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If all your tests pass, chances are that your tests are not good enough.

—ALBERTO SAVOIA (Beautiful Tests)



Resumo

Apesar dos avanços tecnológicos das linguagens e ferramentas que dão suporte ao desenvolvi-

mento de sistemas, programadores ainda entregam software contendo erros. Inúmeras técnicas

foram propostas a fim de aumentar a confiança nos softwares que são postos no mercado. Teste

de software é uma delas. Na verdade, testar é a atividade dominante na indústria para garan-

tir software com qualidade. Uma maneira de testar um sistema é fazê-lo executar até que um

comportamento incorreto ocorra – crash – e então expor um defeito. Entretanto, testes não

são baratos. Em uma típica empresa de desenvolvimento, os custos com as atividades de teste,

depuração e verificação pode facilmente variar entre 50% e 75% do custo total do desenvolvi-

mento [43]. Automação de testes torna-se então uma importante aliada para reduzir esses cus-

tos. O objetivo desta dissertação é propor uma técnica de testes caixa-preta – o Framework de

Átomos (AF) – para ajudar na detecção de crashes. AF é baseado em cenários automáticos de

teste, que são sequências de passos executáveis, escritos manualmente. Também conduzimos

um conjunto de experimentos em telefones celulares com a finalidade de verificar a eficácia da

técnica que estamos propondo no que diz respeito a sua capacidade de encontrar crashes.

Palavras-chave: Teste de software, Geração de testes, Teste de caixa-preta, Teste de detecção

de defeito, Checagem de pré e pós-condições
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Abstract

Despite the technological advances in languages and tools to support systems development,

programmers still deliver software with errors. Several techniques have been proposed to this

end – to improve software reliability. Testing is one of them. In fact, software testing is the

dominant approach in industry to assure software quality. One way of testing a system is to run

it until an incorrect behaviour happens – crash – and so expose a defect. But testing is not cheap.

In a typical commercial development organization, the cost of testing, debugging, and verifica-

tion activities can easily range from 50% to 75% of the total development cost [43]. Automation

of software testing then becomes a very important mean to reduce this cost. The objective of

this work is to propose a black-box testing technique – the Atoms Framework (AF) – to help

the detection of crashes. AF is based on automated test scenarios, i.e. sequences of executable

steps that have been manually written. We also conducted a set of experiments on cellular

phones to check the effectiveness of AF with respect to its capability to find crashes.

Keywords: Software testing, Test generation, Black-box testing, Defect testing, Pre and post-

conditions check

vii



Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Our contribution 5

1.2 Dissertation Organization 7

2 Software Testing 8

2.1 White-Box Testing 9

2.2 Black-Box Testing 12

2.3 Test Automation 13

2.3.1 TAF: Test Automation Framework 16

3 The Atoms Framework 19

3.1 Definition of Atoms 21

3.2 Test Data Support 27

3.3 Execution Lists Generation 32

3.3.1 Random Generation Algorithm 32

3.3.2 Pre and Postconditions Check 33

4 Empirical Evaluations 38

4.1 Characterization of Subjects 38

4.2 Failures 39

4.3 Experiment I: Atoms versus Test Scenarios 39

4.4 Experiment II: Impact of Randomization of Data 41

4.5 Experiment III: Impact of Randomization of Sequences 42

4.6 Experiment IV: Impact of Pre and Postconditions Check 44

4.7 Threats to Validity 45

5 Conclusions 46

5.1 Contributions 48

5.2 Related Work 48

5.3 Future Work 51

Bibliography 56

viii



List of Figures

1.1 Example of a system crash. 2

1.2 A test scenario for audio message. 5

2.1 White-box testing overview. 10

2.2 Black-box testing overview. 12

2.3 How cost with bug grows the later it is detected 14

2.4 Screens of different phone models. 16

2.5 Fragment of a TAF test script. 18

2.6 Overview of the TAF architecture. 18

3.1 Overview of AF’s activities to produce atoms and execution lists. 19

3.2 Overview of execution. 20

3.3 A test scenario for multimedia. 22

3.4 Steps highlighted from a multimedia test scenario. 23

3.5 Test procedures without log. 23

3.6 Atom #1: Creates a playlist. 25

3.7 Atom #2: Plays a playlist. 25

3.8 Atom #3: Takes a picture. 26

3.9 Atom #4: Deletes a picture. 26

3.10 Example of TDF items. 27

3.11 Filling the test data map with input data. 28

3.12 Atom #1 with data map support. 29

3.13 Atom #2 with data map support. 30

3.14 Atom #4 with data map support. 31

3.15 Atom #3 with data map support. 31

3.16 Generation of an execution list using the Random Algorithm. 33

3.17 Atom that creates a picture album. 34

3.18 Atom that takes a picture without saving it. 35

3.19 Generation of an execution list using pre and postconditions check. 36

4.1 AF time distributions for random data. 41

5.1 Graphic model of a test scenario for audio message. 49

5.2 Example of data items with different classes. 53

5.3 Example of a log file. 54

ix



List of Tables

2.3.1 TAF versus PTF test scripts. 17

4.1.1 Characterization of experimental subjects. 39

4.3.1 Comparison between SH and AF. 40

4.4.1 Impact of using random seeds in AF. 42

4.5.1 Runs of AF with different execution lists for configurations E and H. 44

4.6.1 Runs of AF with pre and postconditions checks for configurations E and H 45

x



CHAPTER 1

Introduction

Testing is simple – all a tester needs to do is find a graph and cover it.

—BORIS BEIZER (Software Testing Techniques)

Despite the technological advances in languages and tools to support systems development,

programmers still deliver software with errors (bugs). The outcome of a bug can be severe,

causing disasters; or in less critical applications, a bug can lead to great market losses. Identi-

fying and fixing potential problems early in the development cycle can then save a considerable

amount of time and money.

Several techniques have been proposed to this end – to improve software reliability. It is

important to emphasize that each one has limitations. For instance, theorem proving requires

a considerable user expertise on logic for both stating program characteristics (invariants) and

helping the associated tool support to discard the proof obligations. On the other hand, testing

is much simpler and closer to the development than theorem proving, but it can only show the

presence of errors, not their absence.

In spite of this, software testing is the dominant approach in industry to assure software

quality. But testing is not cheap. Santhanam and Hailpern [43] report that, in a typical com-

mercial development organization, the cost of testing, debugging, and verification activities

can easily range from 50% to 75% of the total development cost. Reducing the cost of soft-

ware development and improving software quality then become very important objectives of

the software industry.

Defect testing

The specifications of a software under development are in constant change, i.e. they are in-

complete, until the final product is delivered to market. Because of these changes, it is hard to

keep requirements documents always updated. It demands, for instance, much time, effort, and

specialists who know exactly how to write them down. It is indeed a tedious work and currently

it still is infeasible to document all requirements in detail. As a result, requirements documents

1



Introduction 2

are often also incomplete and do not present all the expected behaviors of the software they

describe.

Sommerville [44] defined two orthogonal goals for a testing process: validation (or con-

formance) and defect testing. The first one aims to design tests to check if the system under

test (SUT) is working correctly, i.e. if it is in accordance to what the requirements establish.

Defect testing, on the other hand, intends to test everything else that is not in the requirements

documents. That is, any situation that makes the system perform incorrectly and so expose a

defect. When that happens, we say that the test found a crash or it “broke the system”.

We recognize a crash situation, for example, if the SUT freezes during the execution of

a test, i.e. it stops responding to the testing procedures. The SUT receives the procedures’

actions, but it does not correctly react to them. A classical and worldwide known system’s

crash is the Windows blue screen (see Figure 1.1). A crash may occur in contrived interactions

between functionalities of the SUT. For instance, the testing procedures execute an invalid

sequence of steps, which the developer has not thought about when writing the code, that

results in a system crash.

Figure 1.1 Example of a system crash.

Black-box testing

Traditionally, there are two testing approaches, no matter if the goal is validation or defect

testing: white-box and black-box. White-box is the activity of testing that requires knowledge

of the program’s internal structures, while black-box does not need any information regarding

the program organization [12]. Any part of the system providing a public interface is eligible

for black-box testing. It consists of exercising the interface of a component (typically the entire

system) to find errors.
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Advantages of black-box testing compared to white-box testing include independence be-

tween the programmer and the tester, which may reduce bias, and no reliance on source code,

which may help with work division. Black-box testing is particularly important for organi-

zations that outsource testing activities. Often these organizations need to make private the

source code they develop, say for confidentiality reasons. In those situations, black-box testing

becomes the primary choice for independent assurance of system’s quality.

White-box also offers many advantages when compared to black-box testing. With white-

box testing, for instance, we can explore every constituent part of the system and guarantee that

we wrote tests that cover, at least once, all possible paths of the code. White and black-box

testing are indeed orthogonal approaches to testing, as one may find defects the other may not

find. In this work we focus on black-box testing due exactly to lack of access to the source code.

Test automation

Testing is costly. It requires the generation and execution of tests, and also the maintenance

of the tests with updated information regarding to changes in the system and its specifications.

Although it is a fact that testing increases the quality and reliability of software, some organi-

zations still do not have a testing process or do not attach a lot of importance to testing. They

end up executing none or few tests, which results in extra reworks’ costs and time expense to

correct defects found in later phases of the development cycle.

Generation and execution of tests then become very important activities to automate, espe-

cially when requirements are incomplete and the SUT is in constant evolution (changing). In

fact, automation of software testing can be one way to reduce the development costs, although

it is a very time-consuming activity in the beginning. But when well applied, Li and Wu [30]

say that automation can reduce the time for testing up to 60%. However, it is necessary to be

aware of the trade-off between the size of the projects and the cost to automation. For small

projects, this effort may be huge; and the venture costs, high. The time saved during the exe-

cution of an automated test must also compensate the time spent to automate it. Otherwise, it

will not be worth the effort.

But after the initial investment to prepare the environment to execute automated tests, more

cycles of testing can be conducted, even overnight, and more bugs can be found and corrected

sooner with less cost. As a result, we have less human error, tests easier to be reproduced and,

the most important, software with higher quality.

The word automation has several uses in the testing community. It can be used to describe

both the automatic generation of sequences of tests or as reference to the automatic execution

of tests created manually. In our approach, we use automation towards the first definition.
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Context

The focus of this work is on test generation based on existing test scenarios, i.e. sequences of

executable steps that have been manually written. This work has been conducted at the Brazil

Test Center (BTC) as part of a research effort between Motorola and the Center of Informatics

(CIn) of the Federal University of Pernambuco (UFPE) for improving Motorola’s software

testing process. CIn/BTC is divided in three areas: formal education and hands-on training,

operation, and research. This dissertation is one of the research team results. The operation

team existing issues and detected improvements motivate the research activities.

One of the operation teams works with several defect testing strategies. One of them, called

Scenario Hunting (SH) [13], is based on automated test scenarios. Its approach is to frequently

develop new test scenarios, based on some indicators, such as: new functionalities (features),

escaped defects areas, test cases of other testing phases, and critical features. During execution,

these test scenarios reproduce repetitive actions (steps) that would be done by final users in real

situations. The creation of SH test scenarios demands the test designer to be both creative and

expert in the applications domain, in this case the cellular phone domain. The better the test

designer writes elaborated SH test scenarios, the better these test scenarios exercise the appli-

cations and lead the execution to detect crashes.

Goals of our work

Despite the effectiveness of SH to find crashes, it requires much time and manual effort to

always have new test scenarios. In practice, after several execution cycles, the areas where

defects were found are fixed. Consequently, these test scenarios become obsolete pretty soon

and must be continuously reworked or recycled to be updated with more (or differing) steps,

which demands even more time and effort.

Beyond this time and effort expense, each SH test scenario is also a fixed (data and con-

trol) structure. That is, its steps are always executed in the same order they appear in the

scenario, using the same set of inputs. Thus, a SH test scenario always send the same sequence

of commands and input data to the SUT. As a result, in every execution it produces the same

set of outputs and avoids that other interesting sequence of steps be reproduced.

As it is hard to maintain these test scenarios and also to create new scenarios, we determined

as goals of our work to:

(i) propose a new technique, which will reduce the effort to create new tests, lower the

time to find a crash, and also will raise the number of crashes detected;

(ii) conduct an experimental evaluation to compare the effectiveness of this new tech-

nique with that of SH with respect to their capability to find crashes.
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1.1 Our contribution

The main contribution of this work is a black-box testing technique – the Atoms Frame-

work (AF) – to help the detection of crashes. AF is based on SH existing test scenarios, which

allows us to take advantage on the knowledge of the specialists who wrote them. We observed

that often a step makes sense apart from the sequence. These steps then become reusable units

of functionality when extracted from the original scenarios.

We believe that other sequences (with the same set of steps from the test scenario they

belong to) can lead the test execution to find crashes more frequently. The technique we propose

receives as inputs a set of test scenarios, extracts their steps (which originate what we call

atoms), adds support for test data, and sorts the generated atoms into lists, called execution

lists, which guide the execution.

When compared to SH, AF can produce, in each execution, different sequences of steps,

i.e. new test scenarios, due to the ordering of the atoms that appear in the execution lists. And

also, because of the test data support AF offers, each atom can exercise different inputs and

generate different outputs every time it is executed. For this reason, AF enables atoms to share

data: one atom can consume data another atom produces.

Illustrative Example

Note. For confidentiality reasons, the examples we show here and in the following chapters

have been modified from the originals. However, this will not compromise their understanding.

The examples are also related to the cellular phones domain, but it is worth saying that AF can

be used in other domains as its main approach is to generate atoms, i.e. tests.

1 log ( " Cap tu r e an aud io message . " ) ;

2 n a v i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "VOICE RECORDS" ) ) ;

3 mul t imed iaTk . cap tu reVoiceNoteFromVoiceRecord ( 3 0 ) ;

4 Mu l t imed i aF i l e aud io = mul t imed iaTk . s t o r eMu l t im e d i a F i l eA s ( Mul t imed i a I t em . g e t ( "STORE ONLY" ) ) ;

5

6 l og ( " L i s t e n t o an aud io message . " ) ;

7 n a v i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "VOICE NOTES" ) ) ;

8 mult imediaGoTo . g e t ( "ALL VOICE NOTES" ) ) ;

9 mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( aud io ) ;

10

11 log ( " De l e t e an aud io message . " ) ;

12 phoneTk . r e t u r nToP r e v i o u s S c r e e n ( ) ;

13 mul t imed iaTk . d e l e t e F i l e ( audio , t rue ) ;

Figure 1.2 A test scenario for audio message.

Figure 1.2 shows a fragment of one test scenario. This scenario consists of three steps (i)

capture an audio message, (ii) play that message, and (iii) delete that same message. This test
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scenario is written in Java and runs on a regular PC. It uses a library to communicate with the

cellular phone. AF divides this test based on its steps and generates what we call atoms.

In this example, three atoms can be generated, according to the instructions associated to

each log instruction. Note that one atom can have parameters in result of this method extraction.

For example, the second atom (for listening the audio message) will require a MultimediaFile

object. This is key to AF as it enables one atom to exercise different inputs.

Overview of the experimental results

Another consequent contribution of our work was to conduct 4 experiments to evaluate AF:

one to measure the quality of AF with respect to its ability to find crashes, and other three

experiments to give us a better understanding on AF itself. The first experiment compared AF

to a scenario-based technique (SH) and quantifies execution time and the capability of finding

a crash for each technique on 8 different cellular phone configurations with historical (real)

errors. The results show that AF offered a better precision. It found crashes in all 8 configu-

rations. However, when both techniques finds a crash (4 configurations), SH outperforms AF

in 3 out of 4 cases.

The second experiment evaluated the impact the randomization of data has in the effective-

ness of AF. The experiments reveal that the selection of the random seed for data generation to

AF results in a high variance of execution time (i.e., the time the technique takes to either crash

the application or timeout in 40h): the mean (across 8 phone configurations) of the standard

deviation of execution times (for 10 runs per each phone configuration) was 7.9h. Despite this

fact, AF could crash the application consistently: the mean of the precision (fraction of the 10

runs that results in a crash) was 74%.

The third experiment evaluated the impact the random selection of atoms to build sequences

has in the effectiveness of AF. The experiment indicates that the selection of atoms has a great

impact on the capability of the technique to find a crash.

Finally, in the fourth experiment, we compared the random generation of the sequence of

atoms to a more systematic generation, based on pre and postconditions checks. AF found a

crash in all executions. Although sometimes AF takes longer to find a crash when compared to

the random generation, the results indicate that the use of pre and postconditions checks seems

to be effective as AF could find crashes consistently.
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1.2 Dissertation Organization

This work is organized as follows:

• Chapter 2 provides an overview of the theoretical basis necessary for the understanding

of this work. It shows some concepts of software testing, including defect testing, black-

box testing and test automation.

• Chapter 3 describes the technique we propose to generate automated tests that target

defect coverage.

• Chapter 4 reports the results we obtained in the experimental evaluations we conducted

to evaluate the technique.

• Chapter 5 shows our final considerations, related and future works.



CHAPTER 2

Software Testing

Software should be predictable and consistent,

offering no surprises to users.

—GLENFORD J. MYERS (The Art of Software Testing)

Software testing is a process, or a series of processes, designed to make sure a computer

code does what it was designed to do and that it does not do anything unintended [34]. Or in a

more emphatic definition, software testing is the process of executing a program with the intent

of finding errors (bugs) [34]. As computers and softwares are used in critical applications, the

outcome of an unintended action – in other words, a bug – could be severe, causing disasters; or

in less critical applications, a bug can lead to great market losses. The main idea is that software

testing must improve the quality or reliability of the system under test (SUT), and consequently

reduce the number of bugs found by the final users. Thus, it is worth emphasizing that the goal

of software testing is to reduce the number of bugs and not to prove their absence.

A study done in 2002 by the National Institute of Standards and Technology (NIST) [36]

shows that the most common types of bugs are due to failure to conform to specifications or

standards, to interoperate with other software and hardware, and to meet minimum levels of

performance as measured by specific metrics. So, in order to test a program until no more bugs

are found, a test would need to cover all possible paths the program has with every possible

input data values. Such combination of paths and input data values is not feasible in general,

even for trivial programs. Exhaustive testing, where each possible sequence of execution of the

program is tested, is impossible [44].

Although it is not possible to guarantee that a software is completely free of bugs, testing

must ensure that the deliverable software is sufficiently good for operational usage and that it

provides a high level of confidence to the users. That is, the testing process must check that

the SUT works well in distinct environment configurations and that it really does what it is

supposed to do.

8



Software Testing 9

As we cannot test a program in every possible way, we consider only a part of all possible

tests. Requirements are a great source of information to guide the testing process to prioritize

the critical parts of the software that must be selected to test, and they help the developers to

demonstrate that the software does what was agreed with the clients.

The requirements are in fact the basis of one of the two testing process goals defined by

Sommerville [44], the validation (or conformance) testing. The intention of validation testing

is to find cases where the program does not do what it is supposed to do. The SUT is executed

under a given set of tests, which reflects the expected behavior that the requirements establish.

The other testing process goal is defect testing. While for validation testing, a successful

test is the one with which the SUT works correctly, for defect testing a succeeded test is the

one that exposes a defect that causes the program to behave in an anomalous way. In other

words, the main idea under defect testing is not to check if the program is in accordance with its

requirements. Instead, defect testing aims to find unexpected behaviors, such as, system crash,

undesired interactions with other systems, inaccurate calculations and data corruption [44].

When a bug is found while working with a defect testing approach, it is commonly called a

crash.

During testing, test oracles check whether the SUT executed as expected [49], i.e. the actual

output is compared to what it is expected to be the correct output. During the execution of a

defect testing technique, the expected behavior of the SUT, for instance, may be that it keeps

answering the testing procedures and does not get stuck in one screen. Otherwise, the oracle

must report a crash. Test oracles may be either automatic or manual (a tester manually interacts

with the SUT and visually checks if there are any bugs). Advantages of automatic oracles when

compared to manual ones include less human error and more accuracy. Although a manual

oracle is very effective when interpreting incomplete and natural language specifications, it is

prone to error when dealing with complex behaviors, and also its accuracy drops significantly

the more runs of test have to be evaluated [10].

Traditionally, there are two approaches to testing, no matter if the goal is validation or de-

fect testing. One is based on what the software is supposed to do. The other is based on how

the software actually works. The first one is called black-box; and the second, white-box. In

the following sections, we discuss each approach separately.

2.1 White-Box Testing

White-box testing, or logic-driven testing, permits one to examine the internal structure of the

program, and so the knowledge of the code and the internal structure are pre-requisites for this
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approach. Thus, white-box testing is concerned with the degree to which tests exercise or cover

the logic (source code) of the SUT [34].

Testers that use white-box techniques seek to locate logical errors and verify test coverage.

And so, they create tests that focus on the module design of the program and are based on the

implementation. Figure 2.1 shows an overview of white-box testing. In the example, the input

“x = 1" is given to the SUT. Thus, the testers know exactly what path of the code need to be

executed in order to generate the expected output: “y = 43”.

Figure 2.1 White-box testing overview.

In order to know how the program works and whether its modules/functions and structures

meet the functional and design specifications, a valid attempt would be to execute all possible

paths of the code. However, it is an impossible task to achieve. So, test procedures associated

with the white-box approach aim to provide several services, including the following [21]:

1. All independent paths within a module are exercised at least once.

2. All logical decisions, on their true and false sides, are exercised.

3. All loops at their boundaries and within their operational bounds are executed.

4. The internal data structures are exercised to ensure their validity.

There are many techniques for white-box testing with the intention to achieve most of these

services, or all of them, for instance: fault insertion, statement coverage, decision coverage,

condition coverage, and others. A brief description of them can be found in [21].

An important white-box technique is unit testing. Its purposes are to verify that the logic

implemented works properly and that all the necessary logic is actually present [33]. For many

reasons, including market pressures to delivery software as soon as possible, sometimes unit

tests are put away. But what the experience shows is that, by applying unit testing to a system,

the chance to find a bug in later phases decreases considerably; and once a bug is found, it can

be corrected right-away by the code writer. Nevertheless, it is an expensive activity, where it

takes up to 17% of the overall development cost [48]. Thus, over the years, many works have

been done as a try to improve this situation, by systematizing and automating the unit testing

process. We describe some of recent researches in this field.
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Pacheco et al [40] proposed a technique that randomly generates unit tests by incorporating

feedback obtained from executing test inputs as they are created. This technique guides the

search towards sequences that yield new and legal object states, by not extending inputs that

create redundant or illegal states. The technique has a support tool called RANDOOP.

RANDOOP incrementally creates sequences of method calls, by randomly choosing a me-

thod call to apply and selecting arguments from previously constructed sequences. Its algorithm

checks if a generated sequence is equivalent to a previous generated sequence. If the answer

is positive, it tries to create a new sequence. Right after a sequence is generated, it is executed

against a set of contracts and filters. Each contract checks whether the sequence satisfies or

violates the current state of the system (the runtime values created in the sequence so far, and

any exception thrown by the last call). So, the sequences that satisfy and the ones that violate

the current state are added to different sets. Filters, that determine which values of a sequence

are extensible and should be used as inputs to new method calls, are also applied to the ones

that violate the state. Finally, the RANDOOP’s outputs are two sets (called nonErrorSeqs and

errorSeqs) written as JUnit [7] tests, along with assertions representing the contracts checked.

The first set represents the tests where the tested classes pass; they could be used for regression

testing later on. On the other hand, the second set contains the tests where the classes fail, and

so, they indicate likely errors in the code under test.

Godefroid et al [24] proposed a technique for automatic generation of unit test cases that

combines static and dynamic approaches. It has also a support tool called DART. First, the

interface of a program with its external environment is extracted using a static code parsing.

Then, a test driver, which performs random testing, is automatically generated for this inter-

face. And finally, dynamic analysis are executed to examine how the program behaves under

random testing, while new test inputs are automatically generated to direct the execution along

alternative paths in a systematic way with what they call a directed search. The execution is

started with a random input. After that, an input vector for the next execution is calculated

during each execution. The new input vector attempts to force the execution of the program

through a new path. By repeating this process, a directed search attempts to force the program

to sweep through all its feasible execution paths.

There is another approach, Oriat presents in [38], for random generation of unit tests, ex-

plicitly for Java classes, supported by a tool called Jartege. The classes must be specified in

JML (Java Modeling Language) [29], which is a specification language for Java that allows

one to write invariants for classes, and pre and postconditions for operations. Jartege produces

test programs which are composed of test cases. Each test case consists of randomly chosen

sequences of method calls for each class under test. While the tests are generated, each opera-
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tion call is executed on the fly. This permits the elimination of calls that violate the operation

precondition, and to tell whether the test case passed or not (the specification in JML is used

here as test oracles). The test generation can be parameterized by associating weights to classes

and operation, which defines the probability that a class will be chosen, and that an operation

of this class will be called; and also by controlling the number of instances created for each

class under test. It also provides a way of generating parameter values of primitive types for

operations.

2.2 Black-Box Testing

While white-box testing concerns itself with the program’s internal behavior, black-box testing

compares the behavior of the application against what is stated in the requirements. Black-box

testing, or behavioral testing, is the type of testing which is closer to what the user experiences

while using the system. The only way to test a program under a black-box technique is to have

access to public interfaces such as the user interface or the published application programming

interface (API).

Figure 2.2 shows an overview of the black-box approach. The system is treated as a

“black box” and its functionalities are tested with regards to their specifications (requirements)

and the context with which the system is related to (events). Thus, only the correct inputs/out-

puts relationship is under investigation. In the example, the testers only know that the output

“y = 43” is expected when they give “x = 1” as input to the SUT. The computations involved

for generating the right result are out of touch.

Figure 2.2 Black-box testing overview.

Black-box testing methods, just like the ones of white-box testing, include a considerable

number of techniques, such as: all-pairs testing [46], fuzz testing [31], boundary value analy-

sis [34], random testing [25], model-based testing [20], and others.

With the popularization of object orientation and models in software over the years, model-

based testing, MBT for short, has shown a considerable growth in its usage. MBT can be
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understood as an approach that generates test cases using models of the SUT [20]. These mod-

els can be developed early in the life cycle as they are essentially a specification of the inputs

to the software. A system model can be built either through an automatic or a manual way. In

an automatic way, tools are used to automatically extract the system model. In a manual way

of generating a system formal model, software engineers design the system behavior follow-

ing a formalism. Many modeling languages are used to build those models, for instance UML

diagrams [11, 14, 19, 32, 47], statecharts [9, 23, 27], CSP notation [37], and LTS [18]. In prin-

ciple, after having built the model the test cases derivation can be done automatically. There

are many different ways to derive tests from a model. Because testing is usually experimental

and based on heuristics, there is not a best way to do this.

Hong et al [27], for instance, presents a method for automatic selection of test sequences

from statecharts [26] based on data-flow analysis. They say that these test sequences allow one

to determine whether an implementation establishes the desired associations between defini-

tions and uses, which are expressed in the statechart.

Basanieri and Bertolino [11] presents another MBT approach, which describes a manual

technique to generate tests from UML Use Case and Integration diagrams (specially the Se-

quence diagram). Mingsong et al [32] also describes a technique to generate test cases from

UML diagrams, but this time in an automatic way and using Activity diagrams. In this method,

the test cases are not directly derived from UML diagrams. Instead, it first randomly generates

a set of test case according to a given Activity diagram and then it prunes some redundant test

cases and gets a reduced set which meets the test adequacy criteria. In order to do this, it needs

to instrument the SUT. Vieira et al [47] describes a research on test case generation based on

UML diagrams. In their approach, the diagrams are annotated with test data requirements that

allow test cases to be generated based not only on Activity diagrams but also on data coverage.

2.3 Test Automation

Automation of testing process is not only desirable, as the whole testing process is itself a very

time-consuming activity – it requires up to 50% of software development costs, and even more

for critical applications [8]. Test automation is indeed a necessary activity to be accomplished

given the demands of the current market for software delivered as early as possible and with

high level of quality.

It is a common sense since Boehm, Brown and Lipow [16] showed that the sooner a bug

is detected the least expensive it is to fix it. Figure 2.3 illustrates this. With automation, more
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Figure 2.3 How cost with bug grows the later it is detected

tests can be conducted and more bugs can be found faster. Some companies report that their

elapsed time for testing has been reduced up to 60% through automation [30]. Besides this time

reduction, the number of defects discovered by automated tests increases up to 50% [30]. As a

result of testing automation, we have less human error, tests which are easier to be reproduced,

lower costs to fix bugs, and software with higher quality.

However, test automation can be an expensive and also a very time-consuming part of the

testing process. For small projects, this effort may be too much and may not be worth the

venture. Even for larger projects, if the automated tests are only used once or are not reused by

other projects, the amount of time spent to create them may not compensate the effort.

There are some ways to alleviate the uncertainty regarding the overall effort and time to

be spent in test automation. One of them is to select the types of testing to automate. For

instance, unit and integration testing must be strongly considered to be automated [33]. Unit

testing aims to test all the individual modules in a program, i.e. subprograms, subroutines,

or procedures [34]. And the purpose of integration testing is to assess whether the interfaces

between modules have consistent assumptions and communicate correctly [8]. Automated unit

and integration testing are valuable not only because nowadays there are a lot of tools to help

developers to achieve these type of testing (such as CUnit [2],DUnit [3] and JUnit [7]), but also

because the quality of the builds given to other test phases, such as system testing, increases

with unit and integration testing automation [33]. What happens is that more defects regarding

to isolated functions or methods are found during development time and corrected earlier, and

only defects more related to malfunction issues and requirements divergence are left to be found

in later phases.

Other types of testing, for which automation provides great value, are regression testing
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and stress testing at the system level. Regression tests seek to verify that the functions provided

by a modified software perform as specified and that no unintended change has been made in

operational functions [21]. Stress testing subjects the software to heavy loads or stresses over

a short amount of time to determine when and how it fails [34]. Ammann and Offutt [8]

emphasizes that unautomated regression testing is equivalent to no regression testing at all. In

fact, in order to re-test software that has been modified, we need to run and re-run tests, most of

time a lot of tests, to determine whether a new error has been introduced. In stress testing, we

also need to run and re-run tests to simulate a large amount of accesses to the system and data

manipulation. Without automation, both types of testing would be impracticable and require

higher effort and time.

Another way to minimize effort and time in test automation is to use testing frameworks,

which helps the creation, execution and maintainability of automated tests. There are a lot of

commercial and open source testing frameworks ([2, 3, 7, 1, 4]). Each of them with differ-

ent functionalities for different types of systems. CUnit [2], DUnit [3] and JUnit [7], which

we have cited before, are frameworks useful for unit and integration testing for C, Delphi and

Java programs, respectively. Abbot [1] is an open source framework that performs both GUI

(Graphical User Interface) unit and functional testing for Java applications. It also provides an

interface to control event playback in order to enhance the integration and functional testing.

GUITAR [4] is another open source framework for GUI testing that helps the generation, ex-

ecution and re-execution of functional and regression testing. It offers event-based tools and

techniques for various phases of GUI testing.

Despite the great number of testing frameworks available nowadays, organizations still de-

velop their own framework to fit their needs for specific functionalities. Sometimes they have

to test components developed by different manufacturers, which use different programming

languages and run in different platforms. Motorola Inc., for instance, relies on such an envi-

ronment and tests the cellular phones they develop, which are built on different hardware and

software configurations. Because of this, Motorola developed a proprietary testing framework

called TAF (Testing Automation Framework) [28, 35], which is used to automate and execute

high level tests for cellular phones.

What differs TAF from other testing frameworks is its automated tests, which are composed

of method calls with high abstraction level. Thus, it is possible to keep tests that can be used in

different products without changes in the tests’ procedures, while methods (written in what we

call high level of abstraction, i.e. specific details related to implementation, hardware, screen’s

layout, etc. are not considered) are reimplemented only when they need to be adjusted to

represent specific behaviors of new phones. In this way, Motorola can minimize costs with the
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maintainability of tests and increase methods’ reuse in different tests. Section 2.3.1 gives more

details on TAF, which is used to create the tests we describe later in this work.

2.3.1 TAF: Test Automation Framework

TAF [28, 35] is a proprietary object-oriented testing framework that supports the automation

of integration and system testing for all software embedded in the cellular phones Motorola

develops. TAF enables reuse by raising the abstraction level so as to make automated tests

largely independent of model-specific phone properties.

Figure 2.4 Screens of different phone models.

Although there are cellular phones that implement the same functionalities (features), the

way the user interacts with them varies depending on the phone model. Figure 2.4 shows

screens of two different phone models. Note that the Address Book item appears on the left-

hand side of screen (1) and on the right-hand side of screen (2). The same happens to the

Messaging item. But, when writing tests with TAF for these features, the position of the items

on the screen are totally irrelevant to the test developer. So, for instance, when a test calls the

Address Book application in phone model (1), it clicks on the bottom-left button of the phone.

And when the same test is run against phone model (2), it clicks on the bottom-right button

to access the Address Book. Thus, the same set of TAF tests can be reused in several phone

models.

TAF uses another proprietary artifact to communicate with the cellular phone, a library

called Phone Test Framework – PTF [22]. PTF communicates with the phone via a USB

(Universal Serial Bus) interface to provide functions that allow, for instance, the recognition of

all enabled contents of each phone screen and the simulation of the phone key pressing. Since
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most PTF methods are encoded at low abstraction levels, it leads to test scripts that are hard to

read, difficult to maintain and inefficient to reuse to other phones. However, PTF represents a

highly appropriate basis for test automation implementation [22].

TAF encapsulates direct calls to PTF methods in Utility Functions (UFs). Each UF repre-

sents a sequence of keys to be pressed and/or the verification of each screen’s contents. Thus,

UFs are primitive entities that hierarchically isolate functionality from implementation, lead-

ing to high-level automated tests [28, 35]. In other words, each UF is an implementation of a

high-level step that can be executed automatically by a test. Table 2.3.1 shows fragments of

test scripts written in TAF and PTF. Although written in different levels of abstraction, their

objectives are the same: to launch the camera application. Note that, to do so, TAF uses only

one command, while PTF uses four. On the one hand, the UF launchApp hides specific details

regarding on how the phone reaches the camera application. On the other hand, a PTF script

needs to explicitly have all of these navigation details (go to the initial phone screen, press the

phone’s right key, look for the desired item and, at last, press the phone’s center key) to open

the camera correctly.

TAF Test Script PTF Test Script

// Launch Camera application // Go to Idle (initial screen)

navigationTk.launchApp(PhoneApplication.CAMERA); ptf.nav.idle();

// Enter in Main Menu

ptf.phone.pressKey(RIGHT);

// Scroll to Camera

ptf.nav.scrollTo(CAMERA);

// Select to enter in Camera

ptf.phone.pressKey(CENTER);

Table 2.3.1 TAF versus PTF test scripts.

Figure 2.5 shows a fragment of a TAF test script, which performs 2 steps when executed

against a phone. It first takes a picture and stores it in the phone file system (lines 2 to 4).

Then, it deletes the picture taken (lines 7 to 8). Note that it uses 5 TAF UFs: launchApp (in

this example, this UF opens the camera application), capturePictureFromCamera (captures a

picture with the camera application), storeCapturedPictureAs (stores the picture taken in the

phone file system), returnToPreviousScreen (drives the phone to the previous screen it visited)

and deleteFile (in this example, it removes the picture taken from the phone file system).

TAF has potentially more than one implementation of the same UF in order to allow the

same UF to run in several phone models and reproduce the same high-level objective. TAF

relies on the notion of Feature Toolkits (from now on called toolkits), which are collections

of UFs that implement functions of the same application or objective and allow proper instan-
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1 / / Take a p i c t u r e

2 n av i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

3 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

4 P i c t u r e F i l e p i c = mul t imed iaTk . s t o r eC a p t u r e d P i c t u r eA s ( Mul t imed i a I t em . g e t ( "STORE_ONLY" ) ) ;

5

6 / / De l e t e a p i c t u r e

7 phoneTk . r e t u r nToP r e v i o u s S c r e e n ( ) ;

8 mul t imed iaTk . d e l e t e F i l e ( p ic , t rue ) ;

Figure 2.5 Fragment of a TAF test script.

tiation of UF implementations for a given phone model. Thus, a TAF test consists in several

calls to methods (UFs) encapsulated in these toolkits. For instance, UFs under the navigationTk

toolkit (launchApp in line 2) have the objective to help the navigation in the phone system. UFs

under the multimediaTk toolkit (capturePictureFromCamera in line 3, storeCapturedPictureAs

in line 4, and deleteFile in line 8) deal with Multimedia applications and files. Kawakami et

al [28] show a more detailed description of the TAF toolkits.

Figure 2.6 summarizes the hierarchy of TAF layers from the highest to the lowest level. It

shows the relation between the layer where the test scripts are, the one where the toolkits are

implemented, the one where the UFs are implemented and the PTF layer.

Figure 2.6 Overview of the TAF architecture.



CHAPTER 3

The Atoms Framework

Testing can only show the presence of errors, not their absence.

—DIJKSTRA ET AL

Atoms Framework – AF – is a black-box testing technique for the detection of crashes.

It builds on existing test scenarios, i.e. sequences of executable steps that have been manually

written. Each of these steps characterizes one important interaction with the system. AF re-

ceives test scenarios as input, extracts their steps and shuffles the steps in sequences that guide

the execution. The main idea is to use the knowledge of an expert (as the input test scenarios

are manually written) in order to create new tests that verify situations not described in the

original scenarios.

Figure 3.1 Overview of AF’s activities to produce atoms and execution lists.

19
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Figure 3.1 illustrates an overview of the activities AF defines to produce atoms and exe-

cution lists. The inputs for AF are tests scenarios. We observed that each test scenario is a

sequence of relevant steps, and that often a step makes sense apart from the sequence. These

steps become reusable units of functionality when extracted from the original scenarios. We

believe that other sequences (with the same set of steps from the test scenario they belong to)

can lead the test execution to also find a crash and faster. We decided to call the extracted

steps, atoms. Thus, AF identifies the steps of each test scenario and creates atoms based on

them (Step 1).

The test scenarios we use in our approach fix in their steps all input data they need in order

to execute. As AF creates atoms based on those steps, the resulting atoms may depend on data

other atom generates. Therefore, atoms can assume role as producer and consumer of data. We

decided to add a data map to support this data dependence (Step 2). Thus, an atom uses the

map to retrieve input data and to store all data it generates.

In order to execute atoms we need to add them to execution lists. These lists guide the

execution, i.e. atoms are carried out in accordance to the order they appear in the list. AF

defines two strategies to the creation of execution lists (Step 3): one that randomly order atoms

in a list; and another one more systematic that takes into account the context required by each

atom to execute. The atoms created and a set of execution lists are the outputs for the technique.

The size of the set is defined by the user.

Figure 3.2 Overview of execution.
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Our approach does not focus on the execution of atoms since we reuse a Motorola propri-

etary framework to automate this step. However, Figure 3.2 shows an overview on how the

execution proceeds with atoms. On its left-hand side, there is an execution list, which is the

input for the execution process. Before the execution process starts, the data map can be loaded

with inputs and also an initial configuration test can be run to fill the SUT with data, which are

also stored into the data map. The first atom in the example takes a picture, and then puts it

into the data map. When the second atom is loaded, it first accesses the data map to retrieve a

picture to be deleted. Then it removes from the system and also from the data map the selected

picture, which can be the one taken by the first atom or another picture present in the data map.

The third atom creates a contact. In order to do so, it fills the name and phone number fields

with data retrieved from the data map and stores the created contact in the data map.

A test oracle checks whether the effect of the execution of an atom is as expected. Test

oracles are out of the scope this work. To simplify the discussion, the test oracle we use is

another program that checks whether the application can still make progress with the execution.

When a crash is detected by the oracle or there are no more atoms in the execution list, the

execution ends. The output of the execution process is a test result that indicates whether the

execution detected a crash or the end of the execution list was reached without a crash.

3.1 Definition of Atoms

The first step to create atoms based on existing test scenarios is to define (recognize) them.

In our approach, we consider a test scenario as a sequence of automated steps. Figure 3.3

shows an example of a test scenario written in Java over the TAF framework [28, 35]. It is a

class that implements 3 methods: setup (set of steps that creates a context for the appropriate

execution of the testing procedures, line 5), buildProcedures (procedures of the test, line 7)

and tearDown (set of steps that restores the initial context, line 28). In our example, setup and

tearDown are empty, i.e. the test does not need any previous/post actions to update the system

state before/after the execution of the procedures of the test.

In order to develop a test scenario, a set of TAF UFs is used to implement each desired step

that composes the test. Figure 3.3 shows a test, which performs 4 steps when executed against

a phone. First, it creates a playlist1 with 3 songs (line 10). Then, it plays the playlist created in

the first step (lines 13 to 15). After that, it takes a picture and stores it as a file (lines 18 to 20).

And finally, it deletes the picture taken (lines 23 to 24).

1A customized sequence of songs that can be played by the phone.
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1 pub l i c c l a s s TC_MULTIMEDIA {

2

3 pub l i c TC_MULTIMEDIA ( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8

9 log ( " C r e a t e a p l a y l i s t . " ) ;

10 s t r e s s T k . c r e a t e R a n d omF i l e s P l a y l i s t ( P l a y l i s t . g e t ( "PLAYLIST_02" ) , 3 , 10) ;

11

12 log ( " P l ay t h e c r e a t e d p l a y l i s t . " ) ;

13 n av i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

14 mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

15 n av i g a t i o nTk . goToAndSelectMenuItem ( Mul t imed i a I t em . g e t ( "PLAY" ) ) ;

16

17 log ( " Take a p i c t u r e . " ) ;

18 n av i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

19 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

20 P i c t u r e F i l e p i c = mul t imed iaTk . s t o r eC a p t u r e d P i c t u r eA s ( Mul t imed i a I t em . g e t ( "STORE_ONLY" ) ) ;

21

22 log ( " De l e t e a p i c t u r e . " ) ;

23 phoneTk . r e t u r nToP r e v i o u s S c r e e n ( ) ;

24 mul t imed iaTk . d e l e t e F i l e ( p ic , t rue ) ;

25

26 }

27

28 pub l i c vo id tearDown ( ) {}

29

30 }

Figure 3.3 A test scenario for multimedia.

Note that not always only one TAF UF is employed to reproduce a step. Sometimes a

sequence of calls to UFs is used to do so. In order to take a picture, for example, it is first

employed a UF that launches the camera application (launchApp), then another to capture a

picture (capturePictureFromCamera), and finally another one to store the captured picture in

a file (storeCapturedPictureAs). In the remaining steps, 6 other different UFs are employed:

createRandomFilesPlaylist (it creates a playlist with songs chosen randomly), goTo (it takes

the phone to a sub-application), scrollToAndSelectMultimediaFile (it looks for and selects a

specific multimedia item in a list), goToAndSelectMenuItem (it selects a specific menu item),

returnToPreviousScreen (it drives the phone to the previous screen it visited) and deleteFile (it

removes a specific file from the phone file system).

Each step can be delimited by a call to the UF log. This UF simply prints a text (description

of the step) in a log file. The log file is a good practice to keep the trace of all high-level steps

executed during the testing procedures. In our approach, these calls to the UF log help the

recognition of atoms, as it will be explained later in this chapter.

Our aim is to fragment a test scenario into smaller units that correspond exactly to the

high-level steps the test performs. The idea is that new scenarios could be exploited by split-
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8 / / S t ep #1

9 log ( " C r e a t e a p l a y l i s t . " ) ;

10 s t r e s s T k . c r e a t e R a n d omF i l e s P l a y l i s t ( P l a y l i s t . g e t ( "PLAYLIST_02" ) , 3 , 10) ;

11 / / S t ep #2

12 log ( " P l ay t h e c r e a t e d p l a y l i s t . " ) ;

13 n av i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

14 mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

15 n av i g a t i o nTk . goToAndSelectMenuItem ( Mul t imed i a I t em . g e t ( "PLAY" ) ) ;

16 / / S t ep #3

17 log ( " Take a p i c t u r e . " ) ;

18 n av i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

19 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

20 P i c t u r e F i l e p i c t u r e = mul t imed iaTk . s t o r eC a p t u r e d P i c t u r eA s ( Mul t imed i a I t em . g e t ( "STORE_ONLY" ) ) ;

21 / / S t ep #4

22 log ( " De l e t e a p i c t u r e . " ) ;

23 phoneTk . r e t u r nToP r e v i o u s S c r e e n ( ) ;

24 mul t imed iaTk . d e l e t e F i l e ( p i c t u r e , t rue ) ;

Figure 3.4 Steps highlighted from a multimedia test scenario.

ting the original test scenario into their corresponding steps. These steps will originate atoms.

Figure 3.4 shows 4 steps highlighted from the multimedia test scenario in Figure 3.3: Step #1

creates a playlist, Step #2 plays the playlist, Step #3 takes a picture and Step #4 deletes a picture.

In our example, each step were recognized by the call to the UF log, i.e. all code after a call

to the UF log until another call to log or the end of the file represents a step. But what if the

test scenario does not have any calls to the UF log due to bad codification? This means that we

cannot keep track of the high-level steps executed by the phone during the test.

In order to illustrate this, Figure 3.5 shows the procedures of another test scenario. This

time, without calls to log. When executed, it performs 5 steps: it first creates a playlist with 3

1 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

2

3 s t r e s s T k . c r e a t e R a n d omF i l e s P l a y l i s t ( P l a y l i s t . g e t ( "PLAYLIST_02" ) , 3 , 10) ;

4 mul t imed iaTk . a d dA l l S o n g sToP l a y l i s t ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

5 mul t imed iaTk . p laySoundInBackground ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

6 phoneTk . s l e e p ( 5 ) ;

7 n a v i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

8 mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

9 n a v i g a t i o nTk . goToAndSelectMenuItem ( Mul t imed i a I t em . g e t ( "PLAY" ) ) ;

10 phoneTk . s l e e p ( 1 5 ) ;

11 n av i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

12 mul t imed iaTk . d e l e t e F i l e ( P l a y l i s t . g e t ( "PLAYLIST_02" ) , t rue ) ;

13

14 }

Figure 3.5 Test procedures without log.
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randomly chosen songs (line 3); then, it adds all available songs to the playlist (line 4); then,

it plays the playlist in background2 during 5 seconds (line 5 to 6); after that, it plays again

the playlist during 15 seconds, but not in background (lines 7 to 10); and finally, it deletes the

playlist (lines 11 to 12). In the following, we outline some tips to recognize the steps of a test

scenario when there are no calls to the function log in its procedures. The tips were collected

by empirical observations and may not work in all situations. They are also not exhaustive.

They are just a guide to help the recognition.

Tips for recognizing steps:

[Tip A] Sequential calls to UFs from different toolkits (not including the navigationTk

or the phoneTk toolkits) usually mean that each call corresponds to a different step. Lines 3

and 4 of Figure 3.5 correspond to two steps. The first one itself creates a playlist, and it uses

the UF createRandomFilesPlaylist from the stressTk toolkit to do so. The second one adds

all available songs in the phone to a playlist, and to do so it is necessary to use only the UF

addAllSongsToPlaylist from the multimediaTk toolkit.

[Tip B] We consider blocks of code, structures that have in the first line a call to the UF

goTo or to the UF launchApp, both from the navigationTk toolkit, followed by other UFs. They

always correspond to steps. A block usually has calls to functions from at most 3 different

toolkits, two of them as being the navigationTk and the phoneTk toolkits. We can delimitate

the end of a block by one of the following possibilities: (i) by the beginning of another block,

i.e. another call to the function goTo or launchApp; or (ii) by a call to a function from another

toolkit that is not already part of the block; or (iii) by a call to the UF sleep; or (iv) by the end

of the procedures. The block of code from line 7 to 10 corresponds to a step that plays back a

playlist during 15 seconds (i or iii). And the block of code from line 11 to 12 corresponds to

another step, which deletes a playlist (iv).

[Tip C] If we notice sequential calls to UFs from the same toolkit (again, not including the

navigationTk or the phoneTk toolkits) and they are not inside a block, they usually correspond

to different steps. For instance, lines 4 and 5.

After identifying the steps present in a test scenario, they become atoms, i.e. Java classes

that implement the methods setup, buildProcedures and tearDown, as regular test scenarios.

It is not the case of our example, but if the methods setup and tearDown of the original test

scenario were not empty, we simply copy their content to all atoms we create from that test

scenario. In the following, we show 4 atoms created based on the 4 steps (Figure 3.4) extracted

2Playing a playlist in background means that the phone can perform any other tasks while it plays songs.
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1 pub l i c c l a s s ATOM_CREATE_PLAYLIST {

2

3 pub l i c ATOM_CREATE_PLAYLIST ( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " C r e a t e a p l a y l i s t . " ) ;

9 −−> s t r e s s T k . c r e a t e R a n d omF i l e s P l a y l i s t ( P l a y l i s t . g e t ( "PLAYLIST_02" ) , 3 , 10) ;

10 }

11

12 pub l i c vo id tearDown ( ) {}

13

14 }

Figure 3.6 Atom #1: Creates a playlist.

from our first example (the multimedia test scenario in Figure 3.3).

Figures 3.6 and 3.7 show Atom #1 and Atom #2 related to Step #1 and Step#2, respec-

tively. Although different, these atoms are related to each other. Atom #1 creates a playlist

named PLAYLIST_02 while Atom #2 selects the same playlist to be played. Note that the

playlist’s name is fixed. This means that Atom #2will only execute correctly, if a playlist named

PLAYLIST_02 has been created before by another atom or it already exists on the phone. The

same happens to Atom #3 (Figure 3.8) and Atom #4 (Figure 3.9) related to Step #3 and Step #4,

respectively. Atom #3 creates a picture file (line 11 of Figure 3.8), while Atom #4 deletes a

picture file (line 10 of Figure 3.9). Atom #4 will not compile correctly, because the object it

tries to delete is not defined in the class.

We can fix this compilation problem, by keeping in a map all objects present in the phone

during the atoms execution. Thus, all objects created during the execution are added to a map.

When an atom needs an object, for instance a picture, it then can retrieve from the map. We

1 pub l i c c l a s s ATOM_PLAY_PLAYLIST {

2

3 pub l i c ATOM_PLAY_PLAYLIST ( ) { }

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " P l ay t h e c r e a t e d p l a y l i s t . " ) ;

9 n a v i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

10 −−> mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( P l a y l i s t . g e t ( "PLAYLIST_02" ) ) ;

11 n av i g a t i o nTk . goToAndSelectMenuItem ( Mul t imed i a I t em . g e t ( "PLAY" ) ) ;

12 }

13

14 pub l i c vo id tearDown ( ) {}

15

16 }

Figure 3.7 Atom #2: Plays a playlist.
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1 pub l i c c l a s s ATOM_TAKE_PICTURE {

2

3 pub l i c ATOM_TAKE_PICTURE( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " Take a p i c t u r e . " ) ;

9 n a v i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

10 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

11 −−> P i c t u r eF i l e p i c = mul t imed iaTk . s t o r eC a p t u r e d P i c t u r eA s ( Mul t imed i a I t em . g e t ( "STORE_ONLY" ) ) ;

12 }

13

14 pub l i c vo id tearDown ( ) {}

15

16 }

Figure 3.8 Atom #3: Takes a picture.

will discuss more about this in Section 3.2.

As can be noticed, we changed line 24 of Step #4 in Figure 3.4 when we created Atom #4.

It is necessary when a step has a call to the function returnToPreviousScreen. As the steps of a

test scenario are executed in sequence, this function knows exactly in which screen the phone

is and was before it was called. When we are talking about atoms, we do not know whether

the previous screen is the one we are interested in. It depends on the last atom executed. For

instance, the last atom executed could be in a screen of the messaging application, while the

current atom in execution needs the phone to be in a specific screen of the calendar. This is the

reason why in Atom #4 we needed to replace the call to function returnToPreviousScreen by

a call to function goTo (Figure 3.9, line 9), indicating in which application the phone must be

(in this case, the phone must be in the sub-application ALL_PICTURES of the application PIC-

TURES). This is the only way we can guarantee that the next functions will execute correctly.

1 pub l i c c l a s s ATOM_DELETE_PICTURE {

2

3 pub l i c ATOM_DELETE_PICTURE ( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " De l e t e a p i c t u r e . " ) ;

9 −−> nav i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "PICTURES" ) , MultimediaGoTo . g e t ( "ALL_PICTURES" ) ) ;

10 −−> mul t imed iaTk . d e l e t e F i l e ( pic , t rue ) ;

11 }

12

13 pub l i c vo id tearDown ( ) {}

14

15 }

Figure 3.9 Atom #4: Deletes a picture.
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The resulting atoms we showed in this section are incomplete, due to the lack of test data

maintenance. The following section discusses about this in detail.

3.2 Test Data Support

The test scenarios we extract atoms from (as the one in Figure 3.3) do not keep the data gener-

ated during their execution. Once the execution of a test scenario finishes, we miss reference to

all generated data. And also, all input data a test requires for its execution (for instance, a name

to give to a playlist – PLAYLIST_02 back to line 10 of Figure 3.3) are fixed on its procedures.

Every time a test scenario is executed, it uses the same input data. Keeping a map to store data

generated during execution and to maintain input data is key to our approach as it enables one

atom to exercise different inputs and to consume data another atom produces.

Our solution for the data map consists in a Java HashMap [6] that is kept in memory during

the atoms execution. This map associates a list of objects to each input category (the map key).

Thus, we can group objects of the same category under a key that represents this category.

For instance, the key playlists groups objects that can be used in a test as names for playlists.

In order to fill our map with input data, we use TAF database files, called TDF files [28].

In addition to configuration settings, TDF files keep data to be used as input during testing

executions. They are XML files and may have different structures to expose their contents.

1 <CONSTANT name="PLAYLIST_01" d e s c r i p t i o n ="Name of a p l a y l i s t . ">

2 <APPLICATION_CONTENT>

3 <VALID>

4 <FOR id="* " / >

5 < /VALID>

6 <CONTENT source=" p l a i n " va lue=" p l a y l i s t 0 1 " / >

7 < /APPLICATION_CONTENT>

8 < /CONSTANT>

9 <CONSTANT name="PLAYLIST_02" d e s c r i p t i o n ="Name of a p l a y l i s t . ">

10 <APPLICATION_CONTENT>

11 <VALID>

12 <FOR id="* " / >

13 < /VALID>

14 <CONTENT source=" p l a i n " va lue=" p l a y l i s t 0 2 " / >

15 < /APPLICATION_CONTENT>

16 < /CONSTANT>

Figure 3.10 Example of TDF items.

Figure 3.10 gives an example of TDF file’s items. It shows contents that can be used to

give names to playlists. As we are only interested in input data, we must not consider TDF

items that correspond to configuration settings. We differentiate data items from configuration

settings by the attribute source, which must have plain as its value. Any other items that have
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a value for their source attribute different from plain do not correspond to a data item. So, no

matter how the TDF files are structured, if we can find items that have a source attribute with

value plain, we can extract test input data from them. From the TDF items Figure 3.10 shows,

we can extract two playlist names: playlist01 and playlist02, which are related to the attribute

value of the tags CONTENT present in lines 6 and 14, respectively.

Figure 3.11 illustrates an overview of the process of filling the data map with input data

from TDF files. An engine (Parser) receives as input a set of TDF files (Configuration Files).

Then the engine looks for data items to extract input data from them. After that, all data are

stored in a HashMap (our Test Data Map) under keys that correspond to their categories. For

instance, all data that correspond to playlist names must be kept in the map under the key

playlists. Thus, each key groups a list of objects of a same category.

Figure 3.11 Filling the test data map with input data.

In order to ease the recognition of objects of a same category by the Parser, we assume that

the value for the name attribute of a TDF data item follows this pattern: CATEGORY_NAME,

where CATEGORY represents the category of the item, and NAME is a unique string to dis-

tinguish the item among others of the same category. Thus, all items that have the same prefix

(CATEGORY) in the value of their name attribute belong to a same category.

Once the Test Data Map is filled with data extracted from TDF files, it can provide input

data for atoms. Thus, an atom may read data from or update the map with data it generates

during execution. In order to do so, it first needs to get an instance of the Test Data Map

(at this time, the data map is already filled with input data) and then access this instance to

read one object from (getOneObjectRandomly), or update the map to remove (removeObject-

FromKeyRandomly) or to add one object (addObjectToMap). The first two methods use a seed,
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defined by the user, to randomly access the map. In the following, we enumerate some tips to

help the addition of the data map support in the atoms creation.

Tips for including data map support in atoms:

[Tip D]We first need to get an instance of the data map, i.e. add this line in the beginning

of the procedures of all atoms: TestDataMap tdm = TestDataMap.getTestDataMap();. During

execution, if it is the first time the data map is accessed, a new Test Data Map instance is created

and filled with data extracted from TDF files. Otherwise, an instance of the already filled data

map is used to guarantee that the map is updated with the changes previous atoms have made.

[Tip E] Then, verify if the atom needs input data. These input data can be either (i) a

parameter that helps the creation of an object (an example of this can be found in the line 9 of

Figure 3.6 where to create a playlist it uses the name PLAYLIST_02 ), or (ii) an object that is

manipulated by the atom but was not created by the atom (as in line 10 of Figure 3.7, which

plays a playlist not created by the atom; and line 10 of Figure 3.9, which deletes a picture that

the atom did not create either).

1 pub l i c c l a s s ATOM_CREATE_PLAYLIST {

2

3 pub l i c ATOM_CREATE_PLAYLIST ( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " C r e a t e a p l a y l i s t . " ) ;

9 TestDataMap tdm = TestDataMap . ge tTes tDataMap ( ) ;

10 −−> St r ing name = ( St r ing ) tdm . getOneObjec tRandomly ( Tes tDa taMapCons t an t s . PLAYLISTS ) ;

11 −−> s t r e s s T k . c r e a t e R a n d omF i l e s P l a y l i s t ( P l a y l i s t . g e t (name ) , 3 , 10) ;

12 tdm . addObjectToMap ( Tes tDa taMapCons t an t s . PLAYLISTS_CREATED , name ) ;

13 }

14

15 pub l i c vo id tearDown ( ) {}

16

17 }

Figure 3.12 Atom #1 with data map support.

[Tip F] If the input data the atom needs is related to [Tip E] (i), then retrieve from the

map an object that correspond to the desired parameter’s category. Use method getOneOb-

jectRandomly to do so. After that, the next UFs in the atom can use the retrieved object. In

Figure 3.12 we show the use of Tip F to retrieve from the data map the input Atom #1 needs to

create a playlist. We created a class with constants that are related to all keys used in the map

(TestDataMapConstants). Thus, instead of calling directly the desired map’s key, we call its

corresponding constant (in this case, PLAYLISTS). This helps the maintenance of the code and

avoids spelling errors.
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[Tip G] If the input the atom needs is related to [Tip E] (ii) and it is simply used by the

procedures of the atom but it is not removed from the phone file system, also use method

getOneObjectRandomly, indicating the key that correspond to the category of the object to be

used. As an example for the use of this tip, we can see Figure 3.13, which shows Atom #2. The

atom needs to retrieve a playlist from the data map in order to play it. The arrows on the lefts

indicate the exactly point where we followed Tip G. It first gets from the data map an object

(the name of a playlist) under the key PLAYLISTS_CREATED (line 10) and uses it to select the

playlist to be played (line 12).

1 pub l i c c l a s s ATOM_PLAY_PLAYLIST {

2

3 pub l i c ATOM_PLAY_PLAYLIST ( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " P l ay t h e c r e a t e d p l a y l i s t . " ) ;

9 TestDataMap tdm = TestDataMap . ge tTes tDataMap ( ) ;

10 −−> St r ing name = ( St r ing ) tdm . getOneObjec tRandomly ( Tes tDa taMapCons t an t s . PLAYLISTS_CREATED) ;

11 n av i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "MUSIC" ) , MultimediaGoTo . g e t ( "PLAYLIST" ) ) ;

12 −−> mul t imed iaTk . s c r o l l T oAndS e l e c tMu l t im e d i a F i l e ( P l a y l i s t . g e t (name ) ) ;

13 n av i g a t i o nTk . goToAndSelectMenuItem ( Mul t imed i a I t em . g e t ( "PLAY" ) ) ;

14 }

15

16 pub l i c vo id tearDown ( ) {}

17

18 }

Figure 3.13 Atom #2 with data map support.

[Tip H] If the input the atom needs is related to (ii) and it is consumed by any TAF UF that

deletes it from the phone file system, then it also needs to be removed from the data map. Use

method removeObjectFromKeyRandomly, indicating the key that correspond to the category of

the object to be deleted. Figure 3.14 shows Atom #4 after the use of this tip. We noticed that the

atom needs as input a picture object to be deleted (Tip E). So we followed Tip H to randomly

remove one picture among all pictures stored in the data map (line 10). After that, the picture

removed from the data map is also removed from the phone file system (line 12).

[Tip I] Finally, verify if the atom generates data, i.e. creates any object. The creation of

the object may be explicit in the code as in line 11 of Figure 3.8, which creates a PictureFile

object; or implicit as in line 11 of Figure 3.12, which creates a playlist in the phone file system

but does not create an object in the code that represents the playlist. If the atom explicitly

creates an object, the object created must be added to the data map. But if the object created

by the atom is not explicitly shown in the code, what must be added to the data map is one of

its attribute. Use the one that helped the creation of the object (for instance, the name of the
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1 pub l i c c l a s s ATOM_DELETE_PICTURE {

2

3 pub l i c ATOM_DELETE_PICTURE ( ) { super ( 1 ) ; }

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " De l e t e a p i c t u r e . " ) ;

9 TestDataMap tdm = TestDataMap . ge tTes tDataMap ( ) ;

10 −−> P i c t u r eF i l e p i c = ( P i c t u r eF i l e ) tdm . removeObjectFromKeyRandomly ( Tes tDa taMapCons t an t s .

PICTURES )

11 n av i g a t i o nTk . goTo ( PhoneApp l i c a t i o n . g e t ( "PICTURES" ) , MultimediaGoTo . g e t ( "ALL_PICTURES" ) ) ;

12 −−> mul t imed iaTk . d e l e t e F i l e ( pic , t rue ) ;

13 }

14

15 pub l i c vo id tearDown ( ) {}

16

17 }

Figure 3.14 Atom #4 with data map support.

playlist created by Atom #1 in Figure 3.12). The object created or the attribute must then be

added to the data map under the key that corresponds to the category of the object created. Use

the addObjectToMap method.

Atom #3 (Figure 3.15) takes a picture from the camera and stores it in the phone file system,

i.e. its procedures creates an object (a picture). This situation is reported in Tip I. Since the

object created is explicitly shown in the code, i.e. a PictureFile is created (line 12), we add it to

the data map we instantiated in the beginning of the procedures (Tip D). The picture is added

to the data map under the key that corresponds to the pictures category – PICTURES (line 13).

With the help of the tips we presented here, we completed the creation of the 4 atoms

(showed in Section 3.1) and added the data map support. Figures 3.12 to 3.15 illustrated them.

1 pub l i c c l a s s ATOM_TAKE_PICTURE {

2

3 pub l i c ATOM_TAKE_PICTURE( ) {}

4

5 pub l i c vo id s e t u p ( ) {}

6

7 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

8 l og ( " Take a p i c t u r e . " ) ;

9 TestDataMap tdm = TestDataMap . ge tTes tDataMap ( ) ;

10 n av i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

11 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

12 −−> P i c t u r eF i l e p i c = mul t imed iaTk . s t o r eC a p t u r e d P i c t u r eA s ( Mul t imed i a I t em . g e t ( "STORE_ONLY" ) ) ;

13 −−> tdm . addObjectToMap ( Tes tDa taMapCons t an t s . PICTURES , p i c ) ;

14 }

15

16 pub l i c vo id tearDown ( ) {}

17

18 }

Figure 3.15 Atom #3 with data map support.
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3.3 Execution Lists Generation

After the creation of atoms, we organize them in sequence to build what we call execution lists.

These execution lists have the objective to guide the atoms execution. Thus, during execution

time, each atom is executed in the order it appears in the execution list.

AF defines two strategies to group atoms in execution lists: one that randomly organizes the

available atoms (Section 3.3.1); and another that also organizes atoms but in a more systematic

way (Section 3.3.2). In both strategies, the size of the generated execution lists can be defined

by the user or determined by the number of the available atoms to be added to the resulting

lists.

3.3.1 Random Generation Algorithm

One AF strategy to generate execution lists is by randomly ordering atoms in sequences. Algo-

rithm 1 shows the pseudo-code for the random generation. Function genList receives as input

a set of atoms (allAtoms), a number that indicates the size of the execution list to be gener-

ated (size), and a seed for the random choice of atoms (seed). Its output is a list of atoms that

represents the execution list generated (execList).

Algorithm 1: genList for Random Generation

genList(Set〈Atom〉 allAtoms, int size, long seed): List〈Atom〉1

begin genList2

List〈Atom〉 execList = /0 ;3

for i = 1..size do4

Atom atomChosen = pickOne(allAtoms, seed);5

execList.add(atomChosen);6

endfor7

return execList;8

end9

The code fragment within the range 4 – 7 randomly selects a number (size) of atoms from

allAtoms and adds them to the resulting list (execList). The selection of atoms is done by func-

tion pickOne that uses the random seed to randomly select one atom from the set allAtoms.

It only selects one atom, but does not remove it from the set. So, each call to function pick-

One will have the same input set of atoms as in the beginning of the generation. Figure 3.16

illustrates this random generation.

As in the example showed in Figure 3.16, the random algorithm does not guarantee that

all available atoms will appear at least once in the execution list it generates. In the example,
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Figure 3.16 Generation of an execution list using the Random Algorithm.

Atom 4 is not in the resulting list. What we have noticed though is that the longer the resulting

execution list is, the more uniform the frequency of atoms becomes.

The execution lists randomly generated also does not guarantee that all atoms will execute

correctly. This happens when the execution of an atom requests inputs from the data map in

order to run its procedures. If there are no compatible values in the map, we say that the atom

fails, i.e. it does not execute (its procedures are not sent to the system under test), and the

following atom in the execution list takes place.

3.3.2 Pre and Postconditions Check

Because we noticed that, with the random generation, atoms can be discarded from the exe-

cution list due to lack of values in the data map, in this work we propose a more systematic

strategy to generate execution lists. Its main objective is to guarantee that every atom in the list

will always have values available in the data map corresponding to the categories of the inputs

its procedures request.

In this strategy, each atom has pre and postconditions. The preconditions indicate which

data the atom requires as input for its procedures, and the postconditions represent any data the

atom creates/updates/deletes. In order to check the pre and postconditions, we use an abstract

view of all data that should be present in the system during the atoms execution. While an

execution list is generated, this abstract view is gradually updated with information about the

quantity of each object that is created/updated/deleted by the atoms postconditions.

The idea is to build execution lists by checking the pre and postconditions without execut-

ing the atoms. In order to make it possible and closer to what would happen during the real

execution of the atoms, their pre and postconditions must be complete. That is, the precon-

ditions must represent all need for data their corresponding atom has; and the postconditions
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need to be aware of all objects created/updated/deleted by the atom’s procedures. To make it

clearer, let’s take a look in some examples.

Figure 3.17 shows the procedures of an atom that creates a picture album with all available

pictures in the phone file system. It first gets a name from the data map for the picture album it

will create (line 10). Then it creates a picture album with the name previously chosen (line 11).

And finally, it adds the name of the created picture album to the data map (line 12).

1 @pre cond i t i o n s ( {

2 @precond i t i on ( "PICTURE_ALBUMS_NAMES > 0 " ) ,

3 @precond i t i on ( "PICTURES > 0 " )

4 } )

5 @pos t cond i t i o n ( "PICTURE_ALBUMS++" )

6 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

7

8 log ( " C r e a t e a p i c t u r e album . " ) ;

9 TestDataMap tdm = TestDataMap . ge tTes tDataMap ( ) ;

10 S t r i n g name = ( S t r i n g ) tdm . getOneObjec tRandomly ( Tes tDa taMapCons t an t s . PICTURE_ALBUMS_NAMES) ;

11 mul t imed iaTk . c r e a t e P i c t u r eA l b umWi t hA l l F i l e s ( P i c t u r e F i l e . g e t ( name ) ) ;

12 tdm . addObjectToMap ( Tes tDa taMapCons t an t s . PICTURE_ALBUMS, name ) ;

13

14 }

Figure 3.17 Atom that creates a picture album.

Note that to create a picture album, the atom needs to retrieve a name from the data map

and also there must be at least one picture in the phone file system. If there are no names and/or

no pictures in the data map, the atom does not create the picture album, i.e. it fails. From this

we can say that the atom’s preconditions state that there must be at least one name for picture

albums (line 2) and at least one picture stored in the data map (line 3). After the creation of

the picture album, the atom adds the album’s name to the data map to keep track of the object

created. So, the atom’s postcondition in this case states that the data map will be updated with

one more picture album (line 5).

Sometimes, the pre and postconditions are simply “true”. For instance, Figure 3.18 shows

an atom that takes a picture without saving it in the phone file system. Therefore, it does not

need any input data to execute its procedures, as there is no need for data to take a picture; and

it does not creates any object in the phone, as it does not save the picture taken. This means we

can add the atom to an execution list anywhere, i.e. there is no restriction of data that disables

its execution and it will be always ready to execute whatever the state of the data map is.

As can be noticed by the pre and postconditions we exemplified here, the abstract view

of the system we previously described must have the information regarding the access to the

data map by each atom. Thus, before adding an atom to an execution list under construction,

its preconditions are checked against a representation of the data map. In the beginning of the
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1 @precond i t i on ( " t r u e " )

2 @pos t cond i t i o n ( " t r u e " )

3 pub l i c vo id b u i l d P r o c e d u r e s ( ) {

4

5 log ( " Launch camera and t a k e a p i c t u r e . " ) ;

6 n a v i g a t i o nTk . launchApp ( PhoneApp l i c a t i o n . g e t ( "CAMERA" ) ) ;

7 mul t imed iaTk . c ap t u r eP i c t u r eF romCame r a ( ) ;

8

9 }

Figure 3.18 Atom that takes a picture without saving it.

execution list’s creation, the atom’s preconditions are checked against an initial state of the data

map, which can be determined by the user. After that, the data map is updated with the atom’s

postcondition. Finally, this process is repeated until the execution list reaches the desired size

or no more atoms’s preconditions are satisfied by the current state of the data map.

Algorithm 2 shows a pseudo-code for the execution list generation with pre and postcondi-

tions checks. The signature of function genList is the same as the one for the random genera-

tion. It receives a set of atoms (allAtoms), the desired size for the execution list to be generated

(size), and a seed for the random choice of atoms (seed). The output is a list of atoms that

represents the execution list generated (execList).

Algorithm 2: genList with pre and postconditions check

genList(Set〈Atom〉 allAtoms, int size, long seed): List〈Atom〉1

begin genList2

List〈Atom〉 execList = /0 ;3

Map〈String, Integer〉 currentState = buildMap();4

for i = 1..size do5

List〈Atom〉 satAtoms = select(allAtoms, currentState);6

if satAtoms.isEmpty() then break;7

Atom atomChosen = pickOne(satAtoms, seed);8

execList.add(atomChosen);9

currentState = executePost(atomChosen);10

endfor11

return execList;12

end13

The implementation of function genList is different though. It first calls function buildMap

that creates a representation of the data map (currentState). This version of the data map is

different from the one used by our atoms. In this case, currentState is a map, whose keys are

the categories of the atoms’ inputs. Each key maps to the number of objects that would be

present in the test data map during the execution of atoms. This representation of the data map

can be initially loaded with a set of input data defined by the user. This helps the creation of

execution lists for different initial configurations of the system to be tested.
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The code fragment within the range 5 – 11 builds the resulting execution list. The algorithm

uses function select to pick a subset (satAtoms) of allAtoms whose preconditions are satisfied

by the data present in currentState (line 6). For instance, suppose that there are no data stored

in currentState – the data map is empty. This means that only atoms, whose have preconditions

are “true”, i.e. no need for input data, will be added to satAtoms.

If after the selection of atoms, the subset satAtoms is empty, the generation of the execu-

tion list ends (line 7). This means that no more atoms can be added to satAtoms because their

preconditions are not compatible to the data stored in currentState, i.e. the data map does not

contain the input data allAtoms require. Otherwise, when satAtoms is not empty, the generation

continues. Function pickOne randomly selects one atom from satAtoms (line 8). The building

execution list then receives the selected atom (line 9). And finally, function executePost up-

dates currentState with the atom’s postconditions (line 10). For instance, if the postconditions

state that the selected atom creates an object, executePost gets the key that corresponds to the

category of the object created and increments the number it maps.

Figure 3.19 Generation of an execution list using pre and postconditions check.

Figure 3.19 illustrates the generation with pre and postconditions check. Differently from

the atoms showed in Figure 3.16, all atoms here have pre and postconditions. To ease compre-

hension, we assumed that the initial state of the data map is empty, i.e. with no data stored.

When the Pre and Postcondition Check Algorithm starts, it adds Atom 3 to the building exe-

cution list, as it is the only one with “true” preconditions. Then, it updates the data map with

Atom 3’s postcondition Post A. With the data map updated with Post A, now the algorithm can

randomly choose either Atom 3 again or Atom 1, whose precondition is Pre A (suppose that

Pre A requires the data Post A indicates). In our example, the algorithm adds Atom 1 to the

execution list and updates the data map with its postcondition Post B. The algorithm then adds

atoms to the resulting execution list until it reaches the desired size.

The Pre and Postconditions Check Algorithm also does not guarantee that all available
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atoms will appear at least once in the generated execution list. In the example, Atom 4 is

not present. This may happen either due to lack of data in the data map that satisfy some

atoms’ preconditions or due to the random selection when there are more than one atom whose

preconditions are satisfied by the available data in the map. On the other hand, all atoms added

to the execution list will execute correctly, as the data map contains the inputs they require.



CHAPTER 4

Empirical Evaluations

Testing is a skill. While this may come as a surprise

to some people it is a simple fact.

—M. FEWSTER AND D. GRAHAM (Software Test Automation)

This chapter provides details on the empirical evaluation of the Atoms Framework using

Motorola cellular phones. We conducted 4 sets of empirical experiments. Firstly, we compared

the use of atoms with the use of regular test scenarios with respect to their capability to crash

phones with known bugs (Section 4.3). In the other two experiments we evaluated the impact

of randomization for data (Section 4.4) and sequence generation (Section 4.5) on AF. And in

the final experiment (Section 4.6) we examined the impact of pre and postconditions check in

the execution lists generation. We reported the majority of the experiments in [13].

4.1 Characterization of Subjects

We characterize each subject with (i) the phone model (i.e., a list of external and internal phone

features to identify a set of similar phones functions), (ii) the hardware version, (iii) the software

version (i.e., the build for the operating system and its applications), and (iv) the flex bit (FB)

version. The flex bit configuration allows the user to dynamically configure the phone prior

to the tests. Example of such configurations includes enabling the phone to send and receive

bluetooth signals, and setting the phone to debug mode.

Table 4.1.1 shows the subjects we used in our experiments. Column “Config.” introduces a

unique identifier to distinguish each combination of model, hardware, software and flex bit. The

other columns show each of these attributes. The identifiers we use in this table are artificial.

Note that some configurations share the same model or hardware, but the software and flex bit

vary. The selection of these configurations was driven by the availability of equipment where

past errors have been detected.

38
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Config. Model Hard. Soft. FB

A M1 H3 S1 F1

B M1 H4 S2 F2

C M1 H4 S3 F3

D M2 H2 S4 F4

E M2 H1 S5 F5

F M3 H5 S6 F6

G M3 H6 S7 F7

H M2 H2 S8 F8

Table 4.1.1 Characterization of experimental subjects.

4.2 Failures

The oracle does not operate on the phone. It is a general Motorola proprietary program that

monitors the phone memory for bad states.

The oracle detects 12 distinct kinds of crashes across all experiments. In the following,

we distinguish them using crash identifiers (CIDs) from 1 to 12. Each identifier denotes a

different undesirable scenario of the application that the oracle is able to capture. For example,

CID=1 is a general report to denote that the system makes no progress but the oracle is unable

to ascertain the reason, CID=2 means that an issue with the hardware interface (e.g., it is not

possible to allocate memory) prevents the application from making progress, CID=6 denotes a

programming error like division by zero, etc. Important to note is that the oracle reports only

the crash event; it does not inform the reason for the crash (as debuggers do). Consequently, it

may happen that distinct techniques report different manifestations (CIDs) of the same defect.

4.3 Experiment I: Atoms versus Test Scenarios

This section describes the experiment we conducted to compare AF with a technique that uses

test scenarios to find crashes on phones. This technique is called Scenario Hunting (SH) [13]

and we use it as baseline for this experiment. To this date, the Motorola Test Center in Recife

(Brazil) uses SH among other techniques for crashing phones.

Setup. The goal of this experiment is to compare the effectiveness of AF with that of SH for

crashing phones with historical defects. We used 8 different phone configurations for which

SH found 4 crashes. For each configuration we run once each technique until execution runs

out of time (timeout=40h) or finds a crash. The execution of SH confirmed the crashes docu-
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mented in the bug report database. For AF, we used the Random Generation Algorithm (see

Section 3.3.1) to generate all execution lists used and we fixed the random seed for data gener-

ation across different configuration runs. The atoms that AF uses derive from the test scenarios

SH used – we did not include any atoms original from a different set of tests. This helps us to

fairly compare SH and AF.

Results. Table 4.3.1 shows a summary of the results obtained in the experiments. Column

“Config.” shows the identifier for one subject configuration, column “CID” shows the identifier

of the crash, and column “time” shows the execution time (in hours) for each experiment.

Recall that one experiment either timeouts or finds a crash. Line “avg.” reports the averages of

each column. For column CID, it shows the fraction of experiments that revealed a crash. For

column time, it shows the arithmetic mean of the elapsed time.

Config. SH AF

- CID time CID time

A - 40.0 6 6.5

B - 40.0 4 33.6

C - 40.0 4 36.5

D 2 4.3 7 5.0

E 3 3.9 1 3.6

F - 40.0 1 4.0

G 4 3.1 6 11.2

H 5 2.3 5 2.8

avg. 50% 21.7 100% 12.9

Table 4.3.1 Comparison between SH and AF.

We list next our key observations:

• Precision. Only AF could find a crash for all eight experiments with a timeout of 40h. SH

found a crash in only 50% of the cases. But when it found, it outperformed AF, except in

Config. E where the difference was of only 0.3h (that is, 18min).

• Time. The variation of time reported was not very high when both techniques found a

crash. For example, the difference in time for crash for experiment D was +0.7h (i.e., AF

took 0.7h more to find the crash), -0.3h for experiment E, 0.5h for H. This difference was

high only for experiment G, where AF took 8.1h more to find the crash.

• Kind of crash. The variation of the CID reported was high. Note that only in experiment

H both techniques reported the same CID.
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4.4 Experiment II: Impact of Randomization of Data

This section describes the experiment we conducted to evaluate the impact that the use of dif-

ferent random data has in the effectiveness of AF.

Setup. In this experiment, we run AF for 10 times, on each configuration. We used the same

sequence of atoms in all executions of a configuration (i.e., we fixed the values of the random

seed for the generation of execution lists), however it varied across different configurations. We

used the Random Generation Algorithm (see Section 3.3.1). Figure 4.1 shows the distributions

of execution time (in hours) for this experiment.

Figure 4.1 AF time distributions for random data.

Note on distribution representation. We use box-plot notation to illustrate a data distribution.

The lower and upper hinges of one box indicate respectively the upper bounds of the first and

third quartiles of the distribution; the line across the box defines the second quartile (i.e., me-

dian value). The lines below and above the box limit the first and fourth quartiles. Small circles

outside the hinges correspond to outliers. The symbol x̄ denotes the mean value, the symbol

σ denotes the standard deviation – an average for the dispersion of data points from the mean

value, and the symbol x̂ denotes the median value.
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Results. Table 4.4.1 shows detailed data for the 10 runs of AF over each configuration from

A to H. The value “-” for column “CID” indicates a missed crash (resp., value “40.0” for

column “time” indicates a timeout). For example, for configuration A, AF misses the crash on

experiment 4.

Config. A Config. B Config. C Config. D Config. E Config. F Config. G Config. H

# CID time CID time CID time CID time CID time CID time CID time CID time

1 6 6.5 4 33.6 4 36.5 7 5.1 1 3.6 1 4.0 6 11.2 5 2.7

2 6 14.6 - 40.0 - 40.0 7 5.5 5 3.6 - 40.0 6 15.1 5 3.4

3 6 13.9 6 37.8 - 40.0 7 5.3 6 1.9 - 40.0 4 18.3 5 3.3

4 - 40.0 - 40.0 - 40.0 7 5.7 5 3.9 - 40.0 4 16.6 5 3.1

5 4 33.9 6 4.5 12 4.0 7 5.9 6 1.2 - 40.0 - 40.0 5 2.9

6 9 19.0 4 27.2 - 40.0 7 5.1 5 3.7 12 37.8 4 34.7 9 2.9

7 4 30.5 - 40.0 - 40.0 7 7.4 5 1.0 - 40.0 4 17.6 5 2.5

8 6 16.7 6 12.7 - 40.0 7 5.3 9 1.5 - 40.0 4 1.5 5 3.0

9 4 32.4 6 35.3 - 40.0 7 4.9 9 1.1 - 40.0 9 15.2 5 3.2

10 6 13.4 6 2.9 - 40.0 7 4.3 5 3.9 - 40.0 6 1.6 5 1.1

avg. 90% 22.1 70% 27.4 20% 36.1 100% 5.5 100% 2.5 20% 36.2 90% 17.2 100% 2.8

Table 4.4.1 Impact of using random seeds in AF.

We list next our key observations:

• Precision. Although some executions did not find a crash, the mean precision – the value

of the avg. CID for each configuration – was high: 74%.

• Time. The dispersion of the data points in AF was high for almost all configurations.

The median standard deviation of execution times for all configurations was 7.9h. That

means that AF execution time was very sensitive to the selection of the seed.

• Kind of crash. Only Config D found the same kind of crash in all executions. All others

configurations found more than 2 types of crash (for instance, Config. E found 4 different

types).

4.5 Experiment III: Impact of Randomization of Sequences

This section describes the experiment we conducted to evaluate the impact of randomizing the

list of atoms used by AF.

Setup. We run AF for 10 times on phone configurations E and H. These configurations have

the lowest average execution times (see Table 4.4.1). We used the same random seed for data

and execution list generation in all runs.
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In this experiment, we did not use the Random Generation Algorithm or the Pre and Post-

conditions Check Algorithm for the execution lists generation we described in Chapter 3. In-

stead, we used the one Algorithm 3 shows. This version associates each atom to one domain

category. The categories we defined are as follow: applaunch (atoms that only go to an appli-

cation), browser (access the Internet), mms (deal with multimedia messages), multimedia (deal

with multimedia files and camera), phonebook (deal with calendar, events and contacts), and

sms (deal with text messages). Function partition in line 3 takes as input a user-defined set of

atoms (allAtoms) and returns a map that associates a set including all atoms of a category with

the category it belongs.

Algorithm 3: genList with Allpairs

genList(Set〈Atom〉 allAtoms, int nAtoms, long seed): List〈Atom〉1

begin genList2

Map〈Category, Set〈Atom〉〉 partition = partition(allAtoms);3

Map〈Category, Set〈Atom〉〉 selected = /0;4

foreach entry in partition do5

Set〈Atom〉 atoms = entry.value();6

Set〈Atom〉 tmp = /0;7

for i = 1..nAtoms do tmp = tmp ∪ atoms.pickOne(seed);8

selected.put(entry.key(), tmp);9

endfch10

/*concatenates all sequences of atoms. each sequence includes 1 atom on each

category*/

return allpairs(selected);11

end12

The code fragment in the line range 5 – 10 selects nAtoms on each category and assigns the

resulting map to variable selected. We apply pairwise coverage [34] to generate sequences of

atoms with the property that each atom of each category is paired to another atom of another

category in at least one case. For this, we use the Allpairs [5] tool. Finally, it gives as output

sequences of atoms (each sequence includes one atom of each category), and then concatenates

these sequences to build one longer sequence AF executes, i.e. an execution list.

Results. Table 4.5.1 shows detailed data for the 10 runs of AF over configurations E and H.

Our key observations for this experiment are as follows:

• Precision. For both configurations, AF found a crash in only 4 out of 10 runs, while AF

found a crash for 100% of the cases when using atoms derived from existing tests (see

Table 4.4.1).

• Time. The average time that Config. E took to find a crash (5.5h) was higher than the one
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for Experiment II (2.5h, see Table 4.4.1). The average time that Config. H took to find

a crash (3.8h) was also higher than the one reported in Experiment II (2.8h). However,

if we only consider the runs that found a crash in Config. H, AF performed faster in this

experiment. Its slowest time was 2.2h, while Experiment II reported 3.4h as the slowest

time to find a crash for Config. H.

• Kind of crash. The types of crash reported for both configurations were the same in all

runs that found a crash.

This experiment indicates that the interaction between categories (functionalities of the

system) may not be as important as the selection of critical atoms.

Config. E Config. H

# CID time CID time

1 - 5.5 5 1.6

2 5 2.4 - 5.0

3 5 5.3 - 5.4

4 - 10.4 5 1.3

5 - 6.2 - 6.7

6 - 4.9 5 1.1

7 5 3.1 - 4.3

8 5 6.7 - 5.5

9 - 5.4 - 5.4

10 - 5.5 5 2.2

avg. 40% 5.5 40% 3.8

Table 4.5.1 Runs of AF with different execution lists for configurations E and H.

4.6 Experiment IV: Impact of Pre and Postconditions Check

This section describes the experiment we conducted to evaluate the impact the pre and post-

conditions check has on the effectiveness of AF to find crashes.

Setup. We run AF for 10 times on phone configurations E and H. These configurations have

the lowest average execution times (see Table 4.4.1). We used the same random seed for data

generation in all runs. We varied the execution lists in all executions of the same configuration,

i.e. we varied the value of the random seed for the generation of execution lists. However, we

fixed it across different configurations. We used the Pre and Postconditions Check Algorithm

(see Section 3.3.2) to generate the execution lists uses.
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Results. Table 4.6.1 shows detailed data for the 10 runs of AF over each configuration.

Config. E Config. H

# CID time CID time

1 5 15.6 5 1.9

2 5 15.4 5 1.5

3 5 20.9 5 2.9

4 5 22.8 5 1.1

5 5 19.3 5 1.8

6 5 16.9 5 1.9

7 5 17.0 9 1.3

8 5 37.2 5 1.1

9 5 25.4 5 1.7

10 5 17.8 5 1.8

avg. 100% 20.8 100% 1.7

Table 4.6.1 Runs of AF with pre and postconditions checks for configurations E and H

Our key observations for this experiment are as follows:

• Precision. All runs of both configurations found a crash. The precision achieved a 100%.

• Time. When compared to Experiment III (see Table 4.5.1), in this experiment AF took

longer to find a crash in Config. E. The average time was 20.8h against 5.5h of Experi-

ment III. However, it was faster for Config. H, i.e. the average time here was 1.7h against

3.8h for Experiment III.

• Kind of crash. Just like Experiment III, AF reported the same kind of crash in all runs

for both configurations (CID=5), except in run 7 of Config. H (CID=9).

4.7 Threats to Validity

This section describes threats to internal and external validity of our experiments. Internal

validity determines whether the techniques have a cause-and-effect relationship in the exper-

imental observations. External validity determines whether or not one can generalize the

experimental observations to other scenarios. One threat to internal validity is internal random-

ness. In principle, it is possible that the system does not answer promptly to the commands

that the automated test issues. This depends on the operating system’s scheduling decisions.

This effect could impact our observations. One threat to external validity is portability of the

technique. We implemented AF with the goal of testing cellular phones, although in principle,

there is no reason to believe that it is not applicable to other kinds of application.
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Conclusions

My conclusion is that testing is an intellectual

endeavor and not part of arts and crafts.

—JAMES A. WHITTAKER (How to Break Software)

Software has tremendously increased in complexity over the past decades. We now have

software applications for almost everything. As a result, the size of software products is no

longer measured in terms of thousands of lines of code, but millions of lines of code. If we

do not give much attention to a proper development process, which focuses on the production

of software with quality and reliability, this huge number of lines of code becomes a perfect

environment for the insertion of bugs. Software failure is expensive. The longer a bug stays in

the program, the more costly it becomes to fix it. And software with bugs is software with no

quality, no competition in the market, and not attractive to customers.

Software testing then becomes very important to decrease the number of bugs and increase

the quality of the product we deliver to our clients. And test automation even more. An in-

creased confidence in the quality of the final product emerges with automated tests. Proper

automation can also increase the effectiveness and efficiency of the overall testing process [41],

reducing costs for the entire project.

This dissertation proposed a black-box testing technique - the Atoms Framework (AF) - to

help the detection of crashes. A crash is a system malfunction caused by faulty software or

hardware, that makes the system either partially or totally inoperable. A crash is detected, for

instance, when a test exposes a bug and the system stops responding to the testing procedures.

Finding crashes is important as it leads the system to an abnormal termination, whose causes

are manifold, such as data corruption, deadlock, and access violations. But to find a crash is

often non-trivial: the search space is typically intractable (specially for system testing).

We use the term test scenario to denote a sequence of executable steps that have been

manually written. The idea is to fragment test scenarios into small units, which we call atoms,

and compose them in different ways. Along with this, AF adds support for test data and the

generation of execution lists (whose goal is to guide the atoms execution). Thus, AF allows the

46
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exercise of different inputs (which is a key ingredient to AF as it enables one atom to exercise

different inputs every time it is executed) and sequences of steps (due to the ordering of the

atoms in the execution lists), which results in the exploration of new test scenarios in each

execution.

This work was part of a research effort between Motorola and the Informatics Center/UFPE

for improving Motorola’s software testing process. Thus, we could evaluate AF on Motorola’s

cellular phones. We conducted a set of experiments to quantify the execution time and the

capability of the technique to find a crash. We used 8 different phone configurations with

historical (real) errors. We firstly compared AF to a technique that uses the same test scenarios

AF receives as input. This technique is currently in use in Motorola and it is called Scenario

Hunting (SH). In this first experiment, AF found crashes in all 8 configurations, while SH found

in 4. However, AF was slower when both techniques found a crash.

We then conducted three other experiments to give us a better understanding of the effec-

tiveness of AF. We evaluated the impact of the use of (i) random data, (ii) random generated

execution lists and (iii) a more systematic generation of execution lists, based on pre and post-

conditions checks. In experiment (i), we run 10 times each configuration, varying the random

seed for data selection. The results revealed a high variance of execution time: almost 8 hours.

We believe that this high variance is due to the size of the inputs the random selection of data

gave to the atoms. For instance, in the context of cellular phones, loading large pictures or

videos in the phone file system takes longer than loading small ones. Despite this, AF found

crashes consistently: in 74% of the runs.

In experiment (ii), we chose two configurations which had the lowest averages of execution

time reported in (i) and ran each of them 10 times. We expected to evaluate the impact of the

selection of which atoms to include in an execution list. The results report a precision (the

fraction of runs that ends in a crash out of the total number of runs) of 40%. This might be

an indication that the selection of atoms is a critical factor in order for the technique to find

a crash. In experiment (iii), we run again 10 times the same configurations we used in (ii)

but with a more systematic approach to build execution lists. The mean of the execution time

of one configuration was higher than the mean time reported by the same configuration in

experiment (ii). And the other configuration was faster. Despite this fact, in experiment (iii)

AF achieved a precision of a 100%, that is, all runs found a crash. We believe that more

systematic algorithms to select atoms to include in execution lists can lead the executions to

find crashes more efficiently.

Our current experimental results show that AF and SH are complementary. The experimen-

tal results indicate that the use of atoms offered a better precision, i.e. it could find crash more
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often than the use of test scenarios. However, as we considered two metrics of quality – crash

detection and time, we cannot say from the experimental results that one technique subsumes

(that is, it is superior with regard to both metrics) the other in all situations. AF found more

crashes. On the other hand, when both found a crash, SH was faster. Also, the variance of

the type of crash reported by both techniques was high, i.e. it seems that they can crash the

applications in different ways when running in parallel. In addition, it is worth noting that hav-

ing different crash reports is very important as sometimes these crashes correspond to different

faults. This suggests that a testing team should run both techniques when possible.

5.1 Contributions

The main contribution of this work is the idea of taking advantage on the knowledge of a

specialist, who spent time and manual effort to write automated test scenarios, to generate

different tests (variants/combinations of the original tests). When we shuffle these tests and run

them in sequence, we can automatically originate other test scenarios that would exercise the

applications under test differently in every execution.

Besides, the atoms AF generates allow the use of different inputs every time they are exe-

cuted. AF also keeps a data map during runtime, which provides input data and stores all data

each atom generates. From this, we can check how the application deals with several input

data, such as big ones, small ones, valid, invalid, etc. AF either allows every execution to start

from a different initial configuration of the data map. For instance, in the beginning, the data

map may be full of input data, or entirely empty.

The fact that we developed this work inside a company (Motorola) brought a practical

appeal to its accomplishment. We could conduct experiments under the actual environment

Motorola executes tests, using their cellular phones, and could also compare the technique we

are proposing to another one that Motorola has been using in real projects for a while.

5.2 Related Work

The generation of test cases has been extensively studied throughout the years. Our approach

aligns more with the works related to test generation based on models extracted from software

artifacts, as in model-based testing (MBT) [20]. Such models encode the intended behavior of

the system under test (SUT). In MBT, it is firstly necessary to build a formal (or semi-formal)

model which describes the system’s behavior we are interested in testing. Then, an algorithm
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selects traces of the model. And finally, these traces constitute test cases for the SUT. The

generation often enough amounts to a search problem [42], i.e. it is often necessary to define a

graph coverage (search) criterion, which selects test cases from the set of all possible traces of

the model.

The behavioral model and the test generation algorithm are what mainly differs one MBT

approach from another. For instance, Vieira et al [47] use UML Use Cases and Activity dia-

grams to respectively describe which functionalities should be tested and how to test them. The

generation’s algorithm they propose combine Activity diagrams and data annotation to reach

a specific graph and data coverage, which directly affect the number of test cases produced.

Nogueira [37] proposes a test generation based on CSP models extracted from requirements

documents. The generation is guided by test purposes that indicate which functionalities should

be considered using a requirements coverage’s criterion.

Figure 5.1 Graphic model of a test scenario for audio message.

If what we are doing was exactly MBT, we would first need to (i) identify the atoms of

each test scenario AF receives as inputs, (ii) construct a model (in any notation) and then

(iii) select traces of the model to generate what we call execution lists (sequences of atoms to

be executed). Figure 5.1 shows an example of how a graphic model of the test scenario we

illustrated in Figure 1.2 (page 5) would look like. Although the test scenario imposes a specific

execution order for its steps: a –> b –> c (see Figure 1.2), in our approach we are interested

in every combination of these steps. Thus, note that the model has a clique [15] to establish

that each node correspondent to an atom (a, b, c) is connected to every other atom in the graph;

and also that each node is directly connected to the start and end points. It is indeed possible to

model test scenarios with a state machine and then explore its paths as in MBT. However, AF
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does not need to construct a model, as it is already implicit in our strategy.

We may cite other works which are complementary to AF. For instance, a popular approach

to automate test documentation and execution is capture-and-replay. The idea is to record

in a test script the actions that the user makes while interacting with the graphical user inter-

face (GUI) and then to (re-)execute this script when necessary. Stefen at al [45] propose the

jRapture, a capture-and-replay tool that operates on Java bytecodes. The authors argument

that jRapture can capture much more graphical elements (graphical widgets) than commercial

tools. Orso and Kennedy [39] present a technique for selective capture-and-replay of program

executions and a tool, called SCARPE, that implements the technique. SCARPE captures (se-

lects) only the minimal subset of the application’s state and environment required to replay the

execution, while jRapture captures complete input/output information for each execution.

Other works rely on the user’s experience to collect information from users, either at run-

time or during software development, to be used in software testing. For instance, Brooks and

Memon [17] propose a technique to generate test cases based on usage information, in the form

of usage profiles. These profiles describe event sequences captured from the user’s experience,

i.e., event sequences captured while the user interacts with the GUI. The technique employs the

usage profiles to create and update an abstract model of the GUI and use the model to generate

test cases automatically. Although the idea of using profiles is appealing, it is not yet practical

in the domain we proposed our technique (cellular communication). In spite of this limitation,

it is important to say that this work is complementary to ours. In particular, SH, and conse-

quently AF, use test cases drawn from requirements and history of faults, for example. These

do not necessarily correspond to the actual scenarios of use.

Bertolini et al. [13] describe two techniques, Driven Hopper (DH) and Behavior eXplorer

Tool (BxT) whose goal is to explore the SUT (in this case, a cellular phone) from its GUI, by

performing random key pressings (some of which can change the current screen) for some (pre-

configured) time until they find a crash. DH requires tests to drive the phone to an initial screen.

Then it starts pressing random keys until the configured timeout is reached and a subsequent

test drives the phone to another screen. BxT attempts to make a more systematic selection of

keys to be pressed than DH: it recognizes which controls are available at a screen and selects

keys according to these controls. For instance, in a screen that contains only two buttons, say

“OK” and “Cancel”, DH may press several keys before it hits the ones for “OK” and “Cancel”.

BxT, differently, makes a random selection between one of these two options.

Tools that randomly assign test cases (actions) to the SUT without a user’s bias are often

called test monkeys [30]. Test monkeys and AF are complementary approaches to testing. On

the one hand, test monkeys are completely automated, but they perform tests with no knowledge
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of how humans use the SUT. On the other hand, AF is not entirely automated (yet), but it takes

advantage on the knowledge of specialists to generate tests.

5.3 Future Work

In the following, we outline some improvements to complement the work presented here.

Automate the creation of atoms

In our approach, we defined a set of tips to help the recognition of atoms and another one for

including data map support to the atoms created. However, this process is not yet automated.

As a future work, we intend to develop a tool to automatically extract atoms from a set of test

scenarios, following the tips we outlined in this dissertation.

Automatically generate atoms from new UFs TAF

The idea is to automatically create atoms every time a new UF is released. This would remove

the need for test scenarios to create atoms. We believe that the main challenge here will be the

recognition of the UF’s dependencies so that we know exactly which other UFs to call before

and after the new UF in order to the atom execute correctly. We think that it would be very

interesting to have atoms constantly being generated from new UFs TAF, but we do not know

if it is actually viable. We first need to verify how new UFs are released and whether there are

enough information to guarantee a sound generation of atoms.

Automate the extraction of pre and postconditions

In order to create execution lists based on the Pre and Postconditions Check Algorithm we

described in Section 3.3.2, we need to annotate atoms with pre and postconditions. We are

currently doing this annotation manually. As a future effort, we intend to recognize the pre and

postconditions automatically.

The pre and postconditions are directly related to the access to the data map. If there is no

access to the data map, both conditions are true. Otherwise, if an atom retrieves (resp., stores)

data from (resp., to) the data map, the atom has preconditions (resp., postconditions). As the

data map manipulation is explicitly shown in the procedures of an atom, the extraction of its

pre and postconditions can be done automatically.
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Improve the generation of execution lists

In this dissertation, we proposed two approaches to the generation of execution lists. The first is

based on a random selection algorithm; and the second, on a more systematic approach, which

involves pre and postconditions checks. But in reality, both of them randomly select atoms

from a given set to build execution lists. So, as a future work, we intend to implement a more

complex algorithm based on exhaustive search and pruning techniques to reduce the search

space. As a result, we expect to build more interesting execution lists with a better distribution

of atoms in order to reduce the number of repetitive paths in a same execution list.

Generalize our approach to other applications

Although in this dissertation we focus our work in cellular phone applications, it is possible to

generalize AF to other applications. What we need is a set of executable test scenarios some

other technique generates, instead of SH, and to recognize the atoms we can extract from them.

We also need a set of XML files, structured as the TDF files we used here and filled with data

to give as input to the atoms. As a result, we could conduct some experiments to observe if AF

is also effective when used in applications of other domains.

Conduct more experiments to compare AF and SH

Due to lack of time and resources, we could only conduct one experiment to compare AF and

SH. In this experiment we run both techniques only 8 times, which was the number of different

phone configurations available for us. As another future work, we plan to conduct more exper-

iments to compare AF and SH to better check which one finds crashes more efficiently. A valid

effort would be to get more different phone configurations and execute both techniques again.

Or even execute the same 8 phone configurations we used in this work and perform a greater

number of runs with execution lists different from the ones we used here.

Create filters to select input data

Currently, if an atom requires data from a specific category during its execution, we randomly

select an object from the data map among all available objects under such category. We do not

distinguish one object from another of the same category. We say they are equally representa-

tive for the execution.

As a future work, we intend to create filters to select specific classes of data to use during

execution. Initially, we thought about four different classes of data: VALID (for data considered

valid, i.e. with the size or type expected for their category), INVALID (the opposite of VALID),

BIG (for data with a big size, i.e. objects which size almost reaches or indeed reaches the
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maximum size expected for their category – it can be, for instance, a long String or a large

picture file), and SMALL (the opposite of BIG). More classes could be defined if needed.

Figure 5.2 shows a suggestion on how to place the classes in the name attribute of a TDF

data item. It follows this pattern: CATEGORY_CLASS_NAME, where CLASS could be present

or not. The first item, CONTACT_NUMBER_BIG_01, represents a data item under category

CONTACT_NUMBER, which class is BIG and name is 01.

1 <CONSTANT name="CONTACT_NUMBER_BIG_01" d e s c r i p t i o n ="A b ig c o n t a c t number . ">

2 <APPLICATION_CONTENT>

3 <VALID>

4 <FOR id="* " / >

5 < /VALID>

6 <CONTENT source=" p l a i n " va lue=" 12345678901234567890123456789012345678901234567890 " / >

7 < /APPLICATION_CONTENT>

8 < /CONSTANT>

9 <CONSTANT name="CONTACT_NUMBER_INVALID_02" d e s c r i p t i o n ="An i n v a l i d c o n t a c t number . ">

10 <APPLICATION_CONTENT>

11 <VALID>

12 <FOR id="* " / >

13 < /VALID>

14 <CONTENT source=" p l a i n " va lue="123#$%Rs " / >

15 < /APPLICATION_CONTENT>

16 < /CONSTANT>

17 <CONSTANT name="CONTACT_NUMBER_03" d e s c r i p t i o n ="A c o n t a c t number w i t h ou t a c l a s s ">

18 <APPLICATION_CONTENT>

19 <VALID>

20 <FOR id="* " / >

21 < /VALID>

22 <CONTENT source=" p l a i n " va lue=" 87654321 " / >

23 < /APPLICATION_CONTENT>

24 < /CONSTANT>

Figure 5.2 Example of data items with different classes.

As a possible solution, we can add a parameter to the execution (a different one for each

class of data we defined), or may be more than one, in order to say which classes of data we

want the atoms to use, and inside the method that retrieves data from the data map we add a

parser to the parameter. Depending on the given parameter, the parser will drive the selection

of data under the same category to select only data of a specific class. For instance, we would

inform the parameter INVALID if we want to select only invalid data items. In accordance

to our example, only the second data item (CONTACT_NUMBER_INVALID_02) would be

selected. If we inform no parameters, it means that we are interested in all data of the data map

(no matter their classes) and atoms will select data the same way they do today.

With these filters, we could use the same execution list in different executions and check

how the SUT deals with different set of data under different classes. For instance, if we run

an execution list with only valid data but it does not crash the SUT, as an alternative, we could

run the same execution list with only big and/or invalid data items and try again to find a crash.
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Snapshot of the state of the data map after execution

As another future work we expect to develop a solution to take a snapshot of the data map after

each execution. By snapshot we mean a printed visualization of all data present in the data map

at a specific moment, grouped by their categories. This snapshot can be derived from a data log

(other future work we describe later).

We believe that a snapshot of the state of the data map after execution would we useful in

two ways: (i) to compare the data items stored in the data map to the ones present in the SUT

after the execution, and (ii) to compare the state of the data map after two different executions

of a same execution list. (i) and (ii) allow us to check if the SUT is working as expected. That

is, if it is proper manipulating data as expected by the procedures the atoms executed.

Develop a data log system

The idea is to develop a program to generate log files with information regarding to all data

manipulation during the execution of atoms. The resulting log file would show a representation

of all data each atom consumed, generated, stored, deleted, and updated. This representation

could be any attribute of the object manipulated, since it well distinguishes the object from

other different object of the same type. Other important information to be present in the log file

would be the time and the name of the corresponding atom in each entry of the log.

Figure 5.3 Example of a log file.

Figure 5.3 shows an example of a possible structure of a log file. It first shows the time, then

the atom’s name, the action it did and the data it manipulated. In this example, from the log

entries we can say that the execution first stored a contact with name and number (lines 1 to 3),

then updated the contact created previously with another phone number (lines 4 to 6), and

deleted the contact (lines 7 and 8).

Load the data map with data from the SUT

And another future work would be to load AF’s data map, right before execution, with data

already present in the SUT. This would be useful to consume data other executions produced.
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Consequently, it would help to decrease the time spent in configuration tests, which load the

SUT with data some tests will require during execution, and it would also allow to start the

execution from the point another execution left.
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