

Universidade Federal de Pernambuco

Centro de Informática

Raphael Freire de Araújo Patrício

CEManTIKA CASE: uma Ferramenta de Apoio ao
Desenvolvimento de Sistemas Sensíveis ao Contexto

Trabalho apresentado ao Programa de Pós-Graduação em

Ciência da Computação do Centro de Informática da Uni-

versidade Federal de Pernambuco como requisito parcial

para obtenção do grau de Mestre em Ciência da Computa-

ção.

Orientadora: Patricia Cabral de Azevedo Restelli Tedesco

Co-orientadora: Vaninha Vieira dos Santos

Recife

SETEMBRO, 2010

Eu dedico este trabalho ao meu avô e padrinho Pedro

Araújo (in memorian) e à Neuza Câmara (in memorian),

eterna bisavó.

Agradecimentos

A Deus, por ter me dado a oportunidade de viver e de concretizar este sonho.

À minha família, em especial minha mãe Rosanjala, por ter suportado meu
alto nível de estresse durante essa jornada.

Às minhas orientadoras, Patricia e Vaninha, pela dedicação e paciência infi-
nitas.

À Suzanna, com quem compartilhei experiências, por ter estado ao meu lado
em todas as etapas importantes da minha vida.

Aos meus amigos de curso, com os quais pude contar durante esses dois lon-
gos anos, que me ajudaram e aconselharam na busca pelo melhor caminho,
em especial Anderson e Raony.

Ao Centro de Informática da UFPE pela forma acolhedora que me recebeu.

Agradeço também aos professores Ana Carolina Salgado e José Maria Da-
vid por avaliarem o trabalho realizado e por participarem da banca examina-
dora dele.

Aos meus familiares, que de alguma forma me ajudaram a chegar até aqui.

Aos colegas do NTI da UFPB, empresa na qual trabalho, pela compreensão
nos momentos mais difíceis.

A todas as pessoas que torceram por mim e que me apoiaram, direta ou
indiretamente, desde o primeiro passo.

v

Aquilo que se faz por amor está sempre além do bem e do mal.

—FRIEDRICH NIETZSCHE

Resumo

Os sistemas computacionais são usados para apoiar a execução de várias tarefas cotidia-
nas e fornecem aos usuários uma grande quantidade de informações. Para torná-los mais
adaptativos e fáceis de usar surge Contexto. Contexto é o conjunto de informações que
caracterizam as entidades relevantes envolvidas na interação entre um usuário e uma apli-
cação. Sistemas sensíveis ao contexto (SSC) usam contexto para proverem informações
e serviços mais relevantes aos usuários por meio de mecanismos de adaptação, assistên-
cia e percepção. Todavia, o desenvolvimento dessas aplicações não é trivial e apresenta
desafios na aquisição, processamento, uso e disseminação de contexto. Para auxiliar o
desenvolvimento de aplicações sensíveis ao contexto foram propostas várias abordagens
de middlewares, toolkits, APIs e metamodelos. O CEManTIKA apoia a modelagem e
projeto de SSC de forma independente de domínio por meio de uma arquitetura gené-
rica, um metamodelo e um processo de software. No entanto, não foi encontrada uma
ferramenta que permita a construção de SSCs guiada por um processo partindo da sua
especificação e que use artefatos já modelados na aplicação. Esse trabalho apresenta a
ferramenta CEManTIKA CASE que permite identificar o contexto relevante para uma
aplicação e os mecanismos de adaptação em função dele. Um estudo experimental pre-
liminar, realizado com nove participantes, verificou a aplicabilidade da ferramenta para
o projeto de SSC e permitiu a modelagem dos elementos propostos no CEManTIKA.

Palavras-chave: Sistemas sensíveis ao contexto, Ferramentas CASE, Metamodelos
UML

vii

Abstract

Computer systems are used to support daily tasks and provide users with an increasing
amount of information. Context makes them more adaptable and easier to use. Con-
text is the set of information that characterizes the relevant entities in the interaction
between a user and an application. Context Sensitive Systems (CSS) use context to pro-
vide information and relevant services to the users through adaptation, assistance and
perception mechanisms. Developing a CSS is not a trivial task and presents challenges
associated with tasks such as acquisition, processing, usage and dissemination of con-
textual information. Several approaches of middlewares, toolkits, APIs and metamodels
were proposed to help software engineers in developing a CSS. CEManTIKA supports
context modeling and CSS design, in a generic, domain-independent way. The CEMan-
TIKA approach involves the provisioning of a generic architecture, a metamodel and a
CSS design process. However, there is no tool that enables building a context sensitive
system guided by a software process and that uses common artifacts already defined
in the application. This work presents the CEManTIKA CASE tool that enables iden-
tifying structure and behavior aspects of context. A preliminary study, conducted with
nine participants, confirmed the applicability of the tool for design CSS and enabled the
modeling of proposed elements in CEManTIKA framework.

Keywords: Context Sensitive Systems, CASE tools, UML metamodeling

viii

Sumário

1 Introdução 1

2 Contexto em Computação 5

2.1 Contexto 6

2.2 Sistemas Sensíveis ao Contexto 9

2.3 Técnicas para representação de contexto 12

2.3.1 Grafos Contextuais 14

2.4 Processos de Engenharia de Software para SSC 16

2.5 Considerações Finais 17

3 Trabalhos Relacionados e Ferramentas 18

3.1 Meta-Ferramentas 19

3.2 Ferramentas de apoio ao desenvolvimento de SSC 23

3.2.1 Apoio a Contexto 23

CAPpella – Context-aware Prototyping 24

iCAP – Interactive Context-Aware Prototyper 25

Pópulo 26

Context-ADDICT Designer 28

CML – Context Modelling Language 29

Ferramentas que usam Metamodelos UML 30

3.2.2 Discussão sobre os trabalhos relacionados 33

3.2.3 Ferramentas CASE implementadas com Metamodelos UML 35

ix

3.3 Considerações Finais 37

4 CEManTIKA CASE 38

4.1 CEManTIKA 39

4.1.1 Arquitetura de Manipulação de Contexto 39

4.1.2 Metamodelo de Contexto 42

4.1.3 Processo de Projeto de SSC 46

4.1.4 Alterações no Processo de Projeto de SSC 48

4.2 CEManTIKA Process 49

4.3 CEManTIKA Modeling 50

4.3.1 Requisitos Funcionais 52

4.3.2 Requisitos não-funcionais 56

4.3.3 Visão Arquitetural 57

4.4 Considerações Finais 60

5 Implementação e Estudos Experimentais 61

5.1 CEManTIKA Process 61

5.2 CEManTIKA Modeling 64

5.3 Experimentação 72

5.4 Considerações Finais 76

6 Conclusões e Trabalhos Futuros 77

6.1 Contribuições 78

6.2 Dificuldades Encontradas 79

6.3 Trabalhos Futuros 80

Referências 82

A Restrições OCL 89

B Sistema de Auxílio a Missões 92

C Questionário de Avaliação 95

Lista de Figuras

2.1 Classificação de contexto em relação ao foco 9

2.2 Exemplo de grafo contextual 15

3.1 CAPpella sendo treinada para reconhecer o cenário de uma reunião 26

3.2 Interface do usuário do iCAP 27

3.3 Modelo UML executável orientado a aspectos 28

3.4 Arquitetura da ferramenta CADD 29

3.5 Arquitetura da ferramenta CML 31

3.6 Extensões do diagrama de classes da UML para modelar contexto 32

4.1 Integração entre os elementos do CEManTIKA 40

4.2 Arquitetura de Contexto 41

4.3 Metamodelo estrutural de Contexto 43

4.4 Perfil de Contexto com propriedades e estereótipos 45

4.5 Processo de Desenvolvimento de Sistemas Sensíveis ao Contexto (SSC) 47

4.6 Fluxo de execução da atividade Especificação de Contexto 51

4.7 Tarefas e artefatos de entrada e saída da atividade Especificação de Con-
texto 52

4.8 Diagrama de Casos de Uso do CEManTIKA Modeling 53

4.9 Simulação do Grafo Contextual 59

4.10 Visão arquitetural do CEManTIKA Modeling. 60

5.1 Biblioteca do CEManTIKA Process 62

xi

5.2 Navegação entre os elementos do processo 64

5.3 Apresentação inicial do CEManTIKA Modeling 66

5.4 Percepção de erro após verificação de regra OCL 67

5.5 Assistente para importação do Diagrama de Casos de Uso 68

5.6 Configuração de um estereótipo na ferramenta CEManTIKA CASE 69

5.7 Componentes do JBoss Drools Flow 71

5.8 Criação de um grafo contextual na ferramenta no CEManTIKA Modeling 72

5.9 Experiência dos participantes no desenvolvimento de SSCs 73

5.10 Comparação da tarefa Identificar Entidades Contextuais e Elementos
Contextuais com e sem ferramenta 74

5.11 Apoio do Eclipse no uso do CEManTIKA CASE 75

B.1 Diagrama de Casos de Uso 93

B.2 Biblioteca do CEManTIKA Process 94

Lista de Códigos Fonte e Exemplos

3.1 Exemplo de regra construída no iCAP 27

4.1 Exemplo de regra de produção criada 46

4.2 Exemplo de Variações de Contexto 55

4.3 Regra OCL para um Elemento Contextual 58

5.1 Exemplo de template do JET 70

5.2 Exemplo de código Java gerado para uma Entidade Contextual 70

A.1 Regra OCL para um Agent 89

A.2 Regra OCL para uma Task 89

A.3 Regra OCL para uma Associação do tipo executes 90

A.4 Regra OCL para uma Entidade Contextual 90

A.5 Regra OCL para um Elemento Contextual que verifica se a propriedade
ContextType possui um valor válido 90

A.6 Regra OCL que verifica se um Elemento Contextual (Associação) está
associado a uma Entidade Contextual 90

A.7 Regra OCL que verifica se um Elemento Contextual (Propriedade) está
associado a uma Entidade Contextual 90

xiii

Lista de Tabelas

2.1 Comparativo entre técnicas de representação de contexto 13

2.2 Abordagens para desenvolvimento de SSCs 17

3.1 Comparativo entre meta-ferramentas CASE 22

3.2 Ferramentas para desenvolvimento de SSCs 34

xiv

Lista de Abreviaturas e Siglas

AOEM Aspect-Oriented Executable Modeling

API Application Programming Interface

CAS Context-Aware Service

CASE Computer-Aided Software Engineering

CEManTIKA Contextual Elements Modeling and Management through Incremental
Knowledge Acquisiton

CEKB Contextual Elements Knowledge Base

CML Context Modelling Language

CSS Context Sensitive System

CxG Grafo Contextual

DDS Desenvolvimento Distribuído de Software

EC Elemento Contextual

EMF Eclipse Modeling Framework

EPF Eclipse Process Framework

ER Entidade Relacionamento

GMP Graphical Modeling Project

GPS Geo-Posicionamento por Satélite

IDE Integrated Development Environment

JET Java Emitter Templates

xv

JSON JavaScript Object Notation

M2M Model to Model

M2T Model to Text

MDA Model Driven Architecture

MDD Model Driven Development

MDT Model Development Tools

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

ORM Object Role Modeling

PbD Programming by Demonstration

POA Programação Orientada a Aspectos

RUP Rational Unified Process

UML Unified Modeling Language

SDK Software Development Kit

SGBD Sistema Gerenciador de Bancos de Dados

SPEM Software Process Engineering Metamodel

SSC Sistemas Sensíveis ao Contexto

UWE UML-based Web Engineering

XMI XML Metadata Interchange

XML Extensible Markup Language

Capı́tulo 1
Introdução

A grande quantidade de informação disponível e a complexidade das atividades do dia-a-
dia inundam os usuários de sistemas computacionais com serviços com pouca semântica
e que dependem de escolhas e interações explícitas para solucionar problemas. Segundo
Vieira, Tedesco e Salgado (2009) os sistemas computacionais devem prover serviços
mais ricos e autônomos que permitam, de forma transparente, aproximar o homem da
máquina. Para alcançar esse ideal, novos desafios relacionados a Sistemas Distribuídos,
Interação Homem-Máquina e Contexto Computacional devem ser resolvidos.

Vieira, Tedesco e Salgado (2009) afirmam que contexto permite restringir o que é ou
não importante em uma situação e, assim, aprimora a compreensão do ambiente, ações e
eventos que cercam o indivíduo. Usamos informações contextuais a todo momento para
tomar decisões cotidianas. Se vamos ao cinema, podemos assistir a um filme de ação ou
a uma comédia dependendo da companhia (e.g. amigo, namorada). Escrevemos um e-
mail de maneiras diferentes de acordo com o destinatário e o assunto. Se o e-mail contém
as fotos do último passeio, somos informais, se o e-mail é de trabalho procuramos uma
linguagem mais adequada e formal.

As pessoas mudam constantemente o objetivo da interação com os sistemas compu-
tacionais: trabalham, estudam, divertem-se, comunicam-se. Diante disso, vários pesqui-
sadores (CHAVES, 2009; CHEVERST et al., 2000; SALBER; DEY; ABOWD, 1999)
observaram a relevância das informações contextuais (e.g. localização, tempo e ativi-
dade do usuário) para identificar o que é relevante nessa interação e adaptar o uso das
aplicações. A definição de Salber, Dey e Abowd (1999) diz que “contexto é qualquer
informação que pode ser usada para caracterizar a situação de entidades (pessoas, obje-

1

tos e coisas) que são consideradas relevantes para a interação entre um usuário e uma
aplicação [. . .]”. Por meio de Contexto Computacional é possível perceber as intenções
do usuário ao usar uma aplicação, adaptá-la e torná-la mais autônoma. Assim, os enge-
nheiros de software podem construir sistemas mais ricos e atrativos que se adaptam ao
seu ambiente de uso, denominados Sistemas Sensíveis ao Contexto (SSC).

No entanto, segundo Vieira (2008), o desenvolvimento de um sistema sensível ao
contexto envolve novos desafios, como: que tipos de informação considerar como con-
texto, como representar essas informações, como adquiri-las e processá-las, como integrá-
las ao software e como apresentá-las ao usuário. Para Henricksen e Indulska (2006) as
aplicações sensíveis ao contexto ainda não fizeram a transição dos laboratórios de pes-
quisa para o dia a dia das pessoas devido a três problemas principais: a) dificuldades
de implementação; b) desafios sociais relacionados com privacidade e usabilidade; e
c) entendimento imperfeito de como usar contexto nos sistemas.

Para facilitar a implementação de SSC algumas ferramentas foram desenvolvidas.
Diversas abordagens desenvolveram middlewares (KANG et al., 2007), APIs (BAR-
DRAM, 2010) e toolkits (SALBER; DEY; ABOWD, 1999), mas a maioria não defi-
niu um modelo sistemático baseado em um processo para a criação de SSC. A maior
parte das abordagens pode ser usada apenas em domínios específicos, como aplicações
Web (KAPITSAKI et al., 2009) e healthcare services (KANG et al., 2007). A construção
de um SSC guiada por um processo de software auxilia a identificação das informações
de contexto relevantes e apoia a criação dos seus mecanismos de uso. Segundo Vieira
(2008), um processo de software apoia os desenvolvedores de SSC a especificar os requi-
sitos de contexto de uma aplicação. Outros trabalhos (SOHN; DEY, 2003b; MCFAD-
DEN; HENRICKSEN; INDULSKA, 2004; VIEIRA, 2008; KANG et al., 2007; DEY et
al., 2004) mostram a importância e necessidade de ferramentas para prototipação ou que
auxiliem a criação de aplicações sensíveis ao contexto.

Nesse ambiente, Vieira (2008) abordou o desenvolvimento de sistemas sensíveis ao
contexto por meio de um processo, arquitetura e metamodelo UML, preocupando-se
com modularidade e reusabilidade e, definiu o Contextual Elements Modeling and Ma-

nagement through Incremental Knowledge Acquisiton (CEManTIKA), um framework

conceitual que apoia o projeto de SSCs de forma genérica e independente de domínio.

O CEManTIKA auxilia o entendimento de contexto e o projeto de SSC. Contexto
é definido em termos de elementos contextuais e do foco da interação entre usuário e
aplicação. CEManTIKA é dividido em três elementos principais: uma Arquitetura de

2

Referência para SSC, um Metamodelo de Contexto e um conjunto de Perfis UML que
definem conceitos ligados à modelagem estrutural e comportamental de contexto; e um
Processo de Projeto de SSC, que define um conjunto de atividades, papéis e artefatos
que permitem o projeto sistemático de SSC. Uma das limitações do CEManTIKA é
a ausência de uma ferramenta que facilite o uso e integração dos seus componentes,
bem como que apóie a transição da fase de projeto para a fase de implementação de
um SSC. Além disso, um estudo experimental conduzido por Vieira (2008) mostrou
que os participantes, usuários do CEManTIKA, tiveram dificuldades em compreender
e utilizar alguns aspectos do metamodelo e do processo na construção de um SSC, o
que evidenciou a necessidade de templates e guidelines que ajudem os engenheiros de
software na abordagem sugerida.

Nós investigamos a viabilidade de construir ferramentas que dão apoio à construção
de SSC por meio de processos e metamodelos independentes de domínio. Engenheiros
de software e projetistas de sistemas sensíveis ao contexto são a principal audiência desta
dissertação.

A principal questão deste trabalho é: Como sistematizar e apoiar a construção de
uma aplicação sensível ao contexto, por meio de um processo de software, usando co-
nhecimento e artefatos já modelados na aplicação?

O objetivo principal desta dissertação é implementar uma ferramenta CASE, inde-
pendente de domínio, de apoio ao projeto e desenvolvimento de SSC. As ferramentas
Computer-Aided Software Engineering (CASE) auxiliam os engenheiros de software e
gerentes de projeto em cada tarefa associada ao processo de software (PRESSMAN,
2009). Elas provêem a automatização de atividades manuais e ajudam a garantir a quali-
dade do software durante sua construção.

As principais contribuições desta dissertação são: i) a avaliação de ferramentas de
modelagem e prototipação de sistemas sensíveis ao contexto; ii) a especificação de uma
ferramenta CASE de apoio à contrução de SSC por meio do processo e metamodelo
de contexto definidos no framework conceitual CEManTIKA, chamada CEManTIKA
CASE; iii) a implementação de requisitos de modelagem de contexto da ferramenta
CEManTIKA CASE e sua posterior avaliação; iv) uma análise crítica do Processo de
Projeto de SSC definido por Vieira (2008).

O restante desta dissertação está organizado da seguinte forma:

Capítulo 2 faz uma revisão de contexto e sistemas sensíveis ao contexto.

3

Capítulo 3 faz uma revisão das ferramentas de apoio ao desenvolvimento de SSC e apre-
senta a abordagem adotada para o desenvolvimento da ferramenta CEManTIKA
CASE.

Capítulo 4 aborda o processo de engenharia de software e metamodelo definidos no
CEManTIKA e apresenta as contribuições adicionadas a ele. Depois, especifica
a ferramenta CEManTIKA CASE, a qual foi dividida em dois módulos: CEMan-
TIKA Modeling e CEManTIKA Process.

Capítulo 5 apresenta a ferramenta construída e discute o experimento realizado para
sua avaliação.

Capítulo 6 resume o trabalho feito, apresenta as conclusões e considerações finais e
indica direções para trabalhos futuros.

4

Capı́tulo 2
Contexto em Computação

As pessoas usam aplicações computacionais para realizar tarefas diárias, como escolher
um filme para assistir ou descobrir o melhor caminho para ir à casa de um amigo. Vi-
vemos na era da informação, na qual as pessoas estão cada vez mais dependentes dos
computadores para aprender e tomar decisões. Para permitir que os usuários executem
essas tarefas com maior eficiência surge um novo desafio: como prover serviços mais
relevantes, adaptativos e proativos que antecipem as necessidades do usuário?

Nesse ambiente, o contexto aparece como peça fundamental. Sistemas que usam
contexto são cientes do ambiente que os envolve e capazes de executar ações específicas
de acordo com as informações relevantes para cada tarefa.

Assim, o conceito de Contexto vem sendo estudado por diversas áreas da Computa-
ção, como: Inteligência Artificial, Computação Ubíqua e Sistemas Colaborativos. Este
capítulo apresenta uma revisão dos conceitos de contexto e sistemas sensíveis ao con-
texto.

O capítulo está organizado da seguinte forma: as Seções 2.1 e 2.2 apresentam os con-
ceitos de contexto e sistemas sensíveis ao contexto definidos por vários pesquisadores
e a definição adotada neste trabalho; a Seção 2.3 faz uma revisão das diversas técnicas
sugeridas para representar contexto e comportamentos contextuais; a Seção 2.4 abrange
os processos de Engenharia de Software para o desenvolvimento sistemático de SSC.
Por fim, a Seção 2.5 termina o capítulo.

5

2.1 Contexto

Contexto é o conjunto de circunstâncias ou fatos interrelacionados que envolvem um
evento particular, uma situação, etc. (AULETE, 2010). Por exemplo, é o contexto que
permite gritarmos em um estádio assitindo a um jogo de futebol ou ficar em silêncio em
um teatro. Informações relacionadas à localidade, tempo, atividade, entre outras podem
ser consideradas como contexto.

Em Computação, os pesquisadores procuram aplicar a definição de Contexto para
adaptar o comportamento das aplicações. Segundo Dey e Abowd (2000), compreender
melhor o conceito de Contexto permitirá aos engenheiros de software escolher quais
informações contextuais usar nas aplicações e ajudará a especificar os comportamentos
relacionados a estas informações.

Os primeiros trabalhos em Computação que tentaram definir contexto não o descre-
veram de forma genérica, mas enumeraram informações que podem alterar o compor-
tamento das aplicações, como lugar, tempo e temperatura. No entanto, definir contexto
por meio de exemplos torna difícil a generalização do seu conceito. Tentando resolver
esse problema, Dey et al. (2001) afirmam que “contexto é qualquer informação que pode
ser usada para caracterizar a situação de entidades (i.e. pessoas, locais, objetos) que são
consideradas relevantes para a interação entre um usuário e uma aplicação, incluindo o
próprio usuário e a aplicação”.

Para Brézillon (1999), o contexto delimita os elementos e as entidades que formam a
solução de um problema. Assim, contexto pode ser visto como o conjunto de restrições
instanciadas na execução de uma tarefa.

Como apontado por Chaves (2009) as definições de contexto são apresentadas de
acordo com os interesses das áreas que o estudam. No entanto, segundo Vieira (2008), os
pesquisadores concordam em alguns aspectos das definições: i) contexto existe somente
quando relacionado a uma entidade (tarefa, interação ou agente, que pode ser humano
ou de software); ii) contexto é um conjunto de itens associados a uma entidade; e iii) um
item é considerado parte do contexto somente se for útil para apoiar a resolução de um
problema.

Contexto é definido ora como dados (e.g. temperatura, umidade) ora como ações
que ao serem executadas levam em consideração mudanças no ambiente. Neste trabalho
nós usamos as definições adotadas por Vieira (2008), que fazem uma distinção entre os

6

termos elemento contextual e contexto, apresentados abaixo:

Um elemento contextual (EC) é qualquer item de dados ou informação que
permite caracterizar uma entidade em um domínio.

O contexto de uma interação entre um agente e uma aplicação, com o ob-
jetivo de executar alguma tarefa, é o conjunto de elementos contextuais ins-
tanciados que são necessários para apoiar a execução da tarefa.

Essa definição considera o contexto aplicado à interação entre um agente e uma apli-
cação, na qual o agente pode ser humano ou de software. Além disso, os elementos que
compõem o contexto devem possuir um relacionamento de relevância com a tarefa que
o agente está executando. Os elementos contextuais definem informações (e.g. idade,
temperatura, horário, atividade em execução) estáveis que podem ser conhecidas ante-
cipadamente em tempo de projeto. Por outro lado, o contexto é definido em tempo de
execução e representa a instanciação desses elementos na realização de uma tarefa pelo
usuário. Por exemplo, em um sistema de guia turístico a idade é um elemento contextual
definido no projeto da aplicação. Durante sua execução, vários contextos são instanci-
ados de acordo com a idade de cada usuário. Para um usuário mais jovem a aplicação
apresentará atrações ao ar livre e para os mais velhos locais fechados.

Um dos desafios em usar contexto é especificar as informações relevantes e as ações
dependentes do contexto para cada situação. Dey e Abowd (2000) afirmam que cate-
gorizar contexto ajuda aos engenheiros de software identificarem que informações são
úteis para suas aplicações. Para ajudar a identificação dessas informações foram sugeri-
das várias classificações que separam as informações contextuais de acordo com alguns
critérios. Dois deles serão examinados devido a sua importância para a identificação
dos elementos contextuais e dos comportamentos dinâmicos de contexto. O primeiro
identifica seis dimensões dos elementos de contexto e outro classifica contexto em três
tipos de conhecimento levando em consideração o foco do usuário.

Uma das classificações mais conhecidas (MORSE; ARMSTRONG; DEY, 2000;
TRUONG; ABOWD; BROTHERTON, 2001), divide as informações contextuais em
seis dimensões, também chamadas de 5W+H, apresentadas abaixo:

• Who (quem): referente à identidade de um agente na execução de uma tarefa.
Exemplos: e-mail e número da conta bancária do usuário.

7

• Where (onde): é um dos elementos mais usados e indica localização. Exemplos:
cidade, número da sala de aula e coordenadas geográficas.

• What (o quê): indica atividade sendo executada pelo agente. Muitas vezes essa
informação é derivada de outras. Exemplos: conversando no MSN, assistindo a
um filme, estudando e escrevendo.

• When (quando): indica o momento ou duração da execução de uma tarefa. Exem-
plos: horário e estação do ano.

• Why (por que): indica a razão pela qual o agente está realizando determinadas
ações. Exemplos: um sistema de comércio eletrônico pode inferir as preferências
de um usuário a partir de seu histórico de navegação.

• How (como): indica o meio como os elementos contextuais são capturados. Exem-
plos: a localização do celular de um usuário pode acontecer por meio de Geo-
Posicionamento por Satélite (GPS) ou triangulação de estações rádio base.

Segundo Brézillon e Araujo (2005) contexto é sempre relativo a uma coisa, um
objeto, uma ideia, ou resumidamente, um foco de atenção. Como citado por Vieira
et al. (2006), o foco pode ser uma tarefa, a solução de um problema ou uma tomada de
decisão. O foco restringe o que pode ser considerado como contexto em um determinado
momento. Por exemplo, para lavar roupas, informações como cor, tipo de tecido, etc.
são elementos contextuais, ou seja, são úteis para a execução do foco lavar roupa. No
entanto, o local onde a roupa foi comprada e seu preço não influenciam na execução do
foco.

A segunda classificação destaca a relevância da informação contextual na execução
de uma tarefa. Brézillon e Pomerol (1999) dividiram contexto em relação ao foco de
atenção em dois tipos, conforme ilustra a Figura 2.1: a) conhecimento contextual (CK
- contextual knowledge) – todo conhecimento que é relevante e pode ser utilizado para
entender um problema; e b) conhecimento externo (EK - external knowledge) – conhe-
cimento não relevante para uma dada situação. Durante a execução de uma tarefa, o
Contexto Procedimental (PC - Proceduralized Context), também chamado de contexto

ativo por Vieira, Tedesco e Salgado (2009), é instanciado a partir do CK.

CK indica os elementos contextuais relevantes para um foco, enquanto EK repre-
senta os elementos não relacionados ao foco. No foco lavar roupa, o EK inclui o preço

8

e o local de compra, e o CK inclui a cor e o tipo de tecido, ou seja, os elementos que
podem auxiliar na execução do foco.

Figura 2.1 Classificação de contexto em relação ao foco (BRÉZILLON; ARAUJO, 2005).

Para representar o aspecto dinâmico de contexto, a construção do contexto ativo é
feita de acordo com o conhecimento contextual disponível e o foco em execução. Assim,
quando o foco muda um novo contexto é instanciado.

2.2 Sistemas Sensíveis ao Contexto

As aplicações que usam informações contextuais para adaptar ou modificar seu com-
portamento são chamadas de sistemas sensíveis ao contexto, sistemas adaptativos ou
sistemas cientes do contexto. De acordo com Schilit, Adams e Want (1994) os siste-
mas sensíveis ao contexto se adaptam ao ambiente considerando a localização de uso, as
pessoas e objetos próximos, os dispositivos acessíveis. Para Dey e Abowd (2000), “um
sistema é sensível ao contexto se ele usa contexto para prover informações relevantes
e/ou serviços para os usuários, onde relevância depende da tarefa do usuário”. Seguindo
essa última abordagem e os conceitos de elementos contextuais e contexto definidos
anteriormente, Vieira (2008) define sistemas sensíveis ao contexto como:

Sistemas sensíveis ao contexto (SSC) são aqueles que gerenciam elemen-

9

tos contextuais relacionados a um domínio de aplicação e que usam esses
elementos para apoiar um agente na execução de alguma tarefa. Essa ajuda
pode ser alcançada melhorando a percepção do agente sobre a tarefa ou pro-
vendo adaptações que facilitem a execução da tarefa.

Um guia turístico eletrônico é um dos exemplos mais usados para explicar SSCs. O
GUIDE (CHEVERST et al., 2000) é um sistema sensível ao contexto que permite que
turistas explorem e conheçam uma cidade considerando informações contextuais do am-
biente e das pessoas. Os roteiros são montados de acordo com a faixa etária do turista,
seus interesses de visitação, clima, atrações abertas para visitas, entre outros. Por exem-
plo, turistas jovens podem optar por trilhas e locais abertos, enquanto que os mais velhos
por atrações históricas em locais fechados. No entanto, uma chuva ou o fechamento de
uma atração turística, respectivamente, pode alterar os planos dos dois grupos. Assim, o
tourist guide pode reagir de acordo com a atualização dessas informações contextuais e
modificar os roteiros indicando outros pontos turísticos. O segundo grupo poderia visitar
outros locais próximos à localização corrente, como, museus e igrejas.

A diferença entre as aplicações tradicionais e os sistemas sensíveis ao contexto é
que as primeiras agem levando em consideração apenas as solicitações e informações
fornecidas explicitamente pelos usuários, enquanto que as últimas também levam em
consideração informações inferidas de bases de conhecimento e percebidas do ambiente
(e.g. por meio de sensores) (VIEIRA; TEDESCO; SALGADO, 2009).

Para entender como as aplicações podem usar efetivamente contexto, Salber, Dey
e Abowd (1999) e Vieira, Tedesco e Salgado (2009) classificam os tipos de serviços
apoiados por um SSC. Os primeiros dividem os serviços em três categorias:

• apresentação de informações e serviços: aplicações que apresentam informações
contextuais para os usuários ou que usam contexto para propor ações configura-
das previamente. Exemplo: O GMail 1, serviço de e-mail da Google, exibe sites
relacionados ao e-mail aberto como sugestão de leitura.

• execução automática de serviços: descreve aplicações que executam um comando
ou reconfiguram o sistema em resposta às mudanças no contexto. Exemplo: O tou-

rist guide (CHEVERST et al., 2000) reconfigura o roteiro do turista em resposta
às mudanças climáticas.

1http://www.gmail.com

10

• gravação de informações contextuais para recuperação posterior: aplicações que
associam informações contextuais a dados crus. Um exemplo é a filtragem de
informações de um Sistema Gerenciador de Bancos de Dados (SGBD) pela asso-
ciação de contexto a grupos de dados (BOLCHINI et al., 2007).

Já Vieira, Tedesco e Salgado (2009) destacam os serviços de apoio à:

• percepção: é responsável por notificar o usuário ou grupo sobre o contexto asso-
ciado à ocorrência de um evento. Ambientes colaborativos como o Desenvolvi-
mento Distribuído de Software (DDS) (CHAVES, 2009) usam serviços de percep-
ção para notificar o grupo sobre o contexto dos seus participantes, e assim, garantir
que a interação seja a mais produtiva possível;

• assistência: o serviço de assistência permite que os usuários realizem suas tarefas
da maneira mais eficiente possível. Por exemplo, o contexto pode ser utilizado
para permitir que um ambiente de aprendizagem virtual se adapte ao nível de
conhecimento do usuário. Nessa situação, o contexto pode ser usado para, por
exemplo, fornecer dicas ou calibrar o nível de dificuldade de uma avaliação; e

• adaptação: as aplicações adaptativas modificam seu comportamento em resposta
às mudanças no contexto. Como exemplo, sistemas de comércio eletrônico como
Amazon 2 modificam sua apresentação levando em consideração o perfil e histó-
rico de navegação do usuário.

Apesar dos muitos benefícios para o usuário final, a construção de sistemas sensíveis
ao contexto não é trivial e inclui tarefas desafiadoras, como: especificação de elementos
contextuais, criação de componentes para aquisição de ECs, módulo de processamento
e inferência de ECs e adaptação do sistema de acordo com ECs instanciados para o foco
em uso (VIEIRA et al., 2007).

Um dos desafios no desenvolvimento de sistemas sensíveis ao contexto é representar
as informações e comportamentos contextuais em um modelo formal e compreensível
por diversas aplicações. A seção 2.3 descreve algumas técnicas para representação de
contexto e destaca a representação em grafo contextual, utilizada para modelar a parte
comportamental dos SSC.

2http://www.amazon.com

11

2.3 Técnicas para representação de contexto

Tipicamente, um SSC usa informações contextuais de várias fontes heterogêneas. Por-
tanto, é necessária uma representação formal que permita o envio e recebimento dessas
informações por agentes de software e humanos e que possibilite a interoperabilidade
semântica entre eles. Vários pesquisadores investigaram técnicas e modelos para repre-
sentar contexto considerando a expressividade e a formalidade desses modelos (BET-
TINI et al., 2010). Algumas técnicas de representação de informações contextuais e
conhecimento são sumarizadas na tabela 2.1.

O modelo baseado em chave-valor é o mais simples. Os dados são representados
por pares que relacionam um valor a uma chave, também conhecido como dicionário ou
mapa. Por exemplo, um SSC pode armazenar os elementos contextuais de uma entidade
e os comportamentos relacionados a eles como:

entidade: pessoa

elementos_contextuais: peso, idade, sexo

comportamentos: quando peso < 25 Kg e idade >= 10 anos

então

pessoa está desnutrida.

Embora seja fácil de implementar, a técnica torna difícil a construção de estruturas de
dados complexas e é de difícil evolução.

Técnicas baseadas em linguagens de marcação como Extensible Markup Language
(XML) 3 e JavaScript Object Notation (JSON) 4 permitem a modelagem de dados hierár-
quicos e são usadas para trocas de mensagens entre sistemas heterogêneos. No entanto,
segundo Vieira, Tedesco e Salgado (2009) elas não provêem suporte para visualização
do modelo e são difíceis de manter e evoluir.

Mapas de tópicos é um padrão para representação de conhecimento composto por
tópicos, associações e ocorrências. São similares aos mapas mentais e permitem organi-
zar os objetos em uma rede semântica. No entanto, a ausência de tecnologias e padrões
inibe seu uso.

Contexto também pode ser representado por meio de ontologias, como em Kang

3http://www.w3.org/XML/
4http://www.json.org

12

Tabela 2.1 Comparativo entre técnicas de representação de contexto (VIEIRA; TEDESCO;
SALGADO, 2009).

Técnica Vantagens Desvantagens Processamento e
Recuperação

Par Chave-Valor
Estrutura simples,
de fácil implemen-
tação e uso.

Não considera hi-
erarquia. Inade-
quado para aplica-
ções com estruturas
complexas.

Busca linear com
casamento exato de
nomes.

Linguagem de Mar-
cação

Prevê hierarquia.
Esquema de marca-
ção implementa o
próprio modelo.

Modelo não re-
solve incompletude
e ambiguidade.
Inadequado para re-
presentar estruturas
complexas.

Linguagem de con-
sulta baseada em
marcação.

Mapas de Tópicos

Facilita a navega-
ção entre os ele-
mentos contextuais
e a leitura por hu-
manos.

Técnica imatura
com baixo apoio de
ferramentas.

Navegação por re-
des semânticas.

Ontologias

Agrega regras,
conceitos e fatos
em um só mo-
delo. Padrões
facilitam reuso e
compartilhamento.
Viabiliza compre-
ensão semântica
entre humanos e
máquinas.

Não permite mo-
delar o comporta-
mento do SSC. Tec-
nologia ainda ima-
tura e com poucas
ferramentas. Im-
pacto no desempe-
nho.

Motor de Inferên-
cia, Linguagens
de consulta base-
adas em OWL ou
frames.

Modelos Gráficos

Facilita a especifi-
cação dos concei-
tos e definição do
comportamento do
SSC.

Não permite pro-
cessar os concei-
tos: mapeamento
para estruturas de
dados.

Pode ser traduzido
para XML e usa de
processamento em
XML.

et al. (2007). Uma ontologia é uma representação formal do conhecimento no qual
objetos, conceitos, entidades e relacionamentos do mundo real são usados para descrever
um domínio (USCHOLD; GRUNINGER, 1996). Uma ontologia possui alto nível de
formalismo permitindo a aplicação de técnicas de raciocínio.

O comportamento e as informações contextuais também podem ser representados

13

por meio de modelos gráficos, como os baseados na Unified Modeling Language (UML)
(AYED; BERBERS, 2006; SHENG; BENATALLAH, 2005), Object Role Modeling
(ORM) (MCFADDEN; HENRICKSEN; INDULSKA, 2004) e grafos contextuais.

Os modelos gráficos apoiam a modelagem conceitual de contexto e ajudam a visua-
lizar como os elementos contextuais se relacionam e como afetam o comportamento de
um SSC. Modelos baseados em UML permitem o reuso de modelos definidos no projeto
da aplicação e ferramentas de modelagem. Os grafos contextuais descrevem a natureza
dinâmica de contexto.

Entre as vantagens de usar UML destacam-se sua capacidade de customização para
domínios específicos e sua ampla aceitação no meio acadêmico e no mercado. A pró-
xima seção apresenta o conceito de grafos contextuais devido à sua relevância para a
representação dos comportamentos contextuais.

2.3.1 Grafos Contextuais

Um Grafo Contextual (CxG) 5 é uma representação baseada em contexto da solução de
um problema. É representado por um grafo acíclico direcionado com uma entrada e uma
saída e apresenta diversas ações a serem tomadas de acordo com o contexto (BRéZIL-
LON, 2005; BRéZILLON; PASQUIER; POMEROL, 2002). Um caminho de um CxG
representa uma forma, também chamada de prática, de resolver um problema. Os grafos
contextuais representam o contexto ativo, definido na Seção 2.1, pronto para ser usado
em uma ação.

Um grafo contextual é composto por:

• Action (Ação): é o elemento principal de um CxG e representa uma ação a ser rea-
lizada, como uma tarefa ou um passo na solução de um problema. É representado
pelos retângulos na Figura 2.2.

• Contextual node (Nó Contextual): corresponde a uma decisão dependente de con-
texto. É representado pelos círculos abertos na figura. Um nó contextual tem
uma entrada e N saídas (branches) que representam as N instâncias do elemento
contextual pertencente ao nó.

• Recombination node (Nó de Recombinação): representado pelos círculos fecha-
5http://www.cxg.fr/

14

dos. Os caminhos de um nó contextual convergem para um nó de recombina-
ção. Assim, o nó de recombinação possui N entradas e uma saída. O nó de
recombinação finaliza uma prática (caminho do grafo) e transfere o Elemento
Contextual (EC) do contexto ativo para o conhecimento contextual, ou seja, o
valor do EC não é mais importante para a solução do problema.

• Subgraph (Subgrafo): são grafos contextuais usados para agrupar ou expandir
outro grafo. São úteis para estruturar grafos complexos e facilitar sua construção.

• Activity (Atividade): é uma ação complexa representada por um subgrafo. Uma
mudança em uma atividade aparece em todos os grafos contextuais onde a ativi-
dade foi identificada.

• Parallel action grouping: são usados para representar subgrafos ou ações cuja
ordem de execução não é definida.

Figura 2.2 Exemplo de grafo contextual (VIEIRA; TEDESCO; SALGADO, 2009).

O exemplo da Figura 2.2 mostra um grafo contextual para a reserva de transporte
de uma pessoa que pretende ir a um evento acadêmico (missão). O primeiro nó contex-
tual avalia se o participante mora na cidade da missão. Em caso positivo, o problema
está resolvido e nenhuma ação é tomada. Do contrário, o segundo nó contextual ava-
lia quem é responsável por pagar a missão. Se o resultado for CAPES, então a ação
Contactar Agência CAPES é acionada. Os outros caminhos (branches) avaliam
as opções de transporte de acordo com a idade do participante.

Segundo Vieira (2008), os grafos contextuais são interessantes para modelar com-
portamento contextual, pois descrevem como as ações devem ser executadas por uma
aplicação e especificam como o contexto as afeta.

15

Segundo Brézillon (BRéZILLON; PASQUIER; POMEROL, 2002), os grafos con-
textuais permitem uma representação clara de múltiplas ações que dependem do con-
texto e são facilmente entendidos pelos usuários e engenheiros de software.

Outro desafio no desenvolvimento de SSC é a ausência de práticas de engenharia
de software que dêem apoio às atividades de representação, gerenciamento e uso de
contexto. A próxima seção apresenta algumas abordagens de processos de apoio ao
desenvolvimento de SSC.

2.4 Processos de Engenharia de Software para SSC

Segundo Pressman (2009) processos permitem o desenvolvimento racional de software.
Assim, na medida em que a pesquisa em SSC foi evoluindo, começaram a aparecer tra-
balhos dedicados a apoiar o desenvolvimento desse tipo de sistema através de processos,
modelos e ferramentas.

Vieira, Tedesco e Salgado (2009) comparam algumas abordagens para o desenvolvi-
mento de sistemas sensíveis ao contexto (Tabela 2.2) considerando os seguintes critérios:
i) Independência de Domínio: apoio à construção de SSC em diversos domínios de apli-
cações; ii) Arquitetura Genérica: arquitetura genérica para gerenciamento de contexto;
iii) Processo: apoio ao desenvolvimento de SSC com atividades e tarefas bem definidas;
iv) Modelagem Estrutural e Comportamental: apoio à modelagem estrutural e compor-
tamental de contexto; v) Reuso de Modelos já Definidos na Aplicação: uso de artefatos
já produzidos e conhecidos pelos engenheiros de software, reduzindo a complexidade da
modelagem de contexto; vi) Apoio à implementação: apoio à implementação de SSC.

Entre os trabalhos apresentados (HENRICKSEN; INDULSKA, 2004; NETO; KU-
DO; PIMENTEL, 2006; AYED; DELANOTE; BERBERS, 2007) o CEManTIKA des-
taca-se por ser a abordagem mais completa, apresentando um processo, metamodelo e
arquitetura. Todavia, não possui apoio à implementação ou ferramenta de apoio à mo-
delagem. Vários pesquisadores (SOHN; DEY, 2003b; MCFADDEN; HENRICKSEN;
INDULSKA, 2004; VIEIRA, 2008; KANG et al., 2007; DEY et al., 2004) mostram a
importância e necessidade de uma ferramenta para prototipação ou que auxilie a criação
de aplicações sensíveis ao contexto.

16

Tabela 2.2 Abordagens para desenvolvimento de SSCs (VIEIRA; TEDESCO; SALGADO,
2009, Adaptado).

Abordagem Independên-
cia de

Domínio

Arquite-
tura

Genérica

Processo Modelagem
Estrutural e
Comporta-

mental

Reuso de
modelos já
definidos

Apoio à
imple-

mentação

Henricksen
(2004)

√ √ √

Bulcão
(2006)

√ √

Ayed et al.
(2007)

√ √ √

CEManTIKA
(2008)

√ √ √ √ √

2.5 Considerações Finais

O objetivo deste capítulo foi apresentar uma revisão das definições de contexto, sistemas
sensíveis ao contexto e técnicas para modelagem de contexto. Algumas técnicas de
representação de contexto foram analisadas, e a técnica de grafo contextual, que é usada
para modelar comportamentos, foi detalhada.

Os comportamentos contextuais adicionam ações adaptativas aos sistemas, mas não
são triviais de serem especificados e implementados. Nesse ambiente, processos de
software definem atividades e tarefas que apóiam a identificação do contexto relevante
na construção de SSC. No entanto, as abordagens pesquisadas carecem de ferramentas
que auxiliem a construção dessas aplicações.

O próximo capítulo discute os trabalhos relacionados à proposta desta dissertação,
aborda a necessidade de construção de uma ferramenta CASE para a construção de SSC
e compara algumas ferramentas disponíveis para a construção de aplicações CASE.

17

Capı́tulo 3
Trabalhos Relacionados e Ferramentas

Várias abordagens de frameworks, middlewares, APIs e componentes de software foram
sugeridas para facilitar a criação de sistemas sensíveis ao contexto. Por outro lado, vários
pesquisadores relatam a necessidade de ferramentas para a construção desses sistemas.
Segundo Sohn e Dey (2003a), embora algumas aplicações tenham sido desenvolvidas, a
ausência de apoio à construção de SSCs inibe sua proliferação. Para Mcfadden, Henrick-
sen e Indulska (2004), ferramentas com apoio à verificação da consistência de modelos
de contexto e automatização de tarefas relacionadas ao gerenciamento e disseminação
de contexto beneficiam a construção de SSCs.

Durante a nossa pesquisa, não foi possível encontrar ferramentas que permitam a
construção de SSCs de maneira independente de domínio da aplicação e guiada por
um processo de software. O objetivo deste capítulo é apresentar os trabalhos que se
relacionam à proposta desta dissertação e algumas meta-ferramentas disponíveis para a
construção da ferramenta CASE proposta neste trabalho.

O capítulo está organizado da seguinte maneira: a Seção 3.1 compara algumas meta-
ferramentas que apoiam o desenvolvimento de ferramentas CASE; a Seção 3.2 lista algu-
mas abordagens para a construção de SSCs e também discute um trabalho que possibilita
a integração entre uma ferramenta CASE e um metamodelo UML para a modelagem de
contexto; e a Seção 3.3 apresenta algumas considerações finais.

18

3.1 Meta-Ferramentas de apoio ao Desenvolvimento de
Ferramentas CASE

Ferramentas CASE auxiliam os engenheiros de software e gerentes de projeto em cada
tarefa associada ao processo de software (PRESSMAN, 2009). Elas provêem a automa-
tização de atividades manuais e ajudam a garantir a qualidade do produto durante sua
construção.

Uma ferramenta CASE pode ser entendida como um ambiente que inclui vários com-
ponentes: banco de dados, editores, visualizadores, entre outros (PRESSMAN, 2009). A
sua construção é custosa e envolve a implementação de módulos de persistência, gera-
ção de gráficos, relatórios, instalação, entre outros. Para facilitar o seu desenvolvimento,
algumas ferramentas, chamadas de meta-ferramentas, implementam requisitos comuns
a um domínio específico de aplicações e usam mecanismos de extensão que permitem a
adição de novas funcionalidades por terceiros.

Para definir a plataforma de desenvolvimento adotada neste trabalho, quatro ferra-
mentas foram avaliadas de acordo com os seguintes parâmetros:

• API: verifica a existência de bibliotecas de programação para criação de compo-
nentes de interface gráfica, persistência de objetos e manipulação de modelos e
relatórios;

• Assistentes de Ajuda: identifica o suporte à criação de sistemas de ajuda por
meio de exemplos, tutoriais e cheat sheets 1;

• Documentação: identifica a disponibilidade de documentação em fóruns, tutori-
ais e livros. A quantidade de documentação está relacionada à maturidade e ao
nível de adoção da ferramenta pela comunidade;

• Geração de Código: verifica o suporte a ferramentas de transformação de mode-
los em outros modelos (Model to Model (M2M)) e de modelos em texto (Model
to Text (M2T)). Essa característica permite, por exemplo, construir código auto-
maticamente a partir de modelos gráficos;

• Geração de Wizards: verifica o suporte à implementação de assistentes, também
chamados de wizards;

1Cheat Sheet é um guia interativo no qual o usuário executa um conjunto de tarefas para atingir um
objetivo.

19

• Integração com IDE: verifica a integração com Ambientes de Desenvolvimento
Integrado (Integrated Development Environment (IDE)). Essa característica per-
mite a construção de um sistema comum para atividades de análise, projeto e
codificação;

• Licença: verifica o custo da ferramenta. Embora existam vários tipos de licença,
esse trabalho as classifica apenas em Gratuita e Paga;

• Linguagem de Extensão: o uso de uma linguagem de programação amplamente
adotada diminui a curva de aprendizado dos mecanismos de extensão da ferra-
menta;

• Mecanismo de Extensão: existem várias formas de customizar uma ferramenta.
Esse parâmetro avalia a extensão por meio de plugins ou pela alteração direta
do código fonte. A primeira forma é mais simples e permite a adição de novas
funcionalidades sem a necessidade de conhecer o código fonte da ferramenta;

• Plataformas: especifica em quais plataformas de Sistema Operacional a ferra-
menta pode ser instalada;

• Relatórios: verifica a geração de relatórios através de templates;

• Simulação de Modelos: identifica o suporte à simulação ou depuração dos mode-
los gerados;

• Suporte à Perfil UML: verifica o suporte à adição de um perfil UML;

• Suporte à XMI: XML Metadata Interchange (XMI) é um padrão baseado em
XML definido pela Object Management Group (OMG) que permite a interopera-
bilidade dos dados entre várias aplicações. Sua adoção permite que os modelos
gerados em uma ferramenta possam ser editados em outra; e

• Validação com OCL: permite a verificação de modelos UML por meio de res-
trições definidas em Object Constraint Language (OCL). OCL é uma linguagem
formal usada para descrever expressões em modelos UML que especificam restri-
ções a serem respeitadas ou consultas sobre os objetos descritos no modelo (OMG,
2010).

A Tabela 3.1 sintetiza a comparação entre as ferramentas Eclipse Modeling Pro-
ject (Eclipse Foundation, 2010a), ArgoUML (COLLABNET, 2010), Papyrus (Papyrus

20

UML, 2010) e MagicDraw 2 (MAGICDRAW, 2010). As três primeiras ferramentas
foram selecionadas considerando os critérios de licença, difusão na comunidade e possi-
bilidade de extensão, e a última, pela sua completude.

Todas as ferramentas possuem interfaces de integração com perfis UML, mecanis-
mos de geração de código, bibliotecas de programação e são independentes de plata-
forma.

O projeto Eclipse Modeling (Eclipse Foundation, 2010a) provê mecanismos de ex-
tensão por meio de plugins, os quais tornam possível adicionar funcionalidades diversas
à ferramenta Eclipse, tais como: assistentes de ajuda, componentes de interface gráfica
e relatórios. O Eclipse Modeling possui uma diversidade de ferramentas para desen-
volvimento baseado em modelos, como linguagens de domínio específico (e.g. Eclipse
Modeling Framework (EMF)), desenvolvimento de notações gráficas (e.g. Graphical
Modeling Project (GMP)) e transformação de modelos em texto por meio de templates

(e.g. Java Emitter Templates (JET)). Além disso, a ferramenta possui vasta documenta-
ção, haja vista a ampla adoção da IDE Eclipse pela comunidade.

O ArgoUML é uma ferramenta de código aberto para modelagem UML com fun-
cionalidades de apoio cognitivo que permitem refletir o projeto de modelos orientados
a objetos por meio de checklists, lista de coisas a fazer (todo lists) e agentes que suge-
rem melhorias de projeto nos modelos criados. A documentação disponível não discute
detalhadamente aspectos de extensão da ferramenta, que deve ser feita por meio de evo-
luções em seu código fonte. Não existem mecanismos de geração de ajuda, wizards e
relatórios. Por fim, a integração com o Eclipse não apresenta conformidade entre as
interfaces gráficas das duas ferramentas.

O Papyrus é construído sobre o Eclipse e incorpora seu mecanismo de extensão por
meio de plugins. A ferramenta permite a geração de wizards e sistemas de ajuda. No en-
tanto, existe pouca documentação e os relatórios devem ser produzidos com ferramentas
de terceiros.

O MagicDraw não permite a adição de sistemas de ajuda e a geração de wizards.
Destacam-se a documentação ampla, a integração com as IDEs Eclipse (Eclipse Founda-
tion, 2010b) e Netbeans (Netbeans IDE, 2010), a geração de relatórios e o mecanismo de
extensão por meio de plugins codificados na linguagem de programação Java (ORACLE,

2O MagicDraw está disponível nas versões: Community Edition, Personal Edition, Standard Edition,
Professional Edition, Architect Edition e Enterprise edition. Na comparação é usada a versão Enterprise
Edition.

21

Tabela 3.1 Comparativo entre meta-ferramentas CASE

Eclipse
Modeling
Project

ArgoUML Papyrus MagicDraw

API
√ √ √ √

Assistentes de Ajuda
√

–
√

–

Documentação Fóruns, Site,
Livros etc

Site, Manuais Site Fóruns,
Manuais,

Vídeos, Site

Geração de Wizards
√

–
√

–

Integração com IDE Eclipse Eclipse Eclipse Eclipse,
NetBeans,
JBuilder

Licença Gratuita Gratuita Gratuita Comercial

Linguagem de Extensão Java Java Java Java e Python

Mecanismo de Extensão Plugin Código aberto Plugin Plugin

Plataformas Independente de
plataforma

Independente de
plataforma

Independente de
plataforma

Mac, Unix e
Windows

Relatórios
√

– –
√

Geração de Código
√ √ √ √

Simulação de Modelos – – – –

Suporte à Perfil UML
√ √ √ √

Suporte à XMI
√ √ √ √

Validação com OCL
√ √ √ √

2010). No entanto, sua licença comercial tornou sua adoção proibitiva.

22

3.2 Ferramentas de apoio ao desenvolvimento de SSC

Pressman (2009) afirma que as ferramentas CASE devem ser usadas para complementar
as práticas de engenharia de software e não substituí-las. Portanto, um processo de
software deve ser estabelecido anteriormente ao uso de uma ferramenta CASE.

As ferramentas CASE são usadas em várias atividades, do gerenciamento de proje-
tos, com ferramentas de estimativa de custos e agendamento de tarefas, à programação
por meio de compiladores, editores e debuggers. Um dos seus objetivos é aumentar o
nível de abstração e permitir a implementação de artefatos a partir de representações
gráficas que reduzem o esforço de codificação e depuração (SCHMIDT, 2006). Outro
exemplo conhecido e adotado pelos engenheiros de software são as ferramentas CASE
de gerenciamento de banco de dados que simplificam a criação de objetos e abstraem
detalhes dos SGBDs.

Este trabalho propõe a criação de uma ferramenta de apoio ao desenvolvimento
de sistemas sensíveis ao contexto por meio de atividades que enriqueçam artefatos de
modelagem da aplicação previamente construídos. A partir dessas características, foram
investigadas duas classes de ferramentas, destacadas nas próximas seções: i) ferramentas
de apoio ao projeto e desenvolvimento de SSC; e ii) ferramentas que usam metamodelos
UML de domínio específico.

A Seção 3.2.1 destaca várias abordagens para a construção de SSC; a Seção 3.2.2
discute os trabalhos encontrados; e a Seção 3.2.3 identifica uma ferramenta, não relaci-
onada a contexto, implementada por meio da adição de um metamodelo, especificado
em um perfil UML, a uma ferramenta CASE. A última abordagem possibilita o uso de
meta-ferramentas de modelagem UML.

3.2.1 Apoio a Contexto

Esta seção apresenta as seguintes ferramentas de apoio ao desenvolvimento de sistemas
sensíveis ao contexto: CAPpella (DEY et al., 2004), uma abordagem que usa programa-
ção por demonstração (LIEBERMAN, 2001) para permitir o desenvolvimento de apli-
cações sensíveis ao contexto pelos usuários finais; iCAP (SOHN; DEY, 2003b), uma
ferramenta composta por uma interface gráfica e um processador de regras que permite
a criação de SSC baseados em regras pelos usuários; Pópulo (FUENTES; GáMEZ; SáN-

23

CHEZ, 2009), uma abordagem usando modelos executáveis orientados a aspectos; a
ferramenta Context-ADDICT Designer (BOLCHINI et al., 2007) que permite filtrar in-
formações associando contexto a dados provenientes de um SGBD; a linguagem de
modelagem de contexto CML (MCFADDEN; HENRICKSEN; INDULSKA, 2004) e
suas ferramentas; e duas abordagens (AYED; DELANOTE; BERBERS, 2007; SHENG;
BENATALLAH, 2005) que usam metamodelos UML. Essas ferramentas foram escolhi-
das, pois mecanizam algumas tarefas de análise, projeto e construção de SSC. Foram
excluídas da análise, APIs, middlewares e outras abordagens específicas de domínio ou
que não fornecem apoio visual para modelagem de contexto pelos projetistas.

CAPpella – Context-aware Prototyping

A ferramenta CAPpella (Context-aware Prototyping) (DEY et al., 2004) permite que os
usuários finais das aplicações desenvolvam seus SSCs. Os autores desta ferramenta ar-
gumentam que usuários finais têm maior conhecimento sobre suas atividades e, portanto,
são capazes de construir comportamentos mais adequados às suas necessidades.

CAPpella usa programação por demonstração (Programming by Demonstration),
que permite ao computador aprender tarefas e ações descritas sem o uso de uma lingua-
gem de programação, para auxiliar os usuários finais a criar suas próprias aplicações.

A CAPpella combina aprendizado de máquina e entradas do usuário para construir
SSCs sem que os usuários finais necessitem escrever código. A ferramenta usa o se-
guinte processo de aprendizagem: um usuário treina, através de várias iterações, um
comportamento sensível ao contexto composto por uma situação e uma ação associada,
indicando que partes dos dados coletados são relevantes para o comportamento estu-
dado. Por exemplo, um sistema que verifica se um paciente tomou seu remédio pode ser
treinado para registrar a medicação no prontuário do paciente ou soar um alarme caso
a medicação não tenha sido administrada corretamente. Nesse ambiente são dispostos
sensores no paciente e nos medicamentos e o usuário da CAPpella identifica, por meio
de algumas iterações de treinamento, em que situações o paciente tomou o remédio.
Após o treinamento a aplicação construída é capaz de verificar se o paciente tomou sua
medicação.

A ferramenta é formada por quatro componentes principais:

1. Sistema de gravação: responsável por capturar as situações e as ações provenien-

24

tes de sensores e armazená-las em logs com o timestamp 3 de sua aquisição.

2. Detecção de eventos: é o processo de derivar eventos de alto nível a partir dos
dados produzidos pela câmera de vídeo, microfone e qualquer outro sensor que
não produza eventos de alto nível. Por exemplo, para cada frame capturado pela
câmera de vídeo, o número de pessoas e suas localizações (coordenadas) são de-
tectados e adicionados ao sistema de gravação.

3. Interface do usuário: permite que os usuários escolham os fluxos de dados e
as ações relevantes para o comportamento em questão. A Figura 3.1 mostra a
CAPpella configurada para um cenário de reuniões.

4. Sistema de aprendizado de máquina: usa uma rede bayesiana para treinar e
testar os dados configurados pelos usuários, sem que os últimos precisem entender
detalhes de implementação ou como as redes bayesianas dinâmicas (MURPHY,
2002) são usadas.

iCAP – Interactive Context-Aware Prototyper

O iCAP (Interactive Context-Aware Prototyper) é um sistema baseado em regras que
associa uma ação (Então) a uma situação (Se). Ele é dividido em duas partes: uma
interface gráfica para construção de regras e um processador de regras responsável pela
gravação e armazenamento delas.

Assim como o CAPpella, o iCAP (SOHN; DEY, 2003b) é uma ferramenta que auxi-
lia os usuários finais na prototipação de aplicações sensíveis ao contexto. A ferramenta
permite que usuários definam dispositivos para aquisição de informações contextuais,
regras de produção e comportamentos contextuais sem escrever código.

A interface gráfica do iCAP (Figura 3.2) possui duas áreas: o lado esquerdo apre-
senta os componentes usados na criação das regras, como dispositivos de entrada e saída;
e a outra parte permite a formação de regras no formato (Se–Então) associando situações
a ações. A área com rótulo Situation representa a parte “Se” de uma regra e a área com o
rótulo Actions compõe o “Então”. A Figura 3.2 apresenta a regra identificada no Exem-
plo 3.1.

3timestamp é uma representação de tempo usada em Computação que representa a quantidade de
milissegundos desde 01/01/1970

25

Figura 3.1 CAPpella sendo treinada para reconhecer o cenário de uma reunião (DEY et al.,
2004)

Cada elemento é representado através de um ícone. A ferramenta também permite
a simulação dos valores das informações contextuais e a visualização da execução das
ações correspondentes.

Pópulo – Uma ferramenta para verificar modelos Orientado a Aspectos

Fuentes, Gámez e Sánchez (2009) afirmam que verificar mentalmente a corretude de
um modelo sem auxílio de uma ferramenta não é uma tarefa simples. Para amenizar
esse problema foi desenvolvida a ferramenta Pópulo (FUENTES; GáMEZ; SáNCHEZ,
2009), um plugin do Eclipse, que permite aos projetistas visualizarem a execução dos
comportamentos dos modelos UML. Por fim, os modelos criados e testados no Pópulo
podem ser transformados em uma implementação. No entanto, a abordagem não explica
como essa transformação é realizada.

26

Figura 3.2 Interface do usuário do iCAP (DEY et al., 2004)

Lista de Códigos Fonte e Exemplos 3.1 Exemplo de regra construída no iCAP

1 Se
John e s t á no e s c r i t ó r i o d e p o i s de 5pm

3 e a t e m p e r a t u r a é menor que 50 °F
Ou Se

5 Jane e s t á no q u a r t o e
a t e m p e r a t u r a e s t á e n t r e 30 °F e 60 °F

7 Então
Ligue o a q u e c e d o r da c a s a .

Para os autores, as aplicações sensíveis ao contexto estão em constante adaptação
ocasionando dois problemas principais: a) grande número de interesses transversais
(crosscutting concerns); e b) complexa verificação da corretude dos modelos de projeto.

Para resolver estes problemas é proposta uma abordagem usando um modelo exe-

27

cutável orientado a aspectos (Aspect-Oriented Executable Modeling (AOEM)) definido
em um profile UML. A abordagem mostra como modelos de execução ajudam a vali-
dar, prototipar, testar e depurar SSCs. O trabalho afirma que a execução de modelos
em vários contextos e situações auxilia a avaliação do projeto da aplicação e antecipa a
detecção de erros, não os propagando para a implementação.

Os principais elementos utilizados na abordagem sugerida são apresentados na Fi-
gura 3.3. Inicialmente um modelo executável de projeto é construído na área destacada
com o rótulo 1. Nele são especificados os componentes para aquisição de informações
contextuais (a), os comportamentos sensíveis ao contexto definidos como crosscuting

concerns (b) e as regras de composição, também chamadas de pointcuts (c). O rótulo
2 destaca o weaver, um tipo de compilador que combina os três elementos anteriores e
cria o modelo de projeto. No rótulo 3 o modelo é testado pela ferramenta Pópulo (FU-
ENTES; GáMEZ; SáNCHEZ, 2009). Por fim, o rótulo 4 transforma o modelo numa
implementação.

Figura 3.3 Modelo UML executável orientado a aspectos (FUENTES; GáMEZ; SáNCHEZ,
2009).

Context-ADDICT Designer

O Context–ADDICT (Context-Aware Data Design, Integration, Customization and Tai-
loring) (BOLCHINI et al., 2007) tem o objetivo de filtrar quais informações de um banco

28

de dados são relevantes para um dado contexto. A adaptação dos dados é importante por
causa de duas razões principais: a) tornar a quantidade de dados gerenciável para não
confundir o usuário com informações desnecessárias (ruídos) e b) gravar apenas as partes
dos dados relevantes nos dispositivos móveis, uma vez que alguns possuem capacidade
de armazenamento limitada.

A ferramenta CADD (Context-ADDICT Designer) é usada para associar partes de
dados a contextos específicos. A Figura 3.4 apresenta uma visão arquitetural da ferra-
menta em termos das três fases apoiadas:

• Context Space Designer Assistant: definição do modelo de contexto por meio de
uma árvore contextual chamada de Context Dimension Tree. A árvore é formada
pelas dimensões relevantes para a aplicação, como papel do usuário, seus interes-
ses, entre outros;

• Valid Contexts Generation: após definir a árvore de contexto é realizada a geração
de todos os contextos válidos, como combinações das dimensões da árvore; e

• Data Tailoring Assistant associação entre cada contexto com um subconjunto de
dados.

Figura 3.4 Arquitetura da ferramenta CADD (BOLCHINI et al., 2007).

A ferramenta CADD possui mecanismos de verificação de modelos e geração de
artefatos. No entanto, o modelo usado restringe o uso de contexto à apenas um escopo:
recuperação de dados em ambientes móveis.

CML – Context Modelling Language

Mcfadden, Henricksen e Indulska (2004) apresentam um conjunto de ferramentas para o
desenvolvimento de SSCs modelados por meio da Context Modelling Language (CML).

29

A CML (HENRICKSEN; INDULSKA; MCFADDEN, 2005) permite especificar for-
malmente, por meio de Object Role Modeling (ORM) (HALPIN, 1996), as entidades
e suas propriedades e as fontes de aquisição relevantes para uma aplicação sensível ao
contexto.

Os modelos de contexto definidos em ORM são mapeados para a notação relacional
de banco de dados e usados por um sistema de gerenciamento de contexto responsá-
vel por tarefas como aquisição, processamento e disseminação. Experiências iniciais
demonstraram que os esforços de codificação e os erros poderiam ser reduzidos pela in-
trodução de ferramentas para automatização de aspectos de instalação, administração e
programação. A ferramenta proposta apoia as seguintes tarefas: i) validação do modelo
de contexto e automatização do seu mapeamento para o modelo suportado pelo sistema
de gerenciamento de contexto; ii) geração automática de bibliotecas de programação
para uso na aplicação sensível ao contexto a partir do modelo de contexto; e iii) geração
automática de um mecanismo de troca de mensagens (envio e notificação) usado entre a
aplicação e o sistema de gerenciamento de contexto.

A Figura 3.5 apresenta a arquitetura do conjunto de ferramentas proposto com suas
entradas e saídas. Inicialmente um modelo CML é validado e compilado para uma repre-
sentação intermediária e depois é executado por três ferramentas. A primeira, chamada
de SQL Database Mapping Tool automatiza o mapeamento entre o modelo de contexto
e o banco de dados do sistema de gerenciamento de contexto. A segunda, conhecida
como Java Binding Library Tool é responsável por gerar classes Java 4 auxiliares para
a representação e a manipulação de contexto. Por fim, a Elvin Notification Library Tool

processa um conjunto de classes e interfaces para serem usadas com o sistema de noti-
ficação Elvin (SEGALL et al., 2000), que oferece serviços de envio e recebimento de
dados.

Ferramentas que usam Metamodelos UML

Vários pesquisadores (AYED; DELANOTE; BERBERS, 2007; de Farias et al., 2007;
SHENG; BENATALLAH, 2005; KAPITSAKI et al., 2009; SIMONS; WIRTZ, 2007)
destacam a importância do uso de metamodelos UML para modelagem de contexto. A
definição de modelos estruturais e comportamentais de contexto por meio de um forma-
lismo já consolidado auxilia o desenvolvimento de ferramentas para sua modelagem e

4http://www.java.com

30

Figura 3.5 Arquitetura da ferramenta CML (MCFADDEN; HENRICKSEN; INDULSKA,
2004).

implementação. Além disto, o uso da UML permite o desenvolvimento de aplicações
independentes de domínio e facilita a compreensão dos artefatos de contexto pelos en-
genheiros de software e outros interessados envolvidos no desenvolvimento de um SSC.
Abaixo, discutimos dois trabalhos que usam metamodelos UML para a construção de
SSC.

Ayed, Delanote e Berbers (2007) propõem um perfil (profile) UML que permite es-
pecificar o contexto que afeta uma aplicação e suas variações de comportamento. O ob-
jetivo é possibilitar o projeto de SSC independente de plataforma usando Model Driven

Development (MDD) (MELLOR; CLARK; FUTAGAMI, 2003), haja vista que detalhes
técnicos de implementação inibem o reuso de ferramentas já desenvolvidas.

Um conjunto de fases, que parte da especificação de contexto até a geração de código
para plataformas específicas, para o desenvolvimento de sistemas sensíveis ao contexto
é proposto por Ayed, Delanote e Berbers (2007). O perfil UML associado à abordagem
de Ayed, chamado de Context-Aware Profile provê extensões ao diagrama de classes e
ao diagrama de sequência e, está organizado em seis pacotes: o StaticContextIdentifica-

tion permite identificar os tipos de informações contextuais usadas na aplicação; Stati-

cAdaptationAspect e DynamicAdaptationAspect modelam os aspectos comportamentais
de contexto; o StaticContextMechanisms identifica os mecanismos e as tecnologias para

31

a coleta de informações contextuais; e StaticAdaptationMechanisms e DynamicAdapta-

tionMechanisms abstraem os mecanismos de adaptação da aplicação.

Figura 3.6 Extensões do diagrama de classes da UML para modelar contexto (AYED; DELA-
NOTE; BERBERS, 2007).

O StaticContextIdentification é apresentado na Figura 3.6 e possui os seguintes ele-
mentos:

• O estereótipo «Context» descreve o tipo de contexto, como preferências do usuá-
rios e largura de banda da rede;

• O estereótipo «CollectionProcess» especifica os requisitos de aquisição de con-
texto, como o número de amostras (samplesNber). Esse estereótipo é especiali-
zado em dois tipos: baseado em evento («EventCollection») e baseado em pe-
ríodo («PeriodicCollection»);

• O estereótipo ContextQuality representa atributos de qualidade de contexto que
devem ser satisfeitos, como precisão (precision) e nível de confiança (levelOf-

Trust); e

32

• O estereótipo ContextState especifica os estados de contexto relevantes para a
aplicação.

Usar uma abordagem MDD permite a geração de código a partir de modelos e especi-
ficações da aplicação, aumentando a produtividade no seu desenvolvimento. Entretanto,
o conjunto de fases para construção de SSC apresentado por Ayed, Delanote e Berbers
(2007) não especifica artefatos de entrada e saída e guias.

Sheng e Benatallah (2005) propõem uma extensão à UML chamada de ContextUML
destinada ao projeto de serviços context-aware (Context-Aware Service (CAS)). Atra-
vés do metamodelo da ContextUML é possível especificar dois aspectos de um sistema
sensível ao contexto: i) mecanismos de aquisição de contexto; e ii) mecanismos de uso
e percepção de contexto em SSC.

Os seguintes elementos foram definidos para a aquisição de contexto: Context e
ContextSource. A percepção de contexto ocorre de dois modos: pela invocação de um
serviço baseada na modificação das informações contextuais ou pela amarração (bin-

ding) entre um contexto e um valor referenciado por um objeto na execução de algum
comportamento contextual. Essas abordagens são especificadas por meio dos elementos
ContextTriggering e ContextBinding, respectivamente.

3.2.2 Discussão sobre os trabalhos relacionados

Os trabalhos apresentados auxiliam a construção de sistemas sensíveis ao contexto usando
diferentes abordagens. A Tabela 3.2 apresenta uma análise comparativa das ferramentas
investigadas de acordo com os seguintes parâmetros:

• Usuários: identifica quem usa a ferramenta;

• Simulação: verifica o apoio à simulação ou depuração dos modelos construídos.
Simular a execução de comportamentos contextuais em resposta às mudanças das
informações de contexto antes de disponibilizar a aplicação aos usuários minimiza
a quantidade de erros e antecipa a resolução deles;

• Verificação: analisa o apoio à verificação sintática e semântica dos modelos;

• Domínio: identifica os domínios de aplicações que podem ser construídas por
meio da ferramenta. A proposta pode ser empregada em um domínio particular ou

33

ser independente dele;

• Implementação: verifica se a proposta gera uma aplicação executável;

• Processo: identifica se a construção dos artefatos é guiada por algum processo de
software.

• Meta-Ferramenta:: identifica qual meta-ferramenta foi usada para construir a
abordagem indicada. O uso de meta-ferramentas auxilia a adição de funcionalida-
des e reduz a curva de desenvolvimento de uma ferramenta CASE.

Tabela 3.2 Ferramentas para desenvolvimento de SSCs
Usuários Simula-

ção
Verifica-

ção
Domínio Imple-

mentação
Processo Meta-

ferramenta
CAPpella Usuários

finais

√
Independente
de domínio

√

iCAP Usuários
finais

√
Independente
de domínio

√

Pópulo Engenhei-
ros de

software

√ √
Aplicações
Pervasivas

Eclipse

CADD Engenhei-
ros de

software

√
Usado para
filtrar dados

em
aplicações

móveis

√

CML Engenhei-
ros de

software

√
Independente
de domínio

√

Abordagem
UML
(Ayed
2007)

Engenhei-
ros de

software

√
Independente
de domínio

√

ContextUML Engenhei-
ros de

software

Web-Services
sensíveis ao

Contexto

As duas primeiras abordagens (CAPpella e iCAP) permitem que usuários finais
criem aplicações sensíveis ao contexto independentes de domínio. Ambas permitem
a simulação dos modelos criados e apóiam a execução dos sistemas produzidos. A CAP-
pella usa reconhecimento de padrões, necessitando uma nova fase de treinamento para
a adição de uma nova situação de contexto. O iCAP possui um modo de simulação que
permite definir manualmente dados de sensores e um modo de execução que configura

34

dispositivos reais para captura e execução de ações. O propósito de apoiar usuários fi-
nais, sem conhecimentos prévios em programação e contexto, na construção dos SSC
inibe a definição de processos de software para o desenvolvimento desses sistemas.

Os outros trabalhos são destinados ao projeto de sistemas sensíveis ao contexto pe-
los analistas e projetistas de sistemas, reunidos no papel de engenheiros de software.
A abordagem usando Programação Orientada a Aspectos (POA) (FUENTES; GáMEZ;
SáNCHEZ, 2009) é usada no domínio das aplicações pervasivas. A ferramenta Pópulo
permite a verificação e depuração dos modelos executáveis criados. A ferramenta CADD
possui mecanismos de verificação da corretude da árvore dimensional de contexto e gera
um dicionário de contexto usado por um servidor de dados.

As ferramentas definidas para auxiliar o projeto de SSCs por meio da CML permi-
tem a verificação do modelo de contexto por meio de um compilador e a geração de
classes, interfaces e banco de dados usados pelo módulo de gerenciamento de contexto.

As outras duas abordagens usam perfis UML. Ayed, Delanote e Berbers (2007) se-
guem uma metodologia baseada em MDD e permite a verificação dos modelos gerados.
Um conjunto de fases guia o desenvolvimento de uma aplicação ciente de contexto, mas
não detalha as atividades e tarefas com seus artefatos de entrada e saída. A ContextUML
descreve um metamodelo para especificar web-services cientes de contexto. Todavia,
não existe processo, nem apoio à implementação e verificação dos modelos.

Apenas a ferramenta Pópulo usa uma meta-ferramenta para sua construção. As
demais foram construídas sem levar em consideração funcionalidades comuns já desen-
volvidas por terceiros.

3.2.3 Ferramentas CASE implementadas com Metamodelos UML

A construção de ferramentas CASE usando metamodelos UML pode ser identificada
em domínios como o desenvolvimento de aplicações para Internet (KOCH; KRAUS,
2003). Esta seção apresenta a ferramenta ArgoUWE para exemplificar a extensão de
uma ferramenta CASE por meio de metamodelos.

A ferramenta ArgoUWE auxilia o projeto de sistemas para Internet por meio da
metodologia UML-based Web Engineering (UWE) que provê uma abordagem sistema-
tizada para o desenvolvimento de aplicações Web e complementa a modelagem dos seus
aspectos conceituais, de navegação e de apresentação.

35

Segundo os autores, o projeto de aplicações Web deve: ser baseado em um padrão re-
conhecido, definir um processo de desenvolvimento e prover ferramentas que permitam
o projeto dirigido por modelos e a posterior geração automática da aplicação. Para tanto,
foi proposto um processo iterativo e incremental denominado de UWE que cobre todo o
ciclo de vida das aplicações Web focando no projeto e geração automática delas. UWE
usa um perfil UML, composto por estereótipos, propriedades e restrições, para modelar
seus artefatos. O processo provê guias e um conjunto de passos para a construção dos
três modelos abaixo:

• Modelo Conceitual: captura os requisitos da aplicação por meio dos diagramas
de atividades e de casos de uso;

• Modelo de Navegação: derivado do modelo conceitual, representa a especifica-
ção dos objetos que podem ser navegados através da aplicação Web e como esses
objetos são estruturados. Os seguintes estereótipos podem ser usados: «navigation
class», «direct navigability», «index», «guided tour», «query» e «menu»; e

• Modelo de Apresentação: descreve como os objetos de navegação definidos
acima serão apresentados ao usuário. Os seguintes estereótipos são usados para
abstrair elementos da interface gráfica: «text», «form», «button», «image», «au-
dio», «anchor», «collection» e «anchored collection».

A ferramenta ArgoUWE é um plugin do ArgoUML (ver seção 3.1) que permite
a construção dos três modelos e verifica a consistência deles por meio de restrições
definidas em OCL. Inicialmente o modelo conceitual é construído e em seguida os
outros dois são gerados de maneira semi-automática com base nos modelos definidos
anteriormente. Os três diagramas foram implementados por meio de especializações de
classes do ArgoUML.

Neste exemplo podemos verificar que modelos que adotam uma notação definida
como uma extensão conservativa de um metamodelo UML, na qual os elementos de
modelagem da UML não são modificados, mas especializados por meio de um perfil
UML, podem ter suas construções auxiliadas por ferramentas CASE de metamodelagem
UML.

A abordagem usada na construção do ArgoUWE permite a adição de um perfil UML
a uma ferramenta CASE existente, diminuindo seu custo e tempo de desenvolvimento.
Portanto, é possível construir ferramentas CASE por meio de meta-ferramentas.

36

3.3 Considerações Finais

Este capítulo apresentou o conceito de ferramentas CASE e sua importância nas tarefas
de engenharia de software. Vimos também, a necessidade de ferramentas de apoio ao
projeto e ao desenvolvimento de sistemas sensíveis ao contexto. Foram apresentados
alguns trabalhos relacionados à proposta desta dissertação, no entanto, nenhum deles
permite a implementação de SSCs independentes de domínio guiada por um processo
de software por meio da adição de informações contextuais aos modelos de análise e
projeto da aplicação.

O desenvolvimento de uma ferramenta CASE é custoso e envolve várias funciona-
lidades periféricas, como a criação de interfaces gráficas e a persistência dos modelos
gerados. Uma solução, exemplificada na ferramenta ArgoUML, que diminui a curva de
implementação é a extensão de meta-ferramentas por meio de metamodelos UML.

37

Capı́tulo 4
CEManTIKA CASE

Entre os trabalhos analisados no Capítulo 2 e Capítulo 3, o CEManTIKA destaca-se por
apresentar um metamodelo, uma arquitetura genérica e um processo de software (Se-
ção 2.4). Todavia, o CEManTIKA, por ser apenas conceitual, não apoia questões de
implementação ligadas ao desenvolvimento de SSC. Também, experimentos apresen-
tados por Vieira (2008) evidenciaram dois problemas no uso do framework conceitual
CEManTIKA: a compreensão do Processo de Projeto de SSC e a criação dos artefatos
definidos nas suas tarefas. Buscando resolver esses problemas, este trabalho propõe uma
ferramenta CASE de apoio à construção de SSC usando os conceitos da arquitetura, me-
tamodelo e processo definidos no framework conceitual CEManTIKA. Esta ferramenta
recebe, pois, o nome de CEManTIKA CASE.

A ferramenta CEManTIKA CASE está dividida em dois módulos: CEManTIKA
Process e CEManTIKA Modeling. O primeiro auxilia o entendimento dos conceitos
do framework descrevendo suas atividades, tarefas e artefatos. O segundo módulo apoia
a modelagem de SSC e dá suporte a construção dos artefatos definidos em cada tarefa
do Processo de Projeto de SSC.

Esta separação tem o objetivo de oferecer ferramentas distintas considerando o ní-
vel de conhecimento dos engenheiros de software em relação aos conceitos definidos
no CEManTIKA. Os iniciantes em contexto podem usar o CEManTIKA Process para
compreender o Processo de Projeto de SSC antes de projetar uma aplicação e, só depois,
usar o CEManTIKA Modeling para modelar os elementos de contexto do SSC.

Este capítulo apresenta a especificação da ferramenta CEManTIKA CASE. A Se-

38

ção 4.1 descreve o framework conceitual CEManTIKA; a Seção 4.2 apresenta o CEMan-
TIKA Process; a Seção 4.3 apresenta o CEManTIKA Modeling; e, por fim, a Seção 4.4
termina o capítulo com algumas considerações finais.

4.1 CEManTIKA

Sistemas sensíveis ao contexto percebem o seu ambiente de execução e se adaptam a
ele. No entanto, sua construção apresenta desafios na aquisição, processamento e disse-
minação de informações contextuais. O CEManTIKA (Contextual Elements Modeling
and Management through Incremental Knowledge Acquisiton) (VIEIRA et al., 2007;
VIEIRA, 2008) permite modularizar o desenvolvimento de SSC separando os elementos
relacionados ao negócio da aplicação daqueles relacionados ao contexto.

O CEManTIKA possui três objetivos principais: i) auxiliar o projeto dos elementos
arquiteturais relacionados à manipulação de contexto; ii) auxiliar a especificação e re-
presentação de contexto independentemente de domínio da aplicação; e iii) auxiliar os
engenheiros de software na modelagem e projeto de sistemas sensíveis ao contexto. Para
atingir esses objetivos o CEManTIKA está dividido em Arquitetura de Manipulação de

Contexto (Seção 4.1.1), Metamodelo de Contexto (Seção 4.1.2) e Processo de Desenvol-

vimento de SSC (Seção 4.1.3). Os elementos do CEManTIKA (Figura 4.1) apoiam o
projeto de sistemas sensíveis ao contexto por meio de um processo dividido em tarefas
relacionadas a uma arquitetura genérica de software. Essa mesma arquitetura identifica
os elementos de um metamodelo, que é usado para criar os artefatos de contexto durante
as tarefas do processo, descrito em um perfil UML.

4.1.1 Arquitetura de Manipulação de Contexto

Farias (de Farias et al., 2007) afirma que o desenvolvimento de aplicações sensíveis ao
contexto lida com diversos desafios tecnológicos e necessita de uma infraestrutura para
facilitar sua construção, instalação e execução. Ainda, é necessário tratar diferentes fon-
tes de aquisição e tipos de informações contextuais providos por ambientes heterogêneos
e em constante mudança.

Vieira (VIEIRA; TEDESCO; SALGADO, 2009) classifica as tarefas relacionadas

39

Figura 4.1 Integração entre os elementos do CEManTIKA (VIEIRA, 2008).

ao desenvolvimento de SSC em três categorias principais, considerando o desenvolvi-
mento de SSC a partir de uma perspectiva independente de domínio e outra dependente
de domínio:

• Especificação de Contexto: trata da definição dos elementos contextuais e das
variações comportamentais relacionadas a eles.

• Gerenciamento de Contexto: especifica como contexto será manipulado. É com-
posto pelas tarefas de aquisição, armazenamento, processamento e disseminação.
É responsável por recuperar informações contextuais, processá-las e identificar
comportamentos sensíveis ao contexto.

• Uso de Contexto: define como as variações do contexto influenciam a aplicação.
O contexto pode apresentar informações e serviços ao usuário, dar assistência na
execução de uma tarefa, adaptar recursos, executar um serviço, entre outros usos
relacionados ao domínio da aplicação.

O Gerenciamento de Contexto atua como intermediador entre a Especificação e o
Uso de Contexto. As três categorias formam a base da Arquitetura de Contexto (Fi-
gura 4.2), composta pelos seguintes módulos:

• Fontes de Contexto: são os componentes responsáveis pela aquisição dos ECs.
Um SSC pode demandar a criação de novas fontes de contexto ou usar uma exis-
tente. Para permitir compatibilidade, cada fonte de contexto deve implementar

40

Figura 4.2 Arquitetura de Contexto (VIEIRA, 2008).

dois módulos: API e Adaptador. O primeiro implementa as funcionalidades inter-
nas para aquisição de informações contextuais, permitindo acessá-las por várias
aplicações. O último implementa o Padrão de Projeto Adaptator (GAMMA et al.,
1995) para converter a informação contextual no formato esperado pelo Gerencia-
dor de Contexto.

• Gerenciamento de Contexto: é dividido em quatro módulos principais. O Mó-

dulo Controlador 1 gerencia as atividades de aquisição, processamento, aquisição,
disseminação e armazenamento de contexto. O Módulo Aquisição de ECs é res-
ponsável por registrar, ativar, desativar e gerenciar a comunicação entre as fontes
de contexto. O Módulo de Processamento usa a base de conhecimento (CEKB),
que armazena sentenças do mundo real, para processar e derivar informações con-
textuais relacionados a um foco. Por fim, o Módulo de Disseminação permite a
comunicação entre o Gerenciador de Contexto e os Consumidores de Contexto.

• Consumidores de Contexto: são partes do software que mudam seu comporta-
mento de acordo com o contexto. Um SSC pode ter vários consumidores res-
ponsáveis por diferentes focos. Compreende os elementos Adaptador, Trigger de

Comportamento e Gerenciador de Feedback. O primeiro, especifica um protocolo
de comunicação entre os consumidores e o Gerenciador de Contexto, abstraindo
funcionalidades internas do Gerenciador. O segundo é responsável por disparar os

1Veja o padrão de projeto MVC. http://java.sun.com/blueprints/patterns/MVC-detailed.html

41

comportamentos do SSC de acordo com o foco e as variações dos ECs. O último
é responsável por explicar ao usuário o motivo da ativação do comportamento
contextual e perguntar se as ações disparadas se adequadam às necessidades dos
usuários.

4.1.2 Metamodelo de Contexto

Os sistemas sensíveis ao contexto geralmente são construídos com os recursos tecno-
lógicos disponíveis no momento, não considerando aspectos de reuso e generalização.
Segundo Ayed (AYED; DELANOTE; BERBERS, 2007), essa restrição inclui detalhes
que são específicos a uma tecnologia e demanda esforços de reimplementação para ou-
tras plataformas. O CEManTIKA propõe um metamodelo independente de domínio para
descrever os elementos estruturais e comportamentais de um SSC. O Context Metamo-

del define conceitos que abstraem e permitem a manipulação de modelos contextuais, e
possui os seguintes objetivos:

• oferecer um framework conceitual que identifique os principais conceitos relacio-
nados ao uso e manipulação de contexto, independente de domínio;

• apoiar o reuso e extensão de modelos de contexto existentes ou modelos de apli-
cação.

Para atingir esses objetivos, o metamodelo é implementado como extensão do UML 2.0
Metamodel 2, seguindo a semântica e a notação padrões da UML. O metamodelo é or-
ganizado em dois perfis (profile) UML:

• Context Profile é o metamodelo estrutural e descreve os conceitos relacio-
nados aos elementos estruturais e conceituais do software pela extensão do Dia-
grama de Classes e de Casos de Uso;

• CxG Profile é o metamodelo comportamental e permite ao projetista construir
os modelos comportamentais de um SSC por meio do Diagrama de Atividades.

A Figura 4.3 apresenta o metamodelo estrutural definido no Context Profile por meio
da notação e semântica do Diagrama de Classes. Os principais conceitos são:

2http://www.omg.org/spec/UML/

42

Figura 4.3 Metamodelo estrutural de Contexto (VIEIRA, 2008).

• ContextualEntity: (entidade contextual) representa as entidades que devem ser
consideradas para manipulação de contexto. Deve possuir ao menos um Contex-

tualElement. Uma entidade representa um objeto do mundo real relevante para
descrever um domínio;

• ContextualElement: (elemento de contexto) é a unidade elementar do metamo-
delo e representa uma propriedade usada para caracterizar uma Entidade Contex-
tual. Possui um dos seguintes tipos (Seção 2.1): who, what, when, where ou why;

43

• ContextSource: (fonte contextual) descreve as fontes de contexto responsáveis
pela aquisição dos elementos contextuais. Uma associação de aquisição (acqui-

sition association) descreve os atributos tipo e frequência de atualização (type e
updateFrequency, respectivamente) entre um Elemento Contextual e uma Fonte
de Contexto. O tipo pode ser percebido (Sensed), extraído de perfis (Profiled),
definido pelo usuário (User Defined), derivado (Derived) ou consultado (Queried)
e a frequência de atualização assume um dos seguintes valores: nunca (Never),
ocasionalmente (Occasionally), frequentemente (Often) ou sempre (Always).

• Focus: (foco) é o que permite determinar quais elementos contextuais devem ser
usados para compor o contexto. Representa uma Tarefa (Task) executada por um
Agent (Agent) de software ou humano. Uma relação de relevância (relevance

association) entre o Foco e cada Elemento Contextual descreve sua importância
através do atributo peso (weight). O peso pode assumir os valores Baixo (Low),
Médio (Medium) ou Alto (High).

• Rule (regra): é representado com um conjunto de condições (conditions) e um
conjunto de ações (actions). Cada condição especifica uma expressão que retorna
um valor verdadeiro, falsou ou desconhecido quandos os dados estão disponíveis.
Uma ação indica um procedimento que deve ser executado quando as condições
forem satisfeitas. Em um SSC uma ação inclui um gatilho para um comportamento
e a atribuição de um novo peso em uma associação de relevância entre um foco e
um elemento contextual.

O metamodelo estrutural de contexto é implementado por meio do perfil UML apre-
sentado na Figura 4.4, denominado context profile. Um perfil permite a definição de
extensões por meio de estereótipos, propriedades (tags) e restrições (constraints). Dessa
forma, é possível moldar a UML para um domínio particular, como modelagem de pro-
cessos de software 3.

O context profile (Figura 4.4) possui extensões que permitem enriquecer os modelos
de Casos de Uso e de Classes com informações contextuais. Para o modelo de Casos
de Uso são definidos os estereótipos «Agent», «Task» e «executes» que são adicionados
a atores, casos de uso e associações, respectivamente, para descrever um foco. Para o
modelo de Classes os seguites estereótipos são especificados:

• «Contextual Entity»: aplicado a classes para especificar as Entidades Contextuais;
3http://www.omg.org/technology/documents/formal/spem.htm

44

Figura 4.4 Perfil de Contexto com propriedades e estereótipos (VIEIRA, 2008).

• «Contextual Element»: aplicado a atributos ou associações de uma Entidade Con-
textual que representam Elementos Contextuais;

• «Context Source»: aplicado a classes que implementam Fontes de Contexto;

• «acquisition Association»: modela a associação entre um Elemento Contextual e
uma Fonte de Contexto;

45

• «Focus»: aplicado a classes no modelo de contexto que descrevem um Foco;

• «relevance Association»: define uma relação de relevância (peso) entre um Foco
e um Elemento Contextual;

• «Rule»: indica regras de comportamento para o modelo de contexto. A proprie-
dade action representa o que será executado quando todas as condições definidas
em uma Contraint forem satisfeitas.

O metamodelo comportamental está relacionado com os aspectos dinâmicos de ma-
nipulação de contexto, ou seja, ele é responsável por identificar a relevância entre um EC
e um Foco (CERelevance) e as regras que indicam como o sistema deve ser executado
de acordo com as variações de contexto (Rule).

Os modelos comportamentais são construídos por meio de grafos contextuais (Se-
ção 2.3.1). Cada caminho do grafo contém a definição de uma regra de produção que
indica como o contexto atua no comportamento da aplicação. Para o exemplo da Fi-
gura 2.2, uma das regras é identificada no Exemplo 4.1:

Lista de Códigos Fonte e Exemplos 4.1 Exemplo de regra de produção criada
1 Rule 1 :

C o n d i t i o n s
3 n o t (C l i e n t e . c i d a d e = Missão . c i d a d e)

Missão . quemPaga = CAPES
5 A c t i o n s

C a l l B e h a v i o r (" C o n t a c t a r Agência CAPES ")

O metamodelo UML (CxG Profile) permite o projeto dos aspectos comportamentais
de um SSC por meio do diagrama de Atividades com a semântica definida nos grafos
contextuais.

4.1.3 Processo de Projeto de SSC

O CSS Design Process, descrito na Figura 4.5, compreende as principais atividades para
o desenvolvimento de SSC: Context Specification (Especificação de Contexto), Context

Management Design (Projeto de Gerenciamento de Contexto), Context Usage Design

(Projeto de Uso de Contexto), Code Generation (Geração de Código), Testing (Teste) e
CSS Evaluation (Avaliação). As atividades e tarefas do processo usam o metamodelo e

46

a arquitetura de contexto explicadas anteriormente. Apenas as três primeiras atividades
foram definidas. O processo adiciona à equipe de desenvolvimento de software o papel
do projetista de contexto que deve possuir habilidades multidisciplinares relacionadas à
usabilidade, privacidade, Inteligência Artificial, aquisição de dados de sensores, etc.

Figura 4.5 Processo de Desenvolvimento de SSC (VIEIRA, 2008).

A Especificação de Contexto identifica os requisitos de contexto e cria os modelos
conceitual e comportamental de contexto com base nos requisitos de negócio da aplica-
ção. É formada pelas seguintes tarefas: Identificar Focos (S1), Identificar as Variações de
Comportamento (S2), Identificar Entidades Contextuais e Elementos Contextuais (S3),
Projetar o Modelo Comportamental de Contexto (S4) e Verificar a Relevância dos Ele-
mentos Contextuais (S5).

Após identificar os requisitos de contexto e os modelos conceitual e comportamental
de contexto, o projetista deve investigar como os ECs devem ser adquiridos, processados
e compartilhados na atividade Projeto de Gerenciamento de Contexto, que é formada
pelas seguintes tarefas: Especificar Aquisição de Contexto (M1), Projetar o Módulo de

47

Aquisição (M2), Projetar o Módulo de Processamento (M3) e Projetar o Módulo de
Disseminação (M4).

Em seguida, o Projeto de Uso de Contexto tem por objetivo projetar como o con-
texto será efetivamente usado no SSC. O processo divide o uso de contexto em duas
categorias: adaptação do comportamento da aplicação e percepção dos usuários com in-
formações contextuais gerenciadas pelo sistema. A atividade é formada pelas seguintes
tarefas: Projetar Adaptação de Contexto (U1) e Projetar Apresentação de Contexto (U2).

4.1.4 Alterações no Processo de Projeto de SSC

A identificação dos elementos contextuais que devem ser usados em um SSC está relaci-
onada às mudanças desejadas no comportamento da aplicação em função das alterações
nos valores desses elementos. No CEManTIKA, a atividade de Especificação de Con-
texto tem o objetivo de identificar os requisitos de contexto a partir dos requisitos de
negócio da aplicação e criar o modelo conceitual de contexto enriquecendo o modelo
conceitual da aplicação com os elementos definidos no Context Profile (Seção 4.1.2).
Por exemplo, numa aplicação de indicação de filmes, a idade do usuário é um elemento
contextual que permite variações no comportamento da mesma.

Na versão inicial do CEManTIKA (VIEIRA, 2008), a tarefa Projetar Modelo Com-
portamental de Contexto, inserida na atividade de Projeto de Uso de Contexto, permite
identificar, para cada foco, como as mudanças do contexto afetam um SSC por meio de
adaptações no comportamento da aplicação e mecanismos de percepção. O modelo com-
portamental de contexto é representado como um grafo contextual, que possui ações que
devem ser acionadas durante a execução do SSC e condições que restringem a execução
dessas ações, para cada foco. No entanto, durante a análise do modelo comportamen-
tal de contexto é necessário evoluir o modelo conceitual de contexto. Dessa forma, é
interessante que os dois modelos sejam projetados num ciclo iterativo, no qual os ele-
mentos e comportamentos contextuais são refinados. Ainda, ao especificarmos o modelo
de comportamento de contexto na atividade de Especificação de Contexto conseguimos
projetar o Módulo de Processamento de Contexto com mais detalhes, pois já sabemos
como o contexto será usado na aplicação. Dessa forma, a tarefa Projetar Modelo Com-
portamental de Contexto foi transferida para a atividade de Especificação de Contexto e
é executada após a identificação dos elementos e entidades contextuais.

O Processo de Projeto de SSC definido no CEManTIKA explica seis atividades para

48

a construção de um SSC (seção 4.1.3). A ferramenta CEManTIKA CASE, especificada
neste capítulo, foca na atividade Especificação de Contexto que permite a identificação
dos elementos contextuais e produz os modelos estruturais e comportamentais de con-
texto.

4.2 CEManTIKA Process

O processo de desenvolvimento de software é dinâmico e deve adaptar-se a vários pa-
râmetros, como: expertise da equipe, natureza do problema e necessidade do cliente.
Várias abordagens tentaram definir formas para construir aplicações de alta qualidade
considerando três variáveis: tempo, custo e escopo. Entre elas, destacam-se os proces-
sos mais rígidos como o Rational Unified Process (RUP) e as metodologias ágeis que
evidenciam características de auto-organização e cooperação do time.

Como apontado em experimento realizado por Vieira (2008), o Processo de Projeto
de SSC deve adaptar-se ao nível de expertise dos projetistas de SSCs, ou seja, o processo
deve prover exemplos e guias para os iniciantes e usar métodos mais ágeis para os mais
experientes.

Para apoiar os engenheiros de processo na integração entre as tarefas relacionadas à
contexto e outras com ênfase nas regras de negócio da aplicação e também permitir aos
engenheiros de software navegar entre os elementos do CEManTIKA de acordo com
seu nível de conhecimento, é proposta uma biblioteca de documentação composta pelos
elementos necessários ao desenvolvimento de sistemas sensíveis ao contexto.

Sendo assim, o CEManTIKA Process tem os seguintes objetivos:

• auxiliar a compreensão das atividades, atores, artefatos e tarefas do Processo de
Projeto de SSC;

• permitir a navegação no Processo de Projeto de SSC de acordo com o nível de
experiência de cada engenheiro de software;

• publicar o Processo de Projeto de SSC em um site para simples navegação e con-
sulta; e

• prover uma base de conhecimento extensível capaz de adaptar-se a outros proces-
sos.

49

Uma abordagem para customizar um processo de software é configurá-lo por meio
do Software Process Engineering Metamodel (SPEM). SPEM é um metamodelo para
engenharia de processos e um framework conceitual que provê os conceitos necessários
para modelagem, documentação, apresentação, gerenciamento, intercâmbio e execução
de métodos de desenvolvimento e processos (OMG, 2008).

O SPEM separa o conhecimento sobre métodos, ferramentas e técnicas em um pro-
cesso. Papéis, tarefas, guias e artefatos são chamados de method contents, que explicam
passo a passo como os objetivos de desenvolvimento são alcançados independente do
momento nos quais são executados dentro de um ciclo de vida. Os processos relacionam
os method contents em conjuntos de tarefas ordenados de acordo com as especificidades
dos projetos e indicam quando uma tarefa deve ser executada. Por exemplo, a tarefa Pro-

jetar Casos de Uso pode ser customizada, considerando os papéis envolvidos e artefatos
de entrada e saída, de formas diferentes para um sistema crítico e para um sistema de
informação. Os method contents definem como, por que, quanto e como realizar uma
tarefa e o processo identifica quando fazê-la.

4.3 CEManTIKA Modeling

Diferente das ferramentas de apoio ao uso de contexto apresentadas no Capítulo 3, a
proposta do CEManTIKA é apoiar a construção sistematizada de SSCs por meio de
um processo com papéis, tarefas e artefatos bem definidos. Portanto, o CEManTIKA
Modeling possui os seguintes objetivos:

• apoiar a construção de um SSC a partir dos modelos de Casos de Uso e Conceitual
definidos na aplicação; e

• configurar um único ambiente integrado de desenvolvimento (IDE) para as ativi-
dades de análise, projeto, codificação e testes de SSC.

O Digrama de Atividades na Figura 4.6 apresenta o fluxo de execução das tarefas da
atividade de Especificação de Contexto. A primeira tarefa, Identificar Foco, é executada
pelo Projetista de Contexto e possui o modelo de casos de uso e o diagrama de casos
de uso como entrada e o modelo de casos de uso enriquecido como saída. O modelo
de casos de uso é enriquecido com os estereótipos «Agent», «Task» e «executes» para

50

identificar quais são os focos da aplicação. As outras tarefas são executadas de forma
iterativa para cada foco encontrado. A tarefa Identificar as Variações de Comportamento
descreve quais variações de comportamento na aplicação são esperadas e que fatores
afetam esses comportamentos, como mecanismos de adaptação de interface gráfica para
pessoas com problemas visuais. A tarefa Identificar Entidades Contextuais e Elementos
Contextuais produz o modelo conceitual de contexto enriquecendo o modelo concei-
tual da aplicação com os estereótipos «ContextualEntity» e «ContextualElement». Em
seguida, o modelo comportamental de contexto é projetado por meio de um grafo con-
textual com as ações que devem ser executadas para determinadas condições. Por fim, a
tarefa Verificar a Relevância dos Elementos Contextuais é opcional, e permite avaliar se
os usuários e projetistas possuem o mesmo entendimento sobre a relevância (alta, média
e baixa, por exemplo) dos elementos contextuais para um determinado foco.

Figura 4.6 Fluxo de execução da atividade Especificação de Contexto

Embora o CEManTIKA compreenda atividades de análise, desenvolvimento e testes,
a versão inicial do CEManTIKA Modeling especifica apenas a atividade de Especifica-

51

ção de Contexto e suas tarefas, seguindo os artefatos de entrada e saída descritos no
diagrama de atividades detalhado da Figura 4.7. A próxima seção especifica os requisi-
tos funcionais do CEManTIKA Modeling considerando esse escopo.

Figura 4.7 Tarefas e artefatos de entrada e saída da atividade Especificação de Contexto

4.3.1 Requisitos Funcionais

Os requisitos do CEManTIKA Modeling são apresentados no Diagrama de Casos de
Uso da Figura 4.8. Eles correspondem à execução das seguintes tarefas do Processo de
Projeto de SSC: Identificar Foco, Identificar Variações de Comportamento, Identificar

Entidades Contextuais e Elementos Contextuais, Projetar Modelo de Comportamento de

Contexto e Verificar Relevância dos Elementos Contextuais. A ferramenta CEManTIKA
Modeling interage com dois atores externos:

• Projetista de Contexto: representa o usuário da ferramenta, o qual é responsável
por projetar um SSC; e

• Sistema: executa procedimentos automatizados de verificação e geração de arte-
fatos.

52

Figura 4.8 Diagrama de Casos de Uso do CEManTIKA Modeling

Para o ator Projetista de Contexto foram identificados os seguintes requisitos funci-
onais:

• Criar Projeto Sensível ao Contexto: permite a criação de um projeto de um
sistema sensível ao contexto com as dependências necessárias para a execução
dos outros requisitos. Entre as dependências, destacam-se: bibliotecas, arquivos
para edição e processadores de modelos.

• Importar Diagramas: o usuário pode importar o Diagrama de Casos de Uso e o
Modelo Conceitual criados em outra ferramenta, inibindo o retrabalho.

• Criar Modelo de Casos de Uso Enriquecido e Criar Modelo Conceitual de
Contexto: o projetista pode criar os modelos de contexto, atribuindo-lhes os este-
reótipos e propriedades definidos no perfil UML correspondentes ao metamodelo
de contexto.

• Identificar Foco: o usuário identifica no Diagrama de Casos de Uso Enriquecido
quais requisitos devem ser considerados para compor os focos do SSC. Para esco-

53

lher um foco, o Projetista de Contexto deve aplicar estereótipos em atores e casos
de uso criando Agents e Tasks, respectivamente e, em seguida criar uma associ-
ação do tipo executes entre um Agent e uma Task. Por exemplo, numa versão
simplificada de um sistema de e-commerce com os casos de uso: Criar usuário,
Listar produtos e Efetuar pagamento, apenas o segundo caso de uso será conside-
rado na formação do foco, pois os produtos são listados de acordo com o perfil do
usuário. Os demais casos de uso são executadas da mesma forma para todos os
usuários. Portanto, o Usuário (ator) é um Agente (estereótipo Agent) que executa
(estereótipo executes) a tarefa (estereótipo Task) Listar produtos.

As demais funcionalidades, definidas abaixo, são realizadas separadamente para
cada foco. Dessa forma, o usuário pode restringir apenas as entidades e elementos
contextuais do foco trabalhado. Essa abordagem tenta solucionar a explosão de
elementos UML durante a modelagem de um SSC (classes, relacionamentos e
propriedades) apresentada, por exemplo, em Chaves (2009).

• Definir Variações de Comportamento: o usuário do CEManTIKA Modeling adi-
ciona fluxos de contexto a um caso de uso. Esses fluxos representam diferentes
ações, relacionadas a um foco, que o sistema sensível ao contexto pode executar.
O objetivo da funcionalidade é gerar o artefato Requisitos de Contexto composto
pelas variações de comportamento contextual que são derivadas dos casos de uso
da aplicação e adicionam fluxos de contexto ao cenário de execução de um caso
de uso. As variações de comportamento estão relacionadas às mudanças de com-
portamento do sistema devido ao seu contexto e incluem:

– mecanismos de percepção que fornecem informações contextuais para um
agente durante a execução de uma tarefa, como informar o usuário que um
novo relatório está disponível no repositório de trabalho;

– mecanismos de adaptação e personalização que permitem adaptar interfaces
gráficas.

No caso de uso Emprestar Livro de um sistema de biblioteca, especificado no
Exemplo 4.2, os fluxos de contexto estão destacados entre as linhas 19 e 21: logo
após a escolha do livro pelo aluno (passo 4.2), o software atua como um sistema
de recomendação e exibe uma relação de outros livros que possam interessar o
aluno.

• Identificar Entidades e Elementos Contextuais: o usuário seleciona, a partir do

54

Lista de Códigos Fonte e Exemplos 4.2 Exemplo de Variações de Contexto
1 1 D e s c r i ç ã o
2 Esse caso de uso d e s c r e v e o emprés t imo de um l i v r o por um Aluno .
3 2 A t o r e s
4 2 . 1 Aluno
5 2 . 2 B i b l i o t e c a
6 3 Pré−Condições
7 O u s u á r i o p o s s u i c a d a s t r o na B i b l i o t e c a .
8 4 Fluxo B á s i c o de Even tos
9 1 . O a l u n o se a u t e n t i c a

10 2 . O a l u n o i n f o r m a o c ód i go do l i v r o a s e r e m p r e s t a d o
11 3 . O s i s t e m a e x i b e um comprovan te com o c ód igo do l i v r o e a d a t a de

d e v o l u ç ã o
12 5 F lu xos A l t e r n a t i v o s
13 5 . 1 U s u á r i o I n v á l i d o
14 No p a s s o 1 se o a l u n o não r e a l i z a r a u t e n t i c a ç ã o , e n t ã o
15 1 . O caso de uso C a d a s t r a r Aluno é a c i o n a d o
16 5 . 2 Aluno p o s s u i mul t a de mora
17 No p a s s o 2 se o a l u n o tem mul t a de mora , e n t ã o
18 1 . O caso de uso C a l c u l a r Multa é a c i o n a d o
19 6 F lu xos de C o n t e x t o
20 4 . 2 I n d i c a ç ã o de o u t r o s L i v r o s
21 O s i s t e m a s u g e r e o u t r a s o b r a s que c o n t r i b u a m com o e s t u d o do a l u n o

baseando−se no seu p e r f i l e em meta−i n f o r m a ç õ e s do L i v r o
22 7 Pós−Condições
23 Sucesso
24 O a l u n o r e c e b e o l i v r o e m p r e s t a d o

modelo conceitual de contexto, as Entidades e os Elementos Contextuais e define
o tipo de cada Elemento Contextual (Quem, O quê, Onde, Quando ou Por que).

• Criar Grafos Contextuais: o projetista de contexto cria um grafo contextual por
meio de representações gráficas dos nós contextuais, nós de recombinação e ações.
Em cada nó contextual é possível escolher elementos contextuais definidos no mo-
delo conceitual de contexto e criar ramificações envolvendo expressões booleanas.
Para cada ação é possível associar código executável que será avaliado na execu-
ção do grafo.

• Verificar Relevância dos Elementos Contextuais: essa funcionalidade permite
que o usuário identifique a relevância de uma associação entre um Foco e um Ele-

mento Contextual com os valores Baixo, Médio ou Alto. Uma associação de rele-
vância indica a importância de um EC para um foco. Por exemplo, em um cenário
de aluguel de carros, um estudante e um executivo ponderam o preço de locação
de formas diferentes. Após identificar as associações de relevância, o documento

55

Avaliação de Relevância é gerado. Ele apresenta uma lista dos Elementos Con-
textuais e sua relevância para cada Foco. O exemplo apresentado abaixo indica a
relevância dos ECs idade e clima para o foco composto pelo agente Pessoa e pela
tarefa Pesquisar Rota:

1. Foco: («Pessoa», «Pesquisar Rota»)

Pessoa.idade Alto

Ambiente.clima Médio

E, para o ator Sistema foram identificadas os seguintes requisitos funcionais:

• Gerar Código do Modelo: é responsável por gerar código em linguagem de pro-
gramação a partir dos modelos definidos pelo projetista de contexto.

• Executar Grafo Contextual: execução de um grafo contextual permitindo anali-
sar os valores dos elementos contextuais em cada nó contextual na medida que as
ações estão sendo executadas.

• Notificar Inconsistências no Modelo: reporta ao usuário os erros identificados
na construção do Diagrama de Casos de Uso Enriquecido, modelo Conceitual de
Contexto e nos Grafos Contextuais por meio da verificação das restrições OCL
definidas no metamodelo de contexto.

4.3.2 Requisitos não-funcionais

Os requisitos não-funcionais são restrições ou requisitos de qualidade que restringem
a produção de um software, como confiabilidade, segurança e manutenibilidade (IEEE
Computer Society, 2004). A ferramenta CEManTIKA CASE apresenta os seguintes
requisitos não-funcionais:

• Gratuita: deve ser produzida por meio de tecnologias de software livre e deve ser
disponibilizada de forma gratuita;

• Extensibilidade: deve ser extensível, permitindo que outros desenvolvedores evo-
luam e adaptem a ferramenta para outros ambientes;

• Manutenibilidade: deve ser codificada em uma linguagem de programação com
ampla difusão na comunidade;

56

• Portabilidade: deve permitir a sua execução nos principais Sistemas Operacionais
para computadores pessoais.

A próxima seção identifica os componentes principais do CEManTIKA Modeling

tendo em vista os requisitos funcionais especificados nessa seção.

4.3.3 Visão Arquitetural

Considerando os conceitos, requisitos funcionais e trabalhos vistos nos capítulos anteri-
ores, foram identificados os seguintes componentes necessários para a implementação:

1. Representação de Modelos: é responsável por definir como os modelos UML,
os grafos contextuais e os documentos em texto são representados preocupando-
se com questões de compatibilidade e reusabilidade. Essa característica permite a
importação e exportação dos artefatos por diferentes ferramentas.

2. Editor Gráfico de Modelos: o componente de edição permite a criação dos arte-
fatos por meio de notações gráficas. A definição inicial do Modelo de Comporta-

mento de Contexto, usando uma extensão do diagrama de atividades da UML foi
mal compreendida pelos engenheiros de software que tendiam a usar o artefato
com a semântica original de diagrama de atividades (VIEIRA, 2008). O conheci-
mento prévio do diagrama de atividades e da sua semântica gerou conflitos com a
semântica do grafo contextual. Para solucionar esse problema, um editor de grafos
contextuais com ícones e elementos gráficos apropriados é proposto. Um editor
UML com capacidade de adicionar estereótipos e definir o valor das propriedades
especificadas nos metamodelos também é proposto.

3. Verificador de Modelos: para assegurar que os modelos gerados sigam a se-
mântica definida no metamodelo de contexto (Seção 4.1.2), são usadas restri-
ções em OCL. O Exemplo 4.3 mostra uma regra simples aplicada a um Ele-
mento Contextual que identifica se ele está associado a uma Entidade Contextual,
na qual base_Property é uma referência para uma propriedade com estereó-
tipo cemantika_class::ContextualElement e cemantika_class

é o nome do pacote que define o perfil UML. Se o EC for uma propriedade (Linha
1), então deve estar associado a uma Entidade Contextual. A implicação lógica

57

(implies) só é falsa quando os dois operadores forem também falsos. As de-
mais restrições OCL estão no Apêndice A. O módulo também é responsável por
notificar os erros dos modelos ao usuário.

Lista de Códigos Fonte e Exemplos 4.3 Regra OCL para um Elemento Contextual
s e l f . b a s e _ P r o p e r t y <> n u l l

2 i m p l i e s
s e l f . b a s e _ P r o p e r t y . owner . h a s A p p l i e d S t e r e o t y p e (’ c e m a n t i k a _ c l a s s : :

C o n t e x t u a l E n t i t y ’)

4. Processador de Grafos Contextuais: os sistemas sensíveis ao contexto são natu-
ralmente distribuídos e possuem fontes de contexto heterogêneas, diversos meios
de processamento, inferência e disseminação de informações contextuais. Essa
natureza torna sua simulação e execução complexa e custosa, dificultando a detec-
ção de erros e bugs. Para minimizar esses problemas é proposta a simulação das
variações de comportamento representadas pelos grafos contextuais.

O ambiente de simulação permite a execução de um grafo contextual passo a passo.
O protótipo de baixa fidelidade apresentado na Figura 4.9 demonstra um cenário
de uso, no qual o nó contextual em vermelho e a ação em azul representam os
elementos avaliados: em cada nó contextual é apresentado um campo de entrada
de dados que simula o valor de um elemento contextual, em seguida as ações são
executadas até o nó contextual seguinte. Uma pilha com os passos executados é
construída para permitir a identificação do conjunto de regras e ações avaliadas.

5. Transformação de Modelos em Código: a semântica definida num metamodelo
UML auxilia o entendimento dos conceitos definidos nele. Outra vantagem da
UML é a possibilidade de geração de artefatos por meio dos modelos já construí-
dos. O CEManTIKA Modeling propõe usar transformações de modelos em texto,
também chamadas de transformações Model to Text (M2T), para transformar o
modelo Conceitual de Contexto em código e gerar relatórios.

6. Sistema de Ajuda: dois mecanismos são usados para prover sistemas de suporte
e consulta. O primeiro permite a pesquisa de tópicos relevantes associados a con-
texto e ao CEManTIKA. O segundo, cria assistentes interativos para facilitar a
execução de funcionalidades da ferramenta.

7. Outros Serviços: representam as funcionalidades comuns de persistência e orga-
nização dos modelos em projetos. Esse componente oferece algumas funcionalida-

58

Figura 4.9 Simulação de Grafo Contextual - Grafo Contextual adaptado de http://www.cxg.fr/

des básicas, como mecanismos para importação, exportação e busca de arquivos,
criação de projetos sensíveis ao contexto e navegação entre os elementos de um
projeto.

Os componentes apresentados dão uma visão de alto nível das funcionalidades da
ferramenta e compõem os elementos comuns para a implementação do CEManTIKA
Modeling. A interação entre os componentes é visualizada na Figura 4.10: as transfor-
mações M2T e as funções comuns de gravação, leitura, importação e exportação são
usadas como serviços pelos componentes que estão em camadas superiores. O Editor
Gráfico permite a modificação dos modelos de contexto com o auxílio das notificações
de inconsistências apontadas pelo Verificador. O sistema de ajuda é usado em qualquer
camada, para tirar dúvidas básicas do uso da ferramenta e outras mais avançadas sobre
a construção do modelo de contexto.

59

Figura 4.10 Visão arquitetural do CEManTIKA Modeling.

4.4 Considerações Finais

Construir um sistema sensível ao contexto envolve, dentre outras coisas, o entendimento
de novos conceitos relativos ao gerenciamento do contexto e a criação de novas repre-
sentações do mundo real. A ferramenta CEManTIKA CASE proposta considera esses
problemas e é dividida em dois módulos: CEManTIKA Process que apoia o entendi-
mento do Processo de Projeto de SSCs e o CEManTIKA Modeling que apoia o projeto
de uma aplicação sensível ao contexto.

O CEManTIKA Process é uma biblioteca do SPEM composta de method contents,
isto é, papéis, atividades, tarefas, guias e artefatos e um processo. Essa abordagem
habilita a extensão do processo para outras metodologias e processos de software.

No próximo capítulo serão destacados aspectos técnicos de implementação do CE-
ManTIKA Modeling e CEManTIKA Process e será discutido um estudo experimental
realizado para verificar a aplicabilidade da ferramenta no projeto de SSC.

60

Capı́tulo 5
Implementação e Estudos Experimentais

Como apresentado no capítulo 4, a ferramenta CEManTIKA CASE 1 é formada por dois
módulos: um apoia o entendimento do Processo de Projeto de SSC e o outro permite a
criação dos modelos estruturais e comportamentais por meio de um plugin do Eclipse.

Esse capítulo destaca os aspectos técnicos de implementação e mostra os artefatos
produzidos pela ferramenta. A Seção 5.1 apresenta a implementação do CEManTIKA
Process. Em seguida, a Seção 5.2 mostra detalhes e exemplos de uso da ferramenta
de modelagem. A Seção 5.3 descreve o experimento preliminar realizado para verificar
a aplicabilidade da ferramenta. Por fim, a Seção 5.4 finaliza o capítulo com algumas
considerações finais.

5.1 CEManTIKA Process

O CEManTIKA Process é uma biblioteca de elementos do SPEM construída na ferra-
menta Eclipse Process Framework (EPF). O EPF é uma plataforma de gerenciamento
de processos e um framework conceitual que apoia engenheiros de processo na auto-
ria, configuração e instalação de processos de desenvolvimento (HAUMER, 2007). O
EPF organiza elementos comuns em bibliotecas que podem ser usadas como base para
construir outros processos.

1Instruções de instalação e uso da ferramenta estão disponíveis no site
http://www.nti.ufpb.br/∼raphael/cemantika/

61

A biblioteca do processo de projeto de SSCs do CEManTIKA pode ser combinada
com outras metodologias e processos de software para adaptá-la às necessidades dos
stakeholders. A Figura 5.1 apresenta os componentes desenvolvidos separados em dois
tipos: method contents e processos.

Figura 5.1 Biblioteca do CEManTIKA Process

Os method contents identificam as técnicas e meios de atingir um objetivo no desen-
volvimento de um software. Eles podem ser:

• Papéis (Roles): definem um conjunto de habilidades, competências e responsabili-
dades. Os papéis executam tarefas e são responsáveis pelos produtos de trabalho;

• Produtos de Trabalho (Work Products): representam as coisas tangíveis usadas,
modificadas ou produzidas por uma tarefa.

62

• Tarefas (Tasks): são executas por um papel e definem uma unidade de trabalho.
Provêem uma descrição detalhada dos passos que devem ser executados para atin-
gir um objetivo. As tarefas não definem em que momento são executadas em um
processo;

• Guias (Guidance): formados por exemplos, práticas, templates, estimativas, con-
ceitos, checklists, entre outros, que podem ser associados a tarefas, papéis e pro-
dutos de trabalho.

Para organizar melhor os elementos no EPF, foram criados dois pacotes principais:
css_design_process e icare_sample. O primeiro descreve as atividades relacionadas
às fases de especificação e projeto de SSCs definidas no CEManTIKA e o segundo
apresenta um exemplo de projeto de uma aplicação sensível ao contexto. O pacote
css_design_process é subdividido em outros dois: analysis e design. O primeiro é com-
posto pelas cinco tarefas, artefatos e guias relacionados à atividade Especificação de
Contexto. O pacote design representa as atividades para o projeto de SSC: Projeto de
Gerenciamento de Contexto e Projeto de Uso de Contexto que não foram consideradas
no escopo desse trabalho.

Usar bibliotecas criadas no SPEM na autoria de processos permite o reuso de artefa-
tos já desenvolvidos. Por exemplo, o modelo de Casos de Uso foi configurado como um
dos artefatos de entrada para a tarefa Identificar Foco, não tornando necessário a especi-
ficação do modelo. Ainda, o reuso de componentes facilita a construção de processos de
acordo com as necessidades de cada ambiente.

Outro mecanismo definido no SPEM que contribui para a customização de proces-
sos é a Variabilidade de Elementos (Method Variability). Ela permite configurar um ele-
mento por meio de uma técnica similar à herança em programação orientada a objetos.
Por exemplo, é possível usar mecanismos de extensão e adicionar responsabilidades a
um papel já existente ou adicionar novos guias a uma tarefa definida em outra biblioteca.
O uso dessa técnica é identificado, por exemplo, na especificação do Modelo Conceitual
de Contexto como uma extensão do Modelo Conceitual da aplicação definido no RUP.

Um processo organiza os method contents em atividades, fases, iterações e milesto-

nes e define o ciclo de vida de desenvolvimento de um projeto. O CEManTIKA Process

organiza o processo de projeto de SSCs por meio de uma estrutura analítica de projeto.
Essa abordagem permite a adaptação do processo usando os elementos necessários para
cada ambiente.

63

Depois de definida, a biblioteca do CEManTIKA é processada pelo EPF e transfor-
mada em um site Web que permite a navegação entre os elementos do processo de SSC 2.
O exemplo de navegação, apresentado na Figura 5.2, mostra a estrutura de navegação da
ferramenta. O usuário pode selecionar links (e.g. papéis, tarefas, guias) para entender o
framework conceitual CEManTIKA de acordo com seu nível de expertise.

Figura 5.2 Navegação entre os elementos do processo

O CEManTIKA Process apoia o entendimento do CEManTIKA permitindo a na-
vegação entre suas tarefas e conceitos de acordo com o nível de conhecimento de cada
engenheiro de software.

5.2 CEManTIKA Modeling

O CEManTIKA Modeling é um plugin que pode ser instalado na IDE Eclipse. A fer-
ramenta usa os componentes UML2, UML2Tools e OCL do Eclipse Modeling para
modelagem UML e incorpora as funcionalidades de processamento e workflow defini-
das no módulo Flow do JBoss Drools (JBoss Community, 2010) para a implementação
de grafos contextuais. O JBoss Drools é um sistema de gerenciamento de regras de ne-

2Uma versão está disponível em http://www.nti.ufpb.br/∼raphael/cemantika/epf/

64

gócio capaz de processar regras de produção por meio de uma máquina de inferência.
Sua adoção entrega uma solução para o processamento dos comportamentos contextuais
definidos nos grafos contextuais.

Para apresentar a ferramenta serão explicadas as implementações dos requisitos fun-
cionais detalhados no capítulo anterior. O primeiro deles define a criação de um projeto
sensível ao contexto cujo objetivo é configurar o ambiente inicial para o desenvolvimento
de um SSC.

Para entender os componentes da ferramenta é importante destacar alguns conceitos
do ambiente de desenvolvimento (Workbench) do Eclipse (SILVA, 2009):

• Perspectivas (Perspectives): definem o layout inicial das visões. Cada perspectiva
provê um conjunto de funcionalidades para solucionar um tipo específico de tarefa,
como Java, plugin e assim por diante.

• Visões (Views): as visões suportam a exibição de Editores, permitem diferentes
representações para um mesmo recurso e a navegação entre eles;

• Editores (Editors): são usados para modificar um recurso, como um arquivo Java,
uma imagem, um site da Web, entre outros; e

• Projetos: são containeres usados para agrupar pastas e arquivos relacionados.

O ambiente inicial do CEManTIKA Modeling pode ser dividido em dois aspectos:
interface gráfica e configuração de dependências. A interface gráfica inicial é apresen-
tada na Figura 5.3. As Visões Explorador de Projetos (rótulo 1), Propriedades e Proble-
mas (ambas no rótulo 4), e o Editor do CEManTIKA (rótulo 2) representam a perspec-
tiva do CEManTIKA que inclui os elementos gráficos necessários ao uso da ferramenta
e inibe as Visões não usadas pela ferramenta. O rótulo 3 destaca um botão que permite
visualizar a perspectiva CEManTIKA.

O outro aspecto destaca a criação de um projeto sensível ao contexto e a adição de
dependências para compilar o projeto criado. A configuração de um projeto SSC é reali-
zada adicionando uma nature e a biblioteca do CEManTIKA 3 a um projeto do Eclipse.
Uma nature associa um projeto a builders, que são responsáveis por executar automa-
ticamente algum procedimento sempre que um recurso (e.g. arquivo) de um projeto é

3Disponível no arquivo cemantika.jar

65

Figura 5.3 Apresentação inicial do CEManTIKA Modeling

alterado. Por exemplo, toda vez que um arquivo Java é salvo um builder 4 é acionado
para compilar o arquivo (CLAYBERG, 2008).

A ferramenta do CEManTIKA especifica um builder para verificar a consistência
dos modelos conceituais por meio das restrições OCL do metamodelo definidas no Apên-
dice A. Se um modelo possuir alguma inconsistência, a Visão Problemas indicará qual
o problema apresentado. No exemplo da Figura 5.4 o modelo de Casos de Uso Enrique-
cido é sinalizado como incorreto, pois a Task Finalizar um Missão não está associada
a um Agent, pois o ator Estudante não possui o estereótipo Agent. Essa implementação
também satisfaz o requisito Notificar Inconsistências no Modelo do ator Sistema.

O segundo requisito funcional (Importar Diagramas) permite a importação dos mo-
delos de casos de uso e conceitual para a ferramenta por meio de assistentes, como o
exemplo apresentado na Figura 5.5 que permite a importação do modelo de casos de

4O builder responsável pela compilação de arquivo Java chama-se Eclipse incremental Java compiler

66

Figura 5.4 Percepção de erro após verificação de regra OCL

uso 5. O Eclipse Modeling adota o padrão XMI 6 para representar os diagramas UML.
Sendo assim, diagramas construídos em outras ferramentas podem ser importados.

Os dois próximos requisitos definem uma funcionalidade comum: a criação de mo-
delos UML. Os requisitos Criar Modelo de Casos de Uso Enriquecido e Criar Modelo
Conceitual de Contexto definem a criação de artefatos de mesmo nome e são executa-
dos pela adição do perfil UML do CEManTIKA, por meio de uma API, aos modelos
de casos de uso e conceitual importados anteriormente. Para aplicar os perfis UML con-
siderando apenas as extensões 7 UML de cada modelo, os elementos relacionados ao
primeiro modelo estão no pacote cemantika e os outros no pacote cemantika_class.

Os requisitos Identificar Foco e Identificar Entidades e Elementos Contextuais são
suportados pela ferramenta por meio da adição de estereótipos a elementos UML. A

5Dois arquivos devem ser importados, pois o Eclipse Modeling separa o modelo visual do modelo de
domínio.

6XMI é um padrão definido pela OMG suportado por ferramentas pagas e gratuitas. Uma relação de
ferramentas compatíveis com o Eclipse Modeling está disponível em: http://wiki.eclipse.org/MDT-UML2-
Tool-Compatibility

7Estereótipos e propriedades

67

Figura 5.5 Assistente para importação do Diagrama de Casos de Uso

ferramenta exibe uma lista dos possíveis estereótipos de acordo com o tipo do elemento
selecionado. Por exemplo, para um elemento do tipo Ator apenas o estereótipo Agent

é apresentado, como mostrado na Figura 5.6. O requisito Identificar Foco produz o Di-
agrama de Casos de Uso Enriquecido com a identificação dos Focos possíveis para o
sistema. Um foco é uma associação entre um Agent e uma Task. A seleção de um foco
é realizada pela adição dos estereótipos executes, Agent e Task a uma associação, um
Ator e um Caso de Uso, respectivamente. O requisito Identificar Entidades e Elementos
Contextuais cria o modelo conceitual de contexto, artefato produzido pela identificação
das entidades e elementos contextuais, no qual o usuário pode aplicar os estereótipos
ContextualEntity e ContextualElement a elementos dos tipos classe e propriedade, res-
pectivamente, do metamodelo da UML, no qual uma propriedade pode ser um atributo
de uma classe ou uma associação entre duas classes. Inconsistências nos modelos são
notificadas ao usuário, como a apresentada na Figura 5.4.

O próximo requisito permite a identificação das variações de comportamento para
um foco. O objetivo dessa tarefa é gerar o documento de Requisitos de Contexto. Um
editor simples de texto plano permite que o projetista de contexto insira as variações de
comportamento para cada requisito do sistema sensível ao contexto identificado como
foco.

Os outros dois requisitos implementados, Criar Grafos Contextuais (executado pelo

68

Figura 5.6 Configuração de um estereótipo na ferramenta CEManTIKA CASE

projetista de contexto) e Gerar Código do Modelo (executado pelo ator Sistema), são
usados para projetar os modelos comportamentais de contexto por meio dos grafos con-
textuais. Para inserir expressões booleanas envolvendo os elementos contextuais nos nós
contextuais e indicar quais ações serão realizadas nos grafos contextuais é necessário ge-
rar uma representação em código de linguagem de programação do modelo conceitual de
contexto e integrá-lo ao modelo comportamental. Essa tarefa é necessária para integrar
o modelo conceitual de contexto com o JBoss Drools.

A opção escolhida foi gerar código em Java, pois a linguagem de programação
integra-se à ferramenta JBoss Drools usada para construir os grafos contextuais e possui
construções próprias que adicionam metadados a um elemento.

O Eclipse Modeling oferece duas abordagens para gerar artefatos a partir de um
modelo: Model to Text (M2T) e Model to Model (M2M). A primeira permite a geração
de texto a partir de modelos usando templates. A segunda gera modelos intermediários.
O propósito da geração de código da ferramenta é permitir a integração dos modelos
conceituais de contexto com o modelo comportamental, por isso a solução mais simples

69

e menos extensível foi escolhida: M2T.

Para a transformação M2T, a ferramenta JET foi escolhida, pois permite gerar texto
a partir de instâncias de um modelo usando templates (GRONBACK, 2009). O Código
Fonte 5.1 apresenta um trecho do template de geração de uma classe Java a partir de uma
classe modelada em UML, representada pela variável clazz 8. Os trechos entre <%= e
%> possuem expressões que serão avaliadas para uma String durante a transformação do
template em código fonte Java. Assim, na linha 5 o método getAnnotation retorna
o tipo de elemento representado naquela classe UML e as linhas 8 à 10 retornam todos
os atributos da classe.

Lista de Códigos Fonte e Exemplos 5.1 Exemplo de template do JET
1 / * *
2 * T h i s c l a s s i m p l e m e n t s a C o n t e x t u a l E n t i t y w i t h a n n o t a t i o n s
3 * A C o n t e x t u a l E n t i t y i s a c l a s s used t o b u i l d c o n t e x t s e n s i t i v e

b e h a v i o r s .
4 * /
5 <%= c l a z z . g e t A n n o t a t i o n () %>
6 p u b l i c c l a s s <%=c l a z z . ge tClassName ()%><% i f (c l a z z . g e t S u p e r C l a s s () !=

n u l l) { %> e x t e n d s <%= c l a z z . g e t S u p e r C l a s s () %> <% } %> {
7

8 <% f o r (A t t r i b u t e a t t r i b u t e : c l a z z . g e t A t t r i b u t e s ()) { %>
9 <%= a t t r i b u t e . t o S t r i n g () %>;

10 <% } %>
11 . . .

As classes geradas possuem anotações 9 que adicionam metadados a um objeto (e.g.
classe, método, variável) e descrevem seu papel no CEManTIKA. Por exemplo, uma
Entidade Contextual Pessoa com um Elemento Contextual horaDeAcordar é trans-
formada no código em Java apresentado no Código Fonte 5.2.

Lista de Códigos Fonte e Exemplos 5.2 Exemplo de código Java gerado para uma Entidade
Contextual

1 @ C o n t e x t u a l E n t i t y
2 p u b l i c c l a s s P e s so a {
3 @Contex tua lElement (t y p e = Contex tType .WHEN)
4 p r i v a t e i n t horaDeAcordar ;
5 . . .
6 }

8A variável class referencia uma metaclasse que representa um elemento UML criado usando o Eclipse
9Anotação é uma construção da linguagem Java

70

Com um modelo executável gerado (código Java) o projetista de contexto pode criar
os grafos contextuais relacionados aos focos. Para construir o modelo comportamental
foi adotado o projeto JBoss Drools Flow. O Drools Flow é um componente do JBoss
Drools que permite a criação de workflows ou processos de negócio descrevendo a ordem
na qual uma série de passos devem ser executados usando um diagrama de fluxos (JBoss
Community, 2010). Essa abordagem entrega dois benefícios: um editor gráfico para
processos e um ambiente de execução e depuração de grafos contextuais, sendo que o
último satisfaz a implementação do requisito Executar Grafo Contextual especificado no
capítulo anterior.

Para adicionar os conceitos dos grafos contextuais ao editor foram identificados que
os componentes Split, Join e Action, apresentados na Figura 5.7, possuem a mesma
semântica dos elementos Nó Contextual, Nó de Recombinação e Ação dos grafos con-
textuais. Portanto, um plugin com as representações gráficas do grafo contextual foi
incorporado à ferramenta como mostra a Figura 5.8.

Figura 5.7 Componentes do JBoss Drools Flow

Um exemplo do ambiente de edição e de um grafo contextual construído por meio
do plugin é apresentado na Figura 5.8, no qual os rótulos 1, 2 e 3 (destacados no menu
à esquerda do editor) representam os ícones para o nó contextual, nó de recombinação e
ação, respectivamente.

O requisito Verificar Relevância dos Elementos Contextuais será implementado em
trabalhos futuros, conforme apresentado no Capítulo 6. A próxima seção verifica a

71

Figura 5.8 Criação de um grafo contextual na ferramenta no CEManTIKA Modeling

aplicabilidade da ferramenta no projeto de SSC por meio de um experimento preliminar.

5.3 Experimentação

Para verificar o uso da ferramenta CEManTIKA CASE no projeto de sistemas sensíveis
ao contexto foi realizado um experimento preliminar com os seguintes objetivos:

• Verificar a aplicabilidade da ferramenta CEManTIKA CASE no projeto de SSCs
por meio do framework CEManTIKA. O termo aplicabilidade corresponde ao uso
da ferramenta para a modelagem de sistemas sensíveis ao contexto por meio do
conjunto de atividades e tarefas definidos no framework conceitual CEManTIKA
e a criação dos artefatos de saída especificados nessas tarefas;

• Obter sugestões de melhoria da ferramenta.

O estudo foi conduzido com nove (9) participantes, funcionários do Núcleo de Tec-
nologia de Informação da UFPB, de diferentes níveis de formação: um (1) mestre, três
(3) mestrandos, um (1) especialista e quatro (4) graduados. Eles deveriam projetar o SSC

72

de auxílio a missões, apresentado no Apêndice B, que apoia seus usuários na participa-
ção de um evento acadêmico. A maioria dos participantes não possuíam conhecimentos
aprofundados em sistemas sensíveis ao contexto como apresentado na Figura 5.9. Ape-
nas um havia construído algum SSC e outro possuía conhecimentos de modelagem de
contexto.

Figura 5.9 Experiência dos participantes no desenvolvimento de SSCs

Na fase de preparação do experimento, os indivíduos foram separados em dois gru-
pos: um formado por três (3) membros projetou o SSC usando outras ferramentas, como
papel e processadores de texto; o outro grupo, formado por seis (6) integrantes, teve o
apoio dos dois módulos do CEManTIKA CASE, pois possuíam menor expertise relaci-
onadas a contexto e modelagem UML. Com essa abordagem conseguimos avaliar como
a ferramenta apoia o projeto de um SSC pelo grupo com menor conhecimento em con-
texto. Os grupos foram separados de acordo com o perfil identificado nas respostas às
questões dois (2) e três (3) do questionário de avaliação.

O estudo foi executado de acordo com os seguintes passos:

1. Explicação da proposta do framework CEManTIKA aos participantes;

2. Apresentação da ferramenta CEManTIKA CASE;

3. Discussão do problema a ser executado;

4. Execução do problema;

5. Resposta ao questionário apresentado no Apêndice C.

73

Para averiguar o resultado do experimento são usadas duas abordagens: a primeira
compara as respostas do questionário fornecidas pelos dois grupos; a outra verifica qua-
litativamente os artefatos produzidos pelos participantes. Um integrante do grupo que
não usava a ferramenta não conseguiu concluir o experimento.

A primeira análise mostrou que as tarefas Identificar Foco, Identificar Entidades
Contextuais e ECs e Projetar o Modelo de Comportamento de Contexto foram mais bem
compreendidas pelos que usaram a ferramenta. Para a segunda tarefa, a Figura 5.10 mos-
tra que os participantes que usaram a ferramenta ficaram entre os níveis de entendimento
três (regular) e cinco (melhor).

No entanto, o tempo de execução do experimento foi equivalente entre os dois gru-
pos. No grupo que usou a ferramenta, cinco (5) pessoas demoraram mais de uma hora
para concluir o experimento, no outro, uma (1) pessoa.

Figura 5.10 Comparação da tarefa Identificar Entidades Contextuais e Elementos Contextuais
com e sem ferramenta

Todos os integrantes do grupo que usou o CEManTIKA CASE afirmaram que a
adoção da IDE Eclipse como plataforma auxiliou o uso da ferramenta, como apresentado
na Figura 5.11.

A outra abordagem compara os artefatos criados entre os grupos. Os dois consegui-
ram criar o artefato Casos de Uso Enriquecido e o documento de Requisitos de Contexto,
saída da tarefa Identificar Variações de Comportamento, corretamente. A aplicabilidade
da ferramenta é encontrada à medida que as tarefas se tornam mais complexas. Os mo-
delos conceitual e comportamental de contexto foram mais bem desenvolvidos com o
apoio da ferramenta. O grupo que não usou a ferramenta identificou elementos contextu-
ais não usados no modelo comportamental. Os grafos contextuais apresentaram outros
dois problemas: quantidades diferentes de nós contextuais e nós de recombinação e au-

74

Figura 5.11 Apoio do Eclipse no uso do CEManTIKA CASE

sência de ações. As verificações dos modelos oferecidas pela ferramenta contribuíram
para a criação de modelos bem formados, que correspondem a modelos semanticamente
válidos em relação ao metamodelo de contexto.

Os participantes que usaram a ferramenta identificaram algumas possibilidades de
melhoria que serão analisadas em trabalhos futuros:

• facilidade de manuseio dos diagramas: essa deficiência é decorrente de limitações
técnicas de manipulação dos diagramas usando o Eclipse;

• ativação de uma tarefa após a conclusão da anterior: a visualização de todas as
tarefas para a construção de um SSC inibem a execução passo a passo do processo.

• engenharia reversa: geração dos diagramas a partir de código.

O estudo preliminar mostrou que é possível usar uma ferramenta CASE para apoiar
a construção sistematizada de um SSC partindo de artefatos de software já modelados na
aplicação, como o documento de casos de uso e o modelo conceitual da aplicação. Toda-
via, a adição de outras atividades do CEManTIKA e a implementação das sugestões de
melhoria devem ser verificadas para permitir o desenvolvimento de um sistema sensível
ao contexto. A realização de outros experimentos com pessoas mais familiarizadas no
domínio também deve ser realizada.

O experimento também mostrou que desenvolver um sistema sensível ao contexto é
uma tarefa que despende tempo para assimilação dos conceitos relacionados a contexto
e às possibilidades de mudanças no comportamento desses sistemas. Talvez por isso,
contexto não faça parte dos principais requisitos da maioria das aplicações. Dessa forma,
para que uma ferramenta seja adotada pelos engenheiros de software é necessário torná-
la simples e intuitiva com os comportamentos contextuais mais comuns, como adaptação

75

de interfaces gráficas, já pré-configurados. Ainda, o uso de um processo de software

apoia bastante o entendimento de como usar contexto em cada atividade do ciclo de
desenvolvimento de um SSC.

5.4 Considerações Finais

Esse capítulo descreveu os detalhes técnicos de implementação da ferramenta CEMan-
TIKA. A primeira seção destaca o CEManTIKA Process que foi construído como uma
biblioteca do EPF. Essa abordagem permitiu o reuso de artefatos definidos em outros
processos (e.g. casos de uso do RUP) e habilita a adequação do processo de projeto de
SSC para outros ambientes. Um site para navegação entre os elementos da biblioteca foi
construído.

O CEManTIKA Modeling, apresentado na Seção 5.2, permite a execução passo a
passo das tarefas do CEManTIKA por meio de um plugin do Eclipse. A ferramenta apoia
as quatro primeiras tarefas da atividade Especificação de Contexto e cria os modelos
conceitual e comportamental de contexto. Mecanismos de verificação contribuem para
a criação de artefatos bem formados.

Por fim, o capítulo apresenta um experimento preliminar realizado no Núcleo de
Tecnologia da Informação da UFPB. O uso da ferramenta contribuiu para a compreensão
do CEManTIKA e apoiou a criação de artefatos bem formados. No entanto, a ferramenta
CEManTIKA CASE deve ser aprimorada para ser aplicada em ambientes reais com
cenários de uso mais complexos. Para isso é necessário especificar e implementar outras
tarefas relacionadas ao gerenciamento e uso de contexto, bem como tarefas de validação
e verificação do SSC.

76

Capı́tulo 6
Conclusões e Trabalhos Futuros

Contexto vem sendo aplicado em sistemas computacionais para permitir a criação de
aplicações mais adaptativas, proativas, fáceis de usar e que se ajustam às necessidades
dos usuários. No entanto, o uso de contexto em uma aplicação implica em vários de-
safios a serem investigados pelos pesquisadores, tais como: Que tipos de informação
considerar como contexto? Como representar essas informações? Como adquiri-las e
processá-las? Como integrá-las ao sistema? Como apresentá-las ao usuário? Além disso,
a ausência de modelos, métodos e ferramentas torna a criação de um sistema sensível ao
contexto mais desafiadora.

Para abstrair alguns desses problemas, diversas abordagens foram sugeridas, como
middlewares (KANG et al., 2007), APIs (BARDRAM, 2010) e toolkits (SALBER; DEY;
ABOWD, 1999). No entanto, essas abordagens apoiam aspectos de implementação de
SSC para um domínio específico, sem levar em consideração tarefas de análise e projeto.

Nesse contexto, Vieira (2008) abordou o desenvolvimento de sistemas sensíveis ao
contexto por meio de um processo, arquitetura e metamodelo UML, preocupando-se
com modularidade e reusabilidade e definiu o CEManTIKA, um framework conceitual
que apoia o projeto de SSC de forma genérica e independente de domínio. Entretanto,
uma das limitações do CEManTIKA era a ausência de uma ferramenta que facilitasse o
uso e integração dos seus componentes, bem como que apoiasse a transição da fase de
projeto para a fase de implementação de um SSC.

Este trabalho especifica e implementa uma ferramenta CASE para apoiar o uso do
CEManTIKA e foi motivado pela ausência de ferramentas de projeto e implementação

77

de SSC independentes de domínio por meio de um processo com atividades, papéis e
tarefas.

Os trabalhos relacionados encontrados não satisfazem a necessidade de uma ferra-
menta para construção e prototipação de SSC e, então, foi construída a ferramenta CE-
ManTIKA CASE, que é composta por dois módulos: CEManTIKA Process e CEMan-
TIKA Modeling. O primeiro é uma biblioteca de documentação construída no Eclipse
Process Framework (EPF) que permite o entendimento do Processo de Projeto de SSC.
O segundo apoia a construção de SSC.

Este capítulo é organizado da seguinte forma: a Seção 6.1 discute as contribuições
alcançadas com esta dissertação; e Seção 6.2 comenta algumas dificuldades e restrições
encontradas durante a especificação e construção do CEManTIKA CASE; e a Seção 6.3
apresenta algumas direções para a implementação de outras funcionalidades na ferra-
menta CEManTIKA CASE.

6.1 Contribuições

Este trabalho investigou ferramentas de apoio ao desenvolvimento de SSC que auxiliam
a construção e mecanização de SSC por meio de processos e modelos independentes de
domínio. Entre as contribuições desta dissertação, destacam-se:

• Análise crítica e alteração das atividades Especificação de Contexto e Projeto e
Uso de Contexto pertencentes ao Processo de Projeto de Sistemas Sensíveis ao
Contexto. Na definição inicial do CEManTIKA proposta por Vieira (2008), a ta-
refa Projetar o Modelo Comportamental de Contexto (S4) (Seção 4.1.3) pertencia
à atividade de Projeto de Uso de Contexto, sendo realizada, portanto, após a defi-
nição das atividades Especificação de Contexto e Projeto e Uso de Contexto. No
entanto, observou-se que a tarefa S4 pode ser executada durante a atividade de Es-
pecificação de Contexto, logo após a definição dos elementos contextuais do SSC,
conforme apresentado na Seção 4.1.4.

• A especificação de uma ferramenta CASE para a implementação de SSC por meio
de um Processo de Projeto de SSC definido no framework conceitual CEMan-
TIKA;

78

• Implementação do CEManTIKA Process com a definição de papéis, guias, ati-
vidades e tarefas por meio de uma biblioteca de documentação desenvolvida no
Eclipse Process Framework (EPF). O CEManTIKA Process auxilia o entendi-
mento do Processo de Projeto de SSC por engenheiros de software com menor
experiência;

• Implementação das tarefas referentes à atividade de Especificação de Contexto na
ferramenta CEManTIKA Modeling, que apoia o projeto dos modelos conceituais
e comportamentais de contexto seguindo uma sequência definida de tarefas. Expe-
rimentos preliminares mostraram que os artefatos de contexto desenvolvidos com
o uso da ferramenta apresentaram uma quantidade menor de erros de modelagem.

6.2 Dificuldades Encontradas

Desenvolver um sistema sensível ao contexto não é trivial. Construir uma ferramenta
para a especificação e construção desses sistemas é uma tarefa mais desafiadora ainda.
Entre as dificuldades encontradas durante esta pesquisa, destacam-se:

• Identificação de ferramentas relacionadas: a maioria das ferramentas de mode-
lagem de contexto foram desenvolvidas para domínios específicos de aplicações.
Portanto, foi necessário realizar uma pesquisa extensa para encontrar ferramentas
que estão relacionadas a este trabalho;

• Estender uma meta-ferramenta CASE: embora o uso de uma meta-ferramenta para
construção de uma ferramenta CASE auxilie em tarefas comuns, o esforço de
aprendizagem é grande. Entender os mecanismos de extensão e customização da
IDE Eclipse despendeu um longo período;

• Especificar requisitos da ferramenta CASE: uma ferramenta CASE possui o obje-
tivo de auxiliar e tornar mais fácil a execução de tarefas complexas pelo usuário.
Entender como simplificar a modelagem de contexto e, ao mesmo tempo, permitir
que usuários mais experientes definam modelos mais ricos foi uma das dificulda-
des encontradas;

• Realização de Experimento de Avaliação: para compreender contexto e aplicá-lo a
um software é necessário entender vários conceitos adjacentes, como mecanismos

79

de percepção e adaptação e regras de produção. Por isso, durante a preparação
do experimento de avaliação da ferramenta CEManTIKA CASE (Seção 5.3) foi
necessário explicar várias definições relacionadas a contexto, além do framework

conceitual CEManTIKA. Ainda, ocorreu a dificuldade em definir quais variáveis
deveriam ser avaliadas durante o experimento e como avaliá-las.

6.3 Trabalhos Futuros

O objetivo inicial deste trabalho foi implementar uma ferramenta de apoio ao CEMan-
TIKA que auxiliasse o projeto de SSC de forma sistematizada. O trabalho deixou algu-
mas lacunas que devem ser preenchidas em trabalhos futuros:

• Implementar as demais atividades e tarefas do Processo de Projeto de SSC: a fer-
ramenta CEManTIKA CASE implementou a atividade de Especificação de Con-
texto do Processo de Projeto de SSC. Para oferecer um ambiente completo para
o desenvolvimento de SSC e apoiar a criação de um modelo executável (código
em linguagem de programação) da aplicação, as atividades de Projeto de Geren-
ciamento de Contexto, Projeto de Uso de Contexto, Geração de Código e Teste
devem ser implementadas em trabalhos futuros.

• Usar uma abordagem Model Driven Architecture (MDA) para a construção de có-
digo fonte: foram usadas técnicas de transformação de modelos em texto (M2T)
que permitiram a geração de código Java a partir de modelos UML. Essa aborda-
gem permitiu a integração dos modelos conceituais de contexto com os modelos
comportamentais definidos no JBoss Drools. No entanto, a geração de modelos
para diferentes plataformas por meio de MDA deve ser investigada.

• Melhorar interface com o usuário: Durante o experimento, os usuários evidencia-
ram problemas de usabilidade na ferramenta, como a configuração da multiplici-
dade das associações UML e o manuseio dos diagramas. Também, foi sugerido
que a execução de uma tarefa do Processo de Projeto de SSC seja permitida apenas
após a conclusão da tarefa antecedente.

• Executar outros experimentos com projetistas de contexto mais experientes: O
experimento foi realizado com usuários sem experiência no desenvolvimento de

80

SSC. Para obter melhor feedback do CEManTIKA CASE é interessante avaliá-
lo em ambientes mais complexos com engenheiros de software experientes em
contexto e usando outros exemplos de sistemas sensíveis ao contexto.

81

Referências Bibliográficas

AULETE. Dicionário Aulete. 2010. Disponível em: <http://aulete.uol.com.br>. Acesso
em: 12 ago. 2010.

AYED, D.; BERBERS, Y. Uml profile for the design of a platform-independent context-
aware applications. In: Proceedings of the 1st workshop on MOdel Driven Development

for Middleware (MODDM ’06). New York, NY, USA: ACM, 2006. (MODDM ’06),
p. 1–5. ISBN 1-59593-423-5.

AYED, D.; DELANOTE, D.; BERBERS, Y. MDD approach for the development of
context-aware applications. In: KOKINOV, B. et al. (Ed.). Modeling and Using Context.
[S.l.]: Springer Berlin / Heidelberg, 2007, (Lecture Notes in Computer Science, v. 4635).
p. 15–28.

BARDRAM, J. E. The Java Context-Awareness Framework. 2010. Disponível em:
<http://www.daimi.au.dk/ bardram/jcaf/>. Acesso em: 01 ago. 2010.

BETTINI, C. et al. A survey of context modelling and reasoning techniques. Pervasive

and Mobile Computing, v. 6, n. 2, p. 161 – 180, 2010. ISSN 1574-1192.

BOLCHINI, C. et al. CADD: A tool for context modeling and data tailoring. In: Mobile

Data Management, 2007 International Conference on. [S.l.: s.n.], 2007. p. 221 –223.

BRÉZILLON, P.; ARAUJO, R. M. de. Reinforcing shared context to improve collabora-
tion. Revue d’Intelligence Artificielle, v. 19, n. 3, p. 537–556, 2005.

BRéZILLON, P. Context in Artificial Intelligence: I. A survey of the literature. Compu-

ters and artificial intelligence, v. 18, p. 321–340, 1999.

82

BRéZILLON, P. Task-realization models in contextual graphs. In: DEY, A. et al. (Ed.).
Modeling and Using Context. [S.l.]: Springer Berlin / Heidelberg, 2005, (Lecture Notes
in Computer Science, v. 3554). p. 55–68.

BRéZILLON, P.; PASQUIER, L.; POMEROL, J.-C. Reasoning with contextual graphs.
European Journal of Operational Research, v. 136, n. 2, p. 290 – 298, 2002. ISSN 0377-
2217.

BRéZILLON, P.; POMEROL, J.-C. Contextual knowledge sharing and cooperation in
intelligent assistant systems. Le Travail Humain, v. 62, p. 223–246, 1999.

CHAVES, A. P. Um Modelo Baseado em Context-Awareness para Disseminação de

Informações em um Ambiente de Desenvolvimento Distribuído de Software. Dissertação
(Mestrado) — UEM - Universidade Estadual de Maringá, 2009.

CHEVERST, K. et al. Developing a context-aware electronic tourist guide: some is-
sues and experiences. In: Proceedings of the SIGCHI conference on Human factors in

computing systems. New York, NY, USA: ACM, 2000. (CHI ’00), p. 17–24. ISBN 1-
58113-216-6.

CLAYBERG, D. R. E. Eclipse Plug-ins. 3. ed. [S.l.]: Addison-Wesley Professional,
2008.

COLLABNET. ArgoUML. 2010. Disponível em: <http://argouml.tigris.org/>. Acesso
em: 01 ago. 2010.

de Farias, C. R. G. et al. A mof metamodel for the development of context-aware mobile
applications. In: Proceedings of the 2007 ACM symposium on Applied computing. New
York, NY, USA: ACM, 2007. (SAC ’07), p. 947–952. ISBN 1-59593-480-4.

DEY, A. K. et al. A conceptual framework and a toolkit for supporting the rapid pro-
totyping of context-aware applications. Human-Computer Interaction, v. 16, n. 2/4, p.
97–166, 2001.

DEY, A. K.; ABOWD, G. D. Towards a better understanding of context and context-
awareness. In: Workshop on The What, Who, Where, When, and How of Context-

Awareness, as part of the 2000 Conference on Human Factors in Computing Systems

(CHI 2000). [S.l.: s.n.], 2000.

83

DEY, A. K. et al. a CAPpella: programming by demonstration of context-aware ap-
plications. In: Proceedings of the SIGCHI conference on Human factors in computing

systems. New York, NY, USA: ACM, 2004. (CHI ’04), p. 33–40. ISBN 1-58113-702-8.

Eclipse Foundation, T. Eclipse Modeling Project. 2010. Disponível em:
<http://www.eclipse.org/modeling/>. Acesso em: 01 ago. 2010.

Eclipse Foundation, T. The Eclipse Project. 2010. Disponível em:
<http://www.eclipse.org/>. Acesso em: 01 ago. 2010.

FUENTES, L.; GáMEZ, N.; SáNCHEZ, P. Aspect-oriented design and implementation
of context-aware pervasive applications. Innovations in Systems and Software Enginee-

ring, Springer London, v. 5, p. 79–93, 2009. ISSN 1614-5046.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
[S.l.]: Addison-Wesley Professional, 1995.

GRONBACK, R. C. Eclipse Modeling Project: A Domain-Specific Language (DSL) To-

olkit. 1. ed. [S.l.]: Addison-Wesley Professional, 2009. Paperback. ISBN 0321534077.

HALPIN, T. Conceptual schema and relational database design. 2. ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1996. ISBN 0-13-355702-2.

HAUMER, P. Eclipse Process Framework Composer Part 1 and 2. 2007. User Docu-
mentation. Disponível em: <http://www.eclipse.org/epf/general/getting_started.php>.

HENRICKSEN, K.; INDULSKA, J. A software engineering framework for context-
aware pervasive computing. Pervasive Computing and Communications, IEEE Interna-

tional Conference on, IEEE Computer Society, Los Alamitos, CA, USA, v. 0, p. 77,
2004.

HENRICKSEN, K.; INDULSKA, J. Developing context-aware pervasive computing ap-
plications: Models and approach. Pervasive and Mobile Computing, v. 2, n. 1, p. 37–64,
fev. 2006. ISSN 15741192.

HENRICKSEN, K.; INDULSKA, J.; MCFADDEN, T. Modelling context information
with orm. In: MEERSMAN, R.; TARI, Z.; HERRERO, P. (Ed.). On the Move to Me-

aningful Internet Systems 2005: OTM Workshops. [S.l.]: Springer Berlin / Heidelberg,
2005, (Lecture Notes in Computer Science, v. 3762). p. 626–635.

84

IEEE Computer Society. Software Engineering Body of Knowledge (SWEBOK). EUA:
Angela Burgess, 2004. Disponível em: <http://www.swebok.org/>.

JBoss Community. JBoss Drools. 2010. Disponível em: <http://jboss.org/drools>.
Acesso em: 01 ago. 2010.

KANG, D.-o. et al. A systematic design tool of context aware system for ubiquitous
healthcare service in a smart home. Future Generation Communication and Networking,
IEEE Computer Society, Los Alamitos, CA, USA, v. 2, p. 49–54, 2007.

KAPITSAKI, G. M. et al. Model-driven development of composite context-aware web
applications. Information and Software Technology, v. 51, n. 8, p. 1244 – 1260, 2009.
ISSN 0950-5849.

KOCH, N.; KRAUS, A. Towards a common metamodel for the development of web
applications. In: LOVELLE, J. et al. (Ed.). Web Engineering. [S.l.]: Springer Berlin /
Heidelberg, 2003, (Lecture Notes in Computer Science, v. 2722). p. 419–422.

LIEBERMAN, H. Your wish is my command: Programming by example. [S.l.]: Morgan
Kaufmann Publishers, 2001.

MAGICDRAW. MagicDraw. 2010. Disponível em: <http://www.magicdraw.com/>.
Acesso em: 01 ago. 2010.

MCFADDEN, T.; HENRICKSEN, K.; INDULSKA, J. Automating context-aware appli-
cation development. In: Proceedings of the First International Workshop on Advanced

Context Modelling, Reasoning and Management. [S.l.]: The University of Southampton,
The United Kingdom, 2004. p. 90 – 95.

MELLOR, S. J.; CLARK, A. N.; FUTAGAMI, T. Guest editors’ introduction: Model-
driven development. IEEE Software, IEEE Computer Society, Los Alamitos, CA, USA,
v. 20, p. 14–18, 2003. ISSN 0740-7459.

MORSE, D. R.; ARMSTRONG, S.; DEY, A. K. The what, who, where, when, why
and how of context-awareness. In: CHI ’00 extended abstracts on Human factors in

computing systems. New York, NY, USA: ACM, 2000. (CHI ’00), p. 371–371. ISBN
1-58113-248-4.

MURPHY, K. P. Dynamic bayesian networks: representation, inference and learning.
Tese (Doutorado) — University of California, Berkeley, 2002.

85

Netbeans IDE. The Eclipse Project. 2010. Disponível em: <http://www.netbeans.org/>.
Acesso em: 01 mai. 2010.

NETO, R. F. B.; KUDO, T. N.; PIMENTEL, M. d. G. C. Pocap: A software process for
context-aware computing. In: Proceedings of the IEEE/WIC/ACM international confe-

rence on Intelligent Agent Technology. Washington, DC, USA: IEEE Computer Society,
2006. (IAT ’06), p. 705–708. ISBN 0-7695-2748-5.

OMG. Software & Systems Process Engineering Metamodel specification (SPEM) 2.0.
[S.l.], 2008. Disponível em: <http://www.omg.org/spec/SPEM/2.0/PDF>.

OMG. Object Constraint Language 2.2. [S.l.], 2010.

ORACLE. Java. 2010. Disponível em: <http://www.java.com/>. Acesso em: 01 ago.
2010.

Papyrus UML. Papyrus UML. 2010. Disponível em: <http://www.papyrusuml.org/>.
Acesso em: 01 ago. 2010.

PRESSMAN, R. S. Software Engineering: A Practitioner’s Approach. 5th. ed. [S.l.]:
McGraw-Hill Higher Education, 2009. ISBN 0072496681.

SALBER, D.; DEY, A. K.; ABOWD, G. D. The context toolkit: aiding the development
of context-enabled applications. In: Proceedings of the SIGCHI conference on Human

factors in computing systems: the CHI is the limit. New York, NY, USA: ACM, 1999.
(CHI ’99), p. 434–441. ISBN 0-201-48559-1.

SCHILIT, B.; ADAMS, N.; WANT, R. Context-aware computing applications. In: Mo-

bile Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on. [S.l.:
s.n.], 1994. p. 85 –90.

SCHMIDT, D. C. Model-driven engineering. IEEE Computer, v. 39, n. 2, p. 25–31,
February 2006.

SEGALL, B. et al. Content based routing with elvin4. In: in Proceedings of AUUG2K.
[S.l.: s.n.], 2000.

SHENG, Q.; BENATALLAH, B. Contextuml: a uml-based modeling language for
model-driven development of context-aware web services. In: Mobile Business, 2005.

ICMB 2005. International Conference on. [S.l.: s.n.], 2005. p. 206 – 212.

86

SILVA, V. Practical Eclipse Rich Client Platform. [S.l.]: Apress, 2009.

SIMONS, C.; WIRTZ, G. Modeling context in mobile distributed systems with the uml.
Journal of Visual Languages & Computing, v. 18, n. 4, p. 420 – 439, 2007. ISSN 1045-
926X. Visual Interactions in Software Artifacts.

SOHN, T.; DEY, A. K. iCAP: an informal tool for interactive prototyping of context-
aware applications. In: CHI ’03 extended abstracts on Human factors in computing

systems. New York, NY, USA: ACM, 2003. (CHI ’03), p. 974–975. ISBN 1-58113-637-
4.

SOHN, T.; DEY, A. K. iCAP: Rapid prototyping of context-aware applications. In: Pro-

ceedings of the CHI 2004 ACM Conference on Human Factors in Computing Systems.
[S.l.: s.n.], 2003.

TRUONG, K.; ABOWD, G.; BROTHERTON, J. Who, what, when, where, how: Design
issues of capture & access applications. In: ABOWD, G.; BRUMITT, B.; SHAFER, S.
(Ed.). Ubicomp 2001: Ubiquitous Computing. [S.l.]: Springer Berlin / Heidelberg, 2001,
(Lecture Notes in Computer Science, v. 2201). p. 209–224.

USCHOLD, M.; GRUNINGER, M. Ontologies: principles, methods and applications.
The Knowledge Engineering Review, v. 11, n. 02, p. 93–136, 1996.

VIEIRA, V. CEMantika: A Domain-Independent Framework for Designing Context-

Sensitive System. Tese (Doutorado) — UFPE, October 2008.

VIEIRA, V. et al. Tópicos em sistemas interativos e colaborativos. In: . [S.l.]: Cesar
A. C. Teixeira; Clever Ricardo G. de Farias; Jair C. Leite; Raquel O. Prates. (Org.).
São Carlos: UFSCAR, 2006. v. 1, cap. Uso e representação de contexto em sistemas
computacionais, p. 127 – 166.

VIEIRA, V.; TEDESCO, P.; SALGADO, A. C. Jornadas de atualização em informática
2009 (jai’09). In: . [S.l.]: André Ponce de Leon F. de Carvalho, Tomasz Kowal-
towski. (Org.). Porto Alegre: SBC, 2009. v. 1, cap. Modelos e Processos para o Desen-
volvimento de Sistemas Sensíveis ao Contexto, p. 381 – 431.

VIEIRA, V. et al. Investigating the specifics of contextual elements management: The
cemantika approach. In: KOKINOV, B. et al. (Ed.). Modeling and Using Context. [S.l.]:
Springer Berlin / Heidelberg, 2007, (Lecture Notes in Computer Science, v. 4635). p.
493–506.

87

Apêndice

88

Restrições OCL

As regras OCL apresentadas abaixo foram aplicadas ao metamodelo do CEManTIKA.
Por motivos de organização e limitações técnicas da ferramenta, os metamodelos foram
organizados em dois pacotes:

• contextprofile: organiza os elementos do metamodelo associados ao dia-
grama de Casos de Uso Enriquecido; e

• cemantika_class: é composto pelos elementos do modelo Conceitual de
Contexto.

O pacote contextprofile define as três primeiras restrições apresentadas abaixo.
O Código Fonte A.1 verifica se um Agent possui uma associação do tipo executes.

Lista de Códigos Fonte e Exemplos A.1 Regra OCL para um Agent

l e t a s s o c i a t i o n s : S e t (A s s o c i a t i o n) = A s s o c i a t i o n . a l l I n s t a n c e s ()−>
s e l e c t (p | p . endType−> e x i s t s (ends | ends = s e l f . b a s e _ A c t o r))

2 i n
a s s o c i a t i o n s −> e x i s t s (a s s o c i a t i o n | a s s o c i a t i o n . g e t A p p l i e d S t e r e o t y p e (’

c o n t e x t p r o f i l e : : e x e c u t e s ’) = c o n t e x t p r o f i l e : : e x e c u t e s)

O Código Fonte A.2 verifica se uma Task possui uma associação do tipo executes.

Lista de Códigos Fonte e Exemplos A.2 Regra OCL para uma Task

1 l e t a s s o c i a t i o n s : S e t (A s s o c i a t i o n) = A s s o c i a t i o n . a l l I n s t a n c e s ()−>
s e l e c t (p | p . endType−> e x i s t s (ends | ends = s e l f . base_UseCase))

i n
3 a s s o c i a t i o n s −> e x i s t s (a s s o c i a t i o n | a s s o c i a t i o n . g e t A p p l i e d S t e r e o t y p e (’

c o n t e x t p r o f i l e : : e x e c u t e s ’) = c o n t e x t p r o f i l e : : e x e c u t e s)

O Código Fonte A.3 verifica se uma associação do tipo executes é composta por uma
Task e um Agent.

89

Lista de Códigos Fonte e Exemplos A.3 Regra OCL para uma Associação do tipo executes

1 s e l f . b a s e _ A s s o c i a t i o n . endType−> e x i s t s (p | p . g e t A p p l i e d S t e r e o t y p e (’
c o n t e x t p r o f i l e : : Agent ’) = c o n t e x t p r o f i l e : : Agent)

and
3 s e l f . b a s e _ A s s o c i a t i o n . endType−> e x i s t s (p | p . g e t A p p l i e d S t e r e o t y p e (’

c o n t e x t p r o f i l e : : Task ’) = c o n t e x t p r o f i l e : : Task)

As restrições abaixo verificam a corretude do modelo conceitual de Contexto. O
Código Fonte A.4 verifica se uma Entidade Contextual possui ao menos um Elemento
Contextual.

Lista de Códigos Fonte e Exemplos A.4 Regra OCL para uma Entidade Contextual

1 s e l f . b a s e _ C l a s s . member−> e x i s t s (p | p . g e t A p p l i e d S t e r e o t y p e (’
c e m a n t i k a _ c l a s s : : C o n t e x t u a l E l e m e n t ’) <> n u l l)

or
3 l e t a s s o c i a t i o n s : S e t (A s s o c i a t i o n) = A s s o c i a t i o n . a l l I n s t a n c e s ()−>

s e l e c t (a s s o c | a s s o c . endType−> e x i s t s (ends | ends = s e l f . b a s e _ C l a s s
)) i n a s s o c i a t i o n s −> e x i s t s (a s s o c i a t i o n | a s s o c i a t i o n .
g e t A p p l i e d S t e r e o t y p e (’ c e m a n t i k a _ c l a s s : : C o n t e x t u a l E l e m e n t ’) <> n u l l
)

O Código Fonte A.5 identifica se a propriedade type de um Elemento Contextual pos-
sui um dos seguintes valores: ContextType::who, ContextType::what, ContextType::where,

ContextType::when e ContextType::why.

Lista de Códigos Fonte e Exemplos A.5 Regra OCL para um Elemento Contextual que verifica

se a propriedade ContextType possui um valor válido

1 not s e l f . t y p e . o c l I s U n d e f i n e d () i m p l i e s s e l f . t y p e <> c e m a n t i k a _ c l a s s : :
Contex tType : : none

Os Códigos Fonte A.6 e A.7 verificam ser um Elemento Contextual está associado
a uma Entidade Contextual.

Lista de Códigos Fonte e Exemplos A.6 Regra OCL que verifica se um Elemento Contextual

(Associação) está associado a uma Entidade Contextual

1 s e l f . b a s e _ A s s o c i a t i o n <> n u l l i m p l i e s s e l f . b a s e _ A s s o c i a t i o n . endType−>
e x i s t s (p | p . g e t A p p l i e d S t e r e o t y p e (’ c e m a n t i k a _ c l a s s : :
C o n t e x t u a l E n t i t y ’) <> n u l l)

90

Lista de Códigos Fonte e Exemplos A.7 Regra OCL que verifica se um Elemento Contextual

(Propriedade) está associado a uma Entidade Contextual

1 s e l f . b a s e _ P r o p e r t y <> n u l l i m p l i e s s e l f . b a s e _ P r o p e r t y . owner .
g e t A p p l i e d S t e r e o t y p e (’ c e m a n t i k a _ c l a s s : : C o n t e x t u a l E n t i t y ’) <> n u l l

91

Sistema de Auxílio a Missões

Considere um sistema que permite pesquisadores planejarem suas missões. Uma missão
é qualquer evento científico ou acadêmico destinado a pesquisadores, professores ou
estudantes (e.g. conferência, reunião, aula, palestra).

A pessoa que participa de uma missão é chamada de missionário. As missões pos-
suem algumas características (e.g. duração, local, tarefas a serem cumpridas). Diferentes
missionários podem executar diferentes passos e ter requisitos específicos quando pla-
neja uma missão. Por exemplo, em uma universidade, os passos a serem executados e os
recursos disponíveis (e.g. suporte financeiro) para um professor são diferentes daqueles
disponíveis para um estudante.

Para participar de um missão existem tarefas comuns a serem executadas, como:
registrar um missionário no evento, requisitar suporte financeiro, procurar um hotel para
hospedagem (nos casos onde a missão ocorre em uma cidade diferente da residência do
missionário), comprar passagens (quando a cidade da missão for diferente do local onde
o missionário mora), e alguns passos finais para finalizar a missão.

Esses requisitos estão resumidos no Diagrama de Cados de Uso (Figura B.1). Os
requisitos podem ser realizados por um professor ou um estudante.

Os requisitos que podem ser influenciados pelo contexto incluem: identificar os
passos necessários a serem executados de acordo com o tipo da missão e perfil do mis-
sionário; auxiliar o missionário a comprar uma passagem e a reservar uma acomodação;
e identificar outros interesses relacionados à missão que podem ser úteis ao missionário
(e.g. atividades acadêmicas, troca de câmbio ou dicas para passeios turísticos). O his-
tórico do missionário em missões parecidas pode ser útil para identificar preferências e
decisões prévias.

A Figura B.2 representa o diagrama Conceitual de Classes do sistema. Uma Pessoa

92

Figura B.1 Diagrama de Casos de Uso

tem os atributos idade, nome, corDosOlhos, disponibilidade e sexo. Um estudante tem
o atributo nivelAcemico. Estudante tem um ou dois orientadores, e um professor pode
orientar vários Estudantes. Uma Pessoa: participa de uma ou mais Missões; ehCliente
de zero ou mais Hotéis, mora em um Local e estah em um Local. Uma Missão possui
os atributos quemPaga, duracao, inicio, termino e tipo, e um relacionamento indicando
seu local. Um Hotel tem os atributos: categoria, ehBarato e distanciaParaOCentro.

Escolha um foco e projete seus elementos estruturais e comportamentais de contexto
de acordo com os conceitos definidos no CEManTIKA.

93

Figura B.2 Biblioteca do CEManTIKA Process

94

Questionário de Avaliação

Questionário de avaliação do uso do CEManTIKA CASE

Esse questionário tem o objetivo de obter as impressões sobre a aplicabilidade da ferra-
menta CEManTIKA CASE no projeto de sistemas sensíveis ao contexto e obter suges-
tões de possíveis pontos de melhoria.

Identificação do Participante

1. Titulação:

2 Mestre

2 Mestrando(a)

2 Especialização

2 Graduação

2 Graduando

2. Usando uma escala entre Nenhum Conhecimento e Conhecimento Avan-
çado, qual seu nível de conhecimento em:

a. Sistemas sensíveis ao Contexto nenhum 2—2—2—2—2 avançado

b. Modelagem usando UML nenhum 2—2—2—2—2 avançado

c. Modelagem de Contexto nenhum 2—2—2—2—2 avançado

d. IDE Eclipse nenhum 2—2—2—2—2 avançado

e. Análise e Projeto de Sistemas nenhum 2—2—2—2—2 avançado

95

f. Codificação de Sistemas nenhum 2—2—2—2—2 avançado

g. Inglês (Leitura) nenhum 2—2—2—2—2 avançado

3. Você já participou da construção de quantos sistemas sensíveis ao contexto?
2 Nenhum

2 1 ou 2

2 Mais de 2

Avaliação do Experimento

4. O experimento foi realizado com o auxílio ou sem o auxílio da ferramenta
CEManTIKA CASE?
2 Com o auxílio

2 Sem o auxílio

5. Quanto tempo você gastou para começar a produzir os artefatos?
2 Menos de 15 minutos

2 Entre 15 e 30 minutos

2 Entre 30 minutos e 1 hora

2 Não consegui produzir

6. Quanto tempo você utilizou para concluir o experimento?
2 Menos de 30 minutos

2 Mais de 30 minutos e menos de 1 hora

2 Mais de 1 hora

2 Não consegui concluir

7. Usando uma escala entre Não Entendi e Entendi Completamente, qual seu
entendimento sobre as tarefas e seus artefatos de entrada e saída abaixo?

a. Identificar Focos
Não Entendi 2—2—2—2—2 Entendi Completamente

b. Identificar Variações de Comportamento
Não Entendi 2—2—2—2—2 Entendi Completamente

96

c. Identificar Entidades Contextuais e Elementos Contextuais
Não Entendi 2—2—2—2—2 Entendi Completamente

d. Projetar o Modelo de Comportamento de Contexto
Não Entendi 2—2—2—2—2 Entendi Completamente

8. Se você não usou o CEManTIKA CASE, que outras ferramentas foram
utilizadas para executar o experimento?
2 Processador de Texto

2 Ferramenta Gráfica

2 Papel

2 Outras:

As perguntas abaixo devem ser respondidas apenas pelas pessoas que usaram a ferra-
menta CEManTIKA CASE. Ela é dividida em dois módulos:

• CEManTIKA CASE Modeling é um plugin do Eclipse 1 que permite a modela-
gem de sistemas sensíveis ao contexto através do framework CEManTIKA; e

• CEManTIKA CASE Process que explica as atividades, tarefas, artefatos e papéis
do CEManTIKA de forma estruturada por meio de hyperlinks.

Avaliação da Ferramenta CASE Modeling

9. O uso da IDE Eclipse e seus conceitos já conhecidos pelos engenheiros de
software ajudou no entendimento da ferramenta?
2 Sim

2 Não

2 Não conhecia a IDE Eclipse

Avaliação da Ferramenta CASE Process

1http://www.eclipse.org/

97

10. A descrição do processo de projeto de sistemas sensíveis ao contexto através
de atividades, guias, tarefas e seus artefatos de entrada e saída auxiliou na
execução do experimento?
2 Auxiliou

2 Não auxiliou

2 Não foi necessário usar a ferramenta

A próxima questão deve ser respondida se você escolheu a opção Auxiliou ou Não
Auxiliou na questão anterior.

11. Usando uma escala entre Não Relevante e Relevante, qual sua avaliação
sobre os seguintes itens da ferramenta CEManTIKA CASE Process:

a. Navegabilidade entre os elementos
Não Relevante 2—2—2—2—2 Relevante

b. Descrição das tarefas
Não Relevante 2—2—2—2—2 Relevante

c. Descrição dos artefatos
Não Relevante 2—2—2—2—2 Relevante

d. Descrição dos papéis
Não Relevante 2—2—2—2—2 Relevante

e. Descrição do Processo
Não Relevante 2—2—2—2—2 Relevante

f. Guias: checklist, conceitos, exemplos, etc
Não Relevante 2—2—2—2—2 Relevante

As próximas questões referem-se aos dois módulos da ferramenta.

12. Que funcionalidades poderiam ser implementadas para facilitar o uso da
ferramenta?

98

13. Quais foram as principais dificuldades para a construção do sistema sensí-
vel ao contexto do experimento?

99

