‘Centro

~“Informética
; U:F+P-E

Pos-Graduacao em Ciéncia da Computacao

FRANCISCO AIRTON PEREIRA DA SILVA

IMPROVING MOBILE CLOUD PERFORMANCE USING
OFFLOADING TECHNIQUES AND STOCHASTIC
MODELS

=g
[l
e

1=

Federal University of Pernam buco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2017

www.cin.ufpe.br/~posgraduacao

Francisco Airton Pereira da Silva

Improving Mobile Cloud Performance using Offloading
Techniques and Stochastic Models

A Ph.D. Thesis presented to the Informatics Center of Fed-
eral University of Pernambuco in partial fulfillment of the

requirements for the degree of Philosophy Doctor in Com-
puter Science.

Advisor: Dr. Paulo Romero Martins Maciel

RECIFE
2017

Catalogacéo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

S586i Silva, Francisco Airton Pereira da

Improving mobile cloud performance using offloading techniques and
stochastic models / Francisco Airton Pereira da Silva. — 2017.
104 f.: il., fig., tab.

Orientador: Paulo Romero Martins Maciel.

Tese (Doutorado) — Universidade Federal de Pernambuco. Cin, Ciéncia da
Computacéo, Recife, 2017.
Inclui referéncias.

1. Ciéncia da computacdo. 2. Computacdo em nuvem. 3. Computacao
movel. I. Maciel, Paulo Romero Martins (orientador). Il. Titulo.

004 CDD (23. ed.) UFPE- MEI 2017-97

Francisco Airton Pereira da Silva

Improving Mobile Cloud Performance using Offloading Techniques
and Stochastic Models

Tese de Doutorado apresentada ao Programa
de Pos-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencéo do titulo de Doutora em Ciéncia da
Computacéo

Aprovado em: 14/02/2017.

Orientador: Prof. Dr. Paulo Romero Martins Maciel

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa
Centro de Informética / UFPE

Prof. Dr. Eduardo Antdnio GuimaraesTavares
Centro de Informatica / UFPE

Prof. Dr. Renato Mariz de Moraes
Centro de Informética / UFPE

Prof. Dr. José Neuman de Souza
Departamento de Computacao/ UFC

Prof. Dr. Alessandro Mei
Zapienza University of Rome/Department of Computer Science

Acknowledgements

This thesis is the result of a four year journey, with 12 months of internship in Italy. I found,
both at home and abroad, many new colleagues and friends. I would like to thank them all for
their influence on the outcome of my PhD work, and ultimately on this thesis. I will mention
some names briefly, as space dictates, and, if your name has been left out, please accept my
non-nominative thanks. I would like to start by thanking the Federal University of Pernambuco
for showing me, as a researcher, that does not matter where we are, but who we want to become.
As a substitute professor, the UFPE has shown me the importance of trying to achieve the
highest student results. I would like express my gratitude to professor Paulo Maciel, my adviser
throughout the four years of the PhD. Paulo taught me how to do research always targeting
the perfection. He gave me all support not only as an adviser but as a friend. Thank you for
accepting me in your MoDCS research group and as collaborator at the EMC project. The
MoDCS group represented an essential collaboration environment to reach my goals. I would
like to mention my co-authors — Rubens, Jamilson, Bruno, Danilo, Ture and Thiago — for our
mutual support and our continuous collaboration. I want to thank my colleagues — Maria Clara,
Rosangela, Erico, André, Vandi, Ermeson, Gustavo, Aleciano, Verdnica, Jean, Eliomar and Joao
— for providing a stimulating research environment. A special thank for my Scientific Initiation
undergraduate students — Gileno, Eder, Matheus and Germano — for helping me with the hard
work. My internship at the Sapienza University of Rome was an incredible experience. I had
the opportunity of collaborating with highly professional researchers. I would like to thank
professor Alessandro Mei for accepting me as a research visitor. My special thanks go to Sokol
Kosta, for personally getting involved with my research and improve my results. Thanks also
for my colleagues from the Lab — Irene, Miguel and Enis. Last, but certainly not least, I would
like to thank my friends from home, for their refreshing support, René, Jamilson, Jodo, Alex,
Hilério and Adriano. Foremost, I would like to thank mom, dad and the rest of my family, for

being close to me even when I was far away and for their continuous support.

When you walk through a storm,

Hold your head up high,

And don’t be afraid of the dark.

At the end of a storm,

There’s a golden sky,

And a sweet silver song of a lark

Walk On! Walk On! With hope in your heart,

And you’ll never walk alone....

—RICHARD RODGERS (You’ll Never Walk Alone)

Abstract

Resource scarcity is a major obstacle for many mobile applications, since devices have limited
battery and processing power. The use of cloud computing has been shown to be a feasible
alternative to process demanding mobile devices workloads, leading to the research field called
mobile cloud computing (MCC). By using the cloud, mobile devices may offload computation
to resourceful servers. Many issues related to such a process have been investigated in the past
decade, but those related to offloading process still remain. This PhD research has developed
a smart MCC offloading strategy for mobile applications. The approach have considered an
innovative balanced infrastructure parameters strategy. Another MCC challenge is related to the
process of infrastructure evaluation and planning. Evaluating the MCC infrastructure in a deep
level of detail may provide to software engineers precise information, guiding their decisions.
Instead of evaluating the MCC infrastructure as a black-box, this work proposes to analyze the
application at source-code level. This PhD research proposes providing a way for representing
method-calls and evaluating mobile cloud applications by using stochastic petri nets (SPNs).
The SPNs in this work allow software engineers to understand their applications through a
statistic report. Case studies have showed that the proposed techniques are helpful for guiding

cloud systems designers and administrators in the decision-making process.

Keywords: Mobile Cloud Computing. Stochastic Petri Nets. Offloading. Scheduling. Perfor-

mance Evaluation. Energy

Resumo

A escassez de recursos € um grande obstdculo para muitas aplicagcdes moveis, uma vez que os
dispositivos tém bateria e poder de processamento limitados. O uso da computacdo em nuvem
tem se mostrado uma alternativa vidvel para processar cargas de trabalho de dispositivos méveis
limitados. Com o objetivo de mitigar este problema nasceu o campo de pesquisa chamado
computacdo em nuvem moével (MCC). Ao usar a nuvem, os dispositivos moveis podem transferir
seu processamento para servidores potentes. Muitas questdes relacionadas a esse processo t€m
sido investigadas na ultima década, mas as relacionadas com o processo de execugdo remota
ainda permanecem. Esta pesquisa de doutorado desenvolveu uma abordagem de execugio
remota de aplicativos méveis na nuvem. O algoritmo desenvolvido considerou uma estratégia
inovadora de balanceamento de pardmetros coletados do estado da infraestrutura. Outro desafio
do MCC esta relacionado ao processo de avaliacdo e planejamento da infraestrutura tecnolégica
adotada. Uma avaliac@o detalhada do desempenho de diferentes configuracdes de infraestrutura
pode fornecer aos engenheiros de software informacdes precisas, guiando suas decisdes. Ao
invés de avaliar a infraestrutura como uma caixa-preta, este trabalho propde analisar a aplicagao
em nivel de cédigo-fonte, mais precisamente chamadas de método. O trabalho utiliza redes de
Petri estocdsticas (SPNs) para representar e avaliar desempenho e gasto de bateria de dispositivos
moveis. As SPNs neste trabalho permitem aos engenheiros de software entender suas aplicacoes
através de um relatério estatistico. Estudos de caso mostraram que as técnicas propostas nesta
pesquisa sao tteis para orientar designers e administradores de sistemas de nuvem no processo

de tomada de decisdo.

Palavras-chave: Computacdo em Nuvem Movel. Redes de Petri Estocésticas. Offloading.

Balanceamento de Carga. Avaliagcdo de Performance. Energia

List of Figures

1.1 PhD Research Scope. 19
1.2 Problem Illustration. L 21
2.1 ExampleofaCTMCmodel 30
2.2 SPN Components. o vt v vttt e e e e e 32
2.3 Exampleofan SPNmodel. 32
2.4 Mapping by Quantity of Occurrences.« oo 34
3.1 Infrastructure Components Model Example (Matos et al., 2015). 38
4.1 Evaluating and Planning MCC Infrastructure - An Overview 43
4.2 Method Call Partitioning Example. 44
4.3 SPN Representation of One Application with Only One Method Call without

Absorbing State. L e e 46
4.4 Basic SPN Representation of One Application with Only One Method Call Using

Absorbing State. e 48
4.5 Exampleof CDF basedon SPN. 48
4.6 Energy and Power Scheme. 49
4.7 Energy Profiling Scheme. 50
4.8 Energy and Power Scheme. o Lo oo 51
4.9 MCC-Adviser OVErvView. v vttt e e e e 52
4.10 Collecting Input Parameters. 54
411 Mercury GUIL oo e 55
4.12 Main Classes of Mercury APL. 55
4.13 MCC-Adviser Sequence Diagram. 56
4.14 MCC-Adviser Web Application - FirstPage 57
4.15 MCC-Adviser Web Application - First Step. 58

4.16 MCC-Adviser Web Application - Second Step. 59

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

5.14
5.15

MCC-Adviser Web Application - Third Step. 60
Architecture Scheme for Computing the EnergyPerByte. 61
PoweroverTime 62
Method Call Distribution Obeying Code Dependency Constraints. 64
SPNs Generated by MCC-Adviser. 66
Throughput Evaluation Comparing Applications A,BandC. 68
MTTE Evaluation Comparing Applications A,BandC. 68
Probability Analysis of Applications A,BandC. 70
SPN Representing Application_B with a Hypo-Exponential Distribution. 71
SPN Representing the Face Recognition Application with Absorbing State. 72
CDF of Face Recognition Application. 73
Execution time of a hypothetical application on three different types of GPU. . . . 74
CDF line plot considering parameters from Amazon EC2 instance. 75
SPN of Application_C (Three Parallel Method-Calls). 76
MCETE Comparison in Logarithmic Scale. 77
MCETE for WiFiand 3G 78
MCC Offloading - An Overview 79
Virtual Machines Ranking - An Overview 82
Offloading Steps Using Smart Ranking Approach. 83
Memory Profiling. 89
Energy Profiling. L 90
CPU Profiling. e 90
Energy saving through parallel remote execution. 91
Elapsed time taken through parallel remote execution. 92
Offloading for2or3 VMs. e 92
Average Time For Each Step at the Offloading Process. 93
Probability Analysis of Applications A,BandC. 94
Box-Plot graph to illustrate the distance between the samples. 95
Pareto Chart representing the effects of each factor. The red line represents the

minimum magnitude of statistically significant effects. 98
Bar plot with the level of relationship between the factors. 98
Bar plot showing the relative effects of eachlevel. 99

3.1
3.2

4.1
4.2
4.3

5.1
5.2
53
54

List of Tables

Related Work Comparison - MCC Modeling. 40
Related Work Comparison - Optimizing MCC Offloading Process. 41
Consumed Energy for Offloadingone Byte 61
SPN Validation Using Bootstrap Technique. 67
SPN Model Validation 76
Example of costs calculation using 4 VMs and 14 faces. 85
Factors and the parameters chosen as relevant. 96
Results of each treatment of the experiment. 97
Estimated effects and relevances for the RTT mean time. 97

List of Acronyms

CDF Cumulative Distribution Function
CMD Cloudlet Manager Detection
CMTC Cloudlet Manager Threads Creation
CTMC Continuous Time Markov Chain
DoE Design of Experiment

EtpC Execution time per Core

MCC Mobile Cloud Computing

MTTE Mean Time to Execute

NF Number of Human Faces

PT Processing Time

QoS Quality of Services

RCM Return Result to Cloudlet Manager
RD Return Result to Device

RN Resource Pool Number

RTT Round-Trip Time

SCM Send Photo to Cloudlet Manager
SPN Stochastic Petri Net

SVM Send Pictures to the Virtual Machines

1.1
1.1.1
1.1.2
1.2
1.3
1.4
1.5
1.6

2.1
2.2
22.1
22.2
223
2.3
2.3.1
232
233
234
24

3.1
3.2

Contents

INTRODUCTION e 15
CONTEXT OF MOBILE CLOUD OFFLOADING 16
Offloading Concerns e 16
Offloading Perspectives e 18
RESEARCH SCOPE AND MOTIVATION 19
PROBLEM STATEMENT e 20
OBJECTIVES . . . e 20
PUBLICATIONS e 21
ORGANIZATION OF THE DOCUMENT 22
BACKGROUND 23
CLOUD COMPUTING e s e e e 23
MOBILE CLOUD COMPUTING ittt 24
Mobile Cloud Offloading 25
Offloading Benefits 26
Applications Partitioning 27
PERFORMANCE EVALUATION OF SYSTEMS 28
Measurementol e e e e e e e e e e e 29
Continuous Time Markov Chains 29
Stochastic Petri Nets L 31
Phase-type approximationo 32
BENCHMARK APPLICATIONS USEDINMCC 33
RELATED WORK 36
EVALUATING AND PLANNING MCC APPLICATIONS 36
MCC OFFLOADING e 38

4.1
4.2
4.2.1
4.2.2
423
4.3
4.3.1
432
433
4.4
4.5
4.5.1
4.5.2
453
4.6
4.7
4.8
4.8.1
4.8.2
4.8.3

5.1
5.2
5.3
54
54.1
542
543
544
545
54.6

EVALUATING MCC APPLICATIONS 42

PROPOSAL OVERVIEW e 42
EVALUATING MCC APPLICATIONS WITHSPNS 44
Throughput e 47
Execution Time MTTE andCDF) 47
Energy 48
MCC-ADVISER: AN EVALUATION ASSISTANT 51
Collecting Input Parameters 52
Solving SPNs and Plotting Results 54
Web Application Prototype 57
EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE" 58
CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION . .. 62
Model Presentation 62
Model Validation e 67
Model Solution e e e 67
CASE STUDY TWO - TIME METRIC - FACE RECOGNITION APPLICATION 70
CASE STUDY THREE - TIME METRIC - GPU STUDY 73
CASE STUDY FOUR - ENERGY METRIC - REDUCE COLOR APPLICATION 75
Model Presentation e e 75
Model Validation e e 76
Model Solution L e 76
IMPROVING MCC OFFLOADING PROCESS 79
PROPOSAL OVERVIEW e 79
AN SMART MCC OFFLOADING PROCESS, 81
THE SMARTRANK PROTOTYPEINJAVA 85
CASE STUDIES s e e 87
Case Study One: Local Execution 88
Memory Profiling 88
Energy Profiling 89
CPUProfiling e 90
Case Study Two: Round Robin Strategy 91
Case Study Three: Smart WRR Strategy 93
CONCLUSIONS AND FUTUREWORK 100

FUTUREWORK e 101

Airton
Rectangle

REFERENCES

Airton
Rectangle

Airton
Rectangle

15

1 INTRODUCTION

Over the past few years, advances in the field of computer networks and operating systems
virtualization led to an explosive growth of sophisticated architectures which started to provide
services with high scalability and elasticity. This architecture, called Cloud Computing, has
become an important area of scientific research and industry advancements since 2006, when
the Amazon EC2 was launched (Antonio, 2013). Commonly, Cloud Computing is described
as a range of services that are provided by a cluster system based on the Internet. Such cluster
systems consist of a group of self-manageable servers that offer reliable, fast, convenient and
transparent services, such as data storage and processing.

Meanwhile, mobile devices began to connect to the Internet due to the rapid growth of
wireless network technology, among other factors. Today, mobility is a key feature in the new
generation of Internet, which provides a set of custom services through numerous terminals.
Cloud computing is marketed as a utility service (e.g: Amazon EC2), similar to common
products such as water, gas, or electricity. Thus, the development of mobile access and the
evolution of the cloud services enabled the creation of a new field of study called Mobile Cloud
Computing (MCC). It is observed today that MCC contributes significantly to our daily life
increasing the capabilities of mobile devices, but creating numerous challenges where the main
one is to combine the two technologies.

The action of moving the processing from the mobile device to remote servers is called
offloading and it aims to increase the capacity of mobile devices. Offloading can optimize
energy usage and improve performance in mobile systems, however this usually depends on
many parameters such as bandwidth and delay. Many algorithms have been proposed to analyze
these parameters and decide when, how, and where to offload. Although mobile devices are
growing in computing power, the role of more powerful infrastructures will increase, needing

more sophisticated offloading techniques.

16

1.1 CONTEXT OF MOBILE CLOUD OFFLOADING

Modern handheld devices, such as smartphones and tablets, offer portability, increased computa-
tional power, and communication capabilities. These mobile devices are becoming an attractive
option for users to interact with each other. On the other hand, along with the technological
advances in hardware and mobile computing, user demands are also increasing, as they expect
content rich applications, and access to large amounts of remote data, like multimedia streaming.
Advanced as they may be, modern mobile devices still have some limitations in relation to
user demands, in terms of battery supply, memory capacity and heat dissipation. Thus, it is
reasonable to see why mobile devices, despite their increasing computing power, continue to
use more powerful infrastructure.

The convergence of mobile and cloud computing has been studied for a number of years and
is still a hot topic, because of the dynamics in mobile computing and because of the challenges
that continue to arise (Araujo et al., 2016; Matos et al., 2015; Costa et al., 2015; Abolfazli
etal.,2015; Chen et al., 2015; Khan ef al., 2015; Lin et al., 2015). As sales of mobile devices
grow above sales of personal computers, many hardware and software manufacturers compete
on the mobile market. Companies such as Samsung, Nokia, HTC, Motorola, Apple, Acer and
Asus produce mobile devices of various hardware characteristics, using a variety of operating
systems, either developed in house, like Apple’s 10S, or by large software companies, like
Google’s Android or Microsoft’s Windows. The heterogeneity of mobile devices, in terms of
hardware and operating systems, makes it difficult for application developers to reach all the
mobile users, and they usually have to maintain several versions of the same application. Cloud
providers are also interested in tuning their systems to face big variations in the number of users.
In this massive ecosystem, researchers find challenging topics with effects ranging from user
experience to cost optimization for the resource providers.

Cloud offloading is one of the emerging trends in distributed computing involving mobile
devices. Developers and researchers alike study ways of accessing, from user terminals, the
power offered by cloud infrastructure in terms of storage. The cloud has been used for offloading
storage and functionality for computers for a long time. However, more recently, mobile devices
encouraged developments in computation and communication offloading, with a focus on the

trade-offs between the benefits that the powerful infrastructure brings.

1.1.1 Offloading Concerns

Offloading aims to optimize the functionality of an application by using remote resources.

Although most of the existing research efforts focus on key concerns, such as performance,

17

energy and cost, some of them acknowledge that offloading is much more complex. Following a

list of the main MCC concerns is discussed:

* Execution time In order to offer a minor execution time to its clients, the offloading
system should be fine tuned to have its own performance at peak efficiency. Performance
analysis is a complex task, but all of its aspects, ranging from modeling to measuring,

have been researched and applied on various distributed systems.

* Energy saving is key for all modern computing systems. Mobiles are focused on energy
saving due to their limited battery supply. Clouds are also focused on energy saving to

ensure low costs for their users.

* Costs, from a financial point of view, can also become a complex aspect of offloading.
A single offloading operation can imply costs for multiple service or resource providers,
such as network operators, software manufacturers and cloud owners. The cost for data

transmission can be extremely high.

» Accuracy of the results can also be a serious concern, especially when processing is done

in parallel on the device and on a different architecture.

* Heterogeneity related to the significant number of mobile device brands and models. The

development of technology that supports such variety is not straightforward.

* Scalability in offloading systems, as in any distributed system, is a serious concern when
addressing large numbers of inputs. For example, if the offloading system goes public, it

needs to scale well to ensure proper functionality for increasing numbers of users.

* Elasticity is the ability to adapt to workload changes and it usually involves actively
creating and destroying resources. Thus, the system should either predict or react quickly
to both positive and negative changes in the workload. If the system is not able to provision
new resources, the clients will be affected by lack of service. If the system is not able to
deprovision unused resources, then the financial cost will grow unnecessary for existing

clients.

* Customisation refers to the property of a service to be customized to better serve the
needs of various types of customers. Support for value adding operations like backup,

update, cloning and avoid vendor lock-in.

* Security is, like in any distributed system, a topic of great interest, because data leaves

the personal device and needs to travel over public infrastructure for remote processing.

18

1.1.2 Offloading Perspectives

Consider the scenario in which a mobile device does not support the execution of one specific
application. To offload the workload to the cloud may be one option to make it feasible the
execution whereas obeying user’s constraints. MCC offloading systems usually explore one or

more of the following three perspectives.

1. What to Offload? Considering that the application will be offloaded and the cloud
supports many servers, then, to split and execute the application in parallel may be an
option. However, the offloading system must decide at which level of granularity (class,

method, components) should an application be partitioned.

2. When to Offload? The offloading system should decide whether it is worthy or not
to execute the processes remotely. It does not make sense, for example, to offload one
application through a very low quality Internet connection or when the application does
not need much resources. Many parameters (such as connectivity and mobile device
capability) should be considered when offloading, otherwise the application may waste

performance.

3. Where to Offload? Usually the application is partitioned in a set of sub-parts. Next
step is to decide for which machine these partitions should be sent. One data center has
different types of servers in terms of resource power and technology. The characteristics

of such a infrastructure should be considered to construct an offloading solution.

19

1.2 RESEARCH SCOPE AND MOTIVATION

Intending to provide meaningful findings, this PhD research focus on a subset problem associat-
ing specific concerns with perspectives in MCC offloading. The CCS Insight Institute forecasts
that the global mobile phone market is expected to reach 2.35 billion units until 2019 (CCS-
Insight-Forecast, 2015). This huge market-share stimulates mobile cloud research innovation
aiming to satisfy more and more demanding users. Today, many applications that benefit from
using the cloud have real-time constraints. These constraints become hard to meet expectations,
mainly considering sophisticated cloud infrastructures.

The cloud may encompass heterogeneous components, utilizing virtual and physical ma-
chines with diverse computation power. High number of resources also can be challenging to
manage, whereas powerful data centers become affordable for even small companies building
large infrastructures. These data centers, when providing services to mobile devices, may tackle
communication issues. Resources can be, for example, geographically distributed, and factors
such as latency and intermittent connectivity must be considered by offloading systems. All the
aspects discussed above are directly related to the “Where offloading perspective". As illustrated
in Figure 1.1, this PhD research have focused mainly on the “where" perspective due to its
challenging and important features.

Scalability

Energy Accuracy Costs

Execution
Time

Elasticity
Security

Flexibility

PhD Scope

Offloading Perspectives Offloading Concerns
Figure 1.1: PhD Research Scope.

In terms of offloading concerns, this PhD research have focused on execution time and
energy saving. They have always been users’ requirements and consequently a mobile industry
interest. Offloading becomes an attractive solution for meeting response time requirements on
mobile systems as applications become increasingly complex (Balan, 2006). A navigating robot
application, for example, needs to recognize an object before it collides with the object; if the
robot’s processor is too slow, the computation may need to be offloaded (Nimmagadda et al.,
2010; Se et al., 2005). Another application is context-aware computing (Hong and Landay,

2001) - where multiple streams of data from different sources like GPS, maps, accelerometers,

20

temperature sensors, etc. need to be analyzed together in order to obtain real-time information
about a user’s context. In many of these scenarios, the limited computing speed of mobile
systems can be enhanced by offloading Chun et al. (2011b).

In another hand, the advances in smartphone battery life have been slow to respond the
computational demands of applications over the years. Many applications are still unsuitable for
smartphones due to hardware constraints (Khan et al., 2014). Computing speeds of these mobile
devices, however, will not grow at the same pace as servers’ performance. This is due to several
constraints, including: Hardware constraints, as users want devices that are smaller and thinner
and yet with more computational capability; Power consumption, insofar the current battery
technology constrains the clock speed of processors, doubling the clock speed approximately
octuples the power consumption. Consequently, it is difficult to offer long battery lifetimes with
high clock speeds (Kumar et al., 2013). Therefore, execution time and energy will continue

being a MCC concern in long term, motivating further research under these topics.

1.3 PROBLEM STATEMENT

Consider the scenario illustrated in Figure 1.2. Imagine that a software engineer intends to build
a MCC infrastructure. There is a mobile application that runs heavy tasks. Offloading these
tasks may improve the application performance. One problem here is the distribution of tasks,
aiming to use all the available resources. The current states of the target machines are diverse in
terms of Round Trip Time (RTT) and current CPU consumption. In this context, two questions

arise:

* How to distribute tasks considering multiple metrics (e.g.: RTT, CPU, etc.) in MCC?

* How to evaluate the performance and energy of MCC infrastructures?

1.4 OBJECTIVES

The main objective of this research is to develop new approaches in mobile cloud comput-

ing that can lead to performance and energy saving in mobile devices.

Among the specific goals of the research, we can list:
1. Develop an algorithm for load balancing in MCC that can consider multiple metrics.

2. Develop an approach for evaluating MCC applications using SPNs.

21

Cloud Side

el
' CPU Consumption: 10%

»
' CPU Consumption: 50%

E Offioading / E
i RTT: 300 ms - :

: s :

: ﬁ' CPU Consumption: 80%

Mobile

RTT: 200 ms

Device

RTT: 400 ms

Figure 1.2: Problem Illustration.

3. Implement tools based on the proposed theories for assisting MCC application offloading.

1.5 PUBLICATIONS

Following, a list with the published papers related to this research is presented.

As main author:

* Francisco Airton Silva, Paulo Maciel, Eder Quesado, Rubens Matos, Jamilson Dantas.
Mobile Cloud Face Recognition Based on Smart Cloud Ranking Journal of Computing ,
2016.

e Francisco Airton Silva, Germano Zaicaner, Eder Quesado, Matheus Dornelas, Bruno Silva
and Paulo Maciel Benchmark Applications Used in Mobile Cloud Computing Research:
A Systematic Mapping Study The Journal of Supercomputing, 2016.

* Francisco Airton Silva, Paulo Maciel, Rubens Matos SmartRank: a smart scheduling tool

for mobile cloud computing The Journal of Supercomputing, April, 2015.

* Francisco Airton Silva, Sokol Kosta, Matheus Rodrigues, Alessandro Mei, and Paulo
Maciel. Planning Mobile Cloud Infrastructures Using Stochastic Petri Nets and Graphic
Processing Units. In: Proceedings of 7th IEEE International Conference on Cloud
Computing Technology and Science (CLOUDCOM). November 30 December 3, 2015.

e Francisco Airton Silva, Paulo Maciel, Eder Quesado, Germano Zaicaner, Matheus Dor-

nelas, Bruno Silva Benchmark Applications Used in Mobile Cloud Computing: A System-

22

atic Mapping Study The Twentieth IEEE Symposium on Computers and Communications
(ISCC), 2015.

¢ Francisco Airton Silva, Paulo Maciel, Rubens Matos, Gileno Filho A Scheduler For Mobile
Cloud Based on Weighted Metrics and Dynamic Context Evaluation 30th ACM/SIGAPP
Symposium On Applied Computing (SAC), 2015.

As co-author:

* Eliomar Campos, Rubens Matos, Francisco Airton Silva, Francisco Vieira, and Paulo
Maciel. Stochastic Modeling of Auto Scaling Mechanism in Private Clouds for Supporting
Performance Tunning. In: IEEE Int. Conference on Systems, Man, and Cybernetics
(IEEE SMC 2015). October 09-12, 2015, Hong Kong.

* Eliomar Campos, Rubens Matos, Paulo Maciel, Igor Costa, Francisco Airton Silva and
Francisco Souza. Performance Evaluation of Virtual Machines Instantiation in a Private
Cloud. In: Proceedings of IEEE 11th World Congress on Services (IEEE SERVICES
2015). June 27, July 02, 2015. New York, USA.

* Igor Costa, Jean Araujo, Jamilson Dantas, Eliomar Campos, Francisco Airton Silva, and
Paulo Maciel. Availability Evaluation and Sensitivity Analysis of a Mobile Backend-as-a-
Service Platform. Journal Quality and Reliability Engineering International. 2015. ISSN
(online): 1099-1638.

e ARAUIJO, C. ; SILVA, Francisco Airton Silva; COSTA, I. ; VAZ, F. ; KOSTA, S. ;
MACIEL, P. R. M. . Supporting availability evaluation in MCC-based mHealth planning.
Electronics Letters, p. 1-2, 2016.

1.6 ORGANIZATION OF THE DOCUMENT

This thesis is structured as follows. Chapter 2 clarifies some relevant background themes that the
reader should know for properly understanding this document. Chapter 3 discusses noteworthy
works found in literature that have some topics in common to those addressed in this thesis.
Chapter ?? details the core contribution of this thesis. The Chapter describes an approach
that uses stochastic models to evaluate mobile cloud performance and presents a mobile cloud
offloading mechanism based on weighted metrics and dynamic context evaluation. Chapter 6

traces some conclusions and future work.

23

2 BACKGROUND

This chapter discusses the basic concepts of mobile cloud and offloading mechanisms. The
background presented here shall provide the necessary knowledge for a clear comprehension of
the chapters ahead, including the aspects surrounding the proposed methodology and subsequent

case studies.

2.1 CLOUD COMPUTING

Cloud computing is a paradigm in continuous development that originated from the combination
of several different technologies. It has been defined as “a type of parallel and distributed system
consisting of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based on service-level
agreements established through negotiation between the service provider and consumers" (Mell
and Grance, 2011; Buyya et al., 2008).

A computational cloud is composed of five essential features (Abraham et al., 2011):

* On-demand self-service: A consumer can obtain computing services (e.g.: server time
and network storage) as needed, without requiring human interaction with each service

provider;

* Broad network access: Capabilities are available over the network and accessed through

standard mechanisms that promote the use by heterogeneous thin or thick client platforms;

* Resource pooling: The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources

dynamically being assigned and reassigned according to consumer demand.

* Rapid elasticity:Capabilities can be elastically provisioned and released, in some cases au-
tomatically, to rapidly scale outward and inward, and adjust the consumption of resources

to the system’s workload;

24

* Measured service: Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of

service.

The basic principle of cloud computing is to assign the computing to a large number of
distributed computers, rather than local computers or remote services. It is characterized by
the efficient utilization of resources, employing virtualization, resources monitoring, and load
balancing mechanisms (Saranya and Vijayalakshmi, 2011).

On modern societies, the majority of essential services is made available on a transparent
way. The water supply, electric power, gas and telephone, essential goods in our daily life, have
this characteristic. These market models follow the concept of “pay for what you use”: the
paid value for the service is flexible in accordance to the necessity of the organization at any
time (Gomes, 2012). Cloud computing provides a similar payment model for the utilization of
computing services.

There are three models of implementation of Cloud Computing (Huang et al., 2010). Private
cloud is a cloud infrastructure provisioned for exclusive use by a single organization comprising
multiple consumers. In the public cloud model, the cloud infrastructure is provisioned for open
use by the general public that remains unique entities, but they are bound together by standardized
or proprietary technology that enables data and application portability. Hybrid cloud model is
the composition of two or more distinct cloud infrastructures (private, community, or public)
that remain unique entities. However, the hybrid clouds introduce additional complexity, the
distribution of applications by both models (Subramanian, 2011).

Briefly, among the benefits associated to the utilization of the services on the cloud, we
could highlight: the centralized management, the reduction of energetic consumption, and the
decrease of inherent costs to the maintenance of traditional infrastructures. The cloud provides a

diversity of services that favors the agility of market (Miller, 2008; Terry, 2011).

2.2 MOBILE CLOUD COMPUTING

Similar to cloud computing, smartphones are also gaining enormous popularity due to the
support for a wide range of applications, such as games, image processing, video processing,
e-commerce, and online social network services (Kocjan and Saeed, 2012). The smartphone
applications complexity grows in parallel with their demand on computing resources. The
advances in smartphone hardware and battery life have been slow to respond to the computational

demands of applications evolving over the years.

25

Many applications are still unsuitable for smartphones due to constraints, such as low
processing power, limited memory, unpredictable network connectivity, and limited battery
(Khan et al., 2013). The combination of cloud computing, wireless communication, portable
computing devices, location based services, mobile Web, etc., has laid the foundation for a
novel computing model, called mobile cloud computing, which allows users an online access
to unlimited computing power and storage space. Taking the cloud computing features in the
mobile domain, (Kovachev et al., 2011) defines “mobile cloud computing (MCC) as a model for
transparent elastic augmentation of mobile device capabilities via ubiquitous wireless access to
cloud storage and computing resources. MCC should provide dynamic adjusting of offloading
in respect to change in operating conditions, while preserving available sensing and interactivity
capabilities of mobile devices" .

Mobile cloud computing can be presented in many ways. In this research, we refer to MCC
as the set of techniques that use cloud resources to empower mobile applications. Generally
observing MCC resources it can be presented in two perspectives: (a) infrastructure based, and
(b) ad-hoc mobile cloud (Khan et al., 2013). In infrastructure based mobile cloud, the hardware
infrastructure remains static and provides services to the mobile users. Alternatively, ad-hoc
mobile cloud refers to a group of mobile devices that acts as a cloud and provides access to
local or Internet based cloud services to other mobile devices. In this research, we limit the
selection of application models to the former case namely, the infrastructure based mobile cloud.
Therefore, ad-hoc mobile cloud based systems/application models and associated issues, such as
mobility of cloud infrastructure and geo-distribution of service nodes (Huerta-Canepa and Lee,

2010), are beyond the scope of this work.

2.2.1 Mobile Cloud Offloading

Cloud offloading is one of the emerging trends in distributed computing involving mobile
devices. Developers and researchers alike study ways of accessing, from user terminals, the
power offered by cloud infrastructure in terms of storage. The cloud has been used for offloading
storage and functionality for computers for a long time. However, more recently, mobile devices
encouraged developments in computation and communication offloading, with a focus on the
trade offs between the benefits that the powerful infrastructure brings and the costs, in time and
money, of using remote resources.

Offloading has gained big interest in mobile cloud computing research, because it has
similar aims as the emerging cloud computing paradigm, i.e. to overcome mobile devices
shortcomings by augmenting their capabilities with external resources. Offloading or augmented

execution refers to a technique used to overcome the limitations of mobile phones in terms

26

of computation, memory and battery. Such applications, which can adaptability be divided in
parts and offloaded are called elastic mobile applications (Kemp et al., 2012), (Zhang et al.,
2010). Basically, this model of elastic mobile applications enables the developers the illusion
as if he/she is programming virtually much more powerful mobile devices than the actual
capacities. Moreover, elastic mobile application can run as standalone mobile application but
also use external resources adaptively. Which portions of the application are executed remotely
is decided at runtime based on resource availability. In contrast, client/server applications have
static partitioning of code, data and business logic between the server and client, which is done
in development phase (Kovachev et al., 2011).

According to (Olteanu and Tapus, 2013), the offloading process usually is divided into three

modules: decision, allocation and operation:

* Decision gathers some of the most diverse ideas in offloading for mobile devices, depend-
ing on the benefit assessment. The approaches differ in the way they assess benefits, how
they collect feedback from previous iterations of the offloading process and how they take

into account context.

* Allocation refers to the way in which the system decides on what resources to use for
which tasks allocation criteria and how to use multiple tasks on a limited number of

resources allocation strategy.

* Operation The offload operation itself can be met in a variety of conditions, depending
on the theoretical mechanism used and the actual implementation. Offloading inherently
implies a sort of division between what is done locally and what is done remotely. The

division can refer either to data or processing tasks.

2.2.2 Offloading Benefits

Offloading has a number of benefits, some already exposed in commercial applications, other
still only shown in research studies. Offloading addresses some of the limitations of mobile
devices. For example, to prevent mobiles from performing numerous queries to services, the
major mobile operating systems developers implemented push notification services, a form of
communication offloading. Data and content offloading opened the way for feature recognition
applications such as Shazam, that rely on massive amounts of data, that could not exist on a
single device.

From the developer‘s perspective, besides increasing performance, offloading can ease the
development process. The developer will not worry about the mobile device resource constrained

and focus on implementation of core functionalities.

27

Offloading can be used for various purposes, to increase performance, to enable new func-
tionality on mobile devices, or to enable new properties in mobile applications (like fairness in
games). Offloading can also make it feasible to produce wearable devices, smaller, less capable
devices, focused on a single function, like collecting statistics for joggers. Such devices can use

mobiles as their offloading target.

2.2.3 Applications Partitioning

Several works have explored mobile cloud applications partitioning (Eom et al., 2012; Kosta
and Aucinas, 2012; Kemp et al., 2012; Cuervo et al., 2010). The remote execution of mobile
applications, namely offloading, seeks to get the best performance of response time as well
as saving energy. Considered a starting point in offloading process, smart partitioning may
optimize jobs distribution in the cloud. Many factors can be taken into account in MCC appli-
cations partitioning. According to (Liu et al., 2015), these factors are: partitioning granularity,
partitioning objective, partitioning model, programming language support, presence of a profiler,
allocation decision, analysis technique, and use of annotation.

Partition granularity, in particular, refers to the portion of the application which represents
one atomic unit. One application can be offloaded without even any partition, in this case for
example, the atomic unit is the application as a whole. Some of the possible granularity levels

are:

* No partitioning: The entire application is offloaded.
* Method-Call level partitioning: Partitioning occurs at the method of application.

* Object level partitioning: The object of an application is partitioned to prepare for cyber

foraging.
* Thread level partitioning: Partitioning occurs at the threads of an application.
* Class level partitioning: Application is partitioned into classes for offloading.
* Task level partitioning: Application is partitioned according to task.

* Component level partitioning: Partitioning a group of classes which may or may not be

coupled for outsourcing to the remote server.

* Bundle level partitioning: Groups of Java class of applications are partitioned.

28

* Allocation-site level partitioning: Partitioning occurs on the level of allocation site

where all the objects at this particular site will be seen as a single unit.

* Hybrid level partitioning: The results of partitioning consist of different granularity.

To choose a partitioning technique considering concurrently energy saving and performance
gain is not straightforward. Although one technique can provide a higher granularity, the energy
saving depends on some other aspects. The total amount of injected workload may influence the
energy consumption, partition size and capacity of the environment (e.g., servers and network
devices).

Considering module level partitioning, the application have a complete copy (a clone) at
a remote server. The applications usually do not need any modification under the clone and
the physical device can run identical binaries. However, one disadvantage arises when the
application running on the clone needs to access the physical device hardware or there is a user
interaction. It is possible to transfer input/output data between the device and clone environment
over the network, but this may result in negative impact on response time and battery lifetime.

Abstract levels of granularity with larger pieces result in simple offloading mechanisms that
require low monitoring communication overhead. However, abstract level of granularity results
in increased data transmission overhead and therefore increases security threats for outsourcing
components of the mobile application. For example, the migration of an entire application
is more vulnerable to network threats in comparison to the method outsourcing. Considering
security aspects, spying finer level code is less meaningful to attackers, so, root method and
input are preferable partitioning techniques. The above considerations lead us to concentrate on
application level instead of cloning a complete device environment.

Classes and methods represent interesting options to be offloaded taking into account inherent
units. However, the number of such units restricts the level of granularity. Another problem is
related to coupling. Considering the object-oriented paradigm, classes tend to be referenced by at
least one other class, making it hard to split the application. Hence, classes and methods should
first be decoupled before offloading, but there are many non-trivial constraints to decouple them.
Hence, we propose not to decouple methods by refactoring, but identify the heaviest method(s)

and offload its inner method-calls if possible.

2.3 PERFORMANCE EVALUATION OF SYSTEMS

System administrators need to provide the highest performance at the lowest cost. A perfor-

mance evaluation is necessary when a system administrator wants to compare a number of

29

alternative configuration scenarios to find the best one. It is also used to compare two similar
systems and decide which one is better for a given task. Performance evaluation can also help
to determine how well a system is performing certain tasks, and if some improvements are
necessary. Generally, evaluating the performance of a system means to verify its behavior
according to a defined set of metrics. The researcher must select appropriate evaluation tech-
niques (e.g.: analytical modeling, simulation or measurement), perform a statistical analysis
to identify possible bottlenecks and propose improvement solutions. This work has applied a
parametric sensitivity analysis from the analytical modeling with SPN and CTMC models, and

measurements based on the (Design of Experiment) DoE technique.

2.3.1 Measurement

DoE technique allows to obtaining a maximum of information about a system, regarding many
factors, with a reasonable number of experiments and effort (Jain, 2008; Montgomery and
Montgomery, 1984). A set of experiment executions planned through DoE can be analyzed to
determine if the factors have significant effects, or if the differences in the observed effects are
due to variations caused by measurement errors and not controlled parameters (Guimaraes et al.,
2013; Jain, 2008; Montgomery and Montgomery, 1984).

This study adopts the General Full Factorial Design, which uses all possible combinations
of levels for all factors, i.e., there are no limits to the number of factors and the number of levels.
This type of DoE allows every configuration to be examined, so we can find the effects of all
factors and their interactions, which is an advantage; the disadvantage is that the cost of analysis
can be very high if the number of factors and levels is too high, and also considering that each
of these experiments may have to be repeated several times. It is possible to reduce the number
experiments by reducing the number of factors, and/or the number of levels for each factor, or

using Fractional Factorial Design instead (Jain, 2008).

2.3.2 Continuous Time Markov Chains

As shown in Figure 2.1, Markov chains can be represented as a directed graph with labeled
transitions, indicating the probability or rate at which such transitions occur. In Markov chains,
the states represent different conditions that the system may follow. The transitions between
the states indicate the occurrence of events (Silva et al., 2013) (e.g.: the arrival of tasks, or
completion of service). In Figure 2.1, a new task arrives with rate A, and a server completes
the task with rate p. For example, Figure 2.1 depicts a model for a system with two servers

that process incoming jobs. If we observe the number of busy servers as a time function, we

30

can consider it as a random variable or function X (7). Each modification of X over (¢) is called
state X,,(t). The set of all possible states is the state space of the model. Thus, it is possible to
find the transition probabilities from a state to its successor X,,11(¢). For this, it is necessary to
specify the probability distribution function of X, (¢). Such sequences or random functions of
time are called stochastic processes. Stochastic processes are processes in which the random
variable changes its state over time (Jain, 2008; Maciel and Kim, 2011; Kleinrock, 1975). They
are usually adopted to characterize systems whose behavior is inherently probabilistic (Silva
etal., 2013).

Analytical modeling may consider a random variable or several sequences or families of
random variables. With only one random variable it is simple to know what is the probability of
its states over time (stationary) probability or at a specific time (transient) probability. Those
probabilities are obtained by computing the distribution function. However, when we represent
a number of phenomena in a system, i.e., several random variables, the calculation may be
complex, because it requires computing the joint distribution function. On the other hand,
the calculation of probabilities for a random variable can be simplified when applied to an
exponential distribution function or geometric distribution function. Markov chains is a state
space model widely adopted to work with such distribution functions, and therefore simplify the

analysis of systems modeled through many random variables.

Figure 2.1: Example of a CTMC model

Markov chains are associated to a Markov process (Haverkort, 2002), and are stochastic
models, used to analyze a variety of systems (Silva et al., 2013). We have a Markov process if
the past history is not important to know the probability of reaching a given future state. Only the
current state is enough to know such a probability (property known as lack of memory). When
the Markov process has a discrete state space, then it is known as a Markov chain. A Markov
chain with discrete time parameter is called a DTMC. On the other hand, if the time parameter
assumes real values, the model is called a CTMC (Jain, 2008; Maciel and Kim, 2011; Stewart,
1994). In a homogeneous DTMC, the time spent in a state follows a geometric distribution,
while in the homogeneous CTMC follows an exponential distribution. Markov chains are said

to be homogeneous, when the transition probability between states does not depend on time but

31

only on the current state (Maciel and Kim, 2011). Markov chains have been used extensively
in dependability, performance, and performability modeling (Maciel and Kim, 2011; Trivedi,
2001). CTMC was a useful modeling formalism for evaluating the performance of the cloud

system studied in this work.

2.3.3 Stochastic Petri Nets

Petri nets (PNs) are a graphical and mathematical modeling tool applicable to many systems.
They are promising tool for describing and studying information processing systems that are
characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic, and/or
stochastic. As a graphical tool, PNs can be used as a visual-communication aid similar to flow
charts, block diagrams, and networks. In addition, tokens are used in these nets to simulate the
dynamic and concurrent activities of systems. As a mathematical tool, it is possible to set up
state equations, algebraic equations, and other mathematical models governing the behavior of
systems. Since Petri’s seminal work, many representations and extensions have been proposed
allowing more concise descriptions and representing systems features not observed on the early
models (Murata, 1989).

SPNs are special cases of PNs. SPN models were proposed with the goal of developing a
tool that allowed the integration of formal description, proof of correctness, and performance
evaluation. The proposals regarding performance evaluation aimed at an equivalence between
SPN and Continuous Time Markov Chains (CTMC) (German, 2000). In order to obtain an
equivalence between a PN and a CTMC, it was necessary to introduce temporal specifications
such that the future evolution of the model, given the present marking, is independent of the
marking history. Therefore, SPNs can be translated to CTMC, which may then be solved to
reach the desired performance or dependability results (Molloy, 1982; Marsan et al., 1994;
Trivedi, 2001; Marsan, 1990).

Figure 2.2 exhibits components used to model an SPN, and Figure 2.3 depicts an example
of an SPN model. Places are represented by circles, whereas transitions are depicted as filled
rectangles (immediate transitions) or hollow rectangles (timed transitions) or gray rectangles
(unrefined transitions). The gray rectangle, in particular, has no associated time yet. It is used to
represent that no experiment was executed to collect the time for that transition. Arcs (directed
edges) connect places to transitions and vice versa. Tokens (small filled circles) may reside
in places, which denote the state (i.e., marking) of an SPN. An inhibitor arc is a special arc
that depicts a small white circle at one edge, instead of an arrow, and they usually are used to
disable transitions if there are tokens present in a place. The behavior of an SPN is defined

in terms of a token flow. Tokens are created and destroyed according to the transition firings

32

(German, 2000). Immediate transitions represent instantaneous activities, and they have higher
firing priority than timed transitions. Such transitions may also contain a guard condition, and a
user may specify a different firing priority among other immediate transitions. There are also
guard functions in SPNs. Guard functions are boolean expressions that control the firing of a
transition, declaring some condition regarding the net’s marking. If a transition’s guard function
produces a true value, it is able to fire, otherwise, the transition is disabled (Marsan ef al., 1994).

Guard functions were not adopted in this work.

Transitions

I

Timed Timed
Unrefined Refined

Q — °

Place Arc Token

Imediate

Figure 2.2: SPN Components.

Figure 2.3: Example of an SPN model.

2.3.4 Phase-type approximation

Phase-type approximation methods (Desrochers et al., 1995; Malhotra and Reibman, 1993) have
been commonly used for representing the behavior of the unknown distribution functions, but it
is also adopted for fitting distributions such as Erlang, hypoexponential and hyperexponential
(Trivedi, 2001).

Measured data related to activities of systems (the respective average value pp and stan-
dard deviation op, empirical distribution) may have their stochastic behavior represented by
expolynomial distributions. Phase approximation technique may be applied through the inverse

of coefficient of variation of measured data (Equation & = f“—g) (Desrochers et al., 1995). Ana-

33

lyzing the inverse of the coefficient of variation allows to choose the expolynomial distributions
that best matches the measured data.

When the inverse of the coefficient of variation is a integer number and different from
one, the empirical data should be characterized by an Erlang distribution that is represented in

SPN model by a sequence of exponential transitions whose length is calculated by Equation

Y= (G—g> 2. The firing rate of each exponential transition is calculated by Equation A = ulu
(Desrochers et al., 1995).

When the inverse of the coefficient of variation is a non-integer number larger than one, the
empirical data is represented by a hypoexponential distribution which is however illustrated by a
SPN model composed of a sequence whose length is calculated by Equation (%D)2 —-1<y<
(%D)2 Equations A; = “—Yl and (A, = “—7’2 represent the firing rate of each exponential transition.

The respective average delays (expected values) of the time assigned to the exponential transitions

2_ \/7,
are calculated by Eqs. u; = up F W and Uy = yup + W (Desrochers

et al., 1995).
When the inverse of the coefficient of variation is a number smaller than one, the empirical

data should be represented by an hyperexponential distribution. The firing rate of exponential

transition should then be calculated by Equation A;, = %, in which the weights of immediate
2
transitions are also calculated by Eqs. @) = 2Up” and wy = 1 — @ (Desrochers et al., 1995).

up?op?
SPN models can be refined using phase-type approximation methods. In this work, hypoex-

ponential distributions for phase approximation was adopted to obtain accurate SPN models and

consequently computing mobile cloud performance metrics in a more precise manner.

2.4 BENCHMARK APPLICATIONS USED IN MCC

A significant amount of research has been performed on MCC offloading. Aiming to conduct
these studies, most of the researchers have adopted real mobile applications to prove their
hypothesis. However, there is no common list of which applications could be used in MCC
research and a systematic mapping study could give important directions in this sense. A
systematic mapping study is a type of investigation that has an evidence-based nature, applied
in order to provide an overview of a research area by characterizing it (Petersen et al., 2008).
Before presenting any offloading strategy that could solve the pursued objective of this thesis we
have applied a systematic mapping study, aiming to identify mobile applications used in MCC
(Silva et al., 2015a). We have executed a systematic mapping study by means of analyzing three
applications‘ facets (Category, Platform, and Evaluated Resource). We synthesized implications

for practicing, identifying research trends, open issues, and areas for improvement.

34

Starting from 763 papers, we filtered 47 studies that used applications as benchmarks.
Given the current state of MCC research, we judge that there are few studies with controlled
experiments using real applications. In our study, only 47 papers used applications to evaluate
their proposals, probably because this field is still relatively recent, with the first effectively
mobile cloud paper dating from 2009 (Liu ef al., 2009). In most of the cases, the studies did not
provide evidences of how other researchers could access and download the applications used,
making it hard to replicate their experiments. From the 47 papers, we listed 25 downloadable
applications with their corresponding category and URL. Following, by using radar plots,
Figure 2.4 summarizes our findings. Radar plots display multivariate data in the form of a
two-dimensional chart of n quantitative variables represented on axes, starting from the same
point. The more distant from the center, more significant the result is — in this study, meaning

higher quantity.

Face Detection

Imaging
Manipulation
40

Mathematical Tools

Games Editor Face Recognition

Video Streaming Standalone Utility

Download eb Applications

Applications
Augumented Reality
(a) Application Category. (b) Imaging Manipulation.
Time Android

40
30 30

Windows Android x86
Memory Energy o
Blackberry Maemo Linux
CcPU Iphone
(¢) Evaluation Metric. (d) Platform.

Figure 2.4: Mapping by Quantity of Occurrences.

Application category, illustrated in Figure 2.4a, means the functionality provided by mobile
applications. Although games are well known as heavy processing applications, the imaging
manipulation type was the most exploited in MCC so far. Due to the expressive quantity of

papers using imaging manipulation category, we investigated more closely this topic in order

35

to know what type of applications researchers have used more. Figure 2.4b shows that image
detection and recognition were the most explored. Among the evaluated metrics (Figure 2.4¢),
as expected, energy and time were the most envisioned metrics, since among other motivations
their impact is easily perceived by final users. Regarding platforms (Figure 2.4d), Android
was the most employed platform in MCC, with 37 occurrences. All the decisions in this PhD
research shall take into account these results, aiming to adopt similar test-beds and then make it

possible to compare results with related studies.

36

3 RELATED WORK

The related work is presented in two sections, which references the two core contributions of this
thesis: Evaluating/Planning MCC Applications and MCC Offloading. The following analysis
does not intend to provide an exhaustive view of published works on those topics, but rather to
point out significant advances which go towards a similar direction as this research do, or give

basis for future extensions.

3.1 EVALUATING AND PLANNING MCC APPLICATIONS

Table 3.1 synthesizes the contributions of the most prominent works related to this part of the
thesis. The references are ordered by year (from 2009 to 2016) and encompass 17 studies,
categorized by four aspects: Objective, Evaluated Metric, Modeling Granularity, and the use of
Multiple Surrogates. For a better understanding we comment each aspect in details:

Objective - The first papers in MCC had the objective of optimizing the offloading process
itself. They focused only on improving the offloading techniques by monitoring the mobile
device, the application, and the network conditions. Many offloading frameworks have tackled
mobile device constraints by offloading as much as possible heavy tasks obeying context
factors (Kristensen, 2010; Cuervo et al., 2010; Kemp et al., 2012; Kosta and Aucinas, 2012;
Soyata et al., 2012; Rahimi et al., 2012). Once the benefits of these frameworks became widely
acknowledged by the research community, a new research trend appeared: MCC infrastructure
planning (Gabner et al., 2011; Park et al., 2011; Pandey and Nepal, 2012; Oliveira et al., 2013;
Chen et al., 2014). The scope of this field is to obtain an intelligent use of limited Cloudlet
resources by applying sophisticated system evaluation techniques. Formal methods have been
applied in diverse computer areas by evaluating system performance and assisting software
engineers with architecture planning. Most of them have dedicated to evolve what it is called
Software Performance Engineering (SPE) (Herzog, 2001). SPE is a systematic, quantitative
approach to constructing software systems that meet performance requirements, classified as

real-time or responsive systems. SPE uses model predictions to evaluate trade-offs in software

37

functions, hardware size, quality of results, and resource requirements. MCC has presented the
need for applying SPE methods requiring to reach higher quality levels. For this reason, the
current work focuses on MCC infrastructure planning applying SPE methods.

Evaluated Metric - One of the most important decisions when working with performance
evaluation is the metric to observe. The papers that focus on Offloading Process Optimization
have explored Execution Time and Energy Saving whereas the papers that investigate Infrastruc-
ture Planning have looked into Reliability, Availability, and Energy Saving. Reliability is defined
as the probability that a device will perform its intended functions satisfactorily for a specified
period of time under specified operating conditions (Araujo et al., 2014). Since the performance
of a system usually depends on the performance of its components, the reliability of the whole
system is a function of the reliability of its components (Kuo and Zuo, 2003). Availability is
defined as the probability that the system is operating properly at any given time (Oliveira ef al.,
2013). Availability is the vital metric for nowadays systems; near 100% availability is becoming
mandatory for both users and service providers. High availability is an important feature for
MCC applications given that the cloud—dependency can introduce unexpected failures (Oliveira
et al., 2013). Energy and Execution Time are the most utilized metrics when evaluating the
MCC systems. Computing speeds of mobile devices will not grow at the same pace as servers’
performance (Nimmagadda et al., 2010). This is due to several constraints, including: Form
Factor—as users want devices that are smaller and thinner and yet with more computational
capability; Power Consumption—insofar the current battery technology constrains the clock
speed of processors, doubling the clock speed approximately octuples the power consumption.
As a result of the above restrictions, it is difficult to offer long battery lifetimes with high clock
speeds (Nimmagadda et al., 2010). Therefore, execution time and energy will continue to be a
MCC concern in long term, motivating further research under these topics. Although Reliabil-
ity, Availability, and Energy are very important metrics, the current work is the only one that
considers the Execution Time when modeling the MCC infrastructure. Response time becomes
essential for mobile systems as far as it increases in complexity (Balan, 2006). In context-aware
computing, for example, need to be analyzed in order to obtain real-time information about a
user’s context (Hong and Landay, 2001). In many of these scenarios, the limited computing
speed of mobile systems can be enhanced by offloading.

Modeling Granularity - Such aspect refers to the level of granularity the MCC architecture
is represented — which MCC architecture parts are modeled. The offloading frameworks that
invested in offloading process optimization did not use modeling. Among those papers that have
applied modeling most of them did not consider the application as part of modeling strategy, it is,

the SPNs, RBDs or Markov Chains did not include the behavior and structure of the application

38

(only infrastructure components). Figure 3.1 depicts an RBD representation of one of the related
work (Matos et al., 2015). The model present the application itself as part of the representation
but not partitioned in subparts. In our work the application source code is represented and
evaluated with SPNs. Representing the source code enables the software engineer to access a
more accurate result. Taking into account the availability metric, for example, it is obvious that

the application may stop working prejudicing the availability in this way.

- GDHMEZ
Wik
MobileDevice Battery MobileApp - Cloud IM Cloud 5M CloudNode3
- -

CloudNoded

Figure 3.1: Infrastructure Components Model Example (Matos et al., 2015).

Multiple Surrogates - The last column refers to the characteristic of modeling or not the
target servers (or surrogates). The target servers are the machines where the offloaded tasks are
processed. There are papers that models these machines, however, they do not represent the
virtual machine. Besides, different from them, MCC-Adyviser is able to tell how many servers
are needed — something new in MCC field. Another new aspect, and not included at Table 3.1,
is that MCC-Adviser generates and solves SPNs providing and automatic statistic report about

performance.

3.2 MCC OFFLOADING

Table 3.2 lists and classifies offloading systems according to three aspects: Offloading Metrics;

Number of Targets; and Weighted Metrics.

* Offloading Metrics associate parameters used to calculate the offloading cost. A number
of metrics could be used, but in this thesis part of our objective was to present the weighted
metrics idea. Therefore, we do not include metrics such as the network instability or the
memory load. Having said that, our proposal have used only CPU and RTT as offloading
metrics together. However, only one paper (Abolfazli ef al., 2015) have applied both

metrics concurrently, but without using balancing values.

39

* Offloding Targets are physical of virtual machines used to run the offloaded application
workload. Four related work have used Multiple Targets and six have used Unique Target.
It is important to stress that unique targets means in some situations the cloud is treated as
an unique resource and the mobile client does not know the offloading targets. However,
in most of the papers the experiments are performed by using one VM and not a bunch of
VMs working as unique resource. In this thesis the offloading target are known aiming to

realize how to optimize their use.

» Weighted Metrics are our main contribution regarding workload distribution in MCC.
Only our work have employed such a functionality. Embracing more metrics in future
work is essential to turn the algorithm more reliable and sensible, but for now the idea
has shown to be a viable alternative. We are aware that the proposed weight values may
not be the most efficient choice, since the range of options were not very high. However,
again, the goal was not to find a static and strictly optimized weigh balance but showing

the feasibility of reaching better results by varying those values.

40

Table 3.1: Related Work Comparison - MCC Modeling.

Related Work Objetive Evaluted Metric Modeling Multiple
Granularity Surrogates
Kristensen (2010) Offloading Process Execution Time - Yes
Optimization
Cuervo et al. (2010) Offloading Process Execution Time and Energy - No
Optimization
Kemp et al. (2012) Offloading Process Execution Time - No
Optimization
Kosta and Aucinas Offloading Process Execution Time and Energy - Yes
(2012) Optimization
Soyata et al. (2012) Offloading Process Execution Time - Yes
Optimization
Rahimi et al. (2012) Offloading Process Execution Time and Energy - Yes
Optimization
Gordon et al. (2012) Offloading Process Execution Time and Energy - No
Optimization
Pitkinen et al. Offloading Process Execution Time - No
(2012) Optimization
Ou et al. (2007) MCC Infrastructure Reliability Infrastructure No
Planning Components
Gabner et al. (2011) MCC Infrastructure Reliability Infrastructure No
Planning Components
Park et al. (2011) MCC Infrastructure Reliability Infrastructure No
Planning Components
Pandey and Nepal MCC Infrastructure Availability Infrastructure Yes
(2012) Planning Components
Oliveira et al. (2013) MCC Infrastructure Availability and Energy Infrastructure No
Planning Components
Chen et al. (2014) MCC Infrastructure Energy Infrastructure No
Planning Components
Araujo et al. (2014) MCC Infrastructure Reliability, Availability and Energy Infrastructure No
Planning Components
Matos et al. (2015) MCC Infrastructure Availability Infrastructure No
Planning Components
Mendonca et al. MCC Infrastructure Energy Infrastructure No
(2015) Planning Components
MCC-Adviser MCC Infrastructure Execution Time Application Applies Tasks

Planning

Partitions and
Infrastructure

Components

Distribution and
Estimates the
Number of
Needed Target

Machines

Table 3.2: Related Work Comparison - Optimizing MCC Offloading Process.

Offloading Metrics Number of Targets
Related Work Weighted Metrics
CPU RTT Multiple Targets Unique Target
(Abolfazli et al., 2015) X X X
(Chen et al., 2015) X
(Khan et al., 2015) X
(Lin et al., 2015) X
(Chen, 2015) X X
(Kosta and Aucinas, 2012) X X
(Kemp et al., 2012) X
(Soyata et al., 2012) X X
(Pitkiinen et al., 2012) X
(Kristensen, 2010) X

Our Work X X X X

42

4 EVALUATING MCC APPLICATIONS

Evaluating the MCC infrastructure in a deep level of detail may provide to software engineers
precise information. This section presents a way for representing method-calls and evaluating

the MCC applications by using stochastic petri nets (SPNs).

4.1 PROPOSAL OVERVIEW

Figure 4.1 presents, for example, how to calculate the number of needed machines for attending
an expected performance. System Modeling (Costa ef al., 2015) is one way for evaluating
a system based on probability, without having the infrastructure available. In other words,
Stochastic Modeling makes it possible to calculate minimal requirements for infrastructure
resources. We propose to adopt Stochastic Modeling for representing and evaluating the MCC

infrastructure, divided into four activities. The activities are detailed following:

1. Stochastic Modeling - This activity intends to represent the MCC environment focusing
on the application structure. Initially, the user needs to represent the system through
stochastic models. In our approach, Stochastic Petri Net models are used for representing
the application at source code granularity. Therefore, the application source code is
required. Such a level of granularity (instead of only modeling machines where the
processing occurs) enables the software engineer to obtain more accurate results. At this
stage, the designer must also define the metrics of interest. In this work the metrics are
execution time and energy. This part of the process resides one of the main research
contributions of this thesis. Different from previous work, the models represent both, the
application and the infrastructure with same model. The model permits to test distinct
configurations by simply changing some model parameters — no additional experiments
are required. Besides, we developed a mechanism for automatically generating models

and evaluating the application with minimal effort.

2. Model Refinement - At this activity the software engineer basically configure the model

43

Metrics of Application Parameter
Interest Source Code Values

...‘!......!.~ v

’

1

' Stochastic Model Model
| Modeling Refinement Validation
' U

Ve o’

.......... 7y

- -

Model
Represents

No

Evaluation
CLLTELTT Ll L PP PP T T .
i M
. H Evaluate Evaluate i
! Execution Time Energy h
v 3
N T T T T T A EEEEEEEEE ... d
<
Statistics

(CDF, MCETE, MTTE and Throughput)

--» Dataflow — Workflow &__J) Our Main Contributions

Vmms

Figure 4.1: Evaluating and Planning MCC Infrastructure - An Overview

with specific values from real experiments. This process is called model refinement and the
parameter values must be inserted into the model to emulate the actual system operation.
There are cases where these parameter values are extracted from the literature. However,
in this work, the software engineer must execute one experiment for each application

which intends to evaluate.

. Model Validation - The designer must ensure that the model trustworthy represents the
real system, otherwise the previous steps should be repeated; Model validation consists
of comparing the results from the model with the results from real experiments. Such a
comparison must follow some statistical criteria, and in this work we adopt the statistical
technique called Bootstrap (Gonzdlez-Rodriguez et al., 2012). In practice, the software
engineer will not have to always validate the generated models. The validation that have

been performed in this work provide validity evidences.

. Evaluation - At this stage the model is prepared for calculating the metrics of interest
and predict the application performance. By solving the model we have statistics related

to execution time and energy. Specifically, four statistics are computed: throughput (7p),

44

mean time to execute (MTTE), cumulative distribution function (CDF) and mean con-
sumption energy to execute (MCETE), which are evidenced by graphs. These results guide
the software engineer at planning the MCC infrastructure. This part resides one of the
main contributions of this thesis because we automatically generates the aforementioned

statistics.

4.2 EVALUATING MCC APPLICATIONS WITH SPNS

One of the main cloud computing features is the unlimited resources availability. However, in
the IT industry point of view the cloud has limited resources. IT companies tend to seek for the
most optimized cloud infrastructure to support its systems. In MCC is not different, the society
has adopted mobile devices in large scale and the applications must be evaluated considering
multiple scenarios. Such evaluation should be performed in all the system life cycle. MCC
applications can be evaluated even before the final deployment, bringing important indicatives
of its behavior. Quite often, applications’ QoE could be satisfied with smaller clouds, with
fewer VMs. Aiming to choose one infrastructure, engineers should first to analyze application
requirements creating execution profiles.

Before creating execution profiles, the application structure must be studied. In MCC,
method call partitioning is one intuitive approach, since mobile applications are inherently
organized in methods (Chun ez al., 2011b). Besides, method calls can bring high granularity
as long as the methods are uncoupled. For example, consider the following snippet of code in
Figure 4.2. Intending to paralelize the execution of such a code the dependence of variable “a”
impacts on the final decision.

el
public void rootMethod(){ 2@
a=m1(); W =
m2(a); E
m3(); %
}

Figure 4.2: Method Call Partitioning Example.

Due to the variable “a”, the calls “m/()" and “m2(a)" must be executed in sequence, while
“m3()" could be called in parallel. The developer would expect that distributing the execution
of the rootMethod() on two machines (or CPU cores) would reduce the total execution time
instead of using one resource. In this work, we present an approach to predict the application

behavior. For that aim, some assumptions are needed: (i) the mobile device has an available

45

high speed wireless network and is able to offload method calls to a nearby cloud; (ii) the target
machines have similar resource configuration (CPU, Memory, etc) and similar current resource
consumption.

Nonetheless, factors such as lack of resources, network instability, and allocation decision
instructiveness may degrade the performance of the offloading process. These factors hamper
the infrastructure planning since the application behavior is not easy to predict. Formal models,
such as SPNs and Markov Chains, have been widely adopted for infrastructure planning (Araujo
et al., 2014; Campos and Silva, 2015a,b; Callou et al., 2014; Haverkort, 2002). However, to
the best of our knowledge, only a small number adopts formal models for MCC (Gabner et al.,
2011; Ou et al., 2007; Matos et al., 2015; Oliveira et al., 2013; Araujo et al., 2014), and no work
consider the application at source code level.

Energy consumption estimation is also an essential issue on the development life cycle
of mobile applications. Without loss of generality, there are two basic approaches based on
simulation for estimating software energy consumption: (i) instruction based simulation and
(i1) hardware based simulation (N. Nikolaidis, 2002). In hardware simulation, despite the great
computational effort, more accurate results might be obtained in comparison with instruction
simulation due to the laborious system specification. However, instruction simulation has been
adopted by many works in order to provide energy consumption estimation in a satisfactory
period of time. Some works concern hardware and instruction simulation. However, to the
best of our knowledge, no one uses formal models for evaluating MCC focusing on energy
consumption and the application source code.

This work proposes an approach that provides statistic information about the mobile applica-
tion behavior, representing method calls dependency with stochastic models. More precisely,

this work seeks to answer the following five questions:

1) How many VMs are needed to satisfy an application’s required average execution time

constraint?
1) What is the number of method calls per time unit (throughput)?
i) What is the mean time to execute one application when using a certain number of VMs?

iv) What is the mean energy consumed by the mobile device to execute one application when

using a certain number of VMs as target resources?

v) What is the probability of finishing the application execution by a specific time when using

a certain number of VMs?

46

We answer these questions by providing a way of evaluating the mobile cloud through SPNs.
First, a static code analysis is carried out and SPNs are automatically generated based on such
code. Then, the SPNs are employed to evaluate the performance of the method call execution.
As an example, Figure 4.3 depicts the SPN representation for the basic structure of a method

call.

RSRC_POOL

¥ START trigger_time proc_time FINISH

EXEC method_call

@<7

trigger_time_0 SYSTEM_INACTIVE trigger_time_2

Figure 4.3: SPN Representation of One Application with Only One Method Call without
Absorbing State.

The SPN method call is composed of four transitions. The first transition (trigger_time_-
1) is immediate, associating zero. The second transition (proc_time) is called General Time
High-level Transition because when the SPN is generated, no probability is assigned to it.
This transition is depicted by a gray rectangle and the model is later refined by assigning the
respective distribution parameter values. The other two immediate transitions (trigger_time_-
0 and trigger_time_2) are needed to enable the model to return to the initial state when the
execution finishes.

The SPN model comprises four places. The place START, when containing a token, means
that the workload is able to be processed. The place EXEC represents the phase when the method
started its execution by allocating one resource, and thus, decreasing the number of markings
at the place RSRC_POOL. Therefore, the number of tokens present at the place RSRC_POOL
represents the current available Resources Number, RN (e.g., the number of VMs or phisical
machines).

The pool of resources is a powerful mechanism — just changing its marking number allows
different scenarios to be analyzed. The delay associated with the transition proc_time represents
the average method processing time. The place FINISH represents that the method call has
completed and is available for further calls. Finally, when the place SYSTEM_INACTIVE has
a marking (i.e., a token), this indicates that there are no method calls running at the moment
and that the system is idle. Such SPN pattern can be extended to evidence the method calls data

dependency of any application. The pattern embraces general features common to concurrent

47

systems.

We have designed and implemented a tool called MCC-Adviser that can assist software
engineers with planning mobile cloud infrastructure. MCC-Adviser is based on the Mercury
engine (Callou et al., 2014; Silva et al., 2013) and supports the analysis of mobile applications
from different perspectives, being able to automatically compute four metrics: throughput (7p),
mean time to execute (MTTE), cumulative distribution function (CDF) and mean consumption
energy to execute (MCETE), which are evidenced by graphs. These metrics are calculated
by numerically solving CTMCs or by simulation. The main problem of analytical evaluation
methods is the state space. Real application systems usually generate huge state spaces. In some
situations the simulation is the only feasible approach for performance evaluation (Balbo and
Chiola, 1989; Silva et al., 2013; German et al., 1995).

4.2.1 Throughput

The throughput (7 p,) represents how many method-calls per unit time one application can
execute when offloaded to the cloud. This metric is obtained based on Equation 4.2.1. (Maciel
etal.,2011). T p, is obtained by computing the expected value of tokens at a place, multiplied
by the inverse of the transition delay. Such a transition delay (Time,) corresponds to the
communication time, it is, strictly the time taken to send and receive bytes.

For calculating the throughput there are two possibilities, considering a Single Server
Semantics (SSS) or an Infinite Server Semantics (ISS). In this work both ways can be used
(SSS or ISS). In the SSS the flow of tokens will occur in series, regardless of the degree of
the transition activation. In the ISS, every set of tokens of the enabled transition is processed
simultaneously. Equation Tp = (L7, P(m(EXEC,) = i) x i) X 77— calculates the throughput

Time,

according to the ISS strategy, and Equation Tp = P(m(EXEC,) >= i) x = for SSS. The

Time,

variable i represents the weight of the arc that links the place EXEC, and the subsequent
transition (refined by Time, value). The variable i may vary until Z, where Z is the highest

enabling degree of the subsequent transition at the place marking m(EXECn) = i.

4.2.2 Execution Time (MTTE and CDF)

The MTTE (Mean Time To Execute) represents the average time one application takes to finish
its execution. To compute such measure, the SPN must be slightly different to the presented
before. Figure 4.4 presents the SPN for computing MTTE. The SPN now presents one new
possible state called absorbing state (Bolch et al., 2006). The state is called absorbing if it is
impossible to leave it (i.e., Pii = 1). The MTTE is the expected time to reach a deadlock marking

48

(Nelson, 2013). The MTTE is based on a set of probability estimations for when one token goes
from the START place to the FINISH place.

RSRC_POOL

' START trigger_time proc_time FINISH

Figure 4.4: Basic SPN Representation of One Application with Only One Method Call
Using Absorbing State.

Cumulative Distribution Functions (CDF) can be calculated based on SPNs (Trivedi, 2002).
Figure 4.5 depicts an example of a CDF varying the number of available resources (VMs).
Based on CDFs, the probability of finishing execution can be obtained to specific periods of time.
Calculating the probability of finishing an program execution before a specific time [P(T < 1)]
and the probability of finishing execution in a time interval [P(t} < T < 1) = P(T <t) —P(T <

11)], for instance.

0 50 100 150 200 250 300 350
1 b b by Ly Lo g g b gl 1

0.8 — — 0.8
0.6 — — 0.6

P(T<t)

0.4 — — 0.4

—— GPU_L r
—— GPU2 %2
x— GPU_3 L

0.2 4

0 \\\\‘\\\\‘\\\\.‘\\\\‘\\\\‘\\\\‘\\\\ 0
0 50 100 150 200 250 300 350

Execution Time (ms)

Figure 4.5: Example of CDF based on SPN.

4.2.3 Energy

Consider the model in Figure 4.6, which represents three method-calls. Each method-call have
an individual throughput and contributes for spending energy. One of the main causes for

spending energy is transferring method-calls (with data) through the Internet (da Silva et al.,

49

2014). It is possible predicting the mean energy consumption using SPNs in such a scenario by

calculating the throughputs, and required energy for transferring data.

RSRC_POOL

RsrcN

START_1 i proc_time_1 FINISH_1
(>I‘>C>_‘> cannen method-call 1
EXEC 1 _.- method-call 2
T0 START_2 T2 proc me_ﬁ‘ FINISH 2™, N T4
—O- -O-
Ay EXEC_2 ~ R
START_3 T3 proc_time_3 FIN“SHy
) —ADO DRRREE BN method-call 3
EXEC 3. 7l
@ SYSTEM_INACTIVE L] N
Tp3 Tp2 Tp1
‘ ----> Association ‘ and and and
Energy3 Energy?2 Energy1

Figure 4.6: Energy and Power Scheme.

The Mean Consumed Energy to Execute (MCETE) is the expected energy consumption of
an application execution. As far as the SPN model represents a set of K method-calls, then
individual measurements for each method-call must be considered. Equations MCETE =
TTime x YX_| (T p, x Energy,).

TTime , represents the total time in which the application was executed by using one resource
(VM or physical machine). The TTime is multiplied by the sum of the products between
throughputs (e.g.: Tpl, Tp2 and Tp3) and energy consumptions (e.g.: Energyl, Energy2 and
Energy3). It is important to note that the throughput multiplied by the energy of a method-call is
equivalent to the mean Power for that method-call.

Energy, means the energy consumption resulted from offloading a method-call. Energy,
can be obtained by multiplying two values: EnergyPerByte and BytesNumber,, as presented in
Equation Energy, = EnergyPerByte X BytesNumber,.

EnergyPerByte means the energy necessary for transferring one byte between the mobile
device and the cloud. EnergyPerByte was obtained through experiments and will be presented
later. BytesNumber, means how many bytes were offloaded for each method-call. In this work,
we consider that most of the processing (for n method-calls) occurs at the cloud (see Figure 4.7).
All those methods that do not depend on physical mobile device resources (e.g.: GPS) are able
to be offloaded. Therefore, the energy consumption is approximately equivalent to the effort in
offloading bytes.

It is important to highlight that the bytes considered in this work are those data involved
with the offloading process. The bytes include bytes that will be processed and bytes generated

50

User’s App
Enefrgy @ Spending Battery with Data Transmission
Profiler
method-call 1 method-call 3
method-call 2 -
User’s App
Srergy (2) NOT Spending Battery with Data Transmission
method-call 1
method-call 2
method-call 3
User’s App
Energy ; : —
o9y @ Spending Battery with Data Transmission

Return Results

Figure 4.7: Energy Profiling Scheme.

by offloading instructions. Using a music player application as an example, a streamed song
itself with commands (e.g.: play/stop) represents the bytes we are interested. All these data
transmission results in spending mobile device battery. Therefore, it is important to cautiously
profile the mobile applications for computing the MCETE. In other words, the programmer must
know how much data the application is offloading with the maximum possible accuracy.
Power (P) is defined as the rate at which work is done upon an object. Like all rate quantities,
power is a time-based quantity. Power is related to how fast a job is done. Two identical jobs
or tasks can be done at different rates - one slowly or and one rapidly. The work, which in this
document means energy (E), is the same in each case (since they are identical jobs) but the
power is different. Equation Pi(t) = @ presents how to obtain the instantaneous power (Pi).
During the execution of an application, the average power (P) over the period of time ¢ also

can be obtained by
5_ TE@)dt [sE(t)dr [SE(r)dt
Y N R

As .
/ E(t)dt = Etotal = P X1,
0

then, as Figure 4.8 illustrates, Etotal and P may be calculated. Etotal is represented by the area

below the line of the power graph and Pis computed by summing up the »n instantaneous power

51

and dividing by n:
P Y| Pi(t)
n
I /A7\/s
Power (W) Etotal
E » Time

t

Figure 4.8: Energy and Power Scheme.

The unit for standard metric energy is the Joule and the standard metric unit for time is the
second, so the standard metric unit for power is a Joule/second, defined as a Watt and abbreviated
W. In this work the adopted unit for energy is milijoules (mJ), a common unit for energy in

mobile devices.

4.3 MCC-ADVISER: AN EVALUATION ASSISTANT

We have implemented MCC-Adyviser, an evaluation tool for MCC applications. MCC-Adviser
is implemented in Java and aims at assisting software engineers planning MCC environments.
Figure 4.9 illustrates an overview of how MCC-Adviser works. The first step is to execute an
experiment using one machine (VM or physical server) to process the mobile device requests.

The objective is to collect data needed to refine the generated model. MCC-Adviser requires:

* the source code (to build the SPN structure),

the total communication time,

* the communication time delay (per method-call),

the number of transfered bytes (per method-call), and

the “energy spent per byte".

The MCC-Adviser, then, provide measures and plots describing performance and energy

profile according to different number of VMs. Following, these steps are detailed.

52

Input Parameters
Source Communication Transfered
Code Time Data
i blic void method
Collecting pum{?)yo' methodOL| | 10 843 ms | | m1(): 113 Bytes
Input m2(); m2(): 310 ms | | m2(): 452 Bytes
Parameters m3(); m3(): 124 ms | | m3(): 873 Bytes
}
EnergyPerByte: 0.273 mJ ‘ ‘ Total Time: 14009 ms
@ MCC-Adviser
Generate | 1~
and Refine Input
SPN Parameters
Results
@ Throughput MTTE
Plot) HHH : HHH
Results CDF MCETE

Figure 4.9: MCC-Adyviser Overview.

4.3.1 Collecting Input Parameters

Aiming to refine the SPN, input parameters are strictly necessary. Figure 4.10 presents an
overview of the Collecting Input Parameters phase. The parameters of interest are basically
two: time and transfered data. As far as the MCC-Adviser plays the role of an adviser, it is
expected that the software engineer executes as minimal as possible tasks to get the estimated
statistics. Three softwares were developed aiming to assist with such tasks: MCC-Instrumenter,
MCC-Logger-Client and MCC-Logger-Server.

As Figure 4.10 illustrates, in Step 1, MCC-Instrumenter receives the original source code
(root method) as input and generates an instrumented code. In practice, the user uploads an

entire Java class indicating which method she wants to instrument. Then, MCC-Instrumenter

R - S SO SCR R

53

instruments the code by adding directives before and after each method-call. MCC-Instrumenter
is supported by the library BCEL'.

The process of collecting the metric time must be performed at both sides, the mobile
and the cloud. MCC-Instrumenter instruments the user’s code with the class TimeLogger (see
Code 4.1). In other words, TimeLogger accompanies the instrumented code. The methods
registerStart() and registerEnd() are inserted into the code. After that, MCC-Adviser returns a
zip file containing the instrumented class, and auxiliary classes.

public class TimeLogger {
public static double initTime = O0;
ManageFile m = new ManageFile ("log-exec-time.txt");

public static void registerStart () {
initTime = System.currentTimeMillis () ;

}

public static void registerFinish(String methodCallName, int line){
m. WriteFile (methodCallName+" ["+line+"]:"+(System. currentTimeMillis () — initTime));
}
}

Code 4.1: TimeLogger Class

More specifically, related to time, MCC-Instrumenter generates logs addressing the following
metrics: the total execution time, the communication time, the execution time in the cloud. The
communication time delay is obtained by the difference between total execution time and the
execution time in the cloud.

Still observing Figure 4.10, in Step 2, the programmer will execute the instrumented source
code and collect the input parameters. At the mobile device side, the programmer needs to install
the instrumented application and the MCC-Logger-Client application. MCC-Logger-Client
monitors the instrumented application and logs the communication time delays and transfered
bytes — for each method-call. These logs are stored at a remote server to be used by the
MCC-Adyviser afterwards. At the server side, the original code executes the requested tasks
from the mobile device. The MCC-Logger-Client is an evolution of the (PowerTutor, 2014)
PowerTutor open-source application. MCC-Logger-Server, in turn, is responsible for receiving
the requests and properly executing the specific method-calls. For that aim, MCC-Logger-Server
uses Java Reflection for identifying the method-calls targets.

As infrastructure, the private cloud Eucalyptus 3.4.0.1 (Nurmi et al., 2009) was used with
two physical machines (one node and one controller). The physical machines have the following
configuration: Intel Core 17-3770 3.4 GHz CPU, 4 GB of RAM DDR3, and 500 GB SATA HD.

'BCEL: https://commons.apache.org/proper/commons-bcel/

54

@ Instrumenting the Source Code

Instrumented
Code

public void method(){
Original registerStart();
Code m1();
public void method(){ registerEnd();
i :> MCC- Instrumenter i> registerStart();
3 m2();

} m3() registerEnd();
registerStart();
m3();
registerEnd();

}

@ Executing Instrumented Source Code

Mobile Device Server

Instrumented Offloading Original
Code L Code

MCC-Logger Return Results MCC-Logger
Client Server

m1(): 113 Bytes
= m2(): 452 Bytes
m3(): 873 Bytes

1
é log-bytes.csv-- """
R
og-time.csv. _
y S m1(): 843 ms
S~ m2(): 310 ms
m3(): 124 ms

Figure 4.10: Collecting Input Parameters.

An Ethernet network is adopted to connect the physical servers through a single switch and
one VM of type mI.medium (1 CPU, 512MB of RAM, and 10GB Disk). At the mobile device
side, a Samsung Galaxy Note 4 was used running the Android version 5.1.1 Lollipop. Only the

essential process was running at the device during this experiment.

4.3.2 Solving SPNs and Plotting Results

After collecting and informing the input parameters to MCC-Adviser, the stochastic model is
generated based on the source code structure. The act of configuring transitions with input
parameters is called refinement process. Only when setting transitions and places with initial
values, the stochastic model may generate some result. Therefore, the final step is to solve the
SPN model and graphically generate the graphics.

MCC-Adpviser is based on the Mercury engine (Callou et al., 2014) (Silva et al., 2013).

Mercury was developed by MODCS? research group to allow the evaluation of performance

2MODCS: http://www.modcs.org/

55

and dependability models. The proposed environment can be adopted as a modeling tool for a
number of formalisms but MCC-Adviser uses the Mercury API to evaluate only SPNs. Mercury
can be used as a dashboard through a Graphical User Interface (as illustrated in Figure 4.11) or
working as an API. As an API, Mercury provides one class called SPNModel that represents one
SPN. Thus, the first step MCC-Adviser does is to instantiate the SPNModel class. Next, for each
method-call, the Places, Transitions and corresponding Arcs are instantiated and incorporated

into the model.

W' Mesury Tool

Rle Vien Mcinci Evaluade Todks Scuck

RERRS E448W &

£ % Tokimgame
| G Paces
M
(el
P2
-ies
M
ol
LIPs
i
=4-E5 Timed Teamikians
Orea
[
7153 Irenediste Trarmitions
1z
Jmz
BT
[t
F1-5 Revrard Mezsures
1 bleasure:
-1 periniions
[Detay Pasammcters

Figure 4.11: Mercury GUI

org.modcs.tools.parser.model

SPNModel Place
-) . ~N
- metrlcs‘. Arralelst<Metr|c> D + getTokens() : int
- places : ArrayList<Place> + getName() : Strin
- transitions : ArrayList<Transition> 9 () : String
+ addTransition(transition : int) : void —
+ evaluateMetric(id : int) : void N Transition
+ addPlace(place : int) : void N
] + setDelay(time : double) : void
+ addInputArc(arc : Arc) : void
+ addOutputArc(arc : Arc) : void

Arc

+ setPlace(place : Place) : void
+ setTransition(transition : Transition) : void

Figure 4.12: Main Classes of Mercury API

56

In practice, MCC-Adyviser is deployed as a jar file called mcc-adv.jar, containing all de-
pendencies, including the Mercury library. Figure 4.13 describes a sequence diagram for
MCC-Adviser behaviour. The figure highlights the communication between MCC-Adviser core
and the Mercury library. First, the user informs the application source code, indicating the target
class and its desired root method. Next, the MCC-Adpviser statically analyzes the code and
generates a method-call dependencies tree. Calling Mercury, the MCC-Adviser then instantiates
transitions, places and arcs, creating an SPNs. Next, the MCC-Adviser enable the user to inform
the input parameters that are necessary to refine the model and compute metrics. Finally, the
MCC-Adviser generates graphs.

sd Sequence Diagram0)

User MCC-Adviser Mercury

\ [
M 1: InformSourceCode() ’L

1.1: StaticSourceCodeAnalysis()

L 2: CreateStochasticModel() »ﬁ

:.:‘ 3: StochasticModel() |
_< 4: InputParametersRequest() u

5: InformInputParameters() h

|
L 6: RefineStochasticModel() »D

7: ComputeMetrics()

F
J

|
T |
| |
|
|
|
[

D‘ 8: ComputedMetrics()

| 9: GenerateGraphs()

T_l

L]
\
\
\
\
\
\
\
\
\
\
\
\
\
\

D‘ 10: Graphs() T

q

Figure 4.13: MCC-Adviser Sequence Diagram.

We also have implemented a graphical user interface, which requires minimum user in-

57

tervention, hiding all the modeling complexity of MCC-Adviser. At the webpage the user
may download the desktop version or try one of the following functionalities online: Code
Instrumentation, Energy Evaluation, and Time Evaluation. To use the modeling prototype, the
engineer should inform all needed input parameters. In background, the MCC-Adviser generates

the required statistics.

4.3.3 Web Application Prototype

In this work we have implemented a web application prototype where users may download and
test MCC-Adviser through the link: http://cin.ufpe.br/~faps/mcc-adv/. Figure 4.14 depicts the
first page. In this page the user have three options. First, she may download a Desktop version,
with corresponding user manual. In the other two buttons, the user may test — online — the

time and energy evaluation.

If you would like to test the application,
please choose one of the following options:

Download Full Desktop Version

Online Time Evaluation

Online Energy Evaluation

Figure 4.14: MCC-Adviser Web Application - First Page

Figure 4.15 shows the step one of the online time evaluation. At this step the user should
insert a piece of Java code for static analysis.

In step two (see Figure 4.16), the user should insert the time for each one of the method-calls.

Finally, in step three (see Figure 4.17), MCC-Adviser presents the statistic report containing
the Throughput, MTTE and CDF. Besides, the usee may obtain the exact probabilities for

finishing the application by simple informing the desired time interval.

58

Time Evaluation - Step 01

Here you can experiment the time performance evaluation,

please feel free to try out and change the example if desired.
The code must follow the Java syntax rules.

package mainpack;
public class Test {
private void roothMethod() {
inta=m1():
m2(a);
ma3():

el

—
il Delay 'H Back to main page

Figure 4.15: MCC-Adviser Web Application - First Step.

4.4 EXPERIMENT FOR ESTIMATING THE “ENERGYPER-
BYTE"

This section presents how we have estimated the average energy consumption for transferring
one byte (EnergyPerByte) involving the mobile device and the cloud. Different from the metric
time, the task of recording energy encompasses diverse challenges (Li et al., 2013; da Silva
et al., 2014; Oliveira et al., 2013; Araujo et al., 2016; Silva et al., 2014a; Callou et al., 2011,
Tavares et al., 2010; Callou et al., 2008; Tavares et al., 2007; Junior et al., 2006) related to
hardware and runtime system when measuring energy consumption of constrained devices.

In terms of hardware, the main obstacle is the difference between the speed at which
instructions execute and hardware devices can perform energy measurements. On modern
processors, individual instructions will execute at a rate of several million per second. At best,
power meters can sample electrical power draw at several tens of KHz, which means that each
sample will include the power consumption of hundreds, perhaps thousands, of instructions.

The runtime system of an Android smartphone includes both the Android operating system

and the Dalvik Virtual Machine. The runtime system implements several types of behaviors

59

Time Evaluation - Step 02

Now you must inform the execution time for each method-call.

Fill the information using only numbers.
You may use float numbers if you want.

m1_4=2
m2 5=3

m3_6=4

Figure 4.16: MCC-Adviser Web Application - Second Step.

that affect energy consumption of an app, thread switching, garbage collection, and tail energy.
However, the details of the duration, frequency, and timing of these events is, by design, hidden
from the app. Although it would be straightforward to modify the runtime systems to track these
events, this would introduce considerable overhead and reduce the portability of the approach,
as it would be necessary to provide custom runtime systems for each smartphone platform.

There are hardware profilers (e.g.: Watts Up (WattsUp, 2016)) that only record the total
consumed energy and not the individual energy per application. There are also some profilers at
software level (e.g.: eDoctor (Ma et al., 2013) and PowerTutor (PowerTutor, 2014)) that record
the energy per application. Therefore, this work have adopted this software approach.

Aiming to calculate the MCETE for transferring one byte (EnergyPerByte), it is necessary
to profile one application during a certain period of time. Next, EnergyPerByte is obtained

by dividing the total amount of energy (Total Energy) by the total number of transfered bytes

TotalEnergy
TotalBytesNumber *

Based on the (PowerTutor, 2014) PowerTutor application, the MCC-Logger-Client was also

(TotalBytesNumber), as shown in Equation EnergyPerByte =

adapted for recording, besides bytes and time, the Power consumption. The objective was to
capture the aforementioned metrics through a controlled experiment as illustrated in Figure 4.18.

The main hardware components that may impact on energy consumption of mobile devices

60

THRAGUGHPUT Analysis

1 FIE s Endllenr L aryud s o

Cumalative Dlirikution Funcison

B

Figure 4.17: MCC-Adviser Web Application - Third Step.

are: Display Backlight, GPS, CPU (Ardito et al., 2013), and Connection type (3G, 4G, 5G, WiFi,
etc); The Display and the GPS were not profiled because they remained disabled during the
experiment. Considering that most of execution occurs at the cloud, the mobile device does not
require much processing. Most of the processing is related to transferring bytes and therefore
the connection channels (3G and WiFi) were the focus point.

The experiment was performed by profiling the mobile device power to calculate the con-
sumed energy. The application Spotify> was adopted during the experiment. Spotify plays
music online by streaming. Thus, Spotify was executed for six minutes . It is important to
stress that there were other processes running on the device, including the operating system. All
processes were also profiled, not only the Spotify application. However, all background services

not required for running the operating system were disabled. Figures 4.19a and 4.19b present

3Spotify: https://www.spotify.com/br/

61

Mobile Device

Spotify Offloading
ShE Spotify
MCC-Logger < Return Results Servers

Client

m1(): 113 Bytes
m2(): 452 Bytes
m3(): 873 Bytes

-
- ="

é log-bytes.csv
L

log-power.csv. _
o mi1(): 843 mw

* s m2(): 310 mw
@ m3(): 124 mW
Data Compilation

2 v

TotalEnergy TotalBytesNumber

Figure 4.18: Architecture Scheme for Computing the EnergyPerByte.

the profiled power over time for 3G and WiFi, respectively. The Total Energy for 3G and WiFi
were calculate by estimating the area bellow the line graphs wheres the ToralBytesNumber were
simply profiled and summed up.

Table 4.1 presents the TotalEnergy, TotalBytesNumber and EnergyPerByte. The energy
for transferring one byte was about 0.273 mJ for 3G and 0.0024 mJ for WiFi. We believe that
the energy for 3G was higher because its bandwidth is lower then WiFi, requiring more energy

for transferring bytes.

Table 4.1: Consumed Energy for Offloading one Byte

TotalEnergy (mJ) TotalBytesNumber EnergyPerByte (mJ)
3G WiFi 3G WiFi 3G WiFi
164029 218355 600363 90819921 0.273 0.0024

Although the Total Energy using WiF1 was higher than 3G — for the amount of bytes was
the opposite. The flow of bytes for WiFi was 150% higher then using 3G. Therefore, is “easier”
to transmit bytes using WiFi. 3G requires 113 times more Energy for transmitting one byte then

using WiFi connection.

62

0 50 100 150 200 250 300 350
G0 Ll b b L L | g
E {-U V HUW H { m {l 3
400 8 514 i 400

E 4 L

E] [

g

g 300 I 300

o

-9
200 [200
100 I 100

o+ O
0 50 100 150 200 250 300 350
Time (s)

(a) Power for 3G Channel.

0 50 100 150 200 250 300 350
800 Lol b b b b Lo
3 I Ay e meeay A E
700 E 700
600 - E 600

o 500 F 500

H] F

E] E

g 400 3 E 400

kS] E
300 F 300
200 - E 200
100 4 F 100

0 e e e 0
0 50 100 150 200 250 300 350
Time (s)

(b) Power for WiFi Channel.

Figure 4.19: Power over Time

4.5 CASESTUDY ONE - TIME METRIC - REDUCE COLOR
APPLICATION

This section presents a case study observing the execution time metric using an application for

reducing images color.

4.5.1 Model Presentation

As we have explained in the previous section, MCC-Adviser hides the complexity of the problem
and the underlying SPN model from the end user, presenting only a User Interface and graphical

prediction reports. However, to offer a full understanding of MCC-Adyviser, we give a detailed

1
2

23
24
25
26
27
28

63

description of all involved steps—from building the SPN to obtaining the results—in this section.
This work does not consider applications that needs user interaction during the application
execution, since it deals with offline evaluation.

We implement and analyze three versions (A, B, and C) of an image processing Android
application following the principles of method call computation offloading (Kosta and Aucinas,
2012), (Cuervo et al., 2010). The implementation uses a simple elastic client server architecture
with Remote Method Invocation (RMI), but focusing on explaining the modeling evaluation.
The relevant parts of the offloading source code are presented in Code 4.2. The depicted code
arrangements only show the corresponding heaviest methods of the three application versions.

Figure 4.20 reveals the method calls distribution scheme of the three applications. The client
class resides on the mobile device and makes image processing calls to the server by passing
one or more inputs (original images). The client connects to one or more VMs and then calls the
method reduceColor in the server side.

The method calls inside Application_A present dependencies by passing image inputs as
method arguments (lines 5 to 7). In Application_B, there are two dependent method calls (lines
16 and 17) and one independent (line 19). The last application, Application_C, is dependency

free.

public class Application_A {
public List<Image> reduceColorClient (Image image){

List <Image> results = new ArrayList<Image>();

Image image2 = reduceColor(image); /% m_call_1 =/
Image image3 = reduceColor(image2); /+ m_call_2 =/
Image image4 = reduceColor(image3); /+# m_call_3 =/

results .add(image4) ;

return results ;

public class Application_B {
public List<Image> reduceColorClient (Image imagel, Image image2) {

List <Image> results = new ArrayList<Image>();
Image image3 = reduceColor(imagel); /# m_call_1 =/
Image image4 = reduceColor(image3); /# m_call 2 =/

results .add(image4) ;
results .add(reduceColor (image2)); /+ m_call_3 =/

return results;

public class Application_C{

public List<Image> reduceColorClient (Image imagel , Image image2, Image image3){
List <Image> results = new ArrayList<Image>();
results .add(reduceColor(imagel)); /% m_call 1 =/

results .add(reduceColor(image2)); /% m_call_2 =/

64

29 results .add(reduceColor(image3)); /% m_call 3 =/
30 return results;

31}

32}

33

34 public class Server{

35 public Image reduceColor(Image image) {

36 /! JavaCV code supressed

37}

38}

Code 4.2: Client and Server Classes—Image Processing Source Code.

>
E me1() me2() me3() ﬁ'

Application_A

metd e E'
E me3() ﬁ'

Application_B

Application_C

Figure 4.20: Method Call Distribution Obeying Code Dependency Constraints.

The server side adopts the Open Source Computer Vision Library (OpenCV, 2015) and one
Java wrapper called JavaCV (JavaCV, 2015). We implement the computing vision example of
Picture’s Colour Reduction (Reduction, 2015), in which images are transformed by decreasing
the number of colors depending on the picture’s size. Such an activity may be quite time
consuming. The test-bed was composed of a private cloud comprising four machines with the
same hardware configuration: Intel Core 17-3770 3.4 GHz CPU, 4 GB of RAM DDR3, and
500 GB SATA HD. One machine is configured as the front-end while the remaining three are
processing nodes. The Linux CentOS 6 (cen, 2015) operating system and Eucalyptus platform
3.4.0.1 (Nurmi et al., 2009) are adopted. An Ethernet network is adopted to connect the PCs
through a single switch and VMs of type m/l.medium (1 CPU, 512MB of RAM, and 10GB
Disk).

65

We have designed and represent high-level SPN models of the three code arrangements. Ap-
plication_A 1s represented by the SPNs in Figures 4.21a and 4.21b. Application_B is represented
in Figures 4.21c and 4.21d. Finally, Application_C is represented in Figures 4.21e and 4.21f.
Application_A is represented by models with method calls in a sequential chain fashion. The
first and second method-calls are dependent, represented in the model by FINISH_1_START 2
€ (proc_timel)®, where (proc_timel)® is the set of output transition of proc_timel. The second
method-call is data dependent on the third method-call, represented by FINISH_2_START _3
€ (proc_time_2)*. Following the same idea, Application_B is modeled using data dependence
representation.

Application_B and Application_C are represented by SPNs comprising parallel tasks. Parallel
tasks can be expressed by models including each individual task, a fork, and synchronization
transitions. Two tasks are said to be parallel (or concurrent), if they are causally independent,
enabling one transition firing either before or after another transition. Therefore, the model must

encompass transitions such that its firing delivers tokens to more than one place.

66

RSRC_POOL

RsreN
proc_time_1
START_1 EXEC_1

™
T2 proc_time_2

o]2
f

FINISH_1_START_2 EXEC_2

3 proc_time_3 | FINISH3: T4

FINISH_2_START_3 EXEC_3

@ SYSTEM_INACTIVE

(a) SPN without Absorbing State Used to
Calculate Throughput of Application_A
(Three Sequential Method Calls).

RSRC_POOL

RsreN

T proc_time_ 1
T0
START_1 EXEC_1

1
I % T2 proc_time_2 FINISH_2

FINISH_1_START 2 EXEC_2

3 proc_time_3 | FINISH_3

@ START_3 EXEC 3
SYSTEM_INACTIVE

(c) SPN without Absorbing State Used to
Calculate Throughput of Application_B
(Two Sequential Method Calls and One in
Parallel).

RSRC_POOL

(S
FINISH_1

START_1 T proc_time_1|
—(InON
EXEC_1

FiNiSH 2

T0 START_2 T proc_time_2
O r=O-H-O-

EXEC 2

2
JAY -
START 3 T3 proc_time_3 | FINISH_3,2

EXEC_3
@ SYSTEM_INACTIVE

(e) SPN without Absorbing State Used to
Calculate Throughput of Application_C
(Three Parallel Method Calls).

RSRC_POOL

RsreN

T0 T proc_time_1
START_1 EXEC_1

T2 proc_time_2

FINISH_1_START_2 EXEC_2

T3 proc_time_3 FINISH_3

FINISH_2_START_3 EXEC_3

SYSTEM_INACTIVE

(b) SPN with Absorbing State Used to
Calculate MTTE and CDF of

Application_A (Three Sequential Method

Calls).

RSRC_POOL

RsrcN

bl proc_time_1
To I
START_1 EXEC_1

proc_time_2 | | FINISH_2

FINISH_1_START_2

proc_time_3 | FINISH_3

FINISH_ALL

@ START_3 EXEC 3
SYSTEM_INACTIVE

(d) SPN with Absorbing State Used to
Calculate MTTE and CDF of
Application_B (Two Sequential Method
Calls and One in Parallel).

RSRC_POOL

(S
START_1 T proc._time 1 FINISH_1
1 _DO\
EXEC T b
T0 START 2 T2 proc.time. 2 FikiSH 2 T4
O -O—#O
[\ Bbe2 FINISH_ALL
I FINISH 3

START 3 T3 proc_fime.3

EXEC 3

@ SYSTEM_INACTIVE

(f) SPN with Absorbing State Used to
Calculate MTTE and CDF of
Application_C (Three Parallel Method
Calls).

Figure 4.21: SPNs Generated by MCC-Adviser.

67

4.5.2 Model Validation

Many aspects may interfere in the similarity between the model results and the reality, such
as connection with bad quality. To reduce the impact of errors (e.g., noise) in the measuring
process, a statistical technique called bootstrap was adopted to validate the models proposed for
Applications A, B and C (Efron and Tibshirani, 1993). Bootstrap is a resampling method: it
obtains samples within a previously measured sample.

Table 4.2 shows that the throughput extracted from the models (SPN’s T p column) remains
inside the respective confidence interval (CI). Therefore, this validation indicates that the

generated models represents, statiscally proved, the reality.

Table 4.2: SPN Validation Using Bootstrap Technique.

Throughput Bootstrap
Application | MCC-Adv. Experiment | CI(Ba/2) CI (B[l — a/2))
A 0.000642715 | 0.00064485 | 0.000629256 0.000661383
B 0.0008568 0.00086755 | 0.00083842 0.000894274
C 0.001057572 | 0.00102875 | 0.000985677 0.001070343

4.5.3 Model Solution

The proposed SPNs can be refined allowing one to obtain statistical information regarding the
MCC environment. Hence, the applications were repeatedly executed under one VM of type
ml.medium (1 CPU, 512MB of RAM, and a 10GB Disk), capturing the execution time for each
method call. Only one specific 4MB picture was used as input. Next, a first SPN refinement
was proposed by transforming the high-level transitions into exponentially distributed timed
transitions by assigning the average delays to the respective transitions. Such transformation of
transitions and delays assignment allows SPN to be solved and the throughput, MTTE, and CDF
to be obtained.

Figure 4.22 presents the estimated throughput for applications A, B, and C. The number of
considered resources ranged from one to four VMs because the approach takes into account
higher granularity plus one. Since Application_C can be partitioned into three parts, four VMs
were adopted as an upper limit. Thus, the totally sequential Application_A does not depend on
the resource number. Therefore, the throughput remains constant considering different numbers
of VMs. Application_B owns two blocks of independent code. Then, using two VMs the
throughput increases. However Application_B has the same result for two, three, and four VMs

since it cannot be partitioned into more than two parts due to coupled code. Comparing the three

68

applications, the throughput of Application_C is the highest because it considers the highest
number of parallel tasks.

The MTTE for Applications A, B, and C can be viewed in Figure 4.23. Similar to the
throughput metric, in Application_A, the MTTE does not vary when the number of VMs
changes. However, Applications B and C have the benefit of parallelism, reaching saturation
with two VMs for Application_B and three VMs for Application_C. Besides that, the software
engineer may consider the MTTE desired by the user and compare with the results provided
by MCC-Adviser. For example, if the final user demands a minimum MTTE around 2800ms
for Application_C, the planner may adopt three VMs since two VMs do not allow reaching the

maximal performance and four VMs do not offer improvement.

0.000040
0.000035 — —
"
§ 0.000030
©
£ 0.000025
£ 0.000020
3 0.000015
®
3 0.000010
=
0.000005

0.000000
1VMm 2VMs 3VMs 4VMs
Number of VMs

W ApplicationA OApplicationB O ApplicationC

Figure 4.22: Throughput Evaluation Comparing Applications A, B and C.

5000
4500
4000
3500 - - -

@ 3000

E 2500

S 2000
1500
1000

500

1VM 2 VMs 3VMs 4VMs
Number of VMs

M ApplicationA O ApplicationB O ApplicationC
Figure 4.23: MTTE Evaluation Comparing Applications A, B and C.
Figures 4.24a, 4.24b, and 4.24c present CDFs that describe the execution time of each

method. For each application, the CDF is plotted considering one, two, and three resources

(VMs). The probabilities were computed from 7 = Oms to # = 10,000ms.

69

Although the applications have similar behavior, they are more likely to complete execution
over time when the system is more decoupled. For Application_A (Figure 4.24a), the probabilities
are the same for one, two, and three VMs. For Application_B (Figure 4.24b), the probabilities
for two and three VMs are identical—the probability only differs when one VM is used. In this
case, the probability of finishing the execution is smaller. Application_C (Figure 4.24c) has the
highest probabilities for finishing execution faster. In addition, the probabilities for one, two,
and three VMs are distinct.

Application developers and service providers willing to plan and design an MCC environment
should be aware at when their applications are more likely to finish execution. The CDF may
indicate such a moment through the maximum probability of absorption. Taking into account
only one VM, the maximum probability of absorption is about 95% for the three applications.
Best performance could be observed when using two or three VMs. Application_A does not
reach 100% probability in any of the three scenarios. Application_B reaches 100% probability
at exactly 10,000ms for two and three VMs. As previously mentioned, the probability for
Application_C usually varies with the number of resources. However, for two and three VMs,
100% probability is achieved around 8500ms.

Willing to obtain the probability of absorption, the service provider may consider any time
within the range. Final users may require that all applications finish by one specific time.
Given that Application_A is the most constrained, the service provider should specify the
observation of mainly Application_A in its Service Level Agreement. If the final user needing
the application finishes execution by 5000ms, the probability for Application_A is always around
62%. Therefore, the service provider could agree to deliver the service by charging low prices
due to infrastructure limitations.

Probability intervals can also be exploited using CDFs. Aiming to better analyze the applica-
tions, Figure 4.24d depicts the respective probabilities obeying three intervals. These intervals
do not elucidate the cumulative probability starting from zero but rather the difference between
two moments. Consequently, the probability is reduced as far as the interval values increase over
time. Stated differently, the angle of the CDF line decreases over time. Hence, the more declined
the line, the lower the probability. Observing the CDFs’ cumulative probabilities, Application_C
reaches higher results faster than Application_B. However, Application_B obtains higher values
than Application_C when deploying two or three VMs. Due to such a myriad of interpretations,
the application developer or service provider should also pay attention to probability intervals.

Moment matching (Desrochers et al., 1995) could also be applied to obtain poly-exponential
distributions and the respective SPNs (Araujo et al., 2011; Silvaa et al., 2014; Costa et al., 2015).

By adopting moment matching, the planner may estimate what exponential-based probability

70

0 2000 4000 6000 8000 le+04 0 2000 4000 6000 8000 le+04 0 2000 4000 6000 8000 1le+04
1 L L L L 1 1 L L L L 1 1 L L L L 1
0.8 e o8 0.8 Fos 0.8 o8
- r 1 1 r
T 05 ,J/ Fos S o] Fos 2 o6 Fos
e r S 1 1 r
& 04 Fo4 & 04 Fo4 E‘ 0.4 Foa
[] — 1WM] — W
0.2 o | Fo2 0.2 —2wms | Fo2 0.2 —2ws | bo2
r 1 1 e | T
3wMs | [] 3 VMs] r
ol —"o0 o= r————F0 010
0 2000 4000 6000 8000 1le+04 0 2000 4000 6000 8000 le+04 0 2000 4000 6000 8000 1le+04
Execution Time (ms) Execution Time (ms) Execution Time (ms)
(a) Application_A (b) Application_B (c) Application_C
0.45
0.4
0.35
S 03
\%
Y 025
V0.2
—
£ 0.15
o
” I I I I
NN
o (1
VMs: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Time Int.: T1 T2 T3 T1 T2 T3 T1 T2 T3
Application_A Application_B Application_C
Time Intervals : T1: 2000ms < T < 4000ms T2: 4000ms < T < 6000ms T3: 6000ms < T < 8000ms

(d) Probability Intervals.

Figure 4.24: Probability Analysis of Applications A, B and C.

distribution best fits the mean. Additionally, moment matching generates more accurate models,
which can still be numerically evaluated. If non poly-exponential distributions are adopted,
simulations should also be adopted. Figure 4.25 presents an SPN example of refinement using
the moment matching technique. The SPN represents Application_B depicted in Figure 4.21d.
The transition proc_time_3 was refined as an example. A hypo-exponential distribution was
attributed to such a transition. Therefore, a more accurate analysis could be done solving this

emerging SPN.

4.6 CASESTUDY TWO - TIME METRIC - FACE RECOG-
NITION APPLICATION

In this section, a face recognition application is presented as a real case study aiming to enforce
our statements with a nonliner code structure. Face recognition determines the match-likelihood
of each face to a template element from a database. The widely accepted Eigenfaces approach
was employed (Turk and Pentland, 1991). This process extracts the relevant information in a

face image, encodes it, and compares the encoded face image with a database of models called

71

SYSTEM_INACTIVE RSRC_POOL

m_call_1

Lo SR READY. 1. J.... |

proc_time_2

m_call_2
READY_2

START_3

m_call_3

Figure 4.25: SPN Representing Application_B with a Hypo-Exponential Distribution.

face-space, similarly encoded.

Code 4.3 presents the analyzed class called FaceRecognitionService. The heaviest method,
recognize, contains two heavy method calls. The first, readFaceBundles, constructs the face-
spaces from a given directory. There must be at least 16 images in that directory and each
image must have the same dimensions. The second method call, checkAgainst, performs the
comparison between one photo and the face-space. This method call identifies the name of the

most similar photo from the face-space and a Euclidean distance in that face.

1 public class FaceRecognitionService {

3 public static RecognitionResult recognize(String dirWithTrainedFaces , String
photoToRecognize) {

4 EigenFaceCreator creator = new EigenFaceCreator();

5 creator .readFaceBundles (dirWithTrainedFaces); //m_call_l

6 String result = creator.checkAgainst(photoToRecognize); //m_call 2

7 String strresult = "Most closly reseambling: " +result+

8 " with "+creator .DISTANCE+" distance";

9

10 return new RecognitionResult(strresult);

11 }

12

13 public void readFaceBundles(String n) {

14 for (i = 0; i < bundles.length; i++) {

15 // Read each set of 16 images.

16 readBundle (filenames , set, i);

17 //m_call_1_1, m_call_1_2, m_call_1_3

18 }

19 }

20 }

Code 4.3: Face Recognition Application Source Code.

The method calls readFaceBundles and checkAgainst are data dependent. However, with

72

this application we intend to enhance our proposal by analyzing method calls repeatedly called.
Therefore, readFaceBundles provides a loop that reads groups of 16 images at each iteration.
All such processing can be performed in parallel managing replicated database.

The SPN model in Figure 4.26 represents the face recognition application with absorbing
state. We reference readFaceBundles as m_call_I, checkAgainst as m_call_2 and the “sub
method calls" of readFaceBundles as m_call_I_n (where n ranges from 1 to 1000). Hence, the

models are simplified, but in reality, the SPNs encompass 10,000 method-calls.

RSRC_POOL

FINISH_1.
: “m_call_1_2

FINISH_2 .

SYSTEM_INACTIVE

FINISH_n /- m call 2

T i e * m_call_1_n

Figure 4.26: SPN Representing the Face Recognition Application with Absorbing State.

As a first step in the evaluation process we need to collect the delays for each method
call using one resource. Thus, we have executed the application using a database of 16,000
photos in one VM (1000 iterations), registering the average execution times for the method
calls, individually. We have repeated this process 30 times. The result was 0.0142125ms for
readFaceBundles (in average) and 2.7ms to checkAgainst. Using these measurements, MCC-
Adviser evaluated the use of 100, 500 and 1000 VMs and generated a CDF, depicted in Figure
4.27.

The probabilities were computed from ¢ = Os to # = 1.3s. According to Figure 4.27, the
distances between the probabilities regarding 100 and 500 VMs are larger than the probabilities
regarding 500 and 1000 VMs. The probability of finishing execution with 100 VMs becomes
100% only after 1.25s, whereas for 500 and 1000 VMs, this happens around 0.95s. With regard
to the interval 0.3s to 0.45s, the following probabilities are obtained: 24.4% for 100 VMs,
26.2% for S00VMs, and 27.4% for 1000 VMs. The interval 0.65s < T < 0.85s results in higher
probabilities for 100 VMs than 500 VMs or 1000 VMs: 7.7% for 100 VMs, 5.1% for 500 VMs
and 5.1% for 1000 VMs. Given so many tasks, at some point the probabilities for 500 and 1000
VMs are very close to each other. Such similarity is due to the accumulated effort in dealing

with so many tasks concurrently.

73

1 T BT IR

0.8

o8

Q 1 .

© 06 0.6
e] [

o 04 100 VMs 0.4
] —— 500 VMs r

0.2 —e— 1000 VMs Fo.2

0

0

LI S s B B B B B

02 04 06 08 1 1.2

Execution Time (s)

Figure 4.27: CDF of Face Recognition Application.

4.7 CASESTUDY THREE - TIME METRIC - GPU STUDY

Until now, MCC is limited to CPU code offloading. Inspired by the recent support for Graphic
Processing Unit (GPU) computation on the cloud Ama (????), and the initial tentatives of using
these GPU-capable virtual machines for data-intensive processing Shih er al. (2013), Pungila
and Negru (2012), we envision a future where MCC will embrace the enormous possibilities
offered by GPU computation offloading. General purpose computing on GPU (GPGPU) enables
the possibility of optimizing the execution time of many parallel applications thanks to their
large number of cores compared to the CPU. Imagine a normal smartphone being able to run the
latest GPU-powered photo editor or to perform GPU-accelerated virus scanning Pungila and
Negru (2012); all thanks to the cloud. We believe researchers will extend on previous works and
integrate GPU code offloading into their offloading frameworks.

Unfortunately, aside from Amazon Ama (????), no other public cloud provider accommo-
dates virtual machines with GPU support. Not only that, the only choices offered by Amazon
are the g2.2xlarge and g2.8xlarge instances, both of them very powerful and expensive: $0.65/h
and $2.6/h, respectively. The first instance type has 1 GPU, while the second one has four. The
model is the same for both: High-performance NVIDIA, with 1,536 CUDA cores and 4GB
of video memory, which is one the best graphic cards on the market. Final users would be
enforced by the limited choice to pay for these very high-performance instances, even if their
requirements were not so high.

We believe that in the near future this will not be the case anymore. The other providers
are going to catch up Amazon and provide GPU VM instances as well. Not only that, we also
believe that all providers will offer a broader spectrum of instance types so that users with

different needs can choose accordingly and minimize their costs. In this thesis, we tackle the

74

problem of choosing the optimal GPU instance in order to satisfy user’s Quality of Service
(QoS) requirements, while reducing his costs.

To make the presentation clear, we now consider a trivial example where the offloading
framework should choose among three different GPU virtual instances. This example, presented
in Figure 4.28, shows the execution time of a hypothetical application on the three GPUs.
We assume GPU_1 is the worst performing, while GPU_2 and GPU_3 have almost the same
performance. Since GPU_3 performs slightly better than GPU_2 it can have a higher cost. From
the user’s point of view however, this slight performance can be insignificant, so she can prefer

saving money and use GPU_2.

GPU_3]
GPU_2]
GPU_1)

0 20 40 60 80 100 120 140
Execution Time (ms)

Figure 4.28: Execution time of a hypothetical application on three different types of
GPU.

More concretely, consider the case where the developer has a requirement on the task
execution time to be smaller than 120ms. With high probability, GPU_1 will not be able to
satisfy this requirement. Choosing between GPU_2 and GPU_3 is the only alternative. Since
GPU_2 has lower costs and can deliver the task result in time, the offloading framework should
prefer that one instead of GPU_3.

Using the MCC-Adviser tool, mobile cloud offloading frameworks can automatically decide
which instance type to use so that user’s quality of service requirements are satisfied, while
minimizing the costs. We have run a virus scanning benchmark application on a g2.2xlarge
Amazon instance and measured the execution time, which was 5.48ms on average over 100
runs. We then divided the execution time by the number of CUDA cores in order to obtain the
execution time per core (EtpC) and feed it to the MCC-Adyviser tool. In absence of Amazon
GPU instances with less CUDA cores, we defined four other types with 98, 256, 512, and 1024
cores, assuming they use the same GPU model as the real one. Then, we used the previous
measured execution time per core to estimate the probabilities for each of the defined instances.

In Figure 4.29 we present the results of the MCC-Adviser tool for the real GPU instance
with 1536 cores and for the other instances defined by us. If the user requires her task to finish
before 4.5ms, with probability higher than 95% even the less powerful instance would satisfy
her needs. If the desired execution time was less or equal than 2.5ms, the probability of the less
powerful instance drops to 76% and maybe another instance is better in this case.

We are aware that the example reported has very small delay, however, considering real-time

75

0.8

0.6

Number of CUDA Cores L
—— 98 04
—— 256 r
512
—t— 1024
1536

P(T<t)

0.2

Execution Time (ms)

Figure 4.29: CDF line plot considering parameters from Amazon EC2 instance.

applications such result is totally possible. Shi et al. Shi et al. (2011), for example, proposes
a real-time video encoding method for mobile cloud gaming in which some procedures take
around 4ms in average. The purpose of this real case study is to simulate, for the first time, the
choice of a GPU powered virtual machine in the cloud considering user’s quality of service
requirements. Our tool is extremely flexible. Producing the same results for other applications
is just a matter of measuring the execution time per core and feeding the value to the SPN
simulator.

Aiming to better present the results of this case study, a dynamic public web page is delivered
through the URL: http://cin.ufpe.br/~faps/mcc-adv-gpu/. The web page presents the CDF chart
generated for this case study in conjunction with a way to access the specific probabilities. Thus,
it is possible to visualize both, the probability of finishing execution before a give time P(T < t),
and the probability interval P(t; < T < t).

4.8 CASE STUDY FOUR - ENERGY METRIC - REDUCE
COLOR APPLICATION

This section presents a case study observing the energy metric using an application for reducing

images color.

4.8.1 Model Presentation

Aiming to evaluate the presented approach regarding energy metric we have used one of the
three reduce color image processing application (the “ApplicationC"). The respective model is
presented (again) in Figure 4.30:

The code structure with three parallel method-calls was chosen intending to highlight the

76

RSRC_POOL

RsrcN

START 1 T proc_time_1 FINISH_1

EXEC_1
START 2 T2 proc mefzj FINISH_2

>O_

START_3 T3 proc_time_3| " FINISH y

—()—H>I—(>(| —A(>()
@ SYSTEM_INACTIVE

Figure 4.30: SPN of Application_C (Three Parallel Method-Calls).

energy consumption tendency as far as the parallelism increases.

4.8.2 Model Validation

Aiming to validate the energy model, we have used the MCC-Logger-Client for profiling the
power and calculating how much energy the application spent. Three scenarios were tested:
WiFi Cloudlet, WiFi Public Cloud and 3G Public Cloud. Each scenario was executed and
monitored 30 times, collecting the mean values. The results have followed a normal distribution
and then we generated 1000 values, extracting the confidence interval from that (CI) (Efron
and Tibshirani, 1993; Silva et al., 2014b). Table 4.3 presents the results comparison (from both:
calculated by MCC-Adviser and experiment). The results shows that the energy extracted from
the models (Model column) remains inside the respective confidence interval. Therefore, this

experiment provides evidence that our proposed SPN modeling with energy metric is reliable.

Table 4.3: SPN Model Validation

Scenario MCETE (Model) MCETE Bootstrap - Bootstrap -
(Experi- CI(Ba/2) CI(B[l-—

ment) a/2])
WiFi Cloudlet 1037.24364 1038.6984 103674625 1039.95812
WiFi Public Cloud 4752252667 4753.7064 4751364983 4754651928
3G Public Cloud 2585201.126 2585367.603 2584100.871 2587251.900

4.8.3 Model Solution

The same infrastructure presented at the previous section were used and three scenarios were

considered. The first, the mobile device have offloaded tasks to a nearby Cloudlet using WiFi

77

connection. In the second, the mobile device have offloaded to a public cloud (Amazon EC2)
using WiFi connection. Third, the offloading was performed through a 3G connection to a public
cloud (Amazon EC2).

The results for respective MCETEs — in logarithmic scale — are presented in Figure
4.31. Due to the maximum level of parallelism, three VMs were used as threshold. The
experiment was conducted by using the same testbed presented in previous section and repeating
the offloading tasks 30 times. The collected input parameters for each method-call were: the
number of transmitted bytes and the communication time. The Figure 4.31 evidences that the
3G connection spends much more energy then WiFi. Observing WiFi isolated, it is necessary
more energy in public cloud offloading then in private cloud offloading. However, in such scale

it is not easy to observe the difference when increasing the number of VMs.

10000000
1000000
100000

Sl dal

2 VMs 3VMs
Number of VMs

MCETE (m))
o O

OWiFi Cloudlet @ WiFi Public Cloud 3G Public Cloud

Figure 4.31: MCETE Comparison in Logarithmic Scale.

Figures 4.32a, 4.32b and 4.32c presents the isolated MCETE results for WiFi Cloudlet, WiFi
Public Cloud and 3G Public Cloud, respectively. In the three scenarios, the energy consumption
increases proportionaly to the number of VMs. Such an increment is due to the effort in dealing
with multiple results. When offloading to one VM, only one result is received by the mobile
device, but when offloading to N VMs, N results are received. In all three contexts, the difference
between one and two VMs are higher than two and three VMs. We believe that close to the
threshold of parallelism the difference between the number of VMs always decreases because it
has no linear behavior. In that case, after 3 VMs (4, 5, etc) the MCETE results will be constant.

These results may be used for planning MCC infrastructures. MCC-Adviser guides the
software engineer for deciding to change the code structure. For example, she may instead of
distributing for n VMs to distribute for X x n VMs. The energy consumption increases but the
total execution time tends to decrease as far as the number of VMs increases. Therefore, the

software engineer should balance both metrics, execution time and energy in their final decision.

78

2000

1800

HH

1600
1400

H

1200

MCETE (mJ)

1000 —
800
600
400
200

th

1VM 2VMs 3 VMs
Number of VMs

(a) WiFi Cloudlet

E 4000
(]
= 3000
2000
1000
0
1VM

5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000
0

MCETE (mJ)

2 VMs 3VMs
Number of VMs

(b) WiFi Public Cloud

1VM 2 VMs 3 VMs
Number of VMs
(¢) 3G Public Cloud

Figure 4.32: MCETE for WiFi and 3G

79

5 IMPROVING MCC OFFLOADING
PROCESS

This section presents a smart allocation strategy to perform tasks offloading for mobile ap-
plications. The approach have considered an innovative balanced infrastructure parameters

strategy.

5.1 PROPOSAL OVERVIEW

Figure 5.1 presents a work-flow describing this part of the contribution. The objective here is to
transfer the processing from mobile device to the cloud. The main activity is the offloading itself

but there are other activities, needed for achieving the proposed goal. Following, the activities

Application
Source-Code

are detailed.

[

’ 'o" """""""" S
! Choose the Most 1
Analyze th 1 >
Ap?)l¥c:t:or? i Efficient i
H Distribution '
Identifying D J
Sub-parts and
Partitioning
Application
Performance
Evaluation + Offload
'o" """""""" ~
: Collect H ~—
! Environment *
Define the :‘ Parameters ':
Partitioning Nemmm e —————— ‘ Performance
Strategy Evaluation

Performance
Report

---» Dataflow — Workflow __) Our Main Contributions

Ymm

-

Figure 5.1: MCC Offloading - An Overview

80

. Analyze the Application - Not all applications are suitable for using offloading. Only
those applications that demand a high level of processing may benefit from such a process.
Another aspect is related to dependence of specific resources (GPS for example). Part of
the application may not be offloaded since, at the cloud side, the tasks will not have all
required information. Therefore, it is necessary to cautiously analyze the application and

decide for applying offloading.

. Performance Evaluation (Before and After) - There are many factors that may influ-
ence the offloading process, such as network connection and cloud unavailability. It
is important to ensure that the application becomes more efficient by using the MCC
approach. Therefore, a performance evaluation is needed before and after the offloading
execution. The performance evaluation generates an evaluation report, summarizing

results.

. Define the Partitioning Granularity - According to (Liu et al., 2015), partition gran-
ularity refers to the portion of the application which represents one atomic unit. One
application can be offloaded without even any partition, in this case for example, the
atomic unit is the application as a whole. Some other partitioning granularities are class,
method, component, etc. In this work, the application is partitioned at method-level, but
is important to note that during the offloading execution both are transferred: method
instructions and input data. The performance results are directly dependent from the work-
load. In this work, image files are used as input data. Algorithms for image processing

require much processing.

. Identifying Sub-parts and Partitioning Application - Identifying the sub-parts of an
application depends on the partitioning granularity. The sub-parts in this work are method-
calls. This research have not focused on dynamic partition identification. The method-calls
are manually identified and partitioned. Using the example of face recognition, there is a
loop at the source code that performs the recognition for each human face in a photo. We

have instrumented the code inserting offloading instructions.

. Collect Environment Parameters - Aiming to offload the sub-parts of the application,
the MCC environment must be monitored. MCC environment refers to the current state of
the servers that process the offloading requests and the distance between mobile device
and the cloud. More specifically, two parameters are collected, RTT and current CPU
consumption level. This part is considered a relevant contribution because previous work
have not adopted both metrics together. Case studies following this strategy has shown a

better application performance.

81

6. Choose the Most Efficient Distribution - This work proposes an algorithm for tasks
distribution based on weighted parameters. The parameters (RTT and CPU) receives a
weigh, meaning that one is “more important" then the other for an specific application.
The objective of this research part was not to find the most optimized weight combination,
but proving that the weighs may influence the offloading performance. This is the first

time weighted parameters strategy is used in MCC, for the best of our knowledge.

7. Offload - Offloading includes to send, process and return the results to the mobile device.
In this work all servers are configured to receive offloading requests. Each server has a

copy of the application responsible for executing those offloaded method-calls.

5.2 AN SMART MCC OFFLOADING PROCESS

Although the hardware of mobile devices evolve rapidly, they will continue being more resource
poor than non-mobile hardware. Such fact occurs because, in the users point of view, the size,
weight, and battery life have higher priorities than enhancing computational power. This is not
just a temporary limitation of current technology but is intrinsic to mobility (Satyanarayanan
et al., 2009). MCC offloading in many situations can improve mobile devices performance. In
terms of computing target, the ideal scenario was proposed by Satyanarayanan et al. (2009),
with the concept of cloudlets. Cloudlets are nearby clouds (e.g: private cloud at an university)
accessed through a high speed WiFi connection. Cloudlets are resource constrained, then the
workload should be wisely partitioned and distributed.

The Round Robin algorithm is often used for that, as a simple-yet-effective method of
distributing requests to a single-point-of-entry to multiple servers in the background. There is
still a more sophisticated algorithm called Weighted Round Robin (WRR) (Nagle, 1988). In a
Weighted Round Robin algorithm the “weight" determines the cost for processing at each server.
The cost determines how many more (or fewer) requests are sent for each server; compared
to the other servers on the pool. Round Robin is one of the most known algorithms for tasks
distribution in MCC (Chen, 2015; Kosta and Aucinas, 2012; Chun et al., 2011a). There are also
some studies that have applied Weighted Round Robin with better results compared with the
traditional one (Lin et al., 2015; Abolfazli et al., 2015). Although WRR is considered more
accurate then RR, the WRR can be evolved.

This work proposes to evolve the Weighted Round Robin in MCC by assigning weights
for the metrics used to calculate the offloading costs. The approach is called Smart Weighted
Round Robin or just SmartRank. Figure 5.2 provides an overview of the proposed architecture.

The idea is to partition the application and offloading it to the cloudlet considering that the

82

target resources (Virtual Machines) have distinct configurations and states. Two parameters are
initially adopted and balanced afterwards: the current CPU load and latency (Round-Trip Time).
The result is a ranking with the respective offloading costs.

Regarding the cloudlet architecture, some decisions were necessary to guarantee that the
SmartRank algorithm could be implemented. Aiming to avoid mobile device intrusiveness we
propose the existence of an intermediary machine. This machine, named the Cloudlet Manager,

deals with the algorithm for cost calculation and possible needed additional computing.

Cloudlet

Cloudlet
Manager

RTT: 200 ms

. el el
E Offloading . : —— ' CPU Consumption: 5%
Cd L
. RTT: 300 ms <
Mobile : 02
Device ' ——— .
— CPU Consumption: 80% '
L = '
RTT: 400 ms bt .
Ranking m :

1 B 0 T T -
2°-VM 01 - Cost: 0.5
3°.VM 03 - Cost: 0.9

Figure 5.2: Virtual Machines Ranking - An Overview

In this work the number of method calls is directly proportional to the number of items
that compose the workload. As aforementioned, the proposed algorithm takes into account two

metrics, described following:

* CPU utilization (U): Measures the current machine’s CPU utilization percentage at a
specific period. In other words, if the VM has two or more CPU cores then the CPU
utilization will be the average use of these cores. The higher the CPU utilization the lower

the chances of allocating more requests to that particular VM.

* Round-Trip Time (RTT) (Dey et al., 2013): Returns the sum of two “sub-metrics": the
processing time on server-side and the Communication Time measured for only one face
recognition. Similarly to the other metric, the higher the RTT the less requests the VM

receives.

— Processing Time (PT): Represents the average time each VM type (large and small)
takes to perform the recognition process in average. To get this measure we have run

an experiment.

83

— Communication Time (7'T): This value is obtained dynamically for each execution
and represents the total time for a request to reach a VM and come back to the

requester (cloudlet manager) without any processing.

Aiming to balance the metrics, each one is associated with a weight. The metrics U and
RTT have the respective weights wU and wRTT, which summed up corresponds to the value 1.0.
These weights are used to balance the formula that calculates the offloading cost (Ct) for each
target machine. The measured metrics are normalized based on their amplitudes. The Min-max
normalization method was adopted (Chakrabarti et al., 2008). In this method, an attribute is
normalized by scaling its values so that they fall within a small specified range: 0.0 to 1.0.
Min-max normalization performs a linear transformation of the original data. Suppose that ming
and max, are the minimum and maximum values of an attribute A. Min-max normalization

maps a value v to V' in the new range [min);, max,|. The general corresponding formula
V—ming
max, —ming

Ct = (WU x NormU) + (WRTT x NormRTT))).

Figure 5.3 illustrates how the three macro components (Mobile Device, Cloudlet Manager

for normalization is depicted in Equation v/ = and the cost formula in Equation

and Cloudlet) interact with each other. The objective with Figure 5.3 is to highlight where the
Smartrank algorithm interact with the offloading platform. For sake of clarity, as an example,
lets consider the face detection/recognition mobile application used by many MCC research
papers (Soyata et al., 2012; Chen et al., 2015; Jain et al., 2011; Luo and Liu, 2010). There are

seven steps from sending a photo to the Cloudlet and receiving the result.

Cloudlet

Cloudlet Manager

Capture Status 01

Thread 01) | ¢ :
N Offloads 1 Task

Capture Status 02

.

.

.

Mobile result

Device

Figure 5.3: Offloading Steps Using Smart Ranking Approach.

E Offloading !
_—>
«—

Threads
Manager

3

W

: SmartRank:
: Algorithm :

.

. . .-« Thread 02

Resource i W
Decision .
Status l st T Y P
. (Thread 03) |
' N

'
'
'

rd

Offloads 4 Tasks

Capture Status 03

rd

Offloads 3 Tasks

Capture Status 04

Thread 04) |

Offloads 6 Tasks

£.1Ye .1

E.‘M

84

1. Sending Photo to the Cloudlet: first the user takes a picture of a group of people and

sends it to the cloudlet manager;

2. Input Partitioning (Faces Detection): the Threads Manager performs the faces detection

and cropping;

3. Computing Optimized Distribution: the Threads Manager applies the SmartRank algo-
rithm for calculating the best distribution of tasks (faces). In case of Round Robin Strategy

such costs are equal;

4. Creating Threads: the Threads Manager sub-module creates a set of threads according
with the number of available VMs and configure the number of tasks each one will

transmit.

5. Transmitting Tasks to VM Targets: in this step the Cloudlet Manager effectively sends
the packages of faces to the respective VMs;

6. Face Recognition: thereupon, the VMs execute the face recognition itself;

7. Return Result to Cloudlet Manager: when the recognition process has finished, the

result is returned to Cloudlet Manager mobile device;

8. Return Result to Device: then, the result is returned to the mobile device.

. 1-Ct
The Equation NT,,,, = round (ZKI—‘C’”;
N=1 1 —ClvmN

receive. Let the VM costs be Ct,,,,1,Ctyy2, Ctos, Ctyma, -, Ctymi. The Number of Tasks that a
VM will process (NT,,,) is obtained by the product of its cost percentage and the Total Number

X TNT) calculates how many tasks each VM will

of Tasks to process (TNT). We use 1 — Ct,,, because the lower the cost, the more tasks that
particular VM will process. Therefore, the tasks are proportionally distributed among the VMs
considering the NT,,,, parameter. In other words, taking the face recognition as example, the
machine with high cost will recognize less faces and that ones with lower cost will process more
faces.

Based on these three Equations (5.2, 5.2 and 5.2) the SmartRank Algorithm was designed,
and presented in Listing 1. Aiming to better present the algorithm, the code is divided into
four procedures: smartRanking (the main procedure that calls the other auxiliary procedures),
calculateMinMax (used to normalize the profiled metrics), calculatelndividualCosts (computes
the costs per VMs), and calculateNumberOfTasksPerVM (finally it calculates the number of
tasks each VM will receive). There is an entity in such a system that represents the VM and

compose the variable listOfVMs. Such an entity could be expressed in many ways depending the

85

programming language — as a class (in Java) or an struct (in C) for example. The important
aspect is that a VM owns six atributes that are filed through these four procedures: cost, normU,
normRTT, currentU, currentRTT, nubmerOflasks. After executing smartRanking, every VM
entity is configured with the corresponding number that they should offload. Next, the Cloudlet
Manager just instantiates the threads and associates each VM entity.

Table 5.1 illustrates an example with real values extracted from an initial experiment, using
4 VMs and 14 faces. It is important to stress that the weights at the bottom of the table were just

an example, and Section 5.4.5 shows what is the most effective balance for such weights.

Table 5.1: Example of costs calculation using 4 VMs and 14 faces.

Vm_Code U PT TT RTT Cost | NT,,,
ml.m_a 69 21574,4 2345| 239194 | 0915 1
ml.m_b 12 215744 444 | 220184 | 0,330 4
ml.l a 80 18551,0 182 18733 0,600 3
ml.l b 2 18551,0 700 19251 0,040 6
Metric Wgt.| CostSum: 2,11
8] 0,6 TNF: 14
RTT 0,4

5.3 THE SMARTRANK PROTOTYPE IN JAVA

SmartRank algorithm (see Listing 1) was is implemented in Java language using the face
recognition application as a benchmark. Intending to simplify the explanation we present a
code version using pseudocode in Algorithm 5.1. The OpenCV (OpenCV, 2015) was used as an
auxiliary library for processing the photos at the cloud side. OpenCV is an open source computer
vision library with a strong focus on real-time applications. In our scenario, the OpenCV must
be installed inside each VM and the databases’ images must be replicated among them. As
our focus is not improving the actual face recognition algorithm, we have adopted the wrapper
JavaCV (JavaCV, 2015) to access the OpenCV, due to its expressive number of adapters.

The communication between mobile devices and the cloudlet-manager is implemented using
sockets. We have chosen synchronous strategy because we judge real-time communication as
more important than any other requirements. For the same reason, the messages are exchanged
between cloudlet-manager and cloudlets with a synchronous remote procedure call (RPC)
channel. There are many attractive aspects of RPC. One is clean and simple semantics: these
should make it easier to build distributed computations, and to get them right. Another is

efficiency: procedure calls are simple enough for the communication to be quite fast. A third is

86

Algorithm 1 SmartRank Algorithm

e e e e
YRR LY 2O

AR R A B LW W LW W L LWL LW WRNNNININININNDN
Sl T A A e AN ANl Sl e h B A A S S

e A A ey

e
2

Global Variables:

wU < 10 // For Example

WRTT <+ 90 // For Example

TYPE_RTT < “RTT”

TYPE_U < “U”

maxRTT < 0 minRTT < 0 maxU <+ 0 minU <+ 0

procedure SMARTRANKING(listO fVMs, totalTasksNumber)
CALCULATEMINMAX(listOfVMs, minRTT, maxRTT, TYPE_RTT)
CALCULATEMINMAX(ListO fVMs, minU, maxU, TY PE_U)
CALCULATEINDIVIDUALCOSTS(listO fV M)
CALCULATENUMBEROFTASKSPERVM(listO fVMs, total TasksNumber)

: end procedure
: procedure CALCULATEMINMAX(listOfV Ms, min, max, metricType)

auxValue <+ O min < Double MAX VALUE max < Double. MIN VALUE
for vm < each(listOfVMs) do
if metricType == TYPE_RTT then
auxValue < vm.currentRTT
else
auxValue < vm.currentU
end if
if auxValue < min then
min < auxValue
end if
if auxValue > max then
max <— auxValue
end if
end for

: end procedure
: procedure CALCULATEINDIVIDUALCOSTS(listOfV Ms)

for vm < each(listOfVMs) do
vin.normRTT <« (vm.currentRTT — minRTT) <+ (maxRTT — minRTT)
vm.normU <— (vm.currentU — minU) = (maxU — minU)
vm.cost < (WU x vm.normU) + (WRTT x vm.normRTT)

end for

: end procedure
: procedure CALCULATENUMBEROFTASKSPERVM(listO fV Ms)

sumO fCosts < 0
for vin < each(listOfVMs) do
sumO fCosts < sumOfCosts+ (1 —vm.cost)
end for
for vm < each(listOfVMs) do
vm.numberO fTasks <— ((1 —vm.cost) +sumO fCosts) +total TasksNumber
end for

: end procedure

1
2

87

generality: in single machine computations, procedures are often the most important mechanism
for communication between parts of the algorithm (Birrell and Nelson, 1984).

The SmartRank prototype have three components: SmartRank-Client, SmartRank-Cloudlet-
Manager and SmartRank-Server. The SmartRank-Client is a Android application and the other
two are traditional Java projects. The tool may be downloaded accessing the web-page containing

all necessary information to install it: http://cin.ufpe.br/~faps/smartrank

5.4 CASE STUDIES

The partitioning granularity, at first, could be any of those presented at the Background Section
(2.2.3), because the algorithm simply considers a bunch of tasks. However, in MCC, Method
Call Partitioning is one of the most intuitive approaches, because mobile applications are
inherently organized in methods (Chun et al., 2011b). Besides, method calls can bring high
granularity as long as the methods are uncoupled. There are cases in which the computing
processing concentrates under an unique method repeatedly executed. One example is the
mobile application for face recognition. As presented in Section 2.4, face recognition is the most
adopted application as benchmark in MCC. The number possible parallel tasks will depend on

the number of faces to be recognized. Listing 5.1 presents the respective source code in Java.

public class FaceRecognitionService {
public List<RecognitionResult> recognizeFaces (String dirWithTrainedFaces, String
photoToRecognize) {
List<RecognitionResult> results = new ArrayList<RecognitionResult >();
List<String > pathForFaces = DetectionService.detectAll (photoToRecognize) ;

for (String pathForFace: pathForFaces) {
results .add(recognizeOneFace (dirWithTrainedFaces , pathForFace));

}

return results;

public static RecognitionResult recognizeOneFace(String dirWithTrainedFaces , String
pathForFace) {

EigenFaceCreator creator = new EigenFaceCreator();

creator .readFaceBundles (dirWithTrainedFaces) ;

String result = creator.checkAgainst(pathForFace);

String strResult = "Most closily reseambling: " +result+
" with "+creator .DISTANCE+" distance";

return new RecognitionResult(strResult);

Code 5.1: Face Recognition Application Source Code.

http://cin.ufpe.br/~faps/smartrank

88

The method recognizeFaces receives a photo with a set of faces. Its first method call,
detectAll, detects and separates the faces. Next, each face passes by the recognition process.
Therefore, the method call recognizeOneFace, in the for loop, will be executed the number of
detected faces. The parallelization can be done by executing the group of recognizeOneFace
method calls in multiple resource targets.

In this section we present a proof of concept using the face recognition application. The
mobile device is a thin client that sends a photo to the Cloudlet (with multiple faces) and receives
the recognition result.

5.4.1 Case Study One: Local Execution

Parallel execution can be exploited much more efficiently on the cloud than on a smartphone,
either using multiprocessor support or splitting the work among multiple VMs. Algorithms
that deal with large amounts of data may benefit from parallel execution. Face recognition, for
instance, requires comparison of a particular face with a large database of pre-analyzed faces
Kosta and Aucinas (2012). Since these types of applications handle a large data load, they are
limited to completely run on a mobile device. In other words, not every workload is supported
by standalone execution. In order to know what is the maximum load that a mobile device
supports, it may be useful to guide new proposals of tools for partitioning and offloading. We
performed a stress test to characterize the behaviour regarding the resource consumption of a
recognition application running entirely on a mobile device to check its maximum power of
execution. We tested the recognition of one face while using different databases containing 50,
100, 200, and 400 faces. At the end, we observed that the application could load and process the
databases of 50, 100, and 200 faces but not the one of 400 faces, for as much as the application
stops. We profiled memory, energy consumption and CPU in order for us to verify reasons for

such a limitation.

5.4.2 Memory Profiling

The use of heap memory was profiled by instrumenting the application code (written in Java
language). The library java.lang.Runtime was used, since it could provide information such as
total memory and free space, which allowed us to obtain the percentage of memory used by
application. Figure 3 illustrates that the memory traces were very similar among four database
sizes (50, 100, 200, and 400). The most different behaviour was noticed on database size 400,
inasmuch as application stopped working around the second 35 and memory did not reach a

peak as had occurred to the other database sizes. The peak of memory had been reached when

89

database was loaded into memory in order to perform the recognition. The peaks with databases
50, 100, and 200 are close one to each other (about 1% of difference). Therefore, for database
400, the peak memory consumption would likely be around 77% if the application had not
stopped, which was still relatively far from 100% limit. Memory exhaustion was not the cause

for the application stop.

Database
—@®— 50 Faces
—®— 100 Faces
/ 200 Faces
—& - 400 Faces

~

&
1
|

~
o
!

=)}
a
1

=)}
=}
!

(%)
a
1

%)
o

A A-AAAAALAAAAAAAALAA
The app
crashed here.

|

Used Memory (%)

0 5 10 15 20 25 30 35 40
Time (s)

Figure 5.4: Memory Profiling.

5.4.3 Energy Profiling

Figure 5.5 shows the trace of energy consumption, measured with PowerTutor. The behavior
of energy traces were also very similar among the database sizes 50, 100, and 200. The
consumption level had a mild decrease as database size increased. This fact happened because
Android devices are usually battery-powered; Android was designed to manage memory (RAM)
to keep power consumption at a minimum. For example, when an Android app is no longer
in use, the system will automatically suspend it in memory - while the app is still technically
“open". Suspended apps consume no resources and sit idly in background until they are needed
again. This has the double benefit of increasing general responsiveness of Android devices,
since applications do not need to be closed and reopened from scratch each time, and also
ensuring background applications do not consume power needlessly. Hence, Android limited
the power consumption of face recognition app because memory usage kept constant until actual
recognition point. The consumption fell immediately after recognition process was over. It was
impossible to register consumption for the base of 400 faces, because PowerTutor application
stopped working around the middle of the process. However, even at the databases loading—just

before the app completes— the energy consumption had only a small increase.

90

0.6

0.5

Database
—@— 50 faces
—m— 100 faces

200 faces

0.4 \

Used Energy (J/s)

0.2

0 5 10 15 20 25
Time (s)

Figure 5.5: Energy Profiling.

5.4.4 CPU Profiling

The “proc" file system acts as an interface to internal data structures in the kernel of operating
system. It can be used to obtain information about processes and other components of the
system. The “/proc/stat” entry reads the Total CPU utilization of mobile phones when executing
our recognition application. Figure 5.6 shows CPU utilization increases as the database size
gets larger. Each execution obeys a similar growth pattern, and afterwards, there is a drop of
utilization just before application completion. This fall was not observed in the performance of
400 faces database because the application stopped when CPU reached the level of 98%. Once
profiling showed memory did not get close maximum level, we conclude the crash occurred due
to the CPU stress. This result indicates it is advisable to focus on optimizing CPU utilization
rather than memory usage in such applications. This limitation in terms of hardware capacity
motivates the use of cloud infrastructure to run this workload excess. In order to decide using
or not cloud computing for this purpose, we can first evaluate the benefits of offloading it to a

single server machine.

Used CPU (%)

100

804

60 A

40

204

A
A
a

AN
fxy e i

, The app

/::/ \\ crashed here.
L]

0

5 10 15 20 25 30 35 40
Time (s)

Figure 5.6: CPU Profiling.

Database
—&— 50 faces
—m— 100 faces

200 faces
—& - 400 faces

91

5.4.5 Case Study Two: Round Robin Strategy

The round-robin experiment was assembled using Eucalyptus platform, comprising three physi-
cal machines. One machine was configured as the front-end, running the CLC, CC, SC, and
Walrus. The two remaining ones ran the node controllers (NC). They executed the Linux CentOS
6 operating system and Eucalyptus platform 3.4.0.1. We used a 10/100 Mbps Ethernet network
to connect the PCs through a single switch. The “m1l.large” VM type was adopted with 2
CPUs (dual-core), 512 MB RAM, and 10 GB Hard Disk. As it is illustrated in Figure 5.3, we
instantiated one, two, three, and four VMs. We used a database of 50 pictures, replicated among
the VMs. The load balancer round-robin policy was employed to receive and redistribute one
picture containing 4 equal faces. We repeated this experiment 30 times for one, two, three, and
four VMs. For a closer view, the analysis is divided into two parts. First, the results for the
offloading process are observed as a whole; and next, the individual steps are considered.

Analyzing the Offloading Process as a Whole

Figures 5.7 and 5.8 depict results for total energy consumption and total elapsed time,
respectively. In general, results decreased for both energy and elapsed time as we increased the
number of VMs. Comparing energy consumption using one and four VMs, there was a decrease
of 44.69%, whereas elapsed time was reduced in 55.68%. This fact occurred because, by using
round robin strategy, each face was recognized on a different machine. That was the preferable

scenario to get the most from parallelism, since all four VMs have the same configuration.

0.7

06 -

Avg. Energy (J)
o o o o
R FYRR S}

ol
=

L]

: | 2 3 4

Number of Virtual Machines

Figure 5.7: Energy saving through parallel remote execution.

By observing the graphs it can be noted that the energy consumption and elapsed time were
very similar considering two and three machines. Such similarity can be explained by the round
robin faces distribution. As illustrated by Figure 5.9, with two machines, each of which received

two faces. For three machines one received two faces and the other two machines received one.

92

8000
7000
6000 !
5000
4000
3000
2000

Aug. Elapesed Time [ms)

1000

1 2 3 4
Number of Virtual Machines

Figure 5.8: Elapsed time taken through parallel remote execution.

Since the execution was in parallel, the total “processing effort" would be approximately for that

machine that took longer, it is, the server running the recognition of two faces.

2 VMs 3 VMs
ProceSSing... _____
Effort) ! ! “ . ’H

Figure 5.9: Offloading for 2 or 3 VMs.

Analyzing the Offloading Process by Steps

The offloading process is divided into four steps or types of efforts: detection, recognition,
latency and others. Detection and recognition are considered primary actions. Latency and
“others" are considered secondary actions. Latency represents the effort taken with communica-
tion between device and the target servers. “Others" are related to processing performed by the
offloading agent. Such an offloading agent is the mechanism that creates and manages threads.
These threads are responsible for sending and receiving offloading tasks. Figures 5.10 and 5.11
present the offloading process by steps. Figure 5.10 shows the proportion of average time for
each step; and Figure 5.11 evidences the average time considering the distinct number of VMs.

Figure 5.10 evidences that the recognition step takes almost all the total elapsed time, about
80%. The recognition takes so long because each face is searched inside the database. The
detection task (7%) does not takes long because the computation using Haar Classifiers Viola

and Jones (2004) are very optimized. Latency (11%) is a critical constraint in MCC but in this

93

context, using a nearby Cloudlet, the latency is not the botleneck. “Other" processing tasks are

insignificant (2%) when compared to the previous actions.

Average Time

Latency
11%
Recognition
80% Others
2%
Detection
7%

Figure 5.10: Average Time For Each Step at the Offloading Process.

Considering Figure 5.11, lets observe each step. In Figure 5.11a, the recognition time
decreases as many VMs are included since the recognition is paralelized. In Figure 5.11b, the
latency decreases as many VMs are included because the transmitted bytes are distributed among
the VM targets. In Figure 5.11c, the time taken to manage threads increases as many VMs are
included, however, increasing in a very low pace. Therefore, increasing for much many VMs
will not impact much at the total elapsed time. In Figure 5.11d, by focusing on the scale the
detection do not vary much (293~298ms) because the processing effort is always the same:

detecting 4 faces.

5.4.6 Case Study Three: Smart WRR Strategy

Flores (Flores and Srirama, 2013) claims that the offloading is not a local decision process
that happens just within the device, it involves a global understanding of the infrastructure.
According to Tianyi et. al (Xing et al., 2012), scheduling schemes for mobile cloud must
consider multiple parameters such as computation and connectivity resources since the cloud
environments are heterogeneous. We presented that the use of cloudlet federation decreased the
mean response time around 48% considering the round-robin scheduling strategy. However,
such strategy do not take into account the different VMs’ capabilities and latencies. For this
reason something more sophisticated is needed. Thus, in this work we apply the Weighted
Round-Robin (WRR) strategy that we call an smart strategy (Nagle, 1988).

This way, as aforementioned, SmartRank performs face detection and recognition through
distribution of tasks among servers based on RTT and CPU utilization to make better use of

heterogeneous infrastructures. Thus, we assign weights to these metrics because we suppose that

94

6000.00 900
800

700
& 4000.00 - 600

£ 3
o 3000.00 < 500
£ g 400
F 2000.00 = 300
1000.00 200
100
0.00 o

1 2 3 4 1 2 3 4

Number of Virtual Machines

5000.00

Number of Virtual Machines

(a) Recognition (b) Latency

100 299.00
298.00
80 297.00
Z 0 7 296.00
- S 295.00
E a0 E 204.00

% 293.00 ﬂ ﬂ
292.00
0 291.00

1 2 3 4 1 2 3 4
Number of Virtual Machines Number of Virtual Machines
(¢) Others (d) Detection

Figure 5.11: Probability Analysis of Applications A, B and C.

depending on the scenario one metric can influence more the response time than the other. This
aspect motivates in this context the following question: There is a calibration of weights that
results in the lowest mean response time, executing in different scenarios in which the VMs have
distinct initial CPU utilization levels? This section will present an study that aims to answer
such a question.

The environment was assembled with one cloudlet comprising three machines with the
same hardware configuration: Intel Core 17-3770 3.4 GHz CPU, 4 GB of RAM DDR3, 500 GB
SATA HD. One machine is configured as the front-end, running the CLC, CC, SC, and Walrus.
The remaining two run the node controllers (NC). They execute the Linux CentOS 6 operating
system and Eucalyptus platform 3.4.0.1. We use a 10/100 Mbps Ethernet network to connect the
PCs through a single switch.

Two VM types were adopted: m1.medium (1 CPU, 512MB Mem., and 10GB Disk) and
ml.large (2 CPUs, 512MB Mem., and 10GB Disk). As depicted in Figure 5.3, we simulate
two cloudlets with four VMs (2 m1.medium and 2 m1.large). To narrow the scope, the mobile
device is only responsible for sending raw images to the cloudlet-manager and this process is not
repeated during the experiments. Constant mobile transfer time is added in every experiment.

Before the calibration process we had to estimate the metric processing time (PT), referring
to the time for a VM to perform recognition without considering Communication Time. RTT is

composed of Communication Time (TT) that is dynamically obtained and the processing time

95

(PT) that is an estimation resulted from an experiment described in this section. Hence, in the
case of TT metric, for each scheduling execution a simple request is spread for all VMs and then
their response times are recorded. In the case of PT metric we shall not do the same because it
could significantly decrease the scheduling performance, so such metric is obtained as a mean
value through experiment.

We registered the PT mean for one VM instance of type ml.medium and other of type
ml.large. They received a specific workload 80 times composed of one picture with 17 faces.
The VM of type ml.large obtained a lower PT mean (18551 ms) than the m/.medium (21575
ms). This result was expected due to its different computational power (ml.medium has 1 CPU
core and ml.large has 2 CPU cores).

To use these PT mean values only makes sense if the two samples are statistically different,
otherwise the type of VM would not influence the desired response time. So, aiming to ensure
that these means could be used as a relevant metric for ranking, we again applied the t-test to
verify whether these means were statistically different. Considering 95% of confidence, we
assume the normality of both samples (p-values equal to 0.735 and 0.300). The t-test showed
that there is a significant difference between them: VM type m1.medium (M=21575, SD=32.26)
and VM type ml.large (M=18551, SD=27.10); T(153)=642.02, p=0.000. Figure 5.12 depicts a

box-plot illustrating the samples distance.

Baxplot of m1.medium; ml.large

22000
21500
21000
20500
20000 -

PT (ms)

19500
19000
18500

mI.médFum ml.i;':lrge

Figure 5.12: Box-Plot graph to illustrate the distance between the samples.

Algorithm Calibration

Aiming to find the calibration of weights that results in the lowest mean response time we
arranged different scenarios where the initial CPU utilization of four VMs (2 m1.large and 2
ml.small) are different. We performed experiments using the “real" RTT as a dependent variable.

It is important to stress that we refer two types of RTTs. The first is used by the scheduling

96

algorithm, including the pre-calculated PT values and instant TT. The second is the “real" RTT,
recorded in our experiments. Table 5.2 shows the factors and their respective levels. We have
chosen the weight balance as a factor because we want to find the weight balance that results in
the lowest RTT. The second factor is the initial CPU utilization level because depending on the

level of this metric a VM should not receive more requests.

Table 5.2: Factors and the parameters chosen as relevant.

Factors | Wgt. Balance (%) Initial CPU Utl. (%)
20R80U m.a:10,m.b:20,1.a:30,1.b:40

Levels 80R20U m.a:40,m.b:30,1.a:20,1.b:10
S0R50U m.a:10,m.b:10,1.a:20,1.b:20

In the case of weight balance factor we have chosen three calibrations, considering RTT
(acronym 'R’) and CPU utilization (acronym ’U’). First, giving more importance for U (with
20% for R and 80% for U). Second, giving more importance for R (with 80% for R and 20% for
U). Third, considering them equally important (with 50% for R and 50% for U). We have tried
others values, however the above 80 and below 20 the difference was inexpressive.

We have simulated the initial CPU Utl. level using the LookBusy' tool that generate fixed and
pre-configured loads on CPUs. The acronym m.a means m1.medium.a, m.b means m1.medium.b,
l.a means m1.
large.a and 1.b means m1.large.b. The letters “a” and “b” are used only to identify the two VMs
of each distinct type. We configured three scenarios setting arbitrary CPU utilization levels for
the four VMs varying the load from 10 to 40 percent. The acronyms presented in Table 5.2 will
be used it the remainder of the chapter.

As the experiments were executed on the same network, we did not consider Communication
Time as a factor, setting a fixed value equals to 3, a value previously observed in the previous
executions. To capture the real RTTs, we just instrumented the source code before and after the
process in the cloudlet-manager, registering the difference in milliseconds in a text log. For each
sequence of execution, the VMs were cleaned (processes stopped) and the text logs were also
recreated.

We have adopted the statistical method factorial Design of Experiments (DOE) (Montgomery
and Montgomery, 1984), as we have two factors to obtain the desired measures, and our intent is
to study the impact of each factor on those measures to finally extract the best weights balance.
Considering the two factors (weight balance and initial CPU utilization), and three levels for each

one of them, there are nine experiments to run, which are described in Table 5.3, presenting the

"hPT://www.devin.com/lookbusy/

97

real RTT mean and respective standard deviations (SD). In order to get results in an acceptable
confidence level, we decided to use a photo with 15 faces and run 35 replicas for each executions,

yielding a total of 315 experiments.

Table 5.3: Results of each treatment of the experiment.

Initial CPU utilization Wegt. B. RTT M. SD

m.a:10,m.b:10,1.a:20,1.b:20 20R80U 988.14 31.22
m.a:10,m.b:10,1.a:20,1.b:20 80R20U 1045.06 43.73
m.a:10,m.b:10,1.a:20,1.b:20 50R50U 1022.86 153.56
m.a:10,m.b:20,1.a:30,1.b:40 20R80U 1078.69 98.68
m.a:10,m.b:20,1.a:30,1.b:40 80R20U 1194.71 233.05
m.a:10,m.b:20,1.a:30,1.b:40 50R50U 1163.63 174.48
m.a:40,m.b:30,1.a:20,1.b: 10 20R80U 1018.06 51.27

m.a:40,m.b:30,1.a:20,1.b:10 80R20U 1162.94 270.51
m.a:40,m.b:30,1.a:20,1.b:10 50R50U 1111.00 140.47

The effect and relevance of each factor and their interactions were computed by using
the results of the real RTT time, shown in Table 5.3 applying the method factorial Design of
Experiments (DOE). Table 5.4 introduces the respective estimated effects.

Table 5.4: Estimated effects and relevances for the RTT mean time.

Factor Effect T Relev. P
weight_balance 110.93 4.24 61% 0.000
initial_U -65.73 | -2.51 36% 0.013
weight_balance*initial_U -5.1 -0.19 2% 0.846

The results in Table 5.4 showed that the factor with the greatest impact is weight balance
(weight_balance), generating an effect with a relevance of 61% (p=0.000, as it is lower than
0.05, it is significant). It means that a variation in such a balancing may increase or decrease
the resulting response time over the face recognition. The initial CPU utilization (initial_U)
also influences the real RTT, but only by 36% (p=0.013). The interaction between both factors
resulted in a p-value=0.846, indicating absence of mutual influence. Thus, we analyse the effect
of factors on an individual level.

The Pareto chart (see Figure 5.13) depicts the importance of an effect by its absolute value,
drawing a reference vertical line on the chart. The more the effect extends this line the more it
influences the dependent variable (that is the RTT in our study). The line indicates the minimum
magnitude of statistically significant effects, using the criterion of statistical significance o =

0.05. Figure 5.13 presents a Pareto Chart in which can be observed the significant influence

98

of weight factor (weight_balance) compared with the initial CPU utilization of VMs before

sending faces for recognition (initial_U). The graph also shows the little interaction between the

factors (term AB), without statistical significance.

Pareto Chart of the Standardized Effects
(response is RTT, Alpha = 0.05)
1.978

Term (Factor)
m

0 1

2 3 4

Standardized Effect

Factor
A
B

Name
weight_balance
initial_U

Figure 5.13: Pareto Chart representing the effects of each factor. The red line represents
the minimum magnitude of statistically significant effects.

The effect of one factor may depend on the level of the another factor, resulting in the so

called factors interaction. This phenomenon may be evidenced when plotting each level of a

factor and keeping the level of a second factor constant. Thus, it compares the relative strength

of the effects across factors observing the existence of a pattern, if noted, this pattern means that

there is no interaction. For such intent we use a bar plot (Figure 5.14) looking for a pattern on the

factor initial CPU utilization (initial_U) whereas keeping the weight balance (weight_balance)

constant. By the figure we can reinforce that there is no interaction between the factors, since

for each weight balance level the RTT increases proportionally to the initial CPU utilization.

1200.00 — =T
1000.00 |
- 800.00
E
= 600.00
[+
400.00
200.00
0.00
U1 vz U3
weight_balance initial _U
M 20R80U Ul: m.2;:10,m.h:10,1.2:20,l.b:20
Il 50R50U U2: m.a:40,m.b:30,1.a:20,1.b:10
CI1BOR20U WU3:m.a:10,m.b:20,1.a:30,1.b:40

Figure 5.14: Bar plot with the level of relationship between the factors.

99

Since the interaction between the factors is not significant we can treat the factors individually.
Figure 5.15 presents the average result for each one of the factors and then we can make some
conclusions about the factor levels (from left to right side). First, as observed in the last plot
shown in Figure 5.14, the different weight balances present distinct results. The best performance
was when using the balance of 20% for RTT and 80% for CPU utilization metric, it obtained
a 5.5% faster result comparing to the average of the three real RTTs. It can be explained by
the invariance of the RTT, as the PT is a fixed number and the Communication Time is equal
for all VMs in our experiments. In the right side of the graph, the factor initial CPU utilization
(initial_U) resulted in a higher real RTT mean when the values were in a high level, that is, when
the VM owned an expressive initial workload. Thus, when the VMs were with this level of CPU
utilization “m.a:10,m.b:20,l.a:30,1.b:40", the performance was the worst because the instance

types “ml.large" were running more busy, with 30% and 40% of the CPU utilization.

1150.00 —

< 1100.00 S |-
£
105000
o
1000.00 I
950,00
Wil W

2 W3 Ul uz u3

weight_balance initial_U
W1: 20R80U Ul: m.a:10,m.b:10,1.2:20,.b:20

W2: 50R50U U2: m.a:40,m.b:30,1.2:20,1.b:10
W3: BOR20U U3: m.a:10,m.b:20,1.a:30,1.b:40

Figure 5.15: Bar plot showing the relative effects of each level.

Thus, we conclude that the weight balance “20R80U" will result in the best face recognition
performance under some assumptions: assuming that all cloudlets are near from each other
(similar Communication Time); the pool of resources is divided into two groups of VM types
(medium and large); and the VMs’ CPU utilization do not exceed 40%. This scenario is plausible
because our proposal aims to have a federation on cloudlets near the client and close to each
other. The RTT can be decreased if more resources are included. SmartRank can redirect the
requests every time the cloudlets federation is overloaded, however this is not covered in this

research.

100

6 CONCLUSIONS AND FUTURE WORK

This PhD research achieved a number of results in the areas that it has explored so far. The major
contributions are the new insights of how to save energy and time of MCC applications. We be-
lieve that smart offloading allocation algorithms and system modeling have provided meaningful
success, despite these mechanisms may still evolve and conquer further improvements.

First, this research introduced the results of a systematic mapping study about benchmark
applications used in mobile cloud computing by investigating scientific literature production.
Given the current state of MCC research, we judge that there are few studies with controlled
experiments using real applications. We believe that this mapping study generated state-of-the-
art information about the main issues because the studied subject can be understood through
the provided answers. In future work, more systematic mappings should be conducted to
acquire further experience to aid new experiments. This part of the thesis was published in one
Symposium (Silva et al., 2015a) and one journal (Silva et al., 2016a).

This research introduces a modeling approach to represent code dependency of mobile
applications using Stochastic Petri Nets (SPNs). The approach provides graphs depicting
Throughput, Mean Time to Execute, Mean Consumed Energy to Execute, and Cumulative
Distribution Functions (CDFs). A tool called MCC-Adviser was proposed and evaluated using
a private cloud. Such a tool aims at assisting software engineers to plan their mobile cloud
infrastructure with very little effort. To the best of our knowledge, this is the first work to use
SPN in the field of MCC with automatic nature. One version of MCC-Adviser is delivered in a
public web application through the URL: http://cin.ufpe.br/~faps/mcc-adv/. This work can also
be used in conjunction with other techniques to increase mobile cloud performance. This part
of the thesis was published by one conference (Silva et al., 2015b) and have two other journal
papers in revision.

In 2013 Amazon launched the first virtual machines with GPU support. Two years later, we
are still stuck with the same instances. No other public cloud company provides these type of
machines yet, due to technological difficulties and high costs, in our opinion. Mobile devices

have been broadly using cloud computing to increase applications performance. Following the

101

successful trend of mobile application offloading towards powerful servers, we believe that in
the very near future mobile GPU offloading will be a reality. This work presented an approach
to represent GPU parallel processes with Stochastic Petri Nets. Using such a representation we
implemented a tool, called MCC-Adviser, that can simulate GPU executions and plot cumulative
distribution functions in a highly flexible way. Using the MCC-Adviser, we plot the probabilities
of satisfying user requirements when using GPUs with different number of cores. We found
that user can reduce her costs by opting for a less powerful GPU virtual machine, while still
satisfying application’s requirements in terms of execution time.

Other original contribution in this work is a partitioning and offloading technique that
distributes tasks of mobile applications to the cloud. The approach intends to minimize response
time of mobile applications by using cloud computing with heterogeneous communication
latencies and compute power. We evaluated the smart approach by experimenting face detection
and recognition algorithms on Android devices. To the best of our knowledge, this is the first
work showing such a strategy, comprising private cloud and the weighted metrics approach.
The proposed tool, SmartRank, integrates mobile devices (e.g: smartphones), the cloudlet
manager, and cloudlets. This work focused on describing the strategy and a sensitivity analysis of
SmartRank to find suitable parameters that would result in good results considering response time.
The experiments evidenced that: the use of cloudlets federation is feasible for face recognition,
since maximization of cloudlet capabilities improved the response time of recognition process by
48%, that is, instead of one resource, multiple machines can solve faster a recognition task; and
it was possible to find a calibration for the metrics CPU utilization and RTT based on weights, a
functionality not applied so far in our known literature. This part of the thesis was published by
one conference (Silva et al., 2015¢c) and two journals (Silva et al., 2015d) (Silva et al., 2016b).

Finally, this research has provided one more step in the maturation of MCC, but mobility

will continue being a hard research challenge.

6.1 FUTURE WORK

Following, we list some possible future work:

» Using Stochastic Models for Predicting MCC Costs: This work has adopted only
private clouds during the experiments. We envision the future of MCC taking advance of
public clouds and modeling for considering financial aspects. This work presented a way
of predicting how much time an application could spend by offloading tasks. Public clouds

usually charge their customers based on how long time their VMs were used. Therefore,

102

using these two information (price and predicted time) it could be possible to calculate

the costs for public cloud offloading.

Energy Profiling at Source-Code Line Level: The energy profiling mechanism proposed
in this work was evolved from PowerTutor application. This application is not precise
and more appropriate only for Google phones. Besides, today, there is no application
capable of profiling energy spending at source-code line level. This possibility could
enable programmers evaluating their new applications aiming at extending the mobile

device autonomy.

Finding the Most Efficient Weigh Balance in SmartRank Strategy: This research
has shown that setting weighs for balanced metrics could increase performance during
offloading execution. However, this work did not present the combination of weights that
could achieve the optimal result. Artificial neural network could be applied aiming to

solve that problem.

Extending the Stochastic Models with Other Metrics: The SPN models representing
method-calls could be extended to study dependability, including availability and relia-
bility. Although the related work presented some studies exploring these metrics, their

models did not observed the application at source code level.

Explore MCC Offloading with Wearable Devices : Internet of Things is a hot topic
today. Although in this work we mention mobile devices in general, in practice we only
focused on smartphones. Wearable devices, such as smart swatches, are even more limited
compared with mobile devices. Both approaches/tools of this work (SmartRank and

MCC-Adviser) could be applied using applications that runs under these gadgets.

103

7 REFERENCES

(7777). Amazon web services - amazon ec2 instances. https://aws.amazon.com/en/

ec2/instance-types/. Accessed: 2015-07-28.
(2015). Centos. https://www.centos.org/. Accessed: 2015-07-28.

Abolfazli, S., Gani, A., and Chen, M. (2015). Hmcc: A hybrid mobile cloud computing
framework exploiting heterogeneous resources. In Mobile Cloud Computing, Services, and
Engineering (MobileCloud), 2015 3rd IEEE International Conference on, pages 157-162.

Abraham, A., Mauri, J. L., Buford, J., Suzuki, J., and Thampi, S. M. (2011). Advances in
Computing and Communications, Part IV: First International Conference, ACC 2011, Kochi,
India, July 22-24, 2011. Proceedings, Part IV. Springer Publishing Company, Incorporated,

1st edition.

Antonio, R. (2013). "who coined ’cloud computing’?". In Technology Re-
view. MIT. Available on https://www.technologyreview.com/s/425970/

who—-coined-cloud-computing/.

Araujo, C., Maciel, P, Zimmermann, A., Andrade, E., Sousa, E., Callou, G., and Cunha, P.
(2011). Performability modeling of electronic funds transfer systems. Computing, 91(4),
315-334.

Araujo, C., Silva, E,, Costa, 1., Vaz, F.,, Kosta, S., and Maciel, P. (2016). Supporting availability
evaluation in mcc-based mhealth planning. Electronics Letters, 52(20), 1663—1665.

Araujo, J., Silva, B., Oliveira, D., and Maciel, P. (2014). Dependability evaluation of a mhealth
system using a mobile cloud infrastructure. In Systems, Man and Cybernetics (SMC), 2014
IEEE International Conference on, pages 1348—1353. IEEE.

Ardito, L., Procaccianti, G., Torchiano, M., and Migliore, G. (2013). Profiling power consump-

tion on mobile devices.

https://aws.amazon.com/en/ec2/instance-types/
https://aws.amazon.com/en/ec2/instance-types/
https://www.centos.org/
https://www.technologyreview.com/s/425970/who-coined-cloud-computing/
https://www.technologyreview.com/s/425970/who-coined-cloud-computing/

104

Balan, R. K. (2006). Simplifying cyber foraging. School of Computer Science, Carnegie Mellon

University.

Balbo, G. and Chiola, G. (1989). Stochastic petri net simulation. In Proceedings of the 21st
Conference on Winter Simulation, WSC ’89, pages 266276, New York, NY, USA. ACM.

Birrell, A. D. and Nelson, B. J. (1984). Implementing remote procedure calls. ACM Trans.
Comput. Syst., 2(1), 39-59.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. (2006). Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications. John
Wiley & Sons.

Buyya, R., Yeo, C. S., and Venugopal, S. (2008). Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In High Performance
Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference on,
page 6. leee.

Callou, G., Maciel, P, Andrade, E., Nogueira, B., and Tavares, E. (2008). Estimation of
energy consumption and execution time in early phases of design lifecycle: an application to
biomedical systems. Electronics Letters, 44(23), 1343—1344.

Callou, G., Maciel, P., Tavares, E., Andrade, E., Nogueira, B., Araujo, C., and Cunha, P.
(2011). Energy consumption and execution time estimation of embedded system applications.
Microprocessors and Microsystems, 35(4), 426-440.

Callou, G., Ferreira, J., Maciel, P., Tutsch, D., and Souza, R. (2014). An integrated modeling
approach to evaluate and optimize data center sustainability, dependability and cost. Energies,
7(1), 238-2717.

Campos, Eliomar; Matos, R. M. P. C. I. S. F. and Silva, F. A. (2015a). Performance evaluation of
virtual machines instantiation in a private cloud. In Services (SERVICES), 2015 IEEE World
Congress on, pages 319-326.

Campos, Eliomar; Matos, R. M. P. S. F. and Silva, F. A. (2015b). Stochastic modeling of auto
scaling mechanism in private clouds for supporting performance tunning. Systems, Man, and
Cybernetics (SMC), 2015 IEEE International Conference on.

CCS-Insight-Forecast (2015). Smartphone sales to peak in western markets in 2017 as they
enter new phase of maturity. Available on http://tiny.cc/ihOy6x.

105

Chakrabarti, S., Cox, E., Frank, E., Gting, R. H., Han, J., Jiang, X., Kamber, S. S., Nadeau, T. P.,
Neapolitan, R. E., Pyle, D., Refaat, M., Schneider, M., Teorey, T. J., and Witten, 1. H. (2008).
Data Mining: Know It All. Morgan Kaufmann Publishers Inc.

Chen, M., Zhang, Y., Li, Y., Mao, S., and Leung, V. C. M. (2015). Emc: Emotion-aware mobile
cloud computing in 5g. IEEE Network, 29(2), 32-38.

Chen, S., Wang, Y., and Pedram, M. (2014). Optimal offloading control for a mobile device
based on a realistic battery model and semi-markov decision process. In Proceedings of the
2014 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’ 14, pages
369-375, Piscataway, NJ, USA. IEEE Press.

Chen, X. (2015). Decentralized computation offloading game for mobile cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 26(4), 974-983.

Chun, B.-G., Thm, S., Maniatis, P., Naik, M., and Patti, A. (2011a). Clonecloud: Elastic
execution between mobile device and cloud. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys *11, pages 301-314, New York, NY, USA. ACM.

Chun, S., Maniatis, P., Naik, M., and Patti, A. (2011b). Clonecloud: Elastic execution between
mobile device and cloud. In Proc. of the Sixth Conf. on Computer Systems, EuroSys "11,
pages 301-314, New York, NY, USA. ACM.

Costa, 1., Araujo, J., Dantas, J., Campos, E., Silva, F. A., and Maciel, P. (2015). Availability
evaluation and sensitivity analysis of a mobile backend-as-a-service platform. Quality and

Reliability Engineering International, pages n/a—n/a.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., and Bahl, P.
(2010). Maui: Making smartphones last longer with code offload. In Proceedings of the Sth

Int. Conference on Mobile Systems, Applications, and Services, MobiSys *10, pages 49-62,
New York, NY, USA. ACM.

da Silva, V. C. O., Oliveira, D. M., de Araujo, J. C. T., and Maciel, P. R. M. (2014). Energy con-
sumption in mobile devices considering communication protocols. Advances in Information

Sciences and Service Sciences, 6(5), 1.

Desrochers, A., Al-Jaar, R., and Society, I. C. S. (1995). Applications of petri nets in manufac-

turing systems: modeling, control, and performance analysis. IEEE Press.

106

Dey, S., Liu, Y., Wang, S., and Lu, Y. (2013). Addressing response time of cloud-based
mobile applications. In Proc. of the First Int. Workshop on Mobile Cloud Computing &
Networking, MobileCloud, pages 3—10, New York, USA. ACM.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall.

Eom, H., St Juste, P., Figueiredo, R., Tickoo, O., Illikkal, R., and Iyer, R. (2012). Snarf: a social
networking-inspired accelerator remoting framework. In Proc. of the first edition of the MCC

workshop on Mobile cloud computing, pages 29-34. ACM.

Flores, H. and Srirama, S. (2013). Mobile code offloading: Should it be a local decision or
global inference? In Proceeding of the 11th Annual Int. Conference on Mobile Systems,
Applications, and Services, MobiSys ’13, pages 539-540, New York, NY, USA. ACM.

Gabner, R., Schwefel, H.-P., Hummel, K., and Haring, G. (2011). Optimal model-based policies
for component migration of mobile cloud services. In Network Computing and Applications
(NCA), 2011 10th IEEFE International Symposium on, pages 195-202.

German, R. (2000). Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA.

German, R., Kelling, C., Zimmermann, A., and Hommel, G. (1995). Timenet: a toolkit for
evaluating non-markovian stochastic petri nets. Performance Evaluation, 24(1), 69-87.

Gomes, C. N. (2012). Estudo do Paradigma Computacdo em Nuvem. Ph.D. thesis, INSTITUTO
SUPERIOR DE ENGENHARIA DE LISBOA.

Gonzalez-Rodriguez, G., Colubi, A., and Gil, M. A. (2012). Fuzzy data treated as functional
data: A one-way anova test approach. Comput. Stat. Data Anal., 56(4), 943-955.

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., and Chen, X. (2012). Comet: Code
offload by migrating execution transparently. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12, pages 93—106, Berkeley, CA,
USA. USENIX Association.

Guimaraes, A. P, Maciel, P. R., and Matias Jr, R. (2013). An analytical modeling framework to
evaluate converged networks through business-oriented metrics. Reliability Engineering &
System Safety.

107

Haverkort, B. R. (2002). Lectures on formal methods and performance analysis, chapter
Markovian models for performance and dependability evaluation, pages 38—83. Springer-
Verlag New York, Inc., New York, NY, USA.

Herzog, U. (2001). Formal Methods for Performance Evaluation, pages 1-37. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Hong, J. I. and Landay, J. A. (2001). An infrastructure approach to context-aware computing.
Human-Computer Interaction, 16(2), 287-303.

Huang, D., Zhang, X., Kang, M., and Luo, J. (2010). Mobicloud: Building secure cloud frame-
work for mobile computing and communication. In Service Oriented System Engineering
(SOSE), 2010 Fifth IEEE International Symposium on, pages 27-34.

Huerta-Canepa, G. and Lee, D. (2010). A virtual cloud computing provider for mobile devices.
In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, MCS " 10, pages 6:1-6:5, New York, NY, USA. ACM.

Jain, A., Klare, B., and Park, U. (2011). Face recognition: Some challenges in forensics. In
Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE Int. Conference
on, pages 726-733.

Jain, R. (2008). The Art Of Computer Systems Performance Analysis: Techniques for Experi-
mental Measurement, Simulation and Modeling. Wiley India Pvt. Ltd.

JavaCV (2015). Javacv. https://github.com/bytedeco/javacv. Accessed: 2015-
07-28.

Junior, M. N. O., Neto, S., Maciel, P,, Lima, R., Ribeiro, A., Barreto, R., Tavares, E., and Braga,
F. (2006). Analyzing Software Performance and Energy Consumption of Embedded Systems
by Probabilistic Modeling: An Approach Based on Coloured Petri Nets, pages 261-281.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2012). Cuckoo: A computation offloading
framework for smartphones. In M. Gris and G. Yang, editors, Mobile Computing, Applications,
and Services, volume 76 of Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, pages 59-79. Springer Berlin Heidelberg.

Khan, A., Othman, M., Madani, S., and Khan, S. (2014). A survey of mobile cloud computing
application models. Communications Surveys Tutorials, IEEE, 16(1), 393—413.

https://github.com/bytedeco/javacv

108

Khan, A. N., Mat Kiah, M. L., Madani, S. a., Khan, A. U. R., and Ali, M. (2013). Enhanced dy-
namic credential generation scheme for protection of user identity in mobile-cloud computing.
The Journal of Supercomputing, 66(3), 1687..1706.

Khan, u. R. A., Othman, M., Khan, A. N., Abid, S. A., and Madani, S. A. (2015). Mobibyte:
An application development model for mobile cloud computing. Journal of Grid Computing,
13(4), 605-628.

Kleinrock, L. (1975). Queueing Systems, volume 1. Wiley, New York.

Kocjan, P. and Saeed, K. (2012). Face recognition in unconstrained environment. In K. Saeed
and T. Nagashima, editors, Biometrics and Kansei Engineering, pages 21-42. Springer New
York.

Kosta, S. and Aucinas, e. a. (2012). Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In INFOCOM, 2012 Proc. IEEE, pages 945-953.

Kovachev, D., Cao, Y., and Klamma, R. (2011). Mobile cloud computing: A comparison of
application models. CoRR, abs/1107.4940.

Kristensen, M. (2010). Scavenger: Transparent development of efficient cyber foraging appli-
cations. In Pervasive Computing and Communications (PerCom), 2010 IEEFE International

Conference on, pages 217-226.

Kumar, K., Liu, J., Lu, Y.-H., and Bhargava, B. (2013). A survey of computation offl.g for
mobile systems. Mob. Netw. Appl., 18(1), 129..140.

Kuo, W. and Zuo, M. J. (2003). Optimal reliability modeling: principles and applications. John
Wiley & Sons.

Li, D., Hao, S., Halfond, W. G. J., and Govindan, R. (2013). Calculating source line level energy
information for android applications. In Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ISSTA 2013, pages 78-89, New York, NY, USA. ACM.

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task scheduling with dynamic voltage and
frequency scaling for energy minimization in the mobile cloud computing environment. /EEE

Transactions on Services Computing, 8(2), 175-186.

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., and Qureshi, A. (2015). Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future directions.
Journal of Network and Computer Applications, 48, 99 — 117.

109

Liu, Q., Jian, X., Hu, J., Zhao, H., and Zhang, S. (2009). An optimized solution for mobile
environment using mobile cloud computing. In Wireless Communications, Networking and

Mobile Computing, 2009. WiCom ’09. 5th International Conference on, pages 1-5.

Luo, R. and Liu, H.-H. (2010). Design and implementation of efficient hardware solution based
sub-window architecture of haar classifiers for real-time detection of face biometrics. In
Mechatronics and Automation (ICMA), 2010 Int. Conference on, pages 1563—1568.

Ma, X., Huang, P., Jin, X., Wang, P., Park, S., Shen, D., Zhou, Y., Saul, L. K., and Voelker,
G. M. (2013). edoctor: Automatically diagnosing abnormal battery drain issues on smart-
phones. In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdi’ 13, pages 57-70, Berkeley, CA, USA. USENIX Association.

Maciel, Paulo R. M.; Trivedi, K. S. M. R. J. and Kim, D. S. (2011). Performance and depend-

ability in service computing: Concepts, techniques and research directions. 1(1), 53-97.

Maciel, P, Trivedi, K. S., Matias, R., and Kim, D. S. (2011). Performance and Dependability in
Service Computing: Concepts, Techniques and Research Directions, chapter Dependability

Modeling. Premier Reference Source. Igi Global.

Malhotra, M. and Reibman, A. (1993). Selecting and implementing phase approximations for
semi-markov models. Stochastic Models, 9(4), 473-506.

Marsan, M. A. (1990). Advances in petri nets 1989. chapter Stochastic Petri Nets: An Elementary
Introduction, pages 1-29. Springer-Verlag New York, Inc., New York, NY, USA.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1994). Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA, 1st

edition.

Matos, R., Araujo, J., Oliveira, D., Maciel, P., and Trivedi, K. (2015). Sensitivity analysis of a
hierarchical model of mobile cloud computing. Simulation Modelling Practice and Theory,
50, 151-164.

Mell, P. and Grance, T. (2011). The nist definition of cloud computing.

Mendonca, J., Lima, R., Andrade, E., and Callou, G. (2015). Assessing performance and energy
consumption in mobile applications. In Systems, Man, and Cybernetics (SMC), 2015 IEEE

International Conference on, pages 74-79.

110

Miller, M. (2008). Cloud computing: Web-based applications that change the way you work

and collaborate online. Que publishing.

Molloy, M. K. (1982). Performance analysis using stochastic petri nets. IEEE Trans. Comput.,
31, 913-917.

Montgomery, D. C. and Montgomery, D. C. (1984). Design and analysis of experiments,
volume 7. Wiley New York.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4), 541-580.

N. Nikolaidis, P. N. (2002). Instruction-level Power Measurement Methodology. Electronics
Lab, Physics Dept, Aristotle University of Thessaloniki Greece.

Nagle, J. B. (1988). Innovations in internetworking. chapter On Packet Switches with Infinite
Storage, pages 136—139. Artech House, Inc., Norwood, MA, USA.

Nelson, R. (2013). Probability, stochastic processes, and queueing theory: the mathematics of

computer performance modeling. Springer Science & Business Media.

Nimmagadda, Y., Kumar, K., Lu, Y.-H., and Lee, C. (2010). Real-time moving object recognition
and tracking using computation offloading. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 2449-2455.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and Zagorodnov,
D. (2009). The eucalyptus open-source cloud-computing system. In CCGRID ’09, pages
124-131.

Oliveira, D., Araujo, J., Matos, R., and Maciel, P. (2013). Availability and energy consumption
analysis of mobile cloud environments. In 2013 IEEE International Conference on Systems,
Man, and Cybernetics, pages 4086—4091. IEEE.

Olteanu, A.-C. and Tapus, N. (2013). Offloading for mobile devices: A survey.
OpenCV (2015). Opencv. http://opencv.org/. Accessed: 2015-07-28.

Ou, S., Yang, K., Liotta, A., and Hu, L. (2007). Performance analysis of offloading systems
in mobile wireless environments. In Communications, 2007. ICC’07. IEEE International
Conference on, pages 1821-1826. IEEE.

http://opencv.org/

111

Pandey, S. and Nepal, S. (2012). Modeling availability in clouds for mobile computing. In 2012
IEEE First International Conference on Mobile Services, pages 80-87.

Park, J., Yu, H., Chung, K., and Lee, E. (2011). Markov chain based monitoring service for
fault tolerance in mobile cloud computing. In Proceedings of the 2011 IEEE Workshops of
International Conference on Advanced Information Networking and Applications, WAINA
11, pages 520-525, Washington, DC, USA. IEEE Computer Society.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies in
software engineering. In Proc. of the 12th Conf. on Evaluation and Assessment in Software
Engineering, EASE’08, page 68..77, Swinton, UK, UK. British Computer Society.

Pitkdnen, M., Karkkéinen, T., Ott, J., Conti, M., Passarella, A., Giordano, S., Puccinelli, D.,
Legendre, F., Trifunovic, S., Hummel, K. A., May, M., Hegde, N., and Spyropoulos, T. (2012).
SCAMPI: Service platform for social aware mobile and pervasive computing. In MCC 2012,
ACM Mobile Cloud Computing Workshop, collocated with ACM Sigcomm, August 17, 2012,
Helsinki, Finland / Also published in SIGCOMM Computer Communication Review , Volume
42 Issue 4, September 2012, Helsinki, FINLAND.

PowerTutor (2014). A power monitor for android-based mobile platforms. Available on

http://ziyang.eecs.umich.edu/projects/powertutor/.

Pungila, C. and Negru, V. (2012). A highly-efficient memory-compression approach for gpu-
accelerated virus signature matching. In Information Security, Lecture Notes in Computer

Science, pages 354-369.

Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., and Vasilakos, A. V. (2012). Mapcloud:
Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of the
2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing, UCC 12,
pages 83-90, Washington, DC, USA. IEEE Computer Society.

Reduction, C. (2015). Colour reduction. http://tinyurl.com/pwqg8j44. Accessed:
2015-07-28.

Saranya, S. M. and Vijayalakshmi, M. (2011). Interactive mobile live video learning system in
cloud environment. In Recent Trends in Information Technology (ICRTIT), 2011 International
Conference on, pages 673—677. IEEE.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14-23.

http://ziyang.eecs.umich.edu/projects/powertutor/
http://tinyurl.com/pwq8j44

112

Se, S., Barfoot, T., and Jasiobedzki, P. (2005). Visual motion estimation and terrain modeling
for planetary rovers. In Proceedings of the International Symposium on Artificial Intelligence

for Robotics and Automation in Space.

Shi, S., Hsu, C.-H., Nahrstedt, K., and Campbell, R. (2011). Using graphics rendering contexts
to enhance the real-time video coding for mobile cloud gaming. In Proceedings of the 19th
ACM International Conference on Multimedia, MM 11, pages 103—112, New York, NY,
USA. ACM.

Shih, C.-S., Chen, Y.-K., Chen, J., and Chang, N. (2013). Virtual cloud core: Opencl workload
sharing framework for connected devices. In Service Oriented System Engineering (SOSE),
2013 IEEE 7th Int. Symposium on, pages 486—493.

Silva, B., Callou, G., Tavares, E., Maciel, P., Figueiredo, J., Sousa, E., Araujo, C., Magnani, F.,
and Neves, F. (2013). Astro: An integrated environment for dependability and sustainability

evaluation. Sustainable Computing: Informatics and Systems, 3(1), 1 —17.

Silva, B., Tavares, E., Maciel, P., Nogueira, B., Oliveira, J., Damaso, A., and Rosa, N. (2014a).
Amalghma -an environment for measuring execution time and energy consumption in em-

bedded systems. In 2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pages 3364-3369.

Silva, B., Tavares, E., Maciel, P., Nogueira, B., Oliveira, J., Damaso, A., and Rosa, N. (2014b).
Amalghma -an environment for measuring execution time and energy consumption in embed-
ded systems. In SMC Conference, pages 3364-3369.

Silva, F. A., Maciel, P., Quesado, E., Germano Zaicaner, M. D., and Silva, B. (2015a). Benchmark
applications used in mobile cloud computing: A systematic mapping study. The Twentieth

IEEE Symposium on Computers and Communications (ISCC).

Silva, F. A., Rodrigues, M., Maciel, P., Kosta, S., and Mei, A. (2015b). Planning mobile cloud
infrastructures using stochastic petri nets and graphic processing units. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science (CloudCom), pages
471-474.

Silva, F. A., Maciel, P., Alves, G., and Matos, R. (2015¢). A scheduler for mobile cloud based
on weighted metrics and dynamic context evaluation. In Applied Computing (SAC 2015),
Proc. of The 30th ACM/SIGAPP Symposium On.

113

Silva, F. A., Maciel, P., and Matos, R. (2015d). Smartrank: A smart scheduling tool for mobile
cloud computing. J. Supercomput., 71(8), 2985-3008.

Silva, F. A., Zaicaner, G., Quesado, E., Dornelas, M., Silva, B., and Maciel, P. (2016a). Bench-
mark applications used in mobile cloud computing research: a systematic mapping study. The
Journal of Supercomputing, 72(4), 1431-1452.

Silva, F. A., Maciel, P, Santana, E., Matos, R., and Dantas, J. (2016b). Mobile cloud face
recognition based on smart cloud ranking. Computing, pages 1-25.

Silvaa, B., Maciela, P. R. M., Zimmermannb, A., and Brilhantea, J. (2014). Survivability
evaluation of disaster tolerant cloud computing systems.

Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., and Heinzelman, W. (2012). Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In
Computers and Communications (ISCC), 2012 IEEE Symposium on, pages 000059-000066.

Stewart, W. J. (1994). Introduction to the Numerical Solution of Markov Chains. Princeton

University Press.

Subramanian, K. (2011). Hybrid clouds. Access from http://emea. trendmicro.
com/imperia/md/content/uk/cloud-security/wp01_hybridcloud-krish_110624us. pdf .

Tavares, E., Maciel, P., Silva, B., Oliveira, M., and Rodrigues, R. (2007). Modelling and
scheduling hard real-time biomedical systems with timing and energy constraints. Electronics
Letters, 43(19), 1015-1017.

Tavares, E., Maciel, P., Dallegrave, P., Silva, B., Falcao, T., Nogueira, B., Callou, G., and
Cunha, P. (2010). Model-driven software synthesis for hard real-time applications with energy
constraints. Des. Autom. Embedded Syst., 14(4), 327-366.

Terry, D. (2011). Acm tech pack on cloud computing. ACM Tech Pack Committee on Cloud
Computing.

Trivedi, K. S. (2001). Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. John Wiley and Sons, New York.

Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing and Computer Science
Applications. John Wiley and Sons Ltd., Chichester, UK, 2nd edition edition.

114

Turk, M. and Pentland, A. (1991). Face recognition using eigenfaces. In Computer Vision and
FPattern Recognition Proc. CVPR, IEEE Computer Society Conf. on, pages 586-591.

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. J. Comput. Vision, 57(2),
137-154.

WattsUp (2016). Watts up: Monitor real-time electricity usage. Available on http://www.
inds.co.uk/product/watts—up-pro/.

Xing, T., Liang, H., Huang, D., and Cai, L. (2012). Geographic-based service request scheduling
model for mobile cloud computing. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012 IEEE 11th Int. Conference on, pages 1446—1453.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1), 7-18.

http://www.inds.co.uk/product/watts-up-pro/
http://www.inds.co.uk/product/watts-up-pro/

	List of Figures
	List of Tables
	List of Acronyms
	INTRODUCTION
	Context of Mobile Cloud Offloading
	Offloading Concerns
	Offloading Perspectives

	Research Scope and Motivation
	Problem Statement
	Objectives
	Publications
	Organization of the Document

	BACKGROUND
	Cloud Computing
	Mobile Cloud Computing
	Mobile Cloud Offloading
	Offloading Benefits
	Applications Partitioning

	Performance Evaluation of Systems
	Measurement
	Continuous Time Markov Chains
	Stochastic Petri Nets
	Phase-type approximation

	Benchmark Applications used in MCC

	RELATED WORK
	Evaluating and Planning MCC Applications
	MCC Offloading

	EVALUATING MCC APPLICATIONS
	Proposal Overview
	Evaluating MCC Applications with SPNs
	Throughput
	Execution Time (MTTE and CDF)
	Energy

	MCC-Adviser: An Evaluation Assistant
	Collecting Input Parameters
	Solving SPNs and Plotting Results
	Web Application Prototype

	Experiment for Estimating the ``EnergyPerByte"
	Case Study One - Time Metric - Reduce Color Application
	Model Presentation
	Model Validation
	Model Solution

	Case Study Two - Time Metric - Face Recognition Application
	Case Study Three - Time Metric - GPU Study
	Case Study Four - Energy Metric - Reduce Color Application
	Model Presentation
	Model Validation
	Model Solution

	IMPROVING MCC OFFLOADING PROCESS
	Proposal Overview
	An Smart MCC Offloading Process
	The SmartRank Prototype in Java
	Case Studies
	Case Study One: Local Execution
	Memory Profiling
	Energy Profiling
	CPU Profiling
	Case Study Two: Round Robin Strategy
	Case Study Three: Smart WRR Strategy

	CONCLUSIONS AND FUTURE WORK
	Future Work

	REFERENCES

