs in the w

plane (Fig. 4.5).

4.2 Conformal vortex crystals

When scientists working on vortex physics hear about nonuniform vortex distributions

one of the first things that comes to mind is the critical state, where, as we studied

before in chapter 3, the flux penetration in an inhomogeneous superconductor results
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Figure 4.6: a) Simulation results for the vortex penetration in an inhomogeneous superconductor. Top:

vortex positions. Bottom: Density of vortices in function of the x position. n(x) is described

by the model of kim. b) Conformal pinning array, figure taken from D.Ray et al, 2014 [56].

The blue and red circles indicate the occupied (contains a vortex) and unoccupied pinning

sites, respectively, for a chose applied field. Note that to form a SCC the system should

have the same number of vortex as pinning sites, which must be completely filled.

in a nonuniform vortex distribution. Some authors, however, have studied conformal

pinning configurations in the critical state problem. For instance, in a recent work

by D.Ray et al 2014 [56], the authors used a conformal pinning array, where pinning

centers were positioned at the conformal lattice positions, to analyse critical current and

magnetization properties compared with other nonconformal pinning configurations.

However, even in this situation the conformal vortex crystal does not appear in the

critical state problem (Fig. 4.6.b). Fig. 4.6.a shows a generic result of our critical

state simulations in chapter 3, where we showed that the density of magnetic flux

(consequently the density of vortices) follows the model of Kim (Pag. 53) in a random

pinning distribution. Note that, the exponential distribution of Eq. (4.46), which is

a necessary condition to observe the SCC, does not satisfy the model of kim, since

it requires a different concavity. In this way, we need a different process to find the

conformal vortex crystal.

In this section we investigate the possibilities to observe conformal crystals in an

arrangement of superconducting vortices. The main questions here are "Can we perform

an nonuniform vortex distribution able to organize in a conformal crystal ?" and "Is the
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conformal structure a minimum energy state of the vortex lattice?" Up to this point,

only the Abrikosov configuration (or in specific situations the square lattice) has been

considered an ordered fundamental state of the vortex lattice. In the following we used

numerical simulations to try to answer these questions and to study some properties of

this peculiar structure. At first, let us try to reproduce the gravity rainbow configuration

with vortices.

4.2.1 Reproducing the "gravity rainbow" with vortices

In order to reproduce the same situation of the gravity rainbow (GR) experiment,

but with superconducting vortices instead of steel balls, we performed numerical

simulations, using the same dynamics discussed in the chapter 3. We consider N = 3000

vortices interacting with each other in a two dimensional box with periodic boundary

conditions in both directions and size Lx = 60λ, Ly = 120λ , such that in the absence

of external forces the system would form a triangular lattice (Abrikosov lattice). The

Figure 4.7: a) Top: Vortex density profile, n(y), obtained in the simulations. Bottom: Potential energy

used in the simulations. It was chose in order to simulate the GR problem, the soft and

hard inclination regions assume the form U(y) = a + by with b = 0.5ε0/λ and b = −10ε0/λ,

respectively. The value of b was chosen in such a way that the maximum force exerted

by the external potential is not enough to break the cooper pairs, otherwise it could not

be applied to vortices. b) Voronoy diagram of the typical minimum energy configuration

observed in the simulations. The red and blue shaded polygons represent, respectively,

5-fold and 7- fold coordinated vortices (topological defects) and the gray shaded polygons

are guides to the eye for better identification of the arch-like structure. The vortices are

represented by the dots.

GR experiment can be characterized by three main ingredients: the particles interact

repulsively; the particles are compressed against a kind of wall; and the force field is

constant. The first condition is immediately guaranteed by the vortex-vortex interaction
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(Eq (2.37)), and, to simulate the other two conditions, in a purely mathematical situation,

we assumed a periodic sawtooth potential energy as sketched in Fig. 4.7.a.

The simulation consisted in a thermal annealing, where the system of vortices (ran-

domly distributed) started with a temperature, T, greater than the melting temperature,

Tf , of the vortex lattice ( subsection 2.6.1), and was gently cooled to its lowest energy

state at T = 0. In this situation, the integrated Langevin equation becomes (see Eq. (2.46)

and Eq. (3.9))

ri(tn+1) = ri(tn) + vi(tn)dt + u(tn)
√

Ddt (4.49)

where the last term of the right side of the Eq. (4.49) refers to the integration of the

stochastic Langevin force, Γ(T, t), which represents the thermal shaking,

∫ tn+1

tn
dt Γ(T, t) = ηu(tn)

√
Ddt (4.50)

where u(tn) is a zero-mean, unit-variance Gaussian variable and D = 2kBT/η. The values

of dt, η and other parameters are the same used in chapter 3. A detailed discussion of

Eq. (4.50) can be found in [57]. The temperature steps were performed as T = 2Tf /m,

where m = 1, 2, 3, ... indicates the number of steps of time, τ = 100.000dt, that have

passed during the simulation. When T < Tf /100, i.e., m > 200, the temperature was

abruptly dropped to T = 0 and the simulation ended. The same process was repeated

several times (50 times at least). Fig. 4.7.b shows the Voronoy diagram of the typical

minimum energy configuration observed in the simulations, where the gray shaded

polygons are guides to the eye for better identification of the arch-like structure.

Looking back at Fig. 4.1, one can easily note that the simulation results showed in

Fig. 4.7 present the same characteristics of the original GR structure. However, when we

tried to reproduce the same process for vortices in thin films, where the vortex-vortex

interaction potential (logarithmic interaction) is long-range ( subsection 2.4.5), the vortex

lattice did not form the nonuniform distribution required to observe the conformal

structure (Fig. 4.8). Note that in this case the relevant length is given by the effective

penetration depth λe f f = λ2/d, where d is the film thickness. Remember that Eq. (4.42)

(force condition), obtained in the previous section, is an approximation for short-range

potentials, while the Eq. (4.41)(density condition) is valid for any interaction force. In

this way, how can we obtain the conformal density profile from Eq. (4.41) for any kind

of interacting particles? As we shall see in the next subsection, this problem can be

solved by a simple construction.
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Figure 4.8: Voronoy diagram of the typical minimum energy configuration observed in the thin film

simulations under the same sawtooth potential energy of the Fig. 4.7. Note that, in this

case, the vortex lattice does not present the nonuniform distribution required to observe the

conformal structure. The red and blue shaded polygons represent, respectively, 5-fold and

7- fold coordinated vortices (topological defects). The vortices are represented by the dots.

Now, let us pay attention to some differences in the thin film simulations compared

with the bulk geometry simulated in chapter 3. At first, we can not assume a cutoff

on the interaction forces since the influence of distant particles is no longer negligible.

In this way, to simulate the periodic boundary condition we need to sum infinite

periodic images of each vortex inside the simulation box, as illustrated in Fig. 4.9. Niels

Gronbech-Jensen, 1996 [58] calculated this summation for particles interacting via a

potential energy V(r) = − ln(r), where he found that the force acting on the particle 1

(see Fig. 4.9) due to the infinite images of the particle 2 is given by

F(x)
12 =

π

Lx

∞

∑
n=−∞

sin(2π ∆x
Lx

)

cosh
(

2π
Ly
Lx

(
∆y
Ly

+ n
))
− cos(2π ∆x

Lx
)
, (4.51)

F(y)
12 =

π

Lx

∞

∑
n=−∞

sinh
(

2π
Ly
Lx

(
∆y
Ly

+ n
))

cosh
(

2π
Ly
Lx

(
∆y
Ly

+ n
))
− cos(2π ∆x

Lx
)
− 2π

Lx

∆y
Ly

, (4.52)

where ∆x and ∆y represent the distance between the particles. Thus, the vortex-vortex

interaction can be simulated using Eqs. (4.51), (4.52).
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Figure 4.9: Schematic representation of two particles interacting in the simulation box (thick rectangle)

with periodic boundary conditions and size LxxLy. The particle 1 interact with the infinite

images of the particle 2.

4.2.2 Strictly conformal density profile

Consider a system of N particles interacting via a pair potential Vint(r, r′) and subjected

to an external potential U(r). The free energy of the system, F , within the continuum

approximation, can be expressed as [59]

F =
∫

dr n(r) U(r) +
1
2

∫
dr dr′ n2(r, r′) Vint(r, r′), (4.53)

where the first integral represents the self energy of each particle under the external

potential U(r) and the second one refers to the interaction energy between the particles.

n2(r, r′) is the two-particle distribution function. Considering that the inter-particle

spacings are smaller than any other relevant length scale, n2 can be approximated

as n2(r, r′) = n(r)n(r′). Note that, for a given n(r), we can find the external potential

that minimizes the energy by minimizing the functional F with respect to n(r). This

minimization results in the following condition

U(r) = −
∫

dr′n(r′)Vint(r, r′) + C, (4.54)

where C is a constant to be determined by the condition
∫

drn(r) = N. Thus, from

Eq. (4.54), we can calculate the external potential able to accommodate the particles, in

general, or vortices, in particular, in a strictly conformal density profile just by choosing

n(r) as in Eq. (4.46).



76

In particular, for the cases where n(r) changes on a scale much larger than the

characteristic length of the interaction potential, Eq. (4.54) can be approximated by

U(r) = −g(r)n(r) with g(r) =
∫

dr′Vint(r, r′). (4.55)

In bulk type-II superconductors, the vortex-vortex interaction is given by Vint(r, r′) =

2ε0K0(|r− r′|/λ) (see Eq. (2.38)). Assuming the local approximation, i.e., n(r) changes

on a scale much larger than λ, Eq. (4.55) can be used and g(r) becomes

g(r) = 2ε0

∫
r′dr′dθ′K0

(
|r− r′|

λ

)
= 2ε02πλ2 =

φ2
0

µ0
. (4.56)

Therefore, using Eqs. (4.46), (4.55) and (4.56), we finally obtain

U(y) = −
φ2

0
µ0

n0e−(2πl/3Lx)y, (4.57)

where n0 is given by Eq. (4.43).

Eq. (4.57) gives us the external potential able to accommodate the vortices in a strictly

conformal density profile. To simulate this, similar to the sawtooth potential used in the

subsection 4.2.1, we model a periodic potential energy as the following (see Fig. 4.11.a)

U(y) =

−(n0φ2
0/µ0) y/ξ̃ , 0 ≤ y < ξ̃ ,

−(n0φ2
0/µ0) e−(2πl/3Lx)(y−ξ̃), ξ̃ ≤ y < L,

(4.58)

where, in accordance with Eq. (4.43),

n0 =
N(2πl/3Lx)

Lx[1− e−(2πl/3Lx)(L−ξ̃)]
, (4.59)

and ξ̃ is the width of the soft-wall represented by the first term of Eq. (4.58). As in our

previously simulation, the value of ξ̃ was chosen in such a way that the maximum force

exerted by the external potential is not enough to break the cooper pairs, which would

locally invalidate the London approximation as well as induce the formation of vortex-

antivortex pairs. Lastly, L is the length in which U(y) is periodic, i.e., U(y + L) = U(y).

In what follows we assume L = 60λ.

The simulation consisted in repeating the same annealing process of the subsec-

tion 4.2.1, but now using the external potential presented in Eq. (4.58), where we chose

l = 3 in order to fit the conformal map within the semiannular section (see Fig. 4.2).

Fig. 4.11.a shows the vortex density profile obtained in the simulation and Fig. 4.10
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shows the Voronoy diagram of the typical minimum energy configuration observed

(in the physical z plane) and its correspondent inverse conformal mapping , given by

w(z) = (1/iα)eiαz, into the w plane (see Eq. (4.48)).

Observe that the vortex density profile fits well to the predicted conformal density

profile (Eq. (4.46)), indeed, as shown in Fig. 4.10, under the chosen potential energy, the

minimum energy vortex structure tends to form a strictly conformal crystal, except for

some deformations.

Since the conformal mapping is given by an analytic function, the z and w planes are

homeomorphic, i.e., the transformed conformal lattice preserves the same topological

properties of the original hexagonal lattice. To analyse this in our simulations, we

calculate the Euler characteristic, χ, which is a topological invariant, i.e., if two objects

have the same topological properties they must also have the same value of χ. The Euler

characteristic can be defined for a planar graph by the same formula as for polyhedral

surfaces [60]

χ = V − E + F, (4.60)

where V, E, and F are respectively the numbers of vertices, edges and faces of the given

structure. In Fig. 4.10(Top) we can observe that, even though the simulated structure

presenting, locally, topological defects, the global Euler characteristic assumes the value

χ = 0, which is the same of the original hexagonal lattice.

For better identification we can define the local Euler characteristic, corresponding to

each Voronoy cell as

χcell =
V
3
− E

2
+ 1, (4.61)

where we used the fact that each vertex of a Voronoy cell is shared with three cells, each

edge is shared with two cells and each Voronoy cell has only one face. Therefore, the

hexagonal, pentagonal and heptagonal cells have χcell = 0, χcell = 1/6 and χcell = −1/6

respectively. Note that on the border the Voronoy cells are open. In this case the same

reasoning of Eq.(4.61) is valid but we have to pay attention when using it. We can

simply close the open polygons adding a new edge, in this case the new edge is not

shared with any other cell and the two vertices connected by this edge are shared with

only two cells. The Voronoy cells that present χcell 6= 0 represent topological defects in

the physical structure, called disclinations [61]. It is convenient to define the disclinations

with χcell > 0 and χcell < 0 as, respectively, positive and negative topological charges.
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Figure 4.10: . Top: Voronoy diagram of the typical minimum energy configuration observed in the

simulations (where it was translated in x direction by δx = −6.7λ for a better visualization

of the structure). Observe that the simulation result fits well with the chosen value of l

and, for the chosen potential energy, the vortex structure organized in an almost strictly

conformal crystal. The red, blue and purple shaded polygons represent, respectively, the

Voronoy cells with χcell = 1/6, χcell = −1/6 and χcell = −2/6 (see Eq. (4.61)). Observe

that the global Euler characteristic is χ = ∑ χcell = 0, which is the same of the original

hexagonal lattice (the hexagonal cells have χcell = 0 and are not shaded). The gray shaded

polygons are guides to the eye for better identification of the arch and pillar structure of

the conformal crystal. The lower border is topologically neutral, with pairs of positive and

negative topological charges, which we are not showing. Bottom: Inverse conformal map

of the physical z plane into the w plane. The vertical pillars and arches in the z plane are

mapped into the w plane as, respectively, radial lines forming angles of 60◦ and the sides

of a regular hexagon (where we shaded only the parts of the arches connecting the pillars).
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Figure 4.11: (a) Top: Vortex density profiles obtained in the simulations for bulk samples (circles) and

thin films (squares). The area graph represents the expected exponential profile. Bottom:

Potential energy profiles used in the the simulations (calculated from Eq. (4.54)) for the

bulk (dark gray line) and thin-film (cyan line) cases (in the last one the energy profile was

multiplied by a factor of 1/35 in order to better accommodate in the figure). (b) A typical

conformal configuration, for the bulk case, exhibiting transverse grain boundaries (TGBs).

(c) Distribution of the configurations obtained in the simulations for a bulk sample (gray

bars) and a thin film (cyan bars) according to the number of TGBs.

Disclinations have a high energy cost and usually appear in pairs (dipoles of disclina-

tions with same charge and opposite sign), called dislocations [61]. In Fig. 4.10 the Euler

characteristic of each cell is identified by the color and the global Euler characteristic is

given by χ = ∑ χcell.

Now, let us discuss in more detail the configuration observed in Fig. 4.10 (Top).

Among several realizations, all observed configurations presented the arches and pillars

structure, but some of them are broken in domains separated by prominent, transverse

grain boundaries (TGBs) [61], as illustrated in Fig. 4.11.b. These dislocation lines are

topologically neutral (present χ = 0) and cost little energy to be formed, such that it is

difficult to determine which configuration is the ground state of the system. On the
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other hand, as sketched in Fig. 4.11.c, among 50 different realizations of the annealing

procedure we can observe that the single domain conformal vortex structure is the most

frequent configuration and that the frequency of structures with more than two TGBs

drops fast and represents less than one third of the configurations.

Figure 4.12: Semi-log graph of the vortex density profiles obtained in the simulations for bulk samples

(circles) and thin films (squares). The red line represents the expected exponential profile.

Another behaviour that we observed in all configurations was that vortices close

to the minimum of the external potential tend to form a conventional Abrikosov

lattice with a principal axis aligned with the x axis (see Fig. 4.10). This compacted

region has a width in the y direction of some vortex rows, where a transition between

the Abrikosov and conformal lattices can be observed. In this Abrikosov-conformal

transition, high-angle grain boundaries are always observed at the bottom of each pillar

structure (greater deformation zones), where the hexagons suffer a sudden 30◦-rotation

between the conformal and Abrikosov domains. These high-angle grain boundaries,

known as scars, are typical defect structures found in large 2D particle systems on

curved surfaces [62–64] and each of them presents topological charge χ = 1/6, which is

conveniently cancelled by the topological charge located at the top of the same pillar

structure, in order to preserve the global Euler characteristic.

Looking carefully at the configuration in the w plane [Fig. 4.10(Bottom)], one can

notice that the area of the Voronoy cells becomes somewhat larger near the inner rim of

the semiannular section. This unexpected behaviour is produced by topological defects

present at the inner rim and reflects the failure of the density profile to follow precisely
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the exponential shape (see Fig. 4.12), specially in the region correspondent to y ≥ 15λ,

where vortex spacings become larger than λ and the continuum approximation breaks

down.

Figure 4.13: Top: Voronoy diagram of the typical minimum energy configuration observed in the thin

film simulations. The shaded polygons are defined as the same of the Fig. 4.10. Bottom:

Inverse conformal map of the physical z plane into the w plane. As in the bulk case, the

vertical pillars and arches in the z plane are mapped into the w plane as, respectively,

radial lines and the sides of a regular hexagon (where we shaded only the parts of the

arches connecting the pillars).
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As in the previously subsection, we also performed simulations for vortices in

thin films. In this case the interaction potential becomes long range and we can

not approximate the external potential by Eq. (4.55). In this case, we integrated Eq. (4.54)

numerically for the specific vortex-vortex interaction potential, Vint, which can be

calculated by integrating Eqs. (4.51), (4.52) [58]. The result, shown in Fig. 4.11.a, is

remarkably different from the exponential energy profile used in the bulk case. The

simulation result for the vortex density profile in thin films is also shown in Fig. 4.11.a.,

note that the observed density profile fits well to the required exponential profile.

Fig. 4.13 shows the Voronoy diagram of the typical minimum energy configuration

observed in the thin film simulations and its correspondent inverse conformal mapping

into the w plane. Apart from some visible deformations, the thin film results present

the same arch-pillar configurations as in the bulk case. The topological charges also

behaves similarly, with high angle grain boundaries located at the base of each pillar

and subjected to the appearance of TGBs, in which the frequency (for 30 different

realizations) is shown in Fig. 4.11.c. Note that, in the w plane the deformation in the

area of the Voronoy cells near the inner rim is quite negligible compared with the

bulk case. Indeed, the vortex density profile observed for thin films fits better with

the expected exponential profile in the region y ≥ 15λ as compared to the bulk case

(Fig. 4.12 ), since in the thin film case the distances between the particles are still much

smaller than the range of the interaction potential and the continuous approximation

is still valid. In general, the size of the Abrikosov regions observed to the thin film

situations was larger than in the bulk cases. This may be a consequence of the strong

correlation between the particles due to the long-range interaction potential, but a

concrete explanation about this behaviour is still unclear for us. A study that could be

done consists in repeat the same annealing procedure for particles interacting via power

law pair potentials, using Eq. (4.54), and varying the exponent k (see Eq. (4.11)) to cover

the long and short range domains and verify the appearance of Abrikosov regions.

4.2.3 Further results

In addition to the results presented above, we performed several simulations (the same

annealing procedure) for different values of the parameters N and l, where the observed

vortex structures presented, basically, the same characteristics as the structures presented

above. However, for different values of l, specially for l ≥ 4, the conformal density
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Figure 4.14: Lines: Expected conformal density profiles for for N = 1500 vortices in a simulation box

of size Lx = Ly = 60λ. Squares: Example of the density profile observed in simulation

for l = 4 in a bulk sample. Note that the density of vortices starts on the l = 4 curve and

changes to the l = 5 curve. This is also a consequence of the violation of the continuum

approximation (used in Eq. (4.55)) in the region y & 10λ.

profiles are quite close (see Fig. 4.14), such that, occasionally, the vortex structure tries to

accommodate in a deformed configuration between two conformal density profiles (see

squares in Fig. 4.14). Fig. 4.15 shows an example of an observed structure, simulated

for l = 4, that tries to accommodate five arches.

Figure 4.15: . Voronoy diagram of the simulation result (for l = 4) which density is sketched in Fig. 4.14.

Note that , even though we have chosen l = 4, the observed configuration tries to form five

arches.
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Figure 4.16: Left: Observed density profiles (top) and potential energy profiles (bottom) used in the

simulations for the bulk case. Right: Voronoy diagram of the typical minimum energy

configuration. (a) and (b): Results for the exponential potential (given by Eq. (4.58)),

representing the external potentials with negative concavity. (c) and (d): Results for the

linear potential (described in Fig. 4.7) . (e) and (f): Results for the parabolic potential

(modeled for U(y) = a + 0.05y + 0.008y2), representing the external potentials with positive

concavity. The three potentials were chosen in such a way that the vortices were compressed

in a region of approximately the same width in y direction ≈ 20λ against a soft-wall with

the same inclination. The area graph represents the expected density profile for each

external potential in accordance with Eq. (4.55).

The simulations also enable us to study the external potential shapes for which

arcs and pillars structures appear. Fig. 4.16 shows three different results for external

potentials in bulk superconductors representing the linear, positive concavity and

negative concavity shapes. Observe that all of then, despite deformations, present

the basic structure of pillars and arches. Therefore, one can conclude that this kind
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of structure is a really comfortable and suitable configuration for nonuniform vortex

distributions in a bulk superconductor.

4.2.4 Possible experimental realizations

Let us now briefly discuss the possibility of the experimental realization of conformal

vortex crystals. At first, we basically need to find a way of reproduce the correct

external potential able to accommodate the vortices in a conformal density profile.

Since thin superconducting films are unable to screen magnetic fields, one can print

flux-density textures directly into these systems using an external magnetic texture,

this can be modelled by diverse procedures which have been explored exhaustively on

the mesoscopic scale as a means of, for instance, enhancing flux pinning properties,

generating vortex-antivortex patterns and manipulating vortex motion [65–67].

For observing conformal vortex systems it would be necessary to project a magnetic

texture that resembles an exponential flux profile. In this case, since the density profile

is determined by the external field profile, the necessary condition to maintain the

conformal density profile would be automatically satisfied. Another possibility of

inducing a nonuniform potential is by thickness modulation. However, in this case, the

self energy and even the interaction energy of the vortices would depend on the local

sample thickness, d(r), and a more elaborated theory to relate the density of vortices to

d(r) would be necessary.

Fig. 4.17 presents a suggestion to reproduce a quasi-conformal vortex system in a bulk

superconductor by reproducing the sawtooth external potential studied in the previous

subsections (see Fig. 4.16.b), where the soft wall is represented by strong pinning planes

and the compression force is given by a parallel applied current. The pinning planes

could be formed by strong pinning materials, modelled by artificial pinning cites, or

even represented by the so-called twin boundaries (TB), which are natural cracked lines

in the material, where, in general, a large number of flux lines can be trapped. Maggio

et al, 1997 [68] studied the TB as barriers for the vortex motion (Fig. 4.17), where a field

difference was imposed across a TB and the behaviour of the vortex rows was observed.

Applying an uniform current parallel to the TB (Fig. 4.18.a), a Lorentz force will arise,

pushing the vortices toward the TB. This compression movement simulates the influence

of a sawtooth external potential and may be able to form a vortex structure similar to
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Figure 4.17: a) Simulation of the behaviour of rows of vortices distributed throughout two domains

separated by a twin boundary filled with strongly pinned vortices. A field difference of

0.2T was imposed across the TB and the position of individual rows was determined by

solving the London equation in an iterative process. JTB is the screening current along the

twin boundary. b) Spectroscopic image of the vortex lattice on the YBCO single-crystal

surface at temperature 4.2k, subjected to approximately the same field difference of (a).

No more flux lines could be detected throughout the domain to the right over at least

80nm. For more details see Maggio et al, 1997 [68]. Figures taken from [68].

the gravity rainbow. To simulate this numerically, for the bulk case, we consider pinning

lines positioned in y0 = 0 and y0 = 60λ given by

Up = −U0e(y−y0)2/2ξ2
, (4.62)

where we used U0 = 0.8ε0, in a simulation box of size Lx = 120λ x Ly = 120λ. Eq.(4.62)

models, approximately, the twin boundary pinning potential (see e.g. Blatter, pag.1323

[27]). The N = 6000 vortices were randomly distributed and an annealing procedure was

done in order to find the uniform fundamental lattice (Abrikosov lattice). Particularly,

along the pinning lines a large number of vortices were accumulated. Then, an uniform

current j = 0.5 ε0
φ0λ x̂ was applied, such that a Lorentz force f = −0.5 ε0

λ ŷ emerged,

compressing the vortices toward the TB. Fig. 4.18.c shows the typical observed vortex

structure, where we allowed a thermal shaking (as in Eq. (4.49)) to help the system

find the minimum energy state. Fig. 4.18.b shows the influence of the temperature in

cleaning the topological defects.

The conformal structure is highly stable and we could observe it either by increasing

the current gently or by relaxation after a quench.

Therefore, answering the questions formulated at the beginning of this chapter, we

introduced the conformal crystals as possible ordered vortex structures in nonuniform

density situations. We proposed a simple method to model a confining potential capable
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Figure 4.18: .a) schematic representation of the discussed experiment. The Lorentz force compresses

the vortices in the pinning planes, resulting in a nonuniform vortex distribution as in the

sawtooth potential simulations. b) Density of topological defects, d, observed in the vortex

structure in function of time (τ = 10.000dt) for different temperature values (used in the

thermal shaking). When the current is turned on (t = 0), the lattice abruptly breaks in

a kind of vortex soup and a high density of topological defects is observed. However,

after a relaxation time the system tends to accommodate in the most orderly possible

configuration. Note that the thermal shaking helps the system to eliminate the topological

defects. c) Typical vortex structure observed in the simulations. All properties of this

structure are similar to the sawtooth simulation case.

of accommodating conformal crystals in general, and showed that, under appropriate

conditions, the conformal vortex crystal is an energetically favourable configuration.
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5 Conclusion

We studied the effect of the surface barrier in the critical state problem and verified, using

numerical simulations, which critical state model best describes the flux penetration

profiles in a superconducting sample with random pinning distribution. In this situation

we observed that the model of Kim (Kim et al,1963 [42, 43]) is the one which best

describes the observed critical state profiles (see Fig. 3.7). Near the surfaces, we observed

vortex free regions, which arise due to the energetic barrier that hinders the vortex entry

and exit (J. Clem [45]). We introduced the dependence of the vortex free region thickness,

x f f , with the pinning potential (see Fig.3.8), where we observed that these regions are

negligible for strong pinning, when the surface effects present little influence compared

with the pinning forces. However, for weak pinning, these regions become relevant. In

this case the magnetic flux density profile drops fast in a distance x f f from the surfaces

and follows the model of Kim for x > x f f (see Fig. 3.9). We also analysed the time

evolution of the flux front position, xp, for different pinning strength. We observed an

initial time dependence of xp as xp ∝ t0.6, for all pinning values (see Fig. 3.10), which is

close to the flux front temporal dependence, t1/2, predicted by diffusion theory within

our boundary conditions (Bryskin et al, 1993 [46]). The discrepancy in the flux front

temporal dependence may be due to the surface barriers, not considered in Ref. [46].

However, a definitive answer for this question requires a more detailed study, not

performed in this work. One possible attempt consists in simply simulate the same

flux penetration process with and without the surface barrier and verify if the temporal

dependence of xp changes.

We also studied the conditions under which ordered structures in a nonuniform vor-

tex distribution can be observed. We obtained evidence, using numerical simulations, of

the formation of conformal vortex crystals, either in bulk superconducting samples or

thin films. These ordered vortex structures, although can present local inhomogeneities,

preserve the topological order and can be mathematically mapped into a triangular

lattice through a conformal transformation. We proposed a simple method to obtain the

potential energy capable of accommodating any arrangement of particles which interact
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via a pair potential Vint(r), in a conformal density distribution (see Eq.(4.54)). Such

method is much more comprehensive than those ones used in the literature for mechan-

ical equilibrium of conformal crystals (Rothen et al, 1996 [51]), where the expression

obtained for the external force field capable of accommodating the conformal structure

does not cover some important interaction laws, such as Coulomb interaction and

logarithmic interaction, and is limited for power law interaction forces with k > 2 (see

Eq.(4.37)). Eq.(4.54) can be applied in many situations, such as for colloids or systems of

interacting particles in general. It can also be used to obtain other conformal structures,

e.g, conformal crystals of radial symmetry. The conformal vortex crystals introduce

a new range of possible ordered configurations for the vortex lattice beyond the well

known Abrikosov lattice. Lastly, we suggested possible experimental realizations for

obtaining conformal, or quasi conformal, vortex crystals in a superconductor, e.g., by

compressing the vortex lattice against twin boundaries.
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