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ABSTRACT 

 

The useful life time of equipment is an important variable related to reliability and 

maintenance. The knowledge about the useful remaining life of operation system by means of 

a prognostic and health monitoring could lead to competitive advantage to the corporations. 

There are numbers of models trying to predict the reliability’s variable behavior, such as the 

remaining useful life, from different types of signal (e.g. vibration signal), however several 

could not be realistic due to the imposed simplifications. An alternative to those models are 

the learning methods, used when exist many observations about the variable. A well-known 

method is Support Vector Machine (SVM), with the advantage that is not necessary previous 

knowledge about neither the function’s behavior nor the relation between input and output.  In 

order to achieve the best SVM’s parameters, a Particle Swarm Optimization (PSO) algorithm 

is coupled to enhance the solution. Empirical Mode Decomposition (EMD) and Wavelets rise 

as two preprocessing methods seeking to improve the input data analysis. In this paper, EMD 

and wavelets are used coupled with PSO+SVM to predict the rolling bearing Remaining 

Useful Life (RUL) from a vibration signal and compare with the prediction without any 

preprocessing technique. As conclusion, EMD models presented accurate predictions and 

outperformed the other models tested.  
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RESUMO 

 

O tempo de vida útil de um equipamento é uma importante variável relacionada à 

confiabilidade e à manutenção, e o conhecimento sobre o tempo útil remanescente de um 

sistema em operação, por meio de um monitoramento do prognóstico de saúde, pode gerar 

vantagens competitivas para as corporações. Existem diversos modelos utilizados na tentativa 

de prever o comportamento de variáveis de confiabilidade, tal como a vida útil remanescente, 

a partir de diferentes tipos de sinais (e.g. sinal de vibração), porém alguns podem não ser 

realistas, devido às simplificações impostas. Uma alternativa a esses modelos são os métodos 

de aprendizado, utilizados quando se dispõe de diversas observações da variável. Um 

conhecido método de aprendizado supervisionado é o Support Vector Machine (SVM), que 

gera um mapeamento de funções de entrada-saída a partir de um conjunto de treinamento. 

Para encontrar os melhores parâmetros do SVM, o algoritmo de Particle Swarm Optimization 

(PSO) é acoplado para melhorar a solução. Empirical Mode Decomposition (EMD) e 

Wavelets são usados como métodos pré-processamento que buscam melhorar a qualidade dos 

dados de entrada para PSO+SVM. Neste trabalho, EMD e Wavelets foram usadas juntamente 

com PSO+SVM para estimar o tempo de vida útil remanescente de rolamentos a partir de 

sinais de vibração. Os resultados obtidos com e sem as técnicas de pré-processamento foram 

comparados. Ao final, é mostrado que modelos baseados em EMD apresentaram boa acurácia 

e superaram o desempenho dos outros modelos testados.   
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1 INTRODUCTION 

1.1 Opening Remarks 

The manufacturing and industrial sectors are facing an increasing demand to produce 

larger amounts of goods with better quality, which normally lead to keep the operating 

process at maximum requirement. Therefore, unscheduled downtimes bring severe problems 

to the production system and represent unplanned costs. Nevertheless, the impacts due to 

failure could be pictured in just inconvenience and setbacks but also can damage the system, 

injure people and, in extremes cases, cause death.  

Reliability can be understood as the probability of a system to properly perform the 

tasks for it was designed, under certain conditions, during a predefined time length 

(RAUSAND & HOYLAND, 2004) and represents an essential role in the system 

performance. Reliability could be associated with maintenance, defining an optimal point to 

execute it. Monitoring and controlling are crucial, enhancing the productive availability and 

efficiency, avoiding failures, and reducing costs.  

In this context, condition-based maintenance (CBM), or predictive maintenance, is a 

decision-making strategy using condition monitoring information to optimize the availability 

of operating plants (KAN, TAN & MATHEW, 2015). CBM enables the early detection of 

faults or failures in order to reduce downtime and operating costs, facilitate proactive 

responses, and improve the productivity as well as reliability, availability, maintainability and 

safety (RAMS) of equipment. 

According to Si et al. (2011), the Remaining Useful Life (RUL) is the useful life left 

on an asset at a particular time of operation and is typically random and unknown.  In fact, 

RUL is related with several factors, such as the currently degradation status, the operation 

environment and the system function and it must be estimated from available sources of 

information such as condition and health monitoring.   

Hence, the development of a prognostic plan to properly monitor and manage the 

system becomes necessary  to accurately estimate RUL. Pecht & Jaai (2010) comment about 

the prognostics and systems health management (PHM) as the most promising discipline of 

technologies and methods with the potential of solving RAMS problems. PHM not only 

analyzes the current system state but also aims to infer the degradation behavior in the future. 
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The system to be analyzed could be a specific component, equipment or also the entire 

system.  

CBM/PHM technologies are developed and applied to a large variety of machines, 

systems, and processes in the transportation, industrial, and manufacturing sectors. Rotating 

equipment has received special attention due to its critical operating regimes, frequent failure 

modes and availability of measurements (vibration, temperature, etc.) intended to allow 

detection and isolation of incipient failures (VACHTSEVANOS et al., 2007). Bearings are 

one of the most important components in rotating machine and their failure is one of the most 

frequent reasons for machine breakdown. The purpose of a ball bearing is to reduce rotational 

friction and support radial and axial loads and they are a very critical component in various 

machines. 

Many researchers have recently considered on-line continuous monitoring of 

vulnerable motor components (e.g., bearings) based on different measurements. According to 

Vachtsevanos et al. (2007), the sensor measurements that affect fault diagnosis may be 

viewed from two different perspectives: static or process-related measurements such as 

temperature, speed, position, pressure, and flow rate and those that are characterized by their 

high bandwidth (i.e., they contain high frequency components, such as ultrasonic and 

vibration measurements, acoustic recordings, and alternating current or voltage).  

Typical defects of roller bearings are cracks, spalling, flaking and indentation, mainly 

due to possible fatigue, wear, overloading and misalignment. The vibration signals generated 

by faults are often used for damage detection, since they often carry some significant dynamic 

information. The analysis of bearing’s behavior from the vibration signal represents an 

important role in RUL: in general, when RUL decreases there is an increase in the vibration 

signal and it oscillates in higher amplitudes. Hence a longer or shorter RUL can be inferred 

from the vibration signal related to the bearings.  

Based on vibration signal, many learning models (and hybrid forms) have been 

successfully applied to fault detection and prediction, such as in Mitoma, Wang, & Chen 

(2008), Lei, He, & Zi (2008), Bin et al. (2012) and Mahamad, Saon, & Hiyama (2010). 

Learning models require a training data set for an input variable to create an implicit 

knowledge about the behavior of the output variable. Support Vector Machines (SVM) 

(Cortes & Vapnik, 1995) and Artificial Neural Networks (ANN) (Haykin, 1998) are two well-

known learning models. 
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In particular, SVM has been successfully applied to different fields, e.g. financial, 

environmental, reliability, power systems (KIM, 2003; NAJAFI et al., 2016; DROGUETT et 

al., 2014; LINS et al., 2013) and is particularly useful when the process or function that maps 

inputs into output is unknown. SVM is a data-driven kernel-based method that learns from an 

available data set formed by observed pairs of inputs and output. Its training step entails the 

resolution of a convex and quadratic optimization problem for which the Karush-Kuhn-

Tucker (KKT) first order conditions are necessary and sufficient for global optimality.  

So, compared with ANN, SVM do not have the drawback of be stuck in local optima. 

The basis of SVM relies on the structural risk minimization (SRM) principle that aims at 

minimizing the upper bound of the generalization error. Thus, the objective function has one 

part related with the model ability in predicting unseen data and the other one concerns 

training errors. The main idea of the SRM principle is to find a model with adequate capacity 

to describe the given training data set, creating a trade-off between model’s capacity and 

training accuracy.  

The learning model accuracy strongly depends on the quality of the input data. Some 

previous studies directly used the original series as the input variables in the construction of a 

forecasting model, which may lead to missing some features or to the consideration of 

irrelevant information (e.g. noise), generating poor predictions. Hence, some techniques can 

be used as preprocessing tools in order to improve data input quality and, consequently, to 

obtain superior predictions from the learning method.   

Among those preprocessing techniques, the Empirical Mode Decomposition (EMD), 

proposed by Huang et al. (1998), converts the data in a more suitable form by decomposing 

the original series into a sum of simplest ones. According to Huang et al. (2014), EMD is 

adaptive, empirical, direct and intuitive. Each series is decomposed into a set of components 

called intrinsic mode functions (IMFs). 

Wavelets are other well known preprocessing techiniques based in time-frequency 

analysis, originally proposed by Morlet et al. (1982) who introduce filter banks called 

wavelets function and scaling function. The idea behind Wavalets Transform is the same for 

the Short-Time Fourier Transform (ALLEN, 1977), but the former present the best 

frequency/time resolution trade-off, given that windows of various length are applied.  

In machine learning, a considerable challenge is to provide the best parameters to be 

used in training step, since in principle, those are defined a priori. Normally, trial and error is 
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not a consistent method to define those parameters due to low efficiency and long delay. Still, 

the best set of parameters often depends of the specific problem studied and its data set. 

Therefore, optimizations metaheuristics, such as Ant Colony System (ACS), Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO), lead to satisfactory parameters’ 

values avoiding the problem of set it in an erroneous way. In particular, PSO coupled with 

SVM have been successfully applied in reliability problems and fault machinery prediction 

(LINS et al., 2013; DROGUETT et al., 2014; GARCIA NIETO et al., 2015). 

Thus, a hybrid model involving a data preprocessing method, an optimization 

algorithm for parameter tuning and a machine learning structure is expected to present high 

predictive ability. The proposed methodology combines a preprocessing technique, EMD or 

Wavelets, with PSO+SVM to create models to estimate the RUL of rolling bearings from 

vibration signals. The performance of both models is compared with the model without any 

preprocessing technique.  

 

1.2  Justification  

 

The main objective of the maintenance is to guarantee the maximum availability and 

continuity to the operational function and its different maintenance schedules should be 

mainly based on system reliability. The exponential growth in system complexity has been 

followed by an increased demand for higher reliability. Estimation of RUL is helpful to 

manage life cycles of machines and to reduce maintenance costs. 

Different metrics can be obtained from an operational system in order to track its 

degradation process and to build an accurate relationship between the current health condition 

state and RUL. Metrics such as vibration, acoustic emission, temperature, corrosion, among 

others, can represent the evolution of degradation, and  their analyses are as necessary as 

arduous.  

SVM is a promising algorithm for RUL estimation because it can deal with small 

training sets and multi-dimensional data (LIU et al., 2016). Many SVM-based methods have 

been proposed to predict RUL of some key components and hybrid methodologies usually 

improve RUL estimation accuracy and overcome limitations of the individual methods 

(MAIOR et al., 2016). 
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A number of hybrid approaches have been successfully applied, many of those as 

mixing of a preprocessing technique and an optimization algorithm, such as the one proposed 

in this work. However, recent researches utilize the combination of techniques but do not 

analyze the real gain of the hybrid methodology when compared to the learning method 

isolated. In this context, the present work compares EMD+PSO+SVM models and 

Wavelets+PSO+SVM models with a model without preprocessing techniques and investigates 

whether the hybrid methodology actually provides significant gain. The preprocessing 

technique usually increases the computational effort, once both EMD and Wavelets 

decompose the original series into many others, and the trade-off of this approach has to be 

taken into account. This result could support the solution of reliability problems as well as the 

preparation of suitable maintenance policies.   

1.3 Objective 

1.3.1 General Objective 

This dissertation aims to compare two different preprocessed predictive models for 

RUL in industrial bearing with a model without any preprocessing technique. A hybrid 

method using EMD+PSO+SVM and Wavelets+SVM+PSO are proposed and compared with 

a PSO+SVM model, once all should track the correct behavior of the bearing’s vibration in 

many stages of the degradation. The objective is to define the real gain with the use of EMD 

and Wavelets as data preprocessing techniques.  

 

1.3.2 Specific Objectives 

In order to achieve the general objective, some specific targets are defined: 

• Understanding about the vibration signal and how it can be analyzed, in the time 

domain or in the frequency one seeking out to correctly use the methods applied. 

• Get access to real data base for bearing vibration or experimental results in order to 

provide an authentic example. 

• Apply EMD+PSO+SVM and Wavelets+PSO+SVM methodologies for reliability 

prediction problems and compare the results with the PSO+SVM methodology to 

confirm the efficiency of the methodologies. 
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1.4 Dissertation Layout 

Besides this introduction chapter, this master thesis has four additional chapters briefly 

described as follows:  

• Chapter 2: Presents the theoretical background required to the dissertation 

accomplishment as well as a short review about the related recent works. It clarifies 

points about PHM, Rolling Bearing and Vibration Signal, EMD, Wavelets, SVM and 

PSO.  

• Chapter 3: Explains and the methodology and the model to be employed in this work.  

• Chapter 4: Presents the real data and the procedures for a RUL prediction of rolling 

bearings from a vibration signal. 

• Chapter 5: Contains a summary of the main aspects and results presented in this 

master thesis along with some limitations and propositions for future works.   
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

This chapter presents definitions and explanations about the key topics of this work: 

Prognostic and Health Monitoring, Rolling Bearing and Vibration Signal, Empirical Mode 

Decomposition, Wavelets, Support Vector Machine and Particle Swarm Optimization. Also, a 

short review of the present works in the area is presented as a literature review.  

 

2.1 Prognostic and Health Monitoring 

Widodo & Yang (2011) explain that in the least years, studies about prognostic 

systems have been highlighted in different fields of science, like in maintenance and 

reliability research. The benefits of prognostics systems to engineering asset management are 

evident. Many advantages can be obtained from such as reducing the production downtime, 

spare-parts inventory, maintenance cost, and safety hazards. 

A machine prognostics system is addressed to estimate the RUL of machine 

components based on various methods such as based on traditional distribution, data-driven 

methods, physic-based models and probability-based methods. Among them, data-driven and 

physic-based methods are more popular than the probability-based methods.  

Adopting a health monitoring and prognostic technique system requires a continuous 

monitoring of the performance of the key parameters and especial attention should be given to 

detect any kind of disturbance in those parameters. Prognostics and health monitoring is a 

technology used to monitor degradation in engineering systems, understand when failure may 

occur and provide a cost-effective strategy for scheduled maintenance. Health monitoring and 

prognostics of engineering systems or products has become very important as failures may 

cause severe damage to the system, environment and users, and may result in significant 

costly repairs (SUTHARSSAN et al., 2012). 

Survival analysis is the name for a collection of statistical techniques used to describe 

and quantify time to event data. In survival analysis, we use the term ‘failure’ to define the 

occurrence of the event of interest and the term ‘survival time’ to specify the length of time 

taken for failure to occur. Situations where survival analysis have been used include 

prognostics of life time machine components, time from diagnosis to death in clinical trial,  

duration of industrial dispute, time from infection to disease onset, among others (WIDODO 

& YANG, 2011). 
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Over time, different definitions of prognostics was proposed in literature, as seen in 

Engel et al. (2000), Wu, Hu, & Zhang (2007) and Heng et al. (2009), for example. 

Commonly, prognostics could be explained from four characteristics: (1) it is, or should be, 

performed at the component or sub-component level; (2) involves predicting the time 

progression of a specific failure mode from its incipience to the time of component failure; (3) 

an appreciation of future component operation is required; and (4) prognostics is related to, 

but not the same as, diagnostics. 

The most all-encompassing description of prognostics is presented by ISO13381-1; it 

defines prognostics as ‘an estimation of time to failure and risk for one or more existing and 

future failure modes’. This implies that the field of prognostics is not only interested in 

predicting the effects of known failure modes on asset life, but also how these may initiate 

other failure modes (SIKORSKA et al., 2011). Even though not a formal definition, it is 

common to characterize the prognostics output in two components: an estimated time until 

failure, normally called RUL and associated confidence limits (SIKORSKA et al., 2011). 

In order to understand the idea of prognostics and diagnostics, it is important to verify 

the many steps related with RUL and its confidence limits. The same component could have 

many failure modes, triggered reasons and a particular deterioration behavior, even when 

exposed to the same operational conditions. Anomalous events, such as changes in operating 

conditions, maintenance actions or other failures, may also occur and may accelerate one or 

more particular failure modes progressions (e.g. a bearing fault causes high vibration that 

induces and accelerates mechanical seal degradation). 

Therefore, some information is necessary to determinate the RUL, such as: what is the 

current degradation state of the component; which failure mode has initiated the degradation 

and how severe is the degradation, that means, ‘where’ the component is on the particular 

degradation curve. These questions are associated with diagnostics. Other questions, which 

are in turn related with prognostics, are about how quickly is degradation expected to progress 

from its current state to functional failure; what novel events will change this expected 

degradation behavior and how other factors could affect RUL estimate.  

Diagnostics is related with the current state of a component, in other words, what has 

happened in the past until now. Prognostics is related with what will happen with the 

component, that means, what is expected for the future. Continuous monitoring of the 
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component is necessary to detect any new event, provide the diagnosis, estimate the new 

prognosis and then, update the system accordingly.  

In order to analyze the process and achieve a realistic prognostic estimation, it is 

necessary to choose a suitable mathematical model to be used. There is no model type strictly 

better than other, since each problem should be dealt in a particular way. Complex models, 

which normally implies in higher reliability, could provide worse estimations compared with 

the simplest ones, due to the poor variables interpretation, due to the limited accuracy or even 

due to the lack of human knowledge to apply the model.  

A number of different types of models could be seen in the literature and it is hard to 

analyze each one separately. Hence, it is necessary to group in classes some similar models, 

although there is no general consensus. Sikorska et al. (2011) propose a modified 

classification approach specifically designed for RUL prediction, with the models in four 

main groups and a varying number of subgroups, namelly: 

(a) Knowledge-based models: These assess the similarity between an observed 

situation and a database of previously defined failures and deduce the life expectancy from 

previous events. Sub-categories include the following:  

a. Expert systems.  

b. Fuzzy systems.  

(b) Life expectancy models: These determine the life expectancy of individual 

machine components with respect to the expected risk of deterioration under known operating 

conditions. Sub-categories are separated into statistical and stochastic models and include the 

following:  

a. Stochastic models:  

i. Aggregate reliability functions. 

ii. Conditional probability methods, including the RUL probability density 

function and Bayesian networks.  

b. Statistical models:  

i. Trend extrapolation.  

ii. Auto-regressive Moving Average (ARMA) models and variants.  

iii. Proportional Hazards Modeling.  

(c) Artificial Neural Networks: These compute an estimated output for the remaining 

useful life of a component/machine, directly or indirectly, from a mathematical representation 
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of the component/system that has been derived from observation data rather than a physical 

understanding of the failure processes. They are further grouped into models used for: 

a. Direct RUL forecasting; 

b. Parametric estimation for other models.  

(d) Physical models: These compute an estimated output for the remaining useful life 

of a component/machine from a mathematical representation of the physical behavior of the 

degradation processes. Types of physical models tend to be application (failure mode) specific 

and are therefore not classified further. 

Also, Liao & Köttig (2014) categorized models into three different classes:  

• Experience-based models 

• Date-driven models 

• Physics-based models.  

They explain that due to system complexity, data availability, and application 

constraints, there is no universally accepted best model to estimate RUL and that data-driven 

models in hybrid approaches have been used for anomaly detection to trigger RUL prediction 

process. 

The advantages and disadvantages of all methods should be careful understood and 

analyzed before the model choice. As previously mentioned, there is not one best model, but 

surely there is a suitable model for any situation. In this master thesis, a well-known method 

called SVM is used, which in the first classification present from Sikorska et al. (2011) would 

be in the third category along with ANN, given that it is primarily based in the learning from 

data and is classified in the data-driven category in the classification from Liao & Köttig 

(2014). 

 

2.2 Rolling Bearings and Vibration Signal  

 

Rolling bearings are an essential and critical component of rotating machines with its 

use and study widespread inside industrial applications. Figure 1 shows the principal 

components of a rolling bearing, highlighting the outer race, the inner race, the ball and the 

cage. Fault diagnosis of the rolling bearings has been the subject of extensive research. This 
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process includes the acquisition of information, feature extraction and condition recognition 

(NIKOLAOU & ANTONIADIS, 2002).  

 
Figure 1: Elements of a Rolling Element Bearing  

Different methods are used for the acquisition of information and they may be broadly 

classified depending on the type of measurements: vibration and acoustic, temperature and 

wear debris analysis (TANDON & CHOUDHURY, 1999). Among these, vibration 

measurements are commonly used in the condition monitoring and diagnosis of the rotating 

machinery mainly due to the easy-to-measure signals and plausible analysis.  

The vibration measurement of the rolling bearing can be made using some accelerate 

sensors that are placed on the bearing house. When faults occur in the roller bearing, the 

vibration signal of the roller bearing would be different from the signal under the normal 

state. Localized faults in rolling element bearings produce a series of broadband impulse 

responses in the acceleration signal as the bearing components repeatedly strike the fault. The 

precise location of the fault determines the nature of the impulse response series, and Figure 2 

shows the typical cases (RANDALL & ANTONI, 2011). Here, each element of the rolling 

bearing has its own rotation frequency (i.e. BPFO as BallPass Frequency Outer race, BPFI as 

BallPass Frequency Inner race, FTF as Fundamental Train Frequency – cage – and BSF as 

Ball Spin Frequency), which leads to composed complex signal. 
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Figure 2: Signals and envelope signals from local faults in rolling element bearings 

The quality of prognostics is directly impacted by the quality of the diagnosis values. 

There are many standard vibration-based metrics that are traditionally used for machinery 

diagnostics, including entropy, root mean square, signal amplitude, variance, kurtosis, as well 

as higher order statistics. While many of these metrics generally trend up in value as a spall 

grows, prognostics requires an estimate of absolute fault size. This more stringent requirement 

is difficult for most existing algorithms to meet, especially when operating conditions are 

variable. Some of the most applied metrics used in vibration analysis can be explained as 

follows:  

• Entropy measures the uncertainty/complexity of the signal. Specifically, 

Shannon entropy is commonly referred to as a measure of information loss. Shannon 

entropy of a normalized signal measures the amount of randomness and sparseness of data. 

Thus, a signal with minimal amount of Shannon entropy can be treated as the most 

periodic and easier to predict. When roller elements pass over a defect on bearing 

components, different series impulses will be generated, causing significant change in the 

value of entropy (HEMMATI, ORFALI & GADALA, 2016). Shannon (1948) defines 

entropy as follows: 
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 ���� = 	−�	��
� log�	��
��,�

�� 																				�	��
� = 1�


��  (2.1) 

where 	��
� is the probability of observing the �th possible value of a random variable � = 	 ���, ��, … , ��	�. For further details and applications with Shannon Entropy, see Qiu 

et al. (2006). 

• Root mean square (RMS), also known as the quadratic mean, provides an 

indication of the overall signal energy, i.e. the power content in the vibration signal. When 

a bearing is faulted, the vibration signature is changed by the impacts produced by rolling 

elements passing over the fault, resulting in increased energy. The RMS value for a time 

series �
 with length � is calculated as: 

 ��� = 	�1���
��

��  (2.2) 

• Variance measures the statistical dispersion of a signal. The impacts in a 

spalled bearing should increase the variability in the signal and it is calculated based on the 

follow equation for a time series �
 with length �:  

 �� =	 1����
 −	 �̅���

��  (2.3) 

Where the population mean is 

 �̅ = 	 1���
�

��  (2.4) 

• Kurtosis, the fourth statistical moment of the data related with the peakedness 

or flatness of the distribution, is used as measure of the “spikiness” of the data. Intuitively, 

abrupt impacts between a ball and the spall should cause spikes in the signal, increasing 

kurtosis. It is calculated as follows: 

 ! = 	∑ ��
 −	�̅�#�
��� ∗ ����²  (2.5) 

• Crest Factor is the ratio of the peak vibration level to the RMS, and is often 

used to detect changes in signal patterns due to impulse vibration sources, normally not 
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captured in the RMS analysis alone. For normal conditions, its value is between 2 and 6. It 

is calculated as follows:  

 &'()*	+,-*.' = 	/(,!	0(1(2���  (2.6) 

• Peak signal amplitude is related to the crest factor. An increase in signal 

energy should cause an increase in peak signal amplitude. As with RMS, the variability of 

the peak signal amplitude increases with spall length. 

• Higher order statistics, such as the sixth statistical moment M6, are often useful 

for the purposes of diagnosis. Normally, M6 and kurtosis present similar results. 

A useful study comparing some of the most common vibration-based diagnostics 

metrics for bearings, gears and other machinery can be found in Lybeck, Marble, & Morton 

(2007). The paper compares the correlation between the metric value and the known spall 

length and concludes that Root Mean Square, Variance and Peak Signal Amplitude are the 

more reliable, among the previously mentioned.  

However, numerous of previous researches in literature have shown that each feature 

is only effective for a certain defect at a certain stage. Thus, which feature to be selected for 

machine fault prognostics, in particular, with machine degradation, is still a challenge that 

needs more investigation.  

 

2.3 Empirical Mode Decomposition 

 

Starting with the work of  Huang et al. (1998), a remarkable method to analyze non-

linear and non-stationary data series was developed and have been used in many types of 

applications. Rojas et al. (2013) comment that EMD is an empirical, intuitive, direct and 

adaptive method and it does not require any previous assumption. The main idea is that any 

data series could be decomposed in a small number of simplest oscillation series, called 

Intrinsic Mode Functions (IMFs). The goal is to obtain IMFs regarding data characteristics in 

the time scale (HUANG & WU, 2008). 

Generally, any complex signal can be possibly separated into a small number of IMFs, 

represented by -
�*�, and a trend '�*�. For a number � of IMFs generated, the original series ��*� is expressed as follows:  
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 ��*� =�-
�

 �*� 3 	'�*� (2.7) 

Huang et al. (1998) define an IMF as a function that satisfies two conditions: (1) in the 

whole data set, the number of extrema and the number of zero crossings must either equal or 

differ at most by one; and (2) at any point, the mean value of the envelope defined by the 

local maxima and the envelope defined by the local minima is zero. Ideally, the requirement 

should be ‘the local mean of the data being zero’. For non-stationary data, the ‘local mean’ 

involves a ‘local time scale’ to compute the mean, which is impossible to define. As a 

surrogate, it is used the local mean of the envelopes defined by the local maxima and the local 

minima to force the local symmetry instead. 

Yang et al. (2007) mention that each IMF represents a frequency-amplitude modulated 

narrow band, normally associated with a specific physical process. The goal of EMD is to, 

empirically, identify the IMFs from the data series features and decompose it according to its 

unique characteristics. Figure 2 represents the generation of IMFs in the EMD process.  

 

Figure 3: Descriptive flowchart of the EMD process 
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A process called sifting is performed in order to uncover each IMF. The 

decomposition is based in the following assumptions: (1) the signal has at least two extrema – 

one maximum and one minimum; (2) the characteristics time scale is defined by the time 

lapse between the extrema; and (3) if the data were totally devoid of extrema but contained 

only inflection points, then it can be differentiated once or more times to reveal the extrema 

(HUANG et al., 1998). 

In a signal, if there is a local minimum greater than zero between two successive local 

maxima, or if there exists a local maximum less than zero between two successive local 

minima, the segment  between these two successive local maxima (or local minima) is called 

a riding wave (YANG et al., 2007) and is shown in Figure 4. The sifting goal is to remove the 

riding waves, so as to make the wave profile more symmetric. The sifting process can be 

described in the following steps: 

 

1. Identify all local extrema (maximum and minimum) of the series ��*�; 
2. Connect all the local extrema with a cubic spline line to create the upper and lower 

envelops, (4, (5, respectively; 

3. Calculate the envelope mean 6�*� = �(4 3 (5�/2; 

4. Obtain ℎ�*� = ��*� − 6�*�, candidate to be an IMF; 

5. Verify if ℎ�*� satisfies both conditions that define an IMF. If it satisfies, an IMF 

was generated with the residue 6�*� = ��*� − ℎ�*� replacing the initial series ��*�. Otherwise, ℎ�*� would be the new series ��*� and return to step 1. 

6. Once the step 5 is achieved and an IMF is generated, save -
�*� = ℎ�*� as the �-th 

IMF. Then, a series residue '�*� = ��*� − -
�*� becomes the new series ��*� and a 

new loop starts in step 1.  
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Figure 4: Example of riding waves.  

Adapted from Yang et al. (2007) 

Eftekhar, Toumazou, & Drakakis (2013) affirm that in its core form, the literature has 

done little to modify this process. Modifications come in how some of the steps are carried 

out, including the maxima/minima detection, envelope formation (interpolation), the way an 

IMF is identified and how one stops the sifting process. 

At the end of the sifting process, a number of IMFs are generated plus a final residue '�*�. The sifting has two effects: (1) riding waves are eliminated; and (b) uneven amplitudes 

are smoothed. While the first condition is absolutely necessary for the instantaneous 

frequency to be meaningful once riding waves normally represents the mixing between more 

than one oscillatory mode, the second condition is also necessary in case the neighboring 

wave amplitudes have a large disparity. Unfortunately, the second effect, when carried to the 

extreme, could obliterate the physically meaningful amplitude fluctuations (HUANG et al., 

1998).  

Therefore, the sifting process should be applied with care, for carrying the process to 

an extreme could make the resulting IMF a pure frequency modulated signal of constant 

amplitude. To guarantee that the IMFs retain enough physical sense of both amplitude and 

frequency modulations, a stop criterion for the sifting process have to be determined. This can 

be accomplished by limiting the size of the standard deviation, �:, computed from two 

consecutive sifting results as: 
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 �:; = �<=�ℎ��;>���*� −ℎ�;�*��|�ℎ��;>���*�� @A
B�C  (2.8) 

With ! representing the number of iterations until the process achieves an IMF and * 
stand for the data.  The sifting process stops when �:; is smaller than a preset value. After a 

great number of tests, Huang et al. (1998) explain that a  typical values for �: should be set 

between 0.2 and 0.3 to guarantee physical meaning.  

Overall, -��*� should contain the finest scale or the shortest period component of the 

signal. We can separate -��*� from the rest of the data by 

 

 ��*� − -��*� = '��*� (2.9) 

Since the residue '� still contains information of longer period components (small 

frequencies), it is treated as the new data and it is subjected to the same sifting process as 

described above. This procedure can be repeated on all the subsequent 'D’s, and the result is 

 '� − -� = '�, ⋯ , '�>� − -� = '� (2.10) 

The sifting process also can be stopped by any of the following predetermined criteria: 

either when the component, -�, or the residue, '�, becomes so small that it is less than the 

predetermined value of substantial consequence, or when the residue, '�, becomes a function 

from which no more IMF can be extracted. Even for data with zero mean, the final residue 

can still be different from zero; for data with a trend, then the final residue should be that 

trend. Finally, the series could be presented as:  

 ��*� = �-
�

�� 3 '� (2.11) 

Thus, original series ��*� is decomposed in �-intrinsic modes and a residue '�, which 

can be either the mean trend or a constant.  

 

2.4  Wavelets  

A widespread technique applied in the field of signal analysis, the wavelet transform 

was first proposed by the geophysicist Jean Morlet in Morlet et al. (1982) and was later 
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formalized by Grossmann & Morlet (1984) and Goupillaud & Morlet (1984) , particularly for 

the processing of seismic measurements. The word wavelet means ‘small wave’ and 

according to Daubechies (1990), Morlet’s original name for the wavelets was ‘wavelets of 

constant shape’. It was supposedly chosen to contrast them with the analyzing functions in the 

short-time Fourier transform, which do not have a constant shape.  

Wavelet transforms offer a description of a process through decomposition of a signal 

onto a set of basis functions, called wavelets and these wavelets are obtained from a single 

prototype wavelet, called a mother wavelet. The representation of the process occurs by an 

infinite series expansion of dilated/contracted and translated versions of a mother wavelet, 

each multiplied by an appropriate coefficient.  

Two important properties of wavelets are the admissibility and the regularity 

conditions. Kumar & Foufoula-Georgiou (1997) remark that a wavelet transform is chosen so 

that it has: 

• Sufficiently fast decay, to obtain localization in space (called regularity 

condition); 

• Zero mean (called admissibility condition). 

The first condition ensures that the wavelet is not a sustaining wave, while the second 

condition ensures that it has a wiggle (i.e. is wave-like). In practical applications, it is possible 

to use different well known wavelet transforms for distinct purposes and its choice depends 

on the specific signal characteristics and the analysis to be done. 

Wavelet transform can be considered as a mathematical tool that converts a signal in 

time domain into a different form, i.e. a series of wavelet coefficients, in time-scale domain 

(YAN, GAO & CHEN, 2014). The Continuous Wavelet Transform (CWT) of a function ��*� 
is defined as the integral transform: 

 FG�H, *, I	� = 1√HK ��L�IM NL − *H O PL			Q
>Q  (2.12) 

In the expression, H is a scale parameter, * is a location parameter and IMR,B�L� 
represents the complex conjugate of IR,B�L�, a family of wavelet functions. There are 

different examples of wavelets defined for the continuous wavelet transforms, such as the 

Mexican Hat wavelet, Meyer wavelet and Shannon Wavelet. Morlet’s wavelet is one of the 

most popular wavelets and is defined as: 
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 I�*� = 1√2S (T>BU �V WD�XYZB[ (2.13) 

Since Morlet’s wavelet is a complex waveform, it may be decomposed into its real and 

imaginary parts, respectively: 

 I\�*� = 1√2S (T>BU �V ]^_��XYZB�[ (2.14) 

 I
�*� = 1√2S (T>BU �V _`a��XYZB�[ (2.15) 

where bC is a constant and bC c 0 to satisfy the admissibility condition. The Morlet’s wavelet 

is depicted in Figure 5. 

 
Figura 5: Morlet’s wavelet: real (left) and imaginary (right) parts  

Source: Sanei & Chambers (2007) 

 

Guohua et al. (2006) comment that wavelet analysis decomposes a signal into two parts, 

called approximations and details. Approximations consist of the high scale low frequency 

components, while details consist of the low scale high frequency components. While 

approximations offer general information of a signal, details offer detailed information of a 

hidden pattern in the signal. The authors also remind that wavelet functions are obtained from 

recursive relationships, where the first wavelet is the mother wavelet function. 

Peng & Chu (2004) remind that Meyer and Mallat developed the idea of multi-

resolution analysis (MRA) that made it very easy to construct other orthogonal wavelet bases. 

A more important event was that the MRA led to the famous fast wavelet transform – a 

simple and recursive filtering algorithm to compute the wavelet decomposition of the signal to 

its finest scale approximation.  

Ingrid Daubechies was another important researcher in wavelets applications. She 

popularized wavelets with her work in Daubechies (1993), constructing orthogonal wavelet 

bases compactly supported, allowing more liberty in the choice of the basis wavelet functions 

at a little expense of some redundancy. Daubechies, along with Mallat, is therefore credited 
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with the development of the wavelet from continuous to discrete signal analysis. In the 

discrete wavelet formalism (DWT), the scale λ and the time * are discretized as following: 

 H = HCe,								* = 	fHCe*C (2.16) 

where 6 and f are integers. So the continuous wavelet function IR,B�L� in Eq. (2.12) become 

the discrete wavelets given by 

 IR,B�L� = 	 HC>e�I�HC>eL − f*C� (2.17) 

 

The discretization of the scale parameter and time parameter leads to the discrete 

wavelet transform, defined as: 

 FG�6, f, I	� = 1gHCeK ��L�IM�HC>eL − f*C�PL	Q
>Q  (2.18) 

 

Also, there are many discrete functions that can be used as mother wavelets, such as 

Haar Wevelet, Legendre Wavelet and Symlet. A popular wavelet used in DWT is the 

Daubechies Wavelet. In general the Daubechies wavelets are chosen to have the highest 

number h of vanishing moments, for given support width 2h	– 	1	 (Daubechies, 1993). The 

Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; 

in fact, they cannot be written in closed form. However, due to its successful and widespread 

applications, Daubechies wavelets were used in this work. 

 

2.5 Support Vector Machine 

 

Wang (2005) defines SVM as a supervised learning method aiming to map input-

output from a dataset called training data : = {���, k��, … ��e, ke�}. The objective is to find 

the function m��� with the smallest penalization with respect to the deviation from the real 

data and, at the same time, as flat as possible. Specifically, the learning problem is defined 

according its output k as: 

a. Classification problems, with  k assuming discrete values that represent categories. If 

only two categories are considered (e.g. k = -1 or k = +1), the problem at hand is of 

binary classification. Otherwise, if three or more categories are taken into account, it is 

the case of a multi-classification problem. 
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b. Regression problems: k is real-valued and its relation with the input vector � is given 

by a function. 

SVM was firstly proposed by Vladimir Vapnik based on the principle of the Structural 

Risk Minimization (SRM) and has its concepts based on the Statistical Learning Theory 

(VAPNIK, 2000). Regardless of whether classification or regression, the problem could be 

seen as follows: there exist a mapping function k = m���, unknown, of real values and, 

possibly, non-linear between an input vector � and an output scalar k and the only available 

information is the data :, used in the learning process, with m��� as solution. This means to 

solve a convex and quadratic optimization problem with the Karush-Kuhn-Tucker (KKT) 

conditions as necessary and sufficient to guarantee a global optimum. When SVM is applied 

to regression problems, it is called Support Vector Regression (SVR). 

The first order KKT conditions are necessary to ensure the solution from a non linear 

programming problem to be optimum, given that the regularity conditions are satisfied. In a 

convex problem, these conditions are sufficient to a global optimum (ZHAO & 

DIMIROVSKI, 2004). 

The goal is to find the hyperplan that best represents the input-output mapping from 

the data :. It is important to emphasize that the goal is not to look for the perfect alignment 

between the function  m��� and :, but the best representation for the mapping. Furthermore, it 

is not desirable the strict alignment, once a trade-off have to be made between the data fitness 

and the generalization ability to predict new data. The equation of the regression hyperplane 

is: 

 m	�n� 	= 	opn	 3 	b (2.19) 

with n expressing the input data and op and b the coefficients to be determined. They are 

estimated from the follow regularized risk function:  

 ��&� = 	& 16	�Iq�k
, m
� 3 12e

�C opo (2.20) 

and 

 Iq�k
, m
� = r|k
 − m
| − s																		�m			|k
 − m
| ≥ s									0																																	othewise  (2.21) 
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where k
 is the variable real value, that is , the original data and m
 is the estimated value to the 

same variable on the same time. Equation (2.20) is known as the Vapnik’s s	-insensitive loss 

function that implies the non-penalization when the points are inside de tube with radius s. 

For calculus convenience, {
 is defined when the data is above the tube and {
∗ when the data 

is below the tube, and represent the slack variables.  

Hence, s measures the performance in the training process and is related to the first 

term of Equation (2.20). The second term of the same equation is used as a smoothness 

function, once SVM also aim to get m��� as flat as possible and is also necessary to minimize 

the term related with the machine’s capacity represented by opo, which is the squared norm 

of w. Therefore, & is a tradeoff between the empirical risk and the model’s smoothness, with 

its value defined a priori, in the same way as the parameter s. The primal problem is defined: 

 min~,Y,�,�∗ 	12	oAo3 	& ∙ 	��	{
 3	{
∗�e

��  (2.22) 

where 6 is the number of training points and subject to: 

 

 k
 −	oAn
 − 	b	 ≤ s 3	{
 (2.23) 

 oAn
 3 	b	 −	k
 ≤ s 3	{
∗ (2.24) 

 {
 ≥ 0,        i= 1,2, … ,6 (2.25) 

 {
∗ ≥ 0,         � = 1,2, … ,6 (2.26) 

From that, the corresponding primal Lagrangian function is as follows: 

 

 ℒ	�o, b, �, �∗, �, �∗, �, �∗� = 		 �� 	oAo	 3 	&	 ∑ �	{
 3	{
∗�5
�C 	−	∑ ��
{
 35
�C	{
∗�
∗� 	− ∑ �
�oAn
 3 	b	–	k
 3 	ε 3	{
�5
�C 	− 		∑ �
∗�k
, oAn
 − 	b	 35
�C
ε 3	{
∗�     

(2.27) 

 

Where �,�∗, �	and	�∗ are the 2-dimensional vectors of Lagrange multipliers 

associated to constrains (2.23), (2.24), (2.25) and (2.26), respectively. It may be observed that �
	and �
∗ both cannot be strictly positive since there is no point satisfying (2.25) and (2.26) 

simultaneously. 
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Equation (2.27) needs to be minimized with respect to the primal variables o, b, �, �
∗, 
and maximized with respect to the dual variables �,�∗, �, �∗. KKT conditions state that the 

partial derivatives of ℒ with respect to primal variables must vanish when evaluated at the 

optimal point. By introducing some equalities provided by the KKT complementarity 

conditions back into ℒ, the latter becomes function only of the dual variables �
 , �
∗, and the 

dual Lagrangian is obtained:  

 max 0���, �∗� = −12���
 − �
∗���D − �D∗�n�AnD
,D −��s −	k
��

−��s 3 k
��D∗
  

(2.28) 

subject to: 

 ���
 − �
∗�
 = 0 (2.29) 

 0	 ≤ �
 ≤ & (2.30) 

 0	 ≤ �
∗ ≤ & (2.31) 

The solution of the dual training problem provides the optimal estimated regression 

function: 

 m�n� 	= oCAn 3 	b	 = 	���
 3 �
∗�5

�� n
An	 3 	b (2.32) 

To solve the linear regression in SVR, it is necessary to calculate the dot products, n�AnD and	n
An, as presented in the Equations (2.28) and (2.32). To deal with non-linearity, 

mapping functions ���� are applied and the dot product, �A�������, is solved in higher 

dimension. However, in addition to the selection of a proper mapping function, the explicit 

calculation of the dot products with mapped input vectors can be computationally expensive. 

In this way, dot products are replaced by kernel functions ���
 , �D� defined in the input space 

that implicitly maps � into a higher dimension. One can see an interesting tutorial about 

kernel methods in Jäkel, Schölkopf & Wichmann (2007). The regression problem could be 

also solved from the Kernel functions and the regression function is expressed as: 

 m��, �, �∗� =���
 − �
∗����� , �
� 3 b�

��  (2.33) 
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In this master thesis, the kernel function adopted is Gaussian Radial Basis Function 

(RBF), expressed by ���5, ��� = exp	�−�‖�5 − ��‖��, where � is also a model parameter. 

For more discussion about Kernel Methods applied to SVM, see Shawe-Taylor & Sun (2014).  

After the choice of the function parameters, it is necessary to evaluate the precision of 

the estimated function. Hence, errors are calculated comparing real values k
 and predicted 

values k�
. One of the most common performance error measures is MSE (Mean Square 

Error), described to a series with m data points as follows: 

 MSE = N16O�	�k
 − k�
�²e

�C  (2.34) 

The SVR performance strongly depends on the choice of parameters C, ε e γ, defined 

a priori. In order to determinate the best set of parameters, optimization algorithms are 

frequently applied.  

  

2.6 Particle Swarm Optimization 

 

Particle Swarm Optimization (PSO) is a probabilistic optimization heuristic inspired 

by the social behavior of biological organisms (e.g., birds and fishes), specifically on the 

ability of animal groups to work as a whole in order to find some desirable position. This 

seeking behavior is artificially modeled by PSO, which has been mainly used in the quest for 

solutions of non-linear optimization problems in a real-valued search space (BRATTON & 

KENNEDY, 2007). 

 The basic element of PSO is a particle, which can fly throughout the search space 

toward an optimum by using its own information as well as that provided by other particles 

within its neighborhood. For a problem with f-variables, each possible solution can be 

considered as a particle with a position vector of dimension f	and the population of particles 

is defined as swarm (SAMANTA & NATARAJ, 2009) 

The performance of a particle is determined by its fitness that is assessed by 

calculating the objective function of the problem to be solved. Mathematically, a particle i is 

characterized by the following three vectors: 

• Its current position in the n-dimensional search space �
 = �)
�, )
�, ⋯ , )
��.; 
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• The best individual position it has thus far occupied during motion �
 =�	
�, 	
�,⋯ , 	
��; 
• Its velocity �
 = �1
�, 1
�, ⋯ , 1
��. 

Traditionally, the current positions �
 and velocities �
 are initialized by sampling from 

uniform distributions over the intervals of definition of the decisions variables and by setting 

a maximum velocity value v���, respectively. Then, the particles move throughout the search 

space in successive iterations driven by the following set of update equations: 

 �
D�* 3 1� = 1
D�*� 3 -�L��	
D�*� −	)
D�*�  3	-�L�T	¡D�*� −	)¡D�*�[ (2.35) 

 �
D�* 3 1� = )
D�*� 3 1
D�* 3 1�,			¢ = 1,2, … , f (2.36) 

where -� and -� are constants, L� and L� are independent uniform random numbers generated 

at every update along each individual direction		¢ = 1,2, … , f and £¡�*� is the n-dimensional 

vector of the best position encountered by any neighbor of particle i. Note that velocities and 

positions at time * 3 1 are influenced by the distances of the particle’s current position from 

its own best experience £
�*� and the neighborhood’s best experience £¡�*�, in a cooperative 

fashion (KENNEDY & EBARHAR, 1995).  

The PSO search stops when some criteria are reached. Three criteria were adopted to 

stop the algorithm: (i) maximum number of iterations; (ii) the global best particle is the same 

for 10% of the maximum number of iterations and (iii) the global best fitness value in 

consecutive iterations have difference smaller 10>¤, based on the objective function. In this 

work, the objective function used was the Mean Squared Error.  

The number of works involving preprocessing techniques, coupled or not with 

optimizations algorithms and machine learning are growing apace over the years and some of 

them are commented in the next session.  

 

2.7 Previous works 

 

Zio (2009) provides an interesting paper covering many aspects of maintenance and 

reliability problems, the contributions to system safety and on its role within system risk 

analysis. Specifically on PHM, diagnostics and prognostics are important aspects in the 

context of the development of monitoring programs. According to Dong & He (2007) 

diagnostics procedures consist in detection, isolation and identification of a failure, while 
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prognostics procedures are related with the prediction of the next failure moment (RUL) given 

the system’s current condition, normally influenced by external facts, typically classified as 

non time invariable, non-linear and dependent one to another. As result, RUL prediction could 

demand sophisticated probabilistic models in order to realistically capture the complexities of 

the dynamic behavior of the system’s reliability, which could lead to complex mathematics 

formulations and expensive numeric methods, even if they do not lead to a desired accuracy 

(MOURA & DROGUETT, 2009).  

Fan & Tang (2013) also comment that many methods based in different models were 

applied in reliability problems and RUL prediction, under assumptions that could, or not, be 

true in reality, as techniques based on Markov models (e.g. Zhao et al., 2014). This leads to an 

important alternative to the practical applications in non-linear reliability predictions: the 

data-driven learning methods. 

Statistical data-driven approaches rely on the availability of data and the nature of the 

data. In this context, many studies compare some data driven models (e.g. Multilayer 

Perceptron, Nearest Neighbour, Decision Tree and SVM) in different applications (Tan et al., 

2005; Geng, Zhan, & Zhou 2005; Acharya et al., 2016; Raghavendra et al., 2016; Cuss, 

McConnell, & Guéguen, 2016). Also, Khelif, Chebel-Morello, & Zerhouni (2015) applied 

Unsupervised Kernel Regression to predict RUL for Li-ion batteries with interesting practical 

results. 

Here, we highlight SVM as supervised learning method that generates a mapping 

function of a labeled training dataset in a classification problem or a regression problem. 

Moura et al.(2011), Lins et al. (2013) and Droguett et al. (2014) successfully applied SVM to 

reliability problems in time series data. Hu et al. (2014) adopt an SVM model to estimate the 

remaining useful life and the performance reliability based on the predefined threshold for 

failure in manufacturing industry.  

Benkedjouh et al. (2013) reported the importance of PHM in rotation machines, as it 

increases the reliability and decreases machinery downtimes. They estimate the RUL in 

rolling bearings using SVM. Hu et al. (2010) analyze the monitoring of RUL for axial piston 

pump, applying an EMD+SVM methodology to predict RUL and confirming the better results 

provided from hybrid methods. 

Peng & Chu (2004) and, more recently, Yan, Gao, & Che (2014) present an interesting 

review of wavelets applications focused on rotary machine fault diagnosis. Konar & 
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Chattopadhyay (2011) applied CWT coupled with SVM for fault detection of induction 

motors. Liu et al. (2013) used a Wavelet+PSO+SVM methodology to analyze vibration 

signals from rolling bearing elements, working with diagnosis, not with prognostics.  

EMD+SVM algorithm applied in vibration signal to estimate failure in rolling bearing 

could be seen in Yang, Yu, & Cheng (2007) and prognostic is performed by Liu et al. (2014) 

with the EMD+SVM approach to predict the RUL of subsystems in heavy rolling-mills. 

Rai & Upadhyay (2016) provide an interesting review on signal processing techniques 

utilized in the fault analysis of rolling element bearings. The current work in failure analysis 

from vibration signal used different types of hybrid methods as seen in Wang, Jia & Li 

(2014), Su et al. (2015) and Saxena, Bannett, & Sharma (2016). 
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3 METHODOLOGY AND DATA SET CONTENT  

 

3.1  Applied Methodology 

The methodology applied in this master thesis is presented in Figure 6. Vibration data 

from rolling bearings are used as input for the methodology. The data sets contain a large 

amount of observed values and, due to the computational cost, the learning model 

(PSO+SVM) cannot handle such an extensive data, being necessary to reduce the actual 

amount of data used. The reduction was done in two steps: the first step concerned a feature 

extraction to summarize 2560 points, which represent a discrete recording of the vibration 

signal, into just one point; the second reduction was sampling these data in specific 

frequencies depending on which degradation state the bearing was. Further details about the 

data set are exposed in the next section.  

 

  

Figure 6: Methodology applied for RUL prediction 
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After the sampling, EMD or Wavelets was performed as shown in Figure 7 and 8, 

respectively. In each case, two distinct inputs for regression models were created differing in 

which regressors it used: for EMD, one model containing all IMFs plus the final residue and 

the other model containing just the final residue; for Wavelets, one model consisted of 

wavelet functions of each level plus the last scaling function and other model consisted of just 

the last scaling function. Once SVM highly depends of the data input, the idea behind using 

the final residue for EMD and the last scaling function for Wavelets was to provide an input 

enough smooth but still caring important characteristics of the signal.  

 
Figure 7: Methodology applied when EMD is used 

The next step was to provide the PSO+SVM model with this preprocessed data. Then, 

the algorithm creates a regression function for each model (1 – IMFs + Residue; 2 – Residue; 

3 – Wavelets + Scaling; 4 – Scaling; 5 – No preprocessing) and the results could be compared 

based on the performance of RUL prediction.  

This methodology was applied in two different cases based on the same data set. The 

first application was performed when the whole vibration run-to-failure data set was provided, 
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i.e., there was data until failure happens. There, a regression model was created and 

estimation about the RUL was done for each point until the failure based on the vibration 

data. In the end, the line trend of all points was the predicted RUL. The second application 

was more challenging, once only part of the test set was provided, that means that there was 

only the vibration signal until some point far from the failure time. The goal was to correctly 

estimate the RUL based on the developing behavior of the vibration signal and on the 

regression functions estimated over the run-to-failure data sets. 

 

 
Figure 8: Methodology applied when Wavelets is used 
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3.2 Overview of the data set 

 

The presented methodology was applied to a real data set provided by FEMTO-ST 

Institute (Nectoux et al., 2012).  The data was used in the IEEE PHM 2012 Data Challenge, 

focused on the estimation of the RUL of bearings. Experiments were carried out on a 

laboratory experimental platform (PRONOSTIA), Figure 9, that enables accelerated 

degradation of bearings under constant and/or variable operating conditions, while gathering 

online health monitoring data (rotating speed, load force, temperature, vibration).  

 
Figure 9: Overview of PRONOSTIA 

From Nectoux et al. (2012) 

 

Regarding the PHM Challenge, three different categories of data were provided, each 

of them with a different load and rotational speed applied. In each category, they were 

constant during all the experiment. Six run-to-failure data sets were provided in order to build 

some prognostics models, and participants were asked to estimate accurately the RUL for 11 

remaining bearings. Monitoring data of the 11 test bearings were truncated so that participants 

were supposed to predict the RUL. Also, no assumption about the type of failure that had 

occurred was given, i.e., nothing was known about the nature and the origin of the 

degradation: balls, inner or outer races, cage. The challenge data sets were characterized by a 
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small amount of training data and a high variability in experiment durations (from 1h to 7h) 

and thereby, achieving good results was quite difficult (NECTOUX et al., 2012). 

Furthermore, even if the data provided for the challenge concerns constant operating 

conditions for each realized experiment, the current design of PRONOSTIA enables to 

provide data related to bearings degraded under variable operating conditions. The main 

objective of PRONOSTIA is to provide experimental data that characterize the degradation of 

ball bearings along their whole operational life (until their total failure). This experimental 

platform allows conducting bearings’ degradations in only few hours. Also, compared to other 

bearing test beds proposed in literature, the data provided by the PRONOSTIA platform are 

different in the sense that they correspond to ‘normally’ degraded bearings. This means that 

the defects are not initiated on the bearings and that each degraded bearing contains almost all 

the types of defects (balls, rings and cage).  

 

3.3 Bearings degradation: run-to-failure experiments 

PRONOSTIA platform enables to perform run-to-failure experiments. In order to 

avoid propagation of damages to the whole test bed (and for security reasons), tests were 

stopped when the amplitude of the vibration signal measured by accelerometers overpassed 

20g measure. Figure 10 depicts an example of what one can observe on the ball bearing 

components before and after an experiment, as well as a vibration raw signal gathered during 

a whole experiment. Note that the degradation of bearings depicts very different behaviors 

leading to very different experiment duration (until the failure). 

 
Figure 10: Normal and degraded bearings and vibration raw signal from an experiment 

Adapted from Nectoux et al. (2012) 
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The experiments from which the data set was derived involved three different loading 

conditions. Condition 1 had seven ball bearings operated at 1800 rpm with 4000 N radial load. 

Complete run-to-failure data for algorithm training were provided for two of the bearings, and 

truncated data for algorithm testing were provided for the other five bearings. Condition 2 

featured seven ball bearings operated at 1650 rpm with 4200 N radial load. Of the seven 

bearings, complete run to-failure data for training were provided for two, and data for testing 

were provided for five of the bearings. Condition 3 featured three bearings operated at 1500 

rpm with 5000 N radial load. Data from two of the bearings were provided for training and 

data from the other bearing was provided for testing. 

Two accelerometers were mounted on the bearing housing to measure vibration in the 

vertical and horizontal directions. Data sampling was conducted at 10 seconds intervals at a 

25.6 kHz sampling rate and 0.1 seconds duration; hence, each observation contained 2560 

points. 

 

3.4 Data Processing 

 

As previously mentioned, data sampling was monitored at a 10 seconds interval and 

each observation contained 2560 points. For example, the experiment of Bearing 1, which 

was performed in the first condition, lasted 7 hours and 47 minutes, which means that 2803 

observations and 7,175,680 points were recorded. This huge data represents the measure of 

just one bearing at one condition in one accelerometer. It is easy to see the necessity of data 

processing to achieve a set of representative points so as to decrease the required 

computational effort.  

Therefore, the feature extraction was done in order to represent the 2560 recorded 

points in just one point for each observation, once vibration variation within the 0.1 seconds 

duration interval is negligible when compared with the whole experiments duration. Hence, 

the whole data set provided in competition had, on average, about 1300 data points for each 

bearing, in each accelerometer (horizontal and vertical). 

Three metrics were considered: peak amplitude, kurtosis and entropy. Each of them 

was calculated over the observed values on the horizontal axis, on the vertical axis and on the 

vector sum of the horizontal and vertical points, thereby resulting in a total of nine metrics. 

The absolute amplitude vibration considered was the average of the five highest absolute peak 
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acceleration values measured in each observation. Averaging was done to reduce the effect of 

data noise. 

In general, the data was very disturbed and not a particular behavior was presented for 

any metric. Further, anomalous features such as a considerable number of high peaks at the 

beginning of the experiment followed by small peaks after a while was observed in many 

bearings. It seems to indicate an improvement on this experimental test, which is not correct. 

This type of behavior indicates the difficulty in data processing, as well as to decide which 

summary metric should be used for further analysis.  
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4 APPLICATION EXAMPLES 

As previously mentioned, the data set presented an unusual behavior for every metric 

analyzed and the metric chosen was the one that presented the most ‘normal’ expected 

degradation behavior. For the application of the master thesis methodology, a training set is 

necessary, from which the machine will learn about the bearing degradation behavior and a 

test set, where the same machine will try to correctly predict another bearing behavior. A 

comparison among models with EMD, with Wavelets and without any preprocessing 

technique is made in order to identify what is the gain, if present, of those preprocessing 

techniques in the data set.  

After several investigations, the absolute frequency amplitude was considered the 

most suitable among all the metrics and was the work’s focus. Furthermore, the horizontal 

absolute amplitude vibration presents a better behavior and was the chosen one. Comparisons 

between the bearings in their respective conditions were made and the condition 1 was 

selected to be analyzed, by applying the methodology to the Bearing 1 (learning set) and the 

Bearing 3 (test set). 

Bearing 1 had 2803 observations in a run-to-failure test. SVM is a supervised learning 

method, which requires the necessity of both k, the response variable, and n, the 

regressor/input variables. In all cases, the response variable was the RUL and the regression 

variables were the amplitude vibrations. In the EMD case, one model where each IMF and the 

Residue were considered as a regressor variable and other model where just the Residue was 

the regressor variable; in the Wavelet case, one model contains each Wavelet and the last 

Scaling function as regressors and the other model considered just the last Scaling function. 

The last model, without EMD or Wavelets as preprocessing techniques, had the signal 

resulted from the vibration feature extraction as regressor.  

The direct point prediction is not expected to be reliable, due to the high variability 

and disorder of the data, but the trend of all predictions should express the realistic RUL 

estimation, as seen in Figure 11: 
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Figure 11: Expected estimated RUL behavior 

 From Sutrisno et al. (2012) 
 

The goal was training the machine with the learning set (Bearing 1) and test the 

machine with the test set from Bearing 3. The predicted RUL would be compared with the 

real RUL, also provided by the FEMTO-ST Institute in Nectoux et al. (2012). This 

comparison is only possible because the FEMTO-ST Institute provided the complete data set 

after the end of the challenge in 2012. Bearing 3 was a test bearing and had 1802 truncated 

observations and 2374 complete observations.  

Even so, after the feature extraction, the processing of 2803 data by PSO+SVM is still 

computational expensive, once that PSO is a probabilistic algorithm that needs to explore 

through the search space for the best solution. Therefore, the data were divided in four 

different regions, each one representing one degradation phase of the bearing. These four 

regions are shown in Figure 12. 

 

 
Figure 12: The four different regions of degradation   
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The four regions represent different degradation states of Bearing 1. The first one 

represents a healthy state, where the bearing is still considered new and had duration of 12000 

seconds (1200 samples). The second region represents an initial degraded state, where there is 

an increase in the vibration mean, but still considered stable and this phase lasts 13000 

seconds (1300 samples). In the third, the mean keep growing and also the variance starts to 

increase, considered as a high degradation state, lasting 2400 seconds (240 samples). The 

fourth is almost a failed state, with the mean strongly increasing in each observation and with 

the variance oscillating heavily, during 510 seconds (51 samples).  

In order to reduce the data quantity, the data sampling in every region had a different 

frequency, once the more stable the bearing is, the less necessary is the monitoring every ten 

seconds. The suitable values used in the data sampling was 400 seconds for the first region 

(30 points), 200 seconds to the second region (65 points), 100 seconds for the third region (25 

points) and 30 seconds to the last one (17 points). In this way, the data set was reduced to 137 

points, which are easily handled by the PSO+SVM method.  Similar procedure was made 

with data of Bearing 3, reducing the 2374 data points to just 120, using the same sampling 

frequency in each of the degradation regions applied to Bearing 1. 

After applying all the methodology and predicting the RUL, it is necessary to get back 

to real space between observations, i.e. before the sampling was performed, and compare the 

results with the 2374 points from the original data. It was done adding the respective sampling 

time lapse in all four degradation regions, so as to the RUL predicted vector has “length” 

2374 (i.e. it is created a “sparse” vector with non-zero values only in the sampling time).   

 

4.1 Complete Test Set Case 

In the first application case, all test data of Bearing 3 were provided and estimations 

about the RUL were made for all data, i.e. every test point until the failure has an estimated 

RUL. As previously mentioned, it is not expected a good point prediction, but the trend 

should correctly express the degradation behavior. Figure 13 depicts an example (e.g. 

PSO+SVM model with no preprocessing technique) of the applied procedure. Each one of the 

120 points has a real RUL, represented by darks diamonds, and its own prediction, 

represented by the light grey squares. A linear trend is calculated from the predictions and is it 

presented as a solid black line, thereby creating a good representation of the real RUL. This 
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procedure was performed for the five models under analysis: IMFs + Residue; Residue; 

Wavelets + Scaling; Scaling; no preprocessing.  

 

 
Figure 13: RUL estimation for complete data case 

In order to correctly estimate the RUL, two metrics were applied: in the first, it was 

considered a simple average between the k axis cross value and 10 times the � cross value, 

once both should represent the predicted RUL for the whole experiment. The multiplication 

by 10 of � axis was done just to treat both axis as time axis (multiplication of the number of 

samples by time lapse between each sample). Then we subtract the real RUL and divide this 

value for the real RUL to get a Percentage Error (PE). This is expressed in the equation 

below:  

 

/° = 	

�k	-'.))	1,2L( + 10	��	-'.))	1,2L(��
2 − �(,2	�±0

�(,2	�±0
% 

(2.377) 

 

The second metric was an Absolute Percentage Error (APE), where we first calculate 

the absolute difference value between k axis cross value and the real RUL; then we calculate 

the absolute difference value between 10 times the � cross value and the real RUL. Ideally, 

both should have the same value, due to the fact the k axis represents the real RUL as well as 

the � axis times 10 (seconds), and the experiment was a run-to-failure (i.e., the last RUL is 

zero). This absolute value quantifies the distance error. To compare the models, we calculate 

y = -8.6252x + 22572

R² = 0.8179
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the percentage error, dividing the RUL prediction for both models to the real RUL, in this 

case, 23740 seconds.  

 h/°

= 	

�|�(,2	�±0 − 	k	-'.))	1,2L(| + |�(,2	�±0 − 	10	��	-'.))	1,2L(�|�
2

�(,2	�±0
% 

(2.388) 

 

Both errors are presented in Table 1 for each tested model. Model using as regressor 

only the Residue provided by EMD preprocessing technique present the smallest PE as well 

as APE, representing the best model in this application. Still, all PE and almost all APE 

presented errors lesser than 10%, even if the singularity of the data. Still, EMD+PSO+SVM 

model presents almost the same PE and APE, which mean that RUL correctly decrease 

between samples, errors representing just a time translations, i.e., every RUL prediction 

differs from the same time lapse from the real RUL. Parameters from PSO of each model can 

be found in Appendix A.   

 

Table 1: Table of errors for all tested models in first application 

Model Regressors PE APE 

EMD+PSO+SVM IMFs + Residue 2.54% 2.54% 

Residue+PSO+SVM Residue 0.34% 1.45% 

Wavelets+PSO+SVM Wavelets + V4 0.48% 8.70% 

V4+PSO+SVM V4 1.00% 15.00% 

PSO+SVM Direct Vibration Data 2.66% 7.58% 

 

 

4.2 Truncated Test Set Case 

The second application case was to perform exactly the IEEE PHM 2012 Data 

Challenge provided by the FEMTO-ST Institute. In this case, only truncated data was 

provided for the test bearing and the challenge was to calculate the RUL from it. Once more, 

all procedure applied in the first case was done: feature extraction first, then sampling to 

reduce the amount of data, training with Bearing 1 data and test with Bearing 3 truncated data 

(i.e. there is no data until failure). Again, point estimations were not expected to be good 

predictions, but the series trend should represent the bearing’s behavior.  
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Bearing 3 truncated test set consisted of 1802 points that are depicted Figure 14. As 

well as Bearing 1 training set, it is expected to Bearing 3 to pass through all four degradations 

regions, even if the truncated data still does not present all of them. By analyzing test data, 

Bearing 3 only reached first and second degradation regions and inference has to be done to 

further degradation zones.  

 
Figure 14: Truncated test set used in second application 

From Figure 12, note that vibration in first degradation region (i.e. health stage) is 

almost stationary, with negligible fluctuations compared with the whole vibration data set. 

Analogously, data from first region of the test bearing were considered until point 1200 and 

the remaining were from second region. Note that there is only one outgoing peak near the 

end of truncated data (even if its values is still far from a failure value), but this not 

correspond to a trend change and it was probably due to a noise in test. Thus, it is still 

considered second region. Once truncated test data only provide with information from 

regions 1 and 2, use data from region 1 will not represent any gain about bearing degradation. 

Even more, using data from region 1 will only deviate the overall trend.  

Therefore, in this application, none of data from the first region was used. Also, 

sampling of the second region was changed to contain more information, i.e. it was used the 

sampling rate of the fourth region (every 30 seconds/3 samples). Thus, data test was reduced 

to 200 test points used for estimation. Again, it is applied the same idea as in the first example 
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and Figure 15 illustrate one example model (PSO+SVM without preprocessing techniques) of 

how conducted was carried predictions. Dark gray line represents the real RUL and light grey 

light represents estimations. Thin black line represent the trend overall predictions.  

 

 
Figure 15: Predictions for RUL in the IEEE PHM Data Challenge 

Here, note that predictions do not occur until k axis crossing, i.e., until failure. So, to 

define RUL estimation for the challenge, thin black line (trend) was extrapolated until it 

crossed k axis and this value was used as the desired estimation. RUL for each model was 

compared with the true RUL value of 5370 (noticed from the last time of truncated data to the 

failure time of the bearing) and models with good performance should predict values similar 

to this. For errors measurement, PE was used once there is only one estimated RUL for each 

model. Results are shown in Table 2. Errors for models with Wavelets application are not 

displayed, once they predicted negative values for RUL, which does not occur in reality. 

Parameters from PSO of each model can be found in Appendix A. 

  

Table 2: Table of errors for tested models in second application 

Model Regressors Percentage Errors 

EMD+PSO+SVM IMFs + Residue 15.39% 

Residue+PSO+SVM Residue 24.90% 
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PSO+SVM Direct Vibration Data 58.53% 

 

In this application, EMD+PSO+SVM model presented the best performance. Again, it 

is important to highlight the difficulty of this challenge, which is evidenced by the 

consideration of errors of this order of magnitude as acceptable. Indeed, in comparison, 

Sutrisno et al. (2012) presented the prediction errors for the winner of the challenge and the 

error for this bearing was 37%, worse than two of our estimations.  
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5 CONCLUDING REMARKS 

5.1  Conclusions 

 

The concern about systems efficiency has been the focus in most of the companies and 

the technological progress subordinated this efficiency to machinery and equipments. 

Enhance the availability and utility of system becomes necessary and condition monitoring 

programs have presented vital importance. 

This work proposed a comparison between the ability of models using EMD or 

Wavelets as preprocessing technique to a PSO+SVM learning algorithm to correctly predict 

the RUL of rolling bearings from a vibration signal. Moreover, the comparison was applied to 

a real dataset provided for a PHM Challenge competition. Due to the duty of a challenge, the 

data was difficult to analyze and it provided some odd features.  

Two cases of applications were considered: (i) when the whole test data set was 

provided and (ii) when a truncated test data set was provided. In the first case, almost all 

models presented good estimations for RUL, especially the ones with EMD+PSO+SVM 

models, the one with just the Residue as regressor and the one using IMFs and the Residue as 

regressors. To measure model’s performance, two types of errors (PE and APE) were applied. 

The second case was more challenging, given that fewer amounts of data were provided, with 

the bearing in the early stages of degradation. In this case, only some models could provide 

acceptable RUL, but the ones that did it provided good estimates. Even more, two of three 

models provided better RUL predictions than the winner of the PHM Challenge competition.  

Even if, in general, performing PSO+SVM learning algorithm already represent a 

reasonable estimation, apply preprocessing techniques to treat the data could represent a gain 

in terms of performance prediction on estimating the RUL for rolling bearings. Moreover, in 

the exemplified examples, EMD overcomes Wavelets providing better results.  

Therefore, more reliable predictions could be performed improving information 

related to operational conditions. Decision-making about RAMS problems are support with 

these information, aiming to reduce costs and risk, and maximize efficiency and production 

capacity.  
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5.2 Limitations and future works 

 

Despite usually producing satisfactory predictions, PSO+SVM only could handle 

relatively small samples due to the probabilistic PSO algorithm. Thus, the dataset had to be 

reduced in more than 10 times to be processed and this could lead to loss of information and 

misinterpretations. Nevertheless, vibration signals are often too large, given that the sampling 

frequency is very high, thus data set reduction is almost a mandatory step. 

Besides, the data set was considerable confusing and the application of the 

methodology in a more ‘normal’ data set could verify, or not, the same conclusions of this 

master thesis. IEEE PHM Challenge also provides information of other bearings that could be 

used for more test analysis. Furthermore, the data set also provides information about 

temperature, not used in this analysis. This could point to other ways to interpreting the 

degradation signal and possible forms to predict the RUL. 

For future research, a comparison between the EEMD (Ensemble Empirical Mode 

Decomposition) preprocessing could be done, to verify if this approach leads to a better 

prediction. EEMD tries to solve some problems of EMD, such as the high variability in the 

series extremes and mode mixing.  

Another future research could be the elaboration of a complete maintenance plan 

based in this prediction in order to maximize the availability and minimize some kind of cost. 

Even more, an online monitoring using this approach that is updated in loco should bring 

great results to industrial company machinery availability.  
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APPENDIX A 

 

 

Complete Test Set Case 

Model PSO Parameters  

C ε γ 

EMD+PSO+SVM 1499.99999 277.7990 0.194966 

Residue+PSO+SVM 1499.99996 33.8814 0.177431 

Wavelets+PSO+SVM 1499.98568 9.6023 0.290502 

V4+PSO+SVM 1499.99968 30.4670 0.100154 

PSO+SVM 1492.50063 760.5810 0.106303 

 

 

 

 

Truncated Test Set Case 

Model PSO Parameters 

C ε γ 

EMD+PSO+SVM 1499.99997 603.2615 0.106401 

Residue+PSO+SVM 1499.99996 607.9639 0.100001 

PSO+SVM 1499.99988 20.1639 0.100001 

 

 


