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RESUMO 

Reúso de software é uma forma viável de obter ganhos de produtividade e melhoria no time-

to-market tão desejados pelas empresas. O reúso não sistemático (Ad hoc) pode ser 

prejudicial, uma vez que a reutilização de artefatos de baixa qualidade pode diminuir a 

qualidade dos produtos finais. O reúso sistemático através da adoção de Linhas de Produto de 

Software (LPS) é uma boa alternativa para alcançar metas de qualidade e de redução de 

custos. Essa abordagem se tornou uma solução efetiva para gerar vantagem competitiva para 

as empresas. 

Arquiteturas de linhas de produto devem se beneficiar das comunalidades entre os produtos e 

possibilitar a variabilidade entre eles. Ao mesmo tempo, como uma arquitetura de software, 

precisa atender requisitos de atributos de qualidade. O desafio de atender atributos de 

qualidade em sistemas únicos (single systems) torna-se ainda mais complicada no contexto de 

linhas de produto porque a variabilidade pode ocorrer também nos atributos de qualidade. 

A variabilidade em atributos de qualidade é uma questão complexa. Entretanto, ela tem sido 

negligenciada ou ignorada pela maioria dos pesquisadores, uma vez que as atenções têm se 

mantido no alcance da variabilidade funcional. O foco deste trabalho é definir um processo 

para o design de arquiteturas de linhas de produto de software que possa lidar de forma eficaz 

com variabilidade em atributos de qualidade. O processo aprimora o RiPLE-Design com 

atividades e guias para o design com variabilidade de atributos de qualidade. Por fim, um 

estudo experimental é apresentado com o intuito de caracterizar e avaliar as melhorias 

propostas ao processo. 

Palavras-Chave: Reúso de software, linhas de produto de software, arquitetura de software, 

variabilidade em atributos de qualidade. 
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ABSTRACT 

Software reuse is a viable way to achieve the increase in productivity and short time to market 

desired by the companies. Ad hoc reuse may be harmful for companies, since the reuse of low 

quality assets can decrease the quality of their product. Systematic reuse through the adoption 

of Software Product Lines (SPL) is a good alternative to achieve the quality and time to 

market goals. Thus, it has become an effective solution for leading competitive advantage. 

Product line architecture must benefit from commonalities among products in the family and 

enable the variability among them. At the same time, as any other software architecture, it 

must address quality attribute requirements. The challenge of achieving quality attributes in 

single-systems becomes even more complicated in a product line context because variability 

can occur also in quality attribute requirements.  

The aspect of variability in quality attributes is a complex issue. Nevertheless, it has been 

neglected or ignored by most of the researchers as attention has been mainly put in functional 

variability. The focus of this dissertation is to provide architecture and design process for 

software product lines that can properly deal with quality attribute variability. The proposed 

approach enhances the RiPLE-Design process for software product line engineering with 

activities and guidelines for quality attribute variability. Finally, an initial experimental study 

is presented to characterize and evaluate the proposed process enhancements. 

Keywords: Software Product Lines (SPL), Software Architecture, Software Reuse, Quality 

attribute variability 
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1  
INTRODUCTION 

Software reuse is a viable way to achieve the increase in productivity and short time to market 

desired by companies (Bosch, 2001). Nevertheless, ad hoc reuse may be harmful for 

companies, since the reuse of low quality assets can decrease the quality of their product. On 

the other hand, systematic reuse through the adoption of Software Product Lines (SPL) can 

enhance quality and shorten time to market as shown in (Atkinson et al., 2002; Mili et al., 

2001; Pohl et al., 2005). Thus, it has become an effective solution for leading competitive 

advantage. 

Software architecture is a key discipline in SPL development (Clements; Northrop, 2001). 

Product line architecture must benefit from commonalities among products in the family and 

enable the variability among them. At the same time, as any other software architecture, it 

must address quality attribute requirements, externally visible properties not related to the 

functional capabilities of the system. The challenge of achieving quality attributes in single-

systems becomes even more complicated in a product line context because there is variability 

on quality attribute requirements and different quality constraints are required. The focus of 

this dissertation is to provide a design process for software product line architectures that can 

properly deal with quality attribute variability. 

This chapter contextualizes the focus and describes the structure of this dissertation. Section 

1.1 starts presenting its motivations, and a clear definition of the problem scope is depicted in 

Section 1.2. An overview of the proposed solution is presented in Section 1.3. Some related 

aspects that are not directly addressed by this work are shown in Section 1.4. In the Section 

1.5, the main contributions of this work are discussed, and finally, Section 1.6 describes how 

this dissertation is organized. 
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1.1 MOTIVATION 

According to (Kolb et al., 2004), “research in the field of software product lines has primarily 

focused on analysis, design, and implementation to date and only very few results address the 

quality assurance problems and challenges that arise in a reuse context”. Those challenges 

relate also to the achievement of quality attributes requirements in a SPL context, where the 

quality attributes might be required by every product in the product line or only by specific 

products. Thus, variability can also occur in quality attributes. 

It is worth to remark that quality attributes affect each other, often they impact negatively 

(Barbacci et al., 1995). These trade-off situations are typically resolved by finding a halfway 

between conflicting quality attributes. Trade-off analysis of quality attributes in SPL is also 

more difficult than in single-systems due to this variability and the exponential number of 

possibilities, as mentioned in (Etxeberria et al., 2008). 

In particular, the aspect of variability in quality attributes is also a complex issue that has been 

“neglected or ignored by most of the researchers as attention has been mainly put in the 

variability to ensure that it is possible to get all the functionality of the products”, as discussed 

in (Etxeberria et al., 2008). 

Based on the definitions of (Niemelä; Immonen, 2007), quality attribute variability can 

happen in three different situations: (i) variation among different quality attributes; (ii) 

different levels in quality attributes; and (iii) functional variability may indirect cause 

variation in qualities, and vice versa. 

Therefore, to proper develop a product line, quality attribute and their variability must be 

gathered and managed throughout the development life cycle. 

1.2 RESEARCH OBJECTIVE 

Encouraged by the motivations depicted in the previous section, namely the complexity 

related to the task of managing quality attributes variability in software product lines, the 

benefits of managing this variability, and particularly, the lack of research regarding quality 

attribute variability, as discussed in (Etxeberria et al., 2008), the goal of this dissertation can 

be stated as follows: 
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“This work investigates the issues related to the handling of quality attribute variability in 

software product line architectures. After augmenting the deficiencies of an existing product 

line architecture process, it provides enhancements by modifying existing activities and tasks, 

as well as proposing new ones. Moreover, the proposed enhancements are based on a set of 

software product line, component-based development, and design principles”. 

1.3 OVERVIEW OF THE PROPOSED SOLUTION 

1.3.1 Context 

This work is developed in the context of the Reuse in Software Engineering (RiSE)
1
 Labs, 

whose goal is to develop a robust framework for software reuse with the purpose of 

facilitating the adoption of a reuse program (Almeida et al., 2004). The RiSE Labs framework 

is influenced by several forces as depicted in Figure 1.1. 

 

Figure 1.1 RiSE Labs influencing areas 

Several sub-projects emerged under the influences of the RiSE Labs framework. The 

framework embraces several different areas related to software productivity and mainly 

software reuse. Those areas are the further studies in projects: 

 RiSE Framework project is focused on processes for software reuse (Almeida 

et al., 2004; Nascimento, 2008), component certification (Alvaro et al., 2006), 

                                                 

 
1
 http://www.rise.com.br/research 
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and reuse adoption processes (Garcia et al., 2008); 

 RiSE Tools projects are focused on the development of software reuse tools, 

such as the Legacy Information Retrieval Tool (LIFT) (Brito, 2007), the 

Admire Environment (Mascena, 2006), and the Basic Asset Retrieval Tool 

(B.A.R.T) (Santos et al., 2006), which was enhanced, for example, with facets 

(Mendes, 2008) and data mining (Martins et al., 2008); 

 RiPLE project develops methodology for software product line engineering, 

which is divided in several disciplines, such as evolution (Oliveira, 2009), tests 

(Machado, 2010; Silveira Neto, 2010) , requirements (Neiva, 2009), and design 

(Souza Filho et al., 2009). This dissertation is part of this project, and it is 

concerned with the enhancement of the design process for software product 

line architectures; 

 SOPLE project develops methodology for service-oriented product lines, 

which is also divided into disciplines, such as architecture and design 

(Medeiros, 2010); 

 MATRIX project investigates the area of measurement in reuse and its impact 

on quality and productivity; 

 BTT research is focused on methods and tools for detection of duplicate bug 

reports, as in (Cavalcanti, 2009); and 

 Exploratory Research investigates new research directions in software 

engineering and its impact on reuse. 

1.3.2 Outline of the Proposal 

Developed under the RiSE Labs, the RiPLE-Design process (Souza Filho, 2010) attempts to 

develop a Domain specific Software Architectures (DSSA) based on quality attribute 

requirements prioritization. The process lacks guidelines to deal with quality attributes 

variability.  
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The proposed solution enhances the existing RiPLE-Design process by modifying existing 

steps and introducing new ones in order to make the process able do deal properly with 

quality attribute variability. 

The improvements act in the three pillars that, as proposed by (Myllärniemi; Männistö; et al., 

2006), are essential to achieve quality attribute variability: (i) specification and modeling 

varying quality attributes; (ii) design strategies for varying quality attributes; and (iii) 

evaluation techniques in order to achieve the needed variation. 

The proposed improvements maintain the essence of the original RiPLE process, which is its 

quality driven aspect. The original roles participating in the process are maintained, as well as 

the inputs and outputs, although the latter have been slightly modified. The detailed 

description of the RiPLE-Design approach is presented in Chapter 4. 

1.4 OUT OF SCOPE 

Some aspects that are related to this research will be left out of its scope due to the time 

constraints imposed on a master degree. This work aims to enhance an existing design method 

in relation to its capacity to deal with quality attribute variability. Thus, the following issues 

are not directly addressed by this work: 

 Other development disciplines: following the definition of the RiPLE-Design process, 

other development disciplines will not be described in this work. Nonetheless, other 

disciplines, e.g., evolution (Oliveira, 2009), requirements (Neiva, 2009) and testing 

(Machado, 2010; Silveira Neto, 2010), were already envisioned in other works by the 

RiSE Labs; 

 Architecture reconstruction: architecture reconstruction is the way the "as-built" 

architecture of an implemented system is obtained from an existing system (Bass et 

al., 2003). These techniques will not be covered in this work; 

 Feature Interaction Problems: The case of functional variability affecting quality 

attributes is related to the occurrence of feature interaction in software product lines, 

as pointed out in (Lee; Kang, 2004). The problem of feature interaction can impact the 

whole SPL development process, as it promotes changes in reusable assets and 

impacts maintenance costs and other products. The case in which functional 
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requirements affects quality attributes, and promotes quality attributes variability, will 

then be left out of the scope of this work. Other cases of feature interaction will be 

covered by the proposed approach, namely, the case of quality attribute affecting each 

other; and the case of domain quality attributes required by certain functional 

requirements; 

 Product Development: An important issue in a SPL process is to create individual 

products by reusing the core asset, i.e. products development with reuse. However, this 

aspect can be as complex as core assets development, involving the definition of 

activities, sub-activities, inputs, outputs, and roles. This work focus on the core asset 

development phase of a product line development effort. 

 Dynamic Product Lines: a recent trend in SPL research that aims to develop strategies 

to deal with product configuration at runtime, as proposed by (Kim et al., 2007). This 

work will focus on traditional software product line approaches and in the handling of 

quality attribute variability during the architecture development. Although a traditional 

product line architecture development approach may lead to a solution in which 

quality attribute variability is addressed dynamically, this is not the focus of this work. 

1.5 STATEMENT OF THE CONTRIBUTIONS 

As a result of this dissertation, the following contributions can be highlighted: 

 The identification of limitations of a traditional process for designing product line 

architectures from quality attributes; 

 Enhancements to the existing RiPLE-Design process for product line architecture, in 

order to make it able to properly deal with quality attribute variability; 

 The definition, planning, analysis of an experimental study in order to evaluate the 

proposed process. 
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1.6 ORGANIZATION OF THE DISSERTATION 

The remainder of this dissertation is structured as follows: 

 Chapter 2 presents an overview on software product line engineering, its principles, 

foundations, architecture and adoption models. It also presents an overview on 

software architecture, architecture quality attributes and their relation with product line 

architectures; 

 Chapter 3 presents the RiPLE-Design and augments its deficiencies concerning the 

treatment of quality attribute variability; 

 Chapter 4 describes enhancements to the existing RiPLE-Design process in order to 

properly handle quality attribute variability; 

 Chapter 5 describes the definition, planning, operation, analysis and interpretation of 

an experimental study for the proposed approach performed with the intention of 

characterizing and refining it; 

 Chapter 6 presents some concluding remarks about this work, its related work, and 

directions for future work. 

 Appendix A presents an Architecture Document Template to aid the adoption of the 

Extended RiPLE-Design approach. 

 Appendix B presents an Architecture Evaluation Report Template to aid the adoption 

of the Extended RiPLE-Design approach. 

 Appendix C describes the instruments used during the performed experimental study. 
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2  
SOFTWARE PRODUCT LINES: AN OVERVIEW 

Since 1968, when Douglas McIlroy published his Mass Produced Software Components 

paper (McIlroy, 1968), and coined the term, software reuse started to be seen as a mean to 

triumph over the software crisis, where software producers must deal with growing demand 

for more complex and reliable software systems. 

For (Krueger, 1992), “Software reuse is the process of creating software systems from 

existing software rather than building them from scratch”. The use of existing software leads 

to reduction of development effort and enables a producer to deliver software in less time, 

since the reused software piece will not be developed again. In addition, when reused 

components are mature and bear high quality, the resulting product is also expected to display 

high quality. 

Nevertheless, those benefits cannot be achieved easily. (Sametinger, 1997) shows that 

managerial commitment and appropriate organizational structure are among the main key 

factors on adopting software reuse as a way to reach less effort on producing software. 

(Sametinger, 1997) also points out the lack of explicit procedures as a great obstacle. Along 

these lines, we can infer that reuse can become profitable if the company adopts it in a 

systematic, planed way. A known systematic approach to achieve systematic reuse is 

Software Product Lines. 

The Software Engineering Institute (SEI) defines Software Product Lines (SPL) as a set of 

software-intensive systems that share a common, managed set of features satisfying the 

specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way (Clements; Northrop, 2001). 

The remainder of this chapter will discuss the main activities of the SPL approach and the 

benefits of its adoption, in Section 2.1; as well as the software architecture activity and the 
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importance of quality attributes, in Section 2.2. In Section 2.3, the specificities regarding 

quality attribute in the context of software product line architectures will be discussed. 

Section 2.4 presents the chapter summary. 

2.1 SOFTWARE PRODUCT LINES 

In (Dijkstra, 1972) and (Parnas, 1976) the notion of Software Families was introduced. Parnas 

points out that it is worth considering the development of a set of software that share common 

characteristics as a collective design. He mentions the importance of planning before 

developing a program family. He also gives importance to the order in which the design 

decisions are made, and suggests that an approach for software families should choose the 

degree of importance of each aspect and characteristic so that the resulting program addresses 

its purposes properly. 

The need for SPLs recalls, in some sense, the product lines from the manufacturing world. 

The common platform sharing high levels of commonality, yet enabling differences among 

products are the key similar point. 

(Pohl et al., 2005) define software product lines engineering as “a paradigm to develop 

software applications (software-intensive systems and software products) using platforms and 

mass customization”. The use of platforms are related to the development of a software 

system that share high levels of commonality, which lead to lower development costs in the 

long run. According to (Pohl et al., 2005), “developing applications using platforms means to 

plan proactively for reuse, to build reusable parts, and to reuse what has been built for reuse”. 

Mass customization consists of producing products that are tailored to individual user needs. 

In the context of software-intensive systems it means “employing the concept of managed 

variability, i.e. the commonalities and the differences in the applications (in terms of 

requirements, architecture, components, and test artifacts) of the product line have to be 

modeled in a common way.” (Pohl et al., 2005). 

There are three essential activities in SPL development, as shown in  

Figure 2.1: core asset development, product development, and management. 
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Figure 2.1 The key activities or software product line development (Clements; Northrop, 2001). 

The goal of the core asset development activity, also called domain engineering, is to 

establish the creation of common assets and the evolution of the assets in response to product 

feedback and new market needs, that is, the product line scope and the production plan. Based 

on these three artifacts, the product development activity, also known as application 

engineering, focusing on creating of individual products by reusing common assets, providing 

feedback to core asset development and products evolution. 

The management activity includes technical and organizational management. Technical 

management supervises the core asset development and product development activities, 

ensures that the other activities are following the processes defined for the product line. It also 

decides on the production method and provides the project management elements of the 

production plan (Clements; Northrop, 2001). Organizational management coordinates the 

technical activities in and iterations between the critical activities of core asset development 

and product development. 

2.1.1 Benefits 

Systematic reuse through the adoption of Software Product Lines (SPL) can enhance quality 

and shorten time to market as shown in (Atkinson et al., 2002; Mili et al., 2001; Pohl et al., 

2005). It can be seen as an effective solution for leading competitive advantage. 
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Some benefits from the adoption of SPL are discussed in (Pohl et al., 2005): 

 Quality Improvement. Reusable assets have their quality attested in many 

opportunities, in different contexts, leading to a higher product quality. 

 Reduction of Development Costs. Figure 2.2 compares the costs of producing 

several single systems to the costs of producing them using a SPL approach. 

Higher upfront investments are normally needed to produce core assets, as the 

reusable assets are more complex than specific ones. On the long run, the costs 

of producing new products in mature SPL should be very low. (Clements; 

Northrop, 2001) shows that the break-even point, when the costs are the same 

for developing the systems separately as for developing them by product line 

engineering, is achieved around three systems. Aspects like customer base, the 

expertise, the range and kinds of products and the SPL adoption strategy 

influence the exact location of the break-even point. 

 Reduction of Time to market. Although initially higher, the time to market is 

significantly shortened as numerous artifacts can be reused in new products. 

 Reduction of Maintenance Effort. Changes in reusable assets are propagated 

to all products in the line that use these assets. Such propagation may be 

exploited to reduce maintenance effort, even though testing each product can 

still be unavoidable. 

 Benefits for the Customers. Customers get higher quality products for lower 

prices. In addition, as the range of products broadens, they get products 

adapted to their needs and wishes. Similar user interfaces can also help the 

customer to switch from one product to another in the same SPL. 
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Figure 2.2 Costs for developing n kinds of systems as single systems compared to product line (Pohl et al., 

2005) 

2.1.2 Software Product Lines Adoption Models 

The introduction of a software product line engineering approach is usually motivated by 

economic considerations. The economic pressure originates from the drive to get the new 

products to the market faster to stay competitive or produce them more efficiently (Pohl et al., 

2005). Software product line adoption can help to solve both issues: to decrease development 

costs and reduce time-to market of products (van Der Linden et al., 2007). 

An organization can adopt product line engineering using some adoption models. These 

models are not mutually exclusive, and should be chosen depending on its objectives, budget, 

time and requirements as described next (Krueger, 2002): 

The proactive model corresponds to a heavyweight adoption approach. In order to support the 

full scope of products needed on the foreseeable horizon, the organization analyzes, designs 

and implements a complete software product line. It fits organizations that can predict their 

product line requirements well into the future, and have the time and resources for a long 

development cycle; 
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With the reactive approach, the organization incrementally grows their software product line 

when the demand arises for new products or new requirements on existing products. It is 

appropriate when the requirements for new products in the production line are somewhat 

unpredictable. This incremental approach offers a less expensive and quicker transition into 

software product lines, since only a minimum number of products must be incorporated in 

advance. 

The extractive adoption model reuses existing products as the initial baseline for the product 

line. It is most appropriate when the collection of systems has a significant amount of 

commonality and also consistent differences among them. 

The adoption of software product line engineering requires upfront investment, brings 

implications for the development process, and may also require modifications on the 

organizational structure (van Der Linden et al., 2007). Enabling technology to implement its 

concepts, well-defined processes, people who know their market customers in order to 

identify the commonality and variability among products, and a stable domain that does not 

change frequently to pay off the upfront investments are all essential prerequisites for the 

adoption (Pohl et al., 2005). It is indispensable that each organization analyze its own budget 

and objectives before selecting a proper adoption model. 

2.2 SOFTWARE ARCHITECTURE 

Parnas, in (Parnas; Siewiorek, 1975), steps aside from software correctness and formal proof 

of programs and discusses whether a program that outputs correct is useful if we cannot rely 

on it when we demand. He presents the notion of software reliability as “a measure of the 

extent to which the system can be expected to deliver usable services when those services are 

demanded”. Along with Dijsktra, Parnas introduces the concern about the structure of a 

software system, the interfaces between modules as well as the communication among them. 

Those concerns were further defined as software architecture. 

The Carnegie Mellon’s Software Engineering Institute defines software architecture as (Bass 

et al., 2003): 

The software architecture of a program or computing system is the 

structure or structures of the system, which comprise software 
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elements, the externally visible properties of those elements, and the 

relationships among them. 

Some interesting points come with the definition shown above. First, that an architecture 

defines elements, called structures. Second, the definition clarifies that systems can and do 

comprise more than one structure. Third, it implies that every software system has an 

architecture. Fourth, the behavior of each element is part of the architecture. Finally, the 

definition is indifferent as to whether the architecture for a system is a good one or a bad one. 

(Bass et al., 2003). 

Software architecture is a result of technical, business and social influences. This cycle of 

influences is defined as the Architecture Business Cycle (ABC) in (Bass et al., 2003), and 

further revisited in (Bass et al., 2005). The revisited form is represented in Figure 2.3. 

 
Figure 2.3 Architecture Business Cycle (Bass et al., 2005) 

End users, developers, project manager, maintainers and even sellers influence the 

architecture. The stakeholders have concerns that they wish the end system to guarantee. 

While end users wish for more usability, maintainers want the system to be easier modifiable, 

customers want and low costs. All those concerns and goals sometimes are contradictory, and 

it is the architect’s role to mediate the conflicts and resolve trade-offs. 

Architecture is also influenced by the nature and structure of the development organization. 

For example, depending on the set of skills the team of employed developers has, a specific 

architectural approach may be chosen. Both long-term and immediate business decisions may 
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also influence, such as the purchase of some development toolkit, market trend, commercial 

agreement or strategic decision. 

Experience is a great factor of influence in the resulting architecture. Successful previous 

approaches are likely to be tried again on new development efforts. Education and training of 

an architect such as his exposure to successful architectural patterns or, conversely, to systems 

that worked poorly are also good sources of possibilities. Standard industry practices, 

prevalent engineering techniques in the architect’s professional community forming a 

technical environment are also reflected in the resulting system architecture. 

The ABC depicts seven forces that influence the architectural constructions, and those forces 

are grouped in three overlapping sets, namely Quality Attribute Requirements, Business 

Requirements and Functional Requirements. Those three sets, along with the architect’s 

experience, serve as inputs to architectural construction and further system development. 

The ABC also represents that the architecture affects the factors that influence them, as 

described in (Bass et al., 2003). Firstly, a prescribed system structure, dictates the units of 

software that must be implemented and, furtherer, serve as basis for development’s project 

structure and team formation. Secondly, successful systems can enable some company to 

establish itself in a specific market niche as the architecture can provide opportunities for 

further production and deployment of similar products. Third, the knowledge gained during 

the development of a system adds to the corporate knowledge base. Fourth, some system may 

actually change the software engineering culture and establish new best practices and 

standards. Application frameworks like Ruby on Rails and the so-called “NoSQL” database 

Cassandra (Apache Foundation, 2010) are such examples. 

From a technical perspective, there are three reasons for software architecture’s importance, 

as explained in (Bass et al., 2003): 

(i) It represents a common abstraction of a system and serves as a common 

language in which different concerns can be expressed, discussed and resolved 

among different stakeholders, even for complex systems. 

(ii) It represent a system’s earliest design decisions, which are the hardest to 

change later in the development process, it also defines constraints on 

implementation and organizational structure. The design decisions also inhibits 
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or enable the achievements of quality attributes, as it will be explained 

furtherer. 

(iii) The architectural representation of a system is a relative small, understandable 

model for how a system is structured and how its elements work together. This 

model is transferable across systems and can be applied to other systems 

having similar quality attributes and functional requirements. 

2.2.1 Quality Attributes 

The externally visible properties described in the software architecture definition are attributes 

not related to functional capabilities of the system. Those properties are the quality attributes 

which a software system has, for example, the ability to start-up in less than 10 seconds; or 

the possibility to modify some module and ship a new product within a week. Modifiability, 

performance, security and usability are examples of system quality attributes and will be 

described further. 

Functionality is the ability of a system do the work for which is was intended. It may not be 

possible to have functionality and quality attributes as orthogonal concerns sometimes, for 

example, manipulating complex multimedia content will probably make very low response 

time impossible. On the other hand, functionality may be achieved through the use of any of a 

number of possible structures; it is the purpose of software architecture discipline to constrain 

the allocation of functionality to such a structure where other so-called non-functional 

requirements can also be achieved. 

The main objective of the software architecture discipline is to evolve the organization of 

modules of a software system in a way that the functionalities can perform gracefully, that is 

accomplishing the desired quality attribute requirements. As well put in (Bass et al., 2003), 

“systems are frequently redesigned not because they are functionally deficient – the 

replacements are often functionally identical – but because they are difficult to maintain, port, 

or scale, or are too slow, or have been compromised by network hackers.” 

The achievement of system quality attributes is to be considered throughout design, 

implementation and deployment, because no quality attribute is entirely dependent on design, 

nor entirely dependent on implementation or deployment, as discussed in (Bass et al., 2003). 
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Usability, for example, include implementation aspects of developing clear and easy to use 

interfaces, but also include architectural aspects such as providing capabilities to cancel and 

undo operations or to re-use data previously entered. In a similar way, the performance 

quality attribute is affected by communication among components, and the functionality 

allocated to each of the components, and these are architectural concerns; the choice of 

algorithms for selected functionality is a matter of implementation. 

It is also important to remark that within complex systems, quality attributes can never be 

achieved in isolation, and that those systems often fail to meet quality attribute requirements 

“when designers narrowly focus on meeting some requirements without considering the 

impact on other requirements or by taking them into account too late in the development 

process”, as discussed in (Barbacci et al., 1995). Security and reliability can illustrate the 

trade-off that an architect must face and solve when designing a complex system: secure 

systems have must have the fewest points of failure, while reliable systems need redundant 

processes where the failure of any one will not cause the system to fail. The issue of tension 

among quality attributes is not new, as illustrated by Boehm: 

Finally, we concluded that calculating and understanding the value of 

a single overall metric for software quality may be more trouble than 

it is worth. The major problem is that many of the individual 

characteristics of quality are in conflict; added efficiency is often 

purchased at the price of portability, accuracy, understandability, and 

maintainability; added accuracy often conflicts with portability via 

dependence on word size; conciseness and conflict with legibility. 

Users generally find it difficult to quantify their preferences in such 

conflict situations. (Boehm, 1978) 

There are a variety of published taxonomies and definitions for quality attributes. Many of 

them have their own research and practitioner communities. Three problems related to system 

quality attributes are pointed out by (Bass et al., 2003): 

 Definitions of an attribute are often not operational. For example, it is 

meaningless to say that a system will be modifiable without specifying to 

which set of changes it should be modifiable. 

 Attribute definition and its implications are often overlapping. For example, a 

system failure can be an aspect of availability, of security or even of usability. 
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 The vocabulary around each attribute varies greatly. An occurrence can be 

described as an “event”, an “attack”, a “failure”, or simple “user input” in the 

context of performance, security, availability or usability, respectively. 

Quality attributes scenarios are used to represent and analyze quality attributes. They express 

in a concise way some important aspects of the quality attributes requirement and its 

concretization and perception in the system under development. Allied with a brief discussion 

of each attribute and its meaning to the involved stakeholders, quality scenarios solve the 

abovementioned problems by characterizing quality attributes in six parts. 

 Source of stimulus. The stimulus generator, such as a user or another computer 

system. 

 Stimulus. The condition to be considered when it arrives at a system, e.g., an 

unanticipated message in an availability scenario. 

 Environment. The conditions within the stimulus occur. 

 Artifact. The stimulated artifact, such as the system, or some part of it. 

 Response. The undertaken activity in response to the arrival of the stimulus. 

  Response measure. The measure of the response, so that the quality attribute 

requirement can be tested. 

Generic quality attribute scenarios will be used next to describe some quality attributes, 

namely: dependability, modifiability, performance, security, testability and usability. When 

scenarios are used during system design activities, concrete scenarios should be generated, 

replacing the generic possibilities that will be shown next with real system expectations, 

measures and stimuli. 

Besides system quality attributes, there are also other classes of non-functional qualities that 

influence software architecture, namely, business qualities and architectural qualities (Bass et 

al., 2003). Business qualities normally center on cost, schedule, market, and marketing 

considerations. Examples of such qualities are time to market, cost and benefit, projected 

lifetime of the system, targeted market, rollout schedule and integration with legacy system. 

Architectural qualities refer to the architecture itself in a broader way than system quality 

attributes and are very important, although difficult to measure. Conceptual integrity is the 
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underlying theme or vision that unifies the design of the system at all levels, from the 

appearance to the user, to the architectural layout. Buildability is another architectural quality 

that the allows the system to be completed in a timely manner by the available team and to be 

open to certain changes as development progresses. 

(International Organization for Standardization/International Electrotechnical Commission, 

2001) classifies software quality in a structured set of characteristics and sub-characteristic. 

Those definitions are similar to quality attributes. This work does not intend to encompass all 

characteristics and sub-characteristics from the ISO/IEC 9126 standard. Nonetheless, as it will 

focus on the system quality attribute definition from (Bass et al., 2003), the software quality 

definition from the aforementioned standard seem to be covered. 

The focus of this work is on system quality attributes, although scenarios and evaluation 

techniques can also be used to assess business and other architectural qualities. 

2.2.1.1 Dependability 

Laprie, in (Laprie, 1992), defines Dependability as “that property of a computer system such 

that reliance can justifiably be placed on the service it delivers”. It is concerned with system 

failure and its associated consequences. Availability and reliability are two of the most 

important sub-attributes of dependability. Other sub-attributes are safety, confidentiality and 

integrity, that will be discussed under the security quality attribute; and maintainability, that 

will be discussed next, in the modifiability subsection. 

According to (Barbacci et al., 1995), “the availability of a system is a measure of its readiness 

for usage.” It is measured as the limit of the probability that a system will be operational when 

it is needed. It is typically defined as: 

  
mean time to failure

mean time to failure  mean time to repair
 

For (Barbacci et al., 1995), the reliability of a system is a measure of the ability of a system to 

keep operating over time. It is measured as the system’s mean time to failure that is the 

expected life of the system. Availability measures the readiness of a system only when it is 

needed, while reliability measures its readiness along the time, regardless the need for the 

system. 
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The main impairments of dependability are faults and failures. These two must be 

differentiated: failures are observable by the system’s user and faults are not. Therefore, a 

fault may become a failure if not corrected or masked. A fault can occur by one of the 

following reasons: omission, when a component fails to respond to an input; crash, when the 

component repeatedly suffers omission faults; timing, when a component responds, but it is 

too early or too late; response, when the response is an incorrect value. 

The characterization of dependability involves how the system detects some failure, how 

frequent a failure may occur, the response to that occurrence and how long a system is 

allowed to be out of operation. Prevention of failures, the safety of its occurrence and what 

notifications are required when a failure occurs are also described in availability and 

reliability scenarios. Table 2-1 summarizes the portions of a Dependability scenario. 

Portion of Scenario Possible Values 

Source Internal to the system; external to the system 

Stimulus Fault: omission, crash, timing, response 

Artifact System's processors, communication channels, persistent storage, 

processes 

Environment Normal mode; reduced capacity (i.e., fewer features, a fall back 

solution) 

Response System should detect event and do one or more of the following: 

record it; notify appropriate parties, including the user and other 

systems; disable sources of events that cause fault or failure 

according to defined rules; be unavailable for a prespecified interval, 

where interval depends on criticality of system; continue to operate in 

normal or degraded mode 

Response Measure Time interval when the system must be available 

Availability time 

Time interval in which system can be in degraded mode 

Repair time 

Table 2-1 Dependability General Scenario, from (Bass et al., 2003) 

2.2.1.2 Modifiability 

Modifiability relates to “the cost of change and refers to the ease with which a software 

system can accommodate changes” (Northrop, 2004). It brings up four concerns: (i) Who 

makes the change? (ii) When is the change made? (iii) What can change? and (iv) How is the 

cost of change measured? 
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From a scenario perspective, “who makes the change” is the source of the stimulus. Normally, 

scenarios will refer to changes made in source code, so developers will be the source. 

Architects and system administrators can also be the source as they can also make changes 

that will change aspects of the system. Following these thoughts, even an end user can be the 

agent of change. 

Regarding the time when a change is made, it can be during design, by detailing architectural 

design; can refer to the implementation, by modifying the source code; can be during compile, 

using compile-time switches; during build, by choice of libraries; during configuration setup, 

by including parameter setting, for example; or during execution, by parameter setting. 

A change can occur in any part of the system, such as the functions is operates, the platform 

the system exists on, the environment within the system operates, the qualities the system 

exhibits and its capacity. (International Organization for Standardization/International 

Electrotechnical Commission, 2001) defines two categories for change: maintainability and 

portability. Maintainability is the capability of the software product to be modified and 

portability is the capability of the software product to be transferred from one environment to 

another. Concerning these subdivisions, they are both considered here as forms of 

modifiability. 

Modifiability can be measured by Cost in terms of number of elements affected, effort, money 

and the extent to which this affects other functions or quality attributes. Table 2-2 summarizes 

the Modifiability scenario. 

Portion of Scenario Possible Values 

Source End user, developer, system administrator 

Stimulus Wishes to add/delete/modify/vary functionality, quality attribute, 

capacity 

Artifact System user interface, platform, environment; system that 

interoperates with target system 

Environment At runtime, compile time, build time, design time 

Response Locates places in architecture to be modified; makes modification 

without affecting other functionality; test or deploy modification 

Response Measure Cost in terms of number of elements affected, effort, money; extent to 

which this affects other functions or quality attributes 

Table 2-2 Modifiability General Scenario, from (Bass et al., 2003) 
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2.2.1.3 Performance 

According to (Barbacci et al., 1995), “performance is that attribute of a computer system that 

characterizes the timeliness of the service delivered by the system.” It refers to either the time 

required to respond to specific events or the number of events processed in a given interval of 

time. This means not only to be fast, but to meet timing constraints. In real time systems, it 

means to be predictable and meet overall average-case or worst-case predictions. 

The characterization of performance scenario starts by the definition of the event sources and 

arrival patterns and describes how the system must allocate resources in order to respond to 

the request timely. An arrival pattern for events may be either periodic or stochastic. A 

periodic event may arrive, for example, every 50 milliseconds. This kind of arrival pattern is 

most often seen in real-time systems. Stochastic arrival means that events arrive according to 

some probabilistic distribution. Events can also arrive sporadically, that is, according to a 

pattern not classified as either periodic or stochastic. 

There are four main concerns involving the performance quality attribute: latency, i.e., the 

time between the arrival of the stimulus and the systems response, and its variation, named 

jitter; throughput, the number of transactions the system can process in a given interval of 

time; capacity, or, how much demand can be placed on the system while continuing to meet 

latency and throughput requirements; and modes, i.e., characterizing how the system should 

behave if its capacity exceeds, the number of events not processed, and data lost because the 

system was too busy, whether it should function in reduced capacity or in overload mode, 

sacrificing timing requirements. These concerns are characterized by the response of the 

systems for a given stimulus. Table 2-3 summarizes a performance general scenario. 

Portion of Scenario Possible Values 

Source One of many independent sources, possibly from within system 

Stimulus Periodic events arrive; sporadic events arrive; stochastic events arrive 

Artifact System or specific subsystem 

Environment Normal mode; overload mode; reduced capacity 

Response Processes stimuli; changes level of service 

Response Measure Latency, deadline, throughput, jitter, miss rate, data loss 

Table 2-3 Performance General Scenario, from (Bass et al., 2003) 
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2.2.1.4 Security 

The USA’s National Research Council, in (System Security Study Committee et al., 1991) 

defines security as: 

[…] 

2. Computer security is protection of data in a system against 

disclosure, modification, or destruction. Protection of computer 

systems themselves. Safeguards can be both technical and 

administrative. 

3. The property that a particular security policy is enforced, with some 

degree of assurance 

[…] 

From an architectural point of view, a system that enables security must provide several 

capabilities: nonrepudiation, confidentiality, integrity, assurance, availability, and auditing. A 

definition for each of these terms is provided next, according to (Bass et al., 2003). 

1. Nonrepudiation is the property that a transaction cannot be denied by any of the 

parties to it. It functions as one had a signature or stamp in a receipt, and cannot 

deny he did the buy. 

2. Confidentiality is the property that data or services are protected from 

unauthorized access. An example of its violation is a hacker that accesses some 

confidential data by sniffing the network. 

3. Integrity is the property that data or services are being delivered as intended. 

Database transactions normally guarantee that data is recorded without 

modification, allowing integrity of the data. 

4. Assurance is the property that the parties to a transaction are who they purport to 

be. In real world transactions, identification cards guarantee this property. 

5. Availability is the property that the system will be available for legitimate use. 

Under a security point of view, an availability quality attribute requirement can be 

violated through denial-of-service attacks, for example. 

6. Auditing is the property that the system tracks activities within it at levels 

sufficient to reconstruct them. 
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Each of these security capabilities can be characterized by scenarios, as summarized in Table 

2-4. 

Portion of Scenario Possible Values 

Source Individual or system that is: correctly identified, identified 

incorrectly, of unknown identity 

who is: internal/external, authorized/not authorized 

with access to: limited resources, vast resources 

Stimulus Tries to: display data, change/delete data, access system services, 

reduce availability to system services 

Artifact System services; data within system 

Environment Either: online or offline, connected or disconnected, firewalled or 

open 

Response Authenticates user; hides identity of the user; blocks access to data 

and/or services; allows access to data and/or services; grants or 

withdraws permission to access data and/or services; records 

access/modifications or attempts to access/modify data/services by 

identity; stores data in an unreadable format; recognizes an 

unexplainable high demand for services, and informs a user or 

another system, and restricts availability of services 

Response Measure Time/effort/resources required to circumvent security measures with 

probability of success; probability of detecting attack; probability of 

identifying individual responsible for attack or access/modification of 

data and/or services; percentage of services still available under 

denial-of-services attack; restore data/services; extent to which 

data/services damaged and/or legitimate access denied  

Table 2-4 Security General Scenario, from (Bass et al., 2003) 

2.2.1.5 Testability 

As stated by (Voas; Miller, 1995), “Testability suggests the testing intensity, and provides the 

degree of difficulty which will be incurred during testing of a particular location to detect a 

fault”. As a large part of the cost of developing system is taken up by testing, the payoff can 

be large if the software architect can reduce this cost. 

The testability is measured by the probability that a system will fail on its next test execution, 

assuming that it has at least one fault. As this measure is very complicated to calculate, other 

measures are normally used. (Bass et al., 2003) suggest that “the response measures for 

testability deal with how effective the tests are in discovering faults and how long it takes to 

perform the tests to some desired level of coverage.” 



 

Software Product Lines: An Overview 25 

 

From an architectural point of view, testability can be improved when it is possible to control 

each component’s internal state and inputs and then observe it outputs. Playback capabilities 

and information hiding are good ways to promote testability. The testability general scenario 

is summarized in Table 2-5. 

Portion of Scenario Possible Values 

Source Unit developer 

Increment integrator 

System verifier 

Client acceptance tester 

System user 

Stimulus A milestone in the development process: Analysis, architecture, 

design, class, subsystem integration completed; system delivered 

Artifact Piece of design, piece of code, complete application 

Environment At design time, at development time, at compile time, at deployment 

time 

Response Provides access to state values; provides computed values; prepares 

test environment 

Response Measure Percent executable statements executed 

Probability of failure if fault exists 

Time to perform tests 

Length of longest dependency chain in a test 

Length of time to prepare test environment 

Table 2-5 Testability General Scenario, from (Bass et al., 2003) 

2.2.1.6 Usability 

According to (IEEE Computer Society, 1990), Usability is “the ease with which a user can 

learn to operate, prepare inputs for, and interpret outputs of a system or component.” This 

definition can be split into the following areas, according to (Bass et al., 2003): (i) learning 

system features; (ii) using a system efficiently; (iii) minimizing the impact of errors; (iv) 

adapting the system to user needs; (v) increasing confidence and satisfaction. Works have 

been done to show the relation between usability and software architecture, (Bass; John, 2000; 

Bass; John, 2003), and describe how to address usability issues, early in system development, 

introducing system’s capabilities that will help the user in each of the aforementioned 

categories. 
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In Usability scenarios, will normally have the end user as the source of stimulus and the 

system as artifact. The expected response falls in one of the usability categories, and is 

measured by the incidence of errors, elapsed time to perform some task, user satisfaction, and 

so on. Table 2-6 summarizes the usability general scenario. 

Portion of Scenario Possible Values 

Source End user 

Stimulus Wants to 

 learn system features; use system efficiently; minimize impact of 

errors; adapt system; feel comfortable 

Artifact System 

Environment At runtime or configure time 

Response System provides one or more of the following responses: 

to support "learn system features": 

help system is sensitive to context; interface is familiar to user; 

interface is usable in an unfamiliar context 

to support "use system efficiently": 

aggregation of data and/or commands; re-use of already entered data 

and/or commands; support for efficient navigation within a screen; 

distinct views with consistent operations; comprehensive searching; 

multiple simultaneous activities 

to "minimize impact of errors": 

undo, cancel, recover from system failure, recognize and correct user 

error, retrieve forgotten password, verify system resources 

to "adapt system": 

customizability; internationalization 

to "feel comfortable": 

display system state; work at the user's pace 

Response Measure Task time, number of errors, number of problems solved, user 

satisfaction, gain of user knowledge, ratio of successful operations to 

total operations, amount of time/data lost 

Table 2-6 Usability General Scenario, from (Bass et al., 2003) 

2.2.2 Product Line Architecture (PLA) 

As already mentioned, the architecture permits or precludes system quality attributes. It also 

determines the structure and management of the development project in addition to the 

resulting system, as teams are formed and allocated around architectural components. In the 
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product line development, the software architecture plays an even more important role. As 

mentioned in (Svahnberg; Bosch, 2000): 

The role of the software product line architecture is to describe the 

commonalities and variabilities of the products contained in the 

software product line and, as such, to provide a common overall 

structure. 

As part of the architect’s job, there are two things to consider: the identification of variation 

points and the mechanisms to support them. Variations can be substantial, since, as pointed 

out by (Clements; Northrop, 2001): “products in a product line exist simultaneously and may 

vary from each other in terms of their behavior, quality attributes, platform, network, physical 

configuration, middleware, scale factors and a myriad of other ways.” 

The identification of variation points is a continuous activity. Variations can be discovered 

during requirement gathering, architecture design, and also during the implementation of a 

second or subsequent product in the line. Those variations can include features, platforms, 

user interfaces, target markets and implementation options. Supporting variability can take 

many forms in a Product Line Architecture (PLA). They can be accomplished, for example, 

by the introduction of build-time parameters, assuming that all variants have been envisioned. 

Inheritance and delegation, from object-oriented languages, can enable variation by 

specializing particular classes. Entire components can be replaced by others that embody 

particular variants. These and other techniques focusing on the enablement of functional 

variability are discussed in (Gacek; Anastasopoules, 2001) and (Svahnberg; Bosch, 2000). 

The documentation of a PLA carries two responsibilities. The first is to describe the 

architecture. Architectural views, as described in (Clements et al., 2002), come into play to 

describe runtime and processes interaction, structural elements, allocation and deployment of 

components, data flow, and so on. For a software product line, the views must show the 

variations that are possible. The second responsibility when documenting a PLA is to explain 

the architecture’s instantiation process, i.e., how the product plan will deal with the 

architecture. The documentation must clearly show the variation points, how to exercise them, 

and a rationale for the variation. It must show how to instantiate and evolve the architecture 

(Bass et al., 2003). 
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The literature proposes several approaches to build SPL. A systematic review was performed 

by the RiSE Labs in order to understand and summarize evidence about the Architecture and 

Design (A&D) activities of those approaches (Souza Filho; Cavalcanti; et al., 2008). The 

main focus of the research questions was How existing domain design approaches are 

organized?. In particular, two sub questions asked about how the approaches dealt with 

variability and processes to deal with domain variability. The approaches selection was 

performed by five M.Sc. candidates and two Ph.D. in conjunction with weekly discussions 

and seminars with the Reuse in Software Engineering (RiSE) Labs. After data source 

collection and analysis, nine approaches were selected, and the analyses were based on 11 

papers, two theses and four books. The approaches studied are described next as well as the 

systematic review conclusion. 

The Product Line Software Engineering (PuLSE) (Bayer et al., 1999; DeBaud et al., 1998) 

was developed with the purpose of enabling the conception and deployment of SPLs in a large 

variety of enterprise contexts. The approach is flexible, allowing the instantiation and 

customization of techniques and models of requirements for a particular application, 

envisioning the evolution of the scope of the project and the consequent change in the 

requirements. Its Analysis and Design discipline (PuLSE-DSSA) has as foundation a scenario 

based technique, where architectural adaptations are made to fulfill a prioritized set of quality 

attribute scenarios. The variability is documented textually and taken in to consideration for 

each scenario. 

The Family-Oriented Abstraction, Specification and Translation (FAST) (Weiss, 1999) is 

a software development process focused on building families. It is used in industry 

demonstrating a certain level of maturity at Lucent Technologies, where it was developed. The 

specific goal of FAST is to make the software engineering process more efficient by reducing 

multiple tasks, decreasing production costs, and shortening the marketing time. FAST has 

very well defined documentation regarding the development of the product line. The five step 

design process includes activities for developing family design, the development of an 

application modeling language, the establishment of a standard engineering process by which 

the product line will be developed and the development of the application environment. This 

approach does not explicitly addresses quality attribute variability. 
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 The Feature-Oriented Reuse Method (FORM) (Kang et al., 1998) was developed in 

Pohang University of Science and Technology, Korea as an extension to the Feature-Oriented 

Domain Analysis (FODA). FORM adds software design and implementation phases to 

FODA. It prescribes how the feature model is used to develop domain architectures and 

components for reuse. It is a light process and seems to be very easy to be adapted in a 

software factory. This method is used in industry being applied on elevator control systems 

and telecommunication infrastructure systems (Matinlassi, 2004). It does not provide 

guidelines for derive reference architecture with the basis on existing product's architecture. 

The Component-Oriented Platform Architecting Method for Families of Software 

Intensive Electronic Products (COPA) (America et al., 2000; Obbink et al., 2000) is being 

developed and used at the Philips Research Labs. The specific goal of the COPA method is to 

achieve the best possible fit between business, architecture, process and organization (BAPO) 

having the greatest level or reuse as possible. This is achieved with the BAPO product family 

approach. The method was used in different enterprise contexts and domains, such as 

telecommunication, medical imaging and consumer electronics. The A&D process is guided 

by commercial and technical considerations. Commercial considerations are made in the form 

of an evaluation of which functionality is available in market (COTS) based on product and 

supplier quality. Technical considerations take into account the stability of components for the 

product family, the coupling and cohesion, single technology domain, and the implementation 

only of features that are always together in each product. This approach covers a wide range 

of quality attributes, including non-technical attributes, however it does not address quality 

attribute variability explicitly. 

Komponentenbasierte Anwendungsentwicklung (KobrA), german for component-based 

application development, was developed in Fraunhofer Institute for Experimental Software 

Engineering (IESE) and it is a ready-to-use customization of PuLSE and focuses on the 

architecture components (Atkinson et al., 2000; Atkinson et al., 2002). It uses UML models 

with stereotypes for documenting architecture and has specific phase for architecture 

evolution. It defines an entity called Komponent, which stands for a component inside the 

architecture that groups all kinds of models used to define the product line architecture. The 

processes uses decision models to deal with variability and divides the A&D process in two 

phases, which will lead to two logical representation of the system being developed: 
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Komponent specification describes the external properties of a Komponent with the structural 

model, the behavioral model, the functional model, and the decision model; and Komponent 

Realization that describes how to realize the Komponent’s specification. 

The Product Line UML-based Software Engineering (PLUS) is a RUP based approach to 

software product line engineering defined in (Gomaa, 2004). It focuses on representing 

variability and other product line concerns with UML. PLUS can be seen as an extension to 

the Unified Process and uses UML tools and diagrams. It follows the RUP process for 

specifying a software architecture and introduces the variability concerns in the UML models  

as stereotypes. 

The Quality-driven Architecture Design and quality Analysis (QADA) (Matinlassi et al., 

2002) is a quality-driven architecture design method. It means that the architecture is built 

based on quality requirements. The method uses UML notation to represent variability in its 

models with defined stereotypes. Its design phase consists of two main steps, the conceptual 

architecture design, where the conceptual components are defined, according to the functional 

and quality requirements, and concrete architecture design, where the components are 

specified in a lower level of abstraction. 

The RiSE process for Domain Engineering (RiDE) (Almeida, 2007) is based on the 

definition of a feature model (FODA) and the main purpose is to detail activities related with 

each phase of the domain engineering. During the domain design activity, the modules are 

decomposed, based on assets produced in domain requirements engineering, such as business 

goals, constraints, domain use case model, feature model, and scenarios. After the definition, 

the modules are refined choosing the architectural drivers that will be addressed by the 

architecture, choosing architectural patterns that can be applied, and allocating systems 

functionality to modules. The variability is represented in class diagrams, mapping the feature 

model with the suggested design patterns. Components are defined based on the messages 

changed among them and the DSSA is represented with the components defined in the 

previous steps. 

The SEI framework (Clements; Northrop, 2001) was developed in the United States’ 

Department of Defense and at the Software Engineering Institute (SEI) in order to establish 

patterns for the Software Product Line practice. SEI's Framework is a set of guidelines for 

domain architects. It has well defined steps and is based on RUP. Also it is very easily 
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adapted since it has no suggestion of process, only steps that can be incorporated in factories 

processes. 

From the aforementioned A&D approaches for software product line, only QADA takes into 

consideration explicitly the variability in quality attributes (Matinlassi, 2005). 

The conclusion in (Souza Filho; Cavalcanti; et al., 2008) has shown that although many 

processes have very well defined guidelines, not all of them have available documentation for 

domain architects to follow the process and achieve the reference architecture. It also 

demonstrated the need to develop a process addressing these issues in order to decrease the 

effort in the software product line adoption for factories that started development without a 

software product line approach. The result of this effort is the RiPLE Design Method and can 

be seen in (Souza Filho, 2010). 

The RiPLE Design Method (RiPLE-Design) was developed based on the ADD method 

(Bass et al., 2002), and provides as main output a Domain Specific Software Architecture 

(DSSA) as well as a detailed description of domain quality attributes in the form of quality 

scenarios. The process is divided in four main steps: 

 Architectural Drivers Identification, where quality scenarios are to be 

developed and chosen to be the architectural drivers. Key features may also 

become architectural drivers. 

 Architectural Details Definition, where the views needed to represent the 

architecture are identified based on stakeholders needs. 

 Architectural representation, where the architecture is represented using 

views and specific models for each view. 

 Design Decisions Identification, where the technology and variability 

techniques to be used are identified and documented with rationale. 

2.3 QUALITY ATTRIBUTES IN SOFTWARE PRODUCT LINES 

As already mentioned, product line architecture must enable the variability among products in 

the family. At the same time, as any other software architecture, it must address quality 

attribute requirements. According to (Kolb et al., 2004), nevertheless, “research in the field of 
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software product lines has primarily focused on analysis, design, and implementation to date 

and only very few results address the quality assurance problems and challenges that arise in a 

reuse context”. 

According to (Etxeberria; Sagardui, 2005), quality attributes in product line architecture can 

be classified in two different types: product line quality attributes and domain-relevant quality 

attributes. Product line quality attributes are inherent to product lines to allow the architecture 

to be the basis for a set of existing products and future new products. These attributes are 

related to variability or flexibility, and must be achieved in order to be possible to get all the 

desired functionality envisioned during product line scoping. Modifiability under the form of 

extensibility, portability and scalability, for example, are related to the variation and evolution 

over time. Configurability under the form of reusability, composability and interoperability, 

represent variation over space. 

Domain-relevant quality attributes are those targeted to a specific domain, such as 

performance in the real-time domain and reliability in embedded systems. As pointed out by 

(Bosch, 2000), it is better to address those in the beginning of the product line architecture 

definition otherwise consequences and implications can be very difficult to fix, requiring 

major effort and architectural changes. Different products in the domain may also require 

different levels of attributes, so there can also be variability in quality attributes. 

As in functional variability, a software product line supports quality attribute variability in 

space and time (Bosch, 2000). Variability in space denotes divergence between the products 

or product variants, whereas variability in time refers to product family evolution. 

The aspect of variability in quality attributes has been “neglected or ignored by most of the 

researchers as attention has been mainly put in the variability to ensure that it is possible to 

get all the functionality of the products”, as discussed in (Etxeberria et al., 2008). The 

challenge of achieving quality attributes in single-systems becomes even more complicated in 

a product line context because there is variability on quality attribute requirement and 

different quality constraints are required. Trade-off analysis of quality attributes is also more 

difficult than in single-systems due to this variability and the exponential number of 

possibilities, as mentioned in (Etxeberria et al., 2008). 
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The impact of not dealing with quality attributes and the consequences of not considering and 

managing their variability are not trivial: 

If a product line is developed without considering the quality attribute 

requirements’ variability, this product line will not cover all the 

products of the scope and will probably not cover new products in the 

future. As a consequence, the investment for developing the software 

product line will not be cost-effective. (Etxeberria et al., 2008) 

In order to perceive the motivation for varying quality attributes, it is worth to remark that 

quality attributes affect each other, often they impact negatively (Barbacci et al., 1995). In 

single systems development, these trade-off situations are resolved by finding a halfway 

between conflicting quality attributes. Quality attribute variants are an alternative way of 

solving the impasse. Instead of developing one system as a compromise of conflicting quality 

attributes, develop a set of systems that optimize one quality on behalf of another 

(Myllärniemi; Männistö; et al., 2006). In many cases, these variants can be realized 

effectively as a software product line. 

Quality Attributes can also conflict with business qualities, such as cost, time-to-market and 

project lifetime (Bass et al., 2003). The introduction of quality variability can also help in 

establishing differentiated price, e.g., a product with higher security costs more. 

External varying constraints can also be helped when treated under the light of quality 

attribute variability. Hardware-related constraints, as the massive variation among mobile 

platforms are such an example. Different mobile platforms offer different memory and 

graphical processing capabilities, mobile game developer companies can benefit from a 

quality attribute variability approach producing differentiated products that benefits 

specifically from each platform (Myllärniemi; Raatikainen; et al., 2006). 

Based on the definitions of (Niemelä; Immonen, 2007), quality attribute variability can 

happen in three different situations:  

(i) variation among different quality attributes, for example, a product may require 

high security and in another product security is not a concern at all;  

(ii) different levels in quality attributes. The levels define how critical a quality 

attribute requirement is in a product. This situation can also be seen as trade-off 

variability, because, as some quality attribute requirement cannot cope with one 
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another, the prioritization guides the architect to benefit one in spite of the other; 

and 

(iii) functional variability may indirect cause variation in qualities, and vice versa, for 

example, a variation point in the execution platform may cause variability in 

performance requirements. The other way round, variability in security 

requirements results in different user authentication policies. 

2.4 CHAPTER SUMMARY 

This chapter showed a brief overview on software architecture and software product line 

concepts. It discussed the motivation behind and benefits from the adoption of software 

product line engineering paradigm. The essential activities during the software product line 

engineering were presented, as well as some adoption models. Concerning adoption models, 

the risks, strengths and drawbacks of the adoption models were discussed. Industrial 

experiences adopting software product lines approaches were also presented in this chapter. 

Next software architecture fundamental concepts were presented and its close relation to 

software product lines. The importance of quality attributes in software product line 

architecture was described, particularly the possibility of quality attribute variability and its 

implications. 

The next chapter presents an overview on RiPLE-Design process, as well as some 

deficiencies encountered in the process when treating quality attribute variability. 
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3  
THE RIPLE-DESIGN PROCESS 

In this chapter, the RiPLE-Design will be described. It is a process formulated with the 

purpose of generating a Domain Specific Software Architecture (DSSA) that represents 

common and variable elements of a domain, as a part of RiSE Product Line Engineering 

Process (RiPLE). The process will be examined in order to understand how it addresses 

quality attribute variability. 

The remainder of this chapter is organized as follows: Section 3.1 describes the RiPLE-

Design process; Section 3.2 presents its activities and guidelines; Section 3.3 shows how the 

process addresses quality attribute variability; Section 3.4 concludes this chapter with its 

summary. 

3.1 RIPLE-DESIGN 

The RiSE Product Line Engineering Process (RiPLE) provides activities, roles and artifacts 

for every phase during the software lifecycle of a software product line. It is divided in three 

main areas: core asset development, product development and evolution management. Core 

asset development comprises processes and activities required to develop assets that will be 

reused across the software product line. Product development includes process and activities 

that will serve the purpose of deriving new products based on the core assets previously 

developed. Evolution management includes supporting activities, such as version control, 

change management and release management, and a process that need to be specific in the 

product line context. RiPLE defines processes and activities for each one of the software 

disciplines, examples are the RiPLE-Requirements process (Neiva, 2009) for requirement 

engineering, RiPLE-Design process (Souza Filho, 2010), for design and architecture, RiPLE-

Scoping process (Moraes, 2010), for product line scoping  and RiPLE-Test (Machado, 2010) 

for software testing in the context of software product lines. 
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The RiPLE-Design process focuses on defining a Domain Specific Software Architecture 

(DSSA), which represents the architectural elements from the software product line. Such 

architectural definition must enable variability among products in a certain domain and must 

take advantage of commonalities among those products in order to promote software reuse. 

Following the RiPLE-Design process, an architect can systematically define the DSSA in an 

iterative and incremental way, using clear models and techniques. 

The process receives as mandatory inputs a feature model, representing the mandatory, 

optional and alternative domain features; a list of domain stakeholders and the description of 

the domain’s non-functional requirements. Optional inputs include domain requirements, 

domain use cases and quality scenarios. Quality scenarios, if not provided, will be developed 

during the process. The main output produced by the process is the DSSA representation, 

which includes traceability between architectural models and domain features. The DSSA 

representation is documented in a clear and concise form, in order to satisfy the main 

stakeholders involved in the construction of a software product line. Another possible output 

from the process is the Quality scenarios description, if not provided as inputs are produced 

within the process as well. 

The process was validated in an experimental study involving nine subjects (Souza Filho et 

al., 2009). The subjects were seven M.Sc. students and two Ph.D. students from the Federal 

University of Pernambuco. Among them, three students were graduated for more than five 

years, while the others for less time. The experimental study was conducted during part of a 

M.Sc. and Ph.D. course in software reuse, in November 2008, at Federal University of 

Pernambuco (UFPE), Brazil. 

The study analyzed the viability of subjects using the process to design an easy to change and 

simple, i.e. not complete, DSSA. This study also analyzed the effort spent in this process in 

comparison with the whole SPL life cycle for the project under development. 

Based on the collected results, the analysis performed in this study showed that the process 

can be viable for the definition of a DSSA for web applications domain, even with the 

reduced number of nine subjects. Although the analysis also identified some directions for 

improvements, none of the improvements pointed to address quality attributes variability. 
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3.2 ACTIVITIES 

The Process is divided in four main groups of activities: Identify Architectural Drivers, Define 

Architectural Details, Present the Architecture and Identify Design Decisions. An overview of 

the process, including the four steps can be seen in Figure 3.1. 

 
Figure 3.1 RiPLE-Design Overview, in flowchart notation

2
 

3.2.1 Identify Architectural Drivers 

In this activity, three main tasks take place. Figure 3.2 shows the steps needed to identify the 

architectural drivers. First, if not provided, quality attribute scenarios are developed, based on 

non-functional requirements, with the purpose to better represent quality attributes 
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requirements that the architecture needs to achieve. An elementary quality attribute scenario is 

a pair of stimulus and expected response that describe the expected behavior of the system 

under certain situation (Bass et al., 2003). Besides the stimulus and the expected response, in 

RiPLE-Design, some other aspects related to the quality attribute are also described, namely, 

the source of the stimulus; the environment, i.e., the conditions within the stimulus occurs; the 

stimulated artifact, which can be the whole system or pieces of it; and the response measure, 

that will help the architect to test some quality attributes requirement (Bass et al., 2003; Souza 

Filho, 2010). The quality attribute scenarios must then be ranked based on their importance to 

the domain. A catalog of general quality scenarios can be found in (Bass et al., 2003). 

 
Figure 3.2 Identify Architectural Drivers, in (Souza Filho, 2010), in flowchart notation 

In the second task in this activity, functional features are selected to figure as architectural 

drivers. The architectural drivers will guide the main architectural definitions, and the 

selection of key features following their importance to the domain, which is mainly based on 

the business value of certain feature to the domain. Architectural dependency may also 

influence the priority of a particular feature. 

In the last task, the quality attributes represented in the scenarios are prioritized and selected 

to be architectural drivers as well. This task also involves the identification of conflicts among 

quality attributes and its documentation. The prioritization of quality attribute scenarios is a 

key aspect of the RiPLE-Design method, because conflicts between quality attributes are not 

rare, and the architect must address those conflicts by selecting as the top priority quality 

attributes to be addressed first. The next activities will shape the architecture, so that the 

quality attributes are fulfilled according to their importance. 
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3.2.2 Define Architectural Details 

This activity serves the purpose of defining the level of detail that will be used to describe the 

architecture in each one of the behavioral, structural and process views. This definition takes 

as input a list of stakeholders and decides based on it, the proper level of detail in each view. 

Customers, as an example, are more likely to be interested in high-level structural and 

behavioral views description. In this case, the structural view should depict modules and main 

components, while the behavioral view should show the key interactions among them. 

Product implementers may need more details, as a result, more classes and interactions among 

classes may appear in the architectural views. This definition is made by the domain architect 

and documented in the DSSA description document. 

3.2.3 Represent Architecture 

The definition and documentation of architectural models are done in this activity. The three 

views, i.e., structural, behavioral and process, are defined in different steps. 

The structural view shows the domain architecture static structure. It also shows how 

variability is achieved inside this structure. In RiPLE-Design, the structural view definition is 

composed of component and class diagrams. The formers show how the whole system is 

divided into modules and those modules into components and the latter shows the classes that 

will guide the implementation of each component. 

During the definition of the architecture structure, Architectural drivers are selected from the 

prior ranked list and guide the choice of the architectural styles that will help to accomplish 

the desired quality attributes requirements. With the architectural styles chosen, modules are 

defined representing high-level abstractions based on domain features, requirements and use 

cases. High-level modules are refined as new quality attributes come into play and must be 

fulfilled. Figure 3.3 depicts the iterative process of module definition. 
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Figure 3.3 Module definition Activities, in (Souza Filho, 2010), in flowchart notation 

Following the structural view definition and documentation, components that will be part of 

each module are defined. The definition of components in a software product line context is 

extremely important, as the components must hold variability found in the domain 

requirements. The RiPLE-Design process shows us forms of variability represented in 

components: (i) external variability, where a component holds the implementation of certain 

feature, and can be presented on a product or not, depending on the selection of that feature; 

(ii) internal variability, where the internal structure of a component changes depending on 

certain feature, e.g., algorithm choice; (iii) structural variability, where external structure of a 

component can differ from one product to another; (iv) configuration variability, where 

different arrangements and configuration of components can be done to achieve certain 

feature selection. 

In RiPLE-Design, components can be defined from domain features and use cases. When the 

domain features are used, the resulting components represent a feature or a group of feature 

that can be implemented in a single component. The variability inherent to a group of features 

is represented internally or externally in the component using UML component diagrams and 

stereotypes. High-level variant features lead normally to components with external variation, 

while features that represent implementation selection and details lead to internally variant 

components. 

When the components are defined from use cases, the RiPLE-Design process follows the 

guidelines proposed by the RiDE process in (Almeida, 2007). The technique follows three 

steps to group, define and specify components based on their functional dependency. 

Component grouping starts measuring functional dependency between use cases based on the 
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subsystems they belong to, the actors involved in the use cases, the amount of data shared 

among the use cases and the coupling between them. The four criteria define a metric that is 

used to create use case clusters. The clusters help defining the set of use cases that will be 

realized by each component. The component is then specified through its interfaces and 

classes. 

As the fine grain structural representation is normally needed, classes that will implement 

each component must be defined. Some techniques can be chosen to accomplish the desired 

variability. Aspect orientation, conditional compilation, design patterns and simple 

parameterization are examples (Gacek; Anastasopoules, 2001). The selection of the proper 

technique is made by the Domain Architect and documented in the DSSA. RiPLE-Design 

provides guidelines to use design patterns to implement variability as follows. Alternative 

features can be implemented with design patterns that allow substitution and varying 

construction of classes, so, the Prototype, Abstract factory, Builder and Strategy design 

patterns are good options to implement this kind of features. Or features need patterns that 

adapt objects and guarantee that one implementation is always available should be used. 

Adapter, Bridge, Decorator and Chain of Responsibility are examples of such patterns 

(Gamma et al., 1995). Optional features can be implemented through the same patterns of Or 

features, except that in this case, there is no need to guarantee that at least one feature is 

present. 

The Behavioral view is represented next with the development of sequence diagrams based on 

the functional features and the defined classes in the structural view. This activity is 

mandatory since the domain behavior can aggregate much information to developers during 

implementation. Functional features and use cases are analyzed in order to collect information 

that will fill the sequence diagrams. The classes in the sequence diagrams come from the fine-

grain structural view diagrams. Variable messages can also be presented in these diagrams. 

Taking into consideration some quality attributes, such as performance and availability, the 

architecture can decide to perform a thorough analysis of runtime characteristics of the 

domain to address issues related to concurrency, distribution, fault tolerance and system 

integrity. In this case, the RiPLE-Design process provides activities do define and represent 

the Process View of the architecture using activity diagrams to represent processes, thread and 

other runtime concerns. 
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During the whole activity of architecture definition, the domain architect plays a central role 

and is aided by experienced developers. The domain manager also helps prioritizing quality 

attributes and defining the key features of the domain. 

3.2.4 Identify Design Decisions 

This activity is performed throughout the entire design process. Decisions made during 

architectural development should be documented in conjunction with a rationale about the 

selected decision, alternative decisions left aside and possible enhancements to the chosen 

option, so that other architects and developers can identify the motives behind the decision. 

Examples of important choices to document are technology choices, variability techniques, 

and the selection of one architectural style over another. 

3.3 DESIGN OF VARIABLE QUALITY ATTRIBUTES 

Regarding the achievement of quality attributes, RiPLE-Design’s approach consists in 

prioritizing quality attributes under the form of quality scenarios, and evolving the 

architecture by choosing architectural styles and patterns that enable the architecture to satisfy 

the planed quality attributes. The RiPLE-Design process, however, does not define how to 

treat quality attribute variability. Therefore, this work makes an assumption that it could be 

possible to define a DSSA that could deal with quality attribute variability using known 

architectural styles and patterns. 

In this context, this work will assess how quality attribute variability could be addressed using 

RiPLE-Design. The assessment will be built on top of real scenarios. The scenarios were 

extracted from a software product line for a paper submission system, called RiSE Chair, 

which was developed by the RiSE Labs for academic purposes. The product family can 

handle various flows of submission such as papers submissions for a journal or a conference. 

It enables users to evaluate papers in a single or many rounds and provides different ways to 

grade and select papers for publication. The software product line provides features to handle 

assignment of reviewers automatically or manually as well. The complete feature model of 

the RiSE Chair SPL can be seen in Figure 3.4. It comprises 63 features being 13 optional , 2 

alternative, 18 inclusive-or and 30 mandatory features. 
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Figure 3.4 Feature Model Diagram for Rise Chair 

The development of the RiSE Chair software product line followed the complete RiPLE 

process. Specifically, the domain architecture development followed RiPLE-Design and 

started by deriving quality attribute scenarios from non-functional requirements. As an 

example, Table 3-1 shows a modifiability scenario for the RiSE Chair SPL. 

Source: Developer 

Stimulus: Wishes to change  

Artifact: The User interface 

Environment: During development 

Response: User interface is changed 

Response Measure: In less than 4 hours with no impact to the rest of the system. 

Table 3-1 Modifiability scenario for the RiSE Chair SPL 
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Following the RiPLE-Design process, the Architectural Drivers Identification task has lead to 

two drivers. They were: 

(i) mandatory features; 

(ii) variability found in some functional requirements 

These two characteristics lead the architectural development, being the key features access 

control, paper submission, paper revision, event management, notification and 

internationalization. The variability present in some functional features was the main reason 

why a product line approach was chosen. The architecture was designed to support high 

modularity and flexibility. 

Modularity and flexibility are the key characteristics of software product line architecture. 

Loosely coupled and highly cohesive modules permit the reorganization of the architecture in 

order to achieve high degrees of reuse. Flexible architectures allow a large range of product 

variants to be implemented easily. Such an architecture must be simple to change and very 

tailorable, so, when new products with alike, but not the same features, need to be developed, 

they can be delivered in less time with less effort. 

From the Define Architectural Details activity, the DSSA should be described in low level 

details. 

The next activity in the RiPLE-Design process is the Represent Architecture activity. During 

the structural view definition task, an architectural style was chosen to address the 

architectural drivers. The layered architectural style was chosen as it promotes high 

modularity and independence among layers. 

On top of the layered architecture, a web platform was chosen to deliver the functionalities. 

The web technologies served well the purpose of submission systems. It enables peers to 

submit papers from anywhere in the globe. Conference chairs and papers evaluators could 

also work from anywhere without downloading any application, since the web application 

works inside their browsers. 

The module definition task produced the structural representation of the modules shown in 

Figure 3.5. 



 

The RiPLE-Design Process 45 

 

 

Figure 3.5 RiSE Chair Module View, in UML notation
3
 

After the module definition, components from each module were defined as well as the 

relationship among them. As a result of the component definition task, the RevisionImpl 

component, responsible for handling assignment of reviewers for papers and registering the 

grades from each reviewer, is shown in Figure 3.6. 

 

    

Figure 3.6 Structural view of the Revision component, in UML notation 

                                                 

 
3
 Following the UML Notation, from (Fowler; Scott, 2000) 
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The behavioral view definition task follows the structural view definition and an example of 

its result is illustrated in Figure 3.7. 

 

   

Figure 3.7 Sequence diagram: invite reviewer, in UML notation 

Given the layered web platform architecture as a basis, the next subsections describe, for each 

case of quality attribute variability, according to the definitions of (Niemelä; Immonen, 2007), 

how the architectural solution was adapted using the RiPLE-Design process. 

The case of functional variability affecting quality attributes is related to the occurrence of 

feature interaction in software product lines. As pointed out in (Lee; Kang, 2004), sometimes 

“[…] features cannot perform their functionalities alone, they need to interact among them in 

order to accomplish the products requirements. In this context, a feature interaction occurs in 

a system whose complete behavior does not satisfy the separate specifications of all its 

features.” Functional features that impact on non-functional features are, thus, a case of 

feature interaction. The problem of feature interaction can impact the whole SPL development 

process, as it promotes changes in reusable assets and impacts maintenance costs and other 

products. The adaptation of the RiPLE Process to perform dependency analysis among 

features and analyze how they impact on each other is described in other Project from the 

RiSE Labs. The case of functional variability affecting quality attributes, so that quality 

attribute variability occurs, will then be left out of the scope of this work. 
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3.3.1 Variations among different quality attributes 

Most of RiSE Chair products have low availability demands, as exemplified in the quality 

scenario show in Figure 3.8. 

 
Figure 3.8 Low demand availability scenario 

Other products, however, have a requirement for high availability and reliability, which can 

be seen in Figure 3.9. 

 
Figure 3.9 High demand availability scenario 

Availability and reliability can be categorized as dependability attributes. According to 

(Laprie, 1992), dependability is that property of a computer system such that reliance can 

justifiably be placed on the service it delivers. As stated by (Barbacci et al., 1995), availability 

measures the readiness for usage of a system while the reliability of a system is a measure of 

the ability of a system to keep operating over time. 
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Some products of the software product line are aimed at large conferences with worldwide 

submission. As someone could be submitting a paper from anywhere in the globe, it can 

happen anytime. So, the system must be online 24 hours a day, every day such a conference is 

being held. Other classes of products do not have high concerns with availability. 

Following the RiPLE-Design process, the architect must prioritize the quality attribute 

scenarios and adapt the architecture structure to address quality issues. In this case, the 

architect pondered that the high available system would affect more the architecture definition 

than the less available option. So, the quality scenarios priority established the low demand 

for availability as less important than the other availability scenario. The architecture was 

built as a consequence of that priority. 

According to (Bass et al., 2003), all the approaches to maintaining availability involve some 

type of redundancy, some type of health monitoring to detect a failure and some type of 

recovery when a failure is detected. Many of the available tactics to address availability issues 

are available within standards execution environments. Database transactions, for example, 

can be considered a fault prevention tactic. 

Automatic fault detection tactics are very common in real time and mission critical systems, 

examples are Ping/echo, when one component issues a ping and expects to receive back an 

echo, within predefined time, from the component under inspection; and Heartbeat, where 

one component emits a heartbeat message periodically, and another component listens for it. 

In both cases, if the heartbeat or the echo fails, the component is assumed to have failed and a 

fault correction component is notified. 

In this case, there is no need for automatic detection of failures, as none of the products of the 

RiSE Chair product line involve high risks of money or human losses. The fault detection 

mechanism will be manual. 

For the desired degree of availability, the architecture will only focus on fault recovery. Fault 

recovery often involves redundancy. Automatic fault recovery mechanisms are very complex. 

They are used, for example, in air traffic control systems. Examples of fault recovery tactics 

are, as in (Bass et al., 2003), Active redundancy, Passive redundancy and Spare. In Active 

redundancy, several components are maintained in the same state and respond to events in 

parallel. The response from only one component is used and the others discarded. When the 
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fault occurs, the system’s downtime is milliseconds since the time to recover is only the 

switching time. Passive redundancy consists of one primary component responding to events 

and informing the other standby components of state updates they must make. When a fault 

occurs, the system must first ensure the backup state is sufficiently fresh before resuming 

services. In the Spare tactic, a standby computing platform is configured to replace many 

different failed components. Somehow it must be managed to the spare platform to be at the 

same state as the primary platform. The downtime of this tactic is usually minutes. 

Concerning fault recovery, it is also important to define a fault model, describing which types 

of fault will be considered and which ones will be ignored. In the case of RiSE Chair, only 

internal component failures were considered. 

For the RiSE Chair architecture, the Spare tactic was applied. In this special case, the standby 

platform consisted in another web application server ready to go associated with redundant 

databases. This strategy was used because of its simplicity. It can be easily applied, and does 

not influence maintainability, modifiability or any other key quality attribute, since the system 

is replaced as a whole, without affecting internal components. A proxy server must be placed 

to receive and reroute user HTTP requests. 

Figure 3.10 shows the deployed system under normal operation. 

 
Figure 3.10 Deployment diagram. System under normal operation 

Figure 3.11 shows the deployment configuration when a fault occurs, and the proxy is set up 

to reroute the requests to a spare web application server. 

The products derived from the RiSE Chair software product line are mainly data-driven, 

meaning that the state of the system is in its data. It is easy to manage the spare platform to 

maintain its state equivalent to the primary platform, since the database redundancy can be 

configured and automatically provided by the database server. 
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The spare tactic is associated with error reports to the system administrator, who would be 

responsible to setup the HTTP requests rerouting. This strategy enabled an estimated 

downtime of a few minutes to an hour, which would be satisfactory even for the most critical 

products. 

 
Figure 3.11 Deployment diagram. Under faulty operation, proxy server as a request router 

It is important to remark that although the variability in system downtime is not due to the 

used process, but to the manual treatment, the request rerouting. The single architectural 

solutions, aims to solve the most critical scenario. 

3.3.2 Different levels in quality attributes (trade-off variability) 

To exemplify the case of different priority levels of quality attributes, there is a case in the 

RiSE Chair product line where some products demand high security and another group of 

products that demand short latency with high scalability. Business research has shown that 

some users are willing to pay more for more secure systems, even if they are not so fast. On 

the other hand, some users do not have much confidentiality concerns, they prefer a faster 

system. 

Figure 3.12 shows the performance scenario for the class of products with high performance 

demands. Other class of products, demands higher security, this case is exemplified in Figure 

3.13. The main security concern is confidentiality, which is the requirement that data and 

processes to be protected from unauthorized disclosure (Barbacci et al., 1995). Also according 
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to (Barbacci et al., 1995), latency refers to a time interval during which the response to an 

event must be executed. 

 
Figure 3.12 Performance/scalability scenario with short latency 

 
Figure 3.13 Confidentiality scenario 

Those two quality attributes are often in opposition as higher security leads to encryption 

protocol that are time consuming. This situation reflects the business need for two different 

classes of products where some customers are willing to accept less security if they can get 

shorter response time, and other customers prefer more security even though the performance 

is hindered. Hence, as discussed, security needs are often in opposition to performance 

requirements. 

Following the RiPLE-Design process, the quality attributes must be prioritized, and one 

quality attribute addressed after another. The occurrence of variability in quality attributes has 

no precedents in RiPLE-Design process. This means that the process gives no guideline about 

how to represent that in some products security is more important than latency and other 

products are just the opposite. 

Artifact: 
System

Response 
Measure: with 
an avarage 
latency time of 
3 seconds

Response: 
Processes The 
Transactions

Environment: 
Under Normal 
Operation

Stimulus: 
Initiate 
TransactionsSource: 

2000 
simultaneous 
users

1

2

3

4

Artifact: 
Data

Response 
Measure: data 
is unreadable 
by the attacker

Response: 
Is encrypted 
under secure 
protocolEnvironment: 

Under 
transmission

Stimulus: 
Tries to sniff 
the network to 
intercept data 
transmission

Source: 
An attacker

1

2

3

4



 

The RiPLE-Design Process 52 

 

During the prioritization of the quality attribute, the domain architect together with the 

domain manager must come to a single priority queue, and evaluate what are the impacts of 

having security before latency or the other way around. As an architect, one way to follow is 

to assume that shorter response time and stricter security are possible at the same time. The 

domain manager must also agree that having both quality attributes at the same time is viable, 

or perhaps it is the only path to follow. Note that the domain manager must leave aside the 

business concerns that may have lead to the conclusion of having two classes of products and 

benefit from the trade-off variability between security and performance. Both, domain 

architect and domain manager must also come to an agreement of the lowest acceptable 

performance demand. The scenario in Figure 3.14 shows this. 

 
Figure 3.14 Performance scenario with longer latency 

Latency requirements can be measured and the proposed architecture can be validated against 

them, but the architect would address them first. According to (Bass et al., 2003), there are 

two main contributors to the latency of a request: (i) resource consumption, such as CPU, data 

stores and network communication bandwidth and (ii) blocked time, which can be caused by 

contention of resources, availability of some resource or dependency in other computation. 

The tactics to address latency issues fall into three categories: resource demand, resource 

management and resource arbitration. 

Resource demand tactics that can be introduced in this solution include Increase computation 

efficiency, by optimizing some algorithm from a critical area; and Reduce computational 

overhead, that is mainly removing intermediaries in an event stream being processed, which 

may worsen the modularity of the architecture. 
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Resource management tactics can also help to reduce latency, some of them are described in 

(Bass et al., 2003) and can be applied in the web application platform: Introduce concurrency, 

if the requests can be processed in parallel, different threads of execution can process different 

stream of events; and Increase available resources, simply providing faster processors, 

additional memory and faster networks can help to reduce latency, with the obvious 

cost/performance trade-off. 

Resource arbitration tactics comprise scheduling techniques and criteria. They are common in 

real time systems, in which time deadlines must be met. 

The proposed solution includes Introduce concurrency and Increase available resources. The 

introduce concurrency tactic is characterized by the proxy server, described earlier, to 

function also as a load balancer, directing request to different spare servers, as seen in Figure 

3.15. This tactic can be seen as an enhancement to the spare tactic applied to address 

availability. In this case, there is no need of an application server runs out of service, the load 

balancer can redirect the requests to another server. Load balancing here can help to maintain 

the level of service when a large number of users access the system. 

 
Figure 3.15 Deployment diagram. Load Balancing 
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The second tactic, increase available resources, works as a fine tuning, adjusting the deploy 

setup to meet the latency requirements. The Increase computation efficiency tactic did not 

seem to apply, since the products involved no kind of complex computation. 

The next step is to introduce the security issues and adapt the architecture to meet these 

requirements while maintaining latency quality attributes. Tactics for achieving security can 

fall into three categories: resisting attacks, detecting attacks and recovering from attacks. 

(Bass et al., 2003). 

Most of security tactics are concerned with resisting attacks. They include Authenticate user, 

where simple login-password pairs or complex biometric identification can be used; Authorize 

user, to ensure that an authenticated user has the rights to access and modify either data or 

services; Maintain data confidentiality, which is normally related to encrypting data and 

communication channels; Maintain Integrity, implemented using checksums or hash results; 

Limit exposure to certain services, or to distribute the service hosting so an attack does not 

affect all data and services at once; and Limit access, which is to restrict the access to known 

sources, through firewalls or a Demilitarized Zone (DMZ) (Bass et al., 2003). 

Attack detection can be done with some kind of Intrusion Detection System (IDS). Those 

systems can analyze the patterns of requests and user behavior to infer whether an attack is in 

progress. 

Tactics to recover from attacks are concerned with restoration of services and data, and 

identification of attacker. Restoration tactics are the same already described for availability 

issues. The main identification tactic is to maintain an audit trail from each transaction 

applied to the data together with identifying information (Bass et al., 2003). 

The RiSE Chair software product line already mentioned in its feature model the need for user 

authentication and authorization. These security tactics were implemented into a specific 

module and further refined into components, without major changes in the architecture. The 

security concern that needed further analysis, as shown in Figure 3.13, involves data 

confidentiality. In this case, the Maintain data confidentiality tactic was applied. The 

encryption link was implemented by a Secure Sockets layer (SSL) very common in web 

applications. 
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Using secure protocols and data encryption, it is expected that the overall system latency 

increases. If the security tactic damages performance, adjustments in deployment can be 

made, i.e., better processors in the deployment machine. As described before, adjustments in 

the performance can be made adopting the Increase Available Resources. 

3.3.3 Discussion 

RiPLE-Design focuses on producing an architectural definition that enables variability among 

products in a certain domain and takes advantage of commonalities among those products in 

order to promote software reuse. This architectural definition must, at the same time, satisfy 

the proposed quality attributes requirements represented in quality attributes scenarios. 

The examples described above showed how it would be to use RiPLE-Design process to deal 

with variability in quality attributes. In the first case, the availability and reliability demands 

were high only in a single class of products, in other words, availability was optional to that 

class of products. The use of a ranked list of quality attributes directs the architect to consider 

the availability scenario, even though those quality attributes were different from product to 

product. The need for availability guided the architecture development and a single 

architectural solution was proposed to satisfy both cases, even when that extra complexity 

was not needed. Thus, there will be an over engineered class of products, with robust 

infrastructure that will seldom be used. 

The second example showed two classes of products that could take advantage of the trade-

off between security and performance. The solution proposed by following RiPLE-Design, 

however, lead the architecture definition to an over engineered solution where both security 

and performance would coexist. Although the solution was coherent and viable, it discarded 

the variability among the classes of products, and delivered a single architectural solution. 

This situation hides the trade-off between both quality attributes, as it tries to achieve both 

requirements at the same time, in other words, every product in the product line would have 

high security and short latency. For a class of products, the confidentiality quality attribute 

represented a layer of computation that could be dismissed in order to increase performance, 

following the Reduce computational overhead tactic. 



 

The RiPLE-Design Process 56 

 

Both examples, resulting in a single architectural solution did not cope well with quality 

attribute variability, they simply left aside the reason why the quality attribute variability 

needed to be exploited. One sound reason to have quality attribute variability, in the case of 

trade-off between confidentiality and latency, was the business advantage of offering 

differentiated products to specific markets. The proposed solution simply considered that 

faster products would please both market shares. Yet, faster does not always mean better. The 

single solution brings the problem of customers willing to pay for slow but secure systems 

will have to pay also for the infrastructure needed to make that system fast. 

The guidelines from RiPLE-Design result in a single architecture representation that leaves 

behind any variability in quality attributes. The use of a prioritized list quality attribute 

scenarios and tactics do not seem to address well the problem of variability in quality 

attributes requirements. The idea that one solution fits all does not hold when the architect 

must fulfill other stakeholders’ desires, such as business and marketing strategy. Sometimes, 

business wants exactly to benefit from the variability among quality attributes to offer 

different products for different markets. This gap in the main process leads to the central 

contribution of this work, which is to extend RiPLE-Design guidelines to cope with variability 

in quality attributes requirements. As discussed in the previous sections, the actual RiPLE-

Design guidelines do not cope well with quality attribute variability. 

3.4 CHAPTER SUMMARY 

This chapter described the RiPLE-Design process for DSSA development. Besides showing 

the roles, activities, tasks, inputs and outputs of the process, it also described through a guided 

example how the process addresses quality attributes variability. It was discussed that the 

guidelines from RiPLE-Design result in a single architecture representation that leaves behind 

any variability in quality attributes. 

The next chapter presents some enhancements proposed to overcome those limitations. 
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4  
EXTENDING THE RIPLE-DESIGN PROCESS WITH 

QUALITY ATTRIBUTE VARIABILITY REALIZATION 

Studies have reported the idea of variation in quality attributes (Myllärniemi et al., 2006; 

Niemelä; Immonen, 2007). (Myllärniemi; Männistö; et al., 2006) suggest that three points 

must be addressed to achieve satisfying results when the architecture presents variations in 

quality attributes: 

(i) Specify and model varying quality attributes; 

(ii) Find a design strategy for varying quality attributes; 

(iii) Evaluate the architecture in order to achieve the needed variation. 

Many approaches address variability modeling and specification taking into consideration 

non-functional features (Etxeberria et al., 2008; González-Baixauli et al., 2007; Jarzabek et 

al., 2006; Sinnema et al., 2004). Studies have also shown the problem of evaluating the 

architecture derived from a Product Line Architecture focusing on its quality attributes 

requirements (Olumofin; Misic, 2005). Nevertheless, only a few works focus on strategies to 

realize variability in the quality level, i.e., finding a design strategy for varying quality 

attributes, some of them are (Bosch, 2000; Hallsteinsen et al., 2003; Rossel et al., 2009), and 

are described next. 

(Rossel et al., 2009a) describes an approach based on Model-Driven Engineering (MDE) 

where the PLA is seen as a set of transformations associated with the domain features. In his 

approach, the quality attributes requirements are also modeled as features. A derived product, 

built from a selection of features, can have its architecture built through the application of the 

earlier mentioned transformations. The variations in quality attributes requirements produce 

different transformation in the model and can make product architectures completely different 

from one another. 
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(Bosch, 2000) suggests the possibility of transforming quality attributes requirements into 

functionalities. For example, the requirement of security can be converted into login and 

encrypted passwords and protocols. This attempt to make non-functional requirements into 

functionalities does not work always. Not all quality attributes requirements can be 

transformed into functionality, e.g., there is no functionality that deals with performance the 

same way access control functionalities deal with security. It is not guaranteed that a quality 

attributes requirement is achieved by a specific set of functionalities. In other words, a system 

can have access control with highly encrypted passwords and protocol and still not be secure. 

The way (Hallsteinsen et al., 2003) copes with quality attribute variability is by leaving the 

architecture open “on the points where the variation in requirements makes it impossible to 

standardize architectural decisions”. The architecture documentation comprises tactics used to 

achieve quality attributes requirements. Tactics, in this case, are any solution proposal, 

guideline, design pattern, architectural style and so on. In case of variability in quality 

attributes requirements, more than one solution may be proposed, the variation points are 

made explicit and decision models are documented with the knowledge necessary to ponder 

about the better solution for each product to be derived. 

The suggestions described in the next subsections address the three points described by 

(Myllärniemi; Männistö; et al., 2006). Section 4.1 and its subsections describe activities to 

specify and model varying quality attributes; section 4.2 and its subsections are based on the 

work from (Hallsteinsen et al., 2003) and describe a design strategy for varying quality 

attributes; Section 4.3 and its subsections describe guidelines to evaluate the architecture in 

order to achieve the needed variation. Finally, Section 4.4 summarizes this chapter. 

4.1 REPRESENTING QUALITY ATTRIBUTE VARIABILITY 

The representation of the relation between variants and design possibilities is important 

because, as pointed out in (Etxeberria et al., 2007), many variants represent design decisions 

that can have great impact on quality attributes. From the example described in (Rossel et al., 

2009b) of software product line for Meshing Tools, whose feature model is reproduced in 

Figure 4.1: the feature Mesh Processing Distribution impacts directly in the design of the 

product line, as the authors show “not only a different deployment view is required to show 

the distributed setting, but also new components in charge of dividing the mesh among 
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different processors and synchronizing the results are required as part of the tiers architecture 

too.” 

 
Figure 4.1 Feature Model for Meshing Tools, in (Rossel et al., 2009b) 

It is even more critical when the design must deal with variable quality attributes, because, as 

acknowledged, quality attributes impact in each other. 

Two examples of modeling methods that address varying quality attributes are F-SIG 

(Feature-softgoal interdependency graph) (Jarzabek et al., 2006) and COVAMOF (ConIPF 

Variability Modeling Framework) (Sinnema et al., 2004). 

F-SIG (Feature-softgoal interdependency graph) (Jarzabek et al., 2006) was built as a 

framework to record design rationale in the form of interdependencies among variant features 

and quality attributes. It extends FORM (Kang et al., 1998) with concepts of goal-oriented 

analysis (Chung et al., 1999). It uses a new graph composing a feature model elements and 

softgoal interdependency elements. The use of softgoals helps to explicitly represent the 

relation between features and quality attributes. One limitation is that the F-SIG poorly 

supports quantitative analysis of non-functional requirements. 

COVAMOF (ConIPF Variability Modeling Framework) (Sinnema et al., 2004) uses the CVV 

(COVAMOF Variability View), which encompasses the variability of artifacts on all layer of 
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abstraction of the product family. This makes it possible to model the variability of the 

product family from features to code. As pointed out in (Etxeberria et al., 2007), a drawback 

of this framework is that it does not properly characterize quality attribute, what makes it hard 

to cope with its natural ambiguity. 

(Etxeberria et al., 2007) establishes a set of requirements that are important to exist in an 

approach for modeling varying quality attributes. Among them are: 

(i) The necessity of a mechanism for describing and explaining a quality attribute 

adequately; 

(ii) The need to represent optionality of quality attributes; 

(iii) The need to represent different levels of priority of a quality attribute. 

Based on those requirements, a new activity is suggested to take advantage of existing models 

and document quality attributes and its possible variations among products in the product line. 

4.1.1 Represent variable quality attributes in the feature model 

As proposed in (Rossel et al., 2009b), it is interesting to consider not only functionality, but 

also quality attributes as features. The authors consider “quality attributes as part of the 

feature model since in several settings they may also be considered variabilities”. By the 

definition from (Kang et al., 1990) a feature is “a prominent or distinctive user-visible aspect, 

quality, or characteristic of a software system or systems”. Thus, it seems natural to consider 

quality attributes as features, since they are noticeable in the products. 

In Figure 3.4 shown before, where the RiSE Chair Feature Model diagram is specified, we 

can observe security already described as a feature. In that case, the security feature represents 

some functionality that must be present in the products. Those functionalities materialize the 

security quality attribute. In the mentioned case, the access control feature and its children, 

authentication and authorization. That special case, however, does not characterize a process 

guideline from RiPLE. Instead, the security feature was modeled exactly to group the related 

functionalities. Other security concerns, e.g., confidentiality, were not mapped in the feature 

model diagram, even though it was an architectural concern, represented in the quality 

attribute scenarios. 
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The modified version of the activity Identify architectural drivers can be seen in Figure 4.2. It 

shows a new task, where the Domain Modeler together with the Domain Architect analyze the 

developed quality attribute scenarios, in order to find possible quality attribute variability. 

 
Figure 4.2 Identify architectural drivers modified, in flowchart notation 

Although already suggested by RiPLE-Design, quality attribute scenarios do not seem the 

right option to model variability. The quality scenario representation encompasses six parts in 

their description. The variation can occur in any part. For example, in a variable availability 

scenario, not only the expected downtime, i.e., the response measure, is likely to vary, but 

also the response itself, namely how the system should behave after a fault occurs. This means 

that a single scenario would have many variation points in its descriptions, making it difficult 

to understand. On the other hand, the information comprised by the quality scenario is an 

important guide to the software architect to develop the foundations of the system, in this 

case, the domain architecture and a potential set of systems. This quandary leads to a hybrid 

solution exposed next. 

The quality attribute variability is represented in the feature model diagram. The feature 

model is a central asset in the product line development, as it enables a broad view of 

variations and commonalities as well as possible products to derive. It is a natural step to 

represent the variability in this diagram. Figure 4.3 shows an example of a feature model with 

quality attribute variability represented. 
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Figure 4.3 Feature model with quality attribute variability 

The quality scenarios work as side documentation to record the metrics that accompany the 

attributes. The Latency quality attribute, for example, may be accompanied of lower and 

upper time boundaries; the Availability attribute must have the expected downtime; and so on. 

In order to achieve desired quality levels, the quality attributes must be complemented with 

the system’s response measure. In the special case of quality attribute variability, the variation 

in those attributes is given by those numbers. This additional data is important, as indicated by 

(Etxeberria et al., 2007): “a model where quality attributes variability is modeled […] is 

indispensable to take the most adequate decision during design and derivation and get the 

required quality levels.” The metrics can still be recorded in quality scenarios and those can 

be associated with features in the feature diagram. In the example of Figure 4.4, a part of a 

feature model diagram from some hypothetic product line is shown. Figure 4.5 and Figure 4.6 

represent the quality attribute scenarios associated with each feature, and record the latency 

time metric related to the quality attribute. 

 

Figure 4.4 Latency quality attribute of a hypothetic product line 
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Figure 4.5 High latency and low scalability quality scenario 

 
Figure 4.6 Low latency and high scalability quality scenario 

4.2 DESIGN STRATEGY FOR VARYING QUALITY ATTRIBUTES 

“Architecture of product families has both a descriptive and a prescriptive purpose” 

(Hallsteinsen et al., 2003). The former has its essence in documenting the structure and 

behavior of the general solution provided by the domain architectures. The design of domain 

specific software architecture is guided by several architectural drivers, so that the main 

structure and behavior can be well represented and understood by others stakeholders. The 

prescriptive aspect focuses on constraining and alleviating the task of the application 

designers by providing templates for application design. Those templates consists of 

architectural scenarios along with implementation and configuration guidelines. 

The main RiPLE-Design process output is the DSSA document, where the structure and 

behavior of the DSSA is documented, as well as the rationale behind the design decisions. 

This documentation is a descriptive aspect of the process. The mechanisms used to achieve 
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functional variability are also documented. Particularly, the RiPLE-Design process provides 

guidelines to achieve functional variability through design patterns, such as Strategy and 

Builder (Gamma et al., 1995), and how products derived from the DSSA should be assembled 

in order to deliver the desired functionality, so it is viable to benefit from software reuse. This 

is the prescriptive side of the process. 

Concerning quality attributes variability, this section describes a design strategy for varying 

quality attributes, the second point that should be addressed according to (Myllärniemi; 

Männistö; et al., 2006). This strategy focuses on the prescriptive aspect of the RiPLE process. 

It provides ways to standardize and document solutions to achieve recurring and varying 

quality attributes across the members of a software product line. The guidelines are based on 

(Hallsteinsen et al., 2003). 

Figure 4.7 shows a modified version of the define module task, inside the Architecture 

Definition activity. The modified version includes changes in two steps, namely, Select 

Architectural Drivers and Chose Architectural Styles, and the addition of a new step called 

Document Decision Guidelines. The modification will be described next. 
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Figure 4.7 Module definition task modified, in flowchart notation 

4.2.1 Select architectural drivers 

Select architectural drivers is the first task in the Module definition activity from the RiPLE-

Design process. It uses the Feature Model and a ranked list of Quality Scenarios as inputs to 

choose the most important functional feature or quality attribute that should be considered to 

shape the architecture; or to choose the next most important feature or quality attribute, if a 
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One of the most important objectives of the software architecture is to achieve quality 

attributes requirements, and that is the main concern of the RiPLE-Design process. It is 
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architecture’s complexity. Nevertheless, the RiPLE-Design process does not mention quality 

attribute variability. Therefore, it is important to add to this step the concern about this 

particular case of variability. Knowing that quality attributes variability may cause high 

impact on the architectural definition, the proposed change in the Select architectural drivers 

task is that the domain architect enroll variable quality attributes as architectural drivers early 

in the process. 

The selection of variable quality attributes as architectural drivers come to organize the 

architectural design so that complex issues are addressed first, in order to minimize the effort 

of introducing solutions for this kind of variability later in the process, when the architecture 

would have its base structure and applying patterns and tactics would be more complicated. 

4.2.2 Choose Architectural Styles 

In this task, the domain architect must choose architectural styles and tactics that will 

structure the architecture definition to fulfill a chosen architectural driver. According to 

(Shaw; Garlan, 1996), an architectural style “defines a vocabulary of components and 

connector types, and a set of constraints on how they can be combined [and used]”. 

Architectural tactics is a term coined in (Bass et al., 2003) that represents “a design decision 

that influences the control of a quality attribute response.” The styles are chosen so that they 

suit architectural needs and cope well with possible conflicts between new and previously 

chosen styles. 

The choice for a particular architectural style or tactic is then documented in the DSSA. They 

are documented to solve specific design issues. The architectural documentation is meant to 

be a pattern language of recurring problems and solutions. Patterns can be well known 

architectural styles, like the Pipes and Filters style (Shaw; Garlan, 1996); established 

architectural patterns that concentrate on specific issues from some part of the design, such as 

the MCV pattern (Buschmann et al., 1996); or even particular solution built by the in-house 

team. Along with the proposed solution, described in the architecture document, it is 

important to describe the rationale behind the selection of a pattern and the possible influence 

it has on important quality attributes. By the end of several iterations, the DSSA 

documentation is composed by descriptive diagrams of structure and behavior, and rationale 

about the architectural styles, patterns and tactics applied. 
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Functional variability will continue to be addressed the same way it was before: by the 

selection of proper architectural styles to ensure the achievement of system variability. 

Quality attributes that do not involve variability can also be addressed the same way as 

before: architectural styles and patterns and other design strategies are chosen to meet quality 

attributes and balance possible conflict and trade-off among quality attributes addressed 

beforehand. 

When the product line involves variable quality attributes, our approach is to encode 

architectural variation in the form of optional and alternative design strategies, as suggested in 

(Hallsteinsen et al., 2003). In this case, patterns represent possible paths to follow for 

promoting one quality attribute, perhaps over another. Optional strategies may or may not be 

included in application architecture. Alternative strategies are solving the same problems in 

different ways. The application architect may choose the one that best fits the application 

requirements. 

Optional strategies serve to document solutions for optional quality attributes. As shown 

previously in Figure 3.8 and Figure 3.9, the RiSE Chair software product line presents an 

example of optional quality attribute. High availability is only demanded in some products. 

The solution discussed in Section 3.3.1 showed a single architecture that achieves the high 

availability demand, and assumes that it is plausible to offer a single solution, even for 

products that do not demand high availability. Following the proposed guidelines to deal with 

optional quality attributes, our DSSA would document two possible solutions. A simpler 

solution, used in the general case, fulfills the low availability demand represented in the 

quality scenario of Figure 3.8; and a second solution, more robust, where the deployment 

introduces a proxy server to reroute the requests, just as explained in Section 3.3.1. The 

simpler solution, to be applied in the general case, is shown next, in Figure 4.8. 

 
Figure 4.8 Deployment diagram. General case. 
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Alternative strategies are used to document quality attributes variability that involve trade-off 

among attributes. In the example shown in Section 3.3.2, security and latency were in clear 

opposition. Figure 3.12 shows the performance scenario for the class of products with high 

performance demands and Figure 3.13 correspond to other class of products that demand 

higher security. 

In the previous example, RiPLE-Design process was followed and the conclusion was that the 

Domain Architect and the Domain Manager should come to an agreement where new 

response measured should be established so that both quality attributes could coexist in a 

single architectural solution. 

Following the new guideline, the architect can apply different tactics and propose different 

architectural styles, respecting the fact that both high security and low latency must not 

coexist. The DSSA should then document two alternative solutions: one for high security, 

where the latency concerns will be in second plane; and another for low latency, where 

security concerns will not play such an important role. 

Since the class of products demanding high confidentiality do not demand low latency, it is 

plausible to offer a solution that deals with confidentiality by applying the suggested tactics 

and patterns discussed in Section 3.3.2, that is applying the Maintain data confidentiality 

tactic, under the form of an encryption link implemented by a Secure Sockets Layer (SSL), 

very common in web applications. Without any concern about low latency, a simpler 

architecture can fulfill the expected quality attribute response measure, as shown in Figure 

4.9. 

 
Figure 4.9 Deployment diagram, secure link. 
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would not use the encryption layer, making it easier to achieve the latency response measure 

expectations. 

Quality attribute variability is treated externally to the components, i.e. it is represented in the 

component connectors. Functional variability can be internal to the component. Functional 

variability has its way of implementation and documentation. The use of design patterns, for 

example, is suggested in the RiPLE-Design process. To deal with variable quality attributes, 

on the other hand, the same patterns may not apply, especially when the variant solutions 

promote a large change in the architecture. The suggestion is to introduce variation points also 

in the DSSA documentation. Optional strategies can be documented as suggested solution to 

deal with optional quality attributes, and alternative strategies can serve alternative quality 

attributes. 

4.2.3 Document decision guidelines 

In order to improve and alleviate the work of application designers, there must be some 

decision guidelines to help them evaluate the consequences of each decision. As there will be 

many possible solutions for the product architecture, each path must be well documented, the 

foreseen impacts well described and measured when possible. 

This task is helped by the use of quality attribute scenarios. Their stimulus-response structure 

can be associated with design strategies. This association works very well as documented 

solutions for the architecture. For a given stimulus, the impact of each design strategy can also 

be observable in its response. Following the suggestions of (Hallsteinsen et al., 2003), all 

those aspects can be put together in a summarized form, to help further designer tasks. An 

example of such summary can be found in Table 4-1, and exemplifies the case of optional 

availability. 

Recovery strategies 
Strategy 

Affected quality 

attributes Stimulus Response 

Internal component 

failure 

Until 8 hours of 

downtime 

Email notification, 

system reboot 
Availability, 

recoverability Few Minutes of 

downtime 

SMS notification, 

proxy router server, 

Backup system 

Table 4-1 Decision guideline for optional availability 
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If we apply this approach in the RiSE Chair project, in the case of variability in availability, 

the solution would indicate guidelines at the deployment view as well as special error 

notification components, for example, introducing notification per SMS. In this case, more 

critical products would be instantiated with a more robust recovery plan, and faster error 

notification. A more complete spare software platform could be made ready in case of higher 

level of availability. Less critical products would not need to afford expensive recover plans 

and platforms. The solution for the low availability demand is shown in Figure 4.8, the more 

complex solution, describing a complete spare platform is shown in Figure 3.10 and Figure 

3.11. 

In the case of trade-off between security and performance, two alternative solutions could be 

proposed. The summarized documentation of this case is shown in Table 4-2. The first 

solution introduces the secure protocols and time consuming encryption of data. It also leaves 

the concerns about latency aside, as they have lower priority. In an alternative solution, the 

Reduce Computational Overhead (Bass et al., 2003) tactic would be applied, by removing 

layers and intermediaries, along with a load balancer proxy server, as discussed before. As 

security would have a lower priority, the security protocol would be the first architecture layer 

to be removed. Further shrinking of the layered structure could damage the solution 

modifiability and harm the other architectural drivers. 

Security/performance strategies 
Strategy 

Affected quality 

attributes Stimulus Response 

Eavesdropper sniffs the 

network;  

loose latency 

requirements 

Data encrypted and 

unreadable, 

average latency of 

1 minute 

SSL 
Security, 

performance 

Low latency, high user 

load 

Average latency of 

3 seconds 

Load balancer, no 

SSL 

Table 4-2 Decision guideline for optional availability 

Both solutions should be described in the architecture document with rationale about when to 

follow each strategy. The DSSA documentation would describe that SSL encryption are time 

consuming and could be left aside in the latter solution, as well as a load balancer would be 

necessary to attend a possible high user demand. The former solution would describe that SSL 

encryption would serve well the quality attributes response measure expectations as it is a 

technology of known efficiency against this kinds of attack. 
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Component specification must still go together with design strategy descriptions. They are 

still a crucial piece of documentation of the architecture. In RiPLE-Design, component 

definitions come later in the process, after the module definition step. Components can be 

derived from domain features and from domain use cases. When the components are defined 

from use cases, the guidelines proposed by the RiDE process from (Almeida, 2007) are 

followed. When the domain features are used, the resulting components represent a feature or 

a group of features that can be implemented by a single component. The variability inherent 

to a group of features is represented internally or externally in the component using UML 

component diagrams and stereotypes. High level variant features lead normally to 

components with external variation, while features that represent implementation selection 

and details lead to internally variant components. As the fine grain structural representation is 

normally needed, classes that will implement each component must be defined along with the 

technique chosen to implement the functional variability. 

A well-documented DSSA would count with structural and behavioral diagrams, as well as 

decision guidelines for each variation point introduced in the architecture by variable quality 

attributes. In order to derive family members, the application designer must: 

(i) Resolve variation points based on the needs of the application architecture. The 

needs here should recall to quality attributes and the specialized quality model 

is then used next. That is, the quality scenarios that are important for each 

member the architect wants to derive; 

(ii) Patterns are selected following the decision guidelines. The proposed solution 

can be verified further using the already documented quality attribute scenarios 

described in the decision model; 

(iii) Components specifications that match the design strategies can then be 

selected. 

4.3 EVALUATE THE ARCHITECTURE IN ORDER TO ACHIEVE THE NEEDED 

VARIATION 

Several types of software architecture evaluation methods exist: some are like SAAM 

(Clements et al., 2006), which is generic, but is used to evaluate one quality attribute at a 
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time; the already mentioned ATAM is an example of trade-off analysis methods, that evaluate 

many attributes; and there are some specific for only one attribute, such as SALUTA (Folmer 

et al., 2003) for usability. Such techniques are essentially made for single system development 

and cannot be directly applied to product line development. They are not proper to evaluate a 

PLA, even though they could be used to evaluate each product in the line. 

In a product line, different members may require different levels of a quality attribute 

requirement. This variability leads quality evaluation in software product lines to be much 

more complicated than in single-system (Etxeberria; Sagardui, 2008). (Olumofin; Misic, 

2005) advises that “traditional system development practices for single products cannot be 

directly applied to product line development”. The author shows that architecture-centric 

evaluation methods are all generally made for single-systems and product line specific 

evaluation methods normally evaluate only the resulting products. 

The evaluation of every product in the product line can be valid, but seems too expensive. 

Nevertheless, it can be possible to make them shorter and cheaper as (Clements; Northrop, 

2001) points out: 

Product architecture evaluation is a variation of the product-line 

architecture evaluation as the product architecture is a variation of the 

product-line architecture and the extent to which product evaluation is 

a separate, dedicated evaluation depends on the extent to which the 

product architecture differs in quality-attribute-affecting ways from 

the product-line architecture. 

Figure 4.10 shows two new activities added to the main RiPLE-Design process. First, to 

Evaluate existing architectures, in order to detect problematic issues and risks points and 

perhaps choose an existing architectural approaches to serve as basis of the future DSSA. As 

the last activity in the process, Evaluate the DSSA, so the proposed architectural solution can 

be assessed
4
 about its ability to enable variability and fulfill other quality attribute 

requirements. A third step is also suggested: to Evaluate derived product architectures. It is 

not shown in Figure 4.10, since it refers to the core asset development part of the RiPLE 

process, and the evaluation of derived products would be part of the product development part 

of the process. 

                                                 

 
4
 In the discussions that follow, the terms assessment, evaluation, and analysis will be used interchangeably. 
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Figure 4.10 RiPLE-Design including Evaluation steps, in flowchart notation 

4.3.1 Evaluate existing architectures 

Concerning architecture evaluation, the first change suggested to RiPLE-Design is illustrated 

in the upper region of Figure 4.10: to Evaluate existing architectures, in order to assess its 
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evaluation should follow the Architecture Trade-off Analysis Method (ATAM) (Kazman et 

al., 2000). 

ATAM is a scenario-based approach for single systems architecture evaluation. As discussed 

in (Kazman et al., 2000), “when evaluating an architecture using the ATAM, the goal is to 

understand the consequences of architectural decisions with respect to the quality attribute 

requirements of the system.” It fits very well the guidelines already proposed in RiPLE-

Design, which is also a scenario-based approach, aiming to fulfill quality attribute 

requirements of a software product line. Scenarios help to remove the ambiguity in the 

description of a quality attribute, as stated by (Bass et al., 2002). They are used as a common 

interface between stakeholders and the design team. The simple language helps to bring 

different stakeholders together and discuss in the same terms. 

In the case of assessing existing architectures to serve as basis for a DSSA, the evaluation 

must focuses on the scenarios that may compose the domain quality attributes, and assess how 

the existing architecture has dealt with those scenarios. The main outputs of this activity are a 

set of domain scenarios, and the architectural decisions under the form of Risks, Non-Risks, 

Sensitivity points and Trade-off points. 

Risks are potentially problematical architectural decisions, a possible weakness to be avoided 

in the DSSA. Non-risks are fine decisions that rely on assumptions that are frequently implicit 

in the architecture, and remain non-risk as long as the assumptions do not change. The domain 

architect must ensure the good design decision made in prior application architectures still 

apply in the DSSA. 

A sensitivity point is a property of one or more components (and/or component relationships) 

that is critical for achieving a particular quality attribute response. For example, the level of 

confidentiality in a virtual private network might be sensitive to the number of bits of 

encryption. Sensitivity points tell a designer or analyst where to focus attention when trying to 

understand the achievement of a quality goal, as discussed in (Kazman et al., 2000). 

A trade-off point is a property that affects more than one attribute and is a sensitivity point for 

more than one attribute. As in the example shown by (Kazman et al., 2000), changing the 

level of encryption could have a significant impact on both security and performance. 
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As suggested by (Etxeberria; Sagardui, 2005), evaluation can and should be held in different 

moments in software product line development. At core asset development, evaluation can be 

useful to detect problematic issues and risks points or compare software architecture 

candidates to select the one that best supports the required quality attributes. Evaluation can 

also be held before developing the reference architecture in order to use existing architectures 

as basis for the product line. 

4.3.2 Evaluate the DSSA 

Existing architecture evaluation approaches focus on single product architectures and offer 

little support for the particular characteristics of product line architectures. Architecture-based 

development of software product lines, as suggested in the RiPLE-Design process, requires 

the appropriate architecture evaluation methods specifically addressing the quality of software 

product line architectures.  

Product line architectures bring challenges which are not present in single product 

architectures, and those differences make the assessment of such architectures rather difficult. 

 Quality attribute scenarios are more numerous than in single systems, they are context 

dependent (some of them apply to the whole product line architecture, others to the core 

assets and some specific product architecture, and yet others to one or more product 

architecture only). In addition, three distinct forms of quality attributes scenarios may be 

identified. Mandatory scenarios apply to all products alike. The alternative and optional 

scenarios are product-specific and should only apply to the analysis of individual product 

architectures. 

Another product-line specific characteristic is that there are two level of architectural 

abstraction where an evaluation can be performed (software product-line architecture and 

derived product architectures). To assess all the instances of the product-line may not be 

worthwhile due to the high cost (Etxeberria; Sagardui, 2005). 

Organizational factors can also influence product-line architecture evaluations: a PLA 

involves more stakeholders than a single system because the scope is much larger than the one 

of single-product architecture (Etxeberria; Sagardui, 2005). 
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PuLSE-DSSA also defines a process for evaluation of reference architectures (Anastasopoules 

et al., 2000). However, it has limited applicability as the evaluation process is bound to the 

PuLSE methodology, and there is no tradeoff analysis as it iteratively defines evaluation 

criteria per scenario. 

The QADA process, defined in (Matinlassi et al., 2002), includes architecture evaluation 

guidelines. However, the approach does not provide guidelines for product architectures 

evaluation. 

Other methods focus on a limited set of quality attributes for the assessment, which limits 

their applicability in practice (Auerswald et al., 2001; Lassing, 2002; Maccari, 2002).  

A comprehensive, albeit not too rigorous overview of a number of product line architecture 

evaluation techniques can be found in (Etxeberria; Sagardui, 2005). 

A number of product line architecture assessment methods have been proposed. Nonetheless, 

the majority of them fall short of addressing the challenges outlined above in a comprehensive 

and efficient manner. In order to address the outlined challenges, the Holistic Product Line 

Architecture Assessment (HoPLAA) method was proposed by (Olumofin; Misic, 2005).  

HoPLAA starts from the already mentioned ATAM (Kazman et al., 2000) and its trademark 

feature, the trade-off analysis between quality attributes. HoPLAA extends the ATAM with 

the qualitative analytical treatment of variation points and the context-dependent generation, 

classification, and prioritization of quality attributes scenarios. The notions that provide the 

foundation of the HoPLAA method are stated in (Olumofin; Misic, 2005), and show that the 

method was developed to cope well with quality attribute variability: 

The problem of evaluating product line architectures must be 

approached by considering not only the quality attributes common to 

the family of systems, but also those specific to some members only, 

and their interrelationships. It should be noted that individual product 

architectures may require a different prioritization of the quality goals 

common to the product line architecture, and they may even be 

associated with quality goals which are not present in other members 

of the product line. 
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The HoPLAA method addresses the evaluation of software product line architectures in an 

integrated approach with two analysis steps for the DSSA and the Product Architecture (PA). 

The integrated approach simplifies the analysis of quality attributes and their interactions, 

since the architectural decisions made right in the product line architecture creation impact 

individual product architectures derivations. The first stage of the method focuses on the 

DSSA evaluation, and will be described next. The second stage targets individual PA 

evaluation, and will be the focus of next section. 

Besides the traditional outputs obtained through an ATAM evaluation, the HoPLAA method 

produces outputs with more importance on the evolvability points and evolvability constraints. 

An evolvability point is an area of the DSSA which is a sensitivity point, and which contains 

at least one variation point. Sensitivity points are design decisions that affect one or more 

quality attributes, as in (Kazman et al., 2000). As pointed out by (Olumofin; Misic, 2005), the 

architectural decisions made in the DSSA, and found to be the sensitivity points to one or 

more quality attributes, continue to be valid for individual product architectures. Evolvability 

constraints are guidelines that accompany each evolvability point as special treatment for 

variation points that could alter quality. The constraints guide the subsequent PA design 

decisions and evaluation, so that they do not invalidate quality attribute requirements already 

addressed in the product line architecture. 

The HoPLAA seems a proper method for evaluating PLA and its derived product 

architectures as it assesses the architectures in different stages and evaluate important aspects 

of both general system development and specific product line issues. 

The activity Evaluate the DSSA adapts the guidelines proposed in the Holistic Product Line 

Architecture Assessment (HoPLAA) method, proposed by (Olumofin; Misic, 2005). The 

adaptation comprises the use of already generated quality scenarios during the evaluation 

process. 

This activity should be performed by the Domain architect together with the Domain 

manager. When possible, external architects can be added to the activity in order to improve 

the evaluation process. 
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The first stage of HoPLAA, presented in (Olumofin; Misic, 2005), applied in the Evaluate the 

DSSA activity, consists in the seven steps reproduced next. 

1. Present the HoPLAA Stage I. To present an overview of the method and the 

activities of both stages; 

2. Present the product line architectural drivers. The architectural drivers chosen 

to guide the architecture development. Motivating business needs, scope 

definition, and common and variable functionalities and quality attributes. Those 

drivers were already defined in the Architectural Drivers Identification activity; 

3. Present the product line architecture. The DSSA is presented by the Domain 

Architect; 

4. Identify architectural approaches. Architectural approaches used in the 

architecture are identified by the evaluation team. The list of approaches is 

documented but not analyzed. This step serves the purpose of constraining the set 

of architectural approaches in order to maintain consistency in the use of 

architectural approaches throughout the design of the DSSA and the individual 

PAs. 

5. Classify, and prioritize quality attribute scenarios. Quality scenarios that were 

already defined in the RiPLE-Design process will be used again for evaluation 

purposes. The mandatory quality scenarios, common to all products, are verified 

in the current stage, while alternative and optional scenarios will only receive 

special treatment later, when specific product architectures are to be evaluated. 

This way, only quality attributes concerns common to every product are checked 

to be addressed by the DSSA. Mandatory quality scenarios will not be verified 

again thoroughly in the second stage of the evaluation process. It is mandatory 

that the quality attribute of variability is analyzed at this stage. Since large-scale 

reuse, the purpose of the product line approach, is best realized when the 

architecture fully supports variability. Quality scenarios are ranked using three 

indexes: Generality, Significance and Cost, each of which is assigned a value in 

the enumeration [10, 20, 30], respectively for Low (L), Medium (M), and High 
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(H). Generality may be mandatory, alternative or optional, with values 30, 20 and 

10, respectively. Significance denotes the importance of the quality attribute 

scenario to the business driver. Cost represents the effort involved in enhancing 

the architecture to provide the right responses to the scenario. Once assigned to 

individual scenarios, the values of indexes are added up with even weight so as to 

prioritize the list of scenarios,. The most important attribute concerns shared 

among all products in the product line will characterize the scenarios on top of the 

list. 

6. Analyze architectural approaches and scenarios. High priority scenarios from 

the prior step are analyzed to obtain a set of risks, non-risks, sensitivity points and 

trade-off points, as well as evolvability points. Guidelines are associated with 

evolvability points to constrain subsequent changes that try to deviate the 

architecture from the quality attribute requirements already addressed, or to guide 

future analysis of product architectures. 

7. Present results. A report is prepared containing architectural approaches, quality 

scenarios, product-specific scenarios identified, areas of risk in the DSSA, non-

risks, sensitivity points, trade-offs, evolvability points and evolvability guidelines. 

A report template is provided in Appendix B. 

The evaluation process is largely helped by the architectural development activities realized 

previously. Scenarios developed to guide the architectural definition can be reused during the 

fifth step of the DSSA evaluation. Architectural approaches are already documented during 

the Choose architectural style activity and evolvability guidelines are documented during the 

Document decision guidelines. 

Architecture evaluation is an expensive exercise. The seven steps proposed by (Olumofin; 

Misic, 2005), during the first stage of the method are two less than the number of steps in a 

comparable ATAM evaluation. It is expected that important scenarios generated/brainstormed 

during the fifth step would have sufficed. 
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In terms of efficiency, Stage I of the HoPLAA analysis should take less time than the 

equivalent ATAM analysis of the core PLA, since some steps have been merged, and the 

analysis of some scenarios is deferred until Stage II. 

4.3.3 Evaluate derived product architectures 

As suggested by (Etxeberria; Sagardui, 2005), architecture evaluation for SPL should be used 

to evaluate the design of the product line architecture as well as the resulting individual 

product architectures of the line. At product development, the architectural conformance to 

the reference architecture can be assured. During product derivation, the impact of 

architectural decisions in quality attributes can be analyzed. 

In order to advance in the direction of a quality aware process that deals well with quality 

attribute variability, it is important to ensure that derived product architectures are also 

evaluated. The RiPLE-Design processes focuses on the core asset development phase of the 

software product line life cycle, nevertheless, the activity of Evaluate derived product 

architectures is suggested. 

The evaluation of individual product architectures adapts the second stage of the HoPLAA 

method, from (Olumofin; Misic, 2005). The motivation to adapt the second stage of the 

HoPLAA method is that it focuses not only in single-systems architectures, but in product 

architectures in the context of the DSSA that derived it. This focus lessens the effort of 

assessing product architectures and justifies the two-staged approach for evaluating DSSA 

and product specific architectures. It consists in the following steps. 

1. Present the HoPLAA Stage II. To present an overview of the HoPLAA and the 

activities of the second stage. 

2. Present architectural drivers. A short overview of the DSSA and the driving 

requirements for the particular product architecture being evaluated. Variable 

features, including functional and quality attribute requirements, should also be 

described. 

3. Present the product architecture. The focus must be on the areas of the 

architecture that have been improved through the realization of variation points. 



 

Extending the RiPLE-Design Process with Quality Attribute Variability Realization 81 

 

4. Identify architectural approaches. The Domain Architect identifies and 

documents new or different architectural approaches used in the product 

architecture. The approaches will be analyzed in a later step. If a newer 

architectural approach, not foreseen in the DSSA, is used to realize a variation 

point, it must be accompanied by a rationale. 

5. Prioritize quality attribute scenarios. Quality attribute scenarios that are 

specific to this product are reproduced for evaluation purposes. New product-

specific scenarios can also be generated. All the scenarios are then prioritized the 

same way as in Stage I. This prioritization is important because different products 

may have different priorities. 

6. Analyze architectural approaches. Two analyses must be performed by the 

architect: The architect must demonstrate how quality scenarios relative to the 

whole DSSA are not precluded in the product architecture design and also how the 

architecture realizes quality goals that are specific to the product being analyzed. 

Concerning the first analysis, when design decisions do not violate the 

evolvability guidelines, quality attributes continue to be satisfied. If the contrary is 

true, risks have been introduced in the product architecture and may prevent the 

achievement of quality attribute requirements. This analysis is especially 

important when the product architecture needed to change some DSSA guidelines.  

The second analysis consists of obtaining the architectural risks, non-risks, 

sensitivity points, and trade-off points for the product architecture. 

7. Present results. An evaluation report, similar to the one described in Stage I, is 

prepared. The main difference is that this report does not include evolvability 

points or evolvability guidelines, since product specific architectures do not need 

to support variability. A report template is provided in Appendix Appendix B. 

Stage II of HoPLAA evaluates the product-specific architectures. Some of the scenarios 

created in the previous stage are reused and the evolvability points and constraints are used as 

guidelines to lead the analysis into those areas of the product architecture that realize variation 
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points and may have change. Figure 4.11 shows the inputs and outputs of the Evaluate derived 

product architectures step. 

 
Figure 4.11 Evaluate derived product architectures 

With the two staged approach, we can suppose that the HoPLAA analysis of a PLA will take 

more time than the equivalent ATAM analysis of the core PLA architecture alone, but less 

time than would be needed to perform the ATAM analysis to each individual PA separately. 

In either case, HoPLAA would out-perform ATAM in terms of comprehensiveness and 

effectiveness of the analysis. 

4.4 CHAPTER SUMMARY 

From the deficiencies of the RiPLE-Design approach concerning the treatment of quality 

attribute variability, this chapter presented enhancements following the three pillars suggested 

by (Myllärniemi; Männistö; et al., 2006): the specification and modeling of varying quality 

attributes, design strategies for varying quality attributes, and architectural evaluation. 

The specification modeling of varying quality attributes is done with the aid of the feature 

model diagram, which is a central asset in the RiPLE process. The design of variable quality 

attributes adapts the approach from (Hallsteinsen et al., 2003) and documents alternative and 

optional architectural patterns and tactics in order to handle variation points in quality 

attribute requirements. The evaluation of product line architectures in order to guarantee 

variation achievement is done in two phases based on the Holistic Product Line Architecture 

Assessment (HoPLAA) method, proposed by (Olumofin; Misic, 2005). 

In the next chapter, it will be presented an experimental study with the Enhanced RiPLE-

Design performed with the purpose of characterizing and refining it. 
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5  
THE EXPERIMENTAL STUDY 

Software can be found in broad range of products, from televisions, to missiles and space 

shuttles. This means that great quantity software has been developed and is being developed 

(Wohlin et al., 2000). However, software development is a complex task that involves much 

creativity. Several problems can run into software development, e.g., missing functionalities, 

poor quality and missed deadlines. Managers are increasingly focusing on process 

improvement in the software development area, with the intention of reducing the cost of 

development, testing and maintenance over the life of the application (Chidamber; Kemerer, 

1994a). 

As discussed in (Basili, 1996), “progress in any discipline depends on our ability to 

understand the basic units necessary to solve a problem.” In the discipline of software 

engineering, empirical studies, like surveys, case studies and experiments plays an important 

role in the build of this understanding. Experimentation provides a systematic, disciplined, 

quantifiable and controlled way of evaluating human-based activities (Wohlin et al., 2000). 

Three classical forms of experimental studies are surveys, case studies and formal 

experiments (Kitchenham et al., 1995). Surveys aims at the development of generalized 

solutions. They focus on large groups and try to draw conclusions based on a wide range of 

variables. Formal experiments have as evident characteristics the carefully controlled 

environment, appropriate levels of replication, randomized selection of experimental subjects 

and objects. Case studies are observational, and focus on single, typical projects. Case studies 

are easier to plan than formal experiments, but are harder to interpret and difficult to 

generalize. 

In this sense, this chapter presents a formal experimental study performed with the purpose of 

characterizing the efficacy, understanding and applicability of the proposed enhancements to 

the RiPLE-Design process in the context of software product line projects. The process 
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defined in (Wohlin et al., 2000) was used to define, plan and execute a formal experiment. In 

order to consider SPL problems, the Travel Reservation domain, which contains functional 

variability as well as quality attribute variability requirements, was the project used in the 

study (Snell, 2002; Segura et al., 2007). 

The remainder of this chapter is organized as follows: Section 5.1 presents essential 

information to understand the terminology of experimental studies; Section 5.2 presents the 

definition, planning, operation, analysis and interpretation of the experimental study with the 

Enhanced RiPLE-Design, Section 5.3 presents the conclusions, and Section 5.4 presents the 

lessons learned with the experimental study. Finally, Section 5.5 concludes this chapter with 

its summary. 

5.1 EXPERIMENTAL TERMINOLOGY 

A controlled experiment is an investigation of a testable hypothesis where one or more 

independent variables are manipulated to measure their effect on one or more dependent 

variables (Easterbrook et al., 2008). In the study of a new development method on the 

productivity of personnel, the dependent variable is the productivity itself. Independent 

variables are the development method, tool support, the environment in which the experiment 

is conducted and the experience of the subject, for example. 

Independent variables changed during an experimental study are also called factors. A 

particular value of a factor is called a treatment. An experiment that assesses the changing of 

a development method can analyze two treatments of the factor: the old method and the new 

one. 

The treatments are being applied to the combination of objects and subjects. In software 

experiments, experimental subjects are individuals or groups (teams) who use a method or 

tool and objects may be the programs, algorithms, or problems to which the methods or tools 

are applied (Kitchenham et al., 1995). 

 An experiment consists of a set of tests where each test is a combination of treatment, subject 

and object (Wohlin et al., 2000). For example, a test can be that person N (subject) uses the 

new development method (treatment) for developing program A (object). 
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5.2 THE EXPERIMENTAL STUDY 

The experimental study was performed following the process defined in (Wohlin et al., 2000), 

an experiment process is necessary to make sure that the proper actions are taken to ensure a 

successful experiment, and it will provide support in setting up and conducting the study. The 

process divides the experiment process into the following main activities. Firstly, the study is 

contextualized in terms of the problem, objective and goals. The evaluation hypotheses are 

defined next, and the ways to evaluate the study. The planning activity comes next, where the 

design of the experiment is determined, the instrumentation is taken into account, and the 

threats of the experiment are evaluated. The operation activity is next, and it follows the 

design of the experiment determined previously. In this activity, the measurements are 

collected, and then analyzed during the analysis and report activity. 

The next sections present the contextualization, planning, operation, analysis and report of the 

experiment. The experiment presentation and package is represented with this chapter. 

5.2.1 Contextualization 

This section determines the foundation of the experiment. If the foundation is not properly 

laid, rework may be required, or even worse, the experiment cannot be used to study what was 

intended (Wohlin et al., 2000). The purpose of this phase is to define the goals of the 

experiment according to a defining framework. In this experimental study, the Goal Question 

Metric (GQM) will be used for definition (Basili et al., 1994). 

The GQM is based on the assumption that an organization interested 

in measurements must first specify the goals for itself and its projects, 

trace those goals to the data that are intended to define those goals 

operationally, and finally provide a framework to interpreting the data 

with respect to the stated goals. (Basili et al., 1994). 

The result of the application of GQM is the specification of a measurement system focusing 

on a set of particular issues, and a set of rules for interpreting the measured data. The resulting 

measurement model has three levels (Basili et al., 1994): 

 Conceptual Level (Goal): A goal is defined for an object, for a variety of 

reasons, with respect to various models of quality, from various points of view, 

relative to a particular environment; 
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 Operational Level (Question): A set of questions is used to characterize the 

way the assessment of a specific goal is going to be performed based on some 

characterizing model; 

 Quantitative Level (Metric): A set of data is associated with every question in 

order to answer it in a quantitative way. Metrics can be Objective, if they 

depend only on the object that is being measured and not on the viewpoint 

from which they are taken; or Subjective, if they depend on both the object that 

is being measured and the viewpoint from which they are taken. 

The next subsections present the goal, questions and metrics that were used in this 

experimental study. 

5.2.1.1 Goal 

The goal of this experimental study is to analyze the Enhanced RiPLE-Design process for the 

purpose of characterization with respect to the quality of the generated architecture, process 

understandability and applicability from the point of view of researcher in the context of 

software product line projects with variable quality attributes requirements. 

The goal, questions and metrics will serve the purpose of analyzing quality aspects related to 

the Modifiability of the generated architecture. They will also aid a superficial assessment on 

how functional and quality attribute requirements were addressed by the subjects as a result of 

the experiment procedure. In order to analyze other quality aspects of the architecture, such as 

the achievement of any other quality attributes, further studies will be required. 

Other process aspects such as its overhead, the process scalability for large teams and the 

adequacy to small teams, will also be left out of this assessment. 

Although the Enhancements to the RiPLE-Design process also provide guidelines for DSSA 

evaluation, this part will be left out of the scope of the experimental study due to time and 

resource constraints. 

5.2.1.2 Questions 

Q1. Does the RiPLE-Design aid architects to generate components with loose coupling? 

Q2. Does the RiPLE-Design aid architects to generate components with low instability? 

Q3. Does the proposed architecture address the functional requirements? 

Q4. Does the proposed architecture address functional variability? 
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Q5. Does the proposed architecture address the quality attributes? 

Q6. Does the proposed architecture address quality attribute variability? 

Q7. Do the subjects have difficulties to understand the RiPLE-Design enhancements? 

Q8. Do the subjects have difficulties to apply the RiPLE-Design enhancements in practice? 

5.2.1.3 Metrics 

M1. Coupling between components (CBC): as defined in (Perepletchikov et al., 2007), 

Coupling is a measure of the extent to which interdependencies exist between software 

modules. Since components communicate with each other through defined interfaces, the 

Coupling Between Object Classes (CBO) defined in (Chidamber; Kemerer, 1994b), is 

applicable for components as well. The CBO relates to the notion that an object is coupled to 

another object if one of them acts on the other. In the context of components, it means that 

CBC is defined as the count of component a given component calls operations on. This 

definition is similar to the Direct Component Coupling metric (DCMCM) defined in (Chen et 

al., 2009). It is a function defined as: 

CBC(c) = number of components used by another component (c), where (c) is a component of 

a given system. 

This coupling metric has range [0, n], where n is the number of components different from (c) 

of a given system. CBC = 0 indicates a totally loosely coupled component, and CBC = n 

indicates a maximally coupled component. 

This metric helps to evaluate the quality of a given architecture as excessive coupling between 

components is detrimental to modular design and prevents reuse. The more independent a 

component is, the easier it is to reuse it in another application (Chidamber; Kemerer, 1994b). 

Loosely coupled components are crucial in the context of product line architecture. 

Maintenance is also more difficult in largely coupled architectures, because the larger the 

number of couples, the higher the sensitivity to changes in other parts of the design. 

This measure is also useful to determine how complex the testing of various parts of a design 

is likely to be. The higher the component coupling, the more rigorous the testing needs to be. 

M2. Component Instability (CI): the interdependence of the subsystems within a design is 

what makes it rigid, fragile and difficult to reuse (Martin, 2002). A rigid design cannot be 
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easily changed. This rigidity is due to the fact that a single change to heavily interdependent 

software begins a cascade of changes in dependent modules. The impact of the change cannot 

be easily estimated because the extent of that cascade of changes. 

(Martin, 2002) defines stability as a measure of the difficulty in changing a module. It is 

related to the amount of interrelated modules some module has. The Instability of a 

component is, then: 

CI (c)=Ce/(Ca+Ce), where Ca is the number of components that depend upon the component 

(c), and Ce is the number of components that the component (c) depends upon. 

The Component instability metric has range [0, 1], where CI = 0 indicates a maximally stable 

component and CI = 1 indicates a totally instable component (Martin, 2002). 

M3. Addressed Functional requirements (AFD): this metric will be used to identify 

whether the proposed architectural solution was able to address the functional requirements 

listed in the experiment task. As any other software architecture, the DSSA must address the 

domain requirement. This information will be captured after analyzing the DSSA 

documentation produced by the subjects. The measure is defined as: 

AFD = % of functional requirements addressed by the architecture 

M4. Addressed Functional Variability (AFV): this metric will be used to identify whether 

the proposed architectural solution was able to address the functional variability described in 

the experiment task. The main purpose of a software product line is to achieve variability 

(Bosch, 2000). This information will be captured after analyzing the DSSA documentation 

produced by the subjects against the feature model described in the experiment task. The 

measure is defined as: 

AFV = % of functional variation points addressed by the architecture 

M5. Addressed Quality Attributes (AQA): this metric will be used to identify whether the 

proposed architectural solution was able to address the quality attributes listed in the 

experiment task. As any other software architecture, the DSSA must address quality attribute 

requirements (Bass et al., 2003). This information will be captured after analyzing the DSSA 

documentation produced by the subjects. The measure is defined as: 

AQA = % of quality attributes addressed by the architecture 
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M6. Addressed Variable Quality Attributes (AVQA): this metric will be used to identify 

whether the proposed architectural solution was able to address the quality attribute variability 

described in the experiment task. Aside from functional variability, quality attribute 

variability is an important issue that has been neglected for a long time (Etxeberria et al., 

2008). The main purpose of the Enhanced RiPLE-Design process is to help domain architects 

to produce architectures that can enable quality attribute variability. This information will be 

captured after analyzing the DSSA documentation produced by the subjects. The measure is 

defined as: 

AVQA = % of non-functional variation points addressed by the architecture 

M7.   Problems (MP): This metric will be used to identify possible misunderstanding 

problems concerning RiPLE-Design documentation. It is necessary to identify and analyze the 

difficulties found by the subjects learning the approach. The misunderstanding problems 

found will be mapped to the respective activity of the approach according to the information 

provided by the subjects. This mapping will be used to detect problems in RiPLE-Design with 

the purpose of refining its documentation. This information will be provided by the subjects 

using a questionnaire. In this sense, the following metric will be evaluated: 

MP = % of subjects that had difficulties to understand RiPLE-Design. 

M8. Applicability Problems (AP): This issue will be used to identify possible applicability 

problems during the execution of RiPLE-Design. It is necessary to identify and analyze the 

difficulties found by the subjects applying the approach in practice. The applicability 

problems found will be mapped to the respective activity of the approach according to the 

information provided by the subjects. This mapping information will be used to detect 

specific problems regarding the applicability of the RiPLE-Design in practice with the 

purpose of refining its activities. This information will be provided by the subjects using a 

questionnaire. In this sense, the following metric will be evaluated: 

AP = % of subjects that had difficulties to apply the RiPLE-Design in practice. 

5.2.1.4 Qualitative assessment 

Apart from the quantitative analysis that will be carried out based on the aforementioned 

questions and metrics, a qualitative assessment of the architectural solutions produced by the 

subjects during the experiment will be performed. The objective of this analysis is to assess 
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the quality of the produced artifacts and the proposed solutions. This evaluation is essentially 

subjective, as many architectural evaluation methods, such as ATAM (Kazman et al., 2000), 

although very structured as a methodology, are still very dependent on the evaluators’ 

experience. 

5.2.2 Planning 

This plan identifies all the issues to be addressed so that the evaluation runs smoothly, 

including the training requirements the necessary measures and the data-collection procedures 

(Kitchenham et al., 1995). As any other type of engineering activity, the experiment must be 

planned and the plans must be followed in order to control the study. The results of the 

experiment can be disturbed, or even destroyed if not planned properly. 

5.2.2.1 Experiment task 

The objective of this experiment is to evaluate the quality of the generated architecture, 

understanding and applicability of the RiPLE- Design in the context of software product line 

projects. The experiment will be conducted in a university laboratory with postgraduate 

students using a project on the Travel Reservation domain. 

The study will be conducted as a Replicated Project, which is characterized as being a study 

which examines object(s) across a set of teams, and a single project (Basili et al., 1986). 

Given a simplified product line specification, comprising domain description, feature model 

specification, requirements specification and quality attribute scenarios, the subjects must 

produce a product line architecture specification describing: modules and component 

structural specifications (component diagrams), behavioral specification (sequence diagrams) 

and deployment specification as well as the variation mechanisms adopted. 

The subjects of the study will be requested to act as the roles defined in the RiPLE-Design, 

i.e., domain architects and domain manager. A subject can play more than one role during 

different activities and tasks of the RiPLE-Design. All the subjects will be trained to use the 

approach as discussed next. 
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5.2.2.2 Experiment procedure and instrumentation 

The subjects will be trained to use the approach at the university. The training will be divided 

in two steps: in the first one, concepts related to software reuse, variability, component-based 

development, domain engineering, software product lines, asset repository, software reuse 

metrics, and software reuse processes will be explained during ten lectures with two hours 

each at a postgraduate course at the Federal University of Pernambuco. 

In a second step, independently of the university course, the experimenter will present and 

discuss the concepts and guidelines of the Enhanced RiPLE-Design for software product line 

architectural development. It will be discussed during a two-hour lecture. During the training, 

the subjects can interrupt to ask issues related to the lecture. 

In order to assess their experience, all the subjects will receive a questionnaire (QT1) about 

his/her education and experience. This questionnaire will be used to evaluate their educational 

background, participation in software development projects, and experience in software 

product lines and software reuse. 

In order to guide the participants in the experiment, the complete description of the RiPLE-

Design, with all supporting material, such as templates and guidelines will be provided by the 

experimenter. Additionally, the requirements of the software product line on the Travel 

Reservation domain, i.e., the project that will be used in this experiment, will be given to the 

participants as well. The following documents will be provided: 

1. RiPLE-Design: Complete description of the activities and tasks of the RiPLE-Design; 

2. Architecture Template: A document template to document the product line 

architecture; 

3. Travel Reservation Requirements: The business processes, feature model, quality 

attribute scenarios and use cases explaining the requirements and the variability of the 

software product line. 

The material will also include a second questionnaire (QT2) to evaluate the difficulties of the 

participants in reading and using the approach in practice. This questionnaire has the purpose 

of identifying possible misunderstandings and applicability problems during the execution of 

the RiPLE-Design. The architecture template can be seen in Appendix A, and the 

questionnaires in Appendix C. 



 

The Experimental Study 92 

 

5.2.2.3 Hypotheses, null hypotheses, alternative hypotheses 

5.2.2.3.1 Null hypotheses 
The null hypotheses determine that the use of the RiPLE-Design in software product line 

projects does not produce benefits that justify its use and that the subjects will have 

difficulties to understand and apply the approach in practice. 

H1. µCBC without RiPLE-Design < µCBC RiPLE-Design. 

H2. µCI without RiPLE-Design < µCI RiPLE-Design. 

H3. µAFD without RiPLE-Design > µAFD with RiPLE-Design. 

H4. µAFV without RiPLE-Design > µAFV with RiPLE-Design. 

H5. µAQA without RiPLE-Design > µAQA with RiPLE-Design. 

H6. µAVQA without RiPLE-Design > µAVQA with RiPLE-Design. 

H7. µ More than 50% of the subjects will have difficulties to understand the RiPLE-Design. 

H8. µ More than 50% of the subjects will have difficulties to apply RiPLE-Design in practice. 

Since no baseline exists concerning the understandability and the applicability of the RiPLE-

Design process, neither for the traditional process nor for the enhanced version, the value of 

50% was arbitrarily chosen in the hypotheses H7 and H8. 

5.2.2.3.2 Alternative hypotheses 
H1. µCBC without RiPLE-Design ≥ µCBC RiPLE-Design. 

H2. µ CI without RiPLE-Design ≥ µCI RiPLE-Design. 

H3. µAFD without RiPLE-Design ≤ µAFD with RiPLE-Design. 

H4. µAFV without RiPLE-Design ≤ µAFV with RiPLE-Design. 

H5. µAQA without RiPLE-Design ≤ µAQA with RiPLE-Design. 

H6. µAVQA without RiPLE-Design ≤ µAVQA with RiPLE-Design. 

H7. µ More than 50% of the subjects will not have difficulties to understand the RiPLE-

Design. 

H8. µ More than 50% of the subjects will not have difficulties to apply RiPLE-Design in 

practice. 
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5.2.2.4 Subjects and Objects 

The selection of subjects, or sample of population, is closely related to the generalization of 

the results from the experiment. In order to generalize the results to the desired population, the 

selection must be representative for that population (Wohlin et al., 2000). Ideally, this 

selection should be randomly chosen. 

The subjects of the experimental study will act as domain architect as defined in the RiPLE-

Design. In this experiment, the subjects will be selected using a Convenience Sampling, in 

which the nearest and most convenient people are selected. It is a non-probability sampling 

technique, i.e., the probability of selecting each subject is unknown (Wohlin et al., 2000). 

If there is a large variability in the population, a larger sample size is needed (Wohlin et al., 

2000). In this study, the variability of the population is not very large, since all of the subjects 

have degree in computer science; they are all postgraduate students; and all have attended a 

similar set of disciplines in their postgraduate courses. However, the experience of the 

subjects may be significantly different as some of them have worked in different 

organizations. 

The experience of the subjects with product line projects and architectural design is an 

independent variable of this study and will be used to group subjects. 

1. Subjects with significant experience: Subjects that have participated in at least three 

industrial and three academic software projects; 

2. Subjects without significant experience: Subjects that have not participated in at least 

three industrial and three academic software projects. 

The quality of the artifacts produced, the understandability of the process and its applicability 

are considered dependent variables of this study. 

The experience of the subjects and the use of RiPLE-Design will be manipulated with the 

purpose of measuring the effects on the quality of the architecture generated. In addition, the 

understandability of the RiPLE-Design documentation, and the applicability of the process 

will be analyzed considering the experience of the subjects. 

5.2.2.5 Experiment design 

A design of an experiment describes how the tests are organized and run. In this experiment, 

the One Factor with Two Treatments design will be used as illustrated in Table 5-1. In the 
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context of experimentation, there are three general design principles that are frequently used 

in experimental studies: 

1. Blocking: It is used to systematically eliminate the undesired effect in the comparison 

among the treatments. Within one block, any undesired effect is the same and we can 

study the effect on the treatments on that block (Wohlin et al., 2000); 

2. Randomization: It is the most important design principle. It is used in the selection of 

the subjects and in the assignment of subjects to treatments. Ideally, the subjects must 

be selected randomly from a set of candidates, and they should be assigned to 

treatments randomly (Wohlin et al., 2000). 

3. Balancing: If we assign treatments so that each treatment has an equal number of 

subjects, we have a balanced design. Balancing is desirable because it both simplifies 

and strengthens the statistical analysis of the data (Wohlin et al., 2000). 

Based on those principles, the assignment of subjects will be done by the following rules: 

(i) The experience of the subjects, assessed through the use of a questionnaire, will be 

used to group subjects with similar profiles; 

(ii) From the same experience category, the assignments of subjects to the treatments 

will be done randomly; 

(iii) In order to balance the experiment, the same number of subjects will take part in 

each treatment. Furthermore, each treatment will have similar experience average. 

For example, if we count with 4 high experienced and 4 low experienced subjects, each 

treatment will count 2 high experienced and 2 low experienced subjects. 

Factor 

The quality of the PLA produced, measured by Coupling and Instability 

Treatment 1 Treatment 2 

Design the PLA without a structured 

method 

Design the PLA following the Enhanced 

RiPLE-Design 

Table 5-1 One Factor with two treatments design 

5.2.2.6 Validity evaluation 

It is fundamental to evaluate the validity of experiment’s results. The results are said to have 

adequate validity if they are valid for the population to which we would like to generalize 

(Wohlin et al., 2000). In this study, four categories of validity were considered as described 

next. 
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Conclusion validity: Threats to the conclusion validity are concerned with issues that affect 

the ability to draw the correct conclusion about relations between the treatment and the 

outcome of an experiment. In this study, the following threats to conclusion validity were 

considered: 

 Reliability of measures: The validity of an experiment is very dependent on the 

reliability of the measures. In this study, no baseline values for the metrics 

were found, since the experimentation performed for the original RiPLE-

Design (Souza Filho et al., 2009), have had different objectives. This issue can 

be a problem since baselines in the context of the study cannot be used to 

compare our finds.  

 Random heterogeneity of subjects: “There is always heterogeneity in a study 

group. If the group is very heterogeneous, there is a risk that the variation due 

to individual differences is larger than due to the treatment.” (Wohlin et al., 

2000). In this sense, the study will try to reduce group heterogeneity by 

choosing subjects from a group of postgraduate students that do research in the 

same area and attended to a similar set of postgraduate disciplines. 

Internal validity: Threats to internal validity are influences that can affect the independent 

variable with respect to causality, without the knowledge of the researcher. It is the capacity 

to replicate the experiment using the same subjects and objects. The following internal 

validity threat was considered: 

 Maturation: Subjects react differently when performing the experiment. Some 

participants can be affected negatively (tired or bored), while others positively 

(learning with practice). In this sense, the subjects performing the experiment 

will be volunteers. Thus, it can be assumed that they have some interest in the 

study. 

Construct validity: It concerns the generalization of the experiment’s results outside the 

experiment setting. In this study, the following construct validity threat was considered: 

 Mono-operation bias: If the experiment includes a single independent variable, 

case, subject or treatment, the experiment may under-represent the construct 

and thus not gives the full picture of the theory. In this sense, it would be better 

if the proposed enhancements to RiPLE-Design could be analyzed comparing 

it with other software product line design approach. However, as already 

mentioned, other systematic and structured approaches that deal with quality 

attribute variability are still emerging. RiPLE-Design will then be compared 

with ad-hoc development. 
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External validity: Threats to external validity are conditions that limit our ability to 

generalize the results of our experiment to an industrial practice. In this study, the following 

external validity threat was considered: 

 Interaction of setting and treatment: This is the effect of not having the 

experimental settings or material representative of industrial practices, for 

example. In this study, the Travel Reservation domain will be used. This 

domain is commonly used in Service-oriented architecture and software 

product lines works, such as (Medeiros, 2010; Snell, 2002), and can represent a 

real and complex problem. 

5.2.2.7 The experiment project 

The project used in this experimental study was a software product line to develop systems to 

fit the requirements of different online travel agencies. Three systems in this domain were 

selected and detailed carefully. The subjects were asked to perform domain design activities 

with the purpose of designing a set of architectural elements that could be reused to develop 

the three systems, in the form of a software product line. A similar project was used under 

experimentation in (Medeiros, 2010). 

The systems designed offer to their customers the benefit of planning and reserving travel 

arrangements on the Internet. The three systems should achieve the following goals 

(Medeiros, 2010): 

 The product line should allow customers to submit travel itineraries and payment 

information to the product line components using a Web interface; 

 The travel agency services should automatically obtain and reserve the appropriate 

services for the airline, hotel or vehicle according to the customer itineraries; 

 It should perform compensation operations for canceling itinerary failures; 

 It should automatically return confirmation or failure of all reservations back to the 

customer once the processing of the itinerary is complete. 

In this sense, different products in the line will be customized to fit the requirements of 

specific travel agencies, e.g., from small travel agencies that deal with accommodation 

reservations to bigger travel agencies that provide services to reserve airline tickets, 

accommodation and vehicles. 

The agencies focus in different market niches: 
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 Massive online agencies require high level of availability, as they work online 

and those systems can be accessed from anywhere in the globe, at anytime. 

 Premium agencies require very high level of confidentiality as they deal with 

VIP customers, such as companies CEOs. The user of these agencies are 

normally the VIP secretaries, they normally use its services during workdays. 

Service latency is not a major concern for this kind of product. 

 Regional specialized agencies do not require very high level of 

confidentiality, but require very short latency as they offer specialized services. 

5.2.2.8 Pilot Project 

A pilot project was conducted before performing the study with the same structure defined in 

this planning. The pilot project was performed by one subject, who was trained and will not 

participate of the real experiment. In the pilot project, the subject used the same material 

described in this planning, and was observed by the responsible researcher. The objective of 

the pilot project was to detect problems and improve the planned material before its use. 

The pilot project subject could be categorized as one with significant experience according to 

the aforementioned classification, having participated in five industrial and four academic 

projects. 

The pilot project could ensure the viability of the experiment in relation to the defined 

instruments, procedure and metrics. As the pilot was held only with one treatment, there was 

no comparison baseline to analyze the defined hypotheses. Nonetheless, all metrics could be 

gathered from the subject’s output. Namely, the subject had no difficult to understand variable 

quality attributes (EoP = 0%); the mean of CBC metric was 1.15; the mean of CI metric was 

0.51; The AFD, AFV, AQA and AVQA metrics were all of 100%, meaning that all variation 

points were embraced by the architecture as well as the functional and quality attribute 

requirements. The subject demonstrated also no difficulties to neither understand nor apply 

the Enhanced RiPLE-Design process. 

After conducting the pilot project some enhancements to the material were incorporated. 

Namely, the architecture document template used to gather the proposed solution was 

enhanced in order to suggest the subject to present structural diagrams for components and 

modules. The final version of this template is presented in Appendix Appendix A. 
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5.2.3 Operation 

This section presents the details about the execution of the experimental study performed with 

the purpose of characterizing and refining the Enhanced RiPLE-Design. 

5.2.3.1 Environment 

The experimental study was conducted with six subjects that performed the experiment in 

parallel. Each of the subjects designed a Domain Specific Software Architecture (DSSA), as 

proposed by the experiment task. The execution of the experiment task took 8 hours at the 

Federal University of Pernambuco (UFPE). 

Some subjects from treatment that performed the experiment task without the aid of the 

Enhanced RiPLE-Design process executed the task remotely and independently. It has not 

impacted the validity of the study, since those subjects did not require training and should 

perform the task alone. Those subjects have been instructed via videoconference presentation. 

5.2.3.2 Training 

The subjects were trained before the experimental study began. The training took 20 hours, 

divided into 10 lectures with two hours each, during the postgraduate course at the university. 

In addition, the subjects who used the proposed approach were trained 2 hours more to use the 

RiPLE-Design. 

5.2.3.3 Subjects 

Subjects were selected among students from the Federal University of Pernambuco, being 

three M.Sc. and three Ph.D. students. The recruiting process was open and accepted 

volunteers that had had already software reuse experience at least during the Software reuse 

lectures in the postgraduation course. All the subjects had industrial experience in software 

development for more than three years and had participated in industrial projects involving 

some kind of reuse activity. In addition, all the subjects had participated in SPL academic 

projects, and some had applied the approach in industrial context. The subject had also some 

experience with software design and domain design. Table 5-2 shows a summary of the 

profile of the subjects involved in this experiment. 
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Subjects with ID 1, 2 and 3 performed the experiment task with the RiPLE-Design process; 

subjects with ID 4, 5 and 6 performed the task without the aid of the process. The assignment 

of subjects and treatments followed the rules described in the Experiment Design section. 

ID Academic Projects Industrial Projects SPL Projects 

1 

(4) Low Complexity 

(0) Medium Complexity 

(0) High Complexity 

(3) Low Complexity  

(1) Medium Complexity 

(1) High Complexity 

(2) Academic 

2 

(1) Low Complexity  

(1) Medium Complexity 

(0) High Complexity 

(1) Low Complexity  

(1) Medium Complexity 

(0) High Complexity 

(1) Academic 

3 

(11) Low Complexity  

(3) Medium Complexity 

(2) High Complexity 

(5) Low Complexity  

(5) Medium Complexity 

(4) High Complexity 

(3) Academic 

4 

(8) Low Complexity  

(2) Medium Complexity 

(0) High Complexity 

(3) Low Complexity  

(2) Medium Complexity 

(1) High Complexity 

(3) Academic 

(1) Industrial 

5 

(0) Low Complexity 

(3) Medium Complexity 

(0) High Complexity 

(0) Low Complexity  

(3) Medium Complexity 

(0) High Complexity 

(1) Academic 

(1) Industrial 

6 

(2) Low Complexity  

(1) Medium Complexity 

(0) High Complexity 

(2) Low Complexity  

(2) Medium Complexity 

(2) High Complexity 

(2) Academic 

Table 5-2 Subject's Profile 

5.2.3.4 Costs 

The costs associated with the experimental study were relative to its planning and operation. 

All subjects were student volunteers from the Universidade Federal de Pernambuco, and the 

execution environment was the university labs. Planning for the experimental study took 

about two months. Within this period, the planning was reviews and refined three times. 

5.2.4 Analysis and Interpretation 

The results from the experimental study will be presented in this section. The analysis is split 

in quantitative and qualitative analysis. 
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5.2.4.1 Quantitative analysis 

Coupling: information about component coupling was collected from the proposed 

architectural solutions and then analyzed. The coupling between the components identified by 

the subjects is shown in Figure 5.1. Since different subjects identified and named components 

in different ways, irrespective of the name given to each component, they are enumerated in 

the X axis. Y axis represents the CBC metric for each component. Additionally, the subjects 

with Id = 1, 2, 3 used the Enhanced RiPLE-Design, while subjects with Id = 4, 5 and 6 

designed the project without following a structured method. 

 

Figure 5.1 Component Coupling 

As it can be seen in figure, the components generated using the Enhanced RiPLE-Design are 

more loosely coupled, when compared with the components produced without using the 

structured method. With regard to the coupling among the components defined by each 

subject, no result could be seen as an outlier. The result from subject (id = 4), with a highly 

coupled component (CBC = 4) among very loosely coupled components seems normal. The 

highly coupled component might represent a orchestration component, as in the Mediator 

design pattern (Gamma et al., 1995). 

Figure 5.2 compares the average of the CBC metric for all components, following the 

Enhanced RiPLE-Design and without using any method. This comparison denotes the 

rejection of the null hypothesis (µCBC without RiPLE-Design < µCBC RiPLE-Design). 
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Figure 5.2 Component Coupling Average 

We have not found any baseline for the coupling metric in the context of component 

development as well. Thus, there is no way to judge the values obtained with the treatments. 

However, these values can be used in new experiments as baselines. 

 

Figure 5.3 Component Instability 

Instability: information about component instability was collected from the proposed 

architectural solutions and then analyzed. The instability form the components identified by 

the subjects is shown in Figure 5.3. They are enumerated in the X axis with the same 

identifier as in the coupling analysis. Y axis represents the CI metric for each component. As 

in the coupling analysis, the subjects with Id = 1, 2, 3 used the Enhanced RiPLE-Design, 
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while subjects with Id = 4, 5 and 6 designed the project without following a structured 

method. With regard to the instability of each components defined by each subject, no result 

could be seen as an outlier. 

In average, the components generated using the Enhanced RiPLE-Design are slightly less 

instable, when compared with the components produced without using the structured method, 

as shown in Figure 5.4. This aspect indicates that the null hypothesis (µCI without RiPLE-

Design < µCI RiPLE-Design.) can be rejected. 

 

Figure 5.4 Component instability average 

We have not found any baseline for the instability metric in the context of component 

development as well. Thus, there is no way to judge the values obtained with the treatments. 

However, these values can be used in new experiments as baselines. 

As Figure 5.4 shows, the values of the average instability metric are very similar between the 

two treatments. The main factor that can be related to this similarity is the simplicity of the 

experiment task domain, which lead the subjects to develop simple architectures, with few 

components.  

Functional requirements: aiming to evaluate whether the proposed architectural solutions 

were able to achieve the functional requirements described in the experiment task, the AFD 

metric was collected and analyzed. Six use cases were defined in the travel reservation task 

and the data collected represents, for each subject, the percentage of use cases that were 

comprised by the proposed architecture. 
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Figure 5.5 shows a comparison between the mean of AFD from each treatment. Since every 

functional requirement was addressed by all architectural solutions, irrespective of the 

treatment, the null hypothesis (µAFD without RiPLE-Design > µAFD with RiPLE-Design) 

can be rejected without much significance. 

 

Figure 5.5 Functional Requirements 

The equality of the results for both treatments can be justified by the simplicity of the 

experiment domain and the subjects’ experience. Two factors relate to the experiment 

domain:  functional requirements were few and very clearly described in the experiment task. 

Concerning subjects’ experience, since all of them had already played developer and analyst 

roles in software projects, it can be acceptable that they can perceive and understand 

functional requirements straightforwardly. 

Functional variability: aiming to evaluate whether the proposed architectural solutions were 

able to achieve the functional variability described in the experiment task, the AFV metric 

was collected and analyzed. A total of three functional variation points were described in the 

experiment task, being two groups of three alternative features each and one group of two 

mutually exclusive (XOR) features. The data collected represents, for each subject, the 

percentage of functional variation points that were addressed by the proposed architecture.  

Figure 5.6 shows a comparison between the mean of AFV from each treatment. Data shows 

that, irrespective of the treatment, every functional variation point was addressed by the 

architectural solutions. Thus, the null hypothesis (µAFV without RiPLE-Design > µAFV with 
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RiPLE-Design) can be rejected without much significance. The small significance of the 

rejection can also be due to the small number of functional variation points present in the 

experiment task. It is important to remark, though, that in larger products, with more variation 

points, the use of a process becomes indispensable due to the raise in complexity. 

 

Figure 5.6 Functional Variability 

The same line of reasoning that justified the equality of results for the Functional 

Requirement achievement can be used to explain the similarity in the Functional Variability 

achievement. Another factor that can be added is the educational support given by the 

Software Reuse Lectures in the postgraduation course, which all the subjects attended to. 

During the lectures, attendees are asked to participate in a simulated software product line 

factory, producing core assets and deriving products. It seems right to assume that all subjects 

had already worked with and were familiar to functional variability issues such as Feature 

Model Diagrams and functional variability achievement. 

Quality attributes: data was collected in order to evaluate whether the proposed architectural 

solutions addressed the quality attribute requirement described in the experiment task. Three 

quality attributes were defined in the travel reservation task and the data collected represents, 

for each subject, which percentage of quality attribute were addressed by the proposed 

architecture. 

Figure 5.7 shows a comparison between the mean of AQA from each treatment. We could 

observe that without a proper methodology, the treatment of quality attribute scenarios have 
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been neglected by 16% of the subjects, since the architectural solution for the proposed task 

does not address all of them. 

Figure 5.7 shows that from without the aid of RiPLE-Design, in average, only 67% of the 

quality attributes requirements were addressed against 100%, when the subjects followed the 

Enhanced RiPLE-Design process. Based on this analysis, the null hypothesis (µAQA without 

RiPLE-Design > µAQA with RiPLE-Design) can be rejected. 

In absolute numbers, the results represents that a single subject (id = 6) missed the handling of 

quality attribute. No relation between the subjects profile and the mistreatment of the quality 

attribute scenario, since the subject is not the most or the less experience in his group. 

Although the subject has already played system analyst and architect roles in projects, the 

negligence could have happened due to the particular lack of experience with the quality 

attribute terminology. The reduced number of subjects suggests that further experimentation 

is needed to prove the significance of these results. Nonetheless, this preliminary result 

suggests that the use of the process, even in small teams and small projects, can be a helpful 

way to standardize the procedures and conduct of team members. 

 

Figure 5.7 Quality Attributes 

Quality attributes variability: the data was collected in order to evaluate whether the 

proposed architectural solutions addressed the quality attribute variability described in the 

experiment task. Two variation points concerning quality attributes were defined in the travel 
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reservation task. The first one represented the optionality of High availability for certain 

category of products, the other variation point represented the trade-off between security and 

performance. The data collected represents, for each subject, the percentage of variable 

quality attributes that were addressed by the proposed architecture. 

Albeit small, the number of variation points concerning quality attributes seems realistic. The 

development of an architecture with a several quality attributes variation point would be 

impractical. In such cases it could be better to suppress the variability during the scoping 

phase.  

Figure 5.8 shows a comparison between the mean of AQVA from each treatment. We could 

observe that without a proper methodology, 16% of the subjects neglected quality attribute 

variability, since their architectural solution for the proposed task does not address all of 

them. 

 

Figure 5.8 Quality Attributes Variability 

Figure 5.8 shows that from without the aid of RiPLE-Design, in average, only 67% of the 

variable quality attributes were addressed against 100%, in average, when the subjects 

followed the Enhanced RiPLE-Design process. Based on this analysis, the null hypothesis 

(µAQVA without RiPLE-Design > µAQVA with RiPLE-Design) can be rejected. The 

reduced number of subjects suggests that further experimentation is needed to prove the 

significance of these results.  
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In absolute numbers, the results represents that a single subject (id = 6) missed the handling of 

quality attribute variability. As well as in the AQA metric, the negligence could have 

happened due to the particular lack of experience with the quality attribute terminology.  

Difficulties to understand the activities: from the answers of the subjects using the 

questionnaire (QT2) for the difficulties found to understand the RiPLE-Design activities, it 

was identified that (Id = 3) had difficulties to understand part of the approach, namely, the 

Document decision guidelines activity. It was mentioned that the provided examples left 

unclear the definition of patterns, since one of the examples showed System reboot as a 

pattern. This issue was explained during the RiPLE-Design training and the documentation of 

the approach was reviewed and modified, emphasizing that the documentation should be of 

design decisions and strategies, not only design patterns or styles. 

The subject (Id = 3) had participated of plenty of academic and industrial software projects in 

technical leading roles. In this sense, it is unlikely that the experience caused the 

misunderstanding. 

In this sense, one subject had problems to understand the Enhanced RiPLE-Design activities, 

which represents 33% of the total number of subjects that used the process. This aspect 

confirms that the null hypothesis (understanding problems > 50%) can be rejected. It is 

necessary to highlight that the null hypothesis was defined without any previous data. 

Nonetheless, this value can be refined based on this experience, the next time the experiment 

is performed. 

Difficulties to apply the process: from the answers of the subjects using the questionnaire 

(QT2) for the difficulties found to apply the Enhanced RiPLE-Design in practice, it was 

identified that one subject (id = 2) reported problems to apply the Represent Architecture and 

mentioned his lack of experience with design as a reason for the difficulties. According to the 

subject’s profile, the roles played in projects were related mainly to software Tests. It is 

expected that people with little experience in software design have difficulties in executing 

such tasks. Software product line engineering adds complexity to the already software 

architecture discipline. In real case scenarios, more and deeper training involving general 

software architecture could provide solider foundations to the architects. 
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New experiments need to be executed in order to get more evidence about the correlation 

among the experience of the subjects and the difficulties found to apply the approach in 

practice. 

In this sense, one from the three subjects had problems to apply the Enhanced RiPLE-Design 

activities in practice. It represents 33% of the total number of subjects that used the approach. 

This aspect indicates that the null hypothesis (applicability problems > 50%) can be rejected. 

It is necessary to highlight that the value for the null hypothesis was defined without any 

previous data and this value can be calibrated for new experiments. 

5.2.4.2 Qualitative analysis 

Based on the answers from questionnaire (QT2) and on the architectural solutions proposed 

by each subject, qualitative analyses were performed. 

Training Analysis: all the subjects who participated in the experimental study attended to 

lectures composed of slide presentation involving topics related to software reuse and 

software product lines architecture. The training was performed in 24 hours. Three subjects 

considered the training very good (Id = 2, 3 and 6), two subjects classified it as good (Id = 1, 

4), and one subject as regular (Id = 5). The scale defined was: very good, good, regular, and 

unsatisfactory. 

Two subjects (Id = 2 and 6) mentioned that it would be better to have more lectures on 

general software architecture, in order to compensate their lack of experience.  

The subjects did not comment on the software product line lectures, since it involved several 

topics and a practical case study during the whole course at the university (approximately 

during 6 months). 

Finally, the subjects (Id = 1, 2 and 3) were trained to use the Enhanced RiPLE-Design, and 

one subject (Id = 1) emphasized that the Enhanced RiPLE-Design training should be longer in 

order to improve the results of the experiment. The subjects (Id = 4, 5 and 6) were not trained 

to use the Enhanced RiPLE-Design, since they designed the project without using a structured 

method (ad-hoc). 

Usefulness of RiPLE-Design: the subjects that used the Enhanced RiPLE-Design reported 

that the approach was useful to perform the domain design with quality attribute variability. 
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Nonetheless, one subject (id = 1) suggested the use of an UML adaptation to represent 

variability. Yet another subject (Id = 3) missed tool support for editing the Feature Model 

Diagram. Both issues will be commented further as a future improvement to the process.  

The subject (id = 3) also highlighted the importance of the quality scenario analysis and its 

reproduction in the feature model diagram. It was useful to identify the level of influence of 

the quality attributes on the architecture. 

Quality of the Documentation and Instruments: about the experimental study task 

description, one subject (id = 2) presented difficulties to understand quality scenarios 

descriptions as he was not used to the quality scenario notation. The lack of experience of the 

subjects seem to be the main reason of the difficulties since the subject has mainly 

participated in software projects in testing activities (test architect and tester). The 

misunderstandings were corrected during the course of the experiment and will be revised in 

the training material. 

Albeit being the most experienced subject, the subject with (Id = 3) complained about the lack 

of suggestions and guidelines for design strategies regarding each specific quality attribute. 

Those mentioned design strategies are already available in the software architecture literature, 

as in (Bass; John, 2003; Garlan; Shaw, 1994; Kim et al., 2009; Klein et al., 1999; Myllärniemi 

et al., 2008; Schmidt; O'Ryan, 2003). The idea behind the Enhanced RiPLE-Design is that 

known architectural styles and patterns or any other design strategy can be used to address 

quality attributes. Alternative or optional strategies can be used when quality attribute 

variability appears. The next time this experiment is performed, this aspect can be better 

controlled by including a list of suggested readings or by training the subjects in architectural 

tactics. 

Other subjects commented that the process documentation was fine. 

Handling quality attributes variability: besides the use of the process, another aspect 

clearly influences the handling of quality attribute variability: the architect’s experience. In 

general more experience subjects (id = 3 and 4) that addressed quality attribute variability 

proposed better solutions than other subjects. Those subjects also documented better the 

design decisions regarding quality attribute variability. 
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It is interesting to remark that a subject (id = 6) have not addressed any variable quality 

attributes. It would be premature do draw any conclusions from only a single subject. It is 

possible that without the use of a systematic approach, the architect would not mind the 

occurrence of quality attribute variability. The subject’s experience could also have 

influenced the result. In order to elucidate this occurrence, further experimentation is needed, 

with a larger population. 

Nevertheless, this aspect can actually be a hidden threat to the experiment’s validity. As the 

study was design for the purpose of evaluating a process to handle quality attribute variability, 

the experiment task construction could have been biased. In order to prove the experiment 

task’s construction as a threat to the validity of the experiment, different domains, taken from 

industrial cases could be used to construct the experiment task. 

Guidelines for product instantiation: analyzing the proposed architectural solutions it could 

be identified that no subject from the treatment that did not use the Enhanced RiPLE-Design 

process documented guidelines for product instantiation. Such guidelines are crucial for the 

next phase in product line engineering: product development. 

Quality of produced architectural documentation: experience seems to be closely related 

to the quality of the proposed architectural solution as well as its documentation. Regardless 

of the treatment subjects with more experience produced better documented architecture. 

Examples are subjects 3 and 4. More detailed diagrams and documentation of design 

decisions rationale could be found. Less experienced architects produced modestly 

documented architectures with no advice for product instantiation or poor descriptions for 

quality attribute variability handling. 

5.3 CONCLUSIONS 

Although the analysis has not been conclusive, the experimental study indicates that the 

Enhanced RiPLE-Design allows architects to design domain specific software architectures 

with a reasonable coupling and stability. Moreover, satisfactory results could be seen 

concerning aspects related to understanding and applicability of the Enhanced RiPLE-Design 

in practice. Additionally, metrics can be calibrated with the results identified in this 

experiment. It was also identified that the training on the Enhanced RiPLE-Design should be 
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extended in length and should comprise more details about quality attribute scenarios and 

design tactics.  

Even with a small number of subjects, it can be valid to make some correlations based on the 

profile of the subjects and the results obtained. Concerning the quantitative analysis, even 

though no correlations between the experience of the subjects and the quality of the 

architecture could be found, it was clear that more experienced subjects produced better 

architecture documentation.  

Although the results have shown similar results in respect to functional and quality attributes 

achievements, the preliminary result suggests that the use of the process, even in small teams 

and small projects, can be a helpful way to standardize the procedures and conduct of team 

members. In addition, the use of the process can be very helpful to manage large and complex 

software product line projects. 

Considering the understanding and applicability of the RiPLE-Design, this correlation could 

be analyzed as described previously. More evidence for these correlations can be obtained 

from new experiments. In addition, no value was removed when analyzing the metrics results, 

as no value was considered an outlier (Fenton, 1994). 

5.4 LESSONS LEARNED 

From the conclusion of the experimental study, some aspects should be considered in order to 

replicate the experiment, in order to overcome some limitations of its first execution. In this 

sense, the next subsections present the lessons learned from the performed experimental 

study. 

5.4.1 Training 

Besides the improvements related to the RiPLE-Design lectures, two subjects (Id = 2 and 3) 

highlighted that the training should be longer, more detailed, and include topics like design 

tactics and general software architecture. The suggestions do not seem to have relation with 

the subjects’ experience, since they are both the more and the less experienced subject in the 

population. Another possible improvement is the execution of an example, with reduced 
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scope and performed by the subjects to simulate the experiment. These issues could reduce 

the doubts during the experiment. 

5.4.2 Experience of subjects 

Being aware of the possible threat due to the random heterogeneity of subjects, this study 

tried to choose subjects from a group of postgraduate students that do research in the same 

area and attended to a similar set of lectures. Nevertheless, individual differences could have 

been even larger than the difference of the treatment. As aforementioned, experience seems to 

be related to the quality of the proposed architectural solution as well as its documentation. 

Better strategies must be used I further studies to guarantee better homogeneity of the study 

group in respect to their experience. 

5.4.3 Motivation of subjects 

Although the subjects were all volunteers, it was difficult to maintain the subjects motivated, 

and keep their attention and discipline during the whole execution of the experimental study. 

Performing the experimental study during lectures of a university course can help solve this 

problem as suggested by a subject (id = 3). 

5.4.4 Number of subjects 

It was hard to find volunteers to perform the experimental study. This experiment was 

performed by a reduced number of subjects (6 participants), and the pilot project with only 

one subject. After this experimental study, the necessity to increase the number of subjects 

could be identified. The execution of the experiment during lectures of a university course 

may solve this issue as well. 

5.5 CHAPTER SUMMARY 

This chapter presented the contextualization, planning, operation and analysis of the 

experimental study that characterized the Enhanced RiPLE-Design process evaluating its 

efficacy, understanding and applicability. 
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The study analyzed the possibility of subjects using the approach to design product line 

architecture with good stability and coupling. It was also analyzed the understanding and 

applicability of the RiPLE-Design in practice. The difficulties were categorized in the 

different activities of the RiPLE-Design with the intention of evaluating and refining its 

activities. 

Even with the reduced number of subjects, the analysis has shown that the RiPLE-Design can 

be viable. It also identified some issues for improvements. However, two aspects should be 

considered: the repetition of the study in different contexts and new studies based on 

observation in order to identify more problems and new points for improvements. 

The next chapter will present the conclusions of this work, its main contributions and related 

work as well as directions for future work. 
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6  
CONCLUSION 

As discussed in (van Der Linden et al., 2007): 

The software industry is challenged with a continuous drive to 

improve its engineering practice, and Software product line 

engineering is a strategic approach to developing software. 

[…]  

It impacts business, organization and technology alike and is a proven 

way to develop a large range of software products and software-

intensive systems fast and at low costs, while at the same time 

delivering high-quality software. 

The ways organization can benefit from systematic software reuse by adopting product line 

engineering as well as the importance of proper software architecture design are presented in 

Chapter 2. 

Quality attribute achievement is vital for any software architecture. In the context of software 

product lines, it becomes an even more complex issue as quality attributes can also contain 

variability. Nevertheless, this aspect have been “neglected or ignored by most of the 

researchers as attention has been mainly put in the variability to ensure that it is possible to 

get all the functionality of the products”, as discussed in (Etxeberria et al., 2008). 

The RiPLE-Design process, presented in (Souza Filho et al., 2008; Souza Filho et al., 2008) 

also lacks guidelines for proper quality attribute variability handling. Aiming to solve the 

problem of addressing quality attribute variability, this dissertation presented the 

enhancements to the RiPLE-Design process. 

An experimental study on the Travel Reservation domain was performed with the purpose of 

characterizing the Enhanced RiPLE-Design and refining it considering the feedback received 

during the execution of the experiment and its results. 
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Finally, this chapter concludes this dissertation presenting its conclusions, and its related and 

future work. The next section presents the related studies that have considered the quality 

attribute variability and strategies to properly address it. 

6.1 RELATED WORK 

Chapter 2 presented some processes for software product line architecture development, 

which are close to this work. Nonetheless, there is a key difference between this work and 

others: the specific treatment of quality attributes variability, as discussed subject through this 

dissertation. 

Besides those complete processes for product line architecture development, some that are 

also closely related to this dissertation focus on parts of the process.  

Many approaches address variability modeling and specification taking into consideration 

non-functional features they are briefly described in Section 4.1.  

(Myllärniemi et al., 2007) provide guidelines to model variability in the Security quality 

attribute. The approach is based on a tool that supports the definition of an ontology and the 

representation of functional and security variability in different viewpoints. 

Not many studies focus on strategies to realize variability in the quality level, i.e., finding a 

design strategy for varying quality attributes and are described below. 

(Rossel et al., 2009a) shows an approach based on Model-Driven Engineering (MDE) where 

the PLA is seen as a set of transformations associated with the domain features. In his 

approach, the quality attributes requirements are also modeled as features. A derived product, 

built from a selection of features, can have its architecture built through the application of the 

earlier mentioned transformations. The variations in quality attributes requirements produce 

different transformation in the model and can make product architectures completely different 

from one another. Although the resulting product architectures may differ drastically from one 

another, since they all derive from a main root architecture, and is managed as a whole this 

approach can be seen as software product line architecture approach. 

(Bosch, 2000) suggests the possibility of transforming quality attributes requirements into 

functionalities. For example, the requirement of security can be converted into login and 

encrypted passwords and protocols. This attempt to make non-functional requirements into 
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functionalities does not work always. Not all quality attributes requirements can be 

transformed into functionality, e.g., there is no functionality that deals with performance the 

same way access control functionalities deal with security. It is not guaranteed that a quality 

attributes requirement is achieved by a specific set of functionalities. In other words, a system 

can have access control with highly encrypted passwords and protocol and still not be secure.  

Finally, (Kim et al., 2007) discusses an approach to address quality attribute variability that 

must be configured at runtime. It is a special case of quality attribute variability that was left 

out of the scope of this dissertation. 

6.2 FUTURE WORK 

Due to the time constraints imposed on the master degree, this work can be seen as an initial 

climbing towards a process for software product lines with quality attribute variability. 

Interesting directions remain to improve what was started here and new routes can be 

explored in the future. Thus, the following issues should be investigated as future work: 

 Features Interaction: The case of functional variability affecting quality attributes is 

related to the occurrence of feature interaction in software product lines. As pointed 

out in (Lee; Kang, 2004), sometimes “[…] features cannot perform their 

functionalities alone, they need to interact among them in order to accomplish the 

products requirements. In this context, a feature interaction occurs in a system whose 

complete behavior does not satisfy the separate specifications of all its features.” 

Functional features that impact on non-functional features are, thus, a case of feature 

interaction. The problem of feature interaction can impact the whole SPL development 

process, as it promotes changes in reusable assets and impacts maintenance costs and 

other products. Although the quality scenario based approach allows basic treatment 

of feature interaction, this field of study can be further incorporate to the RiPLE-

Design process. 

 Variability representation: As suggested during the experiment, there could be 

alternative ways to represent variability, particularly in the deployment view. In this 

sense, studies from (Gomaa, 2004; Robak et al., 2002) can be adapted. 
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 Experimental Study: This dissertation presented the definition, planning, operation, 

analysis and interpretation of an experimental study that was executed with the 

purpose of characterizing and evaluating the Enhanced RiPLE-Design approach. New 

studies in different contexts, including more subjects and other domains are still 

necessary in order to calibrate the proposed approach. 

 Architectural Evaluation: It is also important to perform further studies in order to 

examine how the proposed adaptation of the HoPLAA evaluation method works 

together with the Enhanced RiPLE-Design process. 

6.3 ACADEMIC CONTRIBUTIONS 

The co-authoring of the following publication contributed for acquiring experience and 

knowledge in the software product line architecture and software reuse area: 

 (Souza Filho et al., 2008) Evaluating Domain Design Approaches Using Systematic 

Review, In 2nd European Conference on Software Architecture (ECSA). 

Moreover, one journal article and one conference paper are being prepared. 

6.4 CONCLUDING REMARKS 

Software reuse is a key factor for companies willing to improve productivity and quality 

while reducing costs. In this context, this work presented the Enhanced RiPLE-Design, an 

approach to design software product line architectures. It enhances the existing RiPLE-Design 

process providing activities and guidelines to handle quality attribute variability.  

The Enhanced RiPLE-Design approach was based in the three pillars for handling quality 

attribute variability, suggested by (Myllärniemi; Männistö; et al., 2006): (i) specify and model 

varying quality attributes; (ii) find a design strategy for varying quality attributes; and, (iii) 

evaluate the architecture in order to achieve the needed variation. The approach provides 

activities and guidelines that under each of the pillars.  

Additionally, the approach was evaluated in a software product line project through an 

experimental study on the Travel Reservation domain, which was analyzed both 

quantitatively and qualitatively. This experimental study presented findings that the Enhanced 
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RiPLE-design can be viable to aid software architects during the design of product line 

architectures with quality attribute variability. 

Therefore, this dissertation can be considered a relevant contribution to the area of software 

reuse and software architecture. 
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Appendix A 

ARCHITECTURE DOCUMENT TEMPLATE 

As part of the Enhanced RiPLE-Design, detailed in Chapter 3, the architecture document 

template from RiPLE was also modified with the purpose of facilitating the documentation of 

the product line architectures with variable quality attributes. The next sections list all the 

information that should be documented. 

 

1 Introduction 

<<Here it will be defined a brief introduction of the purpose of this document and its main 

objective. Scope, definitions, acronyms and abbreviation belong here too. >> 

2 References 

<<Here, describe the referenced documents, if any>> 

3 Technologies Description 

<<Describe the technologies (api's, frameworks, libraries) that will be used in the domain 

development, and will drive the component definition. For example, the use of EJB will drive 

the components to have entity beans and session beans. The description should be written 

according to the following format: >> 

<<API1 name>>: <<Rationale for the selection>> 

<<API2 name>>: <<Rationale for the selection>> 

4 Architectural Drivers 

<<Describe the functional and non-functional features that will be the most important ones 

and will drive the architecture (architectural drivers). The effort for adding features that are 

not part of architectural drivers should be evaluated in order to decide if they should really be 

added or not. The complete list of non-functional requirements must be provided by the 

quality scenarios document>>  
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5 View Documentation 

5.1 Structural View 

5.1.1 View Description 

<<Present a brief description of the current view. Define the types of elements, the relations 

among them, the significant properties they exhibit, and the constraints they obey for views 

conforming to this viewpoint >> 

<<Also describe the stakeholders and their concerns that this view is intended to address. It 

should also describe the level of detail this view will use in order to satisfy each specific 

stakeholder>> 

5.1.2 Module Presentation 

<<Present the modules and the relationship among them>> 

5.1.3 Architectural Styles and approaches 

<<Describe the chosen architectural styles and approaches. A rationale for each architectural 

style must be provided>> 

5.1.4 Variability Guidelines 

<<Document optional and alternative architectural styles and strategy following the 

summarized table: >> 

<<Strategy>> 
Strategy Feature 

Affects quality 

attributes Stimulus Response 

 
   

 
   

 

5.1.5 Modules Catalog 

<<Describe each module in a specific subsection.>> 

5.1.5.1 <<Module Name>> 

Description: <<Briefly describe the element's>> 

Related Features: <<Provide the features related with the element>> 
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5.1.5.2 <<Module Name>> Component Presentation 

<<Present the module diagram and description for each module previously elaborated. Use a 

subsection for each component set >> 

5.1.5.1.1 <<Component Name>> 

<<Present the component diagram and describe each component in a subsection. Follow the 

template below>> 

Description <<Give a brief description of the component emphasizing its purpose and its 

structure>> 

Related Features <<Provide the features related with the component>> 

Variability 

guidelines 

<<Describe the patterns and strategies used in the component to handle 

variability. This section must be provided for each defined component>> 

 

5.2 Behavioral View 

<<This section provides a description of the behavior of the domain, using diagrams for 

representing the iteration among domain classes its variable messages. Diagram should be 

made for each feature that represents a complete use case>> 

5.2.1 View Description 

<<Present a brief description of the current view. Define the types of elements, the relations 

among them, the significant properties they exhibit, and the constraints they obey for views 

conforming to this viewpoint >> 

<<Also describe the stakeholders and their concerns that this view is intended to address. It 

should also describe the level of detail this view will use in order to satisfy each specific 

stakeholder>> 

5.2.2 <<Feature Name>> Behavioral Presentation 

<<This section provides a sequence diagram with interaction of the classes responsible for the 

execution of the feature>> 

5.2.2.1 Variability Guidelines 

<<This section has the purpose of identifying the variable messages of the feature sequence 

diagram and relating it with the feature that drives it. It is used for enable the application 
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architect to decide which message will be instantiated according to the selected features. This 

section must be done for each sequence diagram defined>> 

5.3 Deployment View 

5.3.1 View Description 

<<Present a brief description of the current view. Define the types of elements, the relations 

among them, the significant properties they exhibit, and the constraints they obey for views 

conforming to this viewpoint >> 

<<Also describe the stakeholders and their concerns that this view is intended to address. It 

should also describe the level of detail this view will use in order to satisfy each specific 

stakeholder>> 

5.3.2 Deployment Presentation 

<<Present how the deployment diagrams and description about the deployment of the derived 

applications>> 

5.3.4 Variability Guidelines 

<<Document decisions in deployment that are relative to variability achievement>> 
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ARCHITECTURE EVALUATIN REPORT TEMPLATE 

As part of the Enhanced RiPLE-Design, detailed in Chapter 3, the architecture evaluation 

report template was suggested with the purpose of facilitating the documentation of the 

product line architectures evaluation. The next sections list all the information that should be 

documented. 

1 Architecture Description 

<<A brief description about the architecture. Should include module diagrams.>> 

2 Architectural Approaches 

<<A description of the main architectural approaches used.>> 

3 Scenarios 

<<A description of the elicited quality attributes scenarios.>> 

4 Risks 

<<A description of the risks found during the evaluation.>> 

5 Non-Risks 

<<A description of the non-risks found during the evaluation.>> 

6 Sensitivity Point 

<<A description of the sensitivity points found during the evaluation.>> 

7 Trade-off Point 

<<A description of the trade-off points found during the evaluation.>> 

8 Evolvability Point 

<<A description of the evolvability points found during the evaluation. This section should be 

ignored when reporting a product architecture evaluation.>> 

9 Evolvability Constraints or Guidelines 

<<A description of the evolvability constraints or guidelines found during the evaluation. This 

section should be ignored when reporting a product architecture evaluation.>> 
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Appendix C 

INSTRUMENTS OF THE EXPERIMENTAL STUDY 

As part of the experiment instrumentation, detailed in Chapter 5, two questionnaires were 

defined, and applied to the subjects. The next sections list all the questions of each 

questionnaire. The first questionnaire (detailed in Table C-1 and C-2) was intended to collect 

data about the subject’s background, and the second one (detailed in Table C-3) was created 

with the purpose of collecting information about the use of the Enhanced RiPLE-Design. 

Questionnaire for Subjects Background 

Degree: 
 

[ ] Graduation. [ ] Specialization. [ ] M.Sc. [ ] Ph.D. 

How many years since graduation? [ ] years. 

 

How many industrial software projects have you participated according to the 

following categories? 

 

[ ] Low complexity (less than 6 months). 

[ ] Medium complexity (more than 6 months and less than a year). 

[ ] High complexity (more than a year). 

 

What were the roles that you played in the projects cited before, e.g., architect, 

designer, developer, tester. . . ? 

 

 

How many academic software projects have you participated according to the following 

categories? 

 

[ ] Low complexity (less than 6 months). 

[ ] Medium complexity (more than 6 months and less than a year). 

[ ] High complexity (more than a year). 

 

What were the roles that you played in the projects cited before, e.g., architect, 

designer, developer, tester. . . ? 

 

Table C-1 Questionnaire for Subject's Background (Part 1) 
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Questionnaire for Subjects Background 

How many SPL projects have you participated? 

 

[ ] None. 

[ ] Academic. 

[ ] Industrial. 

 

How do you define your experience with software reuse? 

 

Industrial: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 

Academic: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 

 

 

How do you define your experience with design? 

 

Industrial: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 

Academic: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 

  
 

How do you define your experience with domain design? 

 

Industrial: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 

Academic: 

[ ] None. 

[ ] Low. 

[ ] Medium. 

[ ] High. 
 

Please, inform which techniques/methods you know in the context of the reuse, design, 

domain design and software product line. 

 

Please, inform which disciplines/courses you have attended in the context of the reuse, 

design, domain design and software product line. 

 

Table C-2 Questionnaire for Subject's Background (Part 2) 
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Questionnaire for Subjects Feedback 

Did you have any difficulties to understand the inputs of the experiment? Which 

one(s)? 

Did you have any difficulties in applying the activity Identify Architectural Drivers in 

practice? Which one(s)? 

Did you have any difficulties during the Represent variable quality attributes in the 

feature model task? Which one(s)? 

Did you have any difficulties in applying the activity Define Architectural Details in 

practice? Which one(s)? 

Did you have any difficulties in applying the activity Represent Architecture in 

practice? Which one(s)? 

Did you have any difficulties during the Select architectural drivers task? Which 

one(s)? 

Did you have any difficulties during the Choose Architectural Styles task? Which 

one(s)? 

Did you have any difficulties during the Document decision guidelines task? Which 

one(s)? 

Did you have any difficulties in applying the activity Identify Design Decisions in 

practice? Which one(s)? 

Do you thing the RiPLE-Design training was efficacious? Please justify. 

[ ] Very Good. [ ] Good. [ ] Regular. [ ] Unsatisfactory. 

Do you thing the RiPLE-Design documentation was sufficient? Please justify. 

Which improvements would you suggest for the RiPLE-Design? 

Table C-3 Questionnaire for Subject's Feedback 
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