‘Centro

wnformética
U-F:P-E

Pos-Graduacdo em Ciéncia da Computacao

“RiPLE-EM: A Process to Manage Evolution in Software
Product Lines”

By
Thiago Henrique Burgos de Oliveira

M.Sc. Dissertation

U=g
e
e

I

(L
Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, AUGUST, 2009

www.cin.ufpe.br/~posgraduacao

| [
e~

¢

Universidade Federal de Pernambuco

Centro de Informatica
Pés-graduacao em Ciéncia da Computacao

&

Thiago Henrique Burgos de Oliveira

“RiPLE-EM: A Process to Manage Evolution in Software
Product Lines”

Trabalho apresentado ao Programa de Pos-graduacdo em
Ciéncia da Computacdo do Centro de Informdtica da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtencdo do grau de Mestre em Ciéncia da Computagdo.

A M.Sc. Dissertation presented to the Federal University of
Pernambuco in partial fulfillment of the requirements for the
degree of M.Sc. in Computer Science.

Advisor: Silvio Romero de Lemos Meira
Co-Advisor: Eduardo Santana de Almeida

RECIFE, AUGUST, 2009

Oliveira, Thiago Henrique Burgos de

RiPLE-EM: a process to manage evolution in
software product lines / Thiago Henrique Burgos de
Oliveira. - Recife: O Autor, 2009.

xv, 134 p. : fig., tab.

Dissertacao (mestrado) — Universidade Federal de
Pernambuco. Cin. Ciéncia da Computacao, 2009.

Inclui bibliografia e apéndice.
1. Engenharia de software. I. Titulo.

005.1 CDD (22. ed.) MEI2009- 140

Dissertacdo de Mestrado apresentada por Thiago Henrique Burgos de Oliveira a Pos-
Graduacao em Ciéncia da Computacio do Centro de Informatica da Universidade Federal
de Pernambuco, sob o titulo “RiPLE-EM: A Process to Manage Evolution in Software
Product Lines”, orientada pelo Prof. Silvio Romero de Lemos Meira e aprovada pela
Banca Examinadora formada pelos professores:

ST -

Piéf. André Lulis de Medeiros Santos
Centro de Informaética / UFPE

\L‘t‘* L\QWL&

Prof.Uira Kulesza
Depto. De Informatica e Matemadtica Aplicada / UFRN

- L 2
"\/\-\\

Prof. Silvio Romero de Len;os ME}Y

Centro de Informatica / UFPE

Visto e permitida a impresséo.
Recife, 25 de agosto de 2009.

T PV Yo T (P
Prof. Nelson Souto Rosa N

Vice-Coordenador da Pés-Graduagio em Ciéncia da Computagio do
Centro de Informatica da Universidade Federal de Pernambuco.

This work is dedicated to my beloved wife, my parents, and
my grandparents.

Acknowledgements

Lots of people were directly or indirectly involved in this work, and my intention is to
thank all of them, however, it is just not possible to remember all of them now. My
excuses for the ones I forgot, it definitely does not mean you were not important.

Initially, I would like to thank God for the opportunity and for all the blessings from
the heaven above. Without the presence of God, nothing in my life would be as it is. |
thank God for the protection, and guidance during this journey, and all my life.

Next, I would like to thank my family. Starting with my beloved wife, Debora, who
supported me at all times, giving me strength to finish my work. God have blessed me so
much with her fellowship and my words are not enough to express my gratitude to her.
Next, my mother, my father and my grand parents who always invested on me, and are
responsible for the things I have achieved. To my brother, my love, gratitude and example
of roads to course.

I would like to thank C.E.S.A R for all the vital support in my studies, the flexibility
to attend classes and the flexibility to work from a different country, while I was focusing
on my studies at Germany.

I would like to thank all the RiSE members for their kindness and patience, specially
Eduardo Almeida, my co-advisor, who started teaching me the paths of academic research,
and granted me an amazing experience abroad, at Germany.

My Gratitude to the Fraunhofer Institute for Software Experimentation (IESE), where
I spent 3 months, working on my dissertation proposal. Some key people from the
Fraunhofer IESE were essential in this partnership. Dirk Muthig, for accepting me as
a visiting researcher, Michalis Anastasopoulos for the mentoring and attention not only
while the time I was there but also after I left, and Vander Alves for the friendship.

Last, but not least, I would like thank all my friends and relatives who have always
supported and prayed for me.

v

If you can dream it, you can do it.
— WALT DISNEY (1901-1966)

Resumo

Reuso de software € um aspecto chave para organizacdes interessadas em obter melhorias
de produtividade, qualidade e reduc¢do de custos. Linhas de Produto de Software € uma
abordagem de retso de software que provou seus beneficios em diferentes contextos
industriais (,). Em termos de evolu¢do, uma linha de produtos € um
conjunto em continua evolugdo, e por isso, sua evolugdo precisa ser gerenciada para que
se alcance os beneficios dessa abordagem.

O fato de um core asset ser compartilhado entre produtos, e todas as mudangas neste
core asset poder ter efeito sobre diversos produtos (,), aliado ao fato que
em linhas de produto de software € preciso lidar com evolucdo no tempo (versoes) e
também evolucio no espago (variabilidade) (,), faz com que o gerenciamento
da evolucdo (mudancgas) em linhas de produto de software seja mais complexo e mais
desafiador do que o desenvolvimento tradicional de sistemas tnicos (,).
Portanto, a evolucao dos core assets e também dos produtos precisa ser bem gerenciada
para minimizar os problemas causados por ela.

Este desafio envolve diferentes solucdes, como questdes técnicas, gerenciais e proces-
suais. Desta forma, o foco desta dissertacdo estd nos problemas ligados ao processo de
gerenciamento evolucao em linhas de produto de software.

Neste contexto, este trabalho apresenta o RiPLE-EM, que é um processo para geren-
ciamento da evolugdo. Este processo € uma forma sistematica de guiar e gerenciar a
evolugdo de cada core asset e cada produto, englobando atividades de gerenciamento de
mudancas, builds, e entregas.

Esta dissertacdo também apresenta a validacao inicial do RiPLE-EM, seguindo guias
bem estabelecidos de experimentacio de software (,), € de acordo com
os dados coletados e analisados na experimentacdo, RiPLE-EM mostra indicacdes de
que seja um processo vidvel para o gerenciamento da evolucdo em linhas de produto de

software.

Palavras-chave: Software Product Lines, Evolution, Evolution Management, Release

Management, Build Management, Change Management

Vi

Abstract

Software reuse is a key aspect for organizations interested in achieving improvements
in productivity, quality and costs reduction. Software product lines, as a software reuse
approach, have proven its benefits in different industrial environments (,).
In terms of evolution, a product line is a continuously evolving organism, and for that,
evolution should be managed properly to achieve all benefits of this approach.

The fact that a core asset is shared among products, and every change to this asset can
have effects on several products (.), combined with the fact that in the
SPL we have to deal with evolution in time (versions) and space (variability) (,

), make evolution management more challenging than in traditional single software
development (,). Thus the evolution of each core asset and product need to
be well managed to minimize problems like this.

Thus, those challenges involve different solution spaces, such as technical issues,
managerial and processes issues. Nevertheless, this dissertation focus is on the process
issues of evolution management of software product lines.

In this context, this dissertation presents the RiPLE-EM process to evolution manage-
ment. The process is a systematic way to guide and manage the evolution of every asset
and product in a product line context, handling change management, build management
and release management activities.

This dissertation also presented the initial validation of RiPLE-EM process, following
well established guidelines to software experimentation (,), and ac-
cording to the data collected and analyzed in the experimental study, RiPLE-EM presents

indications that the process can be viable.

Keywords: Software Product Lines, Evolution, Evolution Management, Release Man-

agement, Build Management, Change Management

vii

Acknowledgments
Resumo

Abstract

Table of Contents
List of Figures
List of Tables

1 Introduction

Context

1.1 Motivation

1.2 Problem Statement

1.3 Overview of the Solution
1.3.1
1.3.2 Proposal Outline

1.4 Out of Scope

1.5 Related Work

1.6 Dissertation Structure

2 SPL and Evolution

2.1

22

2.3

SPL
2.1.1

2.1.2 Variability Management

2.13

Software Evolution

2.2.1 EvolutionLaws
2.2.2 Evolution Dimensions

SPL Evolution

2.3.1 Forces for Change

2.3.2 Evolution Propagation

233 SPLEvolution
2.3.4 Challenges

Adoption Strategies

Contents

vii
viii
xii

xiv

w4
<

AN N R W W N

viii

24

Chapter Summary

Systematic Review

3.1 Systematic Literature Reviews

32 Planning e e e e

3.2.1 Question Structure e e e

3.2.2 ResearchQuestions

323 Threatsto Validity

3.2.4 Inclusion and Exclusion Criteria

33 Conduction e e e

3.3.1 SearchStrategy e

332 QueryStrings

333 DataSources e e e e

3.3.4 Studies Selection oo

335 DataExtraction L L0

3.3.6 Data Analysis and Synthesis

34 Reporting e e e e e

3.4.1 Configuration Identification

3.4.2 Multi-Level Instantiation

3.4.3 Release Management

34.4 Change Management

Variability Evolution

Change Propagation

34.5 Build Management

34.6 Questions Summaryo

35 LessonsLearned,

36 RelatedWork

377 Chapter Summary e e e
RiPLE-EM

4.1 RIiPLE-EM Overview o o

4.2 RIiPLE-EM Disciplines

4.3 RiPLE-EM Usage Scenarios

44 RIiPLE-EMCADXPD

4.4.1 RiPLE-EM CAD X PD Communication

4.5 RiPLE-EM SupportTools

22
23
23
23
24
27
28
28
29
29
30
30
32
33
33
33
33
34
36
38
38
39
39
40
41
41

42
42
44
45
46
47
48

iX

4.6
4.7
4.8
4.9

RiPLE-EM RelatedRoles
RiPLE-EM Activities Summary
RiPLE-EM Work Products
Eclipse Process Framework
49.1 Method Content and Processes
492 Benefits e e

4.10 Chapter Summary v v vt e e e

RiPLE-EM CAD

5.1
5.2
5.3
54
5.5
5.6

RiIPLE-EM CADFlow
RiPLE-EM CAD - Release Planning
RiPLE-EM CAD - Change Management
RiPLE-EM CAD - Build Management
RiPLE-EM CAD - Release Execution
Chapter Summary

RiPLE-EM PD

6.1
6.2
6.3
6.4
6.5
6.6

RiPLE-EM PDFlow
RiPLE-EM PD - Release Planning
RiPLE-EM PD - Change Management
RiPLE-EM PD - Build Management
RiPLE-EM PD - Release Execution
Chapter Summary

The Experimental Study

7.1

7.2

The Definition e
711 Goal. e e
712 QUeStioNS v v o e e e e e e e e
713 Metrics v v o e e e e e

Definition Summary,
The Planning e
7.2.1 ContextSelection,
7.2.2 Hypothesis
7.2.3 Variables and Treatments
724 Subjects e e e e e
7.2.5 ExperimentDesign

56
56
57
60
69
73
76

77
77
78
81
86
88
90

7.2.6 Instrumentationo w e e e e e e e e

7.277 Validity Evaluation 0.,
7.3 TheOperation i it e e e e e
7.3.1 Preparation
732 Executiono e e e e
7.3.3 DataValidation,
7.4 Analysis and interpretation
7.4.1 Effortto Applythe Process
7.4.2 Difficulties to understand/apply the process
7.4.3 Activities, Roles and Artifacts Missing
7.4.4 Uncompleted Propagation Requests
7.4.5 Subjects Satisfaction
7.5 LessonsLearned
7.6 Chapter Summary
Conclusions
8.1 Research Contributions
82 RelatedWork
83 FutureWorko
8.4 Academic Contributions e
8.5 JointContibutions
8.6 ConcludingRemarks,
Bibliography
Appendices

A Experiment Questionnaires

Al QT1 ... e

Checklists and Templates

B.1 CRChecklist e
B.1.1 Checks e

B.2 PRChecklist
B.2.1 Checks e

B3 CCBTemplate,

109
110
111
111
113
113
116

118

125

126
126
127

128
128
129
130
130
130

xi

B3.1 Template 130

C Systematic Review Sources 132
C.1 Journals e 132
C.2 Conferences v v v i i i i e e 133
C3 Web-Search e 134

Xii

1.1
1.2
1.3

2.1
2.2
23
24

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
54
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1

List of Figures

RiSE Labs Influences e
RiSE Labs Projects

Roadmap to this dissertation

Software Product Lines Essential Activities (Clements and Northrop, 2002) 10

SPL Core Asset Development (Clements and Northrop, 2002) 11
SPL Production Plan (Clements and Northrop, 2002) 12
SPL Product Development (Clements and Northrop, 2002) 13
RiIPLE-EM Mainflow 43
RiPLE-EM BigPicture 43
RiPLE-EM usage example 45
RiPLE-EM usage example 46
RiPLE-EM usage example 46
RiPLE-EM Change Propagation Request. 48
RiPLE-EM CAD MacroFlow 57
RiPLE-EM CAD: Release Planning Flow 58
RiPLE-EM CAD: Change Management Flow 61
RiPLE-EM CAD: Process RequestFlow 63
RiPLE-EM CAD: Process Change Request Flow 64
RiPLE-EM CAD:Process Propagation Request Flow 67
RiPLE-EM CAD: Build ManagementFlow 70
RiPLE-EM CAD: Release ExecutionFlow 74
RiPLE-EM PD MacroFlow 78
RiPLE-EM PD: Release Planning Flow 79
RiPLE-EM PD: Change ManagementFlow 82
RiPLE-EM PD: Change Management - Process Requests 83
RiPLE-EM PD: Change Management - Process Change Request 84
RiPLE-EM PD: Change Management - Process Propagation Request . . 85
RiPLE-EM PD: Build Management Flow 87
RiPLE-EM PD: Release ExecutionFlow 89
Effort PieChart 104

Xiii

7.2
7.3

8.1
8.2

Difficulties Distribution Chart 105
Subjects satisfactionlevels 0oL 106
Solution Layers e 114
RiPLE-EM and CL integration 115

Xiv

2.1

3.1
3.2

4.1
4.2
4.3
4.4

7.1
7.2
7.3
7.4

List of Tables

Differences between single-system development and Software product lines 20

Common issues raised x Recommended change management practice . 36
Summary table of all sub-questions and approaches match 39
RiPLE-EM CAD and RiPLE-EM PD Main Differences 47
RiPLE-EM Change Management Activities Summary 51
RiPLE-EM Build Management Activities Summary 51
RiPLE-EM Release Management Activities Summary 52
Subject’s Profile in the Experimental Study 103
Efforttousetheprocess. 104
Efforttousethe process. 105
Hypothesis Rejection Summary 108

XV

“With the possible exception of the equator, everything

begins somewhere.”

C. S. Lewis

Introduction

In order to minimize costs and time-to-market, and maximize quality and productivity,
software reuse is an important aspect. These goals are usually leveraged by the tendency
of systems to get bigger and complex. In addition to that, the application of ad-hoc reuse
(which is an opportunistic reuse, not systematic, and generally restricted to source code)
also leverage the goals cited, by inserting risks that can compromise future initiatives in
the systematic reuse direction (,).

In order to achieve these benefits (high productivity, high quality, low cost and less
time-to-market), one of the approaches with significantly and increasing success are
software product lines (,).

Although software product lines have proven its applicability and benefits in a broad
range of domains (,), some specific topics regarding it have not been
widely explored, leaving an open gap for researchers and practioners. The evolution
management of assets and product inside the product line is an example of a filed that
has not been developed in academy. Thus, the focus of this dissertation is to study
the state-of-the-art in evolution management techniques for software product lines and
provide a systematic process to manage evolution of assets and products inside software
product lines, in order to maximize the benefits of systematic reuse.

This Chapter contextualizes the focus of this dissertation and starts by presenting its
motivation in Section 1.1 and a clear definition of the problem in Section 1.2. A brief
overview of the proposed solution is presented in Section 1.3, while Section 1.4 describes
some related aspects that are not directly addressed by this work and Section 1.5 describes
some work related to this dissertation. Section 1.6 outlines the remainder structure of this

dissertation.

1.1. MOTIVATION

1.1 Motivation

Although the notion of software product lines have been studied by several authors
(; ; ; ; , ; ,

; ,), the primary efforts are targeted at the conversion towards
(,) and the initiation of a software product line (,

) and, consequently, evolution is considerably less studied. On the other hand, a
software product line and its assets, as any other piece of software, evolves over time.
The evolution of a product line and its assets is driven by inclusions and changes in the
requirements set of the products inside the product line. These changes are originated
from a number of different sources, such as the customers using the products, future
needs predicted by the company, bug fixes and the introduction of new products in the
product line.

This evolution management in the context of software product line is, most times, a
very complex activity for different reasons, such as the assets shared among products,
variability management, changes propagation, among others. Some issues can be identi-
fied in the software product lines evolution management field such as technical question
(repositories, CASE tools) () and managerial and process
issues related to the coordination of evolution management activities.

The fact that a core asset is shared among products, and every change to this asset can
have effects on several products (,), combined with the fact that in the
SPL we have to deal with evolution in time (versions) and space (variability) (,

), make SPL evolution management much more complex and challenging. Thus the
evolution of each core asset and product need to be well managed to minimize problems
like this.

In this work, we try to address evolution management, in the context of product lines,
by defining a process with activities necessary to manage evolution properly, in terms
of change, build and release management. Both software product lines and evolution

management in the context of software product lines are further discussed in Chapter 2.

1.2 Problem Statement

Motivated by the scenario presented in the previous Section, the goal of the work described
in this dissertation can be stated as:

This work defines a process to manage evolution of assets and products, in the

1.3. OVERVIEW OF THE SOLUTION

context of software product lines, by defining workflows, roles and artifacts for
managing changes, builds and releases, aiming at making the evolution of assets

and products a controlled and systematic task, in order to achieve systematic reuse
in an effective way.

1.3 Overview of the Proposed Solution

In order to accomplish the goal of this dissertation, RIPLE-EM (RiSE Product Line
Engineering - Evolution Management) process is proposed. This Section presents the
context where it is inserted and outlines the proposed solution.

1.3.1 Context

This dissertation is part of the RiSE Labs (,), formerly called RiSE
Project, whose goal is to develop a robust framework for software reuse in order to enable
the adoption of a reuse program. Thus, it is influenced by several areas, such as software
measurement, architecture, quality, environments, tools, and so on, in order to achieve its
goal. The influence areas are depicted in Figure 1.1. Based on these areas, the RiSE Labs
is divided in several projects, as shown in Figure 1.2. As it can be seen in the Figure, this

framework embraces several different projects related to software reuse. They are:
oﬂmaRE EnG'”EEP/f;

_&Q"v *‘\»QRE gcon Umjcs
¥
) ;_;N!Rt)nmE $
) 0?:5‘

Figure 1.1 RiSE Labs Influences

1.3. OVERVIEW OF THE SOLUTION

* RiSE Framework: Involves reuse processes (,), component

certification (,) and reuse adoption process (,).

¢ RiSE Tools: Research focused on software reuse tools, such as the Admire Envi-
ronment (,), the Basic Asset Retrieval Tool (B.A.R.T) (
,), which was enhanced with folksonomy mechanisms (,
), semantic layer (,), facets () and data mining (
,), the Legacy InFormation retrieval Tool (LIFT) (
,), a Tool for Domain Analysis (ToolDAY) (,), and the
Component Repository (,).

* RiPLE: Stands for RiSE Product Lines Engineering and aims at developing a
methodology for software product lines. It is composed of disciplines related to

scoping, requirements, design, implementation, testing and evolution.

* SOPLE: Development of a methodology for Software Product Lines based on

services, following the same structure of RiPLE.

* MATRIX: Investigates the area of measurement in reuse and its impact in quality

and productivity, based on strong experimentation.

* BTT: Research focused on tools for detection of duplicated change requests (

,), and its impact on reuse.

* Exploratory Research: Investigates new research directions in software engineer-

ing and its impact on reuse, based on packages of empirical studies.

+ CX-Ray: Focused on understanding the C.E.S.A.R!, its processes and practices in
software development.

This dissertation is part of the RiPLE project and its goal is to support the evolution

management of assets and products in a software product line.

1.3.2 Proposal Outline

The goal of this dissertation is to manage the evolution of assets and products in the

software product line, by defining a systematic process composed by three main activities:

IC.E.S.AR - Recife Center for Advanced Studies and Systems - http://www.cesar.org.br

1.4. OUT OF SCOPE

RISE FRAMEWORK
RISE TOOLS
RIPLE

f{| |\ | E i E E SOPLE

N

(i MATRIX
BTT
EXPLORATORY RESEARCH
CX-RAY

Figure 1.2 RiSE Labs Projects

Change Management, Build Management and Release Management, integrated in a
macroflow that guides all evolution management activities.

This proposed process does not exclude existing evolution management techniques,
patterns and tools (such as software configuration management systems), but comes
to complement traditional evolution management with three activities focused on the

software product lines context.

1.4 Out of Scope

As the proposed process is part of a broader context (RiPLE), a set of related aspects will

be left out of its scope. Thus, the following issues are not directly addressed by this work:

* Pro-active evolution. There are some studies related to pro-active software
evolution, related to predicting changes and preparing the product line to these
changes. In the proposed process, the main focus is on reactive evolution, starting

from the moment the need for change arises (be it a predicted change or not).

* Guidelines to modify different types of assets. The proposed process contains
activity flows to guide activities in the change management area, however, it does
not provide specific guidelines on how to change each type of asset (e.g. require-
ments, architecture, source code, feature models and etc). The modification of

the assets should be done according with the development technique/methodology

1.5. RELATED WORK

being followed. The proposed process only sets the path from the change necessity
arrival until the proper change of the artifact. Thus, the change itself (how it is

performed) is not handled.

* Evolution Metrics. Measurement activities are essential in any engineering
process. Both measurement activities inside the process and metrics to be used

outside the process (to formally evaluate) could be incorporated to the process.

1.5 Related Work

Part of this study was conducted inside the Fraunhofer Software Engineering Institute
(Fraunhofer IESE)” along with SPL specialists, thus this work had a great influence from
the Fraunhofer IESE.

Specifically, this work had a great influence from Michalis Anastasopoulos, who
works at the Fraunhofer and researches a research in a similar area. Michalis’ research
area is in a SPL tool to bridge the gap of the version control tools and the SPL concept

The interaction between this dissertation and Michalis’ work, is better described in

(2009).

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows:

* Chapter 2 discusses software product lines basic concepts and activities, as well
as software evolution. The relation between software product lines and software

evolution is also discussed.

* Chapter 3 presents a systematic review on evolution management existing ap-
proaches in the context of software product lines with the objective of mapping
them to better understand the state-of-the-art in this field and to serve as basis for

the proposed process.

* Chapter 4 describes the proposed process to manage evolution in SPL, the roles
associated, the disciplines involved and the key concepts of the process. It presents

an overview picture of RiPLE-EM.

2Fraunhofer IESE - http://www.iese. fraunhofer.de/de/

http://www.iese.fraunhofer.de/de/

1.6. DISSERTATION STRUCTURE

* Chapter 5 describes the proposed process to manage evolution in SPL for the Core

Asset Development level, with and the existing activities, roles and steps.

* Chapter 6 describes the proposed process to manage evolution in SPL for the

Product Development, with the existing activities, roles and steps.

* Chapter 7 presents the definition, planning, operation, analysis and interpretation
and packaging of the experimental study which evaluates the use of the proposed

process.

* Chapter 8 concludes this dissertation by summarizing the findings and proposing

future enhancements to the solution, along with the concluding remarks.
* Appendix A shows the questionnaires applied in the experimental study.

» Appendix B presents the checklists and templates proposed by this dissertation, to
support RiPLE-EM.

» Appendix C presents the systematic review sources, where the primary studies

were seached for.

Figure 1.3 represents the roadmap to the dissertation. The references and appendix

were omitted from this roadmap to improve the legibility.

Chapter 1

Intreduction

contextualizes and

v mofivates
Chapter 2
Software Product
Lines and Chapter 5
Software Evolution is evaluated
S E— » RiPLE-EM by
Il mativates Core Assat
Devalopment
Chapter 3 EREpIEgS Chapter T Chanter 8
o RIPLE-EM Is composad N Apter
. Systemauc_ Ewvolution of ezl Conclusions
Literature Review Management Study
Chapter &
charactarizes prablems
and research directiors L > RiPLE-EM -
Praduct is evaluated
Development by

Figure 1.3 Roadmap to this dissertation

“What saves a man is to take a step. Then another step.”

C. S. Lewis

Software Product Lines and Software

Evolution

In early 1967 there was an increasing importance and impact of software systems in
many activities of society. In addition, as a result of the problems faced in software
manufacturing, there was a general belief that available techniques to build software
should be less ad hoc, and instead, it should be based on theoretical foundations, as an
established disciplines of engineering. These were the main driving factors for organizing
the first conference on Software Engineering in 1968 (,). The
goal of this conference was “the establishment and use of engineering principles in
order to obtain reliable, efficient and economically viable software”. Among the many
discussed activities of software engineering, both maintenance (evolution) and software
mass customization (principle for software product lines) were considered. Those two
software development activities (which turned into formal software engineering fields
later on) are discussed in this Chapter.

Thus, this Chapter introduces the concepts of software product lines in Section
2.1, and the concepts surrounding software evolution in Section 2.2. The evolution
management in the context of software product lines is discussed in Section 2.3 and the

Chapter summary is described in Section 2.4.

2.1 Software Product Lines

The way that goods are produced has changed significantly in the course of time. Formerly,
goods were handcrafted for individual customers (,), although each more,
the number of people who could afford to buy several kinds of products have increased.

In the domain of automobiles this led to Henry Ford’s invention of the mass production

2.1. SPL

(product line), which enabled production for a mass market cheaper than individual
product creation on a handcrafted basis. The same idea was made also by Boeing, Dell,
and even McDonald’s (,).
Customers were satisfied with standardized mass products for while (,
), however, not all people want the same kind of car for any purpose. Thus,
industry was confronted with the rising interest for individualized products, which was
the beginning of mass customization. However, mass customization had two distinct
faces. For the customer, mass customization means the ability to have an individualized
product. For the company, however, it means technological investments, which leads to
higher product’s prices and/or lower profit margins for the company (,).
Thus, many companies started to introduce common platforms for their different
types of products, by planning beforehand, which parts will be used in different product
types. In this ways, the use of platforms for different products can lead to reduction in
the production cost for a particular kind of product. The systematic combination of mass
customization and common platforms is the key for product lines.
An accepted definition for software product lines is that a software product line is a
set of software-intensive systems that share a common, managed feature set, satisfying
a particular market segment’s specific needs or mission and that are developed from a

common set of core assets in a prescribed way (,).

2.1.1 Software Product Line Essential Activities

Software product lines involves three essential activities, as shown in Figure 2.1: Core
Asset Development (CAD), Product Development (PD), and Management (
,). These activities are detailed as follows:

Core Asset Development. The goal of this activity is to establish a production
capability for the products (,). It involves the creation of
common assets, generic enough to fit different environments and products in the same
domain. Figure 2.2 illustrates the core asset development activity along with its outputs
and contextual factors.

The activity of core asset development is iterative, and it is influenced by the situa-
tional context and existing constraints and resources. This context influences the way the
core assets are produced. According to (,) some contextual
factors can be listed: product constraints, such as commonalities, variants, behaviors;
production constraints, how and when the product will be bring to market, and other

questions like this may drive decisions about variability mechanisms used.

1. SPL

SEAY Iﬁ‘

Core Asset
Development ProcUCt

‘ Develnpment
\s’

Management

S

Figure 2.1 Software Product Lines Essential Activities (Clements and Northrop, 2002)

One of the foundation concepts for the core asset development is the variability of it.
Since core assets need to be compatible, and need to fulfill many product requirements
at the same time, the core asset needs to have the potential to vary its behavior for
the different products it may be part. The matter of variability management will be
further discussed in Section 2.1.2. Because of the variability inside each core asset,
it is important to exist any sort of a guideline to guide the use of one asset inside a
product. This guideline is called production plan (Clements and Northrop, 2002), and
should contain the production process, which is influenced by the product constraints,
project details and etc. Figure 2.3 shows the production plan. This activity (Core Asset
Development), is also known as Domain Engineering or Framework Engineering for
other authors.

Product Development. The main goal of product development is to create individual
(customized) products by reusing the core assets. The product development activities
depends on the outputs provided by the core asset development activity (the core assets,
and the production plan). The relationship of the SPL essential activities, with the focus
on product development is illustrated in Figure 2.4.

Product engineers use the core assets, in accordance with the production plan, to

produce products that meet their respective requirements. Product engineers also have

10

2.1. SPL

Product Constraints Core Asset Base

Production Constraints
Production Strategy Development

N,

Core Asset Production Plan

Preexisting Assets ’
Management
Figure 2.2 SPL Core Asset Development (,)

an obligation to give feedback on any problems or deficiencies encountered with the
core assets, in order to avoid the product line decay (minimizing maintainability and
evolvability of assets and product) and keep the core asset base healthy and viable. This
activity is also known as Application Engineering.

Management. Includes technical and organizational management, where technical
management is responsible for the coordination between core asset and product develop-
ment and the organizational management is responsible for the production constraints

and ultimately determines the production strategy.

2.1.2 Software Product Line Variability Management

Variability is the ability or the tendency to change. The goal of variability management
inside SPL is to support the development and reuse of variable assets. Variability manage-
ment can occur in the core assset development level, with the definition of the variability
inside a core asset, and also in the product development asset, by exploring the variability
previously created and defined. To successfully introduce software product lines concepts
in a software development environment, the notion of variability is extremely important.
A software component (or any other software piece) can have different behaviors (with
different implementation/specification), and based on that, the variability is identified.

The variability identification observes what vary (the variability subject, that could

11

2.1. SPL

[] A

Core Assets Attached
PR o O

Core Asset
Development

) 2

Management

Figure 2.3 SPL Production Plan (Clements and Northrop, 2002)

be a variable item of the real world or a variable property in such an item), why does it
vary (the drivers of the variability need, such as stakeholder needs, technical reasons,
market pressures, etc.) and how does it vary (the possibilities of variation, also known as
variability objects).

Inside variability management, there are also the concepts of variability points, and
variants. The variation point is the representation of a variability subject within the
core assets, enriched by contextual information. The variant is the representation of
the variability object within the core assets. These two concepts are the basis for the
variability definition inside a product line (Pohl er a/., 20052).

The variability, according to (Krueger, 2002), can be classified as variability in time,
which is the existence of different version of the same asset (or asset item) at different
moments, and this also happens in single-systems development, and are normally handled
by traditional Software Configuration Management (SCM) activities; and the variability
in space, which is the existence of the same asset (or asset item) in different shapes,

which is the variability for the asset.

12

2.1. SPL

lﬁ‘\

' Product Description

Product
Development

r
Core Asset Base E

i : Products
(0000 vlz_') -
GG Pan Prosiuetconstaits
|[O+L 48+ A Management
Figure 2.4 SPL Product Development (;)

2.1.3 Software Product Line Adoption Strategies

In order to an organization to switch to product line engineering, there are some existing
adoption strategies according to (,). An organization considering to
migrate to product line engineering generally has products already on the market and
generally are under economic pressure. This pressure is driven by the need to produce the
next products better and faster in order to maintain or gain the actual market share of the
company. Software product lines is exactly the solution to both goals: faster development,
better quality and less Time-To-Market.

The adoption of software product line engineering is started by defining which
transition strategy will be used. In the following, 4 (four) major transition strategies are
described (,):

* Incremental Introduction. As the transition name says, the incremental intro-
duction starts small and expands incrementally. This expansion may occur in two
dimensions: (a) Expanding organizational scope from a single group, other groups
are added incrementally after the first group success; (b) Expanding investments
starts with a small investment and then incrementally the investment is increased

according to the success.

» Tactical Approach. The tactical approach consists of introducing product line
engineering concepts in sub-processes and methods partially, starting from the

most problematic sub-processes.

13

2.2. SOFTWARE EVOLUTION

* Pilot Project Strategy. The activities and process have to be set in order to start
a pilot project, which can follow different ways, such as, starting as a potential
first product, starting as a toy product, starting as a product prototyping (since

engineering rules for prototypes are less strict than for standard products).

* Big Bang Strategy. In this strategy, software product line engineering is adopted
for all new products at once, by developing the core assets and platform, and after

deriving products from the core asset base.

2.2 Software Evolution

After the first NATO conference on software engineering (,),
among the many software development activities, maintenance was considered a post-
production activity, i.e., after the delivery and deployment of the software. This view, has
been shared by some processes for software development, such as the waterfall process
(,). According to the waterfall process, maintenance phase is the last phase of
the software life-cycle, after the software deployment. In the maintenance phase, only bug
fixes and minor changes were supposed to take place. This classical view on maintenance
has governed the industrial practice in software development and is still in use today by
several companies (,).

It took a while before the software engineers have realized the limitations of this
model (waterfall-like models), given the fact that the separation in phases were too strict
and inflexible. Generally, it is unrealistic to assume that all requirements are known
before starting the design phase of the software (in may cases, the software requirements
continues to change until the end of the software life-cycle).

Therefore, other attempts to a more evolutionary process model were proposed, such
as the change mini-cycle (which introduced new important activities such as change
impact analysis and change propagation) (,), and also the studies of Manny
Lehman, with his laws of software evolution (,).

This was probably the first time that the term software evolution was used in contrast
with post-deployment activity or software maintenance (,).
But nowadays, software evolution has become a very active and well respected field in
software engineering, and the terms software evolution and software maintenance are
often used as synonyms. In this dissertation, the term software evolution will be used as
opposed to software maintenance, because of the negative connotation of the latter term,
as identified by Mens (,).

14

2.2. SOFTWARE EVOLUTION

Inside evolution management, it is possible to identify some important research

themes:

* Change Management: Change management is responsible for ensuring that the
appropriate practices are in place to control the product line evolution. From a
strategic perspective, change management is needed to guide the long term health
of the organization’s assets and products. An organization’s ability to quickly
respond to product opportunities depends in part on its ability to manage different

evolving assets and products configurations (,).

Change management is considered the heart of evolution, since every change has
to be controlled and its impacts analyzed in a systematic way in order to guarantee

the assets integrity and consistency (,), (,).

* Build Management: All activities related to build generation, which defines
different types of builds (private system build, integration build and release build)

and provides the steps to accomplish the build generation.

* Release Management: Release management is the process through which software
is made available to, and obtained by, its users (,). It
is an important part of the overall software process and mainly on product lines,
because all releases of products inside a product line are composed of some core
assets that can be or not developed and released independently from each other,

and thus, needs to have specific activities and to support it.

2.2.1 Laws of Software Evolution

The laws of evolution were one of the first steps to the understanding of the software
evolution area. In 1974, Lehman started to formulate the laws of software evolution,
based on behaviors and observations. The laws are believed to apply mainly to mono-
lithic, proprietary software, and the laws are predict that change is inevitable and not a
consequence of bad programming.

The term E-type software is introduced and means a software system that solves a
problem or implement a computer application in the real world (,). The
laws are summarized as follows.

Continuing Change. An E-fype program that is used must be continually adapted

else it becomes progressively less satisfactory.

15

2.2. SOFTWARE EVOLUTION

Increasing Complexity. As an E-fype program is evolved, its complexity increases
unless work is done to maintain or reduce it.

Self Regulation. The E-fype program evolution process is self regulating with close
to normal distribution of measures of products and process attributes.

Conservation of Organizational Stability (invariant work rate). The average
effective global activity rate on an evolving system is invariant over the product life time.

Conservation of Familiarity. During the active life of an evolving program, the
content of successive releases is statistically invariant.

Continuing Growth. Functional content of a program must be continually increased
to maintain user satisfaction over its lifetime.

Declining Quality. E-type programs will be perceived as of declining quality unless
rigorously maintained and adapted to a changing operational environment.

Feedback System. E-type Programming Processes constitute Multi-loop, Multi-
level Feedback systems and must be treated as such to be successfully modified or
improved

Besides the laws, Lehman also defined two evolution dimensions, described in next

Section.

2.2.2 Software Evolution Dimensions

There are two distinct dimensions in software evolution, according to Lehman (
:)

The first dimension is the what and why dimension, which focuses on software evolu-
tion as a scientific discipline. It studies the nature of the software evolution phenomenon,
and seeks to understand its driving factors, impacts, and so on.

The second dimension is the how dimension, which focuses on software engineering
as an engineering discipline. It studies the more pragmatic aspects of software evolution
that aid the software engineer in his daily tasks. Hence, this dimension focuses on
technologies, methods, processes and tools to manage software evolution.

Software evolution can also be categorized by the type of changes that are being

performed into four different “dimensions” according to (,):
* adaptive, related to changes in the software environment;
* perfective which is the response to new user requirements;

e corrective where the focus is to fix errors;

16

2.3. SPL EVOLUTION

* preventive where the objective is to prevent problems in the future.

The adaptive, perfective and corrective activities are reactive evolution management
activities, since it concerns with managing the arrived changes and controlling them in
order to maintain the stability and integrity of the systems. On the other hand, preventive
activities can be seen as a proactive evolution management activity, since the efforts are
on improving the evolvability, and preventing future problems.

The how dimension and the reactive dimension are the dimensions followed in this
dissertation, because of the pragmatism of the how dimension (in terms of support for
practioners on the daily tasks) and the reality of changing requirements and environments
of the reactive dimension. Those points are strongly present in software product lines,
and the relation between software product lines and evolution management is described

in next Chapter.

2.3 Software Product Lines and Evolution Management

In terms of evolution, a product line is a continuously evolving organism, and for that,
evolution should be managed properly to achieve all benefits of this approach. Evolution
in a product line is complicated by the fact that an asset is shared among products, and
any change in this asset may affect on several products (,). This makes

evolution management more challenging than in traditional single software development

(;)-

2.3.1 Forces for Change

As in single-system development, software product lines are also subject to forces for
change. Those forces may come from different contexts. According to (,),
the forces for change can be classified as internal forces and external forces.

External forces are one impetus for change in the product line organization. Some

external forces are described next.

* Potential new Competitors. Potential competitors entering the market might force
a change in the business strategies in the organization. Such a change could cause

consequent changes in the product line strategy, the architecture and related assets.

* Buyers. They might force change by demanding the latest available technology on
the products they buy.

17

2.3. SPL EVOLUTION

* Suppliers. They might force a change by discontinuing or evolving a the assets

they provide to the product line.

The interactions identified in Figure 2.1 among the three essential activities result in
internal forces for evolution. Some possible internal forces are described next, separated

by each SPL essential activity.

* Core Asset Development. The Core Asset development exert evolutionary force
on product development by providing new versions of assets and additional variants.
The more frequent these releases are more product development resources will
be consumed to adapt to these new versions. On the other hand, if the core asset
versions wait too long to be released, it may allow the product teams to “clone and

own” the assets and adapt it to their needs.

* Product Development. Product development exert evolutionary force by providing
change requests to the existing assets. Besides the change requests, the product
teams may discover defects and bugs in the assets, and request their fix. Product
development also exert change forces by requesting a product specific asset to

incorporate the core asset base, becoming a core asset reusable by other products.

* Management. Management exerts evolutionary forces on the core asset devel-
opment by updating and adjusting the business plan for the product line. Core
asset development responds to these forces by updating the existing core assets
or creating new ones. Management also exerts evolutionary forces on the product
development, by modifying the business case and the product line scope, and by

doing that, the products release order may be re-evaluated.

Some of the examples of internal forces for changes, may result in the propagation of

the changes (evolution). The evolution propagation is described in the next subsection.

2.3.2 Evolution Propagation

In traditional single-system development, the changes done to an artifact may have
impacts on other artifacts of the system. In the software product line context, where
change to an artifact may impact dozens or hundreds of assets and products, the impacts
of evolution are even bigger.

In certain situations (such as the internal forces for changes described in section 2.3.1)

one change in a SPL development level (core asset development or product development)

18

2.3. SPL EVOLUTION

may have effects on the other one. Because of that, the changes performed to an asset or a
product have to be propagated to the other development level, to keep the products or as-
sets compliant with each other. Thus, the propagation of changes (evolution propagation)

may occur in 4 different directions, as (,) defined.

* Internal Propagation (Core Asset Development). When a core asset change
only affects other core assets, thus the change propagation is performed internally

in the core asset development level.

 Internal Propagation (Product Development). When a product change only has
effects on specific products, thus the change propagation is performed internally in

the product development level.

* Propagation from Core Asset Development to Product Development. Every
new core asset release (comprising a set of changes) can be propagated to the
product development level, in order to keep the products up-to-date with the latest
versions of core assets (with fixed defects, improvements, etc). In this context, the
changes are propagated from the core asset development to the product development

level.

* Propagation from Product Development to Core Asset Development. When-
ever a core asset is modified in the product development level, that change should
be propagated back to the core asset development level (feed backing). Also, when
a product specific asset should become a core asset (so other products can benefit
from it), the product specific asset is propagated to the core asset development

level, and integrates the core asset base.

Other differences between single-systems development evolution management and
software product line evolution management, taking in consideration the disciplines of

change, build and release management, are described in the next sub-section.

2.3.3 Evolution of Single-Systems vs. Evolution of Software Product

Lines

In Table 2.1, we try to map the differences between evolution management disciplines of

single-systems and the evolution management of software product lines.

19

2.4. CHAPTER SUMMARY

Evolution Management Single-System Software Product Line
Discipline Engineering Engineering
In software product line engineering, changes performed to
Typically, in single-system development. |any asset. may have a bigger impact, since it can affect
Change changes performed to the system. need |every product that (rejuses the asset. Besides the change
g to be analyzed and performed. but its impact, the existence of two development levels (core
lManagement - . - .
impacts are limited to the system being |asset development and product development) makes
developed change management harder because the changes may
need to be propagated from one level to another
The build generation of a systam Before compiling the source code. the product build has to
Build compiles the source code. creating the |take in consideration the variahility of the assets used
lManagement system executable file (generally in the |Before building a preduct, the varahility of all used core
binary form) assets must be resolved
Besides the release planning and publication (core asset
) plus product plan or product). the existence of two
Release management of single-systems -
; . development level. adds a new release level also. Core
Release generally involves the release planning . .
- ! assets need to have their releases managed (to product
lManagement and the release publication. with the .
development). From the product release, changes can be
release notes ’ -
propagated hack to core asset development (in case the
changes were performed in the product development level

Table 2.1 Differences between single-system development and Software product lines

2.3.4 Challenges

Every difference from single-system engineering, cited in Table 2.1 can also be considered
as challenges.

Thus, those challenges involve different solution spaces, such as technical issues,
managerial and processes issues involving these themes. Nevertheless, this dissertation

focus is on the process issues of evolution management of software product lines.

2.4 Chapter Summary

Software Product Lines (SPL) is an approach to software reuse that during the last years

has proven its applicability in a broad range of situations, producing impressive results

(:

must be followed: Core Asset Development, Product Development and Management.

). To achieve all software product lines benefits, three essential activities

Software evolution is the software engineering area that studies the phenomenon of
software change, its impacts, drivers and contexts. As one of the first key developments
in this area, Lehman defined the software evolution laws. The evolution laws can be
summarized as follows: Law of continuing change, a system that is being used undergoes
continuing change; and law of increasing complexity, a computer program that is changed,

becomes less and less structured. The changes increase the entropy and complexity of the

20

2.4. CHAPTER SUMMARY

program. Lehman also defined two evolution dimensions: the what and why dimension,
which studies the evolution phenomenon and seeks to understand its driving factors, and
impacts; and the how which studies the pragmatic aspects of software evolution as an
engineering discipline, to aid software engineers in their daily tasks.

Next Chapter presents a systematic literature review performed in order to identify
the existing processes and approaches to manage evolution in software product lines. All
the steps followed in the systematic literature review are described in details in the next
Chapter.

21

“But let every man be quick in hearing, slow in words and

slow to get angry.”

James 1:19

A Systematic Literature Review on
Software Product Lines Evolution

Management

Software Product Lines (SPL) offer the potential to reduce the time of building one
or more software systems and increase the quality of the products maximizing reuse.
However, compared to single systems development, the evolution management of assets
and products in the SPL becomes more complex and challenging. In order to address part
of these challenges, some approaches have been proposed by academy and industry.

This systematic review is an attempt to identify the available approaches, and verify
how they deal with SPL evolution management and disciplines such as release man-
agement, change management, and build management. We believe that this systematic
review contributes to understand the state-of-the-art in the area, providing insights to help
choosing among the existing approaches, and pointing out directions for future research.
Thus, the purpose is to review the SPL evolution management field to summarize empiri-
cal evidence about its state-of-the-art. This analysis was performed through a systematic
review procedure, which aids in assuring the validity of the conclusions that are extracted
from the individual studies (also known as primary studies) (,).

The remainder of this Chapter is organized as follows. Section 3.1 introduces the
concepts and benefits of systematic literature reviews. Section 3.2 presents the planning
phase of the review, and the research questions it proposes to answer. Section 3.3 discusses
the conduction procedures, along with the search strategy used and the approaches
selected to be considered in this review. Section 3.4 presents the results of the analysis.

Section 3.6 describes the related work and Section 3.7 summarizes this Chapter.

22

3.1. SYSTEMATIC LITERATURE REVIEWS

3.1 Systematic Literature Reviews

In this Chapter, we will address systematic literature reviews as systematic reviews.
Among the advantages of systematic reviews, is that the well defined methodology makes
it less likely that the results are biased, and provides a greater scientific value than

:).

Some other features differentiate systematic reviews from conventional literature

conventional literature reviews (

reviews, such as the definition of a review protocol that specifies the research question
being addressed, the search strategy documentation in order to other readers assess their
rigor, completeness and repeatability. Systematic reviews also requires inclusion and
exclusion criteria as an evaluation form of each primary study. In this systematic review,
we followed Kitchenham’s guideline (,).

The phases of a systematic review, according to (,), are:

* Planning, where the need for the systematic review is explicited and the review

protocol for the review conduction is defined;

* Conduction, where the review is conducted according to the protocol prior created,
by selecting the primary studies, extracting and synthesizing data from the primary
studies; and

* Reporting, in which the review results are reported and circulated to interested

parties.

According to this definition, each one of the main phases is further described in the

following sections.

3.2 Planning

In the planning phase of a systematic review, the review protocol is defined, and the most
important item of the review protocol is the research question, since it drives the whole

review process (,).

3.2.1 Question Structure

We discuss this review from three different viewpoints: population, which are the peo-
ple affected by the intervention; intervention, which is usually the software methodol-

ogy/procedure that address a specific issue; and outcomes, the results of this review.

23

3.2. PLANNING

* Population: The population of this review is the SPL Evolution Management and

the SPL area in general.

* Intervention: This review will search for indications that SPL evolution manage-
ment process models and approaches fully address the existing challenges and

issues.

¢ Outcomes: This review outcomes a summarized current state of evolution man-

agement in SPL describing the approaches main advantages and drawbacks.

3.2.2 Research Questions

It is important that the notion of software development process models, methods, tech-
niques, and approaches are clear in order to understand the next steps of this systematic
review.

A software process can be defined as a coherent set of policies, organizational
structures, technologies, procedures, and assets that are needed to conceive, develop,
deploy, and maintain a software product (,). On the other hand, software
development methods and techniques are guidelines on how to use a certain technology
and accomplish activities (,).

The term approach, used in this systematic review, can comprise these concepts of
processes, methods, and can also be an informal approach, such as an experience report
and best practices.

This systematic review tries to answer the following question: How evolution is being
managed in SPL?

In order to improve the review clarity, this question is further divided into sub-
questions (SQ) comprising the disciplines inside SPL evolution management. Each

sub-question and its rationale is described next:
SQ1. Do the approaches deal with SPL configuration identification? How?

According to (,), configuration identification aims at identifying the items
to be controlled, and establishing identification schemes for the items and their versions.
The configuration identification is a key task of evolution management since the most
effective way to manage the evolution of the whole product is to manage the evolution of
each configuration item.

In the context of SPL, configuration identification could means (i) the identification

of each part (configuration item) of each asset or product; and (ii) could also means the

24

3.2. PLANNING

identification of what is a core asset and what is not. The latter can be addressed by
earlier stages in the SPL development such as scoping and domain analysis, where it is
defined, for example, whether an asset will be developed as a core asset or a product
specific asset.

Since the second meaning (ii) of configuration identification is more related to SPL
scoping techniques than evolution management itself, it was left out of the sub-question
scope. Thus, this question covers the configuration identification in terms of what will be

formally controlled inside each core asset or product.
SQ2. Do the approaches enable multi-level instantiation of assets? How?

This question is related to the variability decisions in the core assets. Since most core
assets have inside its structure some open variability decisions, it is important for the
SPL evolution management approach to support the core asset instantiation (variability
decision choices) in more than one level. As an example, there is a SPL where there
are two different core asset development levels, in the first level we have all variability
decisions still open, and in the second level, part of the variability is decided (configured),
and only then the asset is used in the product development level.

This instantiation, which can occur in different levels, is popular specially in product
populations environments (,). This partial instance is the first level of
instantiation of the core asset. From the partial instance, one may continue deriving more
instances, what gives further levels of configuration. Some kind of support is necessary
to control these multi-level instantiation of core assets like what activities should be

performed, or what tools should be used.
SQ3. Do the approaches deal with SPL release management? How?

Release management is the process through which software is made available to, and
obtained by, its users (,). It is an important part of the overall
software development process. In SPL, two levels of releases can be identified: core
asset releases (targeted to the product development team) and product releases (generally
targeted to market or end users). Each core asset can be developed and released indepen-
dently from each other, since they are generally (re)used in more than one product, and
thus, need to have specific activities to support the release procedures. The composition of
the core assets releases may compose products, that need to be released as well following

specific procedures.

SQ4. Do the approaches deal with SPL change management?

25

3.2. PLANNING

Changes in SPL, when left uncontrolled, become very expensive and complex to manage,
because of problems such as shared assets among products and conflicting change interests
driven by each product.

This sub-question is further subdivided into the following sub-questions, in order to

address different topics inside the change management discipline.

SQ4.1 Do the approaches deal with variability evolution (adding, removing and chang-
ing)? How?

An important issue inside change management is the variability evolution. Adding,
removing or changing variation points, changing dependencies among assets, changing
variability binding times are examples of activities that should be driven by specific
change management practices or guidelines, in order to guarantee the consistency and
integrity of the whole SPL.

Most of the times, these procedures follow the same rules and steps as regular changes

inside an asset, but they require special attention.

SQ4.2 Do the approaches deal with assets change propagation between core asset and

product development? How?

One major question, when there are change requests to product specific and core assets, is
whether the correction is going to be made at the level of the core asset development, or at
the level of an individual product (,). Depending on these decisions,
the changes performed will probably need to be propagated in a given moment.

Propagation of changes between core assets and product development is important
because the changes can be replicated between these two layers (core asset and product
development) minimizing some of the change management issues described in section
3.4.4.

This is a very important point inside change management, since it is the bridge
between core asset and product development.

Some guidelines, well defined activities, or any other sort of control should be
provided to properly manage this propagation of changes, and answer questions the ones

liste next:

* How do changes made in the core asset are propagated to products that (re)uses

these assets?

26

3.2. PLANNING

* How do changes made in a core asset instance (product level) are propagated back

into the core asset?
SQS. Do the approaches deal with build management? How?

The build management procedures and tools are responsible to guarantee the repro-
ducibility of the generated build, and goes beyond that, by defining build strategies,
defining exactly what part of the system is targeted to build (Bay,).

Generally it exists some kind of configuration or parameterization (conditional com-
pilation directives, configuration files, aspect orientation, simply if-else blocks, etc.), to
address the multiple variants of certain assets (,).

One could relate build management with quality assurance, which is not the focus of
this research. Furthermore, the build management discussed in this research includes not
only the selection of the variants to be built, but includes the strategies and procedures of

the build itself (such as tools, steps, etc.).

3.2.3 Threats to Validity

The main threats to validity identified in this review are described next:

» Selection bias: The studies selection from web search engines and key digital li-
braries do not ensure that all SPL evolution management approaches were reviewed.
Possibly, relevant approaches were excluded from this review. Thus, for reducing

this threat, we searched for referenced papers.

* Publication Bias: Most of the organizations running SPL, probably have some
kind of approach to manage evolution. Some of those existing approaches are not
published in the academia, or are considered as confidential to the organization
business. To minimize this threat, we decided to include the last inclusion criteria

“Strategies and experiences reports” in Section 3.2.4.

* Research Questions: It is likely that some questions defined in the protocol may
not be so relevant. They are not the unique questions to address in this area. To

minimize this threat, several meetings were held in order to discuss the questions.

* Data Analysis Bias: Sometimes the researchers experience may influence the
results, and sometimes a reduced set of papers or a unique paper addressing specific
issues, may also influence. Aiming to avoid it, we had a set of discussion meetings

with the project members and experts in the area.

27

3.3. CONDUCTION

3.2.4 Inclusion and Exclusion Criteria

According to (,), it is necessary to define inclusion and exclusion criteria
for the studies selection, in order to reduce the likelihood of bias. These criteria should
select the primary studies.

The inclusion criteria defined for this review were:

1. Approaches that offer any kind of support to SPL evolution management. SPL
evolution management can comprise different disciplines (,). Ap-
proaches which include activities regarding any of the disciplines previously cited
will be considered as a primary study in this review. The approaches will be con-
sidered primary studies even if it covers only core assets development, which is the

phase where the core assets are defined, designed and built.

2. Strategies and experiences reports: All studies which contains experience reports,
or defines strategies to deal with any topic of SPL evolution management will be

considered as a primary study.

If the inclusion criteria is present, the approach will be considered in the review. As

exclusion criteria, we defined the following:

1. Approaches that deal exclusively with Software Configuration Management (SCM)
or Component-based development (CBD) specific issues: Some studies were con-
ducted in this direction, from the identification of component upgrades and re-

, ; ,) to

proposed frameworks to make component upgrades less painful (

placement problems (, ;
). Since these questions are not the main target of this review, any work in this

direction will not be considered.

2. Lack of detailed information about SPL evolution management: Any study that does
not have detailed information about evolution management will not be considered
in this review. Even if a study discusses about evolution, but it does not go into
further details, it will not be considered.

3.3 Conduction

The search strategy is the plan of finding as many primary studies relating to the research

question, using an unbiased search strategy (,).

28

3.3. CONDUCTION

For a better documentation of the systematic review, some information such as the data

extraction forms of each primary study are available at the systematic review website'.

3.3.1 Search Strategy

This strategy is divided in defining the data sources and search query strings, searching
for the primary studies and selecting the studies according to the inclusion and exclusion

criteria previously defined.

3.3.2 Query Strings

A set of keywords was raised, however after a brief preliminary search for primary studies,
it was realized the need to have the set of keywords calibrated in order to refine the results,
due to the huge amount of irrelevant results gained. The keywords similar nouns and
syntactic variations (e.g. plural form) were also used.

Here we present the final set of keywords used. They are:

Evolution

Evolution Management

Software Configuration Management

Change Management

Release Management

Build Management

Variability Management

Configuration Identification

All terms were combined with the term "Product Line" and "Product Family" by
using Boolean AND operator.

The strings had been generated, as shown below:

1 evolution AND "evolution management" AND ("software product line" OR "prod-
uct family" OR "SPL")

ISystematic review web site - http://www.cin.ufpe.br/~thbo/systematicreview/
index.php

29

http://www.cin.ufpe.br/~thbo/systematicreview/index.php
http://www.cin.ufpe.br/~thbo/systematicreview/index.php

3.3. CONDUCTION

2 "software configuration management" AND ("software product line" OR "product
family" OR "SPL")

3 "change management" AND ("software product line" OR "product family" OR
IISPLH)

4 "release management" AND ("software product line" OR "product family" OR
IISPLH)

5 "build management" AND ("software product line" OR "product family" OR
IISPLH)

6 "variability management" AND ("software product line" OR "product family" OR
HSPLH)

7 "configuration identification" AND ("software product line" OR "product family"
OR "SPL")

3.3.3 Data Sources

The research focus was initially on important journals, since the most important work are
usually published on journals. The search was done through keyword matching at the
journal website and/or access portals.

After that, studies were searched on important conferences proceedings. The search
methodology was the same as the one used for the journals, searching on conferences
portals and/or websites with the defined set of keywords.

Next, other relevant electronic sources was also searched to guarantee a more exhaus-
tive search (,), and for that, theses and technical reports were also
included. Both the keywords used and the list of the searched journals, conferences and

other electronic sources are listed in Appendix C.

3.3.4 Studies Selection

The approaches selection process was performed by four M.Sc. candidates and two Ph.D.
At the end of the data source collection, 20 potential primary studies were identified as
possible choices for further analysis based on the inclusion criteria. Among the studies
were 16 papers, 2 Ph.D. theses, 2 technical reports, and 1 book. The studies were analyzed
after a full text reading or just the title and abstract, in case of papers which the content

was clearly not related to the research question. After the exclusion criteria were applied,

30

3.3. CONDUCTION

7 approaches were selected (detailed next). The selected approaches analysis was based

on 9 papers, 1 book, and 1 technical report which are considered primary studies in this

review (,). Some SPL approaches were not considered in this

review because of the exclusion criteria defined in the previous Section. Some excluded

approaches are described next:

PULSE: The Product Line Software Engineering (PuLSE) was developed at Fraun-
hofer Institute for Experimental Software Engineering (IESE) with the purpose of
enabling the conception and deployment of software product lines within a large

variety of enterprise contexts (,).

PECOS: PECOS is a collaborative project between industrial and research part-
ners that seek to enable component-based development of embedded systems,

specifically "field devices" (,).

RiDE: RIDE is a domain engineering process focused on core assets development,
and includes the steps of domain analysis, domain design and domain implementa-
tion (,).

FAST: The Family-Oriented Abstraction, Specification and Translation was de-
veloped in Lucent Technologies and its goal is to provide a systematic approach
to analyzing potential families of products and develop facilities for the efficient

production of any family member (,).

PLUSEE: PLUSEE is an approach to product lines that uses UML. It defines a
domain model that depicts life cycle phases, views within each phase and meta-

classes within each view (,).

KOALA:Koala is a component-oriented approach for consumer electronics soft-
ware. This approach was proposed to handle diversity and complexity of embedded

software at an increasing production speed (,).

The approaches selected to be considered in this review are described next in alpha-

betical order.

KOBRA: Komponentenbasierte Anwendungsentwicklung (KobrA) is the German
;)

and was developed at the Fraunhofer Institute for Experimental Software Engineer-

translation for component-based application development (

ing (IESE) and it is a “ready-to-use” customization of PuLSE (,).
Its analysis was based on (,) and (,).

31

3.3. CONDUCTION

* MOHAN AND RAMESH: This approach is a case study for identifying SPL
change management best practices and possible patterns to deal with common

changes scenarios. The analysis was based on (,) and

(;)-

* NICTA: This study is an experience report from an Australian company, reporting
some problems with change control in a SPL environment. NICTA stands for
National ICT Australia. The evolution problems faced by NICTA, and the possible

solutions to those problems are presented in this study. The analysis was based on

(;)

* PHONAK: Phonak is a Swiss company that runs a SPL of PC-based applications,
used by audiologists to fit hearing instruments to hearing-impaired customers
(,). Phonak’s focus is to obtain the benefits of SPL and agile
development techniques to rapidly develop high quality software products. This
study reports some Phonak’s experiences with SCM and release management. The

analysis was based on (,).

* SEI: SEI technical report discusses evolution of SPL assets. The report was de-
veloped at the Software Engineering Institute (SEI) and the focus is on change
management and configuration management. The analysis was based on (

,) and (,).

 SRM: SRM is a process, and a support tool, to effectively manage evolution
through release management. The work is focused on component-based software
release management, but it can be easily applied to SPL context. The analysis was
based on (,) and (,).

* TABORDA: Taborda’s study addresses planning and management of releases in
the context of component-based SPL. The analysis was based on (,).

3.3.5 Data Extraction

In the data extraction step, the main author read every primary study, and documented the
answers to the research questions in the data extraction form. These forms can be found

at systematic review website.

32

3.4. REPORTING

3.3.6 Data Analysis and Synthesis

In this systematic review, we synthesized data in a qualitative form, by a descriptive
synthesis, as it is more natural in the software engineering field (,).

The analysis and synthesis are reported, and results discussed in the next Section.

3.4 Reporting

In this Section, the results of the review are presented. Since the research question was
further divided into a set of sub-questions, each sub-question is discussed, analyzed and

conclusions are drawn in the next Sections.

3.4.1 Configuration Identification

No approaches addressing configuration identification in the context of SPL were iden-
tified and considered in this review. However, in practice, there are even models, such
as the CMMI, which requires activities like that in order to explicitly know what are the
items in the product that will have its changes be formally controlled (,

). Thus, this activity could be considered as the foundation of the change mangement
process, since to manage the changes of one system, it is needed to know all the items of
the system that will be managed.

From singe-system engineering to SPL, some differences arise and must be adressed to
better fit SPL. Some sort of guideline should exist in order to facilitate the identification of
configuration items, specially considering the differences between core asset and product
development.

This is still an open issue for future development of the SPL evolution management
field.

3.4.2 Multi-Level Instantiation

No primary studies regarding this topic were found, showing an opportunity to the
academia to perform more studies towards this direction. This question is of extreme im-
portance for approaches such as Product Population (,) or hierarchical
product lines.

When there are many levels of assets development, generally there is also some sort

of branching support, or other instantiation support to guarantee that the assets are well

33

3.4. REPORTING

organized, and changes can flow through the instances (enabling change propagation).
Some well defined activities may also support this area, or even a support tool.

Probably SPL companies have some kind of support to this area, but no published
study was found with detailed information.

3.4.3 Release Management

Analyzing all the approaches, we could identify that four of them have some kind of
support for release management.

The first approach is the one where Van der Hoek and Wolf (,

) defined a release management process and also a tool called Software Release

Manager (SRM) to support this process, focused on CBD. The SRM is based on two key

notions:

* The actual location of each component is transparent.

* Dependencies among components are explicitly recorded (dependency tracking).

A set of requirements to this process and tool were raised addressing both component
producers (core asset developers) and potential consumers (product developers). Among
these requirements, the most important requirements for the component producers were:
(i) Dependencies should be explicit and easily recorded; (ii) The scope of a release
should be controlled. As for the component consumers, the main requirement were: (i)
Descriptive information should be available; (i1) Location transparency; (iii) A component
and its dependencies should be retrievable, preferable as one single file.

The next approach presented is strictly from the SPL field, and it is an experience
report from PHONAK (,), describing three release management strategies

that were in use in the company and were successful:

1. Align platform and product releases: The effort of releasing the platform indepen-
dently from a product is not efficient because verification and validation is often
difficult, and it adds an unnecessary Time-To-Market (TTM) delay on new features,
since they need to be released as a platform release, in order to be reused in a

product release.

2. First release of new feature with one product: First release of any new feature is
always with only one product because, during development time, requirements may
change and they need to be implemented quickly. Adapting it to other products

may throw them off schedule or invalidate the feature variation validation efforts.

34

3.4. REPORTING

3. Releasing source code rather than binaries: Kurmann (,) identified
that there was no purpose or need in releasing the binaries of their core assets, since
their build process was fully automated and the binaries could be generated at any

time.

These strategies are important because they were extracted from industry practical
experience. Some of the strategies, such as the alignment of the platform and the products
release may cause a serialization in the release process, because other products may have
to wait the first release of the platform to be released. There is a need of a good release
management team to coordinate these schedules and guarantee that no product will be
impacted because of problems like this.

Following the same line of work, NICTA experience report (,) outlines
some challenges related to evolution management and the importance of planning, coordi-
nating, tracking, and managing the impact of change to software assets. One problem was
related to release management and is the different product release constraints. Products
in a SPL often have different release constraints, such as schedule and quality constraints.
Since these products share core assets, a product release sometimes depends on conflict-
ing release constraints of these shared assets. The solution for this problem was the SPL
roadmap, which is a plan for changes to core assets. That can be useful to manage the
expectations and plans of the products stakeholders. This roadmap can also plan for
architectural changes.

Taborda’s work goes further than the others in terms of release management. He
states that for each new component release, there is a need to prioritize or negotiate the
competing, potentially conflicting, requirements across the user-base and package the
selected ones into the component’s release plan (,).

In order to manage this release plan, Taborda defines the Release Matrix. The
introduction of the Release Matrix offers a useful technique to develop a master plan for
the SPL that can help to consolidate and to align the individual release schedules of the
different products and components (,). The Release Matrix offers a means
to coordinate and record each incremental step in the SPL evolution, and is presented as a
generalization of release planning in complex reuse contexts. Each column in the Release
Matrix represents a component release plan defined as the sum of the requirements it
is to implement in that release. A row represents a product release plan that must be
compatible with the component releases that the product is reliant upon. As a whole, the
Release Matrix represents a master release plan that consolidates and synchronizes the

individual release plans of the modified products and components (,).

35

3.4. REPORTING

The Release Matrix could be used to provide an overview of the requirements’
progress as they are implemented. The status of each component development can be
presented in a similarly formatted reporting matrix that indicates when a product allocated
requirements have been met and the integration and test of the product can proceed.

Even though the release matrix helps solving the problem of release planning, it is
likely that this matrix starts to become difficult to use and maintain in a SPL scenario
where there are hundreds of components, and each product comprises most of those
components. Some kind of release matrix clusters may be interesting to organize the

growth of the matrix.

3.4.4 Change Management

From the approaches selected and included in this review, four of them covered the
subject of change management somehow.
Mohan and Ramesh detected three patterns of changes which were constantly repeated

inside SPL, and for each pattern, a change management practice was recommended

(,), according to Table 3.1.
Issue Raised by Pattern Recommended Practice
Interdependencies among changes in variants |Modularize changes and variation points
Increasing the degree of evalving variance Maodularize changes and variation points
Reinvented variations Facilitate reuse based on knowledge sharing

Table 3.1 Common issues raised x Recommended change management practice

Following the same line of Mohan and Ramesh’s study, NICTA experience report
(,) outlines some challenges related to SPL evolution management and the
importance of planning, coordinating, tracking, and managing the impact of change to
software assets. For each change control problem, a possible solution was proposed,
based on practical experience. The problems identified and the solutions to them are

described next:

1. Changes to PLA Core Asset Variation Point: A Product Line Architecture (PLA)
change is a change to the core assets’ interface, and so can force changes in all
products that use the new version of these core assets. The solution proposed to
this problem is the creation of a core CCB, which would be a primary mechanism

to deal with change control. In the case of SPL, a core assets CCB is needed. This

36

3.4. REPORTING

core CCB would be responsible for the negotiation among product stakeholders,

and help to solve the problem of different product release constraints.

2. SPL Decay: SPL decay occurs when new similar or identical functionality is
implemented in the asset instance of a number of specific products. The proposed
solution to address the decay problem, is continual vigilance to calculate the cost
of a "core" functionality that is implemented in instantiated assets.

In a more complete study, SEI technical report on SPL assets evolution, change
management is faced as the process responsible for ensuring that the appropriate practices
are in place to control the evolution of the SPL (,).

SEI’s report also states that change management must address the change impact
analysis, because it provides means of predicting which assets will be affected by a certain
change. This analysis can involve: conducting a traceability analysis to identify impacted
artifacts; identifying the interactions affected by the change; evaluating the effect of
changes on assumptions and identifying new constraints and identifying regression tests.

An important notion that McGregor depicts is the notion of change dimension (

,). When variation (which is a possible kind of change) occurs, it changes
the whole configuration of the SPL. Since the SPL configuration is changing, the configu-
ration of specific products changes along with it.

Change management processes are being placed as one of the fundamental key
disciplines in SPL by some approaches. One example for that is the the KobrA approach
(, ,) described next.

KobrA approach (,), is basically a CBD approach, and according
to CBD each component is an independent, reusable entity, with clear dependencies and
provisions. KobrA’s change management is based on this principle. The whole process of
maintenance is based on changes, even though it is separated on two distinct processes:
change management, which is responsible for the changes identification and rationales,
and configuration management, which is responsible for how the changes are achieved
(;)

Change management is considered the way to drive evolution of the assets, and
consequently the evolution of the SPL. Changes are treated as first-class citizens as well
as their relationships to other assets, that means, every change or dependency relationship

will be analyzed and carefully implemented.

37

3.4. REPORTING

Variability Evolution

Inside SPL, variability is a key notion, and the way to deal with variability should be very
well documented and formalized. However, no approaches were found in the direction of
how to deal with changes in the variability, what steps should be taken, and what should
be analyzed in order to guarantee that the change will not have a negative effect on the

existing products, and assets.

Change Propagation

When a core asset is instantiated in a certain product, and after that, some changes are
made, it should exist some kind of support to propagate these changes back to the original
core asset. By doing that, the next product to reuse this core asset, will reuse a version
with those changes.

SEI’s report considers that the SPL evolution management process has to comprise
the promotion of assets to ensure that the specific assets that becomes a core asset still
supports the original use that brought it into existence. It defines one guideline for
promotions, which states that promoted assets should stay backwards compatible with
their previous use (,).

As one of the most complete approaches regarding this sub-question, KobrA approach

describes four scenarios to manage change propagation.

» Core Asset change integration: Propagation of changes to other assets inside the

core asset base to ensure that the core asset base is in a consistent state.

* Product change integration: Propagation of changes to other assets inside the

product specific asset, to ensure that the product is in a consistent state.

» Feed-forward change integration: Propagation of changes from assets of the core
assets base to other assets inside the product specific artifacts to update asset to a

more recent and correct state.

» Feed-back change integration: Propagation of changes from assets of the product
specific to other assets inside the core assets base to update assets to a more recent

and correct state.

Each one of these scenarios shares a set of sub-activities like: change identification,

change impact analysis and the change propagation itself.

38

3.4. REPORTING

3.4.5 Build Management

The Build management area is tightly related with release management, and could be
considered as a required activity to release management procedures. SPL build strategies
and build management experience reports could provide valuable information to SPL
practitioners and researchers, but were not found in this review, showing that this area
has still much to be studied and explored.

The decision model in KobrA could be related to build management, when a decision
model is resolved, a resolution model is obtained, and could serve as an input to build
management procedures. Since it only addresses the question partially, we did not
consider as a primary study to build management.

Still in the build management area, there are some product derivation (instantiation)
tools that deal with the automatic build generation of products. Tools such as Gears
(,), pure::variants () offers great support for build automation
and generation. These tools will not be included in this review since the focus of the
review is on process issues.

Apart from that, no approaches were found detailing build management procedures,

strategies or experiences.

3.4.6 Questions Summary

The disciplines covered by the research question and sub-questions are very important
topics to the SPL evolution management field. Therefore, we could notice that no
approach considered in this review comprehended all these areas, as we can see in Table
3.2.

Sub-question \ Approaches KobrA [Mohan and Ramesh| NICTA [PHONAK| SEI | SRM | Taborda

5Q1 - Configuration Identification

5Q2 - Multi-Level Instantiation

5Q3 - Release Management X X X X
S04 - Change Mangement X X X X

5$Q4.1 - Variability Evalution

5Q4.2 - Change Propagation X X

5Q5 - Build Management

Table 3.2 Summary table of all sub-questions and approaches match

We may draw some findings from Table 3.2, from which we identify some disciplines
which are covered by most of the approaches (marked with an X), and thus, we can

conclude that those disciplines are more mature than others, such as change management

39

3.5. LESSONS LEARNED

and release management. On the other hand, disciplines such as multi-level instantiation,
build management, and variability evolution do not have much information sources and
available studies, showing that these disciplines have still much space to grow.

Furthermore, among the primary studies included in this review, none of them had any
kind of formal process definition for evolution management, indicating that the efforts
on evolution management in SPL is still not mature, and organizations do not follow a
defined process model for it.

It is very difficult to suggest any of the approaches to be followed or used, since we
do not have a single approach comprising all (or most of the) disciplines of evolution
management. For this reason, maybe a combination of the strong points of each approach
is the most interesting “composed approach’ to follow. From the research community

perspective, we could notice that there is still much to be explored.

3.5 Lessons Learned

The lessons learned with this systematic review are described next:

Number of disciplines being covered by the sub-questions. This review covered
various evolution management disciplines by the sub-questions. However, to improve
the analysis and outcomes of the systematic review, one could reduce the number of
disciplines and focus on only one or two. On the other hand, SPL evolution management
approaches (as we could conclude in this review) are in a very reduced number comparing
to other areas of SPL. In this sense, it is reasonable to include all these disciplines. In areas
where there are lots of work available the ideal is to reduce the scope of the questions.

Studies quality assessment. In this systematic review we did not assessed the
quality of the primary studies selected. In addition to general inclusion/exclusion crite-
ria, it is considered critical to assess the “quality” of primary studies to provide more
detailed inclusion/exclusion criteria and to serve as means to weighting the importance of
individual studies when results are synthesized. The initial difficulty is that there is no
agreed definition of a study “quality”, but it is suggested that quality relates to the extent
to which the study minimizes bias and maximizes internal and external validity. Quality
assessment instruments can be used in two different ways: (i) to assist primary studies
selection (providing detailed inclusion/exclusion criteria); (ii) to assist data analysis
and synthesis to identify whether quality differences are associated to different primary
studies outcomes. In either cases, a specific form should be used to each kind of study, to

document the quality assessment.

40

3.6. RELATED WORK

3.6 Related Work

Only a technical report from Pussinen, was found with the same purpose of evaluating
the existing SPL evolution management approaches. Pussinen’s survey, however, was not
performed through a systematic review; it was a survey of some available points regarding
evolution (,). Pussinen’s survey had a different focus, it starts discussing
about organizational models and assets evolution responsibility, and then discusses about
the recording of assumptions and design decisions, which are both, important to guide the
evolution and maintenance. It covers also evolution metrics and visualization of evolution
traces. None of the topics covered by Pussinen’s work was covered by this review, since

the focus of this review was mainly on evolution management processes.

3.7 Chapter Summary

In this Chapter, it was presented a systematic review in which the main goal was to identify,
among the relevant studies and work, the existing solutions of evolution management in
SPL. We believe this study contributed to the field, by reporting the obtained results, and
stating that the field has still much to be explored.

No approach included in this review had any kind of a formal process definition,
furthermore, no approaches comprehended all evolution management disciplines listed.
For this reason, the combination of the positive aspects of each primary study would be
the best option for practitioners.

This study is the first systematic review performed in the SPL evolution management
process area, and can serve as basis for the definition of a more complete and detailed
process. Each approach analyzed had interesting insights about at least one, or more
evolution management disciplines, and each of these approaches can be used for the

creation of a more complete and formal process definition.

41

“The only constant is change.”

Heraclitus (535 BC /475 BC)

RiPLE-EM

The process proposed by this dissertation, RiIPLE-EM, is part of a more general process
called RiSE Product Line Engineering (RiPLE), which concerns with the full software
life-cycle for software product lines. In this context, RIPLE-EM concerns with the
evolution management of software product lines, or, more specifically, the evolution
management of the assets and products inside a product line.

This chapter introduces the concepts of RiPLE-EM by presenting the RiPLE-EM
overview in Section 4.1 and describing RiPLE-EM disciplines in Section 4.2. RiPLE-EM
usage scenarios are presented in Section 4.3, RIPLE-EM communication between core
asset development and product development is discussed in Section 4.4. RiPLE-EM
relationships with existing support tools are described in Section 4.5 and RiPLE-EM
roles are presented in Section 4.6. RiPLE-EM activities summary is presented in Section
4.7 and the RiPLE-EM work products are listed in Section 4.8. The concepts of the
Eclipse Process Framework (EPF) is discussed in Section 4.9 and the chapter summary is

presented in Section 4.10.

4.1 RiIPLE-EM Overview

A characteristic of RiPLE-EM is that is a process focused both on core asset and product
development, in a release-oriented way. By release-oriented, we mean that for each core
asset or product release, a new RiPLE-EM flow, focused on the evolution management
activities is started.

RiPLE-EM has two different flows, one for each of the two essential activities of SPL
engineering: Core Asset Development (CAD) and Product Development (PD). Figure 4.1
shows the main flow of RiPLE-EM.

Figure 4.2 illustrates RiPLE-EM CAD and RiPLE-EM PD in a macro view.

42

4.1. RIPLE-EM OVERVIEW

RiPLE-EM

RiPLE-EM far
SPL Core Asset Development [ef————t—jp-| Core Asset
Development

RiPLE-EM far
SPL Product Development |t Product
Development

Figure 4.1 RiPLE-EM Main flow

% E:; [Requirements]«—»] Design |a—»[Implementation J«+—»] Tests |
$E '}) L) L
o
o2 | =
5 g w Release Change Build Release
O g ﬂg Planning " lManagement s Management [Execution
[
@ i
=
-

Every artifact inside the core
asset release:

- Requiremeants definition

- Code

Change Propagation

Core Assat 1 h 3
possible scenarios:

Releasae

Y —

- Binaries - Feedback changes to core asset.
- Production Plan Core Asset Base - Updating asset instance.
- aln - Creating a core asset from a
| product specific asset,
= Product Product Product Product
- Requ:rements Deslgn Implementatlon Tests
SE
2o
2T [=
o= | Release Change Build Release
o |4 E Flanning Management Managament Execullﬂn
i
[

Product 3
Releasa

Figure 4.2 RiPLE-EM Big Picture

43

4.2. RIPLE-EM DISCIPLINES

4.2 RiPLE-EM Disciplines

Both RiPLE-EM CAD and RiPLE-EM PD, when expanded, have activities regarding the
following disciplines (described in Chapter 2).

Change Management. Changes in SPL, when left uncontrolled, become very expen-
sive and complex to manage, because of problems such as shared assets among products
and conflicting change interests driven by each product or feature.

Change management is the area responsible for ensuring that the appropriate practices
are in place to control the products and assets evolution (changes), and is considered the
heart of evolution management, since every change has to be controlled and its impact
analyzed in a systematic way, in order to guarantee the assets integrity and consistency
(,). From a strategic perspective, change management is needed to
guide the long term health of the organization assets and products. The ability to quickly
respond to product opportunities, depends in part, on the ability of the organization to
manage different evolving assets and products (,).

Build Management. The build management procedures and tools are responsible to
guarantee the reproducibility of the generated build, and goes beyond that, by defining
build strategies, defining exactly what part of the system is targeted to build (Bay,

). Generally it exists some kind of configuration or parameterization (conditional
compilation directives, configuration files, aspect orientation, simply if-else blocks, etc.),
to address the multiple variants of certain assets (,). One
could relate build management with quality assurance, which was not the focus of this
research. Furthermore, the build management discussed in this research includes not only
the selection of the variants to be built, but includes the strategies and procedures of the
build itself (such as tools, steps, etc.).

Release Management. Release management is the process through which software
is made available to, and obtained by, its users (,). Itis an
important part of the overall software development process. In SPL, two levels of releases
can be identified: core asset releases (targeted to the product development team) and
product releases (generally targeted to market or end users). Each core asset can be
developed and released independently from each other, since they are generally (re)used
in more than one product, and thus, need to have specific activities to support the release
procedures. The composition of the core assets releases may compose products that need

to be released as well following specific procedures.

44

4.3. RIPLE-EM USAGE SCENARIOS

4.3 RiPLE-EM Usage Scenarios

In order to better understand the application of the RiPLE-EM in a real product line sce-
nario, there are 3 (three) different examples scenarios of its usage. Before understanding
the scenarios, it is important to have in mind that the RiPLE-EM is a release oriented
process model, and therefore one cycle in this process model represents the planning,
evolution, and release of a certain asset or product.

The first scenario is represented by Figure 4.3, and shows a fictitious product line in a
given moment, where the product line focus is to develop core assets, thus, 4 (four) core
assets are being developed. For the proper management of the evolution, each core asset
development (release) follows the RiPLE-EM specific flow, in this case the RiPLE-EM
CAD. Note that in this scenario there are no products being developed, only core assets,
which is a typical scenario in the first phases of a product line adoption, where the core

asset base will be constructed in order to be reused in the future products.

Core Core Core Core Software
Asset Asset Asset Asset A
S 5 e = Product Lines
! ! | !

RiPLE-EM RiFPLE-EM RiPLE-EM RiPLE-EM
CAD Flow CAD Flow CAD Flow CAD Flow

Figure 4.3 RiPLE-EM usage example

The second scenario is represented by Figure 4.4 where the product line is in an
opposite state from the first scenario. In this scenario, there are no core assets being
developed in the moment, on the other hand, 4 (four) products are being developed, and
therefore reusing existing core assets of the core asset base. Each product is handled
separately, and for each product a new RiPLE-EM PD flow is started and followed.

The third scenario, and most common, is the scenario where both core assets and
products are both being developed at the same time. In this scenario, represented by
Figure 4.5, we have products being developed which are constrained by the core assets
development (e.g. a product that depends on a core asset being developed). In this case,
RiPLE-EM will be used both the RiPLE-EM CAD flow and the RiPLE-PD flow, one for
each core asset or product release.

45

4.4. RIPLE-EM CAD X PD

Product Product Product Product Software
A B C D Product Lines

RiPLE-EM RiPLE-EM RiFPLE-EM RiPLE-EM
FPD Flow PD Flow PD Flow PD Flow

Figure 4.4 RiPLE-EM usage example

Core Core =4 re
Asset Asset Prn_duct Froduct Product
A B Line c D
J _J CAD PD |
F rd [
v ! | v
RiFLE-EM RiPLE-EM RiFLE-EM RiPLE-EM
CAD Flow CAD Flow PD Flow FD Flow

Figure 4.5 RiPLE-EM usage example

4.4 RiPLE-EM Core Asset Development x Product De-

velopment

As mentioned before, RiPLE-EM can be divided in two different flows, the RiIPLE-EM for
Core Asset Development (RiPLE-EM CAD) and the RiPLE-EM for Product Development
(RiPLE-EM PD). These two different flows follow similar macro workflows, but the
activities in the inner workflows have different goals.

RiPLE-EM CAD focuses on the proper evolution and release of a particular asset,
including the identification of items and the release planning of a certain core asset,
change management of those items, build management, and release execution practices
where the core asset is made available for the product development.

The focus of RiPLE-PD is different, from the release planning, where assets to be
included in the products are identified and tracked; the change management, where assets
can be added or instantiated; build management, where the product is built, with all

variability decisions resolved; until the release execution where the product is released

46

4.4. RIPLE-EM CAD X PD

and published and the changes made in the release can be propagated back to core assets
base.

In order to clarify the differences from RiPLE-EM for CAD and RiPLE-EM for PD,
Table 4.1 summarizes some of the activities by expliciting the differences between the

two flows.

- Raise change request and propagation request |- Raise change request and propagation request
- Process PR (raised in product development) |- Process PR (raised in core asset development)
- Creation of new core assets - Create core asset instances

- Change specific asset - Change specific asset/instance

- Resolve variability (partially) - All variability should be resolved.

- Build core asset (private, integration, release |- Build product (private, integration, and release
build) build)

- Identification of all core assets (and their versions)
- Deffinition of supported products - Request a change on a core asset
- Release schedule generation generation - Release schedule generation and monitoring (in
- Core aseet release publishment (to product case of core assets still being created/changed)
development) - Product release publishment (to market/client/etc)

Table 4.1 RiPLE-EM CAD and RiPLE-EM PD Main Differences

In the Change Management discipline, the main difference is the creation of a core
asset (in the CAD level) and the creation of a core asset instance (in the PD level). Besides
that, the propagation request is also handled in both levels. The propagation request (PR)
is the tool used to control the propagation of changes between core asset and product
development.

In the Build Management discipline, the difference between CAD and PD is the scope
of the variability resolution (in case of compilation time variability). In the CAD level,
most of the variability points may be still opened, or resolved partially, leaving some
compilation variability decisions opened, to be resolved in the PD level. However, the
build of a product should leave no variability decision opened.

In the Release Management discipline, which comprises the release planning and
execution, the main difference resides in the release planning. In the PD level, the
release planning must take in consideration the development of the core assets, and this
development should be monitored in order to keep the product release planning up-to-date

with the core asset development.

4.4.1 RIiPLE-EM CAD X PD Communication

Even though RiPLE-EM CAD and RiPLE-EM PD have different focus, since one is

focused on the core asset evolution management and the other on the product evolution

47

4.5. RIPLE-EM SUPPORT TOOLS

CAD RIiPLE-EM Prg::gagtfon PD RiPLE-EM
Core Asset - Request |- Product
Development Change Change Development
Management (PR) Management

Figure 4.6 RiPLE-EM Change Propagation Request

management, they have a connection point represented in RiPLE-EM as a Propagation
Request. The Propagation Request (PR) is a way to propagate the evolution (changes
made to an asset or product) of an asset or product to another asset or product.

Figure 4.6 shows the propagation request serving as a bridge of communication

between the core asset development and product development changes.

4.5 RiPLE-EM Support Tools

The support tools used to help the application of the process are described in this Section,
divided by discipline.

RiPLE-EM is designed to be independent from the tools used by each organization, so
any kind of tool that offer support towards the RiPLE-EM disciplines can be effectively
used.

* Change Management Tools. To manage changes and track bugs, change requests
and propagation requests any existing bug tracking tool can be useful. The most
common ones and open-source (since open-source tools are generally more easy to
introduce due to financial constraints) are: TRAC!, Mantis 2 and Bugzilla 3. To
manage changes, and help analysing the impact of the changes in the software, any
kind of traceability support is important, since traceability matrix in a spreadsheet
document (no automated) until automated tools to track the tracelinks among

artifacts.

* Build Management Tools. Any build automation tool such as the open source

ITrac project home - http://trac.edgewall.org/
ZMantis But Tracking project home - http://www.mantisbt.org/
3Bugzilla project home - http://www.bugzilla.org

48

4.6. RIPLE-EM RELATED ROLES

ANT* and MAVEN?, or even proprietary build automation tool such as MSBuild
©. Besides these general build automation tools, there are some SPL specific tools
which help in the build automation and generation in SPL contexts such as gears

(,) and pure::variants (,).

* Release Management Tools. The main need of the release management discipline
is a tool to manage the releases in a central repository so it can be accessible by
other teams in the same product line. Any tool offering support can be used, and
version control can also be used to manage the distribution (releases) of components

and products.

Besides these specific tools for each discpline, there are also ALM tools that covers
most RiPLE-EM disciplines and a set of other disciplines. As an example there are the
IBM Rational Team Concert (RTC) 7 and the MS Visual Studio Team System (VSTS) 8,

4.6 RIiPLE-EM Related Roles

The roles used specifically in RiPLE-EM are listed and described next:

* Build and Release Engineer: Is the role responsible for building and releasing
products and core assets, this role must have knowledge of build techniques, vari-
ability management, and must have sufficient access to publish release and builds
for tests. This role may also be named as Software Configuration Management

Engineer (as it is more usual in certain contexts).

* CCB: This role is a fundamental role in software evolution. The CCB is the group
(or individual) responsible for the analysis of both change and propagation requests.
All requests have to be analyzed by the CCB, and the CCB is the responsible for
approving the change or the propagation request. The group composition is flexible
and depending on the change or propagation being requested the CCB can have

different members.

Since the RiPLE process concerns not only Evolution Management, but all other

phases in the SPL engineering field (such as scoping, requirements, implementation,

4 Ant project home - http://ant.apache.org/

3 Ant project home - http://maven.apache.org/

®MSBuild General Reference - http://msdn.microsoft.com/en-us/library/Ok6kkbsd.aspx
"IBM Rational Team Concert - http://www-01.ibm.com/software/awdtools/rtc/

8MS Visual Studio Team System - http://msdn.microsoft.com/en-us/teamsystem/default.aspx

49

4.7. RIPLE-EM ACTIVITIES SUMMARY

testing), there are some roles related to some of these other phases that are also present in

RiPLE-EM, but are not specific of it. These other roles are also described next:

* Core Asset Manager: The Core Asset Manager is responsible for the development
of a core asset. Activities such as planning the release and maintain the release

schedule is this role’s responsibility.

* Product Manager: This role is responsible for the product management, all

product management activities are performed by this role.

* SPL Engineer: This role comprises technical engineering stuff such as the SPL
Architect, SPL Developer.

* Any Role: As the title says, this represents a role that is related to every role in the
process. If a certain activity is assigned to Any Role, it means that any of the roles

in the process may be able to execute the activity.

The roles associated with each RiPLE-EM activity are described in Tables 4.2, 4.3
and 4.4.

In small contexts, the roles of Core Asset Manager and Product Manager can be
merged into only one role (some sort of a SPL Manager), which is the role responsible
for both core asset and product management.

It is important to notice that the roles described in this Section are a sub-set of RiPLE

roles (the more general process).

4.7 RIiPLE-EM Activities Summary

All RiPLE-EM CAD activities, detailed in Chapter 5, and RiPLE-EM PD activities, de-
tailed in Chapter 6 are summarized in this Section according to the evolution management
discipline.

Table 4.2 summarizes the change management discipline, Table 4.3 summarizes
the build management discipline, and Table 4.4 summarizes the release management
discipline.

Each Table contains the activities of the discipline, the activity development level
applicability (if it is applicable to CAD, PD or both), the input and output work products,

and the roles associated.

50

4.7. RIPLE-EM ACTIVITIES SUMMARY

Change Management

Activity Development Level [Input Qutput Role

Request Change CAD, PD Mot Applicable - Change Request Any Role

Request Propagation CAD, PD Mot Applicable - Propagation Request |Any Role

Delegate Changes CAD, PD - Change Request - Change Request CCB

Analyze Change Request CAD, PD - Change Request - Change Request CCB

Create Core Asset Infrastucture CAD - Change Reguest - Asset Infrastucture

Change Asset Artifacts CAD, PD - Asset to be changed - Asset changed SPL Engineer
- Change Request

Analyze Propagation CAD, PD - Propagation Request |- Propagation Request |CCB

Feedback to Requester CAD, PD - Propagation Request |- Propagation Request |CCB

Integrate Feedback Changes CAD - Asset o _he changed - Asset changed SPL Engineer
- Propagation Request

Create a New Asset Instance FD - Asset - Asset Instance SPL Engineer

Rebase Asset PD - Asset to be changed - Asset changed SPL Engineer

- Propagation Request

Build Management

Table 4.2 RiPLE-EM Change Management Activities Summary

Activity Development Level [Input Qutput Role
Resolve Pending Variabilities CAD. PD - Assel - Asset without Build and Release
- Release Map pending variability Engineer
.) . - Build Script - Component Build Build and Release
Private System Build CAD. PD - Infrastructure to Build |- Product Build Engineer
)) . - Build Script - Component Build Build and Release
Continuous Integration Build CAD. PD - Infrastructure to Build |- Product Build Engineer
) - Build Script - Component Build Build and Release
Release Build CAD, PD - Infrastructure to Build |- Product Build Engineer
Verify Build CAD, PD - Build Log Not Applicable E”"‘.’ and Release
nginger
\dentify Variability Type PD - Asset Not Applicable Build and Release

- Release Map

Engineer

Table 4.3 RiPLE-EM Build Management Activities Summary

51

4.8. RIPLE-EM WORK PRODUCTS

Activity Development Level [Input Output Role
- SPL Manager
Define Supported Products CAD - SPL Roadmap - Release Motes Draft |- Build and Release
Engineer
- SPL Manager
Generate Release Schedule CAD, PD - Asset/Product Map |- Release Schedule - Build and Release
Engineer
. - SPL Manager
|dentify Deliverables CAD, PD I—Asset.fF'roduct - Release Motes Draft |- Build and Fgelease
nfrastucture)
Engineer
- SPL Manager
Update Release Map and Schedule |CAD, PD - Release Schedule - Release Schedule - Build and Release

Engineer

- SPL Roadmap

- SPL Manager

|dentify All assets version and availab{PD - SPL Feature Model |- Product Release Map |- Eiullld and Release
Engineer
Request New Asset Version PD Mot Applicable - Change Request Any Role

Release Management

Monitor and Track Assets Developme

PD

- Release Schedule

- Release Schedule
- Product Release Map

- SPL Manager
- Build and Release
Engineer

- Product Release Map

- Build and Release

Package

Gather Release Information CAD, PD - Release Schedule - Release Motes Draft Engineer
- SPL Manager
Consolidate Release Motes CAD, PD - Release Notes Draft |- Release Notes - Build and Release
Engineer
Publish Release CAD, PD - Release Package - Published Release |- Build and Release

Engineer

Table 4.4 RiPLE-EM Release Management Activities Summary

4.8 RiPLE-EM Work Products

The work products listed in Section 4.7, as input and output to RiPLE-EM activities

are general SPL work products, however, there are some of them that are proposed by

RiPLE-EM and may not exist in regular SPL environments, thus, they are described as

follows:

* Change Request. A change request is generally represented by a ticket in a bug

tracking system, or a issue tracker. This ticket can be used to request a change in

an existing asset, and can serve as a task request (e.g. creation of a new asset).

* Propagation Request. The Propagation Request (PR) is a way to propagate the

evolution (changes made to an asset or product) of an asset or product to another

asset or product. Propagation request serves as a bridge of communication between

the core asset development and product development changes, as described in

Section 4.4.1.

* Release Map. The release map is a matrix of all core assets used in a certain

product. It can be a simple matrix in a spreadsheet, but it can also be automated

52

4.9. ECLIPSE PROCESS FRAMEWORK

by some tool, helping the visualization of dependency and impacts (the impact of

changing a core asset for example).

* Release Notes. The release Notes is the artifact that describes all information about
a certain product/core asset release. All information related to the release should

be inside of the Release Notes.

* Build Script. The build script is the script responsible for generating the build of
a core asset or a product. The script contains all steps necessary to compile and
generate the executable/binary of a core asset or a product. Other types of builds
that does not use build scripts necessarily should replace this build script work

product.

The available templates and checklists are available in Appendix B.

4.9 Eclipse Process Framework

The RiPLE-EM process was modeled inside the Eclipse Process Framework (EPF)’,
which aims at providing an extensible framework and exemplary tools for software
process engineering - method and process authoring, library management, configuring
and publishing a process.

EPF uses the Software Process Engineering Meta-Model (SPEM), that defines a
formal language for describing development processes. EPF is based on SPEM 2.0,
released on April, 2008 (,).

Since, one of the main goals of EPF is to provide the reuse among sets of reusable

activities (called Method contents), the EPF structure is divided into two main categories.

* Method Content: A set of defined tasks flow, roles, artifacts and guides to accom-
plish some goal.

* Processes: Process flows which consumes the method contents, reusing the previ-

ously defined activities.

4.9.1 Method Content and Processes

Both method contents, and processes are divided into some concepts, according to the
SPEM (,).

Eclipse Process Framework web site - http: //www.eclipse.org/epf/

53

http://www.eclipse.org/epf/

4.10. CHAPTER SUMMARY

The Method Content contains the following concepts:

* Role: Roles define a set of related skills, competencies and responsibilities. Roles

perform tasks.

* Work Product: Work Products (in most cases) represent the tangible things used,

modified or produced by a Task.

* Tasks: A Task defines an assignable unit of work (usually a few hours to a few

days in length).

* Guidance: Guidance may be associate with Roles, Tasks, and Work Products, and

may have the form of a checklist, an example, a template and etc.
The Processes contains the following concepts:

* Capability Pattern: Capability Patterns define the sequence of related Tasks,

performed to achieve a greater purpose.

* Delivery Process: Defined using Work Breakdown Structures and/or Activity
Diagrams. Defines end-end full-lifecycle process and may include iterations,

phases, milestones.

4.9.2 Benefits

The main benefits from using EPF are:
* Reuse: The method contents can be reused throughout the processes.

* Web Site generation: EPF generates automatically a web site containing all
information of the modeled process, making the publication of the process a very

easy task.

4.10 Chapter Summary

The RiPLE-EM process model is part of a more general process called RiSE Product
Line Engineering (RiPLE), which concerns with the software life-cycle for software
product lines. In this context, RiPLE-EM concerns with the evolution management of

software product lines, or, more specifically, the evolution management of the assets and

54

4.10. CHAPTER SUMMARY

products inside a product line. RiPLE-EM involves three evolution disciplines: change
management, build management and release management.

RiPLE-EM is a process to guide evolution on both SPL development levels (Core
Asset Development and Product Development) and it has the concept of Propagation
Requests, which is the communication point between core asset and product development.

The RiPLE-EM specific roles are the Build and Release Engineer, responsible for
building core assets and products and releasing, and the CCB which is the group respon-
sible to analyze both change and propagation requests.

Next Chapter presents RiPLE-EM specific workflows, activities and steps for the

evolution management of the core asset development level of software product lines.

55

“We are what we believe we are.”

C. S. Lewis

RiPLE-EM CAD

The RiPLE-EM for CAD defines workflows, activities, steps, roles and work products to
properly control the evolution and changes of the core assets throughout their life-cycle.

Thus, this Chapter presents in a detailed level, including all flows, activities and
steps of the RiPLE-EM for Core Asset Development. Section 5.1 describes the RiPLE-
EM main flow for core asset development. Section 5.2 discusses the release planning
activities, Section 5.3 discusses the change management activities, Section 5.4 presents
the build management activities and Section 5.5 details the Release execution activities.

The Chapter summary is presented in Section 5.6.

5.1 RIiPLE-EM for Core Asset Development

The focus of RiPLE-EM for CAD activities is to guarantee the proper evolution of core
assets, from the moment of their planning and creation, through its evolution, until the
moment the core asset is released for product development.

As stated before, RiPLE-EM is a release oriented process model, thus, each core asset
development will finish with its release for the product development team to (re)use it
according to Figure 5.1 .

RiPLE-EM comprises the whole cycle from the core asset release planning, until the
release execution of the proper core asset. The RiPLE-EM CAD cycle is represented by
Figure 5.1

Each activity in Figure 5.1 is expanded into several tasks to achieve specific goals,

and each activity will be detailed in the following Sections.

56

5.2. RIPLE-EM CAD - RELEASE PLANNING

[RIPLE-EM CAD]

E5 E5
Change Management (CAD) Release Planning (CAD)

&5

Build Management (CAD)

E5

Release Execution (CAD)

ek
e
Core Asset Release

#_

Figure 5.1 RiPLE-EM CAD Macro Flow

5.2 RiPLE-EM CAD - Release Planning

The activity of planning the release of a certain core asset is performed in parallel with
the development, and it can be refined until the release execution moment.
The activity flow to accomplish the release planning is shown in Figure 5.2. The

activities inside this flow are described next:

* Define Supported Products The proposal here is to start writing the release notes
from the moment the release planning starts, so all information can be stored in
this draft release notes until the release execution (when the release notes will be

consolidated).

One important information about the release of a core asset is the products that this
core asset supports. This information can be obtained by verifying all products
inside the SPL portfolio and identifying the ones that the core asset can support.

This activity is composed of the following steps.

Steps:

57

5.2. RIPLE-EM CAD - RELEASE PLANNING

[CAD - Release Planning]

Is the Asset a
composition of other
assets?
Ex. Frameworks L
or platforms T
) Yes)
Eo 1=
5]
Mo Product Release Planning
Y

.

Define supported products

&
[dentify Deliverables

!
Ca

Generate Release Schedule

Does the Release =
schedule needs to
be updated?
Yes
Update Release Schedule
Mo

Figure 5.2 RiPLE-EM CAD: Release Planning Flow

58

5.2. RIPLE-EM CAD - RELEASE PLANNING

— Create a draft release notes for this core asset release: Draft Release notes

creation to start updating information on it.

— Define what products the core asset supports: Define what products of the
product line, the core asset supports and can be used in. This information

shall be updated in the draft release notes.

* Identify Deliverables Identify all items that will be part of the release pack-
age/distribution. Generally, there are at least two possibilities of deliverables
packaging. The first possibility is to deliver only the binaries/executables(jar files,
dll’s, etc.), and the second possibility is to deliver the source code and related
documentation (requirements, production plan, test cases, etc.) along with the

binary/executable.

It is important that the package creation is automatic, so it essential to know the
parts of the release package in advance to automate it. This activity is composed of

the following steps.

Steps:

— Identify Items to be included in release package: All files that the release
package will contain, need to be identified and documented in the draft
release notes. This information is useful to prepare the build script packaging

automation. This information can be updated in the draft release notes.

* Generate Release Schedule Generate Release Schedule for the core asset, compris-
ing the major milestones. No release schedule template is proposed by RiPLE-EM
in order to increase flexibility, since generally the release schedule is part of the

macro core asset development schedule.

— Establish release milestones and Generate Release Schedule: In this step,
the release schedule is created taking in consideration all development con-

straints and stakeholder needs.

» Update Release Schedule Since some products (on the product level) depend on
this core asset release, the schedule needs to be constantly updated, and reflect
the real situation of the development. Products in the product line may base
their releases on the core asset releases they depend on. Based on that, it is very
important that the core asset release schedule is constantly updated to reflect every

change in the major release milestone.

59

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

— Synchronize core asset schedule with any product release and Update
Core Asset Release Schedule: Since some products depends on core assets
release, it is always important to follow these product release schedules to see

if the core asset release schedule is accordingly.

— Notify product managers about the core asset release schedule change:
All changes to the core asset release schedule that will have any impact on the
products releases must be notified to product managers, so they can re-plan

their product release schedules and maps.

5.3 RIiPLE-EM CAD - Change Management

When the development of the core asset takes place, in other words, the creation of the
core asset and its evolution (changes), the change management flow starts.

The change management flow is the flow which interfaces with the implementation
(realization) of the software product line, where the changes really occur, assets are
created, and modified (evolved).

In order to control the changes done to the core assets, the flow in Figure 5.3 is

proposed. The activities inside this flow are described next.

* Request Change Whenever a change needs to be done to an asset, the formal
change process must be followed. This formal process starts with the requisition of

the change.

The Change Request (CR) must contain all important and detailed information
about the change being requested in order to the CCB group analyze the change
being proposed and then approve it for the actual implementation of the change.

This activity is composed of the following steps.

Steps:

— Complete the Change Request form: Every information needed should be
provided in details. The more detailed the information is, the easier it is for
the CCB group to analyze. It is important that the information provided is
clear. Some of the provided information may be changed after the analysis of
the CR
(e.g. Bug fix request - The requester informs that the bug is in module X,
and after the analysis the CCB find out that it is in module Y, so the requester
original information is changed by the CCB.)

60

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

[CAD - Change Management Flow]

What Change
Request Activity
is requested?

CR is to be opened - PR is to be opened

Process Change|or Propagation Request

"o 3 - e

Request Change Request Propagation

Process Requests

Does this change
needs to be
propagated? T

Yes

Mo

)

@

Figure 5.3 RiPLE-EM CAD: Change Management Flow

61

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

— Revise form and submit: Before submitting the CR, make sure that all

information are consistent and clear.

* Request Propagation The Propagation Request(PR) plays an important role in
this process, being the main gateway for changes to be propagated from Core Asset
Development to Product Development and vice-versa. The PR is further described
in Section 4.4.1.

Whenever a core asset or product release is published (or in any other time), a PR
could be submitted to update the other development level. For example, if a new
core asset release is published, a new propagation request can be opened for the

product that uses that core asset to update the version it uses.

This process of propagation starts with the PR. The PR must contain all important
and detailed information about the propagation being requested in order to the CCB

group to analyze the PR and approve the propagation of that change/release.

Steps:

— Define change set targeted to propagation: In this step, the requester has
to list the change set that will be propagated [e.g. set of CRs (a release), or a
single CR]. In theory, every PR has to be related with one or more CRs.

— Select Propagation Type in the Change Control Tool: Propagation Re-
quests can be of different types (,):

* Feedback (From the PD -> CAD): Where the changes in the PD level
are propagated back to the CAD level, feed backing the CAD with those
changes, turning those changes reusable by other products, since it is on

the core asset.

« Rebase (From the CAD -> CAD): It occurs mainly when a new version
of a core asset is released and the products that uses this core asset can
rebase their instances (either completely or partially by merging only the

differences).
The other possibility is the internal propagation (,):

« Internal product Development propagation (From the PD -> PD):
Where the change is propagated from one product to another one (or a
set of product).

62

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

[CAD - Change Management - Process Request |

Does it Process a
 Change Request or
.-~ Propagation Request?

-
-

v

=) e

Process Change Request Frocess Propagation Request

W
1

Figure 5.4 RiPLE-EM CAD: Process Request Flow

« Internal Core Asset Development propagation (From the CAD ->
CAD): Where the changes are propagated from one core asset to another

core asset (or a set of core assets).

— Revise Form and Submit: Before submitting the PR, make sure that all

information are consistent and clear.

Besides requesting changes and propagation, the change management flow supports
changes and propagation processing, by expanding the Process Requests activity in Figure
5.3. When this activity is expanded, a new flow is started, represented by Figure 5.4.

In Figure 5.4, we can see two other activities: (1) Process Change Request, and (2)
Process Propagation Request.

Expanding (1), we have another flow, as we can see in Figure 5.5, and the activities

are detailed next.

* Analyze Change Request: Every change requested must be analyzed in order

63

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

[CAD - Process Change Request]

?

&
Analyze Change Request

Is this a Core
Asset Change?

T Mo . R
%

Delegate Changes

Was this change Yeas
approved?

. No
Is the creation Yes

of a new core
asset necessary? -o__

- '
o \ Yes

}
Ca

Create Core
|

Asset Infrastucture
érge = |

L
Ca

Change Asset Artifacts

e

=
=

Figure 5.5 RiPLE-EM CAD: Process Change Request Flow

64

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

to avoid problems related to the change. The checks that must be covered are
described in the Change Request Checklist, in Appendix B, and all topics should
be analyzed in order to approve the implementation of a specific CR. This activity

is composed of the following steps.

Steps:

— Identify if the CR is related to CAD or PD: It is important to verify if the
change requested relates to CAD or PD.

eg.1 If this activity is being performed in the CAD, then all CRs analyzed
should be related to CAD, otherwise the CR should be forwarded to PD, and

there be properly managed.

eg.2 If this activity is being performed in the PD, then all CRs analyzed should
be related to PD, otherwise the CR should be forwarded to CAD, and there

be properly managed.

— [optional] Identify if the problem/bug is reproducible: If the CR is a bug
report, then it is necessary to verify if the bug can be reproduced. If the
problem is not reproducible, this has to be documented in the CCB analysis

decision.

— Identify all change’s impacts and feasibility: This analysis has to follow
the attached checklist (CR Analysis checklist) and each check have to be

checked in order to assess all impacts of the change proposed.

— Negotiate and Assign a person to implement the CR: The CR resolution
must be assigned to someone in the team. This person would be responsible

for the implementation(realization) of this CR.

— Document the CCB Analysis: The result of the analysis must be docu-
mented inside the CR, following the proposed "CCB Analysis documentation
template" available in Appendix B.

* Delegate Changes: This activity reflects the responsibility delegation of the CR
from Core Asset to Product Development or vice-versa. This activity is composed

of the following steps.

Steps:

— Change the Development Level in the CR: The development level (core

asset development or product development) of the change must be changed,

65

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

characterizing that the change will not be treated in the level it was analyzed,
and then, the delegated level has to analyze and resolve the CR.

* Create Core Asset Infrastructure: This activity reflects the creation of a new core
asset infrastructure (repository folders structure, change control tool organization,
etc.), according to the analysis previously made. The infrastructure of the core
asset must be created, the repository structure for the core asset also, and change
control tool for the core asset must be configured. This activity is composed of the
following steps.

Steps:

— Create core asset directory structure locally: The core asset and its direc-
tory structure must be created locally (in the engineer machine), and only
after in a later activity it is sent to the repository. If there is already an

organizational standard for directory creation, it should be followed.

— Create a specific project in the Change Control Tools: A new project
space must be created in the change control tool to store the CR and PR
related to the new core asset. This area in the change control tool must be
created and must include information such as asset’s modules, components,

etc.

* Change Asset Artifacts: The purpose of this activity is to change existing SPL
assets for any development purpose. This activity encapsulates all techniques,
methods and paradigms of assets implementation. Under this activity, all existing
assets are properly changed, according to the the analysis of the CR performed by
the CCB. This activity applies also if the modification requires some changes in
variation points (e.g. addition, removal of variation points). All changes necessary
should be done under this activity, and even other implementation process or
method can be plugged-in in this point. The way the assets are going to be changed
is not the focus of this process, and then it will not be detailed here. This activity is

composed of the following steps.
Steps:
— Realize the changes associated with the CR: All changes to existing asset’s
artifacts must be done in this activity.

— [optional] Perform unit tests: To assure the correctness of the changes in

the unit level, some unit tests may be applicable (automatically or not).

66

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

[CAD - Process PR]

Lo

s the propagation — Analyze Propagation Request
possible and
approved? T

Feedback to
Is the creation Yes Propagation Requester
of a new core
asset necessary? L

)
L3

Create Core
Asset Infrastucture

Ca

Integrate
Feedback Changes

-
=

Figure 5.6 RiPLE-EM CAD:Process Propagation Request Flow

— [optional] Perform smoke tests: To minimally assure the correct behavior
of the asset being change, smoke tests (,) can be

performed.

Back in Figure 5.4, by expanding (2) Process PR, we have another flow, represented
in Figure 5.6 and the activities are described next. The activities presented in Figure 5.6
are described next.

The activity Create Core Asset Infrastructure is not described in the following since

it was previously described (as part of Figure 5.5).

* Analyze Propagation Request: This activity purpose is to analyze the feasibility
of propagating the changes among variants/core asset. Every PR must be analyzed

67

5.3. RIPLE-EM CAD - CHANGE MANAGEMENT

in order to guarantee the correct propagation of the changes. The checks described
in the PR Analysis checklist, described in Appendix B, must be analyzed in order
to approve the realization of a specific PR. The result of the analysis must be

documented inside the PR. This activity is composed of the following steps.

Steps:

— Identify "from' where the changes are being propagated: Verify if the

"from" version of a PR is compatible with the core asset receiving the change.

— Identify the propagation type: Two types of change propagation: (i)Complete
Replacement, where the change set completely replaces the old version. In
this type of propagation, much attention should be put into compatibility
problems, and classical component upgrade problems (,), in order
not to alter the right behavior of the system; and (ii) Merge versions, where
the whole change set, or just a part of it, is merged against the already existing
target version. In this case much attention should be put in merge conflicts

resolution.

— [Optional] Isolate the changes to be propagated: This step is only applica-
ble in the Merge propagation type. In this case, it has to be identified what is
the change set (or part of it) that needs to be merged.

— Document the decision to propagate: The result of the analysis must be doc-
umented inside the PR, following the proposed "CCB Analysis documentation

template".

* Feedback to Propagation Requester: The purpose of this activity is to inform
the propagation requester the reasons the propagation requested is not approved.

This activity is composed of the following steps.

Steps:

— Document the reasons the PR was not approved: In order to document,
and serve as a communication channel between the CAD and PD, the decisions

regarding the PR must be documented inside the PR.

* Integrate Feedback Changes: Sometimes, the changes made in the product in-
stance of a core asset, or even a product specific asset must be propagated to CAD
to integrate the changes back into the core asset or create a new core asset in the

core asset base. This activity is composed of the following steps.

68

5.4. RIPLE-EM CAD - BUILD MANAGEMENT

Steps:

— Propagate changes from PD to CAD: This activity is the actual propagation
of changes and must follow the propagation type defined in the propagation

analysis.

— [optional] Resolve risen conflicts: Only performed if the Propagation type
is Merge. All risen conflicts must be resolved in order to promote changes to
a build to be tested.

5.4 RIiPLE-EM CAD - Build Management

When the changes proposed are complete, a build of the core asset should be created for
different purposes (for developer testing, for integration testing or for releasing).

It is important to observe that some existing tools (such as gears (,)
and pure::variants (,)) in the SPL build management area already substitute
(automatically) most of the activities in this flow. Thus, this flow can be replaced by
appropriate and automatic tools.

RiPLE-EM activity flow to guide build activities is illustrated in Figure 5.7. All

activities in this flow are explained next.

* Resolve Pending Variability: All variability that were not resolved (mainly vari-
ablities with compilation time binding) needs to be identified and resolved in order
to launch the build. When variability is resolved, the decisions have to be reflected
in the build command, for the proper build execution. This activity is composed of

the following steps.

Steps:

— [optional]All Conditional compilation variability is identified and resolved:
All Conditional compilation variability is identified and resolved before

launching the build.

* Private System Build: The Private System Build is used by the individual de-
veloper working on an isolated development task to verify the consistency and
correctness of their changes before committing them to the repository where they
will be visible to the rest of the development team. The developer creates a Private
Workspace and populates it with the latest working versions from the code line

in order to begin work on their development task. After making changes in their

69

5.4. RIPLE-EM CAD - BUILD MANAGEMENT

[CAD - Build Management]

?

Y

Resolve Pending Variahilities

|

L&
C& | =3
]] Continuous]
Private System Build Integration Release Build

Build
&
Release Milestone
Merge =
&
Werify Build

.

Figure 5.7 RiPLE-EM CAD: Build Management Flow

70

5.4. RIPLE-EM CAD - BUILD MANAGEMENT

Private Workspace, the developer needs to ensure that the source changes work
correctly and will not "break the build" for the rest of the team. This activity is

composed of the following steps.

Steps:

— Define the build completeness: Define the build completeness: - Clean full
build: The environment should be totally cleaned before the build execution. -
Incremental build: Other parts from previous build can be reused (It is faster,

but less secure)

— Assure build environment is similar to a release build environment: The
purpose of having a build environment equals (or even much similar) to release

build environment is to avoid future problems in the release generation; and

— Launch Build: Launch the build of the core asset. Depending of the tech-
nology being used, the launch can be done in several ways. Some typical
ways are using the command line instructions, building inside the used IDE,
or simply do not build (in case of interpreted languages such as PHP or any
other).

* Continuous Integration Build: The Continuous Integration Build is generally
generated automatically (or even manually) to incorporate the most recently com-

pleted development tasks into a single, stable, consistent build.

An integration build is preferably a full build (if time and bandwidth allows) whose
results visibly impact the progress and coordination of the entire development team
and all the active development tasks at that time. The frequency of an integration
build may be as often as one per development task (at the end of each task) or
may be every few tasks (or even daily/nightly). In some cases, there may be two
"flavors" of integration builds: one that is done after every development task and
does only an incremental build (and possibly runs only a subset of tests), and one
that runs daily or nightly and does a full build and runs a more complete set of
tests. In either case, the purpose of the integration build is to centrally coordinate
and synchronize all ongoing work in small bits and pieces to avoid "big bang
integration" at the end of a release/iteration, and to provide a regular rhythm for
the development team to tackle integration issues early and aggressively, one small

piece at a time. This activity is composed of the following steps.

Steps:

71

5.4. RIPLE-EM CAD - BUILD MANAGEMENT

— Define the build completeness: Define the build completeness: - Clean full
build: The environment should be totally cleaned before the build execution. -
Incremental build: Other parts from previous build can be reused (It is faster,

but less secure)

— [optional] Merge changes to one single code line: Merge changes to one

single code line (If changes are in different branches).

— Assure Build Environment is similar to Release Build Environment: The
purpose of having a build environment equals (or even much similar) to release

build environment is to avoid future problems in the release generation.

— Launch Build: Depending of the technology being used, the launch can
be done in several ways. Some typical ways are using the command line
instructions, building inside the used IDE, or simply do not build (in case
of interpreted languages such as PHP or any other). Regarding the use
of a continuous integration tool, there are mainly two build possibilities:
Automatically, build launched and controlled by a continuous integration tool
or Manually, build launched and controlled manually by engineers. In the case
of the Automatically possibility, the next step is also executed automatically

by most continuous integration tools.

— Apply Label on Repository build Configuration: Apply Label on reposi-
tory build configuration. The possibilities can be automatically (label applied
by continuous integration tools) or manually label (applied manually by the

Build Engineer).

* Release Build: The release build is the "formal" build package for the core asset.
Some core assets may require delivery and distribution of their source code in order
to serve as build input to other core assets; while other components may require
delivery and distribution of only binaries, or binaries and interface definitions (e.g.,

header files in C/C++). This activity is composed of the following steps.

Steps:

— Define the build completeness: Define the build completeness: - Clean full
build: The environment should be totally cleaned before the build execution. -
Incremental build: Other parts from previous build can be reused (It is faster,

but less secure)

72

5.5. RIPLE-EM CAD - RELEASE EXECUTION

— Identify the Release Type: It is suggested that the release type (beta, bug
fix...) should be reflected in the release label version. E.g. PRODUCT-
REL-01.00B or PRODUCT-REL-01.00C. This same release label should be
a parameter to Release Build script, to be included in some manifest file in

order to be possible to later identify given a certain package what version is it.

— Launch Build: Launch Build using the command line with the resolved

compile time variability if applicable.

— Apply Label on Repository build Configuration: Apply Label on Reposi-
tory build Configuration.

* Verify Build: After the build finishes, the logs and results from the build execution

needs to be verified to identify if any error happened during the build generation.

Both the final result provided from the build automation tool, as well as the logs
from the generation needs to be checked. This activity is composed of the following

steps.

Steps:

— Verify if the build result was successful: This verification should not only
comprise the build final result, but also the whole build log. The idea is search
for any error during the execution that did not lead to a failure in the build

execution.
— Notify internal team of the build result (Not applicable for Private Sys-

tem Build): After the confirmation that the build is really successful, all
stakeholders should be notified of the build production

5.5 RIPLE-EM CAD - Release Execution

Once the build package is tested and approved for release (to the product development),
the RiPLE-EM CAD Release Execution flow takes place.

RiPLE-EM CAD activity flow to guide release execution is illustrated in Figure 5.8.
All activities in this flow are explained next.

* Gather Release Information: Gather Information about the Release being pro-
duced. Some information are already inside the draft release notes, but still, some

are necessary. This activity is composed of the following steps.

Steps:

73

5.5. RIPLE-EM CAD - RELEASE EXECUTION

[CAD - Release Execution]

!

1o
Gather Release Information

>
Consolidate Release Motes

Execution of a
Release Build

Build Management (CAD)

Shall this release's) ~
Publish Relzase

changes be L. | Request

propagated? e, _.-"" Propagation

- Yes =]
e 25
Change Management [CAD)

Figure 5.8 RiPLE-EM CAD: Release Execution Flow

74

5.5. RIPLE-EM CAD - RELEASE EXECUTION

— Gather all Change Requests that are being release in this version: Gather
all CRs and PRs that were resolved in the version being released and include

it in the release notes.

— Gather all known issues (CRs and PRs): Gather all known CRs and PRs
that were NOT resolved in the version being released and include it in the

release notes.

* Consolidate Release Notes: The Release Notes is being created and updated
since the beginning of the release planning, and now it needs to be completed and
consolidated in order to be published along with the release distribution package.

This activity is composed of the following steps.

Steps:

— Include Core Asset Description: It describes the core asset with enough

details.

— Explicit the dependencies of the component: Describes the direct, first
level dependencies of a component on other components. It should be noted
that specifying a remotely released component as a dependency is as easy as
specifying a locally released component as a dependency, since the release

database is transparently distributed.

— Inform the source location of the component: Document the specific inter-
nal (repository) and external (release publication) location of the core asset

being released.

— Categorize Component: Categorize Component according to: Release

groups (Variants), Associated License, ...

— Consolidate Release Notes Generation: Review release notes and complete
it in order to be published along with the release notes.

Before the release publication, the build procedures previously defined has to be

followed in order to produce a release build, which will be published next.

* Publish Release: Publish release and make it available to internal/external clients/users.
The release distribution can be done through a variety of ways, such as publish-
ing in a web site, deploying in a production server (web applications), and DVD

hand-out direct to customer or users. Despite of the way it is delivered, all involved

75

5.6. CHAPTER SUMMARY

stakeholders should be notified about this release publication. This activity is

composed of the following steps.

Steps:

— Publish the release: The release distribution package and the release notes
should be made available for the customers/clients/users. It can be published
through: Email, Website, SCM Systems, etc...

— Notify all SPL Stakeholders of the release production: After the release is

available, all stakeholders should be notified that the new release is available.

— [optional] Open PR to propagate this new release to PD: Open PR to

propagate the new release to PD.

After the release publication, there is the possibility of propagating the changes done
in this release to other products, by opening a PR through the Change management

activities.

5.6 Chapter Summary

The focus of RiIPLE-EM for CAD activities is to guarantee the proper evolution of core
assets, from the moment of their creation, passing through various changes (evolution),
until the moment the core asset is released for product development and then it start the
maintenance phase by following again the iterative RiPLE-EM (from the next release
planning, changing, building and releasing).

As stated before, since RiPLE-EM is a release-oriented process model, each core
asset development will finish with its release for the product development team to (re)use
it. RiPLE-EM comprises the whole cycle from the release planning of the core asset,
until the release execution of the proper core asset.

This cycle (the RiPLE-EM CAD cycle) is composed by the disciplines: Release
Planning, where all information regarding the release planning of the core asset is gathered
and stored; Change Management, dealing with both the requisition and processing of
changes and propagation requests; Build Management, where the build of the core asset
is executed, for different purposes; and Release Execution, where the core asset release to
the Product Development is performed by publishing the core asset along with its release
notes (that contains information such as the production plan of the core asset).

Next Chapter presents RiPLE-EM specific workflows, activities and steps for the

evolution management of the product development level of software product lines.

76

“Production is not the application of tools to materials, but

logic to work™

Peter F. Drucker (American Educator and Writer)

RiPLE-EM PD

The RiPLE-EM for PD defines workflows, activities, steps, roles and work products to
properly control the evolution and changes of the products throughout their life-cycle.
Thus, this Chapter presents in a detailed level, including all flows, activities, and
steps of the RiPLE-EM for Product Development. Section 6.1 describes the RiIPLE-EM
main flow for product development. Section 6.2 discusses the release planning activities,
Section 6.3 discusses the change management activities, Section 6.4 presents the build
management activities and Section 6.5 details the Release execution activities. The

Chapter summary is presented in Section 6.6.

6.1 RIiPLE-EM for Product Development

The focus of RiPLE-EM for PD activities is to guarantee the proper evolution of products
in a product line. RiPLE-EM for PD has the same disciplines as RiPLE-EM for CAD,
and follows a similar workflow, but with different activities and different focus.

RiPLE-EM PD, as shown in Figure 6.1 also starts the release planning of the product,
where the release schedule and dependencies are defined (e.g. core assets that are still
being developed). The development is also supported by change management, enabling
the creation of product specific assets, or core asset instances for the product being
developed, and build management to support the product construction. In the release
execution of a product, activities such as the creation of a release notes, publication and
eventual changes propagation are also supported by RiPLE-EM PD.

Each activity in Figure 6.1 is expanded into several activities to achieve specific goals.

The activities will be detailed in the following Sections.

77

6.2. RIPLE-EM PD - RELEASE PLANNING

[RIPLE-EM PD]

55 T 25
Change Management (PD) Release Planning (PD)

&5

Build Management (PD)

=5

Release Execution (PD)

=

Product Release Milestone

Figure 6.1 RiPLE-EM PD Macro Flow

6.2 RIPLE-EM PD - Release Planning

The activity of planning the product release can run in parallel with the proper product
development, and the release planning can be refined until the release execution moment.
The activity flow to accomplish the product release planning is shown in Figure 6.2.

The activities inside of this flow are described next:

* Identify all asset’s version and availability: In this activity, all core assets used in
the product are identified along with its version and its availability. This information
have to be recorded in the product Release Map. If the core asset chosen needs a
modification to be used in the product, a CR must be opened to change the core

asset. This activity is composed of the following steps.
Steps:
— Identify all core assets that will be used in this product release: Identify

all core assets that will be used in this product release and the version of each

core asset.

78

6.2. RIPLE-EM PD - RELEASE PLANNING

[PD - Release Planning]

?

Ca

Identify all asset's
version and availahility

Are All planned
components
available? 7T Mo |__15.

Request a Mew
Asset version

“fes

B -
[dentify Deliverables

&
Generate Product
Felease Schedule

M

L

Monitor and Track
|s there any need Assets Development

to update the
release Map or

schedule? T |__L.*'\w’..

: Update Release
Map and Schedule

Figure 6.2 RiPLE-EM PD: Release Planning Flow

79

6.2. RIPLE-EM PD - RELEASE PLANNING

— Document it in the Product Release Map: Document it in the product

Release Map in order to have this kind of information in the future.

— Identify Core Assets Availability: Identify if every core asset planned to be

part of this release is available or not at the moment.

* Request a New Asset version: If needed, the product team, can request a change
in a core asset or request a product specific instance creation of a certain asset. This

activity is composed of the following steps.

Steps:
— This activity extends the ‘“Request Change” activity in section 6.3.

* Identify Deliverables: Identify all items that will be part of the release pack-
age/distribution. Knowing the items are going to be inside the release distribution

package is vital to the build automation script creation.

It is important that the package creation is automatic, so it essential to know the
parts of the release package in advance to automate it. This activity is composed of

the following steps.

Steps:

— Identify Items to be included in release package: All files that the release
package will contain, needs to be identified and documented in the draft
release notes. This information is useful to prepare the build script packaging

automation. This information can be updated in the draft release notes.

* Generate Product Release Schedule: Based on the Product Release Map, the
release schedule has to be generated taking the major milestones in consideration.
This activity is composed of the following steps.

Steps:

— Generate Product Release Schedule: Generate the product release schedule
according to the major milestones, taking in consideration all constraints and

restrictions.

* Monitor and Track Assets Development: If the product depends on an asset that
is still being developed, this development needs to be tracked and followed to

prevent any surprises at the release preparation moment.

80

6.3. RIPLE-EM PD - CHANGE MANAGEMENT

E.g. If the date, set to start the final test round in a core asset release, is missed, the
product development should know this and re-plan the product release schedule
(the product that has that core asset). This activity is composed of the following

steps.

Steps:

— Verify if the core asset development is complete. Keep track of the core

assets release to identify if the version needed/requested is already released.

— Verify if the core asset development is following the schedule. If the core
asset is not released until the moment, the ideal is to see if the development is

on schedule or if it has any problem or delay.

* Update Release Map and Schedule: Every time a problem or a delay is detected
in a core asset release (that this product depends on), the product release schedule

should be updated. This activity is composed of the following steps.

Steps:

— Reflect the changes in the product release map: The product release map

has to be updated if any new core asset is going to be used in the product.

— Reflect the changes in the product release Schedule: The product release
schedule may to be updated if there was any problem with the core asset being

developed/changed for the product.

6.3 RIiPLE-EM PD - Change Management

When the development of the product takes place, in other words, the creation of the
product and its evolution (changes), the change management flow starts.

The change management activity is the activity which interfaces with the implementa-
tion (realization) of the software product line, where the changes really occur, products
are created, core assets instantiated and modified (evolved).

In order to control the product changes, the flow showed on Figure 6.3 is proposed.
The activities inside this flow are expanded and described next.

As the RiPLE-EM CAD change management flow, the RiPLE-EM PD change mange-
ment flow starts with the change request, propagation request, or process requests (To

change request and propagation request details refer to Section 5.3).

81

6.3. RIPLE-EM PD - CHANGE MANAGEMENT

[PD - Change Management]

What change
management activity

is required? “-‘_
CR is to be opened ' Propagation is to be opened
Process Change or Propagation request
e) —
Request Change Process Requests Request Propagation

Does this
change
needsto _________ Ves
be
propagated?

Mo

@

Figure 6.3 RiPLE-EM PD: Change Management Flow

When the process request is expanded, there are two possibilities are available,
according to picture 6.4.
Expanding the Process Change Request, a new flow is started, as shown in Figure 6.5.

The activities of this flow are detailed next.

* Analyze Change Request: For more information about this activity, refer to 5.3.
* Delegate Changes: For more information about this activity, refer to 5.3.
* Manage Asset Artifacts: For more information about this activity, refer to 5.3.

* Create a new Instance: When changes need to be done at the product level,
instances of core assets needs to be created. This instance creation means a new
branch (or any other form of instantiation) for the development of specific product

code/documentation. This activity is composed of the following steps.

Steps:

— Identify from which core asset release version the instance will be cre-
ated.

82

6.3. RIPLE-EM PD - CHANGE MANAGEMENT

[PD - Process Requests |

Do you want to process
a Change Request (CR) or
a Propagation request (FR)?

| e 5
i (5

Process Change Request Process Propagation Request

@

Figure 6.4 RiPLE-EM PD: Change Management - Process Requests

— Explicit the product that is generating the instance: In the instantiation,
the product that drives the instantiation must be explicitly documented. A
possible suggestion is include the product name (or identification) in the
branch naming scheme (if branches are used). E.g. The branches could
be named like “inst_productA” where “inst” stands for instantiation and

“productA” stands for the name of the product instantiating the core asset.

In addition, expanding the Process Propagation Request activity, a new flow is started,

as shown in Figure 6.6. The activities of this flow are detailed next.

* Analyze Propagation Request: For more information about this activity, refer to
5.3.

* Feedback to Propagation Requester: For more information about this activity,
refer to 5.3.

* Rebase Asset: After a core asset release execution, it is common for product
teams to receive a Propagation Request to rebase their instances with a more
recent (generally latest) release version. Two types of rebasing propagation are

possible: Total replacement of the core asset by its new release version in cases

83

6.3. RIPLE-EM PD - CHANGE MANAGEMENT

Is this a Product

[PD - Process Change Request |

Ca

Analyze Change Request

Specific Change?

Was this change
approved?

Is the creation of a
product specific
asset necessary?

Manage Asset Artifacts

Mo L_‘t.,-%"

Lo
==

Delegate Changes

Mo

Create a new Instance

M

Figure 6.5 RiPLE-EM PD: Change Management - Process Change Request

84

6.3. RIPLE-EM PD - CHANGE MANAGEMENT

[PD - Process Propagation Request]

&
LSDLZ?hT;DEr?rigatlnn Analyze Propagation Request
approved?

e Mo l—_téu

Feedback to Propagation Requester

Is the creation of a

product specific
asset necessary? Yes
Hh"‘<\ fes
MNo l_%,
Create a new Instance

Ca

Rebase Asset

.—’

Figure 6.6 RiPLE-EM PD: Change Management - Process Propagation Request

85

6.4. RIPLE-EM PD - BUILD MANAGEMENT

where the asset was only (re)used and not instantiated (changed); or Merge changes
between CAD version and PD instantiated version. This activity is composed of

the following steps.

Steps:

— Propagate changes from CAD to PD: This activity is the actual propagation
of changes and must follow the propagation type defined in the propagation

analysis.

— [optional] Resolve risen conflicts: Only performed if the propagation type
is Merge. All risen conflicts must be resolved in order to promote changes to
a build to be tested.

* Create a new Instance: This activity was detailed previously in this Section.

6.4 RiPLE-EM PD - Build Management

When the changes proposed are complete, a build of the product should be generated for
different purposes (for developer testing, for integration testing or for releasing).

It is important to observe that some existing tools (such as gears (,)
and pure::variants (,)) in the SPL build management area already substitute
(automatically) most of the activities in this flow. Thus, this flow can be replaced by
appropriate and automatic tools.

RiPLE-EM activity flow to guide build management activities is illustrated in Figure
6.7. The main and only difference to the RiIPLE-EM for CAD build management flow, is
the Identification of the Variability Type before others activities.

For the build management activities details see Section 5.4, where the activities are
described.

In order to proper generate product builds (for testing or release purposes), the
variability still left in the core assets have to be resolved, and configured.

The way the variability was implemented, and the way it is going to be resolved
are not the focus of this work, thus, the set of activities are only a high level set of
activities with the goal of having a buildable product after the configuration. Therefore,

any variability technique can be used in these high level activities.

* Identify Variability Type: The variability provided by the core assets must be

resolved in order to generate a version with the right decisions for the product.

86

6.4. RIPLE-EM PD - BUILD MANAGEMENT

[PD - Build Management]

!

Ca

ldentify Variability Type

!
Co

What is the type Resolve Pending Variahilities
of the build ?

.

Integration Build H“‘/’/\ Release Build

Private Sygtem Build

C& -~
Continuous l%’ o
InteBgL?ltt;on Private System Build Release Build @la
l Release Milestone
=
Werify Build

Figure 6.7 RiPLE-EM PD: Build Management Flow

87

6.5. RIPLE-EM PD - RELEASE EXECUTION

This activity aims at identifying the existing variation points, analyze the possible
decisions and pick the right decision for the product being produced, if it was not

done already.

Steps:

— Identify Variability in order to resolve part (or all) of them.

6.5 RIPLE-EM PD - Release Execution

Once the build package is tested and approved for release (to the product development),
the RiPLE-EM CAD Release Execution flow takes place.
RiPLE-EM activity flow to guide release execution activities is illustrated in Figure

6.8. All activities in this flow are explained next.

* Gather Release Information: Gather Information about the Release being pro-
duced. Some information are already inside the draft release notes, but still, some

are necessary. This activity is composed of the following steps.

Steps:

— Gather all Change Requests that are being release in this version: It
should gather all CRs and PRs that were resolved in the version being released

and include it in the release notes.

— Gather all known issues (CRs and PRs): It should gather all known CRs
and PRs that were NOT resolved in the version being released and include it

in the release notes.

* Consolidate Release Notes: The Release Notes is being created and updated
since the beginning of the release planning, and now it needs to be completed and
consolidated in order to be published along with the release distribution package.

This activity is composed of the following steps.
Steps:
— Include Product Description: Give an overview of the product being re-
leased.

— Inform the location of the product: Document the specific internal (reposi-

tory) and external (release publication) location of the product being released.

88

6.5. RIPLE-EM PD - RELEASE EXECUTION

[PD - Release Execution]

&
Gather Release Information

l
Lo

Consolidate Release Motes

l

By Release Build
55
Build Management (FD)

Y
Shall this release's Publish Release
changes he

propagated? Tl

> 5]

Change Management (PO}

Figure 6.8 RiPLE-EM PD: Release Execution Flow

89

6.6. CHAPTER SUMMARY

— Consolidate Release Notes Generation: Review release notes and complete

it in order to be published along with the release package.

Before the release publication, the build procedures previously defined has to be

followed in order to produce a release build, which will be published next.

* Publish Release: Publish release and make it available to internal/external clients/users.
The release distribution can be done through a variety of ways, such as publish-
ing in a web site, deploying in a production server (web applications), and DVD
hand-out direct to customer or users. Despite of the way it is delivered, all involved
stakeholders should be notified about this release publication. This activity is

composed of the following steps.

Steps:

— Publish the release: The release distribution package and the release notes
should be made available for the customers/clients/users. Publish the release
through: Email, Website, SCM Systems, etc.

— Notify all SPL Stakeholders of the release production: After the release is

available, all stakeholders should be notified that the new release is available.

— [optional] Open PR to propagate this new release to CAD: It should open
the PR to propagate this new release to CAD.

After the release publication, there is the possibility of propagating the changes
done in this release to other products, by opening a PR through the change management

activities.

6.6 Chapter Summary

The focus of RiPLE-EM for PD activities is to guarantee the proper evolution of products,
from the moment of their creation, passing through various changes (evolution), until the
moment the product is released for a client/market and then it start the maintenance phase
by following again the iterative RIPLE-EM (from the next release planning, changing,
building and releasing). RiPLE-EM comprises the cycle from the release planning until
the release execution of the product.

This cycle (the RiPLE-EM PD cycle) is composed by activities of: Release Planning,

where all information regarding the release planning of the product is gathered and stored;

90

6.6. CHAPTER SUMMARY

Change Management, dealing with both the requisition and processing of changes and
propagation requests; Build Management, where the build of the product is executed, for
different purposes; and Release Execution, where the product release is performed by
publishing the product along with its release notes.

Next Chapter presents the experimental study definition, planning, and conduction.

This experimental study served as the initial validation of RiPLE-EM.

91

“No amount of experimentation can ever prove me right; a

single experiment can prove me wrong”

Albert Einstein (1879-1955)

The Experimental Study

In order to experiment the RiPLE-EM process, an experimental study was conducted
following the experiment process proposed by (,).
Wohlin et al. defined a process to facilitate experiments conductions, and follows the

phases described next:

* Definition: The experiment objectives and goals are defined, as well as the purposes

and the hypothesis statement.

* Planning: In this phase, the hypothesis has to be formally stated, including a null
and an alternate hypothesis. All variables and treatments for those variables are
defined, and the experiment subject is selected. The threats for the experimentation

validity are also explicited in this phase.

* Operation: The operation phase consists in the execution of the experiment and

validation of the data collected.

* Analysis and Interpretation: The objective of this phase is to analyze and inter-
prete, by means of descriptive statistics, or qualitative analysis, the data collected

in the operation phase.

* Presentation and Package: This phase concerns with presenting and packaging
the experiment findings, including guidelines on how to document and publish the

experiment results.

All these phases were executed and are described in the following sections. Section
7.1 describes the definition of the experimental study and goals. Section 7.2 details the

planning of the experiment, with the experiment hypothesis. Section 7.3 describes the

92

7.1. THE DEFINITION

operation phase, and Section 7.4 presents the analysis of the collected data. Some lessons

learned are described in Section 7.5 and the chapter summary is presented in Section 7.6.

7.1 The Definition

In the definition phase the foundation of the experiment is determined. The main purpose
of this phase is to define the goals of the experiment. For the goals definition, (
,) follow the GQM model (,).

A GQM model is a hierarchical structure that starts with a goal (conceptual level),
and this goal is refined into several questions (operational level), that usually breaks down
the issue into its major components (,). Each question is then refined
into metrics (quantitative level), that will characterize the goal in a quantifiable way.

Besides using GQM, (,) defines a goal template for the goal
definition. The goal template comprises the definition of the objects of study, purposes,

quality focus, perspective and context, which are detailed in the next sub-sections.

7.1.1 Goal

The goal of this experiment is to analyze the use of RiPLE-EM regarding different
viewpoints and topics further described in this Section.

Object of study. The object of study in this experiment is the RIPLE-EM process,
and its activities, steps, artifacts and roles.

Purpose. The purpose is to evaluate the RiPLE-EM use, to verify its applicability
in a SPL project. The purpose is also, to collect metrics in order to improve the process
understandability, completeness, applicability and effectiveness, and minimize the risks
of applying it in a real and critical scenario.

Perspective. In this experiment, the perspective is from the point of view of the
researcher. Another perspective is from the point of view of a build and release engineer
(some times these activities are performed by the configuration management engineer).

Quality Focus. The main effect studied in the experiment is the understandability,
completeness, applicability and effectiveness of the evolution of products and assets
inside a SPL, maintaining its integrity, and assuring the right communication between

core assets development and product development.

93

7.1. THE DEFINITION

7.1.2 Questions

In order to evaluate RiPLE-EM process, to achieve the goal previously defined, some
qualitative and quantitative questions were defined and described next.

General

Q1. How much effort does it take to apply the process?

Usability and Understandability

Q2. Do the subjects have difficulties to understand/apply the process?
Q3. Are the subjects satisfied in using the process?

Completeness

Q4. Is there any missing activity, roles or artifact?

Effectiveness

QS. How many propagation requests were uncompleted?

7.1.3 Metrics

Once the questions have been developed, the next step is to associate the questions with

appropriate metrics. The metrics are quantitative ways to answer the questions.
M1. Effort to Apply the Process (EAP)

This metric relates to question Q1. This metric measures the amount of time spent in
order to understand and follow the RiPLE-EM process and produce the artifacts proposed

by the process.

EAP — TotalTimeSpentApplyingRiPLE —EM
- TotalTimeSpentInT hePro ject

M2. Process Understanding and Application Difficulties (PUAD)

This metric relates to question Q2. In order to identify possible misunderstandings in the
process usage, it is necessary to identify and analyze the difficulties found by users when
learning the process.

PUAD = Number of subjects with difficulties raised during the process learn and
application (and the difficulty distribution).

94

7.1. THE DEFINITION

Ma3. Subjects Satisfaction (SS)

This metric relates to question Q3. Satisfaction is the user’s response to interaction with
the process, and it includes attitudes towards the use of the process. Thus, this metric is
proposed to evaluate the subjects satisfaction in process use.

SS = subjects’ satisfaction distribution according to a defined scale: very satisfied,
satisfied, impartial, unsatisfied and very unsatisfied.

According to (), the subject’s satisfaction should not be con-
sidered for establishing a hypothesis, because it can be refuted by means of statistical
evidence. Thus, this aspect will be assessed informally, examining the opinions of each

subject.
M4. Actvities, Roles and Artifacts Missing (ARAM)

This metric relates to question Q4. This metric aims at identifying the activites, roles and
artifacts identified as missing in RiPLE-EM by the subjects. With this metric, we want to
idenfity every activity, role and artifact considered absent from RiPLE-EM in order to
include them, depending on the analysis.

ARAM = Number missing activity/role/artifact raised during the process application

(and their distribution).
MS. Uncompleted Propagation Requests (UPR)

This metric relates to question QS. The idea of this metric is to analyze the propagation
requests number and their status, to identify the percentage of unsucceeded propagation
requests.

UPR = The number of uncompleted propagation requests / Number of propagation

requests (and their distribution according to the propagation request type).

Definition Summary

The experiment definition can be summarized, using the template proposed by

() as:

Analyze the RiPLE-EM process

for the purpose of evaluation

with respect to understandability, usability, completeness, applicability and effectiveness
from the point of view of SPL researchers and practioners

in the context of a software product line project.

95

7.2. THE PLANNING

7.2 The Planning

As in all types of engineering activities, the experiment must be planned beforehand. The
planning phase of the experimental study, which started after the definition phase, cover

the steps described in the next sub sections.

7.2.1 Context Selection

The context of an experiment can be characterized according to four dimensions: (i)
Oft-line vs. on-line; (ii) Student vs. professional; (iii) Toy vs. real problems; (iv) Specific
vs. general. RiPLE-EM experiment, fits the following categories: Off-line, Student, Toy
and Specific ().

Still according to (), the context can also be characterized in terms
of the number of subjects and objects involved in the experiment. According to this
characterization, RIPLE-EM experiment is a single object study, which means that the
experiment will be conducted on a single subject and a single object study.

This experiment will be performed in the context of a post-graduation course at the
UFPE (Federal University of Pernambuco) I Brazil. In this course, a software factory
will be created, and will use RiPLE-EM as the process for SPL evolution management.
Along with RiPLE-EM, other processes from other disciplines will be also used, such as,
a requirements and design.

Inside this post-graduation course, 3 months will be dedicated to the SPL project
development. All participants are M.Sc. and Ph.D. students of Computer science, and the

subjects of this experiment are further discussed in section 7.2.4.

7.2.2 Hypothesis

Two hypotheses have to be formulated: Null Hypothesis, which the experimenter wants
to reject with as high significance as possible; and Alternative Hypothesis, which is in
favor of which the null hypothesis is rejected.

Null Hypothesis. In this study, the null hypothesis determine that the use of the
RiPLE-EM in SPL projects does not produce benefits that justify its use, presenting a
poor understandability, effectiveness, completeness and applicability. It is important to

emphasize that these metrics were never used before, and thus there is no well-known

'Informatics Center of Federal University of Pernambuco - http://www.cin.ufpe.br

96

7.2. THE PLANNING

value for it and an arbitrary value was chosen, based on practical experience and common
sense. The following null hypothesis are defined:

HOy: ppap > 20%

HOy: upyap = 40%

HOs3: nagasa < 3 (Having in mind that RiPLE-EM has 34 different tasks, we came to
the value of 10% (3 activities) as being a reasonable number.)

HOy4: uypgr > 20% (The number of uncompleted propagation requests will be only
influenced by process’ issues. If the propagation request was not completed due to the
analysis of the propagation, it will not be counted.)

Alternate Hypothesis. This is the hypothesis in favor of which the null hypothesis is
rejected. In this study, the alternative hypothesis determines that the use of the process
produces benefits that justify its use. Thus, the following hypothesis can be defined:

HIy: upap < 20%

HIy: upyap < 40%

HI3: tUagaa > 3

Hly: pypr < 20%

7.2.3 Variables and Treatments

In the variables selection, we choose the independent and dependent variables. All
variables in a context that are manipulated and controlled are called independent variables.
In this study, the independent variables are the experience of the subjects, and the proposed
process.

The dependent variables are the variables that we want to study to see the effect of
the changes in the independent variables. In this study, the dependent variables are the
understandability, usability, effectiveness, completeness and applicability of the proposed

process, in terms of evolution management (change, build and release management).

7.2.4 Subjects

The subjects of the study are M.Sc. students and Ph.D. students. They will be requested

to act as the roles defined in the process according to their experience and interest.
They were selected by convenience sampling () representing a

non-random subset of software engineering students universe, characterizing a quasi-

experiment.

97

7.2. THE PLANNING

7.2.5 Experiment Design

A design of an experiment describes how the tests are organized and run. The general
design principles are randomization, blocking and balancing.

Blocking and Balancing. Some of the design principles such as blocking and
balancing, are not applicable to this study, since the study will evaluate one factor with
only one treatment, thus, the subjects will not be divided into different blocks.

Randomization. Randomization is the only applicable design principles, cited by

(), and was applied in the subjects selection.

7.2.6 Instrumentation

In this study, the RiPLE-EM documentation will be available for the subjects to execute
the proposed activities and steps, as well as checklists. In addition to that, all subjects
will be trained to use RiPLE-EM by a process expert. The subject’s training will be
conducted in an university classroom, and will be divided into two steps: (i) Concepts
related to software reuse, software product lines, variability and domain engineering; (ii)
and RiPLE-EM flows, activities, artifacts and roles.

The instrumentation of this experiment also includes questionnaires that will be filled
by the subjects and will serve as data for future analysis. The majority of the data
collected in these questionnaires will serve as basis for the hypothesis assessment. All
questionnaires used in this experiment are available in Appendix A.

All instruments available in this experiment are listed as follows.

* RiPLE-EM Documentation: A complete on-line description of RiPLE-EM process

was provided, with all support material such as templates and checklists.

* Training: The training about reuse in general, SPL and RiPLE-EM process, and its

activities.

* Background form: This form is intended to collect the subjects background infor-

mation.

* Process evaluation questionnaire: In order to evaluate RiPLE-EM, the subjects

will answer this questionnaire.

* Time sheet: All time spent within the project will be recorded in this sheet.

98

7.2. THE PLANNING

* Support tools: To support RIPLE-EM use, some tools are essential. In this case,
the tools used were Subversion (SVN) ! for version control, Trac ? for changes,
propagation requests and bug tracking, and the CL ()

for the encapsulation of SPL activities regarding version control.

7.2.7 Validity Evaluation

Following (,) process, one important part of the experiment planning is
the identification of the validity threats. Adequate validity refers to that the results should
be valid for the population of interest, first of all, the population from which the sample
is drawn, and secondly, if possible, generalize the results to a broader population.
According to (,), there are different classification schemes for the

different validity threats of an experiment:

* Conclusion validity: This validity is concerned with the relationship between the

treatment and the outcome.

* Internal validity: This validity is concerned with the any relationship observed
between the treatment and the outcome, to make sure that every relationship is

merely causal.

* Construct validity: This validity is concerned with the relationship between theory

and observation.

* External validity: This validity is concerned with generalization. If there is a
causal relationship between the construct of the cause, and the effect, can the results

of the study be generalized outside the scope of the study?

The validity threats identified in this experiment are listed next, classified by the
schemes presented before:
Conclusion validity

* Fishing: Searching or fishing for specific results is a threat since the analyses are
no long independent, and the researchers may influence the results by looking
for a specific outcome. Since results stating that the treatment used is better than
using no treatment for the specific factor, this threat was identified and the formal

experiment definition is one of actions to minimize this threat.

I Subversion project home - http://subversion.tigris.org/
2Trac project home - trac.edgewall.org/

99

7.2. THE PLANNING

* Reliability of measures: The validity of the experiment is highly dependent on the
reliability of the metrics used. Objective metrics are more reliable than subjective
metrics, for the reason that objective metrics are more reproducible than subjective
metrics (eg. if we measure a certain phenomenon twice, it should provide the same
outcome). In this experiment most of the question and metrics are not objective
and quantitative, but we tried to minimize this threat by categorizing the subjective

anwers into levels.

* Reliability of treatment implementation: The implementation of the treatment
can be a threat when the implementation is not similar between the different persons
applying the treatment. Thus, the treatment implementation in this experiment
was as standardized as much, having the same kind of training for the treatment

implementation for each subject.

* Heterogeneity of subjects: Group with high heterogeneity present a risk to conclu-
sion validity, since the outcome variation due to individual differences is larger than
due to the treatment. This study is composed by M.Sc. students and Ph.D. students
that normally have similar knowledge and background, which aid to reduce the
heterogeneity. Subjects without experience also can affect this validity, since it is
harder for them to apply the treatment. To mitigate the lack of experience, we will

provide training in software product lines and evolution management.
Internal validity

* Maturation: This threat concerns with the team commitment and motivation.
Since the experiment will last aproximatively 4 months, there is always the risk of

lack of motivation and decreasing commitment of the team.

* Mortality: If too many people leave the study, this can be threat to the validity. We
have not seen any systematic trend in people leaving the course. To our knowledge,
the people who left the course did this independently of the used process. Therefore,

this threat is not considered important for the experiment.

* Instrumentation: The artifacts that are going to be used can affect negatively the
experiment, thus, the artifacts were carefully designed, trying to turn subjective
questions into measurable questions (with levels to choose instead of completely

subjective questions).

100

7.2. THE PLANNING

* Selection: There were no volunteers in participating in the experiment. Thus, the
selected group is more representative for the whole population (since volunteers

are generally more motivated and may influence the results).

* Time Constraints: Given the fact that the project will start from the initial phases
of a software product line, and also the fact that the time available for the project
(as detailed in section 7.1.1) was not long, it may occur that not all the activities
of RiPLE-EM will be executed. Since only one product will be demanded from
the subjects, RiPLE-EM for PD activities can not be taken in consideration by the

subjects.
Construct validity

» Data Bias: The experiment is part of a course, where the students are graded. This
implies that the students may affect their data, as they believe that it will give them
a better grade. It was, however, in the beginning of the course emphasized that
the grade depend the subject’s participation and effort, timely and proper delivery,

analyzing also if it is in compliance with the process.

* Mono-Operation Bias: Since the experiment includes a single treatment, it may

under-represent the construct, and thus not give the full picture of the theory.

* Interaction of different treatments: The subjects were exposed to multiple ex-
periments at the same time, with different and decoupled variables and treatments.
The variables are independent, this way the each treatment to each value will not

interfere on each other.

* Evaluation Apprehension: The subjects of the experiment are post-graduate
students, and the experiment context is a post-graduation course. This way, because
of the grades, some of them may find themselves a little afraid, or try to look better,
and that may confound the outcome. To minimize this risk, the students will be

told that the evaluation forms completion will not interfere on their grades.

* Experimenter Expectancies: Surely the experimenter expectancies may bias the
results, and for that reason, all formal definition and planning of the experiment is
being carefully designed beforehand, and reviewed by other students (performing

other experiments).

External validity

101

7.3. THE OPERATION

* Generalization of subjects and scope. The experiment will be conducted on
a defined time according to the schedule of the course, which could affect the
experiment results. The SPL scope will be defined according to this schedule to
guarantee the complete execution of the project. Thus, this scenario could have a
toy size that will limit the generalization. However, negative results in this scope is
a strong evidence that in a bigger scope would fail too. The same applies to the

subjects (M.Sc. and Ph.D. students) who normally have similar knowledge in SPL.

7.3 The Operation

The operation phase consists of three steps: preparation, execution and validation.

7.3.1 Preparation

The subjects were seven M.Sc. students and two Ph.D. students. They corresponded
to all students taking the reuse course in the postgraduate curriculum. The students
were informed that we would like to investigate the outcome of the process application.
However, they were not conscious of what aspects we intended to study, i.e. they not
aware of the hypotheses stated. Before the experiment was executed, all experiment
instruments should be prepared and ready. Thus, all instrumentation defined in Section

7.2.6 were provided.

7.3.2 Execution

The experiment was conducted from August/08 to December/08, according to the defini-
tion and planning documented, and data was collected. Initially, the subjects were trained
in several aspects of SPL and in the applied processes (from August to October 2008),
and after, they performed the SPL project from October to December in 2008.

Most of the students had participated in industrial projects. However, the subjects had
low or none industrial experience in reuse activities, such as component development and
SPL engineering. On the other hand, seven participants are members of the RiSE group,
and their research area involve these aspects, which give them theoretical know-how.

Regarding evolution management (and the disciplines in RiPLE-EM), the majority
had low experience in both academic and industrial/commercial projects. Table 7.1 shows

a summary of subjects’ profile.

102

7.4. ANALYSIS AND INTERPRETATION

Subject |Years since |Participation in Experience in Evolution |Management Experience in
1D graduation |industrial projects Management Knowledge Software Reuse
1 - Medium Complexity
1 3 4 - High Complexity Naone None MNaone
5 - Low Complexity Low - Academic Low - Academic
2 5 2 - Medium Complexity [Medium - Commercial Version Control (SVN) [Low - Commercial

Version Control (SVN),
Change Control (Trac.
3 - Low Complexity Low - Academic Mantis), Release Medium - Academic
3 1,7 1 - Medium Complexity [Low - Commercial Management Low - Commercial

Version Control (SVM,

1 - Low Complexity CWS), Change Control
3 - Medium Complexity |Medium - Academic (Trac), Build Mangement |Medium - Academic
4 6 3 - High Complexity Low - Commercial (Ant. Maven). Low - Commercial
5 0 - Low - Academic None Medium - Academic
6 2 - Low - Academic Change Control (Trac) |Low - Academic
Low - Academic Medium - Academic
7 2 1 - High Complexity Low - Commercial None Low - Commercial
1 - Low Complexity Low - Academic Low - Academic
g 0.9 1 - Medium Complexity |Low - Commercial Version Control (SVMN) |Low - Commercial
Low - Academic Low - Academic
9 4 1 - Low Complexity Low - Commercial None Low - Commercial

Table 7.1 Subject’s Profile in the Experimental Study

7.3.3 Data Validation

Data was collected from 9 students. However, data from 4 students (ID 2,4,6,9 - see
Table 7.1) were removed, because they did not participate of the whole study and/or they
did not answer the questionnaire related to satisfaction and difficulties in the use of the
process. Thus, this may have affected the data validation. Therefore, we left 5 students

for statistical analysis and interpretation of the results.

7.4 The Data Analysis and Interpretation

After collecting experimental data in the operation phase, we are able to draw conclusions

based on this data. The analysis and interpretation of the data are presented as follows.

7.4.1 Effort to Apply the Process

To develop this project, approximately 590 hours were spent including all hours spent
in every phase of the project, as we can see in Table 7.2. In the evolution management
activities we may notice that only 7 hours were spent, representing 1,24% of the whole
project. With this number, the null hypothesis (HO;: ucap >= 20%) was rejected.

Even though this hypothesis was rejected, it seems that the effort was too small,
indicating that the subjects did not executed all applicable tasks in the project. The reason

for this small effort may lies on the fact that the project only had one product as output

103

7.4. ANALYSIS AND INTERPRETATION

__ Effort | Hours | % |
Scoping 111,52 18,93
Reguirements 21701 36,73
Design 7430 1261
Implementation 149,30 253
Evolution 7,20 1,24
Others 30.40 519
Total 589.73] 100

Table 7.2 Effort to use the process

Project Effort- All phases

= Scoping

W Requirements
ODesign
olmplementation
m EvoiLtion

@ Others

Figure 7.1 Effort Pie Chart

for the product line created, beacause of time constraints for the project. This validity
risk is mapped in section 7.2.7 (Time Constraints).

As we can see in the graph represented by Figure 7.1, scoping and requirements
were the phases where more hours were spent, followed by implementation and design.
Because of this reason, the actual development, coding, building and releasing was

postponed until the end of the project.

7.4.2 Difficulties to understand/apply the process

Analyzing the subject’s answer in the use of RiPLE-EM, it was identified that all subjects
had any kind of difficulty to understand the process. Because of the understanding prob-
lem, all of them had also problems to apply the process. The difficulties are summarized
in Table 7.3.

Four subjects (ID 1,3,5,7,8) claimed that the main problem to the understandability
of the process was the number of activities level and tasks, that were too many and very
granular. Another subject (ID 8) stated that one of the understandability issues was the

lack of steps in some tasks, making it harder to understand. The lack of examples to the

104

7.4. ANALYSIS AND INTERPRETATION

Difficulty Number of Subjects
Cormmunication with other phases 1

Large number of Tasks
Lack of steps in tasks
Lack of examples

| =]

Table 7.3 Effort to use the process

Difficulties Distribution

B0% 6%

50%

40% Az
= 30%

20% TT5% TT%

10%

o I — 1 1

Communic ation with Large number of Lack of steps in Lack of examples
other phases Tasks tasks
Difficulties

Figure 7.2 Difficulties Distribution Chart

process use was another difficulty the subjects (IDs 1,3,5) reported.

The communication of the RiPLE-EM process with other phases of the project, such
as requirements, design and implementation was an understandability issue raised by one
of the subjects (ID 7).

Nevertheless, the next time that the experiment is performed this value can be refined
based on this experience, resulting in a more calibrated metric.

Figure 7.2 shows the histogram with the distribution density of the found difficulties.

The null hypothesis related to the percentage of subjects with any kind of difficulty
in the process defines a percentage of more than 40%(HO;: upyap > 40%). Since we
had 100% of the subjects with at least one difficulty, this null hypothesis of not rejected.
However, in the same way as the previous hypothesis, this value for the null hypothesis

was defined without any previous data.

7.4.3 Activities, Roles and Artifacts Missing

The idea with this question was collect more information about the RiPLE-EM missing
activities. In this direction, the subjects were asked if there was any missing activity

(according to their SPL and evolution background).

105

7.4. ANALYSIS AND INTERPRETATION

Level of Satisfaction

20% 0%

40%

40%

| oVery Satisfed m Satisfed olmpartial oUnsatisfied m Very Unsatisiied |

Figure 7.3 Subjects satisfaction levels

Analyzing the data we could notice that none of the subjects identified any missing
activities. Since we had 0 (zero) activities identified as missing, the (HO3: Uaram < 3)
null hypothesis is rejected.

7.4.4 Uncompleted Propagation Requests

One important aspect of RiPLE-EM is the concept of propagation requests, which is the
communication point between core asset and product development, in terms of replicating
changes.

This specific metric tries to identify how many of the propagation requests raised
were unsuccessful, because of problems issues, and try to understand the problem in
order to improve the process and minimize this kind of problems.

No propagation requests were raised in this project, and that rejects the null hypothesis
(HO4: pypr > 20%) since pypr=0 (UPR =).

Unfortunately, due to the context of the project (where only 5 components and 1
product were created, and there were no clear distinction between core asset and product

development) no propagation requests were raised, reducing the outcome reliability.

7.4.5 Subjects Satisfaction

Regarding the subjects satisfaction, 40% (ID 1,7) of the subjects were satisfied, 40% (ID
3,5) were impartial, and 20% (ID 8) were impartial.
The Figure 7.3 presents the frequency of the subjects satisfaction according to the

defined scale.

106

7.5. LESSONS LEARNED

This aspect was assessed informally, examining the opinions of each subject. Thus, it

was not considered in the hypotheses.

7.5 Lessons Learned

After concluding the experimental study, some aspects should be considered in order to
repeat the experiment, since there were limitations in this first execution.

Project Context. The project context was the main issue regarding the RiPLE-EM
experiment execution. One of the problems was that other process experimentations (a
domain requirements engineering process and a domain design process) were running in
parallel to RiPLE-EM experimentation in the same project. Thus, there was too much
focus on the core asset development phase (also known as domain phase).

Approximatively 69% of the project time, according to Table 7.2, was spent on the
SPL scoping, domain requirements engineering and domain design, leaving not much
time to product development (where assets are instantiated, modified, and the changes
can be propagated). If there was more time to implement products, and evolve the
core assets developed, the use of RiPLE-EM would be more applicable, therefore, the
experimentation outcomes would be more precise and reliable.

Training. The RiPLE-EM presentation was satisfactory, but for the subjects, it
seems to be too much information at once. Therefore, it is interesting to have some
support materials for the experiment, with examples on how to use the process in different
scenarios and activities.

Pilot Project. In order to avoid contexts where the project would not be applica-
ble, a pilot project should be executed in advance. The problem is that running pilot
projects to cover the activities of RIPLE-EM is not a trivial task. It would consume a
lot of time because to completely run RiPLE-EM, it is needed the whole product line
infrastucture created (domain requirements being defined, domain design being created,
core assets being developed, products being instantiated and etc), specially if the number
of participants of this pilot project is low.

Motivation. As the project was not short (as 1 day experiments and so), it was
difficult to keep the subjects’ motivation during all the execution. Thus, this aspect
should be analyzed in order to try to control it. A possible solution can be to define some

checkpoints during the project.

107

7.6. CHAPTER SUMMARY

Null Hyposthesis Result Rejection
HO; |dear == 20% PEAP =124% | Yes
HO: |Pryan == 40% pPUAD = 100% No
HOz |Uaran = 3 PARAM =0 Yes
HO4 |Husr » 20% pUPR = 0% Yes

Table 7.4 Hypothesis Rejection Summary

7.6 Chapter Summary

This Chapter presented the definition, planning, operation, analysis and interpretation of
the experimental study that evaluated the viability of the RiPLE-EM process. The experi-
ment, summarized in Table 7.4, analyzed, the process understandability, effectiveness
and completeness in the context of a software product line project, following RiPLE-EM
as the process to manage changes and evolution of all assets and products in the software
product line.

Even with the reduced number of subjects (5), and a not very appropriate context, we
could identify some directions for improvements, specially regarding understandability,
based on the subjects difficulties. However, two aspects should be considered: the study’s
repetition in different contexts and studies based on observation in order to identify other
problems and points for improvements.

The next chapter will present the conclusions of this work, its main contribution and

directions for future works.

108

“Be not therefore anxious for the morrow: for the morrow
will be anxious for itself. Sufficient unto the day is the

evil thereof.”

Matthew 6:34

Conclusions

In the late 1960s, the software engineering area started, comprising different engineering

disciplines in order to turn software development less handcrafted. Among the disciplines,

both software reuse and software mass customization were present. In the software reuse

area, different approaches have been proposed in order to achieve the well known goals

in the software world: high productivity, high quality and low cost ();
(2007); (1999).

As mentioned in Chapter 2, software product lines can produce impressive results
(,), however, it is a complex task to manage evolution in the context of
software product line, given different complicating factors, such as the fact that a core
asset is shared among products, and every change to this asset can have effects on several
products (,), combined with the fact that in the SPL we have to deal with
evolution in time (versions) and space (variability) (,).

On the other hand, the efforts towards processes to guide and facilitate systematic
evolution management are not strong enough. As stated by the systematic review, detailed
in Chapter 3, there is no existing SPL evolution management process definition.

Thus, in order to address the existing problems and challenges in terms of evolution
management, this dissertation presented RiPLE-EM - RiSE Product Line Engineering
Evolution Management. RiPLE-EM manages evolution in terms of change, build and
release management, providing systematic activity flows, steps and roles in order to
maximize the SPL benefits.

This Chapter remainder is organized as follows. The research contributions are
highlighted in Section 8.1. The work related to RiPLE-EM are described in Section 8.2
and the future work concerning RiPLE-EM and evolution management in SPL are listed
in Section 8.3. Academic contributions are listed in Section 8.4 and Section 8.5 details

the joint academic contributions of this work. The concluding remarks of this dissertation

109

8.1. RESEARCH CONTRIBUTIONS

are described in Section 8.6.

8.1 Research Contributions

The main contributions of this work can be split into the following aspects: i. the realiza-
tion of a systematic review on the field of software product lines evolution management;
ii. the definition of a process to guide evolution in the product line context, in terms of
change, build and release management in the core asset development level; iii. the defini-
tion of a process to guide evolution in the product line context in the product development
level; iv. the execution of an experimental study which evaluated the early mentioned

process. These contributions are further described next.

* Systematic Review on Software Product Lines Evolution Management Ap-
proaches. Through this review, seven approaches were identified and analyzed
according to the aspects related to the systematic review’s question: How is evolu-
tion being managed in SPL? The analysis results can be used to guide the definition
of a new approach to SPL evolution management to core asset development and
product development. In addition, the analysis results also can be useful to practi-

tioners to choose the best approaches to evolution management.

* RiPLE-EM for Core Asset Development. After the systematic review, its results
were the inputs to the definition of RiPLE Evolution Management process. RiPLE-
EM is a process to guide evolution activities in terms of release management,
change management and build management in the context of software product lines.
RiPLE-EM for CAD is focused on the activities necessary to guarantee the proper
evolution of core assets, from the moment they are planned and created, until the

release of the core asset to the product development level.

* RiPLE-EM for Product Development. Consuming the core assets previously
developed, instantiating some of the core assets to be customized, and creating
product specific assets are common activities in the product development level.
RiPLE-EM for PD goal is to manage the evolution of these products assets (instanti-
ated, reused as it is, specific of the product) and the product itself in order to assure
the software product lines benefits. Inside RiPLE-EM, there is also the concept
of propagation request, which is the main gateway for changes to be propagated
(feedback) from CAD to PD, or vice-versa.

110

8.2. RELATED WORK

* The Experimental Study. RiPLE-EM was used, in a formal experimental study, in
an academic environment, to analyze its understandability, usability, completeness,
applicability and effectiveness. This initial validation of RiPLE-EM helped in the
improvement of the process, since the difficulties found by the subjects suggested
some modifications in the activity flows related to the number of activity levels,

which was reduced to improve understandability.

8.2 Related Work

Some evolution management approaches to SPL were identified through the systematic
review, as described in Chapter 3. However, among the approaches included in this
review, none of them had any kind of formal process definition for evolution management,
and majority of them did not cover some disciplines in evolution management, such as
change management and release management, indicating that the efforts on evolution
management in SPL are still not much mature.

From the research community perspective, we could notice that there is still much
to be explored. The output of the systematic review served as a foundation for the
RiPLE-EM definition, which is focused on some of the questions raised in the systematic
review. Some questions however were not taken in consideration in RiPLE-EM, and will

be considered future work, as described as follows in the Section 8.3.

8.3 Future Work

Due to the time constraints imposed on a M.Sc. degree, this work can be seen as an initial
step towards the efficient and effective evolution management in the context of software
product lines. Thus, there are interesting topics to improve what was started, and new

paths to explore. Thus, the following issues should be investigated as future work:

* Metrics. This dissertation proposed some metrics to evaluate RIPLE-EM use in
the experimental study, however, these metrics were never used before, therefore
they need to be refined and reproduced. This metric set could be also increased by

several other metrics to measure software evolution in SPL.

* Version Control and Continuous Integration. Version control is an important
topic inside evolution management, and there are many different strategies one

could follow in a product line context. An important contribution would be a

111

8.3. FUTURE WORK

process description guiding the engineer on versioning, branching, merging and
taging in a product line context. Moreover, continuous integration in the scope of

product lines, could be explored for both core assets and products.

Configuration Identification. If RiPLE-EM could give guidance on identifying
core assets, structuring them, defining the appropriate baselines and setting acquisi-
tion rules, it would be an important contribution. There is not much information on
configuration identification and what practical strategies to follow available in the

literature, even for traditional configuration management.

Relationship between Product Line Architectures and Repository Structure.
The relationship between the Product Line Architecture and the configuration
items and its structure in the repository is an important topic to future research
inside the context of evolution management in SPL. Traditional systems do not
handle structuring of items in the repository in a logical way (only physically), but
establishing the relation between the SPL architecture and the items in the repository

(both physically and logically structured) would be a interesting contribution.

Change Guidelines. Another improvement for RiPLE-EM would be to have
guidelines on how to change each kind of artifact (at least the most common ones)
in a product line. These guidelines would have insights on what, when and how the
different kinds of artifacts would be subject to change. Of course this improvement
is constrained by the artifacts and technology diversity, but still the most common

artifacts and the most common SPL technology could be addressed.

Variability Evolution. Following the same line of thought, this future work item
would be to have guidelines providing information about the evolution of variability
points inside an asset. The addition, removal or change in the variability points may
have great impacts (at least on every product that uses the asset being changed, and
every other asset that depends on it) on the SPL, thus it needs to be well managed

in order to avoid negative impacts.

Application of RiPLE-EM in an industrial context. This dissertation presented
the definition, planning, operation, analysis and interpretation of an experimental
study. However, new studies are necessary in different contexts, with a more
significant number of subjects, quantitative analysis in order to properly evaluate the
use of RiPLE-EM. A very interesting context would be in a industrial/commercial

context to verify if RiIPLE-EM really fits these kind of contexts. In the preliminary

112

8.4. ACADEMIC CONTRIBUTIONS

evaluation presented in this dissertation, RiPLE-EM already gives the impression

that it would fit a industrial context with no bigger problems.

8.4 Academic Contributions

As a result of the work presented in this dissertation, the following contributions can be

enumerated:

o (,) Evolving a Software Product Line Reuse Infrastruc-

ture: A Configuration Management Solution

Furthermore, the co-participation on the following publication contributed for acquir-

ing experience and knowledge in the software product line and software reuse area:

° (,) Evaluating Domain Design Approaches Using Sys-

tematic Review.

8.5 Joint Contibutions

As a result of this work and the integration of this work with the Fraunhofer IESE, a joint
paper was published, as described in the previous Section. This Section aims at detailing
this joint publication, to provide more information about the partnership between this
work and ther Fraunhofer IESE work.

It is important to remind that by the time of the publication (January, 2009) RiPLE-
EM was slightly different than the version described and detailed in this dissertation
(more specifically the Configuration Identification was removed from this final version).

The paper is entitled “Evolving a Software Product Line Reuse Infrastructure: A
Configuration Management solution" and describes the interfaces between the RiPLE-EM
and the Customization Layer (the tool developed at the Fraunhofer IESE by Michail
Anastasopoulos) which is an automation layer that (a) defines basic product line evolution
activities, (b) defines an asset model for the management of core asset / instance depen-
dencies and (c) automates many of the manual steps that would be otherwise necessary if
plain configuration management version control tools were used.

The solution is made up of two components, as shown in Figure 8.1, the RIPLE-EM
and the Customization Layer (CL).

The Customization Layer is part of the PULSE method (Product Line System and
Software Engineering) and in particular it belongs to the PuLSE-EM technical component

113

8.5. JOINT CONTIBUTIONS

Process Model Layer:
RiPLE-EM Workflows, activities, steps,
roles and work products

Customization
Layer

v

Configuration Configuration Management Repository:
Management Storage and conirolled evolution of
Repository versioned artifacts

Customization Layer:
Basic product line evolution
activities and their automation

Figure 8.1 Solution Layers

(Evolution and Management), which also defines a process model similar to RiPLE-
EM. The latter takes however a more configuration management-oriented view, by also
addressing issues of Configuration Identification, Release and Build Management. Hence
this paper aims at bringing together the RiPLE-EM and the PuLSE views.

The operations currently supported by the Customization Layer are the following.

For simplicity the detailed signatures are left out at this point.

» add-core-asset. Create a core asset from an artifact (file or directory) and add it to

the configuration management repository.

» show-core-assets. Given a location in the configuration management repository

(or the location defined as standard if none is passed), it shows all core assets.

» show-instance-diff. Given a core asset, check whether its instances have changed

since their derivation from the core asset.

* integrate. Given a core asset and one of its instances, mark the last change made

to the core asset as a feedback from the instance to the core asset.

* instantiate-core-asset. Given a core asset create an instance of the core asset. The
instance is basically a copy of the core asset where all or a part of the core asset
variation is resolved. The Customization Layer however does not enforce resolving
any variability. It simply creates a copy and assumes that some kind of development

with reuse takes place during the copy operation or afterwards.

» show-instances. Given a core asset or the complete product line, show the current

instances.

114

8.5. JOINT CONTIBUTIONS

RIiPLE-EM CAD

i { Show core A how instance

/ Instantiate Show = y
Stow s o)

RiPLE-EM PD

Figure 8.2 RiPLE-EM and CL integration

» show-core-diff. Given an instance, check whether its core asset has changed since

the derivation of the instance.

* rebase. Given an instance mark the last changes made to the instance as a feed-

forward from the core asset of the instance to the instance itself.

To address a complete solution regarding evolution management in Software Product
Lines, RiPLE-EM and the Customization Layer have integration points where both
solutions can be combined to maximize the benefits. Each Customization Layer operation
is triggered by a RiPLE-EM task or activity. The interfaces between the solutions are

described next, and summarized in Figure 8.2.

* add-core-asset. This situation may occur in the change management flow, from
both CAD and PD, when the need for a core asset creation is identified through

change request analysis or through the configuration identification.

» show-core-assets. The need to visualize the available core assets may arise from
the activity of identifying the configuration of a certain product which will re-use
the core assets, from the instantiation of a core asset or from the propagation of

changes.

115

8.6. CONCLUDING REMARKS

» show-instance-diff. Any time a change propagation request is to be opened, it is
important to know beforehand the changes made in the instance, in order to verify
the applicability of the propagation. This operation is also triggered in the analysis

of a propagation request.

* integrate Every time the propagation is realized, this operation is triggered to mark

that the core asset was update with changes from a specific instance.

* instantiate-core-asset. When an instance needs to be created during PD configu-

ration identification or PD change management this operation is triggered.

» show-instances. Given a certain core asset, it is always interesting to know which
product have an instance of that asset, specially for the purpose of requesting

propagation or simply analyzing a certain change request.

 show-core-diff. For product engineers, having the possibility of knowing when

the base core asset for a given instance changed, to rebase it.

* rebase. Similar to the integrate operation. When the change propagation is realized,
this operation is triggered to mark that the instance base was updated with changes

from the core asset derived.

8.6 Concluding Remarks

Software reuse is a key aspect for organizations interested in achieving improvements
in productivity, quality and costs reduction. Software product lines, as a software reuse
approach, have proven its benefits in different industrial environments. Academic research
in the software product line is also very rich, and a diversity of studies are being conducted
in different topics of software product lines. Given this wide range of studies in the
software product line field, this study tried to address a more specific issue in this area:
evolution management. In this context, this dissertation presented RiPLE-EM process
to evolution management. The process can be seen as a systematic way to guide and
manage the evolution of every asset and product in a product line context, handling
change management, build management and release management activities.

This dissertation also presented the initial validation of RiPLE-EM process, following
well established guidelines to software experimentation. According to the data collected
and analyzed in the experimental study, RiPLE-EM presents indications that the process

can be viable.

116

8.6. CONCLUDING REMARKS

Even it being an interesting contribution to the filed, there were identified some
new paths to explore in order to improve RiPLE-EM, such as the metrics associated
with evolution in product lines, the relationship between product line architectures and
repository structure, configuration identification, change guidelines to specific assets and
new experimental studies in different contexts and environments.

Finally, we believe this dissertation is one more step to the maturation of the software

evolution management in software product lines.

117

Bibliography

Almeida, E. S. (2007). RiDE: The RiSE Process for Domain Engineering. Ph.d. thesis,
UFPE - Federal University of Pernambuco, Brazil. 1, 3.3.4, 8

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C., and de Lemos Meira, S. R. (2004).
Rise project: Towards a robust framework for software reuse. In IEEE International

Conference on Information Reuse and Integration, pages 48-53, Las Vegas, Las Vegas,
NV, USA. 1.3.1

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C., and de Lemos Meira, S. R.
(2005). A survey on software reuse processes. In IEEE International Conference on
Information Reuse and Integration, pages 66—71, Las Vegas, Las Vegas, NV, USA.
1.3.1

Alvaro, A., de Almeida, E. S., and de Lemos Meira, S. R. (2006). A software component
quality model: A preliminary evaluation. In 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 28-37, Cavtat, Dubrovnik,
Croatia. 1.3.1

Anastasopoulos, M., de Oliveira, T. H. B., Muthig, D., de Almeida, E. S., and
de Lemos Meira, S. R. (2009). Evolving a software product line reuse infrastruc-
ture: A configuration management solution. In VaMoS - Variability Modelling of

Software-intensive Systems, pages 19-28, Sevilla, Spain. 1.1, 1.5,5.3,7.2.6, 8.4

Atkinson, C., Bayer, J., and Muthig, D. (2000). Component-based product line develop-
ment: the kobra approach. In International Software Product Line Conference, pages
289-309, Denver, Colorado, United States. 2.2, 3.3.4, 3.4.4

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wust, J., and Zettel, J. (2002). Component-based product line engineering
with UML. Addison-Wesley, Boston, MA, USA. 1.1,2.2,2.3.2,3.2.2,3.3.4,3.4.4,4.2,
53

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The goal question metric
approach. In Encyclopedia of Software Engineering. Wiley. 7.1

Bay, M. E. (1999). Software Release Methodology. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA. 3.2.2,4.2

118

BIBLIOGRAPHY

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., and
DeBaud, J.-M. (1999). Pulse: a methodology to develop software product lines. In
SSR - Symposium on Software Reusability, pages 122-131, New York, NY, USA. 1.1,
3.34,8

Berczuk, S. P. and Appleton, B. (2002). Software Configuration Management Patterns:
Effective Teamwork, Practical Integration. Addison-Wesley, Boston, MA, USA. 5.3

Beuche, D. (2008). Modeling and building software product lines with pure::variants.
In International Software Product Line Conference, page 358, Washington, DC, USA.
34.5,45,54,64

Brereton, P. (1999). Evolution of component based systems. In International Conference
on Software Engineering, Component-Based Software Engineering Workshop, Los
Angeles, CA, USA. 1

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007). Lessons
from applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software, 80(4), 571-583. 3.3.3,3.3.6

Budgen, D. and Brereton, P. (2006). Performing systematic literature reviews in software
engineering. In International conference on Software engineering, pages 1051-1052,
Shanghai, China. 3.3.4

Burégio, V. (20006). Specification, Design and Implementation of Reuse Repository. M.sc.
dissertation, UFPE - Federal University of Pernambuco, Brazil. 1.3.1

Cavalcanti, Y. C., Martins, A. C., Almeida, E. S., and Meira, S. R. L. (2008). Avoiding
duplicate cr reports in open source software projects. In The 9th International Free
Software Forum (IFSF’08), Porto Alegre, Brazil. 1.3.1

Chrissis, M. B., Konrad, M., and Shrum, S. (2003). CMM!I: Guidelines for Process
Integration and Product Improvement. Addison-Wesley. 3.4.1

Clements, P. and Northrop, L. (2002). Software Product Lines: Practices and Patterns.
Addison-Wesley. (document), 1.1, 2.1, 2.1.1,2.1.1, 2.1, 2.1.1,2.2,2.3,2.4

Cook, J. E. and Dage, J. A. (1999). Highly reliable upgrading of components. In
International Conference on Software Engineering, pages 203-212, Los Angeles, CA,
USA. 1

119

BIBLIOGRAPHY

Crnkovic, I. and Larsson, M. (1999). Managing standard components in large soft-
ware systems. In Second International Workshop on Component-Based Software
Engineering, Los Angeles, CA, USA. 1

de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., de Oliveira, T. H. B.,
Lisboa, L. B., de Almeida, E. S., and de Lemos Meira, S. R. (2008). Evaluating domain
design approaches using systematic review. In European Conference on Software

Architecture, pages 50-65, Paphos, Cyprus. 8.4

dos Santos Brito, K., Garcia, V. C., de Almeida, E. S., and de Lemos Meira, S. R. (2008).
Lift - a legacy information retrieval tool. Journal of Universal Computer Science,
14(8), 1256-1284. 1.3.1

Durao, F. A. (2008). Semantic Layer Applied to a Source Code Search Engine. M.sc.
dissertation, UFPE - Federal University of Pernambuco, Brazil. 1.3.1

Fuggetta, A. (2000). Software process: a roadmap. In International Conference on

Software Engineering, pages 25-34, Limerick, Ireland. 3.2.2

Gacek, C. and Anastasopoulos, M. (2001). Implementing product line variabilities.
SIGSOFT Software Engineering Notes, 26(3), 109-117. 3.2.2,4.2

Garcia, V. C., Lisboa, L. B., de Lemos Meira, S. R., de Almeida, E. S., Lucrédio, D.,
and de Mattos Fortes, R. P. (2008). Towards an assessment method for software reuse
capability. In International Conference on Quality Software, pages 294-299, Oxford,
UK. 1.3.1

Genssler, T., Christoph, A., Winter, M., Nierstrasz, O., Ducasse, S., Wuyts, R., Arévalo,
G., Schonhage, B., Miiller, P. O., and Stich, C. (2002). Components for embedded
software: the pecos approach. In Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pages 19-26, Greenoble, France. 3.3.4

Gomaa, H. and Shin, M. E. (2002). Multiple-view meta-modeling of software product
lines. In International Conference onEngineering of Complex Computer Systems, page
238, Washington, DC, USA. 3.3.4

Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in
software engineering. Technical report, Keele University and NICTA. 3, 3.1, 3.2,3.2.4,
33

120

BIBLIOGRAPHY

Krueger, C. W. (2002). Variation management for software production lines. In Interna-
tional Software Product Line Conference, pages 37-48, London, UK. (document), 1.1,
2.1.2,8

Krueger, C. W. (2008). The biglever software gears unified software product line engi-
neering framework. In International Software Product Line Conference, page 353,
Washington, DC, USA. 3.4.5,4.5,5.4,6.4

Kurmann, R. (2006). Agile software product line configuration and release manage-
ment. In Workshop on Agile Product Line Engineering in the Software Product Line
Conference, Baltimore, Maryland, USA. 3.3.4,3.4.3,3

Lehman, M., Ramil, J., and Kahen, G. (2000). Evolution as a noun and evolution as
a verb. In Workshop on Software and Organisation Co-evolution, Imperial College,
London. 2.2.2

Lehman, M. M. (1980). On understanding laws, evolution, and conservation in the

large-program life cycle. Journal of Systems and Software, 1,213-221. 2.2,2.2.1

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison-
Wesley, Boston, MA, USA. 2.2.2

Lisboa, L. B. (2008). ToolDAy - A Tool for Domain Analysis. M.sc. dissertation, UFPE -

Federal University of Pernambuco, Brazil. 1.3.1

Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S. R. L. (2008). Enhancing
components search in a reuse environment using discovered knowledge techniques. In

2nd Brazilian Symposium on Software Components, Architectures, and Reuse. 1.3.1

Mascena, J. C. C. P., de Lemos Meira, S. R., de Almeida, E. S., and Garcia, V. C.
(2006). Towards an effective integrated reuse environment. In International Conference
on Generative Programming and Component Engineering, pages 95-100, Portland,
Oregon, USA. 1.3.1

McGregor, J. D. (2003). Evolution of product line assets. Technical report, Software
Engineering Institute. (document), 1.1,2.3,2.3.1,3.3.4,3.4.4,8

McGregor, J. D. (2007). Cm - configuration change management. Journal of Object
Technology, 6(1), 7-15. 1,3.3.4,3.4.4,4.2

121

BIBLIOGRAPHY

Mendes, R. C. (2008). Search and Retrieval of Reusable Source Code using Faceted
Classification Approach. M.sc. dissertation, UFPE - Federal University of Pernambuco,
Brazil. 1.3.1

Mens, T. and Demeyer, S. (2008). Software Evolution. Springer. 2.2

Mohan, K. and Ramesh, B. (2006). Change management patterns in software product
lines. Communications of the ACM, 49(12), 68-72. 3.3.4,3.4.4

Mohan, K., Xu, P., and Ramesh, B. (2008). Improving the change-management process.
Communications of the ACM, 51(5), 59-64. 3.3.4

Naur, P. and Randell, B. (1969). Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968. Scientific
Affairs Division, NATO, Briissel. 2, 2.2

Northrop, L. M. (2002). Sei’s software product line tenets. IEEE Softw., 19(4), 32—40.
2.1

Pohl, K., Bockle, G., and van der Linden, F. J. (2005a). Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, Secaucus, NJ, USA.
1.1,2.1.2,2.1.3

Pohl, K., Bockle, G., and van der Linden, F. J. (2005b). Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag, Secaucus, NJ, USA.
1.1,2.1,2.1.3

Pussinen, M. (2002). A survey on software product-line evolution. Technical report,

Institute of Software Systems, Tampere University of Technology. (document), 2.3, 3.6

Royce, W. (1970). Managing the development of large software systems. In International
Conference on Software Engineering, pages 1-9, Monterey, California, United States.
2.2

Santos, E. C. R., Durdo, F. A., Martins, A. C., Mendes, R., Melo, C. d. A., Garcia, V. C.,
Almeida, E. S., and Meira, S. R. d. L. (2006). Towards an effective context-aware
proactive asset search and retrieval tool. In Sixth Workshop on Component-Based

Development, pages 105-112, Recife, Brazil. 1.3.1

SPEM, OMG (2008). Software Process Engineering Metamodel (SPEM). Technical
report, Object Management Group. 4.9, 4.9.1

122

BIBLIOGRAPHY

Staples, M. (2004). Change control for product line software engineering. In Asia-Pacific
Software Engineering Conference, pages 572-573, Washington, DC, USA. 3.3.4,3.4.3,
3.44

SWEBOK (2007). Software engineering body of knowledge. Technical report, Fraun-
hofer IESE, Robert Bosch GmbH, University of Groningen, University of Karl-
skrona/Ronneby, Siemens. 3.2.2

Taborda, L. J. M. (2003). Planning and managing product line evolution. In International

Workshop on Product Family Engineering, Siena, Italy. 3.3.4,3.4.3

van der Hoek, A. and Wolf, A. L. (2003). Software release management for component-
based software. Software Practice and Experience, 33(1), 77-98. 2.2,3.3.4,3.4.3

van der Hoek, A., Hall, R. S., Heimbigner, D., and Wolf, A. L. (1997). Software release
management. In European Software Engineering Conference, pages 159-175, Zurich,
Switzerland. 3.2.2,3.3.4,4.2

van Ommering, R., van der Linden, F., Kramer, J., and Magee, J. (2000). The koala
component model for consumer electronics software. Computer, 33(3), 78-85. 3.3.4

van Ommering, R. C. (2000). Beyond product families: Building a product population?
In International Workshop on Software Architectures for Product Families, pages
187-198, London, UK. 3.2.2,3.4.2

Vanderlei, T. A., Durdo, F. A., Martins, A. C., Garcia, V. C., de Almeida, E. S., and
de Lemos Meira, S. R. (2007). A cooperative classification mechanism for search

and retrieval software components. In ACM Symposium on Applied Computing, pages
866—871, Seoul, Korea. 1.3.1

Vegas, S. and Basili, V. (2005). A characterisation schema for software testing techniques.
Empirical Software Engineering, 10(4), 437-466. 7.1.3

Voas, J. (1998). Maintaining component-based systems. IEEE Software, 15(4), 22-27. 1,
5.3

Weiss, D. M. and Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley. 1.1,3.3.4, 8

123

BIBLIOGRAPHY

Weiss, D. M., Clements, P. C., Kang, K., and Krueger, C. (2006). Software product
line hall of fame. In International Software Product Line Conference, page 237,
Washington, DC, USA. (document), 1, 2.4, 8

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2000).
Experimentation in software engineering: an introduction. Kluwer Academic Publish-
ers, Norwell, MA, USA. (document), 7, 7.1, 7.1.3,7.2.1,7.2.4,7.2.5,7.2.7

Yau, S. S., Collofello, J. S., and MacGregor, T. M. (1993). Ripple effect analysis of
software maintenance. pages 71-82. 2.2

124

Appendices

125

Experiment Questionnaires

As part of the experiment instrumentation, detailed in Chapter 7, two questionnaires were
defined, and applied to the subjects. The next sections lists all questions inside each
questionnaire.

The first questionnaire (detailed in Section A.1) was intended to collect data about
the subjects background, and the second one (detailed in Section A.2) was intended to
collect information about RiPLE-EM use.

A.1 QT1 - Background Questionnaire

Date:

Name:

Amount of Years since graduation:

1. How many commercial software projects did you participate after graduation?

Category Quantity
Low Complexity:
Medium Complexity:
High Complexity:

2. About your personal experience in Evolution (change management, release man-

agement, build management, configuration management) (mark x):

126

A2. QT2

Area None Low | Medium | High Years
Academic
Commercial

Area None Low |Mediom| High Years
Academic
Commercial

3. About your personal experience in software reuse (mark x):

4. Please, inform which techniques/methods you know in Evolution, SCM and soft-

ware reuse areas

A.2 QT2 - RiPLE-EM Analysis Questionnaire

Date:

Regarding the evolution management using the RiPLE-EM process, please an-

swer the following questions:

1. Did you have any difficulties in understanding or applying the evolution manage-
ment process (RIPLE-EM)? Which one(s)?

2. In you opinion, what are the strengths of the RiPLE-EM process?

3. Inyou opinion, what are the weak points and bottlenecks of the RiPLE-EM process?
4. Is there any missing activity, roles or artifact in the RiPLE-EM process?

5. Which improvements would you suggest for the evolution management activities?
6. What is your satisfaction in to use the RiPLE-EM process?

() Very satisfied () Satisfied () Impartial () Unsatisfied () Very Unsatisfied

127

RiPLE-EM Checklists and Templates

In this appendix, all checklists and templates of RiPLE-EM will be described and detailed.

B.1 Change Request Analysis Checklist

Every change request must be analyzed before implemented. The group responsible
for the analysis is called CCB (Change Control Board), and the CCB can be formed by
different roles and persons.

The purpose of this analysis, among others, is:

* Priorization of Changes.
* Identification of each change’s impacts.

* Identify similarities between the changes requested and Group changes regarding

its similarity.
* Guarantee that changes feedbacks are being implemented.

Based on these purposes, the change analysis must be performed following a specific
checklist of what to analyze and what to do in order to be effective in the change analysis
and not to spend too much time on this analysis.

Ideally, the analysis made has to be documented somewhere, and one of the best
places to document it is inside the CR being analyzed. The CCB is then responsible to
generate the documentation of the analysis following the template defined and post it in
the CR it can be reviewed in the future (in case of similar changes) and may serve as the
rationale for each changes implementation.

Some of the follwing checks were inspired in some checks of the process impact'

"Process Impact web site - ht tp: //www.processimpact . com

128

http://www.processimpact.com

B.1. CR CHECKLIST

site.

The checks are listed next.

B.1.1 Checks

* Identify any existing requirements in the baseline that conflict with the proposed

change.

* Identify any other pending requirement changes that conflict with the proposed

change.
* What are the consequences of not making the change?
* What are the possible side effects or other risks of making the proposed change?

* Is the proposed change feasible within known technical constraints and current
staff skills?

* Identify any third party software that must be purchased.

* How will the proposed change affect the sequence, dependencies, effort, or duration

of any tasks currently in the project schedule?
» Will prototyping or other user input be required to verify the proposed change?

* How much effort that has already been invested in the project will be lost if this

change is accepted?
* Identify any user interface changes, additions, or deletions required.

* Identify any changes, additions, or deletions required in reports, databases, or data
files.

* Identify the design components that must be created, modified, or deleted.
* Identify hardware components that must be added, altered, or deleted.
* Identify any changes required in build files.

* Identify existing unit, integration, system, and acceptance test cases that must be
modified or deleted.

129

B.2. PR CHECKLIST

* Identify any help screens, user manuals, training materials, or other documentation

that must be created or modified.

* Identify any other systems, applications, libraries, or hardware components affected

by the change.

* Identify any impact the proposed change will have on fielded systems if the affected

component is not perfectly backward compatible.

B.2 Propagation Request Analysis Checklist

Every time a propagation is going to be performed, the task called "Analyze Propagation"
should be prior performed. The purpose of this analysis is to verify if there no problems
regarding the propagation of the changes. In the propagation analysis, some items need
to be checked and for that follow the checks in this page.

Besides all CR checks, the PR may have the following checks.

B.2.1 Checks

* Verify test results of the version (change set) being propagated?

* Check compatibility to see if the changes targeted to be propagated support the
product being developed.

* Identify the type of the propagation

B.3 CCB Analysis Template

In order to document all analysis done to both a CR or a PR, a minimum CCB analysis

documentation template is proposed.

B.3.1 Template

* CCB participants:
— Participants: <one>, <two>, <three>

¢ Decisions and Rationale:

130

B.3. CCB TEMPLATE

— Decisions:

— Rationales:

* Identified Impacts:

— Core Assets Impacts:

— Products Impacts:

Examples:

1)
* CCB participants:

— Participants: Thiago Burgos, Ednaldo Filho, Danuza Neiva
* Decisions and Rationale:

— Decisions: This CR will be aborted.

— Rationales: This is not an error, but an expected behavior.

* Identified Impacts:

— Core Assets Impacts: None

— Products Impacts: None
2)
* CCB participants:
— Participants: Thiago Burgos

¢ Decisions and Rationale:

— Decisions: This CR fix has to be included in next release.

— Rationales: N/A

* Identified Impacts:

— Core Assets Impacts: Core Asset Requirements, Use Cases and Test Cases

— Products Impacts: None

131

Systematic Review Sources

This appendix lists the conferences, journals and web-search engines used to search for
primary studies candidates in the systematic review procedure executed and detailed in
Chapter 3.

C.1 Journals Sources

All journals searched for primary studies are listed next:

IEEE Software - http://www.computer.org/portal/site/software/

IEEE Transactions on Software Engineering - http://www.computer.org/tse/

IEEE Computer - http://www.computer.org/portal/site/computer/index.jsp

IEEE ACM SIGSOFT Software Engineering Notes - http://www.sigsoft.org/SEN/

* Communications of the ACM - http://cacm.acm.org/

Journal of Systems and Software - http://www.elsevier.com/locate/jss

* Journal of Software Maintenance: Research and Practice - http://www.informatik.uni-

trier.de/ ley/db/journals/smr/index.htm

* International Journal of Information Systems and Change Management -

http://www.informatik.uni-trier.de/ ley/db/journals/ijiscm/index.html

132

C.2. CONFERENCES

C.2 Conference Sources

All conferences searched for primary studies are listed next:

International Conference on Software Engineering (ICSE) - http://www.icse-

conferences.org/

* Fundamental Approaches to Software Engineering (FASE) - http://www.informatik.uni-
trier.de/ ley/db/conf/fase/index.html

* International Conference on Software Reuse (ICSR) - http://www.informatik.uni-

trier.de/ ley/db/conf/icsr/index.html
* Software Product Line Conference (SPLC) - http://splc.net/

* European Software Engineering Conference (ESEC) - http://www.informatik.uni-

trier.de/ ley/db/conf/esec/index.html

* International Computer Software and Applications Conference (COMPSAC)
- http://wotan.liu.edu/docis/dbl/compsa/index.html

* International Conference on Software Maintenance (ICSM) - http://conferences.computer.org/icsm/

* Software Product Family Engineering Conference (PFE) - http://www.informatik.uni-
trier.de/ ley/db/conf/pfe/index.html

* European Conference on Software Maintenance and Re-engineering (CSMR)

- http://www.csmr.eu/

* International Conference on Program Comprehension (ICPC) - http://www.program-

comprehension.org/

* International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE) - http://www.informatik.uni-trier.de/ ley/db/conf/seke/index.html

* International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA) - http://www.oopsla.org/

133

C.3. WEB-SEARCH

C.3 Web-Search Engine Sources
All web-search engines used to search for primary studies are listed next:

* Google scholar - http://scholar.google.com
* Citeseer - http://citeseer.ist.psu.edu

* Citeulike - http://www.citeulike.com

134

	Acknowledgments
	Resumo
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Overview of the Solution
	Context
	Proposal Outline

	Out of Scope
	Related Work
	Dissertation Structure

	SPL and Evolution
	SPL
	Essential Activities
	Variability Management
	Adoption Strategies

	Software Evolution
	Evolution Laws
	Evolution Dimensions

	SPL Evolution
	Forces for Change
	Evolution Propagation
	SPL Evolution
	Challenges

	Chapter Summary

	Systematic Review
	Systematic Literature Reviews
	Planning
	Question Structure
	Research Questions
	Threats to Validity
	Inclusion and Exclusion Criteria

	Conduction
	Search Strategy
	Query Strings
	Data Sources
	Studies Selection
	Data Extraction
	Data Analysis and Synthesis

	Reporting
	Configuration Identification
	Multi-Level Instantiation
	Release Management
	Change Management
	Variability Evolution
	Change Propagation

	Build Management
	Questions Summary

	Lessons Learned
	Related Work
	Chapter Summary

	RiPLE-EM
	RiPLE-EM Overview
	RiPLE-EM Disciplines
	RiPLE-EM Usage Scenarios
	RiPLE-EM CAD x PD
	RiPLE-EM CAD X PD Communication

	RiPLE-EM Support Tools
	RiPLE-EM Related Roles
	RiPLE-EM Activities Summary
	RiPLE-EM Work Products
	Eclipse Process Framework
	Method Content and Processes
	Benefits

	Chapter Summary

	RiPLE-EM CAD
	RiPLE-EM CAD Flow
	RiPLE-EM CAD - Release Planning
	RiPLE-EM CAD - Change Management
	RiPLE-EM CAD - Build Management
	RiPLE-EM CAD - Release Execution
	Chapter Summary

	RiPLE-EM PD
	RiPLE-EM PD Flow
	RiPLE-EM PD - Release Planning
	RiPLE-EM PD - Change Management
	RiPLE-EM PD - Build Management
	RiPLE-EM PD - Release Execution
	Chapter Summary

	The Experimental Study
	The Definition
	Goal
	Questions
	Metrics
	Definition Summary

	The Planning
	Context Selection
	Hypothesis
	Variables and Treatments
	Subjects
	Experiment Design
	Instrumentation
	Validity Evaluation

	The Operation
	Preparation
	Execution
	Data Validation

	Analysis and interpretation
	Effort to Apply the Process
	Difficulties to understand/apply the process
	Activities, Roles and Artifacts Missing
	Uncompleted Propagation Requests
	Subjects Satisfaction

	Lessons Learned
	Chapter Summary

	Conclusions
	Research Contributions
	Related Work
	Future Work
	Academic Contributions
	Joint Contibutions
	Concluding Remarks

	Bibliography
	Appendices
	Experiment Questionnaires
	QT1
	QT2

	Checklists and Templates
	CR Checklist
	Checks

	PR Checklist
	Checks

	CCB Template
	Template

	Systematic Review Sources
	Journals
	Conferences
	Web-Search

