
“A Bug Report Analysis and Search Tool”

By

Yguaratã Cerqueira Cavalcanti
M.Sc. Dissertation

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, JULY/2009

www.cin.ufpe.br/~posgraduacao

Universidade Federal de Pernambuco

Centro de Informática
Pós-graduação em Ciência da Computação

Yguaratã Cerqueira Cavalcanti

“A Bug Report Analysis and Search Tool”

Trabalho apresentado ao Programa de Pós-graduação em
Ciência da Computação do Centro de Informática da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtenção do grau de Mestre em Ciência da Computação.

A M.Sc. Dissertation presented to the Federal University of
Pernambuco in partial fulfillment of the requirements for the
degree of M.Sc. in Computer Science.

Advisor: Silvio Romero de Lemos Meira
Co-Advisor: Eduardo Santana de Almeida

RECIFE, JULY/2009

Cavalcanti, Yguaratã Cerqueira.
 A bug report analysis and search tool / Yguaratã
Cerqueira Cavalcanti. - Recife : O autor, 2009.
 xiii, 109 folhas : il., fig., tab.

 Dissertação (mestrado) - Universidade Federal
de Pernambuco. CIN. Ciência da Computação, 2009.

 Inclui bibliografia, glossário e apêndice.

 1. Engenharia de software. 2.Gerenciamento de
configuração de software. 3.Manutenção de software.
I. Título.

 005.1 CDD (22.ed.) MEI-2009-096

I dedicate this dissertation to myself and all my family,
friends and professors who gave me all necessary support to

get here.

Acknowledgements

I would like to thank and dedicate this dissertation to the following people:

My Familly My mother Luiza, my father Cícero, my brothers Tayguara and Nick,
Adriana, João, my niece Isys

My friends from Maceió Hugo, Marcelo, Laudeci, Alberto, Fernando, Luis Antonio,
Igor, Camila Sousa, Melina, Carla, Juliano, Eduardo Cardoso

My friends from UFPE Lucas Lima, Edurado Ribas, Edeilson, Paulo Moura, Daniel,
Petrus, Mario Godoy, and Danuza

My friends from Recife Diego Cardozo, Thiago Xupeta, People from Casa do Mar,
Geovane, Robson, Rogério Nibon, Manoel Moura, Maíra Rodrigues and her family,
Maíra Gamarra, Daniel Queiroga, Vitor Hora

My adivisors Eduardo Almeida and Silvio Meira

All people from RiSE

I would like to especially thank Eduardo Almeida, who never gave up on our work
and always helped me every step of this dissertation.

Finally, I am sorry if you think your name should be listed here and it is not, but I
cannot remember all people I met during these years. Because of that, I think that the
acknowledgements of a dissertation should be written/updated during all the period of a
M.Sc./Ph.D (or any other course). There is a lot of people we met during this time that
contributed very much to our growth (even with a little kind word) and should be listed
here.

iv

I open my eyes each morning I rise, to find a true
thought, know that it’s real, I’m lucky to breathe,

I’m lucky to feel, I’m glad to wake up, I’m glad to be
here, with all of this world, and all of it’s pain, all

of it’s lies, and all of it’s flipped down, I still
feel a sense of freedom, so glad I’m around,

It’s my freedom, can’t take it from me, i know it, it
won’t change, but we need some understanding, I know

we’ll be all right.
—S.O.JA. (Open My Eyes)

Resumo

Manutenção e evolução de software são atividades caracterizadas pelo seu enorme custo e
baixa velocidade de execução. Não obstante, elas são atividades inevitáveis para garantir
a qualidade do software – quase todo software bem sucedido estimula os usuários a fazer
pedidos de mudanças e melhorias. Sommerville é ainda mais enfático e diz que mudanças
em projetos de software são um fato. Além disso, diferentes estudos têm afirmado ao
longo dos anos que as atividades de manutenção e evolução de software são as mais caras
do ciclo de desenvolvimento, sendo responsável por cerca de até 90% dos custos.

Todas essas peculiaridades da fase de manutenção e evolução de software leva o
mundo acadêmico e industrial a investigar constantemente novas soluções para reduzir os
custos dessas atividades. Neste contexto, Gerência de Configuração de Software (GCS) é
um conjunto de atividades e normas para a gestão da evolução e manutenção de software;
GCS define como são registradas e processadas todas as modificações, o impacto das
mesmas em todo o sistema, dentre outros procedimentos. Para todas estas tarefas de
GCM existem diferentes ferramentas de auxílio, tais como sistemas de controle de versão
e bug trackers. No entanto, alguns problemas podem surgir devido ao uso das mesmas,
como por exemplo o problema de atribuição automática de responsável por um bug report

e o problema de duplicação de bug reports.
Neste sentido, esta dissertação investiga o problema de duplicação de bug reports

resultante da utilização de bug trackers em projetos de desenvolvimento de software. Tal
problema é caracterizado pela submissão de dois ou mais bug reports que descrevem
o mesmo problema referente a um software, tendo como principais conseqüências a
sobrecarga de trabalho na busca e análise de bug reports, e o mal aproveitamento do
tempo destinado a essa atividade.

Palavras-chave: relatos de bug, gerenciadores de relatos de bug, relatos de bug du-
plicados, requisição de mudança, experimento, estudo de caracterização, ferramenta,
busca

vi

Abstract

Software maintenance and evolution are characterised by their huge cost and slow speed
of implementation. Yet they are inevitable activities – almost all software that is useful and
successful stimulates user-generated requests for change and improvements. Sommerville
is even more emphatic and says that software changes is a fact of life for large software
systems. In addition, a set of studies has stated along the years that software maintenance
and evolution is the most expensive phase of software development, taking up to 90% of
the total costs.

All those characteristics from software maintenance lead the academia and industry
to constantly investigate new solutions to reduce costs in such phase. In this context,
Software Configuration Management (SCM) is a set of activities and standards for
managing and evolving software; SCM defines how to record and process proposed
system changes, how to relate these to system components, among other procedures.
For all these tasks it has been proposed different tools, such as version control systems
and bug trackers. However, some issues may arise due to these tools usage, such as the
dynamic assignment of a developer to a bug report or the bug report duplication problem.

In this sense, this dissertation investigates the problem of bug report duplication
emerged by the use of bug trackers on software development projects. The problem of
bug report duplication is characterized by the submission of two or more bug reports
that describe the same software issue, and the main consequence of this problem is the
overhead of rework when managing these bug reports.

Keywords: bug reports, bug trackers, bug report duplication, change request, tool
experiment, bug report duplication characterization study, bug report search and analysis
tool

vii

Contents

1 Introduction 2
1.1 Motivation . 3
1.2 Problem Statement . 5
1.3 Overview of the Proposed Solution . 5

1.3.1 Context . 5
1.3.2 Outline of the Proposal . 8

1.4 Out of Scope . 8
1.5 Statement of the Contributions . 8
1.6 Organization of the Dissertation . 9

2 Software Configuration Management 11
2.1 Introduction . 11
2.2 SCM General Concepts . 13
2.3 Change Management Overview . 14
2.4 Summary . 15

3 The State of the Art 16
3.1 Introduction . 16
3.2 Bug Reports Similarity . 17

3.2.1 Automated Support for Classifying Software Failure Reports . . 17
3.2.2 Assisted Detection of Duplicate Bug Reports 18
3.2.3 Detection of Duplicate Defect Reports Using Natural Language

Processing . 18
3.2.4 An Approach to Detecting Duplicate Bug Reports Using Natural

Language and Execution Information 19
3.3 Dynamic Assignment . 20
3.4 Evolution and Traceability . 21
3.5 Impact and Effort Analysis . 22
3.6 Bug reports Quality . 22
3.7 Summary . 23

4 The Bug Report Duplication Problem 24
4.1 Introduction . 24
4.2 Definition of the Study . 25

viii

4.3 Projects and Data Selection . 30
4.4 Study Execution . 31
4.5 Analysis and Interpretation . 32

4.5.1 Question 6: What are the possible factors that could impact on
the bug report duplication problem? 36

4.5.2 Main Findings on The Bug Report Duplication Problem 41
4.6 Lessons Learned . 42
4.7 Threats to Validity . 43
4.8 Summary . 43

5 BAST: Bug Report Analysis and Search Tool 45
5.1 Introduction . 45
5.2 The Set of Requirements . 46

5.2.1 Functional Requirements . 46
5.2.2 Non-Functional Requirements 47

5.3 Tool Architecture Overview . 47
5.4 Architecture Components . 48
5.5 Bug Report Analysis and Search Tool (BAST) Search Features 52

5.5.1 Ranking and Indexing – Vector Space Model 52
5.5.2 Queries . 53
5.5.3 BAST User Interface . 54

5.6 Implementation . 54
5.7 BAST in Action . 55
5.8 BAST Advantages over Other Tools 56
5.9 Summary . 57

6 Case Study at C.E.S.A.R. 58
6.1 Introduction . 58
6.2 Definition . 58
6.3 Planning . 60
6.4 Result Analysis . 61

6.4.1 Analysis of the First Treatment 62
6.4.2 Analysis of the Second Treatment 63
6.4.3 Analysis of the Whole Period 66
6.4.4 Analysis Conclusion . 67

6.5 Lessons Learned . 68

ix

6.6 Summary . 69

7 BAST Empirical Evaluation Experiment 70
7.1 Introduction . 70
7.2 Definition . 71
7.3 Planning . 72
7.4 Operation . 77
7.5 Analysis and Interpretation . 78

7.5.1 Quantitative analysis . 78
7.5.2 Qualitative analysis . 82
7.5.3 Lessons Learned . 82
7.5.4 Conclusion . 83

7.6 Summary . 84

8 Concluding Remarks and Future Work 85
8.1 Research Contribution . 86
8.2 Future Work . 87

Bibliography 88

Appendices 94

A Experiment Instruments 95
A.1 Time sheet . 95
A.2 Questionnaire for Subjects Profile . 96
A.3 Form for Qualitative Analysis . 97

B Bug-reports Used in the Experiment 98
B.1 First List of Bug-reports Used in the Experiment 98

C Correlation Graphics 106

x

List of Figures

1.1 Example of a bug report . 4
1.2 RiSE Labs Influences . 6
1.3 RiSE Labs Projects . 7

2.1 General change process workflow . 14

4.1 Scenarios for rework in bug-repositories. Rework is represented in dark
blocks. 25

4.2 Bug reports grouping. 35
4.3 Absolute duplication ratio = duplicate bug reports/total bug reports. . . 35
4.4 Duplication ratio = duplicate bug reports/total bug reports. 36
4.5 Duplication, staff size, and submitters. The values for submitters and

staff size on the right side of the charts were reduced using Log10 for
better visualization and understanding. 37

4.6 Duplication and software size (Lines of Code (LOC)). 38
4.7 Duplication and software life-time. 39
4.8 Duplication and bug repository size 40
4.9 Submitter profiles and their contribution to duplication problem. 40

5.1 General Text Mining Architecture . 49
5.2 General Text Mining Architecture . 50
5.3 BAST Architecture . 51
5.4 BAST in Action . 55

6.1 Repository Status in First treatment 62
6.2 Duplicates found in the baseline tool and BAST in the first treatment . . 63
6.3 Time spent in searches for duplicates in first treatment 63
6.4 Repository Status in the Second treatment 64
6.5 Duplicates found in the baseline tool and BAST in Second treatment . . 65
6.6 Time spent in searches for duplicates in second treatment 65
6.7 Repository status . 66
6.8 Duplicates found in the baseline tool and BAST 67
6.9 Time spent in searches . 67

7.1 Experiment design . 75

xi

7.2 Box plot for time spent on analysis . 80
7.3 Box plot for duplicates avoided . 80

C.1 Correlation among experience and dependent variables 107
C.2 Correlation among projects and dependent variables 108
C.3 Correlation among bug-trackers and dependent variables 109

xii

List of Tables

2.1 Conducted studies along the years about software maintenance costs
(Koskinen, 2004). 12

4.1 Projects characteristics. The life-time is specified in years. 30
4.2 Questionnaire for bug report submitters. 32
4.3 Metrics summary. Maximum and minimum values are in bold and italic

respectively. 33

7.1 Subjects profile. 78
7.2 Collected data during the experiment. 79
7.3 Descriptive statistics. 79
7.4 T-tests applied with 95% of confidence to collected data. 81
7.5 Matrix of correlation. 81

A.1 Time sheet used in the study. 95
A.2 Questionnaire for bug-report submitters. 96
A.3 Questionnaire for qualitative analysis. 97

B.1 First list of bug-reports used in the experiment 98
B.2 Second list of bug-reports used in the experiment 102

xiii

Acronyms

AJAX Asynchronous JavaScript and XML

BAST Bug Report Analysis and Search Tool

BTT Bug Report Tracker Tool

BRN Bug Report Network

CCB Change Control Board

C.E.S.A.R. Recife Center For Advanced Studies and Systems C.E.S.A.R.
(http://www.cesar.org.br) is a CMMi level 3 company with
around 700 employees

FR Functional Requirement

GQM Goal Question Metric

LOC Lines of Code

NFR Non-Functional Requirement

NLP Natural Language Processing

ORM Object-Relational Mapper

RiSE Reuse in Software Engineering Group http://www.rise.com.br

SCM Software Configuration Management

SD Standard Deviation

TF-IDF Term Frequency-Inverse Document Frequency

UFPE Federal University of Pernambuco

VSM Vector Space Model

WAD Work as Design

XP eXtreme Programming

1

http://www.cesar.org.br
http://www.rise.com.br

1
Introduction

Um passo à frente e você não está mais no mesmo lugar

One step forward and you are not in the same place

—CHICO SCIENCE (Um Passeio No Mundo Livre, Afrociberdelia)

Software maintenance and evolution are characterised by their huge cost and slow
speed of implementation. However they are inevitable activities – almost all software that
is useful and successful stimulates user-generated requests for change and improvements
(Bennett and Rajlich, 2000). Sommerville (Sommerville, 2007) is even more emphatic
and says that software changes is a fact of life for large software systems. In addition, a
set of studies (Huff, 1990; Moad, 1990; Eastwood, 1993; Erlikh, 2000) has stated along
the years that software maintenance and evolution is the most expensive phase of software
development, taking up to 90% of the total costs.

All of these characteristics from software maintenance leaded the academia and
industry to investigate constantly new solutions to reduce costs in such phase. In this
context, Software Configuration Management (SCM) is a set of activities and standards
for managing and evolving software, defining how to record and process the proposed
system changes, how to relate these to system components, among other procedures. For
all these tasks, it has proposed different tools, such as version control systems and bug
trackers (Sommerville, 2007). However, some issues may arise due to these tools usage.
In this work, the focus are the issues from bug trackers, as it will be discussed along this
dissertation.

The remainder of this chapter describes the focus of this dissertation and starts
by presenting its motivation in Section 1.1 and a clear definition of the problem in
Section 1.2. An overview of the proposed solution is presented in Section 1.3, while

2

1.1. MOTIVATION

Section 1.4 describes some related aspects that are not directly addressed by this work.
Section 1.5 presents the main contributions and, finally, Section 1.6 describes how this
dissertation is organized.

1.1 Motivation

Aiming to improve change management processes, some organizations have used specific
systems (generally called bug-trackers) to manage, store and handle change requests
(also known as bug reports). A bug report is defined as a software artifact that describes
some defect, enhancement, change request, or an issue in general, that is submitted to
a bug tracker; generally, bug report submitters are developers, users, or testers. Such
systems are useful because changes to be made in a software can be quickly identified
and submitted to the appropriate people (Anvik et al., 2005).

Moreover, the use of bug trackers helps to monitor the software evolution, be-
cause bug reports are recorded in a database as well as people involved in a par-
ticular bug report are recorded. Thus, changes and their respective responsible can
be easily found. Organizations also use such systems to guide the development of
software, thus any task to be undertaken in the software development process must
be registered and monitored through a bug-tracker. In addition, the historical data
of these systems can be used as history and documentation for the software. Exam-
ples of such systems are Bugzilla (http://www.bugzilla.org), Mantis (http:
//www.mantisbt.org) and Trac (http://trac.edgewall.org).

Each bug report is stored with a variety of fields of free text and custom fields defined
according to the necessity of each project. In Trac, for example, it is defined fields for
summary and detailed description of a bug report. In the same bug report it can also
be recorded information about software version, dependencies with other bug reports
(duplicate bug reports, for example), the person who will be assigned to the bug report,
among other information. Moreover, during the life cycle of a bug report, comments can
be inserted to help solving it. Figure 1.1 shows an example of a bug report from Trac.

Some challenges have emerged through the use of bug trackers, among them, we can
cite: dynamic assignment of bug reports (Anvik et al., 2006), change impact analysis and
effort estimation (Song et al., 2006), quality of bug report descriptions (Ko et al., 2006),
software evolution and traceability (Sandusky et al., 2004), and duplicate bug reports
detection (Hiew, 2006). Each one of these issues are briefly described as follows:

• Dynamic assignment of bug reports is to detect (automatic or semi-automatically)
the best developer suited to solve a problem reported in a bug report;

3

http://www.bugzilla.org
http://www.mantisbt.org
http://www.mantisbt.org
http://trac.edgewall.org

1.1. MOTIVATION

Figure 1.1 Example of a bug report

4

1.2. PROBLEM STATEMENT

• Change impact analysis and effort estimation focus on calculating the impact of
a bug report in a project and calculating the necessary effort to solve it;

• Quality of bug report descriptions is to ensure that the submitted bug reports are
properly described;

• Software evolution traceability is concerned with the understanding what drives
the changes performed in the software along the time; and

• Duplicate bug reports detection consists in avoiding the submission of bug re-
ports that describe an already submitted issue.

The focus of this work is trying to avoid duplicate bug reports submission. The
problem of bug reports duplication is better explained and characterized in Chapter 4,
through a study which examines the factors that cause it and how it impacts on the
software development. Furthermore, the other challenges are further detailed on Chapter
3, where it is described the state-of-the-art of mining bug report repositories.

1.2 Problem Statement

The goal of this dissertation can be stated as follows:

This work investigates the problem of bug report duplication emerged by

bug trackers, characterizing it empirically to understand its causes and

consequences, and provides a tool for search and analysis of bug reports to

reduce the effort spent on such tasks.

1.3 Overview of the Proposed Solution

In order to reduce the effects of the bug report duplication problem, it was developed the
Bug Report Analysis and Search Tool (BAST). The remainder of this section describes
the context where it was developed and the outline of the proposal.

1.3.1 Context

This dissertation is part of the Reuse in Software Engineering Group (RiSE) (Almeida
et al., 2004), formerly called RiSE Project, whose goal is to develop a robust framework
for software reuse in order to enable the adoption of a reuse program. However, it is

5

1.3. OVERVIEW OF THE PROPOSED SOLUTION

influenced by a series of areas, such as software measurement, architecture, quality,
environments and tools, and so on, in order to achieve its goal. The influence areas are
depicted in Figure 1.2.

Figure 1.2 RiSE Labs Influences

Based on these areas, the RiSE Labs is divided in several projects, as shown in Figure
1.3. As it can be seen, this framework embraces several different projects related to
software reuse and software engineering. They are:

• RiSE Framework: Involves reuse processes (Almeida et al., 2004; Nascimento,
2008), component certification (Alvaro et al., 2006) and reuse adoption process
(Garcia et al., 2008).

• RiSE Tools: Research focused on software reuse tools, such as the Admire Envi-
ronment (Mascena, 2006), the Basic Asset Retrieval Tool (B.A.R.T) (Santos et al.,
2006), which was enhanced with folksonomy mechanisms (Vanderlei et al., 2007),
semantic layer (Durao, 2008), facets (Mendes, 2008) and data mining (Martins
et al., 2008), and the Legacy InFormation retrieval Tool (LIFT) (Brito, 2007);

• RiPLE: Development of a methodology for Software Product Lines (Filho et al.,
2008);

6

1.3. OVERVIEW OF THE PROPOSED SOLUTION

• SOPLE: Development of a methodology for Software Product Lines based on
services;

• MATRIX: Investigates the area of measurement in reuse and its impact on quality
and productivity;

• BTT: Research focused on tools for detection of duplicate bug reports, such as in
Cavalcanti et al. (2008). Thus, this work is part of the BTT research group;

• Exploratory Research: Investigates new research directions in software engineer-
ing and its impact on reuse;

• CX-Ray: Focused on understanding the Recife Center For Advanced Studies and
Systems (C.E.S.A.R.), and its processes and practices in software development.

This dissertation is part of the Bug Report Tracker Tool (BTT) project and its goal
is to provide a tool for search and analysis of bug reports with the objective of avoiding
duplicate bug reports submission. This work was conducted inside a group for software
reuse research, because the bug report duplication problem is more prone to appear when
different parts of software are being reused by different projects. A common case where
software reuse implies the submission of duplicate bug reports is when the concept of
Software Product Lines (Pohl et al., 2005) approach is used to develop software (Runeson
et al., 2007). In this context, different software projects share the same basis components,
and if some of these components are defective they will affect all software that use these
components, thus increasing the possibility of duplicate bug reports submission.

Figure 1.3 RiSE Labs Projects

7

1.4. OUT OF SCOPE

1.3.2 Outline of the Proposal

The proposed solution consists in a Web based application that enables people involved
with bug report search and analysis to perform such tasks more effectively. Although
bug report tracking process involves a complete cycle of finding errors, reporting them,
validating, fixing the problems and, finally, releasing the changes, the proposed solution
aims to assess only the reporting phase. However, the benefits of improving the reporting
phase of bug tracking can be reflected to the other phases also, since the time that is saved
in the reporting phase can be used to perform the tasks involved in other phases.

1.4 Out of Scope

• Quality of search results. The proposed solution uses a well-known model (Vector
Space Model (Salton et al., 1975)) to represent documents and perform searches
that better meets our necessity, however it is out of the scope of this work to analyze
how efficient is the model. Some discussion involving the efficiency of this model
can be found in the work of Salton et al. (1975);

• Impact on other phases of bug tracking process. Our solution concerns with the
reporting phase from bug tracking process. Thus, we are interested on how this
phase can be improved by the proposed solution. In this way, it is out of scope the
analysis and improvement of other phases;

• Type of users. Initially, the subjects of this work can be developers, testers or other
stakeholders with some technical background in software development, specially
using bug trackers. Thus, it is out of scope to provide a tool that supports all types
of users.

1.5 Statement of the Contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

A characterization of the bug report duplication problem. It was conducted an
extensive study about the duplication problem in order to confirm its existence, and
potential causes for bug report duplication.

8

1.6. ORGANIZATION OF THE DISSERTATION

An analysis of the state-of-the-art for mining bug report repositories. It presents
an overview of the work found in the literature that have mined specifically bug report
repositories, for all diverse purposes.

A solution for bug reports duplication. It specifies and implements a solution based
on Text Mining and Keyword search techniques (Baeza-Yates and Ribeiro-Neto, 1999),
with the objective of to reduce the effects of the bug report duplication problem.

Two empirical studies to validate the proposed solution. This dissertation also
presents a case study performed in a real environment for software development and test,
and an experiment performed with 18 subjects comparing BAST with a baseline tool.

In addition to the contribution mentioned, some papers presenting the findings of this
dissertation were produced:

• Cavalcanti, Y. C., Martins, A. C., de Almeida, E. S., and de Lemos Meira, S. R.
(2008a). Avoiding Duplicate CR reports in Open Source Software Projects. In The

9th International Free Software Forum (IFSF’08), Porto Alegre, Brazil.

• Cavalcanti, Y. C., de Almeida, E. S., da Cunha, C. E. A., Pinto, E. R., and Meira, S.
R. L. (2008b). The Bug Report Duplication Problem: A Characterization Study.
Technical report, C.E.S.A.R and Federal University of Pernambuco.

1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows;

Chapter 2 In this chapter, it is presented a general overview of SCM and change
management process. As bug trackers are tools to assess SCM activities, it is
important to contextualize it;

Chapter 3 In this chapter, it is presented the state-of-the-art on mining bug report
repositories. It details the work that have addressed the problem of bug report
duplication, and briefly describes some research concerning other issues, previously
mentioned, about bug trackers;

Chapter 4 This chapter characterizes the problem of bug report duplication. It describes
a study conducted with several projects (private and open source projects) in order
to understand the potential causes and consequences of the duplication problem;

9

1.6. ORGANIZATION OF THE DISSERTATION

Chapter 5 This chapter describes the proposed solution (BAST), discussing its de-
tails, the functional and non-functional requirements, architecture, implementation,
among other aspects;

Chapter 6 It describes a case study conducted in an private organization to evaluate
the tool. The tool was compared with a private baseline tool during a real cycle of
software tests;

Chapter 7 In this chapter it is described an experiment conducted with 18 subjects to
evaluate BAST, comparing it with another baseline tool;

Chapter 8 It concludes the dissertation, summarizing the findings of this work, and
discussing possible future work and research areas.

10

2
Software Configuration Management

Two steps forward and you are not in the same place as before.

—YGUARA (Chico’s Thought Evolution)

2.1 Introduction

For Pressman (2004) and Sommerville (2007) changes in software projects are inevitable
and consume practically most of the time and cost required to develop a software project.
According to a newest study (Erlikh, 2000), the necessary changes in a software project
may take up to 90% of total costs. Some of these changes could be: changes in business
rules, correction of errors, adapting the software to another environment, or even improve-
ments in the software performance. To emphasize the need for software maintenance and
its costs, Table 2.1 shows a summary of studies conducted along the years about the costs
involved in software maintenance.

The changes made in software characterize its stages of evolution and maintenance,
generally performed to fix errors. However, Sommerville (2007) argues that changes in
software projects are not only to correct errors, but mostly they are to change business
rules and add new features. Thus, this phase of development (the software changes) can
be seen as a spiral process, with requirements definition, design, implementation and
testing, and it continues along the existence of the software.

Because of its importance, the changes performed in some software must be carefully
planned and implemented so that chaos does not take place in the project. When changes
are made without following a minimal formal process, the software becomes skewed,
making the management of software development so difficult. For example, when

11

2.1. INTRODUCTION

Year Total costs Definition Reference
2000 >90% Software cost devoted to system maintenance &

evolution / total software costs
Erlikh
(2000)

1993 75% Software maintenance / information system budget
(in Fortune 1000 companies)

Eastwood
(1993)

1990 >90% Software cost devoted to system maintenance &
evolution / total software costs

Moad
(1990)

1990 60–70% Software maintenance / total management informa-
tion systems (MIS) operating budgets

Huff (1990)

1988 60–70% Software maintenance / total management informa-
tion systems (MIS) operating budgets

Port (1988)

1984 65–75% Effort spent on software maintenance / total avail-
able software engineering effort

McKee
(1984)

1981 >50% Staff time spent on maintenance / total time (in 487
organizations)

Lientz and
Swanson
(1981)

1979 67% Maintenance costs / total software costs Zelkowitz
et al. (1979)

Table 2.1 Conducted studies along the years about software maintenance costs (Koskinen, 2004).

the changes performed in a software are not registered somewhere, it is difficult to
determine which version of the software implements a specific functionality or solve any
particular issue. The lack of control over changes also complicates the planning of the
project, because the development team does not have a well defined set of activities to be
addressed.

In the context of distributed software development, the lack of change management
is even more serious. In this case, the development teams and/or individuals are geo-
graphically distributed, making more difficult the interaction between developers. Open
source projects are examples of distributed development, which makes it clear the need
for a systematic control of changes. For example, in an open source project, anyone can
suggest a change, report an error, or even modify the software in order to carry out the
requests mentioned. Without a systematic control of changes, people responsible for the
management of the project will not control the evolution of it.

Based on the context of this work and the importance of change management, this
chapter brings general concepts about Software Configuration Management (SCM). The
remain of this chapter is organized as follows: Section 2.2 presents general concepts
about SCM; in Section 2.3 it is presented concepts about the change management process
and systems to aid such activity; and Section 2.4 summarizes the chapter.

12

2.2. SCM GENERAL CONCEPTS

2.2 SCM General Concepts

As summarized by Pressman (2004), SCM is a set of activities designed to monitor
changes, identifying the products of work that can be modified by establishing relations
among them, defining mechanisms to manage the various versions of these work products,
controlling the changes imposed and making audit, and preparing reports on the changes
made.

Among the work products that can be modified, also called items of configuration, we
can mention: source code, requirements specification, architecture specification, and even
the document of SCM, among others. In general, all information produced throughout
the software development process can be an item of configuration. SCM also defines the
concept of baseline. According to the IEEE (IEEE Std. No.610.12-1990), a baseline is a

specification or product that was formally reviewed and approved to serve as a basis for

future development and that can be changed only through formal procedures of change

management.
Five activities can be clearly identified in a SCM process (Pressman, 2004):

• Identification. During the activity of identification, it is mapped out which prod-
ucts of software development process should be considered items of configuration.
In this activity, each item receives a name, the items can be organized according
to object oriented approach, and the relationships among the items should also be
identified.

• Version control. According to Sommerville (2007), a system version is an instance
of a system that differs, in some way, from other instances. Versions of the system
may have different functionality, enhanced performance or errors fixing. Version
control is just the activity of managing different versions of a software using
procedures and tools.

• Change management. The activity of managing change is responsible for moni-
toring requests for new features, correction of errors, improvements in performance,
among others. In the process of SCM, the changes are not restricted to source code,
but to all items of configuration of a software. This will be discussed in Section 2.3.

• Auditing. In the audit activity the items of configuration are reviewed to ensure
that they meet the specifications of the development process.

13

2.3. CHANGE MANAGEMENT OVERVIEW

• Reporting preparation. In the activity of preparing reports, documents are gen-
erated with the state of software configuration, describing: what happened, who
made, and what happened if other items of configurations had to be modified.

2.3 Change Management Overview

Change management, which is a sub-activity of SCM, is the process by which the
software evolution is managed. As mentioned previously, without a formal process to
drive software changes, monitoring the evolution of software is seriously compromised.
Generally, a process of change encompasses the activities of analysis of incoming changes,
planning the release, implementation of the changes, and release of the software to
customers.

Figure 2.1 shows a general process for change management. According to such
figure, there is the following workflow: firstly are made change requests (bug fixes,
improvements etc.); then it is done the impact analysis (which items of configuration have
changed, for example); next, it is time to plan which changes will be held for the next
release; the changes are implemented; and finally, the new software version is released to
customers.

Figure 2.1 General change process workflow (Sommerville, 2007).

The cycle showed in Figure 2.1 is repeated throughout the existence of the software.
Moreover, this cycle requires the participation of several people involved directly or
indirectly with the software development process. For example, change requests can
be requested by users, developers, testers, managers etc. People responsible for the
analysis of the changes also need to interact with those who have requested changes to
make clear possible doubts. In other words, a process for change management requires
synchronization of work and communication among people.

Processes such as RUP (Shuja and Krebs, 2007) and eXtreme Programming (XP)
(Succi, 2001) define some activities for change management. However, it is out of scope

14

2.4. SUMMARY

of this work to describe the details of such processes. Furthermore, the solution we
propose can be adopted in any process.

2.4 Summary

This chapter presented the importance of changes during the software life-cycle and
an overview about Software Configuration Management (SCM), which is responsible
for leading software evolution. It also described the Change Management activities
present in SCM, and presented some aspects and impacts of such activities to the whole
development process. Such systems are generally called bug trackers, and they act by
storing and handling the incoming change requests to some specific software, in order to
keep control of the software evolution.

Next chapter presents the state-of-the-art of mining bug report repositories. Thus, it is
described some challenges emerged by bug trackers and how researchers have approached
them.

15

3
Mining Bug Report Repositories: The

State-of-the-Art

Three steps forward and you are not in the same place as two steps

before.

—YGUARA (Chico’s Thought Evolution)

3.1 Introduction

There is a variety of work related to mining bug report repositories. However, the work
found on the literature are relatively new, dating back from 2003. In general, these types
of repositories have been mined for different purposes, such as: bug reports similarity

(also referenced as duplicate detection), dynamic assignment of bug reports, software

evolution and traceability, change impact analysis and effort estimation, and quality of

bug report descriptions.
All of these proposed categories have the common objective to improve software

development, saving costs with software maintenance. Next, we will discuss about each
work related to the mentioned purposes. Furthermore, it will be given more attention to
technique details involving work related to duplicate bug reports detection (bug reports

similarity), since this work also addresses such purpose.
Although there are more studies that include mining bug report repositories, they

use them to supplement the searches made in other types of repositories such as source
code repositories. Thus, we focused our research on work only using repositories of bug
reports. For more information about other work not described here, there is a taxonomy

16

3.2. BUG REPORTS SIMILARITY

proposed by Kagdi et al. (2007b). In such work, it is described several work for mining
software repositories, including the ones described here.

The remainder of this chapter is structured as follow: Section 3.2 describes research
related to bug reports similarity; Section 3.3 presents work involving dynamic assignment

of bug reports; Section 3.4 describes work concerning software evolution and traceability;
Section 3.5 discusses change impact analysis and effort estimation; and Section 3.6 is
about quality of bug report descriptions.

3.2 Bug Reports Similarity (duplicate detection)

Duplicate bug reports detection consists on searching for past bug reports to find similar
bug reports that describe the same issue as the one being reported, in order to avoid
duplicate submission. In that way, the following work (described in chronological order)
generally proposes methods to aid such detection.

3.2.1 Automated Support for Classifying Software Failure Reports

Podgurski et al. (2003) was the first to investigate bug reports similarity. The bug reports
explored in their work were software failures automatically submitted when the software
did not work properly. Such reports were composed of information (profile) about state of
the software at the time the failure occurred, and possibly with the execution stack trace.
This type of reports can raise a common problem encountered by developers: they receive
more reports than the time they have available to investigate them. Thus, Podgurski et al.

proposed an automated support for classifying these reports in order to prioritize and
diagnostic their causes.

The proposed approach used supervised and unsupervised pattern classification and
multivariate visualization to group together bug reports with closely related causes. The
validation of the approach was performed using three projects (GCC, JavaC and Jikes)
and the failures were gathered by automated tests. The authors claimed, according to the
experiment results, that the approach was effective and scalable.

The main problems with their work is that it was not tested with projects from
different contexts (the projects were only compilers), and the types of bug reports are not
compatible with the bug reports this dissertation deals with. As mentioned before, such
reports are about software execution information, while the bug report that our work treat
are related to software error descriptions in natural language.

17

3.2. BUG REPORTS SIMILARITY

3.2.2 Assisted Detection of Duplicate Bug Reports

The work performed by Hiew (2006) is closer to ours than the first one described. It
investigated the duplication problem caused by natural language bug reports submission.

Hiew proposed to group similar bug reports into centroids, thus it would be possible
to compare incoming bug reports to the centroid with high similarity. In this way, each
bug report was processed to compute the value for the Term Frequency-Inverse Document
Frequency (TF-IDF) (Baeza-Yates and Ribeiro-Neto, 1999) and placed in the centroid

with higher similarity. The TF-IDF for a single centroid was the combination of the
TF-IDF of all bug reports inside the same centroid.

Thus, in order to compare the incoming bug reports to each centroid it was used the
cosine similarity measure (Baeza-Yates and Ribeiro-Neto, 1999). The classification of
incoming bug reports were performed labeling them as unique or duplicate according
to the similarity with each centroid. A threshold value was specified to decide when an
incoming bug report was unique or duplicate. Moreover, despite to labeling the incoming
bug reports, the approach returned a list with higher similar bug reports to enable the
submitter to decide when a bug report were correctly classified.

The approach was tested with 21,915 bug reports from Firefox, 37,716 from Eclipse
Platform, 1,782 from Apache 2.0 and 22,076 from Fedora Core. These reports were
collected between September/2005 and October/2005. In addition, only bug reports
classified as fixed, duplicate and open were used in the tests.

The work reported the results for different thresholds, including thresholds for clas-
sification and for the length of recommendation list. The approach achieved 29% of
precision and 50% of recall at its best. The main difference from this work and our
approach is that the technique used in the tool we proposed does not group the most
similar bug reports into centroids. In addition, our tool is not a recommendation system;
the users have to perform search in order to find similar bug reports.

3.2.3 Detection of Duplicate Defect Reports Using Natural Language
Processing

Runeson et al. (2007) addressed the problem of detecting duplicated bug reports using
Natural Language Processing (NLP) techniques. One advantage of such work was the
identification of two types of bug reports: 1) those that describe the same problem and 2)
those that describe two different problems with the same cause. The former describes the
same failure, generally using similar vocabulary, and the latter describes different failures

18

3.2. BUG REPORTS SIMILARITY

and may use a different vocabulary. However, Runeson et al. restricted their approach to
addresses only the type 1.

A tool based on ReqSimile1 was developed and some operations related to NLP
was implemented, such as tokenization, stemming, stop-words removal, synonyms and
spell-checking (Feldman and Sanger, 2007). Moreover, it was used the vector-space
model (Baeza-Yates and Ribeiro-Neto, 1999) along with the cosine measure for similarity
measurement. Other models were also tested (Jaccard, Dice), but they did not improve
the general results.

Tests were performed using the Sony Ericsson Mobile Communications projects,
which uses a Software Product Line (Pohl et al., 2005) approach and about 10% of bug
reports were duplicated. The methodology to evaluate the NLP technique was composed
of two approaches: batch scripts were conducted with selected duplicated bug reports
against the database; and experiments with users were conducted followed by interviews.

The result of the work showed that 40% of duplicated bug reports could be found in
Sony Ericsson projects. According to Sony Ericsson reports, about 30 minutes are spent
to analyze a bug report, what means that for 1000 duplicate bug reports avoided, about
20 hours of analysis time would be saved.

The work showed good results for the recall metric, however, the proposed approach
cannot be completely analyzed since it does not mention the values for the precision

metric. Furthermore, it does not discusses the number of bug reports analyzed in the tests,
and it does not show details about the experiment with users. Additionally, it does not
discusses if there was time saving during the tool adoption.

3.2.4 An Approach to Detecting Duplicate Bug Reports Using Natu-
ral Language and Execution Information

In Wang et al. (2008), it was proposed an approach to mitigate bug reports duplication
problem using NLP and execution information. The execution information is concerned
to data about the software execution when the error occurred, such as method calls or
variables state. This type of data was combined with natural language data to improve
the recall.

The solution proposed is also based on recommending a list of possible duplicated bug
reports. The recommendation list was ranked according to a pair of similarities scores:
one between natural language from the incoming bug report and existing bug reports;

1http://reqsimile.sourceforge.net

19

http://reqsimile.sourceforge.net

3.3. DYNAMIC ASSIGNMENT

and other between the execution information from incoming bug report and existing bug
reports.

In order to validate the approach it was performed an experiment with Firefox and
Eclipse data, resulting in a recall of 67%-93% at its best. These results are very acceptable
if compared with other related work. However, some points must be outlined to the
experiment and the approach itself.

Concerned to the approach, first we must mention that not every bug report has
information about execution. Second, the approach is extremely dependent on the
programming language in which the software is developed, since the similarity of the
execution information is made based on method calls. Such conditions turn the approach
not portable to other environments.

Regarding the experiment, the first negative point is about the amount of projects
studied. It was used bug reports only from two open source projects, thus not enabling
results generalization to other environments. The second negative point is the few amount
of bug reports used; related work have used a range of 4,000 to 12,000 bug reports, which
is almost 10 to 20 times high. Moreover, it was filtered out invalid bug reports from the
data set. We consider this filter not desirable, because invalid bug reports can also be
duplicate.

Moreover, since the execution information was manually extracted by reproducing
the errors reported in the analyzed bug reports, it is difficult to replicate the experiment
with more projects or with more bug reports. It would also be good if they analyzed the
precision metric, not only the recall metric.

3.3 Bug Report Dynamic Assignment

Also known as Bug report Triage, this step of the bug report tracking process consists
of identifying which is the best developer to solve a new bug report. Several work have
used machine learn techniques combined with versioning system data and/or bug report
repositories.

Anvik et al. (2006) presented an approach for semi-automated bug report assignment.
The approach used a machine learning algorithm to a bug report repository to learn the
types of bug reports that each developer resolves. The work of Canfora and Cerulo (2006)
also proposed a method to bug report assignment, however in such work it was used
information from versioning systems combined with bug reports information.

In other work (Anvik and Murphy, 2007), it was compared which type of repository

20

3.4. EVOLUTION AND TRACEABILITY

(versioning systems or bug report repositories) is better to assign the best developer to a
bug report. The work concluded that using bug report repositories is better if the objective
is to determine the expertise group with less false positives (developers that are not expert
in the given subject), while versioning systems are better for retrieving all experts for a
given problem (in this case false positives can occur).

3.4 Software Evolution and Traceability

Mining bug repositories for software evolution and traceability is concerned with under-
standing what drives the changes performed in the software along the time. Software
traceability often involves documents, source code, bug reports, among other assets. Gen-
erally, the research related with this purpose combine data from source code repositories
and bug report repositories.

Sandusky et al. (2004) conducted an empirical research about Bug Report Networks
(BRNs) in open source projects. According to them, a BRN is created when members
of a software development project assert duplication, dependency, or reference rela-
tionships among bug reports. They pointed that BRNs understanding can be useful for
decreasing cognitive and organizational effort, refined representations of software and
work-organization issues, and rearrange the relationships among project members.

Antoniol et al. (2005) proposed a framework to merge information from bug report
repositories, source code, and versioning systems. Such framework aids the developer to
browser and navigate through the information provided by such artifacts in an intercon-
nected way. For example, some developer could use the framework to visualize what bug
reports were fixed in a given software version. Furthermore, he/she could visualize what
files of source code were modified.

Koponen and Lintula (2006) proposed an approach to integrate versioning systems
and bug report repositories. It used data from Apache HTTP Server and Firefox. Koponen
and Lintula investigated if the changes in such projects were driven by bug reports. They
concluded that only a small percentage of changes were made because of bug reports in
Apache HTTP Server. However, in Firefox 60% of changes are guided by bug reports.
Moreover, they discovered that developers who performed few changes are more suitable
to be guided by bug reports.

There are also other work in the same direction of Koponen and Lintula (2006), such
as Kagdi et al. (2007a) and Fischer et al. (2003a,b). In the first, commits of versioning
system were analyzed to verify frequent co-changes sets of artifacts (e.g. source code

21

3.5. IMPACT AND EFFORT ANALYSIS

and documentation). The second one aimed to understand the software evolution by
integrating versioning systems and bug report repositories, thus looking at the bug reports
it is possible to determine which commits were performed to solve a specific issue.

3.5 Impact Analysis and Effort Estimation

The impact analysis and effort estimation purposes are related to determine the amount
of time, costs and complexity that a bug report needs to be resolved. By achieving such
purpose, it is possible to better manage software projects, such as planning releases and
costs (Song et al., 2006).

For that purpose of effort estimation, three works were found in the literature: Song
et al. (2006), Panjer (2007), and Weiss et al. (2007). All of them used data from bug
report repositories as input for their approach. For impact analysis there is the work of
Canfora and Cerulo (2005), where it was explored bug report repositories and versioning
systems using information retrieval techniques to predict the impacted source files for a
new bug report submission.

3.6 Bug reports Quality

The quality analysis of bug reports is concerned with how submitters are describing
software issues on bug reports free-text fields. Such analysis does not impact directly in
software development improvement, however, it addresses issues to better describe bug
reports and efficiently conduct the bug report tracking.

In Ko et al. (2006), it was performed a study with 200,000 bug reports to understand
how submitters describe software problems. They discovered that bug reports summary
generally describe software entity or behavior and its execution context. Moreover, “95%

of noun phrases referred to visible software entities, physical devices, or user actions”.
In the work of Bettenburg et al. (2007), it was performed a survey with Eclipse

developers to understand what type of information they use in bug reports and problems
found. The “results showed that the steps to reproduce and stack traces are most sought
after by developers, while inaccurate steps to reproduce and incomplete information pose
the largest hurdles”.

22

3.7. SUMMARY

3.7 Summary

This chapter presented the state-of-the-art concerning the mining of bug repositories.
It was divided in the following categories: bug reports similarity (also referenced as
duplicate detection) (Section 3.2), dynamic assignment of bug reports (Section 3.3),
software evolution and traceability (Section 3.4), change impact analysis and effort

estimation (Section 3.5), and quality of bug report descriptions (Section 3.6). For each of
these work, it was described their goals and methods, the data set used to validate the
methods, results, and a critical analysis.

Next chapter presents a characterization study about the bug report duplication prob-
lem. It is analyzed some potential causes of the problem and its consequences to software
development.

23

4
The Bug Report Duplication Problem:

A Characterization Study

Four steps forward and you are not in the same place as three steps

before.

—YGUARA (Chico’s Thought Evolution)

4.1 Introduction

Based on the work discussed in the previous chapter, we identified that duplicate bug
reports can generate rework in two different scenarios, as illustrated in Figure 4.1. In
the first scenario, the submitters should search for similar bug reports in the repository
to avoid the submission of duplicates. However, there is also a common situation where
bug reports are submitted without making the necessary searches before (dotted line). In
the second scenario, it is considered that the bug reports have been submitted, with or
without search or analysis of previous bug reports, and a group of people, called Change
Control Board (CCB), are allocated into a group to make the analysis of existing bug
reports. In order to do this analysis, the CCB also needs to search in the repository to
confirm the uniqueness of a bug report or to assign a responsible for it, for example.

In general, the search and analysis of bug reports performed at the first scenario are
not sufficient to find similar bug reports, and thus avoid the submission of duplicate
entries. Thus, the presence of CCB becomes essential to reduce the amount of bug reports
that the developers need to consider. However, even with the CCB participation, some
duplicates still end up passing and stored in the repository.

24

4.2. DEFINITION OF THE STUDY

Figure 4.1 Scenarios for rework in bug-repositories. Rework is represented in dark blocks.

This chapter presents a characterization study about bug repositories and search and
analysis of bug reports, in order to understand the possible factors that could cause bug
report duplication and its impact on software development. Both private and open source
projects are used in the study, and different characteristics are analyzed. Furthermore,
as a result of the analysis, we can point out what factors can contribute to increase or
decrease the bug report duplication problem.

The remaining of this chapter is structured as follows: Section 4.2 presents the
definition of the study; Section 4.3 describes the projects and data used in the study. In
Section 4.4 is discussed the execution of the study, and in Section 4.5 it is made the
analysis and interpretation of the results. Sections 4.6, 4.7 and 4.8 present lessons learned,
threats to validity and summary, respectively.

4.2 Definition of the Study

The Goal Question Metric (GQM) method (Basili et al., 1986) was used to define this
characterization study. The GQM consists of the definition of the study’s goal, the
questions to be answered, and the related metrics that must be collected to help answering
the questions. For some metrics, we established a baseline based on related work, while
others – without previous data available – were explored in this work in order to serve as

25

4.2. DEFINITION OF THE STUDY

basis for future studies.
The goal of this study was to analyze bug repositories and the activities for searching

and analyzing bug reports with the purpose of understanding them with respect to the
possible factors that could impact on the duplication problem and their consequences on

software development, from the point of view of the researcher, in the context of software

development projects. The following questions and metrics were defined.
Question 1. Do the analyzed projects have a considerable amount of duplicate bug

reports? This is the starting point of this study. Although the literature reports that there
is a considerable amount of bug duplication in most projects, if the projects analyzed
in this study do not have enough duplicate bug reports, the other questions can not be
answered properly. Thus, we investigated the projects to find out if they have duplicate
bug reports in their repositories, and if the amount of duplicates is large enough to cause
problems. The following metric was defined to help answering this question:

• M1: percentage of duplicate bug reports in software development projects.
This metric can be collected by analyzing the status of the bug reports in the
repository. For example, if the status of a bug report is defined by the keyword
DUPLICATE, then it counts as a duplicate. Based on recent work (Anvik et al.,
2005; Runeson et al., 2007), we expect an average of 20% of duplicate bug reports
present in bug repositories.

Question 2. Is the submitters productivity being affected by the bug report duplication

problem? As mentioned before, duplicate bug reports have side effects, such as extra
time for the analysis. In this context, the productivity is measured in terms of time that is
needed to perform bug tracking activities, such as search and analysis of bug reports. We
defined three metrics to understand this question:

• M2: amount of time spent to search and analyze bug reports before opening
a new bug report. This time is measured in minutes and is counted from the
moment a submitter began to investigate (to perform search and analysis of bug
reports) a problem until he/she decides whether such problem is new or duplicate.
Based on informal interviews with submitters from C.E.S.A.R., we expect values
between 10 to 20 minutes for this metric. However, we must note that such values
can be biased, since it was not measured empirically;

• M3: ratio between the average time to resolve duplicate bug reports and av-
erage time to resolve valid bug reports. For example, if valid bug reports take

26

4.2. DEFINITION OF THE STUDY

x days on average to be resolved, then we wanted to know the percentage (%)
of x that is necessary to solve duplicate bug reports. A duplicate bug report is
considered solved when it is identified as duplicate and its state on the bug tracker
state machine becomes CLOSED. Thus, to calculate M3, we first divide it into two
sub-metrics: (M′3) the average time (in days) to resolve duplicates; and (M′′3) the av-
erage time (in days) to resolve valid bug reports. Then we calculate M3 = M′3/M′′3 ,
which is the ratio. To compute such averages (M′3 and M′′3) we investigated the
life-time of each bug report. We did not find any previous data to serve as a baseline
for this metric;

• M4: average frequency of bug reports per day. It is the average amount of bug
reports that are submitted per day to the projects’ repositories. This measure is
calculated dividing the amount of bug reports by the total of days that include them.
Using this metric, we can analyze how much time is being spent per day with
search and analysis of bug reports. We did not find any previous data to serve as a
baseline for this metric;

Question 3. Is there a common vocabulary for bug report descriptions? The answer
to this question is important because it is believed that a controlled vocabulary could
help avoiding duplicate bug reports (Lancaster, 1986). For example, with a well defined
vocabulary, the submitters could perform better searches using keywords closer from
those present in the new bug report.

• M5: percentage of common words shared in a bug report group to describe
the same problem. In order to gather confident results, this measure does not
count stop words1 of the English language. Moreover, we analyzed only summary
and long description fields of the bug reports. Later it is discussed more details
about the common words computation. We did not find any previous data to serve
as a baseline for this metric;

Question 4. How are the relationships between master bug reports and duplicate

bug reports characterized? In this work, we consider three types of bug reports2 in
a bug repository: (a) unique bug report; (b) master bug report; and (c) duplicate bug

report. A report is classified as unique if it is the only one to describe an issue. If a set

1Stop words are words that do not improve the searches in Information Retrieval systems.
2The definitions for terms (a) and (c) were extracted from the Bugzilla state machine, while the other

term was defined by us.

27

4.2. DEFINITION OF THE STUDY

of reports describes the same issue, the first entry will be declared as the master bug
report and the others defined as duplicate bug reports. The process where masters and
respective duplicate bug reports are bound is called bug report grouping. It is important
to understand how the groupings are characterized, because it can drive us when choosing
adequate techniques to solve the bug report duplication problem. For example, if there
are only a few bug report groups, machine learning techniques may not be appropriate to
address the duplication problem because the is not sufficient data to train the algorithm.

• M6: grouping types distribution. We measured two types of grouping: (M′6)
master bug reports that have only one duplicate bug report, also known as one-to-

one relationships; and (M′′6) master bug reports that have more than one duplicate
bug report, also known as one-to-many relationships. We could define more levels
of relationships, however, we believe that these two are sufficient for our analysis.

Question 5. Does the type of bug report influence the amount of duplicates? There
are mainly two types of bug reports: enhancements and defects. Enhancements are
normally requests made by users and developers who want new or improved features on
some product. Defects are errors or malfunctions reported by users, and normally need
to be corrected as soon as possible. Intuitively, it may be argued that defects have more
duplicates, because it is more likely that two users will notice the same defect – and report
it, and it is less likely that the same enhancement potential is equally perceived by two
different users. We wanted to analyze if this is true for the selected projects. If confirmed,
this means that defect bug reports require a more careful analysis than enhancement
reports, for example.

• M7: Duplication ratio = duplicate bug reports / total bug reports. For each
bug report type – enhancement and defect – we calculated the ratio between the
duplicate and total bug reports. If this ratio is larger for defects, then this type of
bug report causes more duplicates than enhancements.

Question 6. What are the possible factors that could impact on the bug report

duplication problem? We chose six variables, regarding the projects selected, that we
believe could be the factors for duplication or, at least, have some indirect relation to it.
These variables are:

• Staff size. This variable is related to the number of people involved in the project
development. We consider the number of developers as being equal to the number

28

4.2. DEFINITION OF THE STUDY

of people assigned to resolve a bug report. Related work (Anvik et al., 2005)
showed that projects with a large staff have many duplicates, thus we wanted to
understand if this is also true for projects with a small staff;

• Number of submitters. This is related to the amount of submitters in the period
that we collected the bug reports. We consider the number of submitters as being
equal to the number of people who submitted bug reports in the period. Also in
(Anvik et al., 2005), the analyzed projects had many submitters, but we would like
to understand if duplicates are also present in projects with few submitters;

• Software size. This variable is related to the number of LOC that a software
project had until the data selection. The LOC measure, in this study, does not
count comments and blank lines. The values for this variable were obtained
through the site http://www.ohloh.net. We believe that the number of
LOC can influence the amount of errors, and consequently more bug reports could
be submitted, increasing the chances of duplication;

• Software life-time. The software life-time variable is related to the time that a
software project has been in development until this study. We computed the life-
time of a software from the first bug report submission. Anvik et. al. (Anvik et al.,
2005) analyzed projects with 7 and 9 years, however, we must analyze projects
with different life-times to understand if it is a factor for bug duplication;

• Bug Repository size. This variable is related to the amount of bug reports that
a project has in its bug repository. With this variable, we can analyze whether
large bug repositories are more susceptible for the submission of duplicates or not.
In (Anvik et al., 2005), the bug repositories had a considerable amount of bug
reports, however, we wanted to understand if duplicates are present in small bug
repositories too;

• Submitters’ profile. It is important to know what type of submitter profile is more
susceptible to submitting duplicate bug reports. The values for this variable are:
sporadic (S), average (A) and frequent (F). Sporadic is the reporter who submitted
at most 10 bug reports in the analyzed period, average is the person who submitted
between 10 and 30 bug reports in the period, and frequent is the person who
submitted more than 30 bug reports in the period.

29

http://www.ohloh.net

4.3. PROJECTS AND DATA SELECTION

4.3 Projects and Data Selection

To conduct this study, we chose projects from open source organizations and from a
private organization. For open source projects, we chose eight (8) projects. For the private
project, we chose bug reports from a project being developed at C.E.S.A.R. Regarding
the open source projects, we collected all bug reports until the end of June/2008. For
the private project, we collected all the bug reports from November/2006 to March/2008,
which includes the entire life-cycle for this project. More details about each project are
presented in Table 4.1. A brief description of each project is given as follows:

Project Domain Code size Staff size Bugs Life-time
Bugzilla Bug tracker 55K 340 12829 14
Eclipse IDE 6.5M 352 130095 7
Epiphany Browser 100K 19 10683 6
Evolution E-mail client 1M 156 72646 11
Firefox Browser 80K 514 60233 9
GCC Compiler 4.2M 285 35797 9
Thunderbird E-mail client 310K 192 19204 8
Tomcat Application server 200K 57 8293 8
Private Project Mobile application 2M 21 7955 2

Table 4.1 Projects characteristics. The life-time is specified in years.

Bugzilla. Bugzilla (http://www.mozilla.org) is a software for bug report
tracking. This projects is hosted by Mozilla Foundation.

Eclipse. Eclipse (http://www.eclipse.org) is an open development platform
with support to C, PHP, Java, Python and other languages.

Epiphany. It is the official web browser for, and hosted by, the Gnome desktop
(http://www.gnome.org).

Evolution. Evolution is a desktop e-mail client. It provides integrated e-mail, address
book and calendar features to the users of the Gnome desktop. It is also hosted by Gnome.

Firefox. Firefox is a popular web browser that runs in a variety of platforms (Win-
dows, Linux, Mac etc). Firefox is also hosted by Mozilla.

GCC. GCC (http://gcc.gnu.org) is a collection of compilers, including front
ends for C, C++, Objective C, Fortran, Ada and Java.

Thunderbird. It is a cross-platform desktop email client hosted and developed by
Mozilla Foundation.

Tomcat. Apache Tomcat (http://www.apache.org) is an implementation of
the Java Servlet and JavaServer Pages technologies, developed by the Apache Foundation.

30

http://www.mozilla.org
http://www.eclipse.org
http://www.gnome.org
http://gcc.gnu.org
http://www.apache.org

4.4. STUDY EXECUTION

Private Project. This is a private project being developed at C.E.S.A.R. In this
project, applications for mobile devices are developed. It is also a test center for this type
of applications.

4.4 Study Execution

This study was performed at C.E.S.A.R., from June/2008 to August/2008. In the be-
ginning of the study, some meetings with projects managers and stakeholders from the
private project were conducted. During these meetings, we had discussions about the bug
report duplication problem to understand how it was affecting the projects and how to
mitigate it. After the meetings, we defined a set of instrumentation assets to be used in the
study, such as scripts, time-sheets, and questionnaires. These instruments are described
as following:

Scripts. Python scripts were built to read the bug reports from each project. Using
these scripts we were able to obtain the values for the metrics M1, M3, M4, M5, M6 and
M7. With these scripts we also obtained the 20 most active submitters from the analyzed
projects. To identify such submitters, we counted the amount of bug reports submitted by
each one of them.

Time-sheets. Time-sheets were used to collect the time to open bug reports by the
staff of the private project. A total of four people filled out the time-sheets during a period
of two weeks. The time-sheets were applied only in this project because we had access to
it and we could monitor this activity. For other projects, this information was gathered
through a questionnaire, as described next.

Questionnaire. The questionnaire on Table 4.2 was sent to the 20 most active
submitters from each project. We tried to be as simple as possible with the questionnaire.

In total, the questionnaire was sent by e-mail to 180 submitters, with a two-weeks
deadline for answer. From these emails, 24 could not be delivered to the recipients, and
141 did not respond the questionnaire in time. Only 17 developers, from 7 projects,
replied to the questionnaire: 1 person from Bugzilla; 1 from Evolution, 4 from the
Epiphany, 3 from Firefox, 2 from the GCC, 2 from Thunderbird, and 4 from the private
project.

The submitters had between 2 and 8 years of experience in the project in which they
participated. Moreover, 14 submitters said they spent from 5 to 10 minutes performing
searches for bug reports, and only 3 submitters chose the answer 10 to 15 minutes. For
the private project, such time was collected using time-sheets and it was between 20 to

31

4.5. ANALYSIS AND INTERPRETATION

Questionnaire
Do you search for past bugs to avoid duplicates?
() No, I don’t care about duplication.
() Yes, I spend about 05 – 10 minutes searching.
() Yes, I spend about 10 – 15 minutes searching.
() Yes, I spend about 20 – 30 minutes searching.
() Yes, I spend more than 30 minutes searching:
Does your project have any technique (automated or manual) to avoid dupli-
cated bug reports?
() No. () Yes:
In the case of Bugzilla, do you perform your searches using (Choose more than
one if necessary):
() Simple web interface – using only keywords
() Advanced web interface – with additional parameters
() Other:
How do you define your participation on this project? (Choose more than one
if necessary)
() Developer: () full-time () regular () sporadic
() Community manager
() Bug Repository Manager
() Quality Assurance Manager
() User
() Contributor
() Other:
For how long have you been contributing to this project?

Table 4.2 Questionnaire for bug report submitters.

30 minutes. As mentioned before, such numbers for open source projects can be very
biased, since the values were obtained through a questionnaire. It would be more precise
if we could apply time-sheets as we did for the private project.

Among the projects, people in the private one spend more time performing searches.
This is probably because it is a project dedicated to testing, and testers are advised to try
their best to avoid duplicate submissions.

In the questionnaire, it was also asked about techniques to avoid duplicates. Although
the projects do not have automatic techniques for detecting duplicates, warnings and
guides are placed in bug trackers to alert the submitter about the problem of duplication.

The material used in this study can be accessed through the site http://www.cin.
ufpe.br/~ycc/bug-analysis. This URL also contains the set of bug reports
used in this study, as well as the queries used to extract them from the repositories. We
did not publish the private project’s data due to confidentially reasons.

4.5 Analysis and Interpretation

This section analyzes the questions defined in Section 4.2, according to the metrics
obtained from each project, and presents a descriptive analysis. Table 4.3 summarizes
the metrics, presenting the minimum values in italics, the ceilings in bold, and mean

32

http://www.cin.ufpe.br/~ycc/bug-analysis
http://www.cin.ufpe.br/~ycc/bug-analysis

4.5. ANALYSIS AND INTERPRETATION

and Standard Deviation (SD) in the last two columns. Metrics M6 and M7 are shown in
separate plots, in Figures 4.2 and 4.4, for better visualization.

Metric Bugz. Eclip. E piph. Evol. Fire f . GCC T hund. Tomc. Private Pro j. Mean SD
M1 % 23.32 19.44 31.52 43.24 38.39 17.68 49.10 8.24 21.59 28.1 13.4
M2 (min) 05-15 – 05-15 05-15 05-10 05-15 05-15 – 20-30 12.5 1.88
M3 % 67.69 75.36 38.89 54.29 37.04 32.00 54.92 48.61 48.25 50.8 14.2
M4 71 722 59 403 334 198 106 46 145 231.5 222.1
M5 % – 25 – – 22 – – – 35 31.2 9.5

Table 4.3 Metrics summary. Maximum and minimum values are in bold and italic respectively.

Question 1: Do the analyzed projects have a considerable amount of duplicate
bug reports? The values for M1 in Table 4.3 show a high percentage of duplicates
for 8 projects, the exception was the Tomcat project. Only 3 projects were below than
the expected (Eclipse, Tomcat and GCC). However, the overall average of duplicates
exceeded in 8.1% our expectations. Thus, we can infer that the projects have a high rate
of duplicate bug reports.

For projects with major differences below the expected value (GCC and Tomcat),
our intuition believe that they receive less duplicates because they have less end users.
Generally, people who use GCC or Tomcat are developers with high skills on such
projects.

Question 2: Is the submitters productivity being affected by the bug report du-
plication problem? To answer this question, we analyzed metrics M2, M3 and M4. Every
person who answered our questionnaire stated that they are concerned with duplicates
and that they perform searches before submitting a bug report. Moreover, according to
metric M2 in Table 4.3, the average time of these searches is 12.5 minutes (note that the
mean was computed using the individual responses from reporters). In addition, metric
M4 shows an average of 231.5 bug reports submitted per day.

Thus, if we consider that people who answered the questionnaires are those responsi-
ble for most bug report submissions, we have an approximate average of 48 man-hours3

spent per day only with searches for similar bug reports. So, if we could reduce that time
in half by using some techniques to suggest similar bug reports, for example, we would
save 24 man-hours per day.

Another important point, shown by the metric M3, is the fact that a duplicate is
resolved using half the time needed to resolve a valid bug report, on average. Thus,
reducing the amount of duplicate bug reports coming into a repository would spare more
time to resolve valid bug reports. For example, for every two duplicates avoided, a valid

3This figure was achieved by multiplying the average of bug reports per day and the average time spent
with search and analysis of bug reports: (231.5 bugs∗12.5 min)/60 ≈ 48 man−hours.

33

4.5. ANALYSIS AND INTERPRETATION

bug report could be resolved. However, it is important to note that we are analyzing time
for resolution by the number of days that a bug report takes to be closed. It still would
require an analysis of the time spent with each bug report individually to increase the
accuracy of that estimate.

Question 3: Is there a common vocabulary for bug report descriptions? We
analyzed the descriptions of the bug reports from Eclipse, Firefox and the private project.
We were not able to examine the others because their duplicate bug reports did not specify
the master bug reports, thus not enabling us to complete the bug report groupings. The
values for the 3 projects are considered very close, as shown by metric M5 in Table 4.3.
We do not have previous figures for this metric to determine if this achievement is low
or high, however we believe that more words should be shared between duplicate bug
reports in order to facilitate the identification.

Since similar bug reports are described with different vocabulary, the identification
of duplicates becomes more difficult. So in that context, using a controlled vocabulary
may be a way to avoid duplicates. This could be done by defining classes of words that
a submitter could use to describe a bug report, as well as to divide the fields of a bug
report in more precise information, for example, putting a specific field for execution
information traceback (Ko et al., 2006; Wang et al., 2008).

Another interesting finding is the fact that the private project’s bug reports share more
common words than the other ones. We believe it is because the environment in private
project is more restricted and controlled, while in distributed open source projects any
user can submit a bug report.

Question 4: How are the relationships between master bug reports and dupli-
cate bug reports characterized? Bug report groups present the following characteristics:
(M′6) one-to-one, a master bug report has a single duplicate; or (M′′6) one-to-many, a master
bug report has multiple duplicates associated.

Repositories with most groups classified as one-to-many may take advantage of
techniques such as clustering or machine learning. This is because such techniques work
better when there is more data from where they can learn. For example, if we apply an
algorithm of machine learning to recommend possible duplicates when a reporter tries
to open a new bug report, firstly this algorithm must run over the existing bug reports
in order to extract some pattern from the data and, finally, recommend bug reports that
match the pattern of the new one. Thus, if there are many bug report groupings, there are
better chances that the algorithm extracts relevant patterns and, then, correctly classifies
incoming bug reports.

34

4.5. ANALYSIS AND INTERPRETATION

Figure 4.2 Bug reports grouping.

As Figure 4.2 shows, all projects presented in this study have more than 80% of bug
report groups characterized as one-to-one. Such situation shows us that it is necessary to
investigate more adequate techniques to treat environments where one-to-one relationships
predominate. As mentioned before, machine learning and clustering techniques are not
adequate for this case.

Question 5: Does the type of bug report influence the amount of duplicates? If
we consider only the absolute percentage of duplicate bug reports for each bug report type,
we will find out that there are much more defect duplicates than enhancement duplicates,
as shows Figure 4.3.

Figure 4.3 Absolute duplication ratio = duplicate bug reports/total bug reports.

But an analysis of the distribution of the bug report types showed that more than
87% of the bug reports are related to defects. Thus, it is natural that there are more
defect duplicates in the repository. We needed to understand if this difference also holds
when calculating the relative percentage of duplicate bug reports for each bug report
type. Figure 4.4 shows the relative duplication ratio for defects and enhancement bug

35

4.5. ANALYSIS AND INTERPRETATION

reports, and their difference in terms of percentages, for each open source project. We did
not compute it for the private project because all bug reports from this project are about
defects.

Figure 4.4 Duplication ratio = duplicate bug reports/total bug reports.

As we can see, the ratios are distributed without major differences among the projects.
Some projects have relatively more duplicate defects than duplicate enhancements, while
in other projects the opposite is true. The mean of the sum of all differences is 3.23%,
which indicates that duplicate bug reports for defects are slightly more frequent than
duplicate bug reports for enhancements. But this is such a small value, and we can safely
conclude that bug reports duplication is not influenced by the bug report type.

4.5.1 Question 6: What are the possible factors that could impact
on the bug report duplication problem?

Number of submitters and staff size. Figure 4.5 shows a set of charts showing the
relationship between quantity of duplicates, number of submitters, and size of staff. Each
chart shows the situation of a specific project. In some graphics, the time does not match
the total life-time of the project, because we considered, in that case, the year when the
first duplicate bug reports were submitted.

Most projects have a similar tendency in their graph curves regarding the number of
submitters and duplicates: the number of duplicates tend to increase together with the
number of submitters, but it tends to decrease faster. One explanation for this fact is that
people involved in projects get a more uniform vision of the bug repository as time passes,
with greater knowledge of bug reports that have already been submitted. Firefox and
Epiphany projects exemplify this fall in the number of duplicates without a significant
decrease in the amount of submitters.

36

4.5. ANALYSIS AND INTERPRETATION

Figure 4.5 Duplication, staff size, and submitters. The values for submitters and staff size on the
right side of the charts were reduced using Log10 for better visualization and understanding.

37

4.5. ANALYSIS AND INTERPRETATION

Another interesting fact is that there is always a considerable increase in the number
of duplicates in the first year of the projects. This is because the first year of the project
often coincides with the first release available to users and testers, from which they start
to submit bug reports. For example, the Bugzilla project has 14 years of life-time, but
the first duplicate bug report appeared only in 1998, when it launched the first release
available to users (version 2.0). This seems also to be true for major changes and new
releases, like years 2006 and 2007 for the Evolution project.

Regarding the staff size, it has not suffered considerable changes in almost all projects,
and did not show a direct relationship with the amount of duplicates. In contrast, the
number of staff was very connected with the number of submitters. After that finding, we
calculated that 76% (per project) of the developers are also bug report submitters. From
these 76%, an average of 13 submitters are among the 20 most active ones. So, when
there is a drop in the number of developers, this drop is also reflected in the amount of
submitters.

Software size. According to the graph of Figure 4.6, there is no established pattern
that leads us to conclude that there is some relationship between the number of LOC and
the number of duplicates of a project. For example, the Eclipse project has the greatest
number of LOC but it is the third project with less duplicate bug reports. In another
example, the Tomcat project has a number of LOC similar to the Thunderbird project, but
the difference in the number of duplicates is about 40%.

Figure 4.6 Duplication and software size (LOC).

Software life-time. We expected that the life-time was a factor for the duplication,
however, as shown in the chart of Figure 4.7, this was not observed in this study. Projects

38

4.5. ANALYSIS AND INTERPRETATION

with higher life-time do not necessarily have more duplicate bug reports than projects
with smaller life-time. Thunderbird and Tomcat projects are good examples of this fact;
both have similar life-times, but differ sharply on the amount of duplicates. Another
example is the Bugzilla and the private project: the first is 12 years older than the second,
however it has about 10% less duplicates.

Figure 4.7 Duplication and software life-time.

Bug repository size. The amount of bug reports in repositories is not a factor causing
the problem of duplication, as shown in the chart of Figure 4.8. This finding contradicts
our initial thoughts. We believed that from the moment that the bug report database
increases, it would be more difficult to find similar bug reports. However, we must take
into account that as the amount of bug reports increases, the knowledge of the submitters
on the repository also increases, which balances the repository growth factor.

Submitter Profile. Figure 4.9 shows the contribution of each type of submitter to
the number of duplicates of each project. As it can be seen, most of the duplicate bug
reports are submitted by sporadic submitters, followed by average and frequent submitters.
The average and frequent submitters contribute very little to the problem of duplication,
because these are people who are longest in the project and had good knowledge on the
repository.

The sporadic submitters are more prone to submit duplicate bug reports because they
have no sufficient knowledge about the project and its bug repository, or they are not
aware of the duplication problem. Often these people also have no experience with bug
report tracking systems, where the searches must be carried out. Moreover, according to
our analysis, most of sporadic submitters submitted at most 1 or 2 bug reports throughout

39

4.5. ANALYSIS AND INTERPRETATION

Figure 4.8 Duplication and bug repository size

Figure 4.9 Submitter profiles and their contribution to duplication problem.

40

4.5. ANALYSIS AND INTERPRETATION

the life-time of the project.

4.5.2 Main Findings on The Bug Report Duplication Problem

This study was started to understand which characteristics of the projects can be factors
for bug report duplication. We also would like to understand if the problem actually exists
in the projects examined, and where it impacts on development. The main findings of
this study are:

• All the projects analyzed are being affected by the bug report duplication
problem. Some projects are less affected than others, but in general, all of
them are affected;

• The submitters productivity in the analyzed projects is being affected by the
bug reports duplication problem. According to the estimative of this study
(taking into account all projects), almost 48 man-hours are necessary each
day to do search and analysis of bug reports due to duplication in bug reposi-
tories;

• The submitters do not use a common vocabulary to describe the content
of bug reports. This situation makes it more difficult to identify duplicates.
Moreover, none of the projects have explicitly defined a vocabulary to control
bug report descriptions;

• For the three projects where bug reports grouping were analyzed, more than
80% of the groups are composed by one-to-one grouping type. Thus, cluster-
ing and IA techniques may not be applicable to identify duplicates;

• The bug report duplication problem can occur independently of the type of
bug reports that are being submitted (for example, defect and enhancement
bug reports);

• The number of LOC is not a factor for the duplication problem;

• The size of the repository is not a factor for duplication;

• Projects’ life-time is not a factor for duplication;

• The staff size is not a factor for the duplication problem; and

41

4.6. LESSONS LEARNED

• The profile of the submitter is a determining factor for the submission of
duplicates, as well as the amount of submitters. According to our study, inex-
perienced submitters are more likely to submit duplicate bug reports, as well
as a larger quantity of submitters can also increase the amount of duplicates.

4.6 Lessons Learned

Envisioning a possible replication of this study, we have identified the following aspects
that must be improved.

Reporters information gathering. We had difficulties to gather information from
open source developers. We selected 180 developers to send the questionnaire, but we
received only 13 responses. The reasons for this low number can be many, such as invalid
emails or lack of interest. Thus, alternative methods for gathering such information must
be developed.

Bug trackers. In our study, we analyzed bug reports from two different bug trackers,
but one of them is an internal tool from the private project, without public access. Hence,
projects using other types of bug trackers should be included in the analysis. This variation
could help us to understand if the bug tracker is a possible factor for the duplication issue.

Private projects. Only one private project was used in this work, which restricted
the generalization of the results for that type of project. Thus, future work should include
more private projects.

Statistical analysis mechanisms. To analyze the results of this characterization
study, we used simple descriptive statistics, such as mean, standard deviation, percentage
and dependency analysis. However, we believe that this study is now a starting point for
others. New approaches should formalize and test hypotheses based on our results using,
for example, probabilistic models.

Negative results. We investigated some aspects for the projects that could be possible
causes for the duplication issue, but most of them were not confirmed. We only identified
a correlation with the submitters’ profile and the amount of submitters. Thus, more
in-depth analysis for the negative results must be provided to increase the validity of the
results.

42

4.7. THREATS TO VALIDITY

4.7 Threats to Validity

The following aspects concerning the validity of the study, and thus its capacity of
generalization of the results, were addressed.

Projects population. We analyzed 8 open source projects and 1 private project. The
open source projects are quite representative of the population of that type of project,
which allows us to generalize the results to the rest of the population with a good degree
of confidence.

On the other hand, our analysis of just one private project does not allow us to
generalize the results for that type of projects. However, we believe that private projects
that have similar characteristics than what we analyzed (i.e.: LOC, submitters, test center,
etc) are also being affected by the problem of duplicate bug reports.

Reporters data. The small number of submitters who answered the questionnaire
is also a threat to the results of this study. Other ways of gathering information from
submitters of open source projects are needed. Although we tried to be straightforward
with the questions and used their own email as a tool to obtain the information, it was
not enough. Furthermore, the way the time spent on search and analysis of bug reports
was collected can be very biased, because it was self reported. In next studies, this data
should be collected from more reliable sources, such as time-sheets.

Correlation vs. Causation. We have analyzed several aspects from software projects,
bug report submitters and development team, in order to understand correlations between
them and the duplication problem. However, we must not confound correlation with
causation. The correlations found in the study do not necessary mean a relationship of
cause. The causes can be external factors that were not addressed in this work, thus
further investigation must be performed.

Open source projects’ bug trackers. Except for the private project, all the other
analyzed projects use Bugzilla to handle their bug reports. This aspect can impact on the
generalization of the results, since the time to search and analyze existing bug reports, as
well as the amount of duplicates, may be different in other bug report tracking systems.

4.8 Summary

In this work, we presented a characterization study, using the GQM method (Basili et al.,
1986), about the factors that may have impact on the bug report duplication problem,
and the consequences of such problem to software projects. The study was performed

43

4.8. SUMMARY

using 9 bug report repositories from open source and private projects, with different
characteristics, such as software size, staff, life-time, number of bug reports, among
others.

According to our analysis, all 9 projects are being affected by the bug report duplica-
tion problem. Furthermore, we found evidences that the productivity is being impacted
because of the same problem. We also analyzed what project characteristics may be
influencing factors to the duplication problem, for example: the number of LOC and
life-time have no direct influence on the problem, which contradicts our initial intuition;
similarly, increased amounts of bug reports in the repository is not a factor to generate
duplicate bug reports.

Next chapter presents the BAST, a tool build to aid the bug report search and analysis.
It will be discussed the requirements, architecture, implementation and other aspects.

44

5
BAST: Bug Report Analysis and Search

Tool

Five steps forward and you are not in the same place as four steps

before.

—YGUARA (Chico’s Thought Evolution)

5.1 Introduction

As seen in the previous chapter, the problem of duplicate bug reports is very critical,
mainly because it demands considerable amount of time from submitters and developers.
Much of that time is spent with activities of search and analysis of bug reports, or even
contacting developers.

In this chapter, we present a tool, called BAST, built in order to facilitate the activities
of search and analysis of bug reports, focused on the detection of duplicates bug reports
submission. For the development of the tool, functional and non-functional requirements
were defined, considering the essence of the herein mentioned activities.

The remainder of this chapter is organized as follows: Section 5.2 presents the
requirements of the tool; Section 5.3 shows its general architecture; Section 5.4 describes
the components of the architecture; the characteristics of the search engine are presented
in Section 5.5; details of the implementation are discussed in Section 5.6; Section 5.7
shows the operation of the tool; and, finally, Section 5.9 presents the summary of the
chapter.

45

5.2. THE SET OF REQUIREMENTS

5.2 The Set of Requirements

5.2.1 Functional Requirements

According to Sommerville (2007), functional requirements define the functions of a
system, which can be, for example, manipulation of data, implementation of algorithms,
and the technical details on the implementation of the system. In the BAST specification,
the following functional requirements were defined:

• FR1 - Keyword-based search. The tool must provide search features based on
keyword search, as in web search engines (Baeza-Yates and Ribeiro-Neto, 1999).
Moreover, since people are familiar with web search engines, the tool adoption can
be easier;

• FR2 - Rank search results based on bug reports similarity rate. The search
results must be ranked according to the similarity of textual description of bug
reports. We believe that textual descriptions bring the most useful information
about bug reports. Furthermore, related work (Jalbert and Weimer, 2008) has used
such information in their approaches successfully;

• FR3 - Index bug reports from XML files. The tool needs to be loaded with bug
reports from the bug repositories. For this, one of the options is crawling bug
reports in XML files that were exported from such bug repositories. This option
requires someone who regularly must feed the system (i.e. a system administrator);

• FR4 - Index bug reports from original database. Another option to load the tool
is to integrate it directly to the bug repository database. The tool connects to such
databases and extract bug reports information from there;

• FR5 - Extract useful information from bug reports. After making a search in
the tool, the submitters can view each bug report from the result list. Thus, when a
bug report is being viewed, the tool must extract relevant information from it, such
as related bug reports, external links, execution information, related developers,
etc;

• FR6 - Reports about bug repository status. Project managers have interest in
reports such as: most active submitters; most common duplicate submitters; and
bug repository status. All these information help them to better plan project’s
schedules. Thus, our tool must provide such reports.

46

5.3. TOOL ARCHITECTURE OVERVIEW

5.2.2 Non-Functional Requirements

Non-functional requirements establish conditions that a system must meet to function as
desired (Sommerville, 2007). As non-functional requirements, we can cite: accessibility,
safety, performance, compatibility with various platforms, and so on. Next are defined
the non-functional requirements of the solution:

• NFR1 - Simple and intuitive filters interface. One thing that submitters have
claimed about is the complexity to create search filters in tools such as Bugzilla,
Mantis, Trac and DTTS. Thus, our tool must minimize such complexity in order
to facilitate filters creation. Additionally, the study in Chapter 4 showed that most
submitters use the advanced search interface of their systems, which bring us the
challenge to create a simple search interface the combines advanced features;

• NFR2 - Integration with most popular bug report tracking systems. Many
organizations have already ran a bug report tracking system with many legacy data,
such as Bugzilla and Mantis. Thus, it is useful that our tool can be integrated with
such systems to facilitate the tool’s adoption;

• NFR3 - Log search queries and user actions. In order to perform the evolution
of our tool, such as improve the similarity rate, we must collect metrics about the
tool’s usage. To achieve this, the tool must log all submitters actions;

• NFR4 - Reasonable similarity rate. The tool must rank, with reasonable preci-
sion, the search results based on bug reports similarity rate;

• NFR5 - Web-based interface with AJAX1. Submitters are often located in differ-
ent places, thus the tool must run on a web-server that enables them to access the
system independently of their location. Furthermore, the tool’s interface must use
AJAX to provide better interaction with search results and to decrease the time of
the HTTP request/response methods.

5.3 Tool Architecture Overview

BAST’s goal is to provide a system for search and analysis of bug reports, thus, the time
spent in these activities can be reduced and more duplicates can be avoided. To achieve
this goal, the tool will need to meet all the requirements set out previously.

1AJAX is an acronym for Asynchronous JavaScript and XML.

47

5.4. ARCHITECTURE COMPONENTS

BAST is basically composed of three main modules: a module for the Web application
(BAST Web Application), which submitters interact and do searches and analysis; a
module responsible for implementing the features of search and information extraction
(BAST Core); and a module for storing and managing the data (BAST Database).

The way a submitter interacts with the BAST and the architecture of it, follows the
way a generic application of Text Mining. According to Feldman and Sanger (2007), Text
Mining can be defined as an intensive process where a user interacts with a collection
of documents for information about a particular subject. Bringing this definition to our
context, the users are submitters and the documents are bug reports. The submitters
interact with the collection of bug reports in order to examine existing bug reports before
submitting new ones. During the analysis, it is very common the analysis of duplicates.
To verify whether a bug reports is duplicate, submitters should perform searches in the
systems and interact with existing bug reports in order to find similar bug reports.

BAST is an instantiation of a generic application for Text Mining (5.1), however, few
modifications were made to accomplish our needs. As can be observed in Figure 5.2, we
removed from the original architecture (Figure 5.1) the module Text Mining Discovery

Algorithms, performed some technical refinement, and reduced the scope of types of
documents. To be more specific, we refined this architecture to cover only the parties to
search by keyword, indexing, information extraction and visualization of bug reports.

5.4 Architecture Components

The architecture of the tool is composed of a database module, a core module, and a
Web interface module. Figure 5.3 illustrates a simplified organization of the architecture
of the application: the database stores in an organised way the bug reports from the
bug repositories to facilitate further searches; the main module has sub-modules for text
processing, indexing of content, parsers, search, and information extractors; and the
Web module implements the user interaction features that will be exposed to submitters
through a Web browser. Next, it will be provided more details for each component.

BAST Database. It uses the database to store all data from bug reports inserted in the
application. We did not use only a simple structure for indexing and retrieval, as provided
by Lucene2, because BAST needs to make complex SQL queries, such as one to draw
relationships among bug reports. The technologies used to implement the database were:

• MySQL. To implement the database of the application, it was chosen the MySQL.
2http://lucene.apache.org

48

5.4. ARCHITECTURE COMPONENTS

Figure 5.1 General Text Mining architecture (Feldman and Sanger, 2007).

Such database was chosen because it features indexing of content, stability, good
performance, good documentation, strong open source community, and it is a free
project;

• SQLAlchemy. SQLAlchemy is an Object-Relational Mapper (ORM) for Python
language3. Using an ORM framework, can be possible to change the database used
in the tool at any time. For example, we can change from MySQL to PostgreeSQL
without breaking the system code. Furthermore, with a ORM tool, it does not
need care about SQL syntax because the queries are made using elements of the
programming language itself.

BAST Web Application. Running the tool on the Web was one of the main require-
ments defined for the construction of the tool. Moreover, the Web interface must be
constructed in a way to make as simple as possible the use of search and analysis features,

3http://www.sqlalchemy.org

49

http://www.sqlalchemy.org

5.4. ARCHITECTURE COMPONENTS

Figure 5.2 General Text Mining architecture instantiation for BAST.

while increasing the efficiency of it. To achieve such purpose, we chose the following
tools:

• HTML/Cheetah. The interface of the application was made on the Web using
HTML and the template tool Cheetah4. The Cheetah is used to display dynamic
content of the application;

• DOJO JavaScript Toolkit. The Dojo5 framework was used to implement the
JavaScript part of the tool. Through DOJO, the creation of user interfaces that
make use of AJAX technology becomes easier and more productive;

• Cherrypy. Cherrypy6 is a Web application server for applications written in
Python. It was used to implement the responses for the submitter requests on the
Web interface.

BAST Core Components. BAST Core module contains the main components of
the tool, which are responsible for running the search engine, indexing, information

4http://www.cheetahtemplate.org
5http://www.dojotoolkit.org
6http://www.cherrypy.org

50

5.4. ARCHITECTURE COMPONENTS

Figure 5.3 BAST Architecture - Web interface, core module and database

extraction and so on. Next, it will be discussed each of these components:

• Database Crawlers. The crawlers are used when the tool is connected directly to
a database of some existing bug tracker. In this case, the bug reports are directly
imported from the bug tracker database. For example, if BAST is connected to an
instance of Bugzilla, these crawlers keep watching the database of Bugzilla, and
when any change is detected they update the database of BAST of new information;

• Bug report Parsers. The parsers are used when the BAST is being loaded by
imported XML files from some bug tracker. When these files are sent to the BAST
application, it parses the bug reports and includes them in the database of BAST;

• Text processing. This module is responsible to process the text from bug reports
and search queries. Some of the features of this module are: text tokenization,
stop-words removal, and apply Porter algorithm (Porter, 1980) for stemming. The
Porter algorithm is used to reduce a word to its radical. For example, the words
tests, testing, and tested, are reduced to test;

• Indexer. The module Indexer is responsible for processing the contents of each
bug report in the database before the insertion. It uses the same module for text-

51

5.5. BAST SEARCH FEATURES

processing to include only relevant information in the index. The Indexer module
is also used to update the existing index and perform the searches. Moreover, the
index structure is created and maintained by the MySQL engine;

• Query-parser. The module Query-parser is used when a submitter inserts a search
query in BAST. It processes the query in order to create the filter specified by the
submitter;

• Information Extractor. This module is used to extract relevant information from
a bug report when it is being viewed. For example, when a submitter is analyzing
a bug report, it is shown information about related bug reports, external links,
and people related to this bug report. This information is extracted using regular
expressions and performing queries in the database.

5.5 BAST Search Features

The search for bug reports is one of the main and most important services that BAST
provides for the submitters. It is through these searches that the submitters find similar
bug reports in order to not submit duplicates. In addition, the tool needs to provide an
efficient way to view the results of searches to reduce the time spent on analysis and
comparison of bug reports returned. The following subsections describe the mechanisms
for indexing and ranking, query, and visualization of searches.

5.5.1 Ranking and Indexing – Vector Space Model

To sort the results of a search, it was used the Vector Space Model (VSM) (Baeza-
Yates and Ribeiro-Neto, 1999). With VSM, the documents are represented in a space
of vectors of terms. Each dimension (vector) of this space is represented by a term,
and this term is associated with a weight known as Term Frequency-Inverse Document

Frequency (TF-IDF) Salton et al. (1975). The symbol TF-IDF is an abbreviation for
Term Frequency-Inverse Document Frequency, and means that the value of the weight
of a term is calculated taking into account the frequency in which this term appears in
the collection of documents, and the frequency in which it appears in each document.
TF-IDF is calculated by the Formula 5.1, where: wi, j is the term j of document i; fi, j

if the frequency of the term j in document i; and ni is the amount of documents which
contain the term j.

52

5.5. BAST SEARCH FEATURES

wi, j = fi, j ∗ log
N
ni

�
 �	5.1

Just as the documents are represented in the VSM, then so are the queries. Thus, the
VSM proposes to assess the degree of similarity between a document di and a query q as
a correlation between the vectors ~di and ~q. According to Baeza-Yates and Ribeiro-Neto
(1999), this correlation can be quantified by the cosine of the angle between these two
vectors, as shown in Formula 5.2. The VSM ranks the documents according to their
degree of similarity with the search query.

sim(di,q) =
~di ∗ ~q

|~di| ∗ |~q|

�
 �	5.2

5.5.2 Queries

According to Baeza-Yates and Ribeiro-Neto (1999), a query is the formulation of a user
information need. In the case of bug report analysis, submitters type some keywords into
the system to search for existing bug reports. We chose to use keyword-based querying
because it is intuitive, easy to express, and allow for fast ranking.

In BAST, it is provided natural language queries with a combination of a variation
of boolean queries. Such variation on boolean queries allows submitters to search for
complete phrases. For example, if a submitter put some keywords enclosed in quotes (i.e.
“radio fm error”), the system will return only the bug reports that match the entire query
“radio fm error”, also respecting the order of the keywords.

In the case of natural language queries, all the bug reports matching a portion of the
submitter’s query are retrieved. Higher ranking is assigned for those bug reports matching
more parts of the query. Such type of queries leaves the submitters free to put as much of
information as possible about a bug report being searched, raising the chances of finding
similar bug reports. An example of natural language query could be: error when clicking

menu button to play music.
Moreover, BAST implements some search filters that can be inserted directly in

queries, improving the use of keywords. For example, the submitters can perform searches
by bug reports about specific components or submitted on a specific date. Considering
the following query “fm radio error component: driverLG author: joseph@virsys.com”,
it would be returned only bug reports for errors in the FM radio component driverLG,
submitted by joseph@virsys.com.

53

5.6. IMPLEMENTATION

5.5.3 BAST User Interface

Another important feature of BAST is its interface with the user. BAST was built in order
to facilitate and expedite the tasks of search and analysis of bug reports. So, as well as
algorithms for efficient information retrieval, it is also important to provide an interface
which the user can interact efficiently and achieve their goals.

The interface of BAST was designed in a way that users can perform their activities
on a single screen. For example, often the analysis of bug reports resulting from a search
requires a comparison between two or more bug reports. However, current tools, such
as Bugzilla and Mantis, do not allow the bug reports to be displayed on the same screen
of search results, which means that a submitter needs to switch among different screens
(tabs of a browser, for example) to compare bug reports or to select other bug reports
from the search result list.

Thus, using BAST, submitters can view the results of the search and content of the
bug reports on the same screen, turning more efficient the comparison of bug reports.
Moreover, as discussed previously, the tool not only displays the contents of bug reports,
as well as extracts and displays relevant information (references to other bug reports,
external links, etc) to the submitters. It is important to note that such information are not
present in the original database of bug reports.

5.6 Implementation

The system is most implemented using the Python programming language. According to
Python Software Foundation (2008), “Python is a dynamic object-oriented programming
language that can be used for many kinds of software development. It offers strong
support for integration with other languages and tools, comes with extensive standard
libraries, and can be learned in a few days. Many Python programmers report substantial
productivity gains and feel the language encourages the development of higher quality,
more maintainable code”.

The motivation for choosing Python was its flexibility with text processing, which is
an essential task for BAST, and rapid prototype construction. Furthermore, recent work
(Prechelt, 2000) has showed that programming in dynamic typed languages is much more
productivity than programming in static typed languages, and the number of lines of code
in the result system is 2-10 times shorter. Other languages used to developed the tool
were JavaScript and SQL.

The BAST tool was developed by only one person and it took about 5 months of

54

5.7. BAST IN ACTION

intensive development (30 hours/week). In general, the application contains about 5000
lines of code, with approximately 60% of Python code, 25% of HTML code, 10%
of JavaScript code, and 5% of SQL. All components present in BAST are platform-
independent, meaning that the application can run on multiple operating systems.

5.7 BAST in Action

In this section, it is shown the operation of the tool and its main screen, how is showed in
Figure 5.4. The main fields of BAST are:

Figure 5.4 BAST in Action: main window.

1. Search bar. This is the part of the tool in which the submitters insert queries. It
is also in that field where the search filters are specified, as mentioned earlier. In
addition to write the query, the submitters can also specify the number of results
that must be shown per page. For example, it can be specified that only 30 bug
reports should be presented per page;

2. Search results. In this field it is shown the results of the searches. Each line
represents a bug report, with information about: identification of the bug reports;
summary; component; product; program; status; and date of submission. Such

55

5.8. BAST ADVANTAGES OVER OTHER TOOLS

information may change depending on the type of bug report which is indexed in
the database. In the case of Figure 5.4, it is shown information about bug reports of
the bug tracker from private project of C.E.S.A.R.;

3. Bug report visualization. This area of the tool is responsible for showing more
detailed information about the bug reports. This information is displayed when a
bug report is selected in the list of results. Among the information displayed, it is
shown the part of information extraction on left side, where can be viewed: general
data, related bug reports, attachments and external links, and related persons. At
the right side, there are: the summary, detailed description, and comments. As in
the previous item, this information also depends on the type of bug report stored in
the database;

4. Tool bar. In this part of the tool are presented some information about the envi-
ronment and some utilities. Through the toolbar, submitters can view information
about number of bug reports in the database as well as utilities to import new bug
reports and viewing reports. The utility for importing is used when the BAST is
not connected directly to a database of a bug tracker. Through this utility, the sub-
mitters can upload bug reports into a single compressed file to update the database
of the tool. The utility for reports is used to show information about the status
of the repository, which submitters submit more duplicates, and the most active
submitters, among others.

The numbers in Figure 5.4 also show the common sequence to use the tool. It is, the
submitters typically use the BAST according to the following flow: (1) first it is inserted
the search keywords and the desired filters, (2) shortly after the search, the submitters
examine the results list to identify similar bug reports, (3) and finally, if necessary, the
submitters select the bug reports in the results list to view detailed information. Step 4 is
optional and can be performed at any time, since there are bug reports indexed in the tool.

5.8 BAST Advantages over Other Tools

BAST implements most of the techniques used by Runeson et al. (2007) and Wang et al.

(2008), such as keyword search and stemming. We did not implement machine learning
techniques, as proposed by Anvik et al. (2005) and Hiew (2006), because they do not
have the performance if compared with cheapest ones, such as the vector model used by
Runeson et al. (2007). Moreover, we provided evidences on Chapter 4 that the aspects

56

5.9. SUMMARY

of bug report data present on repositories do not enable the usage of Anvik and Hiew’s
proposals.

Beyond the information retrieval techniques implemented, BAST also focuses on
usability. The user interface was formulated to improve the user experience, such as to
facilitate the analysis of bug reports and searches. We used AJAX techniques to improve
the response of the tool, as well as to keep the user focus on bug reports analysis. For
example, to compare two similar bug reports, the user does not need to switch among
two different tabs from the Internet browser.

5.9 Summary

In this chapter, it was presented a web-based tool for search and analysis of bug reports,
with main focus on avoiding duplicates. The tool was built based on the need to facilitate
and expedite these tasks in order to reduce the costs of software maintenance. Thus,
the application requirements were described as well as the architecture, the components
of the architecture, some features for searching and analysing bug reports, details of
implementation (programming language and frameworks), and the operation of the
application.

Next chapter presents a case study performed inside a private project from C.E.S.A.R.
In such study, BAST was used by one subject in order to compare it against a baseline
tool in real cycle of tests.

57

6
Case Study at C.E.S.A.R.

Six steps forward and you are not on the same place as five steps before.

—YGUARA (Chico’s Thought Evolution)

6.1 Introduction

In previous chapter, we presented a tool developed with the objective to improve bug-
report search and analysis. In this chapter, it will be described a case study conducted
inside a private partner organization from C.E.S.A.R., where BAST was tested by one
tester during a real cycle for software testing. In this context, BAST was compared with
the baseline tool from such organization. Although it was an initial evaluation for BAST,
the results were very significant.

Furthermore, this case study served as a pilot project for the experiment that will be
described in Chapter 7. The remain of this chapter is organized as follows: Section 6.2
defines this case study; in Section 6.3 the planning of the case study takes place; Section
6.4 shows the analysis and interpretation of the results; Section 6.5 describes the lessons
learned during this study; and Section 6.6 summarizes this chapters.

6.2 Definition

Context. During the months of July and August 2008, we performed a case study in a
private partner of C.E.S.A.R., to evaluate the tool developed. In this test-center, the testers
perform a systematic process to test software that is developed by the same organization
in various sites around the world. As the software development is distributed, tests are

58

6.2. DEFINITION

also, in many cases, performed in different test-centers. Briefly, the testers receive a
formal document with sequences of tests that must be performed, and when errors are
found, bug reports should be submitted to report errors.

However, as shown in the study described in Chapter 4, the fact that there are
several people testing and developing software distributed, could lead to the submission
of duplicate bug reports. In the case of C.E.S.A.R., we know that these bug reports
negatively affects the productivity of the team. The productivity of developers is affected,
because they will inevitably spend time analyzing bug reports that have already been
solved. In the case of testers, productivity is affected because, despite the existence of
the duplication problem, they need to concentrate more effort on analyzing similar bug
reports in order to prevent the submission of duplicates.

Case study objectives. The macro objective of the study is to analyze the efficiency
of the tool in the analysis of bug reports, with focus on duplicates prevention and time
saving. Thus, the specific objectives of this case study are: (i) to examine whether our
tool can prevent more duplicate bug reports than the current tool of C.E.S.A.R., and (ii)
to consider whether our tool decreases the time spent on analysis of bug reports.

Baseline. Currently, the private organization at C.E.S.A.R. uses an internal tool to
manage bug reports, as well as to search the existing bug reports. To perform searches
in this tool, the submitters need to create multiple filters using a sintax similar to SQL
to specify the desired criteria for searches. Some of the negative points were raised by
submitters on the current tool: the time and complexity to build the search filters, and the
bug reports visualization that did not facilitate the identification of duplicates. Thus, this
study compare the results with our tool and the private organization’s tool.

Hypotheses. According to the case study, we established the following null hypothe-
ses and alternative ones. According to Wohlin et al. (2000), the null hypotheses are those
who the experimenter wants to reject, while the alternative hypotheses are those that the
experimenter wants to confirm.

Null hypotheses. The null hypotheses determine that the time spent with BAST is
greater than the time with baseline tool, and the baseline tool can prevent more duplicates
than BAST.

H0: µ time with BAST >= µ time with baseline
µduplicates avoided with BAST <= µduplicates avoided with baseline

Alternative hypotheses. For alternative hypotheses, BAST spent less time than the
baseline tool and it can also prevent more duplicates than the baseline tool.

59

6.3. PLANNING

H1: µ time with BAST < µ time with baseline
µduplicates avoided with BAST > µduplicates avoided with baseline

6.3 Planning

The case study was performed using a real test cycle of specific software for mobile
devices. During that period, it was used the internal tool of the private organization and
our tool. A specific tester, called bug report master, was selected to use both tools in
parallel during the whole period. We selected such specif tester because it conducts most
of the bug reports analysis and searches, and assists other testers with the same activities.

The bug report master is the person responsible for conducting the test cycles. When
a tester has problems or questions with regard to testing or a bug report, the bug report

master should be contacted to solve the problems. Thus, this person, besides being
responsible for the submission and analysis of its own bug reports, is also responsible for
searching for similar bug reports for people who contacted him. For example, if a tester
has doubts related to the uniqueness of a bug report, but cannot find a similar bug report
in the repository, the bug report master should be contacted to make more advanced
analysis and searches. For simplicity, from now, we will call it just as submitter.

Case study design. The submitter was instructed on how he should use both tools
to search and analyze the bug reports. Thus, we divided the assessment period in two
treatments: the first stage (from July 17 to August 07), the submitter should carry out the
analysis first in the private organization’s internal tool, and if he did not find a similar
bug report, he should use our tool to perform a new analysis; in the second stage (from
August 08 to August 29), this sequence was reversed.

We made the implementation of the study in this manner to reduce the factor of
confusion regarding the knowledge of already analyzed bug reports. For example, if we
chose to conduct the study so that the submitter performed the analysis in both tools, even
if there was finding a similar bug report in the first tool used, the analysis in the second
tool would be compromised because the submitter would already have knowledge about
the existing similar bug report. In contrast, in a way that the study was implemented, we
cannot know how much time it would be spent for the same analysis on both tools; this
would only be possible if we performed another case study with two or more submitters.

Evaluation Metrics. To analyze which tool was more efficient with regard to the
objectives defined, the following metrics were established:

• MT1: Type of bug reports analyzed. With this metric, we want to characterize the

60

6.4. RESULT ANALYSIS

types of bug reports that were submitted during the course of the case study. For
example, it is important to know the percentage of duplicate bug reports, valid bug
reports, among others;

• MT2: Number of duplicate bug reports avoided. With this metric, we want to know
how many possible duplicate bug reports have been prevented with the use of our
tool, and how many have been avoided with the use of the baseline tool;

• MT3: Time spent to analyze similar bug reports. This metric is concerned with the
time – in minutes – spent by submitters to search and analyze bug reports before
submitting a new one. For this metric, we computed only the time for searches
that found similar bug reports. In other words, we computed only the searches that
avoided the submission of duplicates.

Quantitative analysis mechanisms. To analyze the data generated by the case study,
it will be used descriptive statistics, such as percentages, mean, standard deviation and
pie and bar charts.

Data gathering. For the metrics MT1, MT2 and MT3, the submitter was responsible
for recording the types of bug reports that were analyzed, the time spent on each analysis
and, when a duplicate is found, to specify in which tool it was found. In the case of metric
MT1, if a bug report was not submitted and there were no similar bug reports for it, the
submitter should specify the reason for does not submit it.

6.4 Result Analysis

During the case study, it were examined 144 bug reports by the bug report master.
This amount leaded to 407 searches also performed by the bug report master, just in
our tool during the study period. However, it was not possible to have access to the
number of searches carried out in the private organization’s internal tool due to issues of
confidentiality. Following we analyzed each treatment of the case study design, and an
analysis of the whole period (the two treatments together) are performed at the end. First
of all, we provided a description of the bug reports analyzed in the study:

• Unreproducible. Errors that the testers and developers have been unable to repro-
duce;

• Feature Not Yet Available. Bug reports that describe errors that can only be
corrected with the addition of new features;

61

6.4. RESULT ANALYSIS

• WAD. The term WAD is an acronym for Work as Design, and means that the error
reported, in fact, is a behavior already expected in the software;

• H/W Issue. This type means that the error found is caused by a defect in the
hardware, and it must not be submitted to the development team;

• Workaround. Bug reports of this type mean that the errors found can be avoided
if the tests run in another way;

6.4.1 Analysis of the First Treatment

During the first treatment, it was analyzed 42 bug reports. It was the treatment in which
less bug reports were analyzed, due to the fact that it was the beginning of the project being
developed at the private organization. Figure 6.1 shows a graph with the classification of
bug reports after the analysis performed by the submitter.

Figure 6.1 Repository status in the first treatment.

As it can be seen, 72% of bug reports that were analyzed would be duplicate if they
were not avoided. Meanwhile, only 14% were valid bug reports, 7% were Unreproducible,
2% WAD, 2% H/W Issue, and 2% Feature Not Yet Available. These data show that the
majority of time spent with bug report analysis and search is due to the presence of
duplicates.

Furthermore, Figure 6.2 shows the percentage of duplicate bug reports that were
avoided according to the tool used. In this first treatment, the bug reports were firstly
analyzed using the baseline tool, and if it were not found similar bug reports, a new
analysis should be performed with BAST. Thus, the analysis made with the baseline tool

62

6.4. RESULT ANALYSIS

prevented the submission of 58% of duplicates, while BAST prevented 35%. Moreover,
7% were avoided due to the information provided by developers, through email or other
type of communication. Therefore, in this treatment, BAST had lower performance than
the baseline tool in order to prevent duplicates.

Figure 6.2 Duplicates found in the baseline tool and BAST in the first treatment.

The graph in Figure 6.3 shows the average time spent on search and analysis using
the baseline tool and BAST. As can be seen, although BAST has avoided less duplicates
than the baseline tool, as mentioned before, the time to do search and analysis with BAST
was less than with the baseline tool. BAST saved almost the half the time that was spent
with the baseline tool.

Figure 6.3 Time spent in searches for duplicates in first treatment.

6.4.2 Analysis of the Second Treatment

During the period of the second treatment, it was analyzed 99 bug reports. Note that the
amount of analysis of bug reports has increased considerably in this treatment. One of
the reasons for this growth was the maturing of the project under development. Figure

63

6.4. RESULT ANALYSIS

6.4 shows a graph with the classification of bug reports after the analysis conducted by
the submitter during the second treatment. According to the chart, 44% of bug reports
were duplicates that had been avoided, while 34% were valid bug reports, 9% were
unreproducible, 7% WAD, 2% H/W Issue, 2% workaround and 1% Feature Not Yet

Available.
Although the amount of bug report submitted increased, there was a reduction on the

submission of duplicate bug reports and a growth of valid bug reports submission. We
believe it is a consequence of the project maturation; testers and developers are more
engaged and there is better knowledge of the bug reports currently being handled.

Figure 6.4 Repository status in the second treatment.

The graph in Figure 6.5 shows the percentage of duplicate bug reports that were
avoided according to the tool used. In this second treatment, the bug reports were
analyzed first using BAST, and if it was not found similar bug reports, a new analysis
should be performed with the baseline tool. At the end of this treatment, the analysis
made with BAST avoided the submission of 89% of duplicates, while the baseline tool
prevented just 7%. In addition, 7% were avoided due to the fact that the submitter had
prior knowledge of similar bug reports.

According to the graph in Figure 6.6, the average time spent on search and analysis
of bug reports on both tools did not have big difference. Although BAST had a little
better performance in the second treatment, in regard to the time of search and analysis,
we believe that further analysis (i.e. to analyze the complexity of bug reports) should
be done to decide whether such difference was caused by the use of BAST or if it was
influenced by other factors.

64

6.4. RESULT ANALYSIS

Figure 6.5 Duplicates found in the baseline tool and BAST in second treatment.

Figure 6.6 Time spent in searches for duplicates in second treatment.

65

6.4. RESULT ANALYSIS

6.4.3 Analysis of the Whole Period

In this subsection, we performed an analysis over the whole period of the case study,
without distinguishing among the different treatments. Such analysis is important to
understand the overall performance for both tools.

Types of bug reports analyzed. The graph in Figure 6.7 shows the types of bug
reports that were analyzed by the submitter during the case study. As it can be seen, 53%
was composed of duplicates, which would enter in the repository if it was not avoided.
Meanwhile, only 29% of bug reports addressed issues not yet submitted, and thus were
submitted to the repository. The other types of bug reports, although they were not
duplicate, have not been submitted to the repository because they were invalid

Figure 6.7 Repository status.

Thus, the graph of Figure 6.7 shows, once again, the severity of the problem of
duplicate bug reports on projects of software development. For example, in this case
study, if the 53% of duplicate bug reports were not prevented, the developers who were
assigned to solve them would spend time, inevitably, with problems that have already
been fixed or reported. That time could be used to solve other valid bug reports.

Percentage of duplicate bug reports avoided. As mentioned earlier, 53% of the
bug reports were not submitted because they were duplicates. The graph in Figure 6.8
shows that 68% of the bug reports were avoided by using BAST, while only 27% have
been avoided with the baseline tool. In addition, 3% of duplicates could only be avoided
due to information provided by developers, or because the submitter just knew that such
bug reports were duplicates.

66

6.4. RESULT ANALYSIS

Figure 6.8 Duplicates found in the baseline tool and BAST.

Average time spent on analysis of bug reports. The graph in Figure 6.9 shows that,
in general, the average time spent to perform analysis of bug reports is reduced when
using BAST. On average, BAST saves half of time that would be spent if the submitter
would be using the baseline tool. Therefore, it can be considered the the goal of reducing
the time spent on analysis of bug reports was achieved.

Figure 6.9 Time spent in searches for duplicates.

6.4.4 Analysis Conclusion

Although the individual analysis of the treatments showed few difference among the tools
in some aspects, such as the time spent on analysis, according to the results analyzed by
descriptive statistics of the whole period can confirm the alternative hypothesis µ1 and

67

6.5. LESSONS LEARNED

refute the null hypothesis µ0. In other words, BAST can save more time than the baseline
tool during the analysis of bug reports, and it can also avoid more duplicates.

6.5 Lessons Learned

In order to replicate this case study and increase its validity, some aspects must be taken
into account. First of all, one must consider that the replication of this study is very
dependent on an environment similar with the one presented in this work. Moreover,
the conditions in which the case study was performed is very particular for the private
organization, which makes difficult such replication.

Case study design. The way that the case study was designed can turn biased the
measurement of which tool demands less time to perform search and analysis of bug
reports. For example, the accommodation of the subject could lead him to prefers to use
one tool instead of other. Thus, a better design for the case study would be to execute the
search and analysis using only one tool in the first moment, and using the other tool in
the second moment. However, this could not be done in this work due to environment
constraints.

We must also consider that the time to perform a second analysis can be influenced
by the first analysis. For example, if the submitter spends a certain time to perform an
analysis in the first tool, but does not find any duplicate, it is likely that he will spend
more time using the second tool to find a duplicate, if available. In this sense, we must
also consider the factor of accommodation, in which the submitter tends to spend more
time using the tool that he feels more comfortable to use.

Amount of bug reports in treatments. The amount of bug reports that were an-
alyzed in each treatment were very different. However, this situation could not be
controlled in the case study, because it was performed as an on-line case study, which
means that the environment and conditions were real.

Lack of subjects. In addition, the number of subjects was not sufficient to generalize
the case study results. It brings down the external validity of the study, at the same time
that it does not enable the conclusion generalization even to the same organization. More
subjects should be evaluated in order to increase the study validity.

Analysis mechanisms. We should use some hypothesis testing mechanisms, such as
the stundent’s t-test Wohlin et al. (2000), in order to analyze the time spent on analysis
for each treatment. It is necessary because the difference between the values analyzed is
very few. Thus, only looking at these values with descriptive statistics turns difficult to

68

6.6. SUMMARY

draw a more concrete conclusion.

6.6 Summary

This chapter presented a case study to evaluate the BAST tool. The case study was
conducted with only one subject inside a private organization from C.E.S.A.R. The BAST
tool was compared against the baseline tool, and the results showed that the former can
reduce the time to perform search and analysis of bug reports, at the same time it can
increase the number of duplicate bug reports found. In addition, the confounding factors
of the case study design and the lessons learned were also presented.

Next chapter presents another validation of BAST. It was performed an experiment
with a set of students, where such students should use BAST and a baseline tool in order
to compare the gains with BAST.

69

7
BAST Empirical Evaluation Experiment

Seven steps forward and you are not in the same place as six steps

before.

—YGUARA (Chico’s Thought Evolution)

7.1 Introduction

In previous chapters, we showed how duplicate bug reports is affecting software develop-
ment, for example, with impact on total costs. We also described aspects of development
teams and environments that can be possible causes for such problem. Moreover, it
was described a tool developed in order to improve the analysis of bug reports and the
duplicate detection.

The tool developed was evaluated in a private environment for software testing, with
a real cycle of tests during, approximately, one moth. However, this case study was
performed with only one tester, and we believe that such condition is a potential bias
to the case study results, as we mentioned on the confound factors section. Thus, we
performed a controlled experiment with 18 subjects with the objective to evaluate the tool
against a baseline tool, so that more concrete conclusion can be drawn.

This chapter describes the experiment mentioned before, discussing its definition,
planning, operation, analysis and interpretation, and other aspects concerning empirical
experiments. The remaining of this chapter is organized as follows: Section 7.2 presents
the definition of the experiment; in Section 7.3 it is presented the planning of the experi-
ment; Section 7.4 describes how the the operation of the experiment was performed; in
Section 7.5 the analysis and interpretation of the results are presented; and finally, Section
7.6 summarizes this chapter.

70

7.2. DEFINITION

7.2 Definition

In order to define this experiment, it was used the GQM method (Basili et al., 1986).
With GQM, it is established the goal of the study, the questions to be answered, and the
related metrics that must be collected to aid with the questions. However, the metrics are
defined later as independent variables.

Goal. The goal of this experiment is to analyze a tool to improve search and
analysis of bug reports for evaluating it with respect to its effectiveness and efficiency

on detection of duplicate bug reports and time saving, in the view point of researchers, in
the context of software development projects.

Questions. To achieve this goal, we defined quantitative and qualitative questions.
The first ones are related to the data collected during the period that the experiment will
be executed, and the last ones concerned with the submitters’ feedback about the new
approach adoption. The questions are described as follow.

Q1. Is there a reduction on the number of duplicated bug reports with the new tool

adoption? The main objective of the tool is to reduce the number of duplicates
submission, thus, we would like to understand if this goal will be achieved.

Q2. Is there a reduction on the time that submitters spend to perform the search and

analysis of bug reports with the tool adoption? Another objective of the tool is to
reduce the time needed to search and analysis of bug reports. Thus, it is important
to know if time will be saved in such tasks.

Q3. Did the submitters have difficulties to use the tool? In order to understand the
difficulties that the submitters will face during the adoption of the tool, they will be
asked to describe the difficulties faced during the experiment.

Object of study. The object of study is the tools used to analyze and search bug
reports and their ability in terms of performance to save time and avoid duplicate bug
reports.

Quality focus. The quality focus is the effectiveness and efficiency of the tool
developed to aid the analysis and search activities. We want to understand if our tool can
bring benefits to bug reports analysis and search.

Context. This experiment is concerned with the adoption of a tool developed to aid
the bug report tracking process, focusing on search and analysis of bug report to avoid
duplicates. The tool will be compared with a baseline tool. Thus, the subjects will use

71

7.3. PLANNING

both tools and it will be analyzed the time saved and duplicate bug reports avoided by
both tools.

The experiment will be performed as an off-line experiment. The subjects will be
composed by M.Sc. students from the Computer Science department at Federal University
of Pernambuco/Brazil. In addition, the experiment will be performed distributed, which
means that the subjects are free to choose their work environment, such as their home or
university laboratories. Regarding the data used in the experiment, the subjects will use
bug reports from some open-source projects.

7.3 Planning

Training. It will be explained to the subjects the context of the experiment and how it
must be conducted. Furthermore, the subjects will be free to test the tools used in the
experiment before the execution. The difficulties that may rise concerning the tools will
be resolved through email.

Subjects selection. The subjects of this experiment will be selected by convenience

sampling (Wohlin et al., 2000; Kitchenham and Pfleeger, 2002). It means that the nearest
and most convenient people from various elements of a population will be selected. For
this experiment, it will be selected twenty subjects.

Instrumentation. All subjects will receive descriptions of defects from some open
source software project. However, it is important to highlight that such descriptions are
not the bug reports themselves, but only few words describing software errors. Thus, it
will be created two lists of such objects for the experiment, where each list will contain
32 descriptions, being 50% with defects that already have bug reports describing them in
the repository, and 50% with unique/not-reported defects. It is crucial that such list holds
some descriptions about already submitted bug reports, thus we can determine which
duplicates were correctly avoided.

The subjects will also receive guidelines to guide them through the experiment
execution. In our experiment, the guidelines will be documents explaining how to
perform the experiment and how to use the tools. Furthermore, the tools have their own
manuals.

The results of the experiment (number of duplicates and time spent with search and
analysis) will be collected using measurement instruments. Thus, it will be prepared
time-sheets to collect the time spent by submitters with search and analysis of bug reports.
Furthermore, questionnaires will be elaborated to gather qualitative data from subjects.

72

7.3. PLANNING

The instruments are presented in Appendix A.
Null hypothesis. The null hypothesis determines that there is no benefit of using

BAST to perform analysis and search of bug reports. It is, there is no difference between
the time saved and bug reports avoided by BAST and by baseline tool. The null hypothesis
is specified as follows:

H0: µ time with BAST >= µ time with baseline
µduplicates avoided with BAST <= µduplicates avoided with baseline

Alternative hypothesis. The alternative hypothesis determines that BAST can save
more time and avoid more duplicate bug reports than the baseline tool. Thus, there is
difference between the time saved and bug reports avoided by BAST and by the baseline
tool. The alternative hypothesis is specified as follow:

H1: µ time with BAST < µ time with baseline
µduplicates avoided with BAST > µduplicates avoided with baseline

Independent variables. This experiment has only one independent variable, which is
the tool used to perform searches and analysis of bug reports in order to avoid duplicates.

Dependent variables. The dependent variables for this experiment are the (a) amount
of duplicate bug reports and (b) the time spent with search and analysis of bug reports.
The value for first variable is the percentage of duplicate bug reports present in a bug
repository. The value for the second is the average time in minutes used to analyze bug
reports.

Quantitative analysis mechanisms. Descriptive statistics will be used to analyze
the data from the experiment. In order to test the hypotheses defined for the experiment,
it will be used a paired test-t (Wohlin et al., 2000). The test-t is a parametric mechanism
for statistical analysis widely used when it is needed to compare the values from two
treatments.

Qualitative analysis. The qualitative analysis will be conducted to understand the
subjective aspects of the tool, such as the difficulties faced by the subjects during the use
of the tool. The questionnaire presented in Appendix A.3 will be used to characterize
these issues. The subject will be asked about the applicability and usability of the tool.

Blocking. Blocking is used to systematically eliminate the undesired effect in the
comparison among treatments (Wohlin et al., 2000). Initially, we are looking for subjects
with similar experiences, in order to eliminate such undesired effects. However, only after
collecting data about education and background, we will be able to determine if blocking
is needed. The questionnaire in Appendix A.2 will be used to gather such information.

73

7.3. PLANNING

Randomization. The randomization applies on the allocation of the objects, subjects
and in which order the tests are performed (Wohlin et al., 2000). Since all subjects will
participate in both treatments, no randomization is required.

Balancing. Since each treatment has the same number of subjects, the experiment is
balanced, which strengthens the statistical analysis of the data (Wohlin et al., 2000).

Experiment design. It will be used the one factor with two treatments design (Wohlin
et al., 2000) to perform the experiment. In such case, the factor is BAST. Thus, there is
a treatment with such tool and another with the baseline tool. The two treatments are
described as follow:

• Treatment 1. In the first treatment, the group of subjects will receive the list of
error descriptions. Then, before submitting such errors as new bug reports, they
will use the BAST tool from the selected project to perform searches and analysis
of existing bug reports in order to avoid duplicates submission.

• Treatment 2. In the second treatment, the group of subjects will use the baseline
tool to perform the searches and analysis of bug reports to avoid duplicates, as
mentioned in Treatment 1. Furthermore, the group will use another list of error
descriptions, thus the experiment will not be compromised by previous knowledge
of error descriptions.

Figure 7.1 shows how the experiment execution is performed according to the treat-
ments defined.

Internal Validity. The internal validity of the study is defined as the capacity of a new
study to repeat the behavior of the current study, with the same subjects and objects with
which it was executed (Wohlin et al., 2000). The internal validity of the study depends on
the number and expertise of the subjects. This study is supposed to have at least twenty
subjects with similar background on bug report tracking activities to guarantee a good
internal validity.

External Validity. According to (Wohlin et al., 2000), the external validity is con-
cerned with the generalization of the experiment results. Due to the time constraints,
it will not be possible to apply the study in others research groups. Nevertheless, the
external validity of the study is considered sufficient, since it aims to analyze the adoption
of a tool for search and analysis of bug reports compared to a baseline. Thus, additional
studies can be planned within projects that use bug tracker systems, considering the same
profiles of subjects. Furthermore, all instruments used in the experiment will be available
for download in http://www.cin.ufpe.br/~ycc/btt-experiment.

74

http://www.cin.ufpe.br/~ycc/btt-experiment

7.3. PLANNING

Figure 7.1 Experiment design. The subjects receive a list of error descriptions and perform
searches and analysis using the baseline tool before submitting a new bug report. After that, the
subjects receive another list, however they use BAST to perform searches and analysis.

Conclusion Validity. This validation determines the capability of the study to gener-
ate conclusions (Wohlin et al., 2000). The analysis and interpretation of the results of
this experiment will be described using descriptive statistics and statistical hypothesis
testing, which are appropriate to the data type collected during the experiment.

Validity Threats. The following validity threats related to this experimental study
were identified:

• Boredom. The amount of bug reports that the subjects have to consider is relatively
large, being a work somewhat repetitive. Thus, some subjects may feel upset or
disappointed with the experiment. In order to reduce the boredom of the experiment,
the subjects will have a deadline of 5 days to execute each treatment;

• Lack of Historical Data. Although some work in the literature had performed
some tests with computational techniques to detect duplicates, none of them has
made an experiment involving people, as is the case of this experiment, in a such
way we could compare our results with previous ones. Furthermore, we did not use
the data from the case study presented in Chapter 6 because of the lack of subjects.

• Environment. The subjects will be free to do the tasks for the experiment in a
place that suits them best. Thus, we believe that different environments can have
positive or negative influences for the correct execution of the experiment. For

75

7.3. PLANNING

example, certain types of environments can stimulate the concentration of subjects,
while other environments can stress them, thereby undermining the execution of
the experiment.

• Subjects Knowledge on bug reports. The results of the experiment may be
compromised by the lack or excess of knowledge on part of subjects on the bug
reports of the selected project. Thus, if the subjects have any prior knowledge of
errors already reported the analysis can be carried out faster.

• Errors re-descriptions and fictitious errors. The descriptions of errors, based
on bug reports on the project to be selected, must be rewritten before being sent to
the participants. This is necessary because if we maintain the same descriptions,
the identification of the errors would be facilitated. However, the rewriting of the
descriptions could change the meaning of the original description, making more
difficult the bug report identification.

Another threat are the fictitious errors that will be created to serve as the descriptions
of unique errors. These descriptions may coincide with errors that have been
reported to the project that will be selected and we are not aware of them, thereby
increasing the number of duplicates on the list.

• Halo Effect. In a study conducted by Thorndike (1920), it was found a high
correlation between ratings of logically unrelated traits from officer’s assessments
of their soldiers. It was because the ratings of each trait of a soldier was influenced
by the officer’s tendency to believe in their soldiers as generally good or bad.
Porting the idea of halo effect to our experiment, some aspects (bad or good) from
the tools can influence the evaluation of them by the subjects. For example, a poor
user interface can influence the subjects and lead to negative evaluation of all other
characteristics of the tool.

• Internet Connection Constraints. Both tools used in the experiment will run in
the Web, thus the time to search for bug reports might be compromised by the
quality of Internet connection from the subjects environment. Thus, since we do
not differentiate the time to search and the time to perform analysis, the results can
be imprecise.

76

7.4. OPERATION

7.4 Operation

The open source project. The open source project selected for the execution of the
experiment was the Firefox Internet browser. We chose this project because it is a tool
well known both by end users and Computer Science students. Being such a tool of
broad knowledge, we believe that the subjects would have the minimum of trouble to
understand the error descriptions.

Baseline tool. The Bugzilla bug tracker with all bug reports from Firefox was chose
to compose the baseline. Since Firefox uses Bugzilla to handle its bug reports, it was
convenient to choose this bug tracker. Furthermore, Bugzilla is one of the most known
bug trackers, being used by several open source and private projects.

Selected bug reports. It was delivered to the participants of the experiment two lists,
each one with 32 descriptions of error of Firefox. To compose this amount, for each list it
was randomly chose 16 (50% of the list) bug reports that were submitted to the Firefox
project during the year 2008, and the other 50% were composed of unique bug reports.
In order to have unique bug reports not already reported to the Firefox bug tracker, it was
created fictitious errors about Firefox features. Furthermore, such fictitious errors were
based on another Internet browser, called Epiphany.

The subjects did not know what errors were present in the bug tracker of Firefox and
which were fictitious. Moreover, the subjects were not informed that the unique errors
were fictitious errors, so we ask them to not submit to the Firefox bug tracker the errors
that were identified as unique during the analysis. The lists of bug reports can be seen in
the Appendix B.

Subjects selection. We chose the subjects by convenient sampling method (Wohlin
et al., 2000; Kitchenham and Pfleeger, 2002). Thus, it was selected people from RiSE
group to compose the subjects of the experiment. Such subjects are aware of the duplica-
tion problem, however it does not mean they care about the problem. Table 7.1 shows the
profile of each subject. Only one of them is a Ph.D student (student #8), the others are
M.Sc. students or have finished the M.Sc. course recently.

Training. Since all subjects have some experience with bug trackers, no training
about how to use such tools was performed. However, information about the experiment
execution were detailed, via email, to the subjects.

Cost. The subjects were suggested to perform the experiment activities on their free
time, using the place more convenient for them. Furthermore, we needed only to setup the
environment on Web for the BAST tool. The environment for baseline tool was already

77

7.5. ANALYSIS AND INTERPRETATION

ID Years since
graduation

Participation
in projects

of projects
with bug-
tracker

Used bug-trackers

1 3 15 4 Mantis
2 2 9 1 Trac
3 3 6 1 Mantis
4 1 13 3 Bugzilla, Trac
5 3 9 1 Mantis
6 1 6 3 Bugzilla, Mantis, Jyra, Other
7 2 6 4 Bugzilla, Trac, Mantis, Jyra
8 3 22 22 Bugzilla, Mantis, Other
9 0.5 4 0 –

10 3 4 4 Bugzilla, Mantis, Other
11 2.5 4 1 Bugzilla, Other
12 0.5 7 7 Trac, Mantis, Jyra
13 1 6 0 –
14 0.5 5 1 Bugzilla
15 1 1 1 Bugzilla, Trac, Other
16 5 16 16 Other
17 0.5 5 1 Bugzilla, Mantis
18 0.5 6 0 –

Table 7.1 Subjects profile.

done, since subjects used it directly from Firefox project.

7.5 Analysis and Interpretation

Table 7.2 shows the data obtained during the experiment. The first column shows the
ID of the participant, second and third columns show the time spent in analysis of bug
reports, and the remaining columns show the amount of duplicate bug reports avoided.
As a first step in analyzing the data, it will be used descriptive statistics to visualize the
data collected.

7.5.1 Quantitative analysis

Descriptive statistics Table 7.3 shows some statistics about the experiment results. For
time spent on analysis, BAST had mean value of 4.54 minutes and standard deviation
(SD) of 1.49, while Bugzilla had mean value of 4.32 and SD of 1.91. The differences
among these values are very few, thus we plot boxes to better understand them, see Figure

78

7.5. ANALYSIS AND INTERPRETATION

Time spent on analysis Duplicates avoided
BAST Bugzilla BAST Bugzilla
1 3.09 2.56 5 9
2 3.03 2.47 8 10
3 3.31 3.09 8 12
4 6.78 6.84 13 10
5 5.1 4.82 4 2
6 3.06 2.75 11 11
7 4.97 3.91 12 9
8 5.04 9.56 2 8
9 5 2.97 8 8

10 3.63 3 7 10
11 6.84 6.88 7 8
12 1.78 2.66 6 4
13 6.66 5.41 9 10
14 3.69 4.19 13 10
15 6.47 4.31 9 11
16 3.75 2.72 8 10
17 4.47 4.91 6 8
18 4.97 4.78 0 0

Table 7.2 Collected data during the experiment.

7.2.
From Figure 7.2, we can conclude that people using Bugzilla to analyze bug report

spent a little less time than using BAST. Figure 7.2 also shows an outlier for Bugzilla,
however, we chose to keep it because the different between the outlier and the highest
value is not so large. Furthermore, it is important to note that most of subjects from BAST
keep their time spent on analysis below the median value. It is a positive point to BAST
because we have more people spending less time (time bellow the median time) than
Bugzilla.

For duplicate bug reports avoided, BAST had mean value of 7.56 bug reports avoided

Time spent on analysis Bug-reports avoided
BAST Bugzilla BAST Bugzilla

Mean 4.54 4.32 7.56 8.33
Maximum 6.84 9.56 13 12
Minimum 1.78 2.47 0 0
SD 1.49 1.91 3.5 3.2

Table 7.3 Descriptive statistics.

79

7.5. ANALYSIS AND INTERPRETATION

Figure 7.2 Box plot for time spent on analysis for both tools.

and SD of 3.5, while Bugzilla had mean value of 8.33 and SD of 3.2. Once again, we
need to plot boxes to understand the differences among these values, see Figure 7.3. From
Figure 7.3, we can conclude that Bugzilla helped to avoid more duplicates than BAST.
Although Bugzilla is a little better than BAST concerning this aspect, we can observe
that more subjects when using BAST can find higher number of duplicates than Bugzilla.
Furthermore, we chose to keep the outliers from both boxes since they are in the expected
bounds.

Figure 7.3 Box plot for duplicates avoided with both tools.

80

7.5. ANALYSIS AND INTERPRETATION

The descriptive analysis showed that Bugzilla had better performance than BAST in
both cases: time spent on analysis and duplicates avoided. However, it is important to
mention that the highest number of duplicate bug reports avoided were achieved with
BAST and the minimum time spent on analysis too (see Table 7.3).

T-test. The data collected during the experiment were submitted to the t-test with
95% of confidence. Table 7.4 summarizes the results of the test. In the analysis of the
time saved with both tools, the t-test did not reject the null hypothesis. Thus, we can
conclude that there was no gain using BAST instead of Bugzilla to save time during
the analysis of bug reports. In the analysis of duplicates avoided, the t-test also did not
reject the null hypothesis, concluding that there is no advantage in using BAST to avoid
duplicate bug reports.

Time spent on analysis Duplicates avoided
t0 0.6292 -1.2466
Degrees of freedom 17 17
p-value 0.5376 0.2294
T distribution 2.11 2.11
Result (t0 > T) H0: not rejected H0: not rejected

Table 7.4 T-tests applied with 95% of confidence to collected data.

Analysis of dependency. Table 7.5 shows a matrix of correlations for the aspects
of subjects profile showed in Table 7.1, here used as independent variables for the
correlations, and the results obtained for the dependent variables of the experiment. The
correlations can variate from −1 to +1, and 0 (zero) means no correlation among the
variables.

BAST time Bugzilla time BAST duplicates avoided Bugzilla duplicates avoided
Years of expereince -0.132974628 -0.02296878 -0.19721612 0.183007854
Number of projects -0.113791496 0.3720158 -0.28693026 -0.020936575
Bug-trackers used -0.167706238 0.3511591 -0.26207382 0.052027136

Table 7.5 Matrix of correlation.

As we can observe, there is no correlations among the characteristics of subjects
profile and the time spent to analyze bug reports and amount of duplicates avoided. It
means, for example, that an experienced subject does not necessarily will consume less
time on analysis than a less experienced subject, or will avoid more duplicates. The
Appendix C shows the graphics for all possible correlation analysis.

81

7.5. ANALYSIS AND INTERPRETATION

7.5.2 Qualitative analysis

The result of the qualitative analysis about the BAST usability and functionality is
summarized as follows. Such analysis was based on the questionnaire presented in
Appendix A.3.

BAST features. From all subjects, seven (7) used the filter features provided by the
tool, while eleven (11) did not use it. From those that used the filters, all of them told
that it was useful for the analysis of bug reports. Furthermore, three (3) subjects told that
would be interesting if the tool also provided other types of filters, such as: “combination

of keywords where you can specify mandatory and optional ones”, and “query using

some search operators such as AND, OR, +, -”. Seven (7) subjects told that the ordering

features (to order the results of searching) are useful, while eleven (11) participants did
not use them.

BAST Usability. From the seven (7) participants that used the filters, only one
mentioned some difficult to use it, and only one subject from those that used the ordering
features had problem with it. Moreover, some subjects mentioned that would be nice
if BAST could visualize the pictures that are attached to the bug reports and to keep a
history of the searches performed.

Four (4) subjects experienced problems with the visualization of bug reports details.
These problems appeared due to issues from the infra-structure where BAST was hosted.
In addition, some claimed about the time response for searches, however it happened also
because of the host.

BAST usefulness. Fifteen (15) subjects believe the way bug report details are pre-
sented in BAST is more useful for the analysis than Bugzilla. Among their justifications,
it was told that the user interface if very intuitive; it is possible to seen bug report details
without leaving the list of search results. One subject wrote “in fact, the way details

are presented saves time to check them, since it is not necessary to open extra tabs or

windows to see the details”, and other wrote “it became easier to identify the duplicate

bug reports and navigate among the details of them”.

7.5.3 Lessons Learned

In order to replicate this experiment, it is important to observe some aspects that could
not be identified along the process of experimentation.

Training. The subjects were trained just by a document explaining how to perform
the experiment and the basic features of the tool. Furthermore, the tool provides a help

82

7.5. ANALYSIS AND INTERPRETATION

that explains all features of it, however, only half of the subjects told that they used the
help. Such lack of training was observed by the doubts that appeared during the execution.
Thus, we believe that a better training about the tool and the experiment, in class room
for example, should be performed before the experiment execution.

Infra-structure. BAST was hosted using the infra-structure from the Federal Uni-
versity of Pernambuco/Brazil, while Bugzilla was used from its own infra-structure on
Mozilla host. Therefore, many subjects complained about the delay of search response
while using BAST. We believe that it would be better if both tools were hosted using the
same infra-structure, thus the delay of search response can be controlled.

Experiment design. One of the most important things in a experiment is its design.
In our experiment, we chose to compare the same subjects using both tools, thus a
single subject would be analyzed using BAST and after using Bugzilla. We believe that
such design affected the performance of BAST because of subject’s boredom during the
experiment execution. We observed that seventeen (17) performed the experiment in the
same day, thus it is possible that the level of boredom was high while using Bugzilla (the
second tool in sequence). Thus, it would be better if one replicating this experiment could
use two groups of subjects, each of them using a different tool.

Experiment instruments. We observed that some bug reports were found indepen-
dently of the tool used by all subjects, which let us to conclude that these bug reports have
keywords in their content that become them easy to be found. Thus, for an experiment
replication, the bug reports must be more carefully selected and validated.

Analysis. One important thing that is missing in this experiment, and must be
performed in replications of it, is the the analysis of correlation among the subjects profile
and the collected data from the experiment. For example, it is important to analyze if more
experienced subjects spend less time than less experienced ones, or if more experienced
subjects can avoid more duplicate bug reports than less experienced ones.

7.5.4 Conclusion

The descriptive statistics showed that Bugzilla had a little better performance for both
aspects studied: time spent on analysis and amount of duplicate bug reports avoided.
However, the differences among the data analyzed for both tools in the descriptive
statistics were not significant, which turns hard to draw a concrete conclusion saying
what tool is better.

Furthermore, the t-test applied to test the hypotheses did not provide sufficient data
to reject the null hypothesis. However, the qualitative analysis showed that BAST have

83

7.6. SUMMARY

many good aspects that should be taken into account before choosing one of the tools. It
was clear that subjects felt more comfortable while using BAST than Bugzilla due to its
usability.

Finally, more experiments should be performed taking into account the lessons learned
before. We believe that another experiment following these issues can be more conclusive
saying which tool is better to save time on analysis of bug reports or to avoid duplicates.

7.6 Summary

This chapter presented the definition, planning, operation, analysis and interpretation
of the experiment performed to evaluate the tool developed in this work, BAST. The
experiment was conducted with 18 subjects, and the tool was compared with a baseline
tool, which in this case was the Bugzilla bug tracker.

The results of the experiment pointed out that the difference between using BAST
or using Bugzilla for analysis and search of bug reports, in terms of reducing time and
avoiding duplicates, is very few. However, qualitative analysis showed that developers
prefer to perform such tasks using BAST, due mainly to its usability.

Furthermore, it is clear in the experiment that replications of this experiment must
be performed, taking into account the lessons learned, in order to draw more concrete
conclusions.

Next chapter presents the concluding remarks and future work of this dissertation.

84

8
Concluding Remarks and Future Work

Eight steps forward and you are not in the same place as seven steps

before, ad infinitum.

—YGUARA (Chico’s Thought Evolution)

This work proposed and evaluated a solution to the bug reports duplication problem.
As it was described, this problem is present in all the projects investigated, and the
problem is characterized by the submission of two or more bug reports that describe
the same software change/issue. The main consequence of this problem is the overhead
of rework when managing these bug reports. In other words, people involved with bug
report analysis, inevitably, spend time with search and analysis of existing bug reports, to
ensure that duplicates will not be submitted.

Thus, it was presented the state-of-the-art in mining bug report repositories, detailing
the work that have addressed the problem of bug report duplication, and describing
some work concerning other issues, mentioned before, about bug trackers. A character-
ization of the duplication problem was also performed, where it was observed several
projects (private and open source projects) in order to understand the potential causes and
consequences of duplication problem.

Given the importance and severity of the problem, and the constant search for cutting
costs in software development organizations, it was developed BAST, a tool for search
and analysis of bug reports. The tool was evaluated twice. The first evaluation was
performed with only one subject inside a private organization for software development
and tests. In that case, the results showed that BAST have better performance than the
baseline tool.

In the second evaluation, the tool was used by 18 subjects in an academic environment.

85

8.1. RESEARCH CONTRIBUTION

Also in this evaluation, we compared BAST against a baseline tool. The quantitative
analysis of the experiment did not show many differences between both tools, however
qualitative analysis indicated that BAST is a better choice to perform analysis and search
of bug reports due to its usability.

8.1 Research Contribution

This work has five main contribution: 1) it presented a characterization of the state of
the art on mining bug repositories; 2) it was presented a fully detailed characterization of
the bug report duplication problem, involving several projects; 3) a tool, called BAST,
was proposed to reduce the time spent with search and analysis of bug reports (due
to duplication problem); 4) a case study was conducted inside a private organization
to evaluate the tool proposed; 5) in addition, it was performed an experiment with 18
subjects to evaluate the proposed tool against a baseline tool.

State-of-the-art. We described several work in literature that had investigated bug
repositories, discussing the solutions that approached the bug report duplication problem,
and briefly described some work that approached bug repositories for other purposes.

Characterization study of the problem. The objective was to investigate if duplica-
tion problem is a real problem and, if so, what is the impact on software development and
which characteristics from software projects could be potential factors to the problem.

BAST. Based on current state-of-the-art in approaches to solve the duplication prob-
lem, and characteristics discovered in the characterization study, it was developed a tool
to facilitate the search and analysis of bug reports.

Case study. After the tool development, it was performed a case study inside a private
organization for software tests. This case study was held with only one subject, and the
objective was to evaluate the BAST tool against a baseline tool.

Experiment. With this experiment the objective was to evaluate the BAST tool
with more subjects (18 subjects) against a baseline tool. The experiment was defined
and planned according to Wohlin et al. (2000), and the results were presented using
descriptive statistics and hypotheses testing.

Final product. The BAST tool is an initial prototype. It must be evolved, including
other techniques and features, and it is a candidate to be commercialized with other tools
offered by RiSE1. In addition, the BAST tool is still being used in the private organization
where the case study was held; according to the users, the tool is facilitating their work.

1http://www.rise.com.br

86

http://www.rise.com.br

8.2. FUTURE WORK

8.2 Future Work

In this work it was developed and evaluated an initial prototype. Thus, we are aware that
some enhancements and features must be implemented, also as some defects must be
fixed. Some of the enhancements and defects were reported by users, and others were left
out because they were out of scope of the master degree. Thus, some important aspects
are described as follows:

Evolve from prototype. The prototype must be evolved in order to be a commercial
application. Thus, it must be developed interface improvements, usability concepts,
security constraints, among others.

Information visualization. Also concerning the prototype evolution, techniques for
information visualization (Card et al., 1999) are being studied in order to be included in
the tool. This techniques will help users to perform the analysis of bug reports through
visualization.

Alternative integration methods. Currently, the BAST tool enables the users to
import bug reports from bug repositories through zip files, or integrating the database
from bug repositories directly to the BAST database. Other methods, such as the use of
web services, must be investigated and implemented in order to facilitate the integration
of BAST to existing bug repositories.

Search and raking techniques. We believe that modern techniques to facilitate
searches can be incorporated to the BAST to improve search features. For example, it can
be added search through tags and query reformulation (Baeza-Yates and Ribeiro-Neto,
1999). Furthermore, other ranking techniques could be useful to improve search results
precision.

For example, including the number of comments on each bug report as a parameter of
the ranking algorithm, can improve the search precision to find duplicates. This idea is
based on the fact the the bug reports with high number of comments are popular issues,
thus being more prone to receive duplicate bug reports.

Experiment replications. The experiment performed in this dissertation must be
replicated taking into account the many lessons learned and threats observed during its
execution. Although the qualitative analysis indicates that BAST is preferable to execute
analysis and searches of bug reports, the quantitative analysis must be more conclusive,
and this is possible by replicating the experiment.

87

Bibliography

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C., and Meira, S. R. L. (2004).
Rise project: Towards a robust framework for software reuse. In IEEE International

Conference on Information Reuse and Integration (IRI), pages 48–53, Las Vegas, NV,
USA.

Alvaro, A., Almeida, E. S., and Meira, S. L. (2006). A software component quality model:
A preliminary evaluation. In Proceedings of the 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications (EUROMICRO’06), pages 28–37,
Washington, DC, USA. IEEE Computer Society.

Antoniol, G., Penta, M. D., Gall, H., and Pinzger, M. (2005). Towards the integration
of versioning systems, bug reports and source code meta-models. Electronic Notes in

Theoretical Computer Science, 127(3), 87–99.

Anvik, J. and Murphy, G. C. (2007). Determining implementation expertise from bug
reports. In Proceedings of the Fourth International Workshop on Mining Software

Repositories (MSR’07). IEEE Computer Society.

Anvik, J., Hiew, L., and Murphy, G. C. (2005). Coping with an open bug repository. In
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, pages
35–39, New York, NY, USA. ACM Press.

Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In Proceeding of

the 28th International Conference on Software Engineering (ICSE’06), pages 361–370,
New York, NY, USA. ACM Press.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (1999). Modern Information Retrieval. ACM
Press / Addison-Wesley.

Basili, V., Selby, R., and Hutchens, D. (1986). Experimentation in software engineering.
IEEE Transactions on Software Engineering, 12(7), 733–743.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a roadmap.
In Proceedings of the Conference on The Future of Software Engineering (ICSE’00),
pages 73–87, New York, NY, USA. ACM Press.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T. (2007).
Quality of bug reports in eclipse. In Proceedings of the 2007 OOPSLA workshop on

eclipse technology eXchange (Eclipse ’07), pages 21–25. ACM Press.

88

BIBLIOGRAPHY

Brito, K. S. (2007). LIFT: A Legacy InFormation retrieval Tool. Master’s thesis, Federal
University of Pernambuco, Recife, Pernambuco, Brazil.

Canfora, G. and Cerulo, L. (2005). Impact analysis by mining software and change
request repositories. In Proceedings of the 11th IEEE International Software Metrics

Symposium (METRICS’05), page 29, Washington, DC, USA. IEEE Computer Society.

Canfora, G. and Cerulo, L. (2006). Supporting change request assignment in open source
development. In Proceedings of the 2006 ACM Symposium on Applied Computing

(SAC’06), pages 1767–1772. ACM Press.

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in Information

Visualization: Using Vision to Think. The Morgan Kaufmann Series in Interactive
Technologies. Morgan Kaufmann.

Cavalcanti, Y. C., Martins, A. C., Almeida, E. S., and Meira, S. R. L. (2008). Avoiding
duplicate cr reports in open source software projects. In The 9th International Free

Software Forum (IFSF’08), Porto Alegre, Brazil.

Durao, F. A. (2008). Semantic Layer Applied to a Source Code Search Engine. Master’s
thesis, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Eastwood, A. (1993). Firm fires shots at legacy systems. Computing Canada, 19(2), 17.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional, 2(3),
17–23.

Feldman, R. and Sanger, J. (2007). The Text Mining Handbook: advanced approaches in

analyzing unstructured data. Cambridge University Press.

Filho, E. D. S., Cavalcanti, R. O., Neiva, D. F. S., Oliveira, T. H. B., Lisboa, L. B.,
Almeida, E. S., and Meira, S. R. L. (2008). Evaluating domain design approaches
using systematic review. In R. Morrison, D. Balasubramaniam, and K. E. Falkner,
editors, 2nd European Conference on Software Architecture (ECSA’08), volume 5292
of Lecture Notes in Computer Science, pages 50–65. Springer.

Fischer, M., Pinzger, M., and Gall, H. (2003a). Analyzing and relating bug report data
for feature tracking. In Proceedings of the 10th Working Conference on Reverse Engi-

neering (WCRE’03), pages 90–99, Washington, DC, USA. IEEE Computer Society.

89

BIBLIOGRAPHY

Fischer, M., Pinzger, M., and Gall, H. (2003b). Populating a release history database
from version control and bug tracking systems. In Proceedings of the 19th Interna-

tional Conference on Software Maintenance (ICSM’03), pages 23–32. IEEE Computer
Society.

Garcia, V. C., Lisboa, L. B., ao, F. A. D., Almeida, E. S., and Meira, S. R. L. (2008). A
lightweight technology change management approach to facilitating reuse adoption.
In 2nd Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS’08), Porto Alegre, Brazil.

Hiew, L. (2006). Assisted Detection of Duplicate Bug Reports. Master’s thesis, The
University of British Columbia.

Huff, F. (1990). Information systems maintenance. The Business Quarterly, (55), 30–32.

Jalbert, N. and Weimer, W. (2008). Automated duplicate detection for bug tracking
systems. In The 38th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’08), pages 52–61. IEEE Computer Science Press.

Kagdi, H., Maletic, J., and Sharif, B. (2007a). Mining software repositories for traceability
links. In Iin the Proceedings of the 15 IEEE International Conference on Program

Comprehension (ICPC’07), pages 145–154.

Kagdi, H., Collard, M. L., and Maletic, J. I. (2007b). A survey and taxonomy of
approaches for mining software repositories in the context of software evolution:
Survey articles. Journal of Software Maintenance and Evolution, 19(2), 77–131.

Kitchenham, B. and Pfleeger, S. L. (2002). Principles of survey research: part 5: popula-
tions and samples. SIGSOFT Software Engineering Notes, 27(5), 17–20.

Ko, A. J., Myers, B. A., and Chau, D. H. (2006). A linguistic analysis of how people de-
scribe software problems. In Proceedings of the Visual Languages and Human-Centric

Computing (VLHCC’06), pages 127–134, Washington, DC, USA. IEEE Computer
Science.

Koponen, T. and Lintula, H. (2006). Are the changes induced by the defect reports
in the open source software maintenance? In H. R. Arabnia and H. Reza, editors,
Proceedings of the 2006 International Conference on Software Engineering Research

(SERP’06), pages 429–435. CSREA Press.

90

BIBLIOGRAPHY

Koskinen, J. (2004). Software maintenance costs. http://www.cs.jyu.fi/

~koskinen/smcosts.htm.

Lancaster, F. W. (1986). Vocabulary Control for Information Retrieval. Information
Resources Press, 2 edition.

Lientz, B. P. and Swanson, E. B. (1981). Problems in application software maintenance.
Communications of the ACM, 24(11), 763–769.

Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S. R. L. (2008). Enhancing
components search in a reuse environment using discovered knowledge techniques.
In 2nd Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS’08), Porto Alegre, Brazil.

Mascena, J. C. C. P. (2006). ADMIRE: Asset Development Metric-based Integrated Reuse

Environment. Master’s thesis, Federal Uniersity of Pernambuco, Recife, Pernambuco,
Brazil.

McKee, J. R. (1984). Maintenance as a function of design. In AFIPS National Conference

Proceeding, volume 53, pages 187–1983.

Mendes, R. C. (2008). Search and Retrieval of Reusable Source Code using Faceted

Classification Approach. Master’s thesis, Federal University of Pernambuco, Recife,
Pernambuco, Brazil.

Moad, J. (1990). Maintaining the competitive edge. Datamation, 4(36), 61–62.

Nascimento, L. M. (2008). Core Assets Development in SPL - Towards a Practical

Approach for the Mobile Game Domain. Master’s thesis, Federal University of Per-
nambuco, Recife, Pernambuco, Brazil.

Panjer, L. D. (2007). Predicting eclipse bug lifetimes. In Proceedings of the Fourth Inter-

national Workshop on Mining Software Repositories (MSR’07), page 29, Washington,
DC, USA. IEEE Computer Society.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., and Wang, B. (2003).
Automated support for classifying software failure reports. In Proceedings of the

25th International Conference on Software Engineering (ICSE’03), pages 465–475,
Washington, DC, USA. IEEE Computer Society.

91

http://www.cs.jyu.fi/~koskinen/smcosts.htm
http://www.cs.jyu.fi/~koskinen/smcosts.htm

BIBLIOGRAPHY

Pohl, K., Böckle, G., and van der Linden, F. (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques.

Port, O. (1988). The software trap – automate or else. Business Week, 9(3051), 142–154.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 3(14), 130–137.

Prechelt, L. (2000). An empirical comparison of seven programming languages. IEEE

Computer, 33(10), 23–29.

Pressman, R. S. (2004). Software Engineering: A Practitioner’s Approach. McGraw-Hill
Science.

Python Software Foundation (2008). Python Programming Language.
http://www.python.org. Last access on May/2008.

Runeson, P., Alexandersson, M., and Nyholm, O. (2007). Detection of duplicate defect
reports using natural language processing. In Proceedings of the 29th International

Conference on Software Engineering (ICSE’07), pages 499–510. IEEE Computer
Science Press.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Commun. ACM, 18(11), 613–620.

Sandusky, R. J., Gasser, L., and Ripoche, G. (2004). Bug report networks: Varieties,
strategies, and impacts in a f/oss development community. In Proceedings of the 1st

International Workshop on Mining Software Repositories (MSR’04), pages 80–84,
University of Waterloo, Waterloo.

Santos, E. C. R., ao, F. A. D., Martins, A. C., Mendes, R., Melo, C., Garcia, V. C.,
Almeida, E. S., and Meira, S. R. L. (2006). Towards an effective context-aware
proactive asset search and retrieval tool. In 6th Workshop on Component-Based

Development (WDBC’06), pages 105–112, Recife, Pernambuco, Brazil.

Shuja, A. and Krebs, J. (2007). Ibm®rational unified process®reference and certification

guide: solution designer. IBM Press.

Sommerville, I. (2007). Software Engineering. Addison Wesley, 8 edition.

Song, Q., Shepperd, M. J., Cartwright, M., and Mair, C. (2006). Software defect
association mining and defect correction effort prediction. IEEE Transactions on

Software Engineering, 32(2), 69–82.

92

BIBLIOGRAPHY

Succi, G. (2001). Extreme programming examined. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Thorndike, E. L. (1920). A constant error in psychological ratings. Journal of Applied

Psychology, (4), 25–29.

Vanderlei, T. A., ao, F. A. D., Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S.
R. L. (2007). A cooperative classification mechanism for search and retrieval software
components. In Proceedings of the 2007 ACM symposium on Applied computing

(SAC’07), pages 866–871, New York, NY, USA. ACM.

Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. (2008). An approach to detecting
duplicate bug reports using natural language and execution information. In Proceedings

of the 13th International Conference on Software Engineering (ICSE’08), pages 461–
470. ACM Press.

Weiss, C., Premraj, R., Zimmermann, T., and Zeller, A. (2007). How long will it take to
fix this bug? In Proceedings of the Fourth International Workshop on Mining Software

Repositories (MSR’07), pages 20–26. IEEE Computer Society.

Wohlin, C., Runeson, P., Martin Höst, M. C. O., Regnell, B., and Wesslén, A. (2000).
Experimentation in Software Engineering: An Introduction. The Kluwer Internation
Series in Software Engineering. Kluwer Academic Publishers, Norwell, Massachusets,
USA.

Zelkowitz, M. V., Shaw, A. C., and Gannon, J. D. (1979). Principles of Software

Engineering and Design. Prentice Hall Professional Technical Reference.

93

Appendices

94

A
Experiment Instruments

A.1 Time sheet

ID Start date Start time End date End time Is it a duplicate?
1 / / : / / : () Yes. () No. ID:
2 / / : / / : () Yes. () No. ID:
3 / / : / / : () Yes. () No. ID:
4 / / : / / : () Yes. () No. ID:
5 / / : / / : () Yes. () No. ID:
6 / / : / / : () Yes. () No. ID:
7 / / : / / : () Yes. () No. ID:
8 / / : / / : () Yes. () No. ID:
9 / / : / / : () Yes. () No. ID:

10 / / : / / : () Yes. () No. ID:
. . .

23 / / : / / : () Yes. () No. ID:
24 / / : / / : () Yes. () No. ID:
25 / / : / / : () Yes. () No. ID:
26 / / : / / : () Yes. () No. ID:
27 / / : / / : () Yes. () No. ID:
28 / / : / / : () Yes. () No. ID:
29 / / : / / : () Yes. () No. ID:
30 / / : / / : () Yes. () No. ID:
31 / / : / / : () Yes. () No. ID:
32 / / : / / : () Yes. () No. ID:

Table A.1 Time sheet used in the study.

95

A.2. QUESTIONNAIRE FOR SUBJECTS PROFILE

A.2 Questionnaire for Subjects Profile

Questionnaire for Subjects Profile
How many years since graduation?

() years.

How many projects do you have participated according to the following categories?

() Low complexity.
() Medium complexity.
() High complexity.

What were the roles that you played in the projects cited before (developer, config-
uration manager, tester. . .)?

How do you define your experience with bug-trackers?

() I never used them before.
() I used them in every project i participated.
I used them in () projects.

Do you have used any of the following bug-trackers?

() Bugzilla. In: () industry () academia
() Trac. In: () industry () academia
() Mantis. In: () industry () academia
() Jyra. In: () industry () academia
() BSD Bug-tracker. In: () industry () academia
() Other:

Have you performed any analysis of Firefox bug-reports before?

() Yes. () No.

Table A.2 Questionnaire for bug-report submitters.

96

A.3. FORM FOR QUALITATIVE ANALYSIS

A.3 Form for Qualitative Analysis

Questionnaire for Qualitative Analysis
Did you use any of the search filters provided by BAST?
() Yes. () No.
Is there any search filter you think it must be present in BAST?
() Yes. () No. Cite them:
Did you have any problem with the search filters usage?
() Yes. () No. Cite them:
Did you use the ordering features of BAST?
() Yes. () No.
Did you have any problem with ordering features?
() Yes. () No. Cite them:
Do you think there is any other important information that must be present in the
list of search results?
() Yes. () No. Cite them:
Did you have any problem to visualize the details from some bug-report?
() Yes. () No. Cite them:
Do you believe the way bug-reports details are presented was helpful to perform
the analysis?
() Yes. () No.
Was the recommendation of related bug-reports, presented in the bug-report de-
tails, useful for the analysis?
() Yes. () No.
Is there any other information concerning bug-reports details you believe it should
be present or emphasized?
() Yes. () No. Cite them:

Did you use the help provided by BAST?
() Yes. () No.
Did you found any other problem/enhacement/defect that was not mentioned be-
fore? Cite them.

Please, write down any suggestion you think might would be useful.

Table A.3 Questionnaire for qualitative analysis.

97

B
Bug-reports Used in the Experiment

B.1 First List of Bug-reports Used in the Experiment

Table B.1 First list of bug-reports used in the experiment

ID Firefox ID Summary/Description Status
Bug-reports present in Firefox bug-tracker

1 437878 Add bookmark dialog Two folders/directories with
same name not distinguishable in quick list

NEW

2 430901 The checkbox in the Tools>Options menu, under
the Privacy tab, the "Keep my History for at least
X days" will not save any changes, and remains
unchecked.

FIXED

3 458981 cannot add bookmarks to bookmarks toolbar (tried
clicking on the star and dragging a link to the tool-
bar) – NS_ERROR_FILE_CORRUPTED

FIXED

4 438252 Editing bookmark’s uri and then Tags, update tags
for the old uri

FIXED

5 411003 Pressing Escape key should cancel adding a book-
mark

DUPLICATE

6 413140 Bookmarks are "sortable" in bookmark manager
but show up as unsorted in drop down menu

DUPLICATE

7 411214 New MIME type set with "Do this automatically
..." fails to locate helper app

FIXED

Continued on next page

98

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
8 414735 New application details window spewing errors FIXED

9 425419 Help window opened from the Options dialog is
modal (Windows only)

FIXED

10 439133 “Show Image” is poorly labeled, can be confused
with “View Image”

FIXED

11 429119 menu bar missing if Firefox is not default browser FIXED

12 415232 Right-click context menu is broken ("Open Link in
New Window" doesn’t work)

FIXED

13 462041 Refresh the Privacy preference pane NEW

14 412256 touchpad scrolling still moves back/forward in his-
tory

NEW

15 413609 Can’t change the application used to launch a docu-
ment type

NEW

16 442736 If browser.startup.page is equal to 3,
browser.warnOnQuit should be changed to
false

NEW

Fictitious error descriptions
17 crash in Epiphany Web Browser: Seems to be

avahi bookmarks stuff (Crashes a few seconds after
launch). Repeatedly.

18 ga_client_start() called twice

19 crash in Web Bookmarks: Watching a video on
youtube and reading boingboing. It get the problem
at the final of the video (a problem in the flash
plugin?)

20 crash in Epiphany Web Browser: Such a crash just
happens every single time I resume from hiberna-
tion and firefox was running before hibernating
(obviously).

Continued on next page

99

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
21 Possible data loss due to UI problem ("All" topic

being rename-able). This of course is not good,
it’s even worse when I lost my bookmarks because
I renamed the topic lots of time without noticing
what was happening.

22 Topics with commas not handled correctly in Add
Bookmark dialog

23 undo for bookmark deletion. Bookmarks acciden-
tally deleted within a bookmark editing session
should be recoverable.

24 Can’t add bookmarks by dragging them into the
Bookmarks window

25 smart bookmarks: Empty text field after each use.
The text field of a smart bookmark in firefox should
be cleared after use. That would make it faster to
use a smart bookmark many times in a row, because
the user doesn’t have to spend time deleting prior
searches.

26 Hebrew bookmarks are not displayed. I’m using
Firefox with an English locale, and I have book-
marks with both English and Hebrew titles. While
the ones with the English titles are displayed prop-
erly in the bookmarks menu, the ones with the He-
brew titles appear as empty menu items (except for
the favicon, for websites that have one).

27 Bookmarks context menu. We can have bookmarks
toolbar. Nice, but context menu doesn’t allow to
remove or move the bookmark.

28 new imported bookmark topics will not show.
When editing the bookmarks, new topics wont show
in the bookmark menu. They do show in the book-
mark edit window

Continued on next page

100

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
29 Bookmarks menu freezes/crashes Firefox. I’ve en-

abled the extension to synchronize my bookmarks
with my del.icio.us account. However I don’t think
the problem is there, unless it’s importing them
oddly.

30 Firefox dont recognize all the favicon of the sites.
i’ve noticed that some sites, that have a favicon,
when saved in bookmarks don’t have a favicon...

31 Can not import from any HTML or RDF file, even
if Firefox created the file. Firerox on Ubuntu
Hardy cannot import bookmarks from either book-
marks.html or Bookmarks.rdf. The import fucntion
always bombs out with a dialog stating that the file
is probably not of the supported type.

32 Firefox crashes when all topics are selected. I no-
ticed that if you want to add a bookmark (press D̂)
and you select “show all topics” and then check all
the checkboxes - firefox crashes. The order is not
important how you check them.

101

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

Second List of Bug-reports Used in the Experiment
Table B.2 Second list of bug-reports used in the experiment

ID Firefox ID Summary/Description Status
Bug-reports present in Firefox bug-tracker

1 420085 First flash site is fine, second or third flash site the
browser crashes

UNCO

2 421109 Firefox crashed on font change in gnome appear-
ance preferences

UNCO

3 456609 Started immediately after upgrading, Cooliris (pi-
clens) crashes when scrolling google images

UNCO

4 410388 Firefox produces a dialogue box which says firefox
must close and then shuts down

UNCO

5 410389 List All Tabs control’s contents isn’t scrolled via
touchpad

UNCO

6 410402 Mozilla take more time when open UNCO

7 410416 images are not saved when trying to do so UNCO

8 410464 Legends and Nested Legends will not have a width
applied

UNCO

9 410468 Cannot access URLs with different characters from
english

UNCO

10 410473 Outlook 2007 general failure when trying to open
hyperlink in Firefox

UNCO

11 410481 Barcode for itinerary doesn’t display, but does in IE UNCO

12 410529 No print feedback any more UNCO

13 410534 A PDF file should be put in cache and shouldn’t be
downloaded several times

UNCO

14 410549 No memories with Hotmail UNCO

15 410589 Mozilla Firefox Keeps searching after ppage is com-
plete

UNCO

16 410646 Eats my computer memory UNCO

Fictitious error descriptions
17 Firefox crash during closing. Firefox sometimes

crash during closing the latest window of it.

Continued on next page

102

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
18 Segfault while printing a page to a postscript file.

19 Firefox crash during Java load.

20 Firefox crashed when switching to full screen mode.
Firefox just crashed when switching to full-screen
mode.

21 Crash at startup and reopening of tabs. I clicked a
link in a program. This made Firefox start up, then
it asked if it should reload the tabs from last time (I
can’t remember which webpages I was visiting at
that time. It crashed some days ago, and I haven’t
used it voluntairily since). At the moment Firefox
loaded the webpage it couldn’t handle, it crashed
again. It didn’t show me which webpage this was,
so it’s hard for me to tell.

22 Broken typeahed checker with xullrunner. I
compiled xulrunner with –enable-extensions=-
typeaheadfind, but config script errored on typea-
headfind check

23 Session recovery creates duplicate windows.
Mostly though not always, the session recovery
duplicates the windows, so that there are two ex-
actly identical sets of windows and tabs. I have no
idea what causes that, maybe it’s because I have
quite a lot of items in the session_creashed.xml file.

24 autocompletion lists from the location bar “drops”
up. i type a few letter in the location bar. sometimes
the list didnt drop down. it jumps up and i couldnt
see proposals for completion. i tested a little bit.

25 Status bar should be empty when there is no status.
The status bar currently instructs people to "Enter
a web address to open, or a phrase to search for"
when it doesn’t have anything better to say.

Continued on next page

103

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
26 Right-click menu should show image filename. It

does not provide an easy way to discover the file-
name of the image. One option is to copy the com-
plete url to the clipboard and paste it into another
application (lot of work). Another option is to hover
over the "Open Image" option and watch the scroll-
bar.

27 Default font size is not used in new users. In Fire-
fox, sans serif fonts are used right from the start.
However, most fonts are too small. Only after going
to “Preferences” -> “Fonts & Style” -> “Detailed
Font Settings...”, the size of the concerned fonts
jumps instantaneously to the right values. This is
apparently due to the same bug that caused the use
of serif instead of sans serif fonts.

28 If Location entry is not in the toolbar, there’s no
reaction to control+L. The location bar does not
show up after hitting Ctrl-L with all toolbars hidden.

29 When starting, no URL is shown in the address
bar. I was testing GNOME 2.13.91. When start-
ing firefox on a fresh account, it opens Google as
homepage. However, there’s nothing in the address
bar, while it would make sense to show the google
URL.

30 Bookmarks export to HTML produces strange cate-
gorization. When exporting bookmarks to HTML,
the generated HTML contains random (at least to
m) headers. I think the current system is just not
suited to the new bookmarks layout. What about
rendering the same structure as the current book-
marks menu does (automatic grouping)?

Continued on next page

104

B.1. FIRST LIST OF BUG-REPORTS USED IN THE EXPERIMENT

ID Firefox ID Summary/Description Status
31 Max number of tabs until arrow buttons appear

should be higher. Most of the time I have like
20 tabs open. Right now I have a resolution of
1280x1024. The bad thing is that I can only see
6 tabs at once. If I want to view a tab somewhere
between 8 or 20 I have to go through all the tabs
(with ctrl-pagdown, or clicking the arrow on the
right) to look for the tab I want. It takes a lot of
time, while I can just recongnize the tab by it’s icon
and/or first three letters of the <title>.

32 do not scale shortcut icons on the bookmark toolbar.
the bookmark toolbar should be at least tall enough
to display unscaled icons (ie: allow at least 16 pix-
els for the icons themselves) currently some icons
look very bad when they are scaled

105

C
Correlation Graphics

The following figures show the correlations among the characteristics of subjects profile
and the dependent variables (time spent to analyze bug reports and amount of duplicates
avoided). The meaning of the graphics is that there is no correlation among these
characteristics and the dependent variables.

106

Figure C.1 Correlation among experience and dependent variables.

107

Figure C.2 Correlation among participation in projects and dependent variables.

108

Figure C.3 Correlation among bug-trackers used and dependent variables.

109

	Introduction
	Motivation
	Problem Statement
	Overview of the Proposed Solution
	Context
	Outline of the Proposal

	Out of Scope
	Statement of the Contributions
	Organization of the Dissertation

	Software Configuration Management
	Introduction
	SCM General Concepts
	Change Management Overview
	Summary

	The State of the Art
	Introduction
	Bug Reports Similarity
	Automated Support for Classifying Software Failure Reports
	Assisted Detection of Duplicate Bug Reports
	Detection of Duplicate Defect Reports Using Natural Language Processing
	An Approach to Detecting Duplicate Bug Reports Using Natural Language and Execution Information

	Dynamic Assignment
	Evolution and Traceability
	Impact and Effort Analysis
	Bug reports Quality
	Summary

	The Bug Report Duplication Problem
	Introduction
	Definition of the Study
	Projects and Data Selection
	Study Execution
	Analysis and Interpretation
	Question 6: What are the possible factors that could impact on the bug report duplication problem?
	Main Findings on The Bug Report Duplication Problem

	Lessons Learned
	Threats to Validity
	Summary

	BAST: Bug Report Analysis and Search Tool
	Introduction
	The Set of Requirements
	Functional Requirements
	Non-Functional Requirements

	Tool Architecture Overview
	Architecture Components
	BAST Search Features
	Ranking and Indexing -- Vector Space Model
	Queries
	BAST User Interface

	Implementation
	BAST in Action
	BAST Advantages over Other Tools
	Summary

	Case Study at C.E.S.A.R.
	Introduction
	Definition
	Planning
	Result Analysis
	Analysis of the First Treatment
	Analysis of the Second Treatment
	Analysis of the Whole Period
	Analysis Conclusion

	Lessons Learned
	Summary

	BAST Empirical Evaluation Experiment
	Introduction
	Definition
	Planning
	Operation
	Analysis and Interpretation
	Quantitative analysis
	Qualitative analysis
	Lessons Learned
	Conclusion

	Summary

	Concluding Remarks and Future Work
	Research Contribution
	Future Work

	Bibliography
	Appendices
	Experiment Instruments
	Time sheet
	Questionnaire for Subjects Profile
	Form for Qualitative Analysis

	Bug-reports Used in the Experiment
	First List of Bug-reports Used in the Experiment

	Correlation Graphics

