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Resumo
Nas últimas décadas, o modelo Birnbaum-Saunders univariado recebeu considerável atenção

na literatura. Esse modelo tem sido amplamente estudado e aplicado inicialmente à mod-

elagem de fadiga de materiais. Com o passar dos anos surgiram trabalhos com aplicações

em outras áreas do conhecimento. Em muitas das aplicações é necessário modelar diversas

variáveis simultaneamente incorporando a correlação entre elas. Os modelos de regressão

multivariados são uma ferramenta útil de análise multivariada, que leva em conta a corre-

lação entre as variáveis de resposta. A análise de diagnóstico é um aspecto importante a

ser considerado no modelo estatístico e verifica as suposições adotadas como também sua

sensibilidade. Além disso, os gráficos de controle de qualidade multivariados são ferramentas

visuais eficientes e simples para determinar se um processo multivariado está ou não fora

de controle. Este gráfico mostra como diversas variáveis afetam conjuntamente um pro-

cesso. Primeiro, propomos, derivamos e caracterizamos as distribuições Birnbaum-Saunders

generalizadas logarítmicas multivariadas. Em seguida, propomos um modelo de regressão

Birnbaum-Saunders generalizado multivariado. Métodos para estimação dos parâmetros do

modelo, tal como o método de máxima verossimilhança baseado no algoritmo EM, foram

desenvolvidos. Estudos de simulação de Monte Carlo foram realizados para avaliar o de-

sempenho dos estimadores propostos. Segundo, realizamos uma análise de diagnóstico para

modelos de regressão Birnbaum-Saunders generalizados multivariados. Consideramos a dis-

tância de Mahalanobis como medida de influência global de detecção de outliers multivariados

utilizando-a para avaliar a adequacidade do modelo. Além disso, desenvolvemos medidas de

diagnósticos baseadas em influência local sob alguns esquemas de perturbações. Implemen-

tamos a metodologia apresentada no software R, e ilustramos com dados reais multivariados

de biomateriais. Terceiro, e finalmente, desenvolvemos uma metodologia robusta baseada

em gráficos de controle de qualidade multivariados para a distribuição Birnbaum-Saunders

generalizada usando a estatística de Hotelling. Baseado no método bootstrap paramétrico

encontramos aproximações da distribuição desta estatística e obtivemos limites de controle

para o gráfico proposto. Realizamos um estudo de simulação de Monte Carlo para avaliar a

metodologia proposta indicando seu bom desempenho para fornecer alertas precoces de pro-

cessos fora de controle. Uma ilustração com dados reais de qualidade do ar de Santiago-Chile

é fornecida. Essa ilustração mostra que a metodologia proposta pode ser útil para alertar

sobre episódios de poluição extrema do ar, evitando efeitos adversos na saúde humana.

Palavras-chave: algoritmo EM. bondade de ajuste. distribuições Birnbaum-Saunders

generalizadas. gráficos de controle. estatística de Hotelling. influência local e global. método

de máxima verossimilhança. simulação de Monte Carlo. software R. modelos de regressão.



Abstract

In the last decades, univariate Birnbaum-Saunders models have received considerable atten-

tion in the literature. These models have been widely studied and applied to fatigue, but

they have also been applied to other areas of the knowledge. In such areas, it is often neces-

sary to model several variables simultaneously. If these variables are correlated, individual

analyses for each variable can lead to erroneous results. Multivariate regression models are

a useful tool of the multivariate analysis, which takes into account the correlation between

variables. In addition, diagnostic analysis is an important aspect to be considered in the

statistical modeling. Furthermore, multivariate quality control charts are powerful and sim-

ple visual tools to determine whether a multivariate process is in control or out of control.

A multivariate control chart shows how several variables jointly affect a process. First, we

propose, derive and characterize multivariate generalized logarithmic Birnbaum-Saunders

distributions. Also, we propose new multivariate generalized Birnbaum-Saunders regression

models. We use the method of maximum likelihood estimation to estimate their param-

eters through the expectation-maximization algorithm. We carry out a simulation study

to evaluate the performance of the corresponding estimators based on the Monte Carlo

method. We validate the proposed models with a regression analysis of real-world multi-

variate fatigue data. Second, we conduct a diagnostic analysis for multivariate generalized

Birnbaum-Saunders regression models. We consider the Mahalanobis distance as a global

influence measure to detect multivariate outliers and use it for evaluating the adequacy of

the distributional assumption. Moreover, we consider the local influence method and study

how a perturbation may impact on the estimation of model parameters. We implement the

obtained results in the R software, which are illustrated with real-world multivariate biomate-

rials data. Third and finally, we develop a robust methodology based on multivariate quality

control charts for generalized Birnbaum-Saunders distributions with the Hotelling statistic.

We use the parametric bootstrap method to obtain the distribution of this statistic. A Monte

Carlo simulation study is conducted to evaluate the proposed methodology, which reports

its performance to provide earlier alerts of out-of-control conditions. An illustration with

air quality real-world data of Santiago-Chile is provided. This illustration shows that the

proposed methodology can be useful for alerting episodes of extreme air pollution.

Keywords: EM algorithm. global and local influence. Hotelling statistic. goodness-

of-fit. maximum likelihood method. Monte Carlo simulation. multivariate generalized

Birnbaum-Saunders distributions. multivariate quality control charts. R software. multi-

variate regression models.
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CHAPTER 1

Preliminaries

1.1 Resumo

Neste capítulo, apresentamos uma revisão bibliográfica sobre o tema da tese. Adicional-

mente, oferecemos ferramentas teóricas que proporcionam ao leitor um melhor entendimento

de nossa proposta. Aqui, são incluidos aspectos relacionados com as distribuições Birnbaum-

Saunders generalizadas e Birnbaum-Saunders logarítmicas generalizadas univariadas e sua

modelagem estatística. Aspectos das distribuições Birnbaum-Saunders generalizadas multi-

variadas são também mostradas. Além disso, motivações, objetivos e produtos desta tese

são apresentados.

1.2 Introduction and bibliographical review

Univariate Birnbaum-Saunders (BS) distributions are a family of models originated from

the cumulative damage law related to fatigue and strength of materials that has been widely

studied. This origin allows the BS distribution to be interpreted as a life distribution,

because it describes the time elapsed until that the extension of a crack exceeds a threshold

conducting to a failure. This family is unimodal, positively skewed and useful for modeling

data that take values greater than zero. The BS family has two parameters, which modify the

shape and scale of the distribution; see Birnbaum and Saunders (1969), Leiva and Saunders

(2015), Leiva (2016) and Leiva and Vivanco (2016).

15
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The family of BS distributions has evolved over time since 1969 until the present.

Three stages can be mentioned for these models. The first stage (1969-1999) contains

few works and a slow growth for their development; see Birnbaum and Saunders (1969),

Rieck and Nedelman (1991), Achcar (1993), Johnson et al. (1995), Dupuis and Mills (1998)

and Owen and Padgett (1999). The second stage (2000-2010) is formed by works that in-

clude diverse estimation, modeling and diagnostic aspects, as well as generalizations, com-

putational implementations and new applications which go beyond its genesis from sci-

ence of materials, but these applications were still based on arguments from this genesis;

see Owen and Padgett (2000), Volodin and Dzhungurova (2000), Tsionas (2001), Ng et al.

(2003), Rieck (2003), Galea et al. (2004), Díaz and Leiva (2005), Owen (2006), Xie and Wei

(2007), Lemonte et al. (2007, 2008), Leiva et al. (2007, 2008a,b, 2009), Cysneiros et al. (2008),

Barros et al. (2008), Lemonte and Cordeiro (2009), Balakrishnan et al. (2009), and Vilca et al.

(2010). The third stage (2011-present) is the openness to a new vision of BS distribu-

tions, which allows us to consider it in a general setting rather than to be restricted to

failure time data, which extends their applicability to all areas of knowledge as: agriculture,

air contamination, bio-engineering, business, economics, engineering, environment, finance,

food, forest and textile industries, human and three mortality, informatics, insurance, inven-

tory management, medicine, nutrition, pharmacology, psychology, neurology, quality con-

trol, queue theory, toxicology, water quality, and wind energy; see, for example, Bhatti

(2010), Kotz et al. (2010), Balakrishnan et al. (2011), Leiva et al. (2010, 2011a,b, 2012,

2014a,b,c, 2016a, 2015b,c, 2016b, 2017), Vilca et al. (2010, 2011), Villegas et al. (2011),

Azevedo et al. (2012), Ferreira et al. (2012), Paula et al. (2012), Santos-Neto et al. (2012,

2014, 2016), Vanegas et al. (2012), Marchant et al. (2013a,b, 2016a,b), Saulo et al. (2013,

2015), Barros et al. (2014), Rojas et al. (2015), Wanke and Leiva (2015), Garcia-Papani et al.

(2016), and references therein.

Univariate BS distributions have been widely studied because of its good properties and

its relation with the normal distribution. Specifically, every random variable following the

BS distribution can be considered as a transformation of another random variable following a

standard normal distribution; see Johnson et al. (1995, pp. 651-663) and Leiva (2016, p. 18).

Then, because the cumulative damage is assumed to be normally distributed in the BS

model, its parameter estimates obtained from the maximum likelihood (ML) method are

sensitive to atypical observations. In order to attenuate this sensitivity, and using the relation

between the normal and BS distributions, one can obtain a BS distribution based on the

Student-t (called t hereafter) distribution. Thus, ML estimates of the parameters of the BS-

t distribution attribute smaller weights to atypical observations than the BS distribution,

producing robust parameter estimates; see Paula et al. (2012) and references therein. BS and
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BS-t distributions are members of a wider family of distributions generated from elliptically

contoured (EC) distributions, known as generalized BS (GBS) distributions; see, for example,

Fang et al. (1990) for details of EC distributions and Díaz and Leiva (2005) for the seminal

paper on GBS distributions.

Rieck and Nedelman (1991) introduced a logarithmic version of the BS distribution, in

short log-BS, which is often useful to formulate BS log-linear regression models; see Tsionas

(2001), Leiva et al. (2007), Xie and Wei (2007), Desmond et al. (2008), Lemonte et al. (2010),

Xiao et al. (2010), Lemonte (2011) and Lemonte and Ferrari (2011a,b). Such models are

helpful, for example, to predict fracture; see also Galea et al. (2004). Univariate log-linear

models for generalized BS (GBS) distributions were studied by Barros et al. (2008), Li et al.

(2012), and Paula et al. (2012).

Bivariate versions of the BS distribution were proposed by Kundu et al. (2010) and

Vilca et al. (2014a). Multivariate versions of GBS distributions were derived by Kundu et al.

(2013), whereas Caro-Lopera et al. (2012) and Sánchez et al. (2015) introduced matrix-

variate GBS distributions. Kundu (2015a) and Vilca et al. (2014b) presented bivariate

log-BS and log-GBS distributions. Moreover, Lemonte (2013) developed an independent

multivariate BS log-linear regression model. Other works related to multivariate GBS dis-

tributions are attributed to Jamalizadeh and Kundu (2015), Khosravi et al. (2015, 2016),

Kundu (2015b), Lemonte et al. (2015) and Garcia-Papani et al. (2016). However, no stud-

ies on multivariate log-GBS distributions nor GBS log-linear regression models have been

published.

One of the main steps of a parametric statistical analysis is to validate the reference

distribution on which this analysis relies. Specifically, one must be concerned about the

adequacy of this distribution to the data under analysis. Goodness-of-fit (GOF) tests have

been proposed to evaluate the hypotheses of distributional adequacy or discrepancy, with

respect to a data set, where the vector of parameters that indexes the distribution can be

known or unknown; see D’Agostino and Stephens (1986), Castro-Kuriss et al. (2009, 2010)

and Barros et al. (2014).

Influence diagnostics is an important aspect to be considered in data modeling. This

aspect is often carried out after the parameters are estimated allowing the stability of the

estimation process to be assessed. Influence methods have been used in normal linear re-

gression models and widely studied in the literature. Some classical books on the topic are

Cook and Weisberg (1982) and Chatterjee and Hadi (1988). Cook (1986) introduced the

local influence method to evaluate the effect of small perturbations in the model and/or

data on the ML estimates. Such a method has played a significant role on regression diag-

nostics. After Cook (1986), who applied his method in the linear regression model under
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normality, a number of researchers have studied influence diagnostics for the linear model

with a number of variations or additional specific structures. For more details about di-

agnostics methods in more general models; see Paula (1993), Galea et al. (1997, 2004), Shi

(1997), Haslett and Dillane (2004), Leiva et al. (2007), Osorio et al. (2007), Atkinson (2009),

Barros et al. (2010), Santana et al. (2011), Villegas et al. (2011), Paula et al. (2012) and

Leiva et al. (2014b,c,d). No studies on influence diagnostics in multivariate GBS log-linear

regression models have been carried out until now.

Shewhart (1931) introduced univariate control charts to monitor the process quality

through a statistical sample. However, many times there is a need to monitor several quality

characteristics of a process simultaneously. If these characteristics are correlated, then using

separate univariate control charts for individual monitoring may not be adequate, when

detecting changes in the overall quality of the process. Thus, it is desirable to have tools

that can jointly monitor all of these variables. Such tools are the multivariate control charts,

which are the most common used for this joint monitoring; see Alt (1985). These charts

can take into account the simultaneous nature of the control scheme and the correlation

structure between the quality characteristics. A multivariate control chart has as objective

to detect the presence of special causes of variation and can be used as a tool to detect

multivariate outliers, mean shifts, and other distributional deviations from the in-control

distribution. For studies on univariate quality control charts based on the BS distribution,

see Lio and Park (2008) and Leiva et al. (2015b). However, to our knowledge, no studies on

multivariate control charts based on GBS distributions are reported.

1.3 Background

A random variable (RV) T is said to follow a univariate BS distribution with parameters

of shape α ∈ R+ and scale λ ∈ R+, which is denoted by T ∼ BS(α, λ), if

T = λ


αV

2
+

{(
αV

2

)2

+ 1

} 1
2




2

, (1.1)

where V ∼ N(0, 1), with V = [{T/λ} 1
2 − {λ/T} 1

2 ]/α.

Let the assumption given in (1.1) to be relaxed by supposing V to follow any standard

symmetric (SS) distribution in R (corresponding to EC distributions in the multivariate

case), with kernel g for its probability density function (PDF). Then, we obtain the class

of univariate GBS distributions, which is denoted by T ∼ GBS(α, λ, g), with cumulative

distribution function (CDF) given by

FT (t;α, λ, g) = F (A(t;α, λ), g), t ∈ R+,
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where F (·) is the CDF of an SS distribution and

A(t;α, λ) =
1

α



{
t

λ

} 1
2

−
{
λ

t

} 1
2


 .

The PDF of T is

fT (t;α, λ, g) = f (A(t;α, λ), g)a(t;α, λ), t ∈ R+, (1.2)

where f (·, g) is the PDF of an SS distribution and a(t;α, λ) is the derivative of A(t;α, λ),

so that

a(t;α, λ) =
1

[2αλ]



{
λ

t

}1
2

+

{
λ

t

} 3
2


 .

Some properties of GBS distributions are:

(A1) k T ∼ GBS(α, k λ, g), with k ∈ R+.

(A2) 1/T ∼ GBS(α, 1/λ, g).

(A3) V 2 = [T/λ + λ/T − 2]/α2 ∼ Gχ2(1, g), that is, V 2 follows a generalized χ2 dis-

tribution with one degree of freedom (DF) and kernel g; see Fang et al. (1990) and

Fang and Zhang (1990).

Consider the regression model proposed by Rieck and Nedelman (1991) given by

Ti = exp(β⊤xi)ζi, i = 1, . . . , n, (1.3)

where Ti is the response variable (called response hereafter), xi = (xi1, . . . , xip)⊤ is a p ×
1 vector containing the values of p regressor variables (called regressor hereafter); β⊤ =

(β1, . . . , βp) is a 1 × p vector of unknown parameters to be estimated, with βj corresponding

to xj , for j = 1, . . . , p and x1 = 1. In addition, ζi ∼ BS(α, 1) is the model error. Thus, from

this error distribution and property (A1), note that Ti ∼ BS(α, exp(β⊤xi)). Based on the

model defined in (1.3), we have a BS log-linear regression model given by

Yi = β⊤xi + εi, i = 1, . . . , n, (1.4)

where Yi = log(Ti) is the log-response, xi, β are as given in (1.3), and εi is the model error,

with εi = log(ζi) ∼ log-BS(α, 0). Thus, Y follows a log-BS distribution with shape parameter

α ∈ R+, and mean µ = E[Y ] = log(λ) ∈ R, which is denoted by Y ∼ log-BS(α, µ), if

Y = µ+ 2 arcsinh
(
αW

2

)
, (1.5)
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where

W =
2

α
sinh

(
Y − µ

2

)
∼ N(0, 1).

Similarly to the BS case, (1.5) can also be relaxed assuming W to follow any SS distribution

in R with kernel g. Then, the notation Y ∼ log-GBS(α, µ, g) is used and its CDF is

FY (y;α, µ, g) = F (B(y;α, µ), g), y ∈ R,

where F (·) is an SS CDF and

B(y;α, µ) =
2

α
sinh

(
y − µ

2

)
.

Note that W = B(Y ;α, µ). The corresponding PDF of Y is given by

fY (y;α, µ, g) = f(B(y;α, µ), g) b(y;α, µ), y ∈ R, (1.6)

where f (·, g) is as given in (1.2) and b(y;α, µ) is the derivative of B(y;α, µ) expressed as

b(y;α, µ) =
1

α
cosh

(
y − µ

2

)
.

Some properties of Y ∼ log-GBS(α, µ, g) are:

(B1) W = B(Y ;α, µ) follows an SS distribution with location zero and kernel g.

(B2) W 2 = B2(Y ;α, µ) ∼ Gχ2(1, g).

The log-BS-t distribution is constructed replacing W ∼ N(0, 1) in (1.5) by the representation

S = U− 1
2Z ∼ t(ν), (1.7)

where Z ∼ N(0, 1) and

U ∼ Gamma

(
ν

2
,
ν

2

)
,

with U being independent of Z, that is, S has a t distribution with shape parameter ν ∈ R+

(also known as DFs). Therefore, from (1.5) and (1.7), we have

Y = µ+ 2 arcsinh
(
αZ

2U
1
2

)
∼ log-BS-t(α, µ, ν). (1.8)

Figure 1.1 shows the PDFs for the univariate log-BS and log-BS-t distributions for α ∈
{0.75, 1.0, 2.0, 2.5, 3.0}, µ = 0 and ν = 4. From this figure, note that the log-BS-t distribution

has heavier tails than the log-BS distribution. Also, when α ≤ 2, the PDFs have just a mode,
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Figure 1.1: PDF plots for the indicated log-GBS distributions.

α = 0.75
α = 1.0
α = 2.0
α = 2.5
α = 3.0

f
Y

(y
)

y

-6 -4 1 0 642

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(a) log-BS(α, 0)

α = 0.75
α = 1.0
α = 2.0
α = 2.5
α = 3.0

f
Y

(y
)

y

-6 -4 1 0 642

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

(b) log-BS-t(α, 0, ν=4)

Source: From the author.

whereas for α > 2, we observe bimodality in log-GBS distributions. Then, the parameter α

modifies the kurtosis and bimodality of the distribution while µ the location.

The usage of the t kernel allows us to obtain robust estimation to atypical data and

implement the expectation-maximization (EM) algorithm; see Balakrishnan et al. (2009)

and Paula et al. (2012). This algorithm is a powerful iterative method to find ML estimates

of statistical parameters, when the model depends on (unobserved) latent variables. The EM

algorithm is computationally simple, numerically stable and used in diverse applications; see

details in McLachlan and Krishnan (1997) and Appendix 6.1.

Let V = (V1, . . . , Vm)⊤ ∈ R
m be a random vector with m-variate EC distribution, lo-

cation vector equal to zero, scale matrix Σ = (σkl) ∈ R
m×m (rk(Σ) = m), kernel density

generator g(m), and all its moments exist. In this case, the notation V ∼ ECm(0m×1,Σ, g
(m))

is used, with 0m×1 being a vector of zeros. The matrix Σ allows us to obtain the variance-

covariance matrix of V by Σ0 = c0 Σ, where c0 = E[V 2], with V 2 ∼ Gχ2(m, g(m)). Thus,

the correlation matrix Ψ = (ψkl) ∈ R
m×m (with rk(Ψ) = m) of V is given by

Ψ = D(Σ
−1/2
0 )Σ0D(Σ

−1/2
0 ) = D(Σ−1/2)ΣD(Σ−1/2), (1.9)

where Σ0 = (c0 σkl) ∈ R
m×m,D(Σ

−1/2
0 ) = diag([c0 σ11]−1/2, . . . , [c0 σmm]−1/2) andD(Σ−1/2) =
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diag(σ
−1/2
11 , . . . , σ−1/2

mm ). Therefore, we can express the variance-covariance matrix of V as

Σ0 = D(Σ
1/2
0 )ΨD(Σ

1/2
0 ) = c0




σ11
√
σ11σ22ψ12 · · · √

σ11σmmψ1m√
σ11σ22ψ12 σ22 · · · √

σ22σmmψ2m
...

...
. . .

...√
σ11σmmψ1m

√
σ22σmmψ2m · · · σmm



.

(1.10)

The PDF of V is

fECm
(v;Σ, g(m)) = c(m)|Σ|−1/2g(m)(v⊤

Σ
−1v), v = (v1, . . . , vm)⊤ ∈ R

m, (1.11)

with normalizing constant c(m) > 0, whereas its CDF is denoted by FECm
. For more details

about EC distributions, see Fang et al. (1990), Fang and Zhang (1990), and Gupta et al.

(2013).

Let T = (T1, . . . , Tm)⊤ ∈ R
m
+ be a random vector with m-variate GBS distribution and

parameters α = (α1, . . . , αm)⊤ ∈ R
m
+ , λ = (λ1, . . . , λm)⊤ ∈ R

m
+ , and EC kernel g(m), being

its scale and correlation matrices Σ ∈ R
m×m and Ψ ∈ R

m×m, respectively; see Kundu et al.

(2013). Note that, for the GBS case, σkk = 1, for all k = 1, . . . , m, and then from (1.9) and

(1.10),

Σ =




1 ψ12 · · · ψ1m

ψ12 1 · · · ψ2m
...

...
. . .

...
ψ1m ψ2m · · · 1




= Ψ, (1.12)

which we denote by T ∼ GBSm(α,λ,Ψ, g(m)). Thus, the CDF and PDF of T are, respec-

tively,

FT (t;α,λ,Ψ, g(m)) = FECm
(A;Ψ, g(m)),

fT (t;α,λ,Ψ, g(m)) = fECm
(A;Ψ, g(m)) a(t;α,λ), t = (t1, . . . , tm)⊤ ∈ R

m
+ ,

where A = A(t;α,λ) = (A1, . . . , Am)⊤, with Aj = A(tj;αj , λj) and

a(t;α,λ) =
m∏

j=1

a(tj;αj , λj),

both A(tj ;αj, λj), a(tj ;αj, λj) given in (1.2). Some properties of T are:

(C1) k T ∼ GBSm(α, kλ,Ψ, g(m)), with k ∈ R+.

(C2) T ∗ = (1/T1, . . . , 1/Tm)⊤ ∼ GBSm(α,λ∗,Ψ, g(m)), with λ∗ = (1/λ1, . . . , 1/λm)⊤.

(C3) A⊤(t;α,λ)Ψ−1A(t;α,λ) ∼ Gχ2(m, g(m)).
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Table 1.1: Normalizing constant and kernel of the indicated distribution.

Distribution c g(u) c(m) g(m)(u)

Normal [2π]−1/2 exp (−u/2) [2π]−
m
2 exp (−u/2)

t
Γ ([ν + 1]/2)

[νπ]1/2Γ (ν/2)

[
1 +

u

ν

]−
[ν+1]

2 Γ ([ν +m]/2)

[νπ]
m
2 Γ (ν/2)

[
1 +

u

ν

]−
[ν+m]

2

where Γ is the gamma function.

Source: From the author.

Table 1.1 provides the constants and kernels of the univariate and m-variate normal and t

distributions.

1.4 Motivation of the thesis

According to our review of literature discussed in Section 1.2 and the background pre-

sented in Section 1.3, we have the following motivations to develop this thesis:

(1) Because no studies on the multivariate log-GBS distribution were known, we try to fill

this gap.

(2) Since no studies on the multivariate GBS log-linear regression models were published to

starting date of this thesis, we formulate these models and estimate their parameters.

In addition, we implement their results in R language and apply them to real-world

data.

(3) Due to that no studies on diagnostic analyses in multivariate GBS log-linear regression

models were known, we carry out a diagnostic analysis for these models.

(4) No studies on multivariate GBS quality control charts were published to date. Then,

we develop a methodology for multivariate quality control charts based on generalized

Birnbaum-Saunders distributions with the Hotelling statistic.

1.5 Objectives of the thesis

Based on Section 1.4, the objectives of this work are:
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(1) To derive, characterize and implement multivariate log-GBS distributions.

(2) To propose a methodology based on multivariate GBS log-linear regression models

including their formulation, ML estimation of their parameters by means of the EM

algorithm, their implementation, as well as their application to real-world data.

(3) To develop influence diagnostic methods for multivariate GBS log-linear regression

models, implement then in R language and apply the developed methods to real-world

data.

(4) To derive multivariate GBS quality control charts, implement them in the R language

and apply these charts to real-world processes.

1.6 Products of the thesis

This thesis led to the following products:

(1) Marchant, C., Leiva, V. and Cysneiros, F.J.A. (2016) A multivariate log-linear model

for Birnbaum-Saunders distributions. IEEE Transactions on Reliability 65(2):816-827.

(2) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Vivanco, J.F. (2016) Diagnostics

in multivariate Birnbaum-Saunders regression models. Journal of Applied Statistics

43:2829-2849.

(3) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Liu, S. Robust multivariate control

charts based on Birnbaum-Saunders distributions. Under review.

(4) Marchant, C., Leiva, V. and Cysneiros, F.J.A. (2015) Multivariate generalized Birn-

baum-Saunders regression models for metal forming processes. 60th ISI World Statis-

tics Congress, Rio de Janeiro, Brazil.

(5) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Vivanco J.F. (2015) A multivariate

log-linear model for Birnbaum-Saunders distributions and its influence diagnostics.

XLII Jornadas Nacionales de Estadística, Concepción, Chile.

(6) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Vivanco J.F. (2015) Influence diag-

nostics for multivariate generalized Birnbaum-Saunders regression models. VI SEEMI,

Toledo, Brazil.

(7) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Vivanco J.F. (2016) A multivariate

log-linear model for Birbaum-Saunders distributions: Influence diagnostic and appli-

cations. X Workshop on Statistics, Mathematics and Computation, Tomar, Portugal.

(8) Marchant, C., Leiva, V., Cysneiros, F.J.A. and Vivanco J.F. (2016) Multivariate

Birnbaum-Saunders regression models: Diagnostic analysis and applications. XXII

SINAPE, Porto Alegre-RS, Brazil.



Essays on multivariate generalized Birnbaum-Saunders methods 25

1.7 Organization of the thesis

This thesis contains five chapters taking into account this introduction chapter. In Chap-

ter 2, we propose, derive and characterize multivariate logarithmic generalized Birnbaum-

Saunders distributions. Also, we propose new multivariate generalized Birnbaum-Saunders

regression models. In Chapter 3, we carry out a diagnostic analysis for this new model. In

Chapter 4, we develop a methodology for multivariate quality control charts based on gen-

eralized Birnbaum-Saunders distributions with the Hotelling statistic. Finally, in Chapter

5, we present general conclusions for this thesis and propose some topics for future work.

Appendices related to some mathematical derivations of this thesis, as well the data sets

used and a general references list, are presented at the final pages.



CHAPTER 2

A multivariate log-linear model for

Birnbaum-Saunders distributions

2.1 Resumo

Neste capítulo, derivamos e caracterizamos as distribuições Birnbaum-Saunders gene-

ralizadas logarítmicas multivariadas. Desenvolvemos uma nova metodologia baseada em

modelos de regressão multivariados Birnbaum-Saunders generalizados. Usamos o método de

máxima verossimilhança através do algoritmo EM para estimar os parâmetros do modelo.

Também, discutimos o desempenho dos estimadores propostos, avaliando-os através de estu-

dos de simulações de Monte Carlo (MC). Implementamos a metodologia na linguagem R e a

ilustramos através de um conjunto de dados reais aplicado a fadiga multivariada. Os resul-

tados obtidos podem permitir aos engenheiros de materiais agendar a troca de ferramentas

em processos de conformação de metal e avaliar os seus custos.

2.2 Introduction

Fatigue is related to the failure of materials, mainly metals, which occurs after a long

time of service, caused by stress. Fatigue of metals is understood as the propagation of

cracks, originating from stress, causing their fracture. Thus, fatigue is a process composed

26
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by the initiation of a crack and its propagation, until the material is ultimately fractured.

Calculation of fatigue life is of great importance in determining the reliability of components

or structures.

Manufacturing, quality and productivity improvements of metallic tools can be integrated

into their process cycle. Thus, fracture of these tools can be predicted by considering simul-

taneously RVs related to this integration, such as deformation, die lifetime, manufacturing

force, and stress. Because these RVs are often correlated, fracture should be predicted by

multivariate models. Based on these models, engineers can make decisions after specifying

priorities of these RVs with target values for each of them.

Multivariate regression models are useful tools of the multivariate analysis. The main

advantage of a multivariate regression model over marginal regressions is that it takes into

account the correlation between the response variables. Several responses could be corre-

lated and then this correlation should be considered in the modeling through a multivariate

regression. If no correlation exists, several marginal models, one for each response, can be

considered. However, analyzing responses individually, if correlations between them exist,

may yield wrong prediction.

The objectives of this chapter are (i) to propose multivariate log-GBS distributions, and

(ii) to derive multivariate GBS regression models for describing fatigue data. In Section 2.3,

we derive new multivariate log-GBS distributions. In Section 2.4, we propose multivariate

GBS regression models, including their formulation and ML estimation by means of the EM

algorithm. In Section 2.5, we evaluate the performance of the ML estimators with simulations

based on the MC method. In Section 2.6, we validate the proposed models with a regression

analysis of real-world multivariate fatigue data. Finally, in Section 2.7, we present some

conclusions of this chapter.

2.3 Multivariate log-GBS distributions

Let T = (T1, . . . , Tm)⊤ ∼ GBSm(α,λ,Ψ, g(m)) as given in Section 1.3. Then, Y =

(log(T1), . . . , log(Tm))⊤ follows an m-variate log-GBS distribution with shape vector α =

(α1, . . . , αm)⊤, location vector

µ = E[Y ] = (E[Y1], . . . ,E[Ym])⊤ = (log(λ1), . . . , log(λm))⊤ ∈ R
m,

g(m) is the EC kernel and correlation matrix Ψ ∈ R
m×m given in (1.12). This is denoted by

Y ∼ log-GBSm(α,µ,Ψ, g(m)). The CDF of Y is

FY (y;α,µ,Ψ, g(m)) = FECm
(B;Ψ, g(m)), y = (y1, . . . , ym)⊤ ∈ R

m, (2.1)
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where B = B(y;α,µ) = (B1, . . ., Bm)⊤, with Bj = B(yj;αj , µj), for j = 1, . . . , m, as given

in (1.6). The PDF of Y is given by

fY (y;α,µ,Ψ, g(m)) = fECm

(
B;Ψ, g(m)

)
b(y;α,µ), y ∈ R

m, (2.2)

where fECm
is given in (1.11) and b(y;α,µ) =

∏m
j=1 b(yi;αj, µj), with b(yj;αj , µj) as given

in (1.6), for j = 1, . . . , m.

If Y ∼ log-GBSm(α,µ,Ψ, g(m)), from (B1) and (1.12), we have that:

(D1) D(α)B(Y ;α,µ) ∼ ECm(0,D(α)ΨD(α), g(m)), where D(α) = diag(α1, . . . , αm) and

D(α)ΨD(α) =




α2
1 α1α2ψ12 · · · α1αmψ1m

α1α2ψ12 α2
2 · · · α2αmψ2m

...
...

. . .
...

α1αmψ1m α2αmψ2m · · · α2
m



. (2.3)

(D2) From (C3), we have that: B⊤(Y ;α,µ)Ψ−1B(Y ;α,µ) ∼ Gχ2(m, g(m)).

Next, Theorem 1 provides marginal and conditional distributions of multivariate log-GBS

distributions, which are useful in the development of this work.

Theorem 1. Let Y ∼ log-GBSm(α,µ,Ψ, g(m)), and Y , α,µ,Ψ be partitioned as

Y =


 Y1

Y2


 , α =


 α1

α2


 , µ =


 µ1

µ2


 , Ψ =


 Ψ11 Ψ12

Ψ21 Ψ22


 , (2.4)

where Y1, α1, µ1 ∈ R
q, Ψ11 ∈ R

q×q, and the remainder of elements defined suitably. Then,

(a) Y1 ∼ log-GBSq(α1,µ1,Ψ11, g
(q)), with

g(q)(s) =


 π

m−q

2

Γ
(

m−q
2

)



∫ ∞

0
y

m−q−2
2 g(m)(s+ y)dy,

and Y2 ∼ log-GBSm−q(α2,µ2,Ψ22, g
(m−q)), with g(m−q) being obtained such as g(q);

(b) The CDF of Y1 given Y2 = y2 is

FY1|Y2=y2(y1) = FECq
(B1 − Ψ12Ψ

−1
22 B2;Ψ11.2, g

(q)

B⊤

2 Ψ
−1
22 B2

),

where B1 = (B1, . . . , Bq)
⊤, B2 = (Bq+1, . . . , Bm)⊤, Ψ11.2 = Ψ11 − Ψ12Ψ

−1
22 Ψ21, with

Bj = B(yj;αj, µj), for j = 1, . . . , m as given in (1.6) and

g(q)
w (s) =

g(m)(s+ w)

g(m−q)(w)
;
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(c) The PDF of Y1|Y2 = y2 is

fY1|Y2=y2
(y1) = fECq

(B1 − Ψ12Ψ
−1
22 B2,Ψ11.2, g

(q)

B⊤

2 Ψ
−1
22 B2

)
q∏

j=1

b(yj ;αj, µj).

See Appendix 1 for the proof of this theorem.

From (2.2), if g(m) is the m-variate normal or t kernel, then the m-variate log-BS or

log-BS-t distribution is obtained, which is denoted by Y ∼ log-BSm(α, µ, Ψ) or Y ∼
log-BS-tm(α, µ, Ψ, ν), respectively. Thus, from Table 1.1, the corresponding PDFs are

fY (y;α,µ,Ψ) =
1

[2π]
m
2 |Ψ| 1

2

exp
(

−1

2
B⊤

Ψ
−1B

) m∏

j=1

1

αj
cosh

(
yj − µj

2

)
, y ∈ R

m,

fY (y;α,µ,Ψ, ν) =
Γ(ν+m

2
)

Γ(ν
2
)[νπ]

m
2 |Ψ| 1

2

[
1 +

B⊤
Ψ

−1B

ν

]−
[ν+m]

2 m∏

j=1

1

αj

cosh
(
yj − µj

2

)
, y ∈ R

m,

respectively, where B is defined in (2.1).

From property (D2), for θ = (α⊤,µ⊤, svec(Ψ)⊤)⊤, with ‘svec’ denoting vectorization of

a symmetric matrix, we obtain the Mahalanobis distance (MD) for the case i as

MDi(θ) = B⊤(Yi;α,µ)Ψ−1B(Yi;α,µ), i = 1, . . . , n. (2.5)

Based on Lange et al. (1989) and Lange and Sinsheimer (1993), we have:

(i) MDi(θ) ∼ χ2(p), if g(p) is the multivariate normal kernel; and

(ii) MDi(θ)/p ∼ F(p, ν), if g(p) is the multivariate t kernel, where F(p, ν) denotes the Fisher

distribution with ν DFs in the numerator and p in the denominator. Note that MDi for the

multivariate t kernel is known as modified or generalized MD.

When evaluated at the ML estimate of θ, the MD for the case i defined in (2.5) is useful

for assessing multivariate outliers and evaluating the goodness of fit in m-variate log-GBS

distributions.

Let S ∈ R
m be a random vector following an m-variate t distribution with ν ∈ R+ DFs

and scale matrix Σ. Note that, similarly to (1.12), Σ is equal to the correlation matrix Ψ

(rk(Σ) = rk(Ψ) = m). Thus, we use the notation S ∼ tm(0m×1,Ψ, ν). Then, analogously

to the univariate case given in (1.7), we have

S = U−1/2Z ∼ tm(0,Ψ, ν), where Z ∼ Nm(0,Ψ), and U ∼ Gamma

(
ν

2
,
ν

2

)
, (2.6)

with U being independent of the elements of Z = (Z1, . . . , Zm)⊤. Based on (2.6), S|U =

u ∼ Nm(0, [1/u]Ψ); see McLachlan and Krishnan (1997, p. 73). Therefore, from (1.8) and

(2.6), Y = (Y1, . . . , Ym)⊤ ∼ log-BS-tm(α,µ,Ψ, ν), with

Yj = µj + 2 arcsinh
(
αj Zj

2U1/2

)
, for j = 1, . . . , m.
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Note that:

(E1) Y |U = u ∼ log-BSm(u−1/2α, µ, [ 1
u
]Ψ);

(E2) U |Y = y ∼ Gamma
(

ν+m
2

, ν+B⊤
Ψ

−1B
2

)
, with B as given in (2.1);

(E3) E[U |Y = y] = [ν+m]
[ν+B⊤Ψ−1B]

;

(E4) E[U2|Y = y] = [ν+m][ν+m+2]
[ν+B⊤Ψ−1B]2

.

Note that (E4) is useful for implementing the EM algorithm in the ML estimation of the

multivariate log-BS-t parameters; see Lange et al. (1989), McLachlan and Krishnan (1997),

Balakrishnan et al. (2009), and Paula et al. (2012). Random vectors from m-variate log-BS

and log-BS-t distributions can be generated using the Algorithms 1 and 2, respectively; see

Leiva et al. (2008b) for generation of GBS and log-GBS numbers.

Algorithm 1 Generator of random vectors from m-variate log-BS distributions.

1: Make a Cholesky decomposition of Ψ as Ψ = LL⊤, where L is a lower triangular matrix

with real and positive diagonal entries.

2: Generate m independent standard normal random numbers, say, W = (W1, . . . ,Wm)⊤.

3: Compute Z = LW = (Z1, . . . , Zm)⊤.

4: Obtain Y with elements Yj = µj + 2 arcsin(αj Zj/2) for j = 1, . . . , m.

5: Repeat Steps 1 to 4 until the required vector of data is generated.

Algorithm 2 Generator of random vectors from m-variate log-BS-t distributions.

1: Repeat Steps 1 to 3 of Algorithm 1.

2: Generate random numbers from U ∼ Gamma(ν/2, ν/2).

3: Obtain Y with elements Yj = µj + 2 arcsin(αj Zj/(2U
1/2)), for j = 1, . . . , m.

4: Repeat Steps 1 to 5 until the required vector of data is generated.

Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 show contours of the PDFs for the bivariate log-

BS and log-BS-t distributions, denoted log-BS2 and log-BS-t2, respectively, for ψ = 0.0,

α = (α1, α2)
⊤, with α1 = 0.75, 1.0, 2.0, 3.0, α2 = 0.75, 1.0, 2.0, 3.0, µ = (0, 0)⊤ and ν = 4,

and Figures 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12 for ψ = 0.5 and the same values for α,

µ and ν. From these figures, note that the log-BS-t2 distribution has heavier tails than

the log-BS2 and a more asymmetric behavior as αl decreases, for l = 1, 2, 3, 4. Note that

values for αl > 2 provide bimodality in log-GBS2 distributions as in the univariate case;

see Figure 1.1, Leiva et al. (2007) and Barros et al. (2008). In addition, for αl = 4 PDFs of



Essays on multivariate generalized Birnbaum-Saunders methods 31

log-GBS distributions present four-modality. However, a number of studies have reported

that this situation is unusual when fatigue data are analyzed, such is in the case of the

data analysis reported in the part of application of this work provided in Section 2.6; see

Birnbaum and Saunders (1969), Rieck and Nedelman (1991) and Lepadatu et al. (2005).

2.4 Multivariate GBS log-linear regression model

Consider a multivariate extension of the BS log-linear regression model defined in (1.4)

as

Y = Xβ +E, (2.7)

where Y = (Yij) ∈ R
n×m is the log-response matrix, andX = (xis) ∈ R

n×p the model matrix

of rank p containing the values of p regressors. Here, X and Y are linked by a coefficient

matrix β = (βsj) = (β1, . . . ,βm) ∈ R
p×m to be estimated, and E = (εij) ∈ R

n×m is the error

matrix. Also, in the model given in (2.7), let Y ⊤
i , x⊤

i and ε⊤
i be the ith rows of Y , X and

E, respectively. Thus, we can write

Yi = µi + εi = β⊤xi + εi, i = 1, . . . , n, (2.8)

where ε1, . . . , εn are independently and identically distributed (IID) log-GBSm(α1m×1, 0m×1,

Ψ, g(m)), with 1m×1 being a vector of ones; see Liu and Rubin (1995) and Díaz-García et al.

(2003).

From (2.8), note that the shape parameter (α) is assumed to be the same throughout the

different log-responses and individuals, such as in Rieck and Nedelman’s univariate model.

This assumption could be restrictive, because the different responses might have different

units of measurement. Then, two aspects about this assumption must be pointed out as

follows:

(1) Location and scale parameters have the same unit of measurement than the corresponding

RV, facilitating their interpretation. However, meaning of shape parameters are distribution-

dependent. In the case of the BS distribution, its shape parameter is dimensionless due to

its genesis from material fatigue. This is because the BS shape parameter is expressed as

a ratio between two parameters related to another RV used to generate the RV with BS

distribution, causing it to be dimensionless; see Birnbaum and Saunders (1969). Thus, dif-

ferent units of measurement for the responses should not affect the shape of their marginal

distributions.

(2) A distinct aspect to that pointed out in (1) is that the BS shape parameter changes

with individuals, such as the median (in the original scale) or the mean (in the log-scale) to
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Figure 2.1: PDF and its contour plot for the log-BS2 distribution with ψ = 0.0 and µ = (0, 0)⊤.

(a) α = (0.75, 0.75)⊤
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Figure 2.2: PDF and its contour plot for the log-BS2 distribution with ψ = 0.0 and µ = (0, 0)⊤.

(a) α = (2, 1)⊤
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Figure 2.3: PDF and its contour plot for the log-BS2 distribution with ψ = 0.0 and µ = (0, 0)⊤.

(a) α = (3, 1)⊤
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Figure 2.4: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.0, µ = (0, 0)⊤ and

ν = 4.

(a) α = (0.75, 0.75)⊤
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Figure 2.5: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.0, µ = (0, 0)⊤ and

ν = 4.

(a) α = (2, 1)⊤
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Figure 2.6: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.0, µ = (0, 0)⊤ and

ν = 4.

(a) α = (3, 1)⊤
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Figure 2.7: PDF and its contour plot for the log-BS2 distribution with ψ = 0.5 and µ = (0, 0)⊤.

(a) α = (0.75, 0.75)⊤
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Figure 2.8: PDF and its contour plot for the log-BS2 distribution with ψ = 0.5 and µ = (0, 0)⊤.

(a) α = (2, 1)⊤
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Figure 2.9: PDF and its contour plot for the log-BS2 distribution with ψ = 0.5 and µ = (0, 0)⊤.

(a) α = (3, 1)⊤
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Figure 2.10: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.5, µ = (0, 0)⊤

and ν = 4.

(a) α = (0.75, 0.75)⊤
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Figure 2.11: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.5, µ = (0, 0)⊤

and ν = 4.

(a) α = (2, 1)⊤
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Figure 2.12: PDF and its contour plot for the log-BS-t2 distribution with ψ = 0.5, µ = (0, 0)⊤

and ν = 4.

(a) α = (3, 1)⊤
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be modeled in this chapter. Empirical evidence has demonstrated that often the BS shape pa-

rameter does not change; see the data analysis reported in Section 2.6, Birnbaum and Saunders

(1969), and Leiva et al. (2014b). A test for homogeneity of the BS shape parameter in uni-

variate BS regression models was derived by Xie and Wei (2007). However, empirical evi-

dence with real-world fatigue data used in that work proved that the BS shape parameter

does not change with the specimens, which supports our assumption. To derive a test for

homogeneity of shape parameters in multivariate BS regression models can be the subject

of another study, as it is beyond the scope of the present work. We recall the multivariate

regression model here proposed allows us to describe changes in the location, such as in

Rieck and Nedelman’s univariate model.

Let Y = (Y1, . . . ,Yn)⊤ be a sample from a multivariate log-GBS distribution with

E[Yi] = β⊤xi (multivariate GBS log-linear regression structure), and y = (y1, . . . ,yn)⊤

their observations. Then, the log-likelihood function for θ = (α, vec(β)⊤, svec(Ψ)⊤)⊤, with

‘vec’ denoting the vectorization of a matrix, is

ℓ(θ;y) =
n∑

i=1

log(fECm
(φi;Ψ, g

(m))) +
n∑

i=1

m∑

j=1

log(ξij), (2.9)

where φi = (φi1, . . . , φim)⊤, with

φij = B(yij ;α, µij) =

[
2

α

]
sinh

(
yij − µij

2

)
and ξij = 2 b(yij;α, µij) =

[
2

α

]
cosh

(
yij − µij

2

)
,

with µij = β⊤
j xi, for i = 1, . . . , n, j = 1, . . . , m. From (2.9), with g(m) being the m-variate t

kernel, the log-likelihood function for θ is

ℓ(θ;y) = c1 − n

2
log(|Ψ|) −

[
ν +m

2

] n∑

i=1

log(ν + φ⊤
i Ψ

−1φi) +
n∑

i=1

m∑

j=1

log(ξij), (2.10)

where c1 is a constant independent of θ, and ξij,φi are given in (2.9). From (2.10), note

that it is not possible to find a closed form solution for the ML estimate of θ. Note that

the parameter θ does not involve the DFs ν of the multivariate log-BS-t distribution, which

must be fixed. Thus, we work with a profile type log-likelihood function. As pointed by

Lucas (1997), the influence function based on the t distribution is bounded only when ν is

fixed, producing robust parameter estimates. However, it is unbounded if ν is estimated by

the ML method, indicating non-robustness. This result is also valid for the estimation of

the corresponding standard error (SE); see Paula et al. (2012) for the case of the univariate

BS-t log-linear regression model.

For the multivariate BS log-linear regression model, the log-likelihood function for θ

can be analogously constructed as in (2.10). Despite its mathematically complex form,
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the log-likelihood function given in (2.10) could be directly maximized with a numerical

procedure; see MacDonald (2014). The author pointed out that, having excellent numerical

optimizers now available freely, one does have reasons to avoid, when it corresponds, the

direct maximization of a likelihood function. However, we decide to use, instead of this

direct maximization, the EM algorithm due to the following. This algorithm comprises the

expectation (E) and maximization (M) steps in each iteration. It has several advantages

associated with the proposed multivariate regression model, related to properties of the t

distribution given in (2.6) and (E1)-(E4), which are shared by the log-BS-t distribution, and

transferred to the mentioned regression model. These advantages are:

(i) The EM algorithm can be easily implemented from a hierarchical structure based on the

representation given in (2.6), allowing us to find an estimation method for both log-BS-tm

and log-BSm cases simultaneously;

(ii) Only by its E-step (and not from the direct maximization), it is possible to show the

inherent robustness of the estimation method proposed for our models; and

(iii) Under the multivariate BS-t model, its M-step is equivalent to the direct maximization

of the likelihood function under the multivariate BS model (normal kernel). These three

points are described in detail below.

Again let Y = (Y1, . . . ,Yn)⊤ be a sample from the multivariate log-BS-t distribution and

y = (y1, . . . ,yn)⊤ their observations. In addition, let U = (U1, . . . , Un)⊤ be the latent vector

and u = (u1, . . . , un)⊤ their fixed values, such that Y (c) = (Y
...U) is the complete sample,

with y(c) = (y,u) being the complete-data vector. Then, the complete-data log-likelihood

function for θ is given by

ℓ(c)(θ) = ℓ(c)(θ;y(c)) = c2 − n

2
log(|Ψ|) −

n∑

i=1

u2
i

2
φ⊤

i Ψ
−1φi +

n∑

i=1

m∑

j=1

log(ξij), (2.11)

where c2 is a constant independent of the parameter vector θ, and ξij,φi are as given in

(2.9), for i = 1, . . . , n, j = 1, . . . , m. Now, from property (E1), we have

Yi|Ui = ui
ind∼ log-BSm

(
1

u
1/2
i

α1m×1,β
⊤xi,

[
1

ui

]
Ψ

)
,

Ui
iid∼ Gamma

(
ν

2
,
ν

2

)
, i = 1, . . . , n, (2.12)

where
ind∼ denotes that the components of the random vector are independent, whereas

iid∼
denotes IID RVs. Thus, based on (2.12) and properties (E2)-(E4),

E[U2
i |Y = y] =

[ν +m][ν +m+ 2]

[ν + φ⊤
i Ψ

−1φi]2
, i = 1, . . . , n. (2.13)
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Therefore, the expected value of ℓ(c)(θ;Y (c)) given from (2.11), conditional on Yi = yi, may

be defined as a function of θ by

Q(θ) = E[ℓ(c)(θ;Y (c))|Y = y] = c2 − n

2
log(|Ψ|)− 1

2

n∑

i=1

wiφ
⊤
i Ψ

−1φi +
n∑

i=1

m∑

j=1

log(ξij), (2.14)

where wi = ū2
i = E[U2

i |Yi = yi] given in (2.13) acts as a weight function, such as in the

univariate case, allowing this estimation procedure to be robust; see Paula et al. (2012).

Algorithm 3 describes an EM approach to estimate the parameters of the model given in

(2.7) with t kernel, maximizing the expected value given in (2.14) with respect to θ. Because

this expected value is function of θ, Algorithm 3 needs a starting value θ̂(0) to initiate the

maximization. However, it reduces to finding a starting value for wi given in (2.14) as

ŵ
(0)
i = E[U2

i |Yi = yi; θ̂
(0)] =

[νk +m][νk +m+ 2]
[
νk + φ̂

(0)⊤
i {Ψ̂(0)}−1φ̂

(0)
i

]2 , (2.15)

where νk is a value of ν to be fixed and φ̂
(0)
i has elements

φ̂
(0)
ij =

[
2

α̂(0)

]
sinh

(
yij − µ̂

(0)
ij

2

)
,

which must be evaluated at initial values for α and µ. Then, an initial value for µ can be

obtained as µ̂
(0)
ij = β̂

(0)⊤
j xi, with β̂

(0)
j = β̃j being computed from the corresponding vector of

the ordinary least square estimate β̃ = (X⊤X)−1X⊤Y . In addition, from the ML method

for the univariate BS log-linear model, an initial value for α may be obtained as

α̂(0) =
1

m

m∑

j=1

α̂
(0)
j =

1

m

m∑

j=1


4

n

n∑

i=1

sinh2


yij − µ̂

(0)
ij

2






1/2

. (2.16)

Furthermore, to compute the weight function given in (2.15), we need the matrix of start-

ing values Ψ̂
(0) = (ψ̂

(0)
kl ). Based on Property (D1), expressions in (2.3) and (2.16), and

analogously to Kundu et al. (2013), we have

ψ̂
(0)
kl =

[
4

n

] [
α̂

(0)
k α̂

(0)
l

]−1
n∑

i=1

sinh

(
yik − µ̂

(0)
ik

2

)
sinh

(
yil − µ̂

(0)
il

2

)
.

Note that if U = 1 in Algorithm 3, that is, the RV U used in the representation given in

(2.12) is degenerate, then this algorithm also is useful for the multivariate BS regression

model.

Since the EM algorithm is an iterative procedure, the function Q(θ) given in (2.14) to be

maximized must be evaluated at a previous value to the rth iteration of θ, inducting the nota-

tionQ(θ|θ̂(r−1)). Algorithm 3 must be iterated until reaching convergence, for example, when
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|ℓ(c)(θ̂ (r))−ℓ(c)(θ̂ (r−1))| < 10−5, where θ̂ (r) is the current ML estimate of θ and θ̂ (r−1) its pre-

vious estimate, with ℓ(c) being given in (2.11); see McLachlan and Krishnan (1997, pp. 21-23).

Note that, in some cases, the EM algorithm does not admit an analytical solution in its E-step

or M-step. Then, it becomes necessary to use iterative methods for the computation of the

expectation or for the maximization. For variants of the EM algorithm based on approxima-

tions of its E-step or M-step, which preserve its convergence properties, see Meng and Rubin

(1993). In our case, in the M-step of Algorithm 3, an iterative method for solving non-

linear optimization problems is needed. For instance, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) quasi-Newton method can be used; see Nocedal and Wright (1999), Lange (2000),

Mittelhammer et al. (2000), Paula et al. (2012) and Leiva et al. (2014d). The BFGS method

is implemented in the R software by the functions optim and optimx; see www.R-project.org

and R-Team (2016).

Algorithm 3 EM approach for estimating the multivariate BS-t regression model parameters

E-step. Given θ̂(r−1), compute Q(θ|θ̂(r−1)), for r = 1, 2, . . ., which reduces to compute ŵ
(r)
i

from (2.14);

M-step. Find θ̂(r) = arg maxθQ(θ|θ̂(r−1)), for r = 1, 2, . . ., where Q(θ|θ̂(r−1)) is given in

(2.14), leading to the iterative procedure:

α̂(r) =
[

4

nm

n∑

i=1

ŵ
(r−1)
i ̺̂(r−1)⊤

i

{
Ψ̂

(r−1)
}−1 ̺̂(r−1)

i

]1/2

,

Υ̂
(r) =

n∑

i=1

ŵ
(r−1)
i φ̂

(r−1)
i φ̂

(r−1)⊤
i ,

Ψ̂
(r) = diag(1/α̂(r), . . . , 1/α̂(r)) Υ̂(r) diag(1/α̂(r), . . . , 1/α̂(r)),

0 =
1

2

n∑

i=1

D(X)
[
ŵ

(r−1)
i D(ξ̂

(r−1)
i )

{
Ψ̂

(r−1)
}−1
φ̂

(r−1)
i −D({ξ̂ (r−1)

i }−1)φ̂
(r−1)

i

]
,

where ̺̂(r−1)
i = [α̂(r−1)/2]φ̂

(r−1)
i , with φ̂

(r−1)
i = (φ̂

(r−1)
i1 , . . . , φ̂

(r−1)
im )⊤, whose elements

are φ̂
(r−1)
ij = [2/α̂(r−1)] sinh([yij − µ̂

(r−1)
ij ]/2), D(ξ̂

(r−1)
i ) = diag(ξ̂

(r−1)
i1 , . . . , ξ̂

(r−1)
im ), with

ξ̂
(r−1)
ij = [2/α̂(r−1)] cosh([yij − µ̂

(r−1)
ij ]/2), D({ξ̂ (r−1)

i }−1) = diag(1/ξ̂
(r−1)

i1 , . . . , 1/ξ̂
(r−1)

im ), for

i = 1, . . . , n, j = 1, . . . , m, and D(X) is a block diagonal matrix with elements x⊤
i .

www.R-project.org
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2.5 Simulation study

We evaluate the performance of the ML estimators with simulations based on the MC

method. For this simulation study, we consider the multivariate log-linear regression model

Yi = µi + εi (2.17)

= β⊤xi + εi

=


 β11 β12 β13

β21 β22 β23




⊤ 
 1

xi2


+ εi, i = 1, . . . , n,

where εi = (εi1, εi2, εi3) ∼ log-GBS3(α13×1, 03×1,Ψ3×3, g
(3)), with g(3) being the 3-variate

normal or t kernel. Note that µi = (µij), where µij = β1j + β2jxi2.

The true parameter values are

α = 0.5, β =


 5.0 1.0 1.0

4.0 2.0 0.5


 , Ψ =




1.0 0.8 0.3

0.8 1.0 0.5

0.3 0.5 1.0


 ,

whereas the sample size n ∈ {20, 50, 100}. The number of MC replications is 5,000. In each

of these replications, we generate the matrix of observations y = (yij), for i = 1, . . . , n and

j = 1, 2, 3. Specifically, we use (2.17), algorithms 1 and 2 and the representations:

(i) yij = β1j + β2jxi2 + 2 arcsin(αwij/2) given from (1.5) for the normal case, with wij being

a value generated from W = (W1,W2,W3) ∼ N3(0,Ψ); or

(ii) yij = β1j + β2jxi2 + 2 arcsin(α zij/[2 u
1/2
i ]) given from (1.8) for the t case, with zij being

a value generated from Z = (Z1, Z2, Z3)
⊤ ∼ N3(0,Ψ) and ui a value generated from U ∼

Gamma(ν/2, ν/2), with ν = 4.

In addition, the values of the regressor xi2 are obtained from a uniform distribution in the

interval (0, 1). Then, we fit the model given in (2.17) using Algorithm 3, which we have

implemented in R code. For each parameter and sample size, we report the empirical mean,

relative bias (RB) in absolute value, and root of the mean squared error (RMSE) of the ML

estimators in Tables 2.1-2.2, for BS3 and BS-t3 log-linear regression models. In this table,

observe that the ML estimators of the parameters α, β, and Ψ present good statistical

properties as n increases, that is, the RB and RMSE values decrease as the sample size

increases, as expected, for the true values assumed for these parameters. In addition, note

that the estimators of α and β are more efficient under the BS-t3 model for all sample sizes

considered, but the estimator of Ψ is slightly more efficient under the BS3 model.
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Table 2.1: Empirical mean, RB, and RMSE for the indicated estimator, n, and model with

simulated data.

n
20 50 100 20 50 100

log-BS3 model

α̂ β̂01

True value 0.5000 0.5000 0.5000 5.0000 5.0000 5.0000
Mean 0.4544 0.4869 0.4976 4.9795 4.9916 4.9964
RB 0.0912 0.0262 0.0005 0.0041 0.0017 0.0007
RMSE 0.0878 0.0692 0.0599 0.2958 0.1734 0.0893

β̂02 β̂03

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.9834 0.9926 0.9952 0.9823 0.9875 0.9926
RB 0.0166 0.0074 0.0048 0.0177 0.0125 0.0074
RMSE 0.2906 0.1738 0.0886 0.2962 0.1716 0.0908

β̂11 β̂12

True value 4.0000 4.0000 4.0000 2.0000 2.0000 2.0000
Mean 4.0598 4.0400 4.0346 2.0562 2.0420 2.0392
RB 0.0149 0.0100 0.0087 0.0281 0.0210 0.0196
RMSE 0.5090 0.2991 0.1607 0.5012 0.3010 0.2110

β̂13 ψ̂12

True value 0.5000 0.5000 0.5000 0.8000 0.8000 0.8000
Mean 0.5563 0.5463 0.5425 0.7873 0.7925 0.7960
RB 0.1126 0.0927 0.0851 0.0158 0.0094 0.0051
RMSE 0.5155 0.2947 0.2114 0.0936 0.0562 0.0287

ψ̂13 ψ̂23

True value 0.3000 0.3000 0.3000 0.5000 0.5000 0.5000
Mean 0.2970 0.3036 0.3060 0.4978 0.5054 0.5080
RB 0.0100 0.0119 0.0201 0.0044 0.0108 0.0161
RMSE 0.2100 0.1293 0.0928 0.1771 0.1070 0.0761

Source: From the author.
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Table 2.2: Empirical mean, RB, and RMSE for the indicated estimator, n, and model with

simulated data.

n
20 50 100 20 50 100

log-BS-t3 model

α̂ β̂01

True value 0.5000 0.5000 0.5000 5.0000 5.0000 5.0000
Mean 0.4521 0.4910 0.4925 5.0073 5.0062 5.0068
RB 0.0958 0.0179 0.0150 0.0015 0.0012 0.0014
RMSE 0.0794 0.0522 0.0382 0.0429 0.0284 0.0233

β̂02 β̂03

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.0072 1.0060 1.0010 1.0056 1.0040 1.0050
RB 0.0072 0.0060 0.0010 0.0056 0.0040 0.0050
RMSE 0.0427 0.0286 0.0229 0.0426 0.0277 0.0235

β̂11 β̂12

True value 4.0000 4.0000 4.0000 2.0000 2.0000 2.0000
Mean 3.9843 3.9893 3.9946 1.9840 1.9876 1.9898
RB 0.0039 0.0027 0.0013 0.0080 0.0062 0.0051
RMSE 0.0753 0.0571 0.0380 0.0751 0.0406 0.0400

β̂13 ψ̂12

True value 0.5000 0.5000 0.5000 0.8000 0.8000 0.8000
Mean 0.4917 0.4988 0.4919 0.7777 0.7956 0.7959
RB 0.0166 0.0023 0.0162 0.0279 0.0056 0.0051
RMSE 0.0761 0.0547 0.0398 0.1008 0.0583 0.0406

ψ̂13 ψ̂23

True value 0.3000 0.3000 0.3000 0.5000 0.5000 0.5000
Mean 0.2723 0.2905 0.2945 0.4823 0.4972 0.4979
RB 0.0924 0.0315 0.0183 0.0354 0.0057 0.0041
RMSE 0.2184 0.1385 0.1016 0.1831 0.1120 0.0842

Source: From the author.
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2.6 Data analysis

Die fracture is a typical metal fatigue caused by cyclic stress in the course of the service

life cycle of dies (die lifetime). Although this fatigue could be mainly determined by die

lifetime, other RVs can also be considered as responses to this fatigue. The objective of

the present data analysis is to model fatigue in a metal forming process. We consider as

responses to:

(i) Von Mises stress (T1, in Newton/millimeter2–N/mm2–),

(ii) Maximum deformation (T2, dimensionless),

(iii) Manufacturing force (T3, in Newton –N–), and

(iv) Die lifetime (T4, in number of cycles).

The regressors that could affect these responses are:

(v) Friction coefficient (X1, dimensionless),

(vi) Angle of die (X2, in o), and

(vii) Work temperature (X3, in oC).

We illustrate our multivariate models with real-world fatigue data associated with these

variables taken from Lepadatu et al. (2005); see data in Table 6.1 of Appendix 6.3. The

main advantage of a multivariate regression model over marginal regressions is that it takes

into account the correlation between the responses. As mentioned, several responses related

to metal fatigue could be interacting in the process cycle. Then, this interaction must be

studied by means of a correlation statistical analysis. It must provide information about if

correlation must be considered in the modeling through a multivariate model. Otherwise,

several marginal models, one for each response, can be considered. However, analyzing

these variables individually, if statistical correlations between them exist, may yield wrong

prediction. For more details about this issue, see Lepadatu et al. (2005).

First, we explore the data computing (linear) correlations between each pair from the set

{T1, T2, T3, T4, X1, X2, X3} to justify the use of multivariate models, to discard any collinear-

ity among X1, X2, X3, and to propose log-linear regression models. Note that some log-linear

relationships are detected between some responses T1, T2, T3, T4 and regressors X1, X2, X3.

Therefore, linear relationships can be considered between some log-responses Yj = log(Tj)

and X1, X2, X3, for j = 1, 2, 3, 4. Figure 2.13 displays the scatter-plots for all the log-

responses and regressors. From this figure we detect that:

(i) No correlations exist between each pair from the set {X1, X2, X3}, discarding any possible

collinearity problem in our model;

(ii) Large and reasonable correlations between each pair from the set {Y1, Y2, Y3, Y4}, justi-

fying the use of multivariate distributions;
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Figure 2.13: Scatter-plots with their corresponding correlations for the indicated variables.
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(iii) Large, reasonable and small correlations between (X1, Y2), {(X1, Y1), (X1, Y3)}, and

(X1, Y4), respectively;

(iv) Reasonable and small correlations between (X2, Y2) and {(X2, Y1), (X2, Y3), (X2, Y4)},

respectively;
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(v) Large and small correlations between {(X3, Y1), (X3, Y3), (X3, Y4)} and (X3, Y2), respec-

tively; all which support the use of a log-linear regression model. This should be confirmed

by the inferential analysis.

Second, based on this exploratory data analysis, arguing the fatigue principles of the BS

distribution, and considering the robust estimation in BS-tmodels, to describe {T1, T2, T3, T4}
in function of {X1, X3} (because X2 is discarded due to its small correlations with the res-

ponses), we propose the multivariate log-linear regression model

Yi = β⊤xi + εi, i = 1, . . . , n,

where εi = (εi1, εi2, εi3, εi4)
⊤ ∼ log-GBS4(α14×1, 04×1,Ψ4×4, g

(4)), with g(4) being the 4-

variate normal or t kernel. We estimate the parameters of the multivariate BS and BS-t

log-linear regression models via the EM approach described in Algorithm 3. Starting values,

θ̂(0) say, used in the maximization procedure are α̂(0) = 0.13996,

β̃ =




10.4663 0.0075 15.0101 6.1768

3.5917 4.3166 4.3798 0.7771

−0.0055 0.0001 −0.0058 0.0052


 ,

Ψ̂
(0) =




1.0000 0.2416 0.9628 −0.4843

0.2416 1.0000 0.2427 0.5425

0.9628 0.2427 1.0000 −0.3760

−0.4843 0.5425 −0.3760 1.0000




whereas νk = 4; the interested reader is referred to Barros et al. (2008) and Paula et al.

(2012) and references therein for a justification about this value. We have verified that

νk = 4 corresponds to the value that maximizes the log-likelihood function within a range

of values for ν.

As mentioned, in the iterations of M-step, we maximize Q(θ|θ̂(r−1)) with the BFGS pro-

cedure, because a non-linear optimization problem is presented. Note that, when comparing

the multivariate BS and BS-t log-linear regression models, the maximized log-likelihood value

is equivalent to using an information criteria (such as Akaike or Schwartz), because the value

of ν is assumed to be known and, therefore, both models (BS and BS-t) have the same num-

ber of parameters. For the data under analysis, the maximum values of the log-likelihood

function are 120.297 and 115.761 for the BS4 and BS-t4 models, respectively, indicating,

according this criterion, that the BS4 log-linear regression model is more appropriate to

describe these data.

GBSm log-linear regression model checking can be conducted using the MD, given by

MDi(θ) = φ⊤
i Ψ

−1φi, for i = 1, . . . , n, where φi is defined in (2.9). Based on property (D2)
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and (2.5), note that this distance follows the χ2(m = 4) or 4F(m = 4, ν = 4) distribution

if g(4) is the 4-variate normal or t kernel, respectively. We plug the ML estimator θ̂ in

MDi(θ), obtaining MDi(θ̂), which has asymptotically the same distribution of MDi(θ); see

Lange et al. (1989). We use the Wilson-Hilferty (WH) approximation for transforming to

normality this distance; see Ibacache-Pulgar et al. (2014) and references therein. The WH

approximation, based on MDi(θ̂), for normal kernel is given by

ϑN
i =

[(
MDMi

(θ̂)

m

)1/3

−
(
1 − 2

9m

)]

(2
9
)1/2

·∼ N(0, 1), i = 1, . . . , n, (2.18)

where
·∼ means “asymptotically distributed”. For t kernel the WH approximation is given

by

ϑt
i =

[(
1 − 2

9m

)(
MDi(θ̂)

m

)1/3

−
(
1 − 2

9m

)]

[(
2

9m

)(
MDi(θ̂)

m

)2/3

+
(

2
9m

)]1/2

·∼ N(0, 1), i = 1, . . . , n. (2.19)

Then, we check normality of the transformed distances with the WH approximation us-

ing goodness-of-fit (GOF) techniques. Algorithm 4 details how to construct probability-

probability (PP) plots and compute their acceptance bands associated with the Kolmogorov-

Smirnov (KS) statistic for testing normality; for more details, see Barros et al. (2014) and

Castro-Kuriss et al. (2014).

Algorithm 4 PP-plots with acceptance bands for testing normality.

1: Consider the data y1, . . . , yn and order them as y1:n, . . . , yn:n.

2: Estimate the mean and standard deviation (SD) of the normal distribution by using

ȳ =
∑n

j=1 yj/n and sy = [
∑n

j=1{ŷj − ȳ}2/{n− 1}]1/2, respectively.

3: Compute oj:n = Φ([yj:n − ȳ]/sy), for j = 1, . . . , n, where Φ is the N(0, 1) CDF.

4: Draw the PP-plot with points qj:n = [2j − 1]/[2n] versus oj:n, for j = 1, . . . , n.

5: Specify a significance level 1 − η.

6: Construct acceptance bands according to (max{q−dη+1/[2n], 0},min{q+dη−1/[2n], 1}),

where dη is the 100 × ηth percentile of the KS distribution and q is a continuous version

of qj:n.

7: Determine the p-value of the KS statistic and reject the null hypothesis of a normal

distribution for the specified significance level based on this p-value.

8: Corroborate coherence between steps 6 and 7.
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Figure 2.14 shows PP-plots with acceptance bands of a 10% significance level for MD

transformed to normality with the WH approximation by using the fatigue data under

analysis. From this figure, we detect that the BS4 model provides a better fit than the BS-t4

model, which is corroborated by the p-values 0.248 and 0.074 for both models, respectively,

of the KS test associated with the PP-plot. Note that some points are outside the bands in

the plot for the BS-t4 model. Therefore, we can conclude that the BS4 log-linear regression

model provided a better fit to our data.

Figure 2.14: PP-plot with KS acceptance bands at 10% for transformed MDs obtained from metal

fatigue data under BS4 and BS-t4 models.
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Source: From the author.

Table 2.3 contains the model parameter estimates, the estimated SEs of the correspond-

ing ML estimators for both models, and p-values of each t-test. As usual, we use the root of

the diagonal elements of the observed Fisher information inverse matrix to approximate the

corresponding estimated SEs; see Efron and Hinkley (1978) and Paula et al. (2012). From

this table, and the at 1% significance level, we arrive at the following conclusions:

(i) Most of the estimated correlations from the BS4 and BS-t4 models are statistically sig-

nificant, thus corroborating our conjectures from the exploratory analysis.

(ii) The coefficients β1 and β2 must be discarded in the prediction of T2, but both of them

must be considered for T1, T3, and T4. In addition, β3 must also be discarded in the predic-
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tion of T4, but it must be considered for T1, T2, and T3. Thus, we obtain a practical model

to predict metal forming processes simultaneously describing T1, T2, T3, T4 as a function of

X1, X3.

(iii) We can use the estimated regression coefficients to find the ML estimates of the scale

parameters (medians) λij of the BS distribution, which along with the ML estimate of its

shape parameter α can be useful to determine the reliability of the metal forming process or

to evaluate its failure rate.

Table 2.3: ML estimate of the indicated parameter and model with its estimated SE and p-value

for metal fatigue data.

BS4 log-linear model BS-t4 log-linear model

Parameter Estimate SE p-value Estimate SE p-value

ψ12 0.21256 0.29848 0.47637 0.29631 0.39670 0.45511

ψ13 0.94767 0.06221 < 0.0001 0.96941 0.13193 < 0.0001

ψ14 -0.28525 0.09196 0.00192 -0.24120 0.08522 0.00465

ψ23 0.25966 0.11558 0.02467 0.39877 0.11283 0.00041

ψ24 0.47697 0.13588 0.00045 0.21981 0.33568 0.51259

ψ34 -0.39672 0.13703 0.00379 -0.31354 0.12867 0.00391

β11 10.59099 0.08575 < 0.0001 10.43469 0.08388 < 0.0001

β12 0.02878 0.11467 0.80184 0.03759 0.06513 0.56388

β13 15.12231 0.09023 < 0.0001 15.03395 0.13166 < 0.0001

β14 6.09211 0.27178 < 0.0001 6.14291 0.15007 < 0.0001

β21 -0.00572 0.00001 < 0.0001 -0.00550 0.00005 < 0.0001

β22 0.00006 0.00012 0.58437 0.00005 0.00005 0.31731

β23 -0.00598 0.00003 < 0.0001 -0.00586 0.00005 < 0.0001

β24 0.00529 0.00027 < 0.0001 0.00522 0.00016 < 0.0001

β31 3.59670 0.89320 < 0.0001 3.58761 0.77892 < 0.0001

β32 4.29974 0.49856 < 0.0001 4.30641 0.58762 < 0.0001

β33 4.37982 0.90850 < 0.0001 4.38079 0.71917 < 0.0001

β34 0.77876 1.20388 0.51771 0.77169 1.08114 0.47537

α 0.14207 0.01006 – 0.14000 0.03914 –

Source: From the author.
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2.7 Concluding remarks

In this chapter, we have proposed new multivariate generalized Birnbaum-Saunders re-

gression models to describe metal fatigue data. Specifically, we have derived a new mul-

tivariate logarithmic generalized Birnbaum-Saunders distribution. Then, based on it, we

have formulated multivariate generalized Birnbaum-Saunders regression models, which can

be useful for predicting metal forming processes in practice considering, for example, die

lifetime, manufacturing force, deformation, and stress, as a function of the friction, an-

gle die, and work temperature. In addition, our models can be used for determining the

reliability of the metal forming process, or its failure rate. We have provided a parameter es-

timation procedure based on the maximum likelihood method with an efficient computation

expectation-maximization algorithm. These models were applied to real-world multivariate

metal fatigue data. Goodness-of-fit tests concluded that they are appropriate to describe

these data.



CHAPTER 3

Diagnostics in multivariate Birnbaum-Saunders

regression models

3.1 Resumo

Neste capítulo, propomos uma metodologia baseada em técnicas de diagnóstico para mod-

elos de regressão multivariados Birnbaum-Saunders generalizados. Consideramos a distância

de Mahalanobis como medida de influência global de detecção de outliers multivariados e

para avaliar a adequacidade do modelo. Desenvolvemos medidas de diagnóstico baseado

em influência local sob alguns esquemas de perturbação, a saber: ponderação de casos,

perturbação da matriz de correlação, das variáveis explicativas e da resposta. Além disso,

obtemos o método de alavanca generalizado. Desenvolvemos rotinas computacionais para

implementar a metodologia no software R. Aplicações com dados de fadiga foram apresenta-

das para ilustrar a metodologia proposta. Especificamente, analisamos dados de fadiga de

biomateriais.

3.2 Introduction

Rieck and Nedelman (1991) were the pioneers in proposing BS regression models and

Galea et al. (2004) in deriving diagnostic analyses for these models. BS regression models

58
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are often based on the log-BS distribution; see Rieck and Nedelman (1991), Santana et al.

(2011) and Leiva (2016). Marchant et al. (2016a) developed multivariate log-GBS distribu-

tions, which are generated from EC kernels, such as normal and t, being the last one more

general than the normal kernel and widely flexible to deal with data following heavy-tailed

distributions. Then, the ML estimation procedure based on the multivariate log-BS-t distri-

bution is non-sensitive to atypical observations. In addition, Marchant et al. (2016a) derived

multivariate GBS log-linear regression models for describing fatigue data.

Diagnostics should be addressed in all statistical modeling to assess its suitability and sta-

bility. Diagnostics can be conducted by GOF techniques and global/local influence methods.

Goodness of fit allows us to assess the adequacy of a model to a data set; see Barros et al.

(2014). Global influence eliminates cases and evaluates their effect on the fitted model;

see Cook and Weisberg (1982). Local influence allows us to detect the effect of pertur-

bations on the estimates of parameters; see Cook (1987). For the use of GOF and di-

agnostic methods in non-normal models, see Billor and Loynes (1999), Díaz-García et al.

(2003), Osorio et al. (2007), Atkinson (2009), Barros et al. (2010), Villegas et al. (2011),

Uribe-Opazo et al. (2012), Assumpção et al. (2014), Leiva et al. (2014b,c,d, 2015a), and

Liu et al. (2016).

The main goal of this chapter is to carry out diagnostics in multivariate GBS log-linear

regression models by (i) GOF techniques; (ii) global and local influence methods; and (iii)

applying them to real-world data. To meet these objectives, we estimate the parameters

of multivariate BS and BS-t models with the ML method. Then, we derive fitting and

diagnostic tools to evaluate the adequacy and stability of these multivariate models from

three perspectives. First, we use the MD to test goodness of fit in the distributional as-

sumption employed for the proposed multivariate models. Second, we consider the MD as

a global influence method to identify multivariate outliers. Third, we derive the total local

influence method assuming perturbations of (i) case-weight, (ii) correlation matrix, (iii) re-

sponse, and (iv) a continuous explanatory variable. In addition, we obtain the generalized

leverage (GL) for detecting effect of the observed response on its own estimated value. We

implement the obtained results by a computational routine in the R statistical software; see

www.R-project.org and R-Team (2016). We use this routine for carrying out an illustration

with real-world multivariate data collected by the authors. Specifically, we consider multi-

variate data useful for regression models based on computed tomography (CT) to study

the bone quality as discussed in the application section. Note that the BS distribution is

appropriate for modeling physical properties of bone, such as its densities extracted from

CT data; see Vivanco et al. (2014). These properties are related to mechanical properties,

as strength, which plays a role as human bone ages affecting its fatigue properties that can

www.R-project.org
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be described by the BS distribution.

This chapter is organized as follows. In Section 3.3, we mention the multivariate GBS log-

linear regression models proposed by Marchant et al. (2016a) and derive the corresponding

MD, the score vector, robustness aspects, the Hessian matrix, the observed information

matrix and inferential aspects. In Section 3.4, we derive diagnostics for multivariate GBS

log-linear regression models considering local influence, as well as global influence by the MD.

In Section 3.5, we apply these tools to real-world multivariate biomaterials data. Finally,

in Section 3.6, we discuss some conclusions and future studies related to the topic of this

chapter.

3.3 Modelling

In this section, we mention the regression model, the associated MD, the score vector,

robustness aspects, the information matrix, and asymptotic inference.

3.3.1 Formulation

Consider the multivariate BS log-linear regression model proposed by Marchant et al.

(2016a) and given in (2.7). From (2.9) and considering ℓ(θ;y) =
∑n

i=1 ℓi(θ), if g(m) is the

multivariate normal or t kernel, then the log-likelihood functions for θ are, respectively, given

by

ℓi(θ) = −m log(2) − m

2
log(2π) − 1

2
log(|Ψ|) − 1

2
φ⊤

i Ψ
−1φi +

m∑

j=1

log(ξij), (3.1)

ℓi(θ) = −m log(2) − log
(

Γ
(
ν

2

))
+ log

(
Γ
(
ν +m

2

))
− m

2
log(νπ) +

[
ν +m

2

]
log(ν)

−1

2
log(|Ψ|) −

[
ν +m

2

]
log(ν + φ⊤

i Ψ
−1φi) +

m∑

j=1

log(ξij),

where ξij and φi were defined in (2.9).

3.3.2 Mahalanobis distance

As mentioned in Section 2.6, from property (D2) and (2.5), we can obtain the MD for

multivariate BS log-linear regression model from the following quadratic form

MDi = φ⊤
i Ψ

−1φi, i = 1, . . . , n, (3.2)
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which is useful, as mentioned, for detecting outliers in multivariate regression models and

testing goodness of fit in these models.

Multivariate log-GBS distributions are generated from EC kernels, say g(m). In this

context, a result of interest is

ζ(u) =
g(m)′

(u)

g(m)(u)
, u > 0, (3.3)

where g(m)′

(u) is the derivative of g(m)(u) with respect to u. If g(m) is continuous and

decreasing, its maximum, say ug, exists and is finite and positive. Moreover, if g(m) is

continuous and differentiable, then ug is the solution to ζ(u)+m/(2u) = 0, where ζ(u) is given

in (3.3). In several of the EC distributions, the kernel g(m) depends on an additional shape

parameter, which we denote by ν and allows us to control the kurtosis of the distribution.

It is known that ug = m for both normal and t kernels. Therefore, for the normal and t

kernels, we have, respectively,

ζ(u) = −1

2
, ζ ′(u) = 0 (normal case), ζ(u) = − ν +m

2[ν + u]
, ζ ′(u) =

ν +m

2[ν + u]2
(t case).

3.3.3 Score vector and robustness

Consider the log-likelihood function for θ given in (3.1) and Ψ = Ψ(ρ), where ρ =

svec(Ψ)⊤ = (ρ1, . . . , ρl)
⊤, with l = m[m − 1]/2. By taking the derivative of ℓ(θ;y) with

respect to α,β,ρ, we obtain the score vector for θ given by ℓ̇ = (ℓ̇α, ℓ̇
⊤
β , ℓ̇

⊤
ρ )⊤, where

ℓ̇α = − 2

α

n∑

i=1

ζi MDi − m

α
, (3.4)

ℓ̇β = −
n∑

i=1

D(X)
[
ζiD(ξi)Ψ

−1(ρ) +
1

2
D(ξ−1

i )
]
φi,

ℓ̇ρ = (ℓρ1, . . . , ℓ̇ρl
)⊤,

with ζi = ζ(MDi), ζ given in (3.3),

ℓ̇ρk
= −n

2
tr

(
Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk

)
−

n∑

i=1

ζiφ
⊤
i Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk
Ψ

−1(ρ)φi, k = 1, . . . , l,

φi as given in (2.9),D(ξi) = diag(ξi1, . . . , ξim), ξij given in (2.9),D(ξ−1
i ) = diag(ξ−1

i1 , . . . , ξ
−1
im )

and D(X) is a block diagonal matrix with elements x⊤
i .

In order to obtain the ML estimates of the model parameters formulated in (2.8), we

must set the elements of the score vector given in (3.4) equal to zero. To maximize the log-

likelihood function given in (3.1), the corresponding likelihood equations must be solved by
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an iterative procedure for non-linear optimization problems. Initial values for the iterative

procedure can be obtained from:

(i) The ordinary least square estimate β̂(0) = (X⊤X)−1X⊤Y ;

(ii)

α̂(0) =
1

m

m∑

j=1

[
4

n

n∑

i=1

sinh2

(
yij − µ̂

(0)
ij

2

)]1/2

,

where µ̂
(0)
ij = β̂

(0)⊤
j xi, with β̂

(0)
j being computed from (i); and

(iii) Ψ̂
(0) = D(Σ̂(0))−1/2

Σ̂
(0)D(Σ̂(0))−1/2, where Σ̂

(0) = 1
n

∑n
i=1φ

(0)
i (φ

(0)
i )⊤, with φ̂

(0)
i having

elements

φ̂
(0)
ij =

[
2

α̂(0)

]
sinh

(
yij − µ̂

(0)
ij

2

)
, i = 1, . . . , n, j = 1, . . . , m.

Note that, for the log-BS-t distribution, as ν approaches ∞, one has −2ζi approaching to 1,

for all i = 1, . . . , n. Therefore, in this case the scores given in (3.4) reduce to the BS case,

as expected; see Paula et al. (2012) for the univariate case. Thus, the quantity ζi may be

interpreted as a kind of weight in the multivariate BS-t log-linear regression model. Hence,

since this weight is inversely proportional to MDi, if the case i has a large value for its MD,

then it should have a small weight in the ML estimation procedure. Thus, this procedure

assigns less weight to outlying observations in the sense of the MD given in (3.2). In addition,

note that the parameter ν of the multivariate log-BS-t distribution can be assumed to be

fixed or known from the data due to a statistical robustness aspect; see Lucas (1997) for the

t distribution, and Paula et al. (2012) for the univariate BS-t case.

3.3.4 Information matrix and asymptotic inference

The observed information matrix is defined by I(θ) = −ℓ̈, where ℓ̈ is the Hessian matrix

given by

ℓ̈ =
∂2ℓ

∂θ∂θ⊤
=




ℓ̈αα ℓ̈αβ ℓ̈αρ

ℓ̈ββ ℓ̈βρ

ℓ̈ρρ


 . (3.5)
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The Hessian matrix is obtained from the log-likelihood function given in (3.1) with elements

ℓ̈αα =
1

α2

n∑

i=1

[{6ζi − 2ζ ′
iMDi}MDi +m] ,

ℓ̈αβ =
2

α

n∑

i=1

[ζi + ζ ′
iMDi]D(X)D(ξi)Ψ

−1(ρ)φi,

ℓ̈αρ = (ℓ̈αρ1 , . . . , ℓ̈αρl
)⊤,

ℓ̈βρ = (ℓ̈βρ1 , . . . , ℓ̈βρl
)⊤,

ℓ̈ρρ = (ℓ̈ρkρs
) ∈ R

l×l,

ℓ̈ββ =
1

2

n∑

i=1

D(X)D(ξi)Ψ
−1(ρ)[ζ ′

iφiφ
⊤
i Ψ

−1(ρ) + ζi]D(ξi)D(X⊤)

+
1

4

n∑

i=1

D(X)[2ζiD(φi)D(Ψ−1(ρ)φi) −D(ξ−2
i )D(φ2

i ) + Im]D(X⊤),

where, for k = 1, . . . , l,

ℓ̈αρk
=

2

α

n∑

i=1

[ζi + ζ ′
iMDi]φ

⊤
i Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk
Ψ

−1(ρ)φi,

ℓ̈βρk
=

n∑

i=1

D(X)D(ξi)Ψ
−1(ρ)

[
ζi + ζ ′

iφiφ
⊤
i Ψ

−1(ρ)
] ∂Ψ(ρ)

∂ρk

Ψ
−1(ρ)φi,

ℓ̈ρkρs
= −n

2
tr

(
−Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk

Ψ
−1(ρ)

∂Ψ(ρ)

∂ρs

)
+

n∑

i=1

φ⊤
i Ψ

−1(ρ)Ψ(ρ)ρkρs
Ψ(ρ)−1φi,

with Ψ(ρ)ρkρs
being given by

ζi
∂Ψ(ρ)

∂ρs
Ψ(ρ)−1∂Ψ(ρ)

∂ρk
+ ζi

∂Ψ(ρ)

∂ρk
Ψ

−1(ρ)
∂Ψ(ρ)

∂ρs
+ ζ ′

i

∂Ψ(ρ)

∂ρs
Ψ(ρ)−1φiφ

⊤
i Ψ(ρ)−1∂Ψ(ρ)

∂ρk
,

if k 6= s; whereas the case k = s conducts to

2ζi
∂Ψ(ρ)

∂ρk

Ψ(ρ)−1∂Ψ(ρ)

∂ρk

+ ζ ′
i

∂Ψ(ρ)

∂ρk

Ψ(ρ)−1φiφ
⊤
i Ψ(ρ)−1∂Ψ(ρ)

∂ρk

,

with ζ ′
i = ζ ′(MDi), D(φi) = diag(φi1, . . . , φim), D(ξ−2

i ) = diag(ξ−2
i1 , . . . , ξ

−2
im ), and D(φ2

i ) =

diag(φ2
i1, . . . , φ

2
im), whose elements are φij = [2/α] sinh([yij − µij]/2).

Under regularity conditions (see Cox and Hinkley, 1974), the estimators α̂, β̂ and ρ̂

are consistent and have a multivariate normal joint asymptotic distribution with asymptotic

means α, β and ρ, respectively, and an asymptotic covariance matrix Σ
θ̂

that can be obtained

from the corresponding expected Fisher information matrix. Thus, we have that, as n → ∞,

√
n (θ̂ − θ)

D→ Np∗(0p∗×1,Σθ̂
= J (θ)−1), (3.6)
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where
D→ means “convergence in distribution to”, p∗ = pm+ l+ 1, with l = m[m−1]/2, and

J (θ) = limn→∞(1/n)I(θ), with I(θ) being the corresponding expected Fisher information

matrix. Note that Î(θ)−1 is a consistent estimator of the asymptotic variance-covariance

matrix of θ̂. In practice, one may approximate the expected Fisher information matrix by

its observed version obtained from (3.5), whereas the diagonal elements of its inverse matrix

can be used to approximate the corresponding SEs; see Efron and Hinkley (1978) for details

about the use of observed versus expected Fisher information matrices. Asymptotic inference

for the parameters of the proposed multivariate Birnbaum-Saunders regression models can

be conducted by the asymptotic normality defined in (3.6).

3.4 Diagnostics

In this section, we consider the local influence method to produce a diagnostic analysis for

multivariate GBS log-linear regression models. Fitting and global influence can be assessed

by the MD presented in Section 3.3.

3.4.1 The local influence method

Consider ℓ(θ) the log-likelihood function for the parameter θ of the model defined in

(2.8), which we call the non-perturbed model, and the perturbation vector w ∈ R
q in the

model, for w ∈ Ω, with Ω being a set of perturbations. Then, ℓ(θ|w) is the log-likelihood

function of the perturbed model, with θ̂w being the ML estimate of θ obtained from ℓ(θ|w).

Furthermore, letw0 ∈ Ω ∈ R
q be a non-perturbation vector withw0 = 0

⊤
q×1, orw0 = 1

⊤
q×1, or

a possible third choice, so that ℓ(θ) = ℓ(θ|w0). Assuming that ℓ(θ|w) is twice continuously

differentiable in a neighborhood of (θ̂,w0), we compare the ML estimates θ̂ and θ̂w by

the local influence method to investigate how inference is affected by the corresponding

perturbation. The likelihood displacement (LD) is given by

LD(w) = 2[ℓ(θ̂) − ℓ(θ̂w)], (3.7)

which is used to detect the influence of w. Large values of LD(w) in (3.7) indicate that

θ̂ and θ̂w differ considerably in relation to the contours of the non-perturbed log-likelihood

function ℓ(θ). We study the local behaviour of the influence plot a(w) = (w⊤,LD(w))⊤

around w0. The direction in which the LD locally changes most rapidly is evaluated, that

is, the maximum curvature of the surface a(w). For LD(w) given in (3.7), the maximum

curvature is read to be

Cmax = max
||d||=1

Cd, (3.8)
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where Cd = 2|d⊤Fd|, with the matrix F ∈ R
n×n and d being the unit-length direction

vector. To compute Cmax given in (3.8) and the corresponding direction vector dmax, we

must calculate

F = −∆(θ̂,w0)
⊤ℓ̈(θ̂)−1

∆(θ̂,w0), (3.9)

where ∆(θ,w) ∈ R
p∗×n is a matrix partitioned accordingly for the perturbed model obtained

from (2.8), called perturbation matrix, with elements

∆ij =
∂2ℓ(θ|w)

∂θi∂wj

, i = 1, . . . , n, j = 1, . . . , p∗,

evaluated at θ = θ̂ and w = w0, where, as mentioned, p∗ = pm+ l+1, with l = m[m−1]/2.

We recall −ℓ̈(θ̂) ∈ R
p∗×p∗

is the observed information matrix for the non-perturbed model.

Then, dmax is a unit-length eigenvector associated with the largest absolute eigenvalue Cmax

given in (3.8). If the absolute value of dmaxi
is large, it indicates that the case i is potentially

influential. However, if the interest is in the subset θ1 of θ = (θ⊤
1 , θ

⊤
2 )⊤, the normal curvature

in the direction d for θ1 is given by

Cd(θ̂1) = 2|d⊤
∆(θ̂,w0)

⊤[ℓ̈(θ̂)−1 −B22]∆(θ̂,w0)d|,

where

B22 =


 0 0

0 ℓ̈−1
θ2θ2


 .

We may reveal cases influential on θ̂1 by using the index-plot of the largest eigenvector of

−∆(θ̂,w0)
⊤[ℓ̈(θ̂)−1 −B22]∆(θ̂,w0).

3.4.2 The total local influence method

In addition to dmaxi
, another direction of interest is di = ein, which is related to the

direction of the case i, where ein ∈ R
n is a vector of zeros and a one at the ith position.

Thus, the normal curvature is

Ci(θ) = 2|fii|, for i = 1, . . . , n,

where fii is the ith diagonal element of F given in (3.9), evaluated at θ = θ̂. Case i is

considered as potentially influential if

Ci(θ̂) > 2C(θ̂), i = 1, . . . , n,
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where

C(θ̂) =
1

n

n∑

i=1

Ci(θ̂). (3.10)

The diagnostic method defined in (3.10) is called total local influence; see Lesaffre and Verbeke

(1998) and Verbeke and Molenberghs (2000). Note that is possible to compute the normal

curvature for the parameters α, β and ρ denoted Ci(α), Ci(β) and Ci(ρ), respectively.

3.4.3 Normal curvatures

By using the model formulated in (2.8) and its perturbed version, we determine normal

curvatures for local influence. We compute the observed information matrix −ℓ̈(θ̂), derive

the perturbation matrix ∆(θ̂,w0) and then obtain the eigenvector associated with the largest

absolute eigenvalue of F given in (3.9) as a local influence measure. Next, we detail the

perturbation matrices for different schemes.

Case-weight perturbation (ca). For this scheme, let w = (w1, . . . , wn)⊤ ∈ R
n be the

perturbation vector, where the w′
is are positive values denoting the weight corresponding

to the case i, and ℓca(θ|w) is the perturbed log-likelihood function. Let w0 = 1
⊤
1×n be the

non-perturbation vector such that ℓca(θ|w0) = ℓ(θ). Then, the log-likelihood function for

the perturbed model under this scheme is

ℓca(θ|w) =
n∑

i=1

wiℓi(θ), (3.11)

with ℓi(θ) defined from (3.1). Hence, we establish the matrix ∆ca(θ,w) by taking the

derivatives of ℓca(θ|w) given in (3.11) with respect to θ and w, evaluating them at θ = θ̂

and w = w0. Thus,

∂2ℓca(θ|w)

∂α∂wi

∣∣∣∣
w=w0

= − 1

α
[2ζiMDi +m] ,

∂2ℓca(θ|w)

∂β∂wi

∣∣∣∣
w=w0

= −D(X)[ζiD(ξi)Ψ
−1(ρ) +

1

2
D(ξ−1

i )]φi,

∂2ℓca(θ|w)

∂ρk∂wi

∣∣∣∣
w=w0

= −1

2
tr

(
Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk

)
− ζiφ

⊤
i Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk

Ψ
−1(ρ)φi,

for k = 1, . . . , l and i = 1, . . . , n, where ζi = ζ(MDi) is specified as

ζ(MDi) = −1

2
and ζ(MDi) = − [ν +m]

2[ν + MDi]
,

for the multivariate normal and t kernels, respectively, based on expressions given in (3.2)

and (3.3).
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Perturbation of the correlation matrix (cm). For this scheme, letw = (w1, . . . , wn)⊤ ∈
R

n − {0} be the perturbation vector and ℓcm(θ|w) the corresponding perturbed log-likelihood

function. Let w0 = 1
⊤
1×n be the non-perturbation vector such that ℓcm(θ|w0) = ℓ(θ). Then,

the log-likelihood function for the perturbed model under this scheme is

ℓcm(θ|w) =
n∑

i=1


log(fECm

(φi;w
−1
i Ψ(ρ), g(m))) +

m∑

j=1

log(ξij)


 . (3.12)

Again, we establish the matrix ∆cm(θ,w) by taking the derivatives now of ℓcm(θ|w) given

in (3.12) with respect to θ, and then with respect to w, evaluating them at θ = θ̂ and

w = w0. Thus,

∂2ℓcm(θ|w)

∂α∂wi

∣∣∣∣
w=w0

= − 2

α
[ζ ′

iMDi + ζi] MDi,

∂2ℓcm(θ|w)

∂β∂wi

∣∣∣∣
w=w0

= − [ζ ′
iMDi + ζi]D(X)D(ξi)Ψ

−1(ρ)φi,

∂2ℓcm(θ|w)

∂ρk∂wi

∣∣∣∣
w=w0

= − [ζ ′
iMDi + ζi]φ

⊤
i Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk
Ψ

−1(ρ)φi,

for k = 1, . . . , l, and i = 1, . . . , n, where ζ ′
i = ζ ′(MDi), with

ζ ′(MDi) = 0 and ζ ′(MDi) =
[ν +m]

2[ν + MDi]2
,

for the multivariate normal and t kernels, respectively.

Perturbation of a covariate (co). In this scheme, we perturb a continuous covariate

xil by xil + wi, where xil ∈ R
n is the lth column of xi and w = (w1, . . . , wn)⊤ ∈ R

n is

the perturbation vector. Here, w can be expressed as a proportional value to the standard

deviation (SD) of the perturbed covariate and w0 = 0
⊤
1×n is the non-perturbation vector

such that ℓca(θ|w0) = ℓ(θ). Then, the log-likelihood function for the perturbed model under

this scheme is

ℓco(θ|w) =
n∑

i=1


log(fECm

(φi(w);Ψ(ρ), g(m))) +
m∑

j=1

log(ξij(w))


 . (3.13)
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Here, we establish ∆co(θ,w) by taking the derivatives of ℓco(θ|w) given in (3.13) with respect

to θ and w, evaluating them at θ = θ̂ and w = w0. Thus, for k = 1, . . . , l and i = 1, . . . , n,

∂2ℓco(θ|w)

∂α∂wi

∣∣∣∣
w=w0

=
2

α
ξ⊤

i D(βl) [ζ ′
iMDi + ζi]Ψ

−1(ρ)φi,

∂2ℓco(θ|w)

∂β∂wi

∣∣∣∣
w=w0

=
1

2
ζ ′

i[ξ
⊤
i D(βl)Ψ

−1(ρ)φi]D(X)D(ξi)Ψ
−1(ρ)φi

+
1

2
D(X)

[
ζiD(φi)D(βl)Ψ

−1(ρ) − 1

2
D(ξ−2

i )D(φi)D(βl)
]
φi

+
1

2
D(X)

[
ζiD(ξi)Ψ

−1(ρ) +
1

2
D(ξ−1

i )
]
D(βl)ξi

∂2ℓco(θ|w)

∂ρk∂wi

∣∣∣∣
w=w0

= ξ⊤
i D(βl)

[
ζ ′

iΨ
−1(ρ)φiφ

⊤
i + ζi

]
Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk

Ψ
−1(ρ)φi.

Here, D(βl) is a diagonal matrix with elements βlj, for j = 1, . . . , m.

Perturbation of the response variable (re). In this scheme, we replace Yi by Yi +wi,

where wi = (wi1, . . . , wim)⊤ ∈ R
m denoting the corresponding perturbation to the case i

with wi > 0. Here wi can be expressed as a proportional value to the SD of the response

and w0 = 0
⊤
1×m is the non-perturbation vector such that ℓre(θ|w0) = ℓ(θ). Then, the

log-likelihood function for the perturbed model under this scheme is

ℓre(θ|w) =
n∑

i=1

[
log(fECm

(φi(w);Ψ(ρ), g(m))) +
m∑

j=1

log(ξij(w))

]
. (3.14)

Again, ∆re(θ,w) is obtained by taking the corresponding derivatives now of ℓre(θ|w) given

in (3.14) with respect to θ and w, for k = 1, . . . , l, and i = 1, . . . , n, and evaluating them at

θ = θ̂ and w = w0. Thus,

∂2ℓre(θ|w)

∂α∂w⊤
i

∣∣∣∣
w=w0

= − 2

α
[ζ ′

iMDi + ζi]D(ξi)Ψ
−1(ρ)φi,

∂2ℓre(θ|w)

∂β∂w⊤
i

∣∣∣∣
w=w0

= D(ξi)[ζ
′
iΨ

−1(ρ)φiφ
⊤
i Ψ

−1(ρ)D(ξi) − 1

2
ζiΨ

−1(ρ)D(ξi)

−1

4
D(ξ−1

i )]D(X⊤)
[
1

2
ζiD(φi)D(Ψ−1(ρ)φi) − 1

4
D(ξ−2

i )D(φ2
i )
]
D(X⊤),

∂2ℓre(θ|w)

∂ρk∂w⊤
i

∣∣∣∣
w=w0

= −D(ξi)
[
ζ ′

iΨ
−1(ρ)φiφ

⊤
i + ζi

]
Ψ

−1(ρ)
∂Ψ(ρ)

∂ρk
Ψ

−1(ρ)φi.

3.4.4 Generalized leverage

The main idea behind the concept of leverage is to evaluate the influence of Yi on its

own predicted value. This influence may be well represented by the derivative ∂Ŷi/∂Y
⊤

i .
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Consider the log-likelihood function for θ given in (3.1). Let θ̂ be the ML estimate of θ and

µ = E(Y ). Then, Ŷ = µ(θ̂) is the predicted response vector. The matrix of GL may be

expressed as

GL(θ̂) = Dθ(−ℓ̈(θ̂))−1ℓ̈θY

∣∣∣∣
θ=θ̂

,

where

Dθ =
∂µ

∂θ⊤
= (X

...0) ∈ R
n×p∗

,

ℓ̈θY =
∂2ℓ(θ)

∂θ∂Y ⊤
= ∆r(θ,w) ∈ R

p∗×n,

and ℓ̈(θ̂) ∈ R
p∗×p∗

is as given in (3.5), with p∗ given in (3.6).

3.5 Application

In this section, we apply the multivariate GBS log-linear regression model and the de-

veloped fitting and diagnostic tools implemented by a computational routine in R code to

real-world data collected by the authors; see Vivanco et al. (2014) and Tables 6.2 and 6.3 of

Appendix 6.3. We consider multivariate data useful for regression models based on clinical

CT to study the bone quality. As mentioned, note that the multivariate BS distribution is

appropriate for modeling strength, which is a mechanical property of bone related to physical

properties, as its densities extracted from CT data.

3.5.1 Description of the problem

CT is an important tool in the study of bone quality and a basis for finite element analysis

of bone. It provides 3D-images of X-ray attenuation allowing not only the analysis of a 3D

geometry but also the measurement of volumetric mineral content. These characteristics

allow us to relate mineral density derived from CT to mechanical properties of bone. Thus,

one can assess the mechanical properties for fracture risk evaluation or modeling by subject-

specific finite element. Several researchers have related CT to elastic modulus (or strength)

and bone density for estimation of mechanical properties; see, for example, Duchemin et al.

(2008) and Vivanco et al. (2014). We investigate 4 types of densities:

(i) Bulk density, which considers the mass of the intact core, including fat and water;

(ii) Dry density, which excludes fat and water;

(iii) Ash density, which is related to the mineral content; and

(iv) Clinical CT, which is obtained from a calibration equation that is derived from known

mineral content phantoms.
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Clinical CT scans are used to assess their application in inferring physical properties of

human trabecular bone. The prediction of apparent density from ash density allows for

estimation of mechanical properties of bone, which can subsequently be used in a finite

element model. For example, to determine the utility of clinical CT scans in the prediction

of physical properties of human trabecular bone; see Vivanco et al. (2014).

3.5.2 Regression analysis

We consider as responses: (i) bulk density (T1, in mg/cm3) and (ii) dry density (T2,

in mg/cm3). The covariates that could affect these responses are: (i) CT density (X1, in

mg/cm3) and (ii) ash density (X2, in mg/cm3). We illustrate the proposed multivariate

models with real-world density data associated with these variables. We work with the

log-responses Yj = log(Tj), for j = 1, 2.

First, we make an exploratory data analysis computing correlations for Y1, Y2, X1, X2.

Figure 3.1 displays the scatter-plots for these variables and their corresponding correlations.

From this figure we detect that exist:

(i) Large correlations between (Y1, Y2), justifying the use of multivariate distributions;

(ii) Large correlations between X1, X2, indicating a possible collinearity problem; and

(iii) Medium correlations between (X1, Y1), and (X1, Y2), and large correlations between

(X2, Y1) and (X2, Y2), which supports the elimination of X1.

This must be confirmed by the inferential analysis.

Second, we consider the previous exploratory data analysis, the adequacy of the BS dis-

tribution for this problem, and the robustness estimation in BS-t models to propose a multi-

variate regression model for describing (Y1, Y2) in function of X2 (because X1 is discarded due

to collinearity problem). Therefore, the proposed multivariate log-linear regression model is

given by

Yi = β⊤xi + εi, i = 1, . . . , 74,

where εi = (εi1, εi2)
⊤ ∼ log-GBS2(α12×1, 02×1,Ψ(ρ)2×2, g

(2)). We estimate the parameters

of the multivariate BS and BS-t regression models via the ML method, which we have

implemented in R code. We use the BFGS quasi-Newton method through the optim function.

Starting values, θ̂(0) say, used in the maximization procedure are:

α̂(0) = 0.077963, β̂(0) =


 6.677099 4.682944

0.001157 0.004538


 , Ψ̂(ρ)(0) =


 1.000000 0.378761

0.378761 1.0000


 .

In addition, we have used the value ν = 4. We have verified that ν = 4 corresponds to the

value that maximizes the log-likelihood function within a range of values for ν; see Figure

3.2.
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Figure 3.1: Scatter-plots with their corresponding correlations for the indicated variable with bone

density data.

X1

X2

Y1

Y2

r
X1,X2

=0.77

r
X1,Y1

=0.62 r
X2,Y1

=0.86

r
X1,Y2

=0.74 r
X2,Y2

=0.97 r
Y1,Y2

=0.88

100

1
0

0

1
0

0

100

2
5

0

250

300

3
0

0

4
0

0

400

6.6

6
.6

6.8

6
.8

7.0

7
.0

5
.0

5.0

5
.5

5.5

6
.0

6.0

6
.5

6.5

Source: From the author.

Table 3.1 displays the parameter estimates and the maximized log-likelihood value, es-

timated asymptotic SEs of the corresponding ML estimators for both models, and p-values

of each z-test. From this table, and for a 5% significance level, we obtain the following

conclusions:

(i) Estimated correlation from the BS2 and BS-t2 log-linear models results to be statistically

significant, corroborating our conjecture from the exploratory analysis; and

(ii) The regression coefficients β0 (constant term of the model) and β1 (slope) must be con-

sidered in the prediction of T1 and T2. We can also see that the value that maximizes the

log-likelihood is greater for BS-t2 model, indicating a better fit.
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Figure 3.2: Profiled maximized log-likelihood in function of ν for ν = 1, . . . , 20 by 1 with bone

density data.
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Table 3.1: ML estimate of the indicated parameter and model with its corresponding estimated

SE, p-value and log-likelihood function.

BS2 model BS-t2 model

Parameter Estimate SE p-value Estimate SE p-value

ρ 0.377034 0.050354 < 0.001 0.373313 0.059365 < 0.001

β01 6.676328 0.025193 < 0.001 6.678921 0.029402 < 0.001

β02 4.679009 0.025101 < 0.001 4.687253 0.032067 < 0.001

β11 0.001159 0.000097 < 0.001 0.001151 0.000110 < 0.001

β12 0.004550 0.000097 < 0.001 0.004526 0.000120 < 0.001

α 0.072004 0.003628 < 0.001 0.071836 0.004840 < 0.001

Log-likelihood 165.3831 - - 169.3681 - -

Source: From the author.

3.5.3 Model checking and global influence analysis

As mentioned, m-variate log-GBS model checking can be conducted by using the MD.

Here, this distance follows the χ2(m = 2) or 2F(m = 2, ν = 4) distribution if g(2) is the mul-

tivariate normal or t2 kernel, respectively. We substitute the ML estimator of θ in MDi(θ̂),

which has asymptotically the same distribution of MDi(θ); see Lange et al. (1989). We use

the WH approximations given in (2.18) and (2.19) for transforming this distance, which

should follow now a normal distribution; see Ibacache-Pulgar et al. (2014) and references
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therein. Then, we check normality of the transformed distances with the WH approximation

using GOF techniques. Figure 3.3 shows the corresponding PP-plots with acceptance bands

for a significance level of 5%; see Algorithm 4. From this figure, we detect that the BS-t2

log-linear regression model provides a better fit than the BS2 model, which is corroborated

by the p-values 0.028 and 0.407, respectively, of the Kolmogorov-Smirnov (KS) test asso-

ciated with these PP-plots; see Barros et al. (2014). Therefore, we can conclude that the

multivariate BS-t2 log-linear regression model fits better to the bone density data.

Figure 3.3: PP-plots with KS acceptance regions at 5% for transformed MDs with BS2 (a) and

BS-t2 (b) models.
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As mentioned, the MD is a global influence measure to detect multivariate outliers.

Figures 3.4 (a) and (b) display the index-plots of this distance for BS2 and BS-t2 log-linear

regression models. In addition, Figure 3.4 (c) presents the plot of estimated weights, say ζ̂i,

versus MDi for the BS-t2 log-linear regression model, with i = 1, . . . , 74. From Figure 3.4

(a) and (b), note that the cases {20, 48, 55, 69, 70} appear as possible multivariate outliers in

the BS2 model, but not in the BS-t2 log-linear regression model. In Figure 3.4 (c), observe

that these cases have smaller weight in the BS-t2 log-linear regression model than the BS2

log-linear regression model, which confirms the inherent robustness of the ML procedure

against possible outlying observations.
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Figure 3.4: Index-plots of MDs for the BS2 (a) and BS-t2 (b) model; plot of estimated weights of

MDs for the BS-t2 model (c) and BS2 model –straight line at one–.
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3.5.4 Local influence analysis

In order to identify possible influential cases under the fitted models, we present some

diagnostic graphs for total local influence (Ci). Plots for local influence (dmax) are omitted

here, but they are similar to total local influence graphs.

Figures 3.5 and 3.6 show the index-plots of Ci under the case-weight perturbation scheme

for θ̂ (a,b), α̂ (c,d), β̂ (a,b) and ρ̂ (c,d), respectively, for the indicated model. From this

figure, note that cases {20, 48, 55, 69, 70} appear with a large influence under the BS2 log-

linear regression model, but not under the BS-t2 model. These cases have different degrees

of influence on α̂ and β̂ and coincide with those detected by the MD. Note that there is

practically no influence of these cases on ρ̂ for both models according to Figure 3.6(c,d).

Figures 3.7 and 3.8 display the index-plots of Ci under the correlation perturbation

scheme for Ci(θ) (a,b), Ci(α) (c,d), Ci(β) (a,b) and Ci(ρ) (c,d), respectively, for the indi-

cated model. From this figure, note that again cases {20, 48, 55, 69, 70} appear with a large

influence under the BS2 model, but not under the BS-t2 model. In addition, observe that

cases {20, 48, 55, 69, 70} have different degrees of influence on α̂ and β̂. Again note that there

is practically no influence of these cases on ρ̂ for both models according to Figure 3.8(c,d).

Figures 3.9 and 3.10 present the index-plots of Ci under the covariate perturbation scheme

for Ci(θ) (a,b), Ci(α) (c,d), Ci(β) (a,b) and Ci(ρ) (c,d), respectively, for the indicated model.

From this figure, note that now cases {48, 55, 69, 70, 74} appear with a large influence under

the BS2 model, but not under the BS-t2 model. In addition, observe that cases {69, 70},

{48, 55, 74} and {48, 55, 69, 70} appear as influential on α̂, β̂ and ρ̂, respectively.

Figures 3.11 and 3.12 show the index-plots of Ci under the response variable perturbation

scheme for Ci(θ) (a,b), Ci(α) (c,d), Ci(β) (a,b) and Ci(ρ) (a,b), respectively, for the indicated

model. From this figure, note that cases {20, 48, 55} appear with a large influence under the

BS2 model for variable Y1, but not under the BS-t2 model. In addition, cases {20}, {48, 55}
and {20, 48, 55, 70} have different degrees of influence on α̂, β̂ and ρ̂, for the variable Y1.

Furthermore, Figures 3.11 and 3.12 show that cases {20, 48, 55, 70} appear with a large

influence under the BS2 model, but not under the BS-t2 model for variable Y2. Moreover,

observe that cases {20, 48, 55, 70}, {48, 55} and {20} appear as influential on α̂, β̂ and ρ̂,

respectively, for Y2.

Figure 3.13 show the index-plots of the GL method for the responses variables under

study. From Figures 3.13(a, b), note that cases {48, 55, 74} appear as possible leverage

points for Y1 under BS2 model. From Figure 3.13(c, d), cases {48, 55, 70, 74} and {74}
appear now as possible leverage points for Y2 under the BS2 and BS-t2 models, respectively.
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Figure 3.5: Total local influence index-plots of case-weight perturbation for θ̂ (a,b), α̂ (c,d) for

the indicated model.

Index

C
i

1
2

3
4

0

0 60

20

20 40

48
55

69

70

(a) BS2 model

Index

C
i

1
2

3
4

0
0 6020 40

(b) BS-t2 model

Index

C
i

60

1
2

3
4

0

0 60

20

20 40

48 55 69

70

(c) BS2 model

Index

C
i

1
2

3
4

0

0 6020 40

(d) BS-t2 model

Source: From the author.



Essays on multivariate generalized Birnbaum-Saunders methods 77

Figure 3.6: Total local influence index-plots of case-weight perturbation for β̂ (a,b) and ρ̂ (c,d)

for the indicated model.
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Figure 3.7: Total local influence index-plots of correlation perturbation for θ̂ (a,b) and α̂ (c,d) for

the indicated model.
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Figure 3.8: Total local influence index-plots of correlation perturbation for β̂ (a,b) and ρ̂ (c,d) for

the indicated model.
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Figure 3.9: Total local influence index-plots of covariate perturbation for θ̂ (a,b) and α̂ (c,d) for

the indicated model.

Index

C
i

4

0

0 20 40

48
55

60

69

70

74

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

(a) BS2 model

Index

C
i

0
0 20 40 60

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

(b) BS-t2 model

Index

C
i

0

0 20 40 60

69
70

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

(c) BS2 model

Index

C
i

0

0 20 40 60

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

(d) BS-t2 model

Source: From the author.



Essays on multivariate generalized Birnbaum-Saunders methods 81

Figure 3.10: Total local influence index-plots of covariate perturbation for β̂ (a,b) and ρ̂ (c,d) for

the indicated model.
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Figure 3.11: Total local influence index-plots of response perturbation for θ̂ (a,b) and α̂ (c,d) for

the indicated model.
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Figure 3.12: Total local influence index-plots of response perturbation for β̂ (a,b) and ρ̂ (c,d) for

the indicated model.
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Figure 3.13: Index-plots of GL for Y1 (a,b) and Y2 (c,d) for the indicated model.
30

Index

ge
ne

ra
liz

ed
 le

ve
ra

ge

0

0

1
0

74

2
0

20

4
0

40

48
55

60

(a) BS2 model

30
Index

ge
ne

ra
liz

ed
 le

ve
ra

ge

 
 

0

0

1
0

2
0

20

4
0

40 60

(b) BS-t2 model

Index

ge
ne

ra
liz

ed
 le

ve
ra

ge

0

5
1

0
1

5
2

0
0

74

20 40

48 55

60

70

(c) BS2 model

Index

ge
ne

ra
liz

ed
 le

ve
ra

ge

 
 

0

0

5
1

0
1

5

74

2
0

20 40 60

(d) BS-t2 model

Source: From the author.



Essays on multivariate generalized Birnbaum-Saunders methods 85

3.6 Concluding remarks

In this work, we carried out a diagnostic analysis for multivariate generalized Birnbaum-

Saunders log-linear regression models. We have considered the Mahalanobis distance for

evaluating the suitability of the distributional assumption by transforming this distance

with the Wilson-Hilferty approximation and then by using goodness-of-fit techniques. In

addition, the Mahalanobis distance has been employed as a global influence measure to detect

multivariate outliers. Furthermore, we have obtained appropriate matrices for assessing local

influence under perturbation schemes of case-weight, correlation matrix, response variable

and a continuous explanatory variable. In addition, we have use the generalized leverage

method for detecting effect of the observed response on its own estimated value. We have

implemented the obtained results in the R software. These results have been applied to real-

world multivariate data to illustrate its good performance. We have considered multivariate

data useful for regression models based on computed tomography to study the bone quality.

The BS distribution is appropriate for modeling physical properties of bone and its densities

extracted from CT data, which are related to mechanical properties, as strength, which plays

a role as human bone ages affecting its fatigue properties that can be well described by this

distribution. Goodness-of-fit tests have concluded that BS-t2 log-linear regression model was

quite appropriate to describe these type of data.



CHAPTER 4

Robust multivariate control charts based on

Birnbaum-Saunders distributions

4.1 Resumo

Neste capítulo, desenvolvemos uma metodologia robusta para a construccão de gráfi-

cos de controle de qualidade multivariados baseada em distribuições Birnbaum-Saunders

generalizadas usando a estatística de Hotelling. Usando o método bootstrap paramétrico,

encontramos aproximações da distribuição dessa estatística e obtemos os limites de cont-

role. Realizamos um estudo de simulação de MC para avaliar a metodologia proposta. Os

resultados indicam o bom desempenho para fornecer alertas precoces de processos fora de

controle. Uma ilustração com dados reais de qualidade do ar de Santiago-Chile é fornecida.

Essa ilustração mostra que a metodologia desenvolvida pode ser útil para alertar os episódios

de poluição do ar extremo, evitando efeitos adversos na saúde humana.

4.2 Introduction

Multivariate control charts are powerful and simple visual tools for monitoring the qual-

ity of a multivariate process by determining whether it is in control or out-of-control. These

charts show how several variables jointly influence such a process. Hotelling (1947) was the

first to analyze correlated random variables in quality control. He developed a procedure

86
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based on a statistical distance, which generalizes the t statistic. This was later named the

Hotelling T 2 statistic in his honor. The T 2 statistic is a useful tool for multivariate normal

process control. After this contribution, there was no significant work done in this field until

the last few decades, when interested in multivariate statistical quality control was revived

due to advances in computing. Since then, a number of authors have done some research

in the area of multivariate quality control based on the normal distribution; see, for exam-

ple, Tracy et al. (1992), Lowry and Montgomery (1995), Liu (1995), Runger et al. (1996),

Sullivan and Woodall (1996, 1998), Nedumaran and Pignatiello (2000), Mason et al. (2001),

Maravelakis et al. (2002), Noorossana et al. (2002), Yang and Trewn (2004), Bersimis et al.

(2007), Yen and Shiau (2010), Chenouri and Variyath (2011) and Yen and Tang (2012).

In traditional control charts, it is usually supposed that the data follow a normal distribu-

tion. However, there are many practical applications where the normality assumption is not

fulfilled, because the data exhibit heavy tails or skewness. In recent years, some authors have

developed multivariate control charts using non-normal distributions. Liu and Tang (1997)

proposed that, when we are not sure of the normality of the data, the bootstrap method may

be used to determine the control limits. They showed that estimation of the control limits

by means of this method is generally better than the normal approach based on the central

limit theorem. Chou et al. (2001) introduced a method to determine control limits, working

with individual observations, in cases where the data come from a non-normal distribution.

Furthermore, Stoumbos and Sullivan (2002) investigated the effects of non-normality on the

statistical performance of the exponentially weighted moving average chart, and its special

case, the Hotelling chi-squared chart. Phaladiganon et al. (2011) presented a bootstrap-

based T 2 control chart to establish its limits when the observed process data are not nor-

mally distributed. The limits of bootstrap-based T 2 control charts are calculated based on

the percentiles of the T 2 statistic derived from bootstrap samples. Alfaro and Ortega (2012,

2013) proposed robust Hotelling T 2 charts based on the multivariate t distribution.

Traditional control charts use mean and variance-covariance matrix estimators, which

are sensitive to outliers in Phase I; see details of Phases I and II of a control chart in Subsec-

tion 4.3.2. A univariate outlier is defined as an observation that deviates greatly from other

data other points so as to arouse suspicion that it was generated by a different mechanism;

see Hawkins (1980). Multivariate outliers are considered to be atypical by not taking the

value in a given random variable, but in all the multivariate set of random variables; see

Becker and Gather (1999). Multivariate outliers are more difficult to identify than the uni-

variate outliers, since they cannot be considered outliers like the situation when you have a

single variable under study. Their presence has further detrimental effects than the univariate

case, because not only do they distort the position (mean) or dispersion (variance) of the ob-
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servations, they also distort the correlations between the variables; see Rocke and Woodruff

(1996). Multivariate outliers greatly influence the resulting estimates and cause any out-of-

control observations to remain undetected. The identification of outliers in multivariate data

is usually based on the MD; see Marchant et al. (2016b). However, sometimes outliers do

not have a large MD, which is known as masking effect. Such a situation is due to the fact

that the estimators based on the model used to generate the MD are statistically non-robust;

see, for example, Rocke and Woodruff (1996) and Becker and Gather (1999). Masking ef-

fects occur when a group of extreme observations distorts the estimates of the mean and/or

variance-covariance matrix, resulting in a small distance from the outlier to the mean.

Jensen et al. (2007), Chenouri et al. (2009), and Alfaro and Ortega (2013) studied the

behaviour of different robust alternatives for estimating the process parameters in multi-

variate control charts. This allowed the researchers to avoid the negative effect of outliers.

Alfaro and Ortega (2012) proposed a robust T 2 control chart to protect it in the presence

outliers in Phase I, when the data are multivariate t distributed, thus improving the be-

haviour in Phase II.

The main objectives of this chapter are: (i) to propose a robust methodology for mul-

tivariate GBS control charts; (ii) to evaluate its performance by means of MC simulations;

and (iii) to apply it to multivariate real-world data. To meet these objectives, we develop

the multivariate GBS control charts and determine their limits with the bootstrap method,

assuming an in-control status. Then, we estimate the parameters of a multivariate BS and

BS-t distributions with the ML method. Fitting tools based on the MD are derived to eval-

uate the stability and adequacy of these charts. In addition, we consider the MD as an

influence measure to detect multivariate outliers. We carry out a MC simulation study to

assess the performance of the proposed methodology. We implement the obtained results

by a computational routine in the R software; see www.R-project.org. We employ this

routine to carry out an illustration with multivariate air quality data from the city of Santi-

ago, Chile. Note that, the BS distribution was formalized as an adequate model to describe

environmental data using the proportionate-effect law; Leiva et al. (2015b).

This chapter is structured as follows. In Section 4.3, we provide some preliminary results,

whereas Section 4.4 derives the methodology based on multivariate GBS control charts. In

Section 4.5, an MC simulation study is carried out to evaluate the performance of proposed

methodology. In Section 4.6, we apply this methodology to multivariate air quality real-world

data. Finally, Section 4.7 discusses some conclusions of this chapter.

www.R-project.org
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4.3 Background

In this section, we provide ML estimation aspects of log-GBS distributions. In addition,

we discuss some general aspects of traditional multivariate quality control charts.

4.3.1 ML estimation in multivariate log-GBS distributions

Let Y1, . . . ,Yn be a random sample from the p-variate log-GBS distribution with E(Yi) =

µi for i = 1, . . . , n, and let y = (y1, . . . ,yn)⊤ be their observed values. Then, the log-

likelihood function for θ = (α⊤,µ⊤, svec(Ψ)⊤)⊤, is given by

ℓ(θ;y) =
n∑

i=1

ℓi(θ) =
n∑

i=1

[
log(fECp

(Bi;Ψ, g
(p))) +

p∑

j=1

log

(
1

αj
cosh

(
yij − µj

2

)) ]
, (4.1)

where fECp
is given in (1.11) and Bi = (Bi1, . . . , Bip)⊤, with elements

Bij =
2

αj

sinh
(
yij − µj

2

)
, i = 1, . . . , n, j = 1, . . . , p. (4.2)

From Table 1.1 and (4.1), if g(p) is the multivariate normal or t kernel, then the log-likelihood

functions for θ are given respectively by

ℓi(θ) = −p

2
log(2π) − 1

2
log(|Ψ|) − 1

2
B⊤

i Ψ
−1Bi +

p∑

j=1

log
(

1

αj

cosh
(
yij − µj

2

))
,

ℓi(θ) = − log
(

Γ
(
ν

2

))
+ log

(
Γ
(
ν + p

2

))
− p

2
log(νπ) +

[
ν + p

2

]
log(ν)

−1

2
log(|Ψ|) −

[
ν + p

2

]
log(ν +B⊤

i Ψ
−1Bi) +

p∑

j=1

log
(

1

αj
cosh

(
yij − µj

2

))
,

where Bi is given in (4.1). In order to obtain the ML estimates of the multivariate log-GBS

distribution parameters, the log-likelihood function given in (4.1) must be maximized. As we

have already been mentioned in previous chapters, the corresponding likelihood equations

must be solved by a non-linear iterative procedure. In our case, initial values for this iterative

procedure may be:

(i) µ̂
(0)
j = med(y1j, . . . , ynj), for j = 1, . . . , p, where “med” denotes the median of the data.

(ii)

α̂
(0)
j =

√√√√ 4

n

n∑

i=1

(
sinh

(
yij − µ̂

(0)
j

2

))2

, j = 1, . . . , p,

where µ̂
(0)
j = med(y1j, . . . , ynj).
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(iii) Ψ̂
(0) = D(Σ̂(0))−1/2

Σ̂
(0)D(Σ̂(0))−1/2, where Σ̂

(0) = (1/n)
∑n

i=1 B̂
(0)
i (B̂

(0)
i )⊤, with B̂

(0)
i

having elements as in (4.2) given by

B̂
(0)
ij =

2

α̂j
(0)

sinh

(
yij − µ̂

(0)
j

2

)
, i = 1, . . . , n, j = 1, . . . , p,

and α̂j
(0) being computed as in (ii).

4.3.2 Multivariate quality control charts

The construction of a multivariate control chart consists of:

(i) Defining a center line (CL), which represents the expected value of the quality character-

istics for all subgroups (samples).

(ii) Establishing lower and upper control limits (UCL and LCL, respectively), which set a

distance above and below the CL.

(iii) Plotting points, each of which represents a subgroup of data sampled from the process,

representing the mean vector or some other statistic.

UCL and LCL provide a visual display for the expected amount of data dispersion. The

control limits are based on the actual behavior of the process, not the desired behavior or

specification limits. A process can be in-control and yet not be capable of meeting require-

ments; see Leiva et al. (2014a).

In the construction of multivariate control charts, Alt (1985) defined the two following

phases:

Phase I: An in-control data set is analyzed to estimate the parameters, obtain the control

limits and identify multivariate outliers.

Phase II: The estimates and control limits are used to check the data obtained during the

process.

Therefore, Phase II consists of using the control chart to detect any departure of the under-

lying process from a prefixed mean value (µ0) called the target. In this phase, the idea is

that the number of subgroups m collected is greater than 25. In Phase II, note that the data

are not taken from an in-control process, unless there is a clear indication of no changes in

the process.

The average run length (ARL) is the mean number of points that must be plotted before

a point to indicate an out-of-control condition. ARL can be used to evaluate the performance

of a control chart and it is calculated as

ARL =
1

Pr(one point plotted out of control)
.
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An in-control ARL is denoted by ARL0 and expressed as ARL0 = 1/η, where η represents

the probability of type-I error. ARL0 usually takes values in {200, 370.4, 500, 1000}. On

the one hand, the probability that an observation is considered as out of control, when the

process is actually in control, indicates a false alarm rate (FAR), which is usually in the

set {0.005, 0.0027, 0.002, 0.001}. On the other hand, the probability of a true out-of-control

signal can be obtained from 1 − Pr(type-II error). An out-of-control ARL is denoted by

ARL1 and calculated as ARL1 = 1/[1 − γ], where γ = Pr(type-II error).

4.4 Multivariate GBS quality control charts

In this section, we develop a methodology for multivariate GBS control charts. We use

the bootstrap method to determine the control limits in Phase I. Then, we formulate this

chart to monitor a process in Phase II.

4.4.1 T 2 statistic for log-GBS distributions

Let Yi = (Yi1, . . . , Yip)
⊤ ∈ R

p be a vector that represents p quality characteristics of

the ith item in the subgroup for i = 1, . . . , n, where n is the subgroup size and µ0 is the

mean vector of an in-control process (target). Assume that Y follows a p-variate log-GBS

distribution, that is, Y ∼ log-GBSp(α,µ,Ψ, g(p)), and that there are k subgroups each of size

n > 1 available from the process. Furthermore, suppose that the vectors Yi are independent

over time. We are interested in testing the hypotheses

H0: µ = µ0 = (µ01, . . . , µ0p)
⊤ versus H1: µ 6= µ0. (4.3)

An adaptation of the Hotelling T 2 statistic presented in Gupta et al. (2013, pp. 201-216) can

be used for testing the hypotheses in (4.3) as follows. From Property (D1) and considering

that

bi =
(

2 sinh
(
Yi1 − µ01

2

)
, . . . , 2 sinh

(
Yip − µ0p

2

))⊤

has a p-variate EC distribution, that is, bi ∼ ECp(0p,D(α)ΨD(α), g(p)) for i = 1, . . . , n.

Then, we obtain a Hotelling T 2 statistic adapted for multivariate log-GBS distributions as

T 2 = n[n − 1]b
⊤
C−1b, (4.4)

where b =
∑n

i=1 bi/n and C =
∑n

i=1 bib
⊤
i . Note that, if Y ∼ log-BSp(α,µ,Ψ), T 2 given

in (4.4) follows a Fisher distribution with p and n − p DFs, that is, T 2 ∼ F(p, n − p); see

Kundu (2015a). However, for the wide family of p-variate log-GBS distributions, this result
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is not valid. Particularly, for the multivariate t distribution, Kotz and Nadarajah (2004,

pp. 199-200) mentioned that the T 2 statistic has no direct results, which is transferred to

p-variate log-BS-t distributions. We propose a multivariate GBS control chart based on the

adaptation of the Hotelling T 2 statistic given in (4.4). We discuss a manner to approximate

the distribution of this statistic in Subsection 4.4.2. Knowing this distribution, we can obtain

its quantiles and then the corresponding control limits.

4.4.2 A bootstrap distribution for the T 2 statistic

As mentioned, for data with a multivariate log-BS-t distribution, the associated T 2 statis-

tic distribution is not known in closed form. We use the parametric bootstrap method to

approach this distribution; see Hall (1992). To generate random vectors from p-variate

log-BS and log-BS-t distributions, and then to obtain the bootstrap distribution of the T 2

statistic given in (4.4), we use Algorithms 1 and 2, respectively; see Section 2.3.

4.4.3 Phase I

As mentioned in Subsection 4.3.2, control limits must be obtained in Phase I. According

to Duncan (1986), Phase I also includes the establishment of the process being statistically

in control. Implementation of control charts requires their limits to be generated. Algorithm

5 details how to compute the control limits with the bootstrap distribution of the T 2 statistic

defined in (4.4); see Subsection 4.4.2. Note that control charts usually have both LCL and

UCL, but sometimes only an UCL is considered; see, for example, Alfaro and Ortega (2012).

4.4.4 Phase II

As mentioned in Subsection 4.3.2, multivariate GBS quality control charts must be used

in Phase II to test if the process remains in control when future (new) subgroups, whose

statistic is denoted by T 2
new, are collected. Then, multivariate GBS control charts are based

on the sequence of the T 2
new

statistic defined in (4.4), for l = 1, . . . , m, where m represent

the subgroups size in this phase. Algorithm 6 details how to construct p-variate control

charts based on GBS distributions for process monitoring. In Phase II, it is also necessary to

check the distributional assumption by using GOF tools and multivariate methods to detect

outliers.
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Algorithm 5 Estimation and computation of control limits in Phase I.

1: Collect k subgroups (y1h, . . . ,ynh)⊤ of size n > 1 for an in-control process, with

h = 1, . . . , k, assuming that the logarithm of the data follows a log-GBSp(α,µ,Ψ, g
(p))

distribution.

2: Compute the ML estimates of α, µ and Ψ using the data of the pooled sample of size

N = k×n collected in Step 1 and check the distributional assumption using GOF tools.

3: Generate a parametric bootstrap sample (y∗
1, . . . ,y

∗
n)⊤ of size n from a p-variate log-GB

distribution using the ML estimates obtained in Step 2 as the distribution parameters.

4: Compute T 2 defined in (4.4) with (y∗
1, . . . ,y

∗
n)⊤, which is denoted by T 2∗, assuming a

target µ0.

5: Repeat Steps 3-4 a large number of times (for example, B = 10, 000) and obtain B

bootstrap statistics of T 2, denoted by T 2∗
1 , . . . , T 2∗

B .

6: Fix η as the desired FAR of the chart.

7: Use the B bootstrap statistics obtained in Step 5 to find the 100(η/2)th and 100(1 −
η/2)th quantiles of the distribution of T 2, which are the LCL and UCL for the chart of

FAR η, respectively.

Algorithm 6 Process monitoring using the multivariate GBS control chart in Phase II.

1: Take a subgroup of size n, (y1, . . . ,yn)⊤ say, from the process.

2: Calculate the T 2
new

statistic from the sample obtained in Step 1.

3: Declare the process as in control if T 2
new

falls between LCL and UCL obtained in Algorithm

5; otherwise, that is, if the T 2
new falls below the LCL or above the UCL, the chart signals

a out-of-control condition.

4: Repeat Steps 1-3 for m subgroups taken at regular time intervals.

4.5 Simulation study

In this section, we evaluate the performance of the proposed methodology in Phases I

and II. We use the R software in all of our calculations for this study.

4.5.1 Phase I

For Phase I, we consider the following simulation scenario. Using Algorithms 1 and 2, we

generate B = 10000 bootstrap samples for k = 20 and subgroup sizes n ∈ {5, 10, 25, 50, 100}
from p-variate log-BS and log-BS-t distributions. For each bootstrap sample, we compute

its T 2 statistic with the formula defined in (4.4), obtaining T 2∗
1 , . . . , T 2∗

10000. We use an overall

FAR η = 0.0027 to obtain the LCL and UCL based on the 0.27th and 99.73th quantiles of
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the 10000 statistics. Table 4.1 shows the UCL and LCL obtained for p-variate log-BS and

log-BS-t distributions with p ∈ {2, 3, 4} with true values for their parameters established as:

(a) α = (0.4, 0.5)⊤, µ = (2, 1)⊤ and ψ = 0.8 for p = 2.

(b) α = (0.4, 0.5, 0.4)⊤, µ = (2, 1, 5)⊤ and Ψ =




1.0 0.8 0.5

0.8 1.0 0.2

0.5 0.2 1.0


 for p = 3.

(c) α = (0.4, 0.5, 0.4, 0.5)⊤, µ = (2, 1, 5, 3)⊤ and Ψ =




1.0 0.8 0.5 0.2

0.8 1.0 0.7 0.3

0.5 0.7 1.0 0.5

0.2 0.3 0.5 1.0




for p = 4.

These values are chosen with the following criteria: (i) αj ≤ 0.5 according to Marchant et al.

(2016a); (ii) µj ∈ {1, 2, 3, 5} based on Alfaro and Ortega (2012); and (iii) ψrs with small,

medium and large correlations. We use ν = 4 DF for the log-BS-t distribution according

to Marchant et al. (2016a) and references therein for a justification about this value, which

often maximizes the log-likelihood function. From Table 4.1, as n increases, the control limits

become narrower for both distributions, whereas the UCL decreases progressively. Note that

the LCLs are very close to zero, which is a reason this limit is often not calculated and set as

zero; see 4.4.3. For a fixed n, the limits of the log-BS-t distribution are narrower than those

for the log-BS distribution, which can be attributed to the non-robustness to outliers of the

ML estimation of its parameters, possibly affecting the detection of out-of-control conditions

in Phase II; see Section 4.2.

4.5.2 Phase II

For Phase II, we generate m = 30 new subgroups using the same scenario of Phase I. We

calculate T 2
new

with algorithm 6. We generate M = 5000 MC replications. We perturb one

(1) observation in each subgroup and consider three perturbation levels (low, moderate and

high), corresponding to one (1), five (5) and ten (10) perturbed subgroups. When a subgroup

is not perturbed, we denote it with zero. The performance of the control charts is judged

in terms of the detection rate of the new subgroup, which is obtained as the proportion of

statistic values that are above the UCL. The results are shown in Table 4.2.

From this table, note that the multivariate BS-t control chart performs well in detecting

out-of-control conditions in Phase II. Observe that the low and moderate perturbations are

well detected by the control chart. Also, notice that the BS-t chart has perform better as
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Table 4.1: Simulated control limits for data following p-variate log-GBS distributions with η =

0.0027.

UCL

p = 2 p = 3 p = 4

n BS BS-t BS BS-t BS BS-t

5 11.6027 6.7079 14.8541 8.2944 16.0207 9.3704

10 11.1691 6.0518 13.6852 7.4770 15.9451 8.8128

25 10.7939 5.8128 13.7052 7.1973 15.7863 8.6813

50 10.9625 5.6462 13.5828 6.8775 15.5876 7.9276

100 10.9106 5.3870 13.4448 6.6943 15.5746 7.8409

LCL

p = 2 p = 3 p = 4

n BS BS-t BS BS-t BS BS-t

5 0.0041 0.0031 0.0472 0.0265 0.1810 0.0578

10 0.0054 0.0031 0.0504 0.0246 0.1727 0.0795

25 0.0050 0.0024 0.0480 0.0218 0.1509 0.0813

50 0.0052 0.0030 0.0530 0.0245 0.1676 0.0672

100 0.0059 0.0031 0.0596 0.0252 0.1576 0.0775

Source: From the author.

the number of variables increases. In addition, as the level of perturbation increases, the

detection of out-of-control condition decreases due to the masking effect, especially when

ten subgroups are perturbed. However, this effect is attenuated in the case of the BS-t

chart due to the robustness of its estimation method in relation to the BS chart (omitted

here). Finally, in general, when the subgroup size n increases, the performance for detecting

out-of-control conditions also increases.

4.6 Data analysis

In this section, we apply the multivariate GBS control charts and GOF tools implemented

by a computational routine in R code to real-world air quality data.

4.6.1 Description of the problem and data

Multiple studies show an association between pollutant concentrations such as particulate

matter (PM), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). These pollutants

produce premature deaths and several cardio-respiratory diseases in children and adults. PM

is a contaminant highly associated with mortality and morbidity. PM is classified according
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Table 4.2: Out-of-control detection rate in Phase II for indicated p and target in the BS-t distri-

bution.

p = 2 p = 3 p = 4

n Perturbation level µ0 = (2, 1)⊤ µ0 = (2, 1, 5)⊤ µ0 = (2, 1, 5, 3)⊤

5 0 0.4320 0.9790 1.0000

1 0.4960 0.9810 1.0000

5 0.2278 0.8526 1.0000

10 0.1597 0.5922 0.9875

10 0 0.8210 0.9940 0.9950

1 0.8960 0.9980 0.9960

5 0.7706 0.9768 0.9704

10 0.6235 0.9145 0.9037

25 0 0.8500 0.9900 0.9880

1 0.9040 0.9960 0.9930

5 0.6736 0.9784 0.9406

10 0.5983 0.9189 0.8158

50 0 0.8540 0.9970 0.9980

1 0.8880 0.9980 0.9990

5 0.5538 0.9680 0.9636

10 0.4558 0.8525 0.8424

100 0 0.8580 1.0000 1.0000

1 0.8720 1.0000 1.0000

5 0.4794 0.9768 0.9796

10 0.3793 0.8345 0.8536

Source: From the author.

to its diameter, because particle size determines sites of deposition within the respiratory

tract. Coarser particles (those with a diameter over 10 µm) do not penetrate into airways.

Instead, these particles are deposited in the upper respiratory tract and are cleared by cilia

action. Inhalable particles measuring less than 10 µm are called PM10. Those smaller

than 2.5 µm are called PM2.5. As size decreases, there is a higher possibility for PM to

penetrate deeper into smaller alveoli and airways. In particular, various effects are produced

from exposure to PM, but the nature of those induced effects vary according to the PM

composition. Indeed, there is evidence of an increase in the risk of cardiovascular diseases

and mortality from exposure to PM2.5, which occurs even after short time periods, such as

hours or weeks. For more details about PM concentrations, the interested reader is referred

to Marchant et al. (2013b).

Because of a combination of meteorological and topographic factors, Santiago, the capital

of Chile, endures bad atmospheric ventilation in both winter and summer periods. During
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winter, there is an accumulation of PM and gaseous contaminants, whereas increased solar

radiation in summer favors ozone-producing photochemical reactions. Gaseous contami-

nants such as carbon monoxide (CO), NO2, SO2, and PM are the main contributors to

air quality problems in Santiago, Chile. In addition, NO2 and SO2 are precursors of PM;

see Marchant et al. (2013b). In this illustration, we use the following variables: (i) PM2.5

in mg/normalized cubic meters (m3N)–X1–; and (ii) PM10 in mg/m3N–X2–. The data to

be considered were collected by the Metropolitan Environmental Health Service. We utilize

these data for our analysis below, which are available at http://www.mma.gob.cl. The data

were collected in 2003 as 1 h (hourly) average values, at (a) Las Condes and (b) Pudahuel

monitoring stations, located in Santiago. We select data from these stations mainly because

they are more suitable to conditions of low and high stability, allowing us to analyze different

pollution patterns. Chilean guidelines for air quality are established by the Ministry of the

Environment. The maximum concentrations (in mg/m3N) according these guidelines are 50

and 150, during 24 hours for PM2.5 and PM10, respectively. These values are considered as

the targets in this illustration.

4.6.2 Exploratory data analysis

First, we conduct an exploratory data analysis by computing correlations between X1

and X2 in both stations. Figures 4.1 (a) and (b) display the scatter-plots for these variables

and their corresponding correlations. From this figure, we detect that there are large and

medium correlations between X1 and X2 for Las Condes and Pudahuel stations, respectively.

Exploratory data analysis for each separate variable at the two stations was conducted and

marginal BS distributions seem good candidates for describing these data.

4.6.3 Phase I

We initially use concentrations of the months of January and February to calculate the

control limits according to Algorithm 5 with k = 59, n = 24, N = 1416, B = 10000 and

FAR η = 0.0027. We use these months since the air quality is stable (considered under

control), because the meteorological and topographical conditions favor no saturation of PM

concentrations. We employ the transformed MD with Wilson-Hilferty approximation for

obtaining a normal distribution; see Subsection 2.6. Then, a GOF technique is utilized to

check step 2 of Algorithm 5; see Marchant et al. (2016b). Figure 4.2 shows the corresponding

PP-plots with acceptance bands for a significance level of 5% in Pudahuel station based on

BS and BS-t distributions (for Las Condes station, the results are similar). From this figure,

we corroborate the good fit of the BS and BS-t distributions to the data in Phase I, which

http://www.mma.gob.cl
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Figure 4.1: Scatter-plots with their corresponding correlations for the indicated variable for (a)

Las Condes and (b) Pudahuel stations.
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Source: From the author.

is supported by the p-values 0.245 and 0.227, respectively, of the Kolmogorov-Smirnov (KS)

test associated with these PP-plots; see Algorithm 4 and Marchant et al. (2016a).

4.6.4 Phase II

We use the control limits obtained in Phase I (Subsection 4.6.3) to monitor April of

2003; see Marchant et al. (2013b). For the control chart of this month, the number of

subgroups and the subgroup size are m = 30 days and n = 24, respectively, giving a total

of 720 observations. Once again, we employ the transformed MD to assess the goodness

of fit of the most appropriate distribution to these data. Figure 4.3 displays the PP-plots

with acceptance bands for a significance level of 5%. From this figure, we detect that the

BS-t distribution provides a better fit than the BS distribution for both stations, which is

corroborated by the p-values 0.901 (Las Condes/BS-t) and 0.520 (Pudahuel/BS-t) versus

0.095 (Las Condes/BS) and 0.238 (Pudahuel/BS) of the KS test associated with these PP-

plots.
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Figure 4.2: PP-plots with KS acceptance regions at 5% for transformed MDs with BS (a) and

BS-t (b) distributions based on Pudahuel data.
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In addition, we utilize the MD as a measure to detect multivariate outliers. Figures

4.4 (a) and (b) depict graphical plots for both stations with the BS-t distribution. From

this figure, note that 19 April (labelled 19) is detected as a multivariate outlier. However,

this observation does not influence the control charts shown in Figure 4.5 (a) and (b) for

both stations due to the robustness of the ML estimation for the BS-t distribution. It

is known that the Las Condes station is less contaminated than the other 7 stations (in

the year 2003), due to better ventilation at its high altitude; see Marchant et al. (2013b).

This can be the reason why such a station does not have points outside of the limits. On

the contrary, 10 April (labelled 10) exceeds the limit in the Pudahuel station. Therefore,

an environmental alert must be declared as an out-of-control condition for the next day.

Note that, if at least one of the air quality monitoring stations presents a dangerous PM

level for human health in Santiago, then an out-of-control condition must be declared. The

interested reader is referred to CONAMA (1998) for details of the official decree of the

Ministry of Environment (CONAMA) of the Chilean government that indicates this regu-

lation. Observe that our criterion is coherent with the official information provided by the

Chilean Ministry of Health, which established environmental alerts for the day 11-April-

2003; see www.seremisaludrm.cl/sitio/pag/aire/indexjs3airee001.asp. Finally, we

www.seremisaludrm.cl/sitio/pag/aire/indexjs3airee001.asp


Essays on multivariate generalized Birnbaum-Saunders methods 100

Figure 4.3: PP-plots with KS acceptance regions at 5% for transformed MDs with BS2 (first panel)

and BS-t2 (second panel) distributions for Las Condes (left) Pudahuel (right) stations based on

pollutant data.
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recommend this methodology based on multivariate GBS control charts because these can

be useful for alerting citizens about episodes of extreme air pollution. Thus, pollutants must

be monitored to prevent adverse effects on human health for the population of Santiago,

Chile. In addition, we show the coherence between our criterion and when Chilean health

authority rules environmental alerts in the real-world.



Essays on multivariate generalized Birnbaum-Saunders methods 101

Figure 4.4: Index-plots of MDs for the BSt Las Condes (a) and BS-t Pudahuel (b) stations based

on pollutant data.
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Figure 4.5: Bivariate BS-t control charts for Las Condes (a) and Pudahuel (b) stations for April

2003 based on pollutant data.
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4.7 Concluding remarks

In this chapter, we proposed a robust methodology for multivariate control charts based

on generalized Birnbaum-Saunders distributions. This methodology estimates the multi-

variate Birnbaum-Saunders and Birnbaum-Saunders-t parameters with the maximum like-

lihood method. It also considers the Mahalanobis distance to detect multivariate outliers

and evaluate the adequacy of the distributional assumption. For data following a multi-

variate Birnbaum-Saunders-t model, the distribution of the associated Hotelling statistic is

not known in closed form. Then, the methodology uses the bootstrap method to obtain an

approximation of this distribution. Once such a distribution is known, the proposed method-

ology obtains its quantiles to construct the control limits of the multivariate chart. A Monte

Carlo simulation study was conducted to evaluate the proposed methodology in Phases I

and II. We concluded by means of this simulation study that the multivariate Birnbaum-

Saunders-t control chart performs well in the detection of out-of-control conditions in Phase

II and behave better than the multivariate Birnbaum-Saunders control chart in both phases.

We illustrated the proposed methodology with real-world air quality data of Santiago, Chile,

through two monitoring stations with different climatic conditions and pollution levels. This

illustration showed that our methodology is useful for alerting citizens about episodes of

extreme air pollution and for preventing adverse effects on human health for the popula-

tion of Santiago, Chile. Specifically, the control charts based on the Birnbaum-Saunders-t

distribution performs well for early prediction of extreme situations of contamination. In

addition, we showed the coherence between our criterion and real-world situations in which

Chilean health authority ruled environmental alerts.



CHAPTER 5

Discussion

5.1 Resumo

Neste capítulo são apresentadas as conclusões gerais deste trabalho intitulado “Ensaios

sobre métodos Birnbaum-Saunders generalizada multivariada”. Neste trabalho podemos

destacar quatro importantes resultados a saber: (i) propomos distribuições Birnbaum-Saun-

ders generalizadas logarítmicas multivariadas, (ii) derivamos modelos de regressão multi-

variados Birnbaum-Saunders generalizados, (iii) propomos métodos de diagnóstico para

modelos de regressão multivariados Birnbaum-Saunders generalizados e, finalmente, (iv)

desenvolvemos gráficos de controle de qualidade multivariados para distribuições Birnbaum-

Saunders generalizadas. Além disso, neste capítulo são apresentados alguns problemas para

trabalhos futuros que podem ser desenvolvidos. Podemos destacar a possibilidade de ex-

plorar o efeito de considerar diferentes parâmetros de forma em cada resposta, derivar uma

análise de resíduos para modelos de regressão multivariados Birnbaum-Saunders generaliza-

dos e considerar efeitos aleatórios nos modelos propostos neste trabalho. Além disso, na

área de gráficos de controle de qualidade multivariados, podemos desenvolver um gráfico de

controle para observações individuais ou correlacionadas.

103



Essays on multivariate generalized Birnbaum-Saunders methods 104

5.2 Conclusion

In this work, we presented essays on multivariate generalized Birnbaum-Saunders meth-

ods. Initially, in Chapter 2, we proposed multivariate log-GBS distributions and derived

new multivariate generalized Birnbaum-Saunders regression models, including their maxi-

mum likelihood estimation by means of the EM algorithm. In Chapter 3, we carried out

a diagnostic analysis for multivariate generalized Birnbaum-Saunders log-linear regression

models by goodness-of-fit techniques and global and local influence methods. In Chapter 4,

we proposed a robust methodology for multivariate generalized Birnbaum-Saunders control

charts, whose limits were based on the distribution of the Hotelling statistic obtained with

the bootstrap method. In each chapter of this work an application with real-world data was

provided to illustrate the good performance of the proposed methodology.

5.3 Future research

We are considering to study some new aspects related to this thesis in a future works.

For example,

(i) It is possible to explore the effect of considering different shape parameters in each

response.

(ii) Heterogeneity problems presented in the data could also be considered in the type of

models derived in the thesis.

(iii) Other estimation procedures can be investigated.

(iv) Residual analysis may be derived for these regression models. Such a topic is some-

what complex in multivariate regression, still more for asymmetrical distributions; see

Cysneiros and Paula (2004) and Manghi et al. (2016) for some ideas on residual anal-

ysis in elliptical multivariate models.

(v) Distributional assumption can be evaluated by multivariate GOF methods.

(vi) Random effects can be added in the models proposed in this work.

(vii) A multivariate GBS quality control charts for individual or correlated observations can

be developed.

All the possible future works provide to us challenging aspects to be studied.



CHAPTER 6

Appendix

6.1 The EM algorithm

The EM algorithm was proposed by Dempster et al. (1977). They pointed out that the

method had been proposed many times in special circumstances by earlier authors. In par-

ticular, a very detailed treatment of the EM method for exponential families was published

by Sundberg (1976). Dempster et al. (1977) generalized the method and sketched a conver-

gence analysis for a wider class of problems. Regardless of earlier inventions, the innovative

Dempster et al. (1977) paper in the Journal of the Royal Statistical Society received an en-

thusiastic discussion at the Royal Statistical Society meeting with Sundberg calling the paper

“brilliant”. The Dempster et al. (1977) paper established the EM method as an important

tool of statistical analysis.

The EM iteration alternates between performing an expectation (E) step, which creates

a function for the expectation of the log-likelihood evaluated using the current estimate for

the parameters, and a maximization (M) step, which computes parameters maximizing the

expected log-likelihood found on the E-step. These estimates are then used to determine the

distribution of the latent variables in the next E-step. According to Ferreira et al. (2011), the

EM algorithm has a large popularity due to (i) its computational simplicity in the M-step,

because it involves only complete data ML estimation; and (ii) its stable and straightforward

implementation, because the iterations converge monotonically and there are no need for

second derivatives.
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Let Y and Z be the vector of observed and missing data, respectively, thereby complete

data vector Yc is composed of Y and Z as Yc = (Y ⊤,Z⊤)⊤. Consider ℓ(θ,Yc) the log-

likelihood function of complete data for the vector parameters θ ∈ Θ. The EM algorithm

addresses problems with incomplete data indirectly through the substitution of not observ-

able part in ℓ(θ,Yc) by its conditional expectation given Y , using the adjustment to current

θ. That is, consider the function Q defined as

Q(θ|θ̂) = E[ℓ(θ,Yc|Y , θ̂)].

The two steps of the EM approach are summarized for a general setting in Algorithm 7.

Algorithm 7 EM approach for a general setting

E-step. Given θ̂ = θ̂(r−1), compute Q(θ|θ̂(r−1)), for r = 1, 2, . . .; and

M-step. Find θ̂(r) such that Q
(
θ|θ̂(r)

)
= arg maxθQ(θ|θ̂(r−1)), for r = 1, 2, . . ., where

Q(θ|θ̂(r−1)) is the expected value of the complete data log-likelihood function conditional on

the observed data and evaluated at (r − 1)th estimation of θ.

Algorithm 7 must be iterated until to reach convergence. Each iteration of the EM

algorithm increases the likelihood function of observed data, say L(θ,Y ), and under ap-

propriate conditions the EM algorithm presents monotonous convergence to the global or

local maximum of L(θ,Y ); see Wu (1983) and McLachlan and Krishnan (1997). Note that

the convergence analysis developed in Dempster et al. (1977) was flawed and a correct con-

vergence analysis was published by Wu (1983). This author established the EM methods

convergence outside of the exponential family.

6.2 Proof of Theorem 1

Let Y ∼ log-GBSm(α,µ,Ψ, g(m)) be partitioned as in (2.4). W = B(Y ;α,µ) ∼
ECm(0,Ψ, g(m)), with B(Y ;α,µ) given in (2.2) and Ψ > 0. Thus,

(a) ifW ∼ ECm(0,Ψ, g(m)) andD ∈ R
q×m is a constant matrix with rk(D) = q < m, then

DW ∼ ECq(0,DΨD⊤, g(q)); see Fang et al. (1990, pp. 43). Let D = [Iq|0q×[m−q]],

so that DY = Y1 and DW ∼ ECq(0,DΨD⊤ = Ψ11, g
(q)), then

Y1 ∼ log-GBSq(α1,µ1,Ψ11, g
(q)).

Similarly ifD = [0(m−q)×q|I(m−q)] ∈ R
[m−q]×m, then Y2 ∼ log-GBSm−q(α2,µ2,Ψ22, g

(m−q));
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(b) if W = (W1,W2)
⊤ ∼ ECm(0,Ψ, g(m)), with W1 ∈ R

q, W2 ∈ R
m−q and Ψ being

partitioned as in (2.4), then the CDF of W1|W2 is

FW1|W2=z2
(z1) = FECq

(z1 − Ψ12Ψ
−1
22 z2;Ψ11.2, g

(q)

(z⊤

2 Ψ
−1
22 z2)

),

where z1 = (z1, . . . , zq)
⊤, z2 = (zq+1, . . . , zm)⊤ and Ψ11.2 = Ψ11 − Ψ12Ψ

−1
22 Ψ21; see

Fang et al. (1990, pp. 45-46). In our case, W = (W1,W2)
⊤ = B(Y ;α,µ) ∼

ECm(0,Ψ, g(m)), with W1 ∈ R
q and W2 ∈ R

m−q.

(c) the demonstration of this item follows immediately from (b).

6.3 Data Sets

Fatigue Data Set

Table 6.1: Fatigue data for the indicated variable used in Chapter 2.

X1 X2 X3 T1 T2 T3 T4

0.07 23.00 581.08 1850 1.260 144000 6420

0.07 23.00 818.92 470 1.349 36700 33700

0.07 31.96 581.08 1830 1.532 156000 9430

0.07 31.96 818.92 523 1.614 39900 36600

0.13 23.00 581.08 2030 1.801 181000 12100

0.13 23.00 818.92 581 1.824 46900 32000

0.13 31.96 581.08 2230 1.939 203000 13200

0.13 31.96 818.92 632 1.928 52300 32100

0.05 27.50 700.00 889 1.275 78600 19900

0.15 27.50 700.00 1410 1.921 125000 15000

0.10 20.00 700.00 1060 1.692 92100 20900

0.10 35.00 700.00 1390 1.888 111000 21200

0.10 27.50 500.00 2430 1.666 213000 9170

0.10 27.50 900.00 243 1.685 19500 74800

0.10 27.50 700.00 1130 1.651 96900 19900

Source: Lepadatu et al. (2005).
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Biomaterial data set

CT scan data and different densities expressed in mg/cm3 of human trabecular bone

specimens used in Chapter 3. Here, Voxels represents the number of voxels, HU core

the mean of the voxel Hounsfield units (HUs) within a bone core, SD HU the standard

deviation of the voxel HUs within a bone core, CV HU the coefficient of variation of the

voxel HUs within a bone core, ρct the computer tomography density derived from HUs by

means of a calibration equation from mineral standards, ρbulk the bulk density defined as

the mass of the intact core, including fat and water, over specimen bulk volume, ρdry the dry

apparent density considered mass of the intact core excluding fat and water, over specimen

bulk volume and ρash the ash density considered mineral mass over bulk volume.

Table 6.2: CT scan data to study the bone quality used in Chapter 3.

Age Gender ID core Voxels HU core SD HU CV HU Density (mg/cm3)
ρct ρbulk ρdry ρash

68 F 213 2311 144 153 1.060 105 801 161 125
68 F 231 1811 154 177 1.150 116 988 338 227
68 F 233 2214 260 262 1.010 195 1156 526 359
68 F 234 2447 327 205 0.626 235 1094 422 292
68 F 235 2026 272 227 0.832 205 1045 376 263
87 F 411 1902 230 132 0.573 156 1006 347 238
87 F 412 1902 329 121 0.368 228 1187 519 359
87 F 413 2059 401 132 0.330 282 1107 352 246
87 F 421 1376 104 122 1.173 71 1073 310 212
87 F 422 1791 232 115 0.497 156 1116 373 261
87 F 423 1862 284 123 0.433 195 1175 391 279
87 F 424 1761 213 111 0.520 143 1214 472 332
87 F 425 2267 349 123 0.352 244 1063 286 193
87 F 426 1614 88 89 1.010 55 869 160 129
87 F 427 1833 425 159 0.374 301 1226 527 366
86 F 511 4250 180 157 0.870 132 1061 275 197
86 F 512 3231 121 117 0.967 83 980 210 145
86 F 521 3047 129 140 1.080 95 996 249 169
86 F 522 3083 148 136 0.922 105 958 179 138
86 F 523 3618 45 95 2.130 33 1027 160 123
86 F 524 3750 131 136 1.040 94 1036 267 196
86 F 525 3623 140 142 1.020 103 1084 377 257
86 F 526 3256 232 179 0.770 171 1089 404 278
86 F 531 4972 149 167 1.120 116 1090 268 194
86 F 532 4740 128 155 1.210 97 984 164 122
86 F 534 5141 125 153 1.220 94 1042 253 167
86 F 535 4170 74 138 1.860 61 974 204 154
86 F 536 4413 116 151 1.300 90 978 188 138

Source: Vivanco et al. (2014).
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Table 6.3: (continued) CT scan data to study the bone quality.

Age Gender ID core Voxels HU core SD HU CV HU Density (mg/cm3)
ρct ρbulk ρdry ρash

81 F 611 2487 193 102 0.529 127 977 254 169
81 F 613 2891 324 116 0.360 224 1066 414 264
81 F 621 1448 211 110 0.521 140 958 290 197
81 F 622 2688 297 136 0.457 204 1126 401 274
81 F 624 3210 329 125 0.380 228 1162 442 305
77 F 712 3109 377 161 0.428 265 1179 556 373
77 F 713 2462 280 116 0.415 192 1124 446 302
77 F 714 2319 102 107 1.052 66 837 163 112
77 F 722 3817 361 160 0.442 254 1088 352 231
77 F 724 2922 234 136 0.580 158 955 348 244
77 F 726 3112 422 195 0.463 299 1162 568 379
79 M 311 1668 260 118 0.454 177 1142 391 275
79 M 312 1952 450 125 0.278 319 1224 488 344
79 M 321 1554 278 101 0.364 189 1171 394 284
79 M 322 1612 465 147 0.317 330 1185 479 320
79 M 323 1601 417 146 0.349 294 1208 494 333
79 M 324 1542 309 104 0.336 212 1205 501 342
79 M 325 1755 377 137 0.365 264 1206 501 343
79 M 326 1520 223 112 0.501 150 1014 324 224
79 M 327 1625 564 187 0.332 404 1285 672 456
79 M 331 1900 374 174 0.466 262 1174 487 325
79 M 332 1781 355 122 0.344 247 1139 464 314
79 M 333 1486 284 145 0.512 195 1090 363 256
79 M 334 1368 227 124 0.549 152 1100 355 252
79 M 335 1448 299 106 0.353 205 1134 355 251
79 M 336 1225 252 145 0.577 171 1115 304 213
79 M 337 1333 524 164 0.313 374 1300 667 453
66 M 811 2394 258 129 0.500 174 905 205 153
66 M 812 3029 310 162 0.522 214 1065 415 282
66 M 821 2270 273 93 0.339 186 1119 430 293
66 M 822 2207 337 98 0.290 234 1162 526 356
66 M 823 2307 287 99 0.384 196 962 325 232
66 M 824 2838 358 117 0.328 249 938 242 169
66 M 825 2168 403 91 0.227 283 992 250 177
66 M 826 1893 146 64 0.441 90 975 220 156
66 M 827 2001 320 124 0.387 221 1080 379 254
66 M 831 2045 287 120 0.418 196 1032 325 212
66 M 832 2029 147 87 0.589 91 973 250 162
66 M 833 885 93 53 0.573 51 1063 237 186
66 M 834 2500 177 84 0.477 113 806 159 109
66 M 835 3000 220 88 0.401 146 739 135 97
66 M 836 3334 190 75 0.396 123 776 125 98
66 M 837 2172 155 81 0.523 97 910 272 187
66 M 838 1942 172 88 0.514 110 1052 437 304
66 M 839 3428 416 182 0.439 293 1008 380 258
66 M 8310 3477 405 127 0.313 285 1188 656 435

Source: Vivanco et al. (2014).
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