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ABSTRACT 

This paper contains the compendium of three articles on the representation of uncertainty. 

The two first ones deal with the classical theory of evidence or Dempster - Shafer theory. In 

these articles, the classification of conflict in the theory of evidence is approached, since bodies 

of evidence with high level of conflict lead to counterintuitive results when the Dempster Rule 

of Combination is used. In the first article, the conflict classification is made from class profiles 

by using the ELECTRE TRI method. In the second article, the classification is made from 

reference alternatives of each conflict class, the classification of conflict having been obtained 

through the outranking flow of the PROMETHEE method among the reference alternatives and 

the alternatives to be classified. In both articles, the parameters of the two methods are obtained 

by means of disaggregation approaches where the parameters are generated from alternatives 

pre-classified in conflict in the first article and reference alternatives in the second. Finally, the 

third article deals with the financial analysis in the development of a new product where a real 

options model is added by using dynamic programming, the modeling of uncertainty through 

FUZZY triangular numbers. Thus, in this model it is possible to consider the different types of 

uncertainty contained in the development of new products. 

 

Key Words: Evidence Theory. Conflict. Multicriteria Classification Method. New Product Development.  Real 

option Theory. FUZZY Set Theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMO 

Este trabalho contém o compêndio de três artigos sobre representação da incerteza. Os 

dois primeiros artigos tratam sobre a clássica teoria da evidência ou teoria Dempster - Shafer. 

Nesses artigos, é abordada a classificação do conflito na teoria da evidência, uma vez que corpos 

de evidência com alto teor de conflito conduzem a resultados contra intuitivos quando a regra 

de Dempster é utilizada. No primeiro artigo, a classificação do conflito é feita a partir de perfis 

de classe, utilizando o método ELECTRE TRI. No segundo artigo, a classificação é feita a partir 

de alternativas referência de cada classe de conflito, sendo a classificação do conflito obtida por 

meio do fluxo de sobreclassificação do método PROMETHEE entre as alternativas de 

referência e as alternativas a serem classificadas. Em ambos os artigos, os parâmetros dos dois 

métodos são obtidos por meio de abordagens de desagregação onde os parâmetros são gerados 

a partir de alternativas pré-classificadas em conflito no primeiro artigo e alternativas referência 

no segundo artigo. Por último, o terceiro artigo trata da análise financeira no desenvolvimento 

de um novo produto onde é agregado um modelo de opções reais, que utiliza programação 

dinâmica, a modelagem da incerteza através de números triangulares FUZZY. Assim, nesse 

modelo é possível considerar os diferentes tipos de incerteza que estão contidos no 

desenvolvimento de novos produtos. 

Palavras Chaves: Teria da Evidência. Conflito. Métodos de Classificação Multicritério. Desenvolvimento de 

novos produtos. Opções Reais. Teoria dos conjuntos FUZZY. 
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1 INTRODUCTION 

This thesis contains a compendium of 3 papers written in support of a thesis that forms 

part of the Post-Graduate Program in Management Engineering at the Universidade Federal de 

Pernambuco, Brazil. These articles were written to meet one of the requirements for obtaining 

a Doctorate. The three papers contained in this thesis deal with representations of uncertainty. 

The first two focus on the Theory of Evidence or Dempster-Shafer Theory (DST), while the 

third considers Fuzzy Set Theory for financial analysis of the development of a new product. 

The first two articles put forward contributions to the Theory of Evidence since 

combination rules such as Dempster's, for example, produce unsatisfactory results depending 

on the level of conflict between the bodies of evidence. The study of conflict in DST has become 

very important after some studies showed that Demspter’s combination rule fails when the two 

bodies of evidence conflict greatly with each other. Based on this characteristic observed in 

Dempster's rule, a plethora of rules developed, the main objective of which is to prevent 

counterintuitive results that invalidate Dempster's rule. However, it should be noted that DRC 

has some interesting properties, such as associativity and commutativity. 

Taking a different tack, some authors prefer to work by using a system for managing 

conflict in which it is possible to analyze the conflict a priori before choosing the rule to be 

used. In this case, it is necessary to establish a conflict measurement system in which the level 

of conflict between the bodies of evidence can be identified and, starting with that level of 

conflict, to choose the appropriate way of dealing with it. Thus, several metrics for identifying 

conflict have been developed over the years. The first of these metrics to be used was the 

constant K, which served as the normalization factor in DRC. However, this constant fails to 

capture all conflict situations, which prompted the emergence of new metrics so that conflict 

could be quantified. 

In general, it is complex to develop an individual metric that can capture all the conflict 

situations present in DST since the modeling of a problem in this theory can be highly flexible 

thereby making it difficult to adapt one metric in particular. Given this situation, some authors 

focus on multidimensional methods for conflict analysis and use more than one metric to 

identify conflict. 

In addition to a multidimensional approach, when the bodies of evidence will be in 

conflict must be specified. Such a situation, as will become clear in Chapters 2 and 3, is 
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established by using subjective thresholds of conflict. Thus, bodies of evidence will be in 

conflict when the value of the conflict metric is greater than a pre-set value that depends on the 

specific application. Taking as a starting point that more than one metric is needed to measure 

conflict, and then it is also necessary to stipulate more than one threshold of conflict which 

makes it even more difficult to establish such thresholds. 

Given these multidimensional and subjective views of conflict, the first two articles set 

out to integrate these two views into DST. To do so, the decision of when two bodies are in 

conflict is modeled as a multicriteria decision problem. In addition, the use of subjective 

thresholds of conflict that are difficult to explain can be avoided by using disaggregation models 

that generate the parameters of the model from pre-classified alternatives of conflict. This 

avoids eliciting thresholds arbitrarily. 

Thus, the first article in the second chapter, published on Information Sciences, uses the 

ELECTRE TRI method to classify conflict in the Theory of Evidence. In order to generate the 

parameters of the method, a disaggregation model given in the literature is used in which 

alternatives pre-classified as being in conflict must be generated. In the second article, 

submitted to Information Fusion and presented in Chapter three, the same premise is analyzed 

using the PROMETHEE method. However, the pre-classified alternatives used to generate the 

parameters are also used to classify the conflict. These same alternatives used for classification 

are also used to generate the parameters by means of a disaggregation method from the literature 

that this article modifies, resulting in the proposal of a different PROMETHEE classification 

procedure as another contribution of this thesis. 

Finally, we have the third article, submitted to Knowledge-Based Systems, which focuses 

on the topic with reference to representing uncertainty by using Fuzzy Set Theory. This article 

is about making a financial analysis of the development of new products. To do so, a model of 

real options from the literature was used that integrates risk of a technical nature with the risk 

of a market nature. Given that the availability of historical data is scarce for modeling the 

uncertainties of developing new products, the innovatory aspect of this article is the fact that 

the modeling of some of these risks is done by means of fuzzy numbers that are easy to obtain 

when elicitation procedures are used and integrated with probabilistic information along the 

project. 
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1.1  Study Motivation 

After the publication of Zadeh's (1986) paper on generating counterintuitive results when 

the two bodies of evidence present a high level of conflict, a real plethora of combination rules 

has emerged. Most of these new rules aim at solving the problem of counterintuitive results. 

The reason for this high number of rules is directly linked to the broadly open character 

contained in the theory of evidence. As stressed in the introduction, although this theory aligns 

well in situations where the classical theory of probability presents difficulty in modeling, some 

situations of a rather subjective nature may complicate both the application of a combination 

rule and the measurement of conflict. To exemplify some of these situations, we can mention 

the required independence of the bodies of evidence in the application of the Dempster Rule of 

Combination (DRC); hypothesis on updating the framework of discernment; reliability of the 

bodies of evidence and metric thresholds for conflict determination. 

All these raised issues may be decisive for the creation of a new combination rule. 

Determining the degree of dependence between the bodies of evidence is important depending 

on the area of application of the combination rule. If the structure or decision issue where the 

combination rule is to be used does not support the hypothesis of independence, then the DRC 

should not be used (CHIN & FU, 2015). For instance, in multicriteria decision models many 

times the hypothesis of independence among the criteria cannot be assumed, so a new rule that 

adjusts this situation must be used (CHIN & FU, 2015). 

Regarding the update of the framework of discernment, two assumptions can be used. 

The first one would be on the completeness of the framework, i.e., the non-admission of new 

hypotheses to integrate it. In the second, the possibility of new hypotheses to be added to the 

frame of discernment is seen by some authors as a source of conflict between bodies of evidence 

(SMETS, 2007). Thus, the conflict analysis or a new combination rule must conform to one of 

those two situations. 

Another issue widely discussed in the literature which has also raised new rules of 

combination is the question of the reliability of the bodies of evidence. In this approach, before 

the bodies of evidence are combined - generally using the DRC -, they are deducted according 

to a reliability factor. Regarding the origin of the reliability of the bodies of evidence, two 

sources can be highlighted here, which we will call data external source and data internal source. 

As far as the external source is concerned, the coefficients of deduction are generated according 

to the external information about the bodies of evidence, which is extracted according to the 
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analyst’s knowledge on the bodies of evidence (SHAFER, 1976). On the other hand, the origin 

of reliability is obtained by taking into account the information from the data internal source. 

This analysis may be defined as from Dubois & Prade’s (1994) interpretation, where the authors 

consider that when two bodies are in conflict it is because at least one of the bodies of evidence 

is not reliable. Considering this interpretation, the coefficients of discounted for each body of 

evidence can be generated from the deviations of the body of evidence in relation to the others, 

often having metrics of conflict as a parameter (LEUNG & MA, 2013). 

Since the main prerequisite for the continuous emergence of new combination rules is 

tied to the possibility of counterintuitive results, a conflict measurement approach is needed. 

Thus, conflict measurement metrics can be structured with two objectives. The first is linked to 

the administration of conflict where from the results of the metrics the pairs of bodies of 

evidence can be organized according to the level of conflict they present. For example, Liu 

(2006) and Destercke & Burger (2013) consider three possibilities according to the result of the 

metrics having the DRC as parameter. In the second type of approach, the metrics is used to 

generate the deduction factors of the bodies of evidence. 

It is well established in the literature that the constant k used to normalize the DRC alone 

is not sufficient to determine the conflict, requiring more than one metrics (LIU, 2006), or an 

interval metrics (DESTERCKE & BURGER, 2013). Regardless of the way in which the 

conflict is handled, whether it is conflict management or deduction of the bodies of evidence, 

it is necessary to use more than one metrics to analyze the conflict or to deduct the bodies of 

evidence. 

In addition to the problem of considering a single metrics to quantify the conflict, 

attention should be paid to the subjective thresholds from which the conflict is set. Thus, when 

considering more than one metrics, the difficulty to define different thresholds of conflict for 

the different metrics arises, making the problem even more complex for the analyst. Besides 

considering those issues, an approach of conflict classification should be as general as possible 

in order to take the aforementioned issues into account. Thus, in our view, an approach based 

on more than one metrics and at the same time generated from pre-classified alternatives is 

more general, since it can better adapt to the situations mentioned here. 

In the financial analysis of development of new products, the traditional metrics used to 

evaluate such projects are criticized in the literature since it does not take into account the 

flexibility due to the high level of uncertainty present in the early stages of such projects. In this 
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sense, this flexibility can be translated as an opportunity to increase or decrease the losses in 

the project value throughout its development. Given this characteristic, the literature recognizes 

the real options approach as an ideal model since it takes into account the flexibility of 

innovation projects as an opportunity to increase the project value. However, the traditional 

models used in real options are based on the context of financial options environment, which 

prevents the correct use of NPD projects due to the nature of the uncertainties present in these 

projects being different from the uncertainties contained in the financial market. 

Another issue which is inherent in NPD projects is the lack of historical data, since these 

projects are being carried out for the first time. Thus, the nature of uncertainty contained in this 

project is primarily subjective, having human judgments as its main source of information. 

Hence, besides choosing the correct model, it is necessary to choose an appropriate uncertainty 

model to extract human information, taking into account the imperfections present in human 

judgments. 

 

1.2 Thesis Objectives 

1.2.1 General Objective 

This study has as main objective the generation of a conflict determination approach in 

the theory of evidence that takes into account two main aspects pertinent to this theory in a 

conflict analysis: the quantification of conflict through the integration of different metrics and 

the expansion of the conflict model by considering the conflict subjective modeling by using 

disaggregation approaches, avoiding the use of subjective thresholds and increasing the level 

of information about the conflict. As regards the development of new products, the main 

objective is developed a financial model that integrated the real option approach and Fuzzy Set 

Theory for financial analysis of New Product Development.    

 

1.2.2 Specific Objectives 

• Determination of a evidence theory conflict measurement approach focused on 

the main multicriteria classification methods.  

• Conflict determination through reference alternatives.  

• Evaluation of the efficiency of multicriteria methods in conflict classification. 
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• Definition of how FUZZY numbers can be integrated in relation to NPD 

uncertainties. 

1.3 Thesis Structure 

This thesis is structured in 5 chapters as shown in figure 1.1. In chapter 1, the introduction 

with the papers produced is presented, along with the motivation and objectives. Chapter 2 

presents a conflict classification approach in the theory of evidence using the ELECTRE TRI 

method. Chapter 3, in turn, presents a conflict classification approach using a variant of the 

PROMETTHEE method. In Chapter 4, the financial analysis of the development of new 

products is discussed, integrating the real options approach with the uncertainty modeling by 

using FUZZY numbers. Finally, the conclusion brings the main results as well as the state of 

development of research. 
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2 A MULTICRITERIA APPROACH FOR ANALYSIS OF CONFLICTS 

IN EVIDENCE THEORY 

A multicriteria classification problem involves the assertion of a finite set of alternatives 

A = {a1, a2, ..., am} in pre-defined q groups C1, C2, ..., Cq, where the alternatives are described 

by a vector of n criteria g = {g1, g2, ..., gn} (ZOPOUNIDIS & DOUMPOS, 2002). In this sense, 

the general idea is to systematize the classification of the alternatives as from the criteria 

aggregation.  

The analysis carried out by Zopounidis & Doumpos (2002) places the outranking methods 

as the most used ones for the multicriteria classification. The apSai outranking relationship 

states that alternative ap is at least as good as alternative a1. In this context, the ELECTRE TRI 

method (YU, 1992; ROY & BOUYSSOU, 1993), to be dealt with in this chapter, and the 

PROMETHEE method (BRANS & VINCKE, 1985; VINCKE, 1992), to be used in the next, 

are included. 

 

2.1 MCDM Analysis of Conflict in Evidence Theory 

Since its development in the 60s, Dempster-Shafer Theory (DST) or Evidence Theory 

(SHAFER, 1976), has been seen as one of the main tools for dealing with situations of 

uncertainty which classical probability theory has difficulty in modeling. Situations like 

vagueness, ignorance and others cannot be modeled by classical Probability Theory given their 

axiomatic premises. As a counterpoint, DST does not require that the axioms of additivity and 

completeness are adhered to, thus allowing a wider range of situations to be modeled. 

Therefore, this theory can be used for research studies in very different areas: image processing 

(LIN, 2010); group decision using multiple criteria (FU & YANG, 2010; SEVASTJANOV & 

DYMOVA, 2015); maintenance (BARALDI; COMPARE & ZIO, 2013); neural networks 

(AGGARWAL et al., 2013) etc. 

Despite all these characteristics, the main advantage of DST comes from Dempster Rule 

of Combination (DRC) which allows two belief functions or independent bodies of evidence to 

be merged. From a practical point of view in DRC, the presence of an a priori distribution to 

establish a merger between two bodies of evidence is not necessary, as required in Bayesian 

Theory. However, the application of this rule generates counter-intuitive results when the two 
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bodies of evidence involved in the merger conflict with each other to a high degree (ZADEH, 

1984). 

The combination of bodies of evidence arise in many contexts when aggregating expert’s 

knowledge. There are several works addressing this matter in a fuzzy context for example 

(MATA et al., 2014; PARREIRAS et al., 2010; PARREIRAS et al., 2012; PARREIRAS et al.; 

2012; WU & CHICLANA, 2014). Herrera-Viedma et al. (2014) presents review of fuzzy 

approaches for aggregating expert’s knowledge using group decision making and fuzzy logic 

through soft consensus, pointing new trends and challenges within this fuzzy context, while 

Cabrerizo et al. (2010) analyze different consensus approaches in fuzzy group decision making 

problems, including partial consensus, full consensus and soft consensus. 

When considering the DRC there are two main approaches that have been developed over 

the years in order to overcome the issues due to a high degree of conflict. The first class of 

approaches is focused on modifying DRC which generated a real jungle of combination rules 

in the literature (SMETS, 2007). The second focuses on administering the conflict without 

necessarily modifying DRC (SMETS, 2007; YANG et al., 2011; SCHUBERT, 2011). 

As to the first approach, the change in DRC is proportional to some constant that 

expresses the level of conflict between two bodies of evidence. The first natural metric 

developed for this is the normalization constant of DRC that some authors associate with the 

level of conflict between two bodies of evidence. However, as demonstrated by Liu (2006), this 

constant does not capture all the possible existing conflict situations in this theory, although it 

may capture them to a certain extent. This impossibility present in the normalization constant 

caused authors to investigate or develop another way to measure the conflict between two 

bodies of evidence (JOUSSELME & MAUPIN, 2012; LIU, 2006). Given the computational 

complexity present in DST, it is complex from the computational point of view to represent all 

possible conflict situations using a single metric. 

Against this background, another approach to identifying conflict becomes necessary. 

The first is contained in the work of Liu (2006) and is also supported by the results of the work 

of Jousselme & Maupin (2012), in which they consider measuring conflict by using two metrics 

plus a numerical threshold of subjective conflict. Following a different line, Destercke & Burger 

(2013) develop an interval metric based on axioms while Fu et al. (2010) focus on separating 

the internal conflict from the external one.  
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Regardless of the method for measuring conflict, two situations are always present when 

analyzing conflict in DST: More than one metric is needed to measure the conflict in this theory; 

and, at the same time, there is some degree of subjectivity involved when determining what the 

conflict is. 

An important point to consider is the meaning of the conflict metric and how it would be 

quantified and aggregated with other types of metrics seeking to capture different types of 

conflict situations. 

Using this prism, the classification of conflict in DST can be seen as a problem of multi-

criteria classification. By taking this view, this paper seeks to expand the measurement of 

conflict in DST by using a multi-criteria method of classification. To this end, the suitability of 

using such a method when analyzing conflict in DST is ascertained. 

Within the multicriteria approaches the kind of methodology that would be more suitable 

for addressing the issue raised in this paper is a non-compensatory methodology, as it does not 

consider tradeoffs amongst the criteria. Thus, more than two conflict metrics can be aggregated 

for dealing with conflict measurement in DST, as proposed in this article. 

With this in mind, the ELECTRE TRI method was chosen. This Multi Criteria Decision 

Making (MCDM) method uses an outranking relationship where each measure of conflict is 

defined by using a pseudo-criterion in order to integrate the subjective imprecision into 

assessing what the conflict is. 

This article is divided into 6 sections including this Introduction. Section 2 presents the 

basic elements of DST and DRC. Section 3 discusses conflict and how it is measured in the 

literature. In Section 4, the ELECTRE TRI method is introduced while section 5 sets out how 

the problem is structured and a numerical application of the proposed model. Finally, the 

conclusion discusses the method and what studies could be usefully undertaken in the future. 

 

2.2 Basic Concepts 

DST is defined on a non-empty finite, exhaustive and mutually exclusive set, ϴ, of 

elementary events. This set is called a "frame of discernment" and the set formed by all possible 

subsets of ϴ is called a power set, 2(|ϴ|). To see how the two sets are related, consider the case 

where ϴ has three elements, ϴ = {𝜃1, 𝜃2, 𝜃3}, in this case 2(|ϴ|) will have 23 elements defined as 

follows: 2|𝛳| = {∅, {𝜃1}, {𝜃2}, {𝜃3}, {𝜃1, 𝜃2}, {𝜃1, 𝜃3}, {𝜃2, 𝜃3}, 𝜭 }. Based on the 2|𝜭| set, the 
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basic probability assignment function, m, is defined and is given in Equation (2.1) and Equation 

(2.2).  

𝑚 ∶ 2|𝚹| → [0,1] 
 (2.1) 

 

∑m(𝐀) = 1

𝐀∈𝚹

  (2.2) 

 

The function m (A) can be interpreted as the degree of belief that the system has in a 

certain element A belonging to the 2|𝚹| set. If m (A) > 0, then set A is called the focal element. 

Using the function m, two other functions are defined: The belief function Bel(A) and the 

plausibility function Pl (A). The Bel (A) function is defined as the total of belief that is attributed 

to set A, which is calculated by the expressions in Equation (2.3) and Equation (2.4). 

𝐵𝑒𝑙 ∶ 2|𝚹| → [0,1]  (2.3) 

 

𝐵𝑒𝑙(𝐴) = ∑𝑚(𝐵)

𝐵⊆𝐴

  (2.4) 

 

 

The Pl (A) function measures the maximum amount of belief that can be attributed to set 

A, which is calculated by Equation (2.5) and Equation (2.6). 

𝑃𝑙 ∶ 2|𝜃| → [0,1]  (2.5) 

 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵∩𝐴≠∅

  (2.6) 

 

Given the characteristics of the functions Bel (A) and Pl (A), some authors see them as 

natural limits to the real probability of event A occurring. 

Given two independent bodies of evidence, m1 and m2, Dempster rule of combination is 

defined by the standard orthonormal sum as may be seen from Equation (2.7) to Equation (2.9). 

𝑚12(𝐴) =
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴

1 − 𝑘
,𝑤ℎ𝑒𝑛 𝐴 ≠ ∅ (2.7) 

𝑚12(∅) = 0 
 (2.8) 
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𝑘 = ∑ 𝑚1(𝐵)𝑚2(𝐶)

𝐵∩𝐶=∅

  (2.9) 

The constant k represents the conflict between m1 and m2 while 1-k represents the 

normalization factor that ensures the condition represented by Equation (2.2). In some 

combination rules, rather than the presence of the normalization factor, the conflict is 

completely transferred to the empty set. To demonstrate situations in which this rule can 

generate counter intuitive results, consider the following pair of bodies of evidence shown in 

the following situation, where basic probability assignment function to the first belief function 

is given by m1(A) = 0.1 and m1(C) = 0.9; while basic probability assignment function to the 

second belief function is m2(A)= 0.1 and m2(B)= 0.9, where ϴ = {A, B, C}. 

The result of the combination of the two bodies of evidence above will result in m12 (A) 

= 1. This is because A is the common element between the two bodies of evidence even if it is 

the element to which the lowest belief is attributed. Thus the high values attributed to the sets 

B and C are disregarded. 

There is a literature related to the use of belief functions combined with a decision maker 

preferences, such as presented by Danielson & Ekenberg (2007) when addressing expected 

utility by considering imprecise statements. 

2.3 Measuring Conflict IN DST 

Given the problematic issues found in the example given in last section, it is necessary to 

determine a means to report when two bodies of evidence are in conflict. Thus, the first natural 

metric used to measure the conflict was the constant k described in (9). As can be seen from 

(9), this constant represents the sum of beliefs when the intersection of the sets under 

consideration is empty. 

However, as demonstrated by Liu (2006), this metric cannot represent all conflict 

situations. In order to grasp this situation, now consider the second example when basic 

probability assignment function for the first belief function is given by: m1 (θ1) = 0.4; m1 (θ2) 

= 0.3; m1(θ3)= 0.2; m1({θ1, θ3})= 0.1. As for second belief function, this is given by: 

m2(𝜃1)=0,2; m2(𝜃2)=0.3 ; m2(𝜃3)=0.2 ; m2({𝜃1, 𝜃2}); m2(ϴ)=0.1. 

This second example represents a situation where they are normally classified into a low 

threshold of conflict. However, the value of k=0.49 does not represent this situation. Given 

situations such as this, a true jungle of conflict factors or distances in order to measure the 
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difference between two bodies evidence sprang up in the literature. The reason for the large 

number of metrics is linked to the complexity that involves the large number of representations 

that the evidence of bodies can take on, in this theory. Therefore, authors acknowledge the need 

to consider at least more than one metric to measure DST conflict . 

As main representatives of these metrics, there are betting commitment distances 

(TESSEM, 1993) and Jousselme’s Distance (JOUSSELME, GRENIER & BOSSÉ, 2001). The 

betting commitment distance is based on what is called a pignistic transformation that is used 

to assist in decision-making problems which use DST. The formulation of this distance is given 

by Equation (2.10). 

𝑑1 (𝑚𝑖, 𝑚𝑗) = max (
𝐴⊆𝚹

|𝐵𝑒𝑡𝑃𝑖(𝐴) − 𝐵𝑒𝑡𝑃𝑗(𝐴)|)  (2.10) 

Where BetP(A) is given by Equation (2.11): 

 

𝐵𝑒𝑡𝑃(𝐴) =∑ 𝑚(𝐵). (
|𝐴 ∩ 𝐵|

|𝐵|
)

𝐵⊆𝚹
 

 (2.11) 

The Jousselme distance (JOUSSELME, GRENIER & BOSSÉ, 2001) shown in Equation 

(2.12), is based on the weighted Euclidean distance, thus allowing a geometrical interpretation 

of the DST. Apart from the geometrical interpretation, authors also use the Jaccard coefficient, 

D, as a measure of similarity between the focal elements. Thus, in Equation (2.12), mi and mj 

are vectors, the components of which are the basic probability assignment function in the whole 

set 2𝜃. D is a matrix 2𝜃 X 2𝜃, the elements of which are defined by𝐷ℎ𝑙 = = −
|𝐴ℎ∪𝐴𝑙|

|𝐴ℎ∩𝐴𝑙|
. 

𝑑2(𝑚𝑖, 𝑚𝑗) = √
1

2
(𝑚𝑖 −𝑚𝑗)

𝑇
𝐷(𝑚𝑖 −𝑚𝑗) 

 (2.12) 

 

Just as in the case of the constant k, these two metrics also cannot manage to capture all 

conflict situations. To see this situation, consider Example 3 where the two functions of basic 

probability assignment are given as follows: m1(𝜃1)=0.8; m1(ϴ)=0.2 and m2(𝜃1)=0.1;  

m2({𝜃2, 𝜃3})= 0.2; m2(ϴ)=0.7. 

At first glance, it seems reasonable to assert that the two bodies of evidence in this 

example conflict greatly, but on analyzing the body of evidence 2, more precisely m2(ϴ)=0.7, 

it is clear that the two functions cannot contradict each other because part of the mass ϴ can be 

fully or partially moved to 𝜃1. For this example, there is therefore d1 = 0.53 and d2 = 0.57, 
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while the value of k=0.16, which is to say that, in this particular case, it is only by using the 

constant k that it can be seen that the two bodies of evidence do not contradict each other. 

 

2.4 ELECTRE TRI 

The ELECTRE TRI is a method that belongs to a wide class of multi-criteria classification 

methods. Thus, the problem addressed by this method is that of assigning a group of alternatives 

A = {a1 ,a2 , ..., am} evaluated in n criteria  g1, g2, ..., to k categories (WEI, 1992; YU, 1992). 

The classification of each alternative is made, based on a comparison of each alternative of the 

set A with the profiles that define the limits of each class. 

The first part of the ELECTRE TRI analysis involves defining the following sets: 

• The set of criterion indices F = {1, 2, ..., m} which represents the total 

number of criteria of the problem; 

• The set of profile indices B = {1, 2, ..., p} that represents the profiles that 

define the upper and lower limits of each class where bh represents the upper profile of 

Ch and bh-1 , the lower profile of category Ch-1. 

Therefore, given the definition of the sets above, the profile bp+1 represents the maximum 

profile expected in each criterion while b0 represents the minimum profile in each criterion. If 

the decision-maker’s evaluation decreases with the increase of the criterion, the situation 

described above is inverted. 

In order to classify each alternative, the method uses a preference relationship known as 

an out-ranking relationship, aSb, which may be translated as: The alternative a is at least as 

good as alternative b (ROY & VINCKE, 1984). This relationship is explored analytically by 

evaluating a criterion measurement function known as a pseudo-criterion that takes two 

thresholds into consideration: a preference threshold pj (bh), and an indifference threshold qj 

(bh). The aim of using these thresholds is to take into account the ever-present vagueness in 

human judgments. 

Thus, the judgment aSb is evaluated by two indices: 

• A concordance index (C): This index expresses the relation aSb will only 

be accepted if the majority of the criteria are in favor of a. 



Chapter 2 A Multicriteria Approach for Analysis of Conflicts in Evidence Theory 

25 

 

• A Discordance Index (D): This is a cut-off index that points against the 

assertive aSb even if the concordance index points to the contrary. The discordance 

index is associated with a veto threshold for which g(bj) cannot be greater than g(bj). 

From the viewpoint of inter-criteria analysis, what is still required is to determine the 

weights {w1, w2, ..., wm} which show the relative importance between the criteria while for the 

discordance index, a veto vector { v1 (bh), v2 (bh), ..., vm (bh)} must be defined. 

In the final evaluation phase of the method, a credibility index of σ (a, b) is generated, 

based on the concordance and discordance indices, which indicate by how much alternative a 

outranks alternative b. 

The σ (a, b) index is calculated by using the following steps: 

1. Calculation of the partial concordance indices cj (a, bj) for all j∈ F is given by 

Equation (2.13). 

𝑐𝑗(𝑎, 𝑏𝑗) =

{
 
 

 
 

 

0 𝑖𝑓𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≥ 𝑝𝑗(𝑏𝑗)

1 𝑖𝑓 𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≤ 𝑞𝑗(𝑏𝑗) 

𝑝𝑗(𝑏𝑗) + 𝑔𝑗(𝑎) − 𝑔𝑗(𝑏ℎ)

𝑝𝑗(𝑏𝑗) − 𝑞𝑗(𝑏𝑗)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.13) 

2. Calculation of the global concordance index c(bj) for all  j ∈ F is given by 

Equation (2.14). 

𝑐(𝑎, 𝑏𝑗) =
∑ 𝑤𝑗  . 𝑐𝑗(𝑎, 𝑏𝑗)𝑗∈𝐹

∑ 𝑤𝑗  𝑗∈𝐹
  (2.14) 

3. Calculation of the discordance indices dj (a, bj) is given by Equation (2.15). 

𝑑𝑗(𝑎, 𝑏𝑗) =

{
 
 

 
 

 

0 𝑖𝑓 𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≤ 𝑝𝑗(𝑏𝑗)

1 𝑖𝑓𝑔𝑗(𝑏ℎ) − 𝑔𝑗(𝑎) ≥ 𝑣(𝑏𝑗) 

𝑔𝑗(𝑏𝑗) − 𝑔𝑗(𝑎) − 𝑝𝑗(𝑏ℎ)

𝑣𝑗(𝑏𝑗) − 𝑝𝑗(𝑏𝑗)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (2.15) 

4. Calculation of the credibility index σ (a, b) is given by Equation (2.16). 

𝜎(𝑎, 𝑏) = 𝑐(𝑎, 𝑏𝑗)∏
1− 𝑑𝑗(𝑎, 𝑏𝑗)

1 − 𝑐(𝑎, 𝑏𝑗)𝑗∈C

  (2.16) 

Where 𝐶 = {𝑗 ∈ 𝐹: 𝑑𝑗(𝑎, 𝑏𝑗) > 𝑐(𝑎, 𝑏𝑗) }.  

Finally, an outranking threshold, λ, is defined which defines when alternative a outranks 

alternative b. 
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After defining the indices above, the preference relations will be defined in accordance 

with the values of the credibility indices σ (a;bh) and σ (bh;a) for the following possibilities: 

• 𝜎(𝑎, 𝑏ℎ) ≥ 𝜆 and 𝜎(𝑏ℎ, 𝑎) ≥ 𝜆 ⇒ 𝑎S𝑏ℎ and 𝑏ℎS𝑎  ⇒ 𝑎I𝑏ℎ, i.e. 𝑎 is indifferent 

to 𝑏ℎ. 

• 𝜎(𝑎, 𝑏ℎ) ≥ 𝜆 and 𝜎(𝑏ℎ, 𝑎) < 𝜆 ⇒ 𝑎S𝑏ℎ and not - 𝑏ℎS𝑎  ⇒ 𝑎 ≿ 𝑏ℎ, , i.e.  𝑎 is 

preferable to 𝑏ℎ. 

•  𝜎(𝑎, 𝑏ℎ) < 𝜆 and 𝜎(𝑏ℎ, 𝑎) ≥ 𝜆 ⇒ 𝑛𝑜𝑡 𝑎S𝑏ℎ and 𝑏ℎS𝑎  ⇒ 𝑏ℎ ≿ 𝑎, i.e. 𝑏ℎ is 

preferable to 𝑎 . 

•  𝜎(𝑎, 𝑏ℎ) < 𝜆 e 𝜎(𝑏ℎ, 𝑎) < 𝜆 ⇒ 𝑛𝑜𝑡 𝑎S𝑏ℎ and 𝑛𝑜𝑡 𝑏ℎS𝑎  ⇒ 𝑏ℎ𝑅𝑎, i.e. 𝑏ℎ is 

not comparable to 𝑎. 

Now, the process of classification can follow two procedures: 

1. Pessimistic Procedure: Comparing alternative a successively with bi to i 

= 1, 2, ..., p-1, p. Thus, a will be classified in the Ch + 1 category when aSb h + 1. 

2. Optimistic Procedure: Compare the alternative a successively with bi for 

i = p, p-1, ..., 2, 1 .. Thus, a will be classified in the category Ch when bhSa. 

2.5 MCDM Conflict Classification IN DST 

The purpose of this section is to structure the problem under analysis from the viewpoint 

of a multi-criteria classification problem. Given a set of bodies of evidence, G = {m1, m2, ..., 

mn}, and a set of criteria F = {1, 2, ..., k}, out of the set G, the set GxG = {(m1, m2); (m1, m3); 

...; (m2, m3); (m2, m4); ...; (mk-1, mk)} will be generated, the elements of which represent the 

pairwise combination of all the elements of the set G. Thus, given a set G with cardinality |G| 

= k, the cardinality of GxG is given by |GxG| = 
𝑘!

(𝑘−2)!.2!
. Therefore, problems, for which the set 

G which has low cardinality, may present, in terms of classification of conflict, a high degree 

of difficulty.  

If, for example, a problem is considered with |G| = 10, there is a problem that seeks to 

classify 45 pairs of bodies of evidence. After defining the set G, each pair in the set will be 

classified as to the conflict, based on a pair-wise comparison with the profiles that represent the 

classes of conflict. This comparison follows the same principle of the comparison made in the 

study by Frikha (2014) whose study develops a multi-criteria method for determining the 

discount coefficients of the bodies of evidence to be used in DRC. 
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2.5.1 Defining the criteria 

Several metrics have been developed over the years in order to measure both the similarity 

and the conflict in DST. Recently some articles have examined the statistical relationship 

between different metrics (JOUSSELME & MAUPIN, 2012). It should be noted that these 

studies are about similarities between two bodies of evidence and not exactly about the conflict 

in this theory. Although similarity and conflict are related, the two come in the form of different 

concepts, taking into account the distances of similarities defined in DST. For more information 

about the distances used in the DST, the reader is encouraged to consult the references 

(JOUSSELME & MAUPIN, 2012). 

In addition to the metrics developed to measure the similarity between the bodies of 

evidence, other metrics have been developed with a view to capturing the conflict, some 

examples of which are given in Table 2.1. 

Table 2.1 - Metrics of Conflict 

Name Distance Reference 
 

Conflict Rate 𝜆 =
∑ 𝑚1(𝐵𝑖)𝑚2(𝐶𝑖)𝐵𝑖∩𝐶𝑖

∑ 𝑚1(𝐴)𝑚2(𝐴)𝐴⊆𝚹 + ∑ 𝑚1(𝐵𝑖)𝑚2(𝐶𝑖)𝐵𝑖∩𝐶𝑖

 
  

Qu et al. (2009) 

 

Relative coefficient 𝑟(𝑋, 𝑌) =
∑𝑚1𝐿𝑜𝑔(𝑚1) + ∑𝑚2𝐿𝑜𝑔(𝑚2)

∑𝑚1𝐿𝑜𝑔(𝑚2) + ∑𝑚2𝐿𝑜𝑔(𝑚1)
 

 

Deng et al. 

(2011) 
 

 

Similarity 
𝑠𝑖𝑚 =

∑𝑚1′(𝐵𝑖)𝑚2′(𝐵𝑖)

(∑𝑚1′(𝐵𝑖)2𝑚2′(𝐵𝑖)2)1/2
 

𝑚′ (𝐵 ) = ∑
𝑚(𝐴)

|𝐴|
𝐴⊆𝚹,𝐵∈𝐴

 

 

 

Wen-hao et al. 

(2011) 

 

 

2.5.2 Defining the Parameters 

 

The greatest difficulty in ELECTRE TRI is modeling parameters which are not easily 

obtainable from the decision-maker (DM). This is due to the high number of parameters 

associated with the problem. Based on this problematic, the study by Mousseau and Slowinski 

(1998) sets out a method to assist in generating assignment parameters by means of simple 

assignment judgments. The method considers the selection of a subset A*⊂A = {a1 , a2 , ..., an}, 

from the set of alternatives of the problem and the DM’s assignment of each alternative to a 
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particular class Ch. Thereafter, the parameters are generated using a nonlinear optimization 

problem. The optimization condition present tries to ensure parameters that best represent the 

DM´s assignment. The optimization model used has the following mathematical structure 

(MOUSSEAU & SLOWINSKI, 1998) as described from Equation (2.17) to Equation (2.25): 

Max 𝛼 + 𝜀 ∑ 𝑥𝑘 + 𝑦𝑘
𝑎𝑘∈𝐴

∗

  (2.17) 

Subject to: 

𝛼 ≤ 𝑥𝑘  (2.18) 

𝛼 ≤ 𝑦𝑘  (2.19) 

∑ 𝑘𝑗𝑐𝑗(𝑎𝑘, 𝑏ℎ𝑘−1)
𝑚
𝑗=1

∑ 𝑘𝑗
𝑚
𝑗=1

− 𝑥𝑘 − 𝜆 = 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎𝑘 ∈ 𝐴
∗ 

 (2.20) 

𝜆 −
∑ 𝑘𝑗𝑐𝑗(𝑎𝑘,𝑏ℎ𝑘)
𝑚
𝑗=1

∑ 𝑘𝑗
𝑚
𝑗=1

− 𝑦𝑘 = 0,  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑘 ∈ 𝐴
∗ 

 (2.21) 

𝜆 ∈ [0.5,1],  (2.22) 

𝑔𝑗(𝑏ℎ+1) ≥ 𝑔𝑗(𝑏ℎ) + 𝑝𝑗(𝑏ℎ) + 𝑝𝑗(𝑏ℎ), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝐹 𝑎𝑛𝑑 ℎ ∈ 𝐵  (2.23) 

𝑝𝑗(𝑏ℎ) ≥ 𝑞(𝑏ℎ), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝐹 𝑎𝑛𝑑 ℎ ∈ 𝐵  (2.24) 

𝑘𝑗  > 0 , 𝑞𝑗(𝑏ℎ) ≥ 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗 ∈ 𝐹 𝑎𝑛𝑑 ℎ ∈ 𝐵 
 (2.25) 

 

In the problem above,  𝑥𝑘,, 𝑦𝑘 and 𝛼 are the variables related to the pessimistic assignment 

procedure. The alternative ak will be designated the Ch class, if the conditions 𝜎(𝑎𝑘, 𝑏ℎ − 1) ≥ 

𝜆 and 𝜎(𝑎𝑘, 𝑏ℎ) < λ, Equation (2.21) and Equation (2.22), will be satisfied. If the DM did not 

show inconsistency in the assignment, then any positive value of the objective function, 

Equation (2.18), guarantees the existence of consistent model parameters. The remaining 

equations, from Equation (2.23) to Equation (2.15) ensure the consistency of the model. Thus, 

in computational terms, the problem has 3mp+m+2 variables and 4n+2+3mp constraints. For 

further information about the model, the reader is encouraged to consult the reference 

(MOUSSEAU & SLOWINSKI, 1998). 

2.5.3 Defining of the Ch 

The classification of conflict in DST is mostly dealt with in binary form, i.e. either there 

is conflict or there is not. An alternative and more complete form is to consider an intermediate 
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region where the DM or expert system considers the conflict is at an intermediate level. Thus a 

complete model that takes into account the DM´s own vagueness must consider three regions 

as shown in Figure 2.1. 

 

Figure 2.1 - Definition of the regions of conflict in DST 

Class C1 is reserved for the body of evidence pairs which, in the DM´s judgment have a 

low level of conflict. On the opposite side is class C3, the region of which is reserved for the 

pairs that have a high degree of conflict. Class C2 class is reserved for the pairs, the classification 

of which the DM is unsure about with regard to the level of conflict, and so is classified as an 

intermediate region of conflict. The classification described here follows the same reasoning of 

classification suggested by Liu (2006) who uses DRC as a classification criterion. Therefore, 

class C1 is reserved for the pairs for which DRC does not lead to a counterintuitive result while 

class C3 class has the opposite characteristic. Finally, C2 is reserved for the pair of bodies of 

evidence for which DRC should be observed with precaution. 

2.5.4 Defining the set of inference A* 

The definition of the set A* takes into account the formation structure of the Ch classes. 

That means, from the DM´s point of view, that this elicitation should follow some rational 

principles. As an example, consider Table 2.2 which shows examples of pairs of bodies of 

evidence, the cardinality of which from the frame of discernment is equal to 3. Each pair 

represents a degree of conflict purposely chosen in accordance with the literature. For example, 

the pairs (m1, m2) and (m3, m4) can never be classified in class C1. On the other hand, the pairs 

(m9, m10) and (m11, m12) cannot be classified in the class C3, i.e., although the classification 
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made by the DM is subjective in nature, this presupposes certain consistency criteria for 

assignment of the alternatives belonging to A*. The advancement of the model comes from 

creating the C2 class that has bodies of evidence for which the expert shows indecision 

regarding conflict classification, i.e. he or she tends to classify it in an intermediate region of 

conflict. 

Table 2.2 – Pairs of classified alternatives. 

BOE Sets 

{𝜃1} {𝜃2} {𝜃3} {𝜃1, 𝜃2} {𝜃1, 𝜃3} {𝜃2, 𝜃3} ϴ Class 

m1 0.9  0.1     C3 

m2  0.8 0.1    0.1 
m3 0.8 0.1     0.1 C3 

m4  0.1 0.8    0.1 
m5 0.4 0.4 0.2     C2 

m6 0.8      0.2 
m7 0.4 0.4 0.2     C2 

m8 0.7 0.2     0.1 
m9 0.4 0.3 0.2  0.1   C1 

m10 0.2 0.3 0.2 0.2   0.1 
m11 0.8      0.2 C1 

m12 0.1     0.2 0.7 
     BOE = Body of evidence 

 

2.5.5 Numerical application 

In this section, an ELECTRE TRI model for conflict classifying in the DST will be 

generated. To do so, elements of the set A* used were the bodies of evidence present in Table 

2.2 with their respective classifications. As a first approach, classification by means of two 

criteria was considered. For comparison purposes, the criteria used were those in the two-

dimensional approach developed by Liu (2006). In this approach, the conflict is analyzed by 

using two metrics: The constant k of DRC and the betting commitment distance, d1. The 

identification of the conflict is made when two metrics are greater than a certain value 𝜀 that, 

according to the authors, is a subjective value that depends greatly on the problem under 

consideration. Therefore, it can be seen that this model class is a subcase of the model developed 

in this study. As a flaw, this approach considers the limit of the conflict 𝜀 is the same for both 

criteria. However, since the information contained in the two criteria is different, this approach 
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may fail to consider different perceptions of conflict about the problem. In order to further 

expand the model, measuring the conflict using three criteria was considered, by adding a third 

criterion, the conflict rate, (QU et al., 2009), to the problem.  

Table 2.3 shows the decision matrix of the set A*, considering the three criteria. 

 

Table 2.3 - decision matrix of the set A 

Alternatives Pairs g1 = K g2= d1 g3 =Conflict 

rate 

Class 

a1 (m1;m2) 0.89 0.86 0.99 C3 

a2 (m3;m4) 0.8 0.8 0.975 C3 

a3 (m5;m6) 0.48 0.46 0.6 C2 

a4 (m7;m8) 0.54 0.33 0.6 C2 

a5 (m9;m10) 0.49 0.13 0.7 C1 

a6 (m11;m12) 0.16 0.53 0.42 C1 

 

Using Table 2.3 and the mathematical programming model Equation (2.17) to Equation 

(2.25), the parameters of the model for two criteria (Table 2.4) and for three criteria (Table 2.5) 

were generated using the Solve that is a supplement of Excel. 

Table 2.4 - Parameters generated using Table 2.3. 

Parameters Value 

𝑤1   0.661627712 

𝑤2   0.338372288 

𝑔1(𝑏1) 0.300598816 

𝑔2(𝑏1) 0.283564123 

𝑔1(𝑏2) 0.669400718 

𝑔2(𝑏2) 0.684809286 

𝑞1(𝑏1) 0.000270494 

𝑞2(𝑏1) 0.014296426 

𝑞1(𝑏2) 0.009044307 

𝑞2(𝑏2) 0.009688723 

𝑝1(𝑏1) 0368531408 

𝑝2(𝑏1) 0.071900793 

𝑝1(𝑏1) 0.072271698 

𝑝2(𝑏2) 0.070487823 

𝜆 0.5 
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Table 2.5 - Parameters generated using Table 2.3. 

Parâmetros Valor 

𝑤1   0.50 

𝑤2   0.25 

𝑤3   0.25 
𝑔1(𝑏1) 0.13 
𝑔2(𝑏1) 0.25 

𝑔3(𝑏1) 0.10 
𝑔1(𝑏2) 0.73 

𝑔2(𝑏2) 0.78 
𝑔3(𝑏2) 0.99 
𝑞1(𝑏1) 0.38 
𝑞2(𝑏1) 0.05 

𝑞3(𝑏1) 0.07 

𝑞1(𝑏2) 0 
𝑞2(𝑏2) 0.18 
𝑞3(𝑏2) 0.02 

𝑝1(𝑏1) 0.57 
𝑝2(𝑏1) 0.11 
𝑝3(𝑏1) 0.71 
𝑝1(𝑏2) 0 

𝑝2(𝑏2) 0.23 
𝑝3(𝑏2) 0.10 

𝜆 0.66 
 

Some aspects should be mentioned in relation to the parameters represented in Tables 2.4 

and 2.5, for this numerical application there is the absence of veto thresholds, which are not 

considered in order to facilitate the construction of the optimization model for this illustrative 

example. The veto thresholds can be easily included on the model if required. 

To illustrate the proposed model application, consider the scenario shown in Table 2.6 

that was taken from the article by Frikha (2014), where the combination in the DST is analyzed 

under the multiple criteria point of view, taking into account the reliability of each body of 

evidence. On considering 6 bodies of evidence, it is seen that Table 2.6 shows both conflict 

situations, m3 in relation to the other ones, such as those of high ignorance m5 and m6. 
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Table 2.6 - Bodies of evidence (FRIKHA, 2014) 

 m1 m2 m3 m4 m5 m6 

{𝜽𝟏} 0.75 0.4 0 0.35 0.5 0.05 

{𝜽𝟐} 0.1 0.2 0.9 0.15 0.1 0.1 

{𝜽𝟑} 0.05 0.1 0.1 0.25 0 0 

{𝜽𝟏, 𝜽𝟐} 0 0.3 0 0.2 0 0.3 

{𝜽𝟏, 𝜽𝟑} 0 0 0 0 0 0.2 

{𝜽𝟐, 𝜽𝟑} 0 0 0 0 0.15 0.1 

ϴ 0.1 0 0 0.05 0.25 0.25 

 

The Table 2.7 contains the classification of conflict considering the number of criteria, 2 

and 3, and the classification procedure, whether optimistic or pessimistic. 

 

Table 2.7- Example of classification using ELECTRE TRI (2 and 3 criteria) 

Alternative pair g1 = K g2= Bet g3 = 

Con.Rate 

Classification(OP) 

     2C    |    3C 

Classification(PE)

2C      |       3C 

a1 (m1,m2) 0.320 0.233333 0.4961 C1 C1 C1 C1 

a2 (m1,m3) 0.805 0.783333 0.8888 C3 C3 C3 C3 

a3 (m1,m4) 0.395 0.316667 0.5724 C1 C1 C1 C1 

a4 (m1,m5) 0.2665 0.2 0.3948 C1 C1 C1 C1 

a5 (m1,m6) 0.1975 0.4 0.7315 C1 C2 C1 C2 

a6 (m2,m3) 0.547 0.55 0.7397 C2 C2 C2 C2 

a7 (m2,m4) 0.425 0.166667 0.625 C1 C1 C1 C1 

a8 (m2,m5) 0.260 0.091667 0.5416 C1 C1 C1 C1 

a9 (m2,m6) 0.1975 0.166667 0.5737 C1 C2 C1 C2 

a10 (m3,m4) 0.610 0.633333 0.7922 C2 C2 C2 C2 

a11 (m3,m5) 0.510 0.641667 0.85 C2 C2 C2 C2 

a12 (m3,m6) 0.270 0.516667 0.75 C1 C2 C1 C2 

a13 (m4,m5) 0.3125 0.116667 0.6067 C1 C1 C1 C1 

a14 (m4,m6) 0.220 0.116667 0.6769 C1 C1 C1 C1 

a15 (m5,m6) 0.1325 0.116667 0.5408 C1 C1 C1 C1 

 

In Table 2.7 above, some remarks can be made regarding the introduction of the third 

criterion. On considering the analysis with two criteria, ELECTRE TRI informs that the element 

with the highest conflict is m3 since it is classified once in class C3, three times in class C2 and 

only once in C1. After the introduction of the third criterion, and the element  m6  is also 

classified as having the highest degree of conflict. Therefore, it is interesting to note that the 

introduction of criteria Conflict Rate (QU et al., 2009) makes the classification more rigorous.  
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For example, when two criteria are considered, the pair m1 and m6 are classified in the C1 

region. In the case of three criteria, the same pair is classified in the C2 region. This 

classification is more appropriate because when we consider the body of evidence m6, there is 

doubt as to which element, 𝜃1 and 𝜃𝟐, of the frame of discernment frame is true while with 

respect to m1 it is noticed that 𝜃1 is the element with the most evidence. Thus it can be seen that 

by expanding the number of criteria, the level of information about the conflict can be raised. 

In the specific case of the Conflict Rate, as can be seen in Table 2.7, this criterion tends 

to be a good indicator when there is a high conflict despite not being a good evaluator when the 

conflict is low. Therefore, the introduction of this metric together with the criteria pointed out 

by Liu (2006) is indicated when the level of restriction to the conflict of the problem is high. 

Given this example and the large number of metrics in this theory, new combinations can be 

made using as a starting point the metric of Liu with the objective to improve the conflict 

classification within DST. 

The advantages of the approach proposed in this article includes that it is not necessary 

to consider arbitrary conflict limits, for which may be difficult to establish precise values. Such 

aspect is found in many practical applications, when, due to such difficulty, same limit of 

conflict 𝜀 is considered for both conflict metrics, despite the eventual differences on each 

conflict metric scale and meaning. Therefore, since the information contained in the conflict 

metrics is different, it would be expected that the limit of conflict considered for these conflict 

metrics to be different also. 

Another important aspect to highlight is that when using the approach proposed in this 

article, it is not necessary to define values for the limits of conflict arbitrarily. The parameters 

used in the MCDM method are estimated based on a holistic evaluation over conflict examples 

that are easier to classify. 

2.6 Conclusion 

The main aim of this article was to set out a multi-criteria method for conflict analysis in 

DST. To this end, the ELECTRE TRI multi-criteria classification method was used in order to 

integrate the subjectivity in human judgments into the classification of the conflict in DST. 

Given the high number of parameters that should be elicited, a procedure was established in 

which the parameters are automatically generated by means of a procedure which involves 

judging how they are assigned. 
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The validity of the model was observed by carrying out a numerical study for the case of 

two criteria that are already well-established in the literature. Another contribution of the 

presented approach is that the conflict analysis model allows to consider many different conflict 

measures as criteria for the MCDM model, therefore a broaden conflict analysis can be 

performed by expanding the number of criteria used. The numerical application presented in 

this work demonstrated the proposed approach by using two criteria for establishing a 

comparison with the work presented by Liu (2006) and extended for the case of evaluating three 

conflict measures, as when considering 3 criteria. 

With regard to the conflict analysis and the model developed in this text, some questions 

should be raised. In terms of conflict in DST, the analysis conducted in this paper takes into 

account some hypotheses which have been discussed widely and which for a good many years 

have been the focus of discussion. First of all, Demspter’s rule considers that the bodies of 

evidence were considered independent and with the same level of reliability. Secondly, the 

analysis discussed here assumes that the frame of discernment is a closed set, i.e. the parameters 

generated for a problem with  |𝛳|=3 cannot be used for a problem with  |𝛳|=4, for example. 
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3 A NEW PROMETHEE-BASED APPROACH APPLIED TO 

CONFLICT ANALYSIS IN EVIDENCE THEORY INTEGRATING 

THREE CONFLICT MEASURES 

In this chapter, another classification procedure based on a pairwise comparison model 

will be presented. As a differential element, the conflict classification is not constructed from 

class profiles such as the ELECTRE TRI. In this sense, the method developed here establishes 

the classification as from the pairwise comparison of pre-classified alternatives in a given 

conflict class. Furthermore, the model uses these same alternatives to generate the model 

parameters through a disaggregation model. As a starting point, a model in the literature based 

on the PROMETHEE methods family will be used.  

 

3.1 A Novel PROMETHEE Sorting Procedure Applied to Conflict Analysis in 

Evidence Theory 

Evidence Theory or DST (DEMPSTER, 1967; SHAFER, 1976) is widely used in various 

areas of knowledge such as neural networks (AGGARWAL et al., 2013); group decision (FU 

& YANG, 2010); and Maintenance (BARALDI, COMPARE & ZIO, 2013). Two reasons for 

its widespread use can be identified. The first is directly linked to the possibility of representing 

situations of judgments of uncertainty which are regularly found in expert systems, namely 

ignorance, imprecision and vagueness. The second and more important reason results from 

applying DRC whereby different independent sources of information can be merged (Fusion). 

However, in the classic study by Zadeh (1986) it was shown that DRC can deliver 

counter-intuitive results when the two sources of uncertainty have a high degree of conflict. To 

overcome this deficiency, several rules were created (YAGER, 1987; DUBOIS & PRADE, 

1988, SMETS, 1990; CHIN & FU, 2015). Some of these approaches focus on the normalized 

DRC whereby prior to applying the rule, the sources of uncertainty are discounted in accordance 

with some factor of reliability (MARTIN, JOUSSELME & OSSWALD, 2008; JIANG, 

ZHANG & YANG, 2008; FRIKHA, 2014; MA & AN, 2015; FRIKHA & MOALLA, 2015). 

There are also approaches that focus on exploring the characteristics of the data, or 

administering the conflict in these data (SMETS, 2007; SCHUBERT, 2011; YANG et al., 

2011). It is claimed that another alternative approach to handling the conflict between sources 
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of imprecise information is that of using Fuzzy approaches (PARREIRAS et al., 2012; 

PARREIRAS et al., 2012; HERRERA-VIEDMA et al., 2014). 

Since the main reason for applying a rule that is different from Dempster’s is the presence 

of the conflict, some of these rules use a factor for measuring conflict. To this end, the first 

metric used to measure the conflict was the normalizing constant of DRC and subsequently, 

metrics based on distances (JOUSSELME, GRENIER & BOSSÉ, 2011; BURGER, 2016). In 

the research line of identifying the conflict, the study by Liu (2006), which is also supported by 

that of Jousselme & Maupin (2012), signals that at least two metrics are required so as to 

identify the conflict, since the normalizing constant in DRC fails to capture all conflict 

situations, and the same applies to distance-based metrics. 

Another problem considered when quantifying conflict in the context of Evidence Theory 

is to determine when two Bodies of Evidence are in conflict. This can be useful to determine 

the best rule to be used, or rather, by how much a source of uncertainty can be discounted prior 

to merging (combining) the sources. However, determining conflict in this way presents a 

subjective character which comes about based on subjective thresholds (LIU. 2006; 

JOUSSELME, & MAUPIN, 2012, LEUNG, JI & MA, 2013), or else by establishing axiomatic 

structures of conflict (DESTERCKE & BURGER, 2013; ARNAUD, 2012). 

Although these approaches are valid with regard to measuring conflict, they show the 

extent to which different authors’ views on conflict in Evidence Theory can be subjective. 

Since it takes more than a metric and subjective thresholds to quantify conflict in the 

context of Evidence Theory, this shows a multicriteria classification is needed. Thus, this paper 

presents a multicriteria classification approach based on PROMETHEE methods drawing on 

the model presented by Silva & Almeida-Filho (2016) who uses the ELECTRE method for 

classifying conflict in Evidence Theory. Choosing a multicriteria method which constructs 

outranking relations, pairwise, is justified due to the absence of tradeoff (DE ALMEIDA et al., 

2016) among the criteria. As a differential in relation to the approach proposed in Silva &  

Almeida-Filho (2016), the classification of conflict in this article is undertaken by using pre-

classified examples of conflict that generate the parameters of the model and are subsequently 

used as a reference for the multicriteria classification of conflict in DST. 

Besides putting forward a new multicriteria approach for analyzing conflict, the article 

also sets out to adapt the disaggregation method proposed in Doumpos & Zopounidis (2004) so 

as to generate the parameters of the classification method. The disaggregation approach 
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proposed, which is one of the contributions of this study, alters the initial formulation presented 

in Doumpos & Zopounidis (2004) by adding similar slack variables to the ones used by 

Mousseau & Slowinski (1998) and altering the objective function of the optimization problem 

so as to obtain the parameters of the model that classifies conflict. The disaggregation approach 

makes the elicitation process simpler since there is no need to indicate the subjective numerical 

thresholds, but rather all that is required is to classify pairs of Bodies of Evidence in accordance 

with the conflict that they present. 

Therefore, this article is divided into 7 sections including this Introduction. Section 2 

presents the basic concepts of Evidence Theory while Section 3 reviews the discussion on 

conflict. Section 4 formally introduces the traditional multicriteria method of classification of 

Doumpos & Zopounidis (2004) which this article enhances, while Section 5 presents a 

framework for evaluating conflict in the context of Evidence Theory and uses a new procedure 

for estimating parameters for PROMETHEE, namely a disaggregation procedure. This is 

described in Section 5.1. Section 6 presents a numerical example from the literature in which 

the results are analyzed in order to validate the approach proposed. Finally, the conclusion 

discusses the main benefits and main aspects of using multicriteria support methods to classify 

conflict in Evidence Theory. 

 

3.2 A Brief Review OF Evidence Theory 

Evidence Theory or Dempster-Shafer Theory is defined by a set of elementary and 

mutually exclusive hypotheses known as a frame of discernment, Θ. By using this set, another 

set is defined which is called a Power Set, 2Θ, the elements of which represent all the possible 

combinations of the hypotheses from the frame of discernment. For example, consider a frame 

of discernment consisting of three hypotheses, Θ = {𝜃1, 𝜃2, 𝜃3}. The Power set for this case will 

have eight members with the following representation: 2Θ =

{∅, {𝜃1}, {𝜃2}, {𝜃3}, {𝜃1, 𝜃2}, {𝜃1, 𝜃3}, {𝜃2, 𝜃3}, Θ } .  

By using the Power Set, the function of basic probability assignment or Body of Evidence, 

𝑚 → 2Θ: [0,1], which represents the support or degree of belief that an expert or expert system 

assigns to a subset of the Power Set. This assignment should follow the following properties: 
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∑𝑚(𝑨) = 1

𝑨⊂Θ

  (3.1) 

𝑚(∅) = 0 
(3.2) 

When an element belonging to the Power Set has a non-zero mass m, this element is called 

a focal element. 

Using the function m, two other functions for the decision-making context are defined: 

The Belief Function, Bel, and the Plausibility Function, Pl. The Belief Function represents the 

total belief that can be attributed to a set A which is defined by Equation (3.3) and Equation 

(3.4). 

 

𝐵𝑒𝑙 ∶ 2|𝚹| → [0,1]  (3.3) 

𝐵𝑒𝑙(𝐴) = ∑𝑚(𝐵)

𝐵⊆𝐴

 (3.4) 

As the dual of the Belief Function, there is the Plausibility Function that represents the 

maximum volume of belief that can be attributed to a particular set A, represented by Equation 

(3.5) and Equation (3.6). 

 

𝑃𝑙 ∶ 2|𝜃| → [0,1]  (3.5) 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵∩𝐴≠∅

 
 (3-6) 

Given these forms of knowledge about the uncertainty of the system, some authors 

interpret the interval [Bel(A),Pl(A)], as an interval that contains the real probability of 

hypothesis A. Given these characteristics, some advantages in relation to the models of classic 

probability can be assigned. First, from the point of view of subjective judgments, there is no 

need for the judgments about the elements of the Power Set to be complete. Secondly, the 

function 𝑚(Θ) represents the ignorance of the specialist about the problem. Finally, the 

amplitude of the interval [Bel(A),Pl(A)], given by Pl(A)-Bel(A), represents the quantification of 

uncertainty about Event A. All of these possibilities fall within this theory in the field of 

Theories of Imprecise Probability. 
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Considering now that there are two Bodies of Evidence m1 and m2, the combination of 

these Bodies of Evidence can be obtained from DRC given from Equation (3.7) to Equation 

(3.9). 

 

𝑚12(𝐴) =
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴

1 − 𝑘
,𝑤ℎ𝑒𝑛 𝐴 ≠ ∅ 

 (3.7) 

𝑚12(∅) = 0 
        (3.8) 

𝑘 = ∑ 𝑚1(𝐵)𝑚2(𝐶)

𝐵∩𝐶=∅

 (3.9) 

 

 

The denominator in Equation (3.7), 1-k, has a normalizing function, the main goal of 

which is to keep the assumption represented by Equation (3.1). The value represented by k, 

Equation (3.9), is interpreted as the level of conflict between the two Bodies of Evidence. Thus, 

k=0 indicates a complete lack of conflict, whereas k=1 indicates they completely contradict 

each other. Using DRC presents problems when the Bodies of Evidence are in total conflict or 

conflict greatly with each other. In the former, DRC cannot be used, while in the latter, using 

this rule leads to counter-intuitive results. To check this result, consider the following example 

based on the study by Zadeh (1986). 

 

Example 1. Consider two Bodies of Evidence with the following information: m1(A) = 

0.1 and m1(C) = 0.9 for the Body of evidence 1 and m2(A)= 0.1 and m2(B)= 0.9 for the Body of 

Evidence 2 where ϴ = {A, B, C}. 

 

The result of using DRC to combine these two Bodies of Evidence is m12 (A) = 1. The 

counter-intuitive notion of this result is in the fact of these two Bodies of Evidence assigning 

least belief to Hypothesis A. However, combining both of them using DRC assigns total belief 

to Hypothesis A. This example is used as a starting point to show that DRC can generate 

counter-intuitive results when there is a high degree of conflict between the Bodies of Evidence. 
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3.3 Measuring Conflict IN DST 

Given the possibility of generating counter-intuitive results on using DRC, different 

approaches were created in an attempt to overcome this problem. Regardless of the path chosen 

to avoid or soften counter-intuitive results, what first of all must be done is to measure the 

conflict or to determine when two Bodies of Evidence are in conflict. Given the definition of 

DRC, first the conflict was quantified by using constant k, Equation (3.9). On looking at 

Example 1, it is known intuitively that the two Bodies of Evidence conflict with each other. 

Therefore, the expected result is that constant k has a high value which for this example was 

k=0.99. Although the constant k functions well to classify the two Bodies of Evidence in 

Example 1, as shown by Liu (2006), it may fail in other situations as shown in Example 2 taken 

from the study by Xu et al. (2007). 

 

Example 2. Consider two Bodies of Evidence with the following information: m1(A) = 

0.55 , m1(B) = 0.10 and m1(C) = 0.35 for Body of Evidence 1 and  m2(A)= 0.56 and  m2(B)= 

0.15,  m2(C)=0.29  for Body of Evidence 2 where ϴ = {A, B, C}.  

 

Intuitively the two Bodies of Evidence of Example 2 have a low level of conflict. 

However, there is a value of k= 0.576 which is a high value for indicating low conflict, since 

0<k<1. Thus, it is clear that k may not be ideal for capturing conflict in general. Therefore, 

different metrics were developed in order to measure the conflict in a complete way. One of 

these approaches, represented in the study by Liu (2006), uses a two-dimensional metric, i.e., 

the conflict is defined based on two metrics: The constant k and the betting commitment 

distance (TESSEM, 1991). The latter is given in Equations (3.10) and Equation (3.11). 

 

𝑑1 (𝑚𝑖, 𝑚𝑗) = max (
𝐴⊆𝚹

|𝐵𝑒𝑡𝑃𝑖(𝐴) − 𝐵𝑒𝑡𝑃𝑗(𝐴)|)  (3.10) 

Where BetP(A) is given by Equation (3.11): 

𝐵𝑒𝑡𝑃(𝐴) =∑ 𝑚(𝐵). (
|𝐴 ∩ 𝐵|

|𝐵|
)

𝐵⊆𝚹
 

(3.11) 

In his approach, Liu (2006) adds that two Bodies of Evidence are in conflict when the 

two metrics are larger than one constant, (𝑑1, 𝑘) ≥ 𝜀. The constant ε is regarded as a subjective 

value, depending on the problem under consideration. Liu also points out that the betting 
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commitment distance alone is not sufficient to quantify the conflict in its entirety since this 

metric may fail in some situations which involve a degree of ignorance, as can be seen in 

Example 3. 

 

Example 3. Consider two Bodies of Evidence with the following information: 

m1(𝜃1)=0.8; m1(ϴ)=0.2 for the Body of Evidence 1 and m2(𝜃1)=0.1;  m2({𝜃2, 𝜃3})= 0.2; 

m2(ϴ)=0.7 for the Body of Evidence 2 where ϴ = {𝜃1, 𝜃2, 𝜃3}.  

 

Given the high degree of ignorance in the second body of evidence, there are no grounds 

for claiming that the two bodies conflict greatly with each other. However, there is a value 

of 𝑑1 = 0.53 which demonstrates once again a high value, yet for a low conflict. When the 

conflict is analyzed from the perspective of constant k, k has a value of 0.16 which is in 

agreement with the low conflict expected for Example 3. Though Liu’s approach is more 

general for quantifying conflict, it may fail if it considers that the conflict is quantified in the 

same way by the two metrics since it considers the same value ε is equal for the two metrics. 

Example 4 contains a situation where this approach may fail to capture conflict. 

 

Example 4. Consider two Bodies of Evidence with the following information: m1(A) = 

0.3 and m1(C) = 0.7 for the Body of Evidence 1 and m2(A)= 0.3 and m2(B)= 0.7 for the Body 

of Evidence 2 where ϴ = {A, B, C}. 

 

Using the two-dimensional metric of Liu (2006) for the above example, leads to a result 

(0.7; 0.91) which shows that the two Bodies of Evidence conflict greatly. However, the choice 

of ε can lead to different interpretations. For example, a value of 𝜀 = 0.6 interprets the two 

Bodies of Evidence in Example 4 as being in conflict. While a value of 𝜀 = 0.75  informs us 

that they would not be in conflict according to the interpretation of Liu (2006). Thus, arises the 

need to establish conflict, taking into account the different behaviors of the metrics used. 

In addition to these two metrics, other metrics were developed in the literature at different 

times without, however, ensuring the capture of conflict in a general way. For example, there 

is a Conflict Rate (QU et al, 2009) in Equation (3.12) , a Relative Coefficient (DENG et al., 

2011) in Equation (3.13) and Similarity (WEN-HAO et al. 2013) in Equation (3.14). 

 



Chapter 3 A PROMETHEE-Based Approach for Classification of Conflict in Evidence Theory Integrating Three Conflict Measures 

43 

 

𝜆

=
∑ 𝑚1(𝐵𝑖)𝑚2(𝐶𝑖)𝐵𝑖∩𝐶𝑖=∅

∑ 𝑚1(𝐴)𝑚2(𝐴)𝐴⊆𝚹 + ∑ 𝑚1(𝐵𝑖)𝑚2(𝐶𝑖)𝐵𝑖∩𝐶𝑖=∅

 

  

 (3.12) 

  

𝑟(𝑋, 𝑌) =
∑𝑚1𝐿𝑜𝑔(𝑚1) + ∑𝑚2𝐿𝑜𝑔(𝑚2)

∑𝑚1𝐿𝑜𝑔(𝑚2) + ∑𝑚2𝐿𝑜𝑔(𝑚1)
 

(3.13)    

𝑠𝑖𝑚 =
∑𝑚1′(𝐵𝑖)𝑚2′(𝐵𝑖)

(∑𝑚1′(𝐵𝑖)2𝑚2′(𝐵𝑖)2)1/2
 

𝑚′ (𝐵 ) = ∑
1

|𝐴|
𝐴⊆𝚹,𝐵∈𝐴

 

 

                                       (3.14) 

 

Where  𝑚′ (𝐵 ) = ∑
𝑚(𝐴)

|𝐴|𝐴⊆𝚹,𝐵∈𝐴  in 3-14. 

3.4 PROMETHEE Classification Procedures 

A problem of multicriteria classification involves assigning a finite set of alternatives A 

= {a1 , a2, ..., am} in pre-defined q groups C1 , C2 , ...,Cq where the alternatives are described by a 

vector of n criteria g = {g1 , g2 , ..., gn}. Thus, the general idea is to systematize classifying the 

alternatives based on aggregating the criteria. 

The analysis by Zopounidis & Doumpos (2002) considers that outranking methods are 

the ones most widely used for multicriteria classification. The outranking relationship apSai 

regards the alternative ap as at least as good as alternative ai .In this context, the ELECTRE TRI 

(YU, 1992; ROY & BOUYSSOU, 1993) and the PROMETHEE methods (BRANS &VINCKE, 

1985; VINCKE, 1992), which this paper discusses, stand out. 

The PROMETHEE method uses a flow generated by the evaluations of the criteria so as 

to represent the intensity of preference by which one alternative outranks another. In the case 

of the classification problem, most approaches use the variant known as PROMETHE II 

(DOUMPOS, & ZOPOUNIDIS, 2004; NEMERY & LAMBORAY, 2008; HU & CHEN, 

2011). This paper will also use this variant as a reference where the methodology is the same 

as that described in the study by Doumpos & Zopounidis (2004). In this case, the classification 

is not conducted by means of reference alternatives, but by a set of alternatives that represent a 

given class, as can be seen in Figure 3.1 below. In this representation, the classification of ai is 

defined by a pair-wise comparison with of alternative ai in which each of the alternatives is a 

representative of a particular class. Thus, the arrows coming out of the alternatives of the C1 
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classes and heading towards alternative ai indicate a strong preference for alternative ai in 

relation to the alternatives bi of class C1. The contrary to this analysis is seen in relation to the 

C2 class where the arrows point towards the alternatives bi belonging to the class C2. 

 

 
Figure 3.1 - Classification procedure using pair-wise comparison (adapted from Doumpos & Zopounidis, 

2004) 

 

The intensity of each of the arrows (preference) is defined by a criteria aggregation index 

P(ai,bk) if the arrow is heading for ai or, P(bk,ai )if the arrow is leaving ai where P(ai,bk) is 

defined by Equation (3.15). 

 

𝑃(𝑎𝑖, 𝑏𝑘) = 𝑤𝑗𝑝𝑗(𝑎𝑖, 𝑏𝑘)  (3.15) 

 

In Equation (3.15) 𝑝𝑗(𝑎𝑖, 𝑏𝑘) is defined by the difference between the performance of the 

alternatives in the criteria, 𝑑𝑗(𝑎𝑖, 𝑏𝑘) = 𝑔𝑗(𝑎𝑖) − 𝑔𝑗(𝑏𝑘), when the preference is increasing in 

criterion j. and in 𝑑𝑗(𝑎𝑖, 𝑏𝑘) = 𝑔𝑗(𝑏𝑘) − 𝑔𝑗(𝑎𝑖) when the preference is decreasing in relation 

to criterion j. After defining 𝑑𝑗(𝑎𝑖, 𝑏𝑘), 𝑝𝑗(𝑎𝑖, 𝑏𝑘) is defined by Equation 3-16. 

𝑝𝑗(𝑎𝑖, 𝑏𝑘) = {
0                            𝑖𝑓 𝑑𝑗(𝑎𝑖, 𝑏𝑘) < 0  

ℎ𝑗 (𝑑𝑗(𝑎𝑖, 𝑏𝑘))   𝑖𝑓𝑑𝑗(𝑎𝑖, 𝑏𝑘) ≥ 0  
                                  

 (3.16) 

 

Where 𝑝𝑗(𝑎𝑖 , 𝑏𝑘) is a function limited between 0 and 1. The ℎ𝑗 (𝑑𝑗(𝑎𝑖, 𝑏𝑘)) function may 

take different forms that depend on the DM’s preference behavior. For example, the study by 

Brans & Vincke (1985) defines six different functions for the DM’s behavior. 
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After this explanation, the preference index, 𝑃(𝑎𝑖, 𝑏𝑘), will serve as the basis for 

classifying alternative ai into a particular class. To do so, the classification rule is defined based 

on a classification flow of alternative 𝑎𝑖 in relation to the alternatives bi belonging to the classes. 

For example, on considering the classification with two classes, there is the one that is 

structured in Equation (3.17) below (DOUMPOS & ZOPOUNIDIS, 2004). 

 

𝑓𝑖 =
1

𝑚2
𝑓𝑖
+ −

1

𝑚1
𝑓𝑖
− =

1

𝑚2
∑ 𝑃(𝑎𝑖, 𝑏𝑘) −

1

𝑚1
∑ 𝑃(𝑏𝑘, 𝑎𝑖)

𝑏𝑘∈𝐶1𝑏𝑘∈𝐶2

  (3.17) 

 

In this case, it is considered that C1 is preferable to class C2. The 𝑓𝑖
+flow represents the 

amount by which alternative 𝑎𝑖 outranks all alternatives belonging to the C2 class while the 𝑓𝑖
− 

flow represents the intensity at which alternative 𝑎𝑖 is outranked by all the alternatives 

belonging to the C1 class. The values m1 and m2 represent the number of alternatives belonging 

to class C1 and C2 respectively. The higher the f value, the more prone is the classification of ai 

into Class 𝐶1. After defining the 𝑓𝑖 flow, the classification of ai is established based on a cut-off 

threshold b as shown in Equation (3.18) (DOUMPOS & ZOPOUNIDIS, 2004). 

 

{
𝑓𝑖 > 𝑏 → 𝑎𝑖 ∈ 𝐶1 
𝑓𝑖 < 𝑏 → 𝑎𝑖 ∈ 𝐶2

                                  (3.18) 

 

For the general case involving the classification of an alternative into q classes, the 

authors suggest that the problem be broken into subproblems like those described in Equation 

(3.17) and (3.18). Therefore, if the classes have the following preference relation 𝐶1 ≺ 𝐶2… ≺

⋯ ≺ 𝐶𝑞 , then the 𝑓𝑖𝑟
+ flow is created which represents the outflow of alternative ai in relation to 

the alternatives that belong to the set of classes {𝐶𝑟+1, 𝐶𝑟+2,…,𝐶𝑞} and the inflow flow 𝑓𝑟𝑖
− which 

represents the inflow into alternative ai that arises from the alternatives belonging to the set of 

classes {𝐶1, 𝐶2,…,𝐶𝑟}. Therefore, Equation (3.18) should be modified to adapt the general case 

by using Equation (3.19) and Equation (3.20) (DOUMPOS & ZOPOUNIDIS, 2004). 
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𝑓𝑖𝑟 =
1

𝑚2
𝑓𝑖𝑟
+ −

1

𝑚1
𝑓𝑟𝑖
−

=
1

𝑚𝑖𝑟
∑ 𝑃(𝑎𝑖, 𝑏𝑘) −

1

𝑚𝑟𝑖
∑ 𝑃(𝑏𝑘, 𝑎𝑖)

𝑏𝑘∈𝐶𝑟𝑖𝑏𝑘∈𝐶𝑖𝑟

 

 (3.19) 

 

 

{
 
 

 
 

𝑓𝑖1 > 𝑏1 → 𝑎𝑖 ∈ 𝐶1                       
𝑒𝑙𝑠𝑒 𝑓𝑖2 > 𝑏2 → 𝑎𝑖 ∈ 𝐶2          

…                             
           𝑒𝑙𝑠𝑒 𝑓𝑖𝑞−1 > 𝑏𝑞−1 → 𝑎𝑖 ∈ 𝐶𝑞−1

𝑒𝑙𝑠𝑒  𝑎𝑖 ∈ 𝐶𝑞

                                  

 (3.20) 

 

 

3.5 A Proposed Framework for THE Multicriteria Classification of Conflict IN 

DST Based ON THE PROMETHEE Method 

As seen in Section 3, a classification of conflict within DST should involve at least more 

than one criterion and at the same time should aggregate them while taking into account the 

different behaviors of the criteria and characteristics of the data which to some extent are 

subjective as explained by Liu (2006). Given these characteristics, a multicriteria classification 

method makes it ideal for analyzing conflict in DST. Thus, the alternatives in question to be 

classified will be all the possible pairs of Bodies of Evidence under analysis. The second part 

consists of determining what the classes of conflict are. Therefore, it was considered that there 

are three classes {𝐶1, 𝐶2,𝐶3} . Where C1 is the class of low conflict, C3 represents the class of 

high conflict and C2 is the class of alternatives with moderate conflict. From the point of view 

of a decision problem, it is logical that a DM´s preference structure is 𝐶3 ≺ 𝐶2 ≺ 𝐶1, since, if 

all alternatives were to be classified in class 𝐶1, DRC can be used without the repercussion of 

generating counter-intuitive results. 

The aim of choosing three classes is to avoid the movement between the absence of 

conflict to the state of conflict being abrupt. This classification is also based on using DRC. 

Thus, the standard that Liu (2006) describes can be followed. It seeks to classify pairs of Bodies 

of Evidence in three situations: Pairs where DRC should be avoided (high conflict), pairs where 
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DRC can be applied (low conflict) and pairs where the rule should be used with caution 

(moderate conflict). 

 

3.5.1 Procedure approach for generating parameters by disaggregation for 

classification using PROMETHEE 

A known problem in the methods discussed in Section 4 is the high number of parameters 

that should be compiled based on the DM´s judgment. One way to reduce the cognitive effort 

required in the elicitation of parameters phase is to use a disaggregation approach. In this 

approach, the DM classifies a group of alternatives, A*, a priori into a particular class and from 

this classification, parameters are generated which best fit the DM’s choice. Thus, on having as 

a parameter the study by Silva and Almeida-Filho (2016), which uses a disaggregation model 

for ELECTRE TRI developed by Mousseau & Slowinski (1998) to classify conflict in Evidence 

Theory, a disaggregation model for the PROMETHEE method was used. 

This section presents a method of disaggregation based on the approach contained in the 

study by Doumpos & Zopounidis (2004) who use the idea contained in the paper by Siskos & 

Yannacopoulos (1985) in which the 𝑝𝑗(𝑎𝑖, 𝑎𝑙) function is considered a pair-wise linear 

function. Thus, the maximum difference is defined between the alternatives contained in set A* 

in each j criterion given by 𝑑𝑗
𝑚𝑎𝑥 = max {𝑎𝑖𝑗 − 𝑎𝑙𝑗} where the alternatives belong to class A*. 

Then, the interval [ 0, 𝑑𝑗
𝑚𝑎𝑥] is set at sj subintervals  [0, 𝑑𝑗

1], (𝑑𝑗
1, 𝑑𝑗

2], … , (𝑑
𝑗

𝑠𝑗−1 , 𝑑𝑗
𝑚𝑎𝑥]. If  

𝑑𝑗
𝑖𝑙 ∈ (𝑑𝑗

𝑡−1, 𝑑𝑗
𝑡), the 𝑝𝑗(𝑎𝑖, 𝑎𝑙) preference function is given by: 

 

𝑝𝑗(𝑎𝑖, 𝑎𝑙) =∑ℎ𝑗𝑣 +
𝑑𝑗
𝑖𝑙 − 𝑑𝑗

𝑡−1

𝑑𝑗
𝑡 − 𝑑𝑗

𝑡−1

𝑡−1

𝑣=1

ℎ𝑗𝑡 
 (3.21) 

 

 

Where  ℎ𝑗𝑡 = ℎ𝑗(𝑑𝑗
𝑡) − ℎ𝑗(𝑑𝑗

𝑡−1) ≥ 0. The problem is then summarized in the full 

estimation of the ℎ𝑗𝑣 functions that defined the preference relation 𝑝𝑗. However, this problem 

presents a non-linear dimension since the weights wj must also be estimated. In order to reduce 

the computational effort to solve the problem, the authors use the following change of 

variable ℎ𝑗𝑡
′ = 𝑤𝑗ℎ𝑗𝑡 . Thus, the problem can be rewritten as given in Equation (3.22). 
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𝑝𝑗
′(𝑎𝑖, 𝑎𝑙) = 𝑤𝑗𝑝𝑗 =∑ℎ′𝑗𝑣 +

𝑑𝑗
𝑖𝑙 − 𝑑𝑗

𝑡−1

𝑑𝑗
𝑡 − 𝑑𝑗

𝑡−1

𝑡−1

𝑣=1

ℎ′𝑗𝑡  
 (3.22) 

 

Now the ℎ′𝑗𝑡 values can be determined by an approach using a linear programming model. 

Given the alternatives pre-classified by the DM, a linear programming model is used to generate 

parameters – see Expressions from Equation (3.23) to Equation (3.32) below: 

  

max𝛼 
 (3.23) 

 

Subject to: 

 

 

𝛼 ≤ 𝑒
𝑖

𝑏𝑗
  (3.24) 

 

𝑓𝑖 − 𝑒𝑖
𝑏1 = 𝑏1 ∀𝑎𝑖  ∈ 𝐴

∗ ∩ 𝐶1   (3.25) 

 

𝑓𝑖 + 𝑒𝑖
𝑏1 = 𝑏1 ∀𝑎𝑖  ∈ 𝐴

∗ ∩ 𝐶2   (3.26) 

 

𝑓𝑖 − 𝑒𝑖
𝑏2 = 𝑏2 ∀𝑎𝑖  ∈ 𝐴

∗ ∩ 𝐶2   (3.27) 

 

𝑓𝑖 + 𝑒𝑖
𝑏2 = 𝑏2 ∀𝑎𝑖  ∈ 𝐴

∗ ∩ 𝐶3   (3.28) 
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𝑓𝑖 − 𝑒𝑖
𝑏1 = 𝑏1 ∀𝑎𝑖  ∈ 𝐴

∗ ∩ 𝐶3   (3.29) 

 

 

∑∑ℎ𝑗𝑡
′ = 1

𝑠𝑗

𝑡=1

𝑛

𝑗=1

 
 (3.30) 

 

 

 𝑤𝑖 ≥ 0 ∀𝑎𝑖  ∈ 𝐴
∗   

 (3.31) 

 

Where bi is unrestricted with regard to sign.   

 

The difference in the approach contained from Equation (3.20) to Equation (3.29) in 

relation to the approach described in Doumpos & Zopounidis (2004) is in the 𝑒
𝑖

𝑏𝑗
variable which 

represents the slack variables in the set of constraints in Equation (3.24) to Equation (3.29). The 

idea of using these variables follows the same reasoning described in Mousseau & Slowinski 

(1998), that is, the higher the values are, the greater the adjustment of the model to the 

parameters. This optimization condition is guaranteed by Equation (3.23) and Equation (3.24). 

Equations from Equation (3.30) to Equation (3.32) represent the conditions for the model to 

exist.  

 

3.5.2 Framework for conflict classification within DST with multiple conflict measures 

The framework proposed in this paper for conflict considers it possible classification 

using examples of known conflict to determine conflict levels in advance and use this 

information to provide the parameter of a multicriteria model considering various metrics. Thus, 

it is possible to eliminate arbitrariness inherent in the definition of certain parameters in 

situations in which the decision maker does not have a perception of the scale, as occurs in 

some situations when analyzing metrics conflict in DST. 
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After defining the disaggregation method for setting the parameters as presented in last 

Section, Figure 3.2 summarizes the steps defined for the application framework approach 

proposed. 

 

 

Figure 3.2 - A Multicriteria Conflict Classification Framework for Evidence theory 

3.6 Numerical Application 

In this Section the framework proposed in this paper is applied to a numerical example in 

the literature. On using this example, the procedure proposed is applied so as to obtain the 

parameters of the multicriteria model for classifying conflict. Therefore, it is shown how the 

method developed in this paper can be used while having as a base examples of conflict which 

have been assigned a priori according to the DM’s classification so as to obtain the parameters 
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of the method of classification and subsequent classification of the conflicts between the 

alternatives that may come to be considered. 

The first step of the proposed framework (Figure 3.2) is to define the BOEs referring to 

set A* in view of the need to generate parameters which will be obtained from a pre-

classification of conflict combined with the procedure described in Section 5. Therefore, the 

data in Table 3.1 show 6 pairs of Bodies of Evidence which were classified a priori as to conflict 

by a hypothetical DM (Table 3.1), which, although they are different data, were classified 

according to the proposal by Liu (2006) as seen in the last column of Table 3.1. 

 

Table 3.1 - BOE of set A* (Silva & Almeida-Filho, 2016) 

BOE Sets 

{𝜽𝟏} {𝜽𝟐} {𝜽𝟑} {𝜽𝟏, 𝜽𝟐} {𝜽𝟏, 𝜽𝟑} {𝜽𝟐, 𝜽𝟑} ϴ Class 

m1 0.9  0.1     C3 

m2  0.8 0.1    0.1 
m3 0.8 0.1     0.1 C3 

m4  0.1 0.8    0.1 
m5 0.4 0.4 0.2     C2 

m6 0.8      0.2 
m7 0.4 0.4 0.2     C2 

m8 0.7 0.2     0.1 
m9 0.4 0.3 0.2  0.1   C1 

m10 0.2 0.3 0.2 0.2   0.1 
m11 0.8      0.2 C1 

m12 0.1     0.2 0.7 
 

It is from Tables 3.1 and 3.2 that the parameters are generated for the PROMETHEE 

method using the disaggregation methods which were described in Section 6. Table 3.3 shows 

the parameters generated for the PROMETHEE method, while the criteria functions adopted 

can be seen in Figure 3.3. 

Table 3.2 - Decision matrix of set A* (Silva & Almeida-Filho, 2016) 

Alternatives Pairs g1 = K g2= d1 g3 =Conflict 

rate 

Class 

a1 (m1;m2) 0.89 0.86 0.99 C3 

a2 (m3;m4) 0.8 0.8 0.975 C3 

a3 (m5;m6) 0.48 0.46 0.6 C2 

a4 (m7;m8) 0.54 0.33 0.6 C2 

a5 (m9;m10) 0.49 0.13 0.7 C1 

a6 (m11;m12) 0.16 0.53 0.42 C1 
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Table 3.3 - Parameters generated in accordance with Tables 3.1 and 3.2 

w1 w2 w3 b1 b2 

0.2539 0.5 0.2461 0.125 -0.125 

 

 

Figure 3.3 - The PROMETHEE Elicitation Criteria. 

 

To classify conflict, the analysis using three criteria used in Silva & Almeida - Filho 

(2016)   was considered, namely, the constant k of DRC; the betting commitment distance and 

the conflict rate. It should be noted that to allow comparison with the results obtained in Silva 

& Almeida-Filho (2016), what was considered was that the weights of the criteria used in this 

application of the PROMETHEE method were fixed and equal to those obtained for the 

ELECTRE TRI method (SILVA & ALMEIDA - FILHO, 2016) and the data of Table 3.4 were 

used in accordance with Frikha (2014). 

 

Table 3.4 - Bodies of Evidence (Frikha, 2014) 

2𝚹 m1 m2 m3 m4 m5 m6 

{𝜃1} 0.75 0.4 0 0.35 0.5 0.05 

{𝜃2} 0.1 0.2 0.9 0.15 0.1 0.1 

{𝜃3} 0.05 0.1 0.1 0.25 0 0 

{𝜃1, 𝜃2} 0 0.3 0 0.2 0 0.3 

{𝜃1, 𝜃3} 0 0 0 0 0 0.2 

{𝜃2, 𝜃3} 0 0 0 0 0.15 0.1 

ϴ 0.1 0 0 0.05 0.25 0.25 

 

This numerical example is interesting for this analysis because it contains types of Bodies 

of Evidence with different conflict properties that would not be classified adequately whenever 
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only one metric of conflict in DST was applied. The result of the classification obtained by the 

proposed procedure is shown in Table 3.5. 

Table 3-5 - Conflict classification for the example 

Alternativ

e 

pair g1 = K g2= Bet g3 = 

Con.Rate 

PROMETHEE 

CLASSIFICATION      

a1 (m1,m2) 0.320 0.233333 0.4961 C1 

a2 (m1,m3) 0.805 0.783333 0.8888 C3 

a3 (m1,m4) 0.395 0.316667 0.5724 C2 

a4 (m1,m5) 0.2665 0.2 0.3948 C1 

a5 (m1,m6) 0.1975 0.4 0.7315 C2 

a6 (m2,m3) 0.547 0.55 0.7397 C2 

a7 (m2,m4) 0.425 0.166667 0.625 C1 

a8 (m2,m5) 0.260 0.091667 0.5416 C1 

a9 (m2,m6) 0.1975 0.166667 0.5737 C1 

a10 (m3,m4) 0.610 0.633333 0.7922 C2 

a11 (m3,m5) 0.510 0.641667 0.85 C2 

a12 (m3,m6) 0.270 0.516667 0.75 C2 

a13 (m4,m5) 0.3125 0.116667 0.6067 C1 

a14 (m4,m6) 0.220 0.116667 0.6769 C1 

a15 (m5,m6) 0.1325 0,116667 0.5408 C1 

 

Based on this classification, it is seen that the method presents the Body of Evidence m3 

as the body of evidence of greatest conflict in relation to the others. With regard to validating 

the proposed procedure, the classification obtained is compatible with the classification 

proposed in Silva & Almeida-Filho (2016). 

3.7 Conclusion 

This article discussed how to determine conflict in Evidence Theory from the perspective 

of multicriteria classification. As an expansion in relation to the method developed in Silva & 

Almeida-Filho (2016), a multicriteria classification approach to conflict in Evidence Theory 

was implemented which considered multiple metrics of conflict. 

Besides the advantage of considering the possibility of integrating more than one 

criterion, which already means a greater capture of the conflict in Evidence Theory, this study 

also deals with the subjective aspect of classifying conflict. Accordingly, and instead of 

considering the direct elicitation of parameters, which very often makes this task prohibitive 

from the standpoint of cognitive effort, disaggregation techniques are used where the 
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parameters of the model are generated indirectly by pre-judging conflict, and three classes of 

conflict are considered. Even as a differential, the same alternatives obtained in the pre-

classification of conflict are used in the multicriteria classification procedure. 

By means of an example considered in the literature, the validity of the classification 

using the PROMETHEE method was demonstrated. On using a numerical application, it was 

noted that the classification procedure proposed in this paper is compatible with the 

classification obtained by using the ELECTRE TRI method of Silva & Almeida-Filho (2016), 

which shows the consistency of this proposal. 

As a further contribution of this research, it is important to note that the method of 

disaggregating parameters for PROMETHE proposed in this article has the advantage of being 

based on linear programming, since the reference Silva & Almeida-Filho (2016), uses a 

procedure based on non-linear programming. Moreover, the flexibility of representation of the 

criterion function in the proposed method is greater than the method developed in Silva & 

Almeida-Filho (2016). 
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4 A POSSIBILISTIC-PROBABILISTIC KNOWLEDGE-BASED REAL 

OPTIONS MODEL FOR NPD PROJECT FINANCIAL EVALUATION 

 

In this chapter we will present a fuzzy model of real options so as to make a financial 

evaluation of NPD in order to overcome shortcomings in existing models, considering the main 

uncertainties involved in the development of new products, in which technical uncertainty and 

market uncertainty are analyzed separately. Given the imprecision and subjectivity involved in 

such projects, fuzzy numbers together with probabilistic approaches are used to model 

uncertainty. A new visualization is presented to illustrate the results from the combination of 

fuzzy numbers and the probabilistic approach used. A case study is presented where the 

technical and market flexibility are evaluated. 

 

4.1 Knowledge-Based Real Options Model for NPD Evaluation 

The financial analysis of New Product Development (NPD) is a major challenge for 

financial engineering analysts. In the first instance, traditional metrics that involve the analysis 

of discounted cash flow tend to underestimate the present value of a project because this does 

not take into account the internal flexibility of the project in the context of uncertainty. 

To remedy these shortcomings, the literature recommends the use of real options as an 

ideal approach for analyzing such projects, since this places decision-makers in a setting of 

active performance, thereby enabling them to be in command of the value of a project to the 

extent that the uncertainty related to it decreases (LINT & PENNINGS, 1998; FAULKNER, 

1996; DIXIT & PINDYCK, 1995). 

However, the strong level of flexibility is not the only factor of difficulty when analyzing 

NPD projects. The different types of uncertainties linked to choosing a model also represent a 

complicating factor which, if not dealt thoroughly with, can lead the analyst to design a model 

with a low level of information (PERMINOVA et al., 2008). 

Therefore, what is needed first of all is to stipulate what the risks are that affect the project, 

which from point of view of NPD are basically derived from two types of uncertainty 

(HUCHZERMEIER & LOCH, 2001; SANTIAGO & BIFANO, 2005; WANG & YANG, 2011; 

WANG, WANG & WATADA, 2015): The technical uncertainty that can be controlled and 
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decreased by designers throughout the period of new product development and the market 

uncertainty that can be taken on board as an opportunity when launching the product. 

As a final step, there is modeling of uncertainty where its nature must be taken into 

consideration. In the specific case of NPD, these uncertainties are mostly subjective and elicited 

by using experts since the analysis takes place in the early stages of the project. Many 

techniques may support the modeling of uncertainty and the experts’ knowledge assessment, 

which for instance includes evidence theory approaches, such as the one presented by 

AbuDahab, Xu & Chen (2016) or the one exemplified by Yang et al (2016) for an NPD context. 

Hence probabilistic traditional approaches can also be criticized as to different aspects such as 

ambiguity, the lack of a priori knowledge and the limited capacity of human beings to process 

information (Pender, 2008), thus, fuzzy approaches may be widely used within NPD context 

(Zaim et al., 2014). 

Traditional models of real options used to value projects are derived from financial 

options or more precisely the Black and Scholes (1973), Gesk (1979) and Cox, Ross & 

Rubinstein (1979) models. Such models tend not to be very informative with regard to NPD 

because, since they are derived from financial models, they are more suitable for projects that 

have random uncertainties, which do not consider the influence of the management and 

development of a project with respect to its performance.  

Therefore, a possibilistic-probabilistic model will be used to model the uncertainty built 

into a real options model that incorporates the technical uncertainty by means of a binomial tree 

representing the development of the product over time while market uncertainty is incorporated 

via a payoff function that incorporates the total amount paid by the market. One way to model 

possibilistic uncertainty is by using Fuzzy Set Theory (Zadeh, 1999). Thus, project variables, 

which have an imprecise and ambiguous level of uncertainty, are modeled as triangular fuzzy 

variables. 

This work addresses the issues raised by Wang, Wang & Wu (2015) regarding the 

integration of fuzzy sets theory with real options analysis for evaluating NPD projects. Another 

contribution of this work, besides the fuzzy real options approach for NPD evaluation, is a new 

visualization approach to illustrate the results from the combination of fuzzy and probabilistic 

approaches used in the proposed model. 

Besides this introduction, this paper is divided into 5 sections. In Section 2, a review of 

the literature on models that combine real options with fuzzy uncertainty modeling is made. 
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Section 3 contains a description of the proposed model of fuzzy real options that integrates the 

main sources of uncertainty regarding NPD projects while Section 4 contains a case study on 

the development of a software program. Finally, there is the conclusion where the main results 

of this research study are given and future lines of research are suggested. 

4.2 Recent Development ON FUZZY Real Options Analysis 

Recently the number of articles using Fuzzy Set Theory in the context of real options has 

increased. In this area, the first basis for such studies has been research by Carlsson & Fullér 

(2003) in which they develop a model for determining the optimal exercise time of an option, 

which includes the expected present value of the cash flow and costs using fuzzy trapezoidal 

numbers. To estimate the value of the real option, Carlsson & Fullér (2003) used a modified 

Black-Scholes equation (Black-Scholes, 1973). Similarly, Lee, Tzeng & Wang (2005) proposed 

to the Black and Scholes option pricing model a fuzzy decision theory and Bayes’ rule 

throughout a fuzzy decision space based on fuzzy states, fuzzy sample information and fuzzy 

actions. Bi & Wang (2009) adapted the Black-Scholes model to evaluate a BOT infrastructure 

project which included the expected return of the project by using triangular fuzzy variables, 

the expected cost and the risk-free rate. Based on this type of fuzzy real options approach, 

Carlsson et al (2007) put forward a mixed integer programming model for selecting a portfolio 

of R&D projects. 

Using a similar approach, studies by Wang & Hwang (2007) also develop a model for 

selecting a portfolio of R&D projects. Given the sequential aspect of the model, a fuzzy 

compound options model is used to evaluate R&D projects in which a qualitative approach is 

used to convert the portfolio into a crisp number. Also within the fuzzy model compound 

options model, studies by Bednyagin & Gnansounou (2011) analyze an R&D program linked 

to the fusion of energy area. 

Some authors use the same Carlsson & Fullér (2003) equation to analyze opportunities in 

different types of projects in a fuzzy environment. Cheng & Lee (2007) develop a real options 

model that combines fuzzy real options, weighted real fuzzy options and fuzzy decision space 

in order to determine the optimal exercise price of the option related to product outsourcing. 

The formulations using the Black-Scholes model make reference to a continuous decision 

model. Given that many projects related to real assets involve sequential decision models, the 

literature has also explored other approaches that incorporate this feature in the model. 
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In the sequential context, Zmeškal (2010) develops a stochastic model in a fuzzy 

environment for pricing American options. The input data (up index, down index, growth rate, 

initial underlying asset price, exercise price and risk-free rate) are modeled as fuzzy numbers 

and the result, the possibility-expected option value, is determined as a fuzzy set. 

Kahraman (2008) develop a multi-criteria model for evaluating R&D projects where the 

risk aspect of the project is evaluated by means of a fuzzy real options model using a trinomial 

lattice solution method which is extension of the binomial model while the multidimensional 

aspect of the project is analyzed by fuzzy AHP method. 

Still in the context of binary options, the model by Thavaneswaran et al. (2013) considers 

the fuzzy uncertainty relating to the maturity value of the stock price. To test the approach, the 

authors use three different types of fuzzy numbers: trapezoidal, parabolic, and the adaptive 

fuzzy number. 

In the article by Yoshida et al. (2006), a new approach is developed for calculating the 

average value of a fuzzy number where the mean that they develop may also be extended to 

fuzzy random numbers. Armed with this new measure, an American option is analyzed in which 

the optimal price of the option is given by the average value linked to a subjective parameter 

which depends on the decision-maker. 

Also in the context of sequential decision, study by Ho & Liao (2011) develop a 

sequential model based on the Cox et al binomial model (COX, ROSS & RUBINSTEIN, 1979) 

where the volatility of the project and the cost are dealt with as fuzzy triangular numbers. As a 

contribution, the methods further develop a metric for evaluating the options by using the 

concept of the fuzzy average of the present value of the project. 

In terms of the uncertainty of the project with regard to randomness and fuzziness, Wang, 

Wang & Watada (2009) developed a hybrid model to deal with these two types of uncertainty. 

Therefore, they used fuzzy random numbers to model the cash flow as input for a new model 

that uses a binomial lattice-based model with fuzzy random variables, called Fuzzy Random 

Real Options Analysis (FR-ROA). 

In a different context from the Black and Scholes approaches and the binary model, 

Collan, Fullér & Mezei (2009) developed a method known as the Payoff method. This considers 

the calculation of the real option valuation of the present value associated with a cash flow, 

taking into account the ratio between the positive area of the fuzzy NPV and the total area of 

the fuzzy number. 
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As applications Payoff method, one can cite the study by Favato et al (2013) where the 

payoff method is used to assess the value of the option of 4 vaccines used in the treatment of 

HPV. The paper by Hassanzadeh, Collan & Modarres. (2012) develops a method for selecting 

a portfolio of R&D projects where each project is assessed individually by the Payoff method. 

Generally, approaches that exploit real options in the fuzzy context normally deal with 

numbers that have a closed form. In this regard, Wang, Kilgour & Hipel (2011) developed a 

numerical model to evaluate projects using fuzzy real options that include random fuzzy 

numbers. To generate fuzzy numbers, they use the least squares approach of the Monte-Carlo 

simulation. 

4.3 Fuzzy Real Options Model TO Evaluate NPD 

The model proposed by Huchzermeier & Loch (2001) and improved by Santiago and 

Vakili (2005) considers the use of real options for the financial analysis of research and 

development projects that take into account the operational risks (technical uncertainty) and 

market risk. The model proposed in this paper features a fuzzy real options approach to improve 

these models (Huchzermeier & Loch, 2001; Santiago & Vakili, 2005) by allowing to consider 

the imprecision and vagueness inherent to NPD project evaluation. 

The main advantage of this model compared to those presented in section 2 is that the 

approach considered evaluate the main uncertainties present in innovation projects as the 

development of new products, while the models presented in section 2 mainly consider 

uncertainties as financial options.  

Due to the subjective and imperfect knowledge on the uncertainties associated to NPD 

projects, fuzzy is a suitable approach for dealing with such context. Therefore, a fuzzy approach 

is more appropriate to deal with those uncertainties than traditional probabilistic approaches, as 

within the fuzzy approach is possible to consider the imprecision and vagueness inherent to 

NPD. 

The fuzzy real options approach for NPD evaluation proposed in this work takes into 

account previous models from the literature and adds new features to enhance its applicability 

by considering practical aspects that cannot be ignored by considering traditional probabilistic 

approaches, which are incompatible with such aspects that lead to imprecision and vagueness. 

Thus, the proposition hereby presented considers the integration of fuzzy random numbers 

within a probabilistic approach to evaluate the uncertainty in the framework initially proposed 
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by Huchzermeier & Loch (2001). By assuming that the knowledge associated with the payoffs 

and technical uncertainty have a higher degree of imprecision and vagueness, a fuzzy approach 

is used to model these aspects with a possibilistic methodology. 

4.3.1 Fuzzy technical Uncertainty 

The performance variable is one of the main variables affecting the value of a NPD 

project. To illustrate the impact of this variable in such context, consider the development of a 

new computer processor. In this specific case, the variable performance will be the speed of 

processor which at each stage, this variable suffers successive increases. 

Thus, the technical uncertainty is associated with performance variable 𝑋̃𝑡 and probability 

of success 𝑝 at stage t. In that sense, 𝑋̃𝑡 will be a fuzzy random number, as can be seen in 

Equation (4.1): 

𝑋̃𝑡+1 = 𝑋̃𝑡 + 𝑤̃𝑡 
 (4.1) 

 

 

The variable 𝑤̃𝑡 is called the developed performance of product at stage t. This variable 

follow a binomial fuzzy path as can be seen in Equation (4.2) and Equation (4.3):  

𝑤̃𝑡(𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒) = {
𝑙𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝                                  
𝑞̃𝑡  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦1 − 𝑝                          

 
 (4.2) 

 

  

𝑤̃𝑡(𝑖𝑚𝑝𝑟𝑜𝑣𝑒) = {
𝑙𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 + 𝛽            
𝑞̃𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − (𝑝 + 𝛽 )

 
 (4.3) 

 

 

Where 𝑙𝑡̃ and 𝑞𝑡̃ are represented by triangular fuzzy numbers.  𝑙𝑡̃ represents the maximum 

development that can be achieved by the product when all uncertainties in t are resolved while 

𝑞𝑡̃  represents the minimal development that the specialist believes that the product can achieve 

during the time interval t. The modification of the model is contained in the variable β which 

represents an increase in the probability of success. In traditional approaches, a deterministic 

physical addition, I, in performance variable is considered. In our view, this approach is closer 

to reality, as an additional investment in the project is not deterministic for the full success of 
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the project in phase t, but only for the increase in the probability of success since other non-

financial management factors are involved in the success of the product. Therefore, the fuzzy 

cost is defined by Equation (4.4): 

𝑐̃𝑡(𝑢𝑡) = {
𝐾̃𝑡,                  𝑖𝑓 𝑢𝑡 = 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

𝐾̃𝑡 + 𝑎̃𝑡, 𝑖𝑓 𝑢𝑡 = 𝐼𝑚𝑝𝑟𝑜𝑣𝑒   
 

 (4.4) 

 

Where 𝐾̃𝑡 represents the fuzzy cost to continue the project, while 𝑎̃𝑡 represents the fuzzy 

cost to improve the project. 

4.3.2 Fuzzy Market Uncertainty 

The product value or market payoff will be defined through the performance variable 

achieved by launching the product in T, the price that may be paid by the market (𝑃𝑟̃), and 

finally the market requirement function 𝑓(𝑋̃), which may be defined as the market share 

achieved to a certain performance level, 𝑋̃. 

In their model, Huchzermeier & Loch (2001) consider that the market requirement that 

represents the fraction of the product on the market is represented by a normal distribution with 

a mean of μ and a standard deviation of σ. However, these variables are not easily obtained 

from human judgments. Since there are no historical data to model these variables, a way to 

analyze the market demand is by using the opinion of market experts whose imprecision should 

be taken into consideration. Therefore, in the proposed model it is assumed that the market 

requirement can be represented by a triangular probability distribution that is obtained by means 

of three parameters: the minimum demand value, c1 , the average demand value, c2, and the 

maximum value c3. The choice of this approach is also linked to the fact that other variables are 

also elicited based on estimating triangular fuzzy numbers. Thus, f(X) represents the triangular 

probability distribution, the parameters of which can be accessed directly using the knowledge 

of the experts involved in the Marketing area of the project. To complete the analysis, the price 

paid by market will be a fuzzy triangular number  𝑃𝑟̃ = [m,S,M] where m represents the lowest 

price paid by the market; M the highest price paid by the market and, finally, S will represent 

the most likely value paid by the market. Thus, the market Payoff function, 𝛱(𝑋̃), is given by 

Equation (4.5). 
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𝛱(𝑋̃) = 𝑃𝑟̃. 𝑓(𝑋̃) 
 (4.5) 

 

 

Thus, the current project value is reached through the following dynamic programming 

model: 

 

𝑉̃(𝑋𝑇̃) = max𝑢𝑡
(−𝐾𝑡 +

𝑝.𝛱̃(𝑋𝑇̃+𝑙𝑡̃)+(1−𝑝).𝛱̃(𝑋𝑇̃+𝑞𝑡̃)

1+𝑟
; −𝐾𝑡 − 𝑎̃𝑡+

(𝑝+𝛽).𝛱̃(𝑋𝑇̃+𝑙𝑡̃)+(1−𝑝−𝛽).𝛱̃(𝑋𝑇̃+𝑞𝑡̃)
1+𝑟

)  (4.6) 

 

Equation (4.6) represents the product launch on the market when the expected payoff is 

achieved. The other values of the binomial tree are then obtained by recursive equation through 

equation (4.7). 

 

𝑉̃(𝑋𝑡̃) = max𝑢𝑡
( −𝐾𝑡 +

𝑝.𝑉(𝑋𝑡̃+𝑙𝑡̃)+(1−𝑝).𝑉(𝑋𝑡̃+𝑞𝑡̃)

1+𝑟
; −𝐾𝑡 − 𝑎̃𝑡 +

(𝑝+𝛽).𝑉(𝑋𝑡̃+𝑙𝑡̃)+(1−𝑝−𝛽).𝑉(𝑋𝑡̃+𝑞𝑡̃)

1+𝑟
)          (4.7) 

 

4.4 Case Study 

In this section, a numerical application of the proposed model is presented and uses a case 

study about the development of a design of a new software for a management platform and the 

development of innovative corporate projects and for improving processes using suggestions 

that can be inserted into system by the employees themselves and structured into improvement 

projects to be prioritized, implemented and monitored by using this platform.  

Thus, the design of this new product which is being evaluated allows various features to 

be included that may or may not be implemented, after considering several dimensions such as: 

assessment modules to reward the best ideas, communication channels between the managers 

taking part, the presentation of the panorama of ongoing projects, the monitoring of projects, 

resource management, etc. 

The development of this product was structured into four phases, the length of each being 

estimated as four months. At the end of each phase, the progress of the project is passed to the 

managers and some actions can be corrected to increase its performance. Therefore, each phase 

will be considered as a percentage of the number of goals reached that differentiate this product 
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from the others on the market. Thus,  𝑋̃ ranges from 0 to 100% where 0 represents the initial 

stage of the project while 100% represents the stage where all objectives were fully achieved. 

During the survey phase, the managers considered the four identical stages which sets the 

following hypotheses: 𝑙1̃ = 𝑙2̃ = 𝑙3̃ = 𝑙4̃, 𝑞̃1= 𝑞̃2 = 𝑞̃3 = 𝑞̃4 and 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4. Thus, the 

shift in the technical performance of the product can be described by the binomial tree shown 

in Figure 4.1. 

 

 
Figure 4.1 - Binomial Tree of project 

In Table 4.1, the data elicited from experts are presented after a linear transformation. The 

variables 𝑙 and 𝑞̃ represent the expected performance of the project and are modeled as a 

percentage based on the number of criteria developed in each phase. The maximum 

performance of the variable 𝑙 is defined as 100/T=100/4 = 25% where T represents the phase 

number of the project. 

Table 4.1 – NPD Project Data 

Time Cost (continue) Cost (Improve) lt % qt % p % 𝛽 % 

0 [70, 90, 180] [5, 10, 20] x x x x 

1 [20, 25, 50] [10,15,30] [12,18,25] [5,10,15] 0.5 0.2 

2 [15, 20, 30] [15,20,45] [12,18,25] [5,10,15] 0.5 0.2 

3 [10, 15, 25] [25,30,50] [12,18,25] [5,10,15] 0.5 0.2 

4 [5, 10, 15] [30,45,60] [12,18,25] [5,10,15] 0.5 0.2 
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After defining the variables that impact the technical project performance, the binary tree 

of project development can be formed. Figure 4.1 shows the expected performance of the 

project over time. Thus, on the product launch date, the performance scenarios expected are: 

4𝑞̃ ; 𝑙+3𝑞̃; 2𝑙+2𝑞̃; 3𝑙+𝑞̃ and 4𝑙. 

As to market uncertainty, first of all, the total value paid by the Pr market was considered. 

This was modeled as a triangular fuzzy variable, 𝑃̃𝑟 = [100, 400, 800]. In the case of the function 

of the market distribution requirement, f, this was modeled as a random variable that follows a 

triangular probability distribution R= [a,b,c], with the following parameters a = 0, b = 60 and 

c = 100.  

From these variables and the binomial tree shown in Figure 4.1, the scenarios associated 

with the market can be generated. At each expected market performance 𝑋̃4 is associated with 

a market payoff which represents the combination of the market performance, requirement and 

the total value paid by the market. Given that this combination involves a triangular probability 

distribution and a triangular fuzzy number, the result of the payoff function does not necessarily 

represent a triangular fuzzy number as can be seen in Figure 4.2, which represents the expected 

fuzzy market payoff when the product is launched on the market. The expected fuzzy payoff is 

obtained using alpha-cut method through algebraic operations amongst the vectors that 

represent the triangular fuzzy numbers in terms of alpha-cuts and monetary values and the 

triangular probability distribution. 

The result for the expected fuzzy payoff is a similar vector represented in Figure4.2 for t 

= 4, where Figure 4.2 (a), (b), (c), (d) and (e) presents the expected fuzzy payoff respectively 

for 𝛱(4𝑙), 𝛱(3𝑙 + 𝑞), 𝛱(2𝑙 + 2𝑞), 𝛱(𝑙 + 3𝑞) and 𝛱(4𝑞). The visualization presented in 

Figure 4.2 illustrates the results obtained from the combination of the possibilistic and the 

probabilistic approach used in the proposed model. Such visualization allows to understand the 

joint possibilistic and probabilistic features of the results, as illustrated in Figure 4.2 and in the 

following figures presenting the FENPV. 
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Figure 4.2 - Expected payoff in t = 4 for the binomial tree 

4.4.1 Option of Improving the project 

After defining the market payoff, the fuzzy triangular number is derived by using the 

concept of the Fuzzy Expected Net Present Value (FENPV) (Liao & Ho, 2010; Ho & Liao, 

2011). Initially, the flexibility of the project was evaluated by taking into consideration only 

the option of improving the design by means of an additional cost which increases the 

probability of success at a fixed value, β. 
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Thus, the FENPV of the project was obtained by means of equations (4.6) and (4.7), 

considering a risk-free rate of 4,4% over 4 months. For comparison purposes, two fuzzy 

numbers were generated. Figure 4.3 presents the comparison for the FENPV of the project with 

(a) and without flexibility (b). 

 

Figure 4.3 - Results of FENPV with improve option and without flexibility 

 

4.4.2 Option of to Expand the Project 

Besides the option of to improve the project, another opportunity that projects of this 

nature present and was not contemplated in the original model by Huchzermeier & Loch (2001), 

is linked to the option of to expand the business, such as by expanding the scope of the product 

or adapting it to permit its being marketed in another region based on this additional cost. In 

this case, the decision is made only at the end of node T=4. 

Taking as an example the software project, consider the case in which the company has 

the option to market the software in another country, which although it has a smaller market, 

has the competitive advantage of there being less competition. Thus, experts are able to 

visualize the total paid by this new market 𝑃̃r* = [100, 300, 400] at an additional cost of 

investment,  𝐶̃𝐸𝑥𝑡= [30, 35, 50], while of course maintaining the same market requirement. 

Thus, the optimal decision is made according to Equation (4.8) at T=4 

𝑉4 = max {
𝑃𝑟̃. 𝑓(𝑋̃)                                             𝑖𝑓 𝑛𝑜𝑡 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑

(𝑃𝑟̃ + 𝑃𝑟 ∗̃ − 𝐶̃𝐸𝑥𝑡)𝑓(𝑋̃)                      𝑖𝑓 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑               
 

 (4.8) 

 

(a) (b) 
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On considering Equation (4.8), the FENPV of the option to expand can be generated and 

compared to the value of the project without flexibility, as shown in Figure 4.4 (a) and (b) 

respectively. 

 

Figure 4.4 - Results of FENPV with expand option and without flexibility 

4.4.3 Multiple Options 

Finally, there is the combined analysis of multiple options that considers the joint use of 

the option to improve with the option to expand the project. Thus, the decision-maker can either 

change the course of the project, considering an additional cost that represents an increase in 

the probability of the technical success of the project or the option of trying to increase the 

profit of the project, considering the option of marketing the product in other markets at an extra 

logistical cost. 

The result of FENPV for the multiple options and without flexibility is presented in Figure 

4.5 (a) and (b), respectively. 

(a) (b) 
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Figure 4.5 - Result of FENPV for the multiple options and without flexibility 

4.4.4 Mean Fuzzy Expected Net Present Value 

Although the graphic display is valid to analyze the results, quantifying the value of the 

option is also needed and this is done by using the mean value in the case of the probabilistic 

approaches. Thus, this article uses the concept of the fuzzy mean value obtained from Equation 

(4.9) (Yoshida et al., 2006; Liao & Ho, 2010; Ho & Liao, 2011): 

𝐹𝐸𝑁𝑃𝑉 = ∫ [(1 − 𝜆). 𝐴1(𝛼)𝑑𝛼 + 𝜆. 𝐴2(𝛼)]𝑑𝛼
1

0

 
 (4.9) 

 

 

Where λ ∈ [0,1] represents the optimism-pessimism index and is linked to the investors’ 

perception of risk and A1 and A2 represent the alpha-cuts of the fuzzy number. For didactic 

purposes, in this paper, the investor was considered neutral, that is, λ = 0.5. The fuzzy average 

values can be seen in Table 4.2 in which the option value is the difference between the average 

value of the project with the option and the average value in the absence of the option. 

Table 4.2 – Mean FENPV of Project in different options 

 Project flexibility Mean-FENPV Option Value 

No Options 65,117 X 

Improve 91,292 26,175 

Expand 174,367 109,25 

Multiple Options 220,514 155,397 

 

(a) (b) 
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4.4.5 Analysis of The Results 

The results obtained enable the NPD project to be evaluated considering the particulars 

of a project with these features. By applying the proposed model, it can be seen that vis-à-vis 

the nature of the level of observation which it has for these types of projects, the use of a fuzzy 

approach enables the experts’ knowledge to be better represented and better portrays the 

imprecision that exists in the information available. 

From the results of Figures 4.3 and 4.4, which are summarized in Figure 4.5 to represent 

the possibility of exercising the multiple options, the possibility of considering the impacts of 

the technical and market uncertainty are portrayed. As can be seen from Table 4.2, the 

advantage in using multiple options (of to improve and to expand) can be analyzed when it is 

verified that the individual sums of the option value of to improve and to expand are less than 

the value of the option when the two options are combined in the model. 

By comparing with the FENPV, a consolidated metric 4-9 is obtained which represents 

the value of each of the options and the opportunities that the model is able to capture in such 

a way that it is possible to provide a decision-maker with a consolidated analysis - similar to 

that offered by other models – but which is more robust since it considers the imprecision 

inherent in this context by using a fuzzy approach. 

4.5 Conclusions 

This article set out to put forward a financial evaluation model for NPD projects with a 

view to integrating experts’ subjective knowledge by using a probabilistic-fuzzy approach in a 

real options model that takes into account the uncertainties normally present in projects of this 

nature. 

The main advantage of the proposed model is the separation of the technical flexibility of 

the project in relation to the market flexibility in the context of a fuzzy environment, since the 

existing approaches do not differentiate these uncertainties in terms of flexibility with a fuzzy 

approach. On incorporating a fuzzy approach, inconsistencies can be avoided that arise due to 

the lack of knowledge and precision some of these variables. 

Through a case study that makes a financial evaluation of an NPD project, it was possible 

to illustrate the application of the proposed model, and given the results, it can be seen that the 

flexibility on combining the two options is greater than the individual flexibilities regarding the 
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technical and market uncertainty which gives evidence for there being greater integration 

between the technical team and the marketing team while the project is being drawn up and 

carried out. This tends to increase the value of the option. 

Drawing on this article, new models can be constructed which may seek to integrate other 

sources of flexibility in NPD projects, such as, time to market the product which has an impact 

from both the technical and market point of view. 

Furthermore, since an NPD project generally involves a large number of participants, 

there is the possibility of integrating and proposing models that incorporate aggregation 

methods and combinations of experts’ different opinions using fuzzy logic (Kokshenev et al., 

2015) or rough group ANP (CAO & SONG, 2016). Another development opportunity is that 

of a model of real options for NPD projects in the context of group decision and negotiation 

(PEDRYCZ & SONG, 2011; PARREIRAS et al., 2012; PELTA & YAGER, 2010; WANG, 

KILGOUR & HIPEL 2015) since different areas may be involved in drawing up and evaluating 

this type of project. 
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5 FINAL REMARKS 

5.1 Thesis Conclusions 

This thesis has presented three articles dealing with the representation of uncertainty. In 

relation to the first three articles that deal with conflict analysis in Dempster - Shafer Theory 

(DST) using multicriteria decision models, it is seen that the articles have complementary 

points. In the first article, class boundaries are defined based on class profiles that are directly 

obtained from the proposed disaggregation model while in the second article these boundaries 

are defined based on the pairs of pre-classified bodies of evidence pre-classified in accordance 

with the conflict. 

In the third article, which integrated a real options model with Fuzzy set logic, the 

measurement of risk in NPD projects was expanded. To do so, the traditional notion of NPV 

was expanded to take into account the dimensions of the technical risk and the market risk by 

using triangular fuzzy numbers. Thus, risk analysis can be obtained by using the FNPV notion 

while the flexibility value of the project is understood by using the FROV value. It should also 

be emphasized that in the case of NPD projects, the uncertainty modeling present in this type 

of project requires a subjective analysis. Thus, the use of a model approach that takes into 

account the vagueness present in subjective judgments facilitates the elicitation of those who 

possess knowledge about the project. 

 

5.2 Research Developed 

Regarding the current state of the articles, the first article, Chapter 2, was published in 

Information Sciences while the other articles are being peer reviewed. The second article has 

been submitted to Information Fusion, the third to Knowledge-Based Systems. 

In addition to the articles presented in this thesis, other studies were undertaken during 

the PhD program, including an article published in IEEE Power Delivery (SILVA, da SILVA 

& ALMEIDA-FILHO, 2016) and another in IEEE Latin America (da SILVA JUNIOR, de 

OLIVEIRA SILVA & de ALMEIDA-FILHO, 2016) which address proposals for allocating 

measurement sensors in an electricity distribution network to identify non-technical losses, 

which were not included in this thesis because they are not integrated into this topic. 
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The future work following this research shall consider a model for checking the 

consistency of a set of conflict metrics based on pairs of bodies of evidence pre-classified into 

classes of conflict. Therefore, such model can be used as input for applying both what the first 

and second articles proposed since by using the DRSA, reducts of metrics can be generated that 

have the same consistency as the total set of metrics. 
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