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“Cascos, cascos, cascos

Multicoloridos, cérebros, multicoloridos
Sintonizam, emitem longe

Cascos, cascos, cascos

Multicoloridos, homens, multicoloridos
Andam, sentem, amam

Acima, embaizo do mundo

Cascos, caos, cascos, caos
Imprevisibilidade de comportamento

O leito nao-linear seque para dentro do universo
Misica... quintica?”

Chico Science & Nagao Zumbi.

Coco Dub (Afrociberdelia), 1994.

“On a le devoir de faire tout ce qu’on veut,

de penser tout ce qui vous semble bon, de n’étre responsable que devant soi-méme
et de remettre en question, constamment, tout ce qu’on pense et tout le monde.”
Jean-Paul Sartre.

L’age de raison, 1945.
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Abstract

In the present work, the spread of forest fires in heterogeneous environments is studied
through cellular automata (CA) models, that are commonly used to simulate contact
processes, and display a critical self-organized dynamics. The concept of self-organized
criticality (SOC) is related to the ability of a dynamical system to evolve towards a
critical phase spontaneously. The signature of these processes is the scale invariance
(power-law behavior) of its observables. The forest fire model proposed by Drossel and
Schawbl (DSFFM) in 1992, regards an homogeneous population of trees and its fire-size
and fire duration distributions suggest typical SOC behaviors. In the other hand, the
literature reports wildland fires whose frequency-area histograms are either power-law
distributions or ‘heavy-tailed” distributions. In 2011, Camelo-Neto and Coutinho proposed
a CA model in which two distinct populations of trees are considered: one comprising
trees with low flammability (with a parameter R of resistance to ignite) and the other
composed by high flammability (susceptible trees). Aiming to generalize this model, some
ingredients have been added in order to amplify or constrain the effective reach of the
fire spreading. By increasing the reach of the interactions, the system performs fires that
spread more like a ‘field’” of heat than like a contact process as in the DSFFM. Another
novel aspect of the model — related to the heterogeneity of the population — is the addition
of a fraction s of forbidden sites (randomly placed), at which trees are not allowed to
sprout. Moreover, theses forbidden sites do not interact with fire. Results have showed
that the fire-size distributions can display either a ‘heavy-tailed’ behavior or a power-law

behavior, depending on the resistance parameter R and on the fraction s of forbidden site.

Keywords: Forest-fire model. Spreading model. Forest fires. Self-organized criticality.



Resumo

Nesta dissertacao, a propagagao de incéndios em florestas heterogéneas é estudada através
de modelos de autématos celulares (AC) que descrevem processos de propagacao por
contato e apresentam caracteristicas de uma dindmica critica auto-organizada. O conceito
de criticalidade auto-organizada (CAO) esté relacionado com a capacidade de um sistema
dindmico evoluir espontaneamente para um estado critico. A assinatura desses processos é
a invaridncia de escala (comportamento tipo lei de poténcia) das distribuigoes de certas
grandezas observaveis. O modelo de incéndio florestal proposto por Drossel e Schawbl (DS),
em 1992, considera apenas florestas homogéneas e as distribui¢oes de tamanhos e duragao
das queimadas encontradas sugerem a existéncia de um estado critico auto-organizado. A
literatura, no entanto, reporta incéndios reais cujos histogramas de frequéncia de tamanho
apresentam tanto distribuigoes tipo lei de poténcia, quanto casos de distribuicoes com
“caudas pesadas”. Em 2011, Camelo-Neto e Coutinho propuseram um modelo de AC, onde
sao consideradas duas populagoes de arvores distintas, uma com baixa inflamabilidade,
arvores com distintos graus R de resisténcia a igni¢do, e outra com alta inflamabilidade,
ditas arvores susceptiveis. Com o intuito de generalizar o modelo, alguns ingredientes
foram adicionados de modo a ampliar ou limitar o alcance efetivo da propagacao do
fogo na vizinhaca de uma arvore em chamas. O aumento do alcance das interagoes
produz incéndios que se propagam como um “campo de calor”, desta forma difere dos
processos de contato caracteristicos do modelo DS. Outro novo aspecto do modelo para
explorar a heterogeniedade da floresta foi a inclusao de um fracao s de sitios proibidos
(distribuidos aleatoriamente) nos quais arvores nao podem brotar, além disso eles também
nao interagem com o fogo. Os resultados alcancados mostram que as distribuicoes de
tamanho dos incéndios podem exibir tanto um comportamento de “cauda pesada”, como
comportamento tipo lei de poténcia, dependendo do ajuste do parametro de resisténcia R

e da concentragao s de sitios proibidos.

Palavras-chave: Modelo de incéndio florestal. Modelo de propagacao. Incéndios florestais.

Criticalidade auto-organizada.
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Chapter 1

Introduction

“Systems in balance or equilibrium,
by definition, do not go anywhere.”

Per Bak!

In recent years, wildfire risk has been increasing in many regions of the world due
to warmer temperatures, more frequent droughts and changing precipitation patterns.
Climate change has unleashed longer and more intense fire seasons[50]. On this background,
a shed fire can lead to an awful destruction, which is precisely what happened in Lake
County, California, in September 2015. Due to several causes, the blaze that started at
Boggs Mountain State Forest rapidly became an inferno. A complete burn scar is showed
in Figure 1.0.1. The red and grey shades image was composed by infra-red band data
collected by OLI* on Landsat8 satellite[9] in September 20th, 2015; which was overlaid
on a Google Earth image (from March 13th, 2016), in order to give a perception of the
whole region. The charred landscape are orange-red, whereas unburned forests appear
grey and buildings are white. The Valley Fire, as it was called, has become the third most

damaging fire in California[10].

In the literature, it can be found several analyses of wildfires from all around
the world: Brazil[26, 93], Canadal[54], China[97], Italy[61, 102], Japan[96], Portugal[65],
USA[68, 76]. Moreover, the analysis of frequency-area histograms shows either power-law
distributions or heavy-tailed distributions™ [64, 67, 69, 83, 84, 107, 126]. This has given

rise to speculations on whether wildfire regimes could drive forests to self-organization.

The concept of self-organized criticality (SOC) is related to the ability of a dynamical
system to spontaneously evolve to a critical phase; that is, instead of a temperature-like

parameter, the tuning is consequence of the resultant interaction among its elements, which

T From “How Nature Works: the Science of Self-organized Criticality”[17].

*  Operational Land Imager[12].

** Probability distributions that neither have exponentially bounded tails[8], nor they are purely power-law
distributions.
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drives the system towards a critical phase. The signature of critical self-organized processes
is the scale invariance of the observables, i.e. distributions displaying power-law behavior.
In other words, it is the absence of a characteristic length scale: not because it does not
exist, but due to the fact that several length scales are coexisting. The Drossel-Schawbl
forest-fire model (DSFFM)[34] is a paradigmatic SOC model, assembled on a cellular
automata (CA) template, where the most studied observables are the avalanche size and

its duration at the stationary state of a homogeneous forest.

In ecology, an important definition is the concept of lammability, which character-
izes the ease of burning. As a system variable, flammability can summarize many aspects of
the tree[103], such as moisture content, chemical make-up (lignin, cellulose), size (thickness)
and shape (trunk bark). Camelo-Neto and Coutinho[25] have studied the DSFFM with
two distinct populations, one comprising trees with low flammability (resistant trees)
and the other composed by high flammable trees (susceptible trees). Furthermore, the
interaction takes place within the Moore neighborhood, which comprises the eight nearest
neighbors of a given site on a square lattice. In this CA model, the fire spreading rules are
deterministic: susceptible trees need at least one burning neighbor to ignite and, in the

other hand, resistant trees need a number R of burning neighbors to ignite.

In the present work, some ingredients have been added to the forest-fire model with
resistant trees, in order to either amplify or constrain the reach of the fire. By generalizing
the Moore neighborhood to higher ranges than its default 8 neighbors, the system performs
fires that spread more like a field of heat than like a contact process. Hence the fire
becomes capable of tunnelling barriers of resistant trees or even empty sites. Another
novel ingredient of the model is that it includes a fraction of random forbidden sites, i.e.
blocks. These blocks are inert sites that behave as an empty site, but at which a tree can
not sprout. The model details will be depicted in chapter 4. Throughout chapters 2 and
3, it will be presented some of the model foundations, such as cellular automata models
and complex system. The most relevant results will be presented and discussed in chapter
5. All figures and graphics on the text have been made by the author (using Gnuplot

software[119]), except whenever indicated.

All increments on the forest-fire model have showed more clearly that the fire
size and duration distributions can display either a heavy-tailed behavior or a power-law
behavior, depending on the resistance parameter R and on the fraction of forbidden sites s.
The results corroborates the possibility of developing cellular automata models by relying
on underlying physical arguments that could simulate more realistic wildfire regimes. In a
near future, these models may contribute to new perspectives in forest fire suppression

and prevention.
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Figure 1.0.1 — Infra-red image of a burn scar from NASA’s Earth Observatory[10] overlaid
on a Google Earth landscape image. The grey-red shades rectangle has
sides around 31km and 24 km, an area of nearly 744 km?. According to the
California Department of Forestry, the fire had burned nearly 284 km? as of
September 22, 2015. The burn scar in north-east region of the screen (top
left) is due to a previous wildfire (Rocky Fire, August 4, 2015[11]). Infra-red
image: the newly burned landscape are orange-red, unburned forests appear
grey and buildings are white.
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Chapter 2

Cellular automata

“... began to suffer from the computer disease,
that anybody who works with computers now knows about.
The disease with computers is that you play with them.”

Richard P. Feynman'

A cellular automata (CA) can be loosely described as a set of fixed cells, each one
labeled with a state, spread over a lattice and a transition rule, which depends on its
own current state and the current state of its neighbors. The system evolves with discrete
rather than continuous time, thus at each step a cell may change its state — only if the
transition rule has been satisfied. An automaton is a sort of abstract machine that can

resolve an algorithm using logical propositions.

Throughout this work it will be presented definitions and models mostly related
to bidimensional cellular automata models, when otherwise it shall be indicated. This
chapter starts with a brief note on the background of the main ideas of CA models as
well as its conceivers, section 2.1. In section 2.2, the CA will be properly defined and its
frameworks described in section 2.3. A major example comes in section 2.4 and, at last,

dynamical classification and applications are reported in section 2.5.

2.1 A brief historical note

The first CA model was idealized, during the 1940s, by the hungarian-american
mathematician John von Neumann. Driven by the self-reproduction ability of a biological
organism, he was interested in what kind of logical organization is sufficient for an au-
tomaton (an artificial device) to be able to reproduce itself[112]. As Christopher Langton
stated[59],

t Adapted from “Surely You're Joking, Mr. Feynman!”[37].
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“Von Neumann’s approach to the problem of self-reproduction was a classically
logico-mathematical one: If self-reproduction is being carried out by a (highly
complez) biochemical machine, then that machine’s behavior is describable as a

logical sequence of steps, i.e. as an algorithm.”

Thus, inspired by Alan Turing’s conception of a universal machine[108], von Neu-
mann proposed the universal constructor, a machine that could build any machine described
on its input and, moreover, it could make a copy of the input (the recipe) to be included
on its output. In other words, the input information is treated as instructions that must
be interpreted and executed in order to construct a machine, whereas that same input is
dealt as uninterpreted information, which will be copied (unmodified) and attached to the
output machine. von Neumann works were expanded and afterwards edited into a book

by his colleague Arthur Burks.

It was Stanislaw Ulam, mathematician and von Neumann’s collaborator, who
suggested that the automata should be defined on a discrete space, that is, they should
be sites in a regular lattice. Therefore, these sites would exchange information among
themselves, while lying on a discrete space and evolving in discrete time. So each automaton
was labelled with a state, i.e. a finite number or a color. Ulam is also known for the invention
of the Monte Carlo Method[35].

The universal constructor invented by von Neumann has exhibited a high level of
complexity, far beyond the capacity of any computer at that time, once it worked with a
29 states automaton and each cell had four neighbors — the nearest neighbors in a square
lattice. This number of states has drastically decreased to 8 states in the CA model created

by Edward Codd, in 1968[29]:

“A 8-state, 5-neighbor (the cell itself together with its four immediate, non-
diagonal neighbors) space was discovered which is capable of supporting not
only the computation and construction behavior sought by von Neumann, but
also certain reading and copying behaviors which probably cannot be exhibited

in his space.”

Codd’s model was reviewed and modified by Christopher Langton, in one of his first papers
on the subject[59]. Langton has implemented Codd’s CA, but he had chosen to put aside
Turing’s universality criteria in order to reduce complexity, and by doing so he noticed the
emergence of complex patterns like arrays of colonies of loops. So, by adapting the rules of
Codd’s CA, Langton’s loops became the simplest self-reproducing CA ever discovered. As
Langton wrote[59],
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“These loops (...) are sufficiently complex so as to be quite clearly self-reproductive,
yet, at the same time, they are sufficiently simple so as to constitute ‘believable’

extensions of simpler copying processes.”

In October 1970, the popular science writer and Scientific American columnist
Martin Gardner published in his ‘Mathematical Games’ column, the description of a game
created by the mathematician John Conway, a fantastic solitaire pastime he calls ‘Life’[41],
as Gardner stated. John Conway’s game of life (GoL) would become, and perhaps remains,
the best known CA model. Based in simple rules, the game can be played with a fairly
large checker-board and a plentiful supply of flat counters of two colors[41]. Made of 2-state
automaton, Conway’s game mimics life and death, but although it’s astonishing simplicity,
complex patterns can arise from it (details on section 2.4). Its proliferating cells resemble
skittering microorganisms viewed under a microscope, says Cownay’s biographer Siobhan
Roberts, in a recently released biography[86]. As she briefly wrote on the impact of the
GoL[85],

“Practically speaking, the game nudged cellular automata and agent-based
simulations into use in the complexity sciences, where they model the behavior
of everything from ants to traffic to clouds to galazies. Impractically speaking,
it became a cult classic for those keen on wasting time. The spectacle of Life
cells morphing on computer screens proved dangerously addictive for graduate
students in math, physics and computer science,(...) Life went viral in the

early-to-mid-1970s, one-quarter of all the world’s computers were playing”.

This 8-neighbor template, that was used in the Conway’s Gol., had been defined by Edward
F. Moore back in 1962, in a paper entitled ‘Machine Models of Self-Reproduction’[73].
Moore had a great interest in the study of finite automata, which is a more general concept
that encompasses the cellular automata, as shall be seen in section 2.2. His ‘Gedanken
Experiments on Sequential Machines’[91], published in 1956, is considered one of the
foundation stones of Automata Theory and early pioneer in what would be known as

artificial intelligence.

In the early 1980s, as a computer revolution was underway, the whiz kid and physicist
Stephen Wolfram, published an extensive work on the behavior of one dimensional CA[122].
Wolfram needs no introduction, his software Mathematica is widely used and already
plays a fundamental role in scientific research, once it is a reliable source to proceed with
complicated equations by solving them numerically, among other useful tools. Mathematica
has guaranteed its creator his way out of what he considers the bureaucratic tangles of

modern science[100]. On Wolfram’s research with the elementary CA, he had proposed a
bold aim[122]:
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“The ultimate goal is to abstract from a study of cellular automata general
features of ‘self-organizing’ behavior and perhaps to devise universal laws

analogous to the laws of thermodynamics.”

His accomplishment was classifying the behavior of the elementary CA in four different
classes, and furthermore three of these classes had a parallel with dynamical systems[121,
123]. The outlier was the so called class IV. In this meantime, Chris Langton had created
his CA and had just achieved a position as Ph.D. student under the supervision of Arthur
Burks. Upon being aware of Wolfram’s work on classification of elementary CA, Langton
decided to get to grips with problem and succeeded by discovering that class IV had
resemblances to second-order phase transitions[58, 63, 113]. The connection between the

CA classes and dynamical systems shall be detailed forth in section 2.5.

Back to 1953, the Nature magazine published three remarkable papers on de-
oxyribonucleic acid (DNA)[115, 118, 114], where one can read how the authors have put
forward a radical different structure. Due to these papers, molecular biologists Francis
Crick, James Watson and physicist Maurice Wilkins were awarded with the 1962’s Nobel
Prize in Physiology or Medicine for their discoveries concerning the molecular structure of
nucleic acids and its significance for information transfer in living material[15]. Quoting

Watson and Crick’s articles,

“It has not escaped out notice that the specific pairing we have postulated im-
mediately suggests a possible copying mechanism for the genetic material.”[115]
“(...) our proposed structure for desoxyribonucleic acid may help to solve one
of the fundamental biological problems — the molecular basis of the template

needed for genetic replication.”[114]

The interpreted and uninterpreted informations have a clear parallel with the
molecular translation and transcription that takes place inside the cell. As author Mitchell
Waldrop wrote[113],

“They (Watson and Crick) discovered that it (DNA) fulfilled von Neumann’s
two requirements precisely. As a genetic program, DNA encodes the instructions
for making all the enzymes and structural proteins that the cell needs to function.
And as a repository of genetic data, the DNA double heliz unwinds and makes

a copy of itself every time the cell divides in two.”

Today it comes as no surprise that a biological organism has within itself a code
capable of replicate itself and, besides that, passes on some of its features to its offspring.
These biological processes involve some algorithms, as von Neumann has conceived a

decade earlier the discovery of the DNA structure.
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2.2 Definition

Automata theory, a branch of theory of computation, is concerned with the mathe-
matical models of computation, its definitions and its properties. A finite automaton, also
known as finite state machine, is the simplest model of computation, being capable of
perform tasks even when memory is extremely limited. This abstract machine is composed
of a finite set of states (), an alphabet X, a transition function, § : ) x X — (@, a start
state, gy € @ and a set of final states, F' C () . Coarsely speaking, the transition function
receives the start state along with the alphabet, these inputs are processed and, as result,
it returns a final state. Consider this example adapted from Michael Sipser’s book on

theory of computation[94]:

The finite automaton M; is made of @ = {q1, ¢2, g3} states, the alphabet 3 = {0, 1},
transitions for input alphabet letter {0} is ¢ — ¢1, ¢2 — ¢3, g3 — ¢2 and for alphabet
letter {1}, ¢1 — @2, g2 = @2, g3 — @2, the start state is g = ¢; and the final state set,
F = {¢}. For the machine M; is used the simplest output, Yes/No, i.e. a binary output.

0 1

e | . | e

0,1

Figure 2.2.1 — Scheme of the finite automaton M; while it is processing the input string
1101. From Michael Sipser’s Introduction to the Theory of Computation[94],

section 1.1.

If the machine M receives an input string 1101, it will processed like:
. Start in state ¢ = ¢;.

. Read 1, proceed with transition ¢ — ¢s.

. Read 1, proceed with transition ¢ — ¢5.

. Read 0, proceed with transition ¢ — ¢3.

. Read 1, proceed with transition g3 — ¢o.

S Ot = W N =

. Output "Yes’, because M is in a final state, ¢. m

This kind of machine resembles a Markov chain, which in fact is the probabilistic
counterpart of a finite automaton. For its simplicity and low memory cost, applications of
finite automata are widely spread and they are specially useful in programming the logic

port of electromechanical devices, for example, automatic doors.

A cellular automata can be described as a set of finite automata defined on the cells
of a D-dimensional lattice. Each automaton takes as input its own state and the states of

its nearest automata within a previously defined neighborhood. A neighborhood template
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I" has dimension Dr < D and its size N is given by the number of sites covered by I'. The
transition rule is a function of the automaton input, so its output is based on the neighbors’
states. At each time step ¢, the transition rule puts together the state of the main site
and the states of its neighbors, then it sets the new state of the automaton, which will be
labelled in the next step, t 4+ 1. The transition rule is determined before the process begins
and for each input configuration it releases a new state to the main site. As a matter of
fact, the transition rule is a set of transition rules, once there is a rule for exchanging state
on each local setup. After the transition rule has assessed all configurations, the automata
shall evolve to their new states. The state changing is synchronous, that is, all automata

have their states updated at the same time step. Consider the following example[58]:

Suppose that a cellular automata is defined on a square lattice, with four nearest
neighbors, N' = 4, and each cell has eight possible states, A = 8. The set of possible
neighborhood states ¥ is given by the number of states to the power of the number of
neighbors plus one, that is [X| = AN+D = 8(4+1) — 32 768 states. For each of these, there
is a choice of eight new states for each main cell, so there are Al®l = 887 = 32,768 ~ 1(30.000

possible transitions, an outstandingly large number to be taken into account. g

After this example, it is relevant to observe that the set of possible states within a
neighborhood plays a similar role that the alphabet does in the finite automaton model.
Indeed, a transition rule can be written in the form of a transition function, i.e., the
transition function ¢ : Q x ¥ — @ turns to be a transition rule o : AV — A. The
transition rule, in addition to its local feature, is spatially homogeneous, which means that
it does not depend explicitly on the cell position, although in particular cases the rule can

be adapted to deal with, and even create, spatial inhomogeneities.

After the transition rule has received its input, it can return different outputs,
giving the model another feature and so a CA model can be classified as deterministic
or probabilistic. The deterministic CA has a new state settled for each possible local
configuration. For example, assume that the cell states may be either 0, 1, 2 or 3. If the
sum of the neighbors’ states is even, the new state is 2, otherwise the new state is 1. On
the other hand, in a probabilistic CA the transition to a new state takes place with a
certain probability, that is, it is not completely determined by the input configuration.
Taking the previous example to the probabilistic model, we have that if the sum of the
neighbors’ states is even, there is a probability p of having 2 as new state and a probability

(1 — p) of getting state 3, otherwise, if it is an odd number, the new state is 1.

2.3 Geometry, neighborhood and boundaries

In CA models, geometry is an extremely relevant aspect as a different number of

neighbors or changes in the boundaries can perform drastic responses in the dynamics, i.e.,
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it can lead systems with equal initial settings and the same transition rules to completely
unmatching configurations. As mentioned previously, cellular automata are defined on a
regular lattice. In a 2-dimensional space, the only regular geometries that form a regular
tessellation are triangular, rectangular (square) and hexagonal[16]. The triangular and
hexagonal lattice exhibit a planar duality, i.e., the triangular (hexagonal) lattice is the
planar dual of the hexagonal (triangular) lattice. The square lattice, on the other hand,
is said to be self-dual[47]. The minimum number of neighbors that a site may have are
the nearest neighbors (see Figure 2.3.1). A triangular lattice displays 3 nearest neighbors,

whereas the square lattice has 4 and hexagonal lattice, 6.

Figure 2.3.1 — Regular tessellation of the plane: triangular lattice (dark blue), square lattice
(dark red) and hexagonal lattice (dark green).

Several types of neighborhoods can be defined in the square lattice[70], but the
most popular are due to John von Neumann[112] and Edward F. Moore[73]. In both
neighborhood schemes it is defined a range r (€ Z : r > 0), which sets how far the
interaction goes. The templates for r = {1, 2,3} are shown in Figure 2.3.2 and Figure 2.3.3.
The main site in the von Neumann neighborhood, ' has 2r(r + 1) neighbors, while
in the Moore neighborhood, T has (2r 4+ 1)? — 1 neighbors. These neighborhoods are
defined in Equation 2.1 and Equation 2.2, where zy and g, stand for the coordinates of the
main site[117, 116]. Throughout this work, it will be referred to the Moore neighborhood
of range r = 1 simply as Moore neighborhood, when otherwise it shall be indicated. It also
applies for the von Neumann neighborhood of range » = 1, which will be simply called

von Neumann neighborhood.

vIN
FE$07]Z/0) = {($7y) : |l‘ - J}0| + |y - yOl < T} (2.1)
F[MO] — . _ < B < 59
(zo,90) — {(x’y) : ’33 xO’ =T, ’y yOl S 7’} ( . )

At this point, a question that naturally arises is with whom the last column will
interact to the right and who will be the neighbors of the top line from above? Otherwise,

with whom the bottom line shall interact from below and who are the neighbors to the left
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Figure 2.3.2 — von Neumann neighborhood for r = {1, 2, 3}. Range r = 1 spans 4 neighbors,
while r = 2, 12 neighbors and r = 3, 24 neighbors. Main cell (red), neighbors
(black) and cells that do not interact with the main cell (grey).

Figure 2.3.3 — Moore neighborhood for r = {1,2,3}. Range r = 1 spans 8 neighbors, while
r = 2, 24 neighbors and r = 3, 48 neighbors. Main cell (red), neighbors
(black) and cells that do not interact with the main cell (grey).

of the first column sites? These are the last, but not least, fundamental attribute when
defining a grid. For a lattice of size L?, with grid indexes L,, L,VeZ:1<1L; <L),
the trivial answer, is about building a boundary around the whole lattice, so that the
lattice earns two more indexes, 0 and L 4 1. Then cells with fixed state are placed on
this new external layer, known as fixed boundary. Computationally, the problem is solved,
but for most simulations of physical systems, that is a bad choice. Most simulations
of many-particle systems require as many particles and space as possible, chasing the
thermodynamic limit, where N — oo and V' — oo, such that N/V = const [106]. When
the cells of the boundary layer are labelled with fixed states, these walls become damping
points for the whole dynamics, which makes them an undesirable constraint. Another
solution for the boundaries sites, is to turn them into a mirror for their neighbors, the
so called reflexive boundary. For confined particles or systems like billiards this may be
friendly solution, but not for short-range interactions models like CA models, where it

reduces the damping but does not help on reaching the thermodynamic limit.

In order to solve the ‘damping walls’ problem and get a better approach to the
thermodynamic limit, the CA can be defined on a torus, i.e., the lattice is a grid embedded

in a torus (see Figure 2.3.5). Which means that if a particle is released in this geometry



Chapter 2. Cellular automata 27

1000000000
00000000

19000000000 0 000000000

7000000000 000000000
b o0 o0
oo o0 o0 .O
o0 00 o0 o0
e .. o0 ..
o0 o0 o0 o0
o0 .. o0 .l.
L4 o0 o0 o0
o0 .. o0 o0
0000000000 0 000000000

00000000 00000000

Figure 2.3.4 — Reflexive boundaries (top) and periodic (toroidal) boundaries (bottom)
for von Neumann neighborhood (left) and Moore neighood (right), both
with range » = 1. The dashed line surrounds the defined sites and grey
dots represent the core cells — which neighbors are defined straightforward.
Identical lines and columns have matching colors (red, light green, light blue,
black), likewise for corner dots (brown, yellow, pink, dark blue).
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Figure 2.3.5 — Two tori, with the same size, covered with a rectangular grid.

(with finite momentum), it may hover around forever because of the absence of absorbing
walls to get it moored. A grid defined over a torus is indeed a regular lattice with periodic
boundaries, that is, both L, and L, are periodic coordinates. This procedure makes the
dynamics more realistic, once the particles can drift freely over the torus surface, and
besides that, it is a computational trick aiming to get closer to the thermodynamic limit.

Figure 2.3.4 shows diagrammatic frames of both reflexive and periodic boundaries.

2.4 Conway's game of life

Enough have already been said about GoL since its publication in Gardner’s column.
All sorts of configuration have been tested, structures (animals) have been cataloged,
applications have been proposed and theorems have been proved. There is a massive
quantity of articles and textbooks, online videos and even online interactive software[111].
Still, the GoL continues to be a stunning example of how the simple rules of a CA can gear
together in order to create such outstanding and unpredictable patterns. In this section,
GoL rules will be built from approximations depicting elementary aspects ascribed to a
population of living beings and afterwards try to have a glimpse of how this population

behaves through time.

So, how to start building a model of life? As any scientific model, it shall begin as
simple as possible, one should say the ‘zeroth-order’ approximation. Then enters death,
which is the very antagonist of life, representing either ‘non-born’ or the ‘after-live’, that is
all non-living entities, the void. A sort of binary model of life is already built. The second
step could be related to the collective aspect of living, the first-order approximation. It is
where the CA model plays his role, many living beings each one having a fixed address,
thus it has became a binary life CA model. But nobody lives alone, hence couples (or
groups) of beings may give birth to an offspring, thus the second-order approximation. So
far, nothing was said about dying, only life has been regarded. As equilibrium is needed,
neither a being can live a lonely life nor it can live on in a crowded environment, which
is, at last, the third-order approximation of this life model. These simple approximations

may be defied by a skeptic, but up until the moment that he puts an eye on the screen
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and get dazzled by a swarm of blinking points.

The assumptions made for an ‘approximated’ model of life are similar to Conway’s
game rules. As already said, GoL is a CA defined on a square lattice, with Moore
neighborhood and with periodic boundaries. The rules are the following;:

e Birth rule: At time step t, if a dead cell has 3 live neighbors, then at time step ¢ + 1
the cell becomes alive.

e Survival rule: At time step t, if a live cell has 2 or 3 live neighbors, then at time
step t 4+ 1 the cell remains alive.

e Death rules:

> At time step t, if a live cell has at most 1 live neighbors, then at time step t + 1 it
dies due to isolation.

> At time step t, if a live cell has at least 4 neighbors, the at time step ¢t + 1 it dies

due to overcrowding.

In order to understand some of its features, the model will be assembled in a square
lattice with linear size L = 100 and with a random initial configuration, that is, the live
cells are spread randomly over the lattice, and then the game is ready to be tested. The
initial density py is the only parameter to be controlled, all others are due to intrinsic
movements of the game. The live population density p varies in time, p = p(t). By the
way, discrete time in the language of the GolL is not accounted in steps, but in generations,
t = t4, to clearly remind the birth of a new offspring. The density p(t,) is the normalized
number of live cells, i.e., the number of live cells N at generation t,, N(t,), divided by the
total number of cells, which is just the number of sites displayed on the lattice, L2. So,
pltg) = N(ty)/L?.

Figure 2.4.1 displays frames of a game that has started with pg = 0.5, which can
give an idea of the evolution of the community through some generations. The zeroth
generation, t, = 0, is composed of randomly chosen live cells, as already said, and are
represented by dark red dots. The red dots stand for ‘newborn’ cells, that is, live cells
that were dead cells in the previous generation. The black dots are the ‘mature’ cells,
which were alive in the previous generation. This color setting makes easier to segregate
static clusters of cells from the oscillators, i.e. stationary, but dynamic. Just in the first
iteration, the density quickly decreases. The generation ¢, = 100 has an even lower density,
around one percent, but it is possible to recognize many ‘life-forms’, like blinkers, blocks,
(long) boats, beehives, two loaves and one pond. Generation t, = 500 even shows one
longbarge and one toad. In generation ¢, = 1,000 , although low, reactivity remains, but it
ceases completely before generation ¢, = 2,000. At the end, ¢, = 10,000 , the screen shows
a very sparse configuration, with static clusters and simple oscillators (blinkers). Now,
what would happen if the game had been started with a different py? Does any random

initial configurations fade away or there is some that escalates? Some answers are given in



Chapter 2. Cellular automata 30

S ® S ®
. .
8 A
X X

Figure 2.4.1 — Random configuration with py = 0.5 (top left). First generation, t, = 1
(top right). Generations t, = 100 (middle left), t, = 500 (middle right),
t, = 1,000 (bottom left). Last generation, t, = 10,000 (bottom right).
Random live cells (dark red), ‘mature’ live cells (black), ‘newborn’ live cells

(red). Dead cells are left white colored.



Chapter 2. Cellular automata 31

Figure 2.4.2.

Several rounds of the game have been played for each py = {0.05,0.1,0.2,0.3,0.4,0.5,
0.6,0.7 }, but only one was picked to compose Figure 2.4.2. Clearly, for any initial popula-
tion, the system never escalates, that it, none of the theses random configurations evolve
to an unbounded growth. Indeed, it had been predicted in the very conception of the game
that there should be no initial pattern for which there is simple proof that the population
can grow without limit[41]. For the trials made here, all population fades away, becoming

too sparse and with a remnant density near three percent, except for pg = 0.05 that goes

lower.

0.7 pD: 0.7 —
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Figure 2.4.2 — Mono-log graph of the GoL population density p(t,) as function of time ¢,
in generation units.

As it seems, the curves in Figure 2.4.2 have four different phases. In the very
beginning, the density either slightly increases (py = {0.2,0.3}), slightly decreases (po =
{0.05,0.1,0.4}) both due to the randomness or dramatically decreases (py = {0.5,0.6,0.7}),
due to overcrowding — rounds with py = {0.8,0.9} also were done, although not displayed
in Figure 2.4.2 because their curves show an even steeper behavior than py = 0.7. The
second phase shows an exponential decaying, followed by a fluctuation around a stationary
density, which characterizes the self-sustained third phase. At last, all ongoing activity
ceases suddenly — but oscillators, e.g., blinkers — and the density curve becomes flat,
reaching an absorbing state with final population density constant, pr = const. These
phases are consistent with the asymptotic behaviors pg = 0 and py = 1, where no offspring

is born and the whole colony collapses in the first generation, respectively.

As seen so far, the long-term behavior of the game is not so interesting, once it

does not remain self-sustained but it fades into an absorbing state instead. It is true that
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GoL has special patterns that keep the dynamics going on indefinitely, but not from a
random population. Although the time scale in a CA model can be defined depending on
its propose, the long-term behavior is relevant when modelling real life, since for humans
a generation is defined around 20 years, instead for a colony of ants is 1 day and for
some bacteria, even less. It is important to notice that the game has been played with
L? = 10* cells, which may not be large enough whenever one is concerned with long-term
behavior. So, if the lattice size is increased, it is possible to get longer times of self-sustained
behavior than the ones found here. Indeed, in a trial made with py = 0.5 and population
L? = 10° cells, at generation t, = 10,000 the game still self-sustained, but fades away few

generations later®.

Despite the small lattice size (L? = 10* cells), this qualitative analysis reveals
the emergence of an absorbing state when GolL is initialized from a random distribution
of live cells. Other relevant dynamical aspects of Gol. were investigated by Gomes et
al.[44], among which is reported that before the self-sustained phase, the density of live
cells evolves as p & ¢, 039094 This power-law behavior was found for some po values (10
experiments each) within the interval 0.15 < pg < 0.75, on a lattice of linear size L = 300 —

approximately tenfold larger than the lattice considered in the current example.

(a) (b) ()

Figure 2.4.3 — Frames of modified GoL. randomly initialized with py = 0.5, at generation
ty = 1,000. ‘Mature’ live cells (black), ‘newborn’ live cells (red). Dead cell
are left white colored.

Any minimal changing in the rules of a GoL leads to utterly distinct patterns
(Figure 2.4.3). For example, if one changes the birth rules to include that dead cell with
one or two live neighbors can be alive in the next generation, it arises a dense, quickly
blinking, wave-like pattern (Figure 2.4.3a). Whether the survival rules are changed in
order to include that a live cell with four live neighbors still alive in the next generation, it

creates a static structure that resembles a maze (Figure 2.4.3b). At last, if one gets these

*

“Monte Carlo simulation suggests that a disordered state of N2 cells usually evolves to a ste;cxdy state
within about N? time steps (and typically an order of magnitude quicker); very few of the 2" possible
configurations are visited.”[122]
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two modified rules and gear them together, it results in a maze where all of the walls all

continually change[71] (Figure 2.4.3c).

The road so far may lead to some questions like, does any physical system behave
like a GoLL?” How does it manage a self-sustained phase? Why a slightly change in the
game’s rules can provide unpredictable responses? Could any GoL configuration evolve to

chaotic phase? These inquiries might be answered in the following section.

2.5 Classification and applications

2.5.1 Wolfram'’s classification and Langton’s parameter

During the 1980s, Stephen Wolfram was chasing the idea of figuring out general laws
that could explain the self-organization capacity found in some systems. Self-organization
is a property that enables the system to organize itself, that is, a disordered system can
evolve to an ordered structure without external interference, there is no tuning parameter.
As previously mentioned (section 2.1), Wolfram developed an extensive empirical investi-
gation on a simple model of CA, that he called elementary cellular automaton[122] (see
Figure 2.5.1). An elementary CA is made up of an one-dimensional array of cells with @
states and n = (2r + 1) neighborhood (including the main cell), where r (€ Z : r > 0) is

the number of neighbors at each side of the main cell.

ol 11 Jel Jol | e | | el | 1o le o el |

Figure 2.5.1 — Example of an elementary cellular automaton. It is composed by empty
cells go = 0 (white dots) and occupied cells ¢; = 1 (black dots).

The simplest possible configuration has 2-state cells, @ = {0, 1}, and range r = 1,
which leaves each main cell with 2 neighbors. Wolfram analysed several data containing
variations of the transition rules, other array sizes, different neighborhoods and even with
3-state cells. Afterwards, he noticed that the outcome patterns had distinct qualitative
types, either they disappear with time, evolve to a fixed finite size, expand indefinitely
but at a fixed speed or expand and contract irregularly. Thus, Wolfram proposed that
the patterns could be classified in four distinct classes, three of them having a dynamical
system counterpart[121, 123]. The classes are:

e Class I. The CA evolves to a spatially homogeneous state. The dynamical system
evolves to ‘limit points’, also called stable fixed points.

e Class II. The CA evolves to simple stable or periodic structures. The dynamical
system evolves to ‘limit cycles’ .

e Class III. The CA yields aperiodic patterns. The dynamical system is chaotic.
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e Class IV. The CA yields complicated localized structures, including propagating

structures. There is no dynamical system counterpart.

In the Class I patterns, all sites evolve to the same state, like simple ‘limit points’
The spatial and temporal dimensions for such attractors are zero. For Class II structures,
changes in its initial configuration modifies them only locally. Theses CA are either stable
or periodic, with short period cycles. The Class III structures are highly irregular, but

some of them can exhibit self-similar patterns which are scale invariant.

Class IV contains stable and periodic structures, apparently self-sustained once
they can persist for an arbitrary long time, and some propagating structures. But despite
that the behavior of the systems in this class is essentially unpredictable. As the array of
cells is enlarged, the transient fluctuations is decreased, in classes I and II, i.e., it reduces
fluctuations that take place before the stationary structures are settled. This does not
happen in class IV, that is, the enlargement of the array does not reduce the reactivity of

the structures.

A self-sustained activity was not a novelty in dynamical systems, its classic pro-
totype is the van der Pol oscillator, that has been studied since the decade of 1920[98].
Neither was a surprise the self-organizing collective behavior leading to a stable, time
independent patterns. The great question mark laid on the fact that this self-organization
process had this dynamical, seemingly self-sustained attributes. The GoL has some mem-
bers on this class, which the most prominent are the glider and the glider gun. The glider
is a self-propelling structure that hovers around the lattice until it crashes in some other
structure — it is the simplest among all GoL. ‘spaceships’ (see Figure 2.5.2). The glider
gun, on the other hand, is a glider factory, i.e., it is a larger structure in which cells are

placed in a very special way that enables it to assemble a glider and shoot it into the lattice.

orenn HeunH HoenH Hoonn Q000N
| JOL JHIN OLeeL] oen] @ 1@[] OLHel]
[ 1e®LI[] 1 O@®[[] 1 90®[ ] [ O@®[] [100O®[]
HHOHn DOOdn Hnnn eI Nee[]
HHOHn DOOdn N OO HHOHn

Figure 2.5.2 — The glider is the simplest self-propelling structure found in GoL. The
snapshots show its complete periodic movement step by step — from left to
right. ‘Mature’ live cells (black filled circles), ‘newborn’ live cells (red filled
circles). Dead cells that were alive in the previous step (white filled circles);
dead cells that become alive in the next step (void red squares); dead cells
that remain dead in the next (or previous) step (void black square).

In the search for answers to the absence of physical analogy for class IV, Langton

proposed a parameter A to be used as tuning parameter[60]. Langton tested his parameter
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in the framework he knew very well,a bi-dimensional CA with von Neumann neighborhood
and 8-state cells, Q = {¢; € Z : 0 < ¢; < 7}, where the only quiescent state is given by zero,
go = 0. The parameter can be smoothly tuned from zero to one, 0 < A < 1, and represents
the probability for, in the next step, the main cell receives any non-zero state. Somehow,
the \ parameter measures how much activity a transition will provide within its outputs,
i.e., for lambda close to zero, there is only some sparse and rare reactivity structures in

the lattice, otherwise if lambda is near one, the lattice is full of highly reactive cells.

Now Langton had a knob with which he could control the amount of activity
that would be yielded at each trial. He then figured out that the class IV seemed to be
misplaced, once it was an intermediate phase between ordered (class [,II) and disordered
phases (class III). This complex behavior was not something beyond chaos, but in between
order and chaos, at the edge of chaos[58, 63].

ORDER — COMPLEXITY — CHAOS

Later on, Langton has conceived a complexity scale as a transition from order to
chaos. This transition behaved like a second order phase-transition with order parameter
A. With the A parameter tuning the degree of complexity, low values of A produce ordered
low complexity, but as its values increase, complexity rises. At some point, the A values
keep increasing, but the complexity starts to decrease, indicating that A has passed by
its critical threshold and entered the disordered low complexity region. This threshold
is given by A, ~ 0.27[124]. The ordered regime is so sparse that it forbids the existence
of propagating structures, like gliders which are information carriers. In the other hand,
during the disordered regime the information spreads so fast that its content gets lost in
a noisy sea of blinking cells. Class IV became the perfect environment for research on
artificial intelligence and related subjects, like the GoLi class IV structures capacity of
proceeding with universal computation. As an example, the glider is a information carrier
and besides that it is a real life-form idealization, since it is self-propelled but conserves
its structure. All these ideas converged to inquire on the complexity of life itself, giving
birth to the expression ‘life as a complex system’, by the fact that life neither can emerge

from a too static background, nor from a too noisy one.

Maybe at this point, it is clear that CA models have opened a gateway to a realm
beyond differential equations. In fact, CA models can simulate models based in ordinary
differential equations (non-linear or chaotic) and based in partial differential equations.
The hidden realm of Wolfram’s class IV has been explored since the early 80s and is the

source of the whole new science of complex systems.
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2.5.2 Some applications

One of the first connections between CA models and differential equations was
presented by Toffoli[104], who argued that CA could become an alternative for modelling
physical systems. Since then, CA model have been used in almost all sorts of systems,
providing relevant results in physics, chemistry, biology, ecology and geology. Some examples
in physics are the Ising model, random walkers simulations and the lattice gas cellular
automata (LGCA), which was first proposed in 1986 by Frisch et al.[39] for modelling the
Navier-Stokes equation. Despite the fact that CA cells are not allowed to move through
the lattice, LGCA emulates the particle movements by interchanging their states (e.g.,
occupied «+» empty). Hence, each cell state is defined as an array of six elements, one for
each degree of freedom in the phase space — three due to position vector, ?, and three
others due to momentum vector, 7. In the LGCA framework, conservation laws and

particle interactions are incorporated in the CA transition rules.

As for biological models, CA can be applied in problems usually formulated in the
scope of differential equation, like epidemic models (SIS and SIRS models) and neuronal
networks, as well as in systems that differential equations seem to be an inappropriate
approach, like in the dynamics of HIV infection[128].As example of geological problems
that have been investigated with CA models are shoreline erosion[89] and river delta

formation[90].

The Belousov-Zhabotinsky reaction[120] is among many chemical reactions that
can oscillate spontaneously and a good example of how non-linear equations can be
modelled by a CA model. This reaction shows a self-organizing pattern through continuous
formation of spiral waves. Moreover, it is easily found in dynamical systems textbooks,
once it performs a Hopf bifurcation[98, 72]. As chapter closure, a simplified CA model of

the Belousov-Zhabotinsky reaction[110] is presented below:

Suppose an autocatalyzed reaction, A+ B — 2A, where the reaction of the element
A is catalyzed by B until the concentration of B vanishes. Adding an element C' that
catalyzes the reaction B, and furthermore, reaction C' is catalyzed by A, it results in three
coupled equations,
dlA] _
A+ B — 24 d X =X (Y —v2)
d|B .
B+C—2B = Eit] _BIBIC] - a[A[B] =V =Y(BZ-aX)  (23)
C+A—20 d[C] Z =7Z(yX —BY),

dt

=[A][C] = B[B][C]

where XY, Z stand for the concentration of element A, B, C, respectively, and «, (3, «y

are constants related to each reaction rate. Considering the approximation of the Euler’s
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method for solving ordinary differential equations:

X = f(X) X1 = X, + f(X,) At
Z=f(2) Znir = Zn + f(Z,) At

Then, applying the approximations in Equation 2.4 to Equation 2.3, it becomes

X =X(aY —72) X1 = X, + [Xn(aY, — vZ,)]At
Y =Y(BZ—-aX) =Y. =Y,+[Y.(BZ,—aX,)]|At (2.5)
Z =Z(vX — BY) Tni1 = Zn + [Zn(v X, — BY,)]AL.

It has been used the dynamical system approach so far, but now the equations shall be re-
vised in order to fit on the CA approach. Consider a square lattice, with Moore neighborhood
and periodic boundary conditions. The cell state will be given by a triple, where each coor-
dinate stands for the concentration of one chemical element, s = ([A], [B], [C]) = (a, b, ¢).
The Euler’s approach still useful, but the terms X,At, Y,,At and Z,,At shall be replaced
by a; (Ls, Ly), by (Ly, Ly) and ¢; (L,, Ly), respectively, which represent a kind of resultant
concentration of each element at each cell (L,, L, ). At time step ¢, the transition rule sums
over the main cell and its 8 neighbors concentrations and then normalizes it, dividing by
9. The resulting number will be the mean concentration s;;; of each element at the main

cell at time step ¢ + 1. Therefore,

X1 = X + f(X) AL api1 = ag + ag(aby — yey)
Yo=Y, + f(Yn)At = (b1 = by + bt(ﬁct - Olat) (2‘6>
Zypir = Zn+ f(Z,)At Cip1 = ¢ + cr(yay — Bby) .

As default, neither a chemical concentration can be negative, nor it can exceed
1, in these cases, the element concentration is set as zero or as one, respectively. The
simulation is initialized in a random lattice (see top left frame at Figure 2.5.3), that is,
random values (from 0 to 1) of concentration are placed for each element at each cell. The
emergence of Belousov-Zhabotinsky spiral patterns can be seen after time step t = 200
(see Figure 2.5.3). m
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Figure 2.5.3 — Belousov-Zhabotinsky reaction simplified CA model, with linear lattice
size L = 500. Frames of the chemical concentration of element A. Control
parameters: « = 1.1, f = 0.9 and v = 1. Concentration reference colors:
a; = 0 (red), a; = 0.1 (white), a; = 1 (black). Step t = 0 (top left), step
t = 30 (top right), step t = 100 (middle left), step t = 200 (middle right),
step t = 500 (bottom left), step t = 0 (bottom right).
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Chapter 3

Topics in physics of complex systems

“Living systems are never in equilibrium.

... Bverything is moving and changing.

In a sense, everything is on the edge of collapse.”
Michael Crichton'

In common language, ‘complex’ usually means something that is hard to explain
or to understand, something that can not be precisely depicted or even something that
displays a completely unpredictable behavior. As Murray Gell-Mann clarifies[42], one has
to distinguish between effective complexity and logical depth. For example, to understand
quantum mechanics one needs a good deal of logical depth and very little effective complexity.
Although the understanding of quantum mechanics is quite a challenge, its basic laws are
well defined. On the other hand, a neuronal network, for example, is a biological system
whose behavior is based on the laws of electrochemical reactions, but also influenced
by the outcomes of an inconceivably long sequence of probabilistic events. Through this
perspective, the system is so called ‘complex’, in the sense that a great many independent

agents are interacting with each other in a great many ways|[113].

‘Complexity’ or ‘complex systems’ are found in the most assorted fields of knowledge,
from astronomy to economics to linguistics, and also in natural systems like magnets,
neurons or rainforests[28]. As many of these systems display (well-defined) macroscopic
phases[95], the science of complexity has borrowed several tools from physics, specially
from statistical mechanics — later incorporated to the framework of complex systems.
Regardless of how miscellaneous these systems can be, they display many similarities: as a
dynamical system, they evolve in time; they exchange information with the environment;
they are also comprised of several units (many degrees of freedom), for whom interaction
is locally defined among themselves. The system response to any changes is non-linear and

some systems can be adaptive, meaning that they are capable of modulate their properties

T From “Jurassic Park: A Novel”[31].
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in order to settle down in a new arrangement after a perturbative input. Others can also
show an emergent order, that is, the system’s elements has the ability to self-organize.
Complex systems have regions of metastability, in which any tiny perturbation is capable
of pushing the system to another macroscopic state. Another remarkable feature is that
some of the system’s observables does not exhibit any characteristic scale, i.e., the system
observables can be measured at several different scales (known as scale invariants), which
decreases (or even vanishes) the predictability of the system behavior in terms of these
observables. This chapter aims to introduce some basic concepts and tools of physics of

complex systems that shall be used henceforth.

3.1 Phase transitions in equilibrium thermodynamics

One of the features that characterizes a system at thermodynamic equilibrium
is that the temperature is spatially uniform throughout the whole system. Irreversible
processes, such as heat conduction and chemical reactions, drive the system towards a state
of equilibrium. Due to heat exchange, substances (e.g., water) can change its microscopic
structure, which gives rise to distinct macroscopic states such as gas, liquid or solid — called
phases of a substance. At the threshold between vapor and liquid and between liquid and
solid — called boiling point and melting point, respectively —, the heat supplied to the
system (or withdrawn from it) does not increase (decrease) its temperature, instead it
only has the effect of converting a fraction of the substance from one phase to another,
which is called latent heat. At specific conditions, a substance may display two (or even
more) phases coexisting in a state of thermal equilibrium, furthermore at the point where

the transition happens, some thermodynamics quantities change discontinuously.

Consider an heterogeneous system of a pure substance in which liquid and gas
phases of this substance coexist, that means that liquid converts into vapor and vapor is
converted into liquid (both irreversibly) and thus changing the volume of each phase. This

occurs until the equilibrium between the two phases is achieved, then

liquid = vapor . (3.1)

At equilibrium, every irreversible process must vanish, implying that any entropy S
production shall cease. As the process becomes reversible, the chemical potentials of both
phases turn to be equal. Using Gibbs-Duhem relation, Clapeyron equation (Equation 3.4)

can be derived[56] as shown below,

,uliquid(Pa T) = ,ugas(Pa T)
SdT'—VdP + Ndu =0

(3.2)
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—(8/N)dT + (V/N),dP = —(S/N), dT + (V/N), dP

dP s —s (3.3)
—SldT+UldP = —Sng+UgdP = ﬁ = r[vz
dP,.,  Ahy,
= 4
dT TAUlg (3 )

where hy, = T'(s; — s,) is the enthalpy of the liquid-gas transition, 7" is the temperature
at which the transition takes place and P,,, stands for the pressure of vaporization. The
right hand side of Equation 3.4 gives the slope of the liquid-gas coexistence curve in a P-T
phase diagram|21]. The Clapeyron equation also holds true for solid-liquid and gas-solid

phase transitions.

When a solid-liquid, solid-gas or liquid-gas transitions occurs, it is due to a dis-
continuous change in the entropy S(7") and, whereas the chemical potentials change
continuously, its derivatives are discontinuous though. At the transition temperature, the
heat absorbed by the system AQ does not change its temperature, i.e. AT = 0, it is
transferred as latent heat instead. Since the heat capacity depends on the variation of
the temperature, Cy(T) = AQ/AT, as AT — 0, the heat capacity diverges, which is a
typical signature of a phase transition. Systems that display a discontinuity at certain
first order derivatives of the thermodynamic potentials are classified as going through
a first order phase transition. On the other hand, some transitions exhibit changes on
the thermodynamic quantities, such as variations in entropy and volume, that are not so
drastic and are actually continuous, but their derivatives are discontinuous, the so called
second order phases transitions. In other words, for second order phase transitions the
first derivative of a thermodynamic potential varies continuously, but its second derivative
does not. In such transitions, it is observed the existence of large fluctuations around the

first derivative of a potential and these fluctuations have no characteristic size.

In 1873, Johannes van der Waals presented a model of a real gas in his doctoral
thesis[56]. The van der Waals gas predictions about the liquid-gas transition are qualita-
tively correct, although quantitatively it does not yield an agreement with experiments. As
he realized, there are two relevant factors that are not comprised by the ideal gas equation
of state, which are the effect of the molecular volume and an effect due to intermolecular
forces. A gas cannot be compressed to an arbitrary small volume, since its molecules have
a finite volume, then the term of volume in the ideal gas should be replaced by V — bV,
V — V — bN. He has also noted that pressure decreased as result of certain attractive
intermolecular forces. Because of such attraction between molecules, less molecules hit the
container’s wall and, moreover, the momentum of a molecule before the collision to the
wall is reduced by the attraction due to other molecules behind it. Hence, van der Waals

proposed that the pressure should also be corrected by summing a factor of a(N/V)?, then



Chapter 3. Topics in physics of complexr systems 42

P — P+ a(N/V)2% The Equation 3.5 shows the ideal gas equation of state corrected by
van der Waals model, where a and b are constants. The terms of van der Waals equation

of state can be rearranged as in Equation 3.6.

N2
PV = NkgT — (P + av2> (V = bN) = NkgT (3.5)
NksT — aN?
P=v—n (36)

The isotherms of the van der Waals gas can be seen in Figure 3.1.1. The curve at
T =T, is known as critical isotherm. Isotherms that resemble those of an ideal gas are
above the critical isotherm, their temperatures are above the critical temperature. Curves
of temperatures below T, possess a region where P and V increase simultaneously, which
is an unphysical behavior. These isotherms (7" < T) exhibit a discontinuous change in the
volume for slight variations in pressure, characterizing the occurence of a liquid-gas phase

transition. The black dot in Figure 3.1.1 is called critical point, at which

orP

ov -

0 3 W

0. (3.7)

V/ Ve

Figure 3.1.1 — Isotherms of the van der Waals gas. Curves in shades of blue are above
T,.. Curves in shades of green are below 7T.. The black dot in the red curve
(critical isotherm) is the critical point.
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Applying the conditions in Equation 3.7 to the equation of state Equation 3.6,

oP  —NkgT  2aN?

oV (VN2 v (3:8)
2P ONEAT N?

P 2Nks 0alN= _ . (3.9)

ov2 (V= Nb3 V4
the critical volume V, and critical temperature T, are found by solving these equations.

Substituting V. and T, at the equation of state, one finds the critical pressure, P.. So,

8a a

— 3N T, = 2% _ e
‘/C 3 ba kB c 27ba c 27b2

Now, if each parameters in Equation 3.6 is replace by X/X,, e.g., P — P/P., and
making V/N = v, the equation of state turns to is reduced form (Equation 3.10), which is
precisely the equation that gives the curves in Figure 3.1.1, as T is slightly shifted near 7.

P 8(T/T.) 3

P 3(V/V)—1 (V/V,)? (3.10)

As mentioned before, some thermodynamic quantities diverge near the critical

point, this is what happens, for example, with the isothermal compressibility, defined as

170V 1
- (=) =-_ - 3.11
Ty <8P)T V(OP/OV)r (3.11)
AtV =V,
OP NkgT 2aN? 1 8a kg
v _ _ — — —kpT )= —(T.-T 12
OV ey, 2N 27N AND (27b 5 ) =T (312)
and then substituting Equation 3.12 in Equation 3.11,
kp oo (T —T,)7". (3.13)

As the system approaches to its critical point, from T > T., the isothermal
compressibility diverges as a power law (Equation 3.13) and its exponent is said to be a
critical exponent. Experimentally, this divergence in k7 has exponent v, which is v = —1

in the van der Waals theory. So, generally

kp o [T —T.|77. (3.14)

The van der Waals liquid-gas transition is continuous only at the critical point, i.e.,
it is a second order phase transition, whereas the others (7" < T,.) are first order phase
transitions, as happens to any substance that crosses the coexistence curve in a P-T phase
diagram[125]. In general, when a substance is in the vicinity of the critical point, the heat

capacity Cy diverges as a power law with exponent o (Equation 3.15), but for the van
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der Waals gas this exponent is a = 0. Actually, for any gas that has an equation of state
in which P is a linear function of T the heat capacity is equal to the heat capacity of an
ideal gas, then it holds that o = 0[56].

Cy o |T =T, (3.15)

Although the phase transition is continuous at the critical point, the behavior of
the system is far from what can be considered a smoothy change. As seen before, the
second order phase transition is related to fluctuations of large amplitudes around the
mean value of a specific parameter, resulting in the divergence of the characteristic size of
these fluctuations. In the van der Waals gas, these fluctuations take place at the densities of
gas and liquid during the transition through the critical point. So, the density fluctuations
display values at nearly all scales of length, that is, there is no characteristic length scale.
This is an example of scale invariance[62], which in equilibrium thermodynamics is the
signature of systems going through a phase transition and it is identified by a power-law
behavior of some thermodynamic variable at the critical point. As in Equation 3.14, the
isothermal compressibility k1 behaves like a scale invariant and this is deeply related to
the large fluctuations in the densities. At the critical point, one may observe bubbles of
liquid at low density, as well as bubbles of gas at high density; these bubbles can exhibit
sizes at any scale, the scale is limited only by the volume of the container. The fluctuations
make the fluid become turbid (with a cloudy aspect), this phenomenon is known as critical
opalescence[62, 45, 129]. For the van der Waals gas, the exponent of the density fluctuation
is f = 1/2, and generally,

pr—pg o< (T. = T)7. (3.16)

Critical exponents describe how the system responds at the vicinity of critical
points. These exponents are the same for systems which underlying details are physically
distinct from each other and are known as universal exponent. A set of systems with
the same universal exponent is called a class of universality. The existence of universal
exponents indicates that long-range cooperative effects (unleashed throughout the system
at the critical point) do not depend on the nature of the local interactions among the

particles.

3.2 Site percolation

The word ‘percolation’ comes from the latim percolare, which means ‘to filter’ or ‘to
strain through’[13]. Coffee beans must go through several processes before finally becoming
this nice smelling and mostly beloved beverage, the last process is called percolation.
Indeed, whenever a cup of coffee is prepared through infusion or drip filtering, it cannot be

called an espresso[51]. A coffee that is brewed in a percolator (Figure 3.2.1) has much more
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flavor than when prepared by other methods, because the fluid can recirculate through

the ground coffee and at higher temperatures.

In a coffee percolator, the hot water trickles through the coarse-ground coffee
chamber by gravity, instead of moving straight through it. In other words, boiling water
collides with the ground coffee, changing its streamlines to a fluctuating path that resembles

a self-avoided random walk.

Spreader Plate

Figure 3.2.1 — Scheme of a coffee percolator. From Wikipedia’'s article, Coffee Percolator|2].

Random diffusion processes can be distinguished in two types: one which the
randomness is related to unpredictable movement of a particle over a smoothly geometrical
medium — its prototype is a random walk; the other type, the particle displays a ‘deter-
ministic’ displacement, whereas the randomness is defined on the geometry over which the

particle is roaming — the particle percolates through this random medium.

The percolation model[23] describes the simplest possible phase transition and it
also displays long-range correlations as the controlling parameter gets near its critical value.
Its nature is purely geometrical and as there is relevant number of transport problems
in disordered media exhibiting critical behavior[52], its applications reach a great sort of
biological, chemical and physical problems such as fluid flow in porous media[55], ground

water flow[88], epidemic modelling[27], metal-insulator transition[87].

The modelling of a particle that is roaming on some random geometry can be
focused on the sites themselves, is known as site percolation. Otherwise, models concerned
with the bridges that are bonding neighbor sites, are known as bond percolation models.
There is also site-bond percolation models, which are of great use in polymer science[30)].
Problems of bond percolation can be mapped in the site percolation framework, but the

opposite does not hold true, making site percolation a more general model.
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Figure 3.2.2 — Snapshots of two-dimensional lattices with linear size L = 200, Moore
neighborhood (p. ~ 0.40) and density p. The cluster size is indicated by
the logarithmic color bar. For a better visualization of the small clusters,
the empty sites were left white colored and occupied sites are larger than
empty ones.

Consider a square lattice with linear size L and where a site is occupied with
probability p, which also stands for the lattice mean occupation, i.e. the mean fraction of
occupied sites. For low values of p, it is possible to identify small clusters only (Figure 3.2.2).
Clusters are defined as a group of occupied sites that are connected to one occupied nearest
neighbor at least. The cluster size s is just the number of occupied sites that comprise a
certain cluster and different neighborhoods can be considered (as seen in section 2.3). In
lattices displaying a low fraction of occupied sites (i.e. low density), a particle will not be

capable of walking through the whole lattice (from one side to the other). For example, if
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a marble is released from one side, it will not be able to percolate through the medium
and reach the opposite side, because of the low connectivity among the sites — the medium
acts as maze in which the marble is trapped. For large densities though, the particle shall

easily percolate — the marble finds at least one way out of the maze.

Precisely speaking, a percolation happens when the occupied sites density is such
that enables the existence of an infinite cluster (also called percolation cluster), which is
basically a cluster that spans through the whole lattice. The concept of infinite cluster
is well-defined only for infinite lattices, therefore for finite lattices the largest but finite
clusters are called incipient infinite cluster instead[28]. Hence, at a certain threshold of
density the lattice exhibits a percolation cluster, that is, if a bead is initially placed at one

of its sites, it can percolates through the lattice.

The minimum probability at which a percolation cluster is found is called critical
percolation probability p., which is also the critical mean density. As will be seen, the
critical probability can be determined exactly in one-dimensional percolation model and
also for percolation on the Bethe lattice. It had been conjectured and has been shown that

there is no percolating infinite cluster in two-dimensional lattices[47].

The present work is intrinsically related to site percolation in a two-dimensional
square lattice, since it is one of the foundations of the forest-fire model — although
‘pure’ percolation models have also been used in modelling wildfires critical behavior[66].
Percolation models introduce quantities that are also relevant in forest-fire models, such as
cluster number distribution n(s, p) and characteristic cluster size s¢, as well as the concept

of finite-size scaling which is essential in the analysis of cluster distributions.

3.2.1 One-dimensional lattice

Consider the dot stripes of linear size L = 30 in Figure 3.2.3. The black dots stand
for occupied sites, whereas grey dots are empty sites. These are typical configurations of
one-dimensional clusters, in which each site had been chosen randomly with probability
p={0.3,0.5,0.7}.

Figure 3.2.3 — One-dimensional lattices of size L = 30 with densities p = 0.3, p = 0.5,
p = 0.7 — from top to bottom. Occupied sites (black), empty sites (grey).
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After a first look at Figure 3.2.3 and it seems clear that the only possible way to
move from one side to the other is when p = 1, considering only (two) nearest neighbors
(one at the left side and one at the right side) and no ‘site-jumping’ is allowed. Ignoring
the effect of the boundaries, the probability of having a cluster of size s is the probability
of having s occupied sites surrounded by empty sites, that is the probability p°® times the
probability (1 — p) for each empty site that limits the cluster, thus

s=1:(1-p)p(l-p)
s=2:(1-pp*(1-p)
s=3:(1=p)p*(1=p) s = n(s,p) = (1 -p)»°, (3.17)
s=4:(1—-pp'(l—p)

where n(s,p) is the cluster number density, which is the probability of having cluster of
size s. Moreover, for p < 1, the probability that a site belongs to a cluster of size s is

sn(s,p) and summing over all cluster sizes,

[e.o]

ansp zis :(1—p)223p5

s=1

=(1-p) i P) p)%;(gps)

s=1

= (1-p)’p d(p> = (1—p)2p[ Ly p<_1)2]

Pap I—p (1-p)?

=(p-p)+ @) =

(3.18)

As s increases, n(s,p) rapidly decays, this can be captured by the characteristic

cluster size s¢, at which the curve has decreased by e~*. So,

n(s,p) = (1 —p)*p° = (1 — p)* exp[In(p®)]

) ) (3.19)
= (1 =p)”exp[s(Inp)] = (1 — p)~exp(—s/s¢) ,
thereof (see Figure 3.2.4),
seoc—1/Inp. (3.20)
Expanding In p around py = 1, replacing it in Equation 3.20 and afterwards applying the
limit p — 17,
d(In p) d*(Inp) 2 3
In(p ~ In(1) + —-1)+ p—1)*"+O(p
(B M0 () dp Po—l( ) dp? p0=1( ) &) (3.21)
2 3

-1
li = i —_— _ 22
pg{l—{sé} im {lnp} — Pl (3.22)
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thus the characteristic cluster size s¢(p) diverges as p approaches 1,
se(p—=17) o (1—p)~t. (3.23)

The average cluster size x is evaluated with weight p, (Equation 3.24), which is
the probability that an occupied site belongs to the cluster k, py = si/Noe. The number

of occupied sites is just N,.. = pL and the total number of clusters, N,,.

clu clu

Z Prsk = Z St (3.24)

occ k=1
Changing the summation over each cluster and now summing over the cluster size,

1 Nclu 9 1 o.9] 9
— = N L
X(p) NOCC k;[ Sk NOCC S_Zl S (87 p? )
_ 2% 8’ N(s,p L) X2 s°n(s,p) (3.25)
pL P

S, $n(s,p)
Z?il S’/’L(S,p) ’

where N(s,p; L) is simply the cluster number, N(s,p; L) = Ln(s,p). Evaluating Equa-
tion 3.25,

S22 8%n(s,p) S 32n<5 p) X (- p)p

x(e) = Zi"lsn(s o g

o <

_d-pr 2 dp<sp> - d( < >)
:(1;17) <i<2p)> 1;p> pi‘;(pcgg(lfp» 3.26)
1y Zj(( pp)2>—(1_p)Q{(l—p)(1+_p](g;2p+2)}

[ z”ggl—p)]:(1—p>2[(1_1p)2+<13pp)3}
IL+p

:1+<1_p) —p

The procedure above indicates that x(p) also diverges (see Figure 3.2.4) as p is approaching

to 1 with exponent —1,
x(p—1)oc(1—p) ', (3.27)

As already noticed, the cluster that will spans through the lattice only appears at
p = 1, but the cluster number density n(s,p) vanishes as p — 17. Hence, the probability

P, that a site belongs to the percolating cluster must be

0 forp<1
P.(p) = (3.28)
1 forp=1.
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Therefore,

%@+im@m=p

s=1

(3.29)

is valid for all p. This relation (Equation 3.29) holds true for higher dimensions as well[28].
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Figure 3.2.4 — Plots of s¢ and x for one-dimensional lattice (Equation 3.20 and Equa-

tion 3.26, respectively) and for the Bethe lattice with z = 3 (Equation 3.38
and Equation 3.32, respectively).

3.2.2 Bethe lattice

The Bethe lattice, introduced by Hans Bethe in 1935[20], shares an important
property with the one-dimensional lattice: both structures display no loops. It implies that

each pair of sites are connected by a unique path. This feature makes possible to obtain
n(s,p), se(p) and x(p) analytically.

Each site of a Bethe lattice has z neighbors and z is called the coordination number.
At Figure 3.2.5, the coordination number is z = 3, with the parent site labelled with {1}
and the next four generations are indicated with dashed circles and labels {2,3,4,5}. In
fact, for z = 2 the Bethe lattice turns into a one-dimensional lattice. For a walk starting
from the parent site, from the second generation forth there are z — 1 possible branches to
walk along at each step, since retracing steps is not allowed. Thus, on average p(z — 1)
branches are accessible. This walk only goes on if at each step there is at least one accessible
branch, then

pz—=1)>1. (3.30)
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Figure 3.2.5 — Bethe lattice with coordination number z = 3, extracted from an article by
Gleiser et al.[43].

The equality in Equation 3.30 gives the critical percolation density p. as function of the
coordination number z (Equation 3.31); and for the one-dimensional lattice (z = 2), the

value p. = 1 is restored.

1

o (3.31)

p(lz—1)=1 = p.=
Considering the intrinsic relation between the Bethe lattice with coordination
number z > 2 and the one-dimensional lattice, the average cluster size in Equation 3.25

can be generalized, as follows

I+p  p(l+p)

= = for 0<p<p.. 3.32
1_(3_1)]9 Pc—P ( )

x(p)

For z = 3, the lattice has p. = 1/2 and its x(p) is plotted in Figure 3.2.4. As x(p)
approaches the critical probability p., it diverges as

X(p = pe) & (pe —p)~". (3.33)

Now consider a cluster of size s, the set of its unoccupied nearest neighbors is its
perimeter ¢, because it traces the limits of the cluster. The equation below generalizes the

cluster number density n(s, p) for any geometry[28],

n(s,p) = gls, 0)(1 - p)'p’ (3.34)

t=1

As many clusters may have the same size s and even the same perimeter t, it is
introduced a degeneracy factor, g(s,t). For the Bethe lattice, all clusters of size s have the

same quantity of perimeter sites, t = [2 + s(z — 2)][38]. Therefore,

n(s,p) = g(s,t)(1 = p)'p’ = g(s,2+ s[z — 2])(1 — p)***="p* | (3.35)
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and for z = 3,
n(s,p) = g(s,2 + s)(1 — p)***p°. (3.36)

AN YOIV &

Figure 3.2.6 — Example of degenerate clusters of a Bethe lattice with coordination number
z = 3. Each cluster has size s = 5 and perimeter ¢ = 7. Edited from Wolfram

Mathworld’s article on binary trees|[1].

The characteristic cluster size s¢ can be determined by manipulating the ratio of

n(s,p) divided by n(s,p.),
n(sp) :M[ 1 —pﬁ (1-p)p ]
nspe)  gls2F3) (1= polpe
_ [1—19} exp (sln [MD 3.37

1- De — Pc)Pe
1-p1?
= 1= 2] exp(-s/s0).
and, finally,
-1
s¢(p) = - : (3.38)
ln[ (1—pp }
(1 - pc)pc

For p > p., s¢ decreases as p increases (Figure 3.2.4), which is expected since s¢ is
the measure of the typical size of the largest finite cluster; hence, it means that as the
percolation cluster increases, it leaves even less space for finite clusters. As s¢ approaches

De, it diverges with exponent —2,
1 _
Sg(p — pc) X Z(p - pc) 2 . (339)

The behavior of s, and x near the critical probability p. suggests that cluster
number density also has a power-law decay at p = p., that is n(s,p.) o< s~ for s > 1, and
it can be shown that 7 = 5/2[28]. So, n(s,p) can be approximated to the form

n(s,p) oc s 7 exp(—s/s for s> 1,p— pc,
(5,1) (~s/5¢ 510,

S¢ X (p _pc)_2 for P —Pe-

The validity of the scaling form in Equation 3.40 can be tested by calculating the
average cluster size x(p) directly from its definition (Equation 3.25) — at this point it is
important to recall that Y22, sn(s,p) is finite. This procedure is detailed in the following
(Equation 3.41):
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— 22224,8271(8718
?,il Sn(57p)

o i s> T exp(—s/s¢)

x(p)

s=1
~ / s> Texp(—s/s¢)ds, using u=s/s¢, (3.41)
1
oo

:/ (us¢)® 7 exp(—u)se du
1/s¢

= 32’7/ u* " exp(—u) du.
1/85

Now if p — p,, then 1/s¢ — 0, and the integral becomes a gamma function”,

X(p = pe) sg’_T/ u* " exp(—u) du
(1/5¢)=0 (3.42)

s TT(3—7).

Comparing with Equation 3.33 and including Equation 3.39,

X(p = pe) o (pe—p) "

o sg T (3.43)

o (pc o p)27—6 ]

Therefore, the scaling form (Equation 3.40) is consistent and the exponent 7 for the Bethe

lattice is really 7 = 5/2, as expected.

The probability that a site belongs to the percolating cluster is given by Equa-
tion 3.44. Although P, (p) is continuous, it is not differentiable at p = p., and as the
critical value p,. is signalling for a transition between a percolating phase and a ‘finite

clusters’ phase, it is characterized a continuous (second order) phase transition.

Peo(p) " o pE (3.44)
co\P) = 1— 3 .
p[l — <p> } for p > p.

3.2.3 Two-dimensional lattice

The exact results obtained for the one-dimensional lattice and the Bethe lattice
are possible because of the absence of loops. Though two-dimensional lattice lacks of
analytical results, some numerical approaches have showed that for a von Neumann
neighborhood the phase transition occurs at p. ~ 0.59, whereas for the Moore neighborhood
pe ~ 0.407(74, 70].

*

The gamma function I'(z) can be represented by the convergent integral I'(z) = fooo r* Lexp(—t)dt,
where z = {z € C|R(z) > 0}[22].
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Figure 3.2.7 — Plot of Py (p) for the Bethe lattice with z = 3 (black) and normalized
mean of the maximum cluster size (Sq.), for von Neumann (orange) and
Moore (blue) neighborhoods. Statistics based on 100 samples with linear

size L = 1,000 and periodic boundary conditions.

Although some quantities behave as a power law with exponents that do not depend

on the lattice details — geometry, neighborhood or boundaries (section 2.3)—, the critical

density p. depends[28]. For example, the probability that a site belongs to the percolating

cluster is P, = 0 for p < p. and, for p > p,, it diverges with exponent [,

PooO((p_pc)'B

(p—pl),

(3.45)

with 8 = 1 for Bethe lattices with z > 2 and 5 = 5/36 for the two-dimensional lattice[28,

47], regarless of the lattice details.
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Figure 3.2.8 — Snapshots of two-dimensional lattices with linear size L = 200, von Neumann

neighborhood (p. & 0.59). The cluster size is indicated by the logarithmic

color bar. The occupied sites are larger than empty ones (white colored).
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The average cluster size x(p) diverges for p — p. as a power law with exponent ~,

X(p — pe) o [pe —pl™", forp—p.. (3.46)

For the Bethe lattice v = 1 and for two-dimensinal lattice v = 43/18. At p = p,, the
characteristic cluster size s¢ diverges with exponent 1/0, which value is o = 36/91 for
two-dimensional lattice and o = 1/2 for the Bethe lattice (see Equation 3.39). Thus, the

scaling form (Equation 3.40) becomes,

n(s,p) oc s~ exp(—s/s for s> 1,p — p.,
(5.0) . .
SgOC(p—pc) 7 for p — p..
Applying the same procedure of (Equation 3.43),
X(p = pe) o< 8T
o |p— pe| B (3.48)
o [pe —p| 77,
implies in the scaling relation
3—7
= 3.49
V= (3.49)

The most remarkable geometrical aspect of a two-dimensional cluster at the critical
density p, is self-similarity. The fractal dimension of the incipient cluster is D = 91/48 ~ 1.9,

that relates its mass to the area in which it is immersed. That is,
Muo(pes ) o 17, (3.50)

where My, (pe; 1) is the number of site composing the percolation cluster in window of size

[ x . From this relation (Equation 3.50), the probability that a site within the window of
size [ X [ belongs to the percolation cluster is given by
M _

Poo(pe;l) = 7 & 17 (3.51)

where d is the euclidean dimension in which the percolation cluster is immersed, for

instance d = 2.

When the correlation length £ is much smaller than the lattice linear size, i.e.
L > ¢, all quantities (such as the average cluster size) are determined by the clusters up
to size s¢(oc 7). On the other hand, in the regime with L < ¢, it is imposed a cut-off
diameter L to sg, which is the finite-size effect. All quantities now will depend on clusters
up to size L”, instead of s¢. For example, the cluster number density (Equation 3.47)
becomes
s7TG(s/EP) for p — pe,s > 1,L> ¢

n(s,p; L) o (3.52)
sTTG(s/LP) forp—p,s>1, 1<K L<K§.
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3.3 Self-organized criticality

In 1987, Per Bak, Chao Tang and Kurt Wiesenfeld proposed an explanation for some
scale invariance behavior related to 1/ f noise*, which has become known as Self-Organized
Criticality (SOC)[19, 17, 53, 28]. Scale invariance is also found in phase transitions, where
the critical phase is trigged by a temperature-like control parameter[62]. In SOC models,
scale-free phenomena emerge in the system due to cooperative processes with effective
long-range interactions that results in a macroscopic state that is different from the mere
sum of its microscopic parts. The scale invariance signature in some measurable quantities
(observables) suggests that the system is able to self-organize towards an underlying critical

point, regardless of a control parameter[80].

3.3.1 Basic definitions

A SOC model possesses three basic elements: many interacting degrees of freedom,
an external drive and separation of time scales. The degrees of freedom are mostly finite,
discrete and are well-defined in space (sites on a lattice) and their interaction takes place
within a finite region, i.e. a local, short-range interaction. These degrees of freedom are
local variables that can act as dynamical variables, that is, they can represent an amount
of a physical quantity, such as energy. This quantity is distributed among the interacting
neighbors, once a certain threshold is reached. The degree of freedom is called stable

whenever it stands below the threshold, whereas above the threshold it is called active.

The external driving is responsible for changing or charging the local variables. It
can be either uniform driving (the whole set of variables is affected) or a local driving
(which affects a particular variable or a small set of variables). The driving is usually
a small amount of charge, that can be fixed or random. Stochastic and deterministic
driving are terminologies that stand for the choice of the variable position, as well as
for the amount of charge it receives. The external driving can behave as a supplier, that
is, by loading a stable variable until it reaches the threshold. But it can also act as a

perturbation, triggering the variable to its active state.

Once a variable reaches the threshold, it turns active and the interaction starts.
The interaction happens as a toppling, the amount of charge is reduced (or even drained
out completely), since it is redistributed among the bulk neighbors, by either charging or
activating them. The amount of charge each neighbor will receive from the toppling can
also be defined as stochastic or deterministic. The toppling is a relaxation process and the
set of theses relaxation events is known as an avalanche. The avalanching mechanism is one
of the fundamental concepts in SOC models, it shows how small perturbations can trigger

a strong response that may spread throughout the whole system. Due to this metastability,

*  Generally, any time series with algebraic power spectrum S(f) oc 1/f¢ is called ‘1/f noise’.
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it can be argued that the system moves toward in a critical state spontaneously. This is
corroborated by the power-law behavior in the histograms (probability density function)
of the avalanche observables (such as size and duration), signalling the existence of scale

invariance.

During an avalanching event, no external driving is released into the system. This
defines another SOC fundamental features, the separation of the time scales. The time
scale in which the relaxation processes occur is the microscopic time scale, i.e. the time
scale of the microscopic mechanisms within an avalanche. In the microscopic time scale, an
external driving might be perceived as a fairly distant event. Otherwise, in the macroscopic
time scale external drivings are described by a finite frequency, while avalanches last a
tiny amounts of time. An avalanche is characterized by its size, duration, area covered
and radius of gyration. These observables are measured within the interval between the
external driving and the moment when the relaxation processes ceases, hence the size of
an avalanche S is given by the number of topplings that occurred and the duration 7 is
the time elapsed. Each measured quantity is described by a probability density function
ﬁk(K ;L)

A

Po(S;L) = a, S~™ Gy(S/S.(L))  with S, = b, LP-
(3.53)

A

Pt(T, L) = Q¢ T_Tt gt (T/TC(L)) Wlth Tc = bt LDt 3

and its cumulative distribution function Py(K; L),

S .
Pu(S) = / Pu(S; L) dS'

0 (3.54)
PAT) = / P(T'; L) dT" .

0

Where 7, and Dy are respectively the avalanche size exponent and the avalanche di-
mension; whereas 7, and D;, the avalanche duration exponent the dynamical expo-
nent, respectively[79, 80]. These exponents can be found using the moment analysis

method[32, 101], which also gives the following relation,

w=2—(1/Dy) withk={s, t}. (3.55)

3.3.2 Drossel-Schawbl forest-fire model

In 1992, Barbara Drossel and Franz Schwabl proposed a forest-fire model(DSFFM)[34],
which was an enhanced version of a previous model due to Bak et al.[18]. In DSFFM,
a fire spreads over an homogeneous population of trees, randomly placed on a square
lattice. The criticality of its observables have been disputed for a long time[79, 46, 81, 82|,
and it is known now|[80] that despite the fact that avalanche size distribution violates

simple scaling approach[46], its moments follows power law robustly[82]. This model differs



Chapter 3. Topics in physics of complex systems 58

from other SOC models not only for being a dissipative model — which requires a particle
influx, implying the existence of a control parameter —, but also for displaying three
distinct time scales, instead of two. In DSFFM, the avalanche is the fire (i.e. active sites)
spreading through the lattice trees (i.e. stable sites), whereas the lightning strike is the

(local) external driving.

The DSFFM is a two-dimensional CA model — it can also be defined on higher
dimensions (d > 2). Though originally designed with von Neumann neighborhood, in
the present work the model is set at the framework of Moore neighborhood instead.
The simulation is initialized in a two-dimensional lattice of linear size L with a random
configuration: each site of the lattice is occupied either by a tree, by a burning tree, or is
empty. For each time step t, the CA evolves according to the following set of rules:

e Fach burning tree becomes an empty site, in the next step t + 1.

e Every tree with at least one burning nearest neighbor becomes a burning tree, in the
next step t + 1.

e A tree becomes a burning tree with probability f, regardless of its nearest neighbors.

e An empty site becomes a tree with probability p.

Figure 3.3.1 — DSFFM simulation at the stationary state, after a fire is extinguished. This
snapshot shows a whole lattice with 10® sites. Linear lattice size L = 10*
and states: tree (yellow), empty site (black).
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The observables, such as fire size and duration, are measured at the stationary
state, right after a fire is extinguished. In the present work, the number of trees is also
measured at the end of each fire, which provides an auxiliary time scale in units of fire-steps,
ty. Figure 3.3.1 shows a snapshot of the system at the stationary state, after a fire is
extinguished; at this point, the distribution of trees has clearly become non-uniform and,

moreover, there are dense clumps of trees, i.e. patches of occupied sites.

The tree density evolves in time as showed in Figure 3.3.2. The DSFFM with
Moore neighborhood displays a stationary density ps &~ 0.27 £ 0.02[25], whereas with von
Neumann neighborhood it is ps ~ 0.4084 4+ 0.0001[49]; both values are lower than the
critical density p. ~ 0.40 and p. ~ 0.59, respectively, due to (static) percolation model.
This divergence is caused by the influx of particles (‘sprouted trees’), which creates clumps
of trees (clusters of occupied sites). So, even at a lower density than the critical static
percolation density (ps < p.), it is likely to happen a fire that can percolate through the

lattice — due to highly non-uniform distribution of trees in the system.

0.9 -

0.34 T

07| v;;izf- HEHETH I R

0.4 |

0.2 | -

0 . I ‘ ! . I . I .
0 2 4 6 8 10

Time (x 104 fire-steps)

Figure 3.3.2 — Population density p = p(t;) and mean population density (p), in the detail.
Linear lattice size L = 10* and parameter © = 10°.

Besides the avalanche duration, the DSFFM possesses other two characteristic time
scales: the average time for a tree to grow 1/p and the average time between fires 1/f. At
the limit of the time scale separation f/p — 0, that is 1 > p > f, the system reaches a
(supposed) self-organized critical state. The parameter © (= p/f) controls the number of
trees that grows in the system between two lightning strikes. Although © = p/f — oo for

infinite systems, in finite lattices the © parameter must be bounded by the lattice size,
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that is © < L? — the role of © will be detailed in the next chapter (section 4.1, section 4.2).
In DSFFM, the finite-size scaling is given by Equation 3.56, where the cut-off functions G
depend on O, instead of L. The cumulative distributions (Equation 3.57) are displayed in
Figure 3.3.3, with fire-size exponent 75 = 1.181 estimated by direct linear fitting[25]. The
dynamics of the forest-fire model will be detailed in the next chapter, when the generalized

forest-fire model will be presented.

A

P(S;0) =a, S Gy(S/S.(0))  with S, =b,O*

(3.56)
Pt(T, @) = Q¢ T gt(T/Tc(@)) with TC e bt @)\t
S .
PS) = [ Pu(S50)ds’
o (3.57)
Pt(T):/O P(T'; ) dT" .
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Figure 3.3.3 — Cumulative fire-size distribution P, and cumulative duration distribution
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Chapter 4

Generalized forest-fire model

“These tmaginary biological systems should be
of some help in interpreting real biological forms.”

Alan Turing'

The Drossel-Schawbl forest-fire model (subsection 3.3.2) has become a paradigmatic
model to study self-organized criticality and supplied the literature with several results
related to excitable media models. Unfortunately, DSFFM lacks some components of
real-life forest fires, since reproduce the behavior of wildfires was not among its goals

during its inception.

In 1993, Drossel et al. published a forest-fire model with immune trees (FFMIT)[33]
based on the same template of DSFFM, but including immune trees and removing the
possibility of having sequential lighting strikes — actually, the lattice is struck only once in
order to initialize the dynamics. In this model, each tree has a probability (1 — g) of being
ignited if it has at least one neighbor on fire, where probability ¢ plays the role of the
immunity parameter. In other words, a tree might not catch fire with probability g, even
having several burning neighbors. In FFMIT dynamics, the fire spreading and the tree
sprouting occur at the same time scale, implying that the system is not led to a long-term

stationary behavior.

Meanwhile, Landini et al. developed a CA model for studying the morphology
of corneal ulcers due to Herpes virus (HSV) infection[57]. In their model, each healthy
epithelial cell could present a variable level of susceptibility to viral infection. A permissive
cell turns into an infected cell if it has at least one infected neighbor. On the other hand,
a resistant cell will get infected depending on the number R of infected neighbors. In
vivo, corneal ulcers are morphologically classified as dendritic or amoeboid, according to
its shape. Under certain parameters, the CA model has yielded fractal ulcers (dendritic

phase) and it was also observed that their fractal dimension decayed as their size increased,

t Adapted from “The Chemical Basis of Morphogenesis”[109)].
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shifting from dendritic phase to an amoeboid phase; therefore agreeing qualitatively with

the morphological classification.

Following this framework, Camelo-Neto and Coutinho studied a virus spread model
using simulations and mean-field theory approach[24]. Late on, they assembled a forest-fire
model with resistant trees (FFMRT')[25], in which were considered two distinct populations:
susceptible (permissive) trees and resistant trees. Recently, these authors studied a forest-
fire model with tree ageing|75], in which the resistance parameter is time-dependent, i.e.
R = R(t,). The time parameter ¢, regulates the characteristic life-time of a tree: it sprouts
as susceptible tree, reaches a maximum resistance at its mean life-time and then has
its resistance decreased — as vitality starts to fade. The parameter ¢,, also controls the
emergence of two distinct long-term behaviors, resembling a dense woodland or a savanna

(with widely spaced, scattered trees[14]).

The present work aims to generalize some aspects of forest-fire model with resistant
trees (static resistance), which may lead to a better comprehension of the role played
by wildfires over a forested region. As a model of anomalous diffusion and excitable
media, its results can be applied to related subjects immediately, e.g., epidemic spread.
As a cellular automata model, the first novelty will be expanding the cell’s neighborhood
(subsection 4.2.1), which gives the model another pinch of realism. Afterwards, it will
be included the possibility of having static forbidden sites (subsection 4.2.2) — that will
neither interact with fire, nor trees will be able to sprout on it. Hence, the heterogeneity
will not be only due to the resistant trees, but also due to the forbidden site, making the

model even more related to percolation theory.

4.1 Forest-fire model with resistant trees

The FFMRT generalizes the DSFFM by introducing a fraction of trees that are
resistant to fire, i.e., some trees only will burn if they have at least a certain number
of burning neighbors, R. Thus, there are two populations with different flammability,
resistant and susceptible, the last needs at least one burning neighbor to be ignited. These
distinct fractions of trees (which can also be acres of wildland or bushes) are set with the
parameter ¢, which stands for the probability of sprouting a susceptible tree, whereas a
tree has probability (1 — ¢) of sprouting as resistant. The presence of resistant trees will

constrain the reach of the flames, therefore lowering the size of the fires.

The simulation runs in a two-dimensional lattice with linear size L, periodic
(toroidal) boundary conditions as in DSFFM and the interaction is allowed within a
Moore neighborhood, instead of the von Neumann neighborhood. The possible CA states
are: empty, susceptible tree, resistant tree and burning tree. Starting from a random

configuration of resistant trees, susceptible trees and empty sites (with probability px (1—g¢),
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p x q and (1 — p), respectively), the site to be ignited is chosen at random and afterwards
the CA rules below are applied:
> If the chosen site has a tree (susceptible or resistant), it becomes a burning tree.
> If the chosen site is empty, a set of © sites are chosen at random and a tree sprouts
at each empty site within this set — with probability ¢ of being susceptible or (1 — q)
of being resistant.
> The fire spreads according to the rules:
e A burning tree dies, becoming an empty site in the next step.
e A susceptible tree with at least one burning neighbor becomes a burning tree in
the next step.
e A resistant tree with at least R burning neighbors becomes a burning tree in the

next step.
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Figure 4.1.1 — Time-series of the total population density p = p(t;) — the number of trees
is measured at the end of each fire (subsection 3.3.2). Linear lattice size
L =10%for R=2and L =2 x 10%, for R = {3,4}. Parameters © = 10°
and ¢ = 0.5, for all cases.

As a site in the Moore neighborhood has 8 neighbors, the values for the resistance
parameter R are integers ranging from 1 to 8, R={R € Z :1 < R < 8}. As defined in
subsection 3.3.2, the parameter © is the ‘time-scale separation’ parameter, © = p/f. In
the homogeneous case (R = 1), the dynamics of DSFFM is restored, while for R = 2 the
system is less reactive, as expected. In both regimes (R < 2), the system exhibits large
fluctuations around the mean stationary density, which suggests the occurrence of fires

with magnitude greater than the parameter ©. In fact, for R = 2 the standard deviation
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of the density in the stationary state is, in average, 2% of the lattice size L?. Then, using
as example the parameters from Figure 4.1.1, for a lattice of size L? = 10%, the standard

deviation is o ~ 2 x 10°, being one order of magnitude greater than the parameter © = 10°.

For cases with R > 3, the total density barely oscillates and the system is rapidly
pushed to a high density phase (Figure 4.1.1). In the stationary state, the fluctuation
around the mean density practically vanishes, indicating that fires with size greater than
O are very unlikely. Actually, in these regimes (R > 3), the system becomes so dense
that only few empty sites still available for sprouting trees (subsection 4.4.2). The system
response for distinct values of the parameter ¢, which controls the amount of susceptible
trees sprouting at the end of each fire, was analysed by Camelo-Neto and Coutinho[25].
Using the stationary densities for R = {3,4}, they reported a critical value ¢. ~ 0.82
for R = 3, above which the dense forest structure that restrains the spread of large fires
is broken and displays fluctuations similar to R = 1,2. For R > 4, this transition only

happens for values very close to ¢ = 1, which restores the homogeneous behavior (DSFFM).
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Figure 4.1.2 — Cumulative fire-size distributions. Linear lattice size L = 10* for R = 2
and L = 2 x 10%, for R = {3,4}. Parameters © = 10° and ¢ = 0.5, for all
cases. There were analysed nearly 10° fires in the stationary state for each
R value.

Because their low flammability, resistant trees survive in the lattice longer periods
of time than susceptible trees. As result, it is observed the emergence of clumps of resistant

trees (large clusters), leading to a robust stationary state that confines the fire propagation
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to smaller areas. This can be immediately noticed in the fire-size statistics (Figure 4.1.2).
The fire-size distribution for R = 2 shows a region of power-law behavior similar to those
distributions found in DSFFM, indicating that any scale invariance due to SOC dynamics
is not compromised by the fraction of trees with relatively low resistance. On the other
hand, a drastic decrease can be observed in the fire-size distributions for R > 3, showing

that the typical SOC signature does not emerge for relatively high resistances.

4.2 Generalized model

The generalized forest-fire model aims to simulate an even more heterogeneous
environment by making use of a CA model defined on a square lattice of linear size
L, with periodic (toroidal) boundaries, r-Moore neighborhood, where r (€ Z : r > 0)
stands for the range of the neighborhood (section 2.3), and 6-state cells. The set of states
is comprised by empty, susceptible tree, resistant tree, fire, ash and forbidden site, i.e.,
S = {empty, treeS, treeR, fire, ash, block } — the ash state is a temporary state used
to account the fire size. The lattice is initialized with trees being placed randomly over the
lattice. Each site has probability s of being occupied by a forbidden site, i.e. block state.
On the remaining fraction of ‘available’ sites, it has a probability p of being occupied by
a tree, otherwise it is an empty site with probability (1 — p). Each occupied site can be
either a susceptible tree, with probability ¢, or a resistant tree, with probability (1 — q).
Thus, in the initial configuration, the probability of a lightning strikes an empty site is
(1 —s) x (1 —p), the probability of striking a susceptible tree is (1 — s) X p X ¢ or striking
a resistant tree, (1 —s) x p x (1 —q).

The CA dynamics is split in three stages, a lightning stage, a burning stage and
the sprouting stage. The transition rules are listed below:
> Lightning stage:
At time step t, one site is chosen randomly.
e If it is an empty or block site, the system goes into the sprouting stage.
e If it is occupied by a tree, not mattering its sort, it is eligible to be ignited, i.e.,
start burning. Then, in the next step ¢ + 1, the tree state is shifted to fire.
When a tree is ignited, the system is warned to enter the burning stage.
> Burning stage:
At time step t,
o A fire site turns to ash in the next step t + 1.
o If a treeS site has at least one fire neighbor, it turns to fire in the next
step t + 1.
o If a treeR site has fire neighbors, it will turn to fire in the next step t + 1 only
if the number of its fire neighbors Ny is at least equal to R, that is, Ny > R.

If there are no more burning trees (fire sites have extinguished), the ash sites turn
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to empty sites and then the system goes to the sprouting stage.
> Sprouting stage:
At time step t, a number of O sites are chosen at random.
o If it is an empty site, in the next step t + 1, a treeS or a treeR sprouts, with
probability ¢ and 1 — ¢, respectively.
e [f the site is occupied by either a treeS, a treeR or a block, it remains unchanged.

At the step t + 2, the system returns to the lightning stage.

These rules are slightly different from the FFMRT (section 4.1), once the block
state was added. The neighborhood range r is not explicitly included in the rules, although
it is considered every time a site assess its neighbors state. In Figure 4.2.1, there is an
example of the process of fire spreading accomplished in the burning stage. Sites that
are being assessed by the CA rules have a numerical label. Trees (treeS, treeR) are
labelled with its total number of burning neighbors Ny, whereas sites with other states
(empty, fire, ash, block) are labelled with its coordinate, in order to indicate the fire

displacement.
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Figure 4.2.1 — Snapshots of the system at the burning stage, with Moore neighborhood,
resistance R = 3 and densities s = 0, p = 0.6 and ¢ = 0.5. Site colors:
empty (black), treeS (yellow), treeR (green), fire (red), ash (grey).
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4.2.1 On enlarged neighborhoods

As a thermodynamic process, the combustion of woods, as it is being dealt here,
is an open system, thus there are mass fluxes both in and out of the system as well as
energy flows, role that is played by the fire as outcome of a chemical reaction or a gradient
of temperature. As a contact model approach, the flame due to a single site is limited
to interact only with its nearest neighbors, in this case, the 8 neighbors of the Moore
neighborhood. As a sort of conservation law, it is imposed that the fire flames must be
confined within a restricted area, although in nature wildfire flames can be extremely
intense, creating huge gradients of temperature — and even convection currents — that can

permeate further and then starting fires far beyond the flame fronts[103].

Aware of this flaw, the model can be improved in order to simulate the fire spread
due to higher temperatures and, therefore, allowing flames to reach further distances
by incrementing the parameter r (see Figure 2.3.3), which controls the range of the
interaction and hence the number of neighbors. Consider an increment of one unit in the
neighborhood range, which leads to the 2-Moore neighborhood that has 24 neighbors, as
seen in section 2.3. In the 2-Moore picture, the 8 nearest neighbors comprise the first
layer 61, whereas the others 16 next-nearest neighbors belong to the second layer, d,
(Equation 4.1).

h={(z,y):0< |z —x0| <1, 0< |y —yo| <1}
5£M0]($07yo): G2 ={(2,y) 1 1 <|w—m| <2, 1 <[y —yo| <2} (4.1)
03 ={(z,9) 12 < |z —mo| <3, 2< |y —yol < 3}

An example of how the fire spreading dynamics fits on this new framework can be
seen in Figure 4.2.4. The first startling impression as one sees this sequence of snapshots
is about how bigger the fire has grown or how wider its area has become when compared
to the fire spreading in 1-Moore picture, seemingly the capacity of burning further trees
has been accomplished. Indeed, once the number of neighbors is raised, the reactivity of
the system increases as well, so instead of dealing with 8 neighbors as before, each site
needs to assess the state of 16 more neighbors from the second layer, creating a scenario
where, at each step, more state transitions are likely to occur. Moreover, the state shifting
is also faster, because, for example, a site that only would burn in step ¢t 4+ 2 will be
catching fire in step t 4+ 1. It is important to observe that no asymmetry or hierarchy is
assigned between these layers, in other words, each neighbor is equally likely, therefore no
gradient of temperature is actually created. Furthermore, the range r is incremented once
more, assembling a 3-Moore neighborhood which displays 48 neighbors. This neighborhood
displays a third layer d3, comprising 24 neighbors (Equation 4.1), which is even more

reactive than the previous 1-Moore and 2-Moore.
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When working with an homogeneous population (without resistant trees, ¢ = 1),
the enhancement due to increasing the interaction might sound as a silly choice, because
considering a fully dense lattice, the dynamics will only sweep the lattice twice faster for the
2-Moore picture and even faster for 3-Moore, approximately three times faster. As example,
a lattice with linear size L = 500, fully occupied with susceptible trees (homogeneous
population) and with 1-Moore neighborhood, has been completely overrun within 252
time steps, while the 2-Moore did it within 127 steps and 3-Moore completed within 86
steps. Despite that if a percolation approach is considered, the critical density . decreases
approximately by a factor of 2 and a factor of nearly 5, for 2-Moore and 3-Moore pictures,

respectively. These factors were estimated from a ratio involving number of neighbors and

are straight forward,

Nir=2)-Nlr=1) _24=8 _, ¢ 2 Moore and
N(r :A?zr_:/\/l'gr =1) _ 488_ 8 =5, for 3-Moore,

where N (r) stands for the number of neighbors in a neighborhood of range r. For a quick
inspection, it was used the lattice with L = 500 and homogeneous population (¢ = 1).
The results suggested a p. ~ 0.40 for 1-Moore, which agrees with reported values[70],
pe = 0.17 for 2-Moore and p. =~ 0.09 for 3-Moore, both within an error of the estimated
values (Equation 4.2). As percolation theory is extremely relevant in clarifying the long-
term behavior of the system, the enlarged neighborhood required the evaluation of some

statistics — see Figure 4.2.2 and Figure 4.2.3.
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The statistics indicates that the critical percolation density is p. ~ 0.405 for 1-
Moore, p. ~ 0.165 for 2-Moore and p. ~ 0.085 for 3-Moore, at some point corroborating
the estimated values. It is also important to remark that as the neighborhood is enlarged,
the region of fractal clusters is decreasing — region where the derivative of the curves in
Figure 4.2.2 are steeper. In other words, the incrementation of the neighborhood parameter

r leads to a regular diffusion process that displays compact clusters.

The expansion of the neighborhood has two important consequences that must
be regarded. First, as the reactivity of the system is increased, the ability to burn bigger
areas increases likewise. It becomes easier for the fire to reach the boundaries of the lattice
which may lead to finite-size effects (beyond a simple upper cut-off) by breaking long-range
correlations. In practical terms, the lattice size L? used to measure fire sizes in a 1-Moore
neighborhood might display a misleading lack of accuracy when analysing r-Moore fire

sizes with r > 1.

Secondly, the geometry of the burnt trees (ashes) clusters might disagree with
regular site percolation. Suppose an idealized example in which a burning site, in a 1-Moore
neighborhood, is surrounded by resistant trees, then in the next step the fire will fade
because the flame was incapable to spread through the wall of trees. Bringing this example
to the 2-Moore picture, the fire will not only pass by the wall of resistant trees placed on
the first layer, but its effective intensity will not be diminished by the wall as well. This

effect of independent interaction between the main site and each layer §; eliminates the
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Figure 4.2.4 — Snapshots of the system at the burning stage, with 2-Moore neighborhood,
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particle-like aspect of the fire and instead it exhibits the field-like behavior of the flame,
mimicking its real role as source of heat. Still about the idealized example, imagine now
that the second layer is made of susceptible trees only and that the resistance of the tree
in the first layer is R = 5. In the time step t + 2, all the trees in the first layer will be burnt
by the burning trees of the second layer. In other words, it means that the fire was able
to spread backwards. The snapshots in Figure 4.2.4 show a fire spreading on a 2-Moore
neighborhood and resistance parameter R = 5. At the first step ¢, the resistant trees at
sites (34,32) and (35,32) are assessed, but having one burning neighbor each, they will
not ignite. In the following step ¢t + 1, the fire spreads to every susceptible tree in the
neighborhood and both (34,32) and (35,32) will have now five burning neighbors each,
then at t + 2 they finally become burning trees. With a closer look on this arrangement,
one can notice that this path was forbidden in the 1-Moore picture, that is, during step
t + 1 the tree on (34,31) would not be burning, leaving (34,32) with Ny;e =3 (< R = 5),
and tree (35,32) would not reach for burning tree (33,33) and (33,32). Moreover, neither
(36,34) would be on fire nor (35,32) could reach that far, then (35,32) would have Ny, = 1
(< R =05). At step t+ 2, both (33,32) and (34,32) would remain as treeR. Afterwards, the
spread would go on through (34,31) — (33,30) — (32,29), while on the other side branch
the fire would have faded out after burning the tree at (36,35).

The observed clusters were already available in the 1-Moore neighborhood, but
they have become more evident as the neighborhood was enlarged. Their geometry is built
on paths that are forbidden in ‘static’ site percolation theory. Such clusters are related
to the ‘fluctuating site percolation’, found on the forest-fire model with immune trees,
reported by Drossel et al.[33]. The r-Moore neighborhoods with r > 1 will sweep greater
perimeters faster because of its ‘further forward’ interactions, but it also will create even
greater fires/clusters due to their ability of interacting with trees that were left behind the

flaming fronts.

4.2.2 On random forbidden sites

The enlargement of the active neighborhood provides higher reactivity on the
lattice, but which elements of the model act to suppress the spreading? From the original
DSFFM, the states fire and treeS could be regarded as fire propagators, whereas empty
sites, as well as ash sites, act as fire absorbers. The novel treeR state introduced by the
FFMRT model can behave as a fire propagator — for relatively low resistance R —, but
it mostly acts to constrain the fire spreading — for relatively high R values. The present
model introduces a special static CA state named block. This state act as a fixed fire
absorber, being completely inert to the whole dynamics of the system. A block state differs
from the empty state because the last is eligible for sprouting a tree, while the block is a

fixed, unchangeable lattice site. The fraction of block sites drops the stationary density of
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both treeS and treeR, once less sites are eligible to sprout a tree, and moreover, above a
certain threshold, this fraction is capable of toughening tree clusters, i.e., they prevent
susceptible trees from sprouting inside a clump of trees. The block sites do not change the

transition rules, since they do not interact with other sites.
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Figure 4.2.5 — Snapshots of the system at the burning stage, with 1-Moore neighborhood,
resistance R = 2 and densities s = 0.1, p = 0.6 and ¢ = 0.5. Site colors:
empty (black), treeS (yellow), treeR (green), fire (red), ash (grey), block
(blue).

4.3 Computational aspects and algorithms

The process of taking the forest-fire model from the CA rules to a computer
simulation is a bit straight forward and an average programmer can do it in a few hours.

Once implemented, this program may require some weeks of running time if it uses a lattice



Chapter 4. Generalized forest-fire model 73

with L = 5,000, for example, and unfortunately this lattice size would not yield accurate
results (subsection 4.4.1). Even if there was no hurry for the results, static allocation of
lattices greater than L = 10,000 requires a reasonable amount of memory and at some
point the simulation would halt and crash. In order to overcome these issues, part of
this work was dedicated to assembling computational algorithms that could optimize the
memory allocation required and the simulation running time, by adapting the CA rules

though not changing it.

The program was written in the C++ programming language (gcc compiler version
4.8.4 [5]), which is a general-purpose language[3]. The simulation is assembled on an object-
oriented syntax, which is one of the advantages of working with C++. While the program
is running, it can be displayed on the screen by using the APT* freeGLUT/4], which is an
open-source version of the ‘openGL Utility Toolkit’, commonly known as GLUT][6]. This
graphical version of the simulation runs slower, despite that it is of great use for checking
whether some features are working properly, for instance boundary conditions. Other
important component was the utility software GNUParallel[99], which was in charge of the
optimized distribution of multiple simulations among the processors and hence for running
them in parallel, i.e., GNUParallel was responsible for running several simulations at once,
each with different parameters. For some numerical and statistical analyses, like linear
regression or evaluating the moments of the distribution, it is used the GSL library — GNU
Scientific Library([7, 40]. As the largest lattices considered in this work have nearly 10°
sites and in order to avoid pseudo-random number effects, it is used the ‘four-tap’ random
number generator proposed by R. Ziff[127], which was suggested by Grassberger[46] and
also used by Camelo-Neto and Coutinho when working in FFMRT[25].

The first step on building the model in the computer is about bringing the lattice
from an abstract form to its computational counterpart. So, the lattice is dynamically allo-
cated in a state matrix S; ;, with set of states S = {empty, treeS,treeR, fire, ash,block}.
The straight forward method of implementation updates the whole matrix S;; at each
step and the transition rules will return a new state for each site. This procedure will
be avoided by analysing only those sites that are directly taking part on the dynamics,
that will be called active sites. The stack of active sites will comprise all the fire state
sites, its neighbors and its neighbors’ neighbors. An object class called tree is created to
temporally save active sites. The class is made of 3 elements and has 6 functions defined,
the first two elements retain the site coordinates (7, j), while the third element retains the
site state S;;. The class functions are designed to control the reading and writing process

on the state matrix (see Figure 4.3.1).

The state matrix is initialized randomly. The initial set of states does not include

neither fire nor ash states. The initial mean fraction of block, treeS and treeR are

*  Application Programming Interface
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///set of states
enum state {empty,treeS,treeR,fire,ash,block};

//class def

class tree{
int x,y; //position
state s; //state

public:

tree() {x=y=0; s=empty;} //constructor
~tree(){} //destructor
void set x(int i){x=1i;} int get x(){return x;}
void set y(int j){y=j;} int get y(){return y;}
void set s(state k){s=k;} state get s(){return s;}
//T() writing //T() reading

3

/17

Figure 4.3.1 — Declaration of the states and the object-class tree. The set of states is
defined using the C++ default function enum. The object-class t ree has
three functions for writing, set_ (), and other three for reading, get_ ().

given before the program is executed in terms of the probabilities s, (1 — s)pg and
(1 —5)p(1—q), respectively. From the point that the program starts running, no external
inputs are accepted and the simulation only responds to the transition rules of each stage,

as seen in section 4.2.

Once a treeS or treeR is ignited by a lightning strike, its state is shifted to fire
and it is saved in a vector of tree objects (vector<tree>). C++ has some default
libraries for special types of arrays that are already implemented with dynamic allocation,
one of these is the <vector> library. These objects act as seeds for the spreading, that is,
in the following step they will feed the function spread (), in which their neighbors are
assessed. Then, the function count_neighbors () accounts and returns the number of
fire sites in the main site neighbor’s neighborhood, meaning that happens a sort of shift
in the reference frame, that is, each neighbor of a burning tree temporarily becomes a
main site. After that, the spread () function assesses which of the treeR sites are eligible
for ignition, copy them as tree objects and move to the tree vector, where they are
placed along side the treeS sites found in that same neighborhood and the fire site that
acted as seed. The function unite () (Figure 4.3.2) was designed for bonding together
the vectors resulting of each active site, it also identifies and gets rid off duplicated
tree objects and for doing so it makes use of modified versions of the functions Comp ()
and Equal (), both from the default library <algorithm>. After all neighbors of fire
sites have been swept and their object version been allocated in the vector of lammable
trees, they are properly updated: fire sites turn to ash, whereas treeS and treeR sites
turn to fire. At last, the new states are updated in the state matrix. The main point of
applying the described functions is that at each step there is no algorithm sweeping the
whole matrix looking for burning trees, but instead the fire sites are tracked down from

the very moment of the first ignition (lightning strike).
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////7 f() for <vector> of trees - (L/R)HS = (left/right) hand side
bool Comp(tree lhs, tree rhs ){ //Compare LHS and RHS
if((lhs.get x())==(rhs.get x())) return (lhs.get y())<(rhs.get y());
else return (lhs.get x())<(rhs.get x());
//IT X equal, ordering using y.
//else, ordering using x

}

bool Equal(tree lhs, tree rhs){ //LHS=RHS, if both coordinates are equal.
return (lhs.get x())==(rhs.get x())&&(lhs.get y())==(rhs.get y());
}

/1177

vector<tree> unite(vector<tree> X,vector<tree> Y){
//unites two vectors but erases duplicated elements

int ns=X.size(); int nr=Y.size();

vector<tree> V(ns+nr);

merge (X.begin(),X.end(),Y.begin(),Y.end(), V.begin(), Comp);
sort (V.begin(),V.end(), Comp);

V.erase( unique( V.begin(), V.end(), Equal ), V.end() );

return V;

}

//end func unite

Figure 4.3.2 — Declaration of functions Comp (), Equal () and unite (). The first two
are modified versions of default functions from the <algorithm> library.

As an open system, throughout the dynamics particles are always coming in and
out of the system. The particle interactions through the different stages of the simulation
requires a balance, i.e. a conservation law. The total number of sites must be conserved, that
is, at the end of each fire the number of trees, treeS and treeR states, plus the number of
empty and block must remain equal to number of cells, Ny ces +Niree R+ Nempty +Notock = L2
This might sound as an obvious comment, but if this relation is not well defined it can, for
example, mislead the procedure of finding the system’s stationary state, since it depends
on the total density of trees, p = (Nirees + Niveer)/ L.

4.4 Stationary state

A stochastic process is said to be stationary, if the probability distribution of a
certain observable is explicitly time independent[48]. It means that the moments of the

distribution must not depend on the time variable ¢, that is

jt(X» =0, (4.3)
where (X;) is the ith moment of the distribution. This definition of stationary state is
very restrictive and in natural phenomena is quite unusual to find a system with such
peculiarity. Therefore, a system is said to be weakly stationary if its first and second
moments (mean and variance) are not explicitly dependent of time. So, it must satisfy the

conditions J J
—(Xy) = —(X5)=0. 4.4
dt< 0 =0, dt< 2) =0 (4:4)
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In the present work, the world stationary always refers to a weakly stationary
process. By the way, it is appropriate to recall that stationary state and absorbing state
are not interchangeable terminologies. The last refers to a process that got stuck in a
particular configuration of the system, that is, it was absorbed by a state at which the

probability of transition to another state is null[105].

The density of trees in the forest-fire models has much to say about the underlying
dynamics. As seen in Figure 4.1.1, depending on the parameter R, the system can perform
either great fires — displaying a highly fluctuating density— or smaller fires — mostly with
density increasing monotonically. In Figure 4.4.2 it can be observed how densities reach

the stationary state.
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Figure 4.4.1 — Density mono-log plot. Total density p (purple), treeS density ps (orange),
treeR density pr (green). Parameters: 2-Moore, R = 5, L = 3 x 10,
©=225%x10°,5s=0,p=02and ¢g=0.5.

The process of detecting the stationary state is divided in three steps. First, it
is made a copy of the raw data, in which is registered the quantity of treeS and treeR
after each fire. Then, these quantities are summed and normalized by the lattice size L2,
0 = (Nirees + Nireer)/L?. Secondly, the mean value {p) and the standard deviation o(p)
are evaluated at each set of 10 elements, i.e. 10* density values (p(t;)). At last, it is done
a linear regression (using x? method) for every set of 10 values of both the mean and the

standard deviation, which returns two fitting lines,

Yi=o T+ p;. (4.5)
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The system is said to be stationary if both slopes of fitting lines a; and as are lower than
a certain threshold aypresn, that is a; < Qupresn and as < presn. In order to have the
same threshold for systems with different parameter R, it was settled a threshold value
Qehresh = 2 X 1078, As the statistics is calculated in an interval At = 10° and pae = 1,
the secant in this region is pyae /At = 107°. Hence, the threshold parameter is 0.02% of

the slope of the secant that crosses the region used in the statistics.
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Figure 4.4.2 — Mean (p) and standard deviation o of the total density of trees. Parameters:
2-Moore, R=5,L =3 x10* 6 =225x10°, s=0,p=0.2and ¢ =0.5.

441 On the lattice size

Issues related to the finite size of the sample are present in most complex systems;
at criticality, the long-range correlation lengths become bound by the system size (subsec-
tion 3.2.3,Equation 3.52). Whenever the system is restrained by a relatively small lattice,
the long-range correlations may not emerge its full output, which yields some misleading
results. The first fire-size measures on the enlarged neighborhood were a bit deceiving
because of finite-size effects|[77, 78]. The plots of the total density varying with the lattice
size suggest that the system with R = 6 (Figure 4.4.4) has a robust absorbing state, while
for R =5 (Figure 4.4.3) the absorbing state does not linger as the lattice size is increased.
The parameter © is set proportional to the lattice size, i.e. © = (2.5 x 107*) x (L?). The
quantitative results for lattices L = 20,000 and L = 30,000 ensures that both are reliable

enough to be used in the simulations with 2-Moore and 3-Moore neighborhoods.
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Figure 4.4.3 — Total density p(ty) mono-log plot for each linear lattice size L. Parameters:
2-Moore, R=5,0 = (2.5 x 107%) x (L?),s=0,p=0.2,¢=0.5.
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Figure 4.4.4 — Total density p(t;) mono-log plot for each linear lattice size L. Parameters:
2-Moore, R =6, 0 = (2.5 x 107%) x (L?),s=0,p=0.2,¢=0.5.
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4.42 Mean sprouting rate

The addition of trees with relatively high resistance has changed the dynamic role
of the © parameter. As the lattice becomes asymptomatically full, having most of its sites
filled with treeR, the mean fire size is drastically decreased. Therefore, it is left even less
empty sites that would be eligible for receiving a tree during the sprouting stage. This can
be pictured by evaluating the mean influx of tree, that is, the mean sprouting rate, (®;,).

The sprouting rate ®;,, at firestep ¢y, is given by the Equation 4.6 below,
[Cbm - (I)out]tf = [MreeR + /\/‘treeS]tf - [MreeR + /\/’treeS]t.f—l ) (46)

where the r.h.s. term is the total number of trees at firestep ¢; minus the total number
of trees at the previous firestep (¢ — 1). The rate of trees that leave the system ®,,;, at
firestep ty, is simply the fire size at this same firestep. In the original model (DS-FFM), this
effect is not of concern, because the low stationary density does not imply such correlation.

As the parameter R increases, the correlation becomes stronger. See Figure 4.4.5.
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Figure 4.4.5 — Plot of the mean density (p) and the mean sprouting rate normalized by the
parameter O, (®;,)/0. Parameters: 2-Moore, L = 3 x 10%, © = 2.25 x 10%,
s=0,p=0.2,¢g=0.5.

This chapter was concerned with introducing the generalized forest-fire model and
explains most of its details. Some relevant results, such as fire-size distributions, will be

presented in the next chapter.
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Chapter 5

Results

“Data-driven predictions can succeed — and they can fail.
It is when we deny our role in the process that the odds of failure rise.”
Nate Silver'

The proposed generalized model (section 4.2) has many parameters that, at some
point of view, can be considered as control parameters. Indeed, the combination of r, s,
R and ¢ implies in several possible configurations. In the results presented throughout
this chapter, it was regarded that each tree has equal probability of sprouting either as a
resistant tree (treeR) or as a susceptible tree (treeS), i.e. ¢ = 0.5 — the ¢ parameter has
been extensively explored by Camelo-Neto and Coutinho[25]. Firstly, it will be analysed
the role of the enlarged 2-Moore neighborhood (section 5.1). Thereafter in section 5.2,
it will be presented the avalanche size distributions due to the 3-Moore neighborhood.
In section 5.3, a particular configuration (2-Moore neighborhood with R = 5) will be
considered for testing the effect of the forbidden sites (block state sites). The chapter ends

with a brief discussion about the results and perspectives for upcoming research (77?).

5.1 On enlarged neighborhoods: 2-Moore

The fires-size distributions for the first enlarged neighborhood (i.e. 2-Moore neigh-
borhood) presents higher values of R displaying a power-law behavior, which was expected
since the number interactions for each site has risen from 8 to 24 neighbors. All values of
R < 5 are characterized by scale invariance in the avalanche size distribution, which seems
a bit awkward because R = 5 shows a dense stationary state with (p) ~ 0.737 £ 0.004
(Figure 5.1.1). For values of R > 7, the system is fully dense of resistant trees and the
fire sizes are much smaller than the lattice size, i.e. S < L?, and are characterized by a
heavy-tailed distribution (Figure 5.1.2).

T From “The Signal and the Noise: Why So Many Predictions Fail — But Some Don’t”[92].
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Figure 5.1.1 - Total density p(¢;) mono-log plot. Parameters: 2-Moore, L = 3 x 10%,
©=225%x10°,5s=0,p=02and ¢g=0.5.
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Figure 5.1.2 — Cumulative fire-size distributions. Parameters: 2-Moore, L = 3 x 10*, © =
2.25 x 10°, s = 0 and ¢ = 0.5. There were analysed nearly 10° fires in the

stationary state for each value of R.
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At R = 6, the system is also fully dense of resistant trees, but the fire-size
distribution shows a crossover between a steep slope region and a plateau, before decaying
as a finite-size cut-off. This crossover bevahior in the fire-size distribution has not been
observed previous models (DSFFM, FFMRT). Although the system with R = 6 constrains
long-range fire spread, it allows ‘fire-clusters’ 10 times larger than other fully dense

(resistant) configurations (R > 7).

5.1.1 2-Moore neighborhood: R =5

As shown by the density time series of the system with 2-Moore neighborhood
and parameter R = 5 (Figure 4.4.2), at the stationary state it is densely occupied by
trees: nearly 60% of the lattice is occupied by resistant trees, whereas approximately 13%
is occupied by susceptible trees. In the snapshots of Figure 5.1.3 and Figure 5.1.4, the
largest ‘fire-clusters’ — in a time interval of At; = 10? fires — at the stationary state were
captured. It should be observed that due to the lattice high density, the ‘fire-clusters’ have
some compact regions connected by narrow clusters, which in percolation theory are called
blobs and linkers|36], respectively. The combination of these geometrically distinct clusters
ensures a greater level of permeation of the fire, despite the high density of resistant trees

(treeR) in this configuration.

Figure 5.1.3 — The largest ‘fire-cluster’ in a time interval of Aty = 107 firesteps, at the
stationary state. Window area: 2165 x 1876. Parameters: 2-Moore, R = 5,
L=10% 0 =25x10% s =0and ¢ = 0.5. State colors: empty sites (black),
treeS (yellow), treeR (green), fire (red).
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Figure 5.1.4 — The largest ‘fire-cluster’ in a time interval of A¢; = 10* firesteps, at the
stationary state. Window area: 1833 x 2238. Parameters: 2-Moore, R = 5,
L =10% 06 =25x10% s =0and ¢ = 0.5. State colors: empty sites (black),
treeS (yellow), treeR (green), fire (red).
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For the 2-Moore neighborhood case with R = 5, the fitted avalanche size exponent
is 74 ~ 1.155, which is slightly lower than the exponents previously found: 7, ~ 1.184 and
T, ~ 1.181, considering 1-Moore neighborhood with R = 2 and R = 1, respectively[25].
The relation 7, = 2 — (1/A;) (Equation 3.55), originally derived from the moment analysis

method, was applied in order to estimate the cut-off exponent, Ay ~ 1.183.
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Figure 5.1.5 — Fitted fire-size distribution Py(S;0) = as S'"™ exp( S/ b,0*), with a, =

0.85, by = 0.4, 7, ~ 1.155, Ay ~ 1.183. The points S; = 10 and S, = 10*
(black dots) determine the region of the power-law fitting (black dashed
line). Parameters: 2-Moore, R =5, L = 3 x 10*, © = 2.25 x 10°, s = 0 and
q = 0.5. There were analysed nearly 10° fires in the stationary state.

5.1.2  2-Moore neighborhood: R =6

The effect of the variation of the © parameter on a fixed size lattice (L = const) has
already been studied independently by Grassberger[46] and by Jensen and Pruessner[82],
in the context of the DSFFM, and by Camelo-Neto and Coutinho[25], in the context of
the FFMRT. Hence, the effect of the © parameter solely will be considered only for the
crossover distribution due to the 2-Moore, R = 6 configuration. For forest-fire simulations
exhibiting distributions with power-law regions, as the parameter © is increased the
distribution cut-off tail is shifted towards higher fire-size values, which is expected since the
scaling function depends on © —i.e. G,(S;0) = exp(S /b,0":). Otherwise, for relatively
high resistances of trees in the FFMRT, the fire-size distribution is not bounded neither

by the system size L? nor by the © parameter, therefore the distribution P,(S; ©) stays
unchanged as the © parameter is increased.
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For the configuration with 2-Moore neighborhood and parameter R = 6, the ©
parameter not only pushes the distribution cut-off tail to higher ‘fire-cluster’ sizes S, but
also pulls the distribution curve to more frequent large fires, lowering the avalanche size
exponent 7, and breaking the crossover curve. In Figure 5.1.6, the crossover behavior is
more evident in the the black curve (Figure 5.1.6) — which has the same ratio L?/© = 4x 10?
as the R = 6 curve in Figure 5.1.2. Despite the power-law region found in the green curve
(© = 100,000), its cut-off region is far from the expected finite-size cut-off effect. For
example, consider a system with 2-Moore neighborhood, R = 5, L = 10%, © = 25,000,
the maximum fire size Syae 18 Spee(R = 5) ~ 8 x 10°, which would be even higher in
case © = 100, 000. Considering the same parameters but R = 6 instead (black curve in
Figure 5.1.6), the maximum fire size does not even reach 10* (i.e. S (R = 6) < 10%),
suggesting that the finite-size cut-off for the 2-Moore, R = 6 case is due to clumps of
resistant trees that became static, impermeable clusters, thus decreasing the effective

lattice size.
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Figure 5.1.6 — Cumulative fire-size distributions. Parameters: 2-Moore, R = 6, L = 10%,
s =0and g = 0.5, for all cases. There were analysed nearly 10® fires in the
stationary state for each value of the © parameter.

As observed previously in 2-Moore neighborhood with R = 5, the ‘fire-clusters’
in R = 6 are composed by blobs and linkers that can be easily identified due to much
smaller firesizes. In Figure 5.1.7, it can also be noticed that clumps of resistant trees have

assembled inside the burnt clusters.
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Figure 5.1.7 — The largest ‘fire-cluster’ on the same time interval of At; = 10* at the

stationary state, but with different values of the © parameter: © = 2.5 x 104
(top left), © = 5 x 10* (top right) and © = 10° (bottom). Parameters:
2-Moore, R = 6, L = 10*, s = 0 and ¢ = 0.5, for all cases. State colors:
empty sites (black), treeS (yellow), treeR (green), fire (red).
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5.2 On enlarged neighborhoods: 3-Moore

The simulations with the 3-Moore neighborhood display a power-law behavior dis-
tribution for R < 9, whereas heavy-tailed distributions are found for R > 11 (Figure 5.2.1).
The configuration due to R = 10 has a crossover behavior similar to that exhibited by the
2-Moore, R = 5 case. Though the similarities, the plateau region in 3-Moore, R = 10 is
wider, that is, it is much stretched. If the slope 7, of these curves are indeed related to its
clusters’ fractal dimension, the wider plateau region suggests more compact ‘fire-clusters’
than in the 2-Moore, R = 5 case — this assumption agrees with the percolation threshold
of both neighborhoods (Figure 4.2.2 and Figure 4.2.3).
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Figure 5.2.1 — Cumulative fire-size distributions. Parameters: 3-Moore, L = 2 x 10*, © =
10°, s = 0 and ¢ = 0.5 . There were analysed nearly 10° fires in the stationary
state for each value of R.

5.3 On forbidden sites

In order to test the effect of forbidden sites over the avalanche size distribution,
it has been chosen the 2-Moore, R = 5 configuration, because it was the fastest running
simulation among those displaying a power-law behavior. Throughout this section, the
results refer to systems with 2-Moore neighborhood and parameter R = 5. The total
density of trees in the s = 0.2 case (Figure 5.3.3) behaves similar to the 2-Moore, R=6
density curve (Figure 5.1.1). In both cases, the system becomes fully dense around ¢; = 10°.

The density curve for s = 0.1 follows a much different trend from the time series that have
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been presented so far. In this case, the density increases until almost reaching a complete
occupation p &~ 0.86 (< pmae = 0.9). Thereafter, it decays towards a stationary state that
fluctuates around p = 0.75 — theses fluctuations are smaller that the case without block
sites. The snapshots in Figure 5.3.1 show smaller clusters of empty sites in s = 0.1 than in
the s = 0 case. There are almost no empty sites at the s = 0.2 case. In a detailed snapshot

(Figure 5.3.2), it is not possible to identify any difference between s = 0 and s = 0.1 cases.

(a) s=0 (b) s=0.1 (c) s=0.2

Figure 5.3.1 — Snapshots of a forest-fire lattice at the stationary state. Parameters: 2-
Moore, R =5, L = 10*, © = 2.5 x 10*, p = 0.2 and ¢ = 0. State colors:
empty sites (black), treeS (yellow), treeR (green), block (blue).

(a) s=0 | (b) s =0.1 o (c) s=0.2

Figure 5.3.2 — Fragments of a forest-fire lattice at the stationary state. Window: L, =
[1;1,000] and L, = [1;1,000], for each respective lattice (Figure 5.3.1).
Parameters: 2-Moore, R =5, L = 10*, © =25 x 10*, p=0.2and ¢ = 0.
State colors: empty sites (black), treeS (yellow), treeR (green), block (blue).

The avalanche size distributions are plotted in Figure 5.3.4. The fire-size distribution
for s = 0.1 presents more frequent ‘fire-clusters’ between S = 10 and S = 4 x 10, than the
case with no block sites (s = 0), suggesting a lower avalanche size exponent 7. It can also
be noticed that the cut-off exponent )\, is reduced as the effective lattice size decreases,
but it still not restraining large ‘fire-clusters’. The restraining effect of the forbidden sites

turns evident for s = 0.2.
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Figure 5.3.3 - Total density p (¢;) mono-log plot. Parameters: 2-Moore, R = 5, L = 2 x 10%,
©=10°,p=02and ¢=05.
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Figure 5.3.4 — Cumulative fire-size distributions. Parameters: 2-Moore, R = 5, L = 2 x 10%,
© = 10° and ¢ = 0.5. There were analysed nearly 10° fires in the stationary

state for each value of s.
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These results do not clarify whether the narrower ‘fire-clusters’ are due to a
perimeter constrain or simply because of the absence of trees at the block sites, which
would be accounted to the fire size. Henceforth, it must be considered a dichotomy between
avalanche size and avalanche area, that is, fire size and fire area shall be regarded as

distinct measures in this new framework with forbidden sites (block sites).

Before any further assumptions about the role of forbidden sites, it is required
an investigation about the static percolation of the lattice with 2-Moore, R = 5. A brief
research showed that, in this framework, the ‘percolation’ curves are distinct from those
due to ‘homogeneous’ static percolation (Figure 5.3.5). Moreover, for studying static
percolation in the resistant, highly correlated lattice yielded by the forest-fire model it will

be required a control parameter rather than the static percolation density parameter p.
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Figure 5.3.5 — Normalized mean of the maximum cluster size for r-Moore neighborhoods.
The effective density is given by peg = (1 — s) x p. There were run 100

samples with linear size L = 1,000 and periodic boundary conditions.
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5.4 Conclusion and perspectives

The forest-fire model with resistant trees (section 4.2) yields two distinct phases
depending on the resistance parameter R: an active phase with fire-size distributions
displaying power-law behavior (R < 3), and another phase that leads the system to an
absorbing state where the largest fire size is far below the system size, i.e. Sye. < L2,
showing ‘heavy-tailed’ distributions (R > 3). In this work, it was reported that the
generalized model with enlarged neighborhoods (2-Moore and 3-Moore) and no forbidden

sites (s = 0) also displays these two distinct phases.

The absorbing states are related to relatively high resistance parameter, for instance
R > 7 in 2-Moore template and R > 11 in 3-Moore template. As the resistance R increases,
resistant trees are more likely to be stable since it sprouts and, hence, only susceptible
trees are removed by the fire spread. As the lattice becomes full of resistant trees, the
normalized sprouting rate tends to zero, i.e. (®;,/©) — 0 (subsection 4.4.2), due to lacking
of empty sites. The dense forest is also a result of the absence of natural death, the model
supposes that trees will die from no other reason but consumed by a wildfire. Therefore, it
seems reasonable to think about whether the system will remain in this absorbing state

when natural death is considered.

The © parameter sustains the active phase, which is characterized by a fluctuating
density and fire-size distributions with power-law signatures, retrieving some results to
be compared with DSFFM and other SOC models (Figure 5.1.5). As the parameter R
is increased, from R = 1 to R = 5 and from R = 1 to R = 9, with 2-Moore and 3-
Moore neighborhoods, respectively, the fluctuations decrease and, moreover, the stationary

densities rise, yielding nearly dense forests.

Some isolated behavior had been reported for FFMRT with Moore neighborhood
and parameter R = 3[25]. Similarly, it was found an unique cross-over behavior on the
fire-size distribution for 2-Moore, R = 6 and 3-Moore, R = 10 frameworks, suggesting
bimodal distributions. At these configurations, the system is fully dense (p — 1), but were

observed larger fires than those occurred in absorbing states (subsection 5.1.2).

As the forbidden sites (block sites) were introduced in the model, it came to surface
a need for measuring the total fire area. The size of the ‘fire-clusters’ decrease as the
fraction of block sites is raised, as expected. Nonetheless, it is not clear whether the
decrease is due to block sites restraining the fire or due to missing accountable trees.
A fire-area measure compared to the fire sizes would indicate either or both as causes.
Another fundamental question is related to the static percolation with heterogeneous
populations. As seen in Figure 5.3.5, the system with resistant trees does not follow the
typical profile of the incipient cluster curves. Heterogeneous static percolation and its

properties must be studied in detail, as well as percolation on forests yielded by the model.
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In spite of the results presented throughout this work, the generalized forest fire
model still lacking some important features such as wind-driven fires, fire intensity regimes
and tree natural death, which may be considered in future investigations. However, before
including new features, it seems essential to research on ‘forest-fire’ static percolation and
implement other measures rather than avalanche size and duration, such as fire area and

fractions of resistant and susceptible trees accounted within each ‘fire-cluster’.
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