

Pós-Graduação em Ciência da Computação

“EXTENDING THE RIPLE-DESIGN PROCESS WITH

QUALITY ATTRIBUTE VARIABILITY

REALIZATION”

Por

Ricardo de Oliveira Cavalcanti

Dissertação de Mestrado

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, AGOSTO/2010

Universidade Federal de Pernambuco

Centro de Informática

Ricardo de Oliveira Cavalcanti

“Extending the RiPLE-Design Process with Quality Attribute

Variability Realization”

Trabalho apresentado ao Programa de Pós-Graduação em Ciência

da Computação do Centro de Informática da Universidade Federal de

Pernambuco como requisito parcial para obtenção do grau de Mestre

em Ciência da Computação

M.Sc. Dissertation presented to the Graduate Program in Computer

Science of the Universidade Federal de Pernambuco in partial

fulfillment of the requirements for the degree of M.Sc. in Computer

Science

Advisor: Prof. Dr. Silvio Romero de Lemos Meira

Co-advisor: Prof. Dr. Eduardo Santana de Almeida

Recife, August/2010

Cavalcanti, Ricardo de Oliveira
 Extending the riple-design process with qual ity attribute
variability realization / Ricardo de Oliveira Caval canti - Recife:
O Autor, 2010.
 x, 136 folhas : il., fig., tab.

 Dissertação (mestrado) Universidade Federal de
Pernambuco. CIn. Ciência da Computação, 2010.

 Inclui bibliografia e apêndice.

 1. Engenharia de software. 2. Reúso de soft ware. I. Título.

 005.1 CDD (22. ed.) MEI2010 – 0167

To my parents, Ana and Toinho, my sisters, Natália and Nara

and my girlfriend, Emília

iv

ACKNOWLEDGMENTS

Initially, I would like to thank the professors from Federal University of Pernambuco (UFPE)

who provided me with the necessary educational support to get here.

I would like to thank Inove Informática for supporting my desire to obtain my master degree.

I would like to thank the Reuse in Software Engineering (RiSE) group for the support and

opportunity to discuss my work. I am grateful to Flávio Medeiros and Vanilson Burégio, for

their revisions, thoughts and comments. My eternal gratitude to the RiSE Labs members for

their patience during the experiment, seminars, presentations and discussions about my work.

Last but certainly not least, I would like to thank my family, friends, and my girlfriend;

especially, my parents that have always supported me.

v

RESUMO

Reúso de software é uma forma viável de obter ganhos de produtividade e melhoria no time-

to-market tão desejados pelas empresas. O reúso não sistemático (Ad hoc) pode ser

prejudicial, uma vez que a reutilização de artefatos de baixa qualidade pode diminuir a

qualidade dos produtos finais. O reúso sistemático através da adoção de Linhas de Produto de

Software (LPS) é uma boa alternativa para alcançar metas de qualidade e de redução de

custos. Essa abordagem se tornou uma solução efetiva para gerar vantagem competitiva para

as empresas.

Arquiteturas de linhas de produto devem se beneficiar das comunalidades entre os produtos e

possibilitar a variabilidade entre eles. Ao mesmo tempo, como uma arquitetura de software,

precisa atender requisitos de atributos de qualidade. O desafio de atender atributos de

qualidade em sistemas únicos (single systems) torna-se ainda mais complicada no contexto de

linhas de produto porque a variabilidade pode ocorrer também nos atributos de qualidade.

A variabilidade em atributos de qualidade é uma questão complexa. Entretanto, ela tem sido

negligenciada ou ignorada pela maioria dos pesquisadores, uma vez que as atenções têm se

mantido no alcance da variabilidade funcional. O foco deste trabalho é definir um processo

para o design de arquiteturas de linhas de produto de software que possa lidar de forma eficaz

com variabilidade em atributos de qualidade. O processo aprimora o RiPLE-Design com

atividades e guias para o design com variabilidade de atributos de qualidade. Por fim, um

estudo experimental é apresentado com o intuito de caracterizar e avaliar as melhorias

propostas ao processo.

Palavras-Chave: Reúso de software, linhas de produto de software, arquitetura de software,

variabilidade em atributos de qualidade.

vi

ABSTRACT

Software reuse is a viable way to achieve the increase in productivity and short time to market

desired by the companies. Ad hoc reuse may be harmful for companies, since the reuse of low

quality assets can decrease the quality of their product. Systematic reuse through the adoption

of Software Product Lines (SPL) is a good alternative to achieve the quality and time to

market goals. Thus, it has become an effective solution for leading competitive advantage.

Product line architecture must benefit from commonalities among products in the family and

enable the variability among them. At the same time, as any other software architecture, it

must address quality attribute requirements. The challenge of achieving quality attributes in

single-systems becomes even more complicated in a product line context because variability

can occur also in quality attribute requirements.

The aspect of variability in quality attributes is a complex issue. Nevertheless, it has been

neglected or ignored by most of the researchers as attention has been mainly put in functional

variability. The focus of this dissertation is to provide architecture and design process for

software product lines that can properly deal with quality attribute variability. The proposed

approach enhances the RiPLE-Design process for software product line engineering with

activities and guidelines for quality attribute variability. Finally, an initial experimental study

is presented to characterize and evaluate the proposed process enhancements.

Keywords: Software Product Lines (SPL), Software Architecture, Software Reuse, Quality

attribute variability

vii

LIST OF FIGURES

Figure 1.1 RiSE Labs influencing areas ... 3
Figure 2.1 The key activities or software product line development (Clements; Northrop,

2001). .. 10
Figure 2.2 Costs for developing n kinds of systems as single systems compared to product line

(Pohl et al., 2005) ... 12
Figure 2.3 Architecture Business Cycle (Bass et al., 2005) ... 14
Figure 3.1 RiPLE-Design Overview, in flowchart notation ... 37
Figure 3.2 Identify Architectural Drivers, in (Souza Filho, 2010), in flowchart notation 38
Figure 3.3 Module definition Activities, in (Souza Filho, 2010), in flowchart notation 40

Figure 3.4 Feature Model Diagram for Rise Chair ... 43
Figure 3.5 RiSE Chair Module View, in UML notation .. 45
Figure 3.6 Structural view of the Revision component, in UML notation 45

Figure 3.7 Sequence diagram: invite reviewer, in UML notation .. 46
Figure 3.8 Low demand availability scenario .. 47
Figure 3.9 High demand availability scenario .. 47
Figure 3.10 Deployment diagram. System under normal operation... 49

Figure 3.11 Deployment diagram. Under faulty operation, proxy server as a request router .. 50
Figure 3.12 Performance scenario with short latency .. 51

Figure 3.13 Confidentiality scenario .. 51
Figure 3.14 Performance scenario with longer latency .. 52
Figure 3.15 Deployment diagram. Load Balancing ... 53

Figure 4.1 Feature Model for Meshing Tools, in (Rossel et al., 2009b) 59

Figure 4.2 Identify architectural drivers modified, in flowchart notation 61
Figure 4.3 Feature model with quality attribute variability .. 62
Figure 4.4 Latency quality attribute of a hypothetic product line .. 62

Figure 4.5 High latency quality scenario .. 63
Figure 4.6 Low latency quality scenario .. 63

Figure 4.7 Module definition task modified, in flowchart notation ... 65
Figure 4.8 Deployment diagram. General case. ... 67

Figure 4.9 Deployment diagram, secure link. .. 68
Figure 4.10 Evaluation steps in RiPLE-Design, in flowchart notation 73
Figure 4.11 Evaluate derived product architectures ... 82

Figure 5.1 Component Coupling .. 100
Figure 5.2 Component Coupling Average .. 101

Figure 5.3 Component Instability ... 101
Figure 5.4 Component instability average .. 102

Figure 5.5 Functional Requirements .. 103
Figure 5.6 Functional Variability ... 104
Figure 5.7 Quality Attributes .. 105
Figure 5.8 Quality Attributes Variability ... 106

viii

LIST OF TABLES

Table 2-1 Dependability General Scenario, from (Bass et al., 2003) 20
Table 2-2 Modifiability General Scenario, from (Bass et al., 2003) .. 21
Table 2-3 Performance General Scenario, from (Bass et al., 2003) ... 22
Table 2-4 Security General Scenario, from (Bass et al., 2003) .. 24

Table 2-5 Testability General Scenario, from (Bass et al., 2003) .. 25
Table 2-6 Usability General Scenario, from (Bass et al., 2003) ... 26
Table 3-1 Modifiability scenario for the RiSE Chair SPL ... 43
Table 4-1 Decision guideline for optional availability ... 69
Table 4-2 Decision guideline for optional availability ... 70

Table 5-1 One Factor with two treatments design .. 94
Table 5-2 Subject's Profile .. 99
Table C-1 Questionnaire for Subject's Background (Part 1) .. 134

Table C-2 Questionnaire for Subject's Background (Part 2) .. 135
Table C-3 Questionnaire for Subject's Feedback ... 136

ix

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Motivation .. 2

1.2 Research objective ... 2

1.3 Overview of the proposed solution .. 3

1.3.1 Context ... 3
1.3.2 Outline of the Proposal ... 4

1.4 Out of Scope .. 5

1.5 Statement of the Contributions .. 6

1.6 Organization of the Dissertation .. 7

2 Software Product Lines: An Overview ... 8

2.1 Software Product Lines .. 9

2.1.1 Benefits ... 10
2.1.2 Software Product Lines Adoption Models ... 12

2.2 Software Architecture .. 13

2.2.1 Quality Attributes ... 16
2.2.2 Product Line Architecture (PLA) ... 26

2.3 Quality Attributes in Software Product Lines .. 31

2.4 Chapter summary ... 34

3 The RiPLE-Design Process .. 35

3.1 RiPLE-Design .. 35

3.2 Activities .. 37

3.2.1 Identify Architectural Drivers .. 37
3.2.2 Define Architectural Details ... 39

3.2.3 Represent Architecture ... 39
3.2.4 Identify Design Decisions .. 42

3.3 Design of variable quality attributes .. 42

3.3.1 Variations among different quality attributes ... 47
3.3.2 Different levels in quality attributes (trade-off variability) 50

3.3.3 Discussion ... 55

3.4 Chapter Summary .. 56

4 Extending the RiPLE-Design Process with Quality Attribute Variability Realization 57

4.1 Representing quality attribute variability... 58

4.1.1 Represent variable quality attributes in the feature model 60

4.2 Design strategy for varying quality attributes .. 63

4.2.1 Select architectural drivers ... 65

x

4.2.2 Choose Architectural Styles ... 66
4.2.3 Document decision guidelines .. 69

4.3 Evaluate the architecture in order to achieve the needed variation 71

4.3.1 Evaluate existing architectures ... 73

4.3.2 Evaluate the DSSA ... 75
4.3.3 Evaluate derived product architectures... 80

4.4 Chapter summary ... 82

5 The Experimental Study ... 83

5.1 Experimental terminology ... 84

5.2 The experimental study .. 85

5.2.1 Contextualization .. 85
5.2.2 Planning .. 90
5.2.3 Operation .. 98
5.2.4 Analysis and Interpretation ... 99

5.3 Conclusions .. 110

5.4 Lessons Learned .. 111

5.4.1 Training .. 111

5.4.2 Motivation of subjects .. 112
5.4.3 Number of subjects ... 112

5.5 Chapter Summary .. 112

6 Conclusion .. 114

6.1 Related Work ... 115

6.2 Future work .. 116

6.3 Academic Contributions .. 117

6.4 Concluding Remarks .. 117

References .. 119

Appendix A Architecture Document Template .. 129

Appendix B Architecture Evaluatin Report Template ... 133

Appendix C Instruments of the Experimental Study .. 134

1

1
INTRODUCTION

Software reuse is a viable way to achieve the increase in productivity and short time to market

desired by companies (Bosch, 2001). Nevertheless, ad hoc reuse may be harmful for

companies, since the reuse of low quality assets can decrease the quality of their product. On

the other hand, systematic reuse through the adoption of Software Product Lines (SPL) can

enhance quality and shorten time to market as shown in (Atkinson et al., 2002; Mili et al.,

2001; Pohl et al., 2005). Thus, it has become an effective solution for leading competitive

advantage.

Software architecture is a key discipline in SPL development (Clements; Northrop, 2001).

Product line architecture must benefit from commonalities among products in the family and

enable the variability among them. At the same time, as any other software architecture, it

must address quality attribute requirements, externally visible properties not related to the

functional capabilities of the system. The challenge of achieving quality attributes in single-

systems becomes even more complicated in a product line context because there is variability

on quality attribute requirements and different quality constraints are required. The focus of

this dissertation is to provide a design process for software product line architectures that can

properly deal with quality attribute variability.

This chapter contextualizes the focus and describes the structure of this dissertation. Section

1.1 starts presenting its motivations, and a clear definition of the problem scope is depicted in

Section 1.2. An overview of the proposed solution is presented in Section 1.3. Some related

aspects that are not directly addressed by this work are shown in Section 1.4. In the Section

1.5, the main contributions of this work are discussed, and finally, Section 1.6 describes how

this dissertation is organized.

Introduction 2

1.1 MOTIVATION

According to (Kolb et al., 2004), “research in the field of software product lines has primarily

focused on analysis, design, and implementation to date and only very few results address the

quality assurance problems and challenges that arise in a reuse context”. Those challenges

relate also to the achievement of quality attributes requirements in a SPL context, where the

quality attributes might be required by every product in the product line or only by specific

products. Thus, variability can also occur in quality attributes.

It is worth to remark that quality attributes affect each other, often they impact negatively

(Barbacci et al., 1995). These trade-off situations are typically resolved by finding a halfway

between conflicting quality attributes. Trade-off analysis of quality attributes in SPL is also

more difficult than in single-systems due to this variability and the exponential number of

possibilities, as mentioned in (Etxeberria et al., 2008).

In particular, the aspect of variability in quality attributes is also a complex issue that has been

“neglected or ignored by most of the researchers as attention has been mainly put in the

variability to ensure that it is possible to get all the functionality of the products”, as discussed

in (Etxeberria et al., 2008).

Based on the definitions of (Niemelä; Immonen, 2007), quality attribute variability can

happen in three different situations: (i) variation among different quality attributes; (ii)

different levels in quality attributes; and (iii) functional variability may indirect cause

variation in qualities, and vice versa.

Therefore, to proper develop a product line, quality attribute and their variability must be

gathered and managed throughout the development life cycle.

1.2 RESEARCH OBJECTIVE

Encouraged by the motivations depicted in the previous section, namely the complexity

related to the task of managing quality attributes variability in software product lines, the

benefits of managing this variability, and particularly, the lack of research regarding quality

attribute variability, as discussed in (Etxeberria et al., 2008), the goal of this dissertation can

be stated as follows:

Introduction 3

“This work investigates the issues related to the handling of quality attribute variability in

software product line architectures. After augmenting the deficiencies of an existing product

line architecture process, it provides enhancements by modifying existing activities and tasks,

as well as proposing new ones. Moreover, the proposed enhancements are based on a set of

software product line, component-based development, and design principles”.

1.3 OVERVIEW OF THE PROPOSED SOLUTION

1.3.1 Context

This work is developed in the context of the Reuse in Software Engineering (RiSE)
1
 Labs,

whose goal is to develop a robust framework for software reuse with the purpose of

facilitating the adoption of a reuse program (Almeida et al., 2004). The RiSE Labs framework

is influenced by several forces as depicted in Figure 1.1.

Figure 1.1 RiSE Labs influencing areas

Several sub-projects emerged under the influences of the RiSE Labs framework. The

framework embraces several different areas related to software productivity and mainly

software reuse. Those areas are the further studies in projects:

 RiSE Framework project is focused on processes for software reuse (Almeida

et al., 2004; Nascimento, 2008), component certification (Alvaro et al., 2006),

1
 http://www.rise.com.br/research

Introduction 4

and reuse adoption processes (Garcia et al., 2008);

 RiSE Tools projects are focused on the development of software reuse tools,

such as the Legacy Information Retrieval Tool (LIFT) (Brito, 2007), the

Admire Environment (Mascena, 2006), and the Basic Asset Retrieval Tool

(B.A.R.T) (Santos et al., 2006), which was enhanced, for example, with facets

(Mendes, 2008) and data mining (Martins et al., 2008);

 RiPLE project develops methodology for software product line engineering,

which is divided in several disciplines, such as evolution (Oliveira, 2009), tests

(Machado, 2010; Silveira Neto, 2010) , requirements (Neiva, 2009), and design

(Souza Filho et al., 2009). This dissertation is part of this project, and it is

concerned with the enhancement of the design process for software product

line architectures;

 SOPLE project develops methodology for service-oriented product lines,

which is also divided into disciplines, such as architecture and design

(Medeiros, 2010);

 MATRIX project investigates the area of measurement in reuse and its impact

on quality and productivity;

 BTT research is focused on methods and tools for detection of duplicate bug

reports, as in (Cavalcanti, 2009); and

 Exploratory Research investigates new research directions in software

engineering and its impact on reuse.

1.3.2 Outline of the Proposal

Developed under the RiSE Labs, the RiPLE-Design process (Souza Filho, 2010) attempts to

develop a Domain specific Software Architectures (DSSA) based on quality attribute

requirements prioritization. The process lacks guidelines to deal with quality attributes

variability.

Introduction 5

The proposed solution enhances the existing RiPLE-Design process by modifying existing

steps and introducing new ones in order to make the process able do deal properly with

quality attribute variability.

The improvements act in the three pillars that, as proposed by (Myllärniemi; Männistö; et al.,

2006), are essential to achieve quality attribute variability: (i) specification and modeling

varying quality attributes; (ii) design strategies for varying quality attributes; and (iii)

evaluation techniques in order to achieve the needed variation.

The proposed improvements maintain the essence of the original RiPLE process, which is its

quality driven aspect. The original roles participating in the process are maintained, as well as

the inputs and outputs, although the latter have been slightly modified. The detailed

description of the RiPLE-Design approach is presented in Chapter 4.

1.4 OUT OF SCOPE

Some aspects that are related to this research will be left out of its scope due to the time

constraints imposed on a master degree. This work aims to enhance an existing design method

in relation to its capacity to deal with quality attribute variability. Thus, the following issues

are not directly addressed by this work:

 Other development disciplines: following the definition of the RiPLE-Design process,

other development disciplines will not be described in this work. Nonetheless, other

disciplines, e.g., evolution (Oliveira, 2009), requirements (Neiva, 2009) and testing

(Machado, 2010; Silveira Neto, 2010), were already envisioned in other works by the

RiSE Labs;

 Architecture reconstruction: architecture reconstruction is the way the "as-built"

architecture of an implemented system is obtained from an existing system (Bass et

al., 2003). These techniques will not be covered in this work;

 Feature Interaction Problems: The case of functional variability affecting quality

attributes is related to the occurrence of feature interaction in software product lines,

as pointed out in (Lee; Kang, 2004). The problem of feature interaction can impact the

whole SPL development process, as it promotes changes in reusable assets and

impacts maintenance costs and other products. The case in which functional

Introduction 6

requirements affects quality attributes, and promotes quality attributes variability, will

then be left out of the scope of this work. Other cases of feature interaction will be

covered by the proposed approach, namely, the case of quality attribute affecting each

other; and the case of domain quality attributes required by certain functional

requirements;

 Product Development: An important issue in a SPL process is to create individual

products by reusing the core asset, i.e. products development with reuse. However, this

aspect can be as complex as core assets development, involving the definition of

activities, sub-activities, inputs, outputs, and roles. This work focus on the core asset

development phase of a product line development effort.

 Dynamic Product Lines: a recent trend in SPL research that aims to develop strategies

to deal with product configuration at runtime, as proposed by (Kim et al., 2007). This

work will focus on traditional software product line approaches and in the handling of

quality attribute variability during the architecture development. Although a traditional

product line architecture development approach may lead to a solution in which

quality attribute variability is addressed dynamically, this is not the focus of this work.

1.5 STATEMENT OF THE CONTRIBUTIONS

As a result of this dissertation, the following contributions can be highlighted:

 The identification of limitations of a traditional process for designing product line

architectures from quality attributes;

 Enhancements to the existing RiPLE-Design process for product line architecture, in

order to make it able to properly deal with quality attribute variability;

 The definition, planning, analysis of an experimental study in order to evaluate the

proposed process.

Introduction 7

1.6 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is structured as follows:

 Chapter 2 presents an overview on software product line engineering, its principles,

foundations, architecture and adoption models. It also presents an overview on

software architecture, architecture quality attributes and their relation with product line

architectures;

 Chapter 3 presents the RiPLE-Design and augments its deficiencies concerning the

treatment of quality attribute variability;

 Chapter 4 describes enhancements to the existing RiPLE-Design process in order to

properly handle quality attribute variability;

 Chapter 5 describes the definition, planning, operation, analysis and interpretation of

an experimental study for the proposed approach performed with the intention of

characterizing and refining it;

 Chapter 6 presents some concluding remarks about this work, its related work, and

directions for future work.

 Appendix A presents an Architecture Document Template to aid the adoption of the

Extended RiPLE-Design approach.

 Appendix B presents an Architecture Evaluation Report Template to aid the adoption

of the Extended RiPLE-Design approach.

 Appendix C describes the instruments used during the performed experimental study.

8

2
SOFTWARE PRODUCT LINES: AN OVERVIEW

Since 1968, when Douglas McIlroy published his Mass Produced Software Components

paper (McIlroy, 1968), and coined the term, software reuse started to be seen as a mean to

triumph over the software crisis, where software producers must deal with growing demand

for more complex and reliable software systems.

For (Krueger, 1992), “Software reuse is the process of creating software systems from

existing software rather than building them from scratch”. The use of existing software leads

to reduction of development effort and enables a producer to deliver software in less time,

since the reused software piece will not be developed again. In addition, when reused

components are mature and bear high quality, the resulting product is also expected to display

high quality.

Nevertheless, those benefits cannot be achieved easily. (Sametinger, 1997) shows that

managerial commitment and appropriate organizational structure are among the main key

factors on adopting software reuse as a way to reach less effort on producing software.

(Sametinger, 1997) also points out the lack of explicit procedures as a great obstacle. Along

these lines, we can infer that reuse can become profitable if the company adopts it in a

systematic, planed way. A known systematic approach to achieve systematic reuse is

Software Product Lines.

The Software Engineering Institute (SEI) defines Software Product Lines (SPL) as a set of

software-intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way (Clements; Northrop, 2001).

The remainder of this chapter will discuss the main activities of the SPL approach and the

benefits of its adoption, in Section 2.1; as well as the software architecture activity and the

Software Product Lines: An Overview 9

importance of quality attributes, in Section 2.2. In Section 2.3, the specificities regarding

quality attribute in the context of software product line architectures will be discussed.

Section 2.4 presents the chapter summary.

2.1 SOFTWARE PRODUCT LINES

In (Dijkstra, 1972) and (Parnas, 1976) the notion of Software Families was introduced. Parnas

points out that it is worth considering the development of a set of software that share common

characteristics as a collective design. He mentions the importance of planning before

developing a program family. He also gives importance to the order in which the design

decisions are made, and suggests that an approach for software families should choose the

degree of importance of each aspect and characteristic so that the resulting program addresses

its purposes properly.

The need for SPLs recalls, in some sense, the product lines from the manufacturing world.

The common platform sharing high levels of commonality, yet enabling differences among

products are the key similar point.

(Pohl et al., 2005) define software product lines engineering as “a paradigm to develop

software applications (software-intensive systems and software products) using platforms and

mass customization”. The use of platforms are related to the development of a software

system that share high levels of commonality, which lead to lower development costs in the

long run. According to (Pohl et al., 2005), “developing applications using platforms means to

plan proactively for reuse, to build reusable parts, and to reuse what has been built for reuse”.

Mass customization consists of producing products that are tailored to individual user needs.

In the context of software-intensive systems it means “employing the concept of managed

variability, i.e. the commonalities and the differences in the applications (in terms of

requirements, architecture, components, and test artifacts) of the product line have to be

modeled in a common way.” (Pohl et al., 2005).

There are three essential activities in SPL development, as shown in

Figure 2.1: core asset development, product development, and management.

Software Product Lines: An Overview 10

Figure 2.1 The key activities or software product line development (Clements; Northrop, 2001).

The goal of the core asset development activity, also called domain engineering, is to

establish the creation of common assets and the evolution of the assets in response to product

feedback and new market needs, that is, the product line scope and the production plan. Based

on these three artifacts, the product development activity, also known as application

engineering, focusing on creating of individual products by reusing common assets, providing

feedback to core asset development and products evolution.

The management activity includes technical and organizational management. Technical

management supervises the core asset development and product development activities,

ensures that the other activities are following the processes defined for the product line. It also

decides on the production method and provides the project management elements of the

production plan (Clements; Northrop, 2001). Organizational management coordinates the

technical activities in and iterations between the critical activities of core asset development

and product development.

2.1.1 Benefits

Systematic reuse through the adoption of Software Product Lines (SPL) can enhance quality

and shorten time to market as shown in (Atkinson et al., 2002; Mili et al., 2001; Pohl et al.,

2005). It can be seen as an effective solution for leading competitive advantage.

Software Product Lines: An Overview 11

Some benefits from the adoption of SPL are discussed in (Pohl et al., 2005):

 Quality Improvement. Reusable assets have their quality attested in many

opportunities, in different contexts, leading to a higher product quality.

 Reduction of Development Costs. Figure 2.2 compares the costs of producing

several single systems to the costs of producing them using a SPL approach.

Higher upfront investments are normally needed to produce core assets, as the

reusable assets are more complex than specific ones. On the long run, the costs

of producing new products in mature SPL should be very low. (Clements;

Northrop, 2001) shows that the break-even point, when the costs are the same

for developing the systems separately as for developing them by product line

engineering, is achieved around three systems. Aspects like customer base, the

expertise, the range and kinds of products and the SPL adoption strategy

influence the exact location of the break-even point.

 Reduction of Time to market. Although initially higher, the time to market is

significantly shortened as numerous artifacts can be reused in new products.

 Reduction of Maintenance Effort. Changes in reusable assets are propagated

to all products in the line that use these assets. Such propagation may be

exploited to reduce maintenance effort, even though testing each product can

still be unavoidable.

 Benefits for the Customers. Customers get higher quality products for lower

prices. In addition, as the range of products broadens, they get products

adapted to their needs and wishes. Similar user interfaces can also help the

customer to switch from one product to another in the same SPL.

Software Product Lines: An Overview 12

Figure 2.2 Costs for developing n kinds of systems as single systems compared to product line (Pohl et al.,

2005)

2.1.2 Software Product Lines Adoption Models

The introduction of a software product line engineering approach is usually motivated by

economic considerations. The economic pressure originates from the drive to get the new

products to the market faster to stay competitive or produce them more efficiently (Pohl et al.,

2005). Software product line adoption can help to solve both issues: to decrease development

costs and reduce time-to market of products (van Der Linden et al., 2007).

An organization can adopt product line engineering using some adoption models. These

models are not mutually exclusive, and should be chosen depending on its objectives, budget,

time and requirements as described next (Krueger, 2002):

The proactive model corresponds to a heavyweight adoption approach. In order to support the

full scope of products needed on the foreseeable horizon, the organization analyzes, designs

and implements a complete software product line. It fits organizations that can predict their

product line requirements well into the future, and have the time and resources for a long

development cycle;

Software Product Lines: An Overview 13

With the reactive approach, the organization incrementally grows their software product line

when the demand arises for new products or new requirements on existing products. It is

appropriate when the requirements for new products in the production line are somewhat

unpredictable. This incremental approach offers a less expensive and quicker transition into

software product lines, since only a minimum number of products must be incorporated in

advance.

The extractive adoption model reuses existing products as the initial baseline for the product

line. It is most appropriate when the collection of systems has a significant amount of

commonality and also consistent differences among them.

The adoption of software product line engineering requires upfront investment, brings

implications for the development process, and may also require modifications on the

organizational structure (van Der Linden et al., 2007). Enabling technology to implement its

concepts, well-defined processes, people who know their market customers in order to

identify the commonality and variability among products, and a stable domain that does not

change frequently to pay off the upfront investments are all essential prerequisites for the

adoption (Pohl et al., 2005). It is indispensable that each organization analyze its own budget

and objectives before selecting a proper adoption model.

2.2 SOFTWARE ARCHITECTURE

Parnas, in (Parnas; Siewiorek, 1975), steps aside from software correctness and formal proof

of programs and discusses whether a program that outputs correct is useful if we cannot rely

on it when we demand. He presents the notion of software reliability as “a measure of the

extent to which the system can be expected to deliver usable services when those services are

demanded”. Along with Dijsktra, Parnas introduces the concern about the structure of a

software system, the interfaces between modules as well as the communication among them.

Those concerns were further defined as software architecture.

The Carnegie Mellon’s Software Engineering Institute defines software architecture as (Bass

et al., 2003):

The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

Software Product Lines: An Overview 14

elements, the externally visible properties of those elements, and the

relationships among them.

Some interesting points come with the definition shown above. First, that an architecture

defines elements, called structures. Second, the definition clarifies that systems can and do

comprise more than one structure. Third, it implies that every software system has an

architecture. Fourth, the behavior of each element is part of the architecture. Finally, the

definition is indifferent as to whether the architecture for a system is a good one or a bad one.

(Bass et al., 2003).

Software architecture is a result of technical, business and social influences. This cycle of

influences is defined as the Architecture Business Cycle (ABC) in (Bass et al., 2003), and

further revisited in (Bass et al., 2005). The revisited form is represented in Figure 2.3.

Figure 2.3 Architecture Business Cycle (Bass et al., 2005)

End users, developers, project manager, maintainers and even sellers influence the

architecture. The stakeholders have concerns that they wish the end system to guarantee.

While end users wish for more usability, maintainers want the system to be easier modifiable,

customers want and low costs. All those concerns and goals sometimes are contradictory, and

it is the architect’s role to mediate the conflicts and resolve trade-offs.

Architecture is also influenced by the nature and structure of the development organization.

For example, depending on the set of skills the team of employed developers has, a specific

architectural approach may be chosen. Both long-term and immediate business decisions may

Architect’s

Experience

Architect(s)

Architecture

Functional

Requirements

Business

Requirements

Quality Attribute

Requirements

System

System

System

Stakeholders Needs

Business Management

Issues

Legal/Contractual

Issues

Commercial/

Competitive Pressures

Technical Environment

Political Issues

Life Cycle Issues

Software Product Lines: An Overview 15

also influence, such as the purchase of some development toolkit, market trend, commercial

agreement or strategic decision.

Experience is a great factor of influence in the resulting architecture. Successful previous

approaches are likely to be tried again on new development efforts. Education and training of

an architect such as his exposure to successful architectural patterns or, conversely, to systems

that worked poorly are also good sources of possibilities. Standard industry practices,

prevalent engineering techniques in the architect’s professional community forming a

technical environment are also reflected in the resulting system architecture.

The ABC depicts seven forces that influence the architectural constructions, and those forces

are grouped in three overlapping sets, namely Quality Attribute Requirements, Business

Requirements and Functional Requirements. Those three sets, along with the architect’s

experience, serve as inputs to architectural construction and further system development.

The ABC also represents that the architecture affects the factors that influence them, as

described in (Bass et al., 2003). Firstly, a prescribed system structure, dictates the units of

software that must be implemented and, furtherer, serve as basis for development’s project

structure and team formation. Secondly, successful systems can enable some company to

establish itself in a specific market niche as the architecture can provide opportunities for

further production and deployment of similar products. Third, the knowledge gained during

the development of a system adds to the corporate knowledge base. Fourth, some system may

actually change the software engineering culture and establish new best practices and

standards. Application frameworks like Ruby on Rails and the so-called “NoSQL” database

Cassandra (Apache Foundation, 2010) are such examples.

From a technical perspective, there are three reasons for software architecture’s importance,

as explained in (Bass et al., 2003):

(i) It represents a common abstraction of a system and serves as a common

language in which different concerns can be expressed, discussed and resolved

among different stakeholders, even for complex systems.

(ii) It represent a system’s earliest design decisions, which are the hardest to

change later in the development process, it also defines constraints on

implementation and organizational structure. The design decisions also inhibits

Software Product Lines: An Overview 16

or enable the achievements of quality attributes, as it will be explained

furtherer.

(iii) The architectural representation of a system is a relative small, understandable

model for how a system is structured and how its elements work together. This

model is transferable across systems and can be applied to other systems

having similar quality attributes and functional requirements.

2.2.1 Quality Attributes

The externally visible properties described in the software architecture definition are attributes

not related to functional capabilities of the system. Those properties are the quality attributes

which a software system has, for example, the ability to start-up in less than 10 seconds; or

the possibility to modify some module and ship a new product within a week. Modifiability,

performance, security and usability are examples of system quality attributes and will be

described further.

Functionality is the ability of a system do the work for which is was intended. It may not be

possible to have functionality and quality attributes as orthogonal concerns sometimes, for

example, manipulating complex multimedia content will probably make very low response

time impossible. On the other hand, functionality may be achieved through the use of any of a

number of possible structures; it is the purpose of software architecture discipline to constrain

the allocation of functionality to such a structure where other so-called non-functional

requirements can also be achieved.

The main objective of the software architecture discipline is to evolve the organization of

modules of a software system in a way that the functionalities can perform gracefully, that is

accomplishing the desired quality attribute requirements. As well put in (Bass et al., 2003),

“systems are frequently redesigned not because they are functionally deficient – the

replacements are often functionally identical – but because they are difficult to maintain, port,

or scale, or are too slow, or have been compromised by network hackers.”

The achievement of system quality attributes is to be considered throughout design,

implementation and deployment, because no quality attribute is entirely dependent on design,

nor entirely dependent on implementation or deployment, as discussed in (Bass et al., 2003).

Software Product Lines: An Overview 17

Usability, for example, include implementation aspects of developing clear and easy to use

interfaces, but also include architectural aspects such as providing capabilities to cancel and

undo operations or to re-use data previously entered. In a similar way, the performance

quality attribute is affected by communication among components, and the functionality

allocated to each of the components, and these are architectural concerns; the choice of

algorithms for selected functionality is a matter of implementation.

It is also important to remark that within complex systems, quality attributes can never be

achieved in isolation, and that those systems often fail to meet quality attribute requirements

“when designers narrowly focus on meeting some requirements without considering the

impact on other requirements or by taking them into account too late in the development

process”, as discussed in (Barbacci et al., 1995). Security and reliability can illustrate the

trade-off that an architect must face and solve when designing a complex system: secure

systems have must have the fewest points of failure, while reliable systems need redundant

processes where the failure of any one will not cause the system to fail. The issue of tension

among quality attributes is not new, as illustrated by Boehm:

Finally, we concluded that calculating and understanding the value of

a single overall metric for software quality may be more trouble than

it is worth. The major problem is that many of the individual

characteristics of quality are in conflict; added efficiency is often

purchased at the price of portability, accuracy, understandability, and

maintainability; added accuracy often conflicts with portability via

dependence on word size; conciseness and conflict with legibility.

Users generally find it difficult to quantify their preferences in such

conflict situations. (Boehm, 1978)

There are a variety of published taxonomies and definitions for quality attributes. Many of

them have their own research and practitioner communities. Three problems related to system

quality attributes are pointed out by (Bass et al., 2003):

 Definitions of an attribute are often not operational. For example, it is

meaningless to say that a system will be modifiable without specifying to

which set of changes it should be modifiable.

 Attribute definition and its implications are often overlapping. For example, a

system failure can be an aspect of availability, of security or even of usability.

Software Product Lines: An Overview 18

 The vocabulary around each attribute varies greatly. An occurrence can be

described as an “event”, an “attack”, a “failure”, or simple “user input” in the

context of performance, security, availability or usability, respectively.

Quality attributes scenarios are used to represent and analyze quality attributes. They express

in a concise way some important aspects of the quality attributes requirement and its

concretization and perception in the system under development. Allied with a brief discussion

of each attribute and its meaning to the involved stakeholders, quality scenarios solve the

abovementioned problems by characterizing quality attributes in six parts.

 Source of stimulus. The stimulus generator, such as a user or another computer

system.

 Stimulus. The condition to be considered when it arrives at a system, e.g., an

unanticipated message in an availability scenario.

 Environment. The conditions within the stimulus occur.

 Artifact. The stimulated artifact, such as the system, or some part of it.

 Response. The undertaken activity in response to the arrival of the stimulus.

 Response measure. The measure of the response, so that the quality attribute

requirement can be tested.

Generic quality attribute scenarios will be used next to describe some quality attributes,

namely: dependability, modifiability, performance, security, testability and usability. When

scenarios are used during system design activities, concrete scenarios should be generated,

replacing the generic possibilities that will be shown next with real system expectations,

measures and stimuli.

Besides system quality attributes, there are also other classes of non-functional qualities that

influence software architecture, namely, business qualities and architectural qualities (Bass et

al., 2003). Business qualities normally center on cost, schedule, market, and marketing

considerations. Examples of such qualities are time to market, cost and benefit, projected

lifetime of the system, targeted market, rollout schedule and integration with legacy system.

Architectural qualities refer to the architecture itself in a broader way than system quality

attributes and are very important, although difficult to measure. Conceptual integrity is the

Software Product Lines: An Overview 19

underlying theme or vision that unifies the design of the system at all levels, from the

appearance to the user, to the architectural layout. Buildability is another architectural quality

that the allows the system to be completed in a timely manner by the available team and to be

open to certain changes as development progresses.

(International Organization for Standardization/International Electrotechnical Commission,

2001) classifies software quality in a structured set of characteristics and sub-characteristic.

Those definitions are similar to quality attributes. This work does not intend to encompass all

characteristics and sub-characteristics from the ISO/IEC 9126 standard. Nonetheless, as it will

focus on the system quality attribute definition from (Bass et al., 2003), the software quality

definition from the aforementioned standard seem to be covered.

The focus of this work is on system quality attributes, although scenarios and evaluation

techniques can also be used to assess business and other architectural qualities.

2.2.1.1 Dependability

Laprie, in (Laprie, 1992), defines Dependability as “that property of a computer system such

that reliance can justifiably be placed on the service it delivers”. It is concerned with system

failure and its associated consequences. Availability and reliability are two of the most

important sub-attributes of dependability. Other sub-attributes are safety, confidentiality and

integrity, that will be discussed under the security quality attribute; and maintainability, that

will be discussed next, in the modifiability subsection.

According to (Barbacci et al., 1995), “the availability of a system is a measure of its readiness

for usage.” It is measured as the limit of the probability that a system will be operational when

it is needed. It is typically defined as:

mean time to failure

mean time to failure mean time to repair

For (Barbacci et al., 1995), the reliability of a system is a measure of the ability of a system to

keep operating over time. It is measured as the system’s mean time to failure that is the

expected life of the system. Availability measures the readiness of a system only when it is

needed, while reliability measures its readiness along the time, regardless the need for the

system.

Software Product Lines: An Overview 20

The main impairments of dependability are faults and failures. These two must be

differentiated: failures are observable by the system’s user and faults are not. Therefore, a

fault may become a failure if not corrected or masked. A fault can occur by one of the

following reasons: omission, when a component fails to respond to an input; crash, when the

component repeatedly suffers omission faults; timing, when a component responds, but it is

too early or too late; response, when the response is an incorrect value.

The characterization of dependability involves how the system detects some failure, how

frequent a failure may occur, the response to that occurrence and how long a system is

allowed to be out of operation. Prevention of failures, the safety of its occurrence and what

notifications are required when a failure occurs are also described in availability and

reliability scenarios. Table 2-1 summarizes the portions of a Dependability scenario.

Portion of Scenario Possible Values

Source Internal to the system; external to the system

Stimulus Fault: omission, crash, timing, response

Artifact System's processors, communication channels, persistent storage,

processes

Environment Normal mode; reduced capacity (i.e., fewer features, a fall back

solution)

Response System should detect event and do one or more of the following:

record it; notify appropriate parties, including the user and other

systems; disable sources of events that cause fault or failure

according to defined rules; be unavailable for a prespecified interval,

where interval depends on criticality of system; continue to operate in

normal or degraded mode

Response Measure Time interval when the system must be available

Availability time

Time interval in which system can be in degraded mode

Repair time

Table 2-1 Dependability General Scenario, from (Bass et al., 2003)

2.2.1.2 Modifiability

Modifiability relates to “the cost of change and refers to the ease with which a software

system can accommodate changes” (Northrop, 2004). It brings up four concerns: (i) Who

makes the change? (ii) When is the change made? (iii) What can change? and (iv) How is the

cost of change measured?

Software Product Lines: An Overview 21

From a scenario perspective, “who makes the change” is the source of the stimulus. Normally,

scenarios will refer to changes made in source code, so developers will be the source.

Architects and system administrators can also be the source as they can also make changes

that will change aspects of the system. Following these thoughts, even an end user can be the

agent of change.

Regarding the time when a change is made, it can be during design, by detailing architectural

design; can refer to the implementation, by modifying the source code; can be during compile,

using compile-time switches; during build, by choice of libraries; during configuration setup,

by including parameter setting, for example; or during execution, by parameter setting.

A change can occur in any part of the system, such as the functions is operates, the platform

the system exists on, the environment within the system operates, the qualities the system

exhibits and its capacity. (International Organization for Standardization/International

Electrotechnical Commission, 2001) defines two categories for change: maintainability and

portability. Maintainability is the capability of the software product to be modified and

portability is the capability of the software product to be transferred from one environment to

another. Concerning these subdivisions, they are both considered here as forms of

modifiability.

Modifiability can be measured by Cost in terms of number of elements affected, effort, money

and the extent to which this affects other functions or quality attributes. Table 2-2 summarizes

the Modifiability scenario.

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus Wishes to add/delete/modify/vary functionality, quality attribute,

capacity

Artifact System user interface, platform, environment; system that

interoperates with target system

Environment At runtime, compile time, build time, design time

Response Locates places in architecture to be modified; makes modification

without affecting other functionality; test or deploy modification

Response Measure Cost in terms of number of elements affected, effort, money; extent to

which this affects other functions or quality attributes

Table 2-2 Modifiability General Scenario, from (Bass et al., 2003)

Software Product Lines: An Overview 22

2.2.1.3 Performance

According to (Barbacci et al., 1995), “performance is that attribute of a computer system that

characterizes the timeliness of the service delivered by the system.” It refers to either the time

required to respond to specific events or the number of events processed in a given interval of

time. This means not only to be fast, but to meet timing constraints. In real time systems, it

means to be predictable and meet overall average-case or worst-case predictions.

The characterization of performance scenario starts by the definition of the event sources and

arrival patterns and describes how the system must allocate resources in order to respond to

the request timely. An arrival pattern for events may be either periodic or stochastic. A

periodic event may arrive, for example, every 50 milliseconds. This kind of arrival pattern is

most often seen in real-time systems. Stochastic arrival means that events arrive according to

some probabilistic distribution. Events can also arrive sporadically, that is, according to a

pattern not classified as either periodic or stochastic.

There are four main concerns involving the performance quality attribute: latency, i.e., the

time between the arrival of the stimulus and the systems response, and its variation, named

jitter; throughput, the number of transactions the system can process in a given interval of

time; capacity, or, how much demand can be placed on the system while continuing to meet

latency and throughput requirements; and modes, i.e., characterizing how the system should

behave if its capacity exceeds, the number of events not processed, and data lost because the

system was too busy, whether it should function in reduced capacity or in overload mode,

sacrificing timing requirements. These concerns are characterized by the response of the

systems for a given stimulus. Table 2-3 summarizes a performance general scenario.

Portion of Scenario Possible Values

Source One of many independent sources, possibly from within system

Stimulus Periodic events arrive; sporadic events arrive; stochastic events arrive

Artifact System or specific subsystem

Environment Normal mode; overload mode; reduced capacity

Response Processes stimuli; changes level of service

Response Measure Latency, deadline, throughput, jitter, miss rate, data loss

Table 2-3 Performance General Scenario, from (Bass et al., 2003)

Software Product Lines: An Overview 23

2.2.1.4 Security

The USA’s National Research Council, in (System Security Study Committee et al., 1991)

defines security as:

[…]

2. Computer security is protection of data in a system against

disclosure, modification, or destruction. Protection of computer

systems themselves. Safeguards can be both technical and

administrative.

3. The property that a particular security policy is enforced, with some

degree of assurance

[…]

From an architectural point of view, a system that enables security must provide several

capabilities: nonrepudiation, confidentiality, integrity, assurance, availability, and auditing. A

definition for each of these terms is provided next, according to (Bass et al., 2003).

1. Nonrepudiation is the property that a transaction cannot be denied by any of the

parties to it. It functions as one had a signature or stamp in a receipt, and cannot

deny he did the buy.

2. Confidentiality is the property that data or services are protected from

unauthorized access. An example of its violation is a hacker that accesses some

confidential data by sniffing the network.

3. Integrity is the property that data or services are being delivered as intended.

Database transactions normally guarantee that data is recorded without

modification, allowing integrity of the data.

4. Assurance is the property that the parties to a transaction are who they purport to

be. In real world transactions, identification cards guarantee this property.

5. Availability is the property that the system will be available for legitimate use.

Under a security point of view, an availability quality attribute requirement can be

violated through denial-of-service attacks, for example.

6. Auditing is the property that the system tracks activities within it at levels

sufficient to reconstruct them.

Software Product Lines: An Overview 24

Each of these security capabilities can be characterized by scenarios, as summarized in Table

2-4.

Portion of Scenario Possible Values

Source Individual or system that is: correctly identified, identified

incorrectly, of unknown identity

who is: internal/external, authorized/not authorized

with access to: limited resources, vast resources

Stimulus Tries to: display data, change/delete data, access system services,

reduce availability to system services

Artifact System services; data within system

Environment Either: online or offline, connected or disconnected, firewalled or

open

Response Authenticates user; hides identity of the user; blocks access to data

and/or services; allows access to data and/or services; grants or

withdraws permission to access data and/or services; records

access/modifications or attempts to access/modify data/services by

identity; stores data in an unreadable format; recognizes an

unexplainable high demand for services, and informs a user or

another system, and restricts availability of services

Response Measure Time/effort/resources required to circumvent security measures with

probability of success; probability of detecting attack; probability of

identifying individual responsible for attack or access/modification of

data and/or services; percentage of services still available under

denial-of-services attack; restore data/services; extent to which

data/services damaged and/or legitimate access denied

Table 2-4 Security General Scenario, from (Bass et al., 2003)

2.2.1.5 Testability

As stated by (Voas; Miller, 1995), “Testability suggests the testing intensity, and provides the

degree of difficulty which will be incurred during testing of a particular location to detect a

fault”. As a large part of the cost of developing system is taken up by testing, the payoff can

be large if the software architect can reduce this cost.

The testability is measured by the probability that a system will fail on its next test execution,

assuming that it has at least one fault. As this measure is very complicated to calculate, other

measures are normally used. (Bass et al., 2003) suggest that “the response measures for

testability deal with how effective the tests are in discovering faults and how long it takes to

perform the tests to some desired level of coverage.”

Software Product Lines: An Overview 25

From an architectural point of view, testability can be improved when it is possible to control

each component’s internal state and inputs and then observe it outputs. Playback capabilities

and information hiding are good ways to promote testability. The testability general scenario

is summarized in Table 2-5.

Portion of Scenario Possible Values

Source Unit developer

Increment integrator

System verifier

Client acceptance tester

System user

Stimulus A milestone in the development process: Analysis, architecture,

design, class, subsystem integration completed; system delivered

Artifact Piece of design, piece of code, complete application

Environment At design time, at development time, at compile time, at deployment

time

Response Provides access to state values; provides computed values; prepares

test environment

Response Measure Percent executable statements executed

Probability of failure if fault exists

Time to perform tests

Length of longest dependency chain in a test

Length of time to prepare test environment

Table 2-5 Testability General Scenario, from (Bass et al., 2003)

2.2.1.6 Usability

According to (IEEE Computer Society, 1990), Usability is “the ease with which a user can

learn to operate, prepare inputs for, and interpret outputs of a system or component.” This

definition can be split into the following areas, according to (Bass et al., 2003): (i) learning

system features; (ii) using a system efficiently; (iii) minimizing the impact of errors; (iv)

adapting the system to user needs; (v) increasing confidence and satisfaction. Works have

been done to show the relation between usability and software architecture, (Bass; John, 2000;

Bass; John, 2003), and describe how to address usability issues, early in system development,

introducing system’s capabilities that will help the user in each of the aforementioned

categories.

Software Product Lines: An Overview 26

In Usability scenarios, will normally have the end user as the source of stimulus and the

system as artifact. The expected response falls in one of the usability categories, and is

measured by the incidence of errors, elapsed time to perform some task, user satisfaction, and

so on. Table 2-6 summarizes the usability general scenario.

Portion of Scenario Possible Values

Source End user

Stimulus Wants to

 learn system features; use system efficiently; minimize impact of

errors; adapt system; feel comfortable

Artifact System

Environment At runtime or configure time

Response System provides one or more of the following responses:

to support "learn system features":

help system is sensitive to context; interface is familiar to user;

interface is usable in an unfamiliar context

to support "use system efficiently":

aggregation of data and/or commands; re-use of already entered data

and/or commands; support for efficient navigation within a screen;

distinct views with consistent operations; comprehensive searching;

multiple simultaneous activities

to "minimize impact of errors":

undo, cancel, recover from system failure, recognize and correct user

error, retrieve forgotten password, verify system resources

to "adapt system":

customizability; internationalization

to "feel comfortable":

display system state; work at the user's pace

Response Measure Task time, number of errors, number of problems solved, user

satisfaction, gain of user knowledge, ratio of successful operations to

total operations, amount of time/data lost

Table 2-6 Usability General Scenario, from (Bass et al., 2003)

2.2.2 Product Line Architecture (PLA)

As already mentioned, the architecture permits or precludes system quality attributes. It also

determines the structure and management of the development project in addition to the

resulting system, as teams are formed and allocated around architectural components. In the

Software Product Lines: An Overview 27

product line development, the software architecture plays an even more important role. As

mentioned in (Svahnberg; Bosch, 2000):

The role of the software product line architecture is to describe the

commonalities and variabilities of the products contained in the

software product line and, as such, to provide a common overall

structure.

As part of the architect’s job, there are two things to consider: the identification of variation

points and the mechanisms to support them. Variations can be substantial, since, as pointed

out by (Clements; Northrop, 2001): “products in a product line exist simultaneously and may

vary from each other in terms of their behavior, quality attributes, platform, network, physical

configuration, middleware, scale factors and a myriad of other ways.”

The identification of variation points is a continuous activity. Variations can be discovered

during requirement gathering, architecture design, and also during the implementation of a

second or subsequent product in the line. Those variations can include features, platforms,

user interfaces, target markets and implementation options. Supporting variability can take

many forms in a Product Line Architecture (PLA). They can be accomplished, for example,

by the introduction of build-time parameters, assuming that all variants have been envisioned.

Inheritance and delegation, from object-oriented languages, can enable variation by

specializing particular classes. Entire components can be replaced by others that embody

particular variants. These and other techniques focusing on the enablement of functional

variability are discussed in (Gacek; Anastasopoules, 2001) and (Svahnberg; Bosch, 2000).

The documentation of a PLA carries two responsibilities. The first is to describe the

architecture. Architectural views, as described in (Clements et al., 2002), come into play to

describe runtime and processes interaction, structural elements, allocation and deployment of

components, data flow, and so on. For a software product line, the views must show the

variations that are possible. The second responsibility when documenting a PLA is to explain

the architecture’s instantiation process, i.e., how the product plan will deal with the

architecture. The documentation must clearly show the variation points, how to exercise them,

and a rationale for the variation. It must show how to instantiate and evolve the architecture

(Bass et al., 2003).

Software Product Lines: An Overview 28

The literature proposes several approaches to build SPL. A systematic review was performed

by the RiSE Labs in order to understand and summarize evidence about the Architecture and

Design (A&D) activities of those approaches (Souza Filho; Cavalcanti; et al., 2008). The

main focus of the research questions was How existing domain design approaches are

organized?. In particular, two sub questions asked about how the approaches dealt with

variability and processes to deal with domain variability. The approaches selection was

performed by five M.Sc. candidates and two Ph.D. in conjunction with weekly discussions

and seminars with the Reuse in Software Engineering (RiSE) Labs. After data source

collection and analysis, nine approaches were selected, and the analyses were based on 11

papers, two theses and four books. The approaches studied are described next as well as the

systematic review conclusion.

The Product Line Software Engineering (PuLSE) (Bayer et al., 1999; DeBaud et al., 1998)

was developed with the purpose of enabling the conception and deployment of SPLs in a large

variety of enterprise contexts. The approach is flexible, allowing the instantiation and

customization of techniques and models of requirements for a particular application,

envisioning the evolution of the scope of the project and the consequent change in the

requirements. Its Analysis and Design discipline (PuLSE-DSSA) has as foundation a scenario

based technique, where architectural adaptations are made to fulfill a prioritized set of quality

attribute scenarios. The variability is documented textually and taken in to consideration for

each scenario.

The Family-Oriented Abstraction, Specification and Translation (FAST) (Weiss, 1999) is

a software development process focused on building families. It is used in industry

demonstrating a certain level of maturity at Lucent Technologies, where it was developed. The

specific goal of FAST is to make the software engineering process more efficient by reducing

multiple tasks, decreasing production costs, and shortening the marketing time. FAST has

very well defined documentation regarding the development of the product line. The five step

design process includes activities for developing family design, the development of an

application modeling language, the establishment of a standard engineering process by which

the product line will be developed and the development of the application environment. This

approach does not explicitly addresses quality attribute variability.

Software Product Lines: An Overview 29

 The Feature-Oriented Reuse Method (FORM) (Kang et al., 1998) was developed in

Pohang University of Science and Technology, Korea as an extension to the Feature-Oriented

Domain Analysis (FODA). FORM adds software design and implementation phases to

FODA. It prescribes how the feature model is used to develop domain architectures and

components for reuse. It is a light process and seems to be very easy to be adapted in a

software factory. This method is used in industry being applied on elevator control systems

and telecommunication infrastructure systems (Matinlassi, 2004). It does not provide

guidelines for derive reference architecture with the basis on existing product's architecture.

The Component-Oriented Platform Architecting Method for Families of Software

Intensive Electronic Products (COPA) (America et al., 2000; Obbink et al., 2000) is being

developed and used at the Philips Research Labs. The specific goal of the COPA method is to

achieve the best possible fit between business, architecture, process and organization (BAPO)

having the greatest level or reuse as possible. This is achieved with the BAPO product family

approach. The method was used in different enterprise contexts and domains, such as

telecommunication, medical imaging and consumer electronics. The A&D process is guided

by commercial and technical considerations. Commercial considerations are made in the form

of an evaluation of which functionality is available in market (COTS) based on product and

supplier quality. Technical considerations take into account the stability of components for the

product family, the coupling and cohesion, single technology domain, and the implementation

only of features that are always together in each product. This approach covers a wide range

of quality attributes, including non-technical attributes, however it does not address quality

attribute variability explicitly.

Komponentenbasierte Anwendungsentwicklung (KobrA), german for component-based

application development, was developed in Fraunhofer Institute for Experimental Software

Engineering (IESE) and it is a ready-to-use customization of PuLSE and focuses on the

architecture components (Atkinson et al., 2000; Atkinson et al., 2002). It uses UML models

with stereotypes for documenting architecture and has specific phase for architecture

evolution. It defines an entity called Komponent, which stands for a component inside the

architecture that groups all kinds of models used to define the product line architecture. The

processes uses decision models to deal with variability and divides the A&D process in two

phases, which will lead to two logical representation of the system being developed:

Software Product Lines: An Overview 30

Komponent specification describes the external properties of a Komponent with the structural

model, the behavioral model, the functional model, and the decision model; and Komponent

Realization that describes how to realize the Komponent’s specification.

The Product Line UML-based Software Engineering (PLUS) is a RUP based approach to

software product line engineering defined in (Gomaa, 2004). It focuses on representing

variability and other product line concerns with UML. PLUS can be seen as an extension to

the Unified Process and uses UML tools and diagrams. It follows the RUP process for

specifying a software architecture and introduces the variability concerns in the UML models

as stereotypes.

The Quality-driven Architecture Design and quality Analysis (QADA) (Matinlassi et al.,

2002) is a quality-driven architecture design method. It means that the architecture is built

based on quality requirements. The method uses UML notation to represent variability in its

models with defined stereotypes. Its design phase consists of two main steps, the conceptual

architecture design, where the conceptual components are defined, according to the functional

and quality requirements, and concrete architecture design, where the components are

specified in a lower level of abstraction.

The RiSE process for Domain Engineering (RiDE) (Almeida, 2007) is based on the

definition of a feature model (FODA) and the main purpose is to detail activities related with

each phase of the domain engineering. During the domain design activity, the modules are

decomposed, based on assets produced in domain requirements engineering, such as business

goals, constraints, domain use case model, feature model, and scenarios. After the definition,

the modules are refined choosing the architectural drivers that will be addressed by the

architecture, choosing architectural patterns that can be applied, and allocating systems

functionality to modules. The variability is represented in class diagrams, mapping the feature

model with the suggested design patterns. Components are defined based on the messages

changed among them and the DSSA is represented with the components defined in the

previous steps.

The SEI framework (Clements; Northrop, 2001) was developed in the United States’

Department of Defense and at the Software Engineering Institute (SEI) in order to establish

patterns for the Software Product Line practice. SEI's Framework is a set of guidelines for

domain architects. It has well defined steps and is based on RUP. Also it is very easily

Software Product Lines: An Overview 31

adapted since it has no suggestion of process, only steps that can be incorporated in factories

processes.

From the aforementioned A&D approaches for software product line, only QADA takes into

consideration explicitly the variability in quality attributes (Matinlassi, 2005).

The conclusion in (Souza Filho; Cavalcanti; et al., 2008) has shown that although many

processes have very well defined guidelines, not all of them have available documentation for

domain architects to follow the process and achieve the reference architecture. It also

demonstrated the need to develop a process addressing these issues in order to decrease the

effort in the software product line adoption for factories that started development without a

software product line approach. The result of this effort is the RiPLE Design Method and can

be seen in (Souza Filho, 2010).

The RiPLE Design Method (RiPLE-Design) was developed based on the ADD method

(Bass et al., 2002), and provides as main output a Domain Specific Software Architecture

(DSSA) as well as a detailed description of domain quality attributes in the form of quality

scenarios. The process is divided in four main steps:

 Architectural Drivers Identification, where quality scenarios are to be

developed and chosen to be the architectural drivers. Key features may also

become architectural drivers.

 Architectural Details Definition, where the views needed to represent the

architecture are identified based on stakeholders needs.

 Architectural representation, where the architecture is represented using

views and specific models for each view.

 Design Decisions Identification, where the technology and variability

techniques to be used are identified and documented with rationale.

2.3 QUALITY ATTRIBUTES IN SOFTWARE PRODUCT LINES

As already mentioned, product line architecture must enable the variability among products in

the family. At the same time, as any other software architecture, it must address quality

attribute requirements. According to (Kolb et al., 2004), nevertheless, “research in the field of

Software Product Lines: An Overview 32

software product lines has primarily focused on analysis, design, and implementation to date

and only very few results address the quality assurance problems and challenges that arise in a

reuse context”.

According to (Etxeberria; Sagardui, 2005), quality attributes in product line architecture can

be classified in two different types: product line quality attributes and domain-relevant quality

attributes. Product line quality attributes are inherent to product lines to allow the architecture

to be the basis for a set of existing products and future new products. These attributes are

related to variability or flexibility, and must be achieved in order to be possible to get all the

desired functionality envisioned during product line scoping. Modifiability under the form of

extensibility, portability and scalability, for example, are related to the variation and evolution

over time. Configurability under the form of reusability, composability and interoperability,

represent variation over space.

Domain-relevant quality attributes are those targeted to a specific domain, such as

performance in the real-time domain and reliability in embedded systems. As pointed out by

(Bosch, 2000), it is better to address those in the beginning of the product line architecture

definition otherwise consequences and implications can be very difficult to fix, requiring

major effort and architectural changes. Different products in the domain may also require

different levels of attributes, so there can also be variability in quality attributes.

As in functional variability, a software product line supports quality attribute variability in

space and time (Bosch, 2000). Variability in space denotes divergence between the products

or product variants, whereas variability in time refers to product family evolution.

The aspect of variability in quality attributes has been “neglected or ignored by most of the

researchers as attention has been mainly put in the variability to ensure that it is possible to

get all the functionality of the products”, as discussed in (Etxeberria et al., 2008). The

challenge of achieving quality attributes in single-systems becomes even more complicated in

a product line context because there is variability on quality attribute requirement and

different quality constraints are required. Trade-off analysis of quality attributes is also more

difficult than in single-systems due to this variability and the exponential number of

possibilities, as mentioned in (Etxeberria et al., 2008).

Software Product Lines: An Overview 33

The impact of not dealing with quality attributes and the consequences of not considering and

managing their variability are not trivial:

If a product line is developed without considering the quality attribute

requirements’ variability, this product line will not cover all the

products of the scope and will probably not cover new products in the

future. As a consequence, the investment for developing the software

product line will not be cost-effective. (Etxeberria et al., 2008)

In order to perceive the motivation for varying quality attributes, it is worth to remark that

quality attributes affect each other, often they impact negatively (Barbacci et al., 1995). In

single systems development, these trade-off situations are resolved by finding a halfway

between conflicting quality attributes. Quality attribute variants are an alternative way of

solving the impasse. Instead of developing one system as a compromise of conflicting quality

attributes, develop a set of systems that optimize one quality on behalf of another

(Myllärniemi; Männistö; et al., 2006). In many cases, these variants can be realized

effectively as a software product line.

Quality Attributes can also conflict with business qualities, such as cost, time-to-market and

project lifetime (Bass et al., 2003). The introduction of quality variability can also help in

establishing differentiated price, e.g., a product with higher security costs more.

External varying constraints can also be helped when treated under the light of quality

attribute variability. Hardware-related constraints, as the massive variation among mobile

platforms are such an example. Different mobile platforms offer different memory and

graphical processing capabilities, mobile game developer companies can benefit from a

quality attribute variability approach producing differentiated products that benefits

specifically from each platform (Myllärniemi; Raatikainen; et al., 2006).

Based on the definitions of (Niemelä; Immonen, 2007), quality attribute variability can

happen in three different situations:

(i) variation among different quality attributes, for example, a product may require

high security and in another product security is not a concern at all;

(ii) different levels in quality attributes. The levels define how critical a quality

attribute requirement is in a product. This situation can also be seen as trade-off

variability, because, as some quality attribute requirement cannot cope with one

Software Product Lines: An Overview 34

another, the prioritization guides the architect to benefit one in spite of the other;

and

(iii) functional variability may indirect cause variation in qualities, and vice versa, for

example, a variation point in the execution platform may cause variability in

performance requirements. The other way round, variability in security

requirements results in different user authentication policies.

2.4 CHAPTER SUMMARY

This chapter showed a brief overview on software architecture and software product line

concepts. It discussed the motivation behind and benefits from the adoption of software

product line engineering paradigm. The essential activities during the software product line

engineering were presented, as well as some adoption models. Concerning adoption models,

the risks, strengths and drawbacks of the adoption models were discussed. Industrial

experiences adopting software product lines approaches were also presented in this chapter.

Next software architecture fundamental concepts were presented and its close relation to

software product lines. The importance of quality attributes in software product line

architecture was described, particularly the possibility of quality attribute variability and its

implications.

The next chapter presents an overview on RiPLE-Design process, as well as some

deficiencies encountered in the process when treating quality attribute variability.

35

3
THE RIPLE-DESIGN PROCESS

In this chapter, the RiPLE-Design will be described. It is a process formulated with the

purpose of generating a Domain Specific Software Architecture (DSSA) that represents

common and variable elements of a domain, as a part of RiSE Product Line Engineering

Process (RiPLE). The process will be examined in order to understand how it addresses

quality attribute variability.

The remainder of this chapter is organized as follows: Section 3.1 describes the RiPLE-

Design process; Section 3.2 presents its activities and guidelines; Section 3.3 shows how the

process addresses quality attribute variability; Section 3.4 concludes this chapter with its

summary.

3.1 RIPLE-DESIGN

The RiSE Product Line Engineering Process (RiPLE) provides activities, roles and artifacts

for every phase during the software lifecycle of a software product line. It is divided in three

main areas: core asset development, product development and evolution management. Core

asset development comprises processes and activities required to develop assets that will be

reused across the software product line. Product development includes process and activities

that will serve the purpose of deriving new products based on the core assets previously

developed. Evolution management includes supporting activities, such as version control,

change management and release management, and a process that need to be specific in the

product line context. RiPLE defines processes and activities for each one of the software

disciplines, examples are the RiPLE-Requirements process (Neiva, 2009) for requirement

engineering, RiPLE-Design process (Souza Filho, 2010), for design and architecture, RiPLE-

Scoping process (Moraes, 2010), for product line scoping and RiPLE-Test (Machado, 2010)

for software testing in the context of software product lines.

The RiPLE-Design Process 36

The RiPLE-Design process focuses on defining a Domain Specific Software Architecture

(DSSA), which represents the architectural elements from the software product line. Such

architectural definition must enable variability among products in a certain domain and must

take advantage of commonalities among those products in order to promote software reuse.

Following the RiPLE-Design process, an architect can systematically define the DSSA in an

iterative and incremental way, using clear models and techniques.

The process receives as mandatory inputs a feature model, representing the mandatory,

optional and alternative domain features; a list of domain stakeholders and the description of

the domain’s non-functional requirements. Optional inputs include domain requirements,

domain use cases and quality scenarios. Quality scenarios, if not provided, will be developed

during the process. The main output produced by the process is the DSSA representation,

which includes traceability between architectural models and domain features. The DSSA

representation is documented in a clear and concise form, in order to satisfy the main

stakeholders involved in the construction of a software product line. Another possible output

from the process is the Quality scenarios description, if not provided as inputs are produced

within the process as well.

The process was validated in an experimental study involving nine subjects (Souza Filho et

al., 2009). The subjects were seven M.Sc. students and two Ph.D. students from the Federal

University of Pernambuco. Among them, three students were graduated for more than five

years, while the others for less time. The experimental study was conducted during part of a

M.Sc. and Ph.D. course in software reuse, in November 2008, at Federal University of

Pernambuco (UFPE), Brazil.

The study analyzed the viability of subjects using the process to design an easy to change and

simple, i.e. not complete, DSSA. This study also analyzed the effort spent in this process in

comparison with the whole SPL life cycle for the project under development.

Based on the collected results, the analysis performed in this study showed that the process

can be viable for the definition of a DSSA for web applications domain, even with the

reduced number of nine subjects. Although the analysis also identified some directions for

improvements, none of the improvements pointed to address quality attributes variability.

The RiPLE-Design Process 37

3.2 ACTIVITIES

The Process is divided in four main groups of activities: Identify Architectural Drivers, Define

Architectural Details, Present the Architecture and Identify Design Decisions. An overview of

the process, including the four steps can be seen in Figure 3.1.

Figure 3.1 RiPLE-Design Overview, in flowchart notation

2

3.2.1 Identify Architectural Drivers

In this activity, three main tasks take place. Figure 3.2 shows the steps needed to identify the

architectural drivers. First, if not provided, quality attribute scenarios are developed, based on

non-functional requirements, with the purpose to better represent quality attributes

2
 This and other flowcharts obey to the notation from (International Organization For

Standardization/International Electrotechnical Commission, 1985)

Identify

Architectural

Drivers

Define

Architectural

Details

Represent

Architecture

Identify

Design

Decisions

The RiPLE-Design Process 38

requirements that the architecture needs to achieve. An elementary quality attribute scenario is

a pair of stimulus and expected response that describe the expected behavior of the system

under certain situation (Bass et al., 2003). Besides the stimulus and the expected response, in

RiPLE-Design, some other aspects related to the quality attribute are also described, namely,

the source of the stimulus; the environment, i.e., the conditions within the stimulus occurs; the

stimulated artifact, which can be the whole system or pieces of it; and the response measure,

that will help the architect to test some quality attributes requirement (Bass et al., 2003; Souza

Filho, 2010). The quality attribute scenarios must then be ranked based on their importance to

the domain. A catalog of general quality scenarios can be found in (Bass et al., 2003).

Figure 3.2 Identify Architectural Drivers, in (Souza Filho, 2010), in flowchart notation

In the second task in this activity, functional features are selected to figure as architectural

drivers. The architectural drivers will guide the main architectural definitions, and the

selection of key features following their importance to the domain, which is mainly based on

the business value of certain feature to the domain. Architectural dependency may also

influence the priority of a particular feature.

In the last task, the quality attributes represented in the scenarios are prioritized and selected

to be architectural drivers as well. This task also involves the identification of conflicts among

quality attributes and its documentation. The prioritization of quality attribute scenarios is a

key aspect of the RiPLE-Design method, because conflicts between quality attributes are not

rare, and the architect must address those conflicts by selecting as the top priority quality

attributes to be addressed first. The next activities will shape the architecture, so that the

quality attributes are fulfilled according to their importance.

Develop quality

scenarios

Select Features

for Architectural

Drivers

Select Quality

Features for

Architectural

Drivers

No

Yes

Are there Quality

Scenarios?

The RiPLE-Design Process 39

3.2.2 Define Architectural Details

This activity serves the purpose of defining the level of detail that will be used to describe the

architecture in each one of the behavioral, structural and process views. This definition takes

as input a list of stakeholders and decides based on it, the proper level of detail in each view.

Customers, as an example, are more likely to be interested in high-level structural and

behavioral views description. In this case, the structural view should depict modules and main

components, while the behavioral view should show the key interactions among them.

Product implementers may need more details, as a result, more classes and interactions among

classes may appear in the architectural views. This definition is made by the domain architect

and documented in the DSSA description document.

3.2.3 Represent Architecture

The definition and documentation of architectural models are done in this activity. The three

views, i.e., structural, behavioral and process, are defined in different steps.

The structural view shows the domain architecture static structure. It also shows how

variability is achieved inside this structure. In RiPLE-Design, the structural view definition is

composed of component and class diagrams. The formers show how the whole system is

divided into modules and those modules into components and the latter shows the classes that

will guide the implementation of each component.

During the definition of the architecture structure, Architectural drivers are selected from the

prior ranked list and guide the choice of the architectural styles that will help to accomplish

the desired quality attributes requirements. With the architectural styles chosen, modules are

defined representing high-level abstractions based on domain features, requirements and use

cases. High-level modules are refined as new quality attributes come into play and must be

fulfilled. Figure 3.3 depicts the iterative process of module definition.

The RiPLE-Design Process 40

Figure 3.3 Module definition Activities, in (Souza Filho, 2010), in flowchart notation

Following the structural view definition and documentation, components that will be part of

each module are defined. The definition of components in a software product line context is

extremely important, as the components must hold variability found in the domain

requirements. The RiPLE-Design process shows us forms of variability represented in

components: (i) external variability, where a component holds the implementation of certain

feature, and can be presented on a product or not, depending on the selection of that feature;

(ii) internal variability, where the internal structure of a component changes depending on

certain feature, e.g., algorithm choice; (iii) structural variability, where external structure of a

component can differ from one product to another; (iv) configuration variability, where

different arrangements and configuration of components can be done to achieve certain

feature selection.

In RiPLE-Design, components can be defined from domain features and use cases. When the

domain features are used, the resulting components represent a feature or a group of feature

that can be implemented in a single component. The variability inherent to a group of features

is represented internally or externally in the component using UML component diagrams and

stereotypes. High-level variant features lead normally to components with external variation,

while features that represent implementation selection and details lead to internally variant

components.

When the components are defined from use cases, the RiPLE-Design process follows the

guidelines proposed by the RiDE process in (Almeida, 2007). The technique follows three

steps to group, define and specify components based on their functional dependency.

Component grouping starts measuring functional dependency between use cases based on the

Choose

Architectural

Styles

Define

modules

Represent Low

Priority

Requirements

Yes

No No

Select

Architectural

Drivers

Refine

modules

Yes

Modules already

defined?

Need Architectural

Style?

The RiPLE-Design Process 41

subsystems they belong to, the actors involved in the use cases, the amount of data shared

among the use cases and the coupling between them. The four criteria define a metric that is

used to create use case clusters. The clusters help defining the set of use cases that will be

realized by each component. The component is then specified through its interfaces and

classes.

As the fine grain structural representation is normally needed, classes that will implement

each component must be defined. Some techniques can be chosen to accomplish the desired

variability. Aspect orientation, conditional compilation, design patterns and simple

parameterization are examples (Gacek; Anastasopoules, 2001). The selection of the proper

technique is made by the Domain Architect and documented in the DSSA. RiPLE-Design

provides guidelines to use design patterns to implement variability as follows. Alternative

features can be implemented with design patterns that allow substitution and varying

construction of classes, so, the Prototype, Abstract factory, Builder and Strategy design

patterns are good options to implement this kind of features. Or features need patterns that

adapt objects and guarantee that one implementation is always available should be used.

Adapter, Bridge, Decorator and Chain of Responsibility are examples of such patterns

(Gamma et al., 1995). Optional features can be implemented through the same patterns of Or

features, except that in this case, there is no need to guarantee that at least one feature is

present.

The Behavioral view is represented next with the development of sequence diagrams based on

the functional features and the defined classes in the structural view. This activity is

mandatory since the domain behavior can aggregate much information to developers during

implementation. Functional features and use cases are analyzed in order to collect information

that will fill the sequence diagrams. The classes in the sequence diagrams come from the fine-

grain structural view diagrams. Variable messages can also be presented in these diagrams.

Taking into consideration some quality attributes, such as performance and availability, the

architecture can decide to perform a thorough analysis of runtime characteristics of the

domain to address issues related to concurrency, distribution, fault tolerance and system

integrity. In this case, the RiPLE-Design process provides activities do define and represent

the Process View of the architecture using activity diagrams to represent processes, thread and

other runtime concerns.

The RiPLE-Design Process 42

During the whole activity of architecture definition, the domain architect plays a central role

and is aided by experienced developers. The domain manager also helps prioritizing quality

attributes and defining the key features of the domain.

3.2.4 Identify Design Decisions

This activity is performed throughout the entire design process. Decisions made during

architectural development should be documented in conjunction with a rationale about the

selected decision, alternative decisions left aside and possible enhancements to the chosen

option, so that other architects and developers can identify the motives behind the decision.

Examples of important choices to document are technology choices, variability techniques,

and the selection of one architectural style over another.

3.3 DESIGN OF VARIABLE QUALITY ATTRIBUTES

Regarding the achievement of quality attributes, RiPLE-Design’s approach consists in

prioritizing quality attributes under the form of quality scenarios, and evolving the

architecture by choosing architectural styles and patterns that enable the architecture to satisfy

the planed quality attributes. The RiPLE-Design process, however, does not define how to

treat quality attribute variability. Therefore, this work makes an assumption that it could be

possible to define a DSSA that could deal with quality attribute variability using known

architectural styles and patterns.

In this context, this work will assess how quality attribute variability could be addressed using

RiPLE-Design. The assessment will be built on top of real scenarios. The scenarios were

extracted from a software product line for a paper submission system, called RiSE Chair,

which was developed by the RiSE Labs for academic purposes. The product family can

handle various flows of submission such as papers submissions for a journal or a conference.

It enables users to evaluate papers in a single or many rounds and provides different ways to

grade and select papers for publication. The software product line provides features to handle

assignment of reviewers automatically or manually as well. The complete feature model of

the RiSE Chair SPL can be seen in Figure 3.4. It comprises 63 features being 13 optional , 2

alternative, 18 inclusive-or and 30 mandatory features.

The RiPLE-Design Process 43

Figure 3.4 Feature Model Diagram for Rise Chair

The development of the RiSE Chair software product line followed the complete RiPLE

process. Specifically, the domain architecture development followed RiPLE-Design and

started by deriving quality attribute scenarios from non-functional requirements. As an

example, Table 3-1 shows a modifiability scenario for the RiSE Chair SPL.

Source: Developer

Stimulus: Wishes to change

Artifact: The User interface

Environment: During development

Response: User interface is changed

Response Measure: In less than 4 hours with no impact to the rest of the system.

Table 3-1 Modifiability scenario for the RiSE Chair SPL

Mandatory feature

Optional feature

Alternative features

Inclusive-or features

Symbols

Implication

RiSE Chair

Upload

XML

Doc

Discussion

PDF

HTML

Odt

Review Help

Conflicts

Contact Reports Notificatiion

Advocate

Rounds of

Review
Assignement

Automatic
Manual

Automatic

Manual

Bidding AutomaticManual

Submission

Report

Review

Report

Commitees
Deadline

Paper

Assignment

Event News

Document

Status

RiSE Chair

Profile

Author

Chair
Reviewer

Commitee

Event

Program

Event Type

Topics

Backup Security Proceedings

Meeting

Colloquium

Congress
Seminar

Forum

Symposium

Conference

Contest

Workshop

Access

Control
CAPTCHA

Authentication
Authorization

Rebuttal Language

Portuguese

English

Search Submission

Complete Partial

The RiPLE-Design Process 44

Following the RiPLE-Design process, the Architectural Drivers Identification task has lead to

two drivers. They were:

(i) mandatory features;

(ii) variability found in some functional requirements

These two characteristics lead the architectural development, being the key features access

control, paper submission, paper revision, event management, notification and

internationalization. The variability present in some functional features was the main reason

why a product line approach was chosen. The architecture was designed to support high

modularity and flexibility.

Modularity and flexibility are the key characteristics of software product line architecture.

Loosely coupled and highly cohesive modules permit the reorganization of the architecture in

order to achieve high degrees of reuse. Flexible architectures allow a large range of product

variants to be implemented easily. Such an architecture must be simple to change and very

tailorable, so, when new products with alike, but not the same features, need to be developed,

they can be delivered in less time with less effort.

From the Define Architectural Details activity, the DSSA should be described in low level

details.

The next activity in the RiPLE-Design process is the Represent Architecture activity. During

the structural view definition task, an architectural style was chosen to address the

architectural drivers. The layered architectural style was chosen as it promotes high

modularity and independence among layers.

On top of the layered architecture, a web platform was chosen to deliver the functionalities.

The web technologies served well the purpose of submission systems. It enables peers to

submit papers from anywhere in the globe. Conference chairs and papers evaluators could

also work from anywhere without downloading any application, since the web application

works inside their browsers.

The module definition task produced the structural representation of the modules shown in

Figure 3.5.

The RiPLE-Design Process 45

Figure 3.5 RiSE Chair Module View, in UML notation
3

After the module definition, components from each module were defined as well as the

relationship among them. As a result of the component definition task, the RevisionImpl

component, responsible for handling assignment of reviewers for papers and registering the

grades from each reviewer, is shown in Figure 3.6.

Figure 3.6 Structural view of the Revision component, in UML notation

3
 Following the UML Notation, from (Fowler; Scott, 2000)

The RiPLE-Design Process 46

The behavioral view definition task follows the structural view definition and an example of

its result is illustrated in Figure 3.7.

Figure 3.7 Sequence diagram: invite reviewer, in UML notation

Given the layered web platform architecture as a basis, the next subsections describe, for each

case of quality attribute variability, according to the definitions of (Niemelä; Immonen, 2007),

how the architectural solution was adapted using the RiPLE-Design process.

The case of functional variability affecting quality attributes is related to the occurrence of

feature interaction in software product lines. As pointed out in (Lee; Kang, 2004), sometimes

“[…] features cannot perform their functionalities alone, they need to interact among them in

order to accomplish the products requirements. In this context, a feature interaction occurs in

a system whose complete behavior does not satisfy the separate specifications of all its

features.” Functional features that impact on non-functional features are, thus, a case of

feature interaction. The problem of feature interaction can impact the whole SPL development

process, as it promotes changes in reusable assets and impacts maintenance costs and other

products. The adaptation of the RiPLE Process to perform dependency analysis among

features and analyze how they impact on each other is described in other Project from the

RiSE Labs. The case of functional variability affecting quality attributes, so that quality

attribute variability occurs, will then be left out of the scope of this work.

The RiPLE-Design Process 47

3.3.1 Variations among different quality attributes

Most of RiSE Chair products have low availability demands, as exemplified in the quality

scenario show in Figure 3.8.

Figure 3.8 Low demand availability scenario

Other products, however, have a requirement for high availability and reliability, which can

be seen in Figure 3.9.

Figure 3.9 High demand availability scenario

Availability and reliability can be categorized as dependability attributes. According to

(Laprie, 1992), dependability is that property of a computer system such that reliance can

justifiably be placed on the service it delivers. As stated by (Barbacci et al., 1995), availability

measures the readiness for usage of a system while the reliability of a system is a measure of

the ability of a system to keep operating over time.

Artifact:
System

Response
Measure:
Less than 4
hours of
downtime

Response:
System
adminsitrator
is notified by
email

Environment:
Under Normal
Operation

Stimulus:
Component
Failure

Source:
Internal

1

2

3

4

Artifact:
System

Response
Measure:
Less than 30
minutes of
downtime

Response:
System
adminsitrator
is notified by
email and SMS

Environment:
Under Normal
Operation

Stimulus:
Component
Failure

Source:
Internal

1

2

3

4

The RiPLE-Design Process 48

Some products of the software product line are aimed at large conferences with worldwide

submission. As someone could be submitting a paper from anywhere in the globe, it can

happen anytime. So, the system must be online 24 hours a day, every day such a conference is

being held. Other classes of products do not have high concerns with availability.

Following the RiPLE-Design process, the architect must prioritize the quality attribute

scenarios and adapt the architecture structure to address quality issues. In this case, the

architect pondered that the high available system would affect more the architecture definition

than the less available option. So, the quality scenarios priority established the low demand

for availability as less important than the other availability scenario. The architecture was

built as a consequence of that priority.

According to (Bass et al., 2003), all the approaches to maintaining availability involve some

type of redundancy, some type of health monitoring to detect a failure and some type of

recovery when a failure is detected. Many of the available tactics to address availability issues

are available within standards execution environments. Database transactions, for example,

can be considered a fault prevention tactic.

Automatic fault detection tactics are very common in real time and mission critical systems,

examples are Ping/echo, when one component issues a ping and expects to receive back an

echo, within predefined time, from the component under inspection; and Heartbeat, where

one component emits a heartbeat message periodically, and another component listens for it.

In both cases, if the heartbeat or the echo fails, the component is assumed to have failed and a

fault correction component is notified.

In this case, there is no need for automatic detection of failures, as none of the products of the

RiSE Chair product line involve high risks of money or human losses. The fault detection

mechanism will be manual.

For the desired degree of availability, the architecture will only focus on fault recovery. Fault

recovery often involves redundancy. Automatic fault recovery mechanisms are very complex.

They are used, for example, in air traffic control systems. Examples of fault recovery tactics

are, as in (Bass et al., 2003), Active redundancy, Passive redundancy and Spare. In Active

redundancy, several components are maintained in the same state and respond to events in

parallel. The response from only one component is used and the others discarded. When the

The RiPLE-Design Process 49

fault occurs, the system’s downtime is milliseconds since the time to recover is only the

switching time. Passive redundancy consists of one primary component responding to events

and informing the other standby components of state updates they must make. When a fault

occurs, the system must first ensure the backup state is sufficiently fresh before resuming

services. In the Spare tactic, a standby computing platform is configured to replace many

different failed components. Somehow it must be managed to the spare platform to be at the

same state as the primary platform. The downtime of this tactic is usually minutes.

Concerning fault recovery, it is also important to define a fault model, describing which types

of fault will be considered and which ones will be ignored. In the case of RiSE Chair, only

internal component failures were considered.

For the RiSE Chair architecture, the Spare tactic was applied. In this special case, the standby

platform consisted in another web application server ready to go associated with redundant

databases. This strategy was used because of its simplicity. It can be easily applied, and does

not influence maintainability, modifiability or any other key quality attribute, since the system

is replaced as a whole, without affecting internal components. A proxy server must be placed

to receive and reroute user HTTP requests.

Figure 3.10 shows the deployed system under normal operation.

Figure 3.10 Deployment diagram. System under normal operation

Figure 3.11 shows the deployment configuration when a fault occurs, and the proxy is set up

to reroute the requests to a spare web application server.

The products derived from the RiSE Chair software product line are mainly data-driven,

meaning that the state of the system is in its data. It is easy to manage the spare platform to

maintain its state equivalent to the primary platform, since the database redundancy can be

configured and automatically provided by the database server.

User
Proxy server Web Application Server

Sends requests Routes request

The RiPLE-Design Process 50

The spare tactic is associated with error reports to the system administrator, who would be

responsible to setup the HTTP requests rerouting. This strategy enabled an estimated

downtime of a few minutes to an hour, which would be satisfactory even for the most critical

products.

Figure 3.11 Deployment diagram. Under faulty operation, proxy server as a request router

It is important to remark that although the variability in system downtime is not due to the

used process, but to the manual treatment, the request rerouting. The single architectural

solutions, aims to solve the most critical scenario.

3.3.2 Different levels in quality attributes (trade-off variability)

To exemplify the case of different priority levels of quality attributes, there is a case in the

RiSE Chair product line where some products demand high security and another group of

products that demand short latency with high scalability. Business research has shown that

some users are willing to pay more for more secure systems, even if they are not so fast. On

the other hand, some users do not have much confidentiality concerns, they prefer a faster

system.

Figure 3.12 shows the performance scenario for the class of products with high performance

demands. Other class of products, demands higher security, this case is exemplified in Figure

3.13. The main security concern is confidentiality, which is the requirement that data and

processes to be protected from unauthorized disclosure (Barbacci et al., 1995). Also according

Spare

Web Application Server

User
Proxy server

Web Application Server

Sends requests

Reroutes request

Out of

service

The RiPLE-Design Process 51

to (Barbacci et al., 1995), latency refers to a time interval during which the response to an

event must be executed.

Figure 3.12 Performance/scalability scenario with short latency

Figure 3.13 Confidentiality scenario

Those two quality attributes are often in opposition as higher security leads to encryption

protocol that are time consuming. This situation reflects the business need for two different

classes of products where some customers are willing to accept less security if they can get

shorter response time, and other customers prefer more security even though the performance

is hindered. Hence, as discussed, security needs are often in opposition to performance

requirements.

Following the RiPLE-Design process, the quality attributes must be prioritized, and one

quality attribute addressed after another. The occurrence of variability in quality attributes has

no precedents in RiPLE-Design process. This means that the process gives no guideline about

how to represent that in some products security is more important than latency and other

products are just the opposite.

Artifact:
System

Response
Measure: with
an avarage
latency time of
3 seconds

Response:
Processes The
Transactions

Environment:
Under Normal
Operation

Stimulus:
Initiate
TransactionsSource:

2000
simultaneous
users

1

2

3

4

Artifact:
Data

Response
Measure: data
is unreadable
by the attacker

Response:
Is encrypted
under secure
protocolEnvironment:

Under
transmission

Stimulus:
Tries to sniff
the network to
intercept data
transmission

Source:
An attacker

1

2

3

4

The RiPLE-Design Process 52

During the prioritization of the quality attribute, the domain architect together with the

domain manager must come to a single priority queue, and evaluate what are the impacts of

having security before latency or the other way around. As an architect, one way to follow is

to assume that shorter response time and stricter security are possible at the same time. The

domain manager must also agree that having both quality attributes at the same time is viable,

or perhaps it is the only path to follow. Note that the domain manager must leave aside the

business concerns that may have lead to the conclusion of having two classes of products and

benefit from the trade-off variability between security and performance. Both, domain

architect and domain manager must also come to an agreement of the lowest acceptable

performance demand. The scenario in Figure 3.14 shows this.

Figure 3.14 Performance scenario with longer latency

Latency requirements can be measured and the proposed architecture can be validated against

them, but the architect would address them first. According to (Bass et al., 2003), there are

two main contributors to the latency of a request: (i) resource consumption, such as CPU, data

stores and network communication bandwidth and (ii) blocked time, which can be caused by

contention of resources, availability of some resource or dependency in other computation.

The tactics to address latency issues fall into three categories: resource demand, resource

management and resource arbitration.

Resource demand tactics that can be introduced in this solution include Increase computation

efficiency, by optimizing some algorithm from a critical area; and Reduce computational

overhead, that is mainly removing intermediaries in an event stream being processed, which

may worsen the modularity of the architecture.

Artifact:
System

Response
Measure: with
an avarage
latency time of
1 minute

Response:
Processes The
Transactions

Environment:
Under Normal
Operation

Stimulus:
Initiate
TransactionsSource:

500
simultaneous
users

1

2

3

4

The RiPLE-Design Process 53

Resource management tactics can also help to reduce latency, some of them are described in

(Bass et al., 2003) and can be applied in the web application platform: Introduce concurrency,

if the requests can be processed in parallel, different threads of execution can process different

stream of events; and Increase available resources, simply providing faster processors,

additional memory and faster networks can help to reduce latency, with the obvious

cost/performance trade-off.

Resource arbitration tactics comprise scheduling techniques and criteria. They are common in

real time systems, in which time deadlines must be met.

The proposed solution includes Introduce concurrency and Increase available resources. The

introduce concurrency tactic is characterized by the proxy server, described earlier, to

function also as a load balancer, directing request to different spare servers, as seen in Figure

3.15. This tactic can be seen as an enhancement to the spare tactic applied to address

availability. In this case, there is no need of an application server runs out of service, the load

balancer can redirect the requests to another server. Load balancing here can help to maintain

the level of service when a large number of users access the system.

Figure 3.15 Deployment diagram. Load Balancing

Web Application Server
User

Proxy server

(load balancer)

Web Application Server

Web Application Server

Routes requests

Routes requests

Routes requests

Sends request

The RiPLE-Design Process 54

The second tactic, increase available resources, works as a fine tuning, adjusting the deploy

setup to meet the latency requirements. The Increase computation efficiency tactic did not

seem to apply, since the products involved no kind of complex computation.

The next step is to introduce the security issues and adapt the architecture to meet these

requirements while maintaining latency quality attributes. Tactics for achieving security can

fall into three categories: resisting attacks, detecting attacks and recovering from attacks.

(Bass et al., 2003).

Most of security tactics are concerned with resisting attacks. They include Authenticate user,

where simple login-password pairs or complex biometric identification can be used; Authorize

user, to ensure that an authenticated user has the rights to access and modify either data or

services; Maintain data confidentiality, which is normally related to encrypting data and

communication channels; Maintain Integrity, implemented using checksums or hash results;

Limit exposure to certain services, or to distribute the service hosting so an attack does not

affect all data and services at once; and Limit access, which is to restrict the access to known

sources, through firewalls or a Demilitarized Zone (DMZ) (Bass et al., 2003).

Attack detection can be done with some kind of Intrusion Detection System (IDS). Those

systems can analyze the patterns of requests and user behavior to infer whether an attack is in

progress.

Tactics to recover from attacks are concerned with restoration of services and data, and

identification of attacker. Restoration tactics are the same already described for availability

issues. The main identification tactic is to maintain an audit trail from each transaction

applied to the data together with identifying information (Bass et al., 2003).

The RiSE Chair software product line already mentioned in its feature model the need for user

authentication and authorization. These security tactics were implemented into a specific

module and further refined into components, without major changes in the architecture. The

security concern that needed further analysis, as shown in Figure 3.13, involves data

confidentiality. In this case, the Maintain data confidentiality tactic was applied. The

encryption link was implemented by a Secure Sockets layer (SSL) very common in web

applications.

The RiPLE-Design Process 55

Using secure protocols and data encryption, it is expected that the overall system latency

increases. If the security tactic damages performance, adjustments in deployment can be

made, i.e., better processors in the deployment machine. As described before, adjustments in

the performance can be made adopting the Increase Available Resources.

3.3.3 Discussion

RiPLE-Design focuses on producing an architectural definition that enables variability among

products in a certain domain and takes advantage of commonalities among those products in

order to promote software reuse. This architectural definition must, at the same time, satisfy

the proposed quality attributes requirements represented in quality attributes scenarios.

The examples described above showed how it would be to use RiPLE-Design process to deal

with variability in quality attributes. In the first case, the availability and reliability demands

were high only in a single class of products, in other words, availability was optional to that

class of products. The use of a ranked list of quality attributes directs the architect to consider

the availability scenario, even though those quality attributes were different from product to

product. The need for availability guided the architecture development and a single

architectural solution was proposed to satisfy both cases, even when that extra complexity

was not needed. Thus, there will be an over engineered class of products, with robust

infrastructure that will seldom be used.

The second example showed two classes of products that could take advantage of the trade-

off between security and performance. The solution proposed by following RiPLE-Design,

however, lead the architecture definition to an over engineered solution where both security

and performance would coexist. Although the solution was coherent and viable, it discarded

the variability among the classes of products, and delivered a single architectural solution.

This situation hides the trade-off between both quality attributes, as it tries to achieve both

requirements at the same time, in other words, every product in the product line would have

high security and short latency. For a class of products, the confidentiality quality attribute

represented a layer of computation that could be dismissed in order to increase performance,

following the Reduce computational overhead tactic.

The RiPLE-Design Process 56

Both examples, resulting in a single architectural solution did not cope well with quality

attribute variability, they simply left aside the reason why the quality attribute variability

needed to be exploited. One sound reason to have quality attribute variability, in the case of

trade-off between confidentiality and latency, was the business advantage of offering

differentiated products to specific markets. The proposed solution simply considered that

faster products would please both market shares. Yet, faster does not always mean better. The

single solution brings the problem of customers willing to pay for slow but secure systems

will have to pay also for the infrastructure needed to make that system fast.

The guidelines from RiPLE-Design result in a single architecture representation that leaves

behind any variability in quality attributes. The use of a prioritized list quality attribute

scenarios and tactics do not seem to address well the problem of variability in quality

attributes requirements. The idea that one solution fits all does not hold when the architect

must fulfill other stakeholders’ desires, such as business and marketing strategy. Sometimes,

business wants exactly to benefit from the variability among quality attributes to offer

different products for different markets. This gap in the main process leads to the central

contribution of this work, which is to extend RiPLE-Design guidelines to cope with variability

in quality attributes requirements. As discussed in the previous sections, the actual RiPLE-

Design guidelines do not cope well with quality attribute variability.

3.4 CHAPTER SUMMARY

This chapter described the RiPLE-Design process for DSSA development. Besides showing

the roles, activities, tasks, inputs and outputs of the process, it also described through a guided

example how the process addresses quality attributes variability. It was discussed that the

guidelines from RiPLE-Design result in a single architecture representation that leaves behind

any variability in quality attributes.

The next chapter presents some enhancements proposed to overcome those limitations.

57

4
EXTENDING THE RIPLE-DESIGN PROCESS WITH

QUALITY ATTRIBUTE VARIABILITY REALIZATION

Studies have reported the idea of variation in quality attributes (Myllärniemi et al., 2006;

Niemelä; Immonen, 2007). (Myllärniemi; Männistö; et al., 2006) suggest that three points

must be addressed to achieve satisfying results when the architecture presents variations in

quality attributes:

(i) Specify and model varying quality attributes;

(ii) Find a design strategy for varying quality attributes;

(iii) Evaluate the architecture in order to achieve the needed variation.

Many approaches address variability modeling and specification taking into consideration

non-functional features (Etxeberria et al., 2008; González-Baixauli et al., 2007; Jarzabek et

al., 2006; Sinnema et al., 2004). Studies have also shown the problem of evaluating the

architecture derived from a Product Line Architecture focusing on its quality attributes

requirements (Olumofin; Misic, 2005). Nevertheless, only a few works focus on strategies to

realize variability in the quality level, i.e., finding a design strategy for varying quality

attributes, some of them are (Bosch, 2000; Hallsteinsen et al., 2003; Rossel et al., 2009), and

are described next.

(Rossel et al., 2009a) describes an approach based on Model-Driven Engineering (MDE)

where the PLA is seen as a set of transformations associated with the domain features. In his

approach, the quality attributes requirements are also modeled as features. A derived product,

built from a selection of features, can have its architecture built through the application of the

earlier mentioned transformations. The variations in quality attributes requirements produce

different transformation in the model and can make product architectures completely different

from one another.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 58

(Bosch, 2000) suggests the possibility of transforming quality attributes requirements into

functionalities. For example, the requirement of security can be converted into login and

encrypted passwords and protocols. This attempt to make non-functional requirements into

functionalities does not work always. Not all quality attributes requirements can be

transformed into functionality, e.g., there is no functionality that deals with performance the

same way access control functionalities deal with security. It is not guaranteed that a quality

attributes requirement is achieved by a specific set of functionalities. In other words, a system

can have access control with highly encrypted passwords and protocol and still not be secure.

The way (Hallsteinsen et al., 2003) copes with quality attribute variability is by leaving the

architecture open “on the points where the variation in requirements makes it impossible to

standardize architectural decisions”. The architecture documentation comprises tactics used to

achieve quality attributes requirements. Tactics, in this case, are any solution proposal,

guideline, design pattern, architectural style and so on. In case of variability in quality

attributes requirements, more than one solution may be proposed, the variation points are

made explicit and decision models are documented with the knowledge necessary to ponder

about the better solution for each product to be derived.

The suggestions described in the next subsections address the three points described by

(Myllärniemi; Männistö; et al., 2006). Section 4.1 and its subsections describe activities to

specify and model varying quality attributes; section 4.2 and its subsections are based on the

work from (Hallsteinsen et al., 2003) and describe a design strategy for varying quality

attributes; Section 4.3 and its subsections describe guidelines to evaluate the architecture in

order to achieve the needed variation. Finally, Section 4.4 summarizes this chapter.

4.1 REPRESENTING QUALITY ATTRIBUTE VARIABILITY

The representation of the relation between variants and design possibilities is important

because, as pointed out in (Etxeberria et al., 2007), many variants represent design decisions

that can have great impact on quality attributes. From the example described in (Rossel et al.,

2009b) of software product line for Meshing Tools, whose feature model is reproduced in

Figure 4.1: the feature Mesh Processing Distribution impacts directly in the design of the

product line, as the authors show “not only a different deployment view is required to show

the distributed setting, but also new components in charge of dividing the mesh among

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 59

different processors and synchronizing the results are required as part of the tiers architecture

too.”

Figure 4.1 Feature Model for Meshing Tools, in (Rossel et al., 2009b)

It is even more critical when the design must deal with variable quality attributes, because, as

acknowledged, quality attributes impact in each other.

Two examples of modeling methods that address varying quality attributes are F-SIG

(Feature-softgoal interdependency graph) (Jarzabek et al., 2006) and COVAMOF (ConIPF

Variability Modeling Framework) (Sinnema et al., 2004).

F-SIG (Feature-softgoal interdependency graph) (Jarzabek et al., 2006) was built as a

framework to record design rationale in the form of interdependencies among variant features

and quality attributes. It extends FORM (Kang et al., 1998) with concepts of goal-oriented

analysis (Chung et al., 1999). It uses a new graph composing a feature model elements and

softgoal interdependency elements. The use of softgoals helps to explicitly represent the

relation between features and quality attributes. One limitation is that the F-SIG poorly

supports quantitative analysis of non-functional requirements.

COVAMOF (ConIPF Variability Modeling Framework) (Sinnema et al., 2004) uses the CVV

(COVAMOF Variability View), which encompasses the variability of artifacts on all layer of

Mandatory feature

Optional feature

Alternative features

Inclusive-or features

Symbols

Meshing Tool

Algorithms Output

Format
Mesh

Move

Boundary

Refine

Improve

Optimize

Derefine

PLC

Polyhedra with

shared vertices

PLSG

Medit Tool

2D Mesh 3D Mesh

Triangle

Quadrilateral

2d Mixed

element Tetrahedral

Hexahedral

3D Mixed

element

Meshing Tool

User Interface

Command

language

Menu Selection

Direct

Manipulation

Form Fill-in

Geometry

CSG

b-rep

dd-rep

Generate

initial mesh

2D 3D

Mesh Processing

Response Time

Mesh Processing

Distribution

Distributed Non-Distributed

Delaunay 2D

Sphere-packing

Advancing

front 2D

Quadtree Octree

Intersection

based approach

Delaunay 3D

Advancing

front 3D

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 60

abstraction of the product family. This makes it possible to model the variability of the

product family from features to code. As pointed out in (Etxeberria et al., 2007), a drawback

of this framework is that it does not properly characterize quality attribute, what makes it hard

to cope with its natural ambiguity.

(Etxeberria et al., 2007) establishes a set of requirements that are important to exist in an

approach for modeling varying quality attributes. Among them are:

(i) The necessity of a mechanism for describing and explaining a quality attribute

adequately;

(ii) The need to represent optionality of quality attributes;

(iii) The need to represent different levels of priority of a quality attribute.

Based on those requirements, a new activity is suggested to take advantage of existing models

and document quality attributes and its possible variations among products in the product line.

4.1.1 Represent variable quality attributes in the feature model

As proposed in (Rossel et al., 2009b), it is interesting to consider not only functionality, but

also quality attributes as features. The authors consider “quality attributes as part of the

feature model since in several settings they may also be considered variabilities”. By the

definition from (Kang et al., 1990) a feature is “a prominent or distinctive user-visible aspect,

quality, or characteristic of a software system or systems”. Thus, it seems natural to consider

quality attributes as features, since they are noticeable in the products.

In Figure 3.4 shown before, where the RiSE Chair Feature Model diagram is specified, we

can observe security already described as a feature. In that case, the security feature represents

some functionality that must be present in the products. Those functionalities materialize the

security quality attribute. In the mentioned case, the access control feature and its children,

authentication and authorization. That special case, however, does not characterize a process

guideline from RiPLE. Instead, the security feature was modeled exactly to group the related

functionalities. Other security concerns, e.g., confidentiality, were not mapped in the feature

model diagram, even though it was an architectural concern, represented in the quality

attribute scenarios.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 61

The modified version of the activity Identify architectural drivers can be seen in Figure 4.2. It

shows a new task, where the Domain Modeler together with the Domain Architect analyze the

developed quality attribute scenarios, in order to find possible quality attribute variability.

Figure 4.2 Identify architectural drivers modified, in flowchart notation

Although already suggested by RiPLE-Design, quality attribute scenarios do not seem the

right option to model variability. The quality scenario representation encompasses six parts in

their description. The variation can occur in any part. For example, in a variable availability

scenario, not only the expected downtime, i.e., the response measure, is likely to vary, but

also the response itself, namely how the system should behave after a fault occurs. This means

that a single scenario would have many variation points in its descriptions, making it difficult

to understand. On the other hand, the information comprised by the quality scenario is an

important guide to the software architect to develop the foundations of the system, in this

case, the domain architecture and a potential set of systems. This quandary leads to a hybrid

solution exposed next.

The quality attribute variability is represented in the feature model diagram. The feature

model is a central asset in the product line development, as it enables a broad view of

variations and commonalities as well as possible products to derive. It is a natural step to

represent the variability in this diagram. Figure 4.3 shows an example of a feature model with

quality attribute variability represented.

Develop quality

scenarios

Select Features

for Architectural

Drivers

Select Quality

Attributes for

Architectural

Drivers

No

Yes

Are there Quality

Scenarios?

Represent Quality

Attributes in the

Feature Model

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 62

Figure 4.3 Feature model with quality attribute variability

The quality scenarios work as side documentation to record the metrics that accompany the

attributes. The Latency quality attribute, for example, may be accompanied of lower and

upper time boundaries; the Availability attribute must have the expected downtime; and so on.

In order to achieve desired quality levels, the quality attributes must be complemented with

the system’s response measure. In the special case of quality attribute variability, the variation

in those attributes is given by those numbers. This additional data is important, as indicated by

(Etxeberria et al., 2007): “a model where quality attributes variability is modeled […] is

indispensable to take the most adequate decision during design and derivation and get the

required quality levels.” The metrics can still be recorded in quality scenarios and those can

be associated with features in the feature diagram. In the example of Figure 4.4, a part of a

feature model diagram from some hypothetic product line is shown. Figure 4.5 and Figure 4.6

represent the quality attribute scenarios associated with each feature, and record the latency

time metric related to the quality attribute.

Figure 4.4 Latency quality attribute of a hypothetic product line

Mandatory feature

Optional feature

Alternative features

Inclusive-or features

Symbols

Implication

RiSE Chair

Availability

Critical Ordinary

Latency

High

demand

Low

demand

Security

Confidentiality
Access

Control
CAPTCHA

Authentication AuthorizationEncrypted

Password
SSL

A Product Line

Latency

Low

latency
High

Latency

Mandatory feature

Alternative features

Symbols
...

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 63

Figure 4.5 High latency and low scalability quality scenario

Figure 4.6 Low latency and high scalability quality scenario

4.2 DESIGN STRATEGY FOR VARYING QUALITY ATTRIBUTES

“Architecture of product families has both a descriptive and a prescriptive purpose”

(Hallsteinsen et al., 2003). The former has its essence in documenting the structure and

behavior of the general solution provided by the domain architectures. The design of domain

specific software architecture is guided by several architectural drivers, so that the main

structure and behavior can be well represented and understood by others stakeholders. The

prescriptive aspect focuses on constraining and alleviating the task of the application

designers by providing templates for application design. Those templates consists of

architectural scenarios along with implementation and configuration guidelines.

The main RiPLE-Design process output is the DSSA document, where the structure and

behavior of the DSSA is documented, as well as the rationale behind the design decisions.

This documentation is a descriptive aspect of the process. The mechanisms used to achieve

Artifact:
System

Response
Measure: with
an avarage
latency time of
1 minute

Response:
Processes The
Transactions

Environment:
Under Normal
Operation

Stimulus:
Initiate
TransactionsSource:

500
simultaneous
users

1

2

3

4

Artifact:
System

Response
Measure: with
an avarage
latency time of
3 seconds

Response:
Processes The
Transactions

Environment:
Under Normal
Operation

Stimulus:
Initiate
TransactionsSource:

2000
simultaneous
users

1

2

3

4

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 64

functional variability are also documented. Particularly, the RiPLE-Design process provides

guidelines to achieve functional variability through design patterns, such as Strategy and

Builder (Gamma et al., 1995), and how products derived from the DSSA should be assembled

in order to deliver the desired functionality, so it is viable to benefit from software reuse. This

is the prescriptive side of the process.

Concerning quality attributes variability, this section describes a design strategy for varying

quality attributes, the second point that should be addressed according to (Myllärniemi;

Männistö; et al., 2006). This strategy focuses on the prescriptive aspect of the RiPLE process.

It provides ways to standardize and document solutions to achieve recurring and varying

quality attributes across the members of a software product line. The guidelines are based on

(Hallsteinsen et al., 2003).

Figure 4.7 shows a modified version of the define module task, inside the Architecture

Definition activity. The modified version includes changes in two steps, namely, Select

Architectural Drivers and Chose Architectural Styles, and the addition of a new step called

Document Decision Guidelines. The modification will be described next.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 65

Figure 4.7 Module definition task modified, in flowchart notation

4.2.1 Select architectural drivers

Select architectural drivers is the first task in the Module definition activity from the RiPLE-

Design process. It uses the Feature Model and a ranked list of Quality Scenarios as inputs to

choose the most important functional feature or quality attribute that should be considered to

shape the architecture; or to choose the next most important feature or quality attribute, if a

DSSA already exists.

One of the most important objectives of the software architecture is to achieve quality

attributes requirements, and that is the main concern of the RiPLE-Design process. It is

important to remark that to enable variability in quality attributes increases a great deal of the

Choose

Architectural

Styles*

Define

modules

Represent Low

Priority

Requirements

Yes

No

No

Select

Architectural

Drivers*

Need Architectural

Style?

Modules already

defined?

Refine

modules

Yes

Document

Decision

Guidelines

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 66

architecture’s complexity. Nevertheless, the RiPLE-Design process does not mention quality

attribute variability. Therefore, it is important to add to this step the concern about this

particular case of variability. Knowing that quality attributes variability may cause high

impact on the architectural definition, the proposed change in the Select architectural drivers

task is that the domain architect enroll variable quality attributes as architectural drivers early

in the process.

The selection of variable quality attributes as architectural drivers come to organize the

architectural design so that complex issues are addressed first, in order to minimize the effort

of introducing solutions for this kind of variability later in the process, when the architecture

would have its base structure and applying patterns and tactics would be more complicated.

4.2.2 Choose Architectural Styles

In this task, the domain architect must choose architectural styles and tactics that will

structure the architecture definition to fulfill a chosen architectural driver. According to

(Shaw; Garlan, 1996), an architectural style “defines a vocabulary of components and

connector types, and a set of constraints on how they can be combined [and used]”.

Architectural tactics is a term coined in (Bass et al., 2003) that represents “a design decision

that influences the control of a quality attribute response.” The styles are chosen so that they

suit architectural needs and cope well with possible conflicts between new and previously

chosen styles.

The choice for a particular architectural style or tactic is then documented in the DSSA. They

are documented to solve specific design issues. The architectural documentation is meant to

be a pattern language of recurring problems and solutions. Patterns can be well known

architectural styles, like the Pipes and Filters style (Shaw; Garlan, 1996); established

architectural patterns that concentrate on specific issues from some part of the design, such as

the MCV pattern (Buschmann et al., 1996); or even particular solution built by the in-house

team. Along with the proposed solution, described in the architecture document, it is

important to describe the rationale behind the selection of a pattern and the possible influence

it has on important quality attributes. By the end of several iterations, the DSSA

documentation is composed by descriptive diagrams of structure and behavior, and rationale

about the architectural styles, patterns and tactics applied.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 67

Functional variability will continue to be addressed the same way it was before: by the

selection of proper architectural styles to ensure the achievement of system variability.

Quality attributes that do not involve variability can also be addressed the same way as

before: architectural styles and patterns and other design strategies are chosen to meet quality

attributes and balance possible conflict and trade-off among quality attributes addressed

beforehand.

When the product line involves variable quality attributes, our approach is to encode

architectural variation in the form of optional and alternative design strategies, as suggested in

(Hallsteinsen et al., 2003). In this case, patterns represent possible paths to follow for

promoting one quality attribute, perhaps over another. Optional strategies may or may not be

included in application architecture. Alternative strategies are solving the same problems in

different ways. The application architect may choose the one that best fits the application

requirements.

Optional strategies serve to document solutions for optional quality attributes. As shown

previously in Figure 3.8 and Figure 3.9, the RiSE Chair software product line presents an

example of optional quality attribute. High availability is only demanded in some products.

The solution discussed in Section 3.3.1 showed a single architecture that achieves the high

availability demand, and assumes that it is plausible to offer a single solution, even for

products that do not demand high availability. Following the proposed guidelines to deal with

optional quality attributes, our DSSA would document two possible solutions. A simpler

solution, used in the general case, fulfills the low availability demand represented in the

quality scenario of Figure 3.8; and a second solution, more robust, where the deployment

introduces a proxy server to reroute the requests, just as explained in Section 3.3.1. The

simpler solution, to be applied in the general case, is shown next, in Figure 4.8.

Figure 4.8 Deployment diagram. General case.

Sends requests

User
Web Application Server

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 68

Alternative strategies are used to document quality attributes variability that involve trade-off

among attributes. In the example shown in Section 3.3.2, security and latency were in clear

opposition. Figure 3.12 shows the performance scenario for the class of products with high

performance demands and Figure 3.13 correspond to other class of products that demand

higher security.

In the previous example, RiPLE-Design process was followed and the conclusion was that the

Domain Architect and the Domain Manager should come to an agreement where new

response measured should be established so that both quality attributes could coexist in a

single architectural solution.

Following the new guideline, the architect can apply different tactics and propose different

architectural styles, respecting the fact that both high security and low latency must not

coexist. The DSSA should then document two alternative solutions: one for high security,

where the latency concerns will be in second plane; and another for low latency, where

security concerns will not play such an important role.

Since the class of products demanding high confidentiality do not demand low latency, it is

plausible to offer a solution that deals with confidentiality by applying the suggested tactics

and patterns discussed in Section 3.3.2, that is applying the Maintain data confidentiality

tactic, under the form of an encryption link implemented by a Secure Sockets Layer (SSL),

very common in web applications. Without any concern about low latency, a simpler

architecture can fulfill the expected quality attribute response measure, as shown in Figure

4.9.

Figure 4.9 Deployment diagram, secure link.

Low latency demands, a security concerns can be implemented as it was suggested before,

with a load balancing server, described in Figure 3.15. Aside from that suggestion, the

proposed solution would benefit from the known Reduce computational overhead tactic, as it

Sends requests

through a secure link

User
Web Application Server

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 69

would not use the encryption layer, making it easier to achieve the latency response measure

expectations.

Quality attribute variability is treated externally to the components, i.e. it is represented in the

component connectors. Functional variability can be internal to the component. Functional

variability has its way of implementation and documentation. The use of design patterns, for

example, is suggested in the RiPLE-Design process. To deal with variable quality attributes,

on the other hand, the same patterns may not apply, especially when the variant solutions

promote a large change in the architecture. The suggestion is to introduce variation points also

in the DSSA documentation. Optional strategies can be documented as suggested solution to

deal with optional quality attributes, and alternative strategies can serve alternative quality

attributes.

4.2.3 Document decision guidelines

In order to improve and alleviate the work of application designers, there must be some

decision guidelines to help them evaluate the consequences of each decision. As there will be

many possible solutions for the product architecture, each path must be well documented, the

foreseen impacts well described and measured when possible.

This task is helped by the use of quality attribute scenarios. Their stimulus-response structure

can be associated with design strategies. This association works very well as documented

solutions for the architecture. For a given stimulus, the impact of each design strategy can also

be observable in its response. Following the suggestions of (Hallsteinsen et al., 2003), all

those aspects can be put together in a summarized form, to help further designer tasks. An

example of such summary can be found in Table 4-1, and exemplifies the case of optional

availability.

Recovery strategies
Strategy

Affected quality

attributes Stimulus Response

Internal component

failure

Until 8 hours of

downtime

Email notification,

system reboot
Availability,

recoverability Few Minutes of

downtime

SMS notification,

proxy router server,

Backup system

Table 4-1 Decision guideline for optional availability

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 70

If we apply this approach in the RiSE Chair project, in the case of variability in availability,

the solution would indicate guidelines at the deployment view as well as special error

notification components, for example, introducing notification per SMS. In this case, more

critical products would be instantiated with a more robust recovery plan, and faster error

notification. A more complete spare software platform could be made ready in case of higher

level of availability. Less critical products would not need to afford expensive recover plans

and platforms. The solution for the low availability demand is shown in Figure 4.8, the more

complex solution, describing a complete spare platform is shown in Figure 3.10 and Figure

3.11.

In the case of trade-off between security and performance, two alternative solutions could be

proposed. The summarized documentation of this case is shown in Table 4-2. The first

solution introduces the secure protocols and time consuming encryption of data. It also leaves

the concerns about latency aside, as they have lower priority. In an alternative solution, the

Reduce Computational Overhead (Bass et al., 2003) tactic would be applied, by removing

layers and intermediaries, along with a load balancer proxy server, as discussed before. As

security would have a lower priority, the security protocol would be the first architecture layer

to be removed. Further shrinking of the layered structure could damage the solution

modifiability and harm the other architectural drivers.

Security/performance strategies
Strategy

Affected quality

attributes Stimulus Response

Eavesdropper sniffs the

network;

loose latency

requirements

Data encrypted and

unreadable,

average latency of

1 minute

SSL
Security,

performance

Low latency, high user

load

Average latency of

3 seconds

Load balancer, no

SSL

Table 4-2 Decision guideline for optional availability

Both solutions should be described in the architecture document with rationale about when to

follow each strategy. The DSSA documentation would describe that SSL encryption are time

consuming and could be left aside in the latter solution, as well as a load balancer would be

necessary to attend a possible high user demand. The former solution would describe that SSL

encryption would serve well the quality attributes response measure expectations as it is a

technology of known efficiency against this kinds of attack.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 71

Component specification must still go together with design strategy descriptions. They are

still a crucial piece of documentation of the architecture. In RiPLE-Design, component

definitions come later in the process, after the module definition step. Components can be

derived from domain features and from domain use cases. When the components are defined

from use cases, the guidelines proposed by the RiDE process from (Almeida, 2007) are

followed. When the domain features are used, the resulting components represent a feature or

a group of features that can be implemented by a single component. The variability inherent

to a group of features is represented internally or externally in the component using UML

component diagrams and stereotypes. High level variant features lead normally to

components with external variation, while features that represent implementation selection

and details lead to internally variant components. As the fine grain structural representation is

normally needed, classes that will implement each component must be defined along with the

technique chosen to implement the functional variability.

A well-documented DSSA would count with structural and behavioral diagrams, as well as

decision guidelines for each variation point introduced in the architecture by variable quality

attributes. In order to derive family members, the application designer must:

(i) Resolve variation points based on the needs of the application architecture. The

needs here should recall to quality attributes and the specialized quality model

is then used next. That is, the quality scenarios that are important for each

member the architect wants to derive;

(ii) Patterns are selected following the decision guidelines. The proposed solution

can be verified further using the already documented quality attribute scenarios

described in the decision model;

(iii) Components specifications that match the design strategies can then be

selected.

4.3 EVALUATE THE ARCHITECTURE IN ORDER TO ACHIEVE THE NEEDED

VARIATION

Several types of software architecture evaluation methods exist: some are like SAAM

(Clements et al., 2006), which is generic, but is used to evaluate one quality attribute at a

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 72

time; the already mentioned ATAM is an example of trade-off analysis methods, that evaluate

many attributes; and there are some specific for only one attribute, such as SALUTA (Folmer

et al., 2003) for usability. Such techniques are essentially made for single system development

and cannot be directly applied to product line development. They are not proper to evaluate a

PLA, even though they could be used to evaluate each product in the line.

In a product line, different members may require different levels of a quality attribute

requirement. This variability leads quality evaluation in software product lines to be much

more complicated than in single-system (Etxeberria; Sagardui, 2008). (Olumofin; Misic,

2005) advises that “traditional system development practices for single products cannot be

directly applied to product line development”. The author shows that architecture-centric

evaluation methods are all generally made for single-systems and product line specific

evaluation methods normally evaluate only the resulting products.

The evaluation of every product in the product line can be valid, but seems too expensive.

Nevertheless, it can be possible to make them shorter and cheaper as (Clements; Northrop,

2001) points out:

Product architecture evaluation is a variation of the product-line

architecture evaluation as the product architecture is a variation of the

product-line architecture and the extent to which product evaluation is

a separate, dedicated evaluation depends on the extent to which the

product architecture differs in quality-attribute-affecting ways from

the product-line architecture.

Figure 4.10 shows two new activities added to the main RiPLE-Design process. First, to

Evaluate existing architectures, in order to detect problematic issues and risks points and

perhaps choose an existing architectural approaches to serve as basis of the future DSSA. As

the last activity in the process, Evaluate the DSSA, so the proposed architectural solution can

be assessed
4
 about its ability to enable variability and fulfill other quality attribute

requirements. A third step is also suggested: to Evaluate derived product architectures. It is

not shown in Figure 4.10, since it refers to the core asset development part of the RiPLE

process, and the evaluation of derived products would be part of the product development part

of the process.

4
 In the discussions that follow, the terms assessment, evaluation, and analysis will be used interchangeably.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 73

Figure 4.10 RiPLE-Design including Evaluation steps, in flowchart notation

4.3.1 Evaluate existing architectures

Concerning architecture evaluation, the first change suggested to RiPLE-Design is illustrated

in the upper region of Figure 4.10: to Evaluate existing architectures, in order to assess its

strengths, and apply them to the new DSSA; or its weaknesses and avoid them. This

Identify

Architectural

Drivers

Define

Architectural

Details

Represent

Architecture

Identify

Design

Decisions

Evaluate the

DSSA

Evaluate

existing

architectures

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 74

evaluation should follow the Architecture Trade-off Analysis Method (ATAM) (Kazman et

al., 2000).

ATAM is a scenario-based approach for single systems architecture evaluation. As discussed

in (Kazman et al., 2000), “when evaluating an architecture using the ATAM, the goal is to

understand the consequences of architectural decisions with respect to the quality attribute

requirements of the system.” It fits very well the guidelines already proposed in RiPLE-

Design, which is also a scenario-based approach, aiming to fulfill quality attribute

requirements of a software product line. Scenarios help to remove the ambiguity in the

description of a quality attribute, as stated by (Bass et al., 2002). They are used as a common

interface between stakeholders and the design team. The simple language helps to bring

different stakeholders together and discuss in the same terms.

In the case of assessing existing architectures to serve as basis for a DSSA, the evaluation

must focuses on the scenarios that may compose the domain quality attributes, and assess how

the existing architecture has dealt with those scenarios. The main outputs of this activity are a

set of domain scenarios, and the architectural decisions under the form of Risks, Non-Risks,

Sensitivity points and Trade-off points.

Risks are potentially problematical architectural decisions, a possible weakness to be avoided

in the DSSA. Non-risks are fine decisions that rely on assumptions that are frequently implicit

in the architecture, and remain non-risk as long as the assumptions do not change. The domain

architect must ensure the good design decision made in prior application architectures still

apply in the DSSA.

A sensitivity point is a property of one or more components (and/or component relationships)

that is critical for achieving a particular quality attribute response. For example, the level of

confidentiality in a virtual private network might be sensitive to the number of bits of

encryption. Sensitivity points tell a designer or analyst where to focus attention when trying to

understand the achievement of a quality goal, as discussed in (Kazman et al., 2000).

A trade-off point is a property that affects more than one attribute and is a sensitivity point for

more than one attribute. As in the example shown by (Kazman et al., 2000), changing the

level of encryption could have a significant impact on both security and performance.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 75

As suggested by (Etxeberria; Sagardui, 2005), evaluation can and should be held in different

moments in software product line development. At core asset development, evaluation can be

useful to detect problematic issues and risks points or compare software architecture

candidates to select the one that best supports the required quality attributes. Evaluation can

also be held before developing the reference architecture in order to use existing architectures

as basis for the product line.

4.3.2 Evaluate the DSSA

Existing architecture evaluation approaches focus on single product architectures and offer

little support for the particular characteristics of product line architectures. Architecture-based

development of software product lines, as suggested in the RiPLE-Design process, requires

the appropriate architecture evaluation methods specifically addressing the quality of software

product line architectures.

Product line architectures bring challenges which are not present in single product

architectures, and those differences make the assessment of such architectures rather difficult.

 Quality attribute scenarios are more numerous than in single systems, they are context

dependent (some of them apply to the whole product line architecture, others to the core

assets and some specific product architecture, and yet others to one or more product

architecture only). In addition, three distinct forms of quality attributes scenarios may be

identified. Mandatory scenarios apply to all products alike. The alternative and optional

scenarios are product-specific and should only apply to the analysis of individual product

architectures.

Another product-line specific characteristic is that there are two level of architectural

abstraction where an evaluation can be performed (software product-line architecture and

derived product architectures). To assess all the instances of the product-line may not be

worthwhile due to the high cost (Etxeberria; Sagardui, 2005).

Organizational factors can also influence product-line architecture evaluations: a PLA

involves more stakeholders than a single system because the scope is much larger than the one

of single-product architecture (Etxeberria; Sagardui, 2005).

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 76

PuLSE-DSSA also defines a process for evaluation of reference architectures (Anastasopoules

et al., 2000). However, it has limited applicability as the evaluation process is bound to the

PuLSE methodology, and there is no tradeoff analysis as it iteratively defines evaluation

criteria per scenario.

The QADA process, defined in (Matinlassi et al., 2002), includes architecture evaluation

guidelines. However, the approach does not provide guidelines for product architectures

evaluation.

Other methods focus on a limited set of quality attributes for the assessment, which limits

their applicability in practice (Auerswald et al., 2001; Lassing, 2002; Maccari, 2002).

A comprehensive, albeit not too rigorous overview of a number of product line architecture

evaluation techniques can be found in (Etxeberria; Sagardui, 2005).

A number of product line architecture assessment methods have been proposed. Nonetheless,

the majority of them fall short of addressing the challenges outlined above in a comprehensive

and efficient manner. In order to address the outlined challenges, the Holistic Product Line

Architecture Assessment (HoPLAA) method was proposed by (Olumofin; Misic, 2005).

HoPLAA starts from the already mentioned ATAM (Kazman et al., 2000) and its trademark

feature, the trade-off analysis between quality attributes. HoPLAA extends the ATAM with

the qualitative analytical treatment of variation points and the context-dependent generation,

classification, and prioritization of quality attributes scenarios. The notions that provide the

foundation of the HoPLAA method are stated in (Olumofin; Misic, 2005), and show that the

method was developed to cope well with quality attribute variability:

The problem of evaluating product line architectures must be

approached by considering not only the quality attributes common to

the family of systems, but also those specific to some members only,

and their interrelationships. It should be noted that individual product

architectures may require a different prioritization of the quality goals

common to the product line architecture, and they may even be

associated with quality goals which are not present in other members

of the product line.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 77

The HoPLAA method addresses the evaluation of software product line architectures in an

integrated approach with two analysis steps for the DSSA and the Product Architecture (PA).

The integrated approach simplifies the analysis of quality attributes and their interactions,

since the architectural decisions made right in the product line architecture creation impact

individual product architectures derivations. The first stage of the method focuses on the

DSSA evaluation, and will be described next. The second stage targets individual PA

evaluation, and will be the focus of next section.

Besides the traditional outputs obtained through an ATAM evaluation, the HoPLAA method

produces outputs with more importance on the evolvability points and evolvability constraints.

An evolvability point is an area of the DSSA which is a sensitivity point, and which contains

at least one variation point. Sensitivity points are design decisions that affect one or more

quality attributes, as in (Kazman et al., 2000). As pointed out by (Olumofin; Misic, 2005), the

architectural decisions made in the DSSA, and found to be the sensitivity points to one or

more quality attributes, continue to be valid for individual product architectures. Evolvability

constraints are guidelines that accompany each evolvability point as special treatment for

variation points that could alter quality. The constraints guide the subsequent PA design

decisions and evaluation, so that they do not invalidate quality attribute requirements already

addressed in the product line architecture.

The HoPLAA seems a proper method for evaluating PLA and its derived product

architectures as it assesses the architectures in different stages and evaluate important aspects

of both general system development and specific product line issues.

The activity Evaluate the DSSA adapts the guidelines proposed in the Holistic Product Line

Architecture Assessment (HoPLAA) method, proposed by (Olumofin; Misic, 2005). The

adaptation comprises the use of already generated quality scenarios during the evaluation

process.

This activity should be performed by the Domain architect together with the Domain

manager. When possible, external architects can be added to the activity in order to improve

the evaluation process.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 78

The first stage of HoPLAA, presented in (Olumofin; Misic, 2005), applied in the Evaluate the

DSSA activity, consists in the seven steps reproduced next.

1. Present the HoPLAA Stage I. To present an overview of the method and the

activities of both stages;

2. Present the product line architectural drivers. The architectural drivers chosen

to guide the architecture development. Motivating business needs, scope

definition, and common and variable functionalities and quality attributes. Those

drivers were already defined in the Architectural Drivers Identification activity;

3. Present the product line architecture. The DSSA is presented by the Domain

Architect;

4. Identify architectural approaches. Architectural approaches used in the

architecture are identified by the evaluation team. The list of approaches is

documented but not analyzed. This step serves the purpose of constraining the set

of architectural approaches in order to maintain consistency in the use of

architectural approaches throughout the design of the DSSA and the individual

PAs.

5. Classify, and prioritize quality attribute scenarios. Quality scenarios that were

already defined in the RiPLE-Design process will be used again for evaluation

purposes. The mandatory quality scenarios, common to all products, are verified

in the current stage, while alternative and optional scenarios will only receive

special treatment later, when specific product architectures are to be evaluated.

This way, only quality attributes concerns common to every product are checked

to be addressed by the DSSA. Mandatory quality scenarios will not be verified

again thoroughly in the second stage of the evaluation process. It is mandatory

that the quality attribute of variability is analyzed at this stage. Since large-scale

reuse, the purpose of the product line approach, is best realized when the

architecture fully supports variability. Quality scenarios are ranked using three

indexes: Generality, Significance and Cost, each of which is assigned a value in

the enumeration [10, 20, 30], respectively for Low (L), Medium (M), and High

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 79

(H). Generality may be mandatory, alternative or optional, with values 30, 20 and

10, respectively. Significance denotes the importance of the quality attribute

scenario to the business driver. Cost represents the effort involved in enhancing

the architecture to provide the right responses to the scenario. Once assigned to

individual scenarios, the values of indexes are added up with even weight so as to

prioritize the list of scenarios,. The most important attribute concerns shared

among all products in the product line will characterize the scenarios on top of the

list.

6. Analyze architectural approaches and scenarios. High priority scenarios from

the prior step are analyzed to obtain a set of risks, non-risks, sensitivity points and

trade-off points, as well as evolvability points. Guidelines are associated with

evolvability points to constrain subsequent changes that try to deviate the

architecture from the quality attribute requirements already addressed, or to guide

future analysis of product architectures.

7. Present results. A report is prepared containing architectural approaches, quality

scenarios, product-specific scenarios identified, areas of risk in the DSSA, non-

risks, sensitivity points, trade-offs, evolvability points and evolvability guidelines.

A report template is provided in Appendix B.

The evaluation process is largely helped by the architectural development activities realized

previously. Scenarios developed to guide the architectural definition can be reused during the

fifth step of the DSSA evaluation. Architectural approaches are already documented during

the Choose architectural style activity and evolvability guidelines are documented during the

Document decision guidelines.

Architecture evaluation is an expensive exercise. The seven steps proposed by (Olumofin;

Misic, 2005), during the first stage of the method are two less than the number of steps in a

comparable ATAM evaluation. It is expected that important scenarios generated/brainstormed

during the fifth step would have sufficed.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 80

In terms of efficiency, Stage I of the HoPLAA analysis should take less time than the

equivalent ATAM analysis of the core PLA, since some steps have been merged, and the

analysis of some scenarios is deferred until Stage II.

4.3.3 Evaluate derived product architectures

As suggested by (Etxeberria; Sagardui, 2005), architecture evaluation for SPL should be used

to evaluate the design of the product line architecture as well as the resulting individual

product architectures of the line. At product development, the architectural conformance to

the reference architecture can be assured. During product derivation, the impact of

architectural decisions in quality attributes can be analyzed.

In order to advance in the direction of a quality aware process that deals well with quality

attribute variability, it is important to ensure that derived product architectures are also

evaluated. The RiPLE-Design processes focuses on the core asset development phase of the

software product line life cycle, nevertheless, the activity of Evaluate derived product

architectures is suggested.

The evaluation of individual product architectures adapts the second stage of the HoPLAA

method, from (Olumofin; Misic, 2005). The motivation to adapt the second stage of the

HoPLAA method is that it focuses not only in single-systems architectures, but in product

architectures in the context of the DSSA that derived it. This focus lessens the effort of

assessing product architectures and justifies the two-staged approach for evaluating DSSA

and product specific architectures. It consists in the following steps.

1. Present the HoPLAA Stage II. To present an overview of the HoPLAA and the

activities of the second stage.

2. Present architectural drivers. A short overview of the DSSA and the driving

requirements for the particular product architecture being evaluated. Variable

features, including functional and quality attribute requirements, should also be

described.

3. Present the product architecture. The focus must be on the areas of the

architecture that have been improved through the realization of variation points.

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 81

4. Identify architectural approaches. The Domain Architect identifies and

documents new or different architectural approaches used in the product

architecture. The approaches will be analyzed in a later step. If a newer

architectural approach, not foreseen in the DSSA, is used to realize a variation

point, it must be accompanied by a rationale.

5. Prioritize quality attribute scenarios. Quality attribute scenarios that are

specific to this product are reproduced for evaluation purposes. New product-

specific scenarios can also be generated. All the scenarios are then prioritized the

same way as in Stage I. This prioritization is important because different products

may have different priorities.

6. Analyze architectural approaches. Two analyses must be performed by the

architect: The architect must demonstrate how quality scenarios relative to the

whole DSSA are not precluded in the product architecture design and also how the

architecture realizes quality goals that are specific to the product being analyzed.

Concerning the first analysis, when design decisions do not violate the

evolvability guidelines, quality attributes continue to be satisfied. If the contrary is

true, risks have been introduced in the product architecture and may prevent the

achievement of quality attribute requirements. This analysis is especially

important when the product architecture needed to change some DSSA guidelines.

The second analysis consists of obtaining the architectural risks, non-risks,

sensitivity points, and trade-off points for the product architecture.

7. Present results. An evaluation report, similar to the one described in Stage I, is

prepared. The main difference is that this report does not include evolvability

points or evolvability guidelines, since product specific architectures do not need

to support variability. A report template is provided in Appendix Appendix B.

Stage II of HoPLAA evaluates the product-specific architectures. Some of the scenarios

created in the previous stage are reused and the evolvability points and constraints are used as

guidelines to lead the analysis into those areas of the product architecture that realize variation

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 82

points and may have change. Figure 4.11 shows the inputs and outputs of the Evaluate derived

product architectures step.

Figure 4.11 Evaluate derived product architectures

With the two staged approach, we can suppose that the HoPLAA analysis of a PLA will take

more time than the equivalent ATAM analysis of the core PLA architecture alone, but less

time than would be needed to perform the ATAM analysis to each individual PA separately.

In either case, HoPLAA would out-perform ATAM in terms of comprehensiveness and

effectiveness of the analysis.

4.4 CHAPTER SUMMARY

From the deficiencies of the RiPLE-Design approach concerning the treatment of quality

attribute variability, this chapter presented enhancements following the three pillars suggested

by (Myllärniemi; Männistö; et al., 2006): the specification and modeling of varying quality

attributes, design strategies for varying quality attributes, and architectural evaluation.

The specification modeling of varying quality attributes is done with the aid of the feature

model diagram, which is a central asset in the RiPLE process. The design of variable quality

attributes adapts the approach from (Hallsteinsen et al., 2003) and documents alternative and

optional architectural patterns and tactics in order to handle variation points in quality

attribute requirements. The evaluation of product line architectures in order to guarantee

variation achievement is done in two phases based on the Holistic Product Line Architecture

Assessment (HoPLAA) method, proposed by (Olumofin; Misic, 2005).

In the next chapter, it will be presented an experimental study with the Enhanced RiPLE-

Design performed with the purpose of characterizing and refining it.

Product Architectures

Evaluate derived

product

architectures

Evaluation report
architectural risks,

non-risks,

sensitivity points,

and tradeoff points

83

5
THE EXPERIMENTAL STUDY

Software can be found in broad range of products, from televisions, to missiles and space

shuttles. This means that great quantity software has been developed and is being developed

(Wohlin et al., 2000). However, software development is a complex task that involves much

creativity. Several problems can run into software development, e.g., missing functionalities,

poor quality and missed deadlines. Managers are increasingly focusing on process

improvement in the software development area, with the intention of reducing the cost of

development, testing and maintenance over the life of the application (Chidamber; Kemerer,

1994a).

As discussed in (Basili, 1996), “progress in any discipline depends on our ability to

understand the basic units necessary to solve a problem.” In the discipline of software

engineering, empirical studies, like surveys, case studies and experiments plays an important

role in the build of this understanding. Experimentation provides a systematic, disciplined,

quantifiable and controlled way of evaluating human-based activities (Wohlin et al., 2000).

Three classical forms of experimental studies are surveys, case studies and formal

experiments (Kitchenham et al., 1995). Surveys aims at the development of generalized

solutions. They focus on large groups and try to draw conclusions based on a wide range of

variables. Formal experiments have as evident characteristics the carefully controlled

environment, appropriate levels of replication, randomized selection of experimental subjects

and objects. Case studies are observational, and focus on single, typical projects. Case studies

are easier to plan than formal experiments, but are harder to interpret and difficult to

generalize.

In this sense, this chapter presents a formal experimental study performed with the purpose of

characterizing the efficacy, understanding and applicability of the proposed enhancements to

the RiPLE-Design process in the context of software product line projects. The process

The Experimental Study 84

defined in (Wohlin et al., 2000) was used to define, plan and execute a formal experiment. In

order to consider SPL problems, the Travel Reservation domain, which contains functional

variability as well as quality attribute variability requirements, was the project used in the

study (Snell, 2002; Segura et al., 2007).

The remainder of this chapter is organized as follows: Section 5.1 presents essential

information to understand the terminology of experimental studies; Section 5.2 presents the

definition, planning, operation, analysis and interpretation of the experimental study with the

Enhanced RiPLE-Design, Section 5.3 presents the conclusions, and Section 5.4 presents the

lessons learned with the experimental study. Finally, Section 5.5 concludes this chapter with

its summary.

5.1 EXPERIMENTAL TERMINOLOGY

A controlled experiment is an investigation of a testable hypothesis where one or more

independent variables are manipulated to measure their effect on one or more dependent

variables (Easterbrook et al., 2008). In the study of a new development method on the

productivity of personnel, the dependent variable is the productivity itself. Independent

variables are the development method, tool support, the environment in which the experiment

is conducted and the experience of the subject, for example.

Independent variables changed during an experimental study are also called factors. A

particular value of a factor is called a treatment. An experiment that assesses the changing of

a development method can analyze two treatments of the factor: the old method and the new

one.

The treatments are being applied to the combination of objects and subjects. In software

experiments, experimental subjects are individuals or groups (teams) who use a method or

tool and objects may be the programs, algorithms, or problems to which the methods or tools

are applied (Kitchenham et al., 1995).

 An experiment consists of a set of tests where each test is a combination of treatment, subject

and object (Wohlin et al., 2000). For example, a test can be that person N (subject) uses the

new development method (treatment) for developing program A (object).

The Experimental Study 85

5.2 THE EXPERIMENTAL STUDY

The experimental study was performed following the process defined in (Wohlin et al., 2000),

an experiment process is necessary to make sure that the proper actions are taken to ensure a

successful experiment, and it will provide support in setting up and conducting the study. The

process divides the experiment process into the following main activities. Firstly, the study is

contextualized in terms of the problem, objective and goals. The evaluation hypotheses are

defined next, and the ways to evaluate the study. The planning activity comes next, where the

design of the experiment is determined, the instrumentation is taken into account, and the

threats of the experiment are evaluated. The operation activity is next, and it follows the

design of the experiment determined previously. In this activity, the measurements are

collected, and then analyzed during the analysis and report activity.

The next sections present the contextualization, planning, operation, analysis and report of the

experiment. The experiment presentation and package is represented with this chapter.

5.2.1 Contextualization

This section determines the foundation of the experiment. If the foundation is not properly

laid, rework may be required, or even worse, the experiment cannot be used to study what was

intended (Wohlin et al., 2000). The purpose of this phase is to define the goals of the

experiment according to a defining framework. In this experimental study, the Goal Question

Metric (GQM) will be used for definition (Basili et al., 1994).

The GQM is based on the assumption that an organization interested

in measurements must first specify the goals for itself and its projects,

trace those goals to the data that are intended to define those goals

operationally, and finally provide a framework to interpreting the data

with respect to the stated goals. (Basili et al., 1994).

The result of the application of GQM is the specification of a measurement system focusing

on a set of particular issues, and a set of rules for interpreting the measured data. The resulting

measurement model has three levels (Basili et al., 1994):

 Conceptual Level (Goal): A goal is defined for an object, for a variety of

reasons, with respect to various models of quality, from various points of view,

relative to a particular environment;

The Experimental Study 86

 Operational Level (Question): A set of questions is used to characterize the

way the assessment of a specific goal is going to be performed based on some

characterizing model;

 Quantitative Level (Metric): A set of data is associated with every question in

order to answer it in a quantitative way. Metrics can be Objective, if they

depend only on the object that is being measured and not on the viewpoint

from which they are taken; or Subjective, if they depend on both the object that

is being measured and the viewpoint from which they are taken.

The next subsections present the goal, questions and metrics that were used in this

experimental study.

5.2.1.1 Goal

The goal of this experimental study is to analyze the Enhanced RiPLE-Design process for the

purpose of characterization with respect to the quality of the generated architecture, process

understandability and applicability from the point of view of researcher in the context of

software product line projects with variable quality attributes requirements.

The goal, questions and metrics will serve the purpose of analyzing quality aspects related to

the Modifiability of the generated architecture. They will also aid a superficial assessment on

how functional and quality attribute requirements were addressed by the subjects as a result of

the experiment procedure. In order to analyze other quality aspects of the architecture, such as

the achievement of any other quality attributes, further studies will be required.

Other process aspects such as its overhead, the process scalability for large teams and the

adequacy to small teams, will also be left out of this assessment.

Although the Enhancements to the RiPLE-Design process also provide guidelines for DSSA

evaluation, this part will be left out of the scope of the experimental study due to time and

resource constraints.

5.2.1.2 Questions

Q1. Does the RiPLE-Design aid architects to generate components with loose coupling?

Q2. Does the RiPLE-Design aid architects to generate components with low instability?

Q3. Does the proposed architecture address the functional requirements?

Q4. Does the proposed architecture address functional variability?

The Experimental Study 87

Q5. Does the proposed architecture address the quality attributes?

Q6. Does the proposed architecture address quality attribute variability?

Q7. Do the subjects have difficulties to understand the RiPLE-Design enhancements?

Q8. Do the subjects have difficulties to apply the RiPLE-Design enhancements in practice?

5.2.1.3 Metrics

M1. Coupling between components (CBC): as defined in (Perepletchikov et al., 2007),

Coupling is a measure of the extent to which interdependencies exist between software

modules. Since components communicate with each other through defined interfaces, the

Coupling Between Object Classes (CBO) defined in (Chidamber; Kemerer, 1994b), is

applicable for components as well. The CBO relates to the notion that an object is coupled to

another object if one of them acts on the other. In the context of components, it means that

CBC is defined as the count of component a given component calls operations on. This

definition is similar to the Direct Component Coupling metric (DCMCM) defined in (Chen et

al., 2009). It is a function defined as:

CBC(c) = number of components used by another component (c), where (c) is a component of

a given system.

This coupling metric has range [0, n], where n is the number of components different from (c)

of a given system. CBC = 0 indicates a totally loosely coupled component, and CBC = n

indicates a maximally coupled component.

This metric helps to evaluate the quality of a given architecture as excessive coupling between

components is detrimental to modular design and prevents reuse. The more independent a

component is, the easier it is to reuse it in another application (Chidamber; Kemerer, 1994b).

Loosely coupled components are crucial in the context of product line architecture.

Maintenance is also more difficult in largely coupled architectures, because the larger the

number of couples, the higher the sensitivity to changes in other parts of the design.

This measure is also useful to determine how complex the testing of various parts of a design

is likely to be. The higher the component coupling, the more rigorous the testing needs to be.

M2. Component Instability (CI): the interdependence of the subsystems within a design is

what makes it rigid, fragile and difficult to reuse (Martin, 2002). A rigid design cannot be

The Experimental Study 88

easily changed. This rigidity is due to the fact that a single change to heavily interdependent

software begins a cascade of changes in dependent modules. The impact of the change cannot

be easily estimated because the extent of that cascade of changes.

(Martin, 2002) defines stability as a measure of the difficulty in changing a module. It is

related to the amount of interrelated modules some module has. The Instability of a

component is, then:

CI (c)=Ce/(Ca+Ce), where Ca is the number of components that depend upon the component

(c), and Ce is the number of components that the component (c) depends upon.

The Component instability metric has range [0, 1], where CI = 0 indicates a maximally stable

component and CI = 1 indicates a totally instable component (Martin, 2002).

M3. Addressed Functional requirements (AFD): this metric will be used to identify

whether the proposed architectural solution was able to address the functional requirements

listed in the experiment task. As any other software architecture, the DSSA must address the

domain requirement. This information will be captured after analyzing the DSSA

documentation produced by the subjects. The measure is defined as:

AFD = % of functional requirements addressed by the architecture

M4. Addressed Functional Variability (AFV): this metric will be used to identify whether

the proposed architectural solution was able to address the functional variability described in

the experiment task. The main purpose of a software product line is to achieve variability

(Bosch, 2000). This information will be captured after analyzing the DSSA documentation

produced by the subjects against the feature model described in the experiment task. The

measure is defined as:

AFV = % of functional variation points addressed by the architecture

M5. Addressed Quality Attributes (AQA): this metric will be used to identify whether the

proposed architectural solution was able to address the quality attributes listed in the

experiment task. As any other software architecture, the DSSA must address quality attribute

requirements (Bass et al., 2003). This information will be captured after analyzing the DSSA

documentation produced by the subjects. The measure is defined as:

AQA = % of quality attributes addressed by the architecture

The Experimental Study 89

M6. Addressed Variable Quality Attributes (AVQA): this metric will be used to identify

whether the proposed architectural solution was able to address the quality attribute variability

described in the experiment task. Aside from functional variability, quality attribute

variability is an important issue that has been neglected for a long time (Etxeberria et al.,

2008). The main purpose of the Enhanced RiPLE-Design process is to help domain architects

to produce architectures that can enable quality attribute variability. This information will be

captured after analyzing the DSSA documentation produced by the subjects. The measure is

defined as:

AVQA = % of non-functional variation points addressed by the architecture

M7. Problems (MP): This metric will be used to identify possible misunderstanding

problems concerning RiPLE-Design documentation. It is necessary to identify and analyze the

difficulties found by the subjects learning the approach. The misunderstanding problems

found will be mapped to the respective activity of the approach according to the information

provided by the subjects. This mapping will be used to detect problems in RiPLE-Design with

the purpose of refining its documentation. This information will be provided by the subjects

using a questionnaire. In this sense, the following metric will be evaluated:

MP = % of subjects that had difficulties to understand RiPLE-Design.

M8. Applicability Problems (AP): This issue will be used to identify possible applicability

problems during the execution of RiPLE-Design. It is necessary to identify and analyze the

difficulties found by the subjects applying the approach in practice. The applicability

problems found will be mapped to the respective activity of the approach according to the

information provided by the subjects. This mapping information will be used to detect

specific problems regarding the applicability of the RiPLE-Design in practice with the

purpose of refining its activities. This information will be provided by the subjects using a

questionnaire. In this sense, the following metric will be evaluated:

AP = % of subjects that had difficulties to apply the RiPLE-Design in practice.

5.2.1.4 Qualitative assessment

Apart from the quantitative analysis that will be carried out based on the aforementioned

questions and metrics, a qualitative assessment of the architectural solutions produced by the

subjects during the experiment will be performed. The objective of this analysis is to assess

The Experimental Study 90

the quality of the produced artifacts and the proposed solutions. This evaluation is essentially

subjective, as many architectural evaluation methods, such as ATAM (Kazman et al., 2000),

although very structured as a methodology, are still very dependent on the evaluators’

experience.

5.2.2 Planning

This plan identifies all the issues to be addressed so that the evaluation runs smoothly,

including the training requirements the necessary measures and the data-collection procedures

(Kitchenham et al., 1995). As any other type of engineering activity, the experiment must be

planned and the plans must be followed in order to control the study. The results of the

experiment can be disturbed, or even destroyed if not planned properly.

5.2.2.1 Experiment task

The objective of this experiment is to evaluate the quality of the generated architecture,

understanding and applicability of the RiPLE- Design in the context of software product line

projects. The experiment will be conducted in a university laboratory with postgraduate

students using a project on the Travel Reservation domain.

The study will be conducted as a Replicated Project, which is characterized as being a study

which examines object(s) across a set of teams, and a single project (Basili et al., 1986).

Given a simplified product line specification, comprising domain description, feature model

specification, requirements specification and quality attribute scenarios, the subjects must

produce a product line architecture specification describing: modules and component

structural specifications (component diagrams), behavioral specification (sequence diagrams)

and deployment specification as well as the variation mechanisms adopted.

The subjects of the study will be requested to act as the roles defined in the RiPLE-Design,

i.e., domain architects and domain manager. A subject can play more than one role during

different activities and tasks of the RiPLE-Design. All the subjects will be trained to use the

approach as discussed next.

The Experimental Study 91

5.2.2.2 Experiment procedure and instrumentation

The subjects will be trained to use the approach at the university. The training will be divided

in two steps: in the first one, concepts related to software reuse, variability, component-based

development, domain engineering, software product lines, asset repository, software reuse

metrics, and software reuse processes will be explained during ten lectures with two hours

each at a postgraduate course at the Federal University of Pernambuco.

In a second step, independently of the university course, the experimenter will present and

discuss the concepts and guidelines of the Enhanced RiPLE-Design for software product line

architectural development. It will be discussed during a two-hour lecture. During the training,

the subjects can interrupt to ask issues related to the lecture.

In order to assess their experience, all the subjects will receive a questionnaire (QT1) about

his/her education and experience. This questionnaire will be used to evaluate their educational

background, participation in software development projects, and experience in software

product lines and software reuse.

In order to guide the participants in the experiment, the complete description of the RiPLE-

Design, with all supporting material, such as templates and guidelines will be provided by the

experimenter. Additionally, the requirements of the software product line on the Travel

Reservation domain, i.e., the project that will be used in this experiment, will be given to the

participants as well. The following documents will be provided:

1. RiPLE-Design: Complete description of the activities and tasks of the RiPLE-Design;

2. Architecture Template: A document template to document the product line

architecture;

3. Travel Reservation Requirements: The business processes, feature model, quality

attribute scenarios and use cases explaining the requirements and the variability of the

software product line.

The material will also include a second questionnaire (QT2) to evaluate the difficulties of the

participants in reading and using the approach in practice. This questionnaire has the purpose

of identifying possible misunderstandings and applicability problems during the execution of

the RiPLE-Design. The architecture template can be seen in Appendix A, and the

questionnaires in Appendix C.

The Experimental Study 92

5.2.2.3 Hypotheses, null hypotheses, alternative hypotheses

5.2.2.3.1 Null hypotheses
The null hypotheses determine that the use of the RiPLE-Design in software product line

projects does not produce benefits that justify its use and that the subjects will have

difficulties to understand and apply the approach in practice.

H1. µCBC without RiPLE-Design < µCBC RiPLE-Design.

H2. µCI without RiPLE-Design < µCI RiPLE-Design.

H3. µAFD without RiPLE-Design > µAFD with RiPLE-Design.

H4. µAFV without RiPLE-Design > µAFV with RiPLE-Design.

H5. µAQA without RiPLE-Design > µAQA with RiPLE-Design.

H6. µAVQA without RiPLE-Design > µAVQA with RiPLE-Design.

H7. µ More than 50% of the subjects will have difficulties to understand the RiPLE-Design.

H8. µ More than 50% of the subjects will have difficulties to apply RiPLE-Design in practice.

Since no baseline exists concerning the understandability and the applicability of the RiPLE-

Design process, neither for the traditional process nor for the enhanced version, the value of

50% was arbitrarily chosen in the hypotheses H7 and H8.

5.2.2.3.2 Alternative hypotheses
H1. µCBC without RiPLE-Design ≥ µCBC RiPLE-Design.

H2. µ CI without RiPLE-Design ≥ µCI RiPLE-Design.

H3. µAFD without RiPLE-Design ≤ µAFD with RiPLE-Design.

H4. µAFV without RiPLE-Design ≤ µAFV with RiPLE-Design.

H5. µAQA without RiPLE-Design ≤ µAQA with RiPLE-Design.

H6. µAVQA without RiPLE-Design ≤ µAVQA with RiPLE-Design.

H7. µ More than 50% of the subjects will not have difficulties to understand the RiPLE-

Design.

H8. µ More than 50% of the subjects will not have difficulties to apply RiPLE-Design in

practice.

The Experimental Study 93

5.2.2.4 Subjects and Objects

The selection of subjects, or sample of population, is closely related to the generalization of

the results from the experiment. In order to generalize the results to the desired population, the

selection must be representative for that population (Wohlin et al., 2000). Ideally, this

selection should be randomly chosen.

The subjects of the experimental study will act as domain architect as defined in the RiPLE-

Design. In this experiment, the subjects will be selected using a Convenience Sampling, in

which the nearest and most convenient people are selected. It is a non-probability sampling

technique, i.e., the probability of selecting each subject is unknown (Wohlin et al., 2000).

If there is a large variability in the population, a larger sample size is needed (Wohlin et al.,

2000). In this study, the variability of the population is not very large, since all of the subjects

have degree in computer science; they are all postgraduate students; and all have attended a

similar set of disciplines in their postgraduate courses. However, the experience of the

subjects may be significantly different as some of them have worked in different

organizations.

The experience of the subjects with product line projects and architectural design is an

independent variable of this study and will be used to group subjects.

1. Subjects with significant experience: Subjects that have participated in at least three

industrial and three academic software projects;

2. Subjects without significant experience: Subjects that have not participated in at least

three industrial and three academic software projects.

The quality of the artifacts produced, the understandability of the process and its applicability

are considered dependent variables of this study.

The experience of the subjects and the use of RiPLE-Design will be manipulated with the

purpose of measuring the effects on the quality of the architecture generated. In addition, the

understandability of the RiPLE-Design documentation, and the applicability of the process

will be analyzed considering the experience of the subjects.

5.2.2.5 Experiment design

A design of an experiment describes how the tests are organized and run. In this experiment,

the One Factor with Two Treatments design will be used as illustrated in Table 5-1. In the

The Experimental Study 94

context of experimentation, there are three general design principles that are frequently used

in experimental studies:

1. Blocking: It is used to systematically eliminate the undesired effect in the comparison

among the treatments. Within one block, any undesired effect is the same and we can

study the effect on the treatments on that block (Wohlin et al., 2000);

2. Randomization: It is the most important design principle. It is used in the selection of

the subjects and in the assignment of subjects to treatments. Ideally, the subjects must

be selected randomly from a set of candidates, and they should be assigned to

treatments randomly (Wohlin et al., 2000).

3. Balancing: If we assign treatments so that each treatment has an equal number of

subjects, we have a balanced design. Balancing is desirable because it both simplifies

and strengthens the statistical analysis of the data (Wohlin et al., 2000).

Based on those principles, the assignment of subjects will be done by the following rules:

(i) The experience of the subjects, assessed through the use of a questionnaire, will be

used to group subjects with similar profiles;

(ii) From the same experience category, the assignments of subjects to the treatments

will be done randomly;

(iii) In order to balance the experiment, the same number of subjects will take part in

each treatment. Furthermore, each treatment will have similar experience average.

For example, if we count with 4 high experienced and 4 low experienced subjects, each

treatment will count 2 high experienced and 2 low experienced subjects.

Factor

The quality of the PLA produced, measured by Coupling and Instability

Treatment 1 Treatment 2

Design the PLA without a structured

method

Design the PLA following the Enhanced

RiPLE-Design

Table 5-1 One Factor with two treatments design

5.2.2.6 Validity evaluation

It is fundamental to evaluate the validity of experiment’s results. The results are said to have

adequate validity if they are valid for the population to which we would like to generalize

(Wohlin et al., 2000). In this study, four categories of validity were considered as described

next.

The Experimental Study 95

Conclusion validity: Threats to the conclusion validity are concerned with issues that affect

the ability to draw the correct conclusion about relations between the treatment and the

outcome of an experiment. In this study, the following threats to conclusion validity were

considered:

 Reliability of measures: The validity of an experiment is very dependent on the

reliability of the measures. In this study, no baseline values for the metrics

were found, since the experimentation performed for the original RiPLE-

Design (Souza Filho et al., 2009), have had different objectives. This issue can

be a problem since baselines in the context of the study cannot be used to

compare our finds.

 Random heterogeneity of subjects: “There is always heterogeneity in a study

group. If the group is very heterogeneous, there is a risk that the variation due

to individual differences is larger than due to the treatment.” (Wohlin et al.,

2000). In this sense, the study will try to reduce group heterogeneity by

choosing subjects from a group of postgraduate students that do research in the

same area and attended to a similar set of postgraduate disciplines.

Internal validity: Threats to internal validity are influences that can affect the independent

variable with respect to causality, without the knowledge of the researcher. It is the capacity

to replicate the experiment using the same subjects and objects. The following internal

validity threat was considered:

 Maturation: Subjects react differently when performing the experiment. Some

participants can be affected negatively (tired or bored), while others positively

(learning with practice). In this sense, the subjects performing the experiment

will be volunteers. Thus, it can be assumed that they have some interest in the

study.

Construct validity: It concerns the generalization of the experiment’s results outside the

experiment setting. In this study, the following construct validity threat was considered:

 Mono-operation bias: If the experiment includes a single independent variable,

case, subject or treatment, the experiment may under-represent the construct

and thus not gives the full picture of the theory. In this sense, it would be better

if the proposed enhancements to RiPLE-Design could be analyzed comparing

it with other software product line design approach. However, as already

mentioned, other systematic and structured approaches that deal with quality

attribute variability are still emerging. RiPLE-Design will then be compared

with ad-hoc development.

The Experimental Study 96

External validity: Threats to external validity are conditions that limit our ability to

generalize the results of our experiment to an industrial practice. In this study, the following

external validity threat was considered:

 Interaction of setting and treatment: This is the effect of not having the

experimental settings or material representative of industrial practices, for

example. In this study, the Travel Reservation domain will be used. This

domain is commonly used in Service-oriented architecture and software

product lines works, such as (Medeiros, 2010; Snell, 2002), and can represent a

real and complex problem.

5.2.2.7 The experiment project

The project used in this experimental study was a software product line to develop systems to

fit the requirements of different online travel agencies. Three systems in this domain were

selected and detailed carefully. The subjects were asked to perform domain design activities

with the purpose of designing a set of architectural elements that could be reused to develop

the three systems, in the form of a software product line. A similar project was used under

experimentation in (Medeiros, 2010).

The systems designed offer to their customers the benefit of planning and reserving travel

arrangements on the Internet. The three systems should achieve the following goals

(Medeiros, 2010):

 The product line should allow customers to submit travel itineraries and payment

information to the product line components using a Web interface;

 The travel agency services should automatically obtain and reserve the appropriate

services for the airline, hotel or vehicle according to the customer itineraries;

 It should perform compensation operations for canceling itinerary failures;

 It should automatically return confirmation or failure of all reservations back to the

customer once the processing of the itinerary is complete.

In this sense, different products in the line will be customized to fit the requirements of

specific travel agencies, e.g., from small travel agencies that deal with accommodation

reservations to bigger travel agencies that provide services to reserve airline tickets,

accommodation and vehicles.

The agencies focus in different market niches:

The Experimental Study 97

 Massive online agencies require high level of availability, as they work online

and those systems can be accessed from anywhere in the globe, at anytime.

 Premium agencies require very high level of confidentiality as they deal with

VIP customers, such as companies CEOs. The user of these agencies are

normally the VIP secretaries, they normally use its services during workdays.

Service latency is not a major concern for this kind of product.

 Regional specialized agencies do not require very high level of

confidentiality, but require very short latency as they offer specialized services.

5.2.2.8 Pilot Project

A pilot project was conducted before performing the study with the same structure defined in

this planning. The pilot project was performed by one subject, who was trained and will not

participate of the real experiment. In the pilot project, the subject used the same material

described in this planning, and was observed by the responsible researcher. The objective of

the pilot project was to detect problems and improve the planned material before its use.

The pilot project subject could be categorized as one with significant experience according to

the aforementioned classification, having participated in five industrial and four academic

projects.

The pilot project could ensure the viability of the experiment in relation to the defined

instruments, procedure and metrics. As the pilot was held only with one treatment, there was

no comparison baseline to analyze the defined hypotheses. Nonetheless, all metrics could be

gathered from the subject’s output. Namely, the subject had no difficult to understand variable

quality attributes (EoP = 0%); the mean of CBC metric was 1.15; the mean of CI metric was

0.51; The AFD, AFV, AQA and AVQA metrics were all of 100%, meaning that all variation

points were embraced by the architecture as well as the functional and quality attribute

requirements. The subject demonstrated also no difficulties to neither understand nor apply

the Enhanced RiPLE-Design process.

After conducting the pilot project some enhancements to the material were incorporated.

Namely, the architecture document template used to gather the proposed solution was

enhanced in order to suggest the subject to present structural diagrams for components and

modules. The final version of this template is presented in Appendix Appendix A.

The Experimental Study 98

5.2.3 Operation

This section presents the details about the execution of the experimental study performed with

the purpose of characterizing and refining the Enhanced RiPLE-Design.

5.2.3.1 Environment

The experimental study was conducted with six subjects that performed the experiment in

parallel. Each of the subjects designed a Domain Specific Software Architecture (DSSA), as

proposed by the experiment task. The execution of the experiment task took 8 hours at the

Federal University of Pernambuco (UFPE).

Some subjects from treatment that performed the experiment task without the aid of the

Enhanced RiPLE-Design process executed the task remotely and independently. It has not

impacted the validity of the study, since those subjects did not require training and should

perform the task alone. Those subjects have been instructed via videoconference presentation.

5.2.3.2 Training

The subjects were trained before the experimental study began. The training took 20 hours,

divided into 10 lectures with two hours each, during the postgraduate course at the university.

In addition, the subjects who used the proposed approach were trained 2 hours more to use the

RiPLE-Design.

5.2.3.3 Subjects

Subjects were selected among students from the Federal University of Pernambuco, being

three M.Sc. and three Ph.D. students. The recruiting process was open and accepted

volunteers that had had already software reuse experience at least during the Software reuse

lectures in the postgraduation course. All the subjects had industrial experience in software

development for more than three years and had participated in industrial projects involving

some kind of reuse activity. In addition, all the subjects had participated in SPL academic

projects, and some had applied the approach in industrial context. The subject had also some

experience with software design and domain design. Table 5-2 shows a summary of the

profile of the subjects involved in this experiment.

The Experimental Study 99

Subjects with ID 1, 2 and 3 performed the experiment task with the RiPLE-Design process;

subjects with ID 4, 5 and 6 performed the task without the aid of the process. The assignment

of subjects and treatments followed the rules described in the Experiment Design section.

ID Academic Projects Industrial Projects SPL Projects

1

(4) Low Complexity

(0) Medium Complexity

(0) High Complexity

(3) Low Complexity

(1) Medium Complexity

(1) High Complexity

(2) Academic

2

(1) Low Complexity

(1) Medium Complexity

(0) High Complexity

(1) Low Complexity

(1) Medium Complexity

(0) High Complexity

(1) Academic

3

(11) Low Complexity

(3) Medium Complexity

(2) High Complexity

(5) Low Complexity

(5) Medium Complexity

(4) High Complexity

(3) Academic

4

(8) Low Complexity

(2) Medium Complexity

(0) High Complexity

(3) Low Complexity

(2) Medium Complexity

(1) High Complexity

(3) Academic

(1) Industrial

5

(0) Low Complexity

(3) Medium Complexity

(0) High Complexity

(0) Low Complexity

(3) Medium Complexity

(0) High Complexity

(1) Academic

(1) Industrial

6

(2) Low Complexity

(1) Medium Complexity

(0) High Complexity

(2) Low Complexity

(2) Medium Complexity

(2) High Complexity

(2) Academic

Table 5-2 Subject's Profile

5.2.3.4 Costs

The costs associated with the experimental study were relative to its planning and operation.

All subjects were student volunteers from the Universidade Federal de Pernambuco, and the

execution environment was the university labs. Planning for the experimental study took

about two months. Within this period, the planning was reviews and refined three times.

5.2.4 Analysis and Interpretation

The results from the experimental study will be presented in this section. The analysis is split

in quantitative and qualitative analysis.

The Experimental Study 100

5.2.4.1 Quantitative analysis

Coupling: information about component coupling was collected from the proposed

architectural solutions and then analyzed. The coupling between the components identified by

the subjects is shown in Figure 5.1. Since different subjects identified and named components

in different ways, irrespective of the name given to each component, they are enumerated in

the X axis. Y axis represents the CBC metric for each component. Additionally, the subjects

with Id = 1, 2, 3 used the Enhanced RiPLE-Design, while subjects with Id = 4, 5 and 6

designed the project without following a structured method.

Figure 5.1 Component Coupling

As it can be seen in figure, the components generated using the Enhanced RiPLE-Design are

more loosely coupled, when compared with the components produced without using the

structured method. With regard to the coupling among the components defined by each

subject, no result could be seen as an outlier. The result from subject (id = 4), with a highly

coupled component (CBC = 4) among very loosely coupled components seems normal. The

highly coupled component might represent a orchestration component, as in the Mediator

design pattern (Gamma et al., 1995).

Figure 5.2 compares the average of the CBC metric for all components, following the

Enhanced RiPLE-Design and without using any method. This comparison denotes the

rejection of the null hypothesis (µCBC without RiPLE-Design < µCBC RiPLE-Design).

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8 9 10 11 12 13

Coupling - Subject ID = 1

CBC

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3

Coupling - Subject ID = 2

CBC

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8

Coupling - Subject ID = 3

CBC

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7

Coupling - Subject ID = 4

CBC

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Coupling - Subject ID = 5

CBC

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6

Coupling - Subject ID = 6

CBC

The Experimental Study 101

Figure 5.2 Component Coupling Average

We have not found any baseline for the coupling metric in the context of component

development as well. Thus, there is no way to judge the values obtained with the treatments.

However, these values can be used in new experiments as baselines.

Figure 5.3 Component Instability

Instability: information about component instability was collected from the proposed

architectural solutions and then analyzed. The instability form the components identified by

the subjects is shown in Figure 5.3. They are enumerated in the X axis with the same

identifier as in the coupling analysis. Y axis represents the CI metric for each component. As

in the coupling analysis, the subjects with Id = 1, 2, 3 used the Enhanced RiPLE-Design,

0,91

1,53

0

0,5

1

1,5

2

Enhanced RiPLE-Design Ad Hoc

Component Coupling Average

CBC

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13

Instability - Subject ID = 1

CI

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3

Instability - Subject ID = 2

CI

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8

Instability - Subject ID = 3

CI

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7

Instability - Subject ID = 4

CI

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7

Instability - Subject ID = 5

CI

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6

Instability - Subject ID = 6

CI

The Experimental Study 102

while subjects with Id = 4, 5 and 6 designed the project without following a structured

method. With regard to the instability of each components defined by each subject, no result

could be seen as an outlier.

In average, the components generated using the Enhanced RiPLE-Design are slightly less

instable, when compared with the components produced without using the structured method,

as shown in Figure 5.4. This aspect indicates that the null hypothesis (µCI without RiPLE-

Design < µCI RiPLE-Design.) can be rejected.

Figure 5.4 Component instability average

We have not found any baseline for the instability metric in the context of component

development as well. Thus, there is no way to judge the values obtained with the treatments.

However, these values can be used in new experiments as baselines.

As Figure 5.4 shows, the values of the average instability metric are very similar between the

two treatments. The main factor that can be related to this similarity is the simplicity of the

experiment task domain, which lead the subjects to develop simple architectures, with few

components.

Functional requirements: aiming to evaluate whether the proposed architectural solutions

were able to achieve the functional requirements described in the experiment task, the AFD

metric was collected and analyzed. Six use cases were defined in the travel reservation task

and the data collected represents, for each subject, the percentage of use cases that were

comprised by the proposed architecture.

0,39 0,41

0

0,2

0,4

0,6

0,8

1

Enhanced RiPLE-Design Ad Hoc

Component Instability Average

CI

The Experimental Study 103

Figure 5.5 shows a comparison between the mean of AFD from each treatment. Since every

functional requirement was addressed by all architectural solutions, irrespective of the

treatment, the null hypothesis (µAFD without RiPLE-Design > µAFD with RiPLE-Design)

can be rejected without much significance.

Figure 5.5 Functional Requirements

The equality of the results for both treatments can be justified by the simplicity of the

experiment domain and the subjects’ experience. Two factors relate to the experiment

domain: functional requirements were few and very clearly described in the experiment task.

Concerning subjects’ experience, since all of them had already played developer and analyst

roles in software projects, it can be acceptable that they can perceive and understand

functional requirements straightforwardly.

Functional variability: aiming to evaluate whether the proposed architectural solutions were

able to achieve the functional variability described in the experiment task, the AFV metric

was collected and analyzed. A total of three functional variation points were described in the

experiment task, being two groups of three alternative features each and one group of two

mutually exclusive (XOR) features. The data collected represents, for each subject, the

percentage of functional variation points that were addressed by the proposed architecture.

Figure 5.6 shows a comparison between the mean of AFV from each treatment. Data shows

that, irrespective of the treatment, every functional variation point was addressed by the

architectural solutions. Thus, the null hypothesis (µAFV without RiPLE-Design > µAFV with

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Enhanced RiPLE-Design Ad Hoc

Functional Requirements

AFD

The Experimental Study 104

RiPLE-Design) can be rejected without much significance. The small significance of the

rejection can also be due to the small number of functional variation points present in the

experiment task. It is important to remark, though, that in larger products, with more variation

points, the use of a process becomes indispensable due to the raise in complexity.

Figure 5.6 Functional Variability

The same line of reasoning that justified the equality of results for the Functional

Requirement achievement can be used to explain the similarity in the Functional Variability

achievement. Another factor that can be added is the educational support given by the

Software Reuse Lectures in the postgraduation course, which all the subjects attended to.

During the lectures, attendees are asked to participate in a simulated software product line

factory, producing core assets and deriving products. It seems right to assume that all subjects

had already worked with and were familiar to functional variability issues such as Feature

Model Diagrams and functional variability achievement.

Quality attributes: data was collected in order to evaluate whether the proposed architectural

solutions addressed the quality attribute requirement described in the experiment task. Three

quality attributes were defined in the travel reservation task and the data collected represents,

for each subject, which percentage of quality attribute were addressed by the proposed

architecture.

Figure 5.7 shows a comparison between the mean of AQA from each treatment. We could

observe that without a proper methodology, the treatment of quality attribute scenarios have

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Enhanced RiPLE-Design Ad Hoc

Functional Variability

AFV

The Experimental Study 105

been neglected by 16% of the subjects, since the architectural solution for the proposed task

does not address all of them.

Figure 5.7 shows that from without the aid of RiPLE-Design, in average, only 67% of the

quality attributes requirements were addressed against 100%, when the subjects followed the

Enhanced RiPLE-Design process. Based on this analysis, the null hypothesis (µAQA without

RiPLE-Design > µAQA with RiPLE-Design) can be rejected.

In absolute numbers, the results represents that a single subject (id = 6) missed the handling of

quality attribute. No relation between the subjects profile and the mistreatment of the quality

attribute scenario, since the subject is not the most or the less experience in his group.

Although the subject has already played system analyst and architect roles in projects, the

negligence could have happened due to the particular lack of experience with the quality

attribute terminology. The reduced number of subjects suggests that further experimentation

is needed to prove the significance of these results. Nonetheless, this preliminary result

suggests that the use of the process, even in small teams and small projects, can be a helpful

way to standardize the procedures and conduct of team members.

Figure 5.7 Quality Attributes

Quality attributes variability: the data was collected in order to evaluate whether the

proposed architectural solutions addressed the quality attribute variability described in the

experiment task. Two variation points concerning quality attributes were defined in the travel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Enhanced RiPLE-Design Ad Hoc

Quality Attributes

AQA

The Experimental Study 106

reservation task. The first one represented the optionality of High availability for certain

category of products, the other variation point represented the trade-off between security and

performance. The data collected represents, for each subject, the percentage of variable

quality attributes that were addressed by the proposed architecture.

Albeit small, the number of variation points concerning quality attributes seems realistic. The

development of an architecture with a several quality attributes variation point would be

impractical. In such cases it could be better to suppress the variability during the scoping

phase.

Figure 5.8 shows a comparison between the mean of AQVA from each treatment. We could

observe that without a proper methodology, 16% of the subjects neglected quality attribute

variability, since their architectural solution for the proposed task does not address all of

them.

Figure 5.8 Quality Attributes Variability

Figure 5.8 shows that from without the aid of RiPLE-Design, in average, only 67% of the

variable quality attributes were addressed against 100%, in average, when the subjects

followed the Enhanced RiPLE-Design process. Based on this analysis, the null hypothesis

(µAQVA without RiPLE-Design > µAQVA with RiPLE-Design) can be rejected. The

reduced number of subjects suggests that further experimentation is needed to prove the

significance of these results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Enhanced RiPLE-Design Ad Hoc

Quality Attributes Variability

AVQA

The Experimental Study 107

In absolute numbers, the results represents that a single subject (id = 6) missed the handling of

quality attribute variability. As well as in the AQA metric, the negligence could have

happened due to the particular lack of experience with the quality attribute terminology.

Difficulties to understand the activities: from the answers of the subjects using the

questionnaire (QT2) for the difficulties found to understand the RiPLE-Design activities, it

was identified that (Id = 3) had difficulties to understand part of the approach, namely, the

Document decision guidelines activity. It was mentioned that the provided examples left

unclear the definition of patterns, since one of the examples showed System reboot as a

pattern. This issue was explained during the RiPLE-Design training and the documentation of

the approach was reviewed and modified, emphasizing that the documentation should be of

design decisions and strategies, not only design patterns or styles.

The subject (Id = 3) had participated of plenty of academic and industrial software projects in

technical leading roles. In this sense, it is unlikely that the experience caused the

misunderstanding.

In this sense, one subject had problems to understand the Enhanced RiPLE-Design activities,

which represents 33% of the total number of subjects that used the process. This aspect

confirms that the null hypothesis (understanding problems > 50%) can be rejected. It is

necessary to highlight that the null hypothesis was defined without any previous data.

Nonetheless, this value can be refined based on this experience, the next time the experiment

is performed.

Difficulties to apply the process: from the answers of the subjects using the questionnaire

(QT2) for the difficulties found to apply the Enhanced RiPLE-Design in practice, it was

identified that one subject (id = 2) reported problems to apply the Represent Architecture and

mentioned his lack of experience with design as a reason for the difficulties. According to the

subject’s profile, the roles played in projects were related mainly to software Tests. It is

expected that people with little experience in software design have difficulties in executing

such tasks. Software product line engineering adds complexity to the already software

architecture discipline. In real case scenarios, more and deeper training involving general

software architecture could provide solider foundations to the architects.

The Experimental Study 108

New experiments need to be executed in order to get more evidence about the correlation

among the experience of the subjects and the difficulties found to apply the approach in

practice.

In this sense, one from the three subjects had problems to apply the Enhanced RiPLE-Design

activities in practice. It represents 33% of the total number of subjects that used the approach.

This aspect indicates that the null hypothesis (applicability problems > 50%) can be rejected.

It is necessary to highlight that the value for the null hypothesis was defined without any

previous data and this value can be calibrated for new experiments.

5.2.4.2 Qualitative analysis

Based on the answers from questionnaire (QT2) and on the architectural solutions proposed

by each subject, qualitative analyses were performed.

Training Analysis: all the subjects who participated in the experimental study attended to

lectures composed of slide presentation involving topics related to software reuse and

software product lines architecture. The training was performed in 24 hours. Three subjects

considered the training very good (Id = 2, 3 and 6), two subjects classified it as good (Id = 1,

4), and one subject as regular (Id = 5). The scale defined was: very good, good, regular, and

unsatisfactory.

Two subjects (Id = 2 and 6) mentioned that it would be better to have more lectures on

general software architecture, in order to compensate their lack of experience.

The subjects did not comment on the software product line lectures, since it involved several

topics and a practical case study during the whole course at the university (approximately

during 6 months).

Finally, the subjects (Id = 1, 2 and 3) were trained to use the Enhanced RiPLE-Design, and

one subject (Id = 1) emphasized that the Enhanced RiPLE-Design training should be longer in

order to improve the results of the experiment. The subjects (Id = 4, 5 and 6) were not trained

to use the Enhanced RiPLE-Design, since they designed the project without using a structured

method (ad-hoc).

Usefulness of RiPLE-Design: the subjects that used the Enhanced RiPLE-Design reported

that the approach was useful to perform the domain design with quality attribute variability.

The Experimental Study 109

Nonetheless, one subject (id = 1) suggested the use of an UML adaptation to represent

variability. Yet another subject (Id = 3) missed tool support for editing the Feature Model

Diagram. Both issues will be commented further as a future improvement to the process.

The subject (id = 3) also highlighted the importance of the quality scenario analysis and its

reproduction in the feature model diagram. It was useful to identify the level of influence of

the quality attributes on the architecture.

Quality of the Documentation and Instruments: about the experimental study task

description, one subject (id = 2) presented difficulties to understand quality scenarios

descriptions as he was not used to the quality scenario notation. The lack of experience of the

subjects seem to be the main reason of the difficulties since the subject has mainly

participated in software projects in testing activities (test architect and tester). The

misunderstandings were corrected during the course of the experiment and will be revised in

the training material.

Albeit being the most experienced subject, the subject with (Id = 3) complained about the lack

of suggestions and guidelines for design strategies regarding each specific quality attribute.

Those mentioned design strategies are already available in the software architecture literature,

as in (Bass; John, 2003; Garlan; Shaw, 1994; Kim et al., 2009; Klein et al., 1999; Myllärniemi

et al., 2008; Schmidt; O'Ryan, 2003). The idea behind the Enhanced RiPLE-Design is that

known architectural styles and patterns or any other design strategy can be used to address

quality attributes. Alternative or optional strategies can be used when quality attribute

variability appears. The next time this experiment is performed, this aspect can be better

controlled by including a list of suggested readings or by training the subjects in architectural

tactics.

Other subjects commented that the process documentation was fine.

Handling quality attributes variability: besides the use of the process, another aspect

clearly influences the handling of quality attribute variability: the architect’s experience. In

general more experience subjects (id = 3 and 4) that addressed quality attribute variability

proposed better solutions than other subjects. Those subjects also documented better the

design decisions regarding quality attribute variability.

The Experimental Study 110

It is interesting to remark that a subject (id = 6) have not addressed any variable quality

attributes. It would be premature do draw any conclusions from only a single subject. It is

possible that without the use of a systematic approach, the architect would not mind the

occurrence of quality attribute variability. The subject’s experience could also have

influenced the result. In order to elucidate this occurrence, further experimentation is needed,

with a larger population.

Nevertheless, this aspect can actually be a hidden threat to the experiment’s validity. As the

study was design for the purpose of evaluating a process to handle quality attribute variability,

the experiment task construction could have been biased. In order to prove the experiment

task’s construction as a threat to the validity of the experiment, different domains, taken from

industrial cases could be used to construct the experiment task.

Guidelines for product instantiation: analyzing the proposed architectural solutions it could

be identified that no subject from the treatment that did not use the Enhanced RiPLE-Design

process documented guidelines for product instantiation. Such guidelines are crucial for the

next phase in product line engineering: product development.

Quality of produced architectural documentation: experience seems to be closely related

to the quality of the proposed architectural solution as well as its documentation. Regardless

of the treatment subjects with more experience produced better documented architecture.

Examples are subjects 3 and 4. More detailed diagrams and documentation of design

decisions rationale could be found. Less experienced architects produced modestly

documented architectures with no advice for product instantiation or poor descriptions for

quality attribute variability handling.

5.3 CONCLUSIONS

Although the analysis has not been conclusive, the experimental study indicates that the

Enhanced RiPLE-Design allows architects to design domain specific software architectures

with a reasonable coupling and stability. Moreover, satisfactory results could be seen

concerning aspects related to understanding and applicability of the Enhanced RiPLE-Design

in practice. Additionally, metrics can be calibrated with the results identified in this

experiment. It was also identified that the training on the Enhanced RiPLE-Design should be

The Experimental Study 111

extended in length and should comprise more details about quality attribute scenarios and

design tactics.

Even with a small number of subjects, it can be valid to make some correlations based on the

profile of the subjects and the results obtained. Concerning the quantitative analysis, even

though no correlations between the experience of the subjects and the quality of the

architecture could be found, it was clear that more experienced subjects produced better

architecture documentation.

Although the results have shown similar results in respect to functional and quality attributes

achievements, the preliminary result suggests that the use of the process, even in small teams

and small projects, can be a helpful way to standardize the procedures and conduct of team

members. In addition, the use of the process can be very helpful to manage large and complex

software product line projects.

Considering the understanding and applicability of the RiPLE-Design, this correlation could

be analyzed as described previously. More evidence for these correlations can be obtained

from new experiments. In addition, no value was removed when analyzing the metrics results,

as no value was considered an outlier (Fenton, 1994).

5.4 LESSONS LEARNED

From the conclusion of the experimental study, some aspects should be considered in order to

replicate the experiment, in order to overcome some limitations of its first execution. In this

sense, the next subsections present the lessons learned from the performed experimental

study.

5.4.1 Training

Besides the improvements related to the RiPLE-Design lectures, two subjects (Id = 2 and 3)

highlighted that the training should be longer, more detailed, and include topics like design

tactics and general software architecture. The suggestions do not seem to have relation with

the subjects’ experience, since they are both the more and the less experienced subject in the

population. Another possible improvement is the execution of an example, with reduced

The Experimental Study 112

scope and performed by the subjects to simulate the experiment. These issues could reduce

the doubts during the experiment.

5.4.2 Experience of subjects

Being aware of the possible threat due to the random heterogeneity of subjects, this study

tried to choose subjects from a group of postgraduate students that do research in the same

area and attended to a similar set of lectures. Nevertheless, individual differences could have

been even larger than the difference of the treatment. As aforementioned, experience seems to

be related to the quality of the proposed architectural solution as well as its documentation.

Better strategies must be used I further studies to guarantee better homogeneity of the study

group in respect to their experience.

5.4.3 Motivation of subjects

Although the subjects were all volunteers, it was difficult to maintain the subjects motivated,

and keep their attention and discipline during the whole execution of the experimental study.

Performing the experimental study during lectures of a university course can help solve this

problem as suggested by a subject (id = 3).

5.4.4 Number of subjects

It was hard to find volunteers to perform the experimental study. This experiment was

performed by a reduced number of subjects (6 participants), and the pilot project with only

one subject. After this experimental study, the necessity to increase the number of subjects

could be identified. The execution of the experiment during lectures of a university course

may solve this issue as well.

5.5 CHAPTER SUMMARY

This chapter presented the contextualization, planning, operation and analysis of the

experimental study that characterized the Enhanced RiPLE-Design process evaluating its

efficacy, understanding and applicability.

The Experimental Study 113

The study analyzed the possibility of subjects using the approach to design product line

architecture with good stability and coupling. It was also analyzed the understanding and

applicability of the RiPLE-Design in practice. The difficulties were categorized in the

different activities of the RiPLE-Design with the intention of evaluating and refining its

activities.

Even with the reduced number of subjects, the analysis has shown that the RiPLE-Design can

be viable. It also identified some issues for improvements. However, two aspects should be

considered: the repetition of the study in different contexts and new studies based on

observation in order to identify more problems and new points for improvements.

The next chapter will present the conclusions of this work, its main contributions and related

work as well as directions for future work.

114

6
CONCLUSION

As discussed in (van Der Linden et al., 2007):

The software industry is challenged with a continuous drive to

improve its engineering practice, and Software product line

engineering is a strategic approach to developing software.

[…]

It impacts business, organization and technology alike and is a proven

way to develop a large range of software products and software-

intensive systems fast and at low costs, while at the same time

delivering high-quality software.

The ways organization can benefit from systematic software reuse by adopting product line

engineering as well as the importance of proper software architecture design are presented in

Chapter 2.

Quality attribute achievement is vital for any software architecture. In the context of software

product lines, it becomes an even more complex issue as quality attributes can also contain

variability. Nevertheless, this aspect have been “neglected or ignored by most of the

researchers as attention has been mainly put in the variability to ensure that it is possible to

get all the functionality of the products”, as discussed in (Etxeberria et al., 2008).

The RiPLE-Design process, presented in (Souza Filho et al., 2008; Souza Filho et al., 2008)

also lacks guidelines for proper quality attribute variability handling. Aiming to solve the

problem of addressing quality attribute variability, this dissertation presented the

enhancements to the RiPLE-Design process.

An experimental study on the Travel Reservation domain was performed with the purpose of

characterizing the Enhanced RiPLE-Design and refining it considering the feedback received

during the execution of the experiment and its results.

Conclusion 115

Finally, this chapter concludes this dissertation presenting its conclusions, and its related and

future work. The next section presents the related studies that have considered the quality

attribute variability and strategies to properly address it.

6.1 RELATED WORK

Chapter 2 presented some processes for software product line architecture development,

which are close to this work. Nonetheless, there is a key difference between this work and

others: the specific treatment of quality attributes variability, as discussed subject through this

dissertation.

Besides those complete processes for product line architecture development, some that are

also closely related to this dissertation focus on parts of the process.

Many approaches address variability modeling and specification taking into consideration

non-functional features they are briefly described in Section 4.1.

(Myllärniemi et al., 2007) provide guidelines to model variability in the Security quality

attribute. The approach is based on a tool that supports the definition of an ontology and the

representation of functional and security variability in different viewpoints.

Not many studies focus on strategies to realize variability in the quality level, i.e., finding a

design strategy for varying quality attributes and are described below.

(Rossel et al., 2009a) shows an approach based on Model-Driven Engineering (MDE) where

the PLA is seen as a set of transformations associated with the domain features. In his

approach, the quality attributes requirements are also modeled as features. A derived product,

built from a selection of features, can have its architecture built through the application of the

earlier mentioned transformations. The variations in quality attributes requirements produce

different transformation in the model and can make product architectures completely different

from one another. Although the resulting product architectures may differ drastically from one

another, since they all derive from a main root architecture, and is managed as a whole this

approach can be seen as software product line architecture approach.

(Bosch, 2000) suggests the possibility of transforming quality attributes requirements into

functionalities. For example, the requirement of security can be converted into login and

encrypted passwords and protocols. This attempt to make non-functional requirements into

Conclusion 116

functionalities does not work always. Not all quality attributes requirements can be

transformed into functionality, e.g., there is no functionality that deals with performance the

same way access control functionalities deal with security. It is not guaranteed that a quality

attributes requirement is achieved by a specific set of functionalities. In other words, a system

can have access control with highly encrypted passwords and protocol and still not be secure.

Finally, (Kim et al., 2007) discusses an approach to address quality attribute variability that

must be configured at runtime. It is a special case of quality attribute variability that was left

out of the scope of this dissertation.

6.2 FUTURE WORK

Due to the time constraints imposed on the master degree, this work can be seen as an initial

climbing towards a process for software product lines with quality attribute variability.

Interesting directions remain to improve what was started here and new routes can be

explored in the future. Thus, the following issues should be investigated as future work:

 Features Interaction: The case of functional variability affecting quality attributes is

related to the occurrence of feature interaction in software product lines. As pointed

out in (Lee; Kang, 2004), sometimes “[…] features cannot perform their

functionalities alone, they need to interact among them in order to accomplish the

products requirements. In this context, a feature interaction occurs in a system whose

complete behavior does not satisfy the separate specifications of all its features.”

Functional features that impact on non-functional features are, thus, a case of feature

interaction. The problem of feature interaction can impact the whole SPL development

process, as it promotes changes in reusable assets and impacts maintenance costs and

other products. Although the quality scenario based approach allows basic treatment

of feature interaction, this field of study can be further incorporate to the RiPLE-

Design process.

 Variability representation: As suggested during the experiment, there could be

alternative ways to represent variability, particularly in the deployment view. In this

sense, studies from (Gomaa, 2004; Robak et al., 2002) can be adapted.

Conclusion 117

 Experimental Study: This dissertation presented the definition, planning, operation,

analysis and interpretation of an experimental study that was executed with the

purpose of characterizing and evaluating the Enhanced RiPLE-Design approach. New

studies in different contexts, including more subjects and other domains are still

necessary in order to calibrate the proposed approach.

 Architectural Evaluation: It is also important to perform further studies in order to

examine how the proposed adaptation of the HoPLAA evaluation method works

together with the Enhanced RiPLE-Design process.

6.3 ACADEMIC CONTRIBUTIONS

The co-authoring of the following publication contributed for acquiring experience and

knowledge in the software product line architecture and software reuse area:

 (Souza Filho et al., 2008) Evaluating Domain Design Approaches Using Systematic

Review, In 2nd European Conference on Software Architecture (ECSA).

Moreover, one journal article and one conference paper are being prepared.

6.4 CONCLUDING REMARKS

Software reuse is a key factor for companies willing to improve productivity and quality

while reducing costs. In this context, this work presented the Enhanced RiPLE-Design, an

approach to design software product line architectures. It enhances the existing RiPLE-Design

process providing activities and guidelines to handle quality attribute variability.

The Enhanced RiPLE-Design approach was based in the three pillars for handling quality

attribute variability, suggested by (Myllärniemi; Männistö; et al., 2006): (i) specify and model

varying quality attributes; (ii) find a design strategy for varying quality attributes; and, (iii)

evaluate the architecture in order to achieve the needed variation. The approach provides

activities and guidelines that under each of the pillars.

Additionally, the approach was evaluated in a software product line project through an

experimental study on the Travel Reservation domain, which was analyzed both

quantitatively and qualitatively. This experimental study presented findings that the Enhanced

Conclusion 118

RiPLE-design can be viable to aid software architects during the design of product line

architectures with quality attribute variability.

Therefore, this dissertation can be considered a relevant contribution to the area of software

reuse and software architecture.

119

REFERENCES

Almeida, E. S. RiDE: The RiSE Process for Domain Engineering. Recife, PE, Brazil:

UFPE, 2007. Ph.D. Thesis, Universidade Federal de Pernambuco, March, 2007.

Almeida, E. S.; Alvaro, A.; Lucredio, D.; Garcia, V. C.; Meira, S. R. RiSE project: towards a

robust framework for software reuse. In: the 2004 IEEE International Conference on

Information Reuse and Integration. Proceedings of... . p.48-53, 2004. Las Vegas, USA: IEEE.

Alvaro, A.; Almeida, E. S.; Meira, S. R. A software component quality model: A preliminary

evaluation. In: Software Engineering and Advanced Applications, 2006. SEAA'06. 32nd

EUROMICRO Conference on. Proceedings of... . p.28–37, 2006. IEEE.

America, P.; Obbink, J. H.; van Ommering, R. C.; van Der Linden, F. CoPAM: A component-

oriented platform architecting method family for product family engineering. KLUWER

INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE, 2000.

Anastasopoules, M.; Bayer, J.; Flege, O.; Gacek, C. A Process for Product Line

Architecture Creation and Evaluation. PuLSE-DSSA - Version 2.0. Kaiserslautern:

Fraunhofer IESE, 2000. Fraunhofer IESE.

Apache Foundation. The Apache Cassandra Project. 2010. Available at:

<http://cassandra.apache.org>. Accessed in: 4/18/2009.

Atkinson, C.; Bayer, J.; Bunse, C.; et al. Component-based product line engineering with

UML. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

Atkinson, C.; Bayer, J.; Muthig, D. Component-Based Product Line Development: The

KobrA Approach. In: P. Donohoe; First Software Product Line Conference. Proceedings of...

. p.289-309, 2000.

Auerswald, M.; Herrmann, M.; Kowalewski, S.; Schulte-Coerne, V. Reliability-Oriented

Product Line Engineering of Embedded Systems. In: Software product-family engineering:

4th international workshop, PFE 2001. Proceedings of... , 2001.

Barbacci, M.; Klein, M. H.; Longstaff, T. A.; Weinstock, C. B. Quality Attributes. Software

Engineering Institute, Carnegie Mellon University, 1995. Software Engineering Institute,

Carnegie Mellon University.

Basili, V. R. The role of experimentation in software engineering: past, current, and. In: 18th

International Conference on Software Engineering. Proceedings of... . p.442-449, 1996.

Berlin, Germany: IEEE Computer Society.

Basili, V. R.; Caldiera, G.; Rombach, H. D. The goal question metric approach. Encyclopedia

of Software Engineering, 1994. John Wiley & Sons, Inc.

References 120

Basili, V. R.; Selby, R. W.; Hutchens, D. H. Experimentation in Software Engineering. IEEE

Transactions on Software Engineering, v. 12, n. 7, p. 733-743, 1986.

Bass, L. J.; Klein, M. H.; Bachmann, F. Quality Attribute Design Primitives and the Attribute

Driven Design Method. In: PFE '01: Revised Papers from the 4th International Workshop on

Software Product-Family Engineering. Proceedings of... . p.169-186, 2002. London, UK:

Springer-Verlag.

Bass, L.; Clements, P. C.; Kazman, R. Software Architecture in Practice. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

Bass, L.; Clements, P. C.; Kazman, R.; Nord, R. The Architecture Business Cycle Revisited:

A Business Goals Taxonomy to Support Architecture Design and Analysis. News at SEI,

2005.

Bass, L.; John, B. E. Achieving usability through software architectural styles. In: CHI '00:

CHI '00 extended abstracts on Human factors in computing systems. Proceedings of... .

p.171, 2000. New York, New York, USA: ACM Press.

Bass, L.; John, B. E. Linking usability to software architecture patterns through general

scenarios. Journal of Systems and Software, v. 66, n. 3, p. 187-197, 2003.

Bayer, J.; Flege, O.; Knauber, P.; et al. PuLSE: a methodology to develop software product

lines. In: SSR '99: Proceedings of the 1999 symposium on Software reusability. Proceedings

of... . p.122-131, 1999. New York, NY, USA: ACM.

Boehm, B. Characteristics of Software Quality. North-Holland Pub Co, 1978.

Bosch, J. Design and use of software architectures: adopting and evolving a product-line

approach. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.

Bosch, J. Software product lines: organizational alternatives. In: the 23rd International

Conference on Software Engineering. Proceedings of... . p.91-100, 2001. Washington, DC,

USA: IEEE Computer Society.

Brito, K. S. LIFT: A Legacy InFormation retrieval Tool. Recife, PE: UFPE, 2007. M.Sc.

Thesis, Universidade Federal de Pernambuco, May, 2007.

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-oriented

software architecture: a system of patterns. New York, NY, USA: John Wiley & Sons,

Inc., 1996.

Cavalcanti, Y. C. BAST: A Bug Report Analysis and Search Tool. Recife, PE: UFPE,

2009. M.Sc. Thesis, Universidade Federal de Pernambuco, May, 2009.

References 121

Chen, J.; Yeap, W. K.; Bruda, S. D. A Review of Component Coupling Metrics for

Component-Based Development. In: 2009 WRI World Congress on Software Engineering.

Proceedings of... . p.65-69, 2009. IEEE.

Chidamber, S.; Kemerer, C. A metrics suite for object oriented design. IEEE Transactions

on Software Engineering, v. 20, n. 6, p. 476-493, 1994.

Chidamber, S.; Kemerer, C. A metrics suite for object oriented design. IEEE Transactions

on Software Engineering, v. 20, n. 6, p. 476-493, 1994.

Chung, L.; Nixon, B. A.; Yu, E.; Mylopoulos, J. Non-Functional Requirements in Software

Engineering. New York: Springer, 1999.

Clements, P. C.; Bachmann, F.; Bass, L.; et al. Documenting Software Architectures:

Views and Beyond. London, UK: Addison Wesley, 2002.

Clements, P. C.; Kazman, R.; Klein, M. H. Evaluating software architectures: methods

and case studies. London, UK: Addison-Wesley Professional, 2006.

Clements, P. C.; Northrop, L. M. Software Product Lines: Practices and Patterns. London,

UK: Addison-Wesley Professional, 2001.

DeBaud, J.; Flege, O.; Knauber, P. PuLSE-DSSA --- a method for the development of

software reference architectures. In: Third international workshop on Software architecture

(ISAW '98). Proceedings of... . p.25-28, 1998. New York, NY, USA: ACM.

Dijkstra, E. W. Chapter I: Notes on structured programming. In: Structured Programming.

p.1-82, 1972. London, UK: Academic Press Ltd.

Easterbrook, S.; Singer, J.; Storey, M.; Damian, D. Selecting Empirical Methods for Software

Engineering Research. In: F. Shull; J. Singer; D. I. Sjøberg; Guide to Advanced Empirical

Software Engineering, 2008. London: Springer London.

Etxeberria, L.; Mendieta, G. S.; Belategi, L. Modelling Variation in Quality Attributes. In:

First International Workshop on Variability Modelling of Software-intensive Systems.

Proceedings of... . p.51-59, 2007.

Etxeberria, L.; Sagardui, G. Product-Line Architecture: New Issues for Evaluation. In: J. H.

Obbink; K. Pohl; Software product lines: 9th international conference, SPLC 2005.

Proceedings of... , Lecture Notes in Computer Science. v. 3714, p.174-185, 2005. Springer.

Etxeberria, L.; Sagardui, G. Evaluation of Quality Attribute Variability in Software Product

Families. In: 15th Annual IEEE International Conference and Workshop on the Engineering

of Computer Based Systems (ECBS 2008). Proceedings of... . p.255-264, 2008. IEEE.

Etxeberria, L.; Sagardui, G.; Belategi, L. Quality aware software product line engineering.

Journal of the Brazilian Computer Society, v. 14, n. 1, 2008.

References 122

Fenton, N. Software measurement: a necessary scientific basis. IEEE Transactions on

Software Engineering, v. 20, n. 3, p. 199-206, 1994.

Folmer, E.; van Gurp, J.; Bosch, J. Scenario based assessment of software architecture

usability. In: ICSE 2003 Bridging the Gaps Between Software Engineering and Human-

Computer Interaction workshop. Proceedings of... , 2003.

Fowler, M.; Scott, K. UML distilled: a brief guide to the standard object modeling

language. 2nd ed. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2000.

Gacek, C.; Anastasopoules, M. Implementing product line variabilities. ACM SIGSOFT

Software Engineering Notes, v. 26, n. 3, p. 109-117, 2001. New York, NY, USA: ACM.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design patterns: elements of reusable

object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

Garcia, V. C.; Lisboa, L. B.; Durão, F.; Almeida, E. S.; Meira, S. R. A lightweight technology

change management approach to facilitating reuse adoption. In: 2nd Brazilian Symposium on

Software Components, Architectures, and Reuse (SBCARS’08). Proceedings of... . p.116,

2008. Porto Alegre, Brazil.

Garlan, D.; Shaw, M. An Introduction to Software Architecture. Pittsburgh, PA, USA:

School of Computer Science, Carnegie Mellon University, 1994. School of Computer

Science, Carnegie Mellon University.

Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures. London, UK: Addison Wesley Professional, 2004.

González-Baixauli, B.; Laguna, M. A.; do Prado Leite, J. C. Using Goal-Models to Analyze

Variability. In: First International Workshop on Variability Modelling of Software-intensive

Systems, January 2007, Limerick, Ireland. Proceedings of... , Lero Technical Report. v.

2007-01, p.101-107, 2007.

Hallsteinsen, S.; Fægri, T. E.; Syrstad, M. Patterns in Product Family Architecture Design. In:

Software product-family engineering: 5th international workshop, PFE 2003. Proceedings

of... . p.261-268, 2003.

IEEE Computer Society. IEEE Std 610.12-1990. IEEE Standard Glossary of Software

Engineering Terminology. New York, NY, USA, 1990.

International Organization For Standardization/International Electrotechnical Commission.

ISO/IEC 5807:1985, Information processing – Documentation symbols and conventions for

data, program and system flowcharts, program network charts and system resources charts. ,

1985.

References 123

International Organization for Standardization/International Electrotechnical Commission.

ISO/IEC 9126-1:2001: Software Engineering - Product Quality - Part 1: Quality Model. ,

2001. Geneva, Switzerland.

Jarzabek, S.; Yang, B.; Yoeun, S. Addressing quality attributes in domain analysis for product

lines. IEE Proceedings - Software, v. 153, n. 2, p. 61, 2006.

Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peterson, A. S. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. , 1990.

Kang, K. C.; Kim, S.; Lee, J.; et al. FORM: A feature-; oriented reuse method with domain-;

specific reference architectures. Annals of Software Engineering, v. 5, n. 1, p. 143–168,

1998. Springer.

Kazman, R.; Klein, M. H.; Clements, P. C. ATAM: Method for architecture evaluation.

2000. Software Engineering Institute, Carnegie Mellon University.

Kim, M.; Park, S.; Lee, J. An Approach to Dynamically Achieving Quality Requirements

Change in Product Line Engineering. In: Software Product Lines, 11th International

Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings. Proceedings

of... . v. 2, p.41-50, 2007.

Kim, S.; Kim, D.; Lu, L.; Park, S. Quality-driven architecture development using architectural

tactics. Journal of Systems and Software, v. 82, n. 8, p. 1211-1231, 2009. Elsevier Inc.

Kitchenham, B.; Pickard, L. M.; Pfleeger, S. L. Case studies for method and tool evaluation.

IEEE Software, v. 12, n. 4, p. 52-62, 1995.

Klein, M. H.; Kazman, R.; Bass, L. J.; et al. Attribute-Based Architecture Styles. In: First

Working IFIP Conference on Software Architecture (WICSA1). Proceedings of... . p.225-

244, 1999. Deventer, The Netherlands, The Netherlands: Kluwer, B.V.

Kolb, R.; Mcgregor, J. D.; Muthig, D. Introduction to quality assurance in reuse contexts. In:

R. Kolb; J. D. McGregor; D. Muthig; First International Workshop on Quality Assurance in

Reuse Contexts (QUARC). Proceedings of... , 2004. Fraunhofer IESE.

Krueger, C. W. Software reuse. ACM Computing Surveys, v. 24, n. 2, p. 131-183, 1992.

New York, NY, USA: ACM.

Krueger, C. W. Easing the Transition to Software Mass Customization. In: PFE '01: Revised

Papers from the 4th International Workshop on Software Product-Family Engineering.

Proceedings of... . v. 1, p.282-293, 2002. London, UK: Springer-Verlag.

Laprie, J. C. Dependability: Basic Concepts and Terminology. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 1992.

References 124

Lassing, N. Experiences with ALMA: Architecture-Level Modifiability Analysis. Journal of

Systems and Software, v. 61, n. 1, p. 47-57, 2002.

Lee, K.; Kang, K. C. Feature Dependency Analysis for Product Line Component Design. In:

ICSR 2004 : international conference on software reuse : methods, techniques, and tools.

Proceedings of... . p.69-85, 2004.

Maccari, A. Experiences in assessing product family software architecture for evolution. In:

Proceedings of the 24th international conference on Software engineering - ICSE '02.

Proceedings of... . p.585, 2002. New York, New York, USA: ACM Press.

Machado, I. C. RiPLE-TE: A Software Product Lines Testing Process. Recife, PE: UFPE,

2010. M.Sc. Thesis, Universidade Federal de Pernambuco, August, 2010.

Martin, R. C. Agile Software Development, Principles, Patterns, and Practices. Prentice

Hall, 2002.

Martins, A. C.; Garcia, V. C.; Almeida, E. S.; Meira, S. R. Enhancing components search in a

reuse environment using discovered knowledge techniques. In: 2nd Brazilian Symposium on

Software Components, Architectures, and Reuse (SBCARS’08). Proceedings of... , 2008.

Porto Alegre, Brazil.

Mascena, J. C. ADMIRE: Asset Development Metric-based Integrated Reuse

Environment. Recife, PE, Brazil, 2006. M.Sc. Thesis, Universidade Federal de Pernambuco,

May, 2006.

Matinlassi, M. Comparison of software product line architecture design methods: COPA,

FAST, FORM, KobrA and QADA. In: 26th International Conference on Software

Engineering. Proceedings of... . v. 0, p.127-136, 2004. Los Alamitos, CA, USA: IEEE

Comput. Soc.

Matinlassi, M. Quality-Driven Software Architecture Model Transformation. In: 5th Working

IEEE/IFIP Conference on Software Architecture (WICSA'05). Proceedings of... . p.199-200,

2005. Washington, DC, USA: IEEE.

Matinlassi, M.; Niemelä, E.; Dobrica, L. Quality-driven architecture design and quality

analysis method: A revolutionary initiation approach to a product line architecture. Vtt

Publications, 2002.

McIlroy, M. D. Mass-produced Software Components. In: J. M. Buxton; P. Naur; B. Randell;

Software Engineering Concepts and Techniques. Proceedings of... . p.79-85, 1968. NATO

Science Committee.

Medeiros, F. M. SOPLE-DE : An Approach to Design Service-Oriented Product Line

Architectures. Recife, PE: UFPE, 2010. M.Sc. Thesis, Universidade Federal de Pernambuco,

May, 2010.

References 125

Mendes, R. C. Search and Retrieval of Reusable Source Code using Faceted

Classification Approach. Recife, PE, Brazil: UFPE, 2008. M.Sc. Thesis, Universidade

Federal de Pernambuco, March, 2008.

Mili, H.; Mili, A.; Yacoub, S.; Addy, E. Reuse-based software engineering: techniques,

organization, and controls. New York, NY, USA: Wiley-Interscience, 2001.

Moraes, M. B. RiPLE-SC: An Agile Scoping Process for Software Product Lines. Recife,

PE, Brazil: UFPE, 2010. M.Sc. Thesis, Universidade Federal de Pernambuco, August, 2010.

Myllärniemi, V.; Männistö, T.; Raatikainen, M. Quality Attribute Variability within a

Software Product Family Architecture. In: Conference on the Quality of Software

Architectures. Proceedings of... , 2006.

Myllärniemi, V.; Prehofer, C.; Raatikainen, M.; Gurp, J.; Männistö, T. Approach for

Dynamically Composing Decentralised Service Architectures with Cross-Cutting Constraints.

In: 2nd European conference on Software Architecture. Proceedings of... . p.180-195, 2008.

Berlin, Heidelberg: Springer-Verlag.

Myllärniemi, V.; Raatikainen, M.; Männistö, T. Inter-organisational Approach in Rapid

Software Product Family Development - A Case Study. In: M. Morisio; Reuse of Off-the-

Shelf Components, 9th International Conference on Software Reuse, ICSR 2006, Turin, Italy,

June 12-15,2006, Proceedings. Proceedings of... . p.73-86, 2006. Springer.

Myllärniemi, V.; Raatikainen, M.; Männistö, T. KumbangSec: An Approach for Modelling

Functional and Security Variability in Software Architectures. In: First International

Workshop on Variability Modelling of Software-intensive Systems, January 2007, Limerick,

Ireland. Proceedings of... . p.61-70, 2007.

Nascimento, L. M. Core Assets Development in SPL: Towards a Practical Approach for

the Mobile Game Domain. Recife, PE, Brazil, 2008. M.Sc. Thesis, Universidade Federal de

Pernambuco, March, 2008.

Neiva, D. F. A Requirements Engineering Process for Software Product Lines. Recife,

PE, Brazil: UFPE, 2009. M.Sc. Thesis, Universidade Federal de Pernambuco, August, 2009.

Niemelä, E.; Immonen, A. Capturing quality requirements of product family architecture.

Information and Software Technology, v. 49, n. 11-12, p. 1107-1120, 2007. Newton, MA,

USA: Butterworth-Heinemann.

Northrop, L. M. Achieving Product Qualities Through Software Architecture Practices.

Pittsburgh, PA, USA, 2004. Software Engineering Institute, Carnegie Mellon University.

Obbink, H.; Müller, J.; America, P.; van Ommering, R. C. COPA A Component-Oriented

Platform Architecting Method for Families of Software-Intensive Electronic Products.

2000.

References 126

Oliveira, T. H. RiPLE-EM: A Process to Manage Evolution in Software Product Lines.

Recife, PE, Brazil: UFPE, 2009. M.Sc. Thesis, Universidade Federal de Pernambuco, August,

2009.

Olumofin, F. G.; Misic, V. B. Extending the ATAM Architecture Evaluation to Product Line

Architectures. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA'05).

Proceedings of... . p.45-56, 2005. IEEE.

Parnas, D. L. On the Design and Development of Program Families. IEEE Transactions on

Software Engineering, v. SE-2, n. 1, p. 1-9, 1976.

Parnas, D. L.; Siewiorek, D. P. Use of the concept of transparency in the design of

hierarchically structured systems. Communications of the ACM, v. 18, n. 7, p. 401-408,

1975. New York, NY, USA: ACM.

Perepletchikov, M.; Ryan, C.; Frampton, K.; Tari, Z. Coupling Metrics for Predicting

Maintainability in Service-Oriented Designs. 2007 Australian Software Engineering

Conference (ASWEC'07), p. 329-340, 2007. Ieee.

Pohl, K.; Günter Böckle; Linden, F. J. Software Product Line Engineering: Foundations,

Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

Robak, S.; Franczyk, B.; Pilitowicz, K. EXTENDING THE UML FOR MODELLING

VARIABILITY FOR SYSTEM FAMILIES. Int. J. Appl. Math. Comput. Sci., v. 12, n. 2, p.

285-298, 2002.

Rossel, P. O.; Perovich, D.; Bastarrica, M. C. Feature Model to Product Architectures:

Applying MDE to Software Product Lines. In: Software Architecture, 2009 & European

Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP

Conference on. Proceedings of... , 2009.

Rossel, P. O.; Perovich, D.; Bastarrica, M. C. Reuse of Architectural Knowledge in SPL

Development. In: ICSR '09: Proceedings of the 11th International Conference on Software

Reuse. Proceedings of... . p.191-200, 2009. Berlin, Heidelberg: Springer-Verlag.

Sametinger, J. Software engineering with reusable components. New York, NY, USA:

Springer-Verlag New York, Inc., 1997.

Santos, E. C.; Durão, F.; Martins, A. C.; et al. Towards an effective context-aware proactive

asset search and retrieval tool. In: 6th Workshop on Component-Based Development

(WDBC’06). Proceedings of... . p.105–112, 2006. Recife, PE, Brazil.

Schmidt, D. C.; O'Ryan, C. Patterns and performance of distributed real-time and embedded

publisher/subscriber architectures. Journal of Systems and Software, v. 66, n. 3, p. 213-223,

2003.

References 127

Shaw, M.; Garlan, D. Software architecture: perspectives on an emerging discipline.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

Silveira Neto, P. A. A Regression Testing Approach for Software Product Lines

Architectures. Recife, PE, Brazil: UFPE, 2010. M.Sc. Thesis, Universidade Federal de

Pernambuco, July, 2010.

Sinnema, M.; Deelstra, S.; Nijhuis, J.; Bosch, J. COVAMOF: A Framework for Modeling

Variability in Software Product Families. In: Software product lines: Third International

Conference, SPLC 2004. Proceedings of... . v. 3154, p.197-213, 2004.

Snell, J. Automating business processes and transactions in Web services. 2002. IBM.

Available at: <http://www.ibm.com/developerworks/webservices/library/ws-autobp/>.

Accessed in: 7/18/2009.

Souza Filho, E. D. RiPLE-DE: An Approach to Design Software Product Lines

Architecture. Recife, PE, Brazil: UFPE, 2010. M.Sc. Thesis, Universidade Federal de

Pernambuco, August, 2010.

Souza Filho, E. D.; Almeida, E. S.; Meira, S. R. Towards an Approach for Software

Product Lines Domain Design. Recife, PE, Brazil, 2008.

Souza Filho, E. D.; Almeida, E. S.; Meira, S. R. Experimenting a process to design product

line architectures. In: EASA’09: Workshop on Empirical Assessment in Software

Architecture. Proceedings of... , 2009. Cambridge, UK.

Souza Filho, E. D.; Cavalcanti, R. O.; Neiva, D. F.; et al. Evaluating Domain Design

Approaches Using Systematic Review. In: ECSA. Proceedings of... . p.50-65, 2008.

Svahnberg, M.; Bosch, J. Issues Concerning Variability in Software Product Lines. Software

Architectures for Product Families, v. 1951, p. 146-157, 2000.

System Security Study Committee; Computer Science and Telecommunications Board;

Commission on Physical Sciences Mathematics and Applications; National Research Council.

Computers at risk: safe computing in the information age. Washington, DC, USA:

National Academy Press, 1991.

Voas, J. M.; Miller, K. W. Software Testability: The New Verification. IEEE Software, v.

12, n. 3, p. 17-28, 1995.

Weiss, D. M. Software product-line engineering: a family-based software development

process. Addison-Wesley Longman Publishing Co., Inc., 1999.

Wohlin, C.; Runeson, P.; Host, M.; et al. Experimentation in software engineering: an

introduction. Boston, MA, USA: Kluwer Academic Publishers, 2000.

References 128

van Der Linden, F.; Schmid, K.; Rommes, E. Software Product Lines in Action: The Best

Industrial Practice in Product Line Engineering. Secaucus, NJ, USA: Springer-Verlag

New York, Inc., 2007.

129

Appendix A

ARCHITECTURE DOCUMENT TEMPLATE

As part of the Enhanced RiPLE-Design, detailed in Chapter 3, the architecture document

template from RiPLE was also modified with the purpose of facilitating the documentation of

the product line architectures with variable quality attributes. The next sections list all the

information that should be documented.

1 Introduction

<<Here it will be defined a brief introduction of the purpose of this document and its main

objective. Scope, definitions, acronyms and abbreviation belong here too. >>

2 References

<<Here, describe the referenced documents, if any>>

3 Technologies Description

<<Describe the technologies (api's, frameworks, libraries) that will be used in the domain

development, and will drive the component definition. For example, the use of EJB will drive

the components to have entity beans and session beans. The description should be written

according to the following format: >>

<<API1 name>>: <<Rationale for the selection>>

<<API2 name>>: <<Rationale for the selection>>

4 Architectural Drivers

<<Describe the functional and non-functional features that will be the most important ones

and will drive the architecture (architectural drivers). The effort for adding features that are

not part of architectural drivers should be evaluated in order to decide if they should really be

added or not. The complete list of non-functional requirements must be provided by the

quality scenarios document>>

Appendix A - Architecture Evaluatin Report Template 130

5 View Documentation

5.1 Structural View

5.1.1 View Description

<<Present a brief description of the current view. Define the types of elements, the relations

among them, the significant properties they exhibit, and the constraints they obey for views

conforming to this viewpoint >>

<<Also describe the stakeholders and their concerns that this view is intended to address. It

should also describe the level of detail this view will use in order to satisfy each specific

stakeholder>>

5.1.2 Module Presentation

<<Present the modules and the relationship among them>>

5.1.3 Architectural Styles and approaches

<<Describe the chosen architectural styles and approaches. A rationale for each architectural

style must be provided>>

5.1.4 Variability Guidelines

<<Document optional and alternative architectural styles and strategy following the

summarized table: >>

<<Strategy>>
Strategy Feature

Affects quality

attributes Stimulus Response

5.1.5 Modules Catalog

<<Describe each module in a specific subsection.>>

5.1.5.1 <<Module Name>>

Description: <<Briefly describe the element's>>

Related Features: <<Provide the features related with the element>>

Appendix A - Architecture Evaluatin Report Template 131

5.1.5.2 <<Module Name>> Component Presentation

<<Present the module diagram and description for each module previously elaborated. Use a

subsection for each component set >>

5.1.5.1.1 <<Component Name>>

<<Present the component diagram and describe each component in a subsection. Follow the

template below>>

Description <<Give a brief description of the component emphasizing its purpose and its

structure>>

Related Features <<Provide the features related with the component>>

Variability

guidelines

<<Describe the patterns and strategies used in the component to handle

variability. This section must be provided for each defined component>>

5.2 Behavioral View

<<This section provides a description of the behavior of the domain, using diagrams for

representing the iteration among domain classes its variable messages. Diagram should be

made for each feature that represents a complete use case>>

5.2.1 View Description

<<Present a brief description of the current view. Define the types of elements, the relations

among them, the significant properties they exhibit, and the constraints they obey for views

conforming to this viewpoint >>

<<Also describe the stakeholders and their concerns that this view is intended to address. It

should also describe the level of detail this view will use in order to satisfy each specific

stakeholder>>

5.2.2 <<Feature Name>> Behavioral Presentation

<<This section provides a sequence diagram with interaction of the classes responsible for the

execution of the feature>>

5.2.2.1 Variability Guidelines

<<This section has the purpose of identifying the variable messages of the feature sequence

diagram and relating it with the feature that drives it. It is used for enable the application

Appendix A - Architecture Evaluatin Report Template 132

architect to decide which message will be instantiated according to the selected features. This

section must be done for each sequence diagram defined>>

5.3 Deployment View

5.3.1 View Description

<<Present a brief description of the current view. Define the types of elements, the relations

among them, the significant properties they exhibit, and the constraints they obey for views

conforming to this viewpoint >>

<<Also describe the stakeholders and their concerns that this view is intended to address. It

should also describe the level of detail this view will use in order to satisfy each specific

stakeholder>>

5.3.2 Deployment Presentation

<<Present how the deployment diagrams and description about the deployment of the derived

applications>>

5.3.4 Variability Guidelines

<<Document decisions in deployment that are relative to variability achievement>>

133

Appendix B

ARCHITECTURE EVALUATIN REPORT TEMPLATE

As part of the Enhanced RiPLE-Design, detailed in Chapter 3, the architecture evaluation

report template was suggested with the purpose of facilitating the documentation of the

product line architectures evaluation. The next sections list all the information that should be

documented.

1 Architecture Description

<<A brief description about the architecture. Should include module diagrams.>>

2 Architectural Approaches

<<A description of the main architectural approaches used.>>

3 Scenarios

<<A description of the elicited quality attributes scenarios.>>

4 Risks

<<A description of the risks found during the evaluation.>>

5 Non-Risks

<<A description of the non-risks found during the evaluation.>>

6 Sensitivity Point

<<A description of the sensitivity points found during the evaluation.>>

7 Trade-off Point

<<A description of the trade-off points found during the evaluation.>>

8 Evolvability Point

<<A description of the evolvability points found during the evaluation. This section should be

ignored when reporting a product architecture evaluation.>>

9 Evolvability Constraints or Guidelines

<<A description of the evolvability constraints or guidelines found during the evaluation. This

section should be ignored when reporting a product architecture evaluation.>>

134

Appendix C

INSTRUMENTS OF THE EXPERIMENTAL STUDY

As part of the experiment instrumentation, detailed in Chapter 5, two questionnaires were

defined, and applied to the subjects. The next sections list all the questions of each

questionnaire. The first questionnaire (detailed in Table C-1 and C-2) was intended to collect

data about the subject’s background, and the second one (detailed in Table C-3) was created

with the purpose of collecting information about the use of the Enhanced RiPLE-Design.

Questionnaire for Subjects Background

Degree:

[] Graduation. [] Specialization. [] M.Sc. [] Ph.D.

How many years since graduation? [] years.

How many industrial software projects have you participated according to the

following categories?

[] Low complexity (less than 6 months).

[] Medium complexity (more than 6 months and less than a year).

[] High complexity (more than a year).

What were the roles that you played in the projects cited before, e.g., architect,

designer, developer, tester. . . ?

How many academic software projects have you participated according to the following

categories?

[] Low complexity (less than 6 months).

[] Medium complexity (more than 6 months and less than a year).

[] High complexity (more than a year).

What were the roles that you played in the projects cited before, e.g., architect,

designer, developer, tester. . . ?

Table C-1 Questionnaire for Subject's Background (Part 1)

Appendix C - Instruments of the Experimental Study 135

Questionnaire for Subjects Background

How many SPL projects have you participated?

[] None.

[] Academic.

[] Industrial.

How do you define your experience with software reuse?

Industrial:

[] None.

[] Low.

[] Medium.

[] High.

Academic:

[] None.

[] Low.

[] Medium.

[] High.

How do you define your experience with design?

Industrial:

[] None.

[] Low.

[] Medium.

[] High.

Academic:

[] None.

[] Low.

[] Medium.

[] High.

How do you define your experience with domain design?

Industrial:

[] None.

[] Low.

[] Medium.

[] High.

Academic:

[] None.

[] Low.

[] Medium.

[] High.

Please, inform which techniques/methods you know in the context of the reuse, design,

domain design and software product line.

Please, inform which disciplines/courses you have attended in the context of the reuse,

design, domain design and software product line.

Table C-2 Questionnaire for Subject's Background (Part 2)

Appendix C - Instruments of the Experimental Study 136

Questionnaire for Subjects Feedback

Did you have any difficulties to understand the inputs of the experiment? Which

one(s)?

Did you have any difficulties in applying the activity Identify Architectural Drivers in

practice? Which one(s)?

Did you have any difficulties during the Represent variable quality attributes in the

feature model task? Which one(s)?

Did you have any difficulties in applying the activity Define Architectural Details in

practice? Which one(s)?

Did you have any difficulties in applying the activity Represent Architecture in

practice? Which one(s)?

Did you have any difficulties during the Select architectural drivers task? Which

one(s)?

Did you have any difficulties during the Choose Architectural Styles task? Which

one(s)?

Did you have any difficulties during the Document decision guidelines task? Which

one(s)?

Did you have any difficulties in applying the activity Identify Design Decisions in

practice? Which one(s)?

Do you thing the RiPLE-Design training was efficacious? Please justify.

[] Very Good. [] Good. [] Regular. [] Unsatisfactory.

Do you thing the RiPLE-Design documentation was sufficient? Please justify.

Which improvements would you suggest for the RiPLE-Design?

Table C-3 Questionnaire for Subject's Feedback

	Sem titulo

