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Resumo

Nós apresentamos um método eficiente para síntese de padrões definidos como uma coleção
de elementos vetoriais bidimensionais, a partir de uma amostra do padrão. Soluções recentes
para este problema fazem uso de triangulação da entrada ou de medidas estatísticas da amostra
para controlar o estágio de síntese. Nós propomos um método aplicável a texturas coloridas,
desde regular até estocásticas, e que provê controle local sobre a densidade dos elementos.
A amostra é segmentada em grupos de elementos similares e definimos uma nova métrica,
que não ignora elementos isolados, para cálculo de distância entre vizinhanças de elementos,
para comparar vizinhanças diferentes e incompletas. O laço principal de síntese consiste em
um crescimento procedural, onde sementes são substituídas por referências a elementos da
amostra, gerando novas sementes até que o espaço de síntese seja preenchido. Os resultados
mostram a mesma qualidade visual de trabalhos anteriores, e resolvem padrões não abordados
em trabalhos anteriores. Nós também mostramos que este método pode ser estendido para
sintetizar padrões vetoriais sobre malhas poligonais.

Palavras-chave: Síntese de texturas; Padrões de Distribuição; Texturas Vetoriais.
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Abstract

We present an efficient method for the synthesis of patterns defined as 2D collections of vector
elements. Current solutions to this problem rely on the triangulation of the input space or on
statistical measures of the sample to drive the synthesis step. We propose a method applicable
to colored textures from regular to stochastic, which provides control over the local density
of elements. Also, our results show the same visual quality as previous works. The sample
is segmented into groups of similar elements and we use a novel local neighborhood distance
metric to compare distinct and incomplete neighborhoods. This metric does not ignore existing
unpaired elements. The main synthesis loop consists of a procedural growth, where seeds are
replaced by a reference to an element from the sample, generating new seeds until the target
space is filled. We also show that this method can be adapted to synthesize textures over
surfaces.

Keywords: Texture Synthesis; Distribution Patterns; Vectorial Textures.
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CHAPTER 1

Introduction

In computer graphics and image processing, the main goal of texture synthesis is to generate
images of arbitrary resolution that comprises some perceptive pattern. Such images are called
textures. The complexity of textures varies widely and the suitability and applicability of a
synthesis system can be measured by the range of textures types that the system can generate.
For instance, there are regular textures such as a chessboard or pseudo regular textures, such as
a compact distribution of cells with slightly varying shapes.

Texture synthesis has been explored for more than one decade, and the solutions for pro-
cessing raster textures are well established in the community, not only for static textures, but
also for video synthesis. Only recently there has been results for vectorial textures, which
are essentially distribution patterns, and this topic is still an area of active research. Due to
the nature of the vectorial data used in these works, the results are easily interpreted as non
photorealistic. Synthesizing distribution patterns is not limited to the non photorealistic field,
it depends entirely on the quality and complexity of the texture being processed. This work
captures concepts of existing approaches for vectorial and raster texture synthesis, to present a
new technique that generates results in 2D space, and show that the technique can be naturally
amendable to support the synthesis of patterns in mesh surfaces without parametrization.

1.1 Problem Characterization

In sample based synthesis, the input texture is a small sample of the texture used to synthesize,
that contains enough information to characterize this particular texture. In order to generate a
new image of arbitrary resolution that resembles the original sample, the system must be able
to perceive and correctly reproduce the pattern presented on it.

Traditionally, textures are treated as raster images, where each pixel is defined by its color.
Vector textures, or pattern distributions, has a distribution of objects defined by geometric prim-
itives with any number of desirable descriptors, such as color. This type of texture is explored
in this work.

in the raster texture scenario, there is the process of determining the correct color of each
pixel in the target texture, while in the distribution pattern scenario, which lacks the implicit
grid, the synthesis process is adapted to generate a new distribution of elements that resembles
the original distribution contained in the sample. Some degree of flexibility is desirable such
that the final result does not become a simple tiling of the sample texture and small variations
on the distribution can be obtained without losing the pattern characteristics initially presented
in the sample.

1



1.1 PROBLEM CHARACTERIZATION 2

The difference between raster textures and distribution patterns is illustrated in Figure 1.1,
that shows a raster texture on the left and a pattern distribution as presented in [HLT+09] on
the right. Below each illustration, there is the basic elements. The pattern distributions are
conveniently described by the Scalable Vectorial Graphics (SVG) format [Fe01].

Figure 1.1 Left: Raster Texture; Right: Pattern Distribution texture; Below: The basic element for each
texture.

Correctly reproducing the characteristics of the texture implies that the final image is free
of vicinity errors. Those errors are qualitatively defined as misplaced elements which visually
affect the overall result, making the observer able to identify patterns that are not presented on
the input sample.

In order to qualitatively evaluate the robustness of the method, the procedure should be able
to generate pattern distributions for all types of textures, such as regular, near-regular, irregular
and stochastic. Figure 1.2 shows some results obtained by the proposed method. Similar to the
raster texture synthesis, near-regular images are the most difficult to process. Although some
good results can be obtained, it is not a problem entirely solved. Another desired feature is the
possibility to adapt the system to different applications. A system that synthesizes the pattern
over tridimensional surfaces and directly texturize tridimensional objects was implemented,
using a similar approach as in 2D synthesis, but with few adaptations, to obtain results such as
shown in the Figure 1.3.

Figure 1.2 Samples and results of the method for the four different types of texture.
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Figure 1.3 Results of tridimensional synthesis and respective input sample in the up left corner.

1.2 Contributions

The main contribution of this work is a simple and improved method for synthesizing distribu-
tion patterns based on an input sample of a vectorial image. This method was mainly inspired
by the works of [BBT+06], [IMIM08] and [HLT+09], and the ideas of pixel-based and patch-
based raster texture synthesis. The basic structure of the method can be used for both 2D
synthesis and synthesis on surfaces of a general topology. This method is controllable by the
density parameter, which have influence over the average distance between the elements. The
density is also used in the tridimensional synthesis to produce the illumination effect. Also,
unlike previous work that deals basically with black and white images, we introduced the RGB
color system as a discriminant characteristic of the vectorial elements, in addition to previously
used characteristics such as area, elongation, and number of internal crossings. This increases
the variety of textures that can be processed by the method. Another contribution is the dissim-
ilarity function used to numerically compare the difference between two neighborhoods. The
function used in this work is sensitive to small differences between incomplete neighborhoods,
providing a better response than previously used functions. The results obtained showed that
the method can generate qualitatively better images for all the four mentioned types of textures
and it can also be easily implemented and adapted for different applications, such as tridimen-
sional texturing.

1.3 Organization

This document is divided into five chapters. The second chapter presents an overview of the ex-
isting bibliography on raster texture synthesis, discussing the evolution from simple pixel-based
synthesis to patch-based, and tridimensional texturing. Also, we present the main approaches in
the field of distribution pattern synthesis that inspired most of the ideas contained in this work.
The third chapter presents a detailed description of the proposed solution, from the analysis of
the sample input to the decision criterion used to identify a newly created element as correctly
placed in the target. The fourth chapter presents results obtained by the proposed method, and
discuss the limitations and improvements achieved. The last chapter presents the conclusions
and directions for future work.



CHAPTER 2

Related Work

The synthesis of vectorial textures is a growing field. Recently, many works have being
published and presented in conferences of great visibility in Computer Graphics ([BBT+06],
[IMIM08], [HLT+09]). In this chapter, we discuss in details the approaches and the fundamen-
tals of texture synthesis for raster images, presenting the background to understand the solution
of this work.

2.1 Fundamentals

2.1.1 Textures

The definition of texture is essential for the development of a synthesis system. A texture can
be roughly defined as an image that contains some noticeable infinitely repeating pattern and
some degree of randomness. We can think of the obvious examples such as fabric or tiled bricks,
however more complex examples exists, such as honeycomb textures composed of hexagonal
cells with slight variation in size and shape on each cell, or interference patterns of waves on the
surface of water. The amount of randomness will vary among textures and it is a fundamental
concept for the classification of textures. We show in Figure 2.1 a qualitative division of several
raster textures that illustrates the idea of randomness as classification for a texture. This idea
can be easily extended to vectorial textures, as illustrated before in Figure 1.2.

Figure 2.1 Spectrum of textures used in synthesis, according to the degree of randomness. Image
adapted from [LHW+04]

Inside each category there is an infinite number of widely distinct textures, due to the differ-
ences of color, or elements contained within the patterns, but in the light of methods for texture
synthesis, randomness is a valuable characteristic. Methods usually are successful to synthesize

4



2.2 METHODS FOR RASTER TEXTURE SYNTHESIS 5

regular or random patterns, but have difficulties to work in the middle term. The ideal method
should be able to perceive and reproduce the pattern present on any type of texture.

The synthesis of distribution patterns is the main goal of this work. As it will be seen later,
a vectorial texture will be reduced to a distribution pattern. Vectorial textures are essentially
the same as raster textures, an image with repeating patterns and some randomness, but differ
on how the data is defined.

A raster texture is a collection of pixels in a regular grid, described by color components.
It is not, a priori, easy to extract high level information of the texture, such as the structure
contained on the image. Vectorial textures, however, are a collection of strokes described by
vector data, that presents some degree of regularity and some degree of randomness. In this
sense, vectorial textures are a subset of raster textures. Each element in the texture is described
by splines. There is no underlying discrete grid that imposes a limitation on the coordinates
of the control points of the splines, and consequently, the points of the curves that define each
element are located in the 2D Euclidean space.

2.1.2 Sample Based Texture Synthesis

Textures can be obtained in many ways, from scanned images to hand-drawn pictures. Alter-
natively, sample based texture synthesis automatically generates textures from small samples
given as input.

When perceived by a human, the generated texture must appear to share the same visual
features of the original sample texture. Thus, there is the challenge of capturing those char-
acteristics from a given finite example. The synthesis process should be able to capture both
the regular and the stochastic aspects of the sample. Therefore, a sampling procedure that
synthesizes a new texture that maintains those features must be developed.

On raster texture synthesis, a pixel is the basic building element. From one pixel, only the
color at a particular location can be known, but the visual system operates at a higher level and
entire regions of pixels are perceived. Seams discontinuities are easily created and perceived
by the user.

With distribution patterns, entire objects are copied on the target image at once, instead
of pixel-by-pixel. Consequently, no discontinuities can be generated. This is an advantage of
vectorial images synthesis over raster textures synthesis, that will be discussed later.

2.2 Methods for Raster Texture Synthesis

In this section, the main methods for synthesizing raster textures are presented. But first, it
should be stated that the most successful texture model is based on Markov Random Field
(MRF). MRF models a texture as a realization of a local and stationary random process. Each
pixel in the image is characterized by the set of its spatially neighboring pixels, and this char-
acterization is the same for all pixels. This scheme is illustrated in Figure 2.2.

Based on the MRF model, the goal of texture synthesis is stated as: given a sample input,
synthesize an output texture so that for each pixel, its spatial neighborhood is similar to at
least one neighborhood in the input. The size of the neighborhood, or the visibility of the
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Figure 2.2 MRF experiment on a general image (a) and on a texture (b). On the general image, when
looking at two different locations (a1,a2), under a limited visibility range, each location is clearly dis-
tinct. However, in the image, the two locations (b1,b2) are similar. Also, the central pixel from the
windows in (b) is determined only by its visible neighbors. Those characteristics are the stationarity and
locality properties, respectively.

pixel, is a user specifiable parameter. The similarity between neighborhoods in the target and
sample textures will guarantee the perceptual quality. Also, the synthesis must be efficient and
controllable.

2.2.1 Pixel Based Synthesis

The methods for pixel-based synthesis basically synthesize each pixel individually following
the MRF model, in which the color is determined by the neighborhood. Here it is explained
the seminal idea presented by Efros in 1999 [EL99], which initiated the whole field of texture
synthesis from samples.

First, the target texture is seeded from a small portion of the sample. Starting from the seed,
new pixels are generated outwards in a spiral path. For each generated pixel, a fixed-sized
window centered at the pixel is intersected with already synthesized pixels. This collection of
intersected pixels is compared throughout similar shaped collections in the sample image, to
find the most similar N candidates. A random candidate is chosen, and the central pixel of this
candidate is drawn into the target pixel. This process is repeated for each non synthesized pixel,
until all of the target space has been covered. The only parameter defined by the user is the
window size, or visibility. Intuitively, this size should be as large as the features of the sample
texture. The use of exhaustive search for neighborhoods causes the algorithm to run fairly slow.

The later works of [WL00] and [Wei02] proposed a similar algorithm, but instead of a spiral
ordering and a neighborhood based on the intersection of the window and synthesized pixels,
they introduced a scan-line ordering and a fixed shape and size of neighborhood, inspired by
[PP93]. The algorithm is illustrated in Figure 2.3 and works as follows: First, the output is
initialized as random noise, having each pixels is drawn with a random color value between
the minimum and the maximum possible values. The output is visited in a scan-line ordering,
each pixel individually. A spatial neighborhood around the pixel is searched through the input
sample, for the best match, and the corresponding pixels is copied. The important differences
between this algorithm and [EL99] is that it is completely deterministic, because the best can-
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didate is used instead of a random sampling. This implies that the output is invariant for a given
initial condition. Also, the scan-line ordering enables the use of a fixed shape neighborhood.

The used metric to determine the best match of neighborhoods is the L2 norm of the RGB
channels of the pixels. Given two windows of pixels, the distance between them is the sum of
the euclidean distances between paired pixels, using the RGB color as the coordinates.

Figure 2.3 Scan-line ordering synthesis [Wei07]. Figure (a) is the input sample and the output starts
as noise. Only the last few rows and columns are used, as shown in (b). The unused noisy pixels are
presented as black. Neighborhoods crossing the output boundaries are handled toroidally. From (b) to
(e), different pixels being synthesized are shown.

It was empirically observed that the quality of the result strongly depends on the size of the
window. Intuitively, it should be on the scale of the largest regular structure of the texture, in
other words, big enough to capture low frequency structures. Otherwise, the structure will be
lost and the result image will look too random, as illustrated in Figure 2.4. Also, the shape of
the neighborhood will affect the final quality. It must be causal, i.e., the neighborhood should
only contain those pixels preceding the current output pixel in raster scan order. With this, only
already synthesized pixels will be included on the neighborhoods, with exception of the last
columns and rows, which will be used at the very first steps of the algorithm.

Figure 2.4 Synthesis results with window size of (a) 1x1, (b) 5x5, (c) 7x7, (d) 9x9 and (e) 30x30. As
the size increases, the result quality tends to increase too, as well the computational cost. [Wei07]

As further improvement of the basic algorithm, multi-resolution pyramids [HB95] were
used for textures with large structures, and coherence [Ash01] for improving speed. Multi-
resolution becomes necessary when the large structures represented on the texture are too big
to be captured by small window sizes. Increasing the size of the window will cause the rapid
growing of computational cost, so multi-resolution pyramids are used. The lower resolution
levels will capture larger structures, and this information will be transmitted to the higher res-
olution levels without increasing the size of the window. The coherence idea comes from the
observation that when pixels are copied, it is very unlikely that they will land on random out-
put locations. Instead, pixels that are together in the input sample, have a tendency to be also
together on the output.
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2.2.2 Patch Based Synthesis

The quality and speed of pixel-based approaches can be improved by synthesizing whole
patches rather than pixels. Intuitively, it can be thought that assembling patches rather than
synthesizing individual pixels improve the quality, since the pixels within the same copied
patch will maintain the visual coherence found on the sample. The figure 2.5 illustrates the
idea of patch-based texture synthesis. It can be seen that this is an extension from pixel-based
algorithms, with the difference that instead of copying pixels, entire patches are copied. As il-
lustrated, to ensure output quality, patches are selected according to their neighborhood, which
is a thin band of pixels around the unity being copied. The major difference between the two
approaches lies in how the synthesis unity is copied onto the output. In patch-based algorithms,
the issue is more complicated since a patch, being bigger than a pixel, overlaps with the already
synthesized portions of the image, thus some decisions have to be made about how to handle
the conflicting regions.

Figure 2.5 Comparison of pixel and patch-based algorithms. The gray region indicates synthesized
portion.[Wei07]

In [PFH00], new patches simply overwrite existing regions. By using patches with ir-
regular shapes, this approach took advantage of the texture masking effects of human visual
system, and works well for stochastic textures. Lin [LLX+01] took a different approach by
blending the overlapping regions. This can cause blurry artifacts in some situations. Instead
of blending, Efros [EF01] uses dynamic programming to find an optimal path to cut through
the overlapped regions, and this idea is further improved by [KSE+03] via graph cut. Finally,
the other possibility is to warp the patches to ensure pattern continuity across the boundaries
([SCA02],[WY04]). Figure 2.6 illustrates the solutions for the overlapping problem.

Figure 2.6 Methods for handling adjacent patches during synthesis. (a) two patches shown in differ-
ent colors. (b) the overlapped region is simply blended from the two patches. (c) an optimal path is
computed from the overlapped region.

Cohen et al. [CSHD03] present a tile-based texturing algorithm that shares a similar phi-
losophy to previous patch-based algorithms. They used tiles as the basic units for synthesis.
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However, instead of using arbitrarily shaped patches and handle patch overlaps via blending
or cutting, they used a special kind of tile called Wang Tiles which have no overlap with each
other and whose contents are constructed carefully so that the texture patterns are continuous
across tile edges that have compatible colors. Once this tile set is constructed, an arbitrarily
large texture can be constructed by assembling these tiles so that adjacent tiles share identical
edge colors.

2.3 Texture Synthesis on Surfaces

Although a variety of algorithms have been developed for synthesizing textures on regular 2D
grids, one of the end goals is to be able to similarly texturize surfaces. In this section, it will be
discussed the main three categories of algorithms used to accomplish this task. It is assumed
that a 3D polygonal mesh and a texture exemplar have been provided, and we wish to create a
texture in the mesh that is based in the sample. In addition to the essential step of synthesizing
the texture, two extra tasks need to be accomplished when dealing with surfaces. The first is
how to specify the orientation and scale of the texture on the surface, and the second is how to
render the texture on the surface, after it has been synthesized.

2.3.1 Scale and Orientation

Some textured objects can exhibit variations in the scale of the texture features at different
portions of the surface. For example, the spots on the legs of a giraffe are smaller than on its
body. A complete texture synthesis system must allow the user to define and control the scale of
the texture over the surface, as a scalar field. Most often, this is done by a sparse interpolation
method: the user specifies the scale values at a few selected locations, and the system smoothly
interpolates the values over the surface.

Many textures have characteristic features that are oriented in a particular direction. Exam-
ples of oriented textures include woven fabric, bricks, animal stripes and wood grain. When
synthesizing textures on a 2D grid, it is usually understood that the new texture will have the
same orientation as the sample, however this is not true for tridimensional surfaces and it is
typically left for the user to specify the orientation field across the surface. Similarly, the sys-
tem provides the capability for the user to define key vectors in specific points in the surface,
and then, smoothly interpolate them to generate a dense vectorial field.

The work of Praun et al. [PFH00] is considered the first texture synthesis approach for
surfaces that allows the user to specify a vector field to guide the texture. They used Gaus-
sian radial basis functions to interpolate sparse user constraints across the surface. Their user
constraints were tangent vectors at specific user-chosen points. For distance measures over the
surface, they made use of Dijkstra algorithm. More recently Zhang et al. [ZMT06] used radial
basis functions to extend not just tangent vectors but also singularities such as sources, sinks
and saddles.

A different approach is to use a hierarchical blurring procedure to extend tangent vectors
over the surface [Tur01], as illustrated in Figure 2.7. For textures with a particular symmetry, a
tangent vector per location might also be used, but with a global angle parameter that specifies
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the amount of rotational symmetry [WL01]. Figure 2.7 shows various forms of directional
guidance for two textures.

Figure 2.7 User constraints for a vector field (left) and the resulting vector field (right) (from [Tur01]).

Figure 2.8 Various orientation fields are used to create textures on a sphere from [WL01].

2.3.2 Dense Point Distribution

In this approach to perform texture synthesis on surfaces, the surface is first populated with a
dense set of points. After an orientation field has been provided, these points can then be treated
almost as pixels in a pixel-based synthesis approach. When a regular distribution of points is
desired, the most common approach to create a dense sampling of a surface is to use point
repulsion. The idea is to sprinkle many points on the surface at random and then treat them
as if they were particles repelling each other. The points slide over the surface according to
repulsion forces until they settle down. Care must be taken to assure that the points remain on
the surface when they are moved. This approach was used as a first step for creating reaction-
diffusion patterns on surfaces [Tur91], for creating clonal patterns on animal coats [WFR98],
and the same method was also used for more general texture synthesis [Tur01],[WL01].

Given a dense collection of points and a tangent vector field to orient the texture, a visitation
order may be defined for these points. The idea is to mimic the left-to-right, top-down order of
raster-based synthesis methods. However, Lefebvre and Hoppe have found that the visitation
of pixels does not need to be in scanline order to obtain high-quality results [LH05], so other
ordering methods might also be used for surfaces.

Each point on the surface can be initially assigned a random color, and then the usual
matching can be performed between the exemplar neighborhoods and the neighborhoods on
the surface. Synthesis proceeds by sweeping over the surface and replacing a point’s current
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color with the color from the exemplar whose neighborhood is the best match for it. The
orientation field is used to help define the neighborhood of a given point. To find the color of
an adjacent location on the surface, the idea is to crawl over the surface some distance along the
vector field and some distance perpendicular to this vector field. The color at this position is
determined by interpolation of colors from nearby points. By assembling many such colors, the
entire neighborhood of a point is created. Figure 2.9 illustrates good results of this approach.

Figure 2.9 Results from the texture synthesis approach of Wei and Levoy [WL01].

2.3.3 Synthesis Over Texture Atlas

Another approach for texturing surfaces is to use the parametrization of the object, that can be
previously supplied together with the mesh description or calculated on the fly. In this approach,
the texture is synthesized over the 2D space of this parametrization, and the mapping between
the surface and the plane must be taken into account to control the neighborhood creation.

Ying et al. [YHBZ01] perform their texture synthesis using such surface-to-plane maps.
Their method decomposes the surface into a set of overlapping charts, where each chart is a
mapping from a portion of the surface to the plane. The models demonstrated in this work are
subdivision surfaces, which makes such chart creation straightforward. As with many methods,
their approach is performed in a hierarchical manner using Gaussian pyramids. Each flattened
portion of the surface has associated with it an output texture map to be synthesized. These
texture maps are visited in breadth-first order, and within each map, the pixels are synthesized
in scanline order. The neighborhood for a given pixel is created by marching over the surface
outward from the surface point corresponding to the central pixel. Some results of this method
can be seen in Figure 2.10.

Lefebvre and Hoppe also used a surface unfolding approach to synthesize textures on sur-
faces [LH06]. Similar to Ying et al., they use an atlas of charts for a surface to perform synthe-
sis, but they concentrate on polygonal models rather than on subdivision surfaces. Their chart
creation method attempts to create large charts composed of many triangles, but with minimal
distortion. Through the use of distance fields and PCA data reduction, their synthesis approach
only requires 5x5 pixel neighborhoods, which also allows the approach to be implemented us-
ing graphics hardware. This approach can also be used to perform texture advection and to
create results based on pre-computed radiance transfer as illustrated in Figure 2.11.
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Figure 2.10 Synthesis results from the unfolding method of Ying et al. [YHBZ01].

Figure 2.11 Synthesis results from the method of Lefebvre and Hoppe [LH06]. The upper row shows
the texture atlases for the models on the bottom.

2.3.4 Triangle Patches

In contrast to pixel-based approaches, there are surface texturing methods that operate at the
triangle level. One such method extend to surfaces the jump map approach of Zelinka and
Garland [ZG03]. The basic method is to first perform a slow analysis of the texture in order
to group the pixels in the sample accordingly to the similarity of neighborhoods. This allows
a new texture to be quickly placed on a surface by assigning texture coordinates from the
example to each vertex of a triangle mesh. Each vertex of the mesh is visited according to
an order that is given by a user-controlled vector field, sweeping from sources to sinks in the
field. New vertices are visited according to region growing by selecting the vertex that has the
greatest proportion of already synthesized neighbors. Based on the texture coordinates of the
neighboring vertices, texture coordinates are calculated for the new vertex. Often this will be
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a location that is adjacent to the coordinates for nearby vertices, but sometimes a jump will be
taken to a similar region. Synthesis results from this method are shown in Figure 2.12.

Figure 2.12 Texture synthesis results using the Jump Maps method of Zelinka and Garland [ZG03].

Another approach that treates triangles as patches is due to Soler et al. [SCA02]. This
approach starts by creating a hierarchy of face clusters, where a cluster is a collection of trian-
gles that are adjacent. Each coarse cluster is further divided into a number of smaller clusters.
Then each face cluster is flattened onto the plane in a manner to limit distortion. Each vertex
of the cluster will be assigned a texture coordinate after a mask that represents the fixed tex-
ture around the current patch is extracted and used to search in the sample for the best mask.
The texture coordinates are propagated down the hierarchy and relaxation is used to improve
continuity across edges. The comparison of neighborhoods is much like the search step used in
2D patch-based methods [EF01]. In order to accelerate this search, Soler et al. use an FFT to
perform a masked sum of squared differences comparison. Figure 2.13 shows results from this
approach.

2.4 Vectorial Pattern Distribution Synthesis

In previous sections many approaches to synthesize rasterized textures from a supplied exem-
plar were presented. In this section, vectorial texture synthesis will be focused, by presenting
recently developed works on the field and explaining them in details. First, the definition of
vectorial textures will be remembered. A vectorial texture is a collection of strokes, described
by vector data, that presents some degree of regularity and some degree of randomness. Since
SVG files are used, most of the geometry of the elements contained on the texture is described
with splines, but line segments, arcs or any other geometric primitive can be used as well.

In principle, samples of vectorial textures could be converted into raster images and there-
fore, traditional synthesis algorithms could be applied on them. However, there are a number
of reasons why a specific solution for this type of textures is important. The basic approach for
texture synthesis has flaws such as the generation of discontinuities between regions. Although
minimized by new algorithms, this problem still exists. A vectorial texture, as stated before,
is a collection of basic finite elements. On existing algorithms, those elements are essentially
reduced to locations, and so, the synthesis is made on the distribution of those locations. There-
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Figure 2.13 Synthesis results using the face clustering method of Soler et al. [SCA02].

fore, the texture can also be called pattern distribution. The synthesis of such distributions will
generate new distributions, which follow the same pattern of the sample. The elements from
the sample are fully copied onto the locations of the new distribution, which minimizes discon-
tinuities issues. For instance, a circle will always be a circle on the result. With raster texture
synthesis, broken circles could be generated depending on the complexity of the sample.

Synthesis of distribution patterns will also perform more efficiently than traditional ap-
proaches, due to the low number of elements contained in an average pattern. For instance, it
could be desired to generate a 1024x1024 texture of circles from a 64x64 sample. The large
output resolution implies a high computational cost. With vectorial textures, however, if the
same sample has 10 circles, the desired result would have in average 256x10 circles. The total
number of elements to process is much smaller, and so is the computational cost.

2.4.1 Stroke Synthesis

Stroke pattern synthesis systems have been studied in the past, to generate stipple drawings
[DHvOS00], pen and ink representations [SABS94][WS94], engravings [Ost99], and painterly
rendering [Her98]. However, they have relied primarily on generative rules, either chosen by
the authors or borrowed from traditional drawing techniques. For the proposed approach, we
are interested on mimicking the texture pattern from the supplied sample texture, therefore, a
sample-based synthesis technique. This gives the user freedom to choose his own style, instead
of being attached to the specifically style supported by the method.
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Kalnins et al. [KMM+02] described a method for synthesizing stroke deviations from an
underlying smooth path, to generate new strokes with a similar appearance to those in a given
example set. Hertzmann et al. [HOCS02] and Freeman et al. [FTP03] address a similar prob-
lem. Neither method reproduces the interrelation of strokes within a pattern. Jodoin et al.
[JEGPO02] focus on synthesizing hatching strokes, which is a relatively simple case in which
strokes are arranged in a linear order along a path. Results from these works are illustrated in
Figure 2.14.

(a) (b) (c) (d) (e) (f)

Figure 2.14 Results from (a) [DHvOS00], (b) [SABS94], (c) [Ost99], (d) [Her98], (e) [KMM+02], (f)
[JEGPO02].

2.4.2 Stroke Pattern Analysis and Synthesis

Barla et al. [BBT+06] presented the first method to synthesize bidimensional pattern distribu-
tions, based on samples. The work focus on a wider range of patterns and take into account the
global organization of the elements by means of neighborhood comparisons. The main task of
their work is to synthesize a new vectorial texture from a small exemplar provided by the user.
Also, this texture is not limited to a linear ordered string of strokes, but to a 2D distribution
of unrelated strokes. The generated texture must follow the same style, or the same rules of
construction, that generated the sample. This goal is the same of traditional texture synthesis
methods, but they took inspiration on ideas from works of non-photorealism [Her03] where the
main goal is to reproduce the style used to draw the original image. Here, it is also considered
that all the necessary information about the pattern presented on the texture is self-contained
on the provided sample.

The method has two steps: analysis and synthesis. In the analysis step the supplied sample
image is processed, the collection of strokes are clustered and simplified into a collection of
objects, and the triangulation of the distribution of these objects is evaluated. Here, some
simplifications of the input image are made. The first is to consider the distribution pattern
of the drawn objects almost regular. In other words, it is not possible to find regions of great
density and regions of coarse density, on the same texture. Being so, it can be thought that
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every texture has an underlying grid that resembles an almost near regular triangulation of the
2D space. The vertices of this triangulation are the centers of the objects on the texture.

A second simplification is to consider that the objects from the texture do not intersect each
other. Since the input sample is only a collection of strokes, the analysis step will group them
into objects, accordingly to restrictions of perceptual grouping of line segments [AJG+91].
This grouping is controlled by a parameter that will represent the biggest size of one element
from the texture, which must be supplied by the user. This parameter avoids the analysis step
grouping together two strokes of distinct objects. Each stroke is initially processed and the
oriented bounding box is evaluated. A clusterization step will use metrics of proximity to
determine if two distinct elements are part of the same group. For those metrics, they used the
Hausdorf distance between bounding boxes. The alignment of distinct strokes is also checked
to determine if two separated strokes are part of the same drawing element. Initially, each
stroke is one distinct group, so that pairs of groups are visited and grouped together if they are
perceptually close. The resulting data is a much smaller collection of elements, the objects,
represented by bounding boxes. When two objects intersect each other, this algorithm will
classify their strokes into the same group.

The last step of the analysis is to evaluate the spatial distribution of the objects. For that,
they used the Delaunay triangulation, using the center of the bounding boxes as vertices. Since
they assumed the input distribution as almost regular, it is expected that each element is slightly
displaced from the barycenter of its neighborhood. This displacement vector is evaluated and
stored as information of the style. Figure 2.15 summarizes the analysis step.

Figure 2.15 Grouping and triangulation of the analysis step of [BBT+06]

Each object resulting from analysis is described by the oriented bounding box and the color.
Barla arguments that more characteristics may be attributed to the objects, but in this work, only
those two are used. Also, it is not well explained how the color is treated during the analysis,
but in every example presented, there is no grouping of strokes with distinct colors. So, we
assumed that the final object receives the color of any of the strokes contained on it.

Following the analysis, there is the synthesis step. This step is strongly based on the pre-
viously presented algorithms for synthesis of raster textures, where they perform a comparison
of neighborhoods for the search of the best matching element. Before synthesis is performed,
they must compute what is the underlying grid that will be the structure of the texture. For
raster images, the grid is the regular pixel matrix, but for vectorial textures, the elements are
freely placed on the 2D space. The initial simplification of a regular distribution has a decisive
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influence here. The resulting texture must follow the same constructive rules of the sample
texture, and one of those rules is that the distribution of the elements is almost regular. There-
fore, an almost regular distribution of points is evaluated according to Lloyd’s method [Llo82].
For this distribution, the triangulation is evaluated. The vertices of the triangulation will be
non-synthesized elements, which they call a seed.

Once the initial position of seeds are determined, the next step is to replace each one with an
appropriate reference to an element from the sample, in such a way that the spatial relationship
between distinct objects is well preserved and the style of the drawing is correctly copied.
Exemplifying, in a texture of spirals and lines equally distributed on the space, it is incorrect to
have small regions with several spirals and no lines among them.

From the triangulation, the neighborhood is evaluated for each object on the sample and
each seed. The range of visibility for the neighborhood is a parameter supplied by the user, but
since the textures used on this work contain few elements, the neighborhood is always defined
as the 1-ring of neighboring vertices. The synthesis proceeds similarly to the raster texture
synthesis. The first seed references any object from the sample, and then each non-synthesized
seed connected to synthesized seeds are visited. For each seed, the best match of neighbors is
searched on the sample, and the characteristics of the chosen candidate is copied to the seed.
This process is repeated until all the seed have been visited.

In raster synthesis, the neighborhood of a pixel is compared by taking pairs of neighboring
pixels located at the same relative position on both neighborhoods and evaluating the Euclidean
distance between their colors. The sum of all the distances gives the difference between both
neighborhoods. In [BBT+06], the neighbors distribution is not regular, and therefore, the rel-
ative position of an element will coincide with the relative position of some other element on
the other neighborhood. The approach of Barla is to find pairs of elements whose relative po-
sitions are close, and discard the remaining unpaired elements. Non synthesized seeds are also
discarded as valid elements. For each pair, a comparison of color, shape and a set of three other
measures is done. If the color is distinct, the pair is discarded. The metric to compare the shape
of two elements is the Hausdorf distance between the bounding boxes. If the metric results in a
similarity above some threshold, the pair is accepted. Otherwise, the three remaining attributes
are compared. Those attributes are parallelism, overlapping and superimposition. Parallelism
compares the inclination of the bounding boxes, overlapping and superimposition compare the
width and height of the bounding boxes. If one of those three measures is outside the accepted
range of similarity, the pair is discarded. The error is given by the sum of perceptual measures
of each accepted pair. During synthesis, not all the neighboring seeds are already synthesized,
the sum of the errors is normalized by the number of accepted pairs. This approach gives the
same relevance to neighborhoods that contain only one or many more pairs, but in practice, it
was showed to be enough. The threshold values are empirically determined, and the system is
robust to small variations of those values.

When the synthesis is complete, each seed is displaced by some distance in the direction of
the displacement vector previously evaluated, in the last step of the analysis. This will improve
the similarity of the styles, but it also gives the user the possibility of controlling the generated
texture with small variations. In Figure 2.16, it is observed the difference among the results
with and without this displacement.
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Figure 2.16 Synthesis by Barla [BBT+06], without displacements (a) and with displacements (b).

2.4.3 An Example-based Procedural System for Element Arrangement

Inspired in the work presented by Barla [BBT+06], Ijiri et al. [IMIM08] developed a simi-
lar approach for the example based synthesis for element arrangement. The aim is essentially
the same: the generation of a larger arrangement pattern, visually similar to the reference ar-
rangement supplied by the user. The main difference consists on using a procedural growth
algorithm to generate the new arrangement. Also, the growth can be controlled through the
use of a flow field. They introduced three types of tools for controlling global aspects of the
resulting arrangement: an spray tool, the flow field tool and the boundary tool.

The analysis step is similar to the proposed in [BBT+06], however in this work, they con-
sidered that the collection of strokes of the input sample is already correctly classified and
grouped into distinct objects. For the analysis, remains the task of evaluating the Delaunay
triangulation to extract connectivity between neighbors. It was noted that this approach usually
generates skewed triangles around boundaries, which are removed by discarding edges that are
not part of at least one un-skewed triangle. Also, the elements around the boundary are not
used because they do not have enough neighborhood elements. When regular or near-regular
arrangements are used as input, Delaunay triangulation often generates undesired connections.
Since the algorithm is strongly affected by local connectivity, these connections can break the
regularity. The solution proposed was to allow a manual correction by flipping an edge by
clicking on it.

The synthesis step begins with an element at the center of the pattern and expands outward
by placing a new element, one by one, based on neighborhood comparisons on the previously
synthesized elements. As stated before, the target space does not have regular structures as
a grid of pixels, so the position for placing a new element and its neighborhood is unclear.
To tackle this problem, they applied a procedural system that defines a local growth of seeds
based on connectivity of elements [PL90]. At each growth step, a seed is replaced with the
best fitting element, and new seeds are placed by copying the immediate neighborhood of the
chosen reference element.

A seed is a candidate position for a new element that optionally has a symbol id associated
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with it. This id represents a collection of objects that share the same id, and therefore, the seed
could be replaced by any of them. The id information is already provided with the sample
texture. The synthesis process begins by placing a single seed. Seeds are sorted by distance
from the initial seed and the nearest is chosen in each growth step. In the spray tool mode,
the initial seed is generated at the cursor position, and seeds are grown inside a user-specified
distance from the cursor during the painting. Priority of elements is based on the ids, such that
seeds of high priority are synthesized first.

The neighborhood comparison for the element arrangement is computed in two steps, sim-
ilarly to [BBT+06]. First, they construct a set of matching patterns for a candidate element.
Second, for each matching pattern, they calculate an error function as a weighted sum of the
euclidean distances between relative positions of neighbors, the id function that returns 1 when
two elements share the same id, and 0 when they had different ids, and a function that returns
1 when the two elements are the same. The best pattern results on the smaller error value.

Three modes are introduced to generate different results for different purposes. In the non-
rotation mode, the comparison is made as mentioned earlier. In the rotation mode, the reference
elements can be rotated to minimize positional differences. They applied the shape matching
problem introduced by [MHTG05]. In the flow field mode, the user specifies a vector field
on the plane, and the orientation at the target seed position is obtained from it. The whole
reference pattern is rotated.

Once the best element is found, the system replaces the seed with the found reference
and introduces new seeds by using neighboring elements. All the elements from the 1-ring
neighborhood are overlayed on the target space, and the elements that were paired during the
neighborhood comparison are discarded. The remaining elements will form new seeds. Edges
are constructed to connect the new seeds. To avoid dense or sparse distributions, or collisions
of edges, several heuristics are used. For each new seed, a neighboring area is checked for the
presence of any element. If an element is found, the seed is discarded and an edge is connected
to this element. The radius of this circular area is chosen as half the length of the shortest
edge from the sample. Then, the angle between edges is checked. If the angle is smaller than
half of the corresponding angle in the chosen reference ring shape, the new seed and the edge
are deleted. Also, any possible collision of the new edge is checked. If the length of the new
edge is greater than 1.5 times the original length, an extra seed without id is placed at the edge
midpoint.

Finally, a relaxation process controls the accumulating error due to the local growth step.
This process tends to displace elements on the target arrangement in such a way to keep the
local features of the synthesized pattern as similar as possible to that of the reference pattern.
Some results are illustrated in Figure 2.17.

2.5 Appearance-guided Synthesis of Element Arrangements by Example

In a recent work, Hurtut et al. [HLT+09] tackle the same problem of synthesizing arrangements
of vectorial patterns. Their solution shares similarities and differences with the two works
presented earlier. Here, the input sample is a collection of already built elements, but they are
not explicitly labeled. The main contribution is that the arrangement analysis and re-synthesis
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Figure 2.17 Synthesized arrangements and input sample patterns (from [IMIM08]).

is formalized as a statistical learning problem. Another contribution is the use of dominant
element appearance traits as soft constraints influencing the synthesized distribution itself.

The first step of the method aims at categorizing the elements from the sample according
to their appearance. If some elements exhibit a similar appearance, they should be recognized
as belonging to the same category. Elements considered to be unique, will be grouped in an
outlier category. This is an automated solution for the manual labeling of [IMIM08]. As a
reason for the use of appearance-driven element categorization, they argument that according
to the Gestalt law of similarity grouping, the human visual system tends to mentally perform
perceptual categorization and build groups from isolated elements. Once those ensembles are
established, visual interactions can arise. Inter category interactions are also important to devise
a good capture of the visual atributes of the arrangement.

Julesz [Jul86] studied human perceptual discrimination of textures composed of stroke-
based elements called textons. In his theory, discriminative features include principal orienta-
tion, the number of crossings and extremities. Those features are used as descriptors. The area
and enlogation are included as well, since the textons of Julesz all shared the same size. Cross-
ings and extremities are measured directly from the strokes constituting the element, while the
other features are measured from the oriented bounding box.

Grouping together elements that share similar features is done by comparing features that
drastically capture different visual characteristics. Before comparison, features are normalized
on [0,1]. This interval must cover enough visual variation for each characteristic. Orientation
is normalized by 2π . Elongation is normalized by 3, a value used as a threshold. Any elon-
gation greater than 3, is normalized to 1. The area is normalized by the limiar of 5% of the
reference sample area. The number of crossings and extremities are normalized by 10. Other
descriptors could be added, at the cost of possibly introducing redundancy and increasing the
dimensionality of the descriptor vector.

The categorization is made in two steps. First, the elements are categorized according to



2.5 APPEARANCE-GUIDED SYNTHESIS OF ELEMENT ARRANGEMENTS BY EXAMPLE 21

the area of the bounding box. Each of the resulting groups are then categorized independently,
according to the dominant feature. For that, it is performed a dimensionality reduction. The
motivation behind this is that visual perception argues that size is the first information to be
perceived for visual recognition tasks. And secondly, as Julesz observed in his studies, it often
happens that not all the features contribute to perceptual categorization steps. Dimensionality
reduction by PCA will compact the information of the features, around the most relevant direc-
tion, minimizing the effect of redundancy and noisy features. The grouping is established by
detecting relevant nodes, according to the a contrario method [DMM03].

For the synthesis step, the arrangement of elements is modeled according to a statistical
process. Once the parameters of this model are learned on the reference arrangement, the
synthesis consists in running realizations of this model at the user-supplied scale, shape and
density. For the modeling, the spatial arrangement is captured via a multitype point process, a
statistical model dedicated to analysis of interactions between a finite set of typed categories.
The spatial organization and underlying correlation between the appearance of elements is
grasped by considering pair-wise element distances as interactions between the categories. This
model supports a wide range of distributions, from stochastic to near-regular.

The model process is easily simulated using Markov chain Monte Carlo methods. This pro-
vides a convenient means to generate new arrangements that apparently obey the same stochas-
tic process as the provided sample. Figure 2.18 illustrate several results obtained with this
approach.

Figure 2.18 Synthesis results attesting the variety of distributions that the model of [HLT+09] can
handle.
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2.6 Discussion

Raster texture synthesis methods are highly developed nowadays, both in quality and effi-
ciency. Although pixel-based methods can generate good results, computational cost can be
prohibitively high unless one uses offline computation or specific hardware. Patch-based meth-
ods are faster, but less controllable because the interior of a patch is unchangeable. In 3D
synthesis, triangle patches methods are fast, but achieving variability of the texture is difficult
because the mapping is made in the same space of the sample texture. Synthesis with dense
points over the surface has the same problems of pixel-based methods, but is much simpler than
synthesis over texture atlas. In vectorial texture synthesis, methods that use statistical models
are able to capture well the characteristics of a texture, but procedural methods are much easier
to implement and understand.

The proposed approach presented in this work shares the same goal of most recent works,
which is to synthesize a distribution pattern based in a given sample. The method can be
extended to texturize tridimensional meshes and the element color is considered as a relevant
characteristic for the synthesis. The same basic structure of [BBT+06] is used, to perform
the synthesis in two steps: analysis and sampling. However, the proposed analysis step is a
simplified method of the one used in [HLT+09] and the proposed sampling step is based in
the procedural growth of [IMIM08], but with a distinct neighborhood comparison metric. The
proposed method, also, provides local control of density of elements. The next chapter presents
the method in details.



CHAPTER 3

Proposed Method

This chapter presents a detailed description of the developed algorithm, explaining the use and
motivation behind the choices with several illustrative cases.

3.1 Overview

Following the same structure of previous work on arrangement pattern synthesis, the proposed
method has two main parts: classification and synthesis. The first part represents the bridge
between the synthesis core and the user’s input. Its role is to process the provided sample,
extracting relevant information for the next step, redeeming the user from constructing images
with complex descriptions.

In this system, the user provides a sample input image and the target area, in terms of size.
The sample is defined as a collection of elements, where each element is described by vectorial
data such as quadratic or cubic splines. The description of a single element may contain several
disconnected splines. The Scalable Vectorial Graphics (SVG) format naturally supports this
type of image and is used on all of the results.

In the classification part, the elements from the input sample are grouped together into col-
lections according to similarity measures such that, ideally, any two elements of the same col-
lection should be visually similar. From this resulting data, important features used to control
the synthesis is evaluated. They correspond to the minimal distance between pairs of distinct
elements from two groups, as illustrated in Figure 3.1.

Figure 3.1 Features evaluated for an illustrative example. Here, the elements were grouped into two
distinct groups, curve and circle. In this case, three features are evaluated. The smaller distance between
distinct circles (A), distinct curves (B), and circles and curves (C).

The synthesis initially divides the target output image into squared regions of appropriate
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size. A recursive procedure starts by visiting a random region and placing a seed in a random
position on its interior. This seed is replaced by a chosen element from the sample and new
seeds are generated accordingly to the relative position of the neighborhood of this element
on the sample. The list of seeds grows iteratively until the target space is completely visited,
in other words, until there are no unvisited regions left. During synthesis, keep a list of seeds
located in the target image space. This list is FIFO, i.e. the first seed from this list is extracted
and replaced by a reference to one element from the sample, inserting new seeds at the end
of the list. Therefore, the texture grows in a spiral order starting from the initial seed. If
eventually the list of seeds becomes empty, a new seed is randomly created into a random non-
visited region. The growth is illustrated in Figure 3.2, and shares many similarities with the
method proposed by [IMIM08]. The main difference is the absence of underlying triangulation
of the arrangement, which will provide the control over the local density as will be explained
later.

Figure 3.2 Illustration of the local texture growth. Each seed is represented by a number, and the
highlighted seed is the first on the list.

3.2 Input classification

Unlike raster texture synthesis, this approach aims the synthesis of arrangement of elements
instead of the synthesis of pixel colors. The synthesis follows a texture pattern provided by a
2D sample. Initially, such elements are ungrouped and defined only by their own vector data.

In recent works, in order to identify a texture, the sample is processed and the elements
are classified into groups, where each group contains only closely similar elements. Then,
geometric features regarding the inter-relation between groups is used as information that can
fully describe the texture. These features can be coded on the triangulation of the distribution,
or in the parameters of an statistical model. In this work, however, this information is used
directly for procedural growth.

3.2.1 Characteristics of Elements

In order to classify the elements, the data must be simplified and evaluate relevant characteris-
tics. Ideally, the number of those characteristics should be the least necessary to fully identify
each group on the pattern, much as a human observer would use a limited number of character-
istics to naturally identify groups.

First, the data of each element is simplified by evaluating the oriented bounding box and
using its center as the position of the element. Then, all the necessary characteristics used to
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classify the element can be found. The same approach of [HLT+09] is used with minor differ-
ences. First, the characteristics are area, elongation, orientation, number of internal crossings,
and color. The number of extreme points is not used, since the authors did not provided a
detailed description of how they evaluate such information. However, it was noticed that the
absence of this characteristic does not affect the results on many textures, since other charac-
teristics are enough to distinguish elements.

The area of the oriented bounding box is simply the length times the height. Elongation
is the size of the longest edge divided by the shortest. The orientation is taken as the angle
between the principal axis and the horizontal direction. The principal axis is the longest edge.
Here, we face the problem of pseudo symmetry, since the orientation of the same element can
be equally evaluated to point towards the opposite direction, but the element itself may not
be symmetric. Previous works did not addressed this problem, but the samples usually con-
tains symmetric elements or other elements that can be differentiated by others characteristics
than orientation. Just choosing to use as orientation the angle closest to zero is good enough.
The number of internal crossings is evaluated from the original vectorial data of the element.
Count the number of times that a line segment crosses another segment from the same ele-
ment. For the color, take the RGB value and convert to the grayscale value using [KOF08]. All
the characteristics are normalized, as explained in the next section. Figure 3.3 illustrates the
characteristics.

Figure 3.3 Example of the characteristics evaluated for one element and used to classify it, before
normalization.

3.2.2 Principal Component Analysis

In the analysis step, Principal Component Analysis (PCA) is used to achieve dimensionality
reduction of the vector of features evaluated for each element. For the sake of completude, it
will be briefly explained how the reduction performs.

Suppose there is a data set of points, each one described by N values, or a N-dimensional
set. PCA is used to find a new coordinate system that better describes this set. In this case,
better means that the inter-relation among the dimensions is captured. For instance, the set
of points P = {(1,1);(2,2);(3,3)} can be better described if instead of the vectors (1,0) and
(0,1), the normalized vector in the direction of the line x = y were used. In other words, the
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data set P would be described by only one dimension, and the distinction between points would
be maintained. If the direction x = −y were chosen, all the points would be projected in the
same value.

This better coordinate system is formed by the eigenvectors of the covariance matrix of the
data set. The eigenvector associated with the highest eigenvalue is the chosen vector in wich
the points are projected. Therefore, an N-dimensional set becomes unidimensional.

3.2.3 Classification Description

The classification of elements is performed in two stages. The first stage corresponds to the
classification by area, and the second stage corresponds to the reduction of the four remaining
characteristics, by PCA to avoid high dimensionality issues, and the classification by this new
data. Histograms for those values will be constructed, and from them, groups can be defined. A
simplification of the process compared to previous work by [HLT+09] is made. Instead of using
an a contrario method to find relevant modes on the histogram, use a simple 5 bins histogram,
where each non-empty bin becomes a group itself. Five bins were chosen as an initial guess
due to the visual observation of the histograms generated for all tested samples. In practice,
this number was enough to classify all samples with straightforward implementation, although
for a few patterns there are over categorizations.

Figure 3.4 The classification pipeline. Figure (1) is the initial sample; Figure (2) shows the result of
histogram segmentation. The upper histogram is the classification by area. The green column, with 9
elements, becomes a group itself and the red column, with 61 elements, is further refined. The white
empty columns are ignored. The lower histogram shows the refinement, were each of the remaining
characteristics are reduced to 1 dimension by PCA. Figure (3) is the resulting classified sample in this
case 6 groups were computed

First, each characteristic is normalized by a value. The areas are normalized to 5% of
the surface of the sample; orientations are normalized to 2π; elongations are normalized to 3;
number of extremities are normalized to 10; grayscale is already normalized to 1. We construct
the 5 bins histogram with the areas of each element. If a given bin is empty, nothing is done.
When the bin contains 12 elements or less, it is considered a group by itself. If the bin contains
more than 12 elements, classify those elements one more time. In the second classification,
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apply dimensionality reduction with PCA on the remaining characteristics, and construct the
histogram of the resulting data. Again, the histogram contains 5 bins, and each non-empty bin
will become a distinct group. Figure 3.4 shows the steps of classification for one sample. It
was verified that the simplified procedure is enough to obtain good results not only with the
samples from previous work, but also new complex ones, as will be shown later in the results.

The following table summarizes the parameters. Except for the the number of bins, all of
the parameters have the same values used in [HLT+09] and seems to only weakly depend on
the provided sample. The same values were used for new textures and good results still were
obtained.

Number of bins on the histogram 5
Area normalization factor 5% of the sample
Orientation normalization factor 2π

Elongation normalization factor 3
Extremities normalization factor 10
Smallest size of group on the first step of the classification 12

3.2.4 Spatial features of the pattern

As previously mentioned, the classification of elements from the sample is made in order to
obtain a unique description of the texture. Having each element labeled with a group, spatial
features used to guide the synthesis during the positioning of elements onto the target space,
canbe evaluated. Those features acts as spatial restrictions that the new pattern must follow
in order to maintain the overall appearance of the input sample. The are defined using the
following functions:

d(x,A) = min{d(x,y)|y ∈ A,y 6= x}

d(B,A) = min{d(x,A)|x ∈ B}

where d(x,y) is the euclidean distance between the center of two elements x and y, and A and B
are groups. The function d(B,A) is evaluated for each pair of groups and also, all the d(x,A) for
each element x, as illustrated in Figure 3.5. Each element x will contain its own table of features
to be used later, during synthesis. More features could be added, but this would increase the
computational cost, redundancy of information and make the result less controllable. In this
work, these features are used to control the local density of the texture, as it will be shown later.

3.3 Synthesis

At this point, all of the necessary information for the synthesis stage was computed from the
sample. From now on, we apply a procedure that will make use of this information to build the
new arrangement. Also, this is where the algorithm for 2D and 3D synthesis becomes different.
Initially inspired on the algorithm presented by [HLT+09], a similar, but simpler, procedural
growth method was built. The simplicity resides in the fact that no underlying triangulation
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Figure 3.5 Illustrative example of feature evaluation. In this illustration, there is a texture with 6 el-
ements, so the minimal distances d(x,A) for each element (surrounding images) need to be evaluated,
and also the minimal distances between groups d(B,A) (central image). B and A correspond to circle
and curve groups. All of the minimal distances are represented by black line segments. In image I, it
is shown the minimal distances found for the curve element (1). The upper line represents the minimal
distance between (1) and any other curve. The lower line represents the minimal distance between (1)
and any circle. Similarly, there are the features for each curve (Figures II and VI) and for each circle
(Figures III, IV, V). On the central image, the long vertical line represents the minimal distance between
circles, the short vertical line is the minimal distance between curves, and the remaining line is the
minimal distance between curves and circles.

is used, and therefore, no triangulation must be constantly evaluated for every new element
inserted on the texture.

Although the basic structure of the algorithm remains the same for both 2D and 3D syn-
thesis, few ideas must be adapted. First, the entire algorithm for the 2D case is explained, and
then, what changes should be made in order to extend the method for the 3D case.

3.3.1 Covering The Target Space

On raster texture synthesis, the target space is defined by the resolution and the synthesis is
concluded when all pixels have been visited. Based on this idea, set the target output size as
a parameter, but still remains the problem of knowing when the synthesis is complete. An
underlying grid is artificially created by dividing the area of the target texture into a matrix of
squared regions, initially marked as unvisited, and use them as the ‘pixels’. The length of the
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edge of each region is defined as the minimal distance between elements from the sample. This
number can be easily found on the table of distances between groups, previously evaluated,
since the number of groups is usually small. Using the minimal distance will assure that the
result will have none undesired holes. When a new seed is placed inside a region, the respective
region is switched to visited. The synthesis is complete when there are no remaining unvisited
regions.

Following the same nomenclature from previous work, seeds are objects which will become
copies of elements from the texture. In this system, those seeds may contain a reference value
to one of the groups found during the classification step. This will force the seed to become an
element from one specific group, unless there is no such reference.

3.3.2 Seeding and Growth

The main loop of the synthesis step can be stated as follows:

While (number of unvisited regions) > 0 {
Randomly visit one of the unvisited regions;
Try to randomly place a validy empty seed at this region;
While (number of seeds on the list) > 0 {

synthesizes the first seed of the list;
}

}

Initially, this is what happens: a seed is placed at a random location inside any of the regions
of the target space, and the texture is expanded outwards replacing seeds by copies of elements
from the sample and placing new seeds around them. The element to be copied is chosen
based on neighborhood comparisons, and the location of new seeds is defined from the relative
position of the neighborhood of the copied element. All the seeds are stored in a FIFO list,
where the head contains the seed that will be replaced at the next iteration, and new seeds are
inserted at the tail of the list. The growth process is illustrated in Figure 3.6.

When a seed is being processed, the reference for the group is taken and the best matching
element, which represents the element whose neighborhood is the most similar to the vicinity
of the seed, is searched in the sample texture. To compare neighborhoods, it is used a metric, as
explained later in Section 3.3.3, that returns a value between 0 and 1, representing the dissim-
ilarity between two distinct neighborhoods without restrictions on the number of elements on
them. The reference for the group contained on the seed is used to restrict the search into one
specific group. Once the best matching is found, the seed is replaced by a copy of this element
and create new seeds using the relative position of its neighboring. Each new seed will contain
a reference to the group of the element that originated it.

To be accepted, each new seed s must be checked whether it will violate any of the minimal
distances previously evaluated from the sample. Each new element n from the target texture
contains a reference to one element from the sample. Therefore, each n can be visited and the
referenced table of minimal distances evaluated during the analysis step is extracted. From s
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Figure 3.6 Seeding process. On the left, the current arrangement being synthesized. (A) marks the
position of the seed extracted from the head of the list. The best matching element is searched throughout
the sample texture. In this case, assume the seed reerences the group with curves. The best matching
element was found to be the highlighted curve. The neighboring elements (I) are extracted and four new
seeds are generated from them (II). This set is pasted over the seed (A), and on the right arrangement,
only seed 1 will be accepted.

there is the reference for the group G and the correspondent minimal distance, min(G), on the
table. The seed passes the test if only d(n,s) > min(G). Similarly, the same condition for all the
already accepted seeds must be checked. However, since in this case there is not any referenced
elements from the sample, a table of minimal distances between groups is used. Only when the
seed passes all tests, it will be accepted. If the seed fails at least one of the tests, it is discarded.

Using this approach it is possible to control the density of elements on the result. Instead
of directly using the minimal distances on the validity tests, they are multiplied by a density
parameter. When this parameter is less than 1, closer pairs of elements will be accepted on the
final distribution, and therefore, a denser texture will be created. When this parameter is greater
than 1, a coarser texture will be created. Figure 3.7 shows the effect obtained by varying this
parameter.

3.3.3 Distance Metric For Neighborhoods

It was shown how the texture grows, replacing seeds by elements from the sample. In this
subsection, it is explained the metric to compare two distinct neighborhoods. This metric will
be used to choose the best element from the texture to replace the seed.

In raster texture synthesis usually an L2 norm is computed for pixels inside a given regular
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Figure 3.7 Varying density along the horizontal axis. Sample and result.

neighborhood. Tehre is also the notion of neighborhood, but instead of a rectangular one as
used in raster textures, a circle around an element is defined with a user-defined visibility ra-
dius. A circular neighborhood provides a fairer region for computing the metric. When using
triangulations, the neighborhood is limited by the n-ring vicinity around the central vertex as
done in previous work by [IMIM08], which can be globally too small or too big depending on
the texture. Using a circular neighborhood, free of triangulation, every element has the same
visibility. Since the system does not deal with pixels, but elements, some difficulties arise: the
metric should be able to compare two neighborhoods with different number of elements and
should consider the overall distribution of elements inside the neighborhood.

The range of visibility is a parameter which controls the balance between quality and com-
putational cost. If the parameter is too small, each element will be able to see few of its neigh-
bors. Therefore, the overall characteristics of the textures will not be properly captured during
synthesis. In order to improve the quality of results, a larger range must be chosen, but this
might rapidly increase the computational cost due to the increase on the number of neighbors
that an element can see.

Since the sample input is static, the neighbors of each element can be previously calculated
on the analysis step. However, as the target texture grows, new elements are added and the
neighborhood of some elements may change. Therefore, the neighbors of each element are dy-
namically updated as the synthesis progress. The sampling procedure to compute the distance
metric works as follows: extracts the first seed from the list and find the neighbors inside the
visibility window. From this collection, evaluates the relative position of each neighbor, con-
sidering the seed as the origin. For any candidate extracted from the sample, its neighborhood
is similarly evaluated.

The proposed metric is normalized to a range [0,1] and gives the dissimilarity between two
neighborhoods I and J as follows. For each relative location i of the elements on I, uses the
smaller Euclidean distance between i and j, where j is the relative location of the elements on
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J. When the element at j is from a different group of the element at i, it is ignored. If the end of
the list of elements from J is reached and no distance was evaluated, then consider the element
i as too far and set the value to 1. Otherwise, normalize the value found by the diameter of the
visibility window. Once all those values are evaluated for the elements of I, similarly evaluate
the distances for the elements on J. The final overall dissimilarity will be the average of all
those values. A value of 1 represents a completely different neighborhood, while a value of 0
represents an exactly equal neighborhood. This metric is illustrated in Figure 3.8. Special care
is needed for the neighborhoods near the edges that are often incomplete. To avoid the edges,
consider only those elements from the sample whose visibility range does not cross the sample
boundaries.

Figure 3.8 Distance metric for neighborhoods, shown in an artificial example. We have the comparison
between two pairs of neighborhoods, AB and CD. Neighborhoods A and C are exactly the same, while B
and D differ only on the position of one curve. Neighborhoods are illustrated together in the same frame,
with the smallest distances evaluated for each element (before normalization). Only the displacement
of one of the elements, bringing it closer to another element from the other neighborhood, makes both
neighborhoods more similar, and this effect is easily detected by the final value of the metric. A lower
value denotes a more similar pair of neighborhoods.

In Barla [BBT+06], two neighborhoods are intersected and only the paired elements are
considered. If another neighborhood contains the same distribution for the paired elements,
but different distribution for unpaired elements or even a different number of them, the metric
would return the same value. The main difference from this metric is that none of the neighbors
are discarded and the resulting value is sensitive to small variations on the distribution.

3.3.4 Choosing The Best Matching

In order to pick the final best element, the same approach from raster texture synthesis is used,
building an ordered list with the best matching elements and using the corresponding dissim-
ilarity value to order the list. Then, the best element is randomly chosen from those whose
dissimilarity factor is smaller than 1.1 times the smallest factor obtained. In order to keep the



3.4 TRIDIMENSIONAL SYNTHESIS 33

system from falling on a local minimum, always choose the same sub-group of elements, for
each element, count how many times it was already chosen and use this value to modify the
dissimilarity factor. The new factor is log(1 + n)+ d where n is the number of times the ele-
ment was chosen and d is the regular dissimilarity. This new factor will be used to order the
list, instead of the unmodified dissimilarity. The log function is used to avoid the quick growth
of the factor, and use the term (1+n) to avoid singularities when the element was never chosen,
in other words, when n = 0. The effect of this factor is shown in Figure 3.9.

(a) (b) (c)

Figure 3.9 Illustration of the influence of the modified dissimilarity factor. Figure (a) is the sample. In
figure (b) the original factor is used. At the upper right part of the figure, the repetition of the big circles
is perceived. The left portion also was not correctly synthesized. On (c) there is a new result, using the
modified factor, providing a result closer to the sample.

3.3.5 Patches

The same idea of patches of texture from raster synthesis was used to improve the efficiency
of the proposed method. Instead of copying only one element from the sample, a cluster of
elements will be copied. A parameter – patch size – which will split the visibility region into
two parts, inner and outer, is defined. The inner part will represent the patch region, where,
instead of seeds, the elements will be copied directly onto the target. The same check for
violation of features is performed before any of those elements are accepted but they do not
generate new seeds. In Figure 3.10 the influence of this parameter varying between 0 and 1
times the range of visibility is illustrated. This possibility greatly improves the computational
cost, and allows similar quality in the visual results.

3.4 Tridimensional Synthesis

In this subsection, all the changes applied to the basic structure of the synthesis algorithm al-
ready presented, are explained in order to render patterns on arbitrary 3D meshes. The analysis
step remains the same, because the main task of the method remains the same: to synthesize a
new texture, similar to a supplied sample. The difference is that the synthesis is made over a
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(a) (b) (c) (d)

Figure 3.10 Given a sample (a) and varying the patch size 0%, 50% and 100%, (b, c, d), respectively.
Notice the same quality in the visual result.

surface defined in the tridimensional space, instead of on the plane, as done so far.
There are basically two possibilities for texturing objects: directly on the surface, or over

the 2D parametrization space. In this work, the first class of methods is used. The synthesized
elements are placed and oriented directly on the tridimensional space of the surface of the mesh.

3.4.1 Input Information and Parameters

The input is an object defined as a polygonal mesh. In this case, no parameterization is neces-
sary; the synthesis will be performed directly over the surface. Also, an orientation field must
be defined in the surface. This orientation field gives the local orientation of the texture in the
surface. This field can be obtained by several ways, but in this case, projecting the vertical
global direction in the surface is enough. This projected vector, and the normal of the triangle,
will define the local coordinate system for each triangle.

Besides the visibility range and the patch size, a scale parameter that defines the proportion
of the area of the surface with respect to the area of the sample texture, is needed. This scale
parameter will be used every time it is necessary to make geometric transformations between
the 3D space of the object and the 2D space of the sample.

3.4.2 Covering The Target Space

The target space is a general and free of parametrization 3D triangulation. A regular grid
can not always be constructed for such surfaces, so another way to divide the target space is
necessary. For this, the mesh data itself is used. Each triangle will represent a visitable region.
In the 2D case, a square as small as necessary is constructed to guarantee that every location
will be visited and undesired roles will not be created, as explained in Section 3.3.1. With the
mesh, the size of the triangles is already determined. If the triangles of some neighborhood are
too small, this neighborhood will be visited an excessive number of times. This will cause a
high computational cost, but the visual result will not be affected. When the triangles are too
big, they could be divided into smaller triangles to avoid the creation of undesired roles, but it
was observed that in practice, this is not a problem. When the texture grows, the space is filled
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incrementally.

3.4.3 Obtaining The Neighborhood

During synthesis, neighborhoods are constantly being obtained from the target space. They
must be compared with the neighborhoods from the sample texture, which are on the 2D space.
Therefore, it was chosen to map the 3D neighborhood of an element to the 2D space, and use the
same metric discussed previously to measure dissimilarities. The mapping process is simple.
Given the position of the central element and the triangle that contains it, it can be obtained from
the triangle the local coordinate system defined for the position. Then, orthographically project
any of the neighboring elements that lie inside the visibility range, using the normal direction
of the triangle to project. The projection is done over the plane of the triangle. Then, find the
(x,y) coordinates of the projection, using the local coordinates and the central element as the
origin. These coordinates are multiplied by the scale factor, before measuring the dissimilarity
from any neighborhood from the sample. Computing exact distances over the surface would be
prohibitively expensive and would not affect the visual result significantly for weakly regular
textures. Figure 3.11 illustrates the process.

Figure 3.11 Process to obtain the neighborhood of an element on the 3D space. In A) triangles from the
mesh, with some elements over them. The circle represents the visibility sphere centered at the element
whose neighborhood we are interested on. Elements 6 and 7 lies outside the sphere. On illustration B)
it is shown the orthographic projection of elements 1 to 5 onto the plane of the triangle that contains the
central element. The projection follows the normal direction N. The direction Y is obtained from the
vector field defined for the surface, and the direction X is the cross product of Y and N. On illustration
C), the final result after evaluating the 2D coordinates of each projected element.
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3.4.4 Generating New Seeds

When the best matching element is found, new seeds are created from its neighborhood. In the
2D synthesis, the orientation and scale of the target space is the same as the sample, so placing
elements is straightforward. In the 3D synthesis, however, the relative neighborhood must be
appropriately placed over the surface. This is accomplished by doing the reverse procedure
explained on the previous subsection. First, multiply the X and Y values by the inverse of the
scale factor and then align the axis with the local coordinate frame of the triangle that contains
the central element. Then, use the normal direction to orthographically project the points over
the surface. The resulting point is the final location of the new seed. A smooth surface is
assumed, but when there are highly curved regions and the projection of the points falls off the
surface, the new seed is ignored. These new seeds, as in the 2D case, cannot violate spatial
restrictions and must be checked against all the already accepted elements. To simplify the
method, just use the 3D Euclidean distance between two points, instead of finding the smallest
path over the surface. Also, to increase speed, during the projection of points over the surface,
consider only those triangles whose center lies inside the visibility range of the central element.
Plausible visual results are obtained, despite these simplifications.

3.4.5 Rendering

Since parametrization or texturing of surfaces is not used in this work, the elements are gener-
ated as 3D geometric figures that are rendered together with the surface. The geometric data
of the elements are control points of Bezier curves, that must be scaled and oriented to align
with the local coordinate system. After that, several line segments are constructed, following
the curves. The segments that are located outside of the triangle, are orthographically projected
again over the surface. Segments that cross edges between two triangles, are splited. All this
process is done to avoid popup issues, such as the illustrated on the Figure 3.12.

Figure 3.12 Result with popup issues. When the scale of the element is small compared with the local
curvature of the surface this problem is minimized, but at the borders this artifact can still be cleary seen.



CHAPTER 4

Experiments and Results

In this chapter a full range of results synthesized using the proposed solution and results for
texturing 3D surfaces, are presented. The research on synthesis of arrangement patterns has sig-
nificantly improved the quality of visual results. New methods and approaches were proposed,
and the range of possibilities increased with each new method. It is performed a qualitative
evaluation of the results by visual comparison with previous results, using the same samples as
input.

Subjective visual assessment is still the main method for validation of results. It was not
performed any quantitative measurements between methods mainly for two reasons: there is
no accepted good metric to compare similar textures on the field of texture synthesis, and each
proposed method applies different approaches for solution and therefore it is not possible to
compare tables of parameters since the parameters are not the same.

In general, computational cost varies from real time to one minute for the presented results.
Since the algorithm performs a near brute-force search for the best matching neighborhood,
and also each neighborhood comparison will depend on the number of elements inside each
neighborhood, the computational cost strongly depends on the sample. Usually, small and
scarce textures are used, allowing a real time synthesis. Considering such textures and that the
use of specialized hardware is not required, vectorial texture synthesis is preferable. Also, the
computational cost is comparable to previous work.

4.1 2D Synthesis

The first important difference between ours and previous methods is the inclusion of color. Due
to the conversion from RGB to grayscale, the color feature could be introduced on the synthesis
step without greatly increasing the computational cost of the PCA step. Also, vectorial textures
are usually simple, compared with raster textures, and simply introducing the color feature on
the second stage of element grouping is enough to provide good results, as it is seen on Figure
4.1.

On the same figure, it is seen a result for a regular texture of chessboard. In this texture, the
color is the only feature that differentiates one element from another. The statistical method of
[HLT+09] cannot produce regular results, and [BBT+06] has some issues to produce irregular
textures. On these examples, it is seen that the proposed method delivers plausible visual results
for both type of textures.

Figures 4.2 and 4.3, compare our results for various samples from the current state-of-the-
art in this topic [HLT+09]. It can be seen that, apart from minor visual differences such as the

37
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Figure 4.1 Synthesized colored arrangements.

width of lines or clarity of colors (which has no relation with the synthesis), our arrangements
are qualitatively similar. Original results were provided by the authors, and our results were
visualized directly from the system.

Figure 4.5 shows results obtained by the proposed method for hand-drawn geological pat-
terns. Notice the continuous variation of the orientation value of the elements on the samples.
This presents issues due to the use of histogram, since the inclination value changes in a cir-
cular fashion, where elements with 2π value have the same inclination of 0 valued elements.
Also, the lack of strong similarity between elements on pattern 4.5(a) implies the necessity of
a large number of groups. As shows the Figure 4.4, with our implementation of the method
used in previous work, such patterns were not well classified, while with the simple 5 bin
histogram method, better results were obtained. Over-categorization does not represent a big
problem, but under-categorization will affect negatively the results, specially in such patterns
with compacted long thin elements and no intersections between them.

The next set of results (Figures 4.6, 4.7, and 4.8) illustrates the flexibility of the proposed
system, by comparing the original sample with results generated with the same resolution. No-
tice that although they are slightly different, they all retain the same overall visual appearance.
Since a random factor is used in the algorithm, a new pattern is generated every time.

4.2 3D Synthesis

This section shows in Figure 4.10 some results obtained by the proposed system. For these
results, the illumination intensity was used to determine the density parameter, resulting in a
shading effect. Bright triangles are associated with a small value of density, and dark triangles
with a larger density. Although good results can be obtained, the computational cost of the
method can increase rapidly if used for rendering NPR images with the most usual styles, such
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as hatching or stipples. Figure 4.9 shows the influency of parameters for the synthesis.
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Figure 4.2 Texture synthesis results. From left to right: sample (smaller square), result by Hurtut
[HLT+09] and ours.
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Figure 4.3 Texture synthesis results. From left to right: sample (smaller square), results by Hurtut
[HLT+09] and results of the proposed method.
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(a) (b)

Figure 4.4 Results from the analysis step. Figure (a) shows the result of the implementation of the
method used on previous work. Figure (b) shows the results of the simplified method. In Figure (a) can
be seen elements with highly distinct orientation classified on the same group (purple), and yet some
small circles classified on the same group of the big elements (light blue, yellow). In Figure (b), such
mistakes does not occur.

(a) (b)

(c) (d)

Figure 4.5 Texture synthesis results for illustrative geological patterns.



4.2 3D SYNTHESIS 43

(a) Original Sample (b) Our Result 1 (c) Our Result 2

(d) Original Sample (e) Our Result 1 (f) Our Result 2

(g) Original Sample (h) Our Result 1 (i) Our Result 2

(j) Original Sample (k) Our Result 1 (l) Our Result 2

(m) Original Sample (n) Our Result 1 (o) Our Result 2

Figure 4.6 Comparison among the results from [HLT+09] and the proposed method
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(a) Original Sample (b) Our Result 1 (c) Our Result 2

(d) Original Sample (e) Our Result 1 (f) Our Result 2

(g) Original Sample (h) Our Result 1 (i) Our Result 2

(j) Original Sample (k) Our Result 1 (l) Our Result 2

(m) Original Sample (n) Our Result 1 (o) Our Result 2

Figure 4.7 Comparison among the results from [HLT+09] and the proposed method
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(a) Original Sample (b) Our Result 1 (c) Our Result 2

(d) Original Sample (e) Our Result 1 (f) Our Result 2

(g) Original Sample (h) Our Result 1 (i) Our Result 2

(j) Original Sample (k) Our Result 1 (l) Our Result 2

(m) Original Sample (n) Our Result 1 (o) Our Result 2

Figure 4.8 Comparison among the results from [HLT+09] and the proposed method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9 Influency of parameters on the 3d synthesis. Figures (a), (b) and (c) show the variation of
density, from high to low. Figures (d), (e) and (f) show the variation of path size from none, half and
full visibility range, respectively. Figures (g), (h) and (i) show the variation of the scale, achieved by
changing the ratio between the surface area and the sample area.
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Figure 4.10 Tridimensional texture synthesis results using four different textures. On the left, the model
is rendered with Gouraud shading model to illustrate the illumination over the triangles; on the right, no
illumination model was applied. The concentration of elements by itself produces the shadowing effect.



CHAPTER 5

Conclusions

It was presented a method to synthesize patterns of arrangement of vectorial elements from
a small supplied sample. The method follows previous ideas, [BBT+06, IMIM08, HLT+09],
where the synthesis is made in two steps: analysis and synthesis. Our method improves the
current state-of-the-art by introducing color, which is easily implementable and applicable to
all types of textures, from regular to stochastic. Also, the algorithm allows the control of
density of elements on the distribution, and can be extended to be able to perform synthesis in
3D meshes.

We have noticed that vectorial textures, that are reducible to distribution patterns, are rather
simple and visual acknowledgement of failures on synthesized images can be difficult. This is
related to how human mentally define a texture. It is also related to what characteristics are
evident in a sample and should be preserved when expanding that sample. Therefore, a simpler
method, such as proposed in this work, is enough to produce good results. A small subset of
constraints, such as minimal distances, is capable of capturing the essential information within
a distribution pattern. Such characteristic allows a fast and easy implementation of a purely
procedural synthesis system.

5.1 Limitations

Although the proposed method does not require a triangulation of the distribution, and there-
fore the size of the neighborhoods is constant and defined by one parameter, many tests need to
be performed to see if an element lies inside the visibility region of some given neighborhood.
Also, during the evaluation of the dissimilarity metric, for each element, the closest elements
is searched in other neighborhoods. Usually, the number of elements in samples and the size of
the output texture is relatively small, such that all computation is done from real time up to 1
minute for the presented results. However, the computational cost increases with the number of
elements in the image and also with the average number of elements inside the neighborhoods.
The processing time may easily take longer than one minute. This computational cost may in-
creases even more when performing 3D synthesis due to the constant evaluation of projections.
Some of the results where obtained within 5 minutes.

The analysis step presents another limitation. In [BBT+06], the elements are constructed
from the collection of strokes scattered over the plane. This limited the system to synthesizing
only few types of well behaved textures. Subsequent works considered the elements already
formed, and focused on the task of grouping them according to similarity features. Those fea-
tures are characteristics of the element itself and are independent of the neighboring elements.

48
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(a) Sample (b) Result 1 (c) Result 2

Figure 5.1 Inter-relations between elements not well captured by the method for near-regular textures.

We have noticed that for near-regular textures, the overall characteristic of the pattern must be
captured during the grouping stage, but this is not done yet.

In Figure 5.1 we clearly see this limitation. Two textures were synthesized, for two dis-
tinct cases of the same sample pattern. First, in Result 1, the sample texture is provided with
two types of elements: bars and circles. The synthesis, however, does not capture well the
characteristic of the texture, that the bars are always paired and each pair is distinct due to the
inclination. It can be seen in the result some unpaired bars. Also, during the grouping stage,
the number of groups is not big enough to classify each bar correctly, since they slightly differ
in the inclination value. Bars with distinct inclination values are classified in the same group.
Also, during synthesis, it may happen that for a pair of bars, one of them is changed by an-
other, resulting in pairs of nonparallel bars. To solve these problems, we modified the sample
by considering each pair of bars as one single element, editing manually the file. In Result 2,
there is the result after this change. A better analysis algorithm would grasp the regularity of
the texture, even if each bar is coded on the sample as a single element.

A limitation in 3D synthesis is due to the nature of the method itself. Since he synthesis
is performed directly on the surface, the use of geometric primitives to represent the elements
of the texture may not be adequate to render the desired image. Too many line segments will
be created if the mesh is detailed with several small triangles. The rendering cost may be too
large, compared to texturized objects.

5.2 Future Work

Due to the limitations stated, to perform the synthesis in the parametric space instead of di-
rectly over the surface may be a better solution since the method is originally 2D. New metrics
of neighborhood comparison could also improve the efficiency since our metric constantly
evaluates minimal distances. Quantitative metrics to measure the similarity between vectorial
textures with different resolutions is also desirable.
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