

Pós-Graduação em Ciência da Computação

ALESSANDRO BORGES RODRIGUES

Uma Abordagem Gradativa de Modernização de

Software Monolítico e em Camadas para SOA

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE

2017

Alessandro Borges Rodrigues

Uma Abordagem Gradativa de Modernização de Software Monolítico e em Camadas para

SOA

 ORIENTADOR: Prof. Dr. Vinicius Cardoso Garcia

RECIFE

2017

Este trabalho foi apresentado à Pós-Graduação em

Ciência da Computação do Centro de Informática da

Universidade Federal de Pernambuco como requisito

parcial para obtenção do grau de Mestre Profissional

em Ciência da Computação.

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

R696a Rodrigues, Alessandro Borges

Uma abordagem gradativa de modernização de software monolítico e em
camadas para SOA / Alessandro Borges Rodrigues – 2017.

 84 f.: il., fig., tab.

 Orientador: Vinícius Cardoso Garcia.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2017.
 Inclui referências.

 1. Engenharia de software. 2. Arquitetura de software. I. Garcia, Vinícius
Cardoso (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2017-113

Alessandro Borges Rodrigues

Uma Abordagem Gradativa de Modernização de Software

Monolítico e em Camadas para SOA

 Dissertação apresentada ao Programa de Pós-

Graduação em Ciência da Computação da

Universidade Federal de Pernambuco, como

requisito parcial para a obtenção do título de

Mestre Profissional em 27 de março de 2017.

Aprovado em: ___/___/______.

BANCA EXAMINADORA

__

Prof. Leopoldo Motta Teixeira

Centro de Informática / UFPE

__

Prof. Leandro Marques do Nascimento

Universidade Federal Rural de Pernambuco

__

Prof. Vinícius Cardoso Garcia

Centro de Informática / UFPE

 (Orientador)

Dedico este trabalho à minha esposa, Rejane, pelo apoio e auxílio durante toda nossa vida
juntos, e por me proporcionar o privilégio de me tornar pai.

AGRADECIMENTOS

Agradeço aos meus pais, Dulce e Adail, por terem me ensinado que a educação é
um patrimônio para toda a vida e por ter me dado o suporte necessário para seguir neste
caminho.

Aos companheiros de mestrado, em especial aos amigos do alojamento do IFPE.

Aos meus colegas de trabalho do IFTO e a esta instituição que, junto com a UFPE
e demais instituições, possibilitaram a oportunidade desse mestrado à vários servidores de
todo o país.

Aos professores do Centro de Informática da UFPE pelos seus ensinamentos, aos
funcionários do CIn que contribuíram para que este curso fosse realizado e especialmente
ao meu orientador Vinicius Garcia, pela acompanhamento deste trabalho.

"Se você encontrar um caminho sem obstáculos, ele provavelmente não leva a lugar
nenhum."

Frank Clark

RESUMO
A constante evolução tecnológica, tanto de hardware quanto de software, faz com que
muitos sistemas tornem-se obsoletos, apesar de ainda atenderem seus requisitos e serem
estáveis. Outrora foi a época dos sistemas procedurais, hoje vemos que a própria evolução
deles, os orientados a objetos, em muitos casos, se tornaram obsoletos, grandes e complexos,
com tecnologias ultrapassadas e contendo centenas ou milhares de classes, sendo esses
problemas agravados naqueles que foram construídos de forma monolítica, possuindo assim
apenas um único arquivo como resultado. A arquitetura orientada a serviços permite
a criação de sistemas com menor complexidade, já que seus serviços possuem baixo
acoplamento, permitindo atualizações individuais sem afetar os demais serviços. Porém,
a reconstrução dos sistemas já existentes nessa nova arquitetura é inviável, devido ao
custo necessário (tempo, mão de obra etc.), sendo a reengenharia deles uma possível
solução, que permite a reformulação desses sistemas de uma maneira menos onerosa.
Apesar da arquitetura em camadas ser bastante utilizada nos sistemas orientados a
objetos, faltam soluções de reengenharia que leve esse fato em consideração, não sendo tão
efetivas quando executadas em sistemas com essa arquitetura. Este trabalho busca definir
uma abordagem para modernização de sistemas monolíticos, orientados a objetos e que
tenham sido desenvolvidos com a arquitetura em camadas, para a arquitetura orientada a
serviços, de uma forma semi-automatizada, sem a necessidade de o engenheiro de software
possuir um profundo conhecimento do sistema a ser modernizado. No sistema reconstruído,
as classes das camadas de negócio e persistência serão agrupadas de acordo com seus
relacionamentos, e os métodos das classes de negócio serão disponibilizados como serviços.
As etapas da abordagem proposta são constituídas de técnicas, cujas fórmulas e algoritmos
podem ser adicionados/transformados em ferramentas que automatizarão o processo. Esta
metodologia de modernização permite que os web services criados possuam uma quantidade
menor de classes, além de menor complexidade em cada serviço, mantendo a funcionalidade
original. Isso é conseguido tanto através de refatorações no código original que diminui a
quantidade de dependência entre as classes, quanto através da separação de agrupamentos
de classes em pedaços menores. Foram obtidos resultados satisfatórios no estudo de caso,
como redução de 24% da dependência média entre as classes, diminuição de 80% e 6,33%
do tamanho e da complexidade estática do componente (CSC), respectivamente e 100%
de sucesso nos testes de regressão.

Palavras-chave: Reengenharia de Software. Migração. SOA. Refatoração. Modernização.
Arquitetura de Software.

ABSTRACT
The constant technological evolution, both hardware and software, makes many systems
become obsolete, although they still attend their requirements and are stable. Once
was the time of procedural systems, today we see that the very evolution of them, the
object-oriented, in many cases, have become obsolete, large and complex, with outdated
technologies and containing hundreds or thousands of classes, these problems being
aggravated in those that were built in a monolithic way, thus possessing only a single
file as a result. The service-oriented architecture allows the creation of systems with
less complexity, as their services have low coupling, allowing individual updates without
affecting other services. However, reconstruction of existing systems in this new architecture
is not feasible due to the cost needed (time, labor etc), reengineering them being a possible
solution, which allows the reformulation of these systems in a less costly way. Although
the layered architecture is the most used in object oriented systems, it lacks reengineering
solutions that take this fact into account, not being so effective when executed in systems
with this architecture. This work aims to define an approach to the modernization of
monolithic and layered systems for service-oriented architecture, in a semi-automated
manner, without the need for the sotware engineer has a deep knowledge of the system
to be modernized. In the rebuilt system, the business and persistences layer classes will
be grouped according to their relationships, and methods of business classes will be
made available as services. The steps of the proposed approach are techniques, whose
formulas and algorithms can be added/transformed into tools that will semi-automate the
process. This modernization methodology allows the created web services to have a smaller
number of classes, in addition to less complexity in each service, maintaining the original
functionality. This is accomplished both by refactoring in the original code that decreases
the amount of dependency between classes, and by separating class clusters into smaller
pieces. Satisfactory results were obtained in the case study, such as a reduction of 24%
in average dependence between classes, a decrease of 80% and 6.33% in component size
and static complexity (CSC), respectively, and a 100% success rate in the tests regression
analysis.

Keywords: Software Reengineering. Migration. SOA. Refactoring. Modernizing. Software
Architecture.

LISTA DE ILUSTRAÇÕES

Figura 2.1 – Ciclo de Vida do Software (Tradução minha)(CHIKOFSKY; CROSS,
1990) . 21

Figura 3.1 – Exemplo de um documento SOAP (SAUDATE, 2013) 27
Figura 3.2 – Arquitetura em Camadas . 29
Figura 3.3 – Exemplo de arquiteturas em camadas 30
Figura 3.4 – Exemplo de SOA . 31
Figura 4.1 – Exemplo de código para cálculo da força de conectividade 34
Figura 4.2 – Exemplo de grafo . 35
Figura 4.3 – Clusterização . 36
Figura 4.4 – Macro Fluxo da abordagem de modernização de sistemas OO para SOA 37
Figura 4.5 – Refatoração das classes de persistência 38
Figura 4.6 – Refatoração das classes de negócio . 39
Figura 4.7 – Exemplo de código . 40
Figura 4.8 – Refatoração: Inclusão de Métodos . 41
Figura 4.9 – Refatoração: Alteração das chamadas aos métodos 41
Figura 4.10–Fluxo do processo de diminuição das dependências das classes 42
Figura 4.11–Exemplo de grafo . 43
Figura 4.12–Clusterização . 45
Figura 4.13–Fluxo do processo de clusterização . 46
Figura 4.14–Refatoração chamada entre serviços . 47
Figura 4.15–Padrões de descrição de web services (FREUND; STOREY, 2002) . . . 48
Figura 4.16–Utilização dos protocolos de transação (LANGWORTHY et al., 2004) . 50
Figura 4.17–Fluxo para criação dos serviços . 50
Figura 5.1 – Exemplo de script do JTransformer (KNIESEL; HANNEMANN; RHO,

2007) . 59
Figura 5.2 – Script para encontrar chamadas entre classes de persistência 60
Figura 5.3 – Funcionamento da ferramenta JTransformer 61
Figura 5.4 – Refatoração para retirada de dependência entre persistências 61
Figura 5.5 – Resultado das refatorações da modernização onde uma persistência está

associada à apenas um negócio . 63
Figura 5.6 – Parte do script de refatoração das classes de negócio 64
Figura 5.7 – Grafo representando o sistema SIGA-EPCT 65
Figura 5.8 – Zoom do grafo representando o sistema SIGA-EPCT 66
Figura 5.9 – Clusterização das classes . 67
Figura 5.10–Criação de web service . 68

Figura 5.11–Script para encontrar nomes de métodos duplicados 68
Figura 5.12–Mudança dos nomes dos métodos dos web services 69
Figura 5.13–Refatoração para chamada a web services 69
Figura 5.14–Web service com controle de transação 70
Figura 5.15–Refatoração da classe CopiarTurmaEJB 71
Figura 5.16–Exemplo de ciclo . 73

LISTA DE TABELAS

Tabela 2.1 – Visão geral das famílias de modernização para SOA (RAZAVIAN;
LAGO, 2010) . 23

Tabela 5.1 – Lista de métricas e relação com as questões do paradigma GQM. . . . 53
Tabela 5.2 – Pesos com base no tipo de relacionamento para o cálculo do CSC (CHO;

KIM; KIM, 2001). 54
Tabela 5.3 – Comparação entre ferramentas de análise de código (ALVES; HAGE;

RADEMAKER, 2011). 57
Tabela 5.4 – Segmento do resultado da identificação das classes persistências com

suas respectivas classes de negócios . 62
Tabela 5.5 – Valores de tipo de fluxo existentes (ORACLE, 2016). 70
Tabela 5.6 – Cálculo da quantidade média de dependências das classes por camada . 71
Tabela 5.7 – Variação dos valores das métricas de acordo com ponto de corte da

clusterização . 72
Tabela 5.8 – Resultado dos casos de teste . 73

LISTA DE ABREVIATURAS E SIGLAS

IDE: Integrated Development Enviroment

JSON: JavaScript Object Notation

OO: Orientação a Objetos

REST: Representational State Transfer

SOA: Service-Oriented Architecture

SOAP: Simple Object Access Protocol

WSDL: Web Services Description Language

XML: eXtensible Markup Language

SUMÁRIO

1 INTRODUÇÃO . 15
1.1 Contextualização . 15
1.2 Objetivos . 16
1.3 Organização da Dissertação . 17

2 REENGENHARIA DE SOFTWARE 19
2.1 Conceitos . 19
2.1.1 Terminologia . 20
2.2 Abordagens de Reengenharia de Sofware para SOA 21
2.3 Considerações finais . 24
2.4 Resumo do Capítulo . 24

3 ARQUITETURAS DE SOFTWARE 25
3.1 Conceitos Básicos . 25
3.2 Arquitetura monolítica . 26
3.3 SOA . 27
3.4 Arquitetura em Camadas . 28
3.5 Considerações Finais . 29
3.6 Resumo do Capítulo . 31

4 MODERNIZAÇÃO DE SISTEMAS MONOLÍTICOS PARA ARQUI-
TETURA ORIENTADA A SERVIÇOS 32

4.1 Mecanismos da Abordagem proposta 32
4.1.1 Força de Conectividade . 32
4.1.2 Algoritmo Fast Community . 34
4.2 Proposta de Metodologia de Modernização 37
4.2.1 Diminuição das dependências . 38
4.2.2 Clusterização . 42
4.2.3 Criação dos serviços . 46
4.2.3.1 Transações entre serviços . 48
4.3 Resumo do Capítulo . 50

5 ESTUDO DE CASO E AVALIAÇÃO DA ABORDAGEM 52
5.1 Contexto . 52
5.2 Planejamento . 53
5.2.1 Ferramentas utilizadas . 54

5.2.1.1 JCluster . 55
5.2.1.2 JTransformer . 56
5.3 Execução . 58
5.3.1 Diminuição das dependências . 58
5.3.2 Clusterização . 64
5.3.3 Criação dos serviços . 67
5.4 Análise e Resultados . 70
5.4.1 Questão 1: Que tipo de melhoria a refatoração das classes traz? 70
5.4.2 Questão 2: Quais foram as melhorias obtidas nos componentes gerados? . . 71
5.4.3 Questão 3: A funcionalidade original é mantida após a criação dos serviços? 73
5.5 Discussão . 74
5.6 Resumo do Capítulo . 75

6 CONSIDERAÇÕES FINAIS E TRABALHOS FUTUROS 76
6.1 Trabalhos correlatos . 76
6.2 Contribuições . 77
6.3 Limitações e trabalhos futuros . 78

REFERÊNCIAS . 80

15

1 INTRODUÇÃO

1.1 Contextualização
Atualmente existe um grande número de empresas que trabalham com sistemas

implementados com linguagens de programação antigas, além de arquiteturas muito
restritivas. A defasagem das linguagens e arquiteturas é um problema recorrente e pode
acontecer com qualquer sistema em seu ciclo de vida, pois sempre surgem novas tecnologias
e paradigmas que melhoram a qualidade dos sistemas desenvolvidos, além de diminuir o
tempo de desenvolvimento necessário, tornando as tecnologias existentes obsoletas.

Apesar das grandes vantagens na utilização das novas tecnologias, reconstruir os
sistemas legados é geralmente um trabalho complexo, demanda tempo, possui um custo
alto e muitas vezes chega a ser inviável. Porém, devido a quantidade de informações
armazenadas e a confiabilidade que suas funcionalidades possuem após vários anos de
utilização e aprimoramento, esses sistemas continuam sendo essenciais para as empresas
(CONNALL; BURNS, 1993; ULRICH, 1994), de forma que uma opção mais viável é a
atualização do sistema legado existente para que usufrua das novas tecnologias.

A Reengenharia de Software é uma forma de conseguir evoluir esses sistemas
legados, mantendo o conhecimento existente neles (Dos Santos Brito et al., 2008). No
início dos anos 90, com a popularização das linguagens orientadas a objetos (OO), foram
iniciadas várias pesquisas relacionadas à modernização dos sistemas procedurais para
OO através da Reengenharia, devido ao ganho na reutilização e manutenibilidade que a
orientação a objetos possibilita.

Em pouco tempo, linguagens orientadas a objetos se tornaram as mais utilizadas
no desenvolvimento de sistemas (TIOBE.COM, 2017), o que significa que uma grande
quantidade de sistemas foram e vêm sendo desenvolvidos nessas linguagens OO. Porém,
com o tempo, o aprimoramento gradual desses sistemas OO aumentou sua complexidade
na manutenção e testes. Essa complexidade é agravada naqueles que são monolíticos
(STOJANOVI, 2005), ou seja, geram apenas um executável ou componente como resultado,
dificultando também na escalabilidade e introdução de novas tecnologias em funcionalidades
específicas, (DRAGONI et al., 2016), sendo essas novas tecnologias, em alguns casos,
incompatíveis com as utilizadas.

A arquitetura orientada a serviço (SOA) resolve os problemas dos sistemas monolí-
ticos, melhorando a escalabilidade, que pode ser feita para cada serviço, além de diminuir
a complexidade da manutenção e testes, já que estes podem ser feitos em componentes
menores (VILLAMIZAR et al., 2015).

Capítulo 1. Introdução 16

Existem na literatura várias técnicas de Reengenharia para auxiliar na modernização
de sistemas OO para SOA, como Erdemir e Buzluca (2014), Yousef, Adwan e Abushariah
(2014), Liang Bao et al. (2010), mas muitas delas ignoram o fato de que a maioria dos
sistemas OO possuem uma arquitetura em camadas, de modo que a utilização dessas
técnicas pode agrupar as classes de forma incorreta, podendo, por exemplo, separar uma
classe de negócio de uma classe de persistência ou entidade que ela utiliza, impossibilitando,
ou aumentando as refatorações necessárias para sua utilização, conforme observado por
Wang et al. (2008).

Motivado pelos problemas existentes nos sistemas legados, em especial aqueles
monolíticos, orientados a objetos e que possuem uma arquitetura em camadas, esta
pesquisa pretende apresentar uma proposta de modernização, quebrando essa arquitetura
monolítica e modernizando-a para SOA. As limitações impostas pelos requisitos se deve ao
fato, como citado anteriormente, dos sistemas orientados a objetos englobar grande parte
das aplicações existentes e as pesquisas relacionadas a modernização de sistemas OO não
serem tão efetivas quando executadas sobre aqueles com arquiteturas em camadas.

1.2 Objetivos
Esta dissertação tem o objetivo de definir um catálogo de técnicas para auxiliar

na modernização de sistemas orientados a objetos, monolíticos e com arquitetura em
camadas para SOA, independente da linguagem de programação utilizada. Por causa da
aplicabilidade dessa abordagem em várias linguagens de programação, não são definidas
ferramentas específicas a serem utilizadas, e sim técnicas, fórmulas e algorítimos que podem
ser adicionados/transformados em ferramentas de apoio. Esta abordagem é composta
de três etapas, diminuição de dependências, clusterização 1 e criação dos serviços, sendo
que cada uma delas possui técnicas semi-automatizadas que agilizará o processo. O foco
principal dessa abordagem é na identificação dos possíveis serviços, através do agrupamento
de classes que se relacionam entre si.

Um dos objetivos da primeira etapa, diminuição de dependências, é a redução do
acoplamento entre as classes, diminuindo a quantidade de relacionamentos entre elas e
permitindo a criação de serviços menores, ou seja com menos classes. Essa etapa também
padroniza a comunicação que deve acontecer somente entre as classes da camada de
negócio.

Na segunda etapa, "clusterização", é definida uma técnica que permite a divisão de
um serviço em serviços menores, de acordo com a modularidade que essa divisão irá gerar.
O objetivo dessa etapa é, também, permitir a criação de serviços menores, que facilitará

1Clusterização é a palavra equivalente em português para o termo clustering, em inglês, que significa
agrupamento, referenciando a agrupamento de classes no contexto desta pesquisa.

Capítulo 1. Introdução 17

futuras manutenções e testes (VILLAMIZAR et al., 2015).

O objetivo da terceira etapa é definir regras que devem ser observadas no momento
da criação dos serviços através de web services, de maneira a permitir que a funcionalidade
continue operando da mesma forma que a original. Nessa etapa não são definidas técnicas
para criação de web services, pois podem variar de acordo com a linguagem de programação
e IDE utilizada, e a idéia da proposta de modernização é que ela possa ser executada em
sistemas escritos em qualquer linguagem de programação, desde que sejam observados
os requisitos iniciais, que é ser orientado a objetos, monolítico, e com arquitetura em
camadas.

Este trabalho não abordará a alteração da camada de apresentação para a utilização
dos serviços criados, pois implica em análise tando da parte de back-end da camada de
apresentação quanto do próprio front-end da aplicação, que pode variar de acordo com
o framework utilizado. Também não será abordado a separação do banco de dados para
cada serviço ou conjunto de serviços, que implica, possivelmente na criação/alteração
de campos/tabelas, remoção de restrições, sincronização de dados entre serviços etc,
afetando vários scripts SQL (Structured Query Language) que possam existir. Além disso,
as alterações no banco de dados irá refletir em mudanças nas classes de entidades e scripts
HQL (Hibernate Query Language) ou similares, já que estas são a representação OO do
banco de dados. Essas exclusões foram feitas devido a complexidade e tempo necessário
para fazê-los, ficando essas tarefas para um trabalho futuro.

1.3 Organização da Dissertação
Esta dissertação está organizada em seis capítulos mais uma seção relacionada às

referências bibliográficas, sendo o primeiro capítulo relacionado à introdução.

No Capítulo 2 são apresentados os principais conceitos sobre Reengenharia de
Software e são exibidos vários tipos uma categorização dos trabalhos relacionados a
modernização de sistemas, através da reengenharia, para a arquitetura orientada a serviços
(SOA).

No Capítulo 3 é apresentada uma visão geral das arquiteturas envolvidas no processo
de modernização, desde as arquiteturas de origem (monolítica e em camadas) até a de
destino (SOA).

O Capítulo 4 detalha a abordagem proposta para a realização da modernização
dos sistemas, descrevendo as etapas, técnicas e ferramentas utilizadas.

O Capítulo 5 apresenta um estudo de caso feito sobre um sistema real, com o
objetivo de validar a eficácia da abordagem.

Por último, o Capítulo 6 apresenta as considerações finais, abordando os trabalhos

Capítulo 1. Introdução 18

correlatos, as principais contribuições e os trabalhos futuros.

19

2 REENGENHARIA DE SOFTWARE

Nos dias atuais é fácil perceber a dependência das organizações em relação aos
softwares por ela utilizados, não sendo mais possível a existência de uma organização
sem eles (CONNALL; BURNS, 1993; ULRICH, 1994). Tal importância faz com que
essas organizações procurem utilizar as mais modernas tecnologias, seja para melhorar o
desempenho interno, seja para ganhar alguma vantagem em relação a seus concorrentes.
Porém, grande parte dos sistemas críticos utilizados foram desenvolvidos há muitos anos e
apenas sua manutenção não é o bastante para mantê-los atualizados.

Lehman e Belady (1985) demonstram que pior que a desatualização, quando
não se faz alguma melhoria, é a degradação da qualidade através da manutenção e,
consequentemente, a manutenibilidade do software. Visaggio (2001) chama essa degradação
de "sintomas de envelhecimento"(aging symptoms) e apresenta evidências de que o processo
de Reengenharia pode diminui-los.

Neste capítulo são apresentados conceitos de Reengenharia de Software que serão
relevantes na abordagem proposta.

2.1 Conceitos
Segundo Seacord, Plakosh e Lewis (2003), reengenharia é uma forma de moderni-

zação que melhora as capacidades ou manutenibilidade de um sistema legado através da
introdução de tecnologias e práticas modernas. Os objetivos principais da Reengenharia
são (SNEED, 1995):

• Melhorar manutenibilidade: pode-se, por exemplo, reduzir a manutenção com
a Reengenharia de módulos menores com interfaces mais explícitas. É difícil de
medir seu ganho porque também pode ocorrer por outros fatores como equipe mais
treinada, ou utilização de métodos mais eficientes;

• Migração/Modernização: a Reengenharia pode ser utilizada para realizar a mi-
gração de um sistema entre ambientes operacionais diferentes. Também pode mudar
sistemas desenvolvidos em linguagens ou arquiteturas obsoletas para outras mais
modernas e flexíveis;

• Obter maior confiabilidade: os testes extensivos necessários para garantir a
equivalência das funcionalidades podem evidenciar erros antigos e a reestruturação
revela potenciais defeitos. Esse objetivo pode ser medido através da análise de erros;

Capítulo 2. Reengenharia de Software 20

• Preparação para melhorias funcionais: decompor um sistema em módulos
menores melhora sua estrutura além de isolá-los uns dos outros. Isso facilita a adição
ou alteração de funções sem afetar outros módulos.

2.1.1 Terminologia

Chikofsky e Cross (1990) apresenta a terminologia empregada na engenharia de
software relacionadas as tecnologias de análise e entendimento de sistemas legados, sendo
os principais termos:

• Engenharia avante: é o processo tradicional de desenvolvimento, indo de abstra-
ções e lógicas de alto nível com projetos independentes de implementação para a
implementação física de um sistema;

• Engenharia reversa: é o processo de análise de um sistema para identificar seus
componentes e inter-relacionamentos, e criar representações do sistema em outra
forma ou em um nível maior de abstração. Há várias subáreas na engenharia re-
versa, sendo que as que são mais amplamente referenciadas são redocumentação e
recuperação de projeto;

– Redocumentação: é a criação ou revisão de representação semanticamente
equivalente a outra, mantendo o mesmo nível de abstração. As representações
resultantes são geralmente consideradas visões alternativas (por exemplo, fluxo
de dados, estrutura de dados e fluxo de controle) com o objetivo de serem
analisadas por pessoas;

– Recuperação de projeto: é um subconjunto da Engenharia Reversa em que
o conhecimento do domínio, informações externas e dedução ou raciocínio difuso
são adicionados às observações do sistema alvo para identificar abstrações de alto
nível significativas além daquelas obtidas diretamente através da examinação
direta do sistema;

• Reestruturação: é a transformação de uma representação para outra no mesmo
nível de abstração, preservando o comportamento externo do sistema (funcionalidades
e semântica). Um exemplo é a alteração de um código para melhorar sua estrutura,
no sentido tradicional de projeto estruturado; e

• Reengenharia: é a análise e alteração de um sistema para reconstituí-lo e implementá-
lo em uma nova forma.

A Figura 2.1 mostra o relacionamento entre esses termos, sendo que foi considerado
apenas três estágios do ciclo de vida (Requisitos, Projeto e Implementação), com claras

Capítulo 2. Reengenharia de Software 21

diferenças no nível de abstração. Os Requisitos especificam o problema a ser resolvido,
incluindo objetivos, restrições e regras de negócio. O Projeto trata de especificação da
solução e a Implementação refere-se a codificação, teste e entrega de um sistema em
funcionamento. Nessa figura nota-se que a Engenharia Avante vai do nível de abstração mais
alto (Requisitos) para o mais baixo (Implementação), enquanto a Engenharia Reversa faz o
caminho inverso. A Reengenharia pode ser feita tanto somente na parte de implementação
ou em conjunto com a parte de Projeto.

Figura 2.1 – Ciclo de Vida do Software (Tradução minha)(CHIKOFSKY; CROSS, 1990)

2.2 Abordagens de Reengenharia de Sofware para SOA
Na literatura existem várias abordagens de reengenharia que tratam sobre a moder-

nização de sistemas legados para SOA, indo desde a descrição de passos a serem seguidos
a técnicas semi-automatizadas. Razavian e Lago (2015) analisou 75 abordagens existentes,
verificando suas semelhanças e diferenças, agrupando-as em 8 diferentes "famílias", de
acordo com as atividades executadas.

Para fazer esse agrupamento foi utilizado o framework SOA-MF criado por Razavian
e Lago (2010), que é um esqueleto de atividades genéricas representando as necessidades a
serem executadas em um projeto de modernização. Esse framework é composto de três

Capítulo 2. Reengenharia de Software 22

processos: Engenharia Reversa, Transformação (Reestruturação) e Engenharia Avante. As
famílias definidas são:

• Família da transformação de código (code transformation family): se li-
mita a transformações no nível de sistema, convertendo o código legado para baseado
em serviços. Nesta família a modernização implica em mover o sistema legado como
um todo para SOA, sem decompor o sistema existente. Se uma transformação desse
tipo for executado em um sistema monolítico, ele continuará monolítico, mesmo que
disponibilize serviços;

• Família da identificação de serviço (service identification family): não
abrange o processo de transformação, significando que não ocorre a remodelação
do sistema de elementos legados para elementos baseados em serviço. Nesta família
a modernização é limitada a identificação de possíveis serviços dentro do sistema
legado, através de ténicas de Reengenharia;

• Família da transformação do modelo de negócio (business model trans-
formation family): os processos de Engenharia Reversa e a Engenharia Avante não
são contemplados, sendo a modernização realizada através do processo de transforma-
ção, realizado no nível conceitual. Existem duas principais categorias de abordagens
de migração nessa família sendo a primeira àquelas que definem meta-processos, cujo
objetivo é apoiar na tomada de decisão sobre como fazer a modernização. A segunda
categoria executa a Reengenharia sobre os processos de negócio do sistema, para
que sirvam de base para o desenvolvimento top-down de serviços;

• Família de transformação de elementos de projeto (design element trans-
formation family): o processo de transformação ocorre somente nos elementos
básicos de projeto (por exemplo, módulos ou classes). Caso os processos de Enge-
nharia Reversa e Avante forem abordados se limitarão também somente à esse nível.
Nesta família a modernização é limitada a remodular os elementos do sistema legado
para elementos baseados em serviço, por exemplo, uma especificação de componente
é alterada para especificação de serviço, um módulo é transformado em um serviço,
ou um segmento de código da camada de persistência é convertido em um serviço de
dados;

• Família da Engenharia Avante (forward engineering family): abrange com-
pletamente o processo de Engenharia Avante, sendo que os processos de transformação
e Engenharia Reversa ocorrem somente no nível de elementos básicos de projeto.
O foco desta família é o desenvolvimento de sistemas baseados em serviços, tendo
como ponto de partida os processos de negócios. A Engenharia Reversa é utilizada
apenas para localizar as funcionalidades dos serviços identificados no processo de
Engenharia Avante;

Capítulo 2. Reengenharia de Software 23

• Família da transformação de projetos e elementos compostos (design and
composite element transformation family): os três processos de modernização
ocorrem nos níveis de elementos básicos de projeto e elementos de composição de
projeto. Engloba a recuperação e refatoração da arquitetura do sistema legado para
SOA, além de remodelar os elementos legados para elementos baseados em serviço;

• Família da transformação de composição baseada em padrões (pattern-
based composition transformation family): inclui apenas o processo de trans-
formação no nível de elementos de composição de projeto, implicando que a arqui-
tetura do sistema existente é alterada ou configurada dentro de SOA, geralmente
através da utilização de patterns;

• Família da Engenharia Avante com análise de lacunas (forward enginee-
ring with gap analysis family): o processo de transformação ocorre nos níveis
conceituais, de elmentos de composição de projeto e elementos básicos de projeto.
Aqui o processo de Engenharia Avante engloba as atividades de análise e projeto
de serviços, enquanto a Engenharia Reversa não é utilizada. O foco principal dessa
família é no desenvolvimento top-down de serviços, começando com a extração dos
modelos de negócio do sistema legado para depois projetar os serviços. O que diferen-
cia esta família da outra que também utiliza desenvolvimento top-down (Família da
Engenharia Avante) é que nesta são feitas comparações entre os artefatos originais e
os gerados, sendo essas comparações feitas em cada nível de abstração (incluindo ós
níveis conceituais, de composição e de projeto).

A Tabela 2.1 mostra a divisão das 75 abordagens avaliadas dentro das fámílias
definidas, sendo que a coluna Quantidade mostra o número de abordagens dentro de
cada família e a coluna Percentual mostra seu percentual equivalente em relação ao total
de abordagens analisadas.

Tabela 2.1 – Visão geral das famílias de modernização para SOA (RAZAVIAN; LAGO,
2010)

Família Quantidade Percentual
Família da transformação de código 12 16%
Família da identificação de serviço 12 16%
Família da transformação do modelo de negócio 5 7%
Família de transformação de elementos de projeto 21 28%
Família da Engenharia Avante 8 10%
Família da transformação de projetos e elementos compostos 10 14%
Família da transformação de composição baseada em padrões 3 4%
Família da Engenharia Avante com análise de lacunas 4 5%

Capítulo 2. Reengenharia de Software 24

2.3 Considerações finais
A categorização das metodologias de modernização de sistemas para SOA, apresen-

tada na seção anterior, permite uma visão geral dos vários tipos de abordagens existentes,
mostrando diversos tipos de modernizações possíveis para atingir o mesmo objetivo, embora,
em alguns casos, possuam níveis de abstração diferentes.

Com base nesta categorização, é possível incluir a proposta deste trabalho dentro
da família de identificação de serviço (service identification service), pois este é o seu
principal objetivo. Porém, embora o foco da abordagem de modernização proposta foque
na identificação dos serviços, existe uma etapa específica para o tratamento dos web
services, que define as regras que eles devem seguir no momento de suas criações, sem
definir, entretanto, técnicas ou ferramentas específicas. O Capítulo 4 mostrará os detalhes
da abordagem proposta.

2.4 Resumo do Capítulo
Este capítulo apresentou a terminologia e conceitos da Engenharia de Software

que serão utilizados neste trabalho. Também mostrou uma categorização das abordagens
existentes, de acordo com as atividades realizadas, o que possibilitou a inclusão da
abordagem deste trabalho em uma delas.

O próximo capítulo apresenta as arquiteturas que esta proposta abrange, desde as
existentes no sistema de origem, até SOA, que é a arquitetura de destino da abordagem
de modernização proposta.

25

3 ARQUITETURAS DE SOFTWARE

Este capítulo aborda os conceitos sobre arquitetura de software e detalha as
arquiteturas referenciadas na abordagem de modernização, sendo elas a arquitetura
monolítica na Seção 3.2, baseadas em serviços na Seção 3.3 e a em camadas na Seção 3.4.

3.1 Conceitos Básicos
Bass, Clements e Kazman (2012) define arquitetura de software como sendo um

conjunto de estruturas necessários de um sistema, compreendendo elementos de software,
relacionamentos entre eles e as propriedades de ambos.

Dentre as estruturas de software que compõem uma arquitetura é importante
ressaltar três delas:

• Estruturas estáticas: unidades de implementação (módulos) que se concentram
na forma como a funcionalidade do sistema é dividida e atribuída a equipes de
implementação;

• Estruturas dinâmicas: se concentram na forma como os elementos interagem
uns com os outros em tempo de execução para executar as funções do sistema (ex:
conjunto de componentes e/ou serviços);

• Estruturas de alocação: descreve o mapeamento das estruturas de software com
os ambientes de organização, desenvolvimento, instalação e execução do sistema (ex:
atribuição de módulo/componente a um time de desenvolvimento).

Rotem-Gal-Oz (2012) apresenta uma outra definição descrevendo a arquitetura
de software como uma coleção de decisões fundamentais sobre um produto ou solução,
projetado para atender os atributos de qualidade do projeto (requisitos da arquitetura).
A arquitetura inclui os principais componente e atributos, além de suas interações e
comportamentos para atender os atributos de qualidade.

Com base nas definições apresentadas, pode-se inferir que uma arquitetura deve
estabelecer os componentes de um software, suas interações e limites, servindo de guia no
desenvolvimento na distribuição das estruturas criadas durante o ciclo de vida do sistema.
Nas seções a seguir serão apresentadas alguns exemplos de arquiteturas, mostrando os
principais componentes e a forma em que interagem entre si.

Capítulo 3. Arquiteturas de Software 26

3.2 Arquitetura monolítica
Villamizar et al. (2015) define que uma aplicação monolítica é um sistema que

possui um único arquivo como resultado, que oferece dezenas ou centenas de serviços
usando diferentes interfaces como páginas HTML e web services.

Conforme observado pela definição, a arquitetura monolítica está ligada à forma em
que as estruturas de software serão publicadas, existindo nesse caso apenas uma. Dentro
desta estrutura pode haver outros níveis de arquitetura, relacionadas à organização de
seus elementos, como a divisão por camadas, ou até mesmo a disponibilização de serviços.

O uso desta arquitetura possui várias vantagens, podendo-se destacar:

• Simplicidade no desenvolvimento, já que muitas das atuais ferramentas e IDEs foram
projetadas para o desenvolvimento de aplicações monolíticas;

• Simplicidade de publicação, pois existe apenas um arquivo, ou estrutura de diretórios,
e

• Simplicidade de escalonamento, uma vez que basta criar múltiplas cópias da aplicação
acessadas por um balanceador de carga.

Porém, apesar da simplicidade que a utilização desta arquitetura traz, também
existe as limitações impostas por ela. Dragoni et al. (2016) cita um conjunto dessas
limitações, sendo algumas delas apresentadas a seguir:

• Quanto maior o tamanho da aplicação monolítica mais difícil é mantê-la e evoluí-la,
devido ao aumento de sua complexidade;

• Limitação na escalabilidade do sistema, uma vez que para escalar deve-se criar novas
instâncias de toda a aplicação, mesmo que o tráfego seja intenso em apenas um
grupo pequeno de módulos, ou mesmo apenas um;

• Dificuldade de evoluir as tecnologias utilizadas, devido a necessidade de utilização
de uma mesma linguagem e frameworks da aplicação original.

Com base nas vantagens e desvantagens dessa arquitetura, o engenheiro de software
deve tomar a decisão se vale a pena utilizá-la para criar um novo sistema, assim como
decidir o momento em que ela passa a ser prejudicial em um sistema já existente, sendo
necessário sua modernização para uma nova arquitetura.

Capítulo 3. Arquiteturas de Software 27

3.3 SOA
Erl (2005) define a arquitetura orientada a serviços (SOA) como um estilo arquite-

tural que define o uso de serviços de software com baixo acoplamento e interoperacionais
para atender os requisitos dos processos de negócio e usuários. Segundo Daigneau (2012),
o serviço se refere a qualquer função de software que executa uma operação de negócio.

Apesar de ser possível utilizar tecnologias como CORBA e DCOM para dispo-
nibilizar serviços através de componentes, o foco deste trabalho será na utilização de
web services, pois provêm os meios para integrar sistemas diferentes e expõem funções
reutilizáveis através de HTTP (DAIGNEAU, 2012), utilizando-se de padrões abertos e
interoperáveis em diferentes plataformas de computação e independentes das tecnologias
de execução subjacentes.

De acordo com Daigneau (2012), os web services podem utilizar o HTTP (Hypertext
Transfer Protocol) de duas maneiras, sendo a primeira para a troca de dados, empregando
para isso padrões como XML e JSON (serviços SOAP/WSDL). A segunda usando o HTTP
como protocolo de aplicação que define semânticas para o comportamento dos serviços
(serviços REST).

REST (REpresentational State Transfer), inicialmente definido por Fielding (2000),
é um estilo de arquitetura de software para sistemas de hipermídia distribuídos, ou
sistemas em que texto, imagens, áudios, e outras mídias são armazenadas através da rede
e interconectadas através de hyperlinks (KALIM, 2013). REST web services são baseados
em URLs e nos quatro métodos do protocolo HTTP, utilizando POST para inserir um
novo registro, PUT para alterar um registro existente, DELETE para excluir um registro
e GET para pegar as informações de um registro.

SOAP (Simple Object Access Protocol) é um protocolo para troca de mensagens,
utilizado para traduzir as informações de um web service (por exemplo request e response),
sendo as mensagens documentos XML (KHAN; ABBASI, 2015). SOAP também é conhecido
como Envelope SOAP, já que seu elemento raiz é o Envelope. Seu formato segue o padrão
mostrado na Figura 3.1.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://servicos.estoque.knight.com/"/>↪→

<!-- Aqui pode ter, ou não, um elemento soapenv:Header -->
<soapenv:Body>

</soapenv:Body>
</soapenv:Envelope>

Figura 3.1 – Exemplo de um documento SOAP (SAUDATE, 2013)

Segundo Saudate (2013) o elemento Envelope é um container para os elmentos
Header, que contém metadados relativos à requisição (ex: informações de autenticação e

Capítulo 3. Arquiteturas de Software 28

endereço de retorno), e Body, que possui o corpo da requisição (ex: nome da operação
e seus parâmetros). O Header também permite a adição de especificações de recursos
adicionais relativos a web services, como o WS-Transaction, que permite um controle extra
de transações entre serviços, e o WS-Security que adiciona camadas de segurança ao web
service.

A existência dessas extensões, em especial a WS-Transaction (detalhado na Seção
4.2.3) foi o principal motivo para a escolha do protocolo SOAP ao invés de REST para os
web services a serem criados pela proposta de modernização de arquitetura. Apesar de
existirem formas para controle de transações entre REST web services, isso geralmente não
é conseguido de forma tão transparente, sendo necessária a adição de uma nova camada ou
framework, como por exemplo o Atomikos1, e a criação de funções específicas para desfazer
as operações já concluídas quando ocorrer um erro. Essa adição de operações acrescenta
um ponto crítico à modernização, pois o código acrescentado, se feito de forma incorreta,
pode prejudicar a confiabilidade dos dados, além de ser necessário um maior conhecimento
do sistema a ser modernizada. Apesar de dificuldades adicionais existentes com utilização
de REST, esta ainda é uma opção viável, desde que observados os pontos levantados.
Porém, para simplificar o processo de modernização e aumentar a confiabilidade do sistema
modernizado, todos os web services citados neste trabalho estão relacionados a SOAP.

Além de SOA existem outras arquiteturas baseadas em serviço, sendo que a de
microserviços merece mais destaque. A diferenciação entre a arquitetura de microserviços
e SOA é um ponto de discussão delicado entre os pesquisadores, pois ambas utilizam
serviços como principal componente de implementação e execução de funcionalidades
(RICHARDS, 2015). Além disso, existem autores que inclusive colocam microserviço como
uma abordagem SOA (NEWMAN, 2015).

Embora possa se discutir se microserviços é ou não é SOA, existem algumas
características que uma arquitetura deve possuir para receber tal classificação. Newman
(2015) define microserviços como serviços pequenos e autônomos que trabalham em
conjunto. Com base nessa definição, é possível inferir que a proposta da utilização de
serviços neste trabalho não atende estes requisitos, isso porque nem o tamanho ou sua
independência estão entre as restrições impostas pela abordagem de modernização proposta,
podendo gerar serviços de vários tamanhos, tanto independentes quanto relacionados entre
si. A criação destes serviços é apresentada com mais detalhes na Seção 4.2.3.

3.4 Arquitetura em Camadas
A divisão do sistema em camadas é uma das arquiteturas mais comuns usadas

por desenvolvedores para separar as complexidades de um sistema, de acordo com Fowler

1Disponível em <https://www.atomikos.com/>

https://www.atomikos.com/

Capítulo 3. Arquiteturas de Software 29

(2002). Nessa arquitetura os elementos do sistema são organizados em camadas horizontais,
sendo que cada camada executa papéis específicos da aplicação. A troca de informações é
feita somente entre as camadas diretamente conectadas, sendo que a responsável por fazer
as requisições será sempre a camada superior. Essa arquitetura pode ser visualizado na
Figura 3.2.

Figura 3.2 – Arquitetura em Camadas

Embora a arquitetura não defina a quantidade de camadas que deve existir, as
principais utilizadas são três, sendo elas: apresentação, negócio e persistência, podendo
cada uma delas ser definidas como (FOWLER, 2002):

• Apresentação: gerencia todas as interfaces com o usuário e lógica de comunicação;

• Negócio: executa regras de negócio específicas para cada requisição;

• Persistência: faz a comunicação com o banco de dados e gerencia transações.

Apesar de ser a camada de apresentação que mostra os dados para o usuário, ela
não tem acesso direto a eles, mas sim a persistência. Como apenas a camada superior
pode fazer requisições a camada abaixo dela, uma requisição da apresentação deve passar
pela camada de negócio, que processará e retransmitirá para a camada subjacente que é a
persistência. A resposta para essa requisição fará o caminho inverso.

Em sistemas orientados a objetos, geralmente é usada uma outra estrutura para
representar os dados do banco de dados (Entidade da Figura 3.2), sendo que ela trafega
entre as camadas. Pelo fato dessa arquitetura estar relacionada a separação das estruturas
estáticas, ela pode estar presente tanto em um sistema monolítico quanto dentro de um
serviço SOA.

3.5 Considerações Finais
O motivo da escolha da arquitetura em camadas como requisito para a modernização

se deve ao fato de que embora esta seja a arquitetura mais utilizada para a maioria das

Capítulo 3. Arquiteturas de Software 30

aplicações Java Enterprise Edition (BASS; CLEMENTS; KAZMAN, 2012), muitas das
pesquisas relacionadas à modernização de sistemas legados para componentes ou serviços
não levam em consideração a existência dessas camadas.

Essa declaração pode ser observada na pesquisa de Wang et al. (2008), que evidencia
a desconsideração da existência de camadas. Apesar disso não estar explícito em outras
pesquisas (ADJOYAN; SERIAI; SHATNAWI, 2014; CONSTANTINOU et al., 2015;
BUDHKAR; GOPAL, 2012; YOUSEF; ADWAN; ABUSHARIAH, 2014; Liang Bao et al.,
2010; Eunjoo Lee et al., 2003; WANG et al., 2008), o mesmo fato pode ser constatado.
Pois estas outras pesquisas observam apenas os relacionamentos entre as classes, podendo
por exemplo gerar componentes/serviços onde pode existir uma classe de negócio e uma de
persistência, mas sem as entidades que trafegarão as informações, ou uma classe entidade
e uma de negócio, sem uma persistência para salvar as informações.

As arquiteturas baseadas em serviços resolvem os problemas listados na Seção 3.2.
Porém, mesmo utilizando essas novas arquiteturas para os novos desenvolvimentos, ainda
restam os sistemas legados, escritos monoliticamente, que precisam ter sua arquitetura
migrada de forma a aproveitar de seus benefícios, sendo o auxílio a essa modernização o
foco deste trabalho.

class ClasseN1{
public void metodo1(){

ClasseN2 classeN2 = new ClasseN2();
classeN2.metodo2();

ClasseP1 classeP1 = new ClasseP1();
classeP1.alterar();

}

public void metodo3(){
ClasseP1 classeP1 = new ClasseP1();
classeP1.alterar();

}
}

class ClasseN2{
public void metodo2(){

ClasseP2 classeP2 = new ClasseP2();
classeP2.alterar();

}

public void metodo4(){
ClasseN1 classeN1 = new ClasseN1();
classeN1.metodo3();

ClasseP2 classeP2 = new ClasseP2();
classeP2.alterar();

}
}

Figura 3.3 – Exemplo de arquiteturas em camadas

Apesar da proposta de modernização ser transformar um sistema monolítico em
SOA, a estrutura em camadas será mantida dentro dos serviços criados, diminuindo assim
a quantidade de refatorações necessárias. As Figuras 3.3 e 3.4 exemplificam, através de
trechos de pseudo-código, a arquitetura em camadas e SOA, respectivamente, sendo que
os serviços do exemplo SOA também possuem uma arquitetura em camadas dentro delas.
A diferenciação do código entre as arquiteturas e suas figuras se faz através do destaque
nas linhas de código que sofrem alteração. Nessas figuras as classes ClasseN1 e ClasseN2
pertencem à camada de negócio, e as classes ClasseP1 e ClasseP2 à camada de persistência,
sendo que as figuras detalham somente a camada de negócio.

Capítulo 3. Arquiteturas de Software 31

@WebService
class ClasseN1{

public void metodo1(){
//ServicoClasseN2 referencia ao web service da

classe ClasseN2↪→
ServicoClasseN2 servicoClasseN2 = new

ServicoClasseN2();↪→
servicoClasseN2.metodo2();

ClasseP1 classeP1 = new ClasseP1();
classeP1.alterar();

}

public void metodo3(){
ClasseP1 classeP1 = new ClasseP1();
classeP1.alterar();

}
}

@WebService
class ClasseN2{

public void metodo2(){
ClasseP2 classeP2 = new ClasseP2();
classeP2.alterar();

}

public void metodo4(){
//ServicoClasseN1 referencia ao web service da

classe ClasseN1↪→
ServicoClasseN1 servicoClasseN1 = new

ServicoClasseN1();↪→
servicoClasseN1.metodo3();

ClasseP2 classeP2 = new ClasseP2();
classeP2.alterar();

}
}

Figura 3.4 – Exemplo de SOA

3.6 Resumo do Capítulo
Este capítulo descreveu as arquiteturas referenciadas pela proposta de modernização,

apresentando suas características e detalhando os motivos que levaram a escolhê-las como
arquiteturas de origem e destino desta proposta.

No próximo capítulo é apresentado os detalhes propostos de modernização, de-
talhando os passos que permitirão que um sistema monolítico, orientado a objetos e
desenvolvido com uma arquitetura de três camadas, seja transformado em um sistema
com arquitetura SOA.

32

4 MODERNIZAÇÃO DE SISTEMAS MO-
NOLÍTICOS PARA ARQUITETURA ORI-
ENTADA A SERVIÇOS

Nos capítulos anteriores foram apresentados os principais conceitos envolvidos nesta
pesquisa, que proporcionaram o fundamento teórico para a criação de uma abordagem
que auxilie a modernização, para SOA, de sistemas monolíticos, orientados a objetos e
desenvolvidos com uma arquitetura de três camadas.

A abordagem é composta de três etapas sendo a primeira a diminuição de de-
pendência, que reduzirá a quantidade de relacionamentos entre as classes, a segunda é a
"clusterização", responsável pelo agrupamento dessas classes e a terceira e última a criação
dos serviços, que definirá critérios a serem observados na criação dos web services. Dentro
delas serão definidas técnicas e fórmulas que poderão ser utilizaras por ferramentas para
automatizar suas realizações. Antes de iniciar com a descrição de cada um das etapas será
apresentado os fundamentos que serão utilizados.

4.1 Mecanismos da Abordagem proposta
A abordagem proposta utiliza técnicas já existentes na literatura, adequando-as

conforme a necessidade para melhor atender os requisitos desejados.

4.1.1 Força de Conectividade

Para auxiliar no agrupamento das classes há a necessidade de identificar o grau
de ligação existente entre elas, de forma a unir aquelas com maior ligação. Para atingir
esse objetivo encontram-se na literatura várias pesquisas, podendo citar Adjoyan, Seriai e
Shatnawi (2014), Constantinou et al. (2015), Budhkar e Gopal (2012), Yousef, Adwan e
Abushariah (2014), Liang Bao et al. (2010), Eunjoo Lee et al. (2003), Wang et al. (2008).

Escolheu-se a fórmula definida por Eunjoo Lee et al. (2003) e aprimorada por Wang
et al. (2008), a qual foi atribuída o nome força de conectividade (connectivity strength),
pois ela leva em consideração apenas as ligações existentes no código fonte, que, em grande
parte dos sistemas legados, é o único documento existente, ou pelo menos o único confiável
(ERDEMIR; TEKIN; BUZLUCA, 2011; ERDEMIR; BUZLUCA, 2014).

Essa técnica baseia-se na quantidade e tipos de parâmetros dos métodos de uma
classe que são utilizados por outra, sendo que quanto maior a quantidade e/ou a complexi-

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 33

dade dos parâmetros, maior será a ligação entre as classes. Sua fórmula é descrita através
da equação:

FC(N1, P1) =
∑

Mn∈MSET (N1)

∑
Mp∈MSET (P1)

FC(Mn, Mp) (4.1)

FC(Mn, Mp) =


Pricount(Mp) ∗ wpri +∑Abscount(Mp)

i=0 COX(Pi) , se Mn chama Mp

0 , caso contrário


(4.2)

COX(Pi) =


∑

a∈T Y P E(Pi) wpri , se a é primitivo
wabs , se a é membro de Pi

COX(a) ∗ wabs , caso contrário
(4.3)

Em que:

• N1, P1 = Classe de negócio e persistência respectivamente;

• MSET(N1) = Conjunto de métodos da classe N1;

• Mn, Mp = método específico da classe;

• Pricount(Mp) = quantidade de parâmetros do tipo primitivo no método Mp;

• Abscount(Mp) = conjunto de parâmetros que são classes criadas pelo desenvolvedor;

• wpri, wabs = pesos para parâmetros primitivo e criados pelo desenvolvedor (wpri +
wabs. = 1, geralmente wabs > wpri, pois tipos criados costumam ser mais complexos
que tipos primitivos). Esses pesos devem ser definidos pelo Engenheiro de Sofware
responsável pela modernização do sistema legado (Eunjoo Lee et al., 2003);

• Pi= classe passada como parâmetro para o método Mp e que foi criada pelo desen-
volvedor e

• COX(Pi) = valor da complexidade da classe criada pelo desenvolvedor.

Para exemplificar, será feito o cálculo da força de conectividade entre as classes
N1 e P1 do trecho do código mostrado na Figura 4.1. O primeiro passo é o cálculo da
complexidade (COX) dos parâmetros dos métodos de P1 e que são executados por N1,
sendo esses parâmetros uma entidade criada no projeto (E1), uma classe externa ao projeto,
pertencente a uma biblioteca (Ex), e dois parâmetros de tipos primitivos, um inteiro (i1) e
float (flt1).

Como E1 possui dois atributos primitivos, o valor de sua complexidade é COX(E1)
= 2 * wpri ⇒ 2 * 0,3 ⇒ 0,6. Não é calculada a complexidade para o tipo EX, pois sua

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 34

implementação, assim como sua complexidade, não é de responsabilidade do sistema, sendo
considerado para esse caso, apenas o peso wabs para representar essa complexidade. Para
os parâmetros primitivos, i1 e flt1, terão como complexidade o peso wpri.

public class N1{
public void metodoN1(){

P1 p1 = new P1();
p1.metodoP1(e1, 0.85);
p1.metodoP3(ex, 7);

...
}

}

public class P1{
public void metodoP1(E1 e1, float flt1){

...
}

public void metodoP3(Ex ex, int i1){
...

}
}

public class E1{
private int attrInt;
private String attrStr;

...

}

Figura 4.1 – Exemplo de código para cálculo da força de conectividade

Com essas informações é possível calcular a força de conectividade entre N1 e P1,
somando as complexidades dos parâmetros de cada método de P1 executado por N1, sendo
o cálculo apresentado a seguir:

FC(N1, P1) = (COX(E1)+wpri)+(wabs+wpri)⇒ (0, 6+0, 3)+(0, 7+0, 3)⇒ 0, 9+1⇒ 1, 9

Na abordagem proposta, a força de conectividade será utilizada como insumo para
a refatoração da camada de negócio, em relação à execução de classes da camada de
persistência, explicada da Seção 4.2.1.

4.1.2 Algoritmo Fast Community

Apesar de o agrupamento de classes através de seus relacionamentos não ser uma
tarefa muito complexa, às vezes, é necessário fazer a divisão do componente gerado, de
forma a diminuir seu tamanho. Para realizar essa divisão, utilizou-se o algoritmo de
"clusterização"chamado fast community, definido por Newman (2003). O objetivo principal
desse algoritmo, executado sobre grafos, é encontrar as communities, sendo que community
sructure é uma organização especial, em que vértices formam grupos com alta densidade nas
arestas internas e baixa densidade nas arestas externas (ERDEMIR; TEKIN; BUZLUCA,
2011).

Segundo Erdemir e Buzluca (2014), este algoritmo apresentou-se superior a outros
da literatura, quando observados sob os critérios de authoritativeness, stability e extremity
of cluster distribution, significando (ERDEMIR; TEKIN; BUZLUCA, 2011; ERDEMIR;
BUZLUCA, 2014):

• Authoritativenes: similaridade entre a decomposição feita por profissionais e a
automatizada por um algoritmo de "clusterização";

• Stability: o resultado da extração automática não deve produzir efeitos drastica-
mente diferentes quando executados sobre versões similares de um software com
pequenas alterações e

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 35

• Extremity of cluster distribution: diz respeito à equivalência do tamanho dos
componentes, pois, não se deve produzir componentes muito grandes ou muito
pequenos por não serem comuns na arquitetura dos mesmos, além de poder ocasionar
a diminuição da coesão e o aumento do acoplamento.

Apesar desse algoritmo não ter sido inicialmente idealizado para a "clusterização"de
classes em sistemas orientados a objetos, Erdemir, Tekin e Buzluca (2011), Erdemir e
Buzluca (2014) demonstram essa possibilidade, criando um grafo a partir do código fonte
do sistema, sendo que cada vértice representa uma classe, as arestas seus relacionamentos
e a seta pertencente as arestas indica que a classe de origem executa métodos da classe de
destino. Um exemplo desse grafo pode ser visualizado através da Figura 4.2, sendo que o
código que o originou é composto por quatro classes, N1, N2, N3 e N4, a classe N2 executa
métodos das classes N1, N3 e N4, e a classe N3 executa métodos de N4.

Figura 4.2 – Exemplo de grafo

O algoritmo fast community é descrito no Algoritmo 1 (NEWMAN, 2003; ERDE-
MIR; TEKIN; BUZLUCA, 2011; SHIOKAWA; FUJIWARA; ONIZUKA, 2013; ERDEMIR;
BUZLUCA, 2014).

1 Considere cada vértice como um cluster diferente;
2 while existir mais de um cluster do
3 Junte os dois clusters que tiveram o maior crescimento, ou menor redução da

modularidade;
end

4 Selecione o ponto de corte do dendrograma resultante, analisando o maior valor de
da modularidade;

Algoritmo 1: Algoritmo Fast Community.

Conforme pode ser observado no algoritmo, a "clusterização"é feita em iterações e,
em cada uma delas, dois clusters são agrupados até que reste apenas um único cluster.
Essa sequencia de agrupamentos gera um dendrograma, que mostra a ordem em que os
agrupamentos foram feitos.

A Figura 4.3 mostra o dendrograma relacionado ao grafo da Figura 4.2, sendo
que a régua na parte superior indica o número de iterações que o algoritmo teve. Nela

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 36

é possível verificar que o primeiro agrupamento foi o das classes N2 e N1, pois, com
ele, conseguiu-se o maior ganho de modularidade (∆W=0,6250) em relação as outras
possibilidades de agrupamento (N2-N3, N2-N4 e N3-N4). Na segunda iteração o maior ganho
da modularidade foi com a junção de N2 com N3 (∆W=0,500), e para a última iteração
restou a junção dos dois únicos componentes existentes, N1-N2 e N2-N3, transformando
tudo em um único cluster e encerrando o algoritmo.

Figura 4.3 – Clusterização

A escolha do ponto de corte será baseada na modularização que cada iteração gera,
de acordo com a modularidade que o sistema possui em cada iteração. Neste exemplo,
optando-se pelo ponto de corte nas junções N1-N2 ou N3-N4 o mesmo resultado será
gerado, ou seja, produzirá dois componentes, um contendo as classes N1 e N2 e outro
contendo as classes N3 e N4. É importante ressaltar que pode haver casos em que o
melhor é não selecionar nenhum ponto de corte, mantendo todas as classes em um único
componente. O cálculo da modularidade é feito através da seguinte fórmula (ERDEMIR;
TEKIN; BUZLUCA, 2011; SHIOKAWA; FUJIWARA; ONIZUKA, 2013; ERDEMIR;
BUZLUCA, 2014):

• Qw = ∑
i(C(i))

• C(i) = eii − ai2

Em que:

• Qw = modularidade;

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 37

• eii = quantidade de arestas internas dividida pelo total de arestas do grafo (fração
de arestas internas ao cluster) e

• ai
2 = quantidade de arestas externas dividida pelo total de arestas do grafo (fração

de arestas externas que se ligam ao cluster).

A escolha do ponto de corte é baseada no valor da modularidade do sistema em
cada iteração (variável "Q"da Figura 4.2), sendo os critérios utilizados para tal seleção
serão detalhados na Seção 4.2.2.

4.2 Proposta de Metodologia de Modernização
A abordagem demonstrada nesta pesquisa foi definida a partir da utilização de

mecanismos de identificação de componentes/serviços. Pois a pesquisa objetiva auxiliar na
modernização, para SOA, de sistemas orientados a objetos, monolíticos, e que também
possuam uma arquitetura de três camadas. A proposta é composta por três etapas,
conforme pode ser observada pela Figura 4.4, que foi criada seguindo a notação BPMN
(Object Management Group (OMG), 2011).

Figura 4.4 – Macro Fluxo da abordagem de modernização de sistemas OO para SOA

Como boa parte dos sistemas legados não possuem documentação ou estas estão
desatualizadas ou incompletas (LEWIS; MORRIS; SMITH, 2005; KHADKA et al., 2013;
ERDEMIR; BUZLUCA, 2014), todas as técnicas apresentadas usam como entrada apenas
o próprio código fonte do sistema, analisando-o e/ou refatorando-o para atingir o objetivo
final.

Na primeira etapa é feita uma análise do código, verificando as ligações entre as
classes e calculando a força de conectividade (FC) entre as classes de negócio e as classes
de persistência utilizadas. A FC é utilizada como base nas refatorações para diminuir a
quantidade de relacionamentos existentes. Na segunda etapa, a partir do código refatorado,
é executado o agrupamento das classes de acordo com seus relacionamentos. Para os casos
necessários, o engenheiro de software executa o algoritmo de "clusterização"fast community
(Seção 4.1.2), responsável pela divisão em grupos menores. A etapa final culmina na criação
de web services a partir das classes de negócio. Nesta última etapa não são definidas
técnicas específicas, mas critérios para auxiliar na tomada de decisão do engenheiro na

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 38

criação dos serviços. Devido a variedade de formas possíveis que os desenvolvedores podem
utilizar para determinar se uma classe é de negócio ou persistência, como inclusão em
pacotes específicos ou estender determinada classe, a identificação da camada das classes
ficará a cargo do Engenheiro de Software encarregado pela modernização do sistema.

Nas seções a seguir serão detalhadas as etapas da abordagem, suas técnicas e
ferramentas utilizadas, além de demonstrá-las através de sua execução sobre o sistema SIGA-
EPCT (Sistema Integrado de Gestão Acadêmica da Educação Profissional e Tecnológica).
Esse sistema atende os requisitos iniciais e é utilizado por alguns Institutos Federais de
Educação, Ciência e Tecnologia do país.

4.2.1 Diminuição das dependências

Com o intuito de melhorar a coesão e o acoplamento dos web services resultantes,
o primeiro passo é melhorar esses atributos nas classes existentes. Para guiar esta etapa,
definiu-se que será mantida, para cada componente gerado (conjunto de classes), a arquite-
tura em camadas existente no sistema original. A camada de negócio, que é a camada de
mais alto nível dentro de cada componente, irá disponibilizar seus métodos como serviços.

Partindo-se desta premissa, foram feitas análises de cada camada, iniciando pela
persistência e, assim, identificou-se a existência de relacionamentos entre suas classes. Isto
é um indício de que elas estão tratando de regras de negócio, sendo necessárias refatorações,
transportando parte do código para a camada superior. Esta alteração possibilita a criação
futura de componentes menores, conforme demonstrado através da Figura 4.5, que contém
a representação do código original na Figura 4.5a e do código refatorado na Figura 4.5b.

(a) Componente Original
(b) Componente Refatorado

Figura 4.5 – Refatoração das classes de persistência

Após essas refatorações, passou-se para a análise da camada de negócio e seus
relacionamentos com a persistência. Percebeu-se que no negócio existiam diferentes classes
relacionadas a uma mesma classe de persistência. Embora essa utilização não quebre o

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 39

conceito de camadas (FOWLER, 2002), essa prática dificulta a criação das classes em
componentes menores, conforme ilustrado pela Figura 4.6a.

Para tentar diminuir o tamanho do componente a ser gerado, definiu-se mais uma
refatoração, na qual cada classe de persistência irá se relacionar com apenas uma classe de
negócio, conforme ilustrado na Figura 4.6b.

(a) Componente Original (b) Componente Refatorado

Figura 4.6 – Refatoração das classes de negócio

Porém, para realizar a operação proposta primeiro deve-se identificar qual classe de
negócio será responsável por qual classe de persistência. Isto é feito calculando a FC entre
cada classe das camadas de negócio e persistência, sendo que a fórmula para o cálculo da
FC foi explicada na Seção 4.1.1. Com base na FC, cada classe de persistência deverá se
relacionar com a classe de negócio que possuir a maior conectividade.

Para exemplificar essa refatoração, supõem-se um sistema com duas classes de
negócio (N1 e N2), duas de persistência (P1 e P2) e três de entidade (E1, E2 e E3),
conforme mostrado na Figura 4.7.

Inicialmente é necessário calcular a complexidade (COX) das classes usadas como
parâmetros entre N1 e P1, ou seja, as entidades E1 e E2. Como E1 tem dois atributos
primitivos então sua complexidade é COX(E1) = 2 * wpri ⇒ 2 * 0,3 ⇒ 0,6. Para o cálculo
referente a classe E2, temos COX(E2) = 1 * wpri + COX(E3) * wabs ⇒ 1 * 0,3 + (1 *
0,3) * 0,7 ⇒ 0,51. Para esse exemplo usou-se os valores 0,3 e 0,7 para os pesos wpri e wabs

respectivamente, conforme definidos por Eunjoo Lee et al. (2003).

Com o valor das complexidades obtidas anteriormente é possível calcular a força
de conectividade entre N1→P1, N1→P2, N2→P1, N2→P2, tendo:

• FC(N1, P1) = 0 ∗ wpri + ((COX(E1) + COX(E2)) + (COX(E2) + 1 ∗ wpri)) ⇒
0 ∗ 0, 7 + (0, 6 + 0, 51) + (0, 51 + 1 ∗ 0, 3)⇒ 1, 11 + 0, 81⇒ 1, 92

• FC(N1, P2) = 1 ∗ wpri ⇒ 1 ∗ 0, 3⇒ 0, 3

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 40

public class N1{
public void metodoN1(E1 e1, E2 e2){

P1 p1 = new P1();
p1.metodoP1(e1, e2);
p1.metodoP3(e2, 7);
...
P2 p2 = new P2();
p2.metodoP2(100000);
...

}
}

public class N2{
public void metodoN2(E1 e1, E2 e2){

P1 p1 = new P1();
p1.metodoP3(e2, 5);
...
P2 p2 = new P2();
p2.metodoP4(e1, e2);
...

}

}

public class P1{
public void metodoP1(E1 e1, E2 e2){

...
}

public void metodoP3(E2 e2, int i1){
...

}
}

public class P2{
public void metodoP2(long l1){

...
}

public void metodoP4(E1 e1, E2 e2){
...

}
}

public class E1{
private int attrInt;
private String attrStr;

}

public class E2{
private long attrLng;
private E3 attrE3;

}

public class E3{
private boolean attrBool;

}

Figura 4.7 – Exemplo de código

• FC(N2, P1) = 1 ∗ wpri + COX(E2)⇒ 1 ∗ 0, 3 + 0, 51⇒ 0, 81

• FC(N2, P2) = 0 ∗wpri + (COX(E1) + COX(E2))⇒ 0 ∗ 0, 7 + (0, 6 + 0, 51)⇒ 1, 11

Comparando as forças de conectividade, tem-se que N1 possui uma conectividade
maior com P1 (FC= 1,92) e N2 com P2 (FC= 1,11). Com essa informação, segue-se
para a refatoração das classes N1 e N2, para que elas utilizem apenas suas respectivas
persistências, e caso necessário, passem a relacionar entre si.

Nessa refatoração, inclui-se os métodos que fazem chamadas a persistência, caso
eles não existam. Então deve-se substituir as chamadas originais para que utilizem os
métodos recém inseridos. O resultado pode ser observado na Figura 4.8.

Após essa alteração, verificou-se que alguns métodos tinham em seu corpo apenas
uma chamada à classe de persistência pertencente a outra classe de negócio, não fazendo
sentido sua permanência e optando-se por excluí-los. Como consequência, algumas classes
de negócio ficaram sem nenhum método em seu corpo, sendo possíveis suas retiradas
do projeto, após devida verificação de sua inutilização pela camada de apresentação. A
exemplificação desses procedimentos pode ser visualizada na Figura 4.9.

O processo completo desta etapa pode ser visto na Figura 4.10. Na etapa seguinte,
o novo código é analisado e, a partir de seus relacionamentos, é feita a "clusterização"das
classes, formando grupo de classes coesos e com baixo acoplamento.

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 41

Código Original

public class N1{
public void metodoN1(E1 e1, E2 e2){

P1 p1 = new P1();
p1.metodoP1(e1, e2);
p1.metodoP3(e2, 7);
...
P2 p2 = new P2();
p2.metodoP2(100000);
...

}

...

}

Código Refatorado

public class N1{
public void metodoN1(E1 e1, E2 e2){

P1 p1 = new P1();
p1.metodoP1(e1, e2);
p1.metodoP3(e2, 7);
...
N2 n2 = new N2();
n2.metodoP2(100000);
...

}

public void metodoP3(E2 e2, int i1){
P1 p1 = new P1();
p1.metodoP3(e2, i1);

}

...
}

public class N2{
public void metodoN2(E1 e1, E2 e2){

P1 p1 = new P1();
p1.metodoP3(e2, 5);
...
P2 p2 = new P2();
p2.metodoP4(e1, e2);
...

}

...

}

public class N2{
public void metodoN2(E1 e1, E2 e2){

N1 n1 = new N1();
n1.metodoP3(e2, 5);
...
P2 p2 = new P2();
p2.metodoP4(e1, e2);
...

}

public void metodoP2(long l1){
P2 p2 = new P2();
p2.metodoP2(l1);

}

...
}

Figura 4.8 – Refatoração: Inclusão de Métodos

Código Original

public class N3{
public void metodoP4(E2 e2,

int i1){↪→
P4 p4 = new P4();
p4.metodoP6(l1);

}

...

}

public class N4{

...

}

Migração da Persistência

public class N3{
public void metodoP4(E2 e2, int

i1){↪→
N4 n4 = new N4();
n4.metodoP6(l1);

}

...

}

public class N4{

...

public void metodoP6(long l1){
P4 p4 = new P4();
p4.metodoP6(l1);

}
}

Exclusão de Método

public class N3{

...

}

public class N4{

...

public void metodoP6(long l1){
P4 p4 = new P4();
p4.metodoP6(l1);

}
}

Figura 4.9 – Refatoração: Alteração das chamadas aos métodos

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 42

Figura 4.10 – Fluxo do processo de diminuição das dependências das classes

4.2.2 Clusterização

Após as refatorações para diminuição das dependências, deve-se reanalisar o código
fonte, de forma a agrupar as classes para que, posteriormente, venham a formar componentes
que irão disponibilizar serviços. Como cada classe de negócio já engloba um conjunto
específico de persistências, torna-se possível simplificar essa análise, focando apenas na
camada de negócio.

O objetivo dessa etapa é unir as classes que possuem relacionamento, criando
grupos independentes. Porém, pode ser necessário que alguns desses componentes precisem
ser divididos, diminuindo, assim, seus tamanhos. Como uma tentativa dessa redução, é
executado o algoritmo apresentado na Seção 4.1.2.

Para exemplificar a execução desse algoritmo, primeiramente deve-se criar um grafo
a partir do código do sistema. A Figura 4.11 mostra o grafo contendo as classes de negócio
do código da Figura 4.7, sendo incluído outras arestas nesse grafo para melhor ilustrar a
execução do algoritmo de "clusterização".

Para esse grafo, inicialmente é efetuado o cálculo de sua modularidade, considerando
cada aresta como um cluster diferente, obtendo os valores:

• C(N1) = 0
4 −

(
2
4

)2
⇒ −0, 25

• C(N2) = 0
4 −

(
3
4

)2
⇒ −0, 5625

• C(N3) = 0
4 −

(
2
4

)2
⇒ −0, 25

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 43

• C(N4) = 0
4 −

(
1
4

)2
⇒ −0, 0625

• Qw = C(N1)+C(N2)+C(N3)+C(N4) = −0, 25+−0, 5625+−0, 25+−0, 0625⇒
−1, 125

Figura 4.11 – Exemplo de grafo

A modularidade Qw acima reflete o valor quando considera que cada aresta, que
representa uma classe, é um cluster diferente, sendo Qw obtido através da soma do cálculo
de C(N1), C(N2), C(N3) e C(N4), que levam em consideração as arestas internas e externas
de cada cluster.

O próximo passo do algoritmo é agrupar os dois clusters que geraram um maior
ganho de modularidade. Essa variação da modularidade deve ser calculada agrupando as
classes que possuem arestas entre si (N1→N2, N1→N3, N2→N3 e N2→N4), sendo o valor
da modularidade Qw para cada agrupamento demonstrado a seguir.

A união de N1 a N2 resulta em:

• C(N1, N2) = 1
4 −

(
3
4

)2
= −0, 3125

• Qw1 = C(N1, N2) + C(N3) + C(N4) = −0, 3125 +−0, 25 +−0, 0625⇒ −0, 625

• ∆Q1 = Qw1 −Qw = −0, 625− (−1, 125)⇒ 0, 50

A união de N1 a N2 resulta em:

• C(N1, N3) = 1
4 −

(
2
4

)2
= 0

• Qw2 = C(N1, N3) + C(N2) + C(N4) = 0 +−0, 5625 +−0, 0625⇒ −0, 625

• ∆Q2 = Qw2 −Qw = −0, 625− (−1, 125)⇒ 0, 50

A união de N1 a N2 resulta em:

• C(N2, N3) = 1
4 −

(
3
4

)2
= −0, 3125

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 44

• Qw3 = C(N2, N3) + C(N1) + C(N4) = −0, 3125 +−0, 25 +−0, 0625⇒ −0, 625

• ∆Q3 = Qw3 −Qw = −0, 625− (−1, 125)⇒ 0, 50

A união de N1 a N2 resulta em:

• C(N2, N4) = 1
4 −

(
2
4

)2
= 0

• Qw4 = C(N2, N4) + C(N1) + C(N3) = 0 +−0, 25 +−0, 25⇒ −0, 50

• ∆Q4 = Qw4 −Qw = −0, 50− (−1, 125)⇒ 0, 625

Com base nas simulações apresentadas acima, a junção que trouxe o maior ganho
de modularidade foi a junção de N2 com N4 que obteve um ganho de 0,625 (∆Q4 = 0, 625).
Essa junção encerra a primeira iteração do algoritmo, lembrando que as iterações acabam
somente quando todas as arestas estiverem dentro do mesmo cluster.

Para a segunda iteração deve-se fazer novamente todas as junções possíveis, mas
agora considerando N2 e N4 como um único cluster. Dessa forma as junções possíveis são
N1→N3, N1→N2,N4 e N2,N4→N3. Nessa iteração a modularidade a ser utilizada como
base deve ser a que gerou a junção, ou seja Qw4.

A união de N1 a N2 resulta em:

• C(N1, N3) = 1
4 −

(
2
4

)2
= 0

• Qw5 = C(N1, N3) + C(N2, N4) = 0 + 0⇒ 0

• ∆Q5 = Qw5 −Qw4 = 0− (−0, 50)⇒ 0, 50

A união de N1 a N2 resulta em:

• C(N1, N2−N4) = 2
4 −

(
2
4

)2
= 0, 25

• Qw6 = C(N1, N2−N4) + C(N3) = 0, 25 +−0, 25⇒ 0

• ∆Q6 = Qw6 −Qw4 = 0− (−0, 50)⇒ 0, 50

A união de N1 a N2 resulta em:

• C(N2−N4, N3) = 2
4 −

(
2
4

)2
= 0, 25

• Qw7 = C(N2−N4, N3) + C(N1) = 0, 25 +−0, 25⇒ 0

• ∆Q7 = Qw7 −Qw4 = 0− (−0, 50)⇒ 0, 50

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 45

Como todas as junções da segunda iteração gerou um mesmo ganho na modularidade
(∆Q5 = ∆Q6 = ∆Q7 = 0, 50), pode-se escolher qualquer uma delas, sendo que nesse
exemplo será escolhido a primeira junção, de N1 com N3. Feito essa escolha resta apenas
juntar os clusters N2-N4 com o N1-N3 e teremos todas as arestas em um único cluster,
encerrando, assim, o algoritmo que gerará o dendrograma da Figura 4.12.

Figura 4.12 – Clusterização

Segundo Girvan e Newman (2003) o valor de Qw [-0,5, +1] geralmente varia entre
0,3 e 0,7, sendo que o valor para estruturas com forte ligação varia entre 0,6 e 0,7. Com
base nesses dados, verifica-se que, para o exemplo da Figura 4.12, o melhor é deixar todas
as classes em um único componente, pois não foi encontrado um ponto de corte em que o
valor da modularidade esteja dentro da variação citada.

Utilizando das informações obtidas nessa etapa, é possível separar os grupos de
classes de negócio e suas respectivas dependências em projetos separados. Cada projeto
terá classes de negócio e de persistência exclusivas. Porém, como a camada de entidade é a
representação da base de dados, as entidades utilizadas serão copiadas para cada projeto,
de acordo com a utilização, podendo haver duplicação de classes. Contudo, não é o foco
desse trabalho tratar da separação das entidades. Caso haja interfaces e superclasses na
camada de negócio e/ou de persistência, elas também serão copiadas, conforme sugerido
por Wang et al. (2008).

O processo de "clusterização"dessa seção pode ser visto na Figura 4.13. O próximo
passo consiste na a criação e disponibilização dos serviços para cada um dos projetos
criados, de forma que possam ser acessados através da internet.

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 46

Figura 4.13 – Fluxo do processo de clusterização

4.2.3 Criação dos serviços

Seguindo as etapas descritas anteriormente têm-se vários grupos de classes que
poderão disponibilizar serviços. Além disso, conforme dito anteriormente, os métodos a
serem disponibilizados serão os existentes na camada de negócio de cada componente.

Cada linguagem especifica anotações, bibliotecas e códigos a serem inseridos para
que sejam disponibilizados os web services. Além disso, existem várias IDEs que agilizam
esse processo, de forma que não será detalhado uma técnica específica para isso, sendo
essa seção responsável pela discussão de pontos importantes a serem observados.

Independente da forma em que os web services forem criados, será necessário alterar
as chamadas feitas à classes que agora pertencem a outro serviço. Uma ilustração dessa
refatoração pode ser visualizada na Figura 4.14.

Para que a refatoração citada acima possa ser realizada, primeiramente os web
services precisam criados. Porém, existem algumas restrições a serem observadas no
momento da criação desses serviços, conforme levantado por Guo et al. (2005), sendo elas:

1. O tipo do método deve ser público;

2. Métodos abstratos não podem ser publicados porque esse tipo de método não contém
um corpo com sua implementação, ficando esta implementação a cargo de suas
subclasses que poderão publicar seus métodos;

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 47

Chamada entre classes

class Classe1{
public void metodo1(){

//Classe2 e Classe2 pertencem ao mesmo projeto
...
Classe2 classe2 = new Classe2();
classe2.metodo2();
...
Classe3 classe3 = new Classe3();
classe3.metodo3();
...

}
}

Chamada entre serviços

class Classe1{
public void metodo1(){

...
//Classe2 migrou para outro servico
ServicoClasse2 classe2 = new ServicoClasse2();
classe2.metodo2();
...
//Classe3 continua no mesmo projeto
Classe3 classe3 = new Classe3();
classe3.metodo3();
...

}
}

Figura 4.14 – Refatoração chamada entre serviços

3. Métodos com mesmo nome devem possuir nomes de serviço diferentes, pois o padrão
WSDL, responsável pela descrição e localização dos serviços, não leva em consideração
as assinaturas dos métodos, somente seus nomes;

4. Se um método possui transação, mas não é a raiz dessa transação, não deve ser
disponibilizado como serviço, pois ele possui apenas parte da operação a ser realizada.

A última restrição só é relevante se um método que não é raiz de uma transação
não contiver uma operação completa, o que nem sempre acontece. Pode haver métodos que
realizam uma operação completa, mas que também compõem uma funcionalidade maior
ao mesmo tempo. Porém, independente dele ser executado sozinho ou em conjunto com
outros métodos, em ambos os casos pode existir a necessidade de controlar a transação.
No exemplo da Figura 4.14, se o metodo1 fizer uso de transação, esse controle deve ser
mantido mesmo depois da refatoração, já que não houve mudança da funcionalidade.

Como um dos objetivos dessa abordagem é que a funcionalidade original seja
mantida no sistema modernizado, é importante que as funcionalidades em que todo
um conjunto de operações são concluídas, ou nenhum de seus resultados são efetivados,
mantenham essas mesmas propriedades. Isso é conseguido através do uso de transações que
são mecanismos para garantir que todos os participantes de uma aplicação alcancem um
resultado de comum acordo. Ela tem sido historicamente definida através das propriedades
ACID (Atomicidade, Consistência, Isolamento e Durabilidade), sendo essas propriedades
definidas como (REUTER; GRAY, 1993):

• Atomicidade: todas operações são concluídas ou nenhuma operação é concluída.

• Consistência: a aplicação deve sair de um estado consistente para outro estado
também consistente.

• Isolamento: os efeitos de uma operação não são compartilhados para fora da
transação até que seja concluída com sucesso.

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 48

• Durabilidade: uma vez que a transação for concluída com sucesso, as alterações
devem permanecer mesmo em caso de futuras falhas.

A Seção 4.2.3.1 traz mais detalhes sobre o controle de transações entre serviços
diferentes.

4.2.3.1 Transações entre serviços

Segundo Snell (2002), transações são conceitos fundamentais na construção de
aplicações distribuídas confiáveis, porém, nenhuma das principais especificações de web
services (SOAP, WSDL, UDDI, etc), foram projetadas para prover mecanismos que
permitam a eles se conectarem para criar soluções dependentes e confiáveis.

Para resolver esse problema a IBM, juntamente com a Microsoft, definiram duas
especificações complementares, a WS-Coordination (NEWCOMER; ROBINSON, 2009b),
e a WS-Transaction (NEWCOMER; ROBINSON, 2009a). A WS-Coordination provê
mecanismos para criar e registrar serviços, usando os protocolos definidos pela WS-
Transaction (FREUND; STOREY, 2002; LANGWORTHY et al., 2004), sendo seus níveis
de operação visualizados na Figura 4.15.

Figura 4.15 – Padrões de descrição de web services (FREUND; STOREY, 2002)

WS-Coordination

Segundo Freund e Storey (2002), Langworthy et al. (2004), o framework definido
pela WS-Coordination é composto por três elementos:

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 49

• Serviço de ativação: cria uma atividade e especifica seu protocolo de ativação
disponível;

• Serviço de registro: coordena a seleção de protocolos e registra os participantes e

• Serviço de coordenação: controla o processo de conclusão das atividades, utili-
zando para isso o protocolo de coordenação selecionado para a transação (definidos
pela especificação WS-Transaction).

Para cada nova atividade criada, o serviço de ativação retorna um Coordination-
Context (elemento XML utilizado em uma mensagem como convite para participar de
uma atividade), que contem os seguintes campos (LANGWORTHY et al., 2004):

• Identificador da atividade;

• Tipo da transação (atômica ou de negócio);

• Endereço do serviço de registro;

• Tempo de expiração da atividade (opcional) e

• Elementos extendidos, que permitem que outras informações sejam comunicadas.

Temos, então, que o framework de coordenação provê um sistema para gerenciar
comunicações entre web services, além de poder trabalhar com sistemas que utilizam
transações ACID, assim como outras formas de transação. De modo que fica a cargo da
coordenação de protocolos (definida pela especificação WS-Transaction) implementar as
transações ACID (FREUND; STOREY, 2002).

WS-Transaction

Segundo Freund e Storey (2002), Langworthy et al. (2004), a especificação WS-
Transaction define os protocolos de coordenação atômicos e de negócio.

O protocolo para transações atômicas é utilizado para tratar atividades com tempo
de vida curto. No escopo desse protocolo é observado todo o conjunto de operações a
serem executadas, sendo que ou todas são concluídas com sucesso, ou em caso de falha
de alguma delas, nenhuma operação é efetivada. Esse objetivo é atingido utilizando o
protocolo Two-Phase Commit (2PC).

O protocolo 2PC coordena o registro dos serviços para poder tomar a decisão de
efetivar ou cancelar as operações e informa todos os serviços do resultado final, sendo esta
decisão a mesma para todos os serviços envolvidos. Essa tomada de decisão é feita nas
duas fases descritas a seguir (LANGWORTHY et al., 2004):

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 50

• Fase de preparação: todos os participantes são avisados para aguardarem sinal de
conclusão ou cancelamento de suas operações e, então, votar no resultado final. Esse
voto é propagado para o coordenador geral da transação para tomar a decisão final.

• Fase de efetivação: se todos os participantes votarem pela conclusão, então as
operações são efetivadas, caso contrário são abortadas.

O protocolo para transações de negócio trata de atividades de longa duração,
mas, para diminuir a espera pela utilização dos recursos, os resultados das operações
intermediárias devem ser liberados mesmo antes do término de todo o processo. Mecanismos
de gerenciamento de falha e compensação são geralmente utilizados para reverter os efeitos
de atividades anteriormente completadas.

É possível usar ambos protocolos em combinação, conforme pode ser observado na
Figura 4.16, sendo que a atividade 2 utiliza transações atômicas e a atividade 3 utiliza
ambas as transações, atômicas e de negócio. A imagem mostra também a relação existente
entre os protocolos WS-Transaction e WS-Coordination.

Figura 4.16 – Utilização dos protocolos de transação (LANGWORTHY et al., 2004)

O fluxo dessa etapa pode ser visualizada na Figura 4.17.

Figura 4.17 – Fluxo para criação dos serviços

4.3 Resumo do Capítulo
Conforme detalhado neste capítulo, a abordagem proposta para modernização

de sistemas monolíticos, orientados a objetos e que também possuem arquitetura de

Capítulo 4. Modernização de sistemas monolíticos para arquitetura orientada a serviços 51

três camadas, é composta por três etapas (Seção 4.1). A primeira é a diminuição de
dependências (Seção 4.2.1), que irá reduzir a quantidade de relacionamentos entre as
classes, tanto na camada de persistência quanto na de negócio. A segunda etapa é a
"clusterização", (5.3.2) que agrupará as classes relacionadas, e a última define critérios a
serem seguidos durante a criação dos web services.

Para auxiliar na etapa de diminuição de dependências, é utilizada a fórmula da
força de conectividade (Seção 4.1.1), que calcula a força de ligação entre as classes. Na
etapa de "clusterização"é executado o algoritmo fast community (Seção 4.1.2) que agrupa
as classes relacionadas permitindo a divisão dos grupos com tamanhos indesejados.

No próximo capítulo é apresentado o estudo de caso, feito sobre um sistema acadê-
mico, que executa as três etapas apresentadas, demonstrando a efetividade das mesmas.
Foram utilizadas ferramentas que automatizam a execução das duas primeiras etapas,
diminuição de dependências e clusterização, mostrando a eficácia da semi-automatização
dessas etapas. Para a etapa de criação de serviços, é apresentada a implementação dos
critérios definidos, para a criação dos web services, dentro do sistema acadêmico.

52

5 ESTUDO DE CASO E AVALIAÇÃO DA
ABORDAGEM

O principal objetivo deste estudo de caso é analisar a eficácia do modelo de
modernização proposto dentro do contexto de sistemas monolíticos, orientados a objetos e
que possuem também uma arquitetura de três camadas, sendo que foi executado seguindo
a metodologia Goal/Question/Metric (BASILI; CALDIERA; ROMBACH, 1994).

5.1 Contexto
Segundo Kitchenham e Pickard (1998), o estudo de caso define o conjunto de

objetivos e limitações em que ele deve ser executado. Para definir esses objetivos, a
metodologia GQM (Goal/Question/Metric) foi utilizada, derivando em um conjunto de
questões que devem ser respondidas para determinar se o objetivo foi alcançado.

Objetivo (Goal): Avaliar a abordagem proposta, em relação a sua eficácia, do
ponto de vista do engenheiro de software e no contexto de sistemas monolíticos, orientados
a objetos e que tenham sido desenvolvidos com arquitetura de três camadas.

Definido o objetivo, ele é refinado em questões para caracterizar a forma em que
a avaliação do objetivo será realizada (BASILI; CALDIERA; ROMBACH, 1994). As
questões (questions) definidas foram:

Questão 1: Que tipo de melhoria a refatoração das classes traz?

Nesta questão, tenta-se identificar a melhoria obtida com a etapa de Diminuição
de dependências (Seção 4.2.1).

Questão 2: Quais foram as melhorias obtidas nos componentes gerados?

Nesta questão, tenta-se identificar os benefícios obtidos com a etapa de "Clusteriza-
ção"(Seção 5.3.2).

Questão 3: A funcionalidade original é mantida após a criação dos serviços?

Nesta questão, tenta-se verificar se as funcionalidades originais foram mantidas
após a modernização de arquitetura.

Para responder às perguntas, um conjunto de métricas (metrics) são definidas e
associadas às questões (WOHLIN et al., 2000), sendo elas apresentadas na Tabela 5.1,
na qual a coluna Medida mostra a medida utilizada para o cálculo, a coluna Questões
mostra à qual questão a métrica está relacionada e a coluna Resultados Esperados
indica se é esperado que os percentuais aumentem (⇑) ou diminuam (⇓), para as métricas

Capítulo 5. Estudo de caso e avaliação da abordagem 53

M1 a M4. Para a métrica M5, a coluna de resultados indica o percentual de testes de
regressão executados com sucesso.

Tabela 5.1 – Lista de métricas e relação com as questões do paradigma GQM.

Métrica Medida Questão Resultado
Esperado

M1 % de variação no acoplamento médio das classes ACCL Q1 ⇓
M2 % de variação no tamanho dos componentes TACO Q2 ⇓
M3 % de variação na complexidade dos componentes COXP Q2 ⇓
M4 % de variação no acoplamento entre componentes ACCO Q2 ⇑
M5 % de testes de regressão realizados com sucesso TEST Q3 100%

A medida ACCL (acoplamento entre classes) é calculada somando-se a quantidade
de classes de negócio ou persistência referenciadas por uma classe de negócio, desconside-
rando o número de vezes em que a referência acontece. TACO (tamanho do componente)
é a quantidade de classes de negócio ou persistência que fazem parte um componente.
ACCO (acoplamento entre componentes) é a quantidade de outros componentes que ele
referencia, independente do número de vezes que isso acontece. TEST é a execução de um
caso de teste no qual a comparação da funcionalidade original com a do web service geram
o mesmo resultado. Vale ressaltar que as medidas ACCL e TACO consideram somente as
classes de negócio e persistência devido ao fato de ser essas as classes a serem distribuídas
entre os componentes, sendo que as demais serão copiadas de acordo com a necessidade.

COXP (complexidade de um componente) foi definida por Cho, Kim e Kim (2001)
e representa a complexidade estática de um componente (CSC). Ela leva em consideração
os relacionamentos entre as classes contidas no componente. Sua fórmula é definida como:

CSC =
m∑

i=1
(Count(Ri) ∗W (Ri))

Em que:

• Count(Ri) = Quantidade de cada tipo de relacionamento entre as classes (Depen-
dência, Agregação, Generalização, Composição) e

• W(Ri) = Peso atribuído para cada tipo de relacionamento (Tabela 5.2).

5.2 Planejamento
Para o teste da proposta foi escolhido o sistema acadêmico SIGA-EPCT12 (Sistema

Integrado de Gestão Acadêmica da Educação Profissional e Tecnológica), na qual as

1Site do sistema: <http://colaboracao.sigaepct.net/>
2Foi utilizada nessa pesquisa foi a versão em desenvolvimento 11.1 (commits do dia 05/10/2016)

http://colaboracao.sigaepct.net/

Capítulo 5. Estudo de caso e avaliação da abordagem 54

Tabela 5.2 – Pesos com base no tipo de relacionamento para o cálculo do CSC (CHO;
KIM; KIM, 2001).

Tipo do Relacionamento Peso
Dependência 2
Associação 4
Generalização 6
Agregação 8
Composição 10

técnicas apresentadas foram testadas. Este sistema foi idealizado inicialmente através de
um projeto de pesquisa da SETEC/MEC que financiou o seu desenvolvimento através de
parcerias com vários Institutos Federais em todo o Brasil. Hoje, é o sistema acadêmico
utilizado por alguns desses institutos.

A escolha desse sistema se deve ao fato dele atender aos requisitos da pesquisa
sendo um sistema Java, desenvolvido sob a arquitetura três camadas e monolítico, pois
possui apenas um arquivo EAR (Enterprise Application aRchive) a ser publicado em
um servidor de aplicação. Ele possui 200 classes de negócio, 244 persistências e 474
entidades, totalizando 1148 classes e 77.092 linhas de código, desconsiderando a camada
de apresentação.

5.2.1 Ferramentas utilizadas

Para automatizar os cálculos necessários foram utilizadas duas ferramentas, sendo
que a primeira foi desenvolvida no decorrer desta pesquisa, nomeada de JCluster, e é
responsável pelos cálculos citados anteriormente (seções 4.1.1 e 4.1.2). A segunda é a
ferramenta JTransformer3, encarregada de analisar padrões de código e realizar refatorações.

Ambas as ferramentas, JCluster e JTransformer, são plugins da IDE Eclipse. Elas
executam suas operações utilizando como entrada o projeto Java aberto na IDE. A
limitação dessas ferramentas é que elas funcionam apenas para sistemas desenvolvidos em
Java. Para a utilização dessas ferramentas em outros sistemas Java será necessário que
o Engenheiro de Software faça algumas configurações sobre a identificação das camadas
de negócio e persistência. Nas seções subsequentes suas funcionalidades serão brevemente
descritas, ficando a explicação de suas utilizações para a seção do estudo de caso (Capítulo
5).

3Site da ferramenta <https://sewiki.iai.uni-bonn.de/research/jtransformer/start>

https://sewiki.iai.uni-bonn.de/research/jtransformer/start

Capítulo 5. Estudo de caso e avaliação da abordagem 55

5.2.1.1 JCluster

O plugin idealizado e desenvolvido durante esta pesquisa4 possui as funcionalidades
listadas abaixo, sendo que todas elas usam como base o código do projeto aberto na
IDE Eclipse. Além disso, esse plugin identifica uma classe como pertencente à camada de
negócio ou persistência se faz através do pacote em que a classe pertence.

• Cálculo da força de conectividade: calcula a FC entre as classes, seguindo as
fórmulas da Seção 4.1.1. Com base nesses cálculos, também são identificadas as
maiores ligações entre as classes de negócio e persistência, detalhado na Seção 4.2.1.

• Geração de grafo: a partir do código-fonte do sistema é gerado um grafo, no qual
cada classe de negócio é representada por um vértice e seus relacionamentos por
arestas. Cada conjunto de classes relacionadas tem a mesma cor para facilitar a
identificação. O exemplo de um grafo gerado pode ser visualizado na Figura 5.7 da
Seção 5.3.2, no qual será descrito a utilização desse plugin em um estudo de caso.

• Geração de dendrograma:5 ao clicar em qualquer uma das classes do grafo,
é gerado um dendrograma, seguindo o algoritmo fast community (Seção 4.1.2),
baseando-se em todas as arestas que contém a mesma cor da selecionada. Ao clicar
com o botão direito em um dos pontos de junção é possível pre-visualizar a quantidade
de grupos a serem gerados diferenciando-os através das cores. Ao clicar duas vezes
em uma junção, as cores dos grupos do dendrograma são repassadas para o grafo.
A visualização dessa funcionalidade está ilustrada na Figura 5.9 da Seção 5.3.2, na
qual é descrita a utilização desse plugin em um estudo de caso.

• Separação dos componentes: para cada conjunto de cores do grafo é criada uma
pasta com todas as classes de mesma cor, além de suas dependências. Com isso é
possível criar projetos independentes para cada componente, observando apenas as
bibliotecas necessárias.

Dentre as funcionalidades citadas acima, vale detalhar o algoritmo usado para a
coloração dos vértices no grafo, sendo ele descrito no Algoritmo 2.

O if/else da linha 6 do algoritmo 2 faz com que um vértice que possua mais de
uma origem não tenha a mesma cor de nenhuma delas. Esse passo foi definido para que o
engenheiro de software não seja induzido a englobar esses vértices a nenhuma das origens
primárias.

4Disponibilizado no github através do link <https://github.com/aborgesrodrigues/
hierarchical-clustering>

5Foi utilizado como base o sistema já existente disponível através do link <https://github.com/
lbehnke/hierarchical-clustering-java>:

https://github.com/aborgesrodrigues/hierarchical-clustering
https://github.com/aborgesrodrigues/hierarchical-clustering
https://github.com/lbehnke/hierarchical-clustering-java
https://github.com/lbehnke/hierarchical-clustering-java

Capítulo 5. Estudo de caso e avaliação da abordagem 56

1 while existir vértice sem cor do
2 Selecione um dos vértices sem cor;
3 Defina uma cor para o vértice selecionado;
4 while existir vértices referenciados pelo vértice selecionado do
5 Selecione um dos vértices referenciados;
6 if vértice não possuir cor then
7 Insira mesma cor do vértice selecionado;

else
8 Insira uma nova cor para o vértice selecionado;

end
end

end
Algoritmo 2: Algoritmo de coloração dos vértices do grafo.

5.2.1.2 JTransformer

Essa ferramenta é um plugin do Eclipse que permite a análise e as transformações
de códigos Java (KNIESEL; HANNEMANN; RHO, 2007; ALVES; HAGE; RADEMAKER,
2011; BINUN; KNIESEL, 2012). O JTransformer analisa o código fonte, suas dependências
com projetos e bibliotecas, além de criar uma representação do código em Prolog6. Suas
análises podem ser expressas em um nível de abstração bastante elevado. Kniesel, Hanne-
mann e Rho (2007) compararam-na com um conjunto de outras ferramentas de análise e
transformação de código, sendo que o JTransformer foi melhor nos seguintes aspectos:

• Expressividade: não limita as análises e transformações que podem ser realizadas;

• Turnaround: suporta um nível de abstração que promove o rápido desenvolvimento
sem limitar a expressividade;

• Integração: realiza análise e integração sem necessidade de ferramentas externas;

• Performance: rapidez nas análises individuais (de milisegundos a segundos);

• Escalabilidade: a performance nas análises individuais acontecem mesmo em siste-
mas com dezenas de milhares de classes;

• Suporte a Multi-projetos: permite a análise e as transformações de múltiplos
projetos que relacionam entre si e

• Disponibilidade: possibilita baixar versões do software e documentação apropriada.

Alves, Hage e Rademaker (2011) também compararam algumas ferramentas, anali-
sando os items abaixo, sendo que o resultado pode ser visualizado na Tabela 5.3, sendo que

6Detalhes da linguagem Prolog pode ser encontrado no link <http://lpn.swi-prolog.org/lpnpage.php?
pageid=online>

http://lpn.swi-prolog.org/lpnpage.php?pageid=online
http://lpn.swi-prolog.org/lpnpage.php?pageid=online

Capítulo 5. Estudo de caso e avaliação da abordagem 57

o "x" e -" representam se a ferramenta atende ou não determinado critério, respectivamente,
seguindo os seguintes critérios:

• Paradigma em que a linguagem de busca é baseada;

• Tipos de dados suportados pela linguagem;

• Parametrização que indica se o comportamento das consultas podem depender de
parâmetros;

• Polimorfismo que especifica se as consultas podem ser abstraídas dos tipos em que
as relações são construídas;

• Modularidade que determina a extensão em que é possível reutilizar uma consulta
específica para construir outras consultas e

• Bibliotecas que determina a possibilidade de usar e/ou criar bibliotecas de consultas
genéricas.

Tabela 5.3 – Comparação entre ferramentas de análise de código (ALVES; HAGE; RADE-
MAKER, 2011).

Criterio vs.
Ferramentas Grok Rscript JRelCal SemmleCode CrocoPat JGraLab JTransformer

Paradigma Relational Relational and
Comprehensions

API
Relational

OO and
SQL-like

FO-logic
Imperative

SQL-like and
Path Expr FO-logic

Tipos
String x x x x x x x
Int x x x x x x x
Real x - x x x x x
Bool - x x x x x x
Other - Composite

and Location Java Object - Edges
and Node Logic terms

Parametrização - x x - x x x
Polimorfismo - x x x - x x
Modularidade x x x x x - x
Bibliotecas - - x x - - x

A Figura 5.1 mostra alguns dos predicados básicos do JTransformer (aqueles
terminados com T maiúsculo, com marcação onde aparecem). As palavras iniciadas
em maiúsculo são variáveis, o underscore é uma pseudo-variável que indica atributos
irrelevantes para a análise/transformação.

Para facilitar o entendimento de quem não é familiarizado com os termos da
programação lógica, Kniesel, Hannemann e Rho (2007) fazem uma comparação desse tipo
de programação com suas contrapartes do banco relacional (entre parênteses).

Cada nó AST é um fact base (tupla do banco de dados). O predicado (nome da
relação), representa o tipo do nó, o primeiro parâmetro (atributo) é um identificador único
(chave) do respectivo nó e os outros parâmetros são valores primitivos ou identificadores
de outros nós, representando referência, sendo que o segundo parâmetro referencia o nó
superior. Diferentemente dos bancos relacionais, os programas lógicos não armazenam
facts para cada relação, mas define predicados através de derivação de regras e podem ser
definidos recursivamente.

Capítulo 5. Estudo de caso e avaliação da abordagem 58

Para exemplificar esses conceitos, a seguir será dada uma breve explicação dos
termos destacados da Figura 5.1, lembrando que o caractere underscore () pode ser utilizado
em qualquer um dos parâmetros esperados, para o caso de se fazer buscas genéricas:

• fieldDefT (linha 6): identifica a declaração de um atributo dentro de classes
(InClass), pertencente a determinado tipo (T);

• methodT (linha 10): identifica métodos, pertencentes a classes (InClass), que
possuam parâmetros (Args) e tipo de retorno (T) específicos;

• getFieldT (linha 18): identifica o acesso a um atributo dentro de um método
(MName) por uma variável ou sendo enviado como parâmetro a outro método
(OnRecv);

• execT (linha 21): identifica uma execução dentro de um método (CallingM);

• NewClassT (linha 24): identifica a instanciação de uma classe, dentro de um
método (CalledM), que tenha recebido alguns parâmetros (Args);

• paramT (linha 27): identifica os parâmetros parametrized, por exemplo, em
String[], Class<T>, os colchetes ([]) e a sequência <T>, serão os itens iden-
tificados;

• forLoopT (linha 30): identifica a instrução for executada em determinado método
(InMethod);

Nas próximas seções serão mostradas a abordagem proposta para modernização
de sistemas orientados a objetos para SOA e a utilização dos mecanismos apresentados
dentro dessa abordagem.

5.3 Execução
Nessa seção, será descrita a execução da abordagem de modernização sobre o

sistema SIGA-EPCT, detalhando cada uma das etapas, facilitando o entendimento das
questões, das métricas e de seus cálculos.

5.3.1 Diminuição das dependências

Conforme explicado na Seção 4.1, os primeiros passos da abordagem proposta é
a diminuição das dependências entre as classes, de forma que possa obter componentes
menores nas etapas posteriores.

Capítulo 5. Estudo de caso e avaliação da abordagem 59

1 type(Type,Name) :-
2 classDefT(Type, _,Name, _).
3
4 field(Field, InClass, FType, FName) :-
5 type(_ ,FType, _),
6 fieldT(Field,InClass,T,FName, _).
7
8 method(Meth,InClass,MName,Args,RetType) :-
9 type(_,RetType, _),

10 methodT(Meth,InClass,MName,Args,T, _, _).
11
12 instanceMethod(Method,InClass,Name,Args,Type) :-
13 method(Method,InClass,Name,Args,Type),
14 not(Name = ’<init>’),
15 not(Name = ’<cinit>’).
16
17 accesses(AccessingM,InBlock,OnRecv,AccessedField) :-
18 getFieldT(_,InBlock,AccessingM,OnRecv,AccessedField).
19
20 calls(CallingM,InBlock,CalledM,Args) :- // %Inst. method
21 execT(Exec,InBlock,CallingM, Call),
22 applyT(Call,Exec,CallingM, _, _,Args,CalledM).
23 calls(CallingM,InBlock,CalledM,Args) :- // %Constructor
24 newClassT(_,InBlock,CallingM,CalledM,Args, _, _, _).
25
26 param(Param,InMethod,Type) :-
27 paramT(Param,InMethod,type(_,Type, _), _).
28
29 forLoopBody(For,InMethod, LoopBody) :-
30 forLoopT(For, _,InMethod, _, _, _,LoopBody).

Figura 5.1 – Exemplo de script do JTransformer (KNIESEL; HANNEMANN; RHO, 2007)

Inicialmente procura-se por classes de persistência que executem métodos de outras
classes também de persistências. Para isso utilizou-se o plugin JTransformer (Seção 5.2.1.2)
para realizar essa pesquisa dentro do código fonte do sistema SIGA-EPCT.

A Figura 5.2 mostra o código desse script, cuja explicação segue abaixo:

• Linha 1: nome do método;

• Linha 5: identifica toda chamada a método feita, atribuindo o método de origem e o
receptor da chamada às variáveis MethodCall e Receiver respectivamente;

• Linhas 7 e 8: identificam todas as classes de persistência (classes que extendem de
GenericDAO);

• Linhas 10 a 16: filtram somente os receptores que são classes de persistência;

• Linhas 18 a 20: filtram apenas os métodos de classe de persistência;

• Linha 22: ignora chamadas a métodos dentro da própria classe e

• Linha 24: ignora chamadas a métodos da superclasse.

O resultado da execução do script é mostrado na Figura 5.3, sendo que, no ponto
1, tem-se o código da classe com a identificação do ponto onde o script encontrou a

Capítulo 5. Estudo de caso e avaliação da abordagem 60

chamada entre persistências. O ponto 2 mostra os scripts existentes e a quantidade de
ocorrências encontradas na execução de cada um deles. Já o ponto 3 contém as próprias
ocorrências, indicando a classe e o número da linha em que ela ocorre. Ao clicar em uma
dessas ocorrências é aberto o arquivo com o cursor já na linha identificada, como mostrado
no ponto 1.

No caso da classe RegraAcademicaDAO da Figura 5.3, a refatoração para re-
mover a dependência entre as classes de persistência, consiste em retirar o método inserir
dessa classe e migrá-lo para a classe de negócio correspondente, que é a ManterRegraA-
cademicaEJB. O resultado dessas operações pode ser observado através dos trechos de
código mostrado na Figura 5.4. Cada uma das ocorrências encontradas deve ser analisada
individualmente, pelo engenheiro de software, para encontrar uma melhor forma de retirar
esses relacionamentos indesejados da camada de persistência, sendo essa uma limitação
que pode ser abordada em um trabalho futuro.

1 :- module(persistence__persistence_analysis, [persistence_persistence_call/1]).
2
3 persistence_persistence_call(CallId) :-
4 %Identifica cada chamada de metodo
5 callT(CallId, _, MethodCall, Receiver, _, _, _, _),
6 %Identifica classes de persistência
7 fully_qualified_name(GenericDAO, 'org.sigaept.nucleo.dao.GenericDAO'),
8 subtype(DAO, GenericDAO),
9 %filtra somente chamadas feitas a classes de persistência

10 (
11 (identT(Receiver, CallId, MethodCall, Local), localT(Local, _, _, DAO, _, _))
12 ;
13 newT(Receiver, _, _, _, _, _, _, DAO, _)
14 ;
15 callT(Receiver, _, _, _, _, _, _, DAO)
16),
17 % busca somente em métodos de classes de persistência
18 methodT(MethodCall, DAOClass, _, _, _, _, _, _),
19 subtype(DAOClass, GenericDAO),
20 classT(DAOClass,_,_,_,_),
21 %ignorar chamadas dentro da própria classe
22 DAOClass \== DAO,
23 %ignorar chamadas a superclasse
24 DAO \== GenericDAO.

Figura 5.2 – Script para encontrar chamadas entre classes de persistência

A próxima etapa para diminuição das dependências é fazer com que uma classe de
persistência fique relacionada a somente uma classe de negócio, conforme explicado na
Seção 4.2.1. Para isso, primeiramente é necessário identificar as persistências e a classe de
negócio correspondente a cada uma delas. Assim, foi desenvolvido o plugin JCluster (Seção
5.2.1.1) que analisa o código e calcula a força de conectividade (Seção 4.1.1) entre todas
as classes de negócio e persistência. Ao final do processo é gerado um arquivo contendo
essa relação, conforme pode ser observado na Tabela 5.4.

Com essas informações pode-se fazer a refatoração no código, alterando as classes de
negócio que aparecem no arquivo gerado, de forma que elas executem somente as suas classes
de persistência, modificando as demais chamadas para as classes de negócio adequada.

Capítulo 5. Estudo de caso e avaliação da abordagem 61

Figura 5.3 – Funcionamento da ferramenta JTransformer

Método na classe de persistência

public class RegraAcademicaDAO extends
GenericDAO<RegraAcademica> {↪→

...

@Override
public void inserir(RegraAcademica entidade)

throws NegocioException {↪→
if (entidade.getAtoAutorizativo() != null &&

entidade.getAtoAutorizativo().getId()
== null)

↪→
↪→

new AtoAutorizativoDAO(this.em).inserir(c
entidade.getAtoAutorizativo());↪→

super.inserir(entidade);
}

...
}

Método migrado para classe de negócio

public class ManterRegraAcademicaEJB extends
GenericCrudEJB<RegraAcademica,
RegraAcademicaDAO> implements
IManterRegraAcademicaEJB{

↪→
↪→
↪→

...

@Override
public void inserir(RegraAcademica entidade)

throws NegocioException {↪→
if (entidade.getAtoAutorizativo() != null &&

entidade.getAtoAutorizativo().getId()
== null)

↪→
↪→

new AtoAutorizativoDAO(this.em).inserir(c
entidade.getAtoAutorizativo());↪→

super.inserir(entidade);
}

...
}

Figura 5.4 – Refatoração para retirada de dependência entre persistências

Essa refatoração é feita, em sua maior parte, também pela ferramenta JTransformer (Seção
5.2.1.2), através da utilização de scripts e pode ser representado pelo Algoritmo 3.

A exclusão citada nas linhas 5 e 6 se faz possível porque existe somente um método
com apenas uma chamada para outra classe de negócio sem agregar nem processar nenhuma
informação. Dessa forma, esse método torna-se irrelevante, já que é possível obter a mesma
informação apenas chamando a classe de destino diretamente. Conforme dito antes, ao
realizar essas exclusões, pode acontecer de algumas classes ficarem sem nenhum método
em seu corpo, podendo, então, ser excluídas do projeto, sendo que no sistema SIGA-EPCT,
sete classes de negócio foram removidas.

Capítulo 5. Estudo de caso e avaliação da abordagem 62

Tabela 5.4 – Segmento do resultado da identificação das classes persistências com suas
respectivas classes de negócios

Classe de Persistência Classe de Negócio FC
RegraAcademicaDAO ManterRegraAcademicaEJB 81.82
MatrizCurricularPeriodoDAO ManterMatrizCurricularEJB 28.05
ModalidadeAprendizagemDAO ManterCursoEJB 0.15
LotacaoServidorDAO ManterServidorEJB 129.35
ParticipacaoEventoExternoDAO ManterEventoExternoEJB 0.90
ContaCorrentePagamentoDAO ManterServidorEJB 1.94
CDUDAO ManterCDUEJB 0.30
AlunoDAO ManterRelatorioAlunoEJB 523.80
ProjetoExtensaoDAO ManterProjetoExtensaoEJB 64.56
ReaberturaTurmaDAO ReaberturaTurmaClasseEJB 33.62

1 for cada classe de negócio do
2 Criação de métodos na classe de negócio para disponibilizar suas persistências,

caso não existam;
3 for cada método da classe que possui chamadas à persistências de outra classe de

negócio do
4 Migrar chamadas a persistências não pertencentes a ela para os métodos do

negócio de destino;
5 if método contiver somente essa chamada then
6 Excluir método;

end
end

end
Algoritmo 3: Algoritmo para alteração das chamadas da camada de negócio

A Figura 5.5 mostra parte do resultado das etapas da refatoração citada anterior-
mente, sendo que a 5.5a exibe alguns métodos inseridos na classe ManterCalendarioA-
cademicoEJB, referentes a chamadas de sua persistência que estavam incluídas em outras
classes. A Figura 5.5b demonstra a exclusão de métodos que não agregavam informação
ou processamento ao resultado da chamada (item 2.2 das etapas de refatoração). Além
disso, também revela o resultado da alteração do método removerFaltasDaAula, que
teve a chamada ao método remover da classe FaltaDAO, alterado para uma chamada
ao método de mesmo nome mas pertencente à classe ManterDiarioClasseEJB, que é a
responsável pela persistência.

Apesar de agilizar bastante o processo, ainda é necessário fazer pequenas adequações
manuais no código após as refatorações, como adequação dos imports e adaptação dos
métodos duplicados que podem ter sido inseridos, além da exclusão, quando possível, de
classes que ficaram sem nenhum método, entre outros.

Parte desse script, responsável pela substituição da chamada de um método de
uma classe da persistência pelo método equivalente de sua respectiva classe de negócio,

Capítulo 5. Estudo de caso e avaliação da abordagem 63

(a) Inclusão de métodos

(b) Alteração de chamada e exclusão de métodos

Figura 5.5 – Resultado das refatorações da modernização onde uma persistência está
associada à apenas um negócio

pode ser observado na Figura 5.6, sendo a explicação desse script detalhada a seguir:

• Linha 8: Variável CallId identifica uma chamada a uma persistência que não pertence
a classe de negócio, e BusinessTarget representa a classe de negócio para a qual a
persistência foi migrada;

• Linhas 9 a 15: Cria uma referência para o atributo da classe BusinessTarget;

• Linha 18: Cria a declaração de uma variável do tipo BusinessTarget no código;

• Linhas 20 e 21: altera a chamada a um método de uma persistência para a classe de
negócio BusinessTarget.

Ao terminar as refatorações pode-se iniciar o processo de "clusterização"das classes.
O novo código refatorado será utilizado como base para a execução do próximo passo.

Capítulo 5. Estudo de caso e avaliação da abordagem 64

1 :- module(persistence_migration_transformation, []).

2

3 :- multifile(user:ct/3).

4

5 %CallId - Chamada a uma persistência que não pertence à classe de negócio

6 %Business - Classe de negócio onde ocorre a chamada

7 %BusinessTarget - Classe de negócio para onde foi a persistência chamada

8 user:ct(replaceCalls(CallId, Business, BusinessTarget),

9 (

10 %cria a variável do negócio a ser chamado

11 classT(BusinessTarget, _, NameBusinessTarget, _, _),

12 implementsT(_, BusinessTarget, BusinessTargetInterface),

13 fieldT(FieldEJB, Business, BusinessTargetInterface, NameBusinessTarget, null),

14 new_id(NewGetFieldEJB)

15),

16 (

17 %insere a variável no código

18 add(fieldAccessT(NewGetFieldEJB,_,_,_,FieldEJB,_)),

19 %substitui a chamada da persistência para o negócio

20 replace(callT(CallId, Parent, Encl, _, Args, Method, TypeParams, Type),

21 callT(CallId, Parent, Encl, NewGetFieldEJB, Args, Method, TypeParams, Type))

22)

23).

Figura 5.6 – Parte do script de refatoração das classes de negócio

5.3.2 Clusterização

Seguindo o procedimento detalhado na Seção 4.2.2, foi criado o grafo do sistema
SIGA-EPCT, através da ferramenta JCluster (Seção 5.2.1.1), que representa as classes de
negócio e seus relacionamentos, sendo possível visualizar parte dele na Figura 5.7. Nessa
figura cada conjunto de cores representa um possível componente a ser gerado, sendo que
a coloração seguiu o Algoritmo 2 da Seção 5.2.1.1.

Na Figura 5.7 é possível ver a existência de alguns grupos de vértices isolados, porém
verifica-se que em grande parte eles estão inter-relacionados (dentro da marcação). Para esse
caso, e mesmo para os grupos menores, pode-se executar o algoritmo de "clusterização"fast
community, descrito na Seção 4.1.2, gerando um dendrograma para tentar identificar uma
melhor divisão das classes. O algoritmo não é executado sobre todo o sistema de uma vez,
sendo necessário que o engenheiro de software escolha cada conjunto de classes que deseja
tratar. A Figura 5.8 mostra um zoom maior nas classes presentes dentro da marcação,
para melhor visualização.

O dendrograma da Figura 5.9 representa a "clusterização"dos vértices contidos
dentro da marcação da Figura 5.7 e é gerado ao se clicar em qualquer um desses vértices.

Capítulo 5. Estudo de caso e avaliação da abordagem 65

Nessa imagem é possível verificar a modularidade em cada iteração e sua variação, conforme
explicado na Seção 4.1.2. Com base nas informações disponibilizadas, o engenheiro de
software pode selecionar um dos pontos de junção e visualizar a quantidade de componentes
que esse ponto de corte irá gerar, através das cores apresentadas (Figura 5.9).

Ao escolher um ponto de corte, as cores do dendrograma são repassadas para o
grafo. Apesar do Engenheiro de Software ter liberdade na escolha do ponto de corte, Girvan
e Newman (2003) sugere que a modularidade do ponto escolhido seja igual ou superior a
0,6, conforme explicado na Seção 4.2.2. O engenheiro deverá fazer esse procedimento em
todos os grupos de classes nos quais deseja diminuir seu tamanho.

Figura 5.7 – Grafo representando o sistema SIGA-EPCT

Capítulo 5. Estudo de caso e avaliação da abordagem 66

Figura 5.8 – Zoom do grafo representando o sistema SIGA-EPCT

Após o término das clusterizações, JCluster (Seção 5.2.1.1) cria diretórios separados
para cada grupo de cores existentes no grafo e move para elas cada conjunto que possuem a
mesma cor, levando além das classes de negócio, suas persistências, e copiando as entidades,
interfaces e superclasses utilizadas. Cada pasta conterá todas as classes necessárias para
criação de um projeto que irá criar e disponibilizar os serviços, sendo necessária a verificação
das bibliotecas extras que devem ser inseridas ou excluídas.

Capítulo 5. Estudo de caso e avaliação da abordagem 67

Figura 5.9 – Clusterização das classes

5.3.3 Criação dos serviços

Conforme explicado na Seção 4.2.3, não será apresentada técnica de automatização
para criação e disponibilização dos serviços, mas será exemplificado, dentro do estudo de
caso, as questões abordadas na referida seção.

O primeiro passo é a disponibilização dos métodos como serviços. Como foi defi-
nido que são as classes de negócio que irão disponibilizar seus métodos, deve-se incluir
a anotação @javax.jws.WebService nessas classes. Essa anotação é responsável por
definir uma classe como web service e todos os métodos públicos existentes poderão ser
acessados. Apesar de não ser obrigatório, é recomendado a utilização da anotação @ja-
vax.jws.WebMethod nos métodos a serem disponibilizados (KALIM, 2013). Um exemplo
de uma classe do sistema SIGA-EPCT contendo essas anotações pode ser visualizada na
Figura 5.10.

Com os web services criados, é necessário verificar a existência de métodos com
mesmo nome, mesmo tendo assinaturas diferentes, conforme restrições apresentadas na
Seção 4.2.3. É possível agilizar a identificação desses métodos com a utilização do plugin
JTransformer, sendo necessário a criação de um script para isso, conforme pode ser visto
na Figura 5.11.

Uma vez identificados os métodos de mesmo nome, fica a cargo do engenheiro
de software alterar o nome do método, ou o nome a ser disponibilizado como serviço,
incluindo o atributo operationName à anotação @javax.jws.WebMethod. A Figura

Capítulo 5. Estudo de caso e avaliação da abordagem 68

@WebService
public class ManterStatusAlunoEJB implements IManterStatusAlunoEJB {

@PersistenceContext(unitName = "siga")
private EntityManager em;

@WebMethod
public List<TipoStatusAluno> consultarTodosTipoStatusAluno() throws NegocioException {

return new TipoStatusAlunoDAO(this.em).consultarTodos();
}

}

Figura 5.10 – Criação de web service

:- module(duplicated_method_names_analysis, [duplicated_method_names_finder/2]).

duplicated_method_names_finder(MethodId, MethodIdAux) :-

%filtrar somente as classes de negócio

packageT(Package, 'org.sigaept.edu.negocio.ejb'),

compilationUnitT(CompilationUnit, Package, _, _, [ClassId]),

classT(ClassId, CompilationUnit, _, _, _),

%compara os métodos dentro de uma mesma classe

methodT(MethodId, ClassId, MethodName, _, _, _, _, _),

methodT(MethodIdAux, ClassId, MethodNameAux, _, _, _, _, _),

%ignora a comparação de um método com ele mesmo

MethodId \== MethodIdAux,

%compara método com mesmo nome

MethodName == MethodNameAux.

Figura 5.11 – Script para encontrar nomes de métodos duplicados

5.12 mostra ambas refatorações, que produzirão o mesmo resultado, feitas na classe
ManterAbonoFaltaEJB, que possui dois métodos com o nome pesquisaSimples, mas
assinaturas diferentes.

Tratados os nomes dos métodos, é necessário refatorar as chamadas às classes
que agora pertencem a outro componente e, consequentemente, a outro web service. Essa
refatoração pode ser visualizada no trecho código da Figura 5.13. Uma explicação mais
detalhada sobre utilização de web services pode ser obtida em Oracle (2016).

Feito os passos citados, resta ainda verificar a necessidade de controle de transação
dos métodos, sendo necessária a análise individual de cada método pelo engenheiro de
software. Apesar de existir as transações atômicas e de negócio, dentro do sistema SIGA-
EPCT, tem-se a necessidade de utilizar apenas a primeira, pois não existe nenhuma
operação de longa duração. A diferença entre esses tipos de transação é explicado na Seção
4.2.3.

O primeiro passo para habilitar a transação é adicionar a anotação@com.sun.xml.
ws.api.tx.at.Transactional na classe ou método. Ao inserir a anotação na classe, todos

Capítulo 5. Estudo de caso e avaliação da abordagem 69

Alteração do nome do método

@WebService
public class ManterAbonoFaltaEJB{

...
@WebMethod
public List<AbonoFalta> pesquisaSimples(...) {

...
}

@WebMethod
public List<AbonoFalta> pesquisaSimples2(...){

...
}
...

}

Alteração do nome do serviço

@WebService
public class ManterAbonoFaltaEJB{

...
@WebMethod
public List<AbonoFalta> pesquisaSimples(...) {

...
}

@WebMethod(operationName="pesquisaSimples2")
public List<AbonoFalta> pesquisaSimples(...) {

...
}
...

}

Figura 5.12 – Mudança dos nomes dos métodos dos web services

Código Original

public class ManterEducacensoEJB{
@EJB
private IManterTurmaEJB ManterTurmaEJB;

...
private List<RegistrosComposto>

getDadosProfissionalDocencia(Docente
docente) {

↪→
↪→

...
List<Turma> listaTurma = ManterTurmaEJB
.consultarTodosTurmasPorDocente(docente);
...

}
...

}

Código Refatorado

public class ManterEducacensoEJB {
ManterTurmaEJBService manterTurmaEJBService;

...
private List<RegistrosComposto>

getDadosProfissionalDocencia(Docente
docente) {

↪→
↪→

...
List<Turma> listaTurma =
manterTurmaEJBService
.getManterTurmaEJBPort()
.consultarTodosTurmasPorDocente(docente)
...

}
...

}

Figura 5.13 – Refatoração para chamada a web services

os métodos dela seguirão as mesmas configurações. Adicionando diretamente nos métodos,
é possível definir configurações diferentes para uma mesma classe. Oracle (2016) descreve
as opções de configuração existentes para essa anotação:

• Versão: versão do contexto da coordenação de transação atômica utilizado pelo
web service e seus clientes. A versão especificada deve ser a mesmo através da
transação inteira, sendo os seguintes valores possíveis: WSAT10, WSAT11, WSAT12
e DEFAULT

• Tipo do fluxo: indica se o contexto da coordenação de transação atômica será
passado adiante durante o fluxo da transação. Seus possíveis valores podem ser
encontrados na Tabela 5.5.

O código final de um web service da classe ManterTurmaEJB, contendo as
anotações descritas acima pode ser vista na Figura 5.14.

Capítulo 5. Estudo de caso e avaliação da abordagem 70

Tabela 5.5 – Valores de tipo de fluxo existentes (ORACLE, 2016).

Valor Cliente web service Web service

NEVER
Não exporta o contexto
da transação mesmo que
possua uma transação

Não importa o contexto
da transação mesmo que
já exista um fluxo de transação

SUPPORTS
(Valor padrão)

Exporta o contexto de
transação somente se já
existir uma transação

Importa o contexto da
transação somente se já
existir um fluxo de transação

MANDATORY
Se não houver uma
transação a ser exportada,
um erro é reportado

Se não houver um contexto
de transação a ser importado,
um erro é reportado

@WebService
@Transactional(value=Transactional.TransactionFlowType.SUPPORTS, version=Transactional.Version.DEFAULT)
public class ManterTurmaEJB extends GenericCrudEJB<Turma, TurmaDAO> implements IManterTurmaEJB {

...
@WebMethod
public List<Turma> consultarTodosTurmasPorDocente(Docente docente) {

return new TurmaDAO(em).consultarTodosTurmasPorDocente(docente);
}
...

}

Figura 5.14 – Web service com controle de transação

Seguindo as orientações apresentadas, é possível disponibilizar os web services
referentes a camada de negócio de cada componente identificado na seção anterior. É
importante lembrar que embora não abordada por esta pesquisa, ainda será necessário a
refatoração da camada de apresentação do sistema, de forma a usar os serviços criados,
ficando esta tarefa para um trabalho futuro.

5.4 Análise e Resultados
Nesta seção serão analisadas os valores das métricas calculadas após a execução

da abordagem, utilizando-as como base para avaliar se o objetivo de eficácia definido
anteriormente foi atingido.

5.4.1 Questão 1: Que tipo de melhoria a refatoração das classes traz?

Com a execução da etapa de diminuição das dependências, foi possível observar
a redução geral do acoplamento das classes através da Medida ACCL da Tabela 5.1. A
Tabela 5.6 mostra a quantidade média de dependências das classes, antes e depois das
refatorações, dividindo os resultados por camadas. Quando observada somente a camada
de negócio, o aumento do acoplamento encontrado ocorre porque originalmente não havia
muitas dependências entre classes de negócio, mas sim a reutilização do mesmo método

Capítulo 5. Estudo de caso e avaliação da abordagem 71

da mesma classe de persistência. Apesar disso, ainda é possível observar uma diminuição
média de 24% no acoplamento (métrica M1 da Tabela 5.1) existentes nas classes.

Tabela 5.6 – Cálculo da quantidade média de dependências das classes por camada

Código Original Código Refatorado
Negócio - Negócio 0,08 1,05
Negócio - Persistência 4,34 2,30
Geral 4,42 3,36

Um exemplo que demonstra essa realidade é apresentado pela Figura 5.15, mos-
trando que originalmente a classe CopiarTurmaEJB fazia uso de três classes de persistên-
cia, PeriodoLetivoDAO, CursoDAO, TurmaDAO, e depois da refatoração passou a
referenciar apenas uma única classe de negócio ManterTurmaEJB. Essa figura também
mostra a remoção de métodos que deixaram de ser relevantes, pois passaram a existir na
classe de negócio ManterTurmaEJB.

Figura 5.15 – Refatoração da classe CopiarTurmaEJB

5.4.2 Questão 2: Quais foram as melhorias obtidas nos componentes gerados?

Com a técnica de "clusterização", responsável pela divisão dos componentes,
conseguiu-se uma diminuição da complexidade (medida COXP) e do tamanho dos com-
ponentes gerados (medida TACO), podendo ser facilmente verificado pela redução da
quantidade de classes em cada componente. Porém ao se dividir um componente, pro-
vavelmente irão ser criados outros com dependências entre si (medida ACCO), já que
originalmente eram um só componente. Entretanto, como o ponto de corte, responsável
pela divisão do componente, é de livre escolha do engenheiro de software, essa redução
pode variar significativamente.

Capítulo 5. Estudo de caso e avaliação da abordagem 72

Para exemplificar, se o algoritmo de "clusterização"for executado no maior compo-
nente do sistema SIGA-EPCT (cor azul da Figura 5.7), criado automaticamente a partir
dos relacionamentos das classes, teremos valores diferentes para as métricas citadas acima.

A Tabela 5.7 mostra essa variação em relação as medidas definidas na Tabela 5.1,
sendo que os dados dessa tabela refletem ao componente e dendrograma das Figuras 5.8 e
5.9, respectivamente, com exceção da medida COXP que é relacionado a complexidade
média de todo o sistema. As colunas da tabela 5.7 representa o componente original e
quatro conjuntos de componentes gerados após a escolha de quatro dos possíveis pontos
de corte do dendrograma, todos com modularidade superior a 0,6, conforme sugerido
por Girvan e Newman (2003). Para cada um desses pontos de corte, as linhas da tabela
representam:

• Modularidade: valor da modularidade no ponto de corte;

• Qtde de clusters: quantidade de componentes que o cluster original irá derivar;

• TACO: quantidade média de classes pertencentes a cada componente derivado;

• ACCO: acoplamento médio entre os componentes derivados;

Tabela 5.7 – Variação dos valores das métricas de acordo com ponto de corte da clusteri-
zação

Após Clusterização

Original Ponto de
Corte 1

Ponto de
Corte 2

Ponto de
Corte 3

Ponto de
Corte 4

Modularidade 1 0,9612 0,8999 0,8117 0,7253
Qtde de componentes 1 2 3 4 5
COXP 14,20 13,96 13,73 13,51 13,30
TACO 22 11 7,33 5,5 4,4
ACCO 0 0,50 1,33 1,50 1,80

Com base nas medidas da Tabela 5.7 é possível calcular as métricas M2, M3 e M4,
também calculadas a partir dos pontos de corte definidos nessa tabela (1 ao 4). Temos
então:

• M2: redução variou entre 50% e 80%

• M3: redução variou entre 1,70% e 6,33%

• M4: aumento variou entre 166% e 260%

Para a métrica M4 foi utilizado como base o valor de ACCO calculado para o ponto
de corte 1, já que originalmente não existe dependência com outro componente (ACCO =
0). Essas dependências passam a existir após a divisão do componente original, que gera
componentes menores que se relacionam.

Capítulo 5. Estudo de caso e avaliação da abordagem 73

5.4.3 Questão 3: A funcionalidade original é mantida após a criação dos
serviços?

Conforme dito anteriormente, as alterações propostas não alteram os algoritmos
do sistema, de forma que as mudanças são feitas apenas nas chamadas e/ou nomes e não
nos corpos dos métodos, conforme explicitado nas Figuras 5.5 e 5.13.

Para o cálculo da métrica M3 foram criados 5 casos de teste7 nos quais foram
executados métodos do sistema antes e depois da modernização. A Tabela 5.8 mostra o
resultado da execução dos testes, sendo que a coluna Classe representa a classe original do
sistema, Serviço representa o web service criado a partir da classe, Método é o método
tanto da classe quanto do web service que foi executado, Ind. informa se o web service é
independente, ou seja, contém todo o código dentro de si ou se depende de outro serviço e
a coluna Resultado mostra o resultado dos testes.

Tabela 5.8 – Resultado dos casos de teste

Classe Serviço Método Ind. Resultado
ManterCursoEJB ManterCursoService consultarTodosEtapaEnsino não sucesso
ManterTCCMatriculaEJB ManterTCCMatriculaService remover não sucesso
ManterTCCMatriculaEJB ManterTCCMatriculaService consultarTodosTCCs sim sucesso
ManterMatrizCurricularEJB ManterMatrizCurricularService consultarTodos não sucesso*
ReaberturaTurmaClasseEJB ReaberturaTurmaClasseService reabrirTurma sim sucesso*

Em todos os casos de teste foram obtidos sucesso nas comparações, indicando que
a funcionalidade continuou trazendo os mesmos resultados. Os asteriscos (*) nos dois
últimos resultados da Tabela 5.8 são para informar que foi necessário uma refatoração
antes de sua execução. O motivo foi pelo fato de as entidades utilizadas como parâmetros
formarem um ciclo a partir de seus atributos, que geram erro no momento da montagem
dos XMLs para troca de mensagens, sendo necessário retirar os ciclos encontrados. Um
exemplo de ciclo encontrado pode ser verificado pelas linhas destacadas dos trechos de
códigos mostrados na Figura 5.16, onde para esse caso foi retirado o atributo private
List<ProjetoPedagogicoCurso> projetosPedagogicosCurso da classe Curso.

public class Curso extends GenericEntidadeId {
@CampoUnico(descricao="Código")
@Column(name="codigo")
private String codigo;

...

@OneToMany(mappedBy="curso")
private List<ProjetoPedagogicoCurso>

projetosPedagogicosCurso;↪→

...
}

public class ProjetoPedagogicoCurso extends
GenericEntidadeId{↪→

...

@Column(name="nome_arquivo")
private String nomeArquivo;

@ManyToOne
@JoinColumn(name = "curso_id")
private Curso curso;

...
}

Figura 5.16 – Exemplo de ciclo
7O ambiente de teste criado pode ser acessado através do link <https://github.com/aborgesrodrigues/

ambiente_teste_siga>.

https://github.com/aborgesrodrigues/ambiente_teste_siga
https://github.com/aborgesrodrigues/ambiente_teste_siga

Capítulo 5. Estudo de caso e avaliação da abordagem 74

Apesar de a alteração para retirada dos ciclos das entidades não ter uma complexi-
dade alta, pode afetar várias partes do sistema, onde é necessário substituir as chamadas
aos atributos retirados por novos métodos de consulta para trazer os mesmos dados.

5.5 Discussão
Com base nas métricas calculadas para as questões definidas anteriormente pode-se

observar a eficácia da proposta de modernização, sendo esse o objetivo principal deste
estudo de caso. Uma das principais características está na redução do tamanho dos web
services gerados. Isso é feito tanto na primeira etapa, diminuição de dependências, que
reduz o acoplamento entre as classes, quanto na etapa de "clusterização", que permite a
quebra dos grupos de classes. Outro ponto é a inclusão do controle de transações entre
serviços, que ajuda a garantir que as funcionalidades originais continuarão funcionando da
mesma forma.

Apesar dos benefícios obtidos, existem alguns pontos críticos a serem observados
nesta pesquisa. O primeiro é relacionados ao uso da fórmula da força de conectividade
(Seção 4.1.1) para a diminuição do acoplamento das classes, e o segundo na utilização
do algoritmo fast community na "clusterização"das classes(Seção 4.1.2). Apesar de serem
técnicas sobre as quais já foram comprovadas suas eficácias, não é possível assegurar que
são as melhores opções existentes para subsidiar essas operações, pois embora existam
várias abordagens que podem ser utilizadas para atingir o mesmo objetivo, faltam trabalhos
que os comparem de forma a auxiliar na escolha. Devido a complexidade existente em
realizar essas comparações, essa atividade não foi incluída no escopo desse trabalho.

Outro ponto crítico está relacionado aos testes. Não foi utilizado nenhum framework
para a execução dos testes da Seção 5.4.3, mas criou-se um ambiente integrado com o
sistema original e com os web services gerados, onde foi possível executar ambos e comparar
os resultados. A não utilização de um framework de testes como Junit8 ou Arquillian9 foi
por causa de problemas técnicos encontrados, como a chamada de classes EJB (Enterprise
JavaBeans) de dentro dos casos de teste. Também não foi testado a performance dos web
services criados, ficando a cargo do engenheiro de software definir uma forma de fazer tais
validações, além de realizar um conjunto de testes que abranjam mais áreas do sistema.

Apesar da abordagem proposta não exigir que o Engenheiro de Software possua um
profundo conhecimento sobre sistema a ser modernizado, o código sistema SIGA-EPCT,
do estudo de caso foi conseguido pelo fato do autor pertencer a equipe de desenvolvimento,
o que prejudica essa avaliação. Apesar disso, a utilização do sistema SIGA-EPCT como
estudo se caso foi devido a dificuldade de se conseguir acesso ao código fonte de sistemas

8Site do Junit: <http://junit.org/junit4/>
9Site do Arquillian: <http://arquillian.org/>

http://junit.org/junit4/
http://arquillian.org/

Capítulo 5. Estudo de caso e avaliação da abordagem 75

razoavelmente complexos.

A metodologia proposta não tem a pretensão de gerar uma arquitetura ideal de
serviços ao final do processo, mas garantir que esse novo código seja funcional, mantenha as
mesmas funcionalidades do sistema original e facilite a manutenção dos serviços disponibili-
zados. Um importante resultado a ser obtido é permitir ao engenheiro de software, a partir
do código refatorado, analisar pontualmente a performance de cada serviço, identificando
possíveis gargalos. A partir de uma análise mais restrita, e não da totalidade do sistema, é
possível fazer novas refatorações que se julgarem necessárias, podendo alterar a arquitetura
ou até mesmo a linguagem utilizada em cada serviço sem afetar os demais web services,
desde que não sejam alteradas as assinaturas dos métodos disponibilizados.

5.6 Resumo do Capítulo
Neste capítulo a abordagem de modernização proposta foi executada no sistema

SIGA-EPCT como forma de um estudo de caso. Para guiar essa execução foi utilizado o
paradigma GQM, com o objetivo de mostrar a eficácia da abordagem, que de acordo com
as métricas estabelecidas, foi alcançado.

No próximo capítulo serão apresentados as considerações finais da abordagem de
modernização proposta, apresentando suas principais contribuições, as oportunidades de
trabalhos futuros que permite, e os trabalhos correlatos existentes.

76

6 CONSIDERAÇÕES FINAIS E TRABA-
LHOS FUTUROS

Esta dissertação apresentou uma abordagem para modernização de sistemas mo-
nolíticos, orientados a objetos, e desenvolvidos com uma arquitetura de três camadas,
para SOA. Diferentes técnicas foram estudadas e aplicadas, como cálculo da Força de
Conectividade, "Clusterização"e Refatorações, que dão suporte à Reengenharia desses
sistemas.

6.1 Trabalhos correlatos
Conforme observado na Seção 2.2 existem várias famílias de abordagens existentes

na literatura para modernizar sistemas legados para SOA. Contudo, nesta seção serão
apresentadas as abordagens referentes à mesma família da apresentada nesta dissertação
(Família da identificação de serviço), focando naquelas que utilizam sistemas orientados a
objetos como origem e que definem técnicas de semi-automatização do processo.

O primeiro trabalho é o Eunjoo Lee et al. (2003), que define a fórmula para o
cálculo da força de conectividade, utilizada na primeira etapa da abordagem proposta nesta
dissertação. Wang et al. (2008) utiliza o trabalho anterior como base e aprimora o cálculo
da força de conectividade, com a utilização de pesos diferentes para atributos primitivos e
complexos. Com base na força de conectividade é feita a "clusterização"hierárquica das
classes, que gerará um dendrograma com os agrupamentos realizados em cada iteração,
sendo que os novos valores da FC encontrados em cada iteração serão utilizados para
definir o ponto de corte. Na abordagem desta dissertação optou-se pela utilização do
algoritmo fast community para a "clusterização". Embora os trabalhos de Eunjoo Lee et al.
(2003) e Wang et al. (2008) tenham como objetivo a identificação de componentes e não
serviços, sua comparação é válida, pois o foco deles também é na identificação de grupos
de classes.

Budhkar e Gopal (2012) utiliza a similaridade existente entre as classes para realizar
um algoritmo de "clusterização"hierárquico, utilizando-se de um threshold, definido pelo
engenheiro de software, como ponto de encerramento nas iterações de agrupamento. Apesar
de não apresentar a fórmula para o cálculo da similaridade, deixa claro que é baseado nos
tipos de relacionamentos existentes entre as classes, como herança, composição, execução
de métodos, etc.

Adjoyan, Seriai e Shatnawi (2014) define outra função para calcular a ligação

Capítulo 6. Considerações finais e trabalhos futuros 77

entre as classes, a fitness function (FF), que leva em conta os cálculos de functionality,
composability e self- containment. Neste trabalho também é utilizado um algoritmo de
"clusterização"hierárquico com base nos valores das FF obtidos. Para definir o ponto de
corte é utilizado o algoritmo depth first search (DFS), sendo que inicialmente, no nó raiz,
é comparado a similaridade do nó corrente com a similaridade dos nós filhos, sendo que
quando a similaridade do nó corrente for maior que a média da similaridade dos nós filhos,
este nó será o ponto de corte.

Tanto o agrupamento das classes quanto a clusterização delas se assemelham nas
propostas apresentadas acima, inclusive em relação a proposta desta pesquisa. Todas
essas abordagens, apesar de definirem critérios distintos, agrupam as classes através destes
critérios e utilizam algoritmos de "clusterização"hierárquica para o agrupamento dessas
classes. Essas clusterizações são todas feitas de forma hierárquica, sendo que algumas geram
grafos, criam dendrogramas e escolhem um ponto de corte (Eunjoo Lee et al., 2003; WANG
et al., 2008; ADJOYAN; SERIAI; SHATNAWI, 2014), ou agrupam hierarquicamente as
classes, analisando o valor que esse agrupamento gera até que se atinja um ponto de
parada, ou treshold, que assemelha-se ao uso do ponto de corte (BUDHKAR; GOPAL,
2012).

Uma das vantagens da abordagem de modernização proposta em relação as apre-
sentadas anteriormente, são as refatorações definidas com o intuito de diminuir o tamanho
dos serviços a serem criados, enquanto as demais não possuem esta etapa. Outra vantagem
é que a abordagem desta pesquisa leva em consideração a existência de uma arquitetura
de camadas no sistema legado a ser modernizado, enquanto as demais abordagens descon-
sideram esse fato, podendo causar agrupamentos de classes inviáveis de se manter, como
entidades e persistência sem negócio, ou negócio e persistência sem entidades, tornando-as
difíceis de se aplicar nos sistemas com esse tipo de arquitetura.

6.2 Contribuições
A principal contribuição é a definição de uma abordagem para a modernização

para SOA de sistemas monolíticos, orientados a objetos e que também possuam uma
arquitetura em camadas, através das etapas e técnicas semi-automatizadas que foram
definidas nela.

A primeira etapa dessa abordagem, diminuição das dependências, contribui com
técnicas que permitem a semi-automatização de refatorações que reduzirá a quantidade
de dependências que cada classe possui, em relação a outras classes, tanto na camada
de persistência quanto na de negócio, de modo a permitir um menor acoplamento nos
serviços a serem gerados.

A segunda etapa, "clusterização", também apresenta técnicas que possibilitam

Capítulo 6. Considerações finais e trabalhos futuros 78

a semi-automatização da identificação dos grupos de classes de negócio, que poderão
disponibilizar seus métodos como serviços. Além disso, também é apresentada técnicas
que permitem a divisão desses grupos, caso seja necessário, devido à quantidade de classes
que possuíram em um primeiro momento.

Apesar da abordagem não ser direcionada a uma linguagem de programação
específica, foi criado o plugin JCluster que implementa as técnicas das duas primeiras
etapas da abordagem, semi-automatizando o processo para os sistemas desenvolvidos
na linguagem Java. A descrição da utilização do plugin JTransformer para a análise e
refatoração de código contribui para elucidar seu funcionamento, que pode ser utilizado
das mais diversas formas.

A terceira etapa, criação de serviços, apesar de não descrever nenhuma técnica
para a criação dos web services, contribui com a descrição de como eles devem ser criados,
e as características que eles devem possuir.

6.3 Limitações e trabalhos futuros
A abordagem de modernização proposta abre espaço para novas contribuições que

poderão complementá-las.

Como explicitado anteriormente, a abordagem de modernização definida não
abrange a adequação da camada de apresentação, que necessitará ser refatorada para
que possa usufruir dos web services gerados. Essas refatorações são bastante complexas
e trabalhosas e precisam de técnicas e/ou ferramentas que permitam a automatização
ou semi-automatização do trabalho. Uma solução seria a construção de uma ferramenta
para auxiliar essas refatorações, além de identificar os pontos a serem refatorados. Para
deixá-la independente de linguagem será necessário que essa ferramenta permita a inserção
de padrões das chamadas aos web services para as diversas linguagens, de acordo com a
necessidade do Engenheiro de Software. Essa ferramente também pode ser utilizada para
refatorar as chamadas entre os web services, após suas criações, na etapa de criação de
serviços.

Outro ponto não abordado é a separação do banco de dados por serviço. Essa
separação permitiria que cada serviço possuísse uma base de dados própria. Como as
entidades são a representação do banco de dados, estas também provavelmente serão
afetadas, de forma que cada web service terá seu próprio conjunto exclusivo de entidades.
Para realizar essa tarefa será necessário descobrir quais tabelas são acessadas por quais
web services, montando um mapeamento. Além disso, será necessário a exclusão das chaves
estrangeiras entre tabelas de web services diferentes, sendo necessário a inclusão dessa
constraint dentro dos web services. Deverão ser refatoradas as entidades, retirando os
atributos que referenciam entidades de outros web services, além de refatorar os scripts

Capítulo 6. Considerações finais e trabalhos futuros 79

SQL (ou HQL), que utilizem essas referências que foram removidas.

Na análise dos relacionamentos entre classes de persistência, da etapa de diminuição
de dependências, não foi definido uma técnica para automatizar as refatorações necessárias.
Apesar de ser possível agilizar a identificação dessas classes através de ferramentas como
a JTransformer, a migração desse tipo de chamada para a camada de negócio, conforme
exemplificado pela Figura 5.4, exige conhecimento do sistema por parte do Engenheiro
de Software responsável pela modernização. Seria necessário a criação/utilização de uma
ferramenta que agilizasse tal refatoração, permitindo ao Engenheiro de Software interagir
com essa ferramenta para fazer as devidas configurações, como a escolha da classe de
negócio que receberá o código removido da persistência.

Conforme apresentado na Seção 5.5, não só este trabalho mas, a literatura em
geral sobre modernizações para SOA, carece de estudos de comparação das técnicas
utilizadas tanto para calcular a força de ligação entre as classes, quanto para realizar a
"clusterização"das mesmas. Para analisar as técnicas que possibilitam o agrupamento de
classes pode-se utilizar a técnica MoJo (TZERPOS; HOLT, 1999), que é uma métrica que
pode ser usada para avaliar a similaridade entre decomposições de um sistema. Uma forma
de avaliar os modelos de "clusterização"é a utilizada por Erdemir e Buzluca (2014), que
avalia as abordagens sobre os critérios de authoritativeness, stability e extremity of cluster
distribution.

Pelo fato desta pesquisa focar nos critérios a serem observados na criação de web
services, mas não estabelecer técnicas para criá-los de fato, os testes destes web services
foram retirados do escopo da pesquisa, mas pode ser incorporado em um trabalho futuro.
Um importante tipo de teste seria o teste de regressão dos web services, comparando os
resultados do sistema monolítico original com o SOA refatorado, através de um conjunto
amplo de casos de teste e uso de ferramentas para auxiliar. Outros testes também podem
ser feitos como teste de performance, que analisa o comportamento dos web services através
de métricas e valores de referência pré-definidos, e o teste de stress, que verifica volume de
dados que web services consegue atender. O uso de ferramentas é fundamental na execução
de testes, como por exemplo as ferramentas SOAPUI 1, TestingWhiz 2 e SOAtest 3.

O plugin JCluster está disponível para atualizações, podendo melhorar a distribuição
dos vértices (classes) no grafo gerado por ele, de forma a facilitar a visualização. Se for
definida técnicas específicas, é possível adicionar a funcionalidade de criação dos web
services e a refatoração das chamadas.

1Disponível em <https://www.soapui.org>
2Disponível em <http://www.testing-whiz.com/>
3Disponível em <https://www.parasoft.com/product/soatest/>

https://www.soapui.org
http://www.testing-whiz.com/
https://www.parasoft.com/product/soatest/

80

REFERÊNCIAS

ADJOYAN, S.; SERIAI, A.-D.; SHATNAWI, A. Service Identification Based on Quality
Metrics. Proceedings of the 26 International Conference on Software Engineering &
Knowledge Engineering (SEKE2014), p. 1–6, 2014. Citado 4 vezes nas páginas 30, 32, 76
e 77.

ALVES, T. L.; HAGE, J.; RADEMAKER, P. A comparative study of code query
technologies. In: Proceedings - 11th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2011. [S.l.: s.n.], 2011. p. 145–154. ISBN
9780769543475. Citado 3 vezes nas páginas 11, 56 e 57.

BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. The goal question metric approach.
Encyclopedia of Software Engineering, v. 2, p. 528–532, 1994. Citado na página 52.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice (3rd Edition)
(SEI Series in Software Engineering). [S.l.: s.n.], 2012. 640 p. ISBN 0321815734. Citado 2
vezes nas páginas 25 e 30.

BINUN, A.; KNIESEL, G. Joining forces for higher precision and recall of design pattern
detection. . . . , Technical report IAI-TR-2012-01, 2012. Citado na página 56.

BUDHKAR, S.; GOPAL, A. Component-based architecture recovery from object
oriented systems using existing dependencies among classes. International Journal of
Computational Intelligence Techniques, v. 3, n. 1, p. 56–59, 2012. Citado 4 vezes nas
páginas 30, 32, 76 e 77.

CHIKOFSKY, E. J.; CROSS, J. H. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, v. 7, n. 1, p. 13–17, 1990. ISSN 07407459. Citado 3 vezes nas
páginas 9, 20 e 21.

CHO, E. S.; KIM, M. S.; KIM, S. D. Component metrics to measure component quality.
Proceedings Eighth Asia-Pacific Software Engineering Conference, p. 419–426, 2001. ISSN
1530-1362. Citado 3 vezes nas páginas 11, 53 e 54.

CONNALL, D.; BURNS, D. Reverse Engineering: Getting a Grip on Legacy Systems.
Data Management Review, v. 24, n. 7, 1993. Citado 2 vezes nas páginas 15 e 19.

CONSTANTINOU, E. et al. Extracting reusable components: A semi-automated approach
for complex structures. Information Processing Letters, Elsevier B.V., v. 115, n. 3, p.
414–417, 2015. ISSN 00200190. Citado 2 vezes nas páginas 30 e 32.

DAIGNEAU, R. Service Design Pattern. [S.l.: s.n.], 2012. XXXIII. 81–87 p. ISSN
0717-6163. ISBN 9780874216561. Citado na página 27.

Dos Santos Brito, K. et al. LIFT - A Legacy information retrieval tool. Journal of
Universal Computer Science, v. 14, n. 8, p. 1256–1284, 2008. ISSN 0958695X. Disponível
em: <http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{&}partnerID=
40{&}md5=717a584161cfa00c2741519582>. Citado na página 15.

http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{&}partnerID=40{&}md5=717a584161cfa00c2741519582
http://www.scopus.com/inward/record.url?eid=2-s2.0-45949097336{&}partnerID=40{&}md5=717a584161cfa00c2741519582

Referências 81

DRAGONI, N. et al. Microservices: yesterday, today, and tomorrow. 2016. Citado 2 vezes
nas páginas 15 e 26.

ERDEMIR, U.; BUZLUCA, F. A learning-based module extraction method for
object-oriented systems. Journal of Systems and Software, Elsevier Inc., v. 97, p. 156–177,
2014. ISSN 01641212. Citado 7 vezes nas páginas 16, 32, 34, 35, 36, 37 e 79.

ERDEMIR, U.; TEKIN, U.; BUZLUCA, F. Object Oriented Software Clustering Based on
Community Structure. Proceedings - 18th Asia-Pacific Software Engineering Conference,
APSEC 2011, p. 315–321, 2011. ISSN 1530-1362. Citado 4 vezes nas páginas 32, 34, 35
e 36.

ERL, T. Service-Oriented Architecture: Concepts, Technology, and Design. City, p. 760,
2005. ISSN 0131858580. Citado na página 27.

Eunjoo Lee et al. A reengineering process for migrating from an object-oriented legacy
system to a component-based system. In: Proceedings 27th Annual International Computer
Software and Applications Conference. COMPAC 2003. [S.l.]: IEEE Comput. Soc, 2003. p.
336–341. ISBN 0-7695-2020-0. ISSN 0730-3157. Citado 6 vezes nas páginas 30, 32, 33, 39,
76 e 77.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Building, v. 54, p. 162, 2000. ISSN 1098-6596. Disponível em:
<http://www.ics.uci.edu/{~}fielding/pubs/dissertation/top.h>. Citado na página 27.

FOWLER, M. J. Patterns of Enterprise Application Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN 0321127420. Citado 2 vezes
nas páginas 29 e 39.

FREUND, T.; STOREY, T. Transactions in the world of Web services. Research Paper,
IBM, 2002. Citado 3 vezes nas páginas 9, 48 e 49.

GIRVAN, M.; NEWMAN, M. E. J. Finding and evaluating community structure in
networks. Cond-Mat/0308217, p. 1–16, 2003. ISSN 1063651X. Citado 3 vezes nas páginas
45, 65 e 72.

GUO, H. et al. Wrapping client-server application to Web services for Internet computing.
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings,
v. 2005, p. 366–370, 2005. Citado na página 46.

KALIM, M. Java Web Services: Up and Running, 2nd Edition. [S.l.: s.n.], 2013. 359 p.
ISBN 9781449365110. Citado 2 vezes nas páginas 27 e 67.

KHADKA, R. et al. A structured legacy to SOA migration process and its evaluation in
practice. c2013 IEEE 7th International Symposium on the Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems, MESOCA 2013, p. 2–11, 2013. ISSN
2326-6910. Citado na página 37.

KHAN, M. W.; ABBASI, E. Differentiating Parameters for Selecting Simple Object Access
Protocol (SOAP) vs . Representational State Transfer (REST) Based Architecture.
Journal of Advances in Computer Networks, v. 3, n. 1, 2015. ISSN 17938244. Citado na
página 27.

http://www.ics.uci.edu/{~}fielding/pubs/dissertation/top.h

Referências 82

KITCHENHAM, B. A.; PICKARD, L. M. Evaluating Software Engineering Methods
and Tools Part 9: Quantitative Case Study Methodology. ACM SIGSOFT Software
Engineering Notes, v. 23, n. 1, p. 24–26, 1998. ISSN 01635948. Citado na página 52.

KNIESEL, G.; HANNEMANN, J.; RHO, T. A comparison of logic-based infrastructures
for concern detection and extraction. Proceedings of the 3rd workshop on Linking aspect
technology and evolution, p. 6, 2007. Citado 4 vezes nas páginas 9, 56, 57 e 59.

LANGWORTHY, D. et al. Coordinating Web Services Activities with WS-
Coordination, WS-AtomicTransaction, and WS-BusinessActivity. 2004. Disponível em:
<http://msdn.microsoft.com/en-us/library/ms996526.aspx>. Acesso em: 29/01/2017.
Citado 4 vezes nas páginas 9, 48, 49 e 50.

LEHMAN, M. M.; BELADY, L. A. Program evolution: processes of software change. [S.l.]:
Academic Press Professional, Inc., 1985. 538 p. ISBN 0-12-442440-6. Citado na página 19.

LEWIS, G.; MORRIS, E.; SMITH, D. Service-Oriented Migration and Reuse Technique
(SMART). Software Technology and Engineering Practice, 2005. 13th IEEE International
Workshop on, n. September, p. 222–229, 2005. Citado na página 37.

Liang Bao et al. Extracting reusable services from legacy object-oriented systems. 2010
IEEE International Conference on Software Maintenance, p. 1–5, 2010. ISSN 1063-6773.
Citado 3 vezes nas páginas 16, 30 e 32.

NEWCOMER, E.; ROBINSON, I. Web Services Atomic Transaction (WS-
AtomicTransaction). Oasis, n. February, p. 1–28, 2009. Citado na página
48.

NEWCOMER, E.; ROBINSON, I. Web services coordination (WS-Coordination) Version
1.2. Oasis, n. February, p. 1–26, 2009. Citado na página 48.

NEWMAN, M. E. J. Fast algorithm for detecting community structure in networks.
Physics, n. 2, p. 1–5, 2003. Citado 2 vezes nas páginas 34 e 35.

NEWMAN, S. Building Microservices. 1st. ed. [S.l.]: O’Reilly Media, Inc., 2015. 280 p.
ISBN 1491950358, 9781491950357. Citado na página 28.

Object Management Group (OMG). Business Process Model and Notation (BPMN)
Version 2.0. Business, v. 50, n. January, p. 170, 2011. ISSN 13507540. Citado na página
37.

ORACLE. Metro User Guide. 2016. Disponível em: <https://metro.java.net/guide/>.
Acesso em: 29/01/2017. Citado 4 vezes nas páginas 11, 68, 69 e 70.

RAZAVIAN, M.; LAGO, P. Towards a conceptual framework for legacy to SOA migration.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v. 6275 LNCS, p. 445–455, 2010. ISSN
03029743. Citado 3 vezes nas páginas 11, 21 e 23.

RAZAVIAN, M.; LAGO, P. A systematic literature review on SOA migration. Journal of
Software: Evolution and Process, v. 27, n. 5, p. 337–372, 2015. ISSN 20477481. Citado na
página 21.

http://msdn.microsoft.com/en-us/library/ms996526.aspx
https://metro.java.net/guide/

Referências 83

REUTER, A.; GRAY, J. Transaction Processing: Concepts and Techniques. [S.l.: s.n.],
1993. Citado na página 47.

RICHARDS, M. Microservices vs. Service-Oriented Architecture. [s.n.], 2015. 1–55 p.
ISBN 9781491952429. Disponível em: <https://www.nginx.com/microservices-soa/>.
Citado na página 28.

ROTEM-GAL-OZ, A. SOA Patterns. [S.l.: s.n.], 2012. 296 p. ISBN 9781933988269.
Citado na página 25.

SAUDATE, A. SOA Aplicado Integrando com web services e além. [S.l.: s.n.], 2013. 293 p.
ISBN 9788566250152. Citado 2 vezes nas páginas 9 e 27.

SEACORD, R. C.; PLAKOSH, D.; LEWIS, G. A. Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices. [S.l.: s.n.], 2003. 332 p. ISSN
08953805. ISBN 0321118847. Citado na página 19.

SHIOKAWA, H.; FUJIWARA, Y.; ONIZUKA, M. Fast Algorithm for Modularity-Based
Graph Clustering. Proceeding of the Twenty-Seventh Conference on Artificial Intelligence,
p. 1170–1176, 2013. Citado 2 vezes nas páginas 35 e 36.

SNEED, H. M. Planning the Reengineering of Legacy Systems. IEEE Software, v. 12, n. 1,
p. 24–34, 1995. ISSN 07407459. Citado na página 19.

SNELL, J. Automating business processes and transactions in Web services. Research
paper, IBM Emerging Technologies, p. 4–6, 2002. Citado na página 48.

STOJANOVI, Z. A Method for Component-Based and Service-Oriented Software Systems
Engineering. [S.l.: s.n.], 2005. ISBN 9090191003. Citado na página 15.

TIOBE.COM. TIOBE Index for January 2017. 2017. Disponível em: <http:
//www.tiobe.com/tiobe-index/>. Acesso em: 28/01/2017. Citado na página 15.

TZERPOS, V.; HOLT, R. MoJo: a distance metric for software clusterings. Sixth Working
Conference on Reverse Engineering, p. 187–193, 1999. Citado na página 79.

ULRICH, W. From Legacy Systems to Strategic Architectures. Software Engineering
Strategies, v. 2, n. 1, p. 18–30, 1994. Citado 2 vezes nas páginas 15 e 19.

VILLAMIZAR, M. et al. Evaluating the Monolithic and the Microservice Architecture
Pattern to Deploy Web Applications in the Cloud Evaluando el Patrón de Arquitectura
Monolítica y de Micro Servicios Para Desplegar Aplicaciones en la Nube. 10th Computing
Colombian Conference, p. 583–590, 2015. Citado 3 vezes nas páginas 15, 17 e 26.

VISAGGIO, G. Ageing of a Data Intensive Legacy System: Symptoms and Remedies.
Journal of Soft. Maintenance and Evolution, v. 13, p. 281–308, 2001. Citado na página
19.

WANG, X. et al. A new approach of component identification based on weighted
connectivity strength metrics. Information Technology Journal, v. 7, n. 1, p. 56–62, 2008.
ISSN 18125638. Citado 6 vezes nas páginas 16, 30, 32, 45, 76 e 77.

WOHLIN, C. et al. Experimentation in Software Engineering: An Introduction. [S.l.: s.n.],
2000. xx, 204 p. p. ISBN 0792386825. Citado na página 52.

https://www.nginx.com/microservices-soa/
http://www.tiobe.com/tiobe-index/
http://www.tiobe.com/tiobe-index/

Referências 84

YOUSEF, R.; ADWAN, O.; ABUSHARIAH, M. A. M. Extracting SOA Candidate
Software Services from an Organization’s Object Oriented Models. JSEA - Journal of
Software Engineering and Applications, v. 7, n. August, p. 770–778, 2014. ISSN 1945-3116,
1945-3124. Citado 3 vezes nas páginas 16, 30 e 32.

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Contextualização
	Objetivos
	Organização da Dissertação

	Reengenharia de Software
	Conceitos
	Terminologia

	Abordagens de Reengenharia de Sofware para SOA
	Considerações finais
	Resumo do Capítulo

	Arquiteturas de Software
	Conceitos Básicos
	Arquitetura monolítica
	SOA
	Arquitetura em Camadas
	Considerações Finais
	Resumo do Capítulo

	Modernização de sistemas monolíticos para arquitetura orientada a serviços
	Mecanismos da Abordagem proposta
	Força de Conectividade
	Algoritmo Fast Community

	Proposta de Metodologia de Modernização
	Diminuição das dependências
	Clusterização
	Criação dos serviços
	Transações entre serviços

	Resumo do Capítulo

	Estudo de caso e avaliação da abordagem
	Contexto
	Planejamento
	Ferramentas utilizadas
	JCluster
	JTransformer

	Execução
	Diminuição das dependências
	Clusterização
	Criação dos serviços

	Análise e Resultados
	Questão 1: Que tipo de melhoria a refatoração das classes traz?
	Questão 2: Quais foram as melhorias obtidas nos componentes gerados?
	Questão 3: A funcionalidade original é mantida após a criação dos serviços?

	Discussão
	Resumo do Capítulo

	Considerações finais e trabalhos futuros
	Trabalhos correlatos
	Contribuições
	Limitações e trabalhos futuros

	Referências

