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Abstract

Generalizing distributions provide some advantages, allowing us to de�ne new families, to

extend well-known distributions and provide great �exibility in modeling real data, which can

be applied in several �elds. The Alpha distribution was studied for the �rst time to analyze

tool wear problems by Katsev (1968) and Wager and Barash (1971). Salvia (1985) provided

its characterization. In this thesis, we discuss the Alpha distribution, we present a simulation

study to verify the performance of its maximum likelihood estimators and four real data sets are

used to evaluate the Alpha model when compared to some distributions well-known in literature.

Furthermore, we developed new distributions considering this model as the baseline distribution

applied to Exponentiated class (Gompertz, 1825; Verhulst, 1838, 1845, 1847) and Kumaraswamy

class, proposed by Cordeiro and de Castro (2011). We also propose a new family of distributions,

called Exponentiated Generalized Exponentiated-Generated (EG-Exp-G), which is an extension

of the exponentiated generalized class proposed by Cordeiro et al. (2013). Some new distributions

are proposed as submodels of this family, including the EG-Exp-Alpha distribution. We study

some mathematical properties, such as quantile function, moments, moment generating function,

mean deviations and order statistics. In addition, we use the maximum likelihood method to

estimate the parameters of the proposed models. We perform Monte Carlo simulation studies

to analyze the asymptotic properties of the maximum likelihood estimators and we illustrate

the �exibility of the new models through applications to real data set in order to show their

competitiveness compared to well-known distributions in the literature.

Keywords: Alpha Distribution. Exponentiated class. Exponentiated Generalized class. Ku-

maraswamy class. Maximum Likelihood Estimation.



Resumo

A generalização de distribuições oferece algumas vantagens, permitindo-nos de�nir novas

famílias, estender distribuições conhecidas e proporcionar grande �exibilidade na modelagem

de dados reais, que podem ser aplicados em vários campos. A distribuição Alpha foi estudada

inicialmente para analisar problemas de desgaste de ferramentas por Katsev (1968) e Wager e

Barash (1971). Salvia (1985) forneceu algumas características desta distribuição. Nesta tese, dis-

cutimos a distribuição Alpha, apresentamos um estudo de simulação para veri�car a performance

dos seus estimadores de máxima verssimilhança e quatro conjuntos de dados reais são utilizados

para avaliar o modelo Alpha em relação à algumas distribuições de probabilidade já conheci-

das na literatura. Além disso, desenvolvemos novas distribuições considerando tal modelo como

distribuição de base aplicada aos geradores da Exponencializada (Gompertz, 1825; Verhulst,

1838, 1845, 1847) e da Kumaraswamy, proposta por Cordeiro e de Castro (2011). Propomos

ainda uma nova família de distribuições, chamada exponencializada generalizada exponencial-

izada (EG-Exp-G), que é uma extensão da classe exponencializada generalizada proposta por

Cordeiro et al. (2013). Apresentamos alguns casos especiais deste novo gerador, entre eles a dis-

tribuição EG-Exp-Alpha. Desenvolvemos algumas propriedades matemáticas, a saber: desvios

médios, estatísticas de ordem, função geratriz de momentos, função quantílica e momentos.

Além disso, utilizamos o método de máxima verossimilhança para estimação dos parâmetros dos

modelos propostos. Realizamos estudos de simulação de Monte Carlo visando analisar as pro-

priedades assintóticas dos estimadores de máxima verossimilhança e ilustramos a �exibilidade

dos novos modelos por meio de aplicações a dados reais a �m de mostrar a competitividade deles

comparados às distribuições de probabilidade já conhecidas na literatura.

Palavras chave: Distribuição Alpha. Exponencializada-G. Exponencializada Generalizada-G.

Kumaraswamy-G. Máxima verossimilhança.
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Chapter 1

Introduction

The Alpha distribution was studied for the �rst time to analyze tool wear problems by Katsev

(1968) and Wager and Barash (1971). Sherif (1983) suggested its use in modeling lifetimes

under accelerated test conditions and Salvia (1985) provided its characterization and a number

of structural properties. This thesis has as its initial aims to discuss the Alpha distribution, to

perform a simulation study and to compare this model with other already exist and, in this way, to

show that the proposed distribution competes with other distributions very used for survival data,

such as: Birnbaum-Saunders (BS), Burr XII, Gamma, Inverse Gaussian, Nadarajah-Haghighi

(NH), Weibull, among others.

A random variable X has an Alpha distribution with shape parameter (α > 0) and scale

parameter (β > 0), if its cumulative distribution function (cdf), say G(x), and probability

density function (pdf), say g(x), are given by

G(x;α, β) =
Φ
(
α− β

x

)
Φ(α)

(1.1)

and

g(x;α, β) =
β√

2π x2 Φ(α)
exp

{
−1

2

(
α− β

x

)2
}
,

respectively, for x > 0, where Φ(·) denote the standard normal cumulative function. The Alpha

distribution is characterized by non existence of moments. So, some results derived in this thesis

are valid for certain regions of the parametric space.

Furthermore, we extend the Alpha distribution, providing great �exibility in modeling real

data, which can be applied in several �elds. Generalized distributions provide some advantages,

allowing us to de�ne new families of distributions and to extend well-known distributions. For

example, we can refer some papers: Eugene et al. (2002) for the beta class, Zografos and

Balakrishnan (2009) for the gamma class and the more recent ones by Alexander et al. (2012)

and Cordeiro et al. (2013), who de�ned the class generated by McDonald's (1984) generalized

16
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beta random variable and the class of exponentiated generalized distributions, respectively.

In this thesis, we propose to apply the Alpha distribution as baseline to the Exponentiated-G

(Exp-G) and Kumaraswamy (Kw-G) families. In the �rst case, for an arbitrary baseline G(x), a

random variable has the Exp-G distribution with additional power parameter (a > 0) if its cdf

and pdf are given by

F (x; a) = G(x)a

and

f(x; a) = a g(x)G(x)a−1,

respectively, where g(x) = dG(x)/dx.

In the second one, for any continuous baseline G distribution, Cordeiro and de Castro (2011)

proposed the Kw-G family of distributions with two additional shape parameters a > 0 and b > 0

and cdf and pdf given by

F (x; a, b) = 1− [1−Ga(x)]b

and

f(x; a, b) = a b g(x)Ga−1(x) [1−Ga(x)]b−1,

respectively.

Besides, we propose a new family of distributions, called Exponentiated Generalized Exponentiated-

Generated (EG-Exp-G, for short), which adds three shape parameters (a, b, c > 0) to the base-

line distribution. This family is an extension of the exponentiated generalized class proposed by

Cordeiro et al. (2013) and has cdf and pdf given by

F (x; a, b, c) = {1− [1−G(x)a]b}c

and

f(x; a, b, c) = a b c G(x)a−1[1−G(x)a]b−1{1− [1−G(x)a]b}c−1g(x),

respectively.

This thesis is organized as follows. In second chapter, we present the Alpha distribution

and we provide a simulation study to evaluate the asymptotic properties of maximum likelihood

estimates. In addition, we show the �exibility of the Alpha distribution in modeling data through

of four applications to real data sets.

In third chapter, we propose a three-parameter model, called Exponentiated Alpha distri-
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bution (Exp-Alpha, for short). The new model is constructed using the exponentiated class

(Gompertz, 1825; Verhulst, 1838, 1845, 1847), which is widely applied to baseline distributions

in applications to real data set, because this class provide a greater �exibility. Furthermore, we

provide plots of pdf and hazard rate function (hrf) and study some mathematical properties of

the Exp-Alpha distribution, such as: moment generating function, mean deviations, moments,

order statistics and quantile function. It is important to emphasize that the results presented

are valid for certain regions of the parametric space. The estimation of the model parameters

is discussed by maximum likelihood method. Besides, we provide a semiclosed estimator for the

additional parameter. A Monte Carlo simulation study is performed to evaluate the maximum

likelihood estimators of the proposed model. Furthermore, three applications to real data sets

are provided in order to illustrate the �exibility of the Exp-Alpha distribution, when compared

to well-known distributions, such as Exp-BS, Exp-Gompertz, Exp-Lomax, Exp-Weibull, among

others.

In Chapter 4, we de�ne a four-parameter model, called the Kumaraswamy Alpha (Kw-Alpha,

for short) distribution, which is obtained combining results from Cordeiro and de Castro (2011)

and Equation (1.1). We provide plots of pdf and hrf and obtain explicit expressions for the

quantile function, ordinary moments, moment generating function and mean deviations. Further,

we determine the density function of the order statistics. These results only are valid for some

regions of the parametric space due to non existence of moments for the Alpha distribution.

The maximum likelihood method is used to estimate the model parameters and we evaluate this

procedure through a Monte Carlo simulation study. Besides, we found a semiclosed estimator for

one of the extra parameters. We provide two applications to real data to illustrate the �exibility

of the new model.

In the �fth chapter, we proposed the EG-Exp-G family and some new distributions are pro-

vided as submodels of this class, including the EG-Exp-Alpha. Some mathematical properties of

this family are derived as mean deviations, moment generating function, order statistics, ordi-

nary and incomplete moments, quantile function and Rényi and Shannon entropies. Estimation

of model parameters are discussed by maximum likelihood method and a semiclosed estimator

for one of the additional parameters is obtained. We provide a simulation study taking the

EG-Exp-Alpha model as an example to evaluate the performance of the maximum likelihood

estimates and four applications to real data is performed to illustrate the �exibility of the new

family. Finally, the general conclusions are provided in Chapter 6.



Chapter 2

The Alpha distribution

Resumo

A distribuição Alpha foi primeiramente estudada por Katsev (1968), Wager e Barash (1971),

Sherif (1983) e Salvia (1985). Porém, estudos de simulação de tal distribuição não foram estuda-

dos e o seu uso para modelar dados. Portanto, o objetivo deste capítulo é discutir a distribuição

Alpha e propor seu uso à modelagem de conjuntos de dados em várias áreas. O método de

máxima verossimilhança é utilizado para estimar os parâmetros do modelo e um estimador em

forma semifechada para o parâmetro de escala é obtido. Nós avaliamos a performance dos es-

timadores de máxima verossimilhança por meio de um estudo de simulação de Monte Carlo e

apresentamos quatro aplicações a conjuntos de dados reais, comparando o modelo proposto com

outras distribuições já utilizadas em diferentes áreas.

Palavras-chave: Desvios médios. Distribuição Alpha. Estatísticas de ordem. Função quantílica.

Máxima verossimilhança. Momentos.

Abstract

The Alpha distribution was studied previouly by Katsev (1968), Wager and Barash (1971), Sherif

(1983) and Salvia (1985). But they do not perform simulation study of the Alpha distribution

and its use for modeling data. Hence, the aim of this chapter is to discuss the Alpha distribution

and to propose its use for modeling data set in various areas. Maximum likelihood method is

used to estimate the model parameters and a semiclosed estimator for the scale parameter is

obtained. We evaluate the performance of the maximum likelihood estimators by a Monte Carlo

simulation study and we present four applications to real data sets, comparing the proposed

model with other distributions already used in di�erent areas.

Keywords: Alpha distribution. Maximum likelihood Estimation. Mean deviations. Moments.

Order statistics. Quantile function.
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2.1 Introduction

The Alpha distribution was studied for the �rst time to analyze tool wear problems by Katsev

(1968) and Wager and Barash (1971). Sherif (1983) suggested its use in modeling lifetimes under

accelerated test conditions and Salvia (1985) provided its characterization and a number of

structural properties. The aim of this chapter is to discuss the Alpha distribution, to perform a

simulation study and to compare this model with other already exist and, in this way, to show

that the Alpha distribution competes with other distributions very used for survival data. In

summary, the purpose of this chapter is to realize a numerical and applied study of the Alpha

distribution discussed by Salvia (1985).

One of the main results of the Alpha distribution is that the mean does not exist, but this

fact does not prevent its use as a model for accelerated life testing (as, for example, the Cauchy

and certain Pareto models). As we will see in the applications, the Alpha model is skewed to

the right, but its mode is �nite. It is important to emphasize that the results presented here are

valid for certain regions of the parametric space.

The rest of this chapter is organized as follows. The Alpha distribution is present in Section

2.2. Maximum likelihood estimation of the model parameters is investigated in Section 2.3. A

simulation study and four applications to real data sets in Section 2.4 illustrate the �exibility of

the Alpha distribution for data modeling. Concluding remarks are given in Section 2.5.

2.2 The Alpha distribution

A random variableX has an Alpha distribution with shape α > 0 and scale β > 0 parameters,

if its cumulative distribution function (cdf) and probability density function (pdf) are given by

G(x;α, β) =
Φ
(
α− β

x

)
Φ(α)

(2.1)

and

g(x;α, β) =
β√

2π x2 Φ(α)
exp

{
−1

2

(
α− β

x

)2
}
, (2.2)

respectively, for x > 0, where Φ(·) denote the standard normal cumulative function.

Henceforth, a random variable X with density function (2.2) is denoted by X ∼ Alpha(α, β).

We write G(x) = G(x;α, β) and g(x) = g(x;α, β) in order to eliminate the dependence on the

model parameters.

The hazard rate function (hrf) corresponding to (2.2) is given by

h(x;α, β) =
β

√
2π x2[Φ(α)− Φ(α− β

x )]
exp

{
−1

2

(
α− β

x

)2
}
.
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Plots of the Alpha density function for selected parameter values are displayed in Figure 2.1.

Figure 2.2 shows that the hrf of the Alpha distribution has increasing and decreasing shapes for

di�erent values of the parameters.
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Figure 2.1: Plots of the Alpha density for some parameter values.
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Figure 2.2: Plots of the Alpha hazard rate function for some parameter values. (a) Increasing
hazard rate function. (b) Decreasing hazard rate function.
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2.3 Estimation

In this section, we provide an analytic procedure to obtain the maximum likelihood estima-

tors (MLEs) for the Alpha parameters using the pro�le log-likelihood function. The MLEs are

employed due to their interesting asymptotic properties.

Let (x1, . . . , xn) be a random sample of size n from the Alpha distribution with unknown

parameter vector θ = (α, β)>. The log-likelihood function for θ based on a given sample can be

expressed as

`(θ) = n log

(
β√

2πΦ(α)

)
− 2 v − nα2

2
+ αβt− β2w

2
, (2.3)

where t =
∑n

i=1
1
xi
, w =

∑n
i=1

1
x2
i
and v =

∑n
i=1 log(xi).

The components of the score vector U(θ) are given by

Uα(θ) =
∂`(θ)

∂α
= −nα− n φ(α)

Φ(α)
+ β t,

Uβ(θ) =
∂`(θ)

∂β
=
n

β
+ α t− β w. (2.4)

The MLEs, θ̂ = (α̂, β̂)>, can be obtained numerically by solving U(θ̂) = 0.

From equation (2.4), we note that it is possible to obtain a semiclosed estimator for β. For
∂`(θ)
∂β = 0, the estimator for β is given by

β̂α̂ =
α̂ t+

√
(α̂ t)2 + 4wn

2w
. (2.5)

The estimative of β can be obtained analytically by (2.5).

We can obtain the MLE of α using the pro�le log-likelihood. We suppose β �xed and rewrite

the log-likelihood (2.3) as `(θ) = `β(α). By replacing β by β̂α in (2.3), we can obtain the pro�le

log-likelihood function for α as

`β(α) = −n
2

(α2 − 1)− 2 v + n log

(
α t+

√
(α t)2 + 4wn

2w
√

2πΦ(α)

)
+

(α t)2 + α t
√

(α t)2 + 4wn

4w
.

(2.6)

The MLE of α can be also determined by maximizing the pro�le log-likelihood function (2.6)

with respect to α.

It should be noted that the maximization of (2.6) is more simpler than the maximization
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of (2.3) with respect to their respective parameters, since the pro�le log-likelihood function has

one parameter, whereas the log-likelihood function has two parameters. But the pro�le log-

likelihood is not a real likelihood function and hence some of the new properties that hold for a

true likelihood do not hold for its pro�le version.

For interval estimation and hypothesis tests on the model parameters, we require the 2 × 2

observed information matrix J = J(θ), where its elements for the parameters (α, β) are given by

Jα,α =− n

{
1 +

[φ̇(α)]α Φ(α)− φ(α)2

Φ(α)2

}
, Jα,β =

n∑
i=1

1

xi
, Jβ,β = − n

β2
−

n∑
i=1

1

x2
i

,

with [φ̇(α)]α = ∂ φ(α)
∂ α and φ(α) = ∂ Φ(α)

∂ α .

Under general regularity conditions, (θ̂ − θ) is asymptotically normal N2(0, I(θ)−1), where

I(θ) is the expected information matrix. In practice, we can substitute I(θ) by the observed

information matrix evaluated at θ̂, say J(θ̂). The asymptotic multivariate normal N2(0, J(θ̂)−1)

distribution of θ̂ can be used to construct approximate con�dence intervals for the parameters.

2.4 Simulation study and applications

In this section, we perform a Monte Carlo simulation study and we provide four applications

to real data to illustrate the �exibility of the Alpha distribution.

2.4.1 Simulation study

Here, a Monte Carlo simulation experiment based on 1, 000 replications will be conduced

to evaluate the MLEs of the parameters of the Alpha distribution. Setting α = (1, 2) and

β = (1, 2), we evaluate the relative bias (RB) and the mean squared errors (MSE) for point

estimators based on arti�cially generated samples of sizes n = 20, 40, 60, 80 and 100. The RB is

de�ned by 100×(bias/real value of the parameter)%. The results are given in Table 2.1 and we

note that, as the sample size increases, the empirical biases and mean squared errors decrease,

as expected.

2.4.2 Applications to real data

In this section, we provide four applications to real data sets to illustrate the �exibility of the

Alpha distribution, with pdf given by (2.2). Here, we compare the Alpha model with competitive

distributions well-known to �t real data set. These distributions and their probability density

functions are listed in Table 2.3. It is important to emphasize that all these distributions have

support in the positive real set and their parameters are also real positives, except the location

parameter (µ ∈ IR) of the Log-Normal distribution.
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Table 2.1: RB (%) and MSE of the MLE θ̂ for the Alpha distribution.
α β α̂ β̂
n = 20 RB (%) MSE RB (%) MSE

1 1 -2.0100 0.0867 2.6000 0.0193
1 2 -1.9200 0.0854 3.1300 0.0783
2 1 0.0950 0.0539 1.3500 0.0086
2 2 -0.9400 0.0611 2.1900 0.0414

n = 40 RB (%) MSE RB (%) MSE

1 1 -0.2100 0.0383 1.1100 0.0077
1 2 -1.8300 0.0397 1.8550 0.0352
2 1 0.1050 0.0292 0.5500 0.0043
2 2 -0.1700 0.0294 0.9150 0.0174

n = 60 RB (%) MSE RB (%) MSE

1 1 -0.7100 0.0269 0.7600 0.0051
1 2 -0.7000 0.0279 0.7650 0.0217
2 1 -0.0500 0.0186 0.4800 0.0028
2 2 0.3400 0.0191 0.1900 0.0102

n = 80 RB (%) MSE RB (%) MSE

1 1 0.1400 0.0196 0.4100 0.0039
1 2 -0.1900 0.0202 0.5660 0.0156
2 1 0.2200 0.0135 0.1500 0.0020
2 2 -0.0100 0.0149 0.3150 0.0085

n = 100 RB (%) MSE RB (%) MSE

1 1 -0.5900 0.0162 0.5300 0.0033
1 2 -0.6100 0.0172 0.6050 0.0135
2 1 -0.1250 0.0115 0.3100 0.0017
2 2 0.2650 0.0111 0.0800 0.0061

The MLEs of the parameters are computed (as discussed in Section 2.3) and the goodness-of-

�t statistics for Alpha model are compared with other distributions. We consider the Anderson-

Darling (A*) and Cramér-von Misses (W*), which are described by Chen and Balakrishnan

(1995), and Kolmogorov-Smirnov (KS) statistics. Are also calculated other measures of goodness

of �t. These functions are: Akaike Information Criteria (AIC), Bayesian Information Criterion

(BIC), Consistent Akaike Information Criteria (CAIC) and Hannan-Quinn Information Criterion

(HQIC).

The W* and A* statistics are used to verify which distribution �ts better to the data. Since

the values of W* and A* are smaller for the Alpha model when compared with those values

of the other models, the considered model seems to be a very competitive model for the data.

We use these statistics, where we have a random sample (x1, . . . , xn) with empirical distribution

function Fn(x) and require to test if the sample comes from a special distribution. The W ∗ and

A∗ statistics are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2 dF (x; θ̂n)

} (
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂) (1− F (x; θ̂n))}
dF (x; θ̂n)

} (
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,
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respectively, where Fn(x) is the empirical distribution function and F (x; θ̂n) is the speci�ed

distribution function evaluated at the MLE θ̂n of θ. Note that theW ∗ and A∗ statistics are given

by di�erence distances of Fn(x) and F (x; θ̂n). Thus, the lower are theW ∗ and A∗ statistics more

evidence we have that F (x; θ̂n) generates the sample.

The package GenSA available in the R programming language is used to obtain the initial

values of the model parameters and the computations to the �t model are performed using the

function goodness.fit of AdequacyModel package. The numerical BFGS (Broyden-Fletcher-

Goldfarb-Shanno) procedure is used for minimization of the −log-likelihood function.

The data sets are:

(i) Tumor-free time data

This data set refers to the tumor-free time (days) of rats on low-fat diet. For details about

these data, see Lee and Wang (2003).

(ii) Cumulative proportion surviving data

Cumulative proportion surviving from beginning of study to end of interval (1945-1954) for

male patients with localized cancer of rectum diagnosed in Connecticut. For more details,

see Lee and Wang (2003).

(iii) Relief times data

The data set represent the relief times of twenty patients receiving an analgesic and it is

given by Gross and Clark (1975).

(iv) Survival times of animals data

These data refers to survival times (in 10 hour units) of animals in a experiment. More

details from this data set can be obtained in Hand et al. (1993).

Table 2.2 gives a descriptive summary of each data set, which includes central tendency

statistics, standard deviation, among others. The distribution of the all data have positive

skewness (right skewed). With respect to kurtosis, we note that the distribution of tumor-free

and proportion data have negative kurtosis whereas the distribution of relief and animals data

present positive kurtosis.

Table 2.2: Descriptive statistics.

Statistic
Data

tumor-free proportion relief animals

Mean 107.000 0.455 1.900 0.479
Median 86.000 0.418 1.700 0.400
Std. Dev. 48.918 0.151 0.704 0.252
Minimum 50.000 0.290 1.100 0.180
Maximum 191.000 0.751 4.100 1.240
Skewness 0.523 0.628 1.592 1.153
Kurtosis −1.422 −1.050 2.346 0.626
n 15 10 20 48
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Table 2.3: Distribution, probability density function and reference.
Distribution Probability density function Reference

Birnbaum-Saunders (BS) (α, β) (2αeα
2√

2πβ)−1 x−3/2 (x+ β) exp
[
− (x/β)−(x/β)−1

2α2

]
Birnbaum and Saunders, 1969

Burr XII (α, β) αβ xα−1

(1+xα)β+1 Burr, 1942

Exp-Half-Normal (σ, a) a
√

2
σ
√
π

exp
{
− x2

2σ2

}
{2 Φ(x)− 1}a−1 Gupta et al., 1998; Cooray and Ananda, 2008

Exp-Lindley (a, θ) a θ2

θ+1 (1 + x) e−θ x
{

1− e−θ x(1+θ+θ x)
1+θ

}a−1
Nadarajah et al., 2012

Gamma (k, θ) xk−1 e−x/θ

θk Γ(k)
Khodabin and Ahmadabadi, 2010 1

Gompertz (α, β) αβ exp[β + αx− β exp(αx)] Abu-Zinadah and Alou�, 2014 2

Inverse Gaussian (λ, µ)
[

λ
2π x3

]1/2
exp

{
−λ (x−µ)2

2µ2 x

}
Chhikara and Folks, 1989

Log-Logistic II (α, β) αβ (β x)α−1

[1+(β x)α]2
Singh, 1994

Log-Normal (µ, σ) 1√
2πσ x

exp
{
− (log x−µ)2

2σ2

}
Johnson, Kotz and Balakrishnan, 1994

Nadarajah-Haghighi (NH) (α, λ) αλ (1 + λx)α−1 exp{1− [1 + λx]α} Nadarajah and Haghighi, 2011

Rayleigh II (µ, λ) 2λ (x− µ)e−λ(x−µ)2
Johnson, Kotz and Balakrishnan, 1994

Weibull (λ, γ) γ
λ

(
x
λ

)γ−1
exp

{
−
(
x
λ

)γ} Weibull, 1951

Chi-Squared (µ) 1
2µ/2Γ(µ/2)

xµ/2−1 e−x/2 Johnson, Kotz and Balakrishnan, 1998

Exponential (λ) λ e−λx Gupta and Kundu, 1999, 2001

Half-Normal (σ2)
√

2
σ
√
π

exp
{
− x2

2σ2

}
Cooray and Ananda, 2008

Log-Logistic I (α) αxα−1

(1+xα)2 Singh, 1998 3

Rayleigh I (σ) x
σ2 exp

{
− x2

2σ2

}
Ho�man and Karst, 1975

1with new parametrization and τ = 1
2with a = 1
3with β = 1
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One of the important device which can help selecting a particular model is the total time

on test (TTT) plot (for more details see Aarset, 1987). This plot is constructed through the

quantities

T (i/n) =

 i∑
j=1

Xj:n + (n− i)Xi:n

/ n∑
j=1

Xj:n versus i/n,

where i = 1, . . . , n and Xj:n is the j-th order statistics of the sample (Mudholkar et al., 1995).

The Figure 2.3 shows the TTT plots for the tumor-free time, cumulative proportion surviving,

relief times and survival times of animals data. These plots indicate an increasing hrf and then

reveals the adequacy of the Alpha distribution to �t these data.
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Figure 2.3: TTT plots (a) tumor-free time data; (b) cumulative proportion surviving data; (c)
relief times data; (d) survival times of animals data.
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Tables 2.4, 2.5, 2.6 and 2.7 give the MLEs (with standard errors in parentheses) for some

�tted models for tumor-free time data, cumulative proportion surviving data, relief times data,

survival times of animals, respectively. Table 2.8 lists the values of the W*, A*, KS, AIC, CAIC,

BIC and HICQ for all �tted models for the considered four data sets. This table reveals that the

Alpha model corresponds to the best �t for all data set, even when compared to distributions

(with one and two parameters) well-known in the literature for �t to real data set. Note that

we used di�erents scenarios to the data set in concerning the compared distributions. This fact

proves that, in di�erents situations, the proposed model have a upper performance to the other

distributions analyzed.

Table 2.4: Maximum likelihood estimates (standard errors in parentheses) for the tumor-free
time data.

Distribution MLEs (standard errors)

Alpha (α, β) 2.378 213.689
(0.585) (43.716)

Exp-Half-Normal (σ, a) 77.782 3.352
(12.605) (1.304)

Gamma (k, θ) 5.413 0.050
(1.913) (0.018)

Log-Logistic II (α, β) 3.767 0.010
(0.783) (0.001)

Weibull (λ, γ) 121.310 2.460
(13.504) (0.491)

Chi-Squared (µ) 98.280
(3.601)

Exponential (λ) 0.009
(0.002)

Half-Normal (σ) 116.970
(21.355)

Log-Logistic I (α) 0.336
(0.066)
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Table 2.5: Maximum likelihood estimates (standard errors in parentheses) for the cumulative
proportion surviving data.

Distribution MLEs (standard errors)

Alpha (α, β) 3.541 1.475
(0.861) (0.333)

BS (α, β) 0.302 0.435
(0.067) (0.041)

Burr XII (α, β) 3.523 11.687
(0.771) (5.868)

Gamma (k, θ) 10.912 23.949
(4.807) (10.796)

Inverse Gaussian (λ, µ) 4.855 0.455
(2.171) (0.044)

Log-Logistic II (α, β) 5.510 2.338
(1.409) (0.239)

Rayleigh II (µ, λ) 0.218 13.049
(0.049) (5.767)

Chi-Squared (µ) 1.208
(0.333)

Exponential (λ) 2.194
(0.694)

Half-Normal (σ) 0.477
(0.106)

Log-Logistic I (α) 1.795
(0.446)

Rayleigh I (σ) 0.337
(0.053)
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Table 2.6: Maximum likelihood estimates (standard errors in parentheses) for the relief times
data.

Distribution MLEs (standard errors)

Alpha (α, β) 3.586 6.187
(0.615) (0.986)

BS (α, β) 0.314 1.810
(0.049) (0.125)

Exp-Half-Normal (σ, a) 1.088 7.339
(0.140) (3.134)

Gamma (k, θ) 9.669 5.089
(3.006) (1.624)

Inverse Gaussian (λ, µ) 18.679 1.900
(5.912) (0.135)

Log-Logistic II (α, β) 5.889 0.570
(1.115) (0.037)

Log-Normal (µ, σ) 0.589 0.310
(0.069) (0.049)

Rayleigh II (µ, λ) 0.839 0.626
(0.161) (0.194)

Weibull (λ, γ) 2.129 2.787
(0.182) (0.427)

Chi-Squared (µ) 2.718
(0.432)

Exponential (λ) 0.526
(0.117)

Half-Normal (σ) 2.020
(0.319)

Log-Logistic I (α) 2.491
(0.447)

Rayleigh I (σ) 1.428
(0.159)
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Table 2.7: Maximum likelihood estimates (standard errors in parentheses) for the survival times
of animals data.

Distribution MLEs (standard errors)

Alpha (α, β) 2.085 0.812
(0.325) (0.098)

Burr XII (α, β) 2.343 4.923
(0.230) (0.817)

Exp-Half-Normal (σ, a) 0.384 2.625
(0.037) (0.550)

Exp-Lindley (a, θ) 6.303 5.963
(1.887) (0.767)

Gamma (k, θ) 4.307 8.986
(0.847) (1.875)

Gompertz (α, β) 2.210 0.403
(0.460) (0.182)

Log-Logistic II (α, β) 3.527 2.409
(0.418) (0.174)

NH (α, λ) 645.929 0.002
(125.455) (0.0003)

Rayleigh II (µ, λ) 0.082 4.545
(0.039) (0.917)

Weibull (λ, γ) 0.544 2.060
(0.040) (0.218)

Chi-Squared (µ) 1.195
(0.150)

Exponential (λ) 2.086
(0.301)

Half-Normal (σ) 0.540
(0.055)

Log-Logistic I (α) 1.656
(0.191)

Rayleigh I (σ) 0.382
(0.027)
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Table 2.8: Goodness-of-�t statistics.
Distribution W ∗ A∗ KS AIC CAIC BIC HQIC

Tumor-free time data
Alpha 0.051 0.358 0.143 159.179 160.179 160.595 159.164
Exp-Half-Normal 0.111 0.652 0.241 160.076 161.076 161.492 160.061
Gamma 0.100 0.587 0.225 159.481 160.481 160.898 159.466
Log-Logistic II 0.090 0.546 0.184 160.323 161.323 161.739 160.307
Weibull 0.123 0.716 0.243 160.612 161.612 162.028 160.597
Chi-Squared 0.100 0.589 0.385 254.309 254.617 255.017 254.302
Exponential 0.099 0.586 0.374 172.185 172.492 172.893 172.177
Half-Normal 0.115 0.672 0.331 166.631 166.939 167.339 166.624
Log-Logistic I 0.080 0.485 0.788 229.958 230.266 230.666 229.950

Cumulative proportion surviving data
Alpha 0.027 0.192 0.144 −8.736 −7.022 −8.131 −9.400
BS 0.032 0.232 0.161 −8.385 −6.671 −7.780 −9.045
Burr XII 0.052 0.361 0.152 −6.631 −4.917 −6.026 −7.295
Gamma 0.038 0.270 0.164 −7.868 −6.154 −7.263 −8.532
Inverse Gaussian 0.032 0.231 0.161 −8.399 −6.685 −7.794 −9.063
Log-Logistic II 0.036 0.257 0.146 −7.482 −5.768 −6.877 −8.146
Rayleigh II 0.031 0.231 0.195 −8.616 −6.902 −8.011 −9.280
Chi-Squared 0.036 0.262 0.459 16.177 16.677 16.480 15.845
Exponential 0.037 0.270 0.471 6.278 6.778 6.581 5.947
Half-Normal 0.044 0.311 0.456 1.740 2.240 2.043 1.408
Log-Logistic I 0.036 0.258 0.625 12.545 13.045 12.848 12.213
Rayleigh I 0.044 0.313 0.309 −4.762 −4.262 −4.459 −5.094

Relief times data
Alpha 0.026 0.150 0.090 34.943 35.648 36.934 35.331
BS 0.074 0.440 0.157 37.631 38.337 39.623 38.020
Exp-Half-Normal 0.110 0.654 0.182 40.087 40.793 42.078 40.475
Gamma 0.105 0.626 0.173 39.637 40.343 41.628 40.025
Inverse Gaussian 0.073 0.431 0.156 37.544 38.250 39.536 37.933
Log-Logistic II 0.051 0.309 0.110 36.953 37.659 38.944 37.342
Log-Normal 0.072 0.425 0.151 37.535 38.241 39.526 37.924
Rayleigh II 0.106 0.626 0.210 39.615 40.321 41.607 40.004
Weibull 0.185 1.092 0.184 45.172 45.878 47.164 45.561
Chi-Squared 0.103 0.610 0.309 64.568 64.791 65.564 64.763
Exponential 0.105 0.624 0.439 67.674 67.896 68.669 67.868
Half-Normal 0.146 0.864 0.413 59.158 59.380 60.154 59.352
Log-Logistic I 0.049 0.287 0.561 67.604 67.827 68.600 67.799
Rayleigh I 0.147 0.874 0.256 46.957 47.179 47.953 47.151

Survival times of animals data
Alpha 0.067 0.507 0.080 −10.614 −10.348 −6.872 −9.200
Burr XII 0.180 1.042 0.144 −4.905 −4.638 −1.162 −3.490
Exp-Half-Normal 0.197 1.136 0.166 −4.402 −4.135 −0.659 −2.987
Exp-Lindley 0.103 0.620 0.113 −10.417 −10.150 −6.674 −9.003
Gamma 0.139 0.813 0.136 −8.340 −8.073 −4.597 −6.925
Gompertz 0.337 1.934 0.191 9.346 9.613 13.088 10.760
Log-Logistic II 0.085 0.561 0.087 −9.385 −9.118 −5.642 −7.970
NH 0.254 1.460 0.264 12.717 12.983 16.459 14.131
Rayleigh II 0.177 1.023 0.190 −5.518 −5.251 −1.776 −4.104
Weibull 0.219 1.264 0.160 −2.506 −2.239 1.236 −1.091
Chi-Squared 0.124 0.734 0.339 70.301 70.388 72.173 71.009
Exponential 0.138 0.808 0.334 27.413 27.500 29.285 28.121
Half-Normal 0.210 1.212 0.281 12.654 12.741 14.525 13.361
Log-Logistic I 0.110 0.662 0.486 59.220 59.307 61.091 59.927
Rayleigh I 0.215 1.237 0.151 −4.427 −4.340 −2.556 −3.720
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2.5 Concluding remarks

We present the Alpha distribution discussed by Salvia (1985), which provided its charac-

terization and a number of structural properties, but did not perform a simulation study and

application to show the usefulness of this distribution. This model have one shape parameter

and one scale parameter and its cdf and pdf involves the standard normal cumulative function.

We study the shapes of the pdf and hrf of the Alpha model. We estimate the model param-

eters by maximum likelihood method, present a Monte Carlo simulation study to evaluate the

assymptotic properties of the maximum likelihood estimators and provide four applications to

real data, which indicate that the Alpha distribution is a competitive model to �t real data, if

compared with well-known distributions in survival analysis �eld.



Chapter 3

The Exponentiated Alpha Distribution

Resumo

Um modelo com três parâmetros denominado Alpha Exponencializado (Exp-Alpha) é proposto

como uma generalização da distribuição Alpha (Katsev, 1968; Wager e Barash, 1971; Sherif,

1983; Salvia, 1985). Discutimos as formas de sua função densidade de probabilidade e da função

taxa de falha e obtemos três formas para a função taxa de falha do modelo proposto: banheira

invertida, crescente e decrescente. Algumas propriedades matemáticas são estudadas, tais como:

desvios médios, estatísticas de ordem, função geratriz de momentos, função quantílica e momen-

tos. O método de máxima verossimilhança é utilizado para estimar os parâmetros do modelo

e obtemos um estimador em forma semi fechada para o parâmetro adicional. Fornecemos um

estudo de simulação de Monte Carlo para avaliar os estimadores de máxima verossimilhança e

três aplicações a dados reais mostram a �exibilidade do novo modelo.

Palavras-chave: Desvios médios. Distribuição Alpha. Estatísticas de ordem. Exponencializada-

G. Função quantílica. Máxima verossimilhança. Momentos.

Abstract

A three-parameter model called Exponentiated Alpha (Exp-Alpha, for short) distribution is pro-

posed as a generalization of the Alpha distribution (Katsev, 1968; Wager and Barash, 1971;

Sherif, 1983; Salvia, 1985). We discuss the shapes of its probability density function and hazard

rate function and we obtain three forms to this function of the proposed model: upside-down

bathtub, increasing and decreasing. Some mathematical properties are studied, such as: gener-

ating function, mean deviations, moments, order statistics and quantile function. The method

of maximum likelihood is used to estimate the model parameters and we obtain a semiclosed

estimator for the additional parameter. We provide a Monte Carlo simulation study to evaluate

the maximum likelihood estimators and three applications to real data show the �exibility of the

new model.

Keywords: Alpha Distribution. Exponentiated class. Maximum Likelihood Estimation. Mean

deviations. Moments. Order statistics. Quantile function.
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3.1 Introduction

The exponentiated class (Gompertz, 1825; Verhulst, 1838, 1845, 1847) is widely applied

to baseline distributions in applications to real data set because this class provide a greater

�exibility in this case. Over many years, many exponentiated type distributions have been

proposed. Mudholkar and Srivastava (1993) studied the shapes of the exponentiated Weibull

hazard rate function (hrf), provided application to real data set and used the maximum likelihood

method to estimate the model parameters. Gupta et al. (1998) proposed a generalization of the

standard exponential distribution, called the exponentiated exponential distribution with two

parameters (shape and scale) similar to the Weibull and gamma families, for example. More

details of the mathematical properties of the exponentiated exponential distribution can be

found in Gupta and Kundu (2001), where they observed the similarity of the new model with

the Weibull and gamma distributions. The exponentiated gamma distribution was proposed by

Nadarajah and Gupta (2007) and they provided some mathematical properties of its distribution,

the maximum likelihood method to estimate the model parameters and illustrated the �exibility

of the new model through applications to drought data. For more examples of the usefulness of

the exponentiated class, see Gupta et al. (1998) and Cordeiro et al. (2011) for the exponentiated

Pareto and exponentiated generalized gamma distributions, respectively. In a general form, for

mathematical properties and estimation of the parameters for some exponentiated distributions,

see AL-Hussaini and Ahsanullah (2015).

The exponentiated class is the most known in survival analysis, more speci�cally in generation

of the new class of distributions. For an arbitrary baseline G(x), a random variable has the

Exponentiated-G (Exp-G) distribution with additional power parameter a > 0 if its cumulative

distribution function (cdf) and probability density function (pdf) are given by

F (x; a) = G(x)a (3.1)

and

f(x; a) = a g(x)G(x)a−1, (3.2)

respectively, where g(x) = dG(x)/dx. We note that there is no complicated function in equation

(3.1).

In this chapter, we study a new model, so-called Exponentiated Alpha (Exp-Alpha, for short)

distribution by combining the Exp-G class with the Alpha distribution, which is present in

Chapter 2 and has cdf and pdf given by

G(x;α, β) =
Φ
(
α− β

x

)
Φ(α)

(3.3)

and
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g(x;α, β) =
β√

2π x2 Φ(α)
exp

{
−1

2

(
α− β

x

)2
}
, (3.4)

respectively, for x > 0, where α > 0 is the shape parameter, β > 0 is the scale parameter and

Φ(·) denote the standard normal cumulative function.

The Alpha distribution is generally used in tool wear problems (Katsev, 1968; Wager and

Barash, 1971). Sherif (1983) suggested its use in modeling lifetimes under accelerated test

conditions and Salvia (1985) described this distribution and its applicability as a model for

accelerated life testing. In this sense, the main aim of this chapter is to provide evidence that

the extension of the Alpha distribution (Exp-Alpha) is more �exible than the Alpha model and

it can be used to �t several data sets.

The rest of this chapter is organized as follows. In Section 3.2, we de�ne the Exp-Alpha

distribution. Explicit expressions for quantile function, ordinary moments, moment generating

function, mean deviations and order statistics are derived in Section 3.3. Maximum likelihood

estimation of the model parameters is investigated in Section 3.4. A simulation study and

applications to real data sets in Section 3.5 illustrate the �exibility of the new distribution for

data modeling. Finally, concluding remarks are given in Section 3.6.

3.2 The Exp-Alpha distribution

In this section, we de�ne the Exp-Alpha distribution. The cdf and pdf of the Exp-Alpha

distribution are given by

F (x; a, α, β) =

Φ
(
α− β

x

)
Φ(α)

a (3.5)

and

f(x; a, α, β) =

aβ exp

{
−1

2

(
α− β

x

)2
}

√
2π x2 Φ(α)a

Φ

(
α− β

x

)a−1

, (3.6)

respectively.

The hrf corresponding to (3.6) is given by

h(x; a, α, β) =

aβ exp

{
−1

2

(
α− β

x

)2
}

Φ
(
α− β

x

)a−1

√
2π x2

[
Φ(α)a − Φ

(
α− β

x

)a] .

A random variable X having density function (3.6) is denoted by X ∼ Exp-Alpha(a, α, β).

In this model, a > 0 and α > 0 are shape parameters and β > 0 is a scale parameter. We

write F (x) = F (x; a, α, β) and f(x) = f(x; a, α, β) in order to eliminate the dependence on the

model parameters.We write F (x) = F (x; a, α, β) and f(x) = f(x; a, α, β) in order to eliminate
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the dependence on the model parameters. The Alpha distribution is clearly a special case of

(3.5) when a = 1.

Plots of the Exp-Alpha pdf and hrf for selected parameter values are displayed in Figure

3.1, respectively. It is evident that the additional shape parameter a allows for a high degree of

�exibility of the Exp-Alpha distribution, i.e., this distribution is more �exible than the Alpha

distribution. So, the proposed model can be very useful for modeling positive real data sets.
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Figure 3.1: (a) Plots of the Exp-Alpha density for some parameter values. Plots of the Exp-
Alpha hazard rate function for some parameter values: (b) Upside-down bathtub hazard rate
function. (c) Increasing hazard rate function. (d) Decreasing hazard rate function.
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3.3 Properties

In this section, we provide some mathematical properties of the Exp-Alpha distribution in

order to show interesting characteristics of the proposed model. It is important to emphasize

that the results presented here are only valid for certain regions of the parametric space due to

non existence of moments for the Alpha distribution.

3.3.1 Quantile function

The quantile function (qf) of X can be obtained by inverting the Exp-Alpha cdf (3.5) as

xu = Q(u) =
β

α− Φ−1{Φ(α)u1/a}
, u ∈ (0, 1).

The median of X is simply x1/2 = Q(1/2). Further, it is possible to generate Exp-Alpha

variates by X = Q(U), where U is a uniform variate on the unit interval (0, 1).

The e�ect of the additional shape parameter a on the skewness and kurtosis of the new

distribution can be based on quantile measures. In this sense, two important measures are the

Bowley skewness (Kenney and Keeping, 1962) and the Moors kurtosis (Moors, 1988).

The Bowley skewness (B) is based on quartiles, while the Moors kurtosis (M) is based on

octiles. These measures are given by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

respectively.

These measures are less sensitive to outliers and they exist even for distributions without

moments. For the normal distribution, B = M = 0. Plots of these skewness and kurtosis

measures for some choices of the parameters α and β as functions of a are displayed in Figure

3.2. These plots indicate that both skewness and kurtosis increase when a increases for some

�xed values of α and β. Further, the skewness is negative for small values of a when α = β = 100.

This fact justify the adequacy of the Exp-Alpha distribution to real data set which has negative

skewness, as we shall see in the Section 3.5.2.

3.3.2 Moments

The ordinary moments of X can be obtained in closed-form as an in�nite weighted linear

combination of the baseline probability weighted moments (PWMs). First, we review the PWMs

of the Alpha distribution since they are required for the ordinary moments of the Exp-Alpha

distribution. If Z ∼ Alpha(α, β) has the pdf (3.4), the (s, r)th PWM of Z is formally de�ned by
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Figure 3.2: Plots of the Exp-Alpha skewness and kurtosis as functions of a for some values of α
and β.

τs,r = E(ZsG(x)r) =

∫ ∞
0

xsG(x)r g(x) dx. (3.7)

Substituting equations (3.3) and (3.4) in (3.7) and after some algebraic manipulations we obtain

τs,r as

τs,r =
c1

2r

r∑
j=0

(
r

j

) ∞∑
k1,...,kj=0

2sj+j∑
m=0

A(k1, . . . , kj)

(
2sj + j

m

)
α2sj+j−m (−β)m I(s−m− 2, α, β),

(3.8)

where c1 = β√
2πΦ(α)r+1 , ak = (−1)k 2(1−2k)/2

√
π(2k+1) k!

, A(k1, . . . , kj) = ak1 . . . akj and sj = k1 + . . . + kj .

Here, I(p, α, β) is the integral given by

I(p, α, β) =

∫ ∞
0

xp exp

{
−1

2

(
α− β

x

)2
}
dx

=
1√
π

{
2(−3/2−p/2)β(p+1)

exp−α
2/2

[
− 1

2

√
2π2αβ L

1/2
p/2

(
α2

2

)
√
β2 sin

(p
2π
)

Γ
(

3
2 + p

2

)
− 1

2

π2(α2 + 1)L
1/2
p/2

(
α2

2

)
cos
(p

2π
)

Γ
(
2 + p

2

) +
1

2

π2α2 L
3/2
p/2

(
α2

2

)
cos
(

1
2π
)

Γ
(
1 + p

2

)]},
where L1/2

p/2

(
α2

2

)
, Γ(·), sin(·) and cos(·) are the Laguerre, gamma, sine and cosine functions,

respectively.

Finally, the moments of X can be expressed from (3.2) as
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E(Xs) =

∫ ∞
0

xs f(x) dx

= a τs,a−1. (3.9)

Then, we obtain the moments of the Exp-Alpha distribution as an in�nite linear combination

of convenient PWMs of the Alpha distribution. Equation (3.9) is the main result of this section.

3.3.3 Generating function

Here, we derive the moment generating function (mgf) M(t) = E(etX) of the Exp-Alpha

distribution. Thus,

M(t) =

∫ ∞
0

etx f(x) dx

=

∫ ∞
0

etx aG(x)a−1 g(x) dx.

Using the power series for the exponential function, the Exp-Alpha mgf reduces to

M(t) = a
∞∑
`=0

d` τ`,a−1,

where d` = t`

`! and τ`,a−1 =
∫∞

0 x`G(x)a−1 g(x) dx is the PWM of the Alpha distribution.

3.3.4 Mean Deviations

If X has the Exp-Alpha distribution with cdf F (x) given by (3.5), we can derive the mean

deviations about the mean µ = E(X) and about the median M from the relations

δ1 =

∫ ∞
0
|x− µ| f(x) dx and δ2 =

∫ ∞
0
|x−M | f(x) dx,

respectively.

De�ning the �rst incomplete moment of X by I(s) =
∫ s

0 x f(x) dx, these measures can be

determined from

δ1 = 2µF (µ)− 2 I(µ) and δ2 = E(X) + 2M F (M)−M − 2 I(M), (3.10)

where F (µ) and F (M) are easily obtained from equation (3.5).

Setting

ρ(s, r) =

∫ s

0
xG(x)r g(x) dx,
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we obtain from equation (3.2)

I(s) = a

∫ s

0
xG(x)a−1 g(x) dx = a ρ(s, a− 1).

Then, I(µ) = a ρ(µ, a− 1).

Combining (3.3) and (3.8) and de�ning

J(s,−m− 1) =

∫ s

0
x−m−1 exp

{
−1

2

(
α− β

x

)2
}
dx,

we can write

ρ(s, r) =
β√

2π 2r Φr+1(α)

r∑
j=0

(
r

j

) ∞∑
k1,...,kj=0

2sj+j∑
m=0

A(k1, . . . , kj)

×
(

2sj + j

m

)
α2sj+j−m (−β)m J(s,−m− 1).

Letting t = α− β/x, the last integral reduces to

J(s,−m− 1) =

∫ α−β/s

−∞

1

βm
(α− t)m−1 e−t

2/2 dt

and using the binomial expansion and interchanging terms, we have

J(s,−m− 1) =
∞∑
`=0

(−1)` αm+1−`

βm+1

(
m+ 1

`

) ∫ α−β/s

−∞
t` e−t

2/2 dt.

We now de�ne

G(`) =

∫ ∞
0

x` e−x
2/2dx = 2(`−1)/2 Γ(`+ 1/2).

For evaluating the integral in J(s,−m− 1), it is required to consider two cases. If α− β/s < 0,

we have

∫ α−β/s

−∞
t` e−t

2/2 dt = (−1)`G(`) + (−1)`+1

∫ −(α−β/s)

0
t` e−t

2/2 dt.

If α− β/s > 0, we have

∫ α−β/s

−∞
t` e−t

2/2 dt = (−1)`G(`) +

∫ α−β/s

0
t` e−t

2/2 dt.
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Further, the integrals of the type
∫ q

0 x
` e−x

2/2 dx can be calculated easily as

∫ q

0
x` e−x

2/2 dx =
2`/4+1/4 q`/2+1/2 e−q

2/4

(`/2 + 1/2)(`+ 3)
M`/4+1/4,`/4+3/4(q2/4)

+
2`/4+1/4 q`/2−3/2 e−q

2/4

`/2 + 1/2
M`/4+5/4,`/4+3/4(q2/4),

where Mk,m(x) is the Whittaker function, which can be expressed in terms of the con�uent

hypergeometric function 1F1 by Mk,m(x) = e−x
2/2 xm+1/2

1F1(1
2 + m − k; 1 + 2m;x), where

1F1(α1;β1;x) =
∑∞

k=0
(α1)k
(β1)k

xk

k! , for α1 > 0, β1 > 0.

Hence, we have all quantities to obtain J(s,−m− 1), ρ(s, r), I(µ) and then the mean devia-

tions δ1 and δ2 in (3.10).

3.3.5 Order statistics

In this section, we derive an explicit expression for the probability density function of the

ith order statistic Xi:n, say fi:n(x), in a random sample size n from the Exp-Alpha distribution

with cdf and pdf given by (3.5) and (3.6), respectively. It is well-known that

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1[1− F (x)]n−i, (3.11)

where B(·, ·) is the Beta function.

Since 0 < F (x) < 1 for x > 0, we can use the binomial expansion of [1 − F (x)]n−i given as

follows

[1− F (x)]n−i =

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)j . (3.12)

Substituting from Equation (3.12) into Equation (3.11), we obtain

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)i+j−1

=
n−i∑
j=0

wj [F (x)]i+j−1 f(x),

(3.13)

where wj = (−1)j n!
j! (i−1)! (n−i−j)! .

Equation (3.13) reveals that the density function of Xi:n is a linear combination of Exp-Alpha

densities with power parameter (i+ j). A direct application of (3.13) is to obtain the moments

and the mgf of the Exp-Alpha order statistics.

The rth moment and the mgf of Xi:n can be written as
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E(Xr
i:n) = a

n−i∑
j=0

wj τr,a(i+j)−1,

and

M(t) = a

n−i∑
j=0

∞∑
r=0

wj dr τr,a(i+j)−1,

respectively, where τr,a(i+j)−1 is de�ned in (3.7) and dr = tr

r! .

3.4 Estimation

In this section, we provide an analytic procedure to obtain the maximum likelihood estima-

tors (MLEs) for the Exp-Alpha parameters. The MLEs are employed due to their interesting

asymptotic properties.

Let (x1, . . . , xn) be a random sample of size n from the Exp-Alpha distribution with unknown

parameter vector θ = (a, α, β)>. The log-likelihood function for θ based on a given sample can

be expressed as

`(θ) =n log

(
aβ√
2π

)
− na log[Φ(α)]− 2

n∑
i=1

log(xi)−
nα2

2
+ αβ

n∑
i=1

1

xi
− β2

2

n∑
i=1

1

x2
i

+ (a− 1)

n∑
i=1

log[Φ(ti)],

(3.14)

where ti =
(
α− β

xi

)
, i = 1, . . . , n.

The components of the score vector U(θ) are given by

Ua(θ) =
∂`(θ)

∂a
=
n

a
+

n∑
i=1

log[Φ(ti)]− n log[Φ(α)], (3.15)

Uα(θ) =
∂`(θ)

∂α
= −nα− naφ(α)

Φ(α)
+ β

n∑
i=1

1

xi
+ (a− 1)

n∑
i=1

φ(ti)

Φ(ti)
,

Uβ(θ) =
∂`(θ)

∂β
=
n

β
+ α

n∑
i=1

1

xi
− β

n∑
i=1

1

x2
i

− (a− 1)
n∑
i=1

φ(ti)

xi Φ(ti)
.

The MLEs, θ̂ = (â, α̂, β̂)>, can be obtained numerically by solving U(θ̂) = 0.

From equation (3.15) we note that it is possible to obtain a semiclosed estimator of a. For
∂`(θ)
∂a = 0, the estimator for a is given by

âα̂,β̂ =
n

n log[Φ(α̂)]−
∑n

i=1 log[Φ(t∗i )]
, (3.16)
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where t∗i = (α̂− β̂
xi

).

The estimative of a can be obtained analytically by (3.16).

Another way to obtain the MLEs is using the pro�le log-likelihood. We suppose a �xed and

rewrite the log-likelihood (3.14) as `(θ) = `a(α, β). By replacing a by âα,β in (3.14), we can

obtain the pro�le log-likelihood function as

`a(α, β) = n log

(
nβ√

2π [n log[Φ(α)]−
∑n

i=1 log[Φ(ti)]]

)

− 2
n∑
i=1

log(xi)−
nα2

2
+ αβ

n∑
i=1

1

xi
− β2

n∑
i=1

1

2x2
i

+

∑n
i=1 log[Φ(ti)]{n− n log[Φ(α)] +

∑n
i=1 log[Φ(ti)]} − n2 log[Φ(α)]

n log[Φ(α)]−
∑n

i=1 log[Φ(ti)]
. (3.17)

The MLEs of α and β can be also determined by maximizing the pro�le log-likelihood function

(3.17) with respect to α and β.

It is possible note that the maximization of (3.17) is more simpler than the maximization

of (3.14) with respect to their respective parameters, since the number of parameters of the

pro�le log-likelihood is smaller, only two, when compared with the number of parameters of the

log-likelihood function, which are three. However, some of the properties already known for the

likelihood function are not valid for the case of the pro�le log-likelihood, since this is not a real

likelihood function.

For interval estimation and hypothesis tests on the model parameters, we require the 3 ×
3 observed information matrix J = J(θ) given in the Appendix. Under general regularity

conditions, (θ̂−θ) is asymptotically normalN3(0, I(θ)−1), where I(θ) is the expected information

matrix. In practice, we can substitute I(θ) by the observed information matrix evaluated at θ̂,

say J(θ̂). The asymptotic multivariate normal N3(0, J(θ̂)−1) distribution of θ̂ can be used to

construct approximate con�dence intervals for the parameters.

3.5 Simulation study and applications

In this section, we perform a Monte Carlo simulation study and we provide three applications

to real data to illustrate the �exibility of the Exp-Alpha distribution.

3.5.1 Simulation study

Here, we provide a Monte Carlo simulation study based on 1, 000 replications to evaluate the

MLEs of the parameters of the Exp-Alpha distribution. Setting α = 1, β = 2 and three di�erent

values of the additional parameter a (a = 2, 4, 6), we evaluate the relative bias (RB) and the

mean squared errors (MSE) for all point estimators based on arti�cially generated samples of

sizes n = 20, 40, 60, 80 and 100. The RB is de�ned by 100×(bias/real value of the parameter)%.
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The results are given in Table 3.1 and we note that, in general, the empirical biases and mean

squared errors decrease when the sample size increases, as expected.

Table 3.1: RB (%) and MSE of the MLE θ̂ for the Exp-Alpha distribution with α = 1 and β = 2.
a â α̂ β̂

n=20 RB (%) MSE RB (%) MSE RB (%) MSE

2 4.2850 0.2722 -1.0400 0.0640 2.5450 0.0958
4 4.8275 1.0004 -1.9200 0.0499 3.4800 0.1131
6 3.7467 1.9971 -1.2700 0.0448 3.4550 0.1278

n=40 RB (%) MSE RB (%) MSE RB (%) MSE

2 2.8350 0.1220 -1.2600 0.0318 1.7100 0.0431
4 2.4750 0.4619 -0.9600 0.0250 1.8300 0.0525
6 2.4967 1.0150 -1.0500 0.0222 1.9750 0.0566

n=60 RB (%) MSE RB (%) MSE RB (%) MSE

2 2.0450 0.0775 -0.9500 0.0207 1.2700 0.0280
4 1.9175 0.2956 -0.9100 0.0165 1.4000 0.0333
6 1.4450 0.5734 -0.6200 0.0129 1.1900 0.0331

n=80 RB (%) MSE RB (%) MSE RB (%) MSE

2 1.1800 0.0553 -0.4600 0.0157 0.6850 0.0200
4 0.5675 0.2007 0.1900 0.0116 0.5200 0.0227
6 1.1367 0.5096 -0.3900 0.0114 0.9300 0.0290

n=100 RB (%) MSE RB (%) MSE RB (%) MSE

2 0.7350 0.0408 -0.1400 0.0119 0.4400 0.0148
4 0.9000 0.1799 -0.3100 0.0101 0.6700 0.0203
6 1.5017 0.4187 -0.8500 0.0095 1.1450 0.0235

3.5.2 Applications to real data

In this section, we provide three applications to real data sets to illustrate the �exibility of

the Exp-Alpha distribution, with pdf given by (3.6). Here, we compare the Exp-Alpha model

with other well-known distributions to �t real data set. These distributions and their probability

density functions are listed in Table 3.2. It is important to emphasize that all these distributions

have support in the positive real set and their parameters are also real positives, except the

location parameter µ ∈ IR of the Log-Normal distribution.

The MLEs of the parameters are computed (as discussed in Section 3.4) and the goodness-

of-�t statistics for Exp-Alpha model are compared with other distributions. We consider the

Anderson-Darling (A*) and Cramér-von Misses (W*), which are described by Chen and Bal-

akrishnan (1995), and Kolmogorov-Smirnov (KS) statistics. Are also calculated other measures

of goodness of �t, such as: Akaike Information Criteria (AIC), Bayesian Information Criterion

(BIC), Consistent Akaike Information Criteria (CAIC) and Hannan-Quinn Information Criterion

(HQIC).

The W* and A* statistics are used to verify which distribution �ts better to the data. Since

the values of W* and A* are smaller for the Exp-Alpha model when compared with those values

of the other models, the new model seems to be a very competitive model for the data. We

use these statistics, where we have a random sample (x1, . . . , xn) with empirical distribution

function Fn(x) and require to test if the sample comes from a special distribution. The W ∗ and

A∗ statistics are given by
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Table 3.2: Distribution, probability density function and reference.
Distribution Probability density function Reference

Exp-Birnbaum-Saunders (Exp-BS) (a, α, β)
a (2αeα

2√
2πβ)−1 x−3/2 (x+ β) exp

[
− (x/β)−(x/β)−1

2α2

]
×

Cordeiro and Lemonte, 20141{
Φ
{
α−1[(x/β)1/2 − (x/β)−1/2]

}}a−1

Exp-Gompertz (α, β, a) αβ a exp[β + αx− β exp(αx)] {1− exp[−β(exp(αx)− 1)]}a−1 Abu-Zinadah and Alou�, 2014

Exp-Lomax (a, λ, α) a, λα [1 + λx]−(α−1) {1− [1 + λx]−α}a−1 Abdul-Moniem and Abdel-Hameed, 2012

Exp-Weibull (a, λ, γ) a γ
λ

(
x
λ

)γ−1
exp

{
−
(
x
λ

)γ}{
1− exp

[
−
(
x
λ

)γ]}a−1
Mudholkar and Srivastava, 1993

Alpha (α, β) β√
2π x2 Φ(α)

exp

{
− 1

2

(
α− β

x

)2
}

Salvia, 1985

Birnbaum-Saunders (BS) (α, β) (2αeα
2√

2πβ)−1 x−3/2 (x+ β) exp
[
− (x/β)−(x/β)−1

2α2

]
Birnbaum and Saunders, 1969

Burr XII (α, β) αβ xα−1

(1+xα)β+1 Burr, 1942

Exp-Half-Normal (σ, a) a
√

2
σ
√
π

exp
{
− x2

2σ2

}
{2 Φ(x)− 1}a−1 Gupta et al., 1998; Cooray and Ananda, 2008

Exp-Lindley (a, θ) a θ2

θ+1
(1 + x) e−θ x

{
1− e−θ x(1+θ+θ x)

1+θ

}a−1

Nadarajah et al., 2011

Gamma (k, θ) xk−1 e−x/θ

θk Γ(k)
Khodabin and Ahmabadi, 20102

Gompertz (α, β) αβ exp[β + αx− β exp(αx)] Abu-Zinadah and Alou�, 20143

Inverse Gaussian (λ, µ)
[

λ
2π x3

]1/2
exp

{
−λ (x−µ)2

2µ2 x

}
Chhikara and Folks, 1989

Log-Normal (µ, σ) 1√
2πσ x

exp
{
− (log x−µ)2

2σ2

}
Johnson, Kotz and Balakrishnan, 1994

Nadarajah-Haghighi (NH) (α, λ) αλ (1 + λx)α−1 exp{1− [1 + λx]α} Nadarajah and Haghighi, 2011

Rayleigh II (µ, λ) 2λ (x− µ)e−λ(x−µ)2 Johnson, Kotz and Balakrishnan, 1994

Weibull (λ, γ) γ
λ

(
x
λ

)γ−1
exp

{
−
(
x
λ

)γ}
Weibull, 1951

Chi-Squared (µ) 1
2µ/2Γ(µ/2)

xµ/2−1 e−x/2 Johnson, Kotz and Balakrishnan, 1994

Exponential (λ) λ e−λx Gupta and Kundu, 1999, 2001

Half-Normal (σ2)
√

2
σ
√
π

exp
{
− x2

2σ2

}
Cooray and Ananda, 2008

Log-Logistic I (α) αxα−1

(1+xα)2
Singh, 19984

Rayleigh I (σ) x
σ2 exp

{
− x2

2σ2

}
Ho�man and Karst, 1975

1with b = 1
2with new parametrization and τ = 1
3with a = 1
4with β = 1
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W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2 dF (x; θ̂n)

} (
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂) (1− F (x; θ̂n))}
dF (x; θ̂n)

} (
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function and F (x; θ̂n) is the speci�ed

distribution function evaluated at the MLE θ̂n of θ. Note that theW ∗ and A∗ statistics are given

by di�erence distances of Fn(x) and F (x; θ̂n). Thus, the lower are theW ∗ and A∗ statistics more

evidence we have that F (x; θ̂n) generates the sample.

The package GenSA available in the R programming language is used to obtain the initial

values of the model parameters and the computations to the �t model are performed using the

function goodness.fit of AdequacyModel package. The numerical BFGS (Broyden-Fletcher-

Goldfarb-Shanno) procedure is used for minimization of the −log-likelihood function.

The data sets are:

(i) Baboon data

Wagner and Altmann (1973) report data from a study conducted in the Amboseli Reserve

in Kenya on the time of the day at which members of a baboon troop descend from the

trees in which they sleep. The time is de�ned as the time at which half of the troop has

descended and begun that day's foraging. For more details about this data set, see Klein

and Moeschberger (1997).

(ii) Sitka size data

This data set gives repeated measurements on the log-size (height times diameter squared)

of 79 Sitka spruce trees, 54 of which were grown in ozone-enriched chambers and 25 of which

were controls. The size was measured eight times in 1989, at roughly monthly intervals.

These data, called `Sitka89' in software R, are avaliable in package MASS.

(iii) Survival times of animals data

These data refers to survival times (in 10 hour units) of animals in a experiment. More

details from this data set can be obtained in Hand et al. (1993).

Table 3.3 gives a descriptive summary of each data set, which includes central tendency

statistics, standard deviation, among others. The distribution of the baboon and survival times

of animals data have positive skewness (right skewed) and positive kurtosis. The sitka size data

has negative skewness (left skewed) and positive kurtosis. We note that the considered data

sets have both positive and negative skewness, whereas only positive values of the kurtosis were

found. This fact can be con�rmed in Section 3.3.1.
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Table 3.3: Descriptive statistics.

Statistic
Data

baboon sitka size animals

Mean 967.80 5.991 0.479
Median 858 6.060 0.400
Std. Dev. 281.51 0.704 0.252
Minimum 656 3.610 0.18
Maximum 1829 7.560 1.24
Skewness 1.81 −0.527 1.153
Kurtosis 2.08 0.061 0.626
n 152 632 48

One of the important device which can help selecting a particular model is the total time

on test (TTT) plot (for more details see Aarset, 1987). This plot is constructed through the

quantities

T (i/n) =

 i∑
j=1

Xj:n + (n− i)Xi:n

/ n∑
j=1

Xj:n versus i/n,

where i = 1, . . . , n and Xj:n is the j-th order statistics of the sample (Mudholkar et al., 1995).

The Figure 3.3 shows the TTT plots for the baboon, sitka size and survival times of animals

data. These plots indicate an increasing hrf and then reveals the adequacy of the Exp-Alpha

distribution to �t these data.
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Figure 3.3: TTT plots (a) baboon data; (b) sitka size data; (c) survival times of animals data.

Tables 3.4, 3.5 and 3.6 give the MLEs (with standard errors in parentheses) for some �tted

models for baboon data, sitka size data and survival times of animals data, respectively. Table

3.7 lists the values of the W*, A*, KS, AIC, CAIC, BIC and HICQ for all �tted models for the

considered three data sets. This table reveals that the Exp-Alpha model corresponds to the best

�t for all data sets, even when compared to distributions (with one, two and three parameters)

well-known in the literature for �t to real data set. Note that we used di�erents scenarios to the

data set in concerning the compared distributions. This fact proves that, in di�erents situations,

the proposed model have a upper performance to the other distributions analyzed.
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Table 3.4: Maximum likelihood estimates (standard errors in parentheses) for the baboon data.
Distribution MLEs (standard errors)

Exp-Alpha (a, α, β) 382.227 4.576 1493.258
(97.130) (0.135) (104.847)

Exp-BS (a, α, β) 97.198 227.070 0.003
(24.852) (12.232) (0.0001)

Exp-Lomax (a, λ, σ) 987.383 2.765 0.012
(359.422) (0.164) (0.001)

Exp-Weibull (a, λ, γ) 1262.253 0.517 0.322
(298.775) (0.160) (0.015)

Alpha (α, β) 4.475 4081.848
(0.280) (244.526)

BS (α, β) 0.244 939.670
(0.014) (18.515)

Exp-Half-Normal (σ, a) 448.961 18.713
(20.231) (3.903)

Exp-Lindley (a, θ) 77.926 0.007
(29.977) (0.0004)

Gamma (k, θ) 15.314 0.015
(1.613) (0.001)

Inverse Gaussian (λ, µ) 15663.260 967.750
(1712.317) (19.511)

Log-Normal (mu, σ) 6.841 0.242
(0.019) (0.013)

Weibull (λ, γ) 1072.822 3.340
(27.804) (0.185)

Half-Normal (σ) 1000.002
(56.705)

Log-Logistic I (α) 0.225
(0.014)

Rayleigh I (σ) 712.48
(28.895)
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Table 3.5: Maximum likelihood estimates (standard errors in parentheses) for the sitka size data.
Distribution MLEs (standard errors)

Exp-Alpha (a, α, β) 0.021 29.789 221.865
(0.005) (3.363) (25.806)

Exp-Lomax (a, λ, α) 719.902 125.468 0.009
(107.046) (3.459) (0.0002)

Exp-Weibull (a, λ, γ) 1775.536 1.697 0.889
(441.300) (0.129) (0.020)

Alpha (α, β) 7.620 44.958
(0.217) (1.264)

BS (α, β) 0.123 5.945
(0.003) (0.029)

Exp-Half-Normal (σ, a) 2.169 109.608
(0.034) (12.594)

Exp-Lindley (a, θ) 732.353 1.432
(135.584) (0.036)

Inverse Gaussian (λ, µ) 388.989 5.990
(21.882) (0.029)

Rayleigh II (µ, λ) 3.603 0.161
(0.005) (0.006)

Chi-Squared (µ) 6.919
(0.137)

Exponential (λ) 0.166
(0.006)

Log-Logistic I (α) 0.864
(0.026)



51

Table 3.6: Maximum likelihood estimates (standard errors in parentheses) for the survival times
of animals data.

Distribution MLEs (standard errors)

Exp-Alpha (a, α, β) 0.042 2.295 2.934
(0.033) (0.821) (1.077)

Exp-Gompertz (α, β, a) 0.008 599.190 6.614
(0.003) (234.662) (1.976)

Alpha (α, β) 2.085 0.812
(0.325) (0.098)

Burr XII (α, β) 2.343 4.923
(0.230) (0.817)

Exp-Half-Normal (σ, a) 0.384 2.625
(0.037) (0.550)

Gamma (k, θ) 4.307 8.986
(0.847) (1.875)

Gompertz (α, β) 2.210 0.403
(0.460) (0.182)

NH (α, λ) 645.929 0.002
(125.455) (0.0003)

Rayleigh II (µ, λ) 0.082 4.545
(0.039) (0.917)

Weibull (λ, γ) 0.544 2.060
(0.040) (0.218)

Chi-Squared (µ) 1.195
(0.150)

Exponential (λ) 2.086
(0.301)

Half-Normal (σ) 0.540
(0.055)

Log-Logistic I (α) 1.656
(0.191)

Rayleigh I (σ) 0.382
(0.027)
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Table 3.7: Goodness-of-�t statistics.
Distribution W ∗ A∗ KS AIC CAIC BIC HQIC

Baboon data
Exp-Alpha 0.669 4.096 0.166 2022.472 2022.634 2031.544 2026.157
Exp-BS 2.001 11.451 0.295 2110.355 2110.518 2119.427 2114.041
Exp-Lomax 1.480 8.676 0.326 2149.798 2149.960 2158.869 2153.483
Exp-Weibull 1.745 10.102 0.314 2170.152 2170.314 2179.223 2173.837
Alpha 1.242 7.391 0.196 2042.278 2042.358 2048.326 2044.735
BS 2.190 12.413 0.249 2085.255 2085.335 2091.303 2087.712
Exp-Half-Normal 2.248 12.709 0.246 2092.018 2092.098 2098.065 2094.475
Exp-Lindley 1.560 9.087 0.196 2057.138 2057.218 2063.185 2059.594
Gamma 2.533 14.164 0.262 2103.842 2103.923 2109.890 2106.299
Inverse Gaussian 2.179 12.358 0.248 2084.725 2084.806 2090.773 2087.182
Log-Normal 2.160 12.275 0.243 2084.313 2084.394 2090.361 2086.770
Weibull 3.450 18.595 0.283 2159.566 2159.646 2165.614 2162.023
Half-Normal 2.912 16.028 0.506 2324.918 2324.945 2327.942 2326.147
Log-Logistic I 2.130 12.119 0.812 3121.695 3121.722 3124.719 3122.923
Rayleigh I 2.925 16.090 0.373 2219.845 2219.872 2222.869 2221.073

Sitka size data
Exp-Alpha 0.694 4.580 0.086 1378.434 1378.472 1391.780 1383.617
Exp-Lomax 2.190 13.751 0.148 1572.675 1572.713 1586.021 1577.858
Exp-Weibull 2.375 14.832 0.146 1568.763 1568.801 1582.109 1573.946
Alpha 2.016 12.730 0.104 1494.123 1494.142 1503.020 1497.578
BS 1.041 6.806 0.080 1408.677 1408.696 1417.574 1412.132
Exp-Half-Normal 1.668 10.643 0.090 1469.040 1469.060 1477.938 1472.496
Exp-Lindley 2.381 14.869 0.110 1536.512 1536.531 1545.410 1539.967
Inverse Gaussian 1.043 6.818 0.080 1408.850 1408.869 1417.748 1412.305
Rayleigh II 1.350 8.651 0.222 1682.724 1682.743 1691.622 1686.180
Chi-Squared 0.803 5.310 0.383 2738.493 2738.500 2742.942 2740.221
Exponential 0.800 5.290 0.498 3528.822 3528.829 3533.271 3530.550
Log-Logistic I 1.119 7.294 0.765 4880.325 4880.331 4884.773 4882.052

Survival times of animals data
Exp-Alpha 0.041 0.326 0.094 −11.425 −10.880 −5.812 −9.304
Exp-Gompertz 0.099 0.600 0.112 −8.653 −8.107 −3.039 −6.531
Alpha 0.067 0.507 0.080 −10.614 −10.348 −6.872 −9.200
Burr XII 0.180 1.042 0.144 −4.905 −4.638 −1.162 −3.940
Exp-Half-Normal 0.197 1.136 0.166 −4.402 −4.135 −0.659 −2.987
Gamma 0.139 0.813 0.136 −8.340 −8.073 −4.597 −6.925
Gompertz 0.337 1.934 0.191 9.346 9.613 13.088 10.760
NH 0.254 1.460 0.264 12.717 12.983 16.459 14.131
Rayleigh II 0.177 1.023 0.190 −5.518 −5.251 −1.776 −4.104
Weibull 0.219 1.264 0.160 −2.506 −2.239 1.236 −1.091
Chi-Squared 0.124 0.734 0.339 70.301 70.388 72.173 71.009
Exponential 0.138 0.808 0.333 27.413 27.500 29.285 28.121
Half-Normal 0.210 1.212 0.281 12.654 12.741 14.525 13.361
Log-Logistic I 0.110 0.662 0.486 59.220 59.307 61.091 59.927
Rayleigh I 0.215 1.237 0.151 −4.427 −4.340 −2.556 −3.720
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3.6 Concluding remarks

We introduce the Exponentiated Alpha (Exp-Alpha) distribution, which generalizes the Al-

pha distribution discussed by Salvia (1985). The new distribution is constructed using the

exponentiated class (Gompertz, 1825; Verhulst, 1838, 1845, 1847), which is widely applied to

baseline distributions in applications to real data set because this class provides a greater �ex-

ibility. The Exp-Alpha model has two shape parameters, one scale parameter and includes as

special model the Alpha distribution. The Exp-Alpha hrf takes various forms depending on its

shape parameters. We provide some mathematical properties of the new distribution includ-

ing explicit expressions for the ordinary moments, generating function, mean deviations, density

function, moments and generating function of the order statistics. These results are valid for cer-

tain regions of the parametric space. We estimate the model parameters by maximum likelihood

method and provide a semiclosed estimator for the additional parameter. Besides that, a study

simulation was performed to evaluated the asymptotic properties of the maximum likelihood

estimates. Three applications to real data are provided to indicate that the new model best �ts

real data set when compared to well-known competitive distributions in the literature.

Appendix

The elements of the observed information matrix J(θ) for the parameters (a, α, β) are

Ja,a =− n

a2
, Ja,α = −nφ(α)

Φ(α)
+

n∑
i=1

φ(ti)

Φ(ti)
, Ja,β = −

n∑
i=1

φ(ti)

xi Φ(ti)
,

Jα,α =− n

{
1 + a

[φ̇(α)]α Φ(α)− φ(α)2

Φ(α)2

}
+ (a− 1)

n∑
i=1

[φ̇(ti)]α Φ(ti)− φ(ti)
2

Φ(ti)2
,

Jα,β =− (a− 1)
n∑
i=1

[φ̇(ti)]β Φ(ti)− φ(ti)
2

xi Φ(ti)2
+

n∑
i=1

1

xi
,

Jβ,β =− n

β2
−

n∑
i=1

1

x2
i

− (a− 1)

n∑
i=1

{
[φ̇(ti)]β
xi Φ(ti)

+
1

x2
i

[
φ(ti)

Φ(ti)

]2
}
,

where ti =
(
α− β

xi

)
, [φ̇(α)]α = ∂ φ(α)

∂ α , [φ̇(ti)]α = ∂ φ(ti)
∂ α and [φ̇(ti)]β = ∂ φ(ti)

∂ β .



Chapter 4

The Kumaraswamy Alpha Distribution

Resumo

Para qualquer distribuição de origem G contínua, Cordeiro e de Castro (2011) propuseram a

família de distribuições Kumaraswamy (Kw-G) com dois parâmetros positivos adicionais. Den-

tro desta classe, de�nimos um modelo com quatro parâmetros denominado distribuição Ku-

maraswamy Alpha (Kw-Alpha), que é uma extensão da distribuição Alpha (Katsev, 1968; Wager

e Barash, 1971; Sherif, 1983; Salvia, 1985). Fornecemos grá�cos da função densidade de proba-

bilidade e função taxa de falha. Obtemos expressões explícitas para os desvios médios, função

geratriz de momentos e momentos ordinários. Determinamos a função densidade de probabili-

dade das estatísticas de ordem. O método de máxima verossimilhança é utilizado para estimar os

parâmetros do modelo e obtemos um estimador em forma semifechada para um dos parâmetros

adicionais. Este procedimento é avaliado por meio de um estudo de simulação de Monte Carlo.

Fornecemos duas aplicações a dados reais para ilustrar a utilidade do novo modelo.

Palavras-chave: Desvios médios. Distribuição Alpha. Estatísticas de ordem. Função quantílica.

Kumaraswamy-G. Máxima verossimilhança. Momentos.

Abstract

For any continuous baseline G distribution, Cordeiro and de Castro (2011) proposed the Ku-

maraswamy (Kw-G) family of distributions with two extra positive parameters. We de�ne a

four-parameter model within this class so-called the Kumaraswamy Alpha (Kw-Alpha) distribu-

tion, which is an extension of the Alpha distribution (Katsev, 1968; Wager and Barash, 1971;

Sherif, 1983; Salvia, 1985). We provide plots of the probability density function and hazard rate

function. Explicit expressions for the mean deviations, moment generating function, ordinary

moments and quantile function are obtained. We determine the probability density function of

the order statistics. The method of maximum likelihood is used to estimate the model parame-

ters and we obtain a semiclosed estimator for one of the additional parameters. This procedure

is assessed through a Monte Carlo simulation study. We provide two applications to real data

to illustrate the usefulness of the new model.

Keywords: Alpha Distribution. Kumaraswamy class. Maximum Likelihood Estimation. Mean

deviations. Moments. Order statistics. Quantile function.
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4.1 Introduction

In recent years, some di�erent generalizations of distributions have received increased atten-

tion in the literature. Generalizing new families of distributions to extend well-known distribu-

tions provide great �exibility in modeling real data, which can be applied in several �elds. For

example, we can refer some papers: Eugene et al. (2002) for the beta class, Zografos and Bal-

akrishnan (2009) for the gamma class and the more recent ones by Alexander et al. (2012) and

Cordeiro et al. (2013), who de�ned the generalized beta-generated and exponentiated generalized

classes, respectively. In a similar manner, for any baseline cumulative distribution function (cdf)

G(x), Cordeiro and de Castro (2011) proposed the Kumaraswamy (Kw) class of distributions

with two additional shape parameters (a, b > 0) and cdf F (x) and probability density function

(pdf) f(x) given by

F (x; a, b) = 1− [1−Ga(x)]b (4.1)

and

f(x; a, b) = ab g(x)Ga−1(x) [1−Ga(x)]b−1, (4.2)

respectively, where g(x) = dG(x)/dx. We note that there is no complicated function in equation

(4.1) in contrast with the beta generalized family (Eugene et al., 2002), which also includes two

extra parameters but involves the incomplete beta function.

In this chapter, we study the so-called Kumaraswamy Alpha (Kw-Alpha, for short) distribu-

tion, which is provided combining the Kw-G family with the Alpha model presented in Chapter

2. A random variable X has an Alpha distribution with shape α > 0 and scale β > 0 parameters,

if its cdf G(x) and pdf g(x) are given by

G(x;α, β) =
Φ
(
α− β

x

)
Φ(α)

(4.3)

and

g(x;α, β) =
β√

2π x2 Φ(α)
exp

{
−1

2

(
α− β

x

)2
}
, (4.4)

respectively, for x > 0 and Φ(·) denotes the standard normal cumulative function.

In the last years, the Kw class has received wide attention of various authors and many

papers are derived from this class proposed by Cordeiro and de Castro (2011). Table 4.1 lists

some distributions that belong to this family.

The rest of this chapter is organized as follows. In Section 4.2, we de�ne the Kw-Alpha

distribution. Explicit expressions for cumulative and density functions, mean deviations, moment

generating function, order statistics, ordinary moments and quantile function are derived in

Section 4.3. Maximum likelihood estimation of the model parameters is investigated in Section

4.4. A simulation study and two applications to real data sets in Section 4.5 illustrate the
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Table 4.1: Kumaraswamy distributions and respective references.
Distribution Reference

Kumaraswamy exponential-Weibull Cordeiro et al., 2016
Kumaraswamy Nadarajah-Haghighi Lima, 2015
Kumaraswamy Gompertz Silva et al., 2015
Kumaraswamy generalized Rayleigh Gomes et al., 2014
Kumaraswamy Pareto Bourguignon et al., 2013
Kumaraswamy Burr XII Paranaíba et al., 2013
Kumaraswamy Generalized Half-Normal Cordeiro et al., 2012a
Kumaraswamy Log-Logistic Santana et al., 2012
Kumaraswamy Gumbel Cordeiro et al., 2012b
Kumaraswamy modi�ed Weibull Cordeiro et al., 2012c
Kumaraswamy generalized gamma de Pascoa et al., 2011
Kumaraswamy Weibull Cordeiro et al., 2010

�exibility of the new distribution for data modeling. Finally, concluding remarks are given in

Section 4.6.

4.2 The Kw-Alpha distribution

In this section, we de�ne the Kw-Alpha distribution. The cdf and pdf of this model are given

by

F (x; a, b, α, β) = 1−

{
1−

[
Φ(α− β

x )

Φ(α)

]a}b
(4.5)

and

f(x; a, b, α, β) =

abβ exp

{
−1

2

(
α− β

x

)2
}

√
2π x2 Φ(α)a

Φ

(
α− β

x

)a−1
{

1−

[
Φ(α− β

x )

Φ(α)

]a}b−1

, (4.6)

respectively, where a, b, α, β > 0.

The hazard rate function (hrf) corresponding to (4.6) is given by

h(x; a, b, α, β) =

abβ exp

{
−1

2

(
α− β

x

)2
}

Φ
(
α− β

x

)a−1

√
2π x2

[
Φ(α)a − Φ

(
α− β

x

)a] .

A random variable X having density function (4.6) is denoted by X ∼ Kw-Alpha(a, b, α, β).

In this model, a, b, α are shape parameters and β is a scale parameter. We write F (x) =

F (x; a, b, α, β) and f(x) = f(x; a, b, α, β) in order to eliminate the dependence on the model

parameters. The Alpha distribution is clearly a special case of (4.5) when a = b = 1. Setting

b = 1 gives the Exponentiated Alpha (Exp-Alpha) distribution. For a = 1, we have the Lehmann



57

type II Alpha distribution corresponding to the cdf F (x) = {1− [1−G(x)]b}.
Plots of the Kw-Alpha pdf and hrf for selected parameter values are displayed in Figures

4.1 and 4.2, respectively. It is evident that the additional shape parameters (a and b) allow for

a high degree of �exibility of the Kw-Alpha distribution, i.e., this distribution is more �exible

than the Alpha distribution, mainly with respect to the hrf. So, the proposed model can be very

useful for modeling positive real data sets.
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Figure 4.1: Plots of the Kw-Alpha density for some parameter values.

4.3 Properties

In this section, we provide some mathematical properties of the Kw-Alpha distribution in

order to show interesting characteristics of the proposed model. It is important to emphasize

that the results presented here are only valid for certain regions of the parametric space due to

non existence of moments for the Alpha distribution.

4.3.1 A Useful Representation

For an arbitrary baseline cdf G(x), a random variable has the Exponentiated-G (Exp-G)

distribution with power parameter a > 0, say Y ∼ Expa(G), if its cdf and pdf are Ha(x) = G(x)a

and ha(x) = a g(x)G(x)a−1, respectively.

We consider the generalized binomial expansion

(1− z)b =

∞∑
k=0

(−1)k
(
b

k

)
zk, (4.7)

which holds for any real non-integer b and |z| < 1. Using expansion (4.7) in equations (4.6) and

(4.5), we can express the pdf and the cdf of the Kw-Alpha distribution as
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Figure 4.2: Plots of the Kw-Alpha hazard rate function for some parameter values. (a) Upside-
down bathtub hazard rate function. (b) Increasing hazard rate function. (c) Decreasing hazard
rate function.
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f(x) = a−1
∞∑
k=0

wk
(k + 1)

h(k+1)a(x) (4.8)

and

F (x) = 1−
∞∑
k=0

(−1)k
(
b

k

)
Hka(x),

respectively, where wk = (−1)k ab
(
b−1
k

)
, h(k+1)a(x) is the Exp-Alpha pdf with power parameter

(k + 1)a given by

h(k+1)a(x) =
β (k + 1) a√
2π x2 Φ(α)

exp

{
−1

2

(
α− β

x

)2
} Φ

(
α− β

x

)
Φ(α)


(k+1)a−1

(4.9)

and Hka(x) = G(x)ka is the Exp-Alpha cdf with power parameter ka.

Equation (4.8) reveals that the Kw-Alpha density function is a linear combination of Exp-

Alpha densities. This result is important to derive some structural properties of the new distri-

bution.

4.3.2 Quantile function

The quantile function (qf) of X can be obtained by inverting the Kw-Alpha cdf (4.5) as

xu = Q(u) =
β

α− Φ−1{Φ(α) [1− (1− u)1/b]1/a}]
, u ∈ (0, 1).

The median of X is simply x1/2 = Q(1/2). Further, it is possible to generate Kw-Alpha

variates by X = Q(U), where U is a uniform variate on the unit interval (0, 1).

The e�ect of the additional shape parameters a and b on the skewness and kurtosis of the

new distribution can be based on quantile measures. In this sense, two important measures are

the Bowley skewness (Kenney and Keeping, 1962) and the Moors kurtosis (Moors, 1988).

The Bowley skewness (B) is based on quartiles, while the Moors kurtosis (M) is based on

octiles. These measures are given by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

respectively.

These measures are less sensitive to outliers and they exist even for distributions without

moments. For the normal distribution, B = M = 0. Plots of these skewness and kurtosis

measures for some choices of the parameter b as functions of a, and for some choices of a as
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functions of b (considering α = 20, β = 25 for skewness and α = 1, β = 3 for kurtosis) are

displayed in Figure 4.3. These plots indicate that skewness increase when a increases for �xed b

and decrease when b increases for �xed a. Further, the kurtosis increases and becomes constant

when a increases for �xed b and decrease when b increases for �xed a.
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Figure 4.3: Plots of the Kw-Alpha skewness and kurtosis as functions of a for some values of b
and as functions of b for some values of a.

4.3.3 Moments

The ordinary moments of X can be obtained in closed-form as an in�nite weighted linear

combination of the baseline probability weighted moments (PWMs). First, we review the PWMs

of the Alpha distribution since they are required for the ordinary moments of the Kw-Alpha

distribution. If Z ∼ Alpha(α, β) has the pdf (4.4), the (s, r)th PWM of Z is formally de�ned by

τs,r = E(ZsG(x)r) =

∫ ∞
0

xsG(x)r g(x) dx. (4.10)
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Substituting equations (4.3) and (4.4) in (4.10) and after some algebraic manipulations we obtain

τs,r as

τs,r =
c1

2r

r∑
j=0

(
r

j

) ∞∑
k1,...,kj=0

2sj+j∑
m=0

A(k1, . . . , kj)

(
2sj + j

m

)
α2sj+j−m (−β)m I(s−m− 2, α, β),

(4.11)

where c1 = β√
2πΦ(α)r+1 , ak = (−1)k 2(1−2k)/2

√
π(2k+1) k!

, A(k1, . . . , kj) = ak1 . . . akj and sj = k1 + . . . + kj .

Here, I(p, α, β) is the integral given by

I(p, α, β) =

∫ ∞
0

xp exp

{
−1

2

(
α− β

x

)2
}
dx

=
1√
π

{
2(−3/2−p/2)β(p+1)

exp−α
2/2

[
− 1

2

√
2π2αβ L

1/2
p/2

(
α2

2

)
√
β2 sin

(p
2π
)

Γ
(

3
2 + p

2

)
− 1

2

π2(α2 + 1)L
1/2
p/2

(
α2

2

)
cos
(p

2π
)

Γ
(
2 + p

2

) +
1

2

π2α2 L
3/2
p/2

(
α2

2

)
cos
(

1
2π
)

Γ
(
1 + p

2

)]},
where L1/2

p/2

(
α2

2

)
, Γ(·), sin(·) and cos(·) are the Laguerre, gamma, sine and cosine functions,

respectively.

Finally, the moments of X can be expressed from (4.8) as

E(Xs) =

∫ ∞
0

xs f(x) dx

= a−1
∞∑
k=0

wk
k + 1

∫ ∞
0

xs h(k+1)a(x) dx

=
∞∑
k=0

wk τs,(k+1)a−1,

where wk = (−1)k ab
(
b−1
k

)
and τs,(k+1)a−1 is de�ned in (4.10).

Then, we obtain the moments of the Kw-Alpha distribution as an in�nite linear combination

of convenient PWMs of the Alpha distribution.

4.3.4 Generating function

In this section, we derive the moment generating function (mgf) M(t) = E(etX) of the Kw-

Alpha distribution. The mgf of X can be obtained using the fact that the Kw-Alpha density

function is a linear combination of Exp-Alpha densities. Thus,

M(t) =

∫ ∞
0

etx a−1
∞∑
k=0

wk
k + 1

h(k+1)a(x) dx

=
∞∑
k=0

wk

∫ ∞
0

etxG(k+1)a−1(x) g(x) dx,
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where wk = (−1)k ab
(
b−1
k

)
.

Using the power series for the exponential function, the Kw-Alpha mgf reduces to

M(t) =
∞∑
k=0

∞∑
`=0

wk t
`

`!
τ`,(k+1)a−1,

where τ`,(k+1)a−1 is de�ned in (4.10).

4.3.5 Mean Deviations

If X has the Kw-Alpha distribution with cdf F (x) given by (4.5), we can derive the mean

deviations about the mean µ = E(X) and about the median M from the relations

δ1 =

∫ ∞
0
|x− µ| f(x) dx and δ2 =

∫ ∞
0
|x−M | f(x) dx,

respectively.

De�ning the �rst incomplete moment of X by I(s) =
∫ s

0 x f(x) dx, these measures can be

determined from

δ1 = 2µF (µ)− 2 I(µ) and δ2 = E(X) + 2M F (M)−M − 2 I(M), (4.12)

where F (µ) and F (M) are easily obtained from equation (4.5).

Setting

ρ(s, r) =

∫ s

0
xG(x)r g(x) dx,

we obtain from equation (4.8)

I(s) =
∞∑
k=0

wk

∫ s

0
xG(k+1)a−1(x) g(x) dx =

∞∑
k=0

wk ρ(s, (k + 1)a− 1).

Then,

I(µ) =
∞∑
k=0

wk ρ(µ, (k + 1)a− 1).

Combining (4.3) and (4.11) and de�ning

J(s,−m− 1) =

∫ s

0
x−m−1 exp

{
−1

2

(
α− β

x

)2
}
dx,

we can write
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ρ(s, r) =
β√

2π 2r Φr+1(α)

r∑
j=0

(
r

j

) ∞∑
k1,...,kj=0

2sj+j∑
m=0

A(k1, . . . , kj)

×
(

2sj + j

m

)
α2sj+j−m (−β)m J(s,−m− 1).

Letting t = α− β/x, the last integral reduces to

J(s,−m− 1) =

∫ α−β/s

−∞

1

βm
(α− t)m−1 e−t

2/2 dt

and using the binomial expansion and interchanging terms, we have

J(s,−m− 1) =

∞∑
`=0

(−1)` αm+1−`

βm+1

(
m+ 1

`

) ∫ α−β/s

−∞
t` e−t

2/2 dt.

We now de�ne

G(`) =

∫ ∞
0

x` e−x
2/2dx = 2(`−1)/2 Γ(`+ 1/2).

For evaluating the integral in J(s,−m− 1), it is required to consider two cases. If α− β/s < 0,

we have

∫ α−β/s

−∞
t` e−t

2/2 dt = (−1)`G(`) + (−1)`+1

∫ −(α−β/s)

0
t` e−t

2/2 dt.

If α− β/s > 0, we have

∫ α−β/s

−∞
t` e−t

2/2 dt = (−1)`G(`) +

∫ α−β/s

0
t` e−t

2/2 dt.

Further, the integrals of the type
∫ q

0 x
` e−x

2/2 dx can be calculated easily as

∫ q

0
x` e−x

2/2 dx =
2`/4+1/4 q`/2+1/2 e−q

2/4

(`/2 + 1/2)(`+ 3)
M`/4+1/4,`/4+3/4(q2/4)

+
2`/4+1/4 q`/2−3/2 e−q

2/4

`/2 + 1/2
M`/4+5/4,`/4+3/4(q2/4),

where Mk,m(x) is the Whittaker function, which can be expressed in terms of the con�uent

hypergeometric function 1F1 by Mk,m(x) = e−x
2/2 xm+1/2

1F1(1
2 + m − k; 1 + 2m;x), where

1F1(α1;β1;x) =
∑∞

k=0
(α1)k
(β1)k

xk

k! , for α1 > 0, β1 > 0.

Hence, we have all quantities to obtain J(s,−m− 1), ρ(s, r), I(µ) and then the mean devia-

tions δ1 and δ2 in (4.12).
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4.3.6 Order statistics

We derive an explicit expression for the density of the ith order statistic Xi:n, say fi:n(x), in

a random sample size n from the Kw-Alpha distribution. It is well-known that

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1[1− F (x)]n−i

=
1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)i+j−1, (4.13)

where B(·) is the beta function.

Substituting (4.1) and (4.2) in equation (4.13), we can write

fi:n(x) =
ab

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
Ga−1(x) [1−Ga(x)]b−1

× {1− [1−Ga(x)]b}i+j−1 g(x). (4.14)

Applying the binomial expansion (4.7) twice in equation (4.14) gives

fi:n(x) =
ab

B(i, n− i+ 1)

∞∑
`=0

δ` h(`+1)a(x), (4.15)

where

δ` =

n−i∑
j=0

∞∑
k=0

(−1)j+k+`

(`+ 1)a

(
n− i
j

)(
i+ j − 1

k

)(
b(k + 1)− 1

`

)
,

and h(`+1)a(x) is given by (4.9).

Equation (4.15) reveals that the density function of Xi:n is a linear combination of Exp-Alpha

densities. A direct application of (4.15) is to obtain the moments and the mgf of the Kw-Alpha

order statistics.

The rth moment of Xi:n is given by

E(Xr
i:n) =

ab

B(i, n− i+ 1)

∞∑
`=0

δ∗` τr,(`+1)a−1,

where δ∗` = [(`+ 1)a] δ` and τr,(`+1)a−1 is de�ned in (4.10).

Finally, the mgf of Xi:n can be written as

M(t) =
ab

B(i, n− i+ 1)

∞∑
`=0

∞∑
r=0

δ∗` t
r

r!
τr,(`+1)a−1.
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4.4 Estimation

Here, we provide an analytic procedure to determine the maximum likelihood estimators

(MLEs) for the Kw-Alpha parameters. The MLEs are employed due to their interesting asymp-

totic properties.

Let (x1, . . . , xn) be a random sample of size n from the Kw-Alpha distribution with unknown

parameter vector θ = (a, b, α, β)>. The log-likelihood function for θ based on a given sample

can be expressed as

`(θ) =n log

(
abβ√

2π

)
− na log[Φ(α)]− 2

n∑
i=1

log(xi)−
nα2

2
+ αβ

n∑
i=1

1

xi
− β2

2

n∑
i=1

1

x2
i

+ (a− 1)
n∑
i=1

log[Φ(ti)] + (b− 1)
n∑
i=1

log

{
1−

[
Φ(ti)

Φ(α)

]a}
, (4.16)

where ti =
(
α− β

xi

)
, i = 1, . . . , n.

The components of the score vector U(θ) are given by

Ua(θ) =
∂`(θ)

∂a
=
n

a
+

n∑
i=1

log

[
Φ(ti)

Φ(α)

]{
1− (b− 1)

Φ(ti)
a

Φ(α)a − Φ(ti)a

}
,

Ub(θ) =
∂`(θ)

∂b
=
n

b
+

n∑
i=1

log

{
1−

[
Φ(ti)

Φ(α)

]a}
, (4.17)

Uα(θ) =
∂`(θ)

∂α
= −nα− naφ(α)

Φ(α)
+ β

n∑
i=1

1

xi
+ (a− 1)

n∑
i=1

φ(ti)

Φ(ti)

− a(b− 1)
n∑
i=1

Φ(ti)
a

Φ(α)a − Φ(ti)a

[
φ(ti)

Φ(ti)
− φ(α)

Φ(α)

]
,

Uβ(θ) =
∂`(θ)

∂β
=
n

β
+ α

n∑
i=1

1

xi
− β

n∑
i=1

1

x2
i

− (a− 1)

n∑
i=1

φ(ti)

xi Φ(ti)

− a(b− 1)

n∑
i=1

φ(ti) Φ(ti)
a−1

xi [Φ(α)a − Φ(ti)a]
.

The MLEs, θ̂ = (â, b̂, α̂, β̂)>, can be obtained numerically by solving U(θ̂) = 0.

It is possible note that from (4.17) we can obtain a semiclosed estimator of b. For ∂`(θ)
∂b = 0,

the estimator for b is given by
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b̂â,α̂,β̂ = − n∑n
i=1 log

{
1−

[
Φ(t∗i )
Φ(α̂)

]â} , (4.18)

where t∗i = (α̂− β̂
xi

).

Another way to obtain the MLEs is using the pro�le log-likelihood. We suppose b �xed and

rewrite the log-likelihood (4.16) as `(θ) = `b(a, α, β). In this manner, we show that b is �xed

but θb = (a, α, β)> varies. To estimate θb we maximize `b(a, α, β) with respect to θb, i.e.,

θ̂b = arg max
θb

`b(a, α, β).

The estimative of b can be obtained analytically by (4.18). By replacing b by b̂a,α,β in (4.16),

we can obtain the pro�le log-likelihood function for a, α and β as

`b(a, α, β) = n

−1− α

2
− a log[Φ(α)] + log

− naβ
√

2π
∑n
i=1 log

{
1−

[
Φ(ti)
Φ(α)

]a}


− 2

n∑
i=1

log(xi) + β

n∑
i=1

1

2xi
+ (a− 1)

n∑
i=1

log[Φ(ti)]−
n∑
i=1

log

{
1−

[
Φ(ti)

Φ(α)

]a}
. (4.19)

Hence, the MLEs of a, α and β can be also determined by maximizing the pro�le log-likelihood

function (4.19) with respect to a, α and β.

We can see that the maximization of (4.19) is more simpler than the maximization of (4.16)

with respect to their respective parameters. This fact is due to the number of parameters to

the pro�le log-likelihood function, which is smaller than the number of parameters to the log-

likelihood function. However, some of the new properties that hold for a true likelihood do not

hold for its pro�le version, because the pro�le log-likelihood is not a real likelihood function.

For interval estimation and hypothesis tests on the model parameters, we require the 4 ×
4 observed information matrix J = J(θ) given in the Appendix. Under general regularity

conditions, (θ̂−θ) is asymptotically normalN4(0, I(θ)−1), where I(θ) is the expected information

matrix. In practice, we can substitute I(θ) by the observed information matrix evaluated at θ̂,

say J(θ̂). The asymptotic multivariate normal N4(0, J(θ̂)−1) distribution of θ̂ can be used to

construct approximate con�dence intervals for the parameters.

4.5 Simulation study and applications

In this section, we perform a Monte Carlo simulation study and we provide two applications

to real data to illustrate the �exibility of the Kw-Alpha distribution.
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4.5.1 Simulation study

Here, we provide a Monte Carlo simulation study (with 1, 000 replications) to quantify bias

of the MLEs of the Kw-Alpha parameters. The simulations are based on the following scenarios:

(i) a = (0.5, 1, 2), b = α = β = 1 and

(ii) b = (1, 2, 4), a = α = β = 1.

We chose to vary the values of parameters a and b since they are additional parameters of the

proposed distribution.

We evaluate the means and standard deviations of the bias for all point estimators based on

arti�cially generated samples of sizes n = 10, 20, . . . , 100. These results are given for every pair

(a, n) and (b, n) in Figure 4.4 and Figure 4.5, respectively. The plots indicate that the means

and standard deviations of the bias decrease when the sample increases as expected.
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Figure 4.4: (a) Mean of the bias for b = α = β = 1. (b) Standard deviation of the bias for
b = α = β = 1.

4.5.2 Applications to real data

Two applications to real data sets are used to illustrate the �exibility of the Kw-Alpha

distribution, with pdf given by (4.6). Here, we compare the Kw-Alpha model with competitive

distributions well-known to �t real data set. These distributions and their probability density

functions are listed in Table 4.2. It is important to emphasize that all these distributions have

support in the positive real set and their parameters are also real positives, except the location

parameter µ ∈ IR of the Log-Normal distribution.

The MLEs of the parameters are computed (as discussed in Section 4.4) and the goodness-of-

�t statistics for Kw-Alpha model are compared with other distributions, as mencioned above. We

consider the Anderson-Darling (A*) and Cramér-von Misses (W*), which are described by Chen

and Balakrishnan (1995), and Kolmogorov-Smirnov (KS) statistics. Are also calculated other
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Figure 4.5: (a) Mean of the bias for a = α = β = 1. (b) Standard deviation of the bias for
a = α = β = 1.

measures of goodness of �t, such as: Akaike Information Criteria (AIC), Bayesian Information

Criterion (BIC), Consistent Akaike Information Criteria (CAIC) and Hannan-Quinn Information

Criterion (HQIC).

The W* and A* statistics are used to verify which distribution �ts better to the data. Since

the values of W* and A* are smaller for the Kw-Alpha model when compared with those values

of the other models, the new model seems to be a very competitive model for the data. We

use these statistics, where we have a random sample (x1, . . . , xn) with empirical distribution

function Fn(x) and require to test if the sample comes from a special distribution. The W ∗ and

A∗ statistics are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2 dF (x; θ̂n)

} (
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂) (1− F (x; θ̂n))}
dF (x; θ̂n)

} (
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function and F (x; θ̂n) is the speci�ed

distribution function evaluated at the MLE θ̂n of θ. Note that theW ∗ and A∗ statistics are given

by di�erence distances of Fn(x) and F (x; θ̂n). Thus, the lower are theW ∗ and A∗ statistics more

evidence we have that F (x; θ̂n) generates the sample.

The package GenSA available in the R programming language is used to obtain the initial

values of the model parameters and the computations to the �t model are performed using the

function goodness.fit of AdequacyModel package. The numerical BFGS (Broyden-Fletcher-

Goldfarb-Shanno) procedure is used for minimization of the −log-likelihood function.
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Table 4.2: Distribution, probability density function and reference.
Distribution Probability density function Reference

EG-Inverse Gaussian (λ, µ, a, b) a b

[
1− Φ

(√
λ
x

(
x
µ
− 1
))]a−1 {

1−
[
1− Φ

(√
λ
x

(
x
µ
− 1
))]}b−1

Lemonte and Cordeiro, 2011

Beta-Exponential (a, b, λ) λ
B(a,b)

e−b λ x [1− e−λx]a−1 Nadarajah and Kotz, 2006

Exp-Alpha (a, α, β)
aβ exp

{
− 1

2

(
α− β

x

)2}
√

2π x2 Φ(α)a
Φ
(
α− β

x

)a−1
Capítulo 3

Exp-Gompertz (α, β, a) αβ a exp[β + αx− β exp(αx)] {1− exp[−β(exp(αx)− 1)]}a−1 Abu-Zinadah and Alou�, 2014

Exp-Weibull (a, λ, γ) a γ
λ

(
x
λ

)γ−1
exp

{
−
(
x
λ

)γ}{
1− exp

[
−
(
x
λ

)γ]}a−1
Mudholkar and Srivastava, 1993

Alpha (α, β) β√
2π x2 Φ(α)

exp

{
− 1

2

(
α− β

x

)2
}

Salvia, 1985

Birnbaum-Saunders (BS) (α, β) (2αeα
2√

2πβ)−1 x−3/2 (x+ β) exp
[
− (x/β)−(x/β)−1

2α2

]
Birnbaum and Saunders, 1969

Burr XII (α, β) αβ xα−1

(1+xα)β+1 Burr, 1942

Exp-Half-Normal (σ, a) a
√

2
σ
√
π

exp
{
− x2

2σ2

}
{2 Φ(x)− 1}a−1 Gupta et al., 1998; Cooray and Ananda, 2008

Exp-Lindley (a, θ) a θ2

θ+1
(1 + x) e−θ x

{
1− e−θ x(1+θ+θ x)

1+θ

}a−1

Nadarajah et al., 2012

Gamma (k, θ) xk−1 e−x/θ

θk Γ(k)
Khodabin and Ahmabadi, 20101

Inverse Gaussian (λ, µ)
[

λ
2π x3

]1/2
exp

{
−λ (x−µ)2

2µ2 x

}
Chhikara and Folks, 1989

Log-Logistic II (α, β)
αβ (β x)α−1

[1+(β x)α]2
Singh, 1998

Log-Normal (µ, σ) 1√
2πσ x

exp
{
− (log x−µ)2

2σ2

}
Johnson, Kotz and Balakrishnan, 1994

Rayleigh II (µ, λ) 2λ (x− µ)e−λ(x−µ)2 Johnson, Kotz and Balakrishnan, 1994

Chi-Squared (µ) 1
2µ/2Γ(µ/2)

xµ/2−1 e−x/2 Johnson, Kotz and Balakrishnan, 1994

Exponential (λ) λ e−λx Gupta and Kundu, 1999, 2001

Half-Normal (σ2)
√

2
σ
√
π

exp
{
− x2

2σ2

}
Cooray and Ananda, 2008

Log-Logistic I (α) αxα−1

(1+xα)2
Singh, 19982

Rayleigh I (σ) x
σ2 exp

{
− x2

2σ2

}
Ho�man and Karst, 1975

1with new parametrization and τ = 1
2with β = 1
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The data sets are:

(i) Glass �bres data

These data are studied by Smith and Naylor (1987), which represent the strengths of 1.5

cm glass �bres, measured at the National Physical Laboratory, England. Unfortunately,

the units of measurement are not given in the paper.

(ii) PBCseq protime data

This data set contains variables referent to multiple laboratory results for each patient.

The variable used for this study is Protime, which is the standardised blood clotting time.

An analysis based on the data can be found in Murtagh et al., 1994.

Table 4.3 gives a descriptive summary of each data set, which includes central tendency

statistics, standard deviation, among others. The distribution of the glass �bres data has negative

skewness (left skewed) and positive kurtosis, whereas the distribution of the PBCseq protime data

has positive skewness (right skewed) and positive kurtosis. We note that the considered data

sets have both positive and negative skewness, whereas only positive values of the kurtosis were

found. This fact can be con�rmed in Section 4.3.2.

Table 4.3: Descriptive statistics.

Statistic
Data

glass �bres PBCseq protime

Mean 1.51 11.00
Median 1.59 10.80
Std. Dev. 0.32 1.48
Minimum 0.55 9.00
Maximum 2.24 36.00
Skewness −0.88 6.23
Kurtosis 0.80 76.73
n 63 1945

One of the important device which can help selecting a particular model is the total time

on test (TTT) plot (for more details see Aarset, 1987). This plot is constructed through the

quantities

T (i/n) =

 i∑
j=1

Xj:n + (n− i)Xi:n

/ n∑
j=1

Xj:n versus i/n,

where i = 1, . . . , n and Xj:n is the j-th order statistics of the sample (Mudholkar et al., 1995).

The Figure 4.6 shows the TTT plot for glass �bres and PBCseq protime data, which denote

an increasing hrf. This plot indicates the adequacy of the Kw-Alpha distribution to �t these

data.

Tables 4.4 and 4.5 give the MLEs (with standard errors in parentheses) for some �tted models

for glass �bres data and PBCseq protime data, respectively. Table 4.6 lists the values of the W*,
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Figure 4.6: TTT plots (a) glass �bres data; (b) PBCseq protime data.

A*, KS, AIC, CAIC, BIC and HICQ for all �tted models for the considered two data sets. The

Table 4.6 reveal that the Kw-Alpha model corresponds to the best �t for all data set, even when

compared to distributions (with one, two and three parameters) well-known in the literature

for �t to real data set. Note that we use di�erent scenarios to the data set in concerning the

compared distributions. This fact proves that, in di�erents situations, the proposed model have

a upper performance to the other distributions analyzed.
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Table 4.4: Maximum likelihood estimates (standard errors in parentheses) for the glass �bres
data.

Distribution MLEs (standard errors)

Kw-Alpha (a, b, α, β) 0.008 0.112 19.476 27.674
(0.003) (0.014) (0.013) (0.013)

EG-Inverse-Gaussian (λ, µ, a, b) 33.133 7.523 988.648 0.345
(0.180) (0.170) (5.658) (0.044)

Exp-Alpha (a, α, β) 0.016 9.890 25.841
(0.005) (2.147) (4.651)

Exp-Gompertz (α, β, a) 0.007 358.014 31.758
(0.001) (56.717) (9.813)

Alpha (α, β) 3.021 4.261
(0.309) (0.392)

Birnbaum-Saunders (α, β) 0.262 1.457
(0.023) (0.048)

Burr XII (α, β) 7.482 0.320
(1.285) (0.065)

Exp-Half-Normal (σ, a) 0.779 11.592
(0.045) (2.588)

Exp-Lindley (a, θ) 26.171 2.990
(7.985) (0.245)

Gamma (k, θ) 17.439 11.573
(3.078) (2.072)

Inverse Gaussian (λ, µ) 21.560 1.506
(3.841) (0.050)

Log-Normal (µ, σ) 0.381 0.257
(0.032) (0.022)

Rayleigh II (µ, λ) 0.526 0.938
(0.024) (0.125)

Chi-Squared (µ) 2.364
(0.221)

Exponential (λ) 0.664
(0.084)

Half-Normal (σ) 1.540
(0.137)

Log-Logistic I (α) 3.451
(0.341)

Rayleigh I (σ) 1.089
(0.068)
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Table 4.5: Maximum likelihood estimates (standard errors in parentheses) for the PBCseq pro-
time data.

Distribution MLEs (standard errors)

Kw-Alpha (a, b, α, β) 5.628 0.515 11.142 102.708
(0.144) (0.020) (0.011) (0.388)

EG-Inverse-Gaussian (λ, µ, a, b) 31.494 1001.475 70.272 543.833
(1.267) (455.149) (4.146) (96.185)

Beta-Exponential (a, b, λ) 1000.000 3.000 0.544
(112.797) (0.177) (0.015)

Exp-Weibull (a, λ, γ) 998.638 0.310 1.634
(152.971) (0.012) (0.038)

Alpha (α, β) 10.315 112.083
(0.166) (1.797)

Exp-Lindley (a, θ) 1370.890 0.852
(115.474) (0.008)

Log-Logistic II (α, β) 18.709 0.092
(0.355) (0.0001)

Table 4.6: Goodness-of-�t statistics.
Distribution W ∗ A∗ KS AIC CAIC BIC HQIC

Glass �bres data
Kw-Alpha 0.264 1.459 0.212 41.689 42.378 50.261 45.060
EG-Inverse-Gaussian 0.305 1.669 0.185 41.881 42.571 50.454 45.253
Exp-Alpha 0.896 4.820 0.312 75.994 76.401 82.423 78.523
Exp-Gompertz 0.785 4.286 0.232 68.548 68.955 74.978 71.077
Alpha 1.234 6.544 0.271 95.207 95.407 99.493 96.893
BS 0.718 3.915 0.238 61.061 61.261 65.347 62.746
Burr XII 1.132 6.128 0.330 101.442 101.642 105.728 103.128
Exp-Half-Normal 0.587 3.223 0.217 53.628 53.828 57.914 55.314
Exp-Lindley 0.761 4.158 0.226 65.239 65.439 69.525 66.925
Gamma 0.568 3.117 0.216 51.903 52.103 56.189 53.589
Inverse Gaussian 0.722 3.939 0.238 61.341 61.541 65.627 63.027
Log-Normal 0.700 3.830 0.231 60.009 60.209 64.296 61.695
Rayleigh II 0.670 3.590 0.289 67.027 67.227 71.313 68.713
Chi-Squared 0.580 3.181 0.427 181.347 181.413 183.490 182.190
Exponential 0.570 3.127 0.418 179.661 179.726 181.804 180.504
Half-Normal 0.470 2.581 0.436 147.915 147.981 150.058 148.758
Log-Logistic I 0.804 4.403 0.534 138.944 139.010 141.088 139.787
Rayleigh I 0.465 2.553 0.333 101.581 101.647 103.724 102.424

PBCseq protime data
Kw-Alpha 0.499 3.983 0.048 5516.175 5516.195 5538.467 5524.372
EG-Inverse-Gaussian 0.703 5.565 0.048 5569.767 5569.787 5592.059 5577.963
Beta-Exponential 1.967 13.953 0.673 5858.173 5858.185 5874.892 5864.320
Exp-Weibull 1.557 11.573 0.073 5743.132 5743.144 5759.851 5749.279
Alpha 2.385 16.604 0.076 5767.879 5767.885 5779.025 5771.977
Exp-Lindley 1.859 13.382 0.163 6066.103 6063.109 6077.249 6070.201
Log-Logistic II 2.426 16.760 0.067 5752.309 5752.315 5763.455 5756.408
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4.6 Concluding remarks

We introduce the Kumaraswamy Alpha (Kw-Alpha) model, which generalizes the Alpha

distribution discussed by Salvia (1985). The new distribution is constructed using Cordeiro

and de Castro's (2011) generator. The Kw-Alpha model has three shape parameters and one

scale parameter, and includes as special models the Exponentiated Alpha, Lehmann type II

Alpha and Alpha distributions. The Kw-Alpha density and hazard rate functions take various

forms depending on its shape parameters. We provide some mathematical properties of the new

distribution including explicit expressions for the ordinary moments, generating function, mean

deviations and density function of the order statistics. These results are valid for certain regions

of the parametric space. We estimate the model parameters by maximum likelihood method and

obtain a semiclosed estimator for one of the parameters. We provide a simulation study and two

applications to real data, which indicate that the new model is a competitive distribution to �t

real data.

Appendix

The elements of the observed information matrix J(θ) for the parameters (a, b, α, β) are

Ja,a =− n

a2
− (b− 1)

n∑
i=1

log2

[
Φ(ti)

Φ(α)

] {
Φ(ti)

a Φ(α)a

[Φ(α)a − Φ(ti)a]2

}
,

Ja,b =−
n∑
i=1

Φ(ti)
a

Φ(α)a − Φ(ti)a
,

Ja,α =
n∑
i=1

φ(ti)Φ(α)− Φ(ti)− φ(α)

Φ(ti) Φ(α)

{
1− a (b− 1)

Φ(ti)
aΦ(α)

[Φ(α)a − Φ(ti)a]2

[
φ(ti)

Φ(ti)
− φ(α)

Φ(α)

]}
,

Ja,β =

n∑
i=1

φ(ti)

xi Φ(ti)

{
a (b− 1)

xi

Φ(α)a Φ(ti)
a−1 φ(ti)

[Φ(α)a − Φ(ti)a]2
− 1

}
,

Jb,b =− n

b2
,

Jb,α = a
n∑
i=1

Φ(ti)
a−1

Φ(α)

[
φ(ti) Φ(α)− Φ(ti)φ(α)

Φ(α)a − Φ(ti)a

]
,
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Jb,β = a
n∑
i=1

Φ(ti)
a−1 φ(ti)

xi [Φ(α)a − Φ(ti)a]
,

Jα,α =− n

{
1 + a

[φ̇(α)]α Φ(α)− φ(α)2

Φ(α)2

}

+ (a− 1)
n∑
i=1

[φ̇(ti)]α Φ(ti)− φ(ti)
2

Φ(ti)2

− a (b− 1)
n∑
i=1

{
aΦ(ti)

a Φ(α)a

[Φ(α)a − Φ(ti)a]
2

[
φ(ti)

Φ(ti)
− φ(α)

Φ(α)

]2

+
Φ(ti)

a

Φ(α)a − Φ(ti)a

[
[φ̇(ti)]α Φ(ti)− φ(ti)

2

Φ(ti)2
− [φ̇(α)]α Φ(α)− φ(α)2

Φ(α)2

]}
,

Jα,β =− (a− 1)

n∑
i=1

[φ̇(ti)]β Φ(ti)− φ(ti)
2

xi Φ(ti)2
+

n∑
i=1

1

xi

+ a2 (b− 1)
n∑
i=1

{
φ(ti) Φ(ti)

a−1 Φ(α)a

xi [Φ(α)a − Φ(ti)a]2

[
φ(ti)

Φ(ti)
− φ(α)

Φ(α)

]}

+ a (b− 1)
n∑
i=1

{
Φ(ti)

a

Φ(α)a − Φ(ti)a

[
[φ̇(ti)]β Φ(ti)− φ(ti)

2

xi Φ(ti)2

]}
,

Jβ,β =− n

β2
−

n∑
i=1

1

x2
i

− (a− 1)

n∑
i=1

{
[φ̇(ti)]β
xi Φ(ti)

+
1

x2
i

[
φ(ti)

Φ(ti)

]2
}

− a (b− 1)
n∑
i=1

{
[φ̇(ti)]β Φ(ti)

a−1

xi [Φ(α)a − Φ(ti)a]

}

+ a (a− 1) (b− 1)
n∑
i=1

{
φ(ti)

2 Φ(ti)
a−2

x2
i [Φ(α)a − Φ(ti)a]

}

+ a2 (b− 1)

n∑
i=1

{
φ(ti)

2 [Φ(ti)
a−1]2

x2
i [Φ(α)a − Φ(ti)a]2

}
,

where ti =
(
α− β

xi

)
, [φ̇(α)]α = ∂ φ(α)

∂ α , [φ̇(ti)]α = ∂ φ(ti)
∂ α and [φ̇(ti)]β = ∂ φ(ti)

∂ β .



Chapter 5

The Exponentiated Generalized

Exponentiated-Generated Family

Resumo

Neste capítulo, apresentamos o gerador de distribuições da exponencializada generalizada expo-

nencializada (EG-Exp-G), que é uma extensão da classe exponencializada generalizada proposta

por Cordeiro et al. (2013). Novas distribuições são propostas como submodelos desta família,

incluindo a distribuição EG-Exp-Alpha. Propriedades da classe de distribuições EG-Exp-G são

derivadas, a saber: desvios médios, entropias de Rényi e Shannon, estatísticas de ordem, função

geratriz de momentos, função quantílica, momentos ordinários e incompletos. Discutimos a es-

timação dos parâmetros do modelo por máxima verossimilhança e fornecemos um estimador em

forma semifechada para um dos parâmetros adicionais. Um estudo de simulação de Monte Carlo

é realizado para avaliar as propriedades assintóticas dos estimadores de máxima verossimilhança.

Quatro aplicações a dados reais são utilizados para ilustrar a utilidade da nova classe.

Palavras-chave: Desvios médios. Distribuição Alpha. Estatísticas de ordem. Exponencializada-

G. Exponencializada Generalizada-G. Função quantílica. Kumaraswamy-G. Máxima verossimi-

lhança. Momentos.

Abstract

In this chapter, we present the exponentiated generalized exponentiated-generated (EG-Exp-G)

family of distributions, which is an extension of the exponentiated generalized class proposed

by Cordeiro et al. (2013). Some new distributions are proposed as submodels of this family,

including the EG-Exp-Alpha distribution. Some of its mathematical properties are derived such

as: mean deviations, moment generating function, order statistics, ordinary and incomplete

moments, quantile function, Rényi and Shannon entropies. We discuss the estimation of the

model parameters by maximum likelihood and provide a semiclosed estimator for one of the

additional parameters. A Monte Carlo simulation study is performed to evaluate the assymptotic

properties of the maximum likelihood estimators. Four applications to real data are used to

illustrate the usefulness of the new family.

Keywords: Alpha Distribution. Exponentiated class. Exponentiated Generalized class. Ku-

maraswamy class. Maximum Likelihood Estimation. Mean deviations. Moments. Order statis-

tics. Quantile function.
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5.1 Introduction

In recent years, some di�erent generalizations of well-known distributions have received in-

creased attention in the literature. For example, we can refer Eugene et al. (2002) for the beta

class, Zografos and Balakrishnan (2009) for the gamma class, Cordeiro and de Castro (2011) for

the Kumaraswamy (Kw) class and the more recent ones by Alexander et al. (2012) and Cordeiro

et al. (2013), who de�ned the generalized beta-generated and exponentiated generalized classes,

respectively. Generalizing distributions provide some advantages, allowing us to de�ne new fam-

ilies and to extend well-known distributions and provide great �exibility in modeling real data,

which can be applied in several �elds.

The generator proposed by Cordeiro et al. (2013) is de�ned as follows. For a baseline

continuous cumulative distribution function (cdf), say G(x), they introduced the exponentiated

generalized (�EG� for short) class of distributions with two additional shape parameters a > 0

and b > 0 with cdf and probability density function (pdf) given by

F1(x; a, b) = {1− [1−G(x)]a}b

and

f1(x; a, b) = a b [1−G(x)]a−1 {1− [1−G(x)]a}b−1 g(x),

respectively.

In this chapter, we propose a new class of distributions that extends the EG class. We call this

new class of distributions as the exponentiated generalized exponentiated-generated (EG-Exp-G)

family with cdf and pdf given by

F (x; a, b, c) = {1− [1−G(x)a]b}c (5.1)

and

f(x; a, b, c) = a b c G(x)a−1[1−G(x)a]b−1{1− [1−G(x)a]b}c−1g(x), (5.2)

respectively, where a > 0, b > 0 and c > 0 are three additional shape parameters.

We note that there is not complicated function in equations (5.1) and (5.2) in contrast with

the generalized beta-generated (GBG) class of distributions de�ned by Alexander et al. (2012),

which also includes three extra shape parameters but involves the incomplete beta function.

The baseline distribution G(x) is clearly a special case of (5.1) when a = b = c = 1. Setting

a = b = 1 or b = c = 1, we obtain the exponentiated type distributions de�ned by Gupta et al.

(1998). For a = b = 1, we obtain the so-called Lehmann type I distribution, say Expa(G). For

a = c = 1, we have the Lehmann type II distribution corresponding to the cdf F (x) = 1− [1−
G(x)]b. So, the family (5.1) generalizes both Lehmann types I and II alternative distributions.

In additional, the EG and Kw-G classes are special cases of the EG-Exp-G family when a = 1

and c = 1, respectively.
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The rest of this chapter is organized as follows. In Section 5.2, we present special models

of the EG-Exp-G family. Some general useful expansions for the EG-Exp-G density and quan-

tile functions and explicit expressions for the moments, generating function, mean deviations,

Rényi and Shannon entropy measures and order statistics are derived in Section 5.3. Maximum

likelihood estimation of the model parameters is discussed in Section 5.4. A simulation study

is provided to evaluate the maximum likelihood estimates of the EG-Exp-Alpha model in Sec-

tion 5.5 and four applications to real data sets show the usefulness of the new family for data

modeling. Concluding remarks are provided in Section 5.6.

5.2 Special EG-Exp-G distributions

In this section, we present some distributions that can arise as special models of the EG-Exp-

G family. In all special cases, the additional parameters a, b and c are positive real numbers.

5.2.1 The EG-Exp-Alpha Model

A random variable X has an Alpha distribution (Katsev, 1968; Wager and Barash, 1971;

Sherif, 1983; Salvia, 1985) with shape α > 0 and scale β > 0 parameters, if its cdf is given by

G(x;α, β) =
Φ
(
α− β

x

)
Φ(α)

,

for x > 0, where Φ(·) denote the standard normal cumulative function.

Then, the EG-Exp-Alpha cumulative distribution is given by

F (x; a, b, c, α, β) =

1−

1−
Φa
(
α− β

x

)
Φa(α)

b

c

.

We can express the EG-Exp-Alpha density function as

f(x; a, b, c, α, β) =
a b c β√

2πx2

Φa−1
(
α− β

x

)
Φa(α)

1−
Φa
(
α− β

x

)
Φa(α)

b−1

×

1−

1−
Φa
(
α− β

x

)
Φa(α)

b

c−1

exp

{
−1

2

(
α− β

x

)2
}
. (5.3)

The hazard rate function (hrf) corresponding to (5.3) is given by
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h(x; a, b, c, α, β) =
a b c β√

2πx2

Φa−1
(
α− β

x

)
Φa(α)

exp

{
−1

2

(
α− β

x

)2
}

×

1−
Φa
(
α− β

x

)
Φa(α)

b−1
1−

1−
Φa
(
α− β

x

)
Φa(α)

b

c−1

× 1

1−

{
1−

[
1− Φa(α−βx )

Φa(α)

]b}c .

Plots of the EG-Exp-Alpha hrf for some parameter values are displayed in Figure 5.1, which shows

that the hrf has upside-down bathtub, increasing and decreasing shapes for di�erent values of

the parameters.

5.2.2 The EG-Exp-Gamma Model

The gamma cumulative distribution (for x > 0) with shape parameter α > 0 and scale

parameter β > 0 is given by

G(x;α, β) =
γ(α, βx)

Γ(α)
,

where γ(α, x) =
∫ x

0 ω
α−1e−ωdω is the incomplete gamma function and Γ(α) =

∫∞
0 ωα−1e−ωdω

is the gamma function. The EG-Exp-Gamma cumulative distribution becomes

F (x; a, b, c, α, β) =
{

1− [1− (γ1(α, βx))a]b
}c
,

where γ1(α, βx) = γ(α, βx)/Γ(α) is the incomplete gamma ratio function.

The corresponding density function reduces to

f(x; a, b, c, α, β) =
a b c βαxα−1e−βx

Γ(α)
[γ1(α, βx)]a−1 {1− [γ1(α, βx)]a}b−1

×
{

1− {1− [γ1(α, βx)]a}b
}c−1

. (5.4)

The hrf corresponding to (5.4) is given by

h(x; a, b, c, α, β) =
a b c [γ1(α, βx)]a−1 {1− [γ1(α, βx)]a}b−1

{
1− {1− [γ1(α, βx)]a}b

}c−1

β−α x1−α eβx Γ(α)
{

1−
{

1− [1− [γ1(α, βx)]a]b
}c} .

Plots of the EG-Exp-Gamma hrf for some parameter values are displayed in Figure 5.2, which

reveals that the hrf has bathtub, increasing and decreasing shapes for di�erent values of the

parameters.
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Figure 5.1: Plots of the EG-Exp-Alpha hazard rate function for some parameter values. (a)
Upside-down bathtub hazard rate function. (b) Increasing hazard rate function. (c) Decreasing
hazard rate function.
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Figure 5.2: Plots of the EG-Exp-Gamma hazard rate function for some parameter values. (a)
Bathtub-shaped hazard rate function. (b) Increasing hazard rate function. (c) Decreasing hazard
rate function.
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5.2.3 The EG-Exp-Gumbel Model

The Gumbel cumulative distribution with parameters µ ∈ IR and σ > 0 is given by

G(x;µ, σ) = exp

{
− exp

(
−x− µ

σ

)}
.

The EG-Exp-Gumbel (EG-Exp-Gu) cumulative distribution becomes

F (x; a, b, c, µ, σ) =

{
1−

{
1−

[
exp

[
− exp

(
−x− µ

σ

)]]a}b}c
,

and the corresponding pdf reduces to

f(x; a, b, c, µ, σ) =
a b c

σ

{
exp

(
−x− µ

σ

)}{
exp

[
− exp

(
−x− µ

σ

)]}a
×
{

1−
[
exp

[
− exp

(
−x− µ

σ

)]]a}b−1

×

{
1−

{
1−

[
exp

[
− exp

(
−x− µ

σ

)]]a}b}c−1

.

5.2.4 The EG-Exp-Log-Normal Model

Let Φ(·) and φ(·) denote the standard normal cumulative and density functions, respectively.

The EG-Exp-Log-Normal (EG-Exp-LogN) cumulative distribution is given by

F (x; a, b, c, µ, σ) =

{
1−

[
1− Φa

(
log x− µ

σ

)]b}c
,

where x > 0, µ ∈ IR is a location parameter and σ > 0 is a scale parameter. The EG-Exp-LogN

density function becomes

f(x; a, b, c, µ, σ) =
a b c

x
Φa−1

(
log x− µ

σ

)[
1− Φa

(
log x− µ

σ

)]b−1

×

{
1−

[
1− Φa

(
log x− µ

σ

)]b}c−1

φ

(
log x− µ

σ

)
. (5.5)

The hrf corresponding to (5.5) is given by

h(x; a, b, c, µ, σ) =

a b cΦa−1
(

log x−µ
σ

) [
1− Φa

(
log x−µ

σ

)]b−1
{

1−
[
1− Φa

(
log x−µ

σ

)]b}c−1

φ
(

log x−µ
σ

)
x

{
1−

{
1−

[
1− Φa

(
log x−µ

σ

)]b}c} .

Plots of the EG-Exp-Log-Normal hrf for some parameter values are displayed in Figure 5.3, which

shows that the hrf has upside-down bathtub, increasing and decreasing shapes for di�erent values
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of the parameters.
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Figure 5.3: Plots of the EG-Exp-Log-Normal hazard rate function for some parameter values. (a)
Upside-down bathtub hazard rate function. (b) Increasing hazard rate function. (c) Decreasing
hazard rate function.

5.2.5 The EG-Exp-Normal Model

The EG-Exp-Normal (EG-Exp-N) cumulative distribution is given by

F (x; a, b, c, µ, σ) =

{
1−

[
1− Φa

(
x− µ
σ

)]b}c
,

where x ∈ IR, µ ∈ IR is a location parameter and σ > 0 is a scale parameter. The EG-Exp-N
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density function becomes

f(x; a, b, c, µ, σ) =
a b c

σ
Φa−1

(
x− µ
σ

)[
1− Φa

(
x− µ
σ

)]b−1

×

{
1−

[
1− Φa

(
x− µ
σ

)]b}c−1

φ

(
x− µ
σ

)
,

where φ(·) denote the standard normal density function.

5.2.6 The EG-Exp-Weibull Model

The cdf of the Weibull distribution is

G(x;λ, γ) = 1− exp{−(λx)γ},

for x, λ, γ > 0, where λ is the scale parameter and γ is the shape parameter.

Then, the EG-Exp-Weibull (EG-Exp-W) cdf and pdf are given, respectively, by

F (x; a, b, c, λ, γ) =
{

1− {1− [1− exp [− (λx)γ ]]a}b
}c

and

f(x; a, b, c, λ, γ) = a b c γ λγxγ−1 exp{−(λx)γ} {1− exp[−(λx)γ ]}a−1

× {1− [1− exp[−(λx)γ ]]a}b−1

× {1− {1− [1− exp[−(λx)γ ]]a}b}c−1. (5.6)

The hrf corresponding to (5.6) is given by

h(x; a, b, c, λ, γ) =

 a b c γ λγxγ−1 exp{−(λx)γ}

1−
{

1− {1− [1− exp [− (λx)γ ]]a}b
}c


× {1− exp[−(λx)γ ]}a−1

× {1− [1− exp[−(λx)γ ]]a}b−1

× {1− {1− [1− exp[−(λx)γ ]]a}b}c−1.

Plots of the EG-Exp-Weibull hrf for some parameter values are displayed in Figure 5.4, which

reveals that the hrf has bathtub, upside-down bathtub, increasing and decreasing shapes for

di�erent values of the parameters.
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Figure 5.4: Plots of the EG-Exp-Weibull hazard rate function for some parameter values. (a)
Bathtub-shaped hazard rate function. (b) Upside-down bathtub hazard rate function. (c) In-
creasing hazard rate function. (d) Decreasing hazard rate function.
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5.3 Properties

In this section, we provide some mathematical properties of the proposed class. Henceforth,

we denote by X a random variable having pdf (5.2).

5.3.1 A Useful Representation

For an arbitrary baseline cdf G(x), a random variable is said to have the Exp-G distribution

with power parameter a > 0, say Y ∼ Expa(G), if its cdf and pdf are Ha(x) = G(x)a and

ha(x) = a g(x)G(x)a−1, respectively.

We consider the generalized binomial expansion

(1− z)b =

∞∑
k=0

(−1)k
(
b

k

)
zk, (5.7)

which holds for any real non-integer b and |z| < 1. Using expansion (5.7) twice in equation (5.1),

we can express the cumulative function of X as

F (x) =
∞∑
j=0

wj+1H(j+1)a(x), (5.8)

where wj+1 =
∑∞

m=1(−1)m+j+1
(
c
m

)(
bm
j+1

)
and H(j+1)a(x) = G(x)(j+1)a denotes (for j ≥ 0) the

cdf of the Exp(j+1)a(G) distribution. By di�erentiating (5.8), we obtain

f(x) =
∞∑
j=0

wj+1 h(j+1)a(x), (5.9)

where h(j+1)a(x) = (j + 1)a g(x)G(x)[(j+1)a]−1 is the Exp-G pdf with power parameter (j + 1)a.

Equation (5.9) reveals that the EG-Exp-G density function is a linear combination of Exp-G

densities.

5.3.2 Quantile function

The quantile function (qf) of X can be obtained by inverting the parent cdf G

xu = Q(u) = G−1{1− [1− u1/c]1/b}1/a, u ∈ (0, 1). (5.10)

The qf of EG-Exp-Alpha distribution (5.3), for example, is given by

x = Q(u) =
β

α− Φ−1
{

Φ(α)
[
1− (1− u1/c)1/b

]1/a} , u ∈ (0, 1).

The median of X is simply x1/2 = Q(1/2). Further, it is possible to generate EG-Exp-Alpha

variates by X = Q(U), where U is a uniform variate on the unit interval (0, 1).
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The e�ect of the additional shape parameters a, b and c on the skewness and kurtosis of the

EG-Exp-Alpha model can be based on quantile measures. In this sense, two important measures

are the Bowley skewness (Kenney and Keeping, 1962) and the Moors kurtosis (Moors, 1988).

These measures are given by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

respectively, where the Bowley skewness (B) is based on quartiles, while the Moors kurtosis (M)

is based on octiles.

For the normal distribution, B = M = 0. Plots of these skewness and kurtosis measures for

some choices of the parameters are displayed in Figure 5.5. These plots indicate that, in general,

both skewness and kurtosis increase when a (c) increases for �xed values of b, c, α and β (a, b,

α and β), and decrease when b increases for �xed values of a, c, α and β. Further, the kurtosis

is negative for small values of b when a = c = α = β = 10 and skewness is negative for small

values of c when a = b = α = β = 10.

If the baseline qf, say QG(u), does not have a closed-form expression, it can usually be written

in terms of a power series

QG(u) =
∞∑
i=0

ai u
i, (5.11)

where the coe�cients ai's are suitably chosen real numbers depending on the parameters of the

G distribution.

From now on, we use a result by Gradshteyn and Ryzhik (2000) (Section 0.314) for a power

series raised to a positive integer n (for n ≤ 1)

QG(u)n =

( ∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i, (5.12)

where the coe�cients cn,i (for i = 1, 2, . . .) are easily obtained from the recurrence equation

(which cn,0 = an0 )

cn,i = (i a0)−1
i∑

m=1

[m (n+ 1)− i] am cn,i−m. (5.13)

Clearly, the quantity cn,i can be determined from cn,0, . . . , cn,i−1 and then from the quantities

a0, . . . , ai.

Next, we derive an expansion for the argument of QG(·) in (5.10). Using the generalized

binomial expansion twice since u ∈ (0, 1), the qf of X can be expressed as
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Figure 5.5: Plots of the EG-Exp-Alpha skewness and kurtosis as functions of a for some values
of b, c, α and β, as function of b for some values of a, c, α and β and as function of c for some
values of a, b, α and β.
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Q(u) = QG

 ∞∑
j=0

δj u
j/c

 , (5.14)

where

δj =

∞∑
k=0

(−1)k+j

(
1/a

k

)(
k/b

j

)
.

For any baseline G distribution, we combine (5.11) and (5.14) to obtain

Q(u) = QG

 ∞∑
j=0

δj u
j/c

 =

∞∑
i=0

ai

 ∞∑
j=0

δj u
j/c

i

,

and then using (5.12) and (5.13), we can write

Q(u) =

∞∑
j=0

ej u
j/c, (5.15)

where ej =
∑∞

i=0 ai ci,j , ci,0 = δi0 and (for j > 1)

ci,j = (j δ0)−1
j∑

m=1

[m (i+ 1)− j] δm ci,j−m.

Equation (5.15) is the main result of this section and allows to obtain various mathematical

quantities for the EG-Exp-G family in terms of integrals in (0, 1).

5.3.3 Moments

Henceforward, let Yj ∼ Exp(j+1)a(G) (for j ≥ 0), i.e. having pdf h(j+1)a(x). A �rst formula

for the nth moment of X can be determined from (5.9) as

µ′n = E(Xn) =

∞∑
j=0

wj+1E(Y n
j ). (5.16)

Expressions for moments of several exponentiated distributions are given by Nadarajah and Kotz

(2006), which can be used to obtain E(Xn). We now provide an application of (5.16) by taking

the baseline Weibull with cdf given by

G(x;λ, γ) = 1− exp{−(λx)γ}

where γ > 0 is the shape parameter and λ > 0 is the scale parameter. The corresponding

Exp-Weibull (Exp-W) density function with power parameter a > 0 is given by

π(x;λ, γ) = aγ λγ xγ−1 exp{−(λx)γ} {1− exp[−(λx)γ ]}a−1. (5.17)

The nth moment of (5.17), say ρn, becomes (by Cordeiro et al., 2012)
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ρn = λ−n Γ(n/γ + 1)
∞∑
r=0

wr

(r + 1)n/γ
, (5.18)

where

wr =
a

(r + 1)

∞∑
i=0

(−1)i+r
(

(i+ 1)a− 1

r

)
.

Combining (5.16) and (5.18), we obtain the nth moment of the EG-Exp-Weibull distribution

given by (5.6) as

µ′n = λ−n Γ(n/γ + 1)
∞∑

j,r,i=0

(−1)i+r[(j + 1)a]
(

(i+1)(j+1)a−1
r

)
wj+1

(r + 1)n/γ+1
.

A second formula for E(Xn) follows from (5.9) as

µ′n = E(Xn) =
∞∑
j=0

[(j + 1)a]wj+1 τ(n, (j + 1)a− 1), (5.19)

where τ(n, a) is given in terms of the baseline qf QG(u) = G−1(u) as

τ(n, a) =

∫ ∞
−∞

xnG(x)ag(x)dx =

∫ 1

0
QG(u)nuadu.

The ordinary moments of several EG-Exp-G distributions can be determined directly from

(5.19). Next, we provide two examples. First, the moments of the EG-Exp-Exponential (with

parameter λ > 0) distribution are given by

µ′n = n!λn
∞∑

j,m=0

(−1)n+m [(j + 1)a]
(

[(j+1)a]−1
m

)
wj+1

(m+ 1)n+1
.

Second, for the EG-Exp-Standard logistic distribution, where the baseline cdf is G(x) = (1 +

e−x)−1, we obtain (for t < 1) using a result by Prudnikov et al. (1986) (Section 2.6.13, equation

4)

µ′n =
∞∑
j=0

[(j + 1)a]wj+1

(
∂

∂t

)n
B(t+ (j + 1)a, 1− t)|t=0,

where B(a, b) =
∫ 1

0 t
a−1 (1− t)b−t dt is the beta function.

The central moments (µn) and cumulants (κn) of X can be easily obtained from the ordinary

moments using well-know relationships.

For empirical purposes, the shapes of many distributions can be usefully described by the

incomplete moments. The nth incomplete moment of X follows as

mn(y) =

∫ y

−∞
xn f(x) dx =

∞∑
j=0

[(j + 1)a]wj+1

∫ G(y)

0
QG(u)n u[(j+1)a]−1du. (5.20)
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This integral in (5.20) can be evaluated for most baseline G distributions.

5.3.4 Generating function

In this section, we provide two general formulae for the moment generating function (mgf)

M(t) = E(etX) of X. A �rst formula for M(t) comes from (5.9) as

M(t) =
∞∑
j=0

wj+1Mj(t),

where Mj(t) is the mgf of Yj . Hence, M(t) can be determined from the generating function of

the Exp-G distribution.

A second formula for M(t) can be derived from (5.9) as

M(t) =
∞∑
j=0

[(j + 1)a]wj+1 ρ(t, (j + 1)a− 1), (5.21)

where ρ(t, a) is given by

ρ(t, a) =

∫ ∞
−∞

etxG(x)ag(x)dx =

∫ 1

0
exp{tQG(u)}uadu.

We can obtain the mgfs for several EG-Exp-G distributions directly from equation (5.21). For

example, the generating functions of the EG-Exp-Exponential (with parameter λ and t < λ−1)

and EG-Exp-Standard logistic (for t < 1) distributions are given by

M(t) =
∞∑
j=0

[(j + 1)a]B((j + 1)a, 1− λt)wj+1

and

M(t) =
∞∑
j=0

[(j + 1)a]B(t+ (j + 1)a, 1− t)wj+1,

respectively.

5.3.5 Mean Deviations

The mean deviations about the mean (δ1 = E(|X − µ′1|) and about the median (δ2 =

E(|X −M |)) of X can be expressed as

δ1 = 2µ′1F (µ′1)− 2m1(µ′1) and δ2 = µ′1 − 2m1(M), (5.22)

respectively, where µ′1 = E(X), M = Median(X) is the median given by M = Q(1/2), F (µ′1) is

easily obtained from the cdf (5.1) and m1(z) =
∫ z
−∞ xf(x)dx is the �rst incomplete moment.

Here, we provide two formulae to compute δ1 and δ2. The �rst equation for m1(z) can be

derived from (5.9) as
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m1(z) =
∞∑
j=0

wj+1Jj+1(z), (5.23)

where

Jj+1(z) =

∫ z

−∞
xh(j+1)a(x)dx. (5.24)

Equation (5.24) is the basic quantity to compute the mean deviations of the Exp-G distribu-

tions. Hence, the mean deviations in (5.22) depend only on the mean deviations of the Exp-G

distribution. So, alternative representations for δ1 and δ2 are

δ1 = 2µ′1F (µ′1)− 2
∞∑
j=0

wj+1Jj+1(µ′1) and δ2 = µ′1 − 2
∞∑
j=0

wj+1Jj+1(M).

A simple application of (5.23) and (5.24) refers to the EG-Exp-Weibull distribution. The

Exp-W density function (for x > 0) with power parameter (j+ 1)a, shape parameter γ and scale

parameter λ is

h(j+1)a(x) = γ λγ (j + 1)a xγ−1 exp{−(λx)γ} [1− exp{−(λx)γ}][(j+1)a]−1

and then

Jj+1(z) = γ λγ (j + 1)a

∫ z

0
xγ exp{−(λx)γ}[1− exp{−(λx)γ}][(j+1)a]−1dx

= γ λγ (j + 1)a
∞∑
r=0

(−1)r
(

(j + 1)a− 1

r

) ∫ z

0
xγ exp{−(r + 1)(λx)γ}dx.

The last integral is just the incomplete gamma function and then the mean deviations for the

EG-Exp-Weibull distribution can be determined from

m1(z) = λ−1
∞∑

j,r=0

(−1)r[(j + 1)a]wj+1

(r + 1)1+1/γ

(
(j + 1)a− 1

r

)
γ(1 + γ−1, (r + 1)(λz)γ).

A second general formula for m1(z) can be derived setting u = G(x) in equation (5.9)

m1(z) =
∞∑
j=0

(j + 1)awj+1 Tj+1(z), (5.25)

where

Tj+1(z) =

∫ G(z)

0
QG(u)u[(j+1)a]−1du. (5.26)

In a similar way, the mean deviations of any EG-Exp-G distribution can be determined

from equations (5.25) and (5.26). For example, the mean deviations of the EG-Exp-Exponential
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distribution (with parameter λ) follow by using the generalized binomial expansion from the

function

Tj+1(z) = λ−1 Γ((j + 1)a− 1)
∞∑
k=0

(−1)k{1− exp(−kλz)}
Γ((j + 1)a− 1− k)(k + 1)!

.

These equations can be addressed to obtain Bonferroni and Lorenz curves, which represent

another important application of the �rst incomplete moment. For a given probability π, these

curves are de�ned by B(π) = m1(q)/(πµ′1) and L(π) = m1(q)/µ′1, respectively, where µ
′
1 = E(X)

and q = Q(π) is given by (5.10).

5.3.6 Entropy measure

The entropy of a random variable is a measure of variation of the uncertainty. Recently,

numerous measures of entropy have been studied and compared in the literature. Here, we will

derive the Rényi and Shannon entropies (Shannon, 1948; Rényi, 1961).

The Rényi entropy of a random variable X with pdf f(x) is given by

IR(λ) =
1

1− λ
log

(∫ ∞
−∞

f(x)λdx

)
,

for λ > 0 and λ 6= 1.

Using the binomial expansion (5.7) twice in equation (5.2), we can write

f(x)λ = (abc)λ
∞∑
`=0

δ`G(x)λ(a−1)+a` g(x)λ,

where

δ` =
∞∑
k=0

(−1)k+`

(
λ(c− 1)

k

)(
bk + λ(b− 1)

`

)
.

Then, the Rényi entropy of X reduces to

IR(λ) =
1

1− λ
log

{
(abc)λ

∞∑
`=0

δ` I`

}
, (5.27)

where

I` =

∫ ∞
−∞

G(x)λ(a−1)+a` g(x)λ dx

can be determined from the baseline G distribution, at least numerically.

The Shannon entropy of a random variable X is de�ned by IS = E{− log[f(X)]}. It is a

special case of the Rényi entropy when λ ↑ 1, i.e., the Shannon entropy can be obtained by

limiting λ ↑ 1 in (5.27). However, it is easier to derive an expression for IS from its de�nition.

We have
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IS =− log(abc)− (a− 1)E{log[G(X)]} − E{log[g(X)]}

− (b− 1)E{log[1−G(X)a]} − (c− 1)E{log[1− [1−G(X)a]b]}. (5.28)

The expectations in (5.28) can be evaluated numerically for given G(·) and g(·). By using

the linear representation (5.9) and Prudnikov et al. (1986) (Section 2.6.3, equation 2), the �rst

two expectations in (5.28) can be expressed as

E{log[G(X)]} =
∞∑
j=0

(j + 1)awj+1

∫ ∞
−∞

log[G(x)]G(x)[(j+1)a]−1g(x)dx

= −
∞∑
j=0

wj+1

(j + 1)a

and

E{log[g(X)]} =

∞∑
j=0

(j + 1)awj+1

∫ ∞
−∞

log[g(x)]G(x)[(j+1)a]−1g(x)dx,

respectively. The last equation can be also be given in terms of the baseline qf as

E{log[g(X)]} =

∞∑
j=0

(j + 1)awj+1

∫ ∞
−∞

log[g(QG(u))]u[(j+1)a]−1du,

where this integral can be evaluated for most baseline distributions at least numerically.

Changing variables and calculating the integral by Prudnikov et al. (1986) (Section 2.6.9,

equation 7 and Section 2.6.3, equation 2), we can write the remaining expectations in (5.28) as

E{log[1−G(X)a]} = − 1

bc
[C + ψ(c+ 1)]

and

E{log[1− [1−G(X)a]b]} = − 1

c2
,

respectively, where C is Euler's constant.
Then, the Shannon entropy can be expressed as

IS =− log(abc) + (a− 1)

∞∑
j=0

wj+1

(j + 1)a

−
∞∑
j=0

(j + 1)awj+1

∫ ∞
−∞

log[g(x)]G(x)[(j+1)a]−1g(x)dx

+
b− 1

bc
[C + ψ(c+ 1)] +

c− 1

c2
.
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5.3.7 Order statistics

Suppose X1, . . . , Xn is a random sample from the EG-Exp-G family. Let Xi:n denote the ith

order statistic. It is well-known that the density of Xi:n is given by

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1[1− F (x)]n−i

=
1

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)i+j−1. (5.29)

Substituting (5.1) and (5.2) in equation (5.29), we can write

fi:n(x) =
abc

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
G(x)a−1[1−G(x)a]b−1

× {1− [1−G(x)a]b}c(j+1)−1g(x). (5.30)

Applying the binomial expansion (5.7) twice in (5.30), fi:n(x) reduces to

fi:n(x) =
∞∑
`=0

ρ` h(`+1)a(x), (5.31)

where

ρ` =
abc

B(i, n− i+ 1)

n−i∑
j=0

∞∑
k=0

(−1)j+k+`

a(`+ 1)

(
n− i
j

)(
c(i+ j)− 1

k

)(
b(k + 1)− 1

`

)
,

h(`+1)a(x) is the Exp-G density function with power parameter (` + 1)a. It reveals that the

density of Xi:n is a linear combination of Exp-G density functions.

Equation (5.31) is the main result of this section. So, several mathematical properties like

generating function, mean deviations, ordinary and incomplete moments of the EG-Exp-G order

statistics can be obtained from those quantities of the Exp-G distribution. The rth moment of

Xi:n, for example, is given by

E(Xr
i:n) =

∞∑
`=0

[(`+ 1)a]ρ` τ(r, (`+ 1)a− 1),

where τ(r, a) is de�ned in (5.19).

Further, the mgf of Xi:n can be expressed as

M(t) =

∞∑
`=0

[(`+ 1)a]ρ` ρ(t, (`+ 1)a− 1),

where ρ(t, a) is given by (5.21).
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5.4 Estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters

of the EG-Exp-G family. Let (x1, . . . , xn) be a random sample of size n from this family with

vector of parameters θ> = (a, b, c, τ>), where τ is a p× 1 vector of unknown parameters of the

parent cdf G(x; τ ). The log-likelihood function for the vector of parameters θ can be expressed

as

`(θ) =n log(a b c) +
n∑
i=1

log[g(xi; τ )] + (a− 1)
n∑
i=1

log[G(xi; τ )]

+ (b− 1)
n∑
i=1

log[1−G(xi; τ )a] + (c− 1)
n∑
i=1

log{1− [1−G(xi; τ )a]b}. (5.32)

The components of the score vector U(θ) are given by

Ua(θ) =
n

a
+

n∑
i=1

log[G(xi; τ )]

{
1− (b− 1)G(xi; τ )a

1−G(xi; τ )a
+
b(c− 1)G(xi; τ )a[1−G(xi; τ )a]b−1

1− [1−G(xi; τ )a]b

}
,

Ub(θ) =
n

b
+

n∑
i=1

log[1−G(xi; τ )a]

{
1− (c− 1)[1−G(xi; τ )a]b

1− [1−G(xi; τ )a]b

}
,

Uc(θ) =
n

c
+

n∑
i=1

log{1− [1−G(xi; τ )a]b}, (5.33)

Uτj (θ) =

n∑
i=1

{
[ġ(xi; τ )]τj
g(xi; τ )

+
(a− 1)[Ġ(xi; τ )]τj

G(xi; τ )
−
a(b− 1)G(xi; τ )a−1[Ġ(xi; τ )]τj

1−G(xi; τ )a

+
ab(c− 1)G(xi; τ )a−1[1−G(xi; τ )a]b−1[Ġ(xi; τ )]τj

1− [1−G(xi; τ )a]b

}
,

where [ġ(xi; τ )]τj = ∂g(xi;τ )
∂τj

and [Ġ(xi; τ )]τj = ∂G(xi;τ )
∂τj

for j = 1, . . . , p.

The MLEs, θ̂ = (â, b̂, ĉ, τ̂>)>, can be obtained numerically by solving U(θ̂) = 0.

It is possible note from (5.33) that we can obtain a semiclosed estimator of c. For ∂`(θ)
∂c = 0,

the estimator for c is given by

ĉâ,b̂,τ̂ = − n∑n
i=1 log

{
1− [1−G(xi; τ̂ )â]

b̂
} . (5.34)

Another way to obtain the MLEs is using the pro�le log-likelihood. We suppose c �xed and

rewrite the log-likelihood (5.32) as `(θ) = `c(a, b, τ ). In this manner, we show that c is �xed but

θc = (a, b, τ>)> varies. To estimate θc, we maximize `c(a, b, τ ) with respect to θc.



97

The estimative of c can be obtained analytically by (5.34). By replacing c by ĉa,b,τ in (5.32),

we can obtain the pro�le log-likelihood function for a, b and τ as

`c(a, b, τ ) = n log

{
− na b∑n

i=1 log{1− [1−G(xi; τ )a]b}

}
+

n∑
i=1

log[g(xi; τ )]

+ (a− 1)
n∑
i=1

log[G(xi; τ )] + (b− 1)
n∑
i=1

log[1−G(xi; τ )a]

− n−
n∑
i=1

log{1− [1−G(xi; τ )a]b}. (5.35)

Hence, the MLEs of a, b and τ can be also determined by maximizing the pro�le log-likelihood

function (5.35) with respect to a, b and τ , respectively.

We can see that the maximization of (5.35) is more simpler than the maximization of (5.32)

with respect to their respective parameters. This fact is due to the number of parameters to

the pro�le log-likelihood function, which is smaller than the number of parameters to the log-

likelihood function. However, some of the new properties that hold for a true likelihood do not

hold for its pro�le version, because the pro�le log-likelihood is not a real likelihood function.

For interval estimation and hypothesis tests on the model parameters, we require the (p +

3) × (p + 3) observed information matrix J = J(θ) given in the Appendix. Under standard

regularity conditions (θ̂−θ) is asymptotically normalNp+3(0, I(θ)−1), where I(θ) is the expected

information matrix. In practice, we can substitute I(θ) by the observed information matrix

evaluated at θ̂, say J(θ̂). The multivariate normal distribution Np+3(0, J(θ̂)−1) can be used to

construct approximate con�dence intervals for the parameters.

5.5 Simulation study and applications

In this section, we perform a Monte Carlo simulation study and provide four applications to

real data to illustrate the �exibility of the EG-Exp-G class through the EG-Exp-Alpha (5.3),

EG-Exp-Gamma (5.4) and EG-Exp-Log-Normal (5.5) models.

5.5.1 Simulation study

Here, we provide a Monte Carlo simulation study (with 1, 000 replications) to quantify bias

of the MLEs of the EG-Exp-Alpha parameters. The simulations are based on the following

scenarios:

(i) a = (7, 9, 12), c = β = 1, b = 5, α = 2,

(ii) b = (2, 4, 5), a = c = α = β = 1 and

(iii) c = (1, 2, 5), a = α = β = 1, b = 5.
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We chose to vary the values of parameters a, b and c since they are extra parameters of the

EG-Exp-G class.

We evaluate the means and standard deviations of the bias for all point estimators based

on arti�cially generated samples of sizes n = 10, 20, . . . , 100. These results are given for every

pair (a, n), (b, n) and (c, n) in Figure 5.6, Figure 5.7 and Figure 5.8, respectively. The plots

indicate that, in general, the means and standard deviations of the bias decrease when the

sample increases as expected.
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Figure 5.6: (a) Mean of the bias for c = β = 1, b = 5, α = 2. (b) Standard deviation of the bias
for c = β = 1, b = 5, α = 2.
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Figure 5.7: (a) Mean of the bias for a = b = α = β = 1. (b) Standard deviation of the bias for
a = b = α = β = 1.
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Figure 5.8: (a) Mean of the bias for a = α = β = 1, b = 5. (b) Standard deviation of the bias
for a = α = β = 1, b = 5.

5.5.2 Applications to real data

In this section, we provide four applications to real data sets to illustrate the �exibility of

the EG-Exp-G family and we use as example the EG-Exp-Alpha, EG-Exp-Gamma and EG-

Exp-Log-Normal distributions with pdfs given by (5.3), (5.4) and (5.5), respectively. Here, we

compare the mencioned EG-Exp-G models with competitive distributions well-known to �t real

data set, as shown in Table 5.1. It is important to emphasize that all these distributions have

support in the positive real set and their parameters are also positive reals, except the location

parameter µ ∈ IR of the Log-Normal distribution.

The MLEs of the parameters are computed (as discussed in Section 5.4) and the goodness-of-

�t statistics for EG-Exp-Alpha, EG-Exp-Gamma and EG-Exp-Log-Normal models are compared

with other distributions, as mencioned above. We consider the Cramér-von Misses (W*) and

Anderson-Darling (A*), which are described by Chen and Balakrishnan (1995), and Kolmogorov-

Smirnov (KS) statistics. Other measures of goodness of �t are also calculated, such as: Akaike

Information Criteria (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Informa-

tion Criteria (CAIC) and Hannan-Quinn Information Criterion (HQIC).

The W* and A* statistics are used to verify which distribution �ts better to the data. Since

the values of W* and A* are smaller for the EG-Exp-G models when compared with those values

of the other distributions, the proposed model seems to be a very competitive model for the data.

We use these statistics, where we have a random sample (x1, . . . , xn) with empirical distribution

function Fn(x) and require to test if the sample comes from a special distribution. The W ∗ and

A∗ statistics are given by
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Table 5.1: Distribution, probability density function and reference.
Distribution Probability density function Reference

EG-Log-Logistic II (α, β, a, b) a b αβ (β x)α−1

[1+(β x)α]2

{
1− (β x)α

1+(β x)α

}a−1 {
1−

[
1− (β x)α

1+(β x)α

]a}b−1

Cordeiro et al., 2013; Singh, 1998

Exp-Alpha (a, α, β)
aβ exp

{
− 1

2 (α− βx )
2
}

√
2π x2 Φ(α)a

Φ
(
α− β

x

)a−1
Capítulo 3

Exp-Lomax (a, λ, α) a, λα [1 + λx]−(α−1) {1− [1 + λx]−α}a−1 Abdul-Moniem and Abdel-Hameed, 2012

Exp-Weibull (a, λ, γ) a γ
λ

(
x
λ

)γ−1
exp

{
−
(
x
λ

)γ}{
1− exp

[
−
(
x
λ

)γ]}a−1
Mudholkar and Srivastava, 1993

Alpha (α, β) β√
2π x2 Φ(α)

exp
{
− 1

2

(
α− β

x

)2}
Salvia, 1985

Birnbaum-Saunders (BS) (α, β) (2αeα
2√

2πβ)−1 x−3/2 (x+ β) exp
[
− (x/β)−(x/β)−1

2α2

]
Birnbaum and Saunders, 1969

Burr XII (α, β) αβ xα−1

(1+xα)β+1 Burr, 1942

Exp-Half-Normal (σ, a) a
√

2
σ
√
π

exp
{
− x2

2σ2

}
{2 Φ(x)− 1}a−1 Gupta et al., 1998; Cooray and Ananda, 2008

Exp-Lindley (a, θ) a θ2

θ+1
(1 + x) e−θ x

{
1− e−θ x(1+θ+θ x)

1+θ

}a−1

Nadarajah et al., 2012

Gamma (k, θ) xk−1 e−x/θ

θk Γ(k)
Khodabin and Ahmabadi, 20101

Inverse Gaussian (λ, µ)
[

λ
2π x3

]1/2
exp

{
−λ (x−µ)2

2µ2 x

}
Chhikara and Folks, 1989

Log-Logistic II (α, β) αβ (β x)α−1

[1+(β x)α]2
Singh, 1998

Log-Normal (µ, σ) 1√
2πσ x

exp
{
− (log x−µ)2

2σ2

}
Johnson, Kotz and Balakrishnan, 1994

Rayleigh II (µ, λ) 2λ (x− µ)e−λ(x−µ)2 Johnson, Kotz and Balakrishnan, 1994

Chi-Squared (µ) 1

2µ/2Γ(µ/2)
xµ/2−1 e−x/2 Johnson, Kotz and Balakrishnan, 1994

Exponential (λ) λ e−λx Gupta and Kundu, 1999, 2001

Half-Normal (σ)
√

2
σ
√
π

exp
{
− x2

2σ2

}
Cooray and Ananda, 2008

Log-Logistic I (α) αxα−1

(1+xα)2
Singh, 1998

Rayleigh I (σ) x
σ2 exp

{
− x2

2σ2

}
Ho�man and Karst, 1975

1with β = 1
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W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2 dF (x; θ̂n)

} (
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂) (1− F (x; θ̂n))}
dF (x; θ̂n)

} (
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function and F (x; θ̂n) is the speci�ed

distribution function evaluated at the MLE θ̂n of θ. Note that theW ∗ and A∗ statistics are given

by di�erence distances of Fn(x) and F (x; θ̂n). Thus, the lower are theW ∗ and A∗ statistics more

evidence we have that F (x; θ̂n) generates the sample.

The package GenSA available in the R programming language is used to obtain the initial

values of the model parameters and the computations to the �t model are performed using the

function goodness.fit of AdequacyModel package. The numerical BFGS (Broyden-Fletcher-

Goldfarb-Shanno) procedure is used for minimization of the −log-likelihood function.

The data sets are:

(i) Duration data

The duration data refers to eruption time (in minutes) from the `Old Faithful' geyser in

Yellowstone National Park, Wyoming, United States. The version of the eruptions data

comes from Azzalini and Bowman (1990) and is of continuous measurement from August

1 to August 15, 1985. These data, called `geyser' in software R, are avaliable in package

MASS.

(ii) Sitka size data

This data set gives repeated measurements on the log-size (height times diameter squared)

of 79 Sitka spruce trees, 54 of which were grown in ozone-enriched chambers and 25 of which

were controls. The size was measured eight times in 1989, at roughly monthly intervals.

These data, called `Sitka89' in software R, are avaliable in package MASS.

(iii) Cancer data

These data represent remission times (in months) of a random sample of 128 bladder cancer

patients reported in Lee and Wang (2003).

(iv) Percentage of body fat data

This data set refers to the percentages of body fat determined by underwater weighting

and various body circumference measurements for 250 men. For details about these data,

see http://lib.stat.cmu.edu/datasets/bodyfat.

Table 5.2 gives a descriptive summary of each data set, which includes central tendency

statistics, standard deviation, among others. The distribution of the duration data has negative
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skewness (left skewed) and negative kurtosis, whereas the distribution of the sitka size data has

negative skewness (left skewed) and positive kurtosis. Furthermore, the distribution of the cancer

data has positive skewness and positive kurtosis and the distribution of the body fat data is right

skewed and presents negative kurtosis.

Table 5.2: Descriptive statistics.

Statistic
Data

duration sitka size cancer body fat

Mean 3.461 5.991 9.366 19.300
Median 4.000 6.060 6.395 19.250
Std. Dev. 1.147 0.704 10.508 8.230
Minimum 0.833 3.610 0.080 3.000
Maximum 5.450 7.560 79.050 47.500
Skewness −0.450 −0.527 3.248 0.194
Kurtosis −1.431 0.061 15.195 −0.402
n 299 632 128 250

One of the important device which can help selecting a particular model is the total time

on test (TTT) plot (for more details see Aarset, 1987). This plot is constructed through the

quantities

T (i/n) =

 i∑
j=1

Xj:n + (n− i)Xi:n

/ n∑
j=1

Xj:n versus i/n,

where i = 1, . . . , n and Xj:n is the j-th order statistics of the sample (Mudholkar et al., 1995).

The Figure 5.9 shows the TTT plot for the studied data, which indicates an increasing hrf for

the duration data, sitka data and body fat data, and an upside-down bathtub rate function for

the cancer data. This fact can be con�rmed through the Figures 5.1, 5.2 and 5.3 and then indicate

the adequacy of the EG-Exp-Alpha, EG-Exp-Gamma and EG-Exp-Log-Normal distributions to

�t these data.

Tables 5.3, 5.4, 5.5 and 5.6 give the MLEs (with standard errors in parentheses) for some

�tted models for duration data, sitka size data, cancer data and body fat data, respectively.

Table 5.7 lists the values of the W*, A*, KS, AIC, CAIC, BIC and HICQ for all �tted models

for all data sets. This table reveals that the EG-Exp model corresponds to the best �t for all

data set, even when compared to distributions (with one and two parameters) well-known in the

literature for �t to real data set. Note that we use di�erent scenarios to the data set in concerning

the compared distributions, shown that the proposed class have a competitive performance when

compared to the other distributions analyzed.
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Figure 5.9: TTT plots (a) duration data; (b) sitka size data; (c) cancer data; (d) body fat data.
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Table 5.3: Maximum likelihood estimates (standard errors in parentheses) for the duration data.
Distribution MLEs (standard errors)

EG-Exp-Alpha (a, b, c, α, β) 156.993 234.751 0.281 0.154 0.230
(0.007) (50.329) (0.023) (0.008) (0.008)

EG-Log-Logistic II (α, β, a, b) 3.012 227.068 0.316 432.863
(1.324) (0.986) (0.139) (61.522)

Exp-Alpha (a, α, β) 0.444 2.179 8.888
(0.123) (0.160) (1.072)

Alpha (α, β) 2.189 6.652
(0.130) (0.316)

BS (α, β) 0.390 3.214
(0.015) (0.071)

Burr XII (α, β) 9.632 0.088
(3.157) (0.029)

Inverse Gaussian (λ, µ) 21.860 3.460
(1.787) (0.079)

Log-Normal (µ, σ) 1.174 0.385
(0.022) (0.015)

Chi-Squared (µ) 4.186
(0.148)

Exponential (λ) 0.288
(0.016)

Half-Normal (σ) 3.645
(0.149)

Log-Logistic I (α) 1.278
(0.057)
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Table 5.4: Maximum likelihood estimates (standard errors in parentheses) for the sitka size data.
Distribution MLEs (standard errors)

EG-Exp-Alpha (a, b, c, α, β) 854.159 491.839 2.165 1.406 0.249
(111.684) (169.734) (0.305) (0.108) (0.032)

Exp-Lomax (a, λ, α) 719.902 125.468 0.009
(107.046) (3.459) (0.0002)

Exp-Weibull (a, λ, γ) 1775.536 1.697 0.889
(441.300) (0.129) (0.020)

Alpha (α, β) 7.620 44.958
(0.217) (1.264)

BS (α, β) 0.123 5.945
(0.003) (0.029)

Exp-Half-Normal (σ, a) 2.169 109.608
(0.034) (12.594)

Exp-Lindley (a, θ) 732.353 1.432
(135.584) (0.036)

Inverse Gaussian (λ, µ) 388.989 5.990
(21.882) (0.029)

Log-Normal (µ, σ) 1.782 0.123
(0.004) (0.003)

Rayleigh II (µ, λ) 3.603 0.161
(0.005) (0.006)

Chi-Squared (µ) 6.919
(0.137)

Exponential (λ) 0.166
(0.006)

Log-Logistic I (α) 0.864
(0.026)

Table 5.5: Maximum likelihood estimates (standard errors in parentheses) for the cancer data.
Distribution MLEs (standard errors)

EG-Exp-Gamma (a, b, c, α, β) 6.928 0.405 0.183 1.158 0.195
(0.317) (0.005) (0.022) (0.026) (0.025)

BS (α, β) 1.374 4.571
(0.086) (0.446)

Burr XII (α, β) 2.334 0.233
(0.354) (0.039)

Inverse Gaussian (λ, µ) 3.381 9.365
(0.422) (1.377)

Chi-Squared (µ) 6.745
(0.301)

Half-Normal (σ) 14.045
(0.877)

Log-Logistic I (α) 0.789
(0.055)

Rayleigh I (σ) 9.931
(0.438)
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Table 5.6: Maximum likelihood estimates (standard errors in parentheses) for the body fat data.
Distribution MLEs (standard errors)

EG-Exp-Log-Normal (a, b, c, µ, σ) 0.187 9.110 0.181 4.164 0.162
(0.012) (0.170) (0.031) (0.014) (0.011)

Exp-Lomax (a, λ, σ) 6.396 13.790 0.010
(0.784) (2.396) (0.002)

BS (α, β) 0.532 16.870
(0.023) (0.548)

Exp-Lindley (a, θ) 2.871 0.155
(0.316) (0.008)

Gamma (k, θ) 4.609 0.238
(0.398) (0.021)

Inverse Gaussian (λ, µ) 63.454 19.301
(5.675) (0.673)

Log-Logistic II (α, β) 3.507 0.055
(0.185) (0.001)

Log-Normal (µ, σ) 2.847 0.512
(0.032) (0.022)

Chi-Squared (µ) 18.239
(0.371)

Exponential (λ) 0.051
(0.003)

Half-Normal (σ) 20.976
(0.938)

Log-Logistic I (α) 0.537
(0.026)
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Table 5.7: Goodness-of-�t statistics.
Distribution W ∗ A∗ KS AIC CAIC BIC HQIC

Duration data
EG-Exp-Alpha 3.934 21.545 0.279 918.696 918.900 937.198 926.101
EG-Log-Logistic II 4.928 26.726 1.000 1385.753 1385.889 1400.555 1391.677
Exp-Alpha 5.507 29.089 0.306 1079.644 1079.725 1090.745 1084.087
Alpha 5.564 29.290 0.289 1091.063 1091.104 1098.464 1094.025
BS 4.817 26.121 0.284 981.445 981.486 988.846 984.407
Burr XII 5.096 26.849 0.344 1404.967 1405.007 1412.368 1407.929
Inverse Gaussian 4.841 26.234 0.285 983.533 983.574 990.934 986.495
Log-Normal 4.853 26.396 0.280 985.132 985.172 992.533 988.094
Chi-Squared 4.532 24.891 0.299 1161.955 1161.969 1165.656 1163.436
Exponential 4.523 24.849 0.369 1342.419 1342.433 1346.120 1343.900
Half-Normal 4.199 23.261 0.339 1209.551 1209.565 1213.252 1211.032
Log-Logistic I 5.014 27.163 0.645 1718.910 1718.923 1722.610 1720.391

Sitka size data
EG-Exp-Alpha 0.617 4.121 0.068 1377.567 1377.662 1399.811 1386.206
Exp-Lomax 2.190 13.751 0.148 1572.675 1572.713 1586.021 1577.858
Exp-Weibull 2.375 14.832 0.146 1568.763 1568.801 1582.109 1573.946
Alpha 2.016 12.730 0.104 1494.123 1494.142 1503.020 1497.578
BS 1.041 6.806 0.080 1408.677 1408.696 1417.574 1412.132
Exp-Half-Normal 1.668 10.643 0.090 1469.040 1469.060 1477.938 1472.496
Exp-Lindley 2.381 14.869 0.110 1536.512 1536.531 1545.410 1539.967
Inverse Gaussian 1.043 6.818 0.080 1408.850 1408.869 1417.748 1412.305
Log-Normal 1.033 6.760 0.079 1407.923 1407.942 1416.821 1411.379
Rayleigh II 1.350 8.651 0.222 1682.724 1682.743 1691.622 1686.180
Chi-Squared 0.803 5.310 0.383 2738.493 2738.500 2742.942 2740.221
Exponential 0.800 5.290 0.498 3528.822 3528.829 3533.271 3530.550
Log-Logistic I 1.119 7.294 0.765 4880.325 4880.331 4884.773 4882.052

Cancer data
EG-Exp-Gamma 0.035 0.238 0.050 830.707 831.198 844.967 836.501
BS 0.413 2.561 0.168 864.083 864.179 869.787 866.401
Burr XII 0.749 4.554 0.250 911.033 911.129 916.737 913.350
Inverse Gaussian 0.655 3.990 0.192 884.610 884.706 890.314 886.927
Chi-Squared 0.137 0.819 0.164 1006.399 1006.431 1009.251 1007.558
Half-Normal 0.441 2.591 0.201 864.232 864.264 867.084 865.391
Log-Logistic I 0.193 1.277 0.526 1011.721 1011.752 1014.573 1012.879
Rayleigh I 0.466 2.729 0.352 984.531 984.563 987.383 985.690

Body fat data
EG-Exp-Log-Normal 0.063 0.405 0.046 1761.320 1761.566 1778.927 1768.406
Exp-Lomax 0.627 3.764 0.091 1799.209 1799.306 1809.773 1803.460
BS 0.758 4.561 0.115 1806.801 1806.850 1813.844 1809.636
Exp-Lindley 0.403 2.431 0.079 1779.858 1779.906 1786.901 1782.692
Gamma 0.323 1.958 0.076 1773.375 1773.424 1780.418 1776.210
Inverse Gaussian 0.821 4.930 0.118 1811.724 1811.773 1818.767 1814.559
Log-Logistic II 0.605 3.642 0.077 1799.264 1799.312 1806.307 1802.098
Log-Normal 0.714 4.288 0.098 1802.968 1803.017 1810.011 1805.803
Chi-Squared 0.320 1.939 0.146 1857.217 1857.233 1860.738 1858.634
Exponential 0.327 1.980 0.261 1982.084 1982.100 1985.605 1983.501
Half-Normal 0.131 0.809 0.221 1886.590 1886.606 1890.111 1888.007
Log-Logistic I 0.819 4.904 0.684 2703.389 2703.405 2706.911 2704.806
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5.6 Concluding remarks

We propose the exponentiated generalized exponentiated-generated (EG-Exp-G) family of

distributions, which is an extension of the exponentiated generalized (EG) class proposed by

Cordeiro et al. (2013). The EG-Exp-G class includes as special cases the two classes of Lehmann's

alternatives and the EG and Kw-G (Cordeiro and de Castro, 2011) classes of distributions. Some

new distributions are proposed as submodels of this family, including the EG-Exp-Alpha distri-

bution. We provide some mathematical properties of the new class including explicit expressions

for the quantile function, moments, generating function, mean deviations, Rényi entropy, Shan-

non entropy and order statistics. We estimate the model parameters by maximum likelihood

method and provide a semiclosed estimator for one of the extra parameters. A Monte Carlo

simulation study and four applications to real data show that the new family is a competitive

model to �t real data when compared with well-known distributions used in survival analysis.

Appendix

The elements of the observed information matrix J(θ) for the parameters (a, b, c, τ ) are given

by

Ja,a =− n

a2
−

n∑
i=1

[logG(xi; τ )]2×{
b(c− 1)Ga(xi; τ )[1−Ga(xi; τ )]b{[1−Ga(xi; τ )]b + bGa(xi; τ )− 1}

[1−Ga(xi; τ )]2{1− [1−Ga(xi; τ )]b}2 +
(b− 1)Ga(xi; τ )

[1−Ga(xi; τ )]2

}
,

Ja,b =−
n∑
i=1

logG(xi; τ )×{
(c− 1)Ga(xi; τ )[1−Ga(xi; τ )]b{b log[1−Ga(xi; τ )]− [1−Ga(xi; τ )]b + 1}

[1−Ga(xi; τ )]{[1−Ga(xi; τ )]b − 1}2 +
Ga(xi; τ )

1−Ga(xi; τ )

}
,

Ja,c = b

n∑
i=1

Ga(xi; τ ) logG(xi; τ )[1−Ga(xi; τ )]b−1

{1− [1−Ga(xi; τ )]b} ,

Ja,τj =

n∑
i=1

[Ġ(xi; τ )]τj
G(xi; τ )

− (b− 1)

n∑
i=1

[Ġ(xi; τ )]τj G
a−1(xi; τ )

[1−Ga(xi; τ )]2
× {[1 + a logG(xi; τ )][1−Ga(xi; τ )] + aGa(xi; τ ) logG(xi; τ )}

+ b(c− 1)

n∑
i=1

[Ġ(xi; τ )]τjG
a−1(xi; τ )[1−Ga(xi; τ )]b−1

{1− [1−Ga(xi; τ )]b}2 ×{[
1 + a logG(xi; τ )− a(b− 1)Ga(xi; τ ) logG(xi; τ )[1−Ga(xi; τ )]−1

]
×[

1− [1−Ga(xi; τ )]b
]
−abGa(xi; τ ) logG(xi; τ )[1−Ga(xi; τ )]b−1

}
,
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Jb,b =− n

b2
− (c− 1)

n∑
i=1

[1−Ga(xi; τ )]b {log[1−Ga(xi; τ )]}2

{1− [1−Ga(xi; τ )]b}2 ,

Jb,c =−
n∑
i=1

[1−Ga(xi; τ )]b log[1−Ga(xi; τ )]

1− [1−Ga(xi; τ )]b
,

Jb,τj =− a
n∑
i=1

[Ġ(xi; τ )]τjG
a−1(xi; τ )

1−Ga(xi; τ )

+ a(c− 1)

n∑
i=1

Ga−1(xi; τ )[Ġ(xi; τ )]τj [1−Ga(xi; τ )]b−1

{1− [1−Ga(xi; τ )]b}2 ×{
{1 + b log[1−Ga(xi; τ )]} {1− [1−Ga(xi; τ )]b}+ b[1−Ga(xi; τ )]b log[1−Ga(xi; τ )]

}
,

Jc,c =− n

c2
, Jc,τj = ab

n∑
i=1

Ga−1(xi; τ )[Ġ(xi; τ )]τj [1−Ga(xi; τ )]b−1

1− [1−Ga(xi; τ )]b
,

Jτj ,τs =

n∑
i=1

[g̈(xi; τ )]τjτsg(xi; τ )− [ġ(xi; τ )]τj [ġ(xi; τ )]τs
[g(xi; τ )]2

+ (a− 1)

n∑
i=1

{[G̈(xi; τ )]τjτsG(xi; τ )− [Ġ(xi; τ )]τj [Ġ(xi; τ )]τs}
[G(xi; τ )]2

+ a(b− 1)

n∑
i=1

Ga−1(xi; τ )

[1−Ga(xi; τ )]2

{
[G̈(xi; τ )]τjτs − (a− 1)G−1(xi; τ )[Ġ(xi; τ )]τj [Ġ(xi; τ )]τs

− aGa−1(xi; τ )[Ġ(xi; τ )]τj [Ġ(xi; τ )]τs

}
×[1−Ga(xi; τ )]

+ ab(c− 1)

n∑
i=1

Ga−1(xi; τ )[1−Ga(xi; τ )]b−1{1− [1−Ga(xi; τ )]b}
{1− [1−Ga(xi; τ )]b}2 ×[

(a− 1)G−1(xi; τ )[Ġ(xi; τ )]τj [Ġ(xi; τ )]τs

− a(b− 1)Ga−1(xi; τ )[Ġ(xi; τ )]τj [1−G
a(xi; τ )]−1 + [G̈(xi; τ )]τjτs

]

− (ab)2(c− 1)

n∑
i=1

G2(a−1)(xi; τ )[1−Ga(xi; τ )]2(b−1)[Ġ(xi; τ )]τj [Ġ(xi; τ )]τs
{1− [1−Ga(xi; τ )]b}2 ,

where [ġ(xi; τ )]τj = ∂g(xi;τ )
∂τj

, [Ġ(xi; τ )]τj = ∂G(xi;τ )
∂τj

, [g̈(xi; τ )]τjτs = ∂2g(xi;τ )
∂τjτs

, [G̈(xi; τ )]τjτs =

∂2G(xi;τ )
∂τj∂τs

, for j, s = 1, . . . , p.



Chapter 6

General Conclusions

In this thesis, we discuss the Alpha distribution (Katsev, 1968; Wager and Barash, 1971;

Sherif, 1983; Salvia, 1985). The authors provided the characterization and a number of structural

properties of this distribution, but do not perform simulation study and applications to real data

sets. The Alpha model have one shape parameter and one scale parameter and its cumulative

distribution function (cdf) and probability density function (pdf) involves the standard normal

cumulative function. We study the shapes of the pdf and hazard rate function (hrf) of the Alpha

distribution and we show that its hrf has increasing and decreasing shapes for di�erent values

of the parameters. Applications to real data give strong evidence that the Alpha distribution

is a competitive model, comparing to distributions already well-known in the literature, as for

example Birnbaum-Saunders (BS), Burr XII, Gamma, Inverse Gaussian, Nadarajah-Haghighi

(NH), Weibull, among others. In this sense, we show that the Alpha distribution is a �exible

model and then its use as baseline applied to known generators becomes interesting for survival

area.

It is important to emphatize that until now no extension of the Alpha distribution has been

studied. In this way, we introduce the Exponentiated Alpha (Exp-Alpha) and the Kumaraswamy

Alpha (Kw-Alpha) distributions, which both generalizes the Alpha model. The Exp-Alpha dis-

tribution is constructed using the exponentiated class (Gompertz, 1825; Verhulist, 1838, 1845,

1847), which is widely applied to baseline distributions in applications to real data set because

this class provide a greater �exibility. The Exp-Alpha model has two shape parameters, one scale

parameter and its hrf takes various forms depending on its shape parameters. The Kw-Alpha

model is constructed using Cordeiro and de Castro's (2011) generator and has three shape pa-

rameters and one scale parameter, including as special models the Exp-Alpha, Lehmann type II

Alpha and Alpha distributions.

We also propose the Exponentiated Generalized Exponentiated-Generated (EG-Exp-G) fami-

ly of distributions, which is an extension of the Exponentiated Generalized (EG) class proposed

by Cordeiro et al. (2013). The EG-Exp-G class includes as special cases the two classes of

Lehmann's alternatives and the EG and Kw-G (Cordeiro and de Castro, 2011) classes of distri-

butions. Some new distributions are proposed as submodels of this family, including the EG-Exp-

Alpha distribution. Applications to real data sets indicate that, although the EG-Exp-G class
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introduced three additional parameters, this class is more �exible with respect to distributions

already used to �t real data, such as Birnbaum-Saunders, gamma and Weibull models.

For all chapters present in this thesis, we study the shapes of the pdf and hrf of the proposed

models, estimate the model parameters by maximum likelihood method, present a Monte Carlo

simulation study to evaluate the assymptotic properties of the maximum likelihood estimators

and provide applications to real data, which indicate that the proposed models are competitive

distributions to �t real data. In addition, for Chapters 3, 4 and 5, we provide some mathematical

properties, such as mean deviations, moments, moment generating function, order statistics and

quantile function. The properties presented in Chapters 3 and 4 are valid for certain regions of

the parametric space due to non existence of moments for the Alpha distribution. For EG-Exp-G

class, we also provide a study for Rényi and Shannon entropies.

The main contribution of this thesis is to discuss the Alpha distribution, which was very

competitive when compared with models well-known in the literature, and also show that the

Alpha distribution can be used as baseline model for several classes of distributions already exist

in the survival area, introducing new distributions that will provide great �exibility in modeling

real data, which can be applied in several �elds.
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