‘Centro ,
‘~delnformatlc

Pos-Graduacao em Ciéncia da Computacao

ALESSANDRO BORGES RODRIGUES

Uma Abordagem Gradativa de Modernizacao de
Software Monolitico e em Camadas para SOA

5N
1[N

d

—

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

:

.3

RECIFE
2017

Alessandro Borges Rodrigues

Uma Abordagem Gradativa de Modernizacdo de Software Monolitico e em Camadas para
SOA

Este trabalho foi apresentado a Pds-Graduacdo em
Ciéncia da Computacdo do Centro de Informatica da
Universidade Federal de Pernambuco como requisito
parcial para obtencdo do grau de Mestre Profissional
em Ciéncia da Computacdo.

ORIENTADOR: Prof. Dr. Vinicius Cardoso Garcia

RECIFE
2017

Catalogacéo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

R696a Rodrigues, Alessandro Borges
Uma abordagem gradativa de modernizacdo de software monolitico e em
camadas para SOA / Alessandro Borges Rodrigues — 2017.
84 f.: il., fig., tab.

Orientador: Vinicius Cardoso Garcia.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacéo, Recife, 2017.

Inclui referéncias.

1. Engenharia de software. 2. Arquitetura de software. I. Garcia, Vinicius
Cardoso (orientador). Il. Titulo.

005.1 CDD (23. ed.) UFPE- MEI 2017-113

Alessandro Borges Rodrigues

Uma Abordagem Gradativa de Modernizacgdo de Software
Monolitico e em Camadas para SOA

Dissertacdo apresentada ao Programa de Pds-
Graduacdo em Ciéncia da Computacdo da
Universidade Federal de Pernambuco, como
requisito parcial para a obtencdo do titulo de
Mestre Profissional em 27 de marco de 2017.

Aprovadoem: __ / /

BANCA EXAMINADORA

Prof. Leopoldo Motta Teixeira
Centro de Informética / UFPE

Prof. Leandro Marques do Nascimento
Universidade Federal Rural de Pernambuco

Prof. Vinicius Cardoso Garcia
Centro de Informética / UFPE
(Orientador)

Dedico este trabalho a minha esposa, Rejane, pelo apoio e auzilio durante toda nossa vida

juntos, e por me proporcionar o privilégio de me tornar pas.

AGRADECIMENTOS

Agradego aos meus pais, Dulce e Adail, por terem me ensinado que a educacao é
um patrimonio para toda a vida e por ter me dado o suporte necessario para seguir neste

caminho.
Aos companheiros de mestrado, em especial aos amigos do alojamento do [FPE.

Aos meus colegas de trabalho do IFTO e a esta instituicao que, junto com a UFPE
e demais instituigoes, possibilitaram a oportunidade desse mestrado a varios servidores de

todo o pais.

Aos professores do Centro de Informatica da UFPE pelos seus ensinamentos, aos
funcionarios do CIn que contribuiram para que este curso fosse realizado e especialmente

ao meu orientador Vinicius Garcia, pela acompanhamento deste trabalho.

"Se vocé encontrar um caminho sem obstdculos, ele provavelmente nao leva a lugar
nenhum. "
Frank Clark

RESUMO

A constante evolucao tecnoldgica, tanto de hardware quanto de software, faz com que
muitos sistemas tornem-se obsoletos, apesar de ainda atenderem seus requisitos e serem
estaveis. Outrora foi a época dos sistemas procedurais, hoje vemos que a propria evolucao
deles, os orientados a objetos, em muitos casos, se tornaram obsoletos, grandes e complexos,
com tecnologias ultrapassadas e contendo centenas ou milhares de classes, sendo esses
problemas agravados naqueles que foram construidos de forma monolitica, possuindo assim
apenas um unico arquivo como resultado. A arquitetura orientada a servigos permite
a criagado de sistemas com menor complexidade, ja que seus servigos possuem baixo
acoplamento, permitindo atualiza¢oes individuais sem afetar os demais servicos. Porém,
a reconstrucao dos sistemas ja existentes nessa nova arquitetura ¢ inviavel, devido ao
custo necessario (tempo, mao de obra etc.), sendo a reengenharia deles uma possivel
solucao, que permite a reformulagao desses sistemas de uma maneira menos onerosa.
Apesar da arquitetura em camadas ser bastante utilizada nos sistemas orientados a
objetos, faltam solugdes de reengenharia que leve esse fato em consideragao, nao sendo tao
efetivas quando executadas em sistemas com essa arquitetura. Este trabalho busca definir
uma abordagem para modernizacao de sistemas monoliticos, orientados a objetos e que
tenham sido desenvolvidos com a arquitetura em camadas, para a arquitetura orientada a
servicos, de uma forma semi-automatizada, sem a necessidade de o engenheiro de software
possuir um profundo conhecimento do sistema a ser modernizado. No sistema reconstruido,
as classes das camadas de negbcio e persisténcia serao agrupadas de acordo com seus
relacionamentos, e os métodos das classes de negocio serao disponibilizados como servigos.
As etapas da abordagem proposta sdo constituidas de técnicas, cujas formulas e algoritmos
podem ser adicionados/transformados em ferramentas que automatizarao o processo. Esta
metodologia de modernizagao permite que os web services criados possuam uma quantidade
menor de classes, além de menor complexidade em cada servigo, mantendo a funcionalidade
original. Isso é conseguido tanto através de refatoragoes no coédigo original que diminui a
quantidade de dependéncia entre as classes, quanto através da separagao de agrupamentos
de classes em pedagos menores. Foram obtidos resultados satisfatorios no estudo de caso,
como reducao de 24% da dependéncia média entre as classes, diminuicao de 80% e 6,33%
do tamanho e da complexidade estética do componente (CSC), respectivamente e 100%

de sucesso nos testes de regressao.

Palavras-chave: Reengenharia de Software. Migragao. SOA. Refatoragdo. Modernizagao.

Arquitetura de Software.

ABSTRACT

The constant technological evolution, both hardware and software, makes many systems
become obsolete, although they still attend their requirements and are stable. Once
was the time of procedural systems, today we see that the very evolution of them, the
object-oriented, in many cases, have become obsolete, large and complex, with outdated
technologies and containing hundreds or thousands of classes, these problems being
aggravated in those that were built in a monolithic way, thus possessing only a single
file as a result. The service-oriented architecture allows the creation of systems with
less complexity, as their services have low coupling, allowing individual updates without
affecting other services. However, reconstruction of existing systems in this new architecture
is not feasible due to the cost needed (time, labor etc), reengineering them being a possible
solution, which allows the reformulation of these systems in a less costly way. Although
the layered architecture is the most used in object oriented systems, it lacks reengineering
solutions that take this fact into account, not being so effective when executed in systems
with this architecture. This work aims to define an approach to the modernization of
monolithic and layered systems for service-oriented architecture, in a semi-automated
manner, without the need for the sotware engineer has a deep knowledge of the system
to be modernized. In the rebuilt system, the business and persistences layer classes will
be grouped according to their relationships, and methods of business classes will be
made available as services. The steps of the proposed approach are techniques, whose
formulas and algorithms can be added/transformed into tools that will semi-automate the
process. This modernization methodology allows the created web services to have a smaller
number of classes, in addition to less complexity in each service, maintaining the original
functionality. This is accomplished both by refactoring in the original code that decreases
the amount of dependency between classes, and by separating class clusters into smaller
pieces. Satisfactory results were obtained in the case study, such as a reduction of 24%
in average dependence between classes, a decrease of 80% and 6.33% in component size
and static complexity (CSC), respectively, and a 100% success rate in the tests regression

analysis.

Keywords: Software Reengineering. Migration. SOA. Refactoring. Modernizing. Software

Architecture.

LISTA DE ILUSTRACOES

Figura 2.1 — Ciclo de Vida do Software (Tradugao minha)(CHIKOFSKY; CROSS,

1990) . . . 21
Figura 3.1 — Exemplo de um documento SOAP (SAUDATE, 2013) 27
Figura 3.2 — Arquitetura em Camadas 29
Figura 3.3 — Exemplo de arquiteturas em camadas 30
Figura 3.4 — Exemplo de SOA 31
Figura 4.1 — Exemplo de c6digo para célculo da forca de conectividade 34
Figura 4.2 - Exemplode grafo oo 35
Figura 4.3 — Clusterizacdo e 36
Figura 4.4 — Macro Fluxo da abordagem de modernizacao de sistemas OO para SOA 37
Figura 4.5 — Refatoracao das classes de persisténcia 38
Figura 4.6 — Refatoracao das classes de negécio 39
Figura 4.7 — Exemplo de c6digo 40
Figura 4.8 — Refatoracao: Inclusao de Métodos 41
Figura 4.9 — Refatoracao: Alteracao das chamadas aos métodos 41
Figura 4.10-Fluxo do processo de diminuicao das dependéncias das classes 42
Figura 4.11-Exemplo de grafo oo 43
Figura 4.12-Clusterizagdo e 45
Figura 4.13-Fluxo do processo de clusterizacao 46
Figura 4.14-Refatoracao chamada entre servicos 47
Figura 4.15-Padroes de descrigao de web services (FREUND; STOREY, 2002) . . . 48
Figura 4.16-Utilizacao dos protocolos de transagdo (LANGWORTHY et al., 2004) . 50
Figura 4.17-Fluxo para criacao dos servigos 50
Figura 5.1 — Exemplo de script do JTransformer (KNIESEL; HANNEMANN; RHO,

2007) . o o o 59
Figura 5.2 — Script para encontrar chamadas entre classes de persisténcia 60
Figura 5.3 — Funcionamento da ferramenta JTransformer 61
Figura 5.4 — Refatoracao para retirada de dependéncia entre persisténcias 61

Figura 5.5 — Resultado das refatoragdes da modernizagdo onde uma persisténcia esta

associada a apenas um negoécio 63
Figura 5.6 — Parte do script de refatoracao das classes de negécio 64
Figura 5.7 — Grafo representando o sistema SIGA-EPCT 65
Figura 5.8 — Zoom do grafo representando o sistema SIGA-EPCT 66
Figura 5.9 — Clusterizacdo das classes 67

Figura 5.10-Criacao de web service L. 68

Figura 5.11-Script para encontrar nomes de métodos duplicados 68

Figura 5.12-Mudanga dos nomes dos métodos dos web services 69
Figura 5.13-Refatoracao para chamada a web services 69
Figura 5.14- Web service com controle de transacao 70
Figura 5.15-Refatoracao da classe CopiarTurmakJB 71

Figura 5.16-Exemplo deciclo oo 73

LISTA DE TABELAS

Tabela 2.1 — Visao geral das familias de modernizagao para SOA (RAZAVIAN;
LAGO, 2010) o o 23
Tabela 5.1 — Lista de métricas e relacao com as questoes do paradigma GQM. . . . 53

Tabela 5.2 — Pesos com base no tipo de relacionamento para o calculo do CSC (CHO;

KIM; KIM, 2001). oo 54
Tabela 5.3 — Comparagao entre ferramentas de analise de c6digo (ALVES; HAGE;

RADEMAKER, 2011). o oo o 57
Tabela 5.4 — Segmento do resultado da identificacao das classes persisténcias com

suas respectivas classes de negbdcios Lo oL 62
Tabela 5.5 — Valores de tipo de fluxo existentes (ORACLE, 2016). 70

Tabela 5.6 — Calculo da quantidade média de dependéncias das classes por camada . 71

Tabela 5.7 — Variagao dos valores das métricas de acordo com ponto de corte da
clusterizacao 72

Tabela 5.8 — Resultado dos casos de teste 73

LISTA DE ABREVIATURAS E SIGLAS

IDE: Integrated Development Enviroment
JSON: JavaScript Object Notation

0OO: Orientagao a Objetos

REST: Representational State Transfer
SOA: Service-Oriented Architecture

SOAP: Simple Object Access Protocol
WSDL: Web Services Description Language

XML: eXtensible Markup Language

1.1
1.2
1.3

2.1
2.1.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.1.1
4.1.2
4.2
421
4.2.2
423
4231
4.3

5.1
5.2
5.2.1

SUMARIO

INTRODUCAO i ittt e e e e et e et e 15
Contextualizacao 15
Objetivos 16
Organizacao da Dissertacao 17
REENGENHARIA DE SOFTWARE 19
Conceitos 19
Terminologia L 20
Abordagens de Reengenharia de Sofware para SOA 21
Consideracoes finais L. 24
Resumo do Capitulo 24
ARQUITETURAS DE SOFTWARE 25
Conceitos Basicos L 25
Arquitetura monolitica 26
SOA . e 27
Arquiteturaem Camadas 28
Consideracdes Finais L. 29
Resumo do Capitulo 31

MODERNIZACAO DE SISTEMAS MONOLITICOS PARA ARQUI-

TETURA ORIENTADA ASERVICOS 32
Mecanismos da Abordagem proposta 32
Forca de Conectividade 32
Algoritmo Fast Community 34
Proposta de Metodologia de Modernizacao 37
Diminuicao das dependéncias L 38
Clusterizacdo e 42
Criacdo dos servicos 46
TransacGes entre servicoso oo 48
Resumo do Capitulo 50
ESTUDO DE CASO E AVALIACAO DA ABORDAGEM 52
Contexto 52
Planejamento 53
Ferramentas utilizadas oo 54

5.2.1.1
5.2.1.2
5.3
53.1
5.3.2
5.3.3
5.4
54.1
542
5.4.3
5.5
5.6

6.1
6.2
6.3

JCluster o 55

JTransformer oL 56
Execucao. 58
Diminuicdo das dependéncias Lo 58
Clusterizacdo e 64
Criacdo dos servicos 67
Analise e Resultados 70
Questdo 1: Que tipo de melhoria a refatoracdo das classes traz? 70

Questao 2: Quais foram as melhorias obtidas nos componentes gerados? . . 71

Questdo 3: A funcionalidade original é mantida apds a criacdo dos servicos? 73

Discussao 74
Resumo do Capitulo o 75
CONSIDERACOES FINAIS E TRABALHOS FUTUROS 76
Trabalhos correlatos L. 76
Contribuicdes 77
LimitacGes e trabalhos futuros 78

REFERENCIAS e e e e e e e e e e s, 80

15

1 INTRODUCAO

1.1 Contextualizacao

Atualmente existe um grande niimero de empresas que trabalham com sistemas
implementados com linguagens de programacao antigas, além de arquiteturas muito
restritivas. A defasagem das linguagens e arquiteturas é um problema recorrente e pode
acontecer com qualquer sistema em seu ciclo de vida, pois sempre surgem novas tecnologias
e paradigmas que melhoram a qualidade dos sistemas desenvolvidos, além de diminuir o

tempo de desenvolvimento necessario, tornando as tecnologias existentes obsoletas.

Apesar das grandes vantagens na utilizacdo das novas tecnologias, reconstruir os
sistemas legados é geralmente um trabalho complexo, demanda tempo, possui um custo
alto e muitas vezes chega a ser inviavel. Porém, devido a quantidade de informagoes
armazenadas e a confiabilidade que suas funcionalidades possuem apds varios anos de
utilizagao e aprimoramento, esses sistemas continuam sendo essenciais para as empresas
(CONNALL; BURNS, 1993; ULRICH, 1994), de forma que uma op¢ao mais viavel é a

atualizagdo do sistema legado existente para que usufrua das novas tecnologias.

A Reengenharia de Software ¢ uma forma de conseguir evoluir esses sistemas
legados, mantendo o conhecimento existente neles (Dos Santos Brito et al., 2008). No
inicio dos anos 90, com a popularizagdo das linguagens orientadas a objetos (OO), foram
iniciadas varias pesquisas relacionadas a modernizacao dos sistemas procedurais para
OO através da Reengenharia, devido ao ganho na reutilizagao e manutenibilidade que a

orientacao a objetos possibilita.

Em pouco tempo, linguagens orientadas a objetos se tornaram as mais utilizadas
no desenvolvimento de sistemas (TIOBE.COM, 2017), o que significa que uma grande
quantidade de sistemas foram e vém sendo desenvolvidos nessas linguagens OO. Porém,
com o tempo, o aprimoramento gradual desses sistemas OO aumentou sua complexidade
na manutencao e testes. Essa complexidade é agravada naqueles que sdo monoliticos
(STOJANOVI, 2005), ou seja, geram apenas um executével ou componente como resultado,
dificultando também na escalabilidade e introducao de novas tecnologias em funcionalidades
especificas, (DRAGONTI et al., 2016), sendo essas novas tecnologias, em alguns casos,

incompativeis com as utilizadas.

A arquitetura orientada a servigo (SOA) resolve os problemas dos sistemas monoli-
ticos, melhorando a escalabilidade, que pode ser feita para cada servigo, além de diminuir
a complexidade da manutencao e testes, ja que estes podem ser feitos em componentes
menores (VILLAMIZAR et al., 2015).

Capitulo 1. Introdugdo 16

Existem na literatura varias técnicas de Reengenharia para auxiliar na modernizagao
de sistemas OO para SOA, como Erdemir e Buzluca (2014), Yousef, Adwan e Abushariah
(2014), Liang Bao et al. (2010), mas muitas delas ignoram o fato de que a maioria dos
sistemas OO possuem uma arquitetura em camadas, de modo que a utilizacdo dessas
técnicas pode agrupar as classes de forma incorreta, podendo, por exemplo, separar uma
classe de negocio de uma classe de persisténcia ou entidade que ela utiliza, impossibilitando,
ou aumentando as refatoracoes necessarias para sua utilizagao, conforme observado por
Wang et al. (2008).

Motivado pelos problemas existentes nos sistemas legados, em especial aqueles
monoliticos, orientados a objetos e que possuem uma arquitetura em camadas, esta
pesquisa pretende apresentar uma proposta de modernizagao, quebrando essa arquitetura
monolitica e modernizando-a para SOA. As limitagoes impostas pelos requisitos se deve ao
fato, como citado anteriormente, dos sistemas orientados a objetos englobar grande parte
das aplicacoes existentes e as pesquisas relacionadas a modernizacao de sistemas OO nao

serem tao efetivas quando executadas sobre aqueles com arquiteturas em camadas.

1.2 Objetivos

Esta dissertacao tem o objetivo de definir um catalogo de técnicas para auxiliar
na modernizacao de sistemas orientados a objetos, monoliticos e com arquitetura em
camadas para SOA, independente da linguagem de programacgao utilizada. Por causa da
aplicabilidade dessa abordagem em varias linguagens de programagcao, nao sao definidas
ferramentas especificas a serem utilizadas, e sim técnicas, féormulas e algoritimos que podem
ser adicionados/transformados em ferramentas de apoio. Esta abordagem é composta
de trés etapas, diminuicao de dependéncias, clusterizaciao ! e criacao dos servicos, sendo
que cada uma delas possui técnicas semi-automatizadas que agilizara o processo. O foco
principal dessa abordagem é na identificacao dos possiveis servicos, através do agrupamento

de classes que se relacionam entre si.

Um dos objetivos da primeira etapa, diminuicao de dependéncias, ¢ a reducao do
acoplamento entre as classes, diminuindo a quantidade de relacionamentos entre elas e
permitindo a criacdo de servigos menores, ou seja com menos classes. Essa etapa também
padroniza a comunicacao que deve acontecer somente entre as classes da camada de

negdbcio.

Na segunda etapa, "clusterizacao", é definida uma técnica que permite a divisao de
um servico em servigos menores, de acordo com a modularidade que essa divisao ira gerar.

O objetivo dessa etapa é, também, permitir a criagdo de servigos menores, que facilitara

IClusterizacdo é a palavra equivalente em portugués para o termo clustering, em inglés, que significa
agrupamento, referenciando a agrupamento de classes no contexto desta pesquisa.

Capitulo 1. Introdugdo 17

futuras manutencoes e testes (VILLAMIZAR et al., 2015).

O objetivo da terceira etapa é definir regras que devem ser observadas no momento
da criagao dos servigos através de web services, de maneira a permitir que a funcionalidade
continue operando da mesma forma que a original. Nessa etapa nao sao definidas técnicas
para criacao de web services, pois podem variar de acordo com a linguagem de programacao
e IDE utilizada, e a idéia da proposta de modernizacao é que ela possa ser executada em
sistemas escritos em qualquer linguagem de programacao, desde que sejam observados
os requisitos iniciais, que é ser orientado a objetos, monolitico, e com arquitetura em

camadas.

Este trabalho nao abordara a alteracao da camada de apresentagao para a utilizacao
dos servicos criados, pois implica em analise tando da parte de back-end da camada de
apresentacao quanto do proprio front-end da aplicacao, que pode variar de acordo com
o framework utilizado. Também nao sera abordado a separacao do banco de dados para
cada servigo ou conjunto de servigos, que implica, possivelmente na criagao/alteracao
de campos/tabelas, remogao de restri¢oes, sincronizacao de dados entre servigos etc,
afetando varios scripts SQL (Structured Query Language) que possam existir. Além disso,
as alteracoes no banco de dados ird refletir em mudancas nas classes de entidades e scripts
HQL (Hibernate Query Language) ou similares, ja que estas sao a representacao OO do
banco de dados. Essas exclusoes foram feitas devido a complexidade e tempo necessario

para fazé-los, ficando essas tarefas para um trabalho futuro.

1.3 Organizacido da Dissertacao

Esta dissertacao esta organizada em seis capitulos mais uma se¢ao relacionada as

referéncias bibliogréaficas, sendo o primeiro capitulo relacionado a introdugao.

No Capitulo 2 sao apresentados os principais conceitos sobre Reengenharia de
Software e sao exibidos varios tipos uma categorizacao dos trabalhos relacionados a

modernizagao de sistemas, através da reengenharia, para a arquitetura orientada a servigos

(SOA).

No Capitulo 3 é apresentada uma visao geral das arquiteturas envolvidas no processo

de modernizagao, desde as arquiteturas de origem (monolitica e em camadas) até a de
destino (SOA).

O Capitulo 4 detalha a abordagem proposta para a realizacao da modernizacao

dos sistemas, descrevendo as etapas, técnicas e ferramentas utilizadas.

O Capitulo 5 apresenta um estudo de caso feito sobre um sistema real, com o

objetivo de validar a eficacia da abordagem.

Por 1ltimo, o Capitulo 6 apresenta as consideragoes finais, abordando os trabalhos

Capitulo 1. Introdugdo

18

correlatos, as principais contribuicoes e os trabalhos futuros.

19

2 REENGENHARIA DE SOFTWARE

Nos dias atuais é facil perceber a dependéncia das organizacdes em relacdo aos
softwares por ela utilizados, nao sendo mais possivel a existéncia de uma organizagao
sem eles (CONNALL; BURNS, 1993; ULRICH, 1994). Tal importancia faz com que
essas organizacgoes procurem utilizar as mais modernas tecnologias, seja para melhorar o
desempenho interno, seja para ganhar alguma vantagem em relacao a seus concorrentes.
Porém, grande parte dos sistemas criticos utilizados foram desenvolvidos ha muitos anos e

apenas sua manutencao nao ¢ o bastante para manté-los atualizados.

Lehman e Belady (1985) demonstram que pior que a desatualizacdo, quando
nao se faz alguma melhoria, é a degradacao da qualidade através da manutencao e,
consequentemente, a manutenibilidade do software. Visaggio (2001) chama essa degradagao
de "sintomas de envelhecimento'(aging symptoms) e apresenta evidéncias de que o processo

de Reengenharia pode diminui-los.

Neste capitulo sao apresentados conceitos de Reengenharia de Software que serao

relevantes na abordagem proposta.

2.1 Conceitos

Segundo Seacord, Plakosh e Lewis (2003), reengenharia é uma forma de moderni-
zagao que melhora as capacidades ou manutenibilidade de um sistema legado através da

introdugao de tecnologias e praticas modernas. Os objetivos principais da Reengenharia
sao (SNEED, 1995):

e Melhorar manutenibilidade: pode-se, por exemplo, reduzir a manutencao com
a Reengenharia de médulos menores com interfaces mais explicitas. E dificil de
medir seu ganho porque também pode ocorrer por outros fatores como equipe mais

treinada, ou utilizacao de métodos mais eficientes;

« Migragiao/Modernizagao: a Reengenharia pode ser utilizada para realizar a mi-
gracao de um sistema entre ambientes operacionais diferentes. Também pode mudar
sistemas desenvolvidos em linguagens ou arquiteturas obsoletas para outras mais

modernas e flexiveis;

o Obter maior confiabilidade: os testes extensivos necessarios para garantir a
equivaléncia das funcionalidades podem evidenciar erros antigos e a reestruturacgao

revela potenciais defeitos. Esse objetivo pode ser medido através da andlise de erros;

Capitulo 2. Reengenharia de Software 20

« Preparagao para melhorias funcionais: decompor um sistema em moédulos
menores melhora sua estrutura além de isola-los uns dos outros. Isso facilita a adi¢ao

ou alteracao de fungoes sem afetar outros modulos.

2.1.1 Terminologia

Chikofsky e Cross (1990) apresenta a terminologia empregada na engenharia de
software relacionadas as tecnologias de andlise e entendimento de sistemas legados, sendo

os principais termos:

« Engenharia avante: é o processo tradicional de desenvolvimento, indo de abstra-
¢oes e logicas de alto nivel com projetos independentes de implementacao para a

implementacao fisica de um sistema;

« Engenharia reversa: é o processo de analise de um sistema para identificar seus
componentes e inter-relacionamentos, e criar representacoes do sistema em outra
forma ou em um nivel maior de abstracao. Ha véarias subareas na engenharia re-
versa, sendo que as que sao mais amplamente referenciadas sao redocumentacao e

recuperacao de projeto;

— Redocumentacgao: ¢ a criagao ou revisao de representacao semanticamente
equivalente a outra, mantendo o mesmo nivel de abstracao. As representacoes
resultantes sao geralmente consideradas visoes alternativas (por exemplo, fluxo
de dados, estrutura de dados e fluxo de controle) com o objetivo de serem

analisadas por pessoas;

— Recuperacao de projeto: é um subconjunto da Engenharia Reversa em que
o conhecimento do dominio, informagoes externas e dedugao ou raciocinio difuso
sao adicionados as observagoes do sistema alvo para identificar abstragoes de alto
nivel significativas além daquelas obtidas diretamente através da examinacao

direta do sistema;

e Reestruturacao: é a transformacao de uma representagao para outra no mesmo
nivel de abstragao, preservando o comportamento externo do sistema (funcionalidades
e semantica). Um exemplo é a alteracao de um cdédigo para melhorar sua estrutura,

no sentido tradicional de projeto estruturado; e
 Reengenharia: ¢ a andlise e alteracao de um sistema para reconstitui-lo e implementa-

lo em uma nova forma.

A Figura 2.1 mostra o relacionamento entre esses termos, sendo que foi considerado

apenas trés estagios do ciclo de vida (Requisitos, Projeto e Implementagao), com claras

Capitulo 2. Reengenharia de Software 21

diferencas no nivel de abstracao. Os Requisitos especificam o problema a ser resolvido,
incluindo objetivos, restricoes e regras de negocio. O Projeto trata de especificagao da
solugdo e a Implementacao refere-se a codificacao, teste e entrega de um sistema em
funcionamento. Nessa figura nota-se que a Engenharia Avante vai do nivel de abstracao mais
alto (Requisitos) para o mais baixo (Implementacao), enquanto a Engenharia Reversa faz o
caminho inverso. A Reengenharia pode ser feita tanto somente na parte de implementagao

ou em conjunto com a parte de Projeto.

Requisitos Projeto Implementacao
— i EE s Engenharia Avantg | Engenharia Avante J| -
Engenharia Reversa Engenharia Reversa
L TG R ST 2 S EVEIOE L] _
Recuperacao Recuperacéao
de Projeto = | de Projeto
Reengenharia Reengenhara | | —
(renovagao) (renovacao)
Reestruturacao Reestruturagao Redocumentacao
Reestruturacao

Figura 2.1 — Ciclo de Vida do Software (Tradugdo minha)(CHIKOFSKY; CROSS, 1990)

2.2 Abordagens de Reengenharia de Sofware para SOA

Na literatura existem varias abordagens de reengenharia que tratam sobre a moder-
nizacao de sistemas legados para SOA, indo desde a descri¢ao de passos a serem seguidos
a técnicas semi-automatizadas. Razavian e Lago (2015) analisou 75 abordagens existentes,
verificando suas semelhancas e diferencas, agrupando-as em 8 diferentes "familias", de

acordo com as atividades executadas.

Para fazer esse agrupamento foi utilizado o framework SOA-MF criado por Razavian
e Lago (2010), que é um esqueleto de atividades genéricas representando as necessidades a

serem executadas em um projeto de modernizagao. Esse framework é composto de trés

Capitulo 2. Reengenharia de Software 22

processos: Engenharia Reversa, Transformagao (Reestruturagdo) e Engenharia Avante. As

familias definidas sao:

o Familia da transformacao de cédigo (code transformation family): se li-
mita a transformacoes no nivel de sistema, convertendo o codigo legado para baseado
em servigos. Nesta familia a modernizacao implica em mover o sistema legado como
um todo para SOA, sem decompor o sistema existente. Se uma transformacao desse
tipo for executado em um sistema monolitico, ele continuard monolitico, mesmo que

disponibilize servicos;

o Familia da identificacdo de servico (service identification family): nao
abrange o processo de transformacao, significando que nao ocorre a remodelacao
do sistema de elementos legados para elementos baseados em servigo. Nesta familia
a modernizacao é limitada a identificacao de possiveis servigos dentro do sistema

legado, através de ténicas de Reengenharia;

o Familia da transformagdo do modelo de negécio (business model trans-
formation family): os processos de Engenharia Reversa e a Engenharia Avante nao
sao contemplados, sendo a modernizacao realizada através do processo de transforma-
¢ao, realizado no nivel conceitual. Existem duas principais categorias de abordagens
de migracao nessa familia sendo a primeira aquelas que definem meta-processos, cujo
objetivo é apoiar na tomada de decisdo sobre como fazer a modernizagao. A segunda
categoria executa a Reengenharia sobre os processos de negdcio do sistema, para

que sirvam de base para o desenvolvimento top-down de servigos;

« Familia de transformacao de elementos de projeto (design element trans-
formation family): o processo de transformagao ocorre somente nos elementos
bésicos de projeto (por exemplo, médulos ou classes). Caso os processos de Enge-
nharia Reversa e Avante forem abordados se limitarao também somente & esse nivel.
Nesta familia a modernizagao é limitada a remodular os elementos do sistema legado
para elementos baseados em servigo, por exemplo, uma especificacdo de componente
¢ alterada para especificacao de servico, um modulo é transformado em um servigo,
ou um segmento de cédigo da camada de persisténcia é convertido em um servico de
dados;

o Familia da Engenharia Avante (forward engineering family): abrange com-
pletamente o processo de Engenharia Avante, sendo que os processos de transformagao
e Engenharia Reversa ocorrem somente no nivel de elementos béasicos de projeto.
O foco desta familia é o desenvolvimento de sistemas baseados em servigos, tendo
como ponto de partida os processos de negocios. A Engenharia Reversa é utilizada
apenas para localizar as funcionalidades dos servigos identificados no processo de

Engenharia Avante;

Capitulo 2. Reengenharia de Software 23

« Familia da transformacao de projetos e elementos compostos (design and
composite element transformation family): os trés processos de modernizagao
ocorrem nos niveis de elementos basicos de projeto e elementos de composicao de
projeto. Engloba a recuperacao e refatoracao da arquitetura do sistema legado para

SOA, além de remodelar os elementos legados para elementos baseados em servigo;

o Familia da transformacgido de composicao baseada em padrées (pattern-
based composition transformation family): inclui apenas o processo de trans-
formacao no nivel de elementos de composicao de projeto, implicando que a arqui-
tetura do sistema existente é alterada ou configurada dentro de SOA, geralmente

através da utilizacao de patterns;

« Familia da Engenharia Avante com andlise de lacunas (forward enginee-
ring with gap analysis family): o processo de transformacao ocorre nos niveis
conceituais, de elmentos de composicao de projeto e elementos basicos de projeto.
Aqui o processo de Engenharia Avante engloba as atividades de andalise e projeto
de servigos, enquanto a Engenharia Reversa nao é utilizada. O foco principal dessa
familia é no desenvolvimento top-down de servigos, comegando com a extragao dos
modelos de negocio do sistema legado para depois projetar os servigos. O que diferen-
cia esta familia da outra que também utiliza desenvolvimento top-down (Familia da
Engenharia Avante) é que nesta sao feitas comparagoes entre os artefatos originais e
os gerados, sendo essas comparagoes feitas em cada nivel de abstra¢do (incluindo 6s

niveis conceituais, de composicao e de projeto).

A Tabela 2.1 mostra a divisao das 75 abordagens avaliadas dentro das familias
definidas, sendo que a coluna Quantidade mostra o nimero de abordagens dentro de
cada familia e a coluna Percentual mostra seu percentual equivalente em relagao ao total

de abordagens analisadas.

Tabela 2.1 — Visao geral das familias de modernizagao para SOA (RAZAVIAN; LAGO,

2010)

Familia Quantidade | Percentual
Familia da transformacao de cédigo 12 16%
Familia da identificacao de servigo 12 16%
Familia da transformacao do modelo de negécio b) ™%
Familia de transformacao de elementos de projeto 21 28%
Familia da Engenharia Avante 8 10%
Familia da transformacao de projetos e elementos compostos 10 14%
Familia da transformacao de composicao baseada em padroes 3 4%
Familia da Engenharia Avante com anélise de lacunas 4 5%

Capitulo 2. Reengenharia de Software 24

2.3 Consideracoes finais

A categorizacao das metodologias de modernizac¢ao de sistemas para SOA, apresen-
tada na se¢ao anterior, permite uma visao geral dos varios tipos de abordagens existentes,
mostrando diversos tipos de modernizagoes possiveis para atingir o mesmo objetivo, embora,

em alguns casos, possuam niveis de abstracao diferentes.

Com base nesta categorizacao, é possivel incluir a proposta deste trabalho dentro
da familia de identificacao de servigo (service identification service), pois este é o seu
principal objetivo. Porém, embora o foco da abordagem de modernizacao proposta foque
na identificacdo dos servicos, existe uma etapa especifica para o tratamento dos web
services, que define as regras que eles devem seguir no momento de suas criagoes, sem
definir, entretanto, técnicas ou ferramentas especificas. O Capitulo 4 mostrara os detalhes

da abordagem proposta.

2.4 Resumo do Capitulo

Este capitulo apresentou a terminologia e conceitos da Engenharia de Software
que serao utilizados neste trabalho. Também mostrou uma categorizacao das abordagens
existentes, de acordo com as atividades realizadas, o que possibilitou a inclusao da

abordagem deste trabalho em uma delas.

O préximo capitulo apresenta as arquiteturas que esta proposta abrange, desde as
existentes no sistema de origem, até SOA, que é a arquitetura de destino da abordagem

de modernizac¢ao proposta.

25

3 ARQUITETURAS DE SOFTWARE

Este capitulo aborda os conceitos sobre arquitetura de software e detalha as
arquiteturas referenciadas na abordagem de modernizagao, sendo elas a arquitetura

monolitica na Se¢do 3.2, baseadas em servicos na Secao 3.3 e a em camadas na Sec¢ao 3.4.

3.1 Conceitos Basicos

Bass, Clements e Kazman (2012) define arquitetura de software como sendo um
conjunto de estruturas necessarios de um sistema, compreendendo elementos de software,

relacionamentos entre eles e as propriedades de ambos.

Dentre as estruturas de software que compoem uma arquitetura é importante

ressaltar trés delas:

« Estruturas estaticas: unidades de implementagao (médulos) que se concentram
na forma como a funcionalidade do sistema é dividida e atribuida a equipes de

implementagao;

o Estruturas dinadmicas: se concentram na forma como os elementos interagem
uns com os outros em tempo de execugao para executar as fungdes do sistema (ex:

conjunto de componentes e/ou servigos);

o Estruturas de alocacgao: descreve o mapeamento das estruturas de software com
os ambientes de organizagao, desenvolvimento, instalagao e execucao do sistema (ex:

atribuigao de mdédulo/componente a um time de desenvolvimento).

Rotem-Gal-Oz (2012) apresenta uma outra definigdo descrevendo a arquitetura
de software como uma cole¢ao de decisdes fundamentais sobre um produto ou solucao,
projetado para atender os atributos de qualidade do projeto (requisitos da arquitetura).
A arquitetura inclui os principais componente e atributos, além de suas interagoes e

comportamentos para atender os atributos de qualidade.

Com base nas defini¢oes apresentadas, pode-se inferir que uma arquitetura deve
estabelecer os componentes de um software, suas interagoes e limites, servindo de guia no
desenvolvimento na distribuicao das estruturas criadas durante o ciclo de vida do sistema.
Nas sec¢oOes a seguir serao apresentadas alguns exemplos de arquiteturas, mostrando os

principais componentes e a forma em que interagem entre si.

Capitulo 3. Arquiteturas de Software 26

3.2 Arquitetura monolitica

Villamizar et al. (2015) define que uma aplicagdo monolitica é um sistema que
possui um unico arquivo como resultado, que oferece dezenas ou centenas de servigos

usando diferentes interfaces como paginas HTML e web services.

Conforme observado pela defini¢ao, a arquitetura monolitica esta ligada a forma em
que as estruturas de software serdao publicadas, existindo nesse caso apenas uma. Dentro
desta estrutura pode haver outros niveis de arquitetura, relacionadas a organizagao de

seus elementos, como a divisao por camadas, ou até mesmo a disponibilizagdo de servigos.

O uso desta arquitetura possui varias vantagens, podendo-se destacar:

« Simplicidade no desenvolvimento, ja que muitas das atuais ferramentas e IDEs foram

projetadas para o desenvolvimento de aplicagbes monoliticas;

« Simplicidade de publicac¢ao, pois existe apenas um arquivo, ou estrutura de diretérios,

€

» Simplicidade de escalonamento, uma vez que basta criar miltiplas cépias da aplicacao

acessadas por um balanceador de carga.

Porém, apesar da simplicidade que a utilizacao desta arquitetura traz, também
existe as limitagdes impostas por ela. Dragoni et al. (2016) cita um conjunto dessas

limitacoes, sendo algumas delas apresentadas a seguir:

e Quanto maior o tamanho da aplicacao monolitica mais dificil ¢ manté-la e evolui-la,

devido ao aumento de sua complexidade;

o Limitacao na escalabilidade do sistema, uma vez que para escalar deve-se criar novas
instancias de toda a aplicacdo, mesmo que o trafego seja intenso em apenas um

grupo pequeno de modulos, ou mesmo apenas um;

» Dificuldade de evoluir as tecnologias utilizadas, devido a necessidade de utilizagao

de uma mesma linguagem e frameworks da aplicagdo original.

Com base nas vantagens e desvantagens dessa arquitetura, o engenheiro de software
deve tomar a decisao se vale a pena utiliza-la para criar um novo sistema, assim como
decidir o momento em que ela passa a ser prejudicial em um sistema ja existente, sendo

necessario sua modernizagao para uma nova arquitetura.

Capitulo 3. Arquiteturas de Software 27

3.3 SOA

Erl (2005) define a arquitetura orientada a servigos (SOA) como um estilo arquite-
tural que define o uso de servigos de software com baixo acoplamento e interoperacionais
para atender os requisitos dos processos de negdcio e usudrios. Segundo Daigneau (2012),

o servico se refere a qualquer funcao de software que executa uma operacao de negocio.

Apesar de ser possivel utilizar tecnologias como CORBA e DCOM para dispo-
nibilizar servigos através de componentes, o foco deste trabalho sera na utilizacao de
web services, pois provém os meios para integrar sistemas diferentes e expoem fungoes
reutilizdveis através de HTTP (DAIGNEAU, 2012), utilizando-se de padroes abertos e
interoperaveis em diferentes plataformas de computacgao e independentes das tecnologias

de execucgao subjacentes.

De acordo com Daigneau (2012), os web services podem utilizar o HTTP (Hypertext
Transfer Protocol) de duas maneiras, sendo a primeira para a troca de dados, empregando
para isso padroes como XML e JSON (servigos SOAP/WSDL). A segunda usando o HTTP
como protocolo de aplicagao que define semanticas para o comportamento dos servicos
(servicos REST).

REST (REpresentational State Transfer), inicialmente definido por Fielding (2000),
é um estilo de arquitetura de software para sistemas de hipermidia distribuidos, ou
sistemas em que texto, imagens, dudios, e outras midias sao armazenadas através da rede
e interconectadas através de hyperlinks (KALIM, 2013). REST web services sao baseados
em URLs e nos quatro métodos do protocolo HT'TP, utilizando POST para inserir um
novo registro, PUT para alterar um registro existente, DELETE para excluir um registro

e GET para pegar as informagoes de um registro.

SOAP (Simple Object Access Protocol) é um protocolo para troca de mensagens,
utilizado para traduzir as informagoes de um web service (por exemplo request e response),
sendo as mensagens documentos XML (KHAN; ABBASI, 2015). SOAP também ¢é conhecido
como Envelope SOAP, ja que seu elemento raiz é o Envelope. Seu formato segue o padrao

mostrado na Figura 3.1.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
<~ xmlns:ser="http://servicos.estoque.knight.com/"/>

<!-- Aqui pode ter, ou ndo, um elemento soapenv:Header -->
<soapenv:Body>

</soapenv:Body>
</soapenv:Envelope>

Figura 3.1 — Exemplo de um documento SOAP (SAUDATE, 2013)

Segundo Saudate (2013) o elemento Envelope é um container para os elmentos

Header, que contém metadados relativos a requisi¢ao (ex: informagoes de autenticagao e

Capitulo 3. Arquiteturas de Software 28

enderego de retorno), e Body, que possui o corpo da requisicdo (ex: nome da operagao
e seus parametros). O Header também permite a adi¢ao de especificagbes de recursos
adicionais relativos a web services, como o WS-Transaction, que permite um controle extra
de transacoes entre servigos, e o WS-Security que adiciona camadas de seguranca ao web

seruvice.

A existéncia dessas extensoes, em especial a WS-Transaction (detalhado na Secao
4.2.3) foi o principal motivo para a escolha do protocolo SOAP ao invés de REST para os
web services a serem criados pela proposta de modernizacao de arquitetura. Apesar de
existirem formas para controle de transacoes entre REST web services, isso geralmente nao
é conseguido de forma tao transparente, sendo necesséaria a adi¢do de uma nova camada ou
framework, como por exemplo o Atomikos’, e a criacao de funcoes especificas para desfazer
as operagoes ja concluidas quando ocorrer um erro. Essa adicao de operagoes acrescenta
um ponto critico & modernizacao, pois o codigo acrescentado, se feito de forma incorreta,
pode prejudicar a confiabilidade dos dados, além de ser necessario um maior conhecimento
do sistema a ser modernizada. Apesar de dificuldades adicionais existentes com utilizagao
de REST, esta ainda é uma opcao viavel, desde que observados os pontos levantados.
Porém, para simplificar o processo de modernizacao e aumentar a confiabilidade do sistema

modernizado, todos os web services citados neste trabalho estao relacionados a SOAP.

Além de SOA existem outras arquiteturas baseadas em servigo, sendo que a de
microservigos merece mais destaque. A diferenciagdo entre a arquitetura de microservigos
e SOA é um ponto de discussao delicado entre os pesquisadores, pois ambas utilizam
servigos como principal componente de implementacao e execucao de funcionalidades
(RICHARDS, 2015). Além disso, existem autores que inclusive colocam microservigo como
uma abordagem SOA (NEWMAN, 2015).

Embora possa se discutir se microservigos é ou nao é SOA, existem algumas
caracteristicas que uma arquitetura deve possuir para receber tal classificacdo. Newman
(2015) define microservigos como servigos pequenos e autéonomos que trabalham em
conjunto. Com base nessa defini¢ao, é possivel inferir que a proposta da utilizagao de
servicos neste trabalho nao atende estes requisitos, isso porque nem o tamanho ou sua
independéncia estao entre as restrigoes impostas pela abordagem de modernizacao proposta,
podendo gerar servigos de varios tamanhos, tanto independentes quanto relacionados entre

si. A criagdo destes servigos ¢ apresentada com mais detalhes na Secao 4.2.3.

3.4 Arquitetura em Camadas

A divisao do sistema em camadas é uma das arquiteturas mais comuns usadas

por desenvolvedores para separar as complexidades de um sistema, de acordo com Fowler

!Disponfvel em <https://www.atomikos.com/>

https://www.atomikos.com/

Capitulo 3. Arquiteturas de Software 29

(2002). Nessa arquitetura os elementos do sistema sao organizados em camadas horizontais,
sendo que cada camada executa papéis especificos da aplicagdo. A troca de informagoes é
feita somente entre as camadas diretamente conectadas, sendo que a responsavel por fazer

as requisicoes sera sempre a camada superior. Essa arquitetura pode ser visualizado na

Figura 3.2.
Apresentacio N
=
=
. =
Negocio - =
=9
(¢°]
Persisténcia -

Figura 3.2 — Arquitetura em Camadas

Embora a arquitetura nao defina a quantidade de camadas que deve existir, as
principais utilizadas sao trés, sendo elas: apresentacao, negocio e persisténcia, podendo
cada uma delas ser definidas como (FOWLER, 2002):

« Apresentacgao: gerencia todas as interfaces com o usuario e logica de comunicagao;
o Negodcio: executa regras de negocio especificas para cada requisi¢ao;

o Persisténcia: faz a comunicacao com o banco de dados e gerencia transagoes.

Apesar de ser a camada de apresentacao que mostra os dados para o usudrio, ela
nao tem acesso direto a eles, mas sim a persisténcia. Como apenas a camada superior
pode fazer requisi¢cdes a camada abaixo dela, uma requisicao da apresentagao deve passar
pela camada de negdcio, que processara e retransmitira para a camada subjacente que é a

persisténcia. A resposta para essa requisicao fara o caminho inverso.

Em sistemas orientados a objetos, geralmente é usada uma outra estrutura para
representar os dados do banco de dados (Entidade da Figura 3.2), sendo que ela trafega
entre as camadas. Pelo fato dessa arquitetura estar relacionada a separacao das estruturas

estaticas, ela pode estar presente tanto em um sistema monolitico quanto dentro de um
servigo SOA.
3.5 Consideracoes Finais

O motivo da escolha da arquitetura em camadas como requisito para a modernizacao

se deve ao fato de que embora esta seja a arquitetura mais utilizada para a maioria das

Capitulo 3. Arquiteturas de Software 30

aplicagoes Java Enterprise Edition (BASS; CLEMENTS; KAZMAN, 2012), muitas das
pesquisas relacionadas a modernizacao de sistemas legados para componentes ou servigos

nao levam em consideragao a existéncia dessas camadas.

Essa declaracao pode ser observada na pesquisa de Wang et al. (2008), que evidencia
a desconsideracao da existéncia de camadas. Apesar disso ndo estar explicito em outras
pesquisas (ADJOYAN; SERIAI; SHATNAWI, 2014; CONSTANTINOU et al., 2015;
BUDHKAR,; GOPAL, 2012; YOUSEF; ADWAN; ABUSHARIAH, 2014; Liang Bao et al.,
2010; Eunjoo Lee et al., 2003; WANG et al., 2008), o mesmo fato pode ser constatado.
Pois estas outras pesquisas observam apenas os relacionamentos entre as classes, podendo
por exemplo gerar componentes/servi¢os onde pode existir uma classe de negdcio e uma de
persisténcia, mas sem as entidades que trafegarao as informagcoes, ou uma classe entidade

e uma de negocio, sem uma persisténcia para salvar as informagoes.

As arquiteturas baseadas em servigos resolvem os problemas listados na Secao 3.2.
Porém, mesmo utilizando essas novas arquiteturas para os novos desenvolvimentos, ainda
restam os sistemas legados, escritos monoliticamente, que precisam ter sua arquitetura
migrada de forma a aproveitar de seus beneficios, sendo o auxilio a essa modernizagao o

foco deste trabalho.

class ClasseN1{ class ClasseN2{
public void metodol(){ public void metodo2(){
ClasseN2 classeN2 = new ClasseN2(); ClasseP2 classeP2 = new ClasseP2();

classeN2.metodo2() ;

ClasseP1 classePl = new ClasseP1();
classePl.alterar();

}

classeP2.alterar();

}

public void metodo4(){
ClasseN1 classeN1 = new ClasseN1();

classeN1.metodo3();
public void metodo3(){
ClasseP1 classePl = new ClasseP1();
classePl.alterar();

ClasseP2 classeP2 = new ClasseP2();
classeP2.alterar();

Figura 3.3 — Exemplo de arquiteturas em camadas

Apesar da proposta de modernizacao ser transformar um sistema monolitico em
SOA, a estrutura em camadas sera mantida dentro dos servigos criados, diminuindo assim
a quantidade de refatoracoes necessarias. As Figuras 3.3 e 3.4 exemplificam, através de
trechos de pseudo-cddigo, a arquitetura em camadas e SOA, respectivamente, sendo que
os servigos do exemplo SOA também possuem uma arquitetura em camadas dentro delas.
A diferenciacao do cédigo entre as arquiteturas e suas figuras se faz através do destaque
nas linhas de c6digo que sofrem alteracao. Nessas figuras as classes ClasseN1 e ClasseN2
pertencem a camada de negbcio, e as classes ClasseP1 e ClasseP2 a camada de persisténcia,

sendo que as figuras detalham somente a camada de negocio.

Capitulo 3. Arquiteturas de Software 31

QWebService @WebService
class ClasseN1{ class ClasseN2{
public void metodol(){ public void metodo2(){
//ServicoClasseN2 referencia ao web service da ClasseP2 classeP2 = new ClasseP2();
< classe Classel2 classeP2.alterar();
ServicoClasseN2 servicoClasseN2 = new }
<3 ServicoClasseN2();
servicoClasseN2.metodo2() ; public void metodo4(){
//ServicoClasseNl referencia ao web service da
ClassePl1 classePl = new ClasseP1(); — classe Classell
classePl.alterar(); ServicoClasseN1 servicoClasseN1 = new
3 <% ServicoClasseN1();

servicoClasseN1.metodo3();
public void metodo3(){
ClasseP1 classePl = new ClasseP1(); ClasseP2 classeP2 = new ClasseP2();
classePl.alterar(); classeP2.alterar();

Figura 3.4 — Exemplo de SOA

3.6 Resumo do Capitulo

Este capitulo descreveu as arquiteturas referenciadas pela proposta de modernizacao,
apresentando suas caracteristicas e detalhando os motivos que levaram a escolhé-las como

arquiteturas de origem e destino desta proposta.

No préximo capitulo é apresentado os detalhes propostos de modernizacao, de-
talhando os passos que permitirdo que um sistema monolitico, orientado a objetos e
desenvolvido com uma arquitetura de trés camadas, seja transformado em um sistema

com arquitetura SOA.

32

4 MODERNIZACAO DE SISTEMAS MO-
NOLITICOS PARA ARQUITETURA ORI-
ENTADA A SERVICOS

Nos capitulos anteriores foram apresentados os principais conceitos envolvidos nesta
pesquisa, que proporcionaram o fundamento tedrico para a criagao de uma abordagem
que auxilie a modernizacao, para SOA, de sistemas monoliticos, orientados a objetos e

desenvolvidos com uma arquitetura de trés camadas.

A abordagem é composta de trés etapas sendo a primeira a diminuicao de de-
pendéncia, que reduzira a quantidade de relacionamentos entre as classes, a segunda ¢ a
"clusterizacao", responsavel pelo agrupamento dessas classes e a terceira e tltima a criacao
dos servigos, que definird critérios a serem observados na criacao dos web services. Dentro
delas serao definidas técnicas e férmulas que poderao ser utilizaras por ferramentas para
automatizar suas realizacoes. Antes de iniciar com a descri¢do de cada um das etapas sera

apresentado os fundamentos que serao utilizados.

4.1 Mecanismos da Abordagem proposta

A abordagem proposta utiliza técnicas ja existentes na literatura, adequando-as

conforme a necessidade para melhor atender os requisitos desejados.

4.1.1 Forca de Conectividade

Para auxiliar no agrupamento das classes ha a necessidade de identificar o grau
de ligacao existente entre elas, de forma a unir aquelas com maior ligagdo. Para atingir
esse objetivo encontram-se na literatura varias pesquisas, podendo citar Adjoyan, Seriai e
Shatnawi (2014), Constantinou et al. (2015), Budhkar e Gopal (2012), Yousef, Adwan e
Abushariah (2014), Liang Bao et al. (2010), Eunjoo Lee et al. (2003), Wang et al. (2008).

Escolheu-se a féormula definida por Eunjoo Lee et al. (2003) e aprimorada por Wang
et al. (2008), a qual foi atribuida o nome forga de conectividade (connectivity strength),
pois ela leva em consideracao apenas as ligacoes existentes no codigo fonte, que, em grande

parte dos sistemas legados, é o inico documento existente, ou pelo menos o tnico confiavel

(ERDEMIR; TEKIN; BUZLUCA, 2011; ERDEMIR; BUZLUCA, 2014).

Essa técnica baseia-se na quantidade e tipos de parametros dos métodos de uma

classe que sao utilizados por outra, sendo que quanto maior a quantidade e/ou a complexi-

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 33

dade dos pardmetros, maior serd a ligacao entre as classes. Sua féormula é descrita através

da equacao:

FC(N,P)= Y S FC(M,, M,) (4.1)

M,eMSET(N,) M,e MSET(P;)

FC(M,, M,) = { (PTiCOunt(Mp) * Wpri + Z?:bgcount(Mp) COX(P;) ,se M, chama Mp)

0 , caso contrario
(4.2)
ZaETYPE(Pi) Wpri ,5€ a é prlmlthO
COX(P) = Waps ,se a é membro de P, (4.3)
COX (a) * Waps , caso contrario

Em que:

o Ny, P; = Classe de negocio e persisténcia respectivamente;

« MSET(N;) = Conjunto de métodos da classe Ny;

e M,, M, = método especifico da classe;

o Pricount(M,) = quantidade de parametros do tipo primitivo no método Mp;

» Abscount(M,) = conjunto de pardmetros que sao classes criadas pelo desenvolvedor;

* Wpi, Wabs = P€sos para pardmetros primitivo e criados pelo desenvolvedor (wp,; +
Wabs- = 1, geralmente waps > Wy, pois tipos criados costumam ser mais complexos
que tipos primitivos). Esses pesos devem ser definidos pelo Engenheiro de Sofware

responsavel pela modernizagao do sistema legado (Eunjoo Lee et al., 2003);

o P;= classe passada como parametro para o método Mp e que foi criada pelo desen-

volvedor e

o COX(P;) = valor da complexidade da classe criada pelo desenvolvedor.

Para exemplificar, sera feito o calculo da forga de conectividade entre as classes
N1 e P1 do trecho do c6édigo mostrado na Figura 4.1. O primeiro passo é o calculo da
complexidade (COX) dos pardmetros dos métodos de P1 e que sao executados por N1,
sendo esses parametros uma entidade criada no projeto (E1), uma classe externa ao projeto,
pertencente a uma biblioteca (Ex), e dois pardmetros de tipos primitivos, um inteiro (il) e
float (flt1).

Como E1 possui dois atributos primitivos, o valor de sua complexidade é COX(E1)

=2 * wp = 2 *0,3 = 0,6. Nao ¢ calculada a complexidade para o tipo EX, pois sua

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 34

implementacao, assim como sua complexidade, ndao é de responsabilidade do sistema, sendo
considerado para esse caso, apenas 0 Peso W,ps para representar essa complexidade. Para

os parametros primitivos, il e flt1, terdo como complexidade o peso wpy;.

public class N1i{ public class P1{ public class E1{
public void metodoN1(){ public void metodoP1(El el, float flt1){ private int attrInt;
Pl pl = new P1(); . private String attrStr;
pl.metodoP1(el, 0.85); ¥

pl.metodoP3(ex, 7);
public void metodoP3(Ex ex, int i1){
} ¥
} } }

Figura 4.1 — Exemplo de cédigo para calculo da forga de conectividade

Com essas informacoes é possivel calcular a forca de conectividade entre N1 e P1,
somando as complexidades dos parametros de cada método de P1 executado por N1, sendo

o calculo apresentado a seguir:

FC(N1, P1) = (COX(E1)+wpri)+(Waps+wpri) = (0,640, 3)+(0,7+0,3) = 0,9+1 = 1,9

Na abordagem proposta, a forca de conectividade sera utilizada como insumo para
a refatoracao da camada de negdcio, em relacdo a execucao de classes da camada de

persisténcia, explicada da Secao 4.2.1.

4.1.2 Algoritmo Fast Community

Apesar de o agrupamento de classes através de seus relacionamentos nao ser uma
tarefa muito complexa, as vezes, é necessario fazer a divisao do componente gerado, de
forma a diminuir seu tamanho. Para realizar essa divisao, utilizou-se o algoritmo de
"clusterizagao'chamado fast community, definido por Newman (2003). O objetivo principal
desse algoritmo, executado sobre grafos, ¢ encontrar as communities, sendo que community
sructure é uma organizagao especial, em que vértices formam grupos com alta densidade nas
arestas internas e baixa densidade nas arestas externas (ERDEMIR; TEKIN; BUZLUCA,
2011).

Segundo Erdemir e Buzluca (2014), este algoritmo apresentou-se superior a outros
da literatura, quando observados sob os critérios de authoritativeness, stability e extremity
of cluster distribution, significando (ERDEMIR; TEKIN; BUZLUCA, 2011; ERDEMIR,;
BUZLUCA, 2014):

o Authoritativenes: similaridade entre a decomposicao feita por profissionais e a

automatizada por um algoritmo de "clusterizagao";

o Stability: o resultado da extragdo automatica nao deve produzir efeitos drastica-
mente diferentes quando executados sobre versoes similares de um software com

pequenas alteracoes e

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 35

o Extremity of cluster distribution: diz respeito a equivaléncia do tamanho dos
componentes, pois, nao se deve produzir componentes muito grandes ou muito
pequenos por nao serem comuns na arquitetura dos mesmos, além de poder ocasionar

a diminuicao da coesao e o aumento do acoplamento.

Apesar desse algoritmo nao ter sido inicialmente idealizado para a "clusteriza¢ao'de
classes em sistemas orientados a objetos, Erdemir, Tekin e Buzluca (2011), Erdemir e
Buzluca (2014) demonstram essa possibilidade, criando um grafo a partir do cédigo fonte
do sistema, sendo que cada vértice representa uma classe, as arestas seus relacionamentos
e a seta pertencente as arestas indica que a classe de origem executa métodos da classe de
destino. Um exemplo desse grafo pode ser visualizado através da Figura 4.2, sendo que o
cddigo que o originou é composto por quatro classes, N1, N2, N3 e N4, a classe N2 executa

métodos das classes N1, N3 e N4, e a classe N3 executa métodos de N4.

Figura 4.2 — Exemplo de grafo

O algoritmo fast community é descrito no Algoritmo 1 (NEWMAN, 2003; ERDE-
MIR; TEKIN; BUZLUCA, 2011; SHIOKAWA; FUJIWARA; ONIZUKA, 2013; ERDEMIR;
BUZLUCA, 2014).

1 Considere cada vértice como um cluster diferente;
2 while existir mais de um cluster do
3 Junte os dois clusters que tiveram o maior crescimento, ou menor reducao da
modularidade;
end

4 Selecione o ponto de corte do dendrograma resultante, analisando o maior valor de

da modularidade;

Algoritmo 1: Algoritmo Fast Community.

Conforme pode ser observado no algoritmo, a "clusterizacao"é feita em iteragoes e,
em cada uma delas, dois clusters sao agrupados até que reste apenas um tnico cluster.
Essa sequencia de agrupamentos gera um dendrograma, que mostra a ordem em que os

agrupamentos foram feitos.

A Figura 4.3 mostra o dendrograma relacionado ao grafo da Figura 4.2, sendo

que a régua na parte superior indica o nimero de iteragoes que o algoritmo teve. Nela

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 36

é possivel verificar que o primeiro agrupamento foi o das classes N2 e N1, pois, com
ele, conseguiu-se o maior ganho de modularidade (AW=0,6250) em relagdo as outras
possibilidades de agrupamento (N2-N3, N2-N4 e N3-N4). Na segunda iteragdo o maior ganho
da modularidade foi com a jungao de N2 com N3 (AW=0,500), e para a tltima iteragao
restou a juncao dos dois tinicos componentes existentes, N1-N2 e N2-N3, transformando

tudo em um tunico cluster e encerrando o algoritmo.

N1

Q=-0,5000/ AQ=0,6250

N2

Q=-0.1000/ AQ=1,000

Q=-0,0000/ AQ=0,5000

N4

Figura 4.3 — Clusterizagao

A escolha do ponto de corte sera baseada na modularizacao que cada iteracao gera,
de acordo com a modularidade que o sistema possui em cada iteracao. Neste exemplo,
optando-se pelo ponto de corte nas juncoes N1-N2 ou N3-N4 o mesmo resultado sera
gerado, ou seja, produzirda dois componentes, um contendo as classes N1 e N2 e outro
contendo as classes N3 e N4. E importante ressaltar que pode haver casos em que o
melhor é nao selecionar nenhum ponto de corte, mantendo todas as classes em um tnico
componente. O cdlculo da modularidade é feito através da seguinte formula (ERDEMIR;
TEKIN; BUZLUCA, 2011; SHIOKAWA; FUJIWARA; ONIZUKA, 2013; ERDEMIR;
BUZLUCA, 2014):

s Qu= Zz(c(@))

° O(Z) = € — aiz
Em que:

e Qw = modularidade;

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 37

» ¢; = quantidade de arestas internas dividida pelo total de arestas do grafo (fracao

de arestas internas ao cluster) e

o a;2 = quantidade de arestas externas dividida pelo total de arestas do grafo (fracio

de arestas externas que se ligam ao cluster).

A escolha do ponto de corte é baseada no valor da modularidade do sistema em
cada iteracdo (varidvel "Q"da Figura 4.2), sendo os critérios utilizados para tal sele¢ao

serao detalhados na Secao 4.2.2.

4.2 Proposta de Metodologia de Modernizacao

A abordagem demonstrada nesta pesquisa foi definida a partir da utilizacao de
mecanismos de identificacdo de componentes/servigos. Pois a pesquisa objetiva auxiliar na
modernizacao, para SOA, de sistemas orientados a objetos, monoliticos, e que também
possuam uma arquitetura de trés camadas. A proposta é composta por trés etapas,
conforme pode ser observada pela Figura 4.4, que foi criada seguindo a notacao BPMN
(Object Management Group (OMG), 2011).

O g el —1a)—0

Diminuigdo das dependéncias Clusterizagio Criagdo dos servigos

Migracio de sistemas 00
para 504

Figura 4.4 — Macro Fluxo da abordagem de modernizagao de sistemas OO para SOA

Como boa parte dos sistemas legados nao possuem documentagao ou estas estao
desatualizadas ou incompletas (LEWIS; MORRIS; SMITH, 2005; KHADKA et al., 2013;
ERDEMIR; BUZLUCA, 2014), todas as técnicas apresentadas usam como entrada apenas

o proprio codigo fonte do sistema, analisando-o e/ou refatorando-o para atingir o objetivo
final.

Na primeira etapa é feita uma analise do codigo, verificando as ligagoes entre as
classes e calculando a forca de conectividade (FC) entre as classes de negécio e as classes
de persisténcia utilizadas. A FC é utilizada como base nas refatoragoes para diminuir a
quantidade de relacionamentos existentes. Na segunda etapa, a partir do codigo refatorado,
é executado o agrupamento das classes de acordo com seus relacionamentos. Para os casos
necessarios, o engenheiro de software executa o algoritmo de "clusterizacao'fast community
(Secao 4.1.2), responsavel pela divisao em grupos menores. A etapa final culmina na criagao
de web services a partir das classes de negocio. Nesta ultima etapa nao sao definidas

técnicas especificas, mas critérios para auxiliar na tomada de decisao do engenheiro na

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 38

criacao dos servigos. Devido a variedade de formas possiveis que os desenvolvedores podem
utilizar para determinar se uma classe é de negocio ou persisténcia, como inclusao em
pacotes especificos ou estender determinada classe, a identificacdo da camada das classes

ficara a cargo do Engenheiro de Software encarregado pela modernizacdo do sistema.

Nas secoes a seguir serao detalhadas as etapas da abordagem, suas técnicas e
ferramentas utilizadas, além de demonstra-las através de sua execucao sobre o sistema SIGA-
EPCT (Sistema Integrado de Gestao Académica da Educagao Profissional e Tecnolégica).
Esse sistema atende os requisitos iniciais e é utilizado por alguns Institutos Federais de

Educacao, Ciéncia e Tecnologia do pais.

4.2.1 Diminuicao das dependéncias

Com o intuito de melhorar a coesao e o acoplamento dos web services resultantes,
o primeiro passo ¢ melhorar esses atributos nas classes existentes. Para guiar esta etapa,
definiu-se que serd mantida, para cada componente gerado (conjunto de classes), a arquite-
tura em camadas existente no sistema original. A camada de negdcio, que é a camada de

mais alto nivel dentro de cada componente, ird disponibilizar seus métodos como servigos.

Partindo-se desta premissa, foram feitas analises de cada camada, iniciando pela
persisténcia e, assim, identificou-se a existéncia de relacionamentos entre suas classes. Isto
¢ um indicio de que elas estao tratando de regras de negdcio, sendo necessarias refatoracoes,
transportando parte do codigo para a camada superior. Esta alteracao possibilita a criagao
futura de componentes menores, conforme demonstrado através da Figura 4.5, que contém

a representacao do codigo original na Figura 4.5a e do cddigo refatorado na Figura 4.5b.

® @) /
o /\/

Componente 1 Componente 1 Componente 2

C te Original
(a) Componente Origina (b) Componente Refatorado

Figura 4.5 — Refatoragdo das classes de persisténcia

Apbs essas refatoracoes, passou-se para a andlise da camada de negdcio e seus
relacionamentos com a persisténcia. Percebeu-se que no negdcio existiam diferentes classes

relacionadas a uma mesma classe de persisténcia. Embora essa utilizacao nao quebre o

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 39

conceito de camadas (FOWLER, 2002), essa prética dificulta a criagdo das classes em

componentes menores, conforme ilustrado pela Figura 4.6a.

Para tentar diminuir o tamanho do componente a ser gerado, definiu-se mais uma
refatoragdo, na qual cada classe de persisténcia ira se relacionar com apenas uma classe de

negocio, conforme ilustrado na Figura 4.6b.

Componente 1 Componente 1 Componente 2

(a) Componente Original (b) Componente Refatorado

Figura 4.6 — Refatoragdo das classes de negbcio

Porém, para realizar a operagao proposta primeiro deve-se identificar qual classe de
negocio sera responsavel por qual classe de persisténcia. Isto é feito calculando a FC entre
cada classe das camadas de negdcio e persisténcia, sendo que a férmula para o calculo da
FC foi explicada na Secao 4.1.1. Com base na FC, cada classe de persisténcia devera se

relacionar com a classe de negbcio que possuir a maior conectividade.

Para exemplificar essa refatoracao, supoem-se um sistema com duas classes de
negocio (N1 e N2), duas de persisténcia (P1 e P2) e trés de entidade (E1, E2 e E3),

conforme mostrado na Figura 4.7.

Inicialmente é necessério calcular a complexidade (COX) das classes usadas como
parametros entre N1 e P1, ou seja, as entidades E1 e E2. Como E1 tem dois atributos
primitivos entdo sua complexidade ¢ COX(E1) = 2 * wy,; = 2 * 0,3 = 0,6. Para o célculo
referente a classe E2, temos COX(E2) = 1 * wy,; + COX(E3) * wu,s = 1% 0,3 + (1 *
0,3) * 0,7 = 0,51. Para esse exemplo usou-se os valores 0,3 e 0,7 para 0S pesOS Wpyi € Wabs

respectivamente, conforme definidos por Eunjoo Lee et al. (2003).

Com o valor das complexidades obtidas anteriormente é possivel calcular a forga
de conectividade entre N1—-P1, N1—-P2, N2—P1, N2—P2, tendo:

« FC(N1,P1) = 0% wy; + (COX(EL) + COX(E2)) + (COX(E2) + 1 wyy;)) =
0%0,74 (0,6 +0,51) + (0,51 +1%0,3) = 1,11 + 0,81 = 1,92

« FO(N1,P2)=1%wy; = 1%0,3=0,3

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 40

public class Ni{ public class N2{
public void metodoN1(El el, E2 e2){ public void metodoN2(El el, E2 e2){
P1 pl = new P1(); P1 pl = new P1();
pl.metodoP1(el, e2); pl.metodoP3(e2, 5);

pl.metodoP3(e2, 7); s
R P2 p2 = new P2();

P2 p2 = new P2(); p2.metodoP4(el, e2);
p2.metodoP2(100000) ; .

}
}
} }
public class P1{ public class P2{
public void metodoP1(El el, E2 e2){ public void metodoP2(long 11){
} }
public void metodoP3(E2 e2, int il1){ public void metodoP4(E1l el, E2 e2){
} }
} }
public class E1{ public class E2{ public class E3{
private int attrInt; private long attrLng; private boolean attrBool;
private String attrStr; private E3 attrE3;
} } }

Figura 4.7 — Exemplo de cédigo

e FC(N2,P1)=1%wy; + COX(E2) = 1%0,3+0,51 = 0,81

« FC(N2,P2) = 0%w,y;+ (COX(E1)+COX(E2)) = 0%0,7+(0,6+0,51) = 1,11

Comparando as forcas de conectividade, tem-se que N1 possui uma conectividade
maior com P1 (FC= 1,92) e N2 com P2 (FC= 1,11). Com essa informacao, segue-se
para a refatoracao das classes N1 e N2, para que elas utilizem apenas suas respectivas

persisténcias, e caso necessario, passem a relacionar entre si.

Nessa refatoracao, inclui-se os métodos que fazem chamadas a persisténcia, caso
eles nao existam. Entao deve-se substituir as chamadas originais para que utilizem os

métodos recém inseridos. O resultado pode ser observado na Figura 4.8.

Apos essa alteracao, verificou-se que alguns métodos tinham em seu corpo apenas
uma chamada a classe de persisténcia pertencente a outra classe de negocio, nao fazendo
sentido sua permanéncia e optando-se por exclui-los. Como consequéncia, algumas classes
de negbcio ficaram sem nenhum método em seu corpo, sendo possiveis suas retiradas
do projeto, apds devida verificacao de sua inutilizacdo pela camada de apresentacao. A

exemplificacao desses procedimentos pode ser visualizada na Figura 4.9.

O processo completo desta etapa pode ser visto na Figura 4.10. Na etapa seguinte,
o novo codigo é analisado e, a partir de seus relacionamentos, é feita a "clusterizacao'das

classes, formando grupo de classes coesos e com baixo acoplamento.

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos

41

Codigo Original

Codigo Refatorado

public class Ni{

public
P1
pl
pl
P2
p2

void metodoN1(El el, E2 e2){
pl = new P1();

.metodoP1(el, e2);
.metodoP3(e2, 7);

p2 = new P2();

.metodoP2(100000) ;

public class N1i{
public

}

P1
pl
pl
N2

n2

public

P1
pl.

void metodoN1(E1l el, E2 e2){
pl = new P1();

.metodoP1(el, e2);
.metodoP3(e2, 7);

n2 = new N2();

.metodoP2(100000) ;

void metodoP3(E2 e2, int il){
pl = new P1();
metodoP3(e2, il);

public class N2{

public
P1
pl.
P2
p2
}

void metodoN2(E1l el, E2 e2){
pl = new P1();
metodoP3(e2, 5);

p2 = new P20);

.metodoP4(el, e2);

public class N2{

Cédigo Original

public
N1
nl.
P2
p2
}
public
P2
p2
}

void metodoN2(E1l el, E2 e2){
nl = new N1();
metodoP3(e2, 5);

p2 = new P2();

.metodoP4(el, e2);

void metodoP2(long 11){
p2 = new P2();

.metodoP2(11) ;

Figura 4.8 — Refatoragao: Inclusao de Métodos

Migracao da Persisténcia

Exclusao de Método

public class N3{

public

void metodoP4(E2 e2,

— int i1){

P4
p4.

}

public clas

p4 = new P4();
metodoP6(11);

}

s N4{

public void metodoP6(long 11){

(S

public class N3{
public void metodoP4(E2 e2, int

i
N4 n4 = new N4();
n4.metodoP6(11);

public class N4{

P4 p4 = new P4();
p4.metodoP6(11);

public class N3{

}

public class N4{

public void metodoP6(long 11){

P4 p4 = new P4();
p4.metodoP6(11) ;

Figura 4.9 — Refatoragao: Alteragdo das chamadas aos métodos

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 42

%
= Procurar por
. relacionamentos entre

classes de persisténcia

N % Identificar negocio
do .

Encontrou responsavel por cada
relacionamentos? persisténcia

- l

Mecessita
adequacdo?

Refatorar camada de negocio,
alterando relacionamentos

“— Refatorar camada de
persisténcia, removendo |
relacionamentos Sim

&

Adequar codigo refatorado

Figura 4.10 — Fluxo do processo de diminuicao das dependéncias das classes

4.2.2 Clusterizacao

Apos as refatoragdes para diminuicao das dependéncias, deve-se reanalisar o codigo
fonte, de forma a agrupar as classes para que, posteriormente, venham a formar componentes
que irao disponibilizar servicos. Como cada classe de negocio ja engloba um conjunto
especifico de persisténcias, torna-se possivel simplificar essa analise, focando apenas na

camada de negdbcio.

O objetivo dessa etapa é unir as classes que possuem relacionamento, criando
grupos independentes. Porém, pode ser necessario que alguns desses componentes precisem
ser divididos, diminuindo, assim, seus tamanhos. Como uma tentativa dessa redugao, é

executado o algoritmo apresentado na Secao 4.1.2.

Para exemplificar a execucao desse algoritmo, primeiramente deve-se criar um grafo
a partir do cédigo do sistema. A Figura 4.11 mostra o grafo contendo as classes de negbcio
do cédigo da Figura 4.7, sendo incluido outras arestas nesse grafo para melhor ilustrar a

execucao do algoritmo de "clusterizacao".

Para esse grafo, inicialmente ¢é efetuado o calculo de sua modularidade, considerando

cada aresta como um cluster diferente, obtendo os valores:

.« C(N1) =2~ (2) = —0,25
. C(N2)=9—(3)" = ~0,5625
. C(N3) =2~ (2)' = —0,25

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 43

. C(N4) =9~ (1)" = ~0,0625

e Qu=C(N1)+C(N2)+C(N3)+C(N4) = —0,25+ —0, 5625+ —0, 25+ —0, 0625 =
~1,125

o

:

Figura 4.11 — Exemplo de grafo

A modularidade Qw acima reflete o valor quando considera que cada aresta, que
representa uma classe, é um cluster diferente, sendo Qw obtido através da soma do calculo
de C(N1), C(N2), C(N3) e C(N4), que levam em consideragao as arestas internas e externas

de cada cluster.

O préximo passo do algoritmo é agrupar os dois clusters que geraram um maior
ganho de modularidade. Essa variacao da modularidade deve ser calculada agrupando as
classes que possuem arestas entre si (N1—N2, N1—-N3, N2—-N3 e N2—N4), sendo o valor

da modularidade Qw para cada agrupamento demonstrado a seguir.

A unidao de N1 a N2 resulta em:

. C(NL,N2) =1 (3)" = —0,3125

e Qu; = C(N1,N2) + C(N3) + C(N4) = —0,3125 + —0, 25 + —0, 0625 = —0, 625

e AQ; = Qu; — Quw = —0,625 — (—1,125) = 0,50
A uniao de N1 a N2 resulta em:

« C(NLN3) =1 —(2) =0
e« Qus = C(N1,N3) + C(N2) + C(N4) = 0 4 —0, 5625 + —0, 0625 = —0, 625

e AQy = Quy — Qu = —0,625 — (—1,125) = 0,50

A uniao de N1 a N2 resulta em:

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 44

e Qus = C(N2,N3)+ C(N1) + C(N4) = —0,3125 + —0, 25 + —0, 0625 = —0, 625

AQR3 = Quws — Quw = —0,625 — (—1,125) = 0,50
A uniao de N1 a N2 resulta em:

. C(N2,N4) =1 (2) =0

e Qu; = C(N2,N4) + C(N1) + C(N3) = 0+ —0,25 + —0,25 = —0, 50

AQ4 = Quy — Quw = —0,50 — (—1,125) = 0,625

Com base nas simulagoes apresentadas acima, a jun¢ao que trouxe o maior ganho
de modularidade foi a jungao de N2 com N4 que obteve um ganho de 0,625 (AQ4 = 0,625).
Essa juncao encerra a primeira iteracao do algoritmo, lembrando que as iteracoes acabam

somente quando todas as arestas estiverem dentro do mesmo cluster.

Para a segunda iteracao deve-se fazer novamente todas as jungdes possiveis, mas
agora considerando N2 e N4 como um tunico cluster. Dessa forma as jungoes possiveis sao
N1—N3, N1—-N2,N4 e N2,N4—N3. Nessa iteracao a modularidade a ser utilizada como

base deve ser a que gerou a juncao, ou seja Quwy.

A uniao de N1 a N2 resulta em:

« C(NLN3) =1 —(2)" =0
e Qus = C(N1,N3)+ C(N2,N4) = 0+0 = 0

o AQs = Qus — Quwy =0 — (—0,50) = 0,50
A uniao de N1 a N2 resulta em:

2
« C(N1,N2 - N4)=2—(2)"=0,25
« Qug=C(N1,N2—~ N4)+ C(N3) =0,25+ 0,25 =0

o« AQs = Qug — Qwy =0 — (—0,50) = 0,50
A unido de N1 a N2 resulta em:

2
+ C(N2-N4,N3)=2—(2)"=0,25
e Qu; = C(N2— N4,N3)+ C(N1) =0,25+ —0,25 = 0

. AQ7 = Qw7 — Qw4 =0- (—0,50) = 0,50

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 45

Como todas as juncoes da segunda iteragdo gerou um mesmo ganho na modularidade
(AQs = AQs = AQ7 = 0,50), pode-se escolher qualquer uma delas, sendo que nesse
exemplo serd escolhido a primeira juncao, de N1 com N3. Feito essa escolha resta apenas
juntar os clusters N2-N4 com o N1-N3 e teremos todas as arestas em um unico cluster,

encerrando, assim, o algoritmo que gerara o dendrograma da Figura 4.12.

N2

Q=-0,5000/ AQ=0,6250

N4

Q=-0,1000 / AQ=1,000

N1

Q=-0,0000/ AQ=0,5000

Figura 4.12 — Clusterizagao

Segundo Girvan e Newman (2003) o valor de Qw [-0,5, +1] geralmente varia entre
0,3 e 0,7, sendo que o valor para estruturas com forte ligacao varia entre 0,6 e 0,7. Com
base nesses dados, verifica-se que, para o exemplo da Figura 4.12, o melhor é deixar todas
as classes em um tinico componente, pois nao foi encontrado um ponto de corte em que o

valor da modularidade esteja dentro da variagao citada.

Utilizando das informacoes obtidas nessa etapa, é possivel separar os grupos de
classes de negbcio e suas respectivas dependéncias em projetos separados. Cada projeto
terd classes de negbcio e de persisténcia exclusivas. Porém, como a camada de entidade é a
representacao da base de dados, as entidades utilizadas serao copiadas para cada projeto,
de acordo com a utilizacao, podendo haver duplicacdo de classes. Contudo, nao é o foco
desse trabalho tratar da separacao das entidades. Caso haja interfaces e superclasses na
camada de negdcio e/ou de persisténcia, elas também serdo copiadas, conforme sugerido
por Wang et al. (2008).

O processo de "clusterizacao'dessa secao pode ser visto na Figura 4.13. O proximo
passo consiste na a criagao e disponibilizagao dos servigos para cada um dos projetos

criados, de forma que possam ser acessados através da internet.

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 46

Gerar grafo do
sistema

& & 5

[t
Selecionar grupo de Gerar Selecionar ponto

classes a dividir dendrograma de corte

Sim Existem outros
grupos a

dividir?

Figura 4.13 — Fluxo do processo de clusterizacao

4.2.3 Criacdo dos servicos

Seguindo as etapas descritas anteriormente tém-se varios grupos de classes que
poderao disponibilizar servigos. Além disso, conforme dito anteriormente, os métodos a

serem disponibilizados serao os existentes na camada de negbcio de cada componente.

Cada linguagem especifica anotacoes, bibliotecas e codigos a serem inseridos para
que sejam disponibilizados os web services. Além disso, existem varias IDEs que agilizam
esse processo, de forma que nao sera detalhado uma técnica especifica para isso, sendo

essa secao responsavel pela discussao de pontos importantes a serem observados.

Independente da forma em que os web services forem criados, serd necessario alterar
as chamadas feitas a classes que agora pertencem a outro servigo. Uma ilustragao dessa

refatoragdo pode ser visualizada na Figura 4.14.

Para que a refatoragao citada acima possa ser realizada, primeiramente os web
services precisam criados. Porém, existem algumas restricbes a serem observadas no

momento da criagao desses servigos, conforme levantado por Guo et al. (2005), sendo elas:

1. O tipo do método deve ser publico;

2. Métodos abstratos nao podem ser publicados porque esse tipo de método nao contém
um corpo com sua implementacao, ficando esta implementacao a cargo de suas

subclasses que poderao publicar seus métodos;

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 47

Chamada entre classes Chamada entre servigos
class Classel{ class Classel{
public void metodol(){ public void metodol(){

//Classe2 e Classe2 pertencem ao mesmo projeto B
. //Classe2 migrou para outro servico
Classe2 classe2 = new Classe2(); ServicoClasse2 classe2 = new ServicoClasse2();

classe2.metodo2() ; classe2.metodo2() ;
Classe3 classe3 = new Classe3(); //Classe3 continua no mesmo projeto
classe3.metodo3(); Classe3 classe3 = new Classe3();

classe3.metodo3();

Figura 4.14 — Refatoracao chamada entre servigos

3. Métodos com mesmo nome devem possuir nomes de servico diferentes, pois o padrao
WSDL, responsavel pela descri¢ao e localizagao dos servicos, nao leva em consideracao

as assinaturas dos métodos, somente seus nomes;

4. Se um método possui transacao, mas nao é a raiz dessa transacao, nao deve ser

disponibilizado como servigo, pois ele possui apenas parte da operacao a ser realizada.

A 1ltima restricao so é relevante se um método que nao é raiz de uma transacao
nao contiver uma operagao completa, o que nem sempre acontece. Pode haver métodos que
realizam uma operagao completa, mas que também compoem uma funcionalidade maior
ao mesmo tempo. Porém, independente dele ser executado sozinho ou em conjunto com
outros métodos, em ambos os casos pode existir a necessidade de controlar a transacao.
No exemplo da Figura 4.14, se o metodol fizer uso de transacao, esse controle deve ser

mantido mesmo depois da refatoragao, ja que nao houve mudanca da funcionalidade.

Como um dos objetivos dessa abordagem é que a funcionalidade original seja
mantida no sistema modernizado, é importante que as funcionalidades em que todo
um conjunto de operagoes sao concluidas, ou nenhum de seus resultados sao efetivados,
mantenham essas mesmas propriedades. Isso é conseguido através do uso de transagoes que
sao mecanismos para garantir que todos os participantes de uma aplicagao alcancem um
resultado de comum acordo. Ela tem sido historicamente definida através das propriedades
ACID (Atomicidade, Consisténcia, Isolamento e Durabilidade), sendo essas propriedades
definidas como (REUTER; GRAY, 1993):

« Atomicidade: todas operagoes sdo concluidas ou nenhuma operacao é concluida.

« Consisténcia: a aplicacao deve sair de um estado consistente para outro estado

também consistente.

o Isolamento: os efeitos de uma operacao nao sao compartilhados para fora da

transagao até que seja concluida com sucesso.

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 48

o Durabilidade: uma vez que a transacao for concluida com sucesso, as alteragoes

devem permanecer mesmo em caso de futuras falhas.

A Secao 4.2.3.1 traz mais detalhes sobre o controle de transagoes entre servigos

diferentes.

4.2.3.1 Transacdes entre servicos

Segundo Snell (2002), transagoes sdo conceitos fundamentais na construgao de
aplicacoes distribuidas confiaveis, porém, nenhuma das principais especificacoes de web
services (SOAP, WSDL, UDDI, etc), foram projetadas para prover mecanismos que

permitam a eles se conectarem para criar solugdes dependentes e confidveis.

Para resolver esse problema a IBM, juntamente com a Microsoft, definiram duas
especificagoes complementares, a WS-Coordination (NEWCOMER; ROBINSON;, 2009b),
e a WS-Transaction (NEWCOMER; ROBINSON, 2009a). A WS-Coordination prové
mecanismos para criar e registrar servigos, usando os protocolos definidos pela WS-

Transaction (FREUND; STOREY, 2002; LANGWORTHY et al., 2004), sendo seus niveis

de operacao visualizados na Figura 4.15.

Figura 4.15 — Padroes de descrigao de web services (FREUND; STOREY, 2002)

WS-Coordination

Segundo Freund e Storey (2002), Langworthy et al. (2004), o framework definido

pela WS-Coordination é composto por trés elementos:

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 49

« Servico de ativacao: cria uma atividade e especifica seu protocolo de ativacao

disponivel;
» Servico de registro: coordena a selecao de protocolos e registra os participantes e

e Servigo de coordenacao: controla o processo de conclusao das atividades, utili-
zando para isso o protocolo de coordenacgao selecionado para a transacao (definidos

pela especificagdo WS-Transaction).

Para cada nova atividade criada, o servigo de ativagao retorna um Coordination-
Context (elemento XML utilizado em uma mensagem como convite para participar de
uma atividade), que contem os seguintes campos (LANGWORTHY et al., 2004):

o Identificador da atividade;

« Tipo da transacao (atomica ou de negocio);

e Endereco do servico de registro;

« Tempo de expiracao da atividade (opcional) e

o Elementos extendidos, que permitem que outras informagoes sejam comunicadas.

Temos, entao, que o framework de coordenacao prové um sistema para gerenciar
comunicagoes entre web services, além de poder trabalhar com sistemas que utilizam
transagoes ACID, assim como outras formas de transagao. De modo que fica a cargo da
coordenacao de protocolos (definida pela especificacaio WS-Transaction) implementar as
transagoes ACID (FREUND; STOREY, 2002).

WS-Transaction

Segundo Freund e Storey (2002), Langworthy et al. (2004), a especificagao WS-

Transaction define os protocolos de coordenagao atomicos e de negbcio.

O protocolo para transagoes atomicas é utilizado para tratar atividades com tempo
de vida curto. No escopo desse protocolo é observado todo o conjunto de operagoes a
serem executadas, sendo que ou todas sao concluidas com sucesso, ou em caso de falha
de alguma delas, nenhuma operacao é efetivada. Esse objetivo é atingido utilizando o
protocolo Two-Phase Commit (2PC).

O protocolo 2PC coordena o registro dos servicos para poder tomar a decisao de
efetivar ou cancelar as operagoes e informa todos os servigos do resultado final, sendo esta
decisao a mesma para todos os servigos envolvidos. Essa tomada de decisao é feita nas
duas fases descritas a seguir (LANGWORTHY et al., 2004):

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 50

o Fase de preparacao: todos os participantes sao avisados para aguardarem sinal de
conclusao ou cancelamento de suas operagoes e, entao, votar no resultado final. Esse

voto é propagado para o coordenador geral da transacao para tomar a decisao final.

« Fase de efetivacao: se todos os participantes votarem pela conclusao, entao as

operagcoes sao efetivadas, caso contrario sao abortadas.

O protocolo para transacoes de negdcio trata de atividades de longa duracao,
mas, para diminuir a espera pela utilizagao dos recursos, os resultados das operagoes
intermediarias devem ser liberados mesmo antes do término de todo o processo. Mecanismos
de gerenciamento de falha e compensacao sao geralmente utilizados para reverter os efeitos

de atividades anteriormente completadas.

E possivel usar ambos protocolos em combinagao, conforme pode ser observado na
Figura 4.16, sendo que a atividade 2 utiliza transacoes atomicas e a atividade 3 utiliza
ambas as transagoes, atomicas e de negocio. A imagem mostra também a relagdo existente

entre os protocolos WS-Transaction e WS-Coordination.

|WS-Atum:'cTransac.ti on ‘ WS-BusinessActivity |

h J
WE-Coordination

depends on

Figura 4.16 — Utilizagao dos protocolos de transacao (LANGWORTHY et al., 2004)

O fluxo dessa etapa pode ser visualizada na Figura 4.17.

& & &
Criagdo dos Web Refatoragdo para chamar os Tratar Tranzagdo dos web
SEnices wigh senices criados SBRiCes

Figura 4.17 — Fluxo para criacao dos servigos

4.3 Resumo do Capitulo

Conforme detalhado neste capitulo, a abordagem proposta para modernizacao

de sistemas monoliticos, orientados a objetos e que também possuem arquitetura de

Capitulo 4. Moderniza¢io de sistemas monoliticos para arquitetura orientada a servigos 51

trés camadas, é composta por trés etapas (Segao 4.1). A primeira é a diminui¢do de
dependéncias (Segao 4.2.1), que ird reduzir a quantidade de relacionamentos entre as
classes, tanto na camada de persisténcia quanto na de negocio. A segunda etapa é a
"clusterizac¢ao", (5.3.2) que agrupard as classes relacionadas, e a iltima define critérios a

serem seguidos durante a criacdo dos web services.

Para auxiliar na etapa de diminuicao de dependéncias, é utilizada a férmula da
forga de conectividade (Segao 4.1.1), que calcula a forga de ligagao entre as classes. Na
etapa de "clusterizagdo"é executado o algoritmo fast community (Secdo 4.1.2) que agrupa

as classes relacionadas permitindo a divisao dos grupos com tamanhos indesejados.

No préximo capitulo é apresentado o estudo de caso, feito sobre um sistema acadé-
mico, que executa as trés etapas apresentadas, demonstrando a efetividade das mesmas.
Foram utilizadas ferramentas que automatizam a execuc¢ao das duas primeiras etapas,
diminuicao de dependéncias e clusterizagao, mostrando a eficacia da semi-automatizacao
dessas etapas. Para a etapa de criacao de servicos, é apresentada a implementacao dos

critérios definidos, para a criacao dos web services, dentro do sistema académico.

52

5 ESTUDO DE CASO E AVALIACAO DA
ABORDAGEM

O principal objetivo deste estudo de caso é analisar a eficacia do modelo de
modernizagao proposto dentro do contexto de sistemas monoliticos, orientados a objetos e

que possuem também uma arquitetura de trés camadas, sendo que foi executado seguindo
a metodologia Goal/Question/Metric (BASILI; CALDIERA; ROMBACH, 1994).

5.1 Contexto

Segundo Kitchenham e Pickard (1998), o estudo de caso define o conjunto de
objetivos e limitagoes em que ele deve ser executado. Para definir esses objetivos, a
metodologia GQM (Goal/Question/Metric) foi utilizada, derivando em um conjunto de

questoes que devem ser respondidas para determinar se o objetivo foi alcancado.

Objetivo (Goal): Avaliar a abordagem proposta, em relagdo a sua eficicia, do
ponto de vista do engenheiro de software e no contexto de sistemas monoliticos, orientados

a objetos e que tenham sido desenvolvidos com arquitetura de trés camadas.

Definido o objetivo, ele é refinado em questoes para caracterizar a forma em que
a avaliacao do objetivo serd realizada (BASILI; CALDIERA; ROMBACH, 1994). As

questoes (questions) definidas foram:
Questao 1: Que tipo de melhoria a refatoracao das classes traz?

Nesta questao, tenta-se identificar a melhoria obtida com a etapa de Diminuicao

de dependéncias (Secao 4.2.1).
Questao 2: Quais foram as melhorias obtidas nos componentes gerados?

Nesta questao, tenta-se identificar os beneficios obtidos com a etapa de "Clusteriza-
¢ao0"(Segao 5.3.2).

Questao 3: A funcionalidade original é mantida apds a criagdo dos servigos?

Nesta questao, tenta-se verificar se as funcionalidades originais foram mantidas

ap6s a modernizacao de arquitetura.

Para responder as perguntas, um conjunto de métricas (metrics) sdo definidas e
associadas as questoes (WOHLIN et al., 2000), sendo elas apresentadas na Tabela 5.1,
na qual a coluna Medida mostra a medida utilizada para o calculo, a coluna Questoes
mostra a qual questao a métrica estd relacionada e a coluna Resultados Esperados

indica se é esperado que os percentuais aumentem (1) ou diminuam ({}), para as métricas

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 53

M1 a M4. Para a métrica M5, a coluna de resultados indica o percentual de testes de

regressao executados com sucesso.

Tabela 5.1 — Lista de métricas e relagao com as questoes do paradigma GQM.

Métrica Medida | Questao Iéz:l;l::éi:
M1 | % de variagao no acoplamento médio das classes ACCL Q1 U
M2 | % de variacao no tamanho dos componentes TACO Q2 U
M3 | % de variacao na complexidade dos componentes COXP Q2 U
M4 | % de variacao no acoplamento entre componentes | ACCO Q2 T
M5 | % de testes de regressao realizados com sucesso TEST Q3 100%

A medida ACCL (acoplamento entre classes) é calculada somando-se a quantidade
de classes de negdcio ou persisténcia referenciadas por uma classe de negbcio, desconside-
rando o nimero de vezes em que a referéncia acontece. TACO (tamanho do componente)
¢é a quantidade de classes de negdcio ou persisténcia que fazem parte um componente.
ACCO (acoplamento entre componentes) é a quantidade de outros componentes que ele
referencia, independente do nimero de vezes que isso acontece. TEST ¢ a execucao de um
caso de teste no qual a comparagao da funcionalidade original com a do web service geram
o mesmo resultado. Vale ressaltar que as medidas ACCL e TACO consideram somente as
classes de negocio e persisténcia devido ao fato de ser essas as classes a serem distribuidas

entre os componentes, sendo que as demais serao copiadas de acordo com a necessidade.

COXP (complexidade de um componente) foi definida por Cho, Kim e Kim (2001)
e representa a complexidade estética de um componente (CSC). Ela leva em consideracao

os relacionamentos entre as classes contidas no componente. Sua férmula é definida como:

CSC = i(Count(Ri) * W(R:))

=1

Em que:

o Count(R;) = Quantidade de cada tipo de relacionamento entre as classes (Depen-

déncia, Agregagao, Generalizagao, Composigao) e

« W(R;) = Peso atribuido para cada tipo de relacionamento (Tabela 5.2).

5.2 Planejamento

Para o teste da proposta foi escolhido o sistema académico SIGA-EPCT!? (Sistema

Integrado de Gestao Académica da Educagao Profissional e Tecnolégica), na qual as

ISite do sistema: <http://colaboracao.sigaepct.net/>
2Foi utilizada nessa pesquisa foi a versio em desenvolvimento 11.1 (commits do dia 05/10/2016)

http://colaboracao.sigaepct.net/

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 54

Tabela 5.2 — Pesos com base no tipo de relacionamento para o calculo do CSC (CHO;
KIM; KIM, 2001).

Tipo do Relacionamento | Peso
Dependéncia 2
Associacao 4
Generalizagao 6
Agregacao 8
Composi¢ao 10

técnicas apresentadas foram testadas. Este sistema foi idealizado inicialmente através de
um projeto de pesquisa da SETEC/MEC que financiou o seu desenvolvimento através de
parcerias com varios Institutos Federais em todo o Brasil. Hoje, é o sistema académico

utilizado por alguns desses institutos.

A escolha desse sistema se deve ao fato dele atender aos requisitos da pesquisa
sendo um sistema Java, desenvolvido sob a arquitetura trés camadas e monolitico, pois
possui apenas um arquivo EAR (Enterprise Application aRchive) a ser publicado em
um servidor de aplicagao. Ele possui 200 classes de negocio, 244 persisténcias e 474
entidades, totalizando 1148 classes e 77.092 linhas de c6digo, desconsiderando a camada

de apresentacao.

5.2.1 Ferramentas utilizadas

Para automatizar os calculos necessarios foram utilizadas duas ferramentas, sendo
que a primeira foi desenvolvida no decorrer desta pesquisa, nomeada de JCluster, e é
responsavel pelos cédlculos citados anteriormente (segoes 4.1.1 e 4.1.2). A segunda é a

3

ferramenta JTransformer”, encarregada de analisar padroes de c6digo e realizar refatoragoes.

Ambas as ferramentas, JCluster e JTransformer, sao plugins da IDE Eclipse. Elas
executam suas operagoes utilizando como entrada o projeto Java aberto na IDE. A
limitacao dessas ferramentas é que elas funcionam apenas para sistemas desenvolvidos em
Java. Para a utilizagdo dessas ferramentas em outros sistemas Java sera necessario que
o Engenheiro de Software faca algumas configuracoes sobre a identificacdo das camadas
de negbcio e persisténcia. Nas se¢Oes subsequentes suas funcionalidades serao brevemente

descritas, ficando a explicacao de suas utilizagoes para a se¢ao do estudo de caso (Capitulo

5).

3Site da ferramenta <https://sewiki.iai.uni-bonn.de/research/jtransformer/start>

https://sewiki.iai.uni-bonn.de/research/jtransformer/start

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 55

5.2.1.1 JCluster

O plugin idealizado e desenvolvido durante esta pesquisa* possui as funcionalidades
listadas abaixo, sendo que todas elas usam como base o cdédigo do projeto aberto na
IDE Eclipse. Além disso, esse plugin identifica uma classe como pertencente a camada de

negocio ou persisténcia se faz através do pacote em que a classe pertence.

« Calculo da forgca de conectividade: calcula a FC entre as classes, seguindo as
formulas da Secao 4.1.1. Com base nesses calculos, também sao identificadas as

maiores ligagoes entre as classes de negdcio e persisténcia, detalhado na Secao 4.2.1.

o Geragao de grafo: a partir do codigo-fonte do sistema é gerado um grafo, no qual
cada classe de negbcio é representada por um vértice e seus relacionamentos por
arestas. Cada conjunto de classes relacionadas tem a mesma cor para facilitar a
identificacao. O exemplo de um grafo gerado pode ser visualizado na Figura 5.7 da

Secao 5.3.2, no qual sera descrito a utilizagdo desse plugin em um estudo de caso.

e Geracdo de dendrograma:® ao clicar em qualquer uma das classes do grafo,
é gerado um dendrograma, seguindo o algoritmo fast community (Secao 4.1.2),
baseando-se em todas as arestas que contém a mesma cor da selecionada. Ao clicar
com o botao direito em um dos pontos de jun¢ao é possivel pre-visualizar a quantidade
de grupos a serem gerados diferenciando-os através das cores. Ao clicar duas vezes
em uma juncao, as cores dos grupos do dendrograma sao repassadas para o grafo.
A visualizacao dessa funcionalidade esta ilustrada na Figura 5.9 da Segao 5.3.2, na

qual é descrita a utilizagao desse plugin em um estudo de caso.

« Separacgao dos componentes: para cada conjunto de cores do grafo é criada uma
pasta com todas as classes de mesma cor, além de suas dependéncias. Com isso é
possivel criar projetos independentes para cada componente, observando apenas as

bibliotecas necessarias.

Dentre as funcionalidades citadas acima, vale detalhar o algoritmo usado para a

coloragao dos vértices no grafo, sendo ele descrito no Algoritmo 2.

O if/else da linha 6 do algoritmo 2 faz com que um vértice que possua mais de
uma origem nao tenha a mesma cor de nenhuma delas. Esse passo foi definido para que o
engenheiro de software nao seja induzido a englobar esses vértices a nenhuma das origens

primaérias.

4Disponibilizado no github através do link <https://github.com/aborgesrodrigues/
hierarchical-clustering>

°Foi utilizado como base o sistema j& existente disponivel através do link <https://github.com/
Ibehnke /hierarchical-clustering-java>:

https://github.com/aborgesrodrigues/hierarchical-clustering
https://github.com/aborgesrodrigues/hierarchical-clustering
https://github.com/lbehnke/hierarchical-clustering-java
https://github.com/lbehnke/hierarchical-clustering-java

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 56

while existir vértice sem cor do
Selecione um dos vértices sem cor;
Defina uma cor para o vértice selecionado;
while ezistir vértices referenciados pelo vértice selecionado do
Selecione um dos vértices referenciados;
if vértice nao possuir cor then
‘ Insira mesma cor do vértice selecionado;
else
8 ‘ Insira uma nova cor para o vértice selecionado;
end

B =R B NV R

end

end
Algoritmo 2: Algoritmo de coloracao dos vértices do grafo.

5.2.1.2 JTransformer

Essa ferramenta é um plugin do Eclipse que permite a andlise e as transformagoes
de codigos Java (KNIESEL; HANNEMANN; RHO, 2007; ALVES; HAGE; RADEMAKER,
2011; BINUN; KNIESEL, 2012). O JTransformer analisa o c6digo fonte, suas dependéncias
com projetos e bibliotecas, além de criar uma representacao do cédigo em Prolog®. Suas
analises podem ser expressas em um nivel de abstracao bastante elevado. Kniesel, Hanne-
mann e Rho (2007) compararam-na com um conjunto de outras ferramentas de andlise e

transformacao de cddigo, sendo que o JTransformer foi melhor nos seguintes aspectos:

o Expressividade: nao limita as andlises e transformacgoes que podem ser realizadas;

o Turnaround: suporta um nivel de abstracao que promove o rapido desenvolvimento

sem limitar a expressividade;
» Integracao: realiza analise e integracao sem necessidade de ferramentas externas;
« Performance: rapidez nas anélises individuais (de milisegundos a segundos);

o Escalabilidade: a performance nas analises individuais acontecem mesmo em siste-

mas com dezenas de milhares de classes;

e Suporte a Multi-projetos: permite a analise e as transformagoes de multiplos

projetos que relacionam entre si e

« Disponibilidade: possibilita baixar versoes do software e documentagao apropriada.

Alves, Hage e Rademaker (2011) também compararam algumas ferramentas, anali-

sando os items abaixo, sendo que o resultado pode ser visualizado na Tabela 5.3, sendo que

6Detalhes da linguagem Prolog pode ser encontrado no link <http://Ipn.swi-prolog.org/lpnpage.php?
pageid=online>

http://lpn.swi-prolog.org/lpnpage.php?pageid=online
http://lpn.swi-prolog.org/lpnpage.php?pageid=online

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 57

o "x" e -" representam se a ferramenta atende ou nao determinado critério, respectivamente,
seguindo os seguintes critérios:

o Paradigma em que a linguagem de busca ¢ baseada;

e Tipos de dados suportados pela linguagem:;

o Parametrizagao que indica se o comportamento das consultas podem depender de

parametros;

o Polimorfismo que especifica se as consultas podem ser abstraidas dos tipos em que

as relagoes sdo construidas;

e Modularidade que determina a extensao em que é possivel reutilizar uma consulta

especifica para construir outras consultas e

« Bibliotecas que determina a possibilidade de usar e/ou criar bibliotecas de consultas

genéricas.

Tabela 5.3 — Comparagao entre ferramentas de analise de cdédigo (ALVES; HAGE; RADE-
MAKER, 2011).

p%ﬂt:ggnﬁ's Grok Rscript JRelCal SemmleCode CrocoPat JGraLab JTransformer
ST T Relational and APT OO and FO-Togic SQL-Tike and .
Paradigma Relational Comprehensions | Relational SQL-like Imperative Path Expr FO-logic
String x X x X X X X
Tipos Int X X X X X X X
1pos Real X - X X X x x
Bool - X 'S X X X x
Other - ar?(;)l}:gg;étign Java Object - an%d V%Sde Logic terms
Parametrizagao - X X - X X X
Polimorfismo - X X X - X X
Modularidade X X X X X - X
Bibliotecas - - X X - - X

A Figura 5.1 mostra alguns dos predicados bésicos do JTransformer (aqueles
terminados com T maitsculo, com marcacdo onde aparecem). As palavras iniciadas
em maidsculo sao variaveis, o underscore é uma pseudo-variavel que indica atributos

irrelevantes para a analise/transformacao.

Para facilitar o entendimento de quem nao é familiarizado com os termos da
programagao légica, Kniesel, Hannemann e Rho (2007) fazem uma comparagao desse tipo

de programagao com suas contrapartes do banco relacional (entre parénteses).

Cada n6 AST é um fact base (tupla do banco de dados). O predicado (nome da
relagdo), representa o tipo do né, o primeiro pardmetro (atributo) é um identificador inico
(chave) do respectivo né e os outros pardametros sao valores primitivos ou identificadores
de outros nos, representando referéncia, sendo que o segundo parametro referencia o noé
superior. Diferentemente dos bancos relacionais, os programas légicos ndo armazenam
facts para cada relacao, mas define predicados através de derivagao de regras e podem ser

definidos recursivamente.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 58

Para exemplificar esses conceitos, a seguir serda dada uma breve explicacao dos
termos destacados da Figura 5.1, lembrando que o caractere underscore (y pode ser utilizado

em qualquer um dos pardmetros esperados, para o caso de se fazer buscas genéricas:

o fieldDefT (linha 6): identifica a declaracdo de um atributo dentro de classes

(InClass), pertencente a determinado tipo (T);

o methodT (linha 10): identifica métodos, pertencentes a classes (InClass), que

possuam pardmetros (Args) e tipo de retorno (T') especificos;

+ getFieldT (linha 18): identifica o acesso a um atributo dentro de um método

(MName) por uma varidvel ou sendo enviado como parametro a outro método

(OnRecv);
« execT (linha 21): identifica uma execucao dentro de um método (CallingM);

« NewClassT (linha 24): identifica a instanciacdo de uma classe, dentro de um

método (CalledM), que tenha recebido alguns parametros (Args);

o paramT (linha 27): identifica os pardmetros parametrized, por exemplo, em
String[], Class<T>, os colchetes ([]) e a sequéncia <T>, serdo os itens iden-
tificados;

o forLoopT (linha 30): identifica a instrugao for executada em determinado método

(InMethod);

Nas préximas se¢oes serao mostradas a abordagem proposta para modernizacao
de sistemas orientados a objetos para SOA e a utilizagdo dos mecanismos apresentados

dentro dessa abordagem.

5.3 Execucao

Nessa secao, sera descrita a execucao da abordagem de modernizagao sobre o
sistema SIGA-EPCT, detalhando cada uma das etapas, facilitando o entendimento das

questoes, das métricas e de seus calculos.

5.3.1 Diminuicdo das dependéncias

Conforme explicado na Secao 4.1, os primeiros passos da abordagem proposta é
a diminuicao das dependéncias entre as classes, de forma que possa obter componentes

menores nas etapas posteriores.

© 00U WN -

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 59

type (Type,Name) :-
classDefT(Type, _,Name, _).

field(Field, InClass, FType, FName) :-
type(_ ,FType, _),
fieldT(Field,InClass,T,FName, _).

method (Meth,InClass,MName,Args,RetType) :-—

type(_,RetType, _),

methodT (Meth,InClass,MName,Args,T, _, _).
instanceMethod(Method,InClass,Name,Args,Type) :-
method (Method,InClass,Name,Args,Type),

not(Name = ’<init>’),

not(Name = ’<cinit>’).

accesses(AccessingM, InBlock,OnRecv,AccessedField) :-
getFieldT(_,InBlock,AccessingM,0OnRecv,AccessedField).

calls(CallingM,InBlock,CalledM,Args) :- // /Inst. method
execT(Exec,InBlock,CallingM, Call),

applyT(Call,Exec,CallingM, _, _,Args,CalledM).
calls(CallingM,InBlock,CalledM,Args) :- // JConstructor
newClassT(_,InBlock,CallingM,CalledM,Args, _, _, _).

param(Param, InMethod, Type) :-
paramT (Param, InMethod,type(_,Type, _), _).

forLoopBody (For,InMethod, LoopBody) :-
forLoopT(For, _,InMethod, _, _, _,LoopBody) .

Figura 5.1 — Exemplo de script do JTransformer (KNIESEL; HANNEMANN; RHO, 2007)

Inicialmente procura-se por classes de persisténcia que executem métodos de outras
classes também de persisténcias. Para isso utilizou-se o plugin JTransformer (Secao 5.2.1.2)

para realizar essa pesquisa dentro do codigo fonte do sistema SIGA-EPCT.

A Figura 5.2 mostra o cédigo desse script, cuja explicacao segue abaixo:

e Linha 1: nome do método;

o Linha 5: identifica toda chamada a método feita, atribuindo o método de origem e o

receptor da chamada as variaveis MethodCall e Receiver respectivamente;

o Linhas 7 e 8: identificam todas as classes de persisténcia (classes que extendem de

GenericDAO);
o Linhas 10 a 16: filtram somente os receptores que sao classes de persisténcia;
o Linhas 18 a 20: filtram apenas os métodos de classe de persisténcia;
o Linha 22: ignora chamadas a métodos dentro da prépria classe e

o Linha 24: ignora chamadas a métodos da superclasse.

O resultado da execucao do script é mostrado na Figura 5.3, sendo que, no ponto

1, tem-se o coédigo da classe com a identificacdo do ponto onde o script encontrou a

© 00Uk WN

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 60

chamada entre persisténcias. O ponto 2 mostra os scripts existentes e a quantidade de
ocorréncias encontradas na execucao de cada um deles. J& o ponto 3 contém as préprias
ocorréncias, indicando a classe e o nimero da linha em que ela ocorre. Ao clicar em uma
dessas ocorréncias é aberto o arquivo com o cursor ja na linha identificada, como mostrado

no ponto 1.

No caso da classe RegraAcademicaDAQO da Figura 5.3, a refatoracao para re-
mover a dependéncia entre as classes de persisténcia, consiste em retirar o método inserir
dessa classe e migra-lo para a classe de negocio correspondente, que é a ManterRegraA-
cademicaEJB. O resultado dessas operacoes pode ser observado através dos trechos de
cddigo mostrado na Figura 5.4. Cada uma das ocorréncias encontradas deve ser analisada
individualmente, pelo engenheiro de software, para encontrar uma melhor forma de retirar
esses relacionamentos indesejados da camada de persisténcia, sendo essa uma limitacao

que pode ser abordada em um trabalho futuro.

:- module(persistence__persistence_analysis, [persistence_persistence_call/1]).

persistence_persistence_call(Callld) :-
#Identifica cada chamada de metodo
callT(Callld, _, MethodCall, Receiver, _, _, _,
Z#Identifica classes de persisténcia
fully_qualified_name (GenericDAO, 'org.sigaept.nucleo.dao.GenericDAO'),
subtype (DAO, GenericDAO),
4filtra somente chamadas feitas a classes de persisténcia

(

),

(identT(Receiver, Callld, MethodCall, Local), localT(Local, _, _, DAO, _, _))
newT (Receiver, _, _, _, _, _, _, DAO, _)
callT(Receiver, _, _, _, _, _, _, DAD)

),

% busca somente em métodos de classes de persisténcia

methodT (MethodCall, DAOClass, _, _, _, _, _s _)»
subtype (DAOClass, GenericDAO),
classT(DAOClass,_,_,_,_),

Zignorar chamadas dentro da prépria classe
DAOClass \== DAO,

Zignorar chamadas a superclasse

DAO \== GenericDAO.

Figura 5.2 — Script para encontrar chamadas entre classes de persisténcia

A préxima etapa para diminui¢ao das dependéncias é fazer com que uma classe de
persisténcia fique relacionada a somente uma classe de negbcio, conforme explicado na
Secao 4.2.1. Para isso, primeiramente é necessario identificar as persisténcias e a classe de
negbcio correspondente a cada uma delas. Assim, foi desenvolvido o plugin JCluster (Secao
5.2.1.1) que analisa o codigo e calcula a forga de conectividade (Se¢ao 4.1.1) entre todas
as classes de negdcio e persisténcia. Ao final do processo é gerado um arquivo contendo

essa relacao, conforme pode ser observado na Tabela 5.4.

Com essas informacoes pode-se fazer a refatoracao no cédigo, alterando as classes de
negocio que aparecem no arquivo gerado, de forma que elas executem somente as suas classes

de persisténcia, modificando as demais chamadas para as classes de negdcio adequada.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem

61

o~ = 2ik- -0 Q- P PHeE@D HH T o
Quick Access =3 7% JavaEE @ JT Developer [) JTUser‘
=) RegraAcademicaDAQ.java & = g 2
62 + -
fz 63 &=
I 642 @override
& & 65 public void inserir(RegraAcademica entidade) throws NegocioException {)
66 if (entidade.getAtoAutorizative() != null
Iy 67 && entidade.getAtoAutorizativo().getId() == null) p]
W 68 new AtoAutorizativoDAO(this.em).inserir(entidade
69 .getAtoAutorizative());
70 super.inserir(entidade); =
71 H
72 | =
732 @suppressWarnings ("unchecked") B
74 public List<RegraAcademica> consultarRegrasAcademicasPorContexto(=)
75 Long idContexto) {
76 string sql = "Select r From RegraAcademica r, ContextoRegra c, IN(c.descricoesRegra) descricoes Where c.id=:contexto AND descricoes.: m
77 Query q = em.createQuery(sql);
78 q.setParameter("contexto”, idContexto); &
jm}
HJutco B = a
=
@o2EEH-
Results For selected analyses E
Factbase: | sigaept-edu-ejb v L .
- Description Resource Locatio
- & Callto DAO from DAO ConselhoClasseDAQ,j Line: 119
Name Description # Results N R
" & Callto DAO from DAO EnturmacaoDAO.java; Line: 357
" Cluster ° & Callto DAO from DAO GrupoDAO.java Line: 80
> Logging 0 & Callto DAO from DAO PerfilAcaoDAO java | Line: 50
>
= Persistence M':"“"'“ o & (all to DAO from DAO RegraAcademicaDAQG Line: 68
= . . .
pae persistancacall - il 4 Call to DAO from DAO ServidorDAOjava | Line: 61
S oS R T el el - & Callto DAO from DAO TurmaDAO.java Line: 56
Writable SmartInsert 71:6

Figura 5.3 — Funcionamento da ferramenta JTransformer

Método na classe de persisténcia

Método migrado para classe de negbcio

public class RegraAcademicaDAO extends
<~ GenericDAO<RegraAcademica> {

@0verride
public void inserir(RegraAcademica entidade)
<~ throws NegocioException {

if (entidade.getAtoAutorizativo() != null &&
<~ entidade.getAtoAutorizativo().getId()
— == null)

new AtoAutorizativoDAU(this.em).inserir(J
< entidade.getAtoAutorizativo());

super.inserir(entidade) ;

}

public class ManterRegraAcademicaEJB extends

—
—
—

GenericCrudEJB<RegraAcademica,
RegraAcademicaDAO> implements
IManterRegraAcademicaEJB{
@0verride
public void inserir(RegraAcademica entidade)
<~ throws NegocioException {
if (entidade.getAtoAutorizativo() != null &&
< entidade.getAtoAutorizativo().getId()
— == null)
new AtoAutorizativoDAO(this.em).inserir(
< entidade.getAtoAutorizativo());
super.inserir(entidade) ;
}
}

Figura 5.4 — Refatoracao para retirada de dependéncia entre persisténcias

Essa refatoragao é feita, em sua maior parte, também pela ferramenta JTransformer (Segao

5.2.1.2), através da utilizacao de scripts e pode ser representado pelo Algoritmo 3.

A exclusao citada nas linhas 5 e 6 se faz possivel porque existe somente um método

com apenas uma chamada para outra classe de negdcio sem agregar nem processar nenhuma

informacao. Dessa forma, esse método torna-se irrelevante, ja que é possivel obter a mesma

informagao apenas chamando a classe de destino diretamente. Conforme dito antes, ao

realizar essas exclusoes, pode acontecer de algumas classes ficarem sem nenhum método

em seu corpo, podendo, entao, ser excluidas do projeto, sendo que no sistema SIGA-EPCT,

sete classes de negbcio foram removidas.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 62

Tabela 5.4 — Segmento do resultado da identificacdo das classes persisténcias com suas
respectivas classes de negbcios

Classe de Persisténcia Classe de Negécio FC
RegraAcademicaDAO ManterRegraAcademicaEJB | 81.82
MatrizCurricularPeriodoDAO ManterMatrizCurricularEJB | 28.05
ModalidadeAprendizagemDAO | ManterCursoEJB 0.15
LotacaoServidorDAO ManterServidorEJB 129.35
ParticipacaoEventoExternoDAO | ManterEventoExternoEJB 0.90
ContaCorrentePagamentoDAO | ManterServidorEJB 1.94
CDUDAO ManterCDUEJB 0.30
AlunoDAO ManterRelatorioAlunoEJB 523.80
ProjetoExtensaoDAO ManterProjetoExtensaoEJB 64.56
ReaberturaTurmaDAO ReaberturaTurmaClasseEJB | 33.62

for cada classe de negocio do
2 Criagdo de métodos na classe de negocio para disponibilizar suas persisténcias,
caso nao existam;
3 for cada método da classe que possui chamadas a persisténcias de outra classe de
negocio do
4 Migrar chamadas a persisténcias nao pertencentes a ela para os métodos do
negocio de destino;
5 if método contiver somente essa chamada then
‘ Excluir método;
end
end

jun

end
Algoritmo 3: Algoritmo para alteracdo das chamadas da camada de negdcio

A Figura 5.5 mostra parte do resultado das etapas da refatoragao citada anterior-
mente, sendo que a 5.5a exibe alguns métodos inseridos na classe ManterCalendarioA-
cademicoEJB, referentes a chamadas de sua persisténcia que estavam incluidas em outras
classes. A Figura 5.5b demonstra a exclusdo de métodos que nao agregavam informacao
ou processamento ao resultado da chamada (item 2.2 das etapas de refatoragao). Além
disso, também revela o resultado da alteracao do método removerFaltasDaAula, que
teve a chamada ao método remover da classe FaltaDAQ, alterado para uma chamada
ao método de mesmo nome mas pertencente a classe ManterDiarioClasseEJB, que ¢é a

responsavel pela persisténcia.

Apesar de agilizar bastante o processo, ainda é necessario fazer pequenas adequagoes
manuais no coédigo apds as refatoragoes, como adequacao dos imports e adaptagao dos
métodos duplicados que podem ter sido inseridos, além da exclusao, quando possivel, de

classes que ficaram sem nenhum método, entre outros.

Parte desse script, responsavel pela substituicdo da chamada de um método de

uma classe da persisténcia pelo método equivalente de sua respectiva classe de negocio,

Capitulo 5. FEstudo de caso e avaliagdo da abordagem

63

ejbModule/org/sigaept/edu/negocio/ejb/ManterCalendarioAcademicoEJB.java

[EUANE (U CIPIE e S @S I S G S e CRUIE 8 DU ST 183 public CalendarioAcademico consultarTodosVigentesPorUnidadeEnsinoPeriod a
CalendarioAcademicoDAQ calendarioAcademicoDAO = new Calendariod 182 D
CalendarioAcademico calendarioEmVigencia = null; 185 Pl poriet s,
tryl 186 MatrizCurricular matrizCurricular) {
calendaricEmvigencia = calendaricAcademicoDAQ.consultar 187 return new CalendarioAcademicoDAC(em).consultarTodosVigentesPor
if(calendaricEmVigencia == null) 188 classe.getTurma() .getMatrizCurricular().getCurso(). gety
throw new NoResultException(); 189 classe.getTurma().getPeriodoletiva(),
¥ 198 classe.getTurma().getMatrizCurricular());
catch(NonUniqueResultException ex){ 191 3
throw new NegocioException(“Existe mais de um calenddri 192
H 193 public CalendarioAcademico consultarPorUnidadeEnsinoPeriodoLetivoMatriz
catch(NoResultException ex){ 194 UnidadeEnsino unidadensino,
throw new NegocicException(*Ndo existe un calenddrio ac 105 Fareimlasm paric slastm,
¥ 196 MatrizCurricular matrizCurricular,
197 Long idSituacaoCalendarioAcademico) {
return calendarioEmVigencia; 198 return new CalendarioAcademicoDAC(em).consultarPorUnidadeEnsino
i 5 199 matrizCurricular.getCurso().getUnidadeOrganizacional ().
265 280 periodoletiva,
public DataAcademica consultarDataAcademica(CalendaricAcademico calenda 266 201 e
return new DataAcademicaDAO(this.em).consultar(calendaricAcadem | 267 202 a);
H 268 263 }
269 284
¥ V| 270 205 oublic List<CalendarioAcademico> consultarTodosPorUnidadeEnsinoPeriodol
< > ol @ >

(a) Inclusao de

ejbModule/org/sigaept/edu/negocio/ejb/ManterClasseEJB.java

métodos

: ; ; : ~
private void removerFaltasDaAula(List<Falta> faltas) throws NegocioExce

private void removerFaltasDaAula(List<Falta> faltas) throws Negociofxce © 485 211
for (Falta f : faltas){ 486 412 for (Falta f : faltas) {
new FaltaDAO(em).remover(f); 487 413 ManterDiarioClasseEds. remover(f);
} 488 414 }
} 489 415 }
498 416
public List<CalendarioAcademico> consultarTodosPorUnidadeEnsinoPeriodol 491 417 @0verride
throws NegocioException{ 492 418 public void inserirPlanoEnsino(Classe classe) throws NegocioException {
return new CalendaricAcademicoDAO(this.em).consultarTodosPorUni| | 493 419 new ClasseDAO(this.em).inserir(this.em.merge(classe));
H 494 420 H
435 421
public List<CalendarioAcademico> consultarCalendariosPorUnidadeEnsinoPe 496 422 @0verride
return new CalendarioAcademicoDAO(this.em).consultarTodosPorUni 487 423 public List<Classe> consultarTodosPorCurso(Curso curso) throws Negociof
} 498 424 return new ClasseDAO(em).consultarTodosPorCurso(curso);
499 425 H
@0verride 560 426
public Docente consultarDocente(PessoaFisica p) throws NegocioException 501 427 @0verride
return new DocenteDAQ(em).consultarViaQuery("SELECT d FROM Doce 582 428 public List<Classe> consultarTodosPorPeriodo(Periodoletive periodoletiv
3 563 429 return new ClasseDAO(em).consultarTodosPorPeriodo(periodoletivo
584 430 H
@0verride 565 431
public Docente consultarDocentePorId(Long id) throws NegocioException { ., 586 432 @0verride v
> | se7 433 | ¢ >

(b) Alteragao de chamada e exclusdo de métodos

Figura 5.5 — Resultado das refatoragdes da modernizagdo onde uma persisténcia

esta

associada a apenas um negocio
pode ser observado na Figura 5.6, sendo a explicacao desse script detalhada a seguir:

o Linha 8: Variavel Callld identifica uma chamada a uma persisténcia que nao pertence
a classe de negocio, e BusinessTarget representa a classe de negbcio para a qual a

persisténcia foi migrada;
o Linhas 9 a 15: Cria uma referéncia para o atributo da classe BusinessTarget;
o Linha 18: Cria a declaragdo de uma variavel do tipo BusinessTarget no codigo;
o Linhas 20 e 21: altera a chamada a um método de uma persisténcia para a classe de

negocio BusinessTarget.

Ao terminar as refatora¢oes pode-se iniciar o processo de "clusterizacao'das classes.

O novo codigo refatorado sera utilizado como base para a execug¢ao do proximo passo.

© 0 N O Ut s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 64

:- module(persistence_migration_transformation, []).

;- multifile(user:ct/3).

/4CallId - Chamada a uma persisténcia que ndo pertence d classe de nmegécio
/Business - Classe de megdcio onde ocorre a chamada
/#BusinessTarget - Classe de negdcio para onde foi a persisténcia chamada
user:ct(replaceCalls(Callld, Business, BusinessTarget),
(
Zcria a varidvel do megécio a ser chamado
),

implementsT(_, BusinessTarget, BusinessTargetInterface),

classT(BusinessTarget, _, NameBusinessTarget, _, _
fieldT(FieldEJB, Business, BusinessTargetInterface, NameBusinessTarget, null),

new_id(NewGetFieldEJB)

Zinsere a wvaridvel no cédigo

add(fieldAccessT(NewGetFieldEJB, ,_,_,FieldEJB,_)),

/Asubstitui a chamada da persisténcia para o negécio
replace(callT(Callld, Parent, Encl, _, Args, Method, TypeParams, Type),

callT(Callld, Parent, Encl, NewGetFieldEJB, Args, Method, TypeParams, Type))

Figura 5.6 — Parte do script de refatoracao das classes de negdcio

5.3.2 Clusterizacao

Seguindo o procedimento detalhado na Secao 4.2.2, foi criado o grafo do sistema
SIGA-EPCT, através da ferramenta JCluster (Secao 5.2.1.1), que representa as classes de
negocio e seus relacionamentos, sendo possivel visualizar parte dele na Figura 5.7. Nessa
figura cada conjunto de cores representa um possivel componente a ser gerado, sendo que

a coloragao seguiu o Algoritmo 2 da Secao 5.2.1.1.

Na Figura 5.7 é possivel ver a existéncia de alguns grupos de vértices isolados, porém
verifica-se que em grande parte eles estao inter-relacionados (dentro da marcagao). Para esse
caso, € mesmo para os grupos menores, pode-se executar o algoritmo de "clusterizagao' fast
community, descrito na Segao 4.1.2, gerando um dendrograma para tentar identificar uma
melhor divisdo das classes. O algoritmo nao é executado sobre todo o sistema de uma vez,
sendo necessario que o engenheiro de software escolha cada conjunto de classes que deseja
tratar. A Figura 5.8 mostra um zoom maior nas classes presentes dentro da marcagao,

para melhor visualizacao.

O dendrograma da Figura 5.9 representa a 'clusterizacao'dos vértices contidos

dentro da marcagao da Figura 5.7 e é gerado ao se clicar em qualquer um desses vértices.

ot

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 6

Nessa imagem é possivel verificar a modularidade em cada iteracao e sua variagao, conforme
explicado na Segao 4.1.2. Com base nas informacoes disponibilizadas, o engenheiro de

software pode selecionar um dos pontos de juncao e visualizar a quantidade de componentes

~—

que esse ponto de corte ird gerar, através das cores apresentadas (Figura 5.9

Ao escolher um ponto de corte, as cores do dendrograma sao repassadas para o
grafo. Apesar do Engenheiro de Software ter liberdade na escolha do ponto de corte, Girvan
e Newman (2003) sugere que a modularidade do ponto escolhido seja igual ou superior a
0,6, conforme explicado na Secao 4.2.2. O engenheiro devera fazer esse procedimento em

todos os grupos de classes nos quais deseja diminuir seu tamanho.

A A R S

N
=]
=]
4|3

Layout
FRLayout

SubLayout
CircleLayout

w=100,h=100]

Mouse Mode
PICKING

Actions
Calculate Metrics

CreateComponents

Figura 5.7 — Grafo representando o sistema SIGA-EPCT

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 66

W org.sigaept.edu.negociceiiianteravalidacDocenteElB
\ gaept‘edu.negocm.e terCalendarioAgsden
\ or S M

org.sigaept.edu.negocio

sedu.negacio ejb ik erElementdOrganizacionalEJB

org.sigasp

ara cinsent adi nanacin af antarRalatarinPantshaFIR,

Figura 5.8 — Zoom do grafo representando o sistema SIGA-EPCT

Apés o término das clusterizagoes, JCluster (Segao 5.2.1.1) cria diretérios separados
para cada grupo de cores existentes no grafo e move para elas cada conjunto que possuem a
mesma cor, levando além das classes de negdcio, suas persisténcias, e copiando as entidades,
interfaces e superclasses utilizadas. Cada pasta contera todas as classes necessarias para
criagdo de um projeto que ird criar e disponibilizar os servigos, sendo necessaria a verificagao

das bibliotecas extras que devem ser inseridas ou excluidas.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 67

2019181716 151413121110 9 &8 7 6 5 4 3 2 1 O
P T T S ST S ST S S S S M S}

org.sigaept.edu.negocio.gjb.ManterdbonoFaltaE|B

ejb.ManterSituacaoAlunoCursoE|B

org.sigaept.edu.negocio.ejb.FecharPeriodolLetivoPorTurmaEJB

org.sigaept.edu.negocio.gjb.ManterCalendarioAcademicoE|B

org.sigaept.edu.negocio.ejb.AbrirPeriodolLetivoPorTurmaElB

lu.negocio.ejb.VincularAluncAClasseE)B

Q=1.00C0 / A0=0,032!
L J0Q=09612 f AQ=0/051
Q=0.89E9 /] AQ=0l028"
Q=02117/ 40=0.086

0=-0.1920/40=0.0281
Q=-0.2442 [AQ=0,0287

Q=0.7232 / AQ=0/0864
I_4 Q=1.66CT F A0=0l0610
L 40=05955/ A0=0/0831
Q=0.5364 / AQ=0,0T51
Q=0,4802 / 40=0,1101 0=-0.2181/ AQ=0.0281
Q=03301 7 40=0,1433
Q=020E2 / AQ0=0,0991

Q=0.1077 f AQ=0,0868
0=0,0200 f AQ=0.084] Q=-0,1E74 [AQ=0,0247

Q=0,0432 / A0=0,0466
Q=-0.0898 / AD=0.0370

Q=-0.1269 [AD=0.0199
Q=-0,1468 | AQ=0,0208

Figura 5.9 — Clusterizacao das classes

5.3.3 Criacdo dos servicos

Conforme explicado na Secao 4.2.3, nao serd apresentada técnica de automatizacgao
para criagdo e disponibilizagdo dos servicos, mas sera exemplificado, dentro do estudo de

caso, as questoes abordadas na referida secao.

O primeiro passo é a disponibilizacao dos métodos como servigos. Como foi defi-
nido que sao as classes de negdcio que irao disponibilizar seus métodos, deve-se incluir
a anotacao @javax.jws.WebService nessas classes. Essa anotacao é responsavel por
definir uma classe como web service e todos os métodos publicos existentes poderao ser
acessados. Apesar de nao ser obrigatério, é recomendado a utilizacdo da anotacao @ja-
vax.jws.WebMethod nos métodos a serem disponibilizados (KALIM, 2013). Um exemplo
de uma classe do sistema SIGA-EPCT contendo essas anotagoes pode ser visualizada na
Figura 5.10.

Com os web services criados, é necessario verificar a existéncia de métodos com
mesmo nome, mesmo tendo assinaturas diferentes, conforme restrigoes apresentadas na
Secdo 4.2.3. E possivel agilizar a identificacio desses métodos com a utilizacdo do plugin
JTransformer, sendo necessario a criagdo de um script para isso, conforme pode ser visto

na Figura 5.11.

Uma vez identificados os métodos de mesmo nome, fica a cargo do engenheiro
de software alterar o nome do método, ou o nome a ser disponibilizado como servico,

incluindo o atributo operationName a anotacao @javax.jws.WebMethod. A Figura

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 68

Q@WebService
public class ManterStatusAlunoEJB implements IManterStatusAlunoEJB {

@PersistenceContext (unitName = "siga")
private EntityManager em;

Q@WebMethod
public List<TipoStatusAluno> consultarTodosTipoStatusAluno() throws NegocioException {
return new TipoStatusAlunoDAO(this.em).consultarTodos();

}

Figura 5.10 — Criagao de web service

:— module(duplicated_method_names_analysis, [duplicated_method_names_finder/2]).

duplicated_method_names_finder (MethodId, MethodIdAux) :-
sfiltrar somente as classes de megécio
packageT (Package, 'org.sigaept.edu.negocio.ejb'),
compilationUnitT(CompilationUnit, Package, _, _, [ClassId]),
classT(ClassId, CompilationUnit, _, _, _),
Jcompara os métodos dentro de uma mesma classe
methodT(MethodId, ClassId, MethodName, _, _, _, _, _),

),

methodT (MethodIdAux, ClassId, MethodNameAux, _, _, _, _,
Zignora a comparagdo de um método com ele mesmo

MethodId \== MethodIdAux,

Jcompara método com mesmo mome

MethodName == MethodNameAux.

Figura 5.11 — Script para encontrar nomes de métodos duplicados

5.12 mostra ambas refatoragoes, que produzirdo o mesmo resultado, feitas na classe
Manter AbonoFaltaEJB, que possui dois métodos com o nome pesquisaSimples, mas

assinaturas diferentes.

Tratados os nomes dos métodos, é necessario refatorar as chamadas as classes
que agora pertencem a outro componente e, consequentemente, a outro web service. Essa
refatoracao pode ser visualizada no trecho cédigo da Figura 5.13. Uma explicagdo mais

detalhada sobre utilizacdo de web services pode ser obtida em Oracle (2016).

Feito os passos citados, resta ainda verificar a necessidade de controle de transagao
dos métodos, sendo necessaria a andlise individual de cada método pelo engenheiro de
software. Apesar de existir as transagoes atomicas e de negdcio, dentro do sistema SIGA-
EPCT, tem-se a necessidade de utilizar apenas a primeira, pois nao existe nenhuma
operagao de longa duracao. A diferenca entre esses tipos de transacao é explicado na Segao

4.2.3.

O primeiro passo para habilitar a transagao é adicionar a anotacdo @com.sun.xml.

ws.api.tx.at. Transactional na classe ou método. Ao inserir a anotacao na classe, todos

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 69

Alteracao do nome do método Alteracao do nome do servigo
Q@WebService QWebService
public class ManterAbonoFaltaEJB{ public class ManterAbonoFaltaEJB{
Q@WeblMethod Q@WebMethod
public List<AbonoFalta> pesquisaSimples(...) { public List<AbonoFalta> pesquisaSimples(...) {
} }
@WebMethod @WebMethod (operationName="pesquisaSimples2")
public List<AbonoFalta> pesquisaSimples2(...){ public List<AbonoFalta> pesquisaSimples(...) {
} }
} }

Figura 5.12 — Mudanga dos nomes dos métodos dos web services

Codigo Original Cédigo Refatorado
public class ManterEducacensoEJB{ public class ManterEducacensoEJB {
QEJB ManterTurmaEJBService manterTurmaEJBService;

private IManterTurmaEJB ManterTurmaEJB;

. private List<RegistrosComposto>

private List<RegistrosComposto> —> getDadosProfissionalDocencia(Docente

— getDadosProfissionalDocencia(Docente — docente) {

<~ docente) { L.

A List<Turma> listaTurma =

List<Turma> listaTurma = ManterTurmaEJB manterTurmaEJBService

.consultarTodosTurmasPorDocente(docente) ; .getManterTurmaEJBPort ()
.consultarTodosTurmasPorDocente (docente)

Figura 5.13 — Refatoracao para chamada a web services

os métodos dela seguirdo as mesmas configuragoes. Adicionando diretamente nos métodos,
é possivel definir configuragoes diferentes para uma mesma classe. Oracle (2016) descreve

as opgoes de configuragao existentes para essa anotagao:

e Versao: versao do contexto da coordenagao de transacao atomica utilizado pelo
web service e seus clientes. A versao especificada deve ser a mesmo através da
transacao inteira, sendo os seguintes valores possiveis: WSAT10, WSAT11, WSAT12
e DEFAULT

e Tipo do fluxo: indica se o contexto da coordenacao de transacao atomica sera
passado adiante durante o fluxo da transacao. Seus possiveis valores podem ser

encontrados na Tabela 5.5.

O codigo final de um web service da classe ManterTurmaEJB, contendo as

anotagoes descritas acima pode ser vista na Figura 5.14.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 70

Tabela 5.5 — Valores de tipo de fluxo existentes (ORACLE, 2016).

Valor Cliente web service Web service
Nao exporta o contexto Nao importa o contexto
NEVER da transacao mesmo que da transacao mesmo que
possua uma transacao ja exista um fluxo de transacgao
SUPPORTS Exportzi 0 contexto de. / Importzi 0 contexto dé,
- transacao somente se ja transacao somente se ja
(Valor padrao) - - I~ <
existir uma transacao existir um fluxo de transagao
Se nao houver uma Se nao houver um contexto
MANDATORY | transacao a ser exportada, | de transacao a ser importado,
um erro € reportado um erro € reportado

QWebService
@Transactional (value=Transactional.TransactionFlowType.SUPPORTS, version=Transactional.Version.DEFAULT)
public class ManterTurmaEJB extends GenericCrudEJB<Turma, TurmaDAO> implements IManterTurmaEJB {

@WebMethod
public List<Turma> consultarTodosTurmasPorDocente(Docente docente) {
return new TurmaDAO(em) .consultarTodosTurmasPorDocente(docente) ;

}

Figura 5.14 — Web service com controle de transagao

Seguindo as orientagoes apresentadas, é possivel disponibilizar os web services
referentes a camada de negécio de cada componente identificado na se¢do anterior. E
importante lembrar que embora nao abordada por esta pesquisa, ainda serd necessario a
refatoracdo da camada de apresentacao do sistema, de forma a usar os servigos criados,

ficando esta tarefa para um trabalho futuro.

5.4 Analise e Resultados

Nesta secao serao analisadas os valores das métricas calculadas apds a execucgao
da abordagem, utilizando-as como base para avaliar se o objetivo de eficacia definido

anteriormente foi atingido.

5.4.1 Questdo 1: Que tipo de melhoria a refatoracdo das classes traz?

Com a execucao da etapa de diminuicado das dependéncias, foi possivel observar
a reducao geral do acoplamento das classes através da Medida ACCL da Tabela 5.1. A
Tabela 5.6 mostra a quantidade média de dependéncias das classes, antes e depois das
refatoragoes, dividindo os resultados por camadas. Quando observada somente a camada
de negbcio, o aumento do acoplamento encontrado ocorre porque originalmente nao havia

muitas dependéncias entre classes de negdcio, mas sim a reutilizacdo do mesmo método

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 71

da mesma classe de persisténcia. Apesar disso, ainda é possivel observar uma diminuicao

média de 24% no acoplamento (métrica M1 da Tabela 5.1) existentes nas classes.

Tabela 5.6 — Calculo da quantidade média de dependéncias das classes por camada

Cddigo Original | Cédigo Refatorado
Negobcio - Negobcio 0,08 1,05
Negocio - Persisténcia 4,34 2,30
Geral 4,42 3,36

Um exemplo que demonstra essa realidade é apresentado pela Figura 5.15, mos-
trando que originalmente a classe CopiarTurmaEJB fazia uso de trés classes de persistén-
cia, PeriodoLetivoDAQO, CursoDAO, TurmaDAQO, e depois da refatoracao passou a
referenciar apenas uma unica classe de negocio ManterTurmaEJB. Essa figura também
mostra a remocao de métodos que deixaram de ser relevantes, pois passaram a existir na

classe de negocio ManterTurmaEJB.

ejbModule/org/sigaept/edu/negocio/ejb/CopiarTurmaEJB.java

wotatciTys FURRC 51 [1MPOrT Org.S1gaept.eau.qominio.FerioqoLeTive; ~
public class CopiarTurmatlB implements ICopiarTurmaElB { 44 32 |import org.sigaept.edu.dominio.Turma;
45 33 import org.sigaept.edu.negocio.fachada.ICopiarTurmaEdB;
@PersistenceContext (unitName="siga") 46 34 |import org.sigaept.edu.negocio.fachada.IManterTurmaElB;

private EntityManager em; 35 |import org.sigaept.nucleo.exception.NegocioException;
57 @stateless
public List<PeriodoLetivo> consultarTodesOsPeriodosletivos() throws Neg 38 public class CopiarTurmaEJE implements ICopiarTurmaElB {

return new PeriodoletivoDAO(this.em).consultarTodos();

H 48 @PersistenceContext(unitName = "siga")
41 private EntityManager em;
@B0verride az
public List<Curso> contultarTodosCursosOfertadosPorPeriodo(43 @536
Periodoletivo periodoletivo, 44 private IManterTurmaElB ManterTurmaEdE;
List<listaAuxiliarSelecao> listaAuxiliarContexto) as
throws NegociocException { a8 public List<Turma> consultarTurmaPorCursoEPeriodoletivo(Curse curse, Pe
/f TODO Auto-generated method stub 47 throws NegocioException {
return new CursoDAO(this.em).contultarTodosCursosOfertados(perd 48 String query = "SELECT t FROM Turma t, Curso c, MatrizCurricula
5 43 + curso.getId()
50 + " AND t.periodoletivo.id = *
public List<Turma> consultarTurmaPorCursoEPeriodoletivo(Curso curse, Pe 51 + periodoLetivo.getId();
String query = "SELECT t FROM Turma t, Curso c, MatrizCurricula 52 return ManterTurmaEJB.consultarTodosViaQuery(query);
return new TurmaDAO(this.em).consultarTodosViaQuery(guery); 53 3
I 54
public List<Aula> consultarAulaPorClasse(Classe classe)throws Negociofx w 55 3 v
< > 68 < >

Figura 5.15 — Refatoracao da classe CopiarTurmakEJB

5.4.2 Questao 2: Quais foram as melhorias obtidas nos componentes gerados?

Com a técnica de '"clusterizacdo", responsavel pela divisdao dos componentes,
conseguiu-se uma diminuigdo da complexidade (medida COXP) e do tamanho dos com-
ponentes gerados (medida TACO), podendo ser facilmente verificado pela redugao da
quantidade de classes em cada componente. Porém ao se dividir um componente, pro-
vavelmente irdo ser criados outros com dependéncias entre si (medida ACCO), ja que
originalmente eram um sé componente. Entretanto, como o ponto de corte, responsavel
pela divisao do componente, é de livre escolha do engenheiro de software, essa reducao

pode variar significativamente.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 72

Para exemplificar, se o algoritmo de "clusterizagao'for executado no maior compo-
nente do sistema SIGA-EPCT (cor azul da Figura 5.7), criado automaticamente a partir

dos relacionamentos das classes, teremos valores diferentes para as métricas citadas acima.

A Tabela 5.7 mostra essa variacdo em relacdo as medidas definidas na Tabela 5.1,
sendo que os dados dessa tabela refletem ao componente e dendrograma das Figuras 5.8 e
5.9, respectivamente, com exce¢ao da medida COXP que é relacionado a complexidade
média de todo o sistema. As colunas da tabela 5.7 representa o componente original e
quatro conjuntos de componentes gerados apds a escolha de quatro dos possiveis pontos
de corte do dendrograma, todos com modularidade superior a 0,6, conforme sugerido
por Girvan e Newman (2003). Para cada um desses pontos de corte, as linhas da tabela

representam:

e« Modularidade: valor da modularidade no ponto de corte;
e Qtde de clusters: quantidade de componentes que o cluster original ird derivar;
« TACO: quantidade média de classes pertencentes a cada componente derivado;

o« ACCQO: acoplamento médio entre os componentes derivados;

Tabela 5.7 — Variagdo dos valores das métricas de acordo com ponto de corte da clusteri-

7acao
Apés Clusterizagao
Original Ponto de | Ponto de | Ponto de | Ponto de
Corte 1 Corte 2 Corte 3 Corte 4
Modularidade 1 0,9612 0,8999 0,8117 0,7253
Qtde de componentes 1 2 3 4 5
COXP 14,20 13,96 13,73 13,51 13,30
TACO 22 11 7,33 5,5 14
ACCO 0 0,50 1,33 1,50 1,80

Com base nas medidas da Tabela 5.7 é possivel calcular as métricas M2, M3 e M4,

também calculadas a partir dos pontos de corte definidos nessa tabela (1 ao 4). Temos

entao:

e M2: reducao variou entre 50% e 80%

o Ma3: reducao variou entre 1,70% e 6,33%

e M4: aumento variou entre 166% e 260%

Para a métrica M4 foi utilizado como base o valor de ACCO calculado para o ponto
de corte 1, ji que originalmente nao existe dependéncia com outro componente (ACCO =
0). Essas dependéncias passam a existir ap6s a divisdo do componente original, que gera

componentes menores que se relacionam.

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 73

5.4.3 Questdo 3: A funcionalidade original é mantida apds a criacdo dos
servicos?

Conforme dito anteriormente, as alteracdes propostas nao alteram os algoritmos
do sistema, de forma que as mudangas sdo feitas apenas nas chamadas e/ou nomes e nao

nos corpos dos métodos, conforme explicitado nas Figuras 5.5 e 5.13.

Para o calculo da métrica M3 foram criados 5 casos de teste’ nos quais foram
executados métodos do sistema antes e depois da modernizagao. A Tabela 5.8 mostra o
resultado da execucgao dos testes, sendo que a coluna Classe representa a classe original do
sistema, Servigo representa o web service criado a partir da classe, Método é o método
tanto da classe quanto do web service que foi executado, Ind. informa se o web service é
independente, ou seja, contém todo o cédigo dentro de si ou se depende de outro servigo e

a coluna Resultado mostra o resultado dos testes.

Tabela 5.8 — Resultado dos casos de teste

Classe Servigo Método Ind. | Resultado
ManterCursoEJB ManterCursoService consultarTodosEtapaEnsino nao sucesso
ManterTCCMatriculaEJB ManterTCCMatriculaService remover nao sucesso
ManterTCCMatriculaEJB ManterTCCMatriculaService consultarTodosTCCs sim sucesso
ManterMatrizCurricularEJB | ManterMatrizCurricularService | consultarTodos nao sucesso™
ReaberturaTurmaClasseEJB | ReaberturaTurmaClasseService | reabrirTurma sim sucesso™

Em todos os casos de teste foram obtidos sucesso nas comparagoes, indicando que
a funcionalidade continuou trazendo os mesmos resultados. Os asteriscos (*) nos dois
ultimos resultados da Tabela 5.8 sdo para informar que foi necessario uma refatoracao
antes de sua execucao. O motivo foi pelo fato de as entidades utilizadas como parametros
formarem um ciclo a partir de seus atributos, que geram erro no momento da montagem
dos XMLs para troca de mensagens, sendo necessario retirar os ciclos encontrados. Um
exemplo de ciclo encontrado pode ser verificado pelas linhas destacadas dos trechos de
codigos mostrados na Figura 5.16, onde para esse caso foi retirado o atributo private

List<ProjetoPedagogicoCurso> projetosPedagogicosCurso da classe Curso.

public class Curso extends GenericEntidadeId { public class ProjetoPedagogicoCurso extends
@CampoUnico (descricao="Codigo") < GenericEntidadeId{
0Column (name="codigo")
private String codigo;

@Column(name="nome_arquivo")
private String nomeArquivo;

@OneToMany (mappedBy="curso")

private List<ProjetoPedagogicoCurso> @ManyToOne

<~ projetosPedagogicosCurso; @JoinColumn(name = "curso_id")
private Curso curso;

Figura 5.16 — Exemplo de ciclo

7O ambiente de teste criado pode ser acessado através do link <https://github.com/aborgesrodrigues/
ambiente teste siga>.

https://github.com/aborgesrodrigues/ambiente_teste_siga
https://github.com/aborgesrodrigues/ambiente_teste_siga

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 74

Apesar de a alteracao para retirada dos ciclos das entidades nao ter uma complexi-
dade alta, pode afetar varias partes do sistema, onde é necessario substituir as chamadas

aos atributos retirados por novos métodos de consulta para trazer os mesmos dados.

5.5 Discussao

Com base nas métricas calculadas para as questoes definidas anteriormente pode-se
observar a eficicia da proposta de modernizagao, sendo esse o objetivo principal deste
estudo de caso. Uma das principais caracteristicas esta na reducao do tamanho dos web
services gerados. Isso é feito tanto na primeira etapa, diminuicao de dependéncias, que
reduz o acoplamento entre as classes, quanto na etapa de "clusterizagao", que permite a
quebra dos grupos de classes. Outro ponto é a inclusao do controle de transagoes entre
servigos, que ajuda a garantir que as funcionalidades originais continuarao funcionando da

mesma forma.

Apesar dos beneficios obtidos, existem alguns pontos criticos a serem observados
nesta pesquisa. O primeiro ¢é relacionados ao uso da féormula da forga de conectividade
(Secao 4.1.1) para a diminuigdo do acoplamento das classes, e o segundo na utilizacao
do algoritmo fast community na "clusterizagao'das classes(Segao 4.1.2). Apesar de serem
técnicas sobre as quais ja foram comprovadas suas eficacias, nao é possivel assegurar que
sao as melhores opgoes existentes para subsidiar essas operagoes, pois embora existam
varias abordagens que podem ser utilizadas para atingir o mesmo objetivo, faltam trabalhos
que os comparem de forma a auxiliar na escolha. Devido a complexidade existente em

realizar essas comparacoes, essa atividade nao foi incluida no escopo desse trabalho.

Outro ponto critico esta relacionado aos testes. Nao foi utilizado nenhum framework
para a execucgao dos testes da Segao 5.4.3, mas criou-se um ambiente integrado com o
sistema original e com os web services gerados, onde foi possivel executar ambos e comparar
os resultados. A nao utilizacdo de um framework de testes como Junit® ou Arquillian® foi
por causa de problemas técnicos encontrados, como a chamada de classes EJB (Enterprise
JavaBeans) de dentro dos casos de teste. Também nao foi testado a performance dos web
services criados, ficando a cargo do engenheiro de software definir uma forma de fazer tais

validagoes, além de realizar um conjunto de testes que abranjam mais areas do sistema.

Apesar da abordagem proposta nao exigir que o Engenheiro de Software possua um
profundo conhecimento sobre sistema a ser modernizado, o c6digo sistema SIGA-EPCT,
do estudo de caso foi conseguido pelo fato do autor pertencer a equipe de desenvolvimento,
o que prejudica essa avaliagao. Apesar disso, a utilizagao do sistema SIGA-EPCT como

estudo se caso foi devido a dificuldade de se conseguir acesso ao cddigo fonte de sistemas

8Site do Junit: <http://junit.org/junitd/>
9Site do Arquillian: <http://arquillian.org/>

http://junit.org/junit4/
http://arquillian.org/

Capitulo 5. FEstudo de caso e avaliagdo da abordagem 75

razoavelmente complexos.

A metodologia proposta nao tem a pretensao de gerar uma arquitetura ideal de
servicos ao final do processo, mas garantir que esse novo cddigo seja funcional, mantenha as
mesmas funcionalidades do sistema original e facilite a manutencao dos servigos disponibili-
zados. Um importante resultado a ser obtido é permitir ao engenheiro de software, a partir
do codigo refatorado, analisar pontualmente a performance de cada servico, identificando
possiveis gargalos. A partir de uma andalise mais restrita, e ndao da totalidade do sistema, é
possivel fazer novas refatoracoes que se julgarem necessarias, podendo alterar a arquitetura
ou até mesmo a linguagem utilizada em cada servico sem afetar os demais web services,

desde que nao sejam alteradas as assinaturas dos métodos disponibilizados.

5.6 Resumo do Capitulo

Neste capitulo a abordagem de modernizagao proposta foi executada no sistema
SIGA-EPCT como forma de um estudo de caso. Para guiar essa execucao foi utilizado o
paradigma GQM, com o objetivo de mostrar a eficicia da abordagem, que de acordo com

as métricas estabelecidas, foi alcancado.

No préximo capitulo serdo apresentados as consideragoes finais da abordagem de
modernizagao proposta, apresentando suas principais contribuicoes, as oportunidades de

trabalhos futuros que permite, e os trabalhos correlatos existentes.

76

6 CONSIDERACOES FINAIS E TRABA-
LHOS FUTUROS

Esta dissertacao apresentou uma abordagem para modernizagao de sistemas mo-
noliticos, orientados a objetos, e desenvolvidos com uma arquitetura de trés camadas,
para SOA. Diferentes técnicas foram estudadas e aplicadas, como calculo da Forca de
Conectividade, "Clusterizacao'e Refatoragoes, que dao suporte a Reengenharia desses

sistemas.

6.1 Trabalhos correlatos

Conforme observado na Secao 2.2 existem varias familias de abordagens existentes
na literatura para modernizar sistemas legados para SOA. Contudo, nesta secdo serao
apresentadas as abordagens referentes a mesma familia da apresentada nesta dissertacgao
(Familia da identificacao de servigo), focando naquelas que utilizam sistemas orientados a

objetos como origem e que definem técnicas de semi-automatizagao do processo.

O primeiro trabalho é o Eunjoo Lee et al. (2003), que define a férmula para o
calculo da forca de conectividade, utilizada na primeira etapa da abordagem proposta nesta
dissertagao. Wang et al. (2008) utiliza o trabalho anterior como base e aprimora o célculo
da forga de conectividade, com a utilizacao de pesos diferentes para atributos primitivos e
complexos. Com base na forca de conectividade é feita a "clusterizagao"hierarquica das
classes, que gerara um dendrograma com os agrupamentos realizados em cada iteracao,
sendo que os novos valores da FC encontrados em cada iteragao serao utilizados para
definir o ponto de corte. Na abordagem desta dissertacao optou-se pela utilizacdo do
algoritmo fast community para a "clusterizacao". Embora os trabalhos de Eunjoo Lee et al.
(2003) e Wang et al. (2008) tenham como objetivo a identificacdo de componentes e nao
servicos, sua comparacao ¢ valida, pois o foco deles também ¢é na identificagao de grupos

de classes.

Budhkar e Gopal (2012) utiliza a similaridade existente entre as classes para realizar
um algoritmo de "clusterizacao"hierarquico, utilizando-se de um threshold, definido pelo
engenheiro de software, como ponto de encerramento nas iteragoes de agrupamento. Apesar
de nao apresentar a formula para o calculo da similaridade, deixa claro que é baseado nos
tipos de relacionamentos existentes entre as classes, como heranca, composicao, execucao

de métodos, etc.

Adjoyan, Seriai e Shatnawi (2014) define outra funcao para calcular a ligagao

Capitulo 6. Consideragoes finais e trabalhos futuros 7

entre as classes, a fitness function (FF), que leva em conta os célculos de functionality,
composability e self- containment. Neste trabalho também é utilizado um algoritmo de
"clusterizacao"hierarquico com base nos valores das FF obtidos. Para definir o ponto de
corte é utilizado o algoritmo depth first search (DFS), sendo que inicialmente, no né raiz,
é comparado a similaridade do né corrente com a similaridade dos nés filhos, sendo que
quando a similaridade do n6 corrente for maior que a média da similaridade dos nés filhos,

este no6 serda o ponto de corte.

Tanto o agrupamento das classes quanto a clusterizacao delas se assemelham nas
propostas apresentadas acima, inclusive em relacao a proposta desta pesquisa. Todas
essas abordagens, apesar de definirem critérios distintos, agrupam as classes através destes
critérios e utilizam algoritmos de "clusterizagao"hierarquica para o agrupamento dessas
classes. Essas clusterizacoes sao todas feitas de forma hierdrquica, sendo que algumas geram
grafos, criam dendrogramas e escolhem um ponto de corte (Eunjoo Lee et al., 2003; WANG
et al., 2008; ADJOYAN; SERIAIL; SHATNAWTI, 2014), ou agrupam hierarquicamente as
classes, analisando o valor que esse agrupamento gera até que se atinja um ponto de
parada, ou treshold, que assemelha-se ao uso do ponto de corte (BUDHKAR; GOPAL,
2012).

Uma das vantagens da abordagem de modernizacao proposta em relagao as apre-
sentadas anteriormente, sao as refatoragoes definidas com o intuito de diminuir o tamanho
dos servicos a serem criados, enquanto as demais nao possuem esta etapa. Outra vantagem
¢ que a abordagem desta pesquisa leva em consideragao a existéncia de uma arquitetura
de camadas no sistema legado a ser modernizado, enquanto as demais abordagens descon-
sideram esse fato, podendo causar agrupamentos de classes inviaveis de se manter, como
entidades e persisténcia sem negbcio, ou negdcio e persisténcia sem entidades, tornando-as

dificeis de se aplicar nos sistemas com esse tipo de arquitetura.

6.2 Contribuicoes

A principal contribuicdo é a definicao de uma abordagem para a modernizacao
para SOA de sistemas monoliticos, orientados a objetos e que também possuam uma
arquitetura em camadas, através das etapas e técnicas semi-automatizadas que foram

definidas nela.

A primeira etapa dessa abordagem, diminuicao das dependéncias, contribui com
técnicas que permitem a semi-automatizacao de refatoragoes que reduzird a quantidade
de dependéncias que cada classe possui, em relacao a outras classes, tanto na camada
de persisténcia quanto na de negdcio, de modo a permitir um menor acoplamento nos

servigos a serem gerados.

A segunda etapa, "clusterizagao", também apresenta técnicas que possibilitam

Capitulo 6. Consideragoes finais e trabalhos futuros 78

a semi-automatizacao da identificacado dos grupos de classes de negbcio, que poderao
disponibilizar seus métodos como servigos. Além disso, também é apresentada técnicas
que permitem a divisdo desses grupos, caso seja necessario, devido a quantidade de classes

que possuiram em um primeiro momento.

Apesar da abordagem nao ser direcionada a uma linguagem de programacao
especifica, foi criado o plugin JCluster que implementa as técnicas das duas primeiras
etapas da abordagem, semi-automatizando o processo para os sistemas desenvolvidos
na linguagem Java. A descricao da utilizagdo do plugin JTransformer para a andlise e
refatoracao de codigo contribui para elucidar seu funcionamento, que pode ser utilizado

das mais diversas formas.

A terceira etapa, criacdo de servigos, apesar de nao descrever nenhuma técnica
para a criacao dos web services, contribui com a descricao de como eles devem ser criados,

e as caracteristicas que eles devem possuir.

6.3 Limitacoes e trabalhos futuros

A abordagem de modernizacdo proposta abre espaco para novas contribuicoes que

poderao complementé-las.

Como explicitado anteriormente, a abordagem de modernizagdo definida nao
abrange a adequagao da camada de apresentacao, que necessitara ser refatorada para
que possa usufruir dos web services gerados. Essas refatoragoes sao bastante complexas
e trabalhosas e precisam de técnicas e/ou ferramentas que permitam a automatizagao
ou semi-automatizacao do trabalho. Uma solucao seria a construcao de uma ferramenta
para auxiliar essas refatoragoes, além de identificar os pontos a serem refatorados. Para
deixa-la independente de linguagem serd necessario que essa ferramenta permita a insercao
de padroes das chamadas aos web services para as diversas linguagens, de acordo com a
necessidade do Engenheiro de Software. Essa ferramente também pode ser utilizada para
refatorar as chamadas entre os web services, apos suas criacoes, na etapa de criaciao de

Servicgos.

Outro ponto nao abordado é a separagao do banco de dados por servi¢o. Essa
separacao permitiria que cada servigo possuisse uma base de dados prépria. Como as
entidades sao a representacao do banco de dados, estas também provavelmente serao
afetadas, de forma que cada web service tera seu préprio conjunto exclusivo de entidades.
Para realizar essa tarefa sera necessario descobrir quais tabelas sao acessadas por quais
web services, montando um mapeamento. Além disso, sera necessario a exclusao das chaves
estrangeiras entre tabelas de web services diferentes, sendo necessario a inclusao dessa
constraint dentro dos web services. Deverao ser refatoradas as entidades, retirando os

atributos que referenciam entidades de outros web services, além de refatorar os scripts

Capitulo 6. Consideragoes finais e trabalhos futuros 79

SQL (ou HQL), que utilizem essas referéncias que foram removidas.

Na analise dos relacionamentos entre classes de persisténcia, da etapa de diminuicao
de dependéncias, nao foi definido uma técnica para automatizar as refatoracoes necessarias.
Apesar de ser possivel agilizar a identificacdo dessas classes através de ferramentas como
a JTransformer, a migracao desse tipo de chamada para a camada de negdcio, conforme
exemplificado pela Figura 5.4, exige conhecimento do sistema por parte do Engenheiro
de Software responsavel pela modernizagao. Seria necessério a criagdo/utilizagao de uma
ferramenta que agilizasse tal refatoragao, permitindo ao Engenheiro de Software interagir
com essa ferramenta para fazer as devidas configuragoes, como a escolha da classe de

negbcio que recebera o codigo removido da persisténcia.

Conforme apresentado na Secao 5.5, nao sé este trabalho mas, a literatura em
geral sobre modernizagbes para SOA, carece de estudos de comparacao das técnicas
utilizadas tanto para calcular a forca de ligacao entre as classes, quanto para realizar a
"clusterizagao'das mesmas. Para analisar as técnicas que possibilitam o agrupamento de
classes pode-se utilizar a técnica MoJo (TZERPOS; HOLT, 1999), que é uma métrica que
pode ser usada para avaliar a similaridade entre decomposicoes de um sistema. Uma forma
de avaliar os modelos de "clusterizagdo"é a utilizada por Erdemir e Buzluca (2014), que
avalia as abordagens sobre os critérios de authoritativeness, stability e extremity of cluster

distribution.

Pelo fato desta pesquisa focar nos critérios a serem observados na criacao de web
services, mas nao estabelecer técnicas para cria-los de fato, os testes destes web services
foram retirados do escopo da pesquisa, mas pode ser incorporado em um trabalho futuro.
Um importante tipo de teste seria o teste de regressao dos web services, comparando os
resultados do sistema monolitico original com o SOA refatorado, através de um conjunto
amplo de casos de teste e uso de ferramentas para auxiliar. Outros testes também podem
ser feitos como teste de performance, que analisa o comportamento dos web services através
de métricas e valores de referéncia pré-definidos, e o teste de stress, que verifica volume de
dados que web services consegue atender. O uso de ferramentas ¢ fundamental na execugao

de testes, como por exemplo as ferramentas SOAPUI !, TestingWhiz 2 e SOAtest 3.

O plugin JCluster esté disponivel para atualizacoes, podendo melhorar a distribuicao
dos vértices (classes) no grafo gerado por ele, de forma a facilitar a visualiza¢ao. Se for
definida técnicas especificas, é possivel adicionar a funcionalidade de criacao dos web

services e a refatoragdo das chamadas.

!Disponivel em <https://www.soapui.org>
“Disponivel em <http://www.testing-whiz.com/>
3Disponivel em <https://www.parasoft.com/product/soatest/>

https://www.soapui.org
http://www.testing-whiz.com/
https://www.parasoft.com/product/soatest/

80

REFERENCIAS

ADJOYAN, S.; SERIAI, A.-D.; SHATNAWI, A. Service Identification Based on Quality
Metrics. Proceedings of the 26 International Conference on Software Engineering €
Knowledge Engineering (SEKE2014), p. 1-6, 2014. Citado 4 vezes nas paginas 30, 32, 76
e 77.

ALVES, T. L.; HAGE, J.; RADEMAKER, P. A comparative study of code query
technologies. In: Proceedings - 11th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2011. [S.1.: s.n.], 2011. p. 145-154. ISBN
9780769543475. Citado 3 vezes nas paginas 11, 56 e 57.

BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. The goal question metric approach.
Encyclopedia of Software Engineering, v. 2, p. 528-532, 1994. Citado na pagina 52.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice (3rd Edition)
(SEI Series in Software Engineering). [S.1.: s.n.], 2012. 640 p. ISBN 0321815734. Citado 2
vezes nas paginas 25 e 30.

BINUN, A.; KNIESEL, G. Joining forces for higher precision and recall of design pattern
detection. ... , Technical report IAI-TR-2012-01, 2012. Citado na pagina 56.

BUDHKAR, S.; GOPAL, A. Component-based architecture recovery from object
oriented systems using existing dependencies among classes. International Journal of
Computational Intelligence Techniques, v. 3, n. 1, p. 5659, 2012. Citado 4 vezes nas
paginas 30, 32, 76 e 77.

CHIKOFSKY, E. J.; CROSS, J. H. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, v. 7, n. 1, p. 1317, 1990. ISSN 07407459. Citado 3 vezes nas
paginas 9, 20 e 21.

CHO, E. S.; KIM, M. S.; KIM, S. D. Component metrics to measure component quality.
Proceedings Eighth Asia-Pacific Software Engineering Conference, p. 419-426, 2001. ISSN
1530-1362. Citado 3 vezes nas péaginas 11, 53 e 54.

CONNALL, D.; BURNS, D. Reverse Engineering: Getting a Grip on Legacy Systems.
Data Management Review, v. 24, n. 7, 1993. Citado 2 vezes nas paginas 15 e 19.

CONSTANTINOU, E. et al. Extracting reusable components: A semi-automated approach
for complex structures. Information Processing Letters, Elsevier B.V., v. 115, n. 3, p.
414-417, 2015. ISSN 00200190. Citado 2 vezes nas paginas 30 e 32.

DAIGNEAU, R. Service Design Pattern. [S.1.: s.n.], 2012. XXXIII. 81-87 p. ISSN
0717-6163. ISBN 9780874216561. Citado na pagina 27.

Dos Santos Brito, K. et al. LIFT - A Legacy information retrieval tool. Journal of
Universal Computer Science, v. 14, n. 8, p. 1256-1284, 2008. ISSN 0958695X. Disponivel
em: <http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{ & }partnerID=
40{& }md5=717a584161cfa00c2741519582>. Citado na pagina 15.

http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{&}partnerID=40{&}md5=717a584161cfa00c2741519582
http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{&}partnerID=40{&}md5=717a584161cfa00c2741519582

Referéncias 81

DRAGONI, N. et al. Microservices: yesterday, today, and tomorrow. 2016. Citado 2 vezes
nas paginas 15 e 26.

ERDEMIR, U.; BUZLUCA, F. A learning-based module extraction method for
object-oriented systems. Journal of Systems and Software, Elsevier Inc., v. 97, p. 156-177,
2014. ISSN 01641212. Citado 7 vezes nas paginas 16, 32, 34, 35, 36, 37 e 79.

ERDEMIR, U.; TEKIN, U.; BUZLUCA, F. Object Oriented Software Clustering Based on
Community Structure. Proceedings - 18th Asia-Pacific Software Engineering Conference,
APSEC 2011, p. 315-321, 2011. ISSN 1530-1362. Citado 4 vezes nas paginas 32, 34, 35
e 36.

ERL, T. Service-Oriented Architecture: Concepts, Technology, and Design. City, p. 760,
2005. ISSN 0131858580. Citado na péagina 27.

Eunjoo Lee et al. A reengineering process for migrating from an object-oriented legacy
system to a component-based system. In: Proceedings 27th Annual International Computer
Software and Applications Conference. COMPAC 2003. [S.1.]: IEEE Comput. Soc, 2003. p.
336-341. ISBN 0-7695-2020-0. ISSN 0730-3157. Citado 6 vezes nas paginas 30, 32, 33, 39,
76 e 77.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Building, v. 54, p. 162, 2000. ISSN 1098-6596. Disponivel em:
<http://www.ics.uci.edu/{~}Hielding/pubs/dissertation/top.h>. Citado na pagina 27.

FOWLER, M. J. Patterns of Enterprise Application Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN 0321127420. Citado 2 vezes
nas paginas 29 e 39.

FREUND, T.; STOREY, T. Transactions in the world of Web services. Research Paper,
IBM, 2002. Citado 3 vezes nas paginas 9, 48 e 49.

GIRVAN, M.; NEWMAN, M. E. J. Finding and evaluating community structure in
networks. Cond-Mat/0308217, p. 1-16, 2003. ISSN 1063651X. Citado 3 vezes nas paginas
45, 65 e T2.

GUO, H. et al. Wrapping client-server application to Web services for Internet computing.
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings,
v. 2005, p. 366370, 2005. Citado na pagina 46.

KALIM, M. Java Web Services: Up and Running, 2nd Edition. [S.1.: s.n.], 2013. 359 p.
ISBN 9781449365110. Citado 2 vezes nas paginas 27 e 67.

KHADKA, R. et al. A structured legacy to SOA migration process and its evaluation in
practice. c2013 IEEE 7th International Symposium on the Maintenance and FEvolution
of Service-Oriented and Cloud-Based Systems, MESOCA 2013, p. 2-11, 2013. ISSN
2326-6910. Citado na pagina 37.

KHAN, M. W.; ABBASI, E. Differentiating Parameters for Selecting Simple Object Access
Protocol (SOAP) vs . Representational State Transfer (REST) Based Architecture.
Journal of Advances in Computer Networks, v. 3, n. 1, 2015. ISSN 17938244. Citado na
pagina 27.

http://www.ics.uci.edu/{~}fielding/pubs/dissertation/top.h

Referéncias 82

KITCHENHAM, B. A.; PICKARD, L. M. Evaluating Software Engineering Methods
and Tools Part 9: Quantitative Case Study Methodology. ACM SIGSOFT Software
Engineering Notes, v. 23, n. 1, p. 24-26, 1998. ISSN 01635948. Citado na pagina 52.

KNIESEL, G.; HANNEMANN, J.; RHO, T. A comparison of logic-based infrastructures
for concern detection and extraction. Proceedings of the 3rd workshop on Linking aspect
technology and evolution, p. 6, 2007. Citado 4 vezes nas paginas 9, 56, 57 e 59.

LANGWORTHY, D. et al. Coordinating Web Services Activities with WS-
Coordination, WS-AtomicTransaction, and WS-BusinessActivity. 2004. Disponivel em:
<http://msdn.microsoft.com/en-us/library /ms996526.aspx>. Acesso em: 29/01/2017.
Citado 4 vezes nas paginas 9, 48, 49 e 50.

LEHMAN, M. M.; BELADY, L. A. Program evolution: processes of software change. [S.1.]:
Academic Press Professional, Inc., 1985. 538 p. ISBN 0-12-442440-6. Citado na pagina 19.

LEWIS, G.; MORRIS, E.; SMITH, D. Service-Oriented Migration and Reuse Technique
(SMART). Software Technology and Engineering Practice, 2005. 13th IEEE International
Workshop on, n. September, p. 222-229, 2005. Citado na péagina 37.

Liang Bao et al. Extracting reusable services from legacy object-oriented systems. 2010
IEEFE International Conference on Software Maintenance, p. 1-5, 2010. ISSN 1063-6773.
Citado 3 vezes nas paginas 16, 30 e 32.

NEWCOMER, E.; ROBINSON, I. Web Services Atomic Transaction (WS-
AtomicTransaction). Oasis, n. February, p. 1-28, 2009. Citado na pégina
48.

NEWCOMER, E.; ROBINSON, I. Web services coordination (WS-Coordination) Version
1.2. Oasis, n. February, p. 1-26, 2009. Citado na pagina 48.

NEWMAN, M. E. J. Fast algorithm for detecting community structure in networks.
Physics, n. 2, p. 1-5, 2003. Citado 2 vezes nas paginas 34 e 35.

NEWMAN, S. Building Microservices. 1st. ed. [S.1.]: O'Reilly Media, Inc., 2015. 280 p.
ISBN 1491950358, 9781491950357. Citado na pagina 28.

Object Management Group (OMG). Business Process Model and Notation (BPMN)
Version 2.0. Business, v. 50, n. January, p. 170, 2011. ISSN 13507540. Citado na pagina
37.

ORACLE. Metro User Guide. 2016. Disponivel em: <https://metro.java.net/guide/>.
Acesso em: 29/01/2017. Citado 4 vezes nas péaginas 11, 68, 69 e 70.

RAZAVIAN, M.; LAGO, P. Towards a conceptual framework for legacy to SOA migration.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v. 6275 LNCS, p. 445-455, 2010. ISSN
03029743. Citado 3 vezes nas paginas 11, 21 e 23.

RAZAVIAN, M.; LAGO, P. A systematic literature review on SOA migration. Journal of
Software: Evolution and Process, v. 27, n. 5, p. 337-372, 2015. ISSN 20477481. Citado na
pagina 21.

http://msdn.microsoft.com/en-us/library/ms996526.aspx
https://metro.java.net/guide/

Referéncias 83

REUTER, A.; GRAY, J. Transaction Processing: Concepts and Techniques. [S.l.: s.n.],
1993. Citado na pagina 47.

RICHARDS, M. Microservices vs. Service-Oriented Architecture. [s.n.], 2015. 1-55 p.
ISBN 9781491952429. Disponivel em: <https://www.nginx.com/microservices-soa/>.
Citado na péagina 28.

ROTEM-GAL-OZ, A. SOA Patterns. [S.1.: s.n.], 2012. 296 p. ISBN 9781933988269.
Citado na péagina 25.

SAUDATE, A. SOA Aplicado Integrando com web services e além. [S.1.: s.n.], 2013. 293 p.
ISBN 9788566250152. Citado 2 vezes nas paginas 9 e 27.

SEACORD, R. C.; PLAKOSH, D.; LEWIS, G. A. Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices. [S.1.: s.n.], 2003. 332 p. ISSN
08953805. ISBN 0321118847. Citado na pagina 19.

SHIOKAWA, H.; FUJIWARA, Y.; ONIZUKA, M. Fast Algorithm for Modularity-Based
Graph Clustering. Proceeding of the Twenty-Seventh Conference on Artificial Intelligence,
p. 1170-1176, 2013. Citado 2 vezes nas paginas 35 e 36.

SNEED, H. M. Planning the Reengineering of Legacy Systems. I[EEE Software, v. 12, n. 1,
p. 24-34, 1995. ISSN 07407459. Citado na pagina 19.

SNELL, J. Automating business processes and transactions in Web services. Research
paper, IBM Emerging Technologies, p. 4-6, 2002. Citado na pagina 48.

STOJANOVI, Z. A Method for Component-Based and Service-Oriented Software Systems
Engineering. [S.L.: s.n.], 2005. ISBN 9090191003. Citado na péagina 15.

TIOBE.COM. TIOBFE Index for January 2017. 2017. Disponivel em: <http:
//www.tiobe.com/tiobe-index/>. Acesso em: 28/01/2017. Citado na pagina 15.

TZERPOS, V.; HOLT, R. MoJo: a distance metric for software clusterings. Sizth Working
Conference on Reverse Engineering, p. 187-193, 1999. Citado na pagina 79.

ULRICH, W. From Legacy Systems to Strategic Architectures. Software Engineering
Strategies, v. 2, n. 1, p. 18-30, 1994. Citado 2 vezes nas paginas 15 e 19.

VILLAMIZAR, M. et al. Evaluating the Monolithic and the Microservice Architecture
Pattern to Deploy Web Applications in the Cloud Evaluando el Patrén de Arquitectura
Monolitica y de Micro Servicios Para Desplegar Aplicaciones en la Nube. 10th Computing
Colombian Conference, p. 583-590, 2015. Citado 3 vezes nas paginas 15, 17 e 26.

VISAGGIO, G. Ageing of a Data Intensive Legacy System: Symptoms and Remedies.
Journal of Soft. Maintenance and Evolution, v. 13, p. 281-308, 2001. Citado na pagina
19.

WANG, X. et al. A new approach of component identification based on weighted
connectivity strength metrics. Information Technology Journal, v. 7, n. 1, p. 56-62, 2008.
ISSN 18125638. Citado 6 vezes nas paginas 16, 30, 32, 45, 76 e 77.

WOHLIN, C. et al. Experimentation in Software Engineering: An Introduction. [S.1.: s.n.],
2000. xx, 204 p. p. ISBN 0792386825. Citado na pagina 52.

https://www.nginx.com/microservices-soa/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/

Referéncias 84

YOUSEF, R.; ADWAN, O.; ABUSHARIAH, M. A. M. Extracting SOA Candidate
Software Services from an Organization’s Object Oriented Models. JSEA - Journal of
Software Engineering and Applications, v. 7, n. August, p. 770-778, 2014. ISSN 1945-3116,
1945-3124. Citado 3 vezes nas paginas 16, 30 e 32.

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Contextualização
	Objetivos
	Organização da Dissertação

	Reengenharia de Software
	Conceitos
	Terminologia

	Abordagens de Reengenharia de Sofware para SOA
	Considerações finais
	Resumo do Capítulo

	Arquiteturas de Software
	Conceitos Básicos
	Arquitetura monolítica
	SOA
	Arquitetura em Camadas
	Considerações Finais
	Resumo do Capítulo

	Modernização de sistemas monolíticos para arquitetura orientada a serviços
	Mecanismos da Abordagem proposta
	Força de Conectividade
	Algoritmo Fast Community

	Proposta de Metodologia de Modernização
	Diminuição das dependências
	Clusterização
	Criação dos serviços
	Transações entre serviços

	Resumo do Capítulo

	Estudo de caso e avaliação da abordagem
	Contexto
	Planejamento
	Ferramentas utilizadas
	JCluster
	JTransformer

	Execução
	Diminuição das dependências
	Clusterização
	Criação dos serviços

	Análise e Resultados
	Questão 1: Que tipo de melhoria a refatoração das classes traz?
	Questão 2: Quais foram as melhorias obtidas nos componentes gerados?
	Questão 3: A funcionalidade original é mantida após a criação dos serviços?

	Discussão
	Resumo do Capítulo

	Considerações finais e trabalhos futuros
	Trabalhos correlatos
	Contribuições
	Limitações e trabalhos futuros

	Referências

