Pernambuco Federal University
Informatics Center

Model Selection of RBF Networks via
Genetic Algorithms

By
E. G. M. de Lacerda

THESIS

Recife, PE - Brazil
March, 2003

Pernambuco Federal University
Informatics Center

Model Selection of RBF Networks Via Genetic
Algorithms

By
E. G. M. de Lacerda

THESIS

Submitted to the Informatics Center of Pernambuco Federal
University in partial fulfillment of requirements for degree
of doctor of Philosophy, 2003,

Abstract

One of the main obstacles to the widespread use of artificial neural networks is the
difficulty of adequately defining values for their free parameters. This work discusses
how Radial Basis Function (RBF) neural networks can have their free parameters de-
fined by Genetic Algorithms (GAs). For such, it firstly presents an overall view of the
problems involved and the different approaches used to genetically optimize RBF net-
works. It also proposes a genetic algorithm for RBF networks with a nonredundant
genetic encoding based on clustering methods. Secondly, this work addresses the prob-
lem of finding the adjustable parameters of a learning algorithm via GAs. This problem
is also known as the model selection problem. Some model selection techniques (e.g.,
crossvalidation and bootstrap) are used as objective functions of the GA. The GA is
modified in order to adapt to that problem by means of occam’s razor, growing, and
other heuristics. Some modifications explore features of the GA, such as the ability
for solving multiobjective optimization problems and handling objective functions with
noise. Experiments using a benchmark problem are performed and the results achieved,
using the proposed GA, are compared to those achieved by other approaches. The pro-
posed techniques are quite general and may also be applied to a large range of learning
algorithms.

Resumo

Um dos principais obstaculos para o uso em larga escala das Redes Neurais € a difi-
culdade de definir valores para seus parametros ajustaveis. Este trabalho discute como
as Redes Neurais de Funcbes Base Radial (ou simplesmente Redes RBF) podem ter
seus parametros ajustaveis definidos por algoritmos genéticos (AGs). Para atingir este
objetivo, primeiramente é apresentado uma visdo abrangente dos problemas envolvi-
dos e as diferentes abordagens utilizadas para otimizar geneticamente as Redes RBF. E
também proposto um algoritmo genético para Redes RBF com codificagdo genética ndo
redundante baseada em métodos de clusterizacdo. Em seguida, este trabalho aborda o
problema de encontrar 0s parametros ajustaveis de um algoritmo de aprendizagem via
AGs. Este problema é também conhecido como o problema de sele¢cdo de modelos. Al-
gumas técnicas de selecdo de modelos (e.g., validacéo cruzada e bootstrap) sdo usadas
como funcgdes objetivo do AG. O AG é modificado para adaptar-se a este problema por
meio de heuristicas tais como narvalha de Occam e growing entre outras. Algumas mod-
ificacdes exploram caracteristicas do AG, como por exemplo, a abilidade para resolver
problemas de otimizacdo multiobjetiva e manipular funcées objetivo com ruido. Ex-
perimentos usando um problema benchmark sé&o realizados e os resultados alcangados,
usando o AG proposto, sdo comparados com aqueles alcancados por outras abordagens.
As técnicas propostas sao genéricas e podem também ser aplicadas a um largo conjunto
de algoritmos de aprendizagem.

For God

and
for my father.

Acknowledgments

I would like to express my gratitude to my supervisors, Dra. Teresa Ludemir and Dr.
André de Carvalho, for their permanent guidance and patience throughout my research.
| also thank to them, Dr. Aluisio Aradjo and Dr. Francisco Carvalho for revising the
manuscript of the thesis. | thank my Parents for their love and support and my brothers
for encouragement. Finally, | wish to acknowledge CNPq, FAPESP and FACEPE for
their support.

Contents

1

Introduction 1

1.1 Motivation. e e 1

1.2 Objective e 3

1.3 Organization. 4

Genetic Algorithms 5

2.1 Introduction e 5
2.1.1 TheBinaryChromosome 7
2.1.2 Selection 9
2.1.3 Crossoverand Mutation 12
2.1.4 Elitism 13
2.1.5 n-Pointand Uniform Crossovers 16
216 GATerminology, 19
2.1.7 SchemaTheorem 20
2.1.8 Which CrossoveristheBest? 23

2.2 Optimizationvia GA 24
2.2.1 ABriefIntroductiono, 24
2.2.2 GAandthe OthersMethods 27
2.2.3 Exploration-Exploitation Trade-off 29

2.3 RCGA - The Real-Coded Genetic Algorithm 31
2.3.1 Binaryvs.RealEncoding 31
2.3.2 GeneticOperators 33

2.4 Practical Aspects 40
2.4.1 Initial Population o L 40

Vi

CONTENTS vii

2.4.2 Objective Function 40
2.4.3 StoppingCriteria e 41
2.4.4 Generational and Steady State Replacement 42
245 ConvergenceProblems 43
2.4.6 Remapping the Objective Function. 44
247 SelectionMethods 48
2.5 Summary . . o.o. .. e e 50
3 Learning and RBF Networks 52
3.1 ThelearningProblem 52
3.2 TheTrue PredictionError 54
3.3 Estimating the True Prediction Error 54
3.4 Introduction to Radial Basis Function Networks 58
3.5 Hybrid Learning of RBF networks 60
3.6 Computational Considerations 62
3.7 RidgeRegression 62
4 Combining RBF Networks and Genetic Algorithms 64
4.1 Combining Neural Networks and Genetic Algorithms 64
4.1.1 Encodinglssues 66
4.1.2 Desirable Properties of Genetic Encodings 68
4.1.3 Redundancy and lllegality in RBF Network Encodings 70
4.2 Reviewof PreviousWorks 71
4.2.1 Selecting Centers from Patterns 71
4.2.2 Crossing Hypervolumes 74
4.2.3 Functional Equivalenceof RBFs 75
424 OtherModels 77
4.3 ComMENtS e 78
5 The Proposed Genetic Encodings and their Operators 80
5.1 Modell - Multiple CentersperCluster 81
51.1 Encoding e 81
5.1.2 Partitioning the InputSpace 81

513 Decoding 82

CONTENTS viii

5.1.4 The Cluster Crossover 83
5.1.5 MutationOperators e 84
5.2 Modelll-One CenterperCluster 85
521 Encoding e 85
522 Decoding e 87
5.2.3 Geneticoperators e 87
53 Comments e 88
6 Model Selection via Genetic Algorithms 90
6.1 Training and Adjustable Parameters 91
6.2 Model Selection 92
6.3 A Simple GA for Model Selection 94
6.3.1 The Holdout Fitness Function 95
6.3.2 TheOccaméElitism 96
6.3.3 Experimental Studies 97
6.4 Other Fitness Functions for Model Selection 101
6.4.1 The k-Fold-Crossvalidation Fitness Function 101
6.4.2 The Generalized Cross-Validation Fitness Function 101
6.4.3 The .632 Bootstrap Fitness Function 102
6.4.4 Experimental Studies 103
6.5 Other Heuristics for Model SelectionviaGAs 104
6.5.1 Shuffing 104
6.5.2 Growing 107
6.6 The Multiobjective Optimization for Model Selection 108
6.6.1 The Multiobjective Genetic Algorithm 108
6.6.2 The Choice of the Fitness Functions 110
6.6.3 Experimental Studies, 111
6.7 Experimental Studies with Other Techniques 112

7 Conclusion 117

List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

of Figures

Functionf(z) = xsin(10mz) +1o oo oo 7

A Simple Genetic Algorithm o oL 8
Initial population 9
Roulette wheel parent selection algorithm 12
Chromosomes of the first generation 14
Firstgeneration e 15
Eighthgeneration, 15
Twentieth-five generation 16
The maximum and mean value of objective function as a function of
generation 17
GA with and without elitism 17
2-POINt-CrOSSOVEN v v o v e e e e e e 18
4-pOINt-CrOSSOVEN v o i e e e e e e e e e 18
Uniform crossover e 19
Stringsand Schemata 21
Apopulation e 23
Chromosome interpretedasaring 24
Infeasibility 26
The downhillmethod 28
Arithmetical crossover 35
BLX-« applied to an unidimensional space 36
BLX-« applied to a multidimensional space 36
Heuristic crossover 38
Premature convergence e 43

LIST OF FIGURES X

2.24
2.25
2.26
2.27

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

6.4

6.5
6.6

Ranking and the selectionpressure 46
Linearscaling e 48
Procedure for calculating the linear scaling coefficiersadd 49
Stochastic Universal Sampling 50
Adataset 55
Thek-fold-crossvalidation methodfdr=5. 57
Hypothesis selected liyfold-crossvalidation withk =10 59

A Radial Basis Function Network 60
Genotype to phenotype mapping. L. 67
Reparing anillegalnetwork 68
Redundant RBF networks. 71
Overlapped Gaussian Functions. 71
Lucasius and Kateman'’s variable length crossover 73
Trade mutation 73
Crossing Hypervolumes e 76
Decoding the chromossome formed by a list of 5-gene sequences 78
Partioning the input space by means of clusters of patterns 82
Chromosomedecoding 83
The cluster crossover 85
Traditional crossover generates duplicatedgenes 86
Cluster crossover using the template bit string (0,1,1) 86
The data set partition by the holdout method. 96
Mackay’s Hermite polynomial. 98
Comparing the performance of occam and traditional elitism in terms of

the number of basisfunctions 99

Comparing the performance of occam and traditional elitism in terms of
theerroronthetestset. 100
Thek-fold-crossvalidation method with=5. 102
Comparing the performance of several kinds of fitness in terms of the
number of basis functions. oL 105

LIST OF FIGURES Xi

6.7

6.8
6.9

Comparing the performance of several kinds of fitness in terms of the
number of basis functions. L L oo 106
Pareto ranking method. L. 109
Comparing the performance of the multiobjective GA in terms of the
number of basis functions. L L o 112

6.10 Comparing the performance of the multiobjective GA in terms of the

erroronthetestset. 113

6.11 Comparing the performance of the multiobjective GA with other tech-

niques in terms of the number of basis functions. 115

6.12 Comparing the performance of the multiobjective GA with other tech-

niques in terms of the erroronthetestset. 116

Notation of Chapter 2

2 0Onm

Q
T =9
s W

r~F
N

c; = [¢j1, Cja, - -]
pP; = [Pjhpp;---

-5y Cjn
T
 Dijp]

feasible set

solution set

population size

bit string (chromossome) length

fitness

average fitness

objective (or fitness) functions

schema

order of a schema/

defining length of a schemd

uniform distribution (beingr andy the lower
and upper limits of this distribution)

normal distribution with meam and standard
deviationo

standard deviation

it indicates that- is a random number drawn
from a distribution’

jth offspring (real-coded GA)

jth parent (real-coded GA)

Xii

Notation of Chapter 3

D
(Xi7 ?/z)

o)
SEGHGHES IS S

—~
—~

C]' = [Clj,CQj, PN ,an]

3

Z+

T
Yy = [y17y27"'ayp]

5
I

dataset

ith example of the dataset

input vector

desired output (output for short)

number of examples in dataset

hypothesis space

hypothesis

true error of hypothesis

estimate of true error of hypothegis

number of hidden units

euclidean norm

average

vector center of thgth hidden unit
dimension of the input space (or the number of
input units)

Weight vector.w; is the weight connecting the
jth hidden unit and the output unit

bias

width of thejth hidden unit

overlap factor for widths

activation function (or basis function) of thiéh
hidden unit

design matrix, which is a matrix with thgth
column(z; (x1), 2 (X2), ..., 2z (x,)]"
pseudo-inverse dl.

desired output vector

ridge or regularization parameter

identity matrix

Xiii

li = [l’i17"'

u; = [Uﬂ,...

Notation of Chapters 4 and 5

}-U
O QI

Pi: d;

.

R

=

) lzn]T

y Uin,

_|

decoding function

problem-specific genetic encoding

feasible set

phenotype space

genotype space

legal set

chromossome (or individual)

ith component of a chromossome (in general,
encodes parameters associated with a basis
function)

ith cluster ({-means algorithm)

ith region of the input space (associated with
clusters;)

number of regions (or clusters)

identifier indicating that thgth center is inside
the regionR,, of the input space

lower limits of regionR;

upper limits of regionk;

boolean flag: ifb; = TRUE thenp; is valid,
otherwisep; is discarded during the decoding

Xiv

Notation of Chapter 6

RS e T

learning algorithm

example spaceY x)

input space

output space

set of parameters for a learning algoritiin
training parameters

it represents both adjustable parameters and

chromossome

hypothesis: built by learning algorithmC with
adjustable parameteisand dataseD
represents the prediction bf\, D) for the data
point x

true error of hypothesis with adjustable param-
eter\

estimate of the(\) using the information from
the dataseD

loss function (e.g., for regressiotr, y) = (r—
v)?)

training set

holdout or validation set

occam elitism size

elitism size

number of examples i (i.e.,p = |D|)

number of bootstrap datasets (or samples)
fitness of chromossome

Vi(a; < b;) AJi(a; < b;), the vectob is said to
be dominated by

selection pressure (best/median fitness ratio)

XV

Chapter 1

Introduction

1.1 Motivation

“Your requests shed light

upon your objectives”

(Book: Christian Agenda,

André Luiz - medium F.C.Xavier.)

Artificial Neural Networks (ANNs) are computational tools inspired by biological
nervous system with applications in science and engineering. This work is about a
kind of ANN for applications in multivariate nonlinear regression, classification and
times-series called Radial Basis Function (RBF) Network. Although ANNs have usu-
ally achieved good performances in several domains, those performances and the ANN
training process are directly influenced by an appropriate choice of the network architec-
ture. Unfortunately, the space of network architectures is infinite and complicated and
there is no general purpose, reliable, and automatic method to search that large space.

Several alternative approaches have been proposed to search the space of network
architectures. These approaches may roughly be grouped into four categories:

e Trial and Error;
e Constructive Algorithms;

e Pruning Algorithms;

1.1 Motivation 2

e Modern Optimization Metaheuristics.

When the Trial and Error method [15, 75] is employed, different values for the
network parameters must be selected, trained and compared before the choice of an
ultimate network. The disadvantage of this method becomes more apparent if, after the
choice of the best values, the patterns set is changed, making necessary to restart the
design process. This search can be done more efficient if heuristics are used to guide it.

In the constructive approach [19, 78, 80], a network starts its training with a minimal
architecture and, according to the problem complexity, new units and connections are
inserted, aiming to improve the network performance. Often the constructive approach
is combined with pruning techniques [106, 21] which optimizes the networks’ perfor-
mance by removing units and connections that are irrelevant or redundant. Despite
being fast, the constructive approach are based on hillclimbing methods and because of
this they only produce suboptimal solutions.

Metaheuristics are the most exciting fields in approximate optimization techniques
of the last two decades. They have had successes in solving several difficult optimization
problems that arise in many practical areas. Commonly used metaheuristics are simu-
lated annealing [50], tabu search [33] and genetic algorithms [34]. Genetic algorithms,
GA, (the metaheuristic used in this work) aim at solving search and optimization prob-
lems by simulating biological evolution. GAs works with a population of individuals.

An individual can be seen as a state (or a point) in the search space. A traditional GA
carried out the search or optimization by means of three biologically-inspired operators
namelyselection crossoverand mutation The GA “selects” individuals, “combines”

(by means of crossover) individuals with each other and “mutates” them in order to
produce a new generation of individuals. In this way, populations evolve through suc-
cessive generations in the direction of the best solution. The selection operator drives
the population to regions of better individuals. Mutation and crossover operators drive
it to explore unknown regions of the search space. Eventually, the population converges
to the best chromosome. When a GA is applied to RBF networks, it generates several
networks’ variations (new individuals) and combines and mutates their features, thus
generating new networks with improved performances through a number of generations.

GAs are one of the standard techniques of searching in complicated search spaces.
So one of the reasons to apply GAs to the RBF Networks is due to the complex na-
ture of their optimization which involves aspects of both numerical and combinatorial

1.2 Objective 3

optimization with a complicated multimodal cost surface.

Although most of the GAs for ANN optimization has been focused on Multilayer
Perceptron, MLP, networks [105] (a very popular kind of ANN), their long training time
is a strong negative factor concerning the design efficiency. RBF networks are known
for requiring a much shorter training period. To take advantage of this feature, novel
methods for optimizing RBF Networks via GAs are proposed in this work.

In fact, the search of network architectures (i.e., the search by the best number of
hidden units of the network) is an instance of a generic problem known as model se-
lection. The model selection problem arises repeatedly in machine learning. It is the
problem of estimating the true error of different hypotheses (also called models) in order
to choose the (approximate) best one. Other instances of this same problem follow:

e The search by the best amount of pruning of a decision tree;
e The search by the best degree of a polynomial fit to a set of points;

e The search by the best subset of variables of a multivariate linear regression
model;

e The search by the best value of ridge (or regularization) parameter of the ridge
regression.

Unlike other metaheuristics, GAs provide, in our opinion, a better framework for the
model selection problem, owing to ip&culiar capacity of handling a lot of hypotheses
simultaneously and multiples (and noise) objective functions. Nevertheless, the use of
this capacity for model selection has been less studied than other aspects of GAs such
as encoding and genetic operators.

In spite of GA produce, in general, good results when it optimizes machine learning
models, the computational cost is most of times expensive. Thus, the motivations of
this work, in short, it is to explore the fast training of RBF networks to obtain a less
expensive genetic optimization and explore the potential of GAs for model selection.

1.2 Obijective

This work deals with the optimizing RBF networks via GAs in two aspects:

1.3 Organization 4

1. The genetic encoding of RBF networks (chapters 5 and 4).

This work studies encoding issues such as redundancy and illegality (that be-
comes the encoding of RBF networks a no trivial one) and proposes operators
and encodings to an efficient combination of RBF networks and GAs.

2. The model selection problem via GA (chapter 6).

This work tackles the model selection problem by exploring and modifying the
GA search mechanism itself. This search mechanism enables GAs to use (and to
create) a lot of model selection specific heuristics (e.g., occam elitism, growing
and shuffling), to cope with noise estimation of the true error and to be used for
multiobjective optimization. The aim of this research intends to improve the net-
work performance and complexity as well as to study the use of traditional model
selection methods (such as crossvalidation and bootstrap) by GAs and to propose
less expensive alternatives to them (but as efficient as them) whose applications
are also useful for other machine learning models optimized by GAs.

1.3 Organization

This text is organized as follows.

Chapter 2 is a tutorial on Genetic Algorithms, which is a class of Evolutionary Al-
gorithms with emphasis over the crossover operator. Chapter 3 introduces learning con-
cepts and gives a brief introduction to RBF networks. Chapter 4 gives an introduction
to the optimization of RBF networks via GAs and presents review of previous works
and related problems. Chapter 5 shows a proposed genetic encoding and the respective
operators. Chapter 6 describes the model selection problem and a GA approach for this
problem.

Chapter 2 is based on the works [57, 58]. Chapter 4 is adapted from [60]. There are
two genetic encodings presented in chapter 5, named model | and model I, respectively.
The model lis in [55, 56, 60] and Model Ilis in [61, 59]. Finally, Chapter 6 is based on
works [63, 62].

Chapter 2

Genetic Algorithms

“The capacity to proceed

joyfully through life is
a blessing. Nevertheless,
remember to watch the

direction that your feet are

taking along the way.”

(Book: Christian Agenda,

André Luiz - medium F.C.Xavier.)

“To be born, to die, to be reborn again,
and to always progress. That is the Law”
(Allan Kardec’s comment on
the evolution of the spirit)

2.1 Introduction

Since the 1960s, computational techniques inspired in evolutionary processes of living
beings have been developed as a metaphor of the Darwinian principles of natural evolu-
tion and survival of the fittest. Such techniques are terEnaglutionary Computation
Genetic Algorithms, GAs (an evolutionary algorithm) have been used broadly in search
and optimization.

Optimization is the search for a better solution to solve a given problem. It consists
of trying several solutions and to use information collected in this process in order to

5

2.1 Introduction 6

improve the quality of the solutions. A simple example of optimization is the improve-
ment of the picture of a TV set. New solutions for TV images are found by adjusting
the antenna. The picture of TV gets better and better and, eventually, the best (optimal)
solution is found. In general, an optimization problem has:

e A search space, which contains all possible solutions of the problem.

e An objective function, used to evaluate the solutions, associates, to each solution,
a value (a figure of merit, also named fitness in the GA literature).

In mathematical terms, optimization consists of searching a solution that maximizes
(or minimizes) the objective function. For example, consider the following function to
be maximized [71]:

Maximize f(x) = zsin(107x) + 1 (2.2)

Subjectto —-1<z <2

Although Problem 2.1 is a simple one, it is not easy to find its highest value (the so-
called global maximup because there is a numberlotal maximain this function,

as shows Figure 2.1. A local maximum is the highest value of a function in a finite
neighborhood but not on the boundary of that neighborhood. The maximum global for
this problem is atr = 1.85055 whose value isf(1,85055) = 2.85027. Section 2.2
shows that Problem 2.1 cannot be solved by several optimization methods.

To solve Problem 2.1, a simple GA randomly generates an initial population of in-
dividuals. Each individual of the population represents a potential solution by encoding
it into a data structure callechromosome Each individual is evaluated and given a
measure of how good it is to solve the problem at hand. This measure is fiztmesd

The next steps produce, in successive generations, new populations. Three basic
operations are used to transform a current population into a new populséil@ttion
crossoverandmutation The selection operator selects a sample of individuals favor-
ing the high-fitness individuals The crossover takes two selected individuals (called
parents) and combines its parts creating new ones (called offspring). Mutation takes an

1The purpose here is to mimic the Darwinian principle of natural selection which high-fitness individ-
uals must have greater survival probably.

2.1 Introduction 7

global maximum

3 T T T T T
25

local maxima -

\

L5

f(x)

0.5

-0.5

Figure 2.1: Functiorf(z) = xsin(107z) + 1

offspring and creates a transformed individual by modifying its parts randomly. The
transformed individuals will compose the new generation of individuals. That proce-
dure is repeated until a satisfactory solution is found. Figure 2.2 shows a simple GA.
The following section shows each step of a simple GA in details.

2.1.1 The Binary Chromosome

The first step to solve the Problem 2.1 is to represent the parameféne problem as a
chromosome. Here, a string with 22 bits will be used (more bits increase the numerical
precision). Thus, an example of a typical chromosome could be

s; = 1000101110110101000111 (2.2)

2.1 Introduction 8

“Let P(t) be the population at generatiorf
t«—0
initialize P(t)
evaluateP(t)
WHILE the stopping criterion is not satisfi&D
t+—t+1
select parent®(¢) from P(t — 1)
apply crossover oveP(t)
apply mutation ovef(t)
evaluateP(t)
END WHILE

Figure 2.2: A Simple Genetic Algorithm
In order to know what solution chromosomgrepresents, it is necessary to decode it.
Firstly, the conversion from the binary base to the decimal base is carri&d out
d = (1000101110110101000111)5 = 2.288.967 (2.3)

Becausel is a number in the intervdl, 2! — 1] (wherel is the string size), one must
map it to the range of the problem. To do this, the following formula may be used

£ = min + (max — min)zﬁd1 (2.4)
fhs. 2.288.967
T =—-14+(2+ 1)W = 0,637197 (2.5)

represents the solution coded in chromoseme

It is worth noting that objective functions with several parameters have them repre-
sented in the same chromosome in such a way that each parameter takes a segment of
the string. For each chromosomg a fitnessf; is assigned (a measure of how good it

2The value of a bit string = (by, bo, ..., b;) (Whereb; € {0, 1}) in the decimal base is computed as
follows: d = 3!, 2!~7s;.

2.1 Introduction 9

2.5 ; 7

1.5

f(x)

0.5

-05

Figure 2.3: Initial population

is to solve the problem). The fitness is based on the objective function value, as shown
in the next section.

2.1.2 Selection

In general, a GA starts with a random initial population. The initial population for
Problem 2.1 with 30 chromosomes is shown in one of the columns of the Table 2.1.
This population is sorted in decreasing order of objective function value. Table 2.1 also
shows the value of the variablerepresented by a chromosome, the objective function
value and the fitness. The chromosomes were randomly generated because there is no
prior knowledge about the region of the search space where the solution of the problem
can be found. Figure 2.3 graphically shows the initial population.

Inspired in natural selection process of living beings, the GA selects the best chro-
mosomes (i.e., the high-fitness chromosomes) from the initial population in order to
generate offspring by means of the crossover and mutation operators. An intermedi-
ate population, calledchating poo] is then created by allocating these selected parent
chromosomes.

The selection algorithm most used is tbhelette wheel selectiof34]. Its basic idea
is to determine the selection probability for each chromosome proportional to its fitness
value. If f; is a fitness value ofh chromosome, then its selection probabijitys given

2.1 Introduction 10
Table 2.1: Initial Population
Objective Accumulated
Rank Chromosome T Function Fitness Fitness

i 8 f(z:) Dot i
1 1101000000011110110111 1,43891 2,35251 2,00000 2,00000
2 1100000110100100011111 1,26925 2,04416 1,93103 3,93103
3 1010111001010110010000 1,04301 2,01797 1,86207 5,79310
4 1001111000011001000101 0,85271 1,84962 1,79310 7,58621
5 1001110110111000011100 0,84829 1,84706 1,72414 9,31035
6 0000110011111010010110 -0,84792 1,84610 1,65517 10,96552
7 0011000000100111010010 -0,43570 1,39248 1,58621 12,55172
8 0111100101000001101100 0,42098 1,25777 1,51724 14,06897
9 0100000000110011101000 -0,24764 1,24695 1,44828 15,51724
10 0100000010001111011110 -0,24343 1,23827 1,37931 16,89655
11 0000100101000000111010 -0,89156 1,23364 1,31035 18,20690
12 00011010011000101011112 -0,69079 1,19704 1,24138 19,44828
13 1010000110011000011011 0,89370 1,17582 1,17241 20,62069
14 0110100001011011000100 0,22292 1,14699 1,10345 21,72414
15 1000100011110001000011 0,60479 1,09057 1,03448 22,75862
16 1100110011001010001110 1,39988 0,99483 0,96552 23,72414
17 0100011001000100011101 -0,17655 0,88140 0,89655 24,62069
18 0011010011110100101000 -0,37943 0,77149 0,82759 25,44828
19 0010001101001100101100 -0,58633 0,75592 0,75862 26,20690
20 1101110101101111111111 1,59497 0,74904 0,68966 26,89655
21 0011011011001101110110 -0,35777 0,65283 0,62069 27,51724
22 0010010001001111100111 -0,57448 0,58721 0,55172 28,06897
23 1100101110110011111000 1,38714 0,45474 0,48276 28,55172
24 0010011001100110100111 -0,54999 0,45001 0,41379 28,96552
25 1101110010010100100001 1,58492 0,27710 0,34483 29,31035
26 1100101011000111010011 1,37631 0,06770 0,27586 29,58621
27 0000010000100100110001 -0,95144 0,04953 0,20690 29,79310
28 1110100001000000010001 1,72169 -0,08458 0,13793 29,93103
29 1110101000111100000000 1,74494 -0,72289 0,06897 30,00000
30 1111101100000001010111 1,94147 -0,87216 0,00000 30,00000

2.1 Introduction 11

by
fi

B Efvz1 fz

The roulette wheel algorithm mimics a weighted roulette wheel. The roulette wheel
is built in such a way that the size of its slots is proportional to the fithess value of
its corresponding chromosome. One selects a chromosome by spinning the wheel. By
repeating this process a number of times equal to the population size, the set of the
selected parent chromosomes is produced.

The roulette wheel method can be performed by the following practical procedure:
one computes a column of accumulated fitness in a table as, for example, in the Ta-
ble 2.1. Next, one generates a random numk{&om an uniform distribution) between
0 andSumFitness, whereSumFitness is the sum of the fitnesses for the whole pop-
ulation. Finally, the chromosome to be selected is the first (from top to bottom) one
that has the accumulated fitness larger tharFor example, ifr = 28.131 then the
chromosome in the line 23 of the Table 2.1 is selected and its copy is allocated in the
mating pool. The same steps are repeated until the mating pool is filled with a number
of individuals equal to the population size. The roulette wheel algorithm is showed in
Figure 2.4.

A way of obtaining the fitness values is to set them equal to an objective function
value. Nevertheless, the roulette wheel algorithm does not work with negative objective
function values. Moreover, an objective value too large can take a very large slot of the
wheel causing convergence problems like the ones showed in Section 2.4.5. It is pos-
sible to leave the roulette wheel algorithm and to usertiveay tournament selection
algorithm instead. In this case,chromosomes are chosen with same probability, and
the chromosome with highest fitness is selected and then allocated in the mating pool.
The same steps are repeated until the mating pool is filled with a number of individ-
uals equal to the population size. TRavay tournament selection (also called binary
tournament selection) is commonly used. Another way of avoiding those problems is to
re-scale the value of objective function suitably (as shown in Section 2.4.6) or to use the
so-calledranking method [6].

In Table 2.1, the fitnesses were defined by the ranking method. The first (the best)
chromosome in the ranking had an arbitrary fithess equal to 2.0, and, for the last (the
worst) chromosome the value 0.0 was assigned (a better way to do this is shown in

Di (2.6)

2.1 Introduction 12

SumFitness «+ YN | fi /¥ sum up all fitness values
in the populatiort/

Rand < randon0, SumFitness) [* generate a random
number between 0 and
SumFitness/

PartialSum < 0

1+ 0

REPEAT

1+—1+1

PartialSum <« PartialSum + f;
UNTIL PartialSum> Rand

RETURN ¢ /* return the z’th chromos-
some*/

Figure 2.4: Roulette wheel parent selection algorithm

Section 2.4.6). The remainder fithesses were set by interpolating those two extremes
using a straight line, that ig; = 2(N —i)/(N — 1), whereN is the population size.

2.1.3 Crossover and Mutation

Crossover and mutation are search mechanisms employed to scan unknown regions of
the search space. Crossover is the main genetic operator and mutation is, in general,
regarded as a background operator. Crossover takes two selected chromosomes (called
parents) from the mating pool and swaps their parts creating a new one as follows: an
integer numbek;, called cut point, is selected uniformly from the interfdall — 1] where

[is the string length. Next, two of the selected individuals swaps their parts between the
positionk + 1 and, inclusively. For example:

paren (001010101100000111111) (001010101(01001010110P offspring,
parenj (00111110101001010110p (001111101000000111111) offspring

cut point cut point

2.1 Introduction 13

Crossover is applied with a given probability called tihessover rateTypically, the
crossover rate is between 0.6 and 1.0. If crossover does not pass in the probability test,
then the offspring are formed by identical copies of the parents. This fact allows that
some solutions are not destroyed by crossover. The probability test can be implemented
by generating a random numberbetween O and 1. If < crossover rate then the
crossover is performed.

After crossovergachbit of the offspring may be mutated (i.e., flipped) with a low
probability, calledmutation rate For example:

offspring :> mutated offspring
(0019 1/010110100[10101100) (00190J01011 01p1[10101100)

Note that mutation may destroy relevant information of the chromosome. On the
other hand, mutation also allows new information to be created into a chromosome.
Hence the use of the mutation is useful but must be moderated by using a low mutation
rate (typically 0.0001). Figure 2.5 shows the first generation of the chromosomes for
Problem 2.1. The crossover was applied to each pair of chromosomes of the mating pool
and mutation was applied to every bit of the offspring. The first generation, graphically
showed in Figure 2.6, presents very little improvement, that is, several chromosomes
are still far from the global maximum.

Next, the GA continues creating new generations for a fixed number of generations.
Figure 2.7 and 2.8 show the eighth and the last (or twentieth-five) generations where the
largest part of the population is close to the global maximum. Most of the times, there
is not clear stopping criterion for GA, however, if 95% of the population is representing
the same objective function value then itis possible to say that the GA converged. When
the maximum value of the objective function is known, then this value may be used as
a stopping criterion.

2.1.4 Elitism

Figure 2.9 shows, for each generation, the value of the objective function for the best
chromosome and the average value of the objective function over the whole population.
It is worth noting that the best chromosome may be lost, when the GA goes from the

current generation to the next generation, due to either crossover or mutation. There-
fore, it is interesting to transfer the current best chromosome to next generation without

2.1 Introduction

14

Crossover First Generation
Ranking Intermediate Population and (the underline indicates
(mating pool) Mutation mutation)

12

19

17

15

10

18

12
17

15

13

15
27

19

11

1101000000011110110111 1101000000011000011100
1001110110111000011100__—"~__ 1001110110111110110111
0001101001100010101111 0001101001100010010110
0000110011111010010110__—"~__ 0010110011110000101111
0010001101001100101100 0110001101000100011101

0100011001000100011101 o 0100011001001100101100
1000100011110001000011 o 1000100011110001010010
0011000000100111010010 . 0001000000100111000011

0100000010001111011110
0111100101000001101100 0111100101000001011110
0000110011111010010110 0000110011111010010110
0011010011110100101000__—"~__ 0011010011110100100000
0100000000110011101000 0100100000010010101111
0001101001100010101111 0001101001100011101000
0100011001000100011101 0100011001000100010010

0100000010001111101100

0011000000100111010010 0011001000100111011101
0000100101000000111010 . 0000111001010110010001
1010111001010110010000 . 1010100101010000011011
1010111001010110010000 . 1010111001010110010111

1101000000011110110111
1000100011110001000011
1001111000011001000101
1010000110011000011011
0000110011111010010110
1000100011110001000011
0000010000100100110001 0000100011110001000011
0111100101000001101100 0110000101000011101100
0010001101001100101100__—"~___ 1010001101001100101000
0111100101000001101100 0111100101000100111010
0000100101000000111010__—"___ 0000100101000011101100

1101000100011110110000
1000100010011001000101
1001111001110001000011
1010000110011000011010
0100111011111010010110
1000010000100100110001

Figure 2.5: Chromosomes of the first generation

Cut
point

12
12
12
12

17
17
16
16
21
21
13
13
17
17

19
19

20
20

19
19

2.1 Introduction

15

f(x)

f(x)

Figure 2.6: First generation

Figure 2.7: Eighth generation

2.1 Introduction 16

2.5 . 7

1.5 .

f(x)

0.5

-05

Figure 2.8: Twentieth-five generation

modifications because, in principle, there is no reason to lose the best solution. This
strategy is callecklitism which is very common in traditional GAs. The elitism was
proposed by DeJong (1975) [25] in one of the pioneering works about GAs.

Figure 2.10 shows the performance of the best chromosome through generations,
using the GA with and without elitism. The values plotted in the graph represent the
average over 100 runs of the GA. In this problem 2.1, itis clearly shown that the GA with
elitism found the solution faster than the GA without elitism. Because GAs sometimes
find local maxima instead of global maximum, for both GAs the average falls bellow
the value of the global maximum.

2.1.5 n-Point and Uniform Crossovers

The types of crossover operators more broadly used for bit string representation are the
n-point and uniform crossovers. The 1-point crossover is the same crossover presented
in Section 2.1.3. The 2-point crossover is shown in Figure 2.11. Two cut points are
randomly chosen and the section between the two cut points are interchanged. The 4-
point crossover is shown in Figure 2.12. The most usg@mint crossover had been the
2-point crossover.

In the uniform crossover, the offspring takes each bit from one of the parents with
equal probability. This can be performed as follows. For each pair of parents, a mask

2.1 Introduction

17

Objective function

2.5

1.5

0.5

0 1 1 1 1

0 5 10 15 20

Generation

25

Figure 2.9: The maximum and mean value of objective function as a function of gener-

ation

Objective function

22 F

5 10 15 20 25

Generation

With elitism ———
Without elitism -

Figure 2.10: GA with and without elitism

2.1 Introduction 18

parenty 010(y11000101011
parent; 00100111 001101

offspring, 010001110101011
offspring, 001011000001101

Figure 2.11: 2-point-crossover

parent, 10101001 101001001

parent, 001 0110|100

001110 11

offspring, 10100111001010{110001
offspring, 0010100100011001100

Figure 2.12: 4-point-crossover

of random bits is generated, as can be seen in Figure 2.13. If the first bit of the mask
is equal to one then the first bit of the pareistcopied to the first bit of the offspring
Otherwise, the first bit of the pargns copied. This procedure is then repeated for the
remainder bits. In the creation of the offsprirthe procedure is inverted: if the first bit

of the mask is equal to one then the first bit of the parentopied to the first bit of

the offspring and so on. Note that the uniform crossover is not the same thing as the
(I — 1)-point crossover, wheris the bit string size, oncé { 1)-point crossover always
takes half of the bits from each parent.

In [27], the performance of several crossovers was studied. The conclusion, ac-
cording to [11], is that there is no large difference among them. Moreover, the GA is, in
general, robust in such a way that even under a certain range of parameter variation (e.g.,
mutation and crossover rate, number of cut points), its performance is not significantly
modified [37]. More discussion is shown later in Section 2.1.8.

Next section presents the relationship between terms used in the GA literature and
Biology.

2.1 Introduction 19

mask 1 1 01 01 1 01

i

o O

1

[
=

parent,

4
oO4— O

_—p
— 4

o—p o

offspring,

o—poO

!

parent, (0 1

(@]
(@]
=
O

Figure 2.13: Uniform crossover

2.1.6 GA Terminology

The GA literature is rich in terms from Biology. Assuming that a potential solution may
be represented as a set of parameters, some definition follows.

Chromosome. The data structure in which a potential solution is encoded.
Gene. A parameter of a potential solution. Genes are joined to form a chromosome.
Individual. This is formed by a chromosome (or more than one) and its fitness.

Alleles. The values that a gene can take. For example, if a gene represents colors then
its alleles are blue, yellow, green and so on.

Genotype. The terms genotype and chromosome are often used interchangeably in GA
literature. But there is a distinction between them. In Biology a genotype is
formed by one or more chromosomes. Genotype is the total genetic information
of an organism or phenotype. As in most of the GA applications an unique chro-
mosome contains the total genetic information of the organism, then this unique
chromosome also represents the genotype of the organism.

Phenotype. The solution or organism built from the genotype. For example, consider a
chromosome which codes parameters (such as dimensions of beams) of the design
of a bridge. The encoded parameters represents the genotype of the bridge. Its
respective phenotype is the real bridge over the river (built from this genotype).

Epistasis. In Biology, epistasis is the iteration between genes in which the presence of a
gene suppresses the effect of other genes. Consider, for example, the optimization
of the combination of colors of a doctor’s office. Genes are the color of clothes,

2.1 Introduction 20

furniture and wall. White is, in general, the color used for clothes. White is always
the good color for clothes, it doesn’t matter what the colors of the others genes
are. Thus, clothes is a non-epistatic gene once it does not iterate, in general, with
others genes. Furniture and wall are clearly epistatic genes, once a good color
for the wall can lose its effect in the presence of a strange color for the furniture.
Mathematically, epistasis means nonlinearity.

To a complete description of the GA terms, see [45].

2.1.7 Schema Theorem

The Holland schema theorem aims to give a theoretical foundation for GAs. However,
its understanding can improve the constructing of practical GA applications. According
to this theory, GA handles certain parts of the bit string called schemata. A schema is
a string formed by symbols 0, 1, and *. The star * is the a “don’t care” symbol which
matches eithera O or a 1.

Examples of schemata are showed in Figure 2.14. The scheihata 1****,
H, = **10* and H3 = *0*01 contain the same string 10101 (which is contained in
2% = 32 schemata). Strings 11001, 11011, and 10101 are contained in the same schema
1****_ The following definitions are useful:

Definition 2.1 Order of a schemal, in symbolsO(H), is the number of Os and 1s
present inf.

Definition 2.2 Defining lengthof a schemat, in symbolsi(H), is the distance be-
tween the first 0 or 1 symbol and the last O or 1 symbol (see Figure 2.14).

One can see, in Figure 2.15, that there are a relationship between certain schemata
and the fitness value. For example, strings that start with 1 seem to have higher fitness.
In other words, strings that are contained in the schema 1**** seem to have higher
fitness. Figure 2.15 also suggests that strings with many 1's have higher fitness. In other
words, strings contained in schemata like 111*1, 1*11*, 111** 111*1 seen to have
higher fitness than strings contained in schemata with many 0’s as 000*0, 0*00*, 000**
and 000*0.

2.1 Introduction 21

H, H, H;

1**** **10* *0*01
11001
11011 +/
0101 v | v | V
(H)=0 O(H,) =

5
§(Hy) = 1 O(H,)
5

1
2
(Hs) =3 O(H3) =3

Figure 2.14: Strings and Schemata

Given a schemd/, an interesting issue is to know the ratio between the number
of strings in the current population belonging to the schéimand the numbem’ of
strings in the next population belonging to the schethalo know this ratio, suppose
a GA with roulette wheel selection, but without crossover and mutationb betthe
average fitness over all strings of the current population andttebe the fitness of the
schemaH. The fitness of the schenté is defined as being the average fitness over all
strings of the current population belongingho Thus the desired ratio betweenand
m’ is given by

m' = %m (2.7)

Equation 2.7 says that the number of schdihancreases in next population H is an
above-average schentee., if « > b). In fact (and this can be easily proved [34]), the
number of above-average schemata increagpsnentiallyin the subsequent popula-
tions. This claim isalmostthe schema theorem, because this analysis does not consid-
ered the crossover and mutation effects. These operators disrupt the schemata before

they pass to next population. For example, consider the following crossover operation:

Schema in parent; (01 x | * *10)
Schema in parent; (% % *| * 101)
Schema in offspring; (01 % | 101)

The schema ip, (which has ashortdefining length) pass to the offspring, how-
ever, the schema im, (which has dong defining length) do not pass to the offspring.
Note that long schemata are easily disrupted by crossover. However, there is a kind of

2.1 Introduction 22

schema which is not easily disrupted by crossover. These very important schemata are
called building blocks.

Building block. A schema is a building block if it is short, above-average
and of low order.

Even though these are a lot of obstacles to the passing traffic of schemata from the
current population to the next one, the Holland schema theorem says that [34]:

Holland schema theorem The number of building blocks increases expo-
nentially in the subsequent populations.

According to schema theorem, GAs samples large rates of building blocks to fol-
lowing populations. Is this a good strategy to a GA find the optimal? Yes, but only if
following hypothesis holds:

Building block hypothesis Joining building blocks together in the same
chromosome gives higher fitness.

If the above hypothesis holds then GAs are working correctly by favoring the build-
ing blocks and by eliminating the bad schemata. Functions in which the building block
hypothesis fails are called GA-deceptive. Fortunately, the building block hypothesis
holds for many of objective functions of the real world. GA-deceptive functions tend to
contain a isolated optimal surrounded by bad points. Finding such isolated optimal is
like to find a needle in a haystack. It worth noting that GA-deceptive functions are also
difficult to any optimization method.

Other important theoretical issue is on the quantity of information handled by GAs.
In spite of handling only a population efchromosomes, the actual quantity of informa-
tion handled by GA is much larger. It can be proved that GAs har@(e$) schemata!

[34]. This large quantity of information handled with onlychromosomes is termed
implicit parallelismand it is one of the explanations for good performance of GAs.

Keeping in mind that GAs depends on recombination of buildings blocks, then the
encoding of the solution must encourage the formation of building blocks. Per example,
if two genes are related (epistatic) then they must be close to each other in the encoding
in order to avoid easy disruption of these genes.

2.1 Introduction 23

String | Fitness
10010 300
00110 5
11100 400
00111 100

Figure 2.15: A population

2.1.8 Which Crossover is the Best?

In [27], crossovers operators were compared empirically. However, this work did not
achieve a conclusive answer, about which crossover is the best, because the differences
of performance among them were not large enough. It follows that, in practice, to
know which is the best crossover appears to be no critical issue (at least for traditional
Crossovers).

Theoretically, under the light of the schemata, it is possible to analise the crossovers.
For example, the schema 1*******11] s disrupted by 1-point-crossover in any cut
point. There is not this problem with the 2-point-crossover. Note that there are sev-
eral cut points in which 2-point crossover does not disrupt this building block (e.g.,
1¥****|*11). In theory, 2-point-crossover is better than 1-point-crossover. This claim
is visualized when the chromosome is interpreted as a ring. See Figure 2.16. Under
this view point, 2-point-crossover can become a 1-point-crossover if its first cut point
is always fixed on the junction of the ring. Therefore 1-point-crossover is merely one
particular case of the 2-point-crossover. Furthermore, 2-point-crossover allows the for-
mation of building blocks on a junction of the ring whereas 1-point-crossover does not
allows this formation. So 2-point-crossover handles more building blocks than 1-point-
crossover.

N-point-crossovers suffer frolinkage phenomenon in which adjacent genes tend
to be inherited together as a group. As an example, consider an objective function whose
genesi, b, ¢, d, e, f, g, h, i, andj are coded into a string such as

1010 11011 1011 11101 10101 10101 1010 1101 1110 O101
a b c d e f g h i 7j

The adjacent genes (such @and f) tend to be inherited together. Genes coded
apart (such as andg), by contrast, tend to be separated by 1-point-crossover or 2-

2.2 Optimization via GA 24

Figure 2.16: Chromosome interpreted as a ring

point-crossover. This fact seen to indicate that the ordering of genes can influence the
evolution. So a few techniques have been proposed for automatic reordering the po-
sitions of genes during the evolution (e.g., the inversion operator [47]). But there is a
drawback here: if, besides optimizing the genes, GA optimized the ordering of genes
then a search space would increase enormously. This is one of the reasons because
technigues as the inversion operator have been rarely used.

Uniform crossover does not suffer of the linkage phenomena since ordering of genes
is irrelevant for it. Uniform crossover has also other advantagigmint-crossover can
not combine any material of the parents but uniform crossover can. For example the
offspring 11111 can be produced by parents 01001 and 10110 using uniform crossover.
But there are not a way to produce offspring 11111 from 01001 and 1011021pimigt-
crossover. Moreover, uniform crossover disrupts schemata of same order with same
likelihood. UnderN-point-crossover, such likelihood varies according to the defining
length of the schema. Table 2.2 summarizes the comparison between uniform crossover
and 2-point-crossover.

2.2 Optimization via GA

2.2.1 A Brief Introduction
In general, a numeric function optimization problem has the form

minimize f(x)
subjectto x € S

2.2 Optimization via GA 25

Table 2.2: Uniform crossover v&:point-crossover

Uniform crossover | 2-point-crossover |
Only a limited quantity of matet
rial of parents can be combined.
Combines any material of the parThat is, an offspring produced hy
ents. 2-point-crossover can be also prop-
duced by uniform crossover. But

the reciprocal claim does not hold.
Does not disrupt schemata of the

&lame order with same likelihodd

(depends on the defining length).
ng‘hort schemata are difficult to be

disrupted.
:q_'ong chromosome are easily dis-
“rupted.

Disrupts schemata of same ord
with same likelihood.

Short schemata are easily disrupte

Long schemata are easily disrupté
but less likely than under 2-poin

Crossover, _ _ _
The ordering of genes is irrelevant.The ordering of genes is relevant.

wheref : D — R is known asobjective function D is calledsearch spaceor solution
space CommonlyD = R". S is calledfeasible seandS C D. In what follows, some
examples are given:

Example 1
minimize f(xy, z2)
subjectto z? +2%2=5
Example 2
minimize f(xq,x2)
subjectto z? + 222 <5
Example 3

minimize f(x)
subjectto x € R

There are two types of solution for an optimization problem:

1. Local minimum: a pointx* € S is a local minimum off over S if there is an
e > 0 such thatf(x) > f(x*) for all x € S within a distance of x*.

2.2 Optimization via GA 26

infeasible points

feasible points

Figure 2.17: Infeasibility

2. Global minimum: a pointx* € S is a global minimum off over S if f(x) >
f(x*)forallx € S.

There are two kinds of objective functionsinimodal functionswhich have an
unique minimum, ananultimodal functionswhich have multiple local minima. Op-
timization problems can be classified into categories as follows:

1. Constrained vs. unconstrained An optimization problem is said be constrained
if its parameters have constraints or limits (see examples 1 and 2). Figure 2.17
shows a constrained problem. The feasible set contains all feasible solutions (i.e.,
the solutions that satisfy all constraints). A problem is said be unconstrained if
its parameters can take any value (see example 3). Most optimization techniques
work better with unconstrained optimization.

2. Linear vs. nonlinear programming. A problem is known as a linear program-
ming problem when it is formulated in terms of linear objective functions and
linear constraints. The standard technique to solve linear programming prob-
lems is the Simplex Method [23]. On the other hand, if the objective function
and/or constraints are nonlinear, then the problem is said be a nonlinear program-
ming problem. There is not a general technique to solve nonlinear programming
problems. However, for some particular cases of nonlinear problems (e.g., the
so-called quadratic programming), there are efficient computational techniques.

2.2 Optimization via GA 27

3. Continuous vs. discrete Parameters can be continuous or discrete. Problems
with continuous parameters have an infinite number of solutions. Discrete param-
eters occur in a special kind of optimization knowrcasmbinatorial optimization
and have only an finite number of potential solutions. In general, combinatorial
optimization involves a certain combination of the parameters as, for example,
find the best ordering of a list of tasks or actions.

2.2.2 GA and the Others Methods

In order to place GAs in the context of optimization consider some kinds of optimization
methods.

1. Generate and test searchalso known asxhaustiveor random searchuses
two modules. A generator module produces systematically or randomly potential
solutions. A test module evaluates every potential solution and then accept or
reject it. The generator module could generate all solutions before the test module
run. However, it is more common an interchanged usage of the two modules. The
generate and test search is an unintelligent approach, rarely used in practice.

2. Analytical methods use calculus techniques to obtain the minimum of a func-
tion. They have drawbacks: they give no information whether the minimum is
either local or global and they require derivatives. Furthermore, if the number of
parameters is large, then it is very hard to find every minimum, making analytical
methods impracticable for real world problems.

3. Downhill methods starts the search at some random point of the search space.
Next, “downhill” moves are made on the objective function surface. Eventually
the bottom of the surface is reached. Several methods use the information from
derivatives (gradient) to make intelligent “downhill” movements. Nevertheless,
this approach does not guarantee that the reached bottom of the surface is the
global minimum. For example, Figure 2.18 shows the case where “downhill”
moves, starting at a random point A, lead the algorithm to point B. And, because
no further downhill moves can be made from B, the algorithm is stuck in the
local minimum B. State of the art downhill methods that use derivatives include
the conjugate-gradient family methods (e.g., Fletcher-Reeves algorithm) and the

2.2 Optimization via GA 28

A

Objective function

D

Search space

Figure 2.18: The downhill method

guasi-newton family methods (e.g., BFGS algorithm). Simplex Nelder-and-Mead
downhill method is an interesting alternative because it does not use derivatives.
The downhill methods are efficient and fast. Their drawback is the incapacity
to find the global minimum, unless the function is well-behaved and unimodal
[66, 9, 82].

GAs have been used in complicated optimization problems, where downhill and
analytic methods fail. Some advantages and features of the GAs follow:

e GAs works with both continuous and discrete parameters or combinations of
them.

e GAs execute simultaneous searches over several regions of the search space, once
GAs work with a population instead of an unique point.

e GAs use a payoff (objective function) information, instead of derivatives or other
auxiliary knowledge.

e GAs do not need a profound mathematical knowledge about the problem at hand
in order to solve it.

e GAs optimize a large number of parameters.
e GAs work with a coding of parameters, not the parameters themselves.

e GAs can optimize several objective functions (multiobjective optimization) pro-
viding a list of solutions, not a simple solution.

2.2 Optimization via GA 29

e GAs are flexible to deal with arbitrarily constrained optimization problems.
e GAs are stochastic, not deterministic.

e GAs have successfully found global minimum even on very complex and compli-
cated objective function surfaces.

e GA computer implementations are portable and modular. In the sense of that their
search mechanism do not depend on problem-specific parts and they can be ported
to other applications.

e GAs are tolerant to incomplete and noise data.

e GAs are easily hybridized (or work cooperatively) with others techniques.

GAs require a very large number of objective function evaluations. If such evalua-
tions are expensive, then GAs can become computationally impracticable, that is, GAs
cannot arrive at a good solution in areasonable time. Furthermore, GAs converge slower
than downhill methods. Thus GAs should not be used if a problem can be solved by a
fast downhill method.

2.2.3 Exploration-Exploitation Trade-off

A characteristic of the generate-and-test search methods is the search for unknown
points of the search space. This characteristic is calkgpdbitation On the other hand,
the downhill methods characterize themselves by using information gained about the
points previously visited. This characteristic is calegbloration Any efficient method
that searches for a global minimum must use both exploitation and exploration [10].
GAs combines both exploitation and exploration. A factor that influences the quan-
tity of exploration and exploitation in the GA search is the selection pressure. In-
formally, the term selection pressure is widely used to characterize either the strong
(called high selective pressure) or the weak (called low selection pressure) emphasis
of selection of the best individuals [5]. Informally, the selection pressure is given by
the expected number of copies, in the mating pool, of the best individirafitness-
proportionate selection, the selection pressure is givefi,py/ f (ratio of the value of

3Nevertheless, more formal studies have been made (e.g.,[35, 13]).

2.2 Optimization via GA 30

the best fitness to the value of the average fitness). Inthay tournament selection,
the selection pressure is given by

Crossover and mutation lead the GA to unknown points of the search space (ex-
ploitation). The selection operator uses the fitness information of the points previously
visited and drives the GA to the best regions of the search space (exploration). Eventu-
ally, the GA converges to the global minimum.

The crossover can combine the good parts of the parent chromosomes (i.e., the build-
ing blocks). Consequently, the offspring may have (in principle) higher fitness than their
parents. Mutation also plays an important role in the search once it allows that any point
of search space can be visited. The selection operator discards low fithess chromosomes
and, thus, several genes are discarded too. It is worth noting that when the mutation is
absent (low exploitation), the discarded genes cannot be recovered because the crossover
does not create new genes. The crossover only combines existent genes.

When the selection pressure is very high, the GA has a behavior similar to the down-
hill methods (too much exploration). The best individuals have very high fithess. Such
high fitness individuals tend to dominate the following populations once that their genes
spread through generations with very high probability. Hence the GA converges fast
(possibly to a local minimum) without exploiting unknown points of the search space.

On the other hand, when the selection pressure is low, the GA has a behavior similar
to the random search (so much exploitation) because the fitness is approximately equal
for all individuals of the population. Here GA becomes closely related with the so-
called random walk stochastic process. The increasing of diversity is other factor that
increase the exploration.

In short, if the selection pressure is low then the GA converges slowly, however, the
search space is quite exploited. When the selection pressure is high, the GA converges
quickly but it does not exploit unknown points.

All these factors lead the conclusion that the GA convergence depends on a com-
promise between exploitation and exploration. This compromise is arbitrarily regulated
either by the selection pressure or by the diversity. In fact, many parameters of the GA
(as shown later) are different ways of increasing either the selection pressure (exploita-
tion) or the diversity (exploration).

Besides the selection operator, another factor may cause the loss of diversity: the
genetic drift The genetic drift is the variation that happens by chance in the frequence

2.3 RCGA - The Real-Coded Genetic Algorithm 31

of genes. It affects mainly small populations. Obviously, the loss of diversity impedes
that the GA exploits the search space. As a result, the GA may converge to a local
minimum. This problem is callegdremature convergenc@&dequate mutation rates can
keep a good diversity of genes and therefore to combat the genetic drift.

2.3 RCGA - The Real-Coded Genetic Algorithm

This section presents the Real-Coded Genetic Algorithm, RCGA, compares the binary
encoding with the real encoding and presents a list of operators for the real encoding.

2.3.1 Binary vs. Real Encoding
To illustrate this section, consider the following function to be maximized:

2
(SH1N/$%<+-$%) —-0.5

Maximize T1,%2) = 0.5 —
[z, 22) (1.0 + 0.001 (22 + 232))*

(2.8)

Subjectto —100 < z; < 100
—100 < 25 <100

This function is a benchmark function known as F6 in the GA literature [24]. The
maximum global of F6 is at0.0), whose value ig(0.0) = 1.

Binary Encoding

The Problem 2.8 has two parameters or gengsafidz,). Each gene is coded into a
segment of the bit string chromosome. The bit string length depends on the required
numerical precision. Each decimal point of accuracy requirebits. If the user wants
eight decimal positions the® x 3.3 = 26.4 ~ 27 bits are required for each gene.

It follows that the chromosome needs 27 bits2 genes= 54 bits for eight decimal
positions. For example:

011010010010011010000010110100011100010000111001011000

2.3 RCGA - The Real-Coded Genetic Algorithm 32

In order to decode this chromosome, firstly, it is divided into two strings of 27 bits:

011010010010011010000010110
100011100010000111001011000

Next, the conversion from the binary base to the decimal base is carried out:

d; = (011010010010011010000010110)5 = (55129110);
dy = (100011100010000111001011000)y = (74518104)1¢

Finally, the two strings are mapped to the interval of the problem using the formula:

d;
r; = a; + (b — ai)ﬁ (2.9)

wherezx; € [a;, b;] andd; is the value of the bit string, associated with) converted to
the decimal base. Thus

55129110
= =100+ (100 — (~100)) -~ = —~17.851224 (2.10)
74518104

Real Encoding

In the real encoding, the chromosome is a vector of floating point numbers in which
each component of the vector is a parameter of the problem. The solution given in
(2.10) and (2.11) is straightforwardly coded into the vector:

[—17.851224, 11.040629]"

which is more friendly for human than a bit string. Moreover, the nature of the real
encoding makes easier to propose new genetic operators (as showed later). The real
encoding is also more compatible with traditional optimization methods, once the chro-
mosome is already in the form (a vector of floating point numbers) commonly used by
these methods. Therefore, the real encoding is simpler to combine or hybridize with

2.3 RCGA - The Real-Coded Genetic Algorithm 33

traditional optimization methods. Besides these advantages, real encoding has shown
better performance than binary encoding, mainly in optimization problems with contin-
uous parameters. Some researchers pointed out that binary encoding is prone to generate
large chromosomes [72]. For example, a problem with 100 parameters may require a
string of at least 2700 bits for good accuracy. Large chromosomes make the search
space large, causing loss of efficiency in the search.

The binary encoding is more portable than the real encoding, because many prob-
lems can not be coded into a vector of floating point numbers. The binary encoding is
historically important. It was used in the pioneers works of GAs by Holland (1975).

It is simple for theoretical analysis. Some theoretical arguments have been favorable
to binary encoding, but counter arguments have also been given. Therefore, there are
advocates for both binary and real encodings (see [46] for a discussion).

2.3.2 Genetic Operators

This section shows a (non exhaustive) list of operators for real encoding. Throughout
this section the following notation is used. Parents are represented by vectors

P = [piDi2,--- 7]911]T
P2 = [pa,pa2,--- >p21]T
and the offspring by:
C = [Cl,CQ, ceey Cl]T

wherep;;, c; € R. If more than one offspring exists, then e offspring is represented
by c; = [ci1, ¢, - .., ca] 7. Genes can have arbitrary constraints. But, for simplicity, in
this section the gene of the offspringc is in the intervalla;, b;] wherea;,b; € R. If
the gene:; does not satisfies this constraint (i€.¢ [a;, b;]) then the offspring is said
to be infeasible.U(z, y) denotes an uniform distribution beingandy the lower and
upper limits of this distributionN (i, o) denotes a normal distribution with mearand
standard deviatiom. The notationr ~ F' indicates that is a random number drawn
from a distributionF’ (for exampley ~ U(z,y)).

Most of the genetic operators for RCGA may roughly be put into four classes [32]:

1. Conventional operators;

2.3 RCGA - The Real-Coded Genetic Algorithm 34

2. Arithmetical operators;
3. Direction-based operators;

4. Mutation operators.

Conventional Operators

Conventional operators are adaptations from the operators for binary encoding (e.g.,
n-point and uniform crossovers). Conventional operators work well with binary encod-
ing, but with continuous encoding they merely exchange genes values without create
new information (i.e., new continuous numbers). It is better then to use arithmetical
operators.

Arithmetical Operators

Arithmetical operators perform a linear combination of the parent vectors.

Average or intermediate crossover [24]. Given two parentp; andps,
the offspringc has the form

1
¢ = §(P1 +p2)

Arithmetical crossover [71]. Given two parentp, andp, the offspring
c; andc, have the form:

ci = rp1+(1—7r)p2
c; = (1—r)p1+7rp2

wherer ~ U (0, 1).

The arithmetical crossover is equal to the average crossoveti.5. It produces
an offspring enclosed in the segment of li@ining the parent points (see Figure 2.19).
It follows that arithmetical crossover is not able to find the minimum if it is not enclosed
in the initial population. Hence it is interesting to have a crossover that extrapolates the
segment of line joining the parent points. This can be carried out by the blend crossover.

2.3 RCGA - The Real-Coded Genetic Algorithm 35

P, P,
‘ I

@ Parent

O Possible child

Figure 2.19: Arithmetical crossover

Blend (BLX-«) crossover [28]. Given two parentp; andp., the off-
springc has the form:

c=pi+r1'(p2—p1)
wherer = [ry,...,m]T withr; ~ U(—a,1 +).

The BLX-« is shown in Figure 2.20 for the unidimensional case and in Figure 2.21
for the multidimensional case. In the unidimensional case, # 0 the offspring lies
within the segment of liné joining the parent pointp,; andp,. Parameter extends
the segment. For example, itx = 0.5, then the segmeritis extended irt).5/ for each
extreme. In the multidimensional case, BloXereates the offspring randomly within a
hyper-rectangle defined by parents points. Unlike the arithmetical crossover, BLX with
a > 0 has an extrapolating property.

The BLX-0.5 is often used because the offspring may be either inside or outside the
segment of lind with the same probability. The BLX-had been successfully applied
in many problems. It is perhaps the most used crossover for RCGAs.

Example. Consider the following two parents for the Problem 2.8:

p1 = [30.173,85.342]"
p: = [75.989,10.162]"

2.3 RCGA - The Real-Coded Genetic Algorithm

36

P, P,
Io | 1 | o
@ Parent

O Possible child

Figure 2.20: BLXe« applied to an unidimensional space

:"'o"c')O"'O:
1O 0O
st o 00C
1O 00 O
:O. O O
C, g
@ Parent

Q Possible child

Figure 2.21: BLX« applied to a multidimensional space

2.3 RCGA - The Real-Coded Genetic Algorithm 37

Applying BLX with extended 0.5 (BLX-0.5) and the random veatos [ry, r,|T =
[1.262,0.234]T with 1,7 ~ U(—0.5,1 + 0.5) results in:

c; = 30.173 + 1.262(75.989 — 30.173) = 87.993
o = 85.342 4 0.234(10.162 — 85.342) = 67.750

Thus, the offspring is given by:
c = [87.993,67.750]"

Another crossover follows.

Linear Crossover [104]. Given two parentg; andp,, the offspringc,
¢y andcs have the form:

CcCiT = 05p1 + 051)2
Cy =]_5p1 — O5p2
c; = —0.5p; + 1.5py

Direction-based operators

Direction-based crossovers are formed by introducing fithess or gradient information
into the crossover in order to determine the direction of the search.

Heuristic crossover [71]. Assuming that the fithess functigfi-) is to be
minimized, then, given two parengs andp., the offspringc has the form:

C:{Prﬂﬁn—m)ﬁf@ﬂﬁfwﬁ
P2 +r(p2 —p1) if f(p1) > f(p2)

wherer ~ U(0, 1) (if fithess functionf(-) is to be maximized then above
relational operators. and> must be inverted). See Figure 2.22.

Another example of an operator that uses the fithess information is the quadratic
crossover [1] in which performs a numerical fit to the fitness function using three par-

2.3 RCGA - The Real-Coded Genetic Algorithm 38

ion

jobjective funct

Figure 2.22: Heuristic crossover

ents [42]. In [32], there are examples of operators that use the gradient information to
determine the direction of the search.

Mutation operators

Mutation operators create offspring by altering parents with a random number taken
from some distribution.

Uniform mutation. It replaces the gene of the parent by a uniform random
number. That is, if theth gene ofp is selected for mutation, the offspring
c has the form:
) Ulaisby), ifi=k
a= { Dis otherwise

where[a;, b;] is the feasible range of the gene

Gaussian mutation. It replaces the gene of the parent by a Gaussian
random number. That is, if thigth gene ofp is selected for mutation, the
offspringc has the form:

N(pi7a)7 ifi=Fk
Ci = .
Dis otherwise
Real number creep [24]. It adds a small random generated number to
a gene. The random generated number can have a variety of distributions
(uniform, normal, etc). So, this operator is like the uniform and Gaussian

2.3 RCGA - The Real-Coded Genetic Algorithm 39

mutations, except that the randomly generated number must be small. The
underlying idea is to generate similar chromosomes by adding small num-
bers to their genes. This is very useful when the chromosome is close to a
minimum because the creep operator can quickly lead the GA to the mini-
mum by generating chromosomes around the minimum.

Boundary mutation [71]. It replaces the gene of the parent by either
its lower or its upper bound. That is, if thiéh gene ofp is selected for
mutation, the offspring has the form:

a;, if i =k and a binary random digit is O
¢ =14 b;, Ifi=Fkanda binary random digitis 1
p;, oOtherwise

where|a;, b;] is the feasible range of the gene

Non uniform mutation [71]. Itreplaces the gene of the parent by a random
number taken from a non uniform distribution. That is, if 8 gene ofp
is selected for mutation, the offsprirghas the form:

pi + A(t,b; — p;), if i =k and a binary random digitis O
¢ =19 pi — A(t,p; —a;), ifi=kandabinary random digitis 1
Dis otherwise

wheret is the generation number. The functid«(¢,y) has the follow-

ing property: it gives a value in the ranffe y], such that a probability of
A(t,y) returning a value close to zero increases m&reases. Initially (as

t is small) this operator searches the space uniformly. At later generations
(ast is large), it searches the space locally. In [71], the following function
was used:

Aty =wr(1-)

tmax
wherer ~ U(0, 1), tmax IS the maximal generation number ahés a pa-
rameter determining the degree of nonuniformity (in [71], the authors used
b = 6 as default).

2.4 Practical Aspects 40

2.4 Practical Aspects

This section makes some comments about practical aspects of GA which the authors
consider useful or interesting. Such comments were taken from the literature on Genetic
Algorithms (especially from [42]).

2.4.1 Initial Population
Some practical comments to generate the initial population are:

1. Prior knowledge. Information about promising regions of the search space can
be used to generate initial populations. For example, individuals can be generated
with bias to the promising regions.

2. Seeding Solutions obtained by other optimization methods can be inserted in the
initial population. This makes sure that the GA does not perform worse than the
other methods. Furthermore, GA can converge faster if the inserted solution is
close to the global minimum.

3. Dealing with small populations. The following can be useful for very small
populations which presumably do not cover some regions of the search space.

e To generate an initial population so that it is larger than the next populations
in order to improve the search space covering.

¢ Initial population is generated in such a way that it represents points in the
form of a grid over the search space. Hence it can uniformly cover the search
space.

e Generate the first half of the population. Next, invert every bit of the first
half, then set the second half equal to the inverted first half. This insures that
every bit have both the values 0 and 1 within the population. Furthermore
this can improve the diversity.

2.4.2 Objective Function

The objective functions in some real-world problems can be very complicated, consum-
ing a lot of computer time. Some problems require, in each individual evaluation, a

2.4 Practical Aspects 41

complete simulation of a process, which may take a long time. Some ways to deal with
time-consuming objective functions are suggested.

1. Avoid revaluating duplicated individuals by using the fitness of previously eval-
uated individuals. Some precautions can be useful as well:

e Avoid generating identical chromosomes in the initial population.
e Check whether the offspring is equal to the parents.

e Check whether crossover and/or mutation were applied to the parents. If
they were not applied, then the offspring are equal to the parents.

e Keep the population always with distinct chromosomes. This also helps to
keep the diversity.

e Before evaluate a new chromosome, check whether it is already in some
place within population. In extreme cases, it can be worth storing all chro-
mosomes of the preceding generations in order to check whether the off-
spring has been evaluated in a past generation.

2. Simplify the objective function. In early generations of the GA, it is only neces-
sary a rough estimation of the fitness to make the GA able to find the promising
regions of the search space. Then, a simplified and faster version of the pro-
cedure that calculates the fithess could be used in early generations. In the last
generations, where the individuals are similar to each other, the original objective
function should be used to make an exact distinction among the individuals.

3. Add a downhill method in the end. A GA is fast in finding the region of the
global minimum. However, the GA is slow to go down this region. In the last
generations, the GA can be suspended and replaced by a downhill method (which
quickly goes to the bottom of the region) to complete the search.

2.4.3 Stopping Criteria

Some usual stopping criteria for GAs are:

e Maximum number of generations

2.4 Practical Aspects 42

e Correct answer. Stop if the GA found the minimum value of the objective func-
tion.

e Convergence If no improvement happens during several generations, then stop.
The GA can have found the global minimum, but be sure here because GAs some-
times converge to a local minimum. Alternatively, the following methods can be
used:

- A gene is said to have converged when 95% of the population share the
same value. A population is said to have converged when all its genes have
converged [10].

- If either the average fitness or its standard deviation has not changed signif-
icantly under several generations, then stop the GA.

2.4.4 Generational and Steady State Replacement

GAs work by replacing individuals in a population with new ones. Common types of
replacement schemes are:

Generational replacement;

Generational replacement with elitism;

Steady state replacement;

Steady state replacement without duplicates.

Consider a population witlv individuals. In the generational replacement, the
whole population is replaced in each generation, thaigffspring are produced to
replaceN parents. Alternatively, one may replace the whole population by\hest
individuals taken from the union among all parents and all offspring. However, in this
case, the selection pressure is increased.

In the case of the generational replacement with elitismkthest individuals (typ-
ically £ = 1) in the population are never replaced by inferior individuals. This type of
replacement was used in Section 2.1.4. Note that the higher the valyeha higher
the selection pressure.

2.4 Practical Aspects 43

—>

Figure 2.23: Premature convergence

In the steady state replacement, only two (or one) offspring are produced in each
“generation”. Then these two offspring replace the two worst individuals in the popula-
tion. Alternatively, the two oldest individuals of the population may be replaced by the
new ones. This is based on the idea that old individuals already have spread out their
genes over the population and hence they can be discarded. The generalized form of the
steady state replacement creates N offspring to replace: parents. The crossover
rate is often highers 1) in the steady state replacement than in the generational re-
placement.

The steady state replacement often produces many duplicate individuals in the pop-
ulation [24]. The steady state replacement without duplicates is an alternative scheme
which does not replace an individual with an offspring if there is already a duplicate of
that offspring in the population.

2.4.5 Convergence Problems

The premature convergence is a classical GAs problem. It occurs when individuals
with high fitness (but not optimal) appear in the population, while the true optimal in-
dividuals have not risen yet. Such high fitness individuals (known as superindividuals)
generate an excessive number of offspring. Thus, the superindividuals spread out their
genes throughout the population, whereas other genes disappear. So the population is
dominated by superindividuals’ genes, once the population is finite. As a result, the GA
converges to a local maximum/minimum, as shown in Figure 2.23.

One can prevent the premature convergence by limiting the number of offspring

2.4 Practical Aspects 44

for each individual. This limitation can be carried out by scaling, ranking, tournament
selection or other methods described in sections 2.4.6 and 2.4.7. The maintenance of
the diversity of individuals also helps to combat the premature convergence, once this
problem is caused by the loss of diversity itself. The increasing of the mutation rate
may improve the diversity (more genes are created). Another alternative to improve the
diversity is to avoid duplicate individuals in the population.

Another convergence problem in GAs is due to the overcompression of the fitness
range. This is explained as follows. Consider changing the objective function of the
optimization problem given by Equation 2.8 to the following new objective function:

2
<Sin\/x% —|—:E§> -0,5

1, T2) = 2000 —
S, @) (1,0 + 0,001 (22 + 23))?

(2.12)

According to the Equation 2.12, the values of the objective function become almost the
same for all population, as shown in the Table 2.3. These situations reduce the selection
pressure. In other words, they practically eliminate the GA selection mechanism, since
all individuals have the same selection probability. It follows that the GA loses its search
capacity, becoming merely a random walk process.

A related convergence problem is known as slow finishing [10]. Because almost alll
individuals are similar to each other near the end of a GA run, almost all individuals
have similar fitness. Again, this is a case of overcompression of the fitness range, and
so the GA converges slowly. Overcompressed range problems can be combated with
the same methods used to combat premature convergence: scaling, ranking or other
methods shown in sections 2.4.6 and 2.4.7.

2.4.6 Remapping the Objective Function

The value of the objective function is not always appropriated to the fitness value. For
example, the value of the objective function may:

e be negative (the roulette wheel selection does not work);

¢ lie in an overcompressed range (eliminates the selection);

2.4 Practical Aspects 45

Table 2.3: Overcompression of the fithess range

Objective Selection
Individual function probability
2,000.999588 20.004%
2,000.826877 20.002%
2,000.655533 20.001%
2,000.400148 19.998%
2,000.102002 19.995%

m| O O] m| >

e be very high with respect to others points of the function (causes premature con-
vergence);

Because of this, remapping the objective function to an appropriated value can then be
necessary. There are several ways to do this as discussed next.

Ranking

Basically, the ranking methods sort the population by the value of objective function
and assign the fitness according to rank. The following paragraphs show some ranking
methods.

In the linear ranking, the fitness is given by [6, 102]:

N —1
N -1

fi = min+ (max— min) (2.13)

wherei is the index of the individual in a list sorted in order of decreasing value of the
objective function, ana@V is the population size. Linear ranking requires:

1 <max<?2 (2.14)
max+ min = 2. (2.15)

It is worth noting that the linear ranking fithess represents the expected number of
copies of an individual in the mating pool. Therefore, max is the expected number
of copies of the best individual in the mating pool. So max can be interpreted as the
selection pressure (see 2.2.3). The ranking solves the problem of overcompression of

2.4 Practical Aspects 46

max{- . .
] high selection
pressure

I
I »
a I & | [lowselection
Q] : = | pressure
E ; : * max 1
] 11
I
mn+-+--—-——=—=—-—-- min._l:.k____.‘
I - ———— 4
123 N 123 N
rank rank

Figure 2.24: Ranking and the selection pressure

range (see Table 2.3) discussed in Section 2.4.5 by expanding the fithess range, as shown
in the Table 2.4.

Table 2.4: Linear ranking

Objective Selection
Chromosome function Rank | Fitness| probability
A 2,000.999588 1 2.0 40%
B 2,000.8268771 2 1.5 30%
C 2,000.655533 3 1.0 20%
D 2,000.400148 4 0.5 10%
E 2,000.102002 5 0.0 0%

By adjusting the parameter max from the Equation 2.13, the selection pressure can
be controlled. In Figure 2.24(a), the high selection pressure strongly favors the best
individuals and then drives the search to the highest fithess regions of the search space
(much exploitation). In Figure 2.24(b), the low selection pressure weakly favors the
best individuals, driving the search to unknown regions of the search space (much ex-
ploration).

In the exponential ranking, the fitness is given by [71]

fi=aq(l—q)" (2.16)

2.4 Practical Aspects 47

whereq € [0, 1] andi is the index of the individual in a list sorted in order of decreasing
value of the objective function. Alternatively, the fithess may be normalized by dividing
the Equation 2.16 by — (1 — ¢)". The exponential ranking allows a larger selection
pressure than the one allowed by linear ranking.

Linear Scaling

In the linear scaling, the fitness is obtained by the following linear mapping:
f=ag+0

whereyg is the value of the objective function arfids the scaled fitness (see Figure 2.25).

The coefficients: andb are determined by limiting the expected number of copies, in
the mating pool, of the best individual (because an excessive number of copies causes
loss of diversity). The linear scaling [34] transforms the fitness in such a way that the
average fitness becomes equal to the average value of the objective function:

f=g, (2.17)

and the maximum fitness becomes equdl'tbmes the average fitness

fmax = Of (218)

The paramete€’ (typically between 1.2 and 2.0) can be used to control the selection
pressure. The coefficientsandb are determined as follows. We have

N
f= ;Z(agmtb) =ag+b (2.19)
=1

From 2.17 and 2.19, we have
g=ag+b (2.20)

Note thatf,,.x = agmax + b. Replacing this equation and 2.19 in 2.18, we have

agmax + b = C(ag +b) (2.21)

2.4 Practical Aspects 48

[
-

Emin g 4 max

Figure 2.25: Linear scaling

From 2.21 and 2.20, we have

a =

g(c - 1) h— g(gmax - Cg)
_g’ gmax_g

gmax

When the scaling produces negative fitnesses, the coefficiamdb are computed
using another method (by imposirfg;, = 0). These two methods are in the procedure
in the Figure 2.26, where the tagt,, > (C7 — gmax)/(C — 1) verifies whether there
are negative fitnesses.

2.4.7 Selection Methods

The Darwinian natural selection is one of the biological evolution principles that GAs
attempts to mimic. It provides the force that drives a GA towards the best regions of the
search space. The following selection methods are broadly used:

e Roulette wheel selection;
e n-Way tournament selection;

e Stochastic universal sampling.

The roulette wheel selection is described in the Section 2.1.2. Next, the ramainder
methods are described in this section.

2.4 Practical Aspects 49

g %Zij\il gi
IF gumin > (CG — gmax)/(C — 1) THEN
A < Gmax — g
a —(C—1)g/A
b~ g(gmax - Cg)/A
ELSE
A — g — Gmin
a<—g/A
b _ggmin/A
END IF
RETURN « andb

Figure 2.26: Procedure for calculating the linear scaling coefficieatsdb

n-Way Tournament Selection

Then-way tournament method selects each individual as follows: one randomly choose,
with the same probabilityp individuals and the best one (the winner) among them is
selected. This procedure is repeated until to select (in gen€radilividuals whereV

is the population size. Whemnis equal to two, this method is called binary tournament
selection.

A generalization of this method is the probabilistievay tournament selection.
Whether or not an individual wins the tournament depends on its victory probability.
The best individual of the tournament set wins the tournament with probap{lithere
0,5 < ¢ < 1), the second one wins with probability— ¢, the third one wins with
probabilityq(1 — ¢)?, and so on. The higher the tournament siz® victory probability
q, the higher the selection pressure. Note that & N, the probabilistic tournament
selection is equivalent to the exponential ranking, while ¥ 1, it is equivalent to a
random selection. Note also that neither scaling nor ranking is necessary femntg
tournament selection.

2.5 Summary 50

Selected parents
aabcd

Figure 2.27: Stochastic Universal Sampling

Stochastic Universal Sampling

Both roulette wheel selection and stochastic universal sampling [6], SUS, are fithess-
proportionate schemes. However, the roulette wheel selection presents a large variance
for the expected number of copies (in the mating pool) of an individual. The SUS
corrects this problem by using a scheme theoretically as perfect as possible.

The population is shuffled and a pie graph is built by associating each slice to an
individual. The slice size is proportional to the individual’s fithess. Néktequally
spaced pointers are placed around the pie wheigthe population size. Finally, every
pointed individual is selected, as shown in Figure 2.27.

2.5 Summary
The following are some of major points of the chapter:

e The main GA operators are three ones: crossover, mutation and selection. By
favoring the high-fitness individuals, the selection operator drives the GA to high-
fitness regions of the search space. Whereas crossover and mutation allow GA
explore unknown regions of search space. The simultaneous combination of the
three GA operators will make GA converge to the highest fithess individual.

¢ In general, the GA convergence depends on two aspects: exploitation and ex-
ploration. Equivalently, GA convergence depends on selection pressure and the

2.5 Summary 51

diversity once high selection pressure provokes high exploration. Whereas high
diversity provokes high exploitation.

e GA is a productive technique to deal with complex optimization problems that
cannot be solved by conventional optimization methods.

¢ Nontraditional GAs (such as the real coded GA) are most of the time better to
solve real world problems than the binary GA.

e Despite GA being straightforward to apply to lot of optimization problems, some
practical aspects must be considered in the optimization via GAs. The main prac-
tical aspects to be considered to make the GA suitable to solve a specific opti-
mization problem are:

The genetic encoding;

A way to create the initial population;

The selection pressure and other user-controlled parameters;

The design of the genetic operators;

a » w0 N e

The choice of the objective function.

Chapter 3

Learning and RBF Networks

“ Give your lessons wisely

in the school of life while

the book of trials still rests

in your hands. Learning is a
blessing, and there are thousands
of brothers and sisters nearby

awaiting a scholarship

in reincarnation.”
(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This Chapter introduces learning concepts and gives a brief introduction to RBF
networks.

3.1 The Learning Problem

Frequently, in machine learning, one looks for a function that estimate the qutfat
system for an inpuk. Examples of these systems arise in many different settings:
Example 1 A system for image recognition. For example, a system to classify a
digital image whose input is a vectarcontaining pixels/colors of the image and the
outputy is the identification of the image.
Example 2 A system for illness diagnosis. For example, a system classifies a tumor
by responding whether it is either benign=€ 0) or malignant { = 1), where the input

52

3.1 The Learning Problem 53

IS a vectorx containing features of the patient.

Example 3 A system for prediction of consumption of electrical energy. For ex-
ample, a function whose outpuyis the hourly consumed energy and the input vegtor
contains the date, time of day, outside temperature, and speed wind.

Our effort in this work is to find an approximation or a predictibrior a future
outputy of the system. The process in which an approximated functianbuilt is
calledlearning The learning process has three components [97]:

1. A generator of random input vectoxs drawn independently from a fixed but
unknown distributionP(x).

2. A supervisor which returns an outputo every input vectok, according to a
conditional distribution functiorP(y|x), also fixed but unknown.

3. Alearning algorithm capable of representing a set of functtoasH.

A learning algorithm is an algorithm to build functiohse H. A function h is
called ahypothesisnd the set of all hypothesisis called thenypothesis spacand it is
denoted byH. There are learning algorithms that represent their hypotheses as boolean
functions [96], neural networks [88], decision trees [83, 14], decisions lists [86, 22],
inference rules [73, 84], linear discriminant functions [29, 103], splines [99], hidden
Markov models [85], Bayesian networks [44] and stored list of examples [93, 2].

The learning problem is formulated as follows.

The (supervised) learning problemis that of choosing from the given set of hy-
pothesish € ‘H the one which approximates best the supervisor’s response. The selec-
tion is based on a datasetpindependent examples:

D= {(xi,y:);i=1,...,p} (3.1)

but the joint probability distributiorP(y,x) = P(y|x)P(x) is unknown and the only
available information is contained in the dataBet

3.2 The True Prediction Error 54

3.2 The True Prediction Error

In order to select the best hypothesis, one estimatesubegrediction error[26] (true
error for short), denoted by, in which is a measure of how good a hyphotesis at
preticting the supervisor respongéor input vectorx.

In regression problems, the true eredh) is given by expected squared difference
between a supervisor response and a hypothesis response:

e(h) = E(y — h(x)*) (3.2)

where the expectation E refer to repeated sampling of examples drawn from an unknown
joint probability distribuitionP(x, y) = P(y|x)P(x). Equation 3.2 can also be written
as

) = Jim > (s~ hx)? (3.3)
= [y = h(x))*Plx.y)dxdy (3.4)

The standard tool to estimate the true error isktHeld-crossvalidation method [95,
51]. Other estimates of true error are holdout and bootstrap methods (see Chapter 6).
Next section shows how to estimate the true error ugufigld-crossvalidation over a
simple regression problem.

3.3 Estimating the True Prediction Error

Consider a learning problem whose dataRat obtained as follows. The input exam-
plesz are drawn from uniform distributio/(—4,4) and the outpuy is drawn from
conditional distribution:

y~ Plylz) = f(z) +€ (3.5)

where:

e The noise is drawn from normal distribution with mean zero and variance- 0.03;

3.3 Estimating the True Prediction Error 55

3.0 T T

+ f(x)

examples +

_0'5 1 1 1 1 1 1 1
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

X

Figure 3.1: A dataset

e The functionf(z) is a hermite polinomial [68]:

2

f(z) =1.1(1 — x — 22%) exp <_x2> (3.6)

In Figure 3.1 is shown the datagetin which the solid line is the functiori (Equa-
tion 3.6).

In this example, the learning algorithm represents hypotheses by means of Radial
Basis Function (RBF) Networks (described in Section 3.4). The learning algorithm
builds a RBF network by determining its parameter setting. Unfortunately, the learn-
ing algorithnt is unable to determine all parameters of RBF networks (it is unable to
determine the number of hidden units of the RBF network). Therefore, the number of
hidden units will be determined by trial and error. In Table 3.1, it is shown 10 possible
choices of hidden units and the true error of the respective hypothesis built by learning
algorithm.

1This learning algorithm is described in Section 3.5 with overlap faeter 1.5.

3.3 Estimating the True Prediction Error 56

Table 3.1: True error for several RBF network hypotheses

Number of

Hidden Units| True Error
5 0.0605944
6 0.0495772
7 0.0296295
8 0.0147486
9 0.0112011
10 0.0100640 *
11 0.0104499
12 0.0188118
13 0.0151860
14 0.0186200
15 0.0222238

The best hypothesis (from Table 3.1) has 10 hidden units because it minimizes the
true error. However, the true error is unknown by user and because of this the user
cannot claim that the best hypothesis has 10 hidden units. Fortunately, the user may
estimate the true error byfold-cross-validation and to use the estimates (instead of the
true errors) in order to choose a hypothesis.

The k-fold-crossvalidation method divides the data®ein £ subsets (also named
folds): Dy, Ds, ..., Dy. The folds have equal size and are mutually exclusive. It pro-
ducesk hypothese%, ..., hix, where each one is built by learning algorithm from the
datasetD \ D, (see Figure 3.2). The performan€gobtained by the hypothesis is
measured on the datade:

. 1 2
%= Dy > (y—hix) 3.7)
Il (x,y)€D;

Let é(h) to be thek-fold-crossvalidation estimate of the true error for hypothésis
The estimateé(h) is equal to average of the performances ofithg/potheses:

1k
éh) = %Z:éj (3.8)

3.3 Estimating the True Prediction Error 57

Do | D3| DD

ot

} build Ay

Dy

Dl D3 D4 Ds >bu11d hg
Dy

Dl DQ D4 D5 }buﬂd h3
Ds

Dl D2 Dg D5 }bulld h4
D,

D1 DQ Dg D4 }bulld h5
Ds

Figure 3.2: The:-fold-crossvalidation method fdr = 5

(g > (- hj(x))Q) 39)

7=1
BecauséD,| = |Dy| = ... = |Dx| = |D|/k then
1 k
o) = 53 X (y—hix) (3.10)
Jj=1 (X,y)EDj

In Table 3.2, it is shown thé&0-fold-crossvalidation ¥ = 10) estimate for each
hypothesis from Table 3.1. According to this estimate (Equation 3.10), the user chooses
the hypothesis with 11 hidden units. This hypothesis (plotted in Figure 3.3) is similar
to the best hypothesis from Table 3.1 (in terms of number of hidden units). This result
shows that 10-fold-crossvalidation provided a good estimate for this example.

Note that there are two kinds of parameters in a hypothesis: the parameters (also
called training parameters) that are determined automatically by learning algorithm and
the parameters (also called adjustable or tunning parameters) that are not determined by
learning algorithm. In this example, the adjustable parameter is the number of hidden
units of the RBF network.

3.4 Introduction to Radial Basis Function Networks 58

Table 3.2: Estimate of true error for several RBF network hypotheses

Number of Estimate of
Hidden Units| True Error | True Error
5 0,0605944 | 0,1488140
6 0,0495772 | 0,1193860
7 0,0296295 | 0,0866174
8 0,0147486 | 0,0587643
9 0,0112011 | 0,0871740
10 0,0100640 *| 0,0719187
11 0,0104499 | 0,0387574 *
12 0,0188118 | 0,0445568
13 0,0151860 | 0,0505755
14 0,0186200 | 0,0949899
15 0,0222238 | 0,0458567

The problem of estimating the true error for a hypothesis using different values of
adjustable parameters in order to choose the approximate best one is knowadels
selectiofd1].

The model selection process in this example was done by trial and error. To search
by trial and error the set of values of adjustable parameters is impracticable if such set
is large. In this situation, a genetic algorithm can be used to search the set of values of
adjustable parameters. This issue is addressed later (in Chapter 6). Next the hypothesis
representation used throughout this text (the RBF Network) is presented.

3.4 Introduction to Radial Basis Function Networks

RBF Networks have their origin in the solution of the multivariate interpolation problem
[81, 15]. These networks have traditionally only one hidden layer (see Figure 3.4).
Properly trained, they can approximate an arbitrary funcfiofR™ — R by mapping:

f(x) = h(x) =wy+ in: w;zj (X) (3.11)

j=1

3.4 Introduction to Radial Basis Function Networks 59

3.0 T T T T T T T

. £(x)
g hypothesis with 11 hidden units ===-==-=--
25 F i “.‘J“ examples + i
20 i
1.5 F i
>
1.0 i
05 i
= Nt
0.0 b~ S
- +EF
_0.5 1 1 1 1 1 1 1

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Figure 3.3: Hypothesis selected kyfold-crossvalidation withk = 10

wherex € ®", {w;; ¢ =1, ..., m} denotes theveightscoefficientsu is thebiasand
z; (x) represents thactivation functionalso known as radial basis function), which is
given by:

7 (%) = ¢ (”X — Cj”) (3.12)

aj
where||-| is the Euclidean norm; = [¢;1,¢jo, . .., ¢;n] " is thecenter vectoro; is the
width, which is a scaling factor for the radilix — c,||, and¢ (-) is a non-linear func-
tion that monotonically decreases (or increases) m®ves away frone,;. A common
example of a radial basis function is the Gaussian funetion = exp (—v?/2). Others
examples arep (v) = v (linear);¢ (v) = v3 (cubic); ¢ (v) = v* log v (thin plate spline);
¢ (v) = vv? + 1 (multiquadratic); and (v) = 1/v/42 + 1 (inverse multiquadratic).

3.5 Hybrid Learning of RBF networks 60

input laver hidden laver output laver

Figure 3.4: A Radial Basis Function Network

3.5 Hybrid Learning of RBF networks

Several training techniques have been proposed to train RBF networks. A well known
training technique[75] employs a hybrid approach that combines unsupervised and su-
pervised learning. In order to see how it works, let

{xiw);i=1,...,p} (3.13)

be the set of the training examples whegtes aninput vectorandy; its desired output

The unsupervised learning stage defines the center and width of the radial basis
functions. Simple methods make = x,,,, fori = 1,...,m, whereq; € {1,...,p}
is randomly chosen. Usually, the number of centeus,is determined by trial and
error. Nevertheless, this approach is prone to generate large networks, overfitting, and
numerical problems (mainly when the data set is noisy)[78].

A more efficient approach employs a clustering algorithm, suck aseans[4] or
self-organizing feature map[52]. Roughly speaking, fixaneans starts by randomly

assigning thep input vectorsx; to K setssS,...,Sk. Next, it computes the mean
vectors of each set as: .
m; = > x; (3.14)
|SZ| XjESi

In the following steps, it re-assigns all input vectarsto the nearest clustef; (i.e.,
nearest mean vector) and recalculates the mean vector for each cluster. This two steps
procedure is repeated until there is no further change in the mean vectors. These vectors

3.5 Hybrid Learning of RBF networks 61

become the centers (i.e;, = m; fori = 1,..., K). Another alternative is to partition
the input space in regions using a decision-tree [53].

The widths are usually defined by computationally inexpensive heuristics [89]. Moody
and Darken, in [75], suggest that a single vatu@®r all basis functions gives good re-
sults. They used = (||c; —c;||), wherec, is the nearest center fromand(-) indicates
the average over all such pairs. Others methods use a differentosdioreeach basis
function. In [89], each widtlr; is defined as

ag; :Oé”Ci—Cj”, (315)
whereq is an overlap factor and, andc; are defined as before.

The Least Squares Problem

In the supervised learning stage, the RBF network with fixed centers and widths can be
interpreted as a case of multivariate linear regression on the training set:

y=2Zw+e (3.16)
wherey = [y1,v2, ... ,yp}T is the desired outpufZ is thedesign matrix which is a
matrix with the;j th column|z; (x1), z; (x2) ..., 2 (%,)] T, W = [wy,ws, ..., wy,]" is

the output layer weight vector ards the error. The vectow is determined minimizing
the sum of squared errors:

Find w that minimizesSSE = e'e (3.17)

A simple method to find the solution of this linear least squares problem may be
obtained solving the well-known linear system (calfe@mal equationks

(2"2)w =12"y (3.18)

Nevertheless, this simple method to solve the least squares problem is prone to numeri-
cal problems as shown in the next section.

3.6 Computational Considerations 62

3.6 Computational Considerations

The three following methods are usually used to solve a least squares problem (described
by the Equations 3.16 and 3.17):

e Cholesky decomposition;
e QR decomposition;
¢ Singular value decomposition (SVD).

The Cholesky decomposition of the matéX Z is the faster way to solve the linear
system 3.18 (i.e., the normal equations). However, the solution of a least squares prob-
lem directly from normal equations 3.18 via Cholesky decomposition is susceptible to
roundoff errors. Because of this, a method called QR decomposition (of the rAatrix
may be better than Cholesky decomposition due to its numerical stability [64, 41].

Another numerical problem, called ill-conditionifygan arise due to large and noise
training datasets. In general, Cholesky and QR decompositions fail to provide satisfac-
tory results if there are ill-conditioned matrices (e.g.Z¥Z is ill-conditioned) in the
least square problem. In this case, the use of SVD has been recommended [82]. SVD
does not directly use the normal equations, instead of this, SVD computes the pseudo-
inverse matriXxzZ*. Thus, the weight vectow is given by

w=17Z%"Yy (3.19)

where
zt=(2'2) 'z (3.20)

Another way to deal with ill-conditioning problems by using regularization (see
section 3.7).

3.7 Ridge Regression

Ridge regression (also called weight decay) is a particular type of regularization. The
regularization technique is often used to avoid overfitting in neural networks [43]. Penalty

?|ll-conditioned matrices are close to singular.

3.7 Ridge Regression 63

or regularization functions are added to the SSE in order to control the smoothness prop-
erties of the network. The ridge regression minimizes the cost function:

Find w that minimizesC' = SSE + fw'w (3.21)

where(is the regularization (or ridge) parameter, which control the smoothness of the
RBF network. The solution to this least squares problem is obtained solving the linear
system:

(Z'Z + plyw =Z'y (3.22)

wherel is the identity matrix. The SVD is not necessary to solve the system (3.22),
since regularization itself avoids numerical problems. Thus, faster algorithms (such as
Cholesky or LU decomposition [82]) able to solve linear systems can be used instead of
SVD.

This fast approach (i.e., the use of regularization combined with either Cholesky or
LU decomposition) is very useful to design RBF networks using Genetic Algorithms,
once short computational time to evaluate RBF networks is critical to the overall perfor-
mance. Because of this, this fast approach is used in all the experiments in this work.

Chapter 4

Combining RBF Networks and Genetic
Algorithms

“Do not run away from the lessons
to be learnt along your evolutionary
path, however difficult or painful
they may be, so that later on life may
open up the sanctuary of wisdom to you..”
(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This Chapter shows several ways to combine RBF networks and GAs. Encoding
issues and some problems involved in the combination of RBF Networks with Genetic
Algorithms are also described (mainly the redundancy problem). Finally, a review of
previous works is given.

4.1 Combining Neural Networks and Genetic Algorithms

Roughly speaking, ANNs can be combinated with GAs in three different ways:

e Evolutionary design. It is the evolution of neural architectures and of the algo-
rithmic parameters. The parameters to be optimized may include the number of
layers, the number of hidden units, the activation function and the algorithmic
parameters, such as learning rate.

64

4.1 Combining Neural Networks and Genetic Algorithms 65

e ANN training . A GA may be used as a training algorithm to optimize the values
of the network weights and centers.

e Evolution of learning rule. Given an ANN, this method looks for an efficient
learning rule.

In the case of evolutionary design, in general, each individual can be seen as a state
of the space of neural architectures. Beginning the process with a population of geno-
typical representations of neural architectures, usually randomly generated, a generator
reconstructs each network (phenotype) from its representation (genotype), according to
a chosen encoding procedure. Then, in order to evaluate their performances, all the
networks are trained, in general, with the same dataset. Next an evaluation function de-
termines the current state of the population, establishing the fitness (an aptitude grade)
for each architecture according to its performance or generalization over the dataset.

Through a selection method, such as the roulette wheel, the architectures are selected
according to a relative probability associated to their fithesses. The selection continues
until the next population of candidates is completed. Later, the candidates go through
a reproduction stage guided by mutation and crossover genetic operators. By means
of these operators, a new generation of neural architectures is constructed. In order to
avoid the possible disappearance of the best architectures from the population, an elitist
policy can also be used, which automatically sends best networks to the next generation.

This cycle is repeated and the population evolves gradually towards genotypes that
correspond to phenotypes with higher performances. This cycle is carried out a certain
number of times until the algorithm finds appropriate solutions to the problem.

The evolutionary design also includes the evolution of algorithmic parameters. Ex-
amples of algorithmic parameters are the learning rate and the number of epochs of
the Backpropagation algorithm or the regularization parameter of the ridge regression
method used in the RBF Network training.

In ANN training, the GA is used as a training algorithm to optimize the centers
and widths (and optionally the weights) of RBF networks. In the evolution of learning
rule, given an ANN, this method looks for an efficient learning rule [18, 105]. In [18],
learning rules, competitive with the Delta Rule (also known as LMS algorithm [103]),
were evolved.

4.1 Combining Neural Networks and Genetic Algorithms 66

Although most of the evolutionary approaches for ANN design have been focused
on MLP networks [105], their long training time is a strong negative factor concerning
the chromosome evaluation efficiency. RBF networks are known for requiring a much
shorter training period. To take advantage of this feature, a few methods have also been
proposed to optimize the parameters of RBF networks.

RBF networks training optimization has been pursued by other approaches like OLS
(Orthogonal Least Squares) [19, 78, 79] and RAN (Resource Allocating Network) [80,
48, 106]. Despite being very fast, these methods perform a local search; thus they can
easily fall in local minima and produce sub-optimal solutions. GAs, on the other hand,
are global search methods (see section 2.2). They can provide an efficient alternative
for the optimization of RBF networks. When RBF networks are genetically optimized,
several parameters may be considered, such as:

¢ Number of hidden unitsn;

e Basis functionszy, . . ., z,, used by each unit;

e Centerscy,...,c,, wherec; = [¢j1, ¢jo, . .. ,cjn]T is a vector center of the basis
function z;;

e Widths o4,...,0,, Whereo; is the width of basis function;;

o Weights w = [wy,... ,wm]T wherew; is the weight connecting thgh hidden

unit and the output unit.

The current evolutionary optimization approaches usually optimize a subset of these
parameters. The weights, for example, are most of the time determinated by least
squares methods. In next section, some problems involved in the combination of RBF
Networks with GAs are described.

4.1.1 Encoding Issues

The choice of the adequate encoding for the chromosomes is a central issue for the
optimization of RBF Networks through GAs. The encoding defines the class of neural

architectures that can be evolved. Moreover, the definition of genetic operators is, in
general, based on the encoding chosen. These factors contribute directly or indirectly to

4.1 Combining Neural Networks and Genetic Algorithms 67

genotype space

phenotype space

eillegal point infeasible point

M
feasible region

legal region
| JHHH

feasible point

Figure 4.1: Genotype to phenotype mapping.

the efficiency (with respect to processing time and fithess values obtained) of the genetic
optimization [7].

Traditional encodings use binary string. However, in order to provide a represen-
tation more suitable to the characteristics of the problem being solved, a large range
of encodings have been proposed [32]. Encodings have varied from real strings (used
mostly in numerical optimization) and integer permutation encodings (used in some
combinatorial optimization problems) to general data structures, often used in engineer-
ing problems.

To evaluate a chromosome, GAs map a point from the genotype space to the phe-
notype space. From this mapping, many important isSsues concerning genetic encodings
may arise. Here, it is useful to distinguish two important concepts on the genotype-
phenotype mapping: infeasibility and illegality (Figure 4.1).

A phenotype is infeasible if it lies outside the feasible region of the optimization
problem. A genotype is illegal if it cannot be mapped to the phenotype space. Note
that infeasibility is derived from the nature of the constrained optimization problems
whereas illegality is derived from the nature of problem-specific encoding. Therefore,
infeasibility and illegality are unrelated concepts. In order to better explain these con-
cepts, two examples of illegality are given.

Example 1. consider the Traveling Salesman Problem, TSP: a sellerNigiitses
(e.g., cities A, B, C, D, and E), returning to the first city. Each city is visited only once.

In this example, two possible tours are (BACDE) and (EBDAC). The application of a
two-point crossover [34] to these tours results in:

4.1 Combining Neural Networks and Genetic Algorithms 68

Output Output
Invalid unit
Decoding Reparing
= =
Input Input

Figure 4.2: Reparing an illegal network

Tour 1 (BACDE)
Tour 2 (EBDAIC)
Offspring (BADAE) = illegal tour

Clearly, this offspring is illegal because its tour is invalid, once the city A is visited
twice. Repair techniques are usually employed to convert a illegal chromosome to a
legal one. For example, the well-know PMX crossover [34] often used in the TSP is
essentially a two-point crossover combined with a repair procedure to fix the illegal
chromosome produced by the two-point crossover.

Example 2: some encodings used for ANNs optimization [40] can produce invalid
networks. For example, the ANN from Figure 4.2 has one hidden unit without input
connections. Thus, the chromosome that produced this network is illegal. A repair
procedure could delete that invalid unit.

4.1.2 Desirable Properties of Genetic Encodings
Consider the following notation used througout this section.
e & denotes a problem-specific genetic encoding.

e G denotes the genotype space, i.e., the set of all genotype representable in the
chosen encodin§.

e P denotes the phenotype space (or solution set), i.e., the set of all solutions for
the otimization problem.

4.1 Combining Neural Networks and Genetic Algorithms 69

e F C P denotes the feasible set, i.e., the set of all phonotypE that is not

infeasible.

e L C G denotes the legal set, i.e., the set of all genotypé&kstimat is not illegal.

e D : L — P denotes the decoding function, i.e., the function that produces a

phenotype corresponding to a genotype Note that the domain @ is £, once
illegal genotypes cannot be mapped to the phenotype space.

Based on the works of [32] and [7], some desirable properties of genetic encodings
are listed as follows.

1.

NonredundancyD is injective. The mapping between encodings and solutions
must be injective.

If a non injective mapping occurs, the GA waste time in searching because one or
more individuals may be duplicated in the genotype space. Hence, the injective
mapping (nonredundancy) is a desirable property for an encoding. Next section
details this property for RBF networks.

Legality. G = L. Any instance of an encoding corresponds to a solution.
Feasibility. RangeD = F.

CompletenesdD is surjective. Any solution has a corresponding encoding.

This property guarantees that any point of the search space is accessible by the
GA search.

. Goldness Let p* € P to be the best solution. If there exist a&& L such that

p* = D(l). That is to say, the best solution has a corresponding encoding.

. Nonredundant completenesP is bijective. The encoding is nonredundant and

complete.

. Strong casuality (or well-conditioning)Small variations on the genotype space

due to mutation imply small variations in the phenotype space.

This focus whether the neighborhood of a chromosome (in the genotype space) is
also preserved in the corresponding phenotype space. A search process is strongly

4.1 Combining Neural Networks and Genetic Algorithms 70

casual (or well-conditioned) if it do not destroy the neighborhood of a chromo-
some. Weak casuality (or ill-conditioning) refer to the case where small variations
on the genotype space imply large changes in the phenotype space, and vice versa
[32]. According to [91], strong casuality is a desirable property of genetic encod-
ings.

4.1.3 Redundancy and lllegality in RBF Network Encodings

The encoding of RBF networks may suffer from a problem named redundancy. In the lit-
erature of genetic optimization of ANNs, redundancy is also known by different names:
functional equivalence problem [77], competing conventions problem [90] and permu-
tation problem[38]. Redundancy occurs if the mapping from chromosomes (genotype
space) to the RBF Networks (phenotype space) is not an injective mapping.

Two chromosomes are redundant if their associated RBF networks perform the same
input-output mapping An example of redundant encoding is shown as follows. Con-
sider a generic chromosome of the form:

P= (p17p27"'7pm) (41)

wherep; encodes parameters (e.g., centers and widths) associated with the basis func-
tion z;. By using this encoding, the RBF networks on the left and right sides of Fig-
ure 4.3 could be encoded by the chromosofaeb, c) and(c, a, b), respectively. Al-
though these networks can perform the same input-output mapping (since they have
the same units), they have distinct chromosomes. This may significantly increases the
search space.

According to [38], the traditional crossover operator is not appropriated for redun-
dant encoding, once it may generate offsprings with duplicated basis function (illegal-
ity). For example:

Parentl (ab c)
Parent2 (ca b)
Offspring (a| a b)=- duplicated basis function

In section 4.2.3, there is a formal definition of redundancy for RBF networks.

4.2 Review of Previous Works 71

Figure 4.3: Redundant RBF networks.

& FN-) e

abced ABCD abCD ABcd

Figure 4.4: Overlapped Gaussian Functions.

Although two identical basis function into the same chromosome is unlikely, it is
possible to have two similar basis function, as can be seen in Figure 4.4 [38]. In this
figure, the basis functionsandC' are not identical, but they are very similar because
they play similar roles in the network (once they have Gaussian functions overlapping
each other). Such problems make the design of the crossover operator very difficult and
may significantly increase the search time.

4.2 Review of Previous Works

Three works were relevant for this research. They are described in the following sec-
tions. Other works are briefly described.

4.2.1 Selecting Centers from Patterns

Billings and Zheng [12] addressed the combinatorial aspect of RBF networks optimiza-
tion [12]. In their work, a GA selects a subset of the input patterns to become the center
vectors. Each chromosome is a variable-length string representing a subset of patterns.

4.2 Review of Previous Works 72

For example, the chromosome P.
P=(100 7 411 286)

represents a RBF network with four centers placed on the patterns labeled 100, 7, 411
and 286. The authors used thin-plate-spline basis function and employed the genetic
operators proposed by Lucasius and Kateman [65]. These operators are suited to solve
a combinatorial optimization problem known sigbset selection problem

Two types of crossovers were used: the fixed length crossover and the variable length
crossover. The lenghts of the parents are preserved in the fixed length crossover, while
they are changed in the variable length crossover.

Let P1 and P2 be the parents. In the fixed length crossover, the common genes in
both parents are first searched and two binary template strings, T1 and T2, are created
to mask the common genes in both parents. The bits belonging to T1 and T2 are set to
one if the corresponding gene is a common gene and zero otherwise. For example,

Pl=3 2108 5 Til= 0 1 0 1 0
—

P2=9 2 6 4 8 = 01 0 0 1

In this case, the fourth bit of T1 is set to one because the fourth gene of P1 (namely
8) is present in both parents. Next, the operator selects a random number of distinct
genes from the end of P1 and exchanges the same number of distinct genes with P2.
The common genes in both parents are preserved. The following example shows the
offspring obtained by exchanging two genes of P1 with two genes of P2:

2E8;| FI=3 2 6 8 4
N —>
6

Ez 4 F2=9 2 10 5 8

The variable length crossover is quite similar to the fixed length crossover, but it
exchanges a random number of distinct genes from the end of P1 with a random num-
ber of distinct genes from the end of P2. Figure 4.5 shows the offspring obtained by
exchanging two genes of P1 with three genes of P2.

In this work, the Lucasius and Kateman’s trade mutation was also used. Consider
a complementary training set defined as the difference between training set and the

4.2 Review of Previous Works 73

Pl= 375986 TI= 001010

P2= 81254 ™= 10010 :

— Pl—MSEP% Fl= 3751284
PZS.? 2= 8956

Figure 4.5: Lucasius and Kateman'’s variable length crossover

Training set

311 8

Chromosome

7 12

Figure 4.6: Trade mutation

set of patterns coded in the chromosome. The trade mutation replaces the genes of a
chromosome with patterns randomly selected from the current complementary training
set in an import-export fashion (see Figure 4.6) [31].

Addition and delete operators were also used. According to the authors, they help
to keep the population diversity. The addition operator concatenates a random number
of genes to the end of a chromosome. The delete operator deletes a random number of
genes from a chromosome, starting from a randomly defined chromosome position. The
networks were evaluated using a data set from a liquid level system. The authors used
500 training patterns, 500 validation patterns, a population of 60 individuals and each
algorithm run for 400 generations. The authors used a multiobjective genetic algorithm
with two objective functions: the Akaike Information Criterion (AIC) [3] over both
training set and validation set in which improved the generalization.

This work, published in 1995, presents the following interesting ideas:

4.2 Review of Previous Works 74

1. The use of a multiobjective genetic algorithm.

2. Commonly, previous GA models for neural networks minimized simple error
functions such as Sum-Squared Error, SSE (or similar functions such as Mean
Squared Error, MSE) whereas this GA minimizes a model selection criterion func-
tion (namely AIC).

3. In general, previous GAs models for neural networks used only the training set
to compute the objective function whereas this model uses simultaneously both
training and validation sets in order to compute the objective function.

4. The encoding is quite simple. However, this simplicity restricts the centers to the
input training patterns causing too large regions of search space be skipped during
the searching process.

4.2.2 Crossing Hypervolumes

Carse and Fogarty [17] proposed a method to genetically optimize centers by crossing
hypervolumes of the input space. In this work, a chromosbnerepresented by a list
of tuples as follows

P = (pi,...,Pm). (4.2)

where the tuplep; is given by:
b: = (01j701j702j702j7---7an,0nj)- (4.3)

A tuple p; encodes the parameters of the following basis function:

zi(x) = f[exp (—W) (4.4)

which may have a different width for each component of the center vector. This encod-
ing has the same form of the generic (and redundant) encoding showed in section 4.1.3
(Equation 4.1). It follows that it is prone to redundancy too. This drawback was tackled
by authors by means of a modified 2-point crossover which exchanges hypervolumes
of the input space instead of chunks of the chromosome structure. This hypervolume is

4.2 Review of Previous Works 75

determined by two crosspoint vectersb € R”, whose elements are given by:

a; = min; + (max; — min;) (4.5)

bj = a;+ (max; —min;)ry (4.6)

wherer; andr, are randomly selected from the ran@el] with uniform probability
density andmin;, max;] is the allowed range for the componentof the input vector
X.

After the modified 2-point crossover, the first offspring contains all the tuples
from the first parent which satisfy:

Vj, ((Cij > CLJ') AN (Cij < bj)> V ((Ci]’ + max; — minj) < b]) (47)

together with all the tuplep; from second parent which do not satisfy this condition.
The second offspring contains the remaining tupleisom both the parents. Itis shown

an example of this crossover in Figure 4.7 by crossing hypervolumes on a 2-dimensional
input space.

This work suggested that redundancy problem affects the GA performance by show-
ing experiments which the performance of the modified 2-point crossover is better than
the one of the conventional 2-point crossover. This work also presented an interesting
idea of crossing hypervolumes of input spaces. This idea is quite general because it
can be adapted, as shown in Chapter 5, to other types of crossovers in order to cross
hypervolumes in different ways.

4.2.3 Functional Equivalence of RBFs

This section shows other approach to deal with the functional equivalence problem. In
[77], the functional equivalence between chromosomes is formally expressed as:

Definition 4.1 Letp; = (w;, 0y, ¢1, ¢, - . ., ¢,). TWO chromosome = (py, pa, ..., Pm)
andP’ = (p’y,p's, ..., P’,,) arefunctionally equivalenif and only if there exists a per-
mutationr of the se(1,...,m), such thap, = p;), foreachi € {1,...,m}.

Neruda [77] proposes a unique encoding, naggtbnical parameterizatiqro rep-
resent a class of functionally equivalent chromosomes. For such, he uses a lexicographic

4.2 Review of Previous Works 76

Parent 1 _> Offspring 1

bl / ot % /

A

1 1 a b,
Parent 2 Offspring 2
Legend
O center of the parent 1 @ center of the parent 2

Figure 4.7: Crossing Hypervolumes

ordering for the tuplep, as follows.

Consider thgn + 2)-tuplesp andq. One can say thabt precedesy (in symbols
p < q) if there exists an index € {1,...,n+ 2} such thap; = ¢;, for j < k and
Pr < qr. The chromosom® = (p1, pa, - .-, Pm) IS @ canonical parameterization if:

Pi1=<P2=<...<Pm (48)

The GA, proposed in this article, requires that the chromosomes be canonical pa-
rameterizations. The genetic operators were adapted to preserve this property. Mutation
is applied on elements of a randomly chosen tgplgenerating a new tuplg’, which

4.2 Review of Previous Works 77

must be restricted to the limits:

Pi-1 < P'; < Pit1 (4.9)

The application of a 1-point-crossover on the pardhts: (py,...,p,) andQ =
(ai,---,dm), With cut point in the position, produces the offspring:

(pla"'apiaqi+17"'aqm)

which is valid only ifp; < q;.1; otherwise another cut point must be chosen.

By eliminating structurally different chromosomes representing networks with the
same functionality (i.e., redundancy), this model clearly reduces the search space. It
would be interesting to see its performance. However, in the article consulted, the author
did not present any experimental results for his model.

4.2.4 Other Models

Maillard and Gueriot[69] modified the model described in Section 4.2.1 by allowing
the centers to assume other points besides the training input vectors. In this model, the
authors also investigated the use of several types of basis functions in the same network.
According to the authors, networks with different basis functions presented a smaller
number of hidden nodes and achieved lower error rates than those using only Gaussian
functions. The chromossome is a variable length list of five gene sequences. Each 5-
gene sequence codes the characteristics of a basis function as shows Figure 4.8. The
center of a basis function is defined as the weighted barycenter of two patterns labeled
as Id1 and 1d2 in Figure 4.8.

Whitehead and Choate [100] proposed a genetic approach that evolves space-filling
curves to set the center vectors. The underlying idea involves the mapping of the centers
from an-dimensional region of the input space (defined by such space-filling curves)
to a unidimensional space in which the chromosome is encoded. This reduces the num-
ber of degrees of freedom of the genetic encoding. In another article, the same au-
thors evolved the centers and widths of the radial basis functions through a cooperative-
competitive GA [101]. In this method, each individual encodes only one hidden unit.
The whole population represents a unique RBF network. The individuals compete and

4.3 Comments 78

N
A 71d2
s | T|Id1|Id2| A | Gl XX % ® «—__ position
width of the basis function Idl - of the center
weight of the barycenter -

input space

Id of the second pattern

1d of the first pattern

type of basis function
(e.g., gaussian, thin plate spline, multiquadratic, etc.)

Figure 4.8: Decoding the chromossome formed by a list of 5-gene sequences

cooperate among themselves to improve the overall performance of the network repre-
sented by the population.

Chen, Wu and Alkadhimi, in [20], train RBF networks with a combination of GAs
and the ROLS algorithm (Recursive Orthogonal Least Squares). Firstly, GA evolves
the widths and a regularization parameter of the ROLS algorithm. Next, the ROLS
algorithm defines the number and position of the center vectors. Others works involving
GA and RBF networks are [8, 92, 16, 39, 98, 54, 70].

4.3 Comments

Three works [12, 77, 17] served as a starting point for ideas in this research:

e In [12] (see section 4.2.1), a multiobjective optimization GA method for RBF
networks was presented in which the objective functions were model selection
criteria (hamely the Akaike information criterion). Inspired on this approach, it is
proposed, in Chapter 5, a multiobjective GA using other different model selection
criteria.

e In [77] (see section 4.2.3), it was given a light on the redundant problem in RBF
networks by presenting a theoretical treatment on this problem.

e In [17], it was shown how deal with redundant problems in RBF networks by
crossing hypervolumes on input space instead structural chunks of chromosome.

4.3 Comments 79

Inspired on this approach, it is proposed, in the Chapter 6, a crossover that also
cross hypervolumes on input space.

Despite of being interesting, other works, shown in section 4.2.4, do not directly
influence this research. In fact, most of these works empathize the encodings itself.
Whereas this research empathizes the objective functions (mainly the model selection
criteria). Moreover, some works do not deal with redundant problem. Whereas this
research consired the redundant problem in order to design the proposed RBF encoding
in Chapter 5.

Chapter 5

The Proposed Genetic Encodings and
their Operators

“If the question is excessively
complex, wait one more day or
one more week in order to resolve it.
Time does not pass in vain.”

(Book: Christian Agenda,

André Luiz - medium F.C.Xavier.)

This chapter presents the GA proposed in this research by describing the encoding
and the genetic operators. The objective functions and others components are described
in the next chapter. Two new genetic encodings are proposed here:

1. Model | (also called the model with multiple centers per cluster);

2. Model Il (also called the model with one center per cluster).

They are described as follows.

80

5.1 Model | - Multiple Centers per Cluster 81

5.1 Model |l - Multiple Centers per Cluster

5.1.1 Encoding

In the model I, the chromosome is a variable length list of tuples given by:

P = (plap27"'7pmp) (51)

wheremsp is the number of hidden units coded in the chromosdmeThe tuplep;,
1 < j < mp, codes a basis function and is given by:

p; = (rj;0;;¢1,Cj2, - ., Cjn) (5.2)
The parameters of the basis function coded pitare:
e 0; € [0,1] is the coded width.
e cj1,...,cj, € [0,1] are the coded coordinates of the center.
e r; is a integer identifier indicating that the center is inside the regipnof the

input space (this region is discussed below).

5.1.2 Partitioning the Input Space

The partition of the input space creates a sekofegions{ R, ..., Rk}, which are
placed in the areas where there is high density of training input patterns, as showed
in Figure 5.1. The width of the regioR; along each coordinate direction is deter-

mined by the corresponding components of the vedioes [l;1, .. ., lm]T andu; =
[Uil, e ,’U,in]T. That iS,
Ri:{XE%":lﬂ§x1§ui1,...,lm§xn§um} (53)

In other words, the componentg anduw,, are the lower and upper limits, respectively,
of the regionR; along a coordinate direction.

In this work, the vector$; andu; are obtained from the clusters of training input
patterns generated by thié-means clustering algorithm [4]. Considgra cluster of

5.1 Model | - Multiple Centers per Cluster 82

A
*---" ¢ -—-----
]] ! o !
1 ® ! !
| 1 ! o!
|] : :
| ®
N | ° | R]
8 _ _J R2
Rl *-——-—-—=-- 1
1 o I
1 1
Lo s
| ¢
1 1
L————'—d
i) "

Figure 5.1: Partioning the input space by means of clusters of patterns

input training patterns. The vectdssandu,; are obtained from cluste; as follows:

li;, = minuaxy (5.4)
XES;
Wi, = MmaxTi (5.5)
XES;
forallk =1,...,n. By using the above procedure, the regirencompass all patterns

of the clusters;.

5.1.3 Decoding

Consider the following chromosome to be decodd®: = (p;,p»,...,pn) Where

p; = (1;0j;¢j1,¢2, ..., ¢jn). The parameter; € [1, K] is coded as a integer. The
parameterss;, c;1, cjo, . . ., ¢j, are coded as floating-point values and normalized as:
0j,Cj1,Cj2, ..., Cin € [0,1]. The decoding is carried out as follows

c;»k = bk +cip(trp —lox), fork=1,... n, (5.6)

o = s0j (5.7)

where the coefficientis a scaling factor (in this workis equal to the half the maximum
distance separating pairs of training input patterns). Thus, the center of basis function

5.1 Model | - Multiple Centers per Cluster 83

chromosome

(115015 €11, €12) (T2 023 €21, C22) - - (T Oms Cm1, Cm2)

A
decoding > —--- PR e training pattern
]] o ° |
1o e | ! o center
1 | ' o °
1o ! ' o
™ : ° of R ¢
= .- Ry
R1 ¢-———=--]
| [])
tous Ih
[N} 3
1o o
| |
e, k]
X1 g

Figure 5.2: Chromosome decoding
coded intop; is given by
Cj = . (58)

A decoding example is shown in Figure 5.2.

5.1.4 The Cluster Crossover

The proposed GA uses a modified crossover operator, here named cluster. Itis described
as follows. First, consider the parents:

P = (p1,---,Pmp)
Q = (Q1a---7me>

Second, create a template bit string randortdhy bo, ..., bx), b; € {0,1}, fori =
1,..., K. Finally, perform the cluster crossover as follows:

5.1 Model | - Multiple Centers per Cluster 84

for i =1to K do
if b; = 1then
Move all genegp; that are member of regioR,; to the 1st offspring
else
Move all genesy; that are member of regiaR,; to the 1st offspring
endif
Move the rest of the genes to the 2nd offspring.
endfor

In Figure 5.3 is shown a example of the cluster crossover applied to the regions
illustrated in Figure 5.1.

Cluster Crossover vs. Traditional Crossovers

The use of the traditional crossover operators might produce duplicated genes into the
same chromosome, as shown in the following example.

Consider a case in which the centers are on the one-dimensional space. In this simple
case, the chromosomes are formed by a variable list of 3-tuples (region, width, center).
Figure 5.4 shows the traditional crossover producing an offspring with duplicated genes.
By crossing hypervolumes, the cluster crossover avoids the illegality problem in this
example as illustrated in Figure 5.5.

The cluster crossover works like the traditional uniform crossover but crosses re-
gionsR; instead of structural chunks of chromosomes (as is usually performed by stan-
dard uniform crossover). To put in another way, the cluster crossover is a method for
performing the crossing of hypervolumes on phenotype space, whereas the standard
uniform crossover operators are performed on the genotype space. It is similar in spirit
to the Carse and Fogarty’s crossover (see Section 4.2.2).

5.1.5 Mutation Operators
The following mutation operators are used:

e The uniform mutation replaces widths, centers and region identifiers by uniform
random numbers (see Section 2.3.2 for details).

e The creep mutation adds a Gaussian noise to the value of widths and centers.
The added noise is small, so creep mutation plays the role of a local search (see
Section 2.3.2 for detalils).

5.2 Model Il - One Center per Cluster 85

i |

parent 1 , offspring 1

parent 2 offspring 2

Figure 5.3: The cluster crossover. The offspring 1 randomly takes a region (cluster)
from one of the parents. The offspring 2 takes the rest of the regions.

e The addition and delete operators add and delete randomly chosen hidden units.

5.2 Model Il - One Center per Cluster

In this section, it is presented the model Il. The main difference between the model | and
the model Il is that the model Il contains only one center per cluster rather than multiple
centers per cluster.

5.2.1 Encoding

In the model II, the chromosome is a fixed length list of tuples given by:

P:<@Jp17p27"'7pK) (59)

whereq is the overlap factor (from the Equation 3.15K),is the number of regions. The
tuplep, codes a basis function, and is expressed by:

P; = (b, ¢j1,¢j2, - -+ Cjn) (5.10)

5.2 Model Il - One Center per Cluster 86

Cut position

Parent1 (1;0.3;0.1) (2;0.4;0.2) | (3;0.9;0.1)

Parent2 (130.2; 0.4) (3;0.5;0.7) | (2;0.4;0.2) (150.5;0.2)

Offspring I (1;0.3; 0.1) [(2; 0.4; 0.2) | (23 0.4; 0.2) (1; 0.5; 0.2)

Offspring 2 (15 0.2; 0.4) (3; 0.5;0.7) | (3;0.9;0.1)

Figure 5.4: Traditional crossover generates duplicated genes

Parent1 (1;0.3;0.1) (2;0.4;0.2) (3;0.9;0.1)

Parent 2 (15 0.2; 0.4) (35 0.5; 0. 2) (150.5;0.2)

Offspring 1 (15 0.2 0.4) (15 0.5;0.2) (2;0.4;0.2) (3;0.9;0.1)
Offspring 2 (1;0.3; 0.1) (2; 0.4; 0.2) (3; 0.5; 0.7)

Figure 5.5: Cluster crossover using the template bit string (0,1,1)

The parameters of the basis function coded imt@are:

® ¢j1,...,cj, € [0,1] are the coded coordinates of the cenrter The centek; is
inside the regio?; (i.e.,c; € R;).

e b; isaboolean flag: i6 = TRUE thenp, is valid, otherwisep, is discarded during
the decoding.

In spite of having fixed length, the chromosome may produce network architec-
tures with variable sizes because some basis functions will be discarded (depending on
whetherb; is TRUE or not). The procedure used to generate regions is the same one
discussed in the section 5.1.2.

5.2 Model Il - One Center per Cluster 87

5.2.2 Decoding

Consider the following chromosome to be decod®l:= (a,p,p2,...,Px). The
parameters, c;1, ¢jo, . . ., cj, Were coded as floating-point values and normalized in the
interval[0, 1]. The decoding is caried out as follows:

C;’k = bkt Cp(tn, ko — lr; 1) (5.11)
o = sa (5.12)
fork =1,...,n. The coefficients = 5 is a scaling factor. Thus, the center of basis

function coded intg; is given by

c; = (5.13)

The overlap factor/ is used in the Equation 3.15 to determine the widih’ gi.e,

0; = o'l[e; — ¢;)).

5.2.3 Genetic operators
Two crossovers are proposed for the model II:
1. Cluster crossover;
2. Cluster crossover combined with the blend crossover.

The cluster crossover, described in section 5.1.4, is adapted for the model Il as
follows. LetP; = (pi1,...,p1x) @andPy = (pai, ..., pax) be the parents, where
Pr; = (brjs Cjk1s Cjk2s - - -5 Crn). LEEQ = (qu,...,qx) be their child. The cluster
crossover for model Il is then given by:

for j = 1to K then
q; = p1; Or p2; With equal probability.
endfor

5.3 Comments 88

Note that the cluster crossover itself does not change the value of the centers. To do
this, the cluster crossover is combined with the blend crossover (a well-known crossover
for real-coded GAs described in section 2.3.2) as follows:

for j = 1to K then
|f (blj - 1) and ()2] == 1) then
q; = BlendCrossovép,,,;, p»;)
else
q; = p1, Of py; With equal probability.
endif
endfor
in which the subroutin®lendCrossover() refers to the blend crossover.

The combination of cluster and blend crossovers for model Il is straightforward
because each region has only a center. For model I, however, the combination of cluster
and blend crossovers is not obvious because there are multiple centers of the parents
inside the same region. It follows that the model | rely only on the mutation greep
operator to change the float-point value of the centers.

As before, the traditional mutation operator and some other variations are used. The
creep mutation adds a noise with normal distribution to widths and centers. Addition

and Deletion operators add and delete a hidden unit randomly chosen.

5.3 Comments

A lot of traditional RBF network learning methods used to find the position of the gaus-
sians (e.g., the k-means [75] and others [87, 76]) are based on assumption that gaussians
should be on regions of clustering of training set points because a Gaussian outside of
such regions is prone to be spurious once its response tends to be zero. The proposed en-
codings also impose the gaussians to remain in such regions by restricting the gaussians
to hyper rectangular regions on clustering regions. There are some promising ideals in
the proposed encoding:

e By restricting the gaussians to clustering regions, the GA keeps only (approxi-
mately) good networks in the population once avoid handling spurious gaussians.
It follows that the search space is also reduced.

5.3 Comments 89

¢ Unlike traditional learning methods, the GA allows that the gaussians are evolved
in any place on clustering regiohs

e The crossover is only performed between clustering regions. So the encoding is
nonredundant and legal (except in the atypical case when the corners of the hyper-
rectangles overlap) because the crossover between two legal chromosomes does
not produce an illegal offspring.

e Itis possible to add more parameters to the chromosome (e.g., widths, basis func-
tions) if this is needed. Moreover, in the proposed encoding both network com-
plexity and performance can be evolved simultaneously.

Some comments follow by comparing the proposed encoding and the encodings
given by Billings and Zheng [12] (see section 4.2.1) and Carse and Fogarty [17] (see
section 4.2.2). Despite the search space of the Billings and Zheng’s encoding to be
smaller than the proposed encoding, it is too restrictive because it limits the centers to
the input pattern positions whereas, in the proposed encoding, the centers may lie on
any place within a cluster. In Carse and Fogarty’s encoding, the crossover is performed
between random regions of the input space. But, it seems be a better idea to perform the
crossover between clustering regions because clusters are regions with higher probabil-
ity of finding the best centers. Hence the search space is reduced.

It is worth noting that the encoding is only a component of the GA. Therefore, the
encoding itself is not the unique responsible for evolving good networks because the
choice of objective function also plays an important role in the GA search as shown in
next chapter. Furthermore, some strategies and modifications in the traditional GA can
influence strongly the search. Such issues are also addressed in next chapter.

LIn the traditional k-means, per example, the gaussians are always fixed on mean of the cluster.

Chapter 6

Model Selection via Genetic
Algorithms

“Keep your balance. Unbridled
passions and desires
are forces of destruction
within the Divine Creation.”
(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This chapter addresses the problem of finding the adjustable parameters of a learning
algorithm using Genetic Algorithms, GAs. This problem is also known as the model se-
lection problem. Some model selection techniques (e.g., crossvalidation and bootstrap)
are used as objective functions of the GA. The GA is modified in order to adapt to that
problem by means of occam’s razor, growing, and other heuristics. Some modifications
explore features of the GA, such as the ability for handling multiple and noise objective
functions. This chapter addresses GA search mechanism, instead of other more studied
aspects like encoding and genetic operators (mainly for neural networks [105]). It is
organized as follows.

Section 6.1 gives some useful definitions. Section 6.2 describes formally the model
selection problem. Section 6.3 presents a simple GA method with occam elitism for
model selection and some experimental results. Crossvalidation, bootstrap, and other
objective functions are presented in Section 6.4, together with some experimental re-

90

6.1 Training and Adjustable Parameters 91

sults. Section 6.6 evaluates a multiobjective GA employing two heuristics (growing and
shuffling) that aim to improve the quality of the genetic hypothesis. Finally, in section
6.7, the GA is compared to two constructive algorithms used to determinate the RBF
network architecture.

6.1 Training and Adjustable Parameters

Most Machine Learning methods focus the problem of approximating a target function
f: X — Y by using the information from a dataset (i.e., a sample of exanigles;),

fori = 1,...,p, wherex € X andy;, = f(x;)). In principle, a learning algorithnf

builds a hypothesié € H that approximates the target functigrby determining an

set of parameter&. Most of the time, however, there are some parameters in the set

in which the learning algorithm itself is unable to determine: the adjustable parameters.
Thus, for a particular learning algorithgy there are two kinds of parameters in the set

of parameters:

Definition 6.1 A set of parameters is said @ining parametergdenoted by) if it is
determined automatically bg.

Definition 6.2 A set of parameters is said lagljustable parameter@enoted by) if it
is not determined by.

Note thatd = U X andT™ N A = (). The adjustable parameters are typically
determined by human subjective judgment based on previous experience, rule of thumbs
or heuristics provided by authors and practitioners of the learning algorithm.

In other words, the adjustable parameters are determined by minimizing an estimate
of thetrue prediction error{26] (true error for short) over a set of adjustable parameters
that is known to work well on the dataset. A common example of this procedure is to
train a neural network using the backpropagation learning algorithm [88]. The back-
propagation sets the weight parameters of the network, but is unable to obtain the num-
ber of hidden units (which are the adjustable parameters of the problem). The search
carried out by the user in order to find the best adjustable parameter is essentially the
trial-and-test optimization method, which becomes inefficiency if the search space is too
large. Hence, it is necessary the human subjective judgment and heuristics to make the

6.2 Model Selection 92

trial-and-test method more efficient. Others common examples of adjustable parameters
are the amount of pruning of a decision tree, the degree of a polynomial fit to a set of
points, the ridge parameter of the ridge regression, and the best subset of variables of a
multivariate linear regression model.

6.2 Model Selection

The problem of estimating the true error of hypothesis using different adjustable param-
eters in order to choose the (approximate) best one is knovamodeg! selectiofd1].
The purpose of this work is to present Genetic Algorithms as an alternative to the trial-
and-test optimization method for model selection.

More formally, the optimization problem to be solved by GA is described as follows.
A hypothesish : X —)Y (whereX x Y = £ is the example space) is built by the
learning algorithmZ from a choice of adjustable parameterand a training data set
D. Itis assumed that the learning algorithm is deterministic. That is, for a particular
choice of A\ and D, the learning algorithm always builds the same hypothesis. Thus,
the hypothesié can be represented &s\, D). The notatiom.(x; A\, D) represents the
prediction ofh (A, D) for the data poink (i.e., h(x; A\, D) = h(\, D)(x)).

The true error measures how well a hypothégis, D) predicts the response value
of a future example (see also Sections 3.2 and 3.3). The true error is defined as

e(A) = E(d(y, h(x; A, D))) (6.1)

whered(z,y) is a loss function. The expectation in (6.1) refers to repeated sampling
of examples randomly drawn from the example sp@e@th the same probability that
was used to select the examples from training datBséRegression problems usually
employ the quadratic loss functiditz, y) = (z — y)? (see an example in Sections 3.2
and 3.3). Classification problems usually make use ofifhidoss function:d(z,y) = 1
if = = y, otherwised(x,y) = 0. By using the0/1 loss function, the functiom(\)
represents the probability of correctly classified examples.
The problem of choosing the adjustable parameter (i.e., the model selection prob-

lem) can be defined as:

Find A that minimizes=(\) (6.2)

6.2 Model Selection 93

The true erroe(\) is unknown, once the only available information on the target func-
tion is contained into the dataset Because of this, a number of methods for estimating
the true error have been proposed [26]. The most commonly used methods for true error
estimation are:

e Holdout;
e Crossvalidation;
e Bootstrap.

Consider thag(\, D) is an estimation of the(\) using the information from the
datasetD by means of those methods. The problem of optimizating the adjustable
parameter could be reformulated as

Find A that minimizes(\, D) (6.3)

The best estimations of the true error are usually obtained by the crossvalidation and
bootstrap methods, which transform this optimization problem into a difficult problem.
Crossvalidation and bootstrap are computer procedures, but may be interpreted as sim-
ple functions from the optimization view point. As objective functions, they have the
following drawbacks:

1. These functions are not easy to be handled algebraically and hence derivatives are
not easy to calculate;

2. These functions are also multimodals (i.e., there exist various pothtst mini-
mizes them locally);

3. For a given point\, to obtain the response of the functions crossvalidation and
bootstrap, a large amount of CPU time may be needed, making their minimization
hard for any optimization technique (including GAs).

Because of the complex nature of this optimization problem, GAs are a natural can-
didate for solving it. Unlike other optimization metaheuristics, GAs provide a suitable
framework for the model selection problem, due to its peculiar search mechanism able
to handle many hypotheses simultaneously. This search mechanism enables GAs to use

6.3 A Simple GA for Model Selection 94

(and to create) new heuristics (as shown later), to cope with noise estimation of the true
error and to be used for multiobjective optimization.

6.3 A Simple GA for Model Selection

The application of GAs for model selection involves the optimization of the adjustable
parameters. It is worth noting that the adjustable parameters of a hypothesis do not only
depend on the features of the hypothesis, but also on the learning algorithm. Different
learning algorithms can produce different adjustable parameters for the same hypothe-
sis.

To avoid proliferating notation, the symbalwill represent both the chromosome
and the adjustable parameters it encodes. Throughout the text, the dataset

represents the set of all the examples avaliable for the problem at hand.
A typical GA for model selection has the following characteristics:

1. The chromosome encodes only the adjustable parameters.

2. Alearning algorithnC embedded in the procedure that evaluate the chromosome.
The learning algorithnt is used to determine the training parameters.

3. A method for estimating the true error.

A simple GA for model selection is illustrated as follows:

6.3 A Simple GA for Model Selection 95

main program

“LetP(t) = {)\1, RN)\N}
be the population at generatigrf

t—20
initialize(P(t))
evaluatéP(t))
while the stopping criterion is not satisfiekd
t—t+1
P(t) < selectP(t — 1))
P(t) « crossovefP(t))
P(t) < mutation(P(t))
evaluate P(t))
end while

procedure evaluaté)

for each); in the population” do
Estimate the true errai(\;, D)
Set fithessf; of \; equal toé(\;, D)
end for

The above procedurevaluate() computes the fitness function, that is, the estima-
tion of the true erroé for each chromossome by using some traditional methods for
model selection, such as holdout, crossvalidation and bootstrap. In the next section, the
holdout function is presented.

6.3.1 The Holdout Fithess Function

One of the most used methods for model selection, the holdout method [51], as can be
seen in Figure 6.1, divides the datageinto two parts: the training s€?;, on which

the hypothesis is built, and the holdout &t (also known as validation set), on which

its performance is measured. Th@s, = D \ D,. Leth(\, D;) be the hypothesis built

from the dataseD, using the adjustable parameterThe fitness of the chromosome

is given by: X

\) =
f() |Dh’(x

> Oy, h(x; A, Dy)) (6.5)

7y)eDh

6.3 A Simple GA for Model Selection 96

training set holdout set

Dy Dy,

g

D

Figure 6.1: The data set partition by the holdout method.

In order to improve the simple GA illustrated in section 6.3, the use of the occam elitism
is proposed.

6.3.2 The Occam Elitism

Occam’s razor is a principle attributed to the 14th century philosopher William of Oc-
cam. The principle states thagritities should not be multiplied unnecessdrilWith

this “razor”, Occam cut out all superfluous, redundant explanations. Scientists have
reintepreted the Occam’s razor. A useful statement of the principle for scientists is,
“when you have two competing theories which make exactly the same predictions, the
one that is simpler is the bettéMachine learning scientists [74] have stated that prin-
ciple as ‘prefer the simplest hypothesis that fits the dateor this work, the following
statement is used:

Occam’s razor. given two hypothesis with the same estimation of true
error, the one that is simpler is the better because it is likely to have lower
true error.

The traditional elitism is a well known strategy in GAs which works by never re-
placing then best chromosomes in a population with inferior solutions. That is,

Elitism: then best chromosome are kept from generation to generation.

The occam elitism is based on the assumption thathitbest chromosomes in the
population are equivalent in terms of estimation of true error (at least under some statis-
tical confident limit). Because (according the Occam'’s razorkteienplest hypotheses
among the: best chromosomes are better thamthe k remaining hypotheses, thoke
simplest hypotheses shouldn’t be replaced with inferior solutions. In other words,

6.3 A Simple GA for Model Selection 97

Occam elitismt the k£ simplest hypothesis among theébest chromosomes
are kept from generation to generation.

Next section shows experiments comparing the traditional elitism with the occam
elitism.

6.3.3 Experimental Studies

In the experiments performed, the proposed GA (model 1) was applied to a benchmark
dataset: a Hermite polynomial approximation [68] (see Figure 6.2), which is defined by:

2

f(z) =1.1(1 — x — 22%) exp (—2) (6.6)

The datasets used in the experiment were generated under the same conditions
adopted in [78]. Each dataset has 40 examples randomly chosen in the range [-4, +4]
with added gaussian noise. The following noise variances were used: 0.0001, 0.0003,
0.001, 0.003, 0.01, 0.03, and 0.1. For each noise variance, the GA program was exe-
cuted, at least, 50 times (where each execution used a different random dataset) and the
results were averagédThe GA program used the parameters in table 6.1.

The holdout method generated the holdout dataset with 50% of the original dataset.
The performance of the hypotheses was measured using the Root-Mean-Square Error
(RMSE =p~1v/SSE) over a test set with 200 uniformly spaced noiseless examples in the
range [-4, +4]. The occam elitism was used with= 5 andk = 1. Thus, the smallest
network among the five best chromosomes was kept from generation to generation.

According to the results of the Figure 6.3.3, which shows the number of centers as
a function of noise level, the occam elitism produced notably smaller networks than
the traditional elitism. Moreover, GA with occam elitism also produced a smaller true
error, as shows the Figure 6.3.3. These results show that the occam elitism seems to be
an effective method. Because of this, all the following experiments in this work will use
the occam elitism (witm = 5 andk = 1).

1GA may output outliers (spurious networks with large errors) due to premature convergence. The
average value is strongly influenced (become biased towards) by the outliers. Because of this it was used
the 5% trimmed mean instead of the mean. The 5% trimmed mean means that both the top 5% and the
bottom 5% of a ranked sample are discarded and the mean is calculated for the rest of the sample.

6.3 A Simple GA for Model Selection

98

Table 6.1: GA parameters.

Population 500
Generations 500
Number of regions 15
Crossover rate 0.60
Mutation rate 0.05
Addition rate 0.3
Deletion rate 0.3
Basis function Gaussian
3 T T T T T T T
25 F -
2 - -
X15 F -
1 - -
05 r -
O 1 1 1 1 1 1 1
4 3 2 -1 01 2 3 4

Figure 6.2: Mackay’s Hermite polynomial.

6.3 A Simple GA for Model Selection 99

14 occam elitism ———
traditional elitism --—-—>---

— —
(@} (\9
T T

¥
1 1

I
/
/
/
/
/
/
/
/
1

number of centers
X

0 ' M T S S | L P S S R A A L PR S S S T
0.0001 0.001 0.01 0.1

noise variance

Figure 6.3: Comparing the performance of occam and traditional elitism in terms of the
number of basis functions

6.3 A Simple GA for Model Selection 100

1 ¢ I — I
[occam elitism —+—
traditional elitism -——x---
0.1
m
/)
=
a7
0.01 5
0.001 T N e
0.0001 0.001 0.01 0.1

noise variance

Figure 6.4. Comparing the performance of occam and traditional elitism in terms of the
error on the test set.

6.4 Other Fitness Functions for Model Selection 101

6.4 Other Fitness Functions for Model Selection

This section presents some methods widely used in machine learning for model selec-
tion purposes (i.e., to select a hypothesis (a model) among several candidate hypothe-
ses).

6.4.1 The k-Fold-Crossvalidation Fitness Function

This method [95, 51] divides the dataget(Equation 6.4) ink subsets (also named
folds): Dy, D,, ..., Dy. The folds have equal size and are mutually exclusive. It pro-
ducesk hypotheses.,, ..., hy, where each one is built from the dataget D; (see
Figure 6.5) using the adjustable parametas follows: h; = h(X, D \ D;), for j =
1,...,k. The performance obtained by each hypothésis measured on the dataset
D;. The fitness of\ is equal to average of the performances ofHe/potheses. That
is, the fitness of the chromosomas given by:

f<A>:|,ﬁ|Z S 8y, hy(x) 6.7)

=1 (x,y)€D;

If & = |D|, thek-fold-crossvalidation is known as theave-one-outrossvalidation.

6.4.2 The Generalized Cross-Validation Fitness Function

The Generalized Cross-Validation (GCV) [36] is a formula derived from the leave-one-
out crossvalidation under the assumption that the model is linear. Thus, GCV is often
used in linear models. RBF networks are nonlinear models, but, in practice, GCV has
been used in model selection for RBF networks [78, 43]. Because GCV is computation-
ally inexpensive, it becomes attractive to be used with GAs. The chromosome is trained
with the whole dataséP. The fitness of the chromosomas given by:

pSSE
(p —m)?
where SSE denotes the sum of squared errors on the d@&asetis the number of

F(A) = GCV = (6.8)

weights (free parameters) apds the number of examples .

6.4 Other Fitness Functions for Model Selection 102

DQ Dg D4 D5 >bu11d h1

Dl Dg D4 D5 >bu11d hg
D,

D1 DQ D4 D5 >bu11d hg
D3

Dl DQ Dg D5 >bu11d h4

Dl D2 Dg D4 >bu11d h5
Ds

Figure 6.5: Thek-fold-crossvalidation method with = 5.

If the RBF network learning uses ridge regression (see section 3.7) to compute the
weights, the GCV is modified in order to include the ridge parame{&6]:

£y — gy — /I Ay 69)

- [(1/p)tracel — A))*

whereA = Z(Z'Z — 31)"'ZTy.

6.4.3 The .632 Bootstrap Fitness Function

The .632 bootstrap method is a member of the bootstrap family introduced by Efron
[26]. All bootstrap based estimates are computed by using a set of bootstrap datasets.
A bootstrap dataset is created by sampling |D| examples (with replacement) from

D. This method createB bootstrap datasetd,, Ds, ..., Dg. Note that the datasets

are not mutually exclusive. It producés hypotheses:;(A),...,hg()\), where each

one is built from the dataseé; using the adjustable parameter That is, h; =

6.4 Other Fitness Functions for Model Selection 103

h(\, D;),for j = 1,...,B. The fitness of the chromosome obtained by the .632
bootstrap function, is given by

F(A) = 0.368 - €I+ 0.632 - ¢4 (6.10)

The terms of the Equation 6.10 are described as follows. Thedarim the perfor-
mance of a hypothesis built from the data®emeasured on the same dataBetThis
measure refers to the training error of the hypothesis. Mathematically, it is given by:

Z Yi, h(x;; \, D)) (6.11)

’UM—‘

The terme, denotes the average error obtained from bootstrap datasets not containing
the data point being predicted. In other words,s computed by using a bootstrap
dataset as training set and the remaining examples as test set. It is given by:

EZ Z d(yi, ho(xi3)/ B (6.12)
D i1 vec;
where(; is the set of indices of the bootstrap dataset not containingthhgata point,
and B; is a number of such bootstrap datasets.

Because the derivation of the coefficients of the Equation 6.10 (namely 0.368 and
0.632) is complex, it is not described here (see [26] for details). In [41] there is an
overview of the functions showed in this section. The following section shows the
experiments performed to optimize these functions using the proposed GA (model II).

6.4.4 Experimental Studies

The experiments presented in this section compare four fitness functions: holdout, cross-
validation, bootstrap, and GCV. The holdout result was taken from section 6.3.3. The
crossvalidation function used ten folds (i.e., the 10-fold crossvalidation) and the .632
bootstrap used 20 bootstrap datasets.

Note that in each chromosome evaluation using holdout only one training is carried
out (namely the training over the holdout set). GCV also performs one training per
evaluation. Whereas the 10-fold-crossvalidation performs 10 training sessions (owing

6.5 Other Heuristics for Model Selection via GAs 104

to 10 folds) in each evaluation and bootstrap performs 20 training sessions (owing to 20
bootstrap datasets). Obviously, the crossvalidation and bootstrap consume much CPU-
time. This is a drawback for GAs, once GAs need fast objective functions in order to
reduce its processing time.

Because holdout and GCV consume little CPU-time, they become attractive as fit-
ness functions. The drawback is that holdout can lead the learning algorithm to overfit
the holdout set once it is always the same during the execution of the GA. A possible so-
lution to this problem is shown in section 6.5.1. GCV did also not give a good estimate
of the true error and overfitted the dataset. As GCV is a criterion derived from the linear
models, it does not seem to be suitable for nonlinear models such as RBF networks,
mainly if optimized by a powerful algorithm such as GA.

Crossvalidation and bootstrap make a more efficient use of the dataset by re-sampling
it a lot of times. So they have, in general, better performance than holdout and GCV as
it is confirmed in Figure 6.4.4. However, in terms of complexity, holdout produced net-
works as small as those produced by 10-fold-crossvalidation (see Figure 6.4.4). Some
alternative methods are suggested in next sections to avoid the long processing time of
the crossvalidation and bootstrap functions.

6.5 Other Heuristics for Model Selection via GAs

Three heuristics for model selection via GAs are used in this work:
1. Occam razor,
2. Shuffling;
3. Growing.

The occam razor was presented in section 6.3.2. Shuffling and growing are presented
in next sections.

6.5.1 Shuffling

In order to improve the quality of the genetic hypotheses, the population evaluation pro-
cedure is modified by shuffling the dataset just before the fitness evaluation. Consider

6.5 Other Heuristics for Model Selection via GAs 105

14 + Holdout ——— |
10-fold-crossvalidation ----»---
.632 boostrap - -

GCV (generalized crossvalidation) —&--- i

—
(\9]
T

—
-
T

1

number of centers

0 ' M T S S | L P S S R A A L PR S S S T
0.0001 0.001 0.01 0.1

noise variance

Figure 6.6: Comparing the performance of several kinds of fithess in terms of the num-
ber of basis functions.

6.5 Other Heuristics for Model Selection via GAs 106

Holdout ——
10-fold-crossvalidation ----»---
.632 boostrap -

GCV (generalized crossvalidation) - g

T

RMSE

0.001 T
0.0001 0.001 0.01 0.1

noise variance

Figure 6.7: Comparing the performance of several kinds of fitness in terms of the num-
ber of basis functions.

6.5 Other Heuristics for Model Selection via GAs 107

thatshuffle() is a computer procedure that shuffles the dat@setroducing the shuf-
fled dataseD*. The modified evaluation procedure is shown as follows (it replaces the
corresponding procedure illustrated in section 6.3):

procedure EvaluateWithShuffling)

for each)\ in the populationP do
SetD* equal toshuffle(D)
Estimate the true errai(\, D*)
Set the fithesg of A equal toe(\, D*)
end for

The shuffling’s underling idea is to avoid the holdout set to be kept constant, and
therefore avoid overfitting. Nevertheless, the shuffling transforms the holdout into a
noise function. GAs, however, are robust to deal with noise functions [34]. In case of
elitism, the chromosomes that are kept from generation to generation should be revalu-
ated in each generation in order to verify if their good performance is not due to stochas-
tic errors. The occam elitism should also to use larger parametersKe-g.10 and
n = 50 for a population size = 500) so that the best individuals do not disappear easily
from the population due to stochastic errors in the fithess evaluation.

6.5.2 Growing

Stanley and Miikkulainen[94] observed that complexity in nature is developed over
time, rather than introduced in the beginning. Based on this observation, they proposed
evolving hypotheses starting with minimal hypotheses. This means to set the initial
population with minimal networks (e.g., one basis function) instead of random (and
probably large) hypotheses. New hypotheses are introduced incrementally as mutations
occur. Only those hypotheses that are found to be useful survive through generations.
An experimental justification for the use of growing is as follows. In all experi-

ments performed so far, the number of basis function was limited to 15 basis functions
(remember that the number of regions, reported in section 6.3.3, also indicates the max-
imum number of basis functions). This low limit was used because if GAs start with a
higher limit (e.g., 35 basis functions), it may arrive to poor results and large hypotheses.

6.6 The Multiobjective Optimization for Model Selection 108

This occurs due to the large hypotheses of the initial population that tend to domi-
nate the population causing a phenomena known as premature convergence. Such large
hypotheses are suboptimal solutions named superindividuals. The use of the growing
approach seems to solve this problem once it avoids the production of large hypotheses
(superindividuals) in early stages of the evolution. Growing was successfully used for
genetic design of RBF networks in [8].

Experiments involving shuffling and growing heuristics are presented in the sec-
tion 6.6.3.

6.6 The Multiobjective Optimization for Model Selec-
tion

In section 6.4.4, the holdout and GCV functions no give good results (due to overfitting)
when they were optimized individually. In this section, they are optimized simultane-
ously. This results in a multiobjective optimization problem. The method used in this
work to deal with the multi-objective optimization problem using GAs is described in
the next section (it was based on the GA described in [30]).

6.6.1 The Multiobjective Genetic Algorithm

Let fi, fo, ..., f, be the set of objective functions to be minimized. Instead of a single
objective function, each chromosome is now evaluated by a multi-objective function.
A chromosome fitness is defined by a vector where each component is the value of
an objective function. In order to compare chromosomes through these vectors, the
following definitions are used [30]:

Definition 6.3 Leta andb be vectors of objective function values. A vedids said
to be dominated by (or inferior to) a vectariff a is partially-less-tharb (in symbols
a <, b), where:

6.6 The Multiobjective Optimization for Model Selection 109

A
1
::_.I _________ ,3 .
|
SRR e
B
JI_ | 1| 2 |
fo :::+::Ir::::_’l_:____, |
|
L N o
L L o
el
| |
ISR IO N O S
L o
] |) I=
h

Figure 6.8: Pareto ranking method.

Definition 6.4 A vectora is said to be non-dominated (or non-inferior) if there is not
any other vector (in the population) that dominates

The set of all non-dominated vectors of the population is name®adheto-optimal
set(also named the Pareto frontier). The goal of the multi-objective optimization prob-
lem is to find the Pareto-optimal set.

Ranking

Using the concept of non-domination, it is possible to rank the population. Pareto rank-
ing methods are proposed in [34, 30]. According to [30], an individu&hat is domi-
nated byn individuals in the current population has its rank given by:

rankP) =1+ n. (6.14)

All nondominated individuals are assigned rank 1. Figure 6.8 shows an example where
rank 4 is absent.

6.6 The Multiobjective Optimization for Model Selection 110

Fitness Assignment

Let Py,..., Py be the population sorted by ascendent order of rank, where the
population size. The fitness of each individual is given by:

2k —1)(s — 1)
N1

fitnesgP;) = s — (6.15)
wheres € {1,2} is an user defined parameter named selection pressure (best/median
fitness ratio). See section 2.2.3. Experiments have showed #uatal to either 1.1 or

1.2 provides good results. In order to ensure that individuals with the same rank have
the same fitness, they are averaged by:

fitnesgP;) = (fitnesgP;)) (6.16)

where(-) denotes the average over all individuBswith rank equal to rani®;,) (i.e,
Vi(rankP;) = rankPy)). Parents are sampled for crossover and mutation using the
Stochastic Universal Sampling, SUS, technique (see section 2.4.7).

6.6.2 The Choice of the Fitness Functions

Two inexpensive fitness functions were chosen to be optimized via the multiobjective
GA. Namely, Holdout and GCV functions. They are described as follows.

1. Holdout fitness function As before, the datas@ is divided into two parts: the
training setD,, on which the hypothesis is built, and the holdoutBgt The first fithess
of the chromosoma is given by holdout function:

) =57 D2 6y h(xi A, D)) (6.17)

"Dh | (X,y)EDh

2. GCV fitness function Unlike the previous GCV presented in section 6.4.2, here,
the GCV is applied t®; (instead of the whole datasP):

p: SSE

e (6.18)

fz()\) =

6.6 The Multiobjective Optimization for Model Selection 111

where SSEdenotes the sum of squared errors on the da@get: is the number of
weights (free parameters) apgdis the number of examples 1.

Occam Elitism

The occam elitism was adapted for the multiobjective GA as follows: all the simplest
hypotheses of the Pareto set are kept from generation to generation. In the last gen-
eration, a criterion is needed to choice an unique hypothesis from the Pareto set. The
following criterion was adopted: pick up the simplest hypothesis from the Pareto set. If
there exists more than one such hypothesis then pick the median of them.

Experiments involving the multiobjective GA and the heuristics (from section 6.5)
are presented in the next section.

6.6.3 Experimental Studies

In the experiments carried out in section 6.4.4, the holdout function did not perform well
because large hypotheses tend to overfit the holdout set. The same happened with the
GCV method. Nevertheless, the simultaneous optimization of both holdout and GCV
seems be a promising idea, due to the results shown in Figures 6.6.3 and 6.6.3.

These experiments also showed that the multiobjetive GA with shuffling and grow-
ing were better that the multiobjetive GA without them. That is, the shuffling and grow-
ing heuristics incorporated into a multiobjective GA improved its performance in both
error on test set and complexity. The results obtained suggest that multiobjective GA
with shuffling and growing is comparable to crossvalidation and bootstrap.

A possible explanation to this good result is that GCV penalizes large hypotheses
(once its denominator diminishes in large hypotheses). As a consequence, GCV con-
tributes to avoid the overfitting of the holdout. In spite of making the holdout function
a noise function, the use of shuffling also contributes to avoid holdout overfitting (once
the holdout set is not fixed). Growing adds basis functions incrementally, making the
selection of centers more rigorous (once complexity is only added if necessary) and nat-
ural. The combined effect of all these alternative methods seems be useful for model
selection.

6.7 Experimental Studies with Other Techniques

112

14

[E—
[\

[E—
-}

number of centers

0

Figure 6.9: Comparing the performance of the multiobjective GA in terms of the number

T ——ry CV

Bootstrap -
Holdout + GCV - -

. Holdout + GCV + shuffling + growing - -

| L L MR T |

0.0001

0.001 0.01

noise variance

of basis functions.

0.1

6.7 Experimental Studies with Other Techniques

In this section, the GA is compared to two constructive algorithms used to determinate
the RBF network architecture. Namely, RAN-EKF (Resource Allocating Network with
Extended Kalmon Filter) [48] and ROLS (Regularized Orthogonal Least Squares) [78].
The RAN-EKF and ROLS results were extracted from [78]. In this experiments, the
best GA (obtained from the section 6.6.3) was used. Namely, the multiojective GA
with occam elitism, shuffling and growing from the Figures 6.6.3 and 6.6.3. As shown
in Figure 6.7, GA generated RBF networks with a very small number of centers in all

6.7 Experimental Studies with Other Techniques 113

1 — ——

cV ——

Bootstrap -
Holdout + GCV -
Holdout + GCV + shuffling + growing - SR

0.1

RMSE

001 | 8

0.001 et s A
0.0001 0.001 0.01 0.1

noise variance

Figure 6.10: Comparing the performance of the multiobjective GA in terms of the error
on the test set.

6.7 Experimental Studies with Other Techniques 114

levels of noise. In addition, GA generalization capacities(see Figure 6.7) were better
then the ROLS algorithm. Therefore, GA was able to generate parsimonious networks
and still keep good generalization. Nevertheless, GA took a long training time (which
are orders of magnitude greater than other approaches) to achieved these results. But for
a large number of applications, where recognition performance is more important than
the training time, the results obtained suggest that the genetic approach is an attractive
solution for the design of efficient RBF networks.

6.7 Experimental Studies with Other Techniques 115

14 L Holdout + GCYfighgffﬂmg + growmg ——
% RANEKF ----x---
ROLS ——*-—-

— p—

) \)
A T

]]

oo
T
1

number of centers

0 ' M T S S | L P S S R A A L PR S S S T
0.0001 0.001 0.01 0.1

noise variance

Figure 6.11: Comparing the performance of the multiobjective GA with other tech-
nigues in terms of the number of basis functions.

6.7 Experimental Studies with Other Techniques 116

1 T L | T T T T
Holdout + GCV + shuffling + growing ———
RANEKF ----x---
ROLS -

0.1

RMSE

0.01 -

0.001 et s A
0.0001 0.001 0.01 0.1

noise variance

Figure 6.12: Comparing the performance of the multiobjective GA with other tech-
niques in terms of the error on the test set.

Chapter 7

Conclusion

“Think of your adversary as

a bearer of equilibrium; if we
have need of friends to
stimulates us, we equally

need someone to show us
our errors.”
(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

In this work, it was proposed encodings for RBF networks. Some features of these
encodings are

e The centers are evolved only on clustering regions of training patterns. It follows
that the GA handles only (approximately) good networks in the population by
avoiding (spurious) gaussians outside the cluster regions.

e The encodings are nonredundant and legal (according to the definition given in
section 4.1.2).

e The crossover is performed on phenotype space (i.e., between regions of the input
space corresponding clustering regions of the chromosomes) instead of genotype
space (by merely interchanging structural chunks of chromosomes).

It worth noting that the proposed encoding were designed so that network complex-
ity and performance can be evolved simultaneously, but it was also designed to becomes

117

Conclusion 118

the search space as small as possible. Because of this the centers are strongly biased to-
wards the clustering regions of training patterns and only a minimal set of parameters
was considered in the GA optimization. Experiments involving those encodings were
presented in chapter 6.

Experiments, in section 6.4.4, showed that the use of the holdout method as objective
function is not an effective method and that crossvalidation and boostrap are, in general,
the best objective functions for model selection using GAs. Nevertheless, they consume
much CPU-time. GAs need fast objective functions to have a reasonable processing
time, so the use of crossvalidation and boostrap may not be suitable for GAs.

Experiments, in section 6.6.3, showed that by means of modifications in the tra-
ditional GA, it is possible to make a GA (with holdout) an efficient model selection
algorithm without the need to use crossvalidation and boostrap. Four modifications in
the traditional GA were carried out in which generated better hypotheses than those hy-
potheses generated by holdout using the traditional GA. The modifications are described
as follows:

e To use the occam elitism to keep the simplest hypotheses (among the best ones)
from generation to generation. Experiments showed that the occam elitism dimin-
ishes the complexity of the hypotheses and their true error.

e To shuffle the dataset just before to compute the fithess function may avoid the
overfitting of the holdout method.

e To use the growing approach to start the initial population with minimal hypothe-
ses and add complexity incrementally. Growing avoids the bias towards large
hypotheses in the initial population. Growing makes the evolving of complexity
a process more rigorous and natural.

e To optimize two inexpensive objective functions (namely holdout and GCV) si-
multaneously seems to be better than optimize each one individually.

All of theses methods are computationally inexpensive and, if combined, they may
produce results equivalent to both crossvalidation and bootstrap, which require a large
amount of computer processing. Because these methods do not depend on a particular

Conclusion 119

encoding, they are quite general. Except for some unimportant details, they can be ap-
plied to other machine learning models (e.g., decision trees, MLP networks) optimized
by GA almost without modifications.

In section 6.7, GA was compared to two traditional approaches to optimize RBF
networks. The GA approach was more accurate than the best of the other approaches
and yields networks with significantly less number of hidden units in all experiments
this work.

This research showed that GA is able to generate parsimonious networks and still
keep good generalization. Nevertheless, GA took a long training time (which are or-
ders of magnitude greater than other approaches) to achieved these results. But for a
large number of applications, where recognition performance is more important than
the training time, the results obtained suggest that the genetic approach is an attractive
solution for the design of efficient ANNSs. This research also showed that GAs may pro-
vide a suitable framework for the model selection problem. Nevertheless, this potential
still need be more explored.

Bibliography

[1] A. A. Adewuya. New methods in genetic search with real-valued chromosomes.

[2]

[3]

[4]

Master’s thesis, M.1.T., 1996.

D. Aha, D. Kibler, and M Albert. Instance-based learning algorithidaichine
Learning 6:37—-66, 1991.

H. Akaike. A new look at the statistical model identificatidBEEE Transactions
on Automatic Contrgl19:716-723, 1974.

M. R. Anderberg Cluster Analisys for Application®A\cademic Press, New York,
1973.

[5] T. Back. Selective pressure in evolutionary algorithms: A characterization of

selection mechanisms. Proceedings of the First IEEE Conference on Evolu-
tionary Computationpages 57—62, Piscataway. NJ, 1994. IEEE Press.

[6] J. Baker. Reducing bias and inefficiency in the selection algorithm. In J. Grefen-

[7]

stette, editor,Proc. of the Second International Conference on Genetic Al-
gorithms and Their Applicationspages 14-21, Hillsdale, New Jersey, 1987.
Lawrence Erlbaum Associates.

K. Balakrishnan and V. Honavar. Properties of genetic representations of neu-
ral architectures. IfProceedings of the World Congress on Neural Networks
(WCNN’95) pages 807-813, Washington, D.C., 1995.

[8] A. Barreto and H. Barbosa. Growing compact RBF networks using a genetic

[9]

[10]

algorithm. InVIl Brazilian Symposium on Neural Netwoy902.

M. S. Bazaraa, H. D. Sherali, and C. M. Shettpnlinear Programming - Theory
and Algorithms Jonh Wiley and Sons, second edition, 1993.

D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algorithms:
Part 1, fundamentalsUniversity Computing15(2):58—69, 1993. Avaliable by
ftp on ENCORE in file: GA/papers/over92.ps.gz.

120

BIBLIOGRAPHY 121

[11] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algortihms:
Part 2, research topic#Jniversity Computing15(4):170-181, 1993. Avaliable
by ftp on ENCORE in file: GA/papers/over93-3.ps.gz.

[12] S. A.Billings and G. L. Zheng. Radial basis function network configuration using
genetic algorithmsNeural Networks8(6):877-890, 1995.

[13] T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In
L. Eshelman, editorGenetic Algorithms: Proceedings of the 6th International
Conference (ICGA955an Francisco, CA, 1995. Morgan Kaufmann.

[14] L. Breiman, J. Friedman, R. Olshen, and C Sto@kssification and Regression
Trees Wadsworth and Brooks, Monterey, CA, 1984.

[15] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adap-
tive networks.Complex System&:321-355, 1988.

[16] B. Burdsall and C. Giraud-Carrier. GA-RBF: A self-optimising RBF network.
In Proc. of the Third International Conference on Artificial Neural Networks and
Geneti¢ pages 348-351. Springer-Verlag, 1997.

[17] B. Carse and T. C. Fogarty. Fast evolucionary learning of minimal radial basis
function neural networks using a genetic algorithm. In T.C. Forgaty, e&t8B
Workshop on Evolucionary Computingectures Notes in Computer Science N.
1143, pages 1-22. Springer-Verlag, 1996.

[18] D. J. Chalmers. The evolution of learning: an experiment in genetic connection-
ism. In D. S. Touretzky, Elman J. L., and G. E. Hinton, edit@snnectionist
models: proceedings of the 1990 summer school, Pittshi8gh Mateo, CA,
1991. Morgan Kaufmann.

[19] S.Chen, C.F. N.Cowan, and P. M. Grant. Orthogonal least squares learning algo-
rithm for radial basis function network$EEE Transactions on neural networks
2(2):302-309, 1991.

[20] S. Chen, Y. Wu, and K. Alkadhimi. A two-layer learning method for radial basis
function networks using combined genetic and regularised ols algorithrRgoin
ceedings of the 1st IEE/IEEE International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applicatjgages 245-249, 1995.

[21] Y. H. Cheng and C. S. Lin. A learning algorithm for radial basis function net-
works: with the capability of adding and pruning neuroi&oc. IEEE pages
797-801, 1994.

BIBLIOGRAPHY 122

[22] P. Clark and T. Niblett. The CN2 induction algorithnMachine Learning 3,
261-284.

[23] G. B. Dantzig.Linear Programming and ExtensionBrinceton University Press,
Princenton, NJ, 1963.

[24] L. Davis. Handbook of Genetic Algorithm¥an Nostrand Reinhold, 1991.

[25] K. DeJong. The analysis and behaviour of a class of genetic adaptive systems
PhD thesis, University of Michigan, 1975.

[26] B. Efrom and R. J. TibshiraniAn Introduction to the BootstrapChapman and
Hall, 1993.

[27] L. J. Eshelman, R. A. Caruna, and J. D. Schaffer. Biases in the crossover land-
scape. In J. D. Schaffer, editd?yoc. of the Third Int. Conf. on Genetic Algo-
rithms pages 10-19, San Mateo, CA, 1989. Morgan Kaufmann.

[28] L. J. Eshelman and D. J. Shaffer. Real-coded genetic algorithms and interval-
schemata. In D. L. Whitley, editoFoundations of Genetic Algorithms Bages
187-203. San Mateo, CA: Morgan Kaufman, 1992.

[29] R. A. Fisher. The use of multiple measurements in taxonomic problémsals
of Eugenics7:179-188, 1936. Reimpresso in: Contributions to Mathematical
Statistics. New York, Jonh Wiley, 1950.

[30] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective opti-
mization: formulation, discussion and generalizationPtoceedings of the 5th
International Conference on Genetic Algorithnmages 416-423, San Mateo,
1993. Morgan Kaufmann Publishers, Inc.

[31] C. M. M. Fonseca.Multiobjective genetic algorithms with application to con-
trol engineering problems PhD thesis, Department of Automatic Control and
Systems Engineering - University of Sheffield, 1995.

[32] M. Gen and R. Chendsenetic Algorithms and Engineering Optimizatid¥iley,
2000.

[33] F. Glover and M. LagunaTabu SearchKluwer Academic Publisher, 1997.

[34] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning Addison-Wesley, 1989.

[35] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G. Rawlins, editéigundations of Genetic Algorithms
pages 69-93. Morgan Kaufmann, San Mateo, 1991.

BIBLIOGRAPHY 123

[36] G. H. Golub, M. Heath, and G. Wahba. Generalised cross-validation as a method
for choosing a good ridge paramet@éechnometrics21(2):215-223, 1979.

[37] J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE trans SMC16:122-128, 1986.

[38] P. J. B. Hancock. Genetic algorithms and permutation problems: a comparison
of recombination operators for neural net structure specificationPrdceed-
ings of the IEEE Workshop on Combinations of Genetic Algorithms and Neural
Networks pages 108-122, 1992.

[39] J. V. Hansen and R. D. Meservy. Learning experiments with genetic optimization
of a generalized regression neural netwddecision Support Systeis3:317—
325, 1996.

[40] S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural
networks. InProceedings of the 4th International Conference on Genetic Algo-
rithms pages 360-369. Morgan Kaufmann, 1991.

[41] T. Hastie, R. Tibshirani, and J. Friedmaihe elements of statistical learning:
data mining, inference, and predictio®pringer, 2002.

[42] R. L. Haupt and S. E. HauptPratical Genetic Algorithms Wiley-Intercience,
1998.

[43] S. Haykin. Neural Networks: A Comprehensive Foundatiétrentice Hall, sec-
ond edition, 1999.

[44] D. Heckerman. A tutorial on learning Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, WA, 1995.

[45] J. Heitkotter and D. Beasley. The hitch-hiker’'s guide to evolutionary compu-
tation: A list of frequently asked questions (faq). USENET: comp.ai.genetic.
Available via anonymous FTP from rtfm.mit.edu/pub/usenet/news.answers/ai-
fag/genetic/ About 110 pages., 1998.

[46] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algo-
rithms: operators and tools for behavioural analygstificial Intelligence Re-
view, 12(4):265-319, 1998.

[47] J. H. Holland.Adaptation in Natural and Artificial SystemMIT Press, 1975.

[48] V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequen-
tial learning with neural network$\leural Computation5(6):954-975, 1993.

BIBLIOGRAPHY 124

[49] Allan Kardec. The Gospel Explained by the Spiritist Doctrinéllan Kardec
Educational Society, 2003. www.febnet.com.br.

[50] S. Kirpatrick, C. D. Gellat Jr.,, and M. P. Vecchi. Optimization by simulated
annealing.Sciencepages 671-680, 1983.

[51] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. Imternational Joint Conference on Atrtificial Intelligence
(IJCAI), 1995.

[52] T. Kohonen. Self-organized formation of topologically correct feacture maps.
Biological Cybernetics43:59—-69, 1982.

[53] M. Kubat. Decision trees can initialize radial-basis function networlsEE
Transactions on Neural Networkg(5):813—-821, 1998.

[54] L. I. Kuncheva. Initializing of an RBF network by a genetic algorithheuro-
computing 14:273-288, 1997.

[55] E. G. M. Lacerdaand A. C. P. L. F. Carvalho. Combinando os algoritmos genético
e k-média para configurar redes de funcfes base radiAndis do IV Simpdsio
Brasileiro de Redes Neuraipages 95-97, Goiania, Brazil, 1997.

[56] E. G. M. Lacerda and A. C. P. L. F. Carvalho. Credit analysis using radial basis
function networks. I3rd International Conference on Computational Intelli-
gence and Multimedia Applications, ICCIMA’9Blew Dheli, India, September
1999. IEEE Computer Press.

[57] E. G. M. Lacerda and A. C. P. L. F. Carvalho. Introduc¢éo aos algoritmos genéti-
cos. InJornada de Atualizacdo em Informética - Anais do XIX Congresso Na-
cional da Sociedade Brasileira de ComputagRw de Janeiro-RJ, 1999.

[58] E.G. M. Lacerdaand A. C. P. L. F Carvalho. Introducdo aos algoritmos genéticos.
InC. O. Galvdo and M. J. S. Valenca, editdsstemas inteligentes: aplicacdes a
recursos hidricos e ciéncias ambientdisl. Universidade/UFRGS : Associacéo
Brasileira de Recursos Hidricos, Porto Alegre, RS, 1999. Colecdo ABRH de
Recursos Hidricos - ISBN 85-7025-527-6.

[59] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary op-
timization of RBF networks. 1VIth Brazilian Symposium on Neural Networks
2000.

[60] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary
optimization of RBF networks. In R. J. Howlett and L. C. Jain, edit&adial

BIBLIOGRAPHY 125

Basis Fuction Networks 1: Recent Developments in Theory and Applications
Physica Verlag, 2001. Studies in Fuzziness and Soft Computing, Vol. 66 - ISBN
3-7908-1367-2.

[61] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary opti-
mization of RBF networkslnternational Journal of Neural Systenisl(3):287—
294, 2001.

[62] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Model selection
via genetic algorithms for RBF networksournal of Intelligent Fuzzy Systems
13:111-122, 2002.

[63] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. A study of
crossvalidation and bootstrap as objective functions for genetic algorithms. In
VII Brazilian Symposium on Neural Networi902.

[64] C. L. Lawson and R. J. HansoBolving Least Squares Problenf¥rentice-Hall,
Englewood Cliffs, NJ, 1974. 2nd edition: 1995, Philadelphia: SIAM.

[65] C. Lucasius and G. Kateman. Towards solving subset selection problems with
the aid of the genetic algorithm. Parallel Problem Solving from Nature Vol. 2
Elsevier Science Publishers, 1992.

[66] D. G. LuenbergerLinear and Nonlinear Programminghddison-Wesley, second
edition, 1986.

[67] André Luiz. Christian Agenda Allan Kardec Publishing LTD, London, third
edition, 1998. Dictated by the spirit André Luiz to Francisco Candido Xavier.

[68] D. J. C. MacKay. Bayesian interpolatioMNeural Computation4(3):415—-447,
1992.

[69] E. P. Maillard and D. Gueriot. RBF neural network, basis functions and genetic
algorithm. InProceedings of International Conference on Neural Networks Vol.
4, pages 2187-2192, 1997.

[70] M. W. Mak and K. W. Cho. Genetic evolution of radial basis function centers for
pattern classification. IRroc. of The 1998 IEEE International Joint Conference
on Neural Networksvolume 1, pages 669-673, 1998.

[71] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs
Springer-Verlag, 1994.

[72] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problemBvolutionary Computationd(1):1-32, 1996.

BIBLIOGRAPHY 126

[73] R. Michalski. A theory and methodology of inductive learnigtificial Intelli-
gence20:111-161, 1983.

[74] T. M. Mitchell. Machine Learning McGraw-Hill, 1997.

[75] J. Moody and C. J Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation1(2):281-294, 1989.

[76] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M Hummels. On the
training of radial basis function classifiefdeural Networks5:595-603, 1992.

[77] R. Neruda. Functional equivalence and genetic learning of RBF networks. In
D. W. Pearson, N. C. Steele, and R.F. Albrecht, editArsficial Neural Nets
and Genetic Algorithmgages 53-56. Springer-Verlag, 1995.

[78] M. J. L. Orr. Regularisation in the selection of radial basis function centers.
Neural Computation7(3):606—623, 1995.

[79] M. J. L. Orr. Introduction to radial basis function networks. Technical report, In-
stitute for Adaptive and Neural Computation, Division of Informatics, Edinburgh
University, 1996.

[80] J. Platt. A resource-allocating network for function interpolatidleural Com-
putation 3(2):213-225, 1991.

[81] M. Powell. The theory of radial basis function approximation in 1990. In
W. Light, editor,Advances in Numerical Analysis, valfages 105-210. Claren-
don, Oxford, 1992.

[82] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlibgimerical
Recipes in CCambridge University Press, second edition, 1992.

[83] J. Quinlan. Induction of decision treedlachine Learning1:81-106, 1986.

[84] J. Quinlan. C4.5: Programs for Machine LearningMorgan Kaufmann, San
Mateo, CA, 1993.

[85] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognitiorProceedings of the IEEE7(2):257-286, 1989.

[86] R. Rivest. Learning decision listdachine Learning2:229-246, 1987.

[87] A. Roy, S. Govil, and R. Miranda. An algorithm to generate radial basis function
(rbf)-like nets for classification problembleural Networks8(2):179-201, 1995.

BIBLIOGRAPHY 127

[88] D. E. Rumelhart, G. E. Hilton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, editoRarallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1. Foundatiopsiges 318-362, Cam-
bridge, MA, 1986. Mit Press.

[89] A. Saha and J. D. Keller. Algorithms for better representation and faster learning
in radial basis function networks. In D. S. Touretzki, editsdlvances in Neural
Information Processing Systenw®lume 2, pages 482-489, 1990.

[90] J. D. Schaffer, D. Whitley, and L. J. Eschelman. Combinations of genetic algo-
rithms and neural networks: a survey of the state of the art. In D. Whitley and
J. D. Schaffer, editorgroceedings of the International Workshop on Combina-
tions of Genetic Algorithms and Neural Networks (COGANN-§2apes 1-37.
IEEE, 1992.

[91] B. Sendhoff, M. Kreutz, and W. von Seele. A condition for the genotype-
phenotype mapping: Causality. In T. Back, edit®rpceedings of the Seventh
International Conference on Genetic Algorithms (ICGA'9¥9ges 354-361, San
Francisco, 1997. Morgan Kauffman.

[92] A. F. Sheta and K. D. Jong. Time-series forecasting using ga-tuned radial basis
functions.Information Scienced33:221-228, 2001.

[93] C. Stanfill and D. Waltz. Toward memory-based reasonfdgmmunications of
the ACM 29(12):1213-1228, 1986.

[94] K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Technical Report TR-AI-01-290, The University of Texas
at Austin - Department of Computer Sciences, 2001.

[95] M. Stone. Crossvalidatory choice and assessment of statistical predicioums.
nal of the Royal Statistical Society B.j2ages 111-147, 1974.

[96] S. Unger. The Essence of Logic Circuitrentice Hall, Englewood Cliffs, NJ,
1989.

[97] V. Vapnik. Principles of risk minimization for learning theory. In John Moody,
Steven Hanson, and Richard Lippmann, editBidyances in Neural Information
Processing Systems - NIPS 199&lume 4, pages 831-838, 1992.

[98] J. M. Vesin and R. Gruter. Model selection using a simplex reproduction genetic
algorithm. Signal Processingr8:321-327, 1999.

BIBLIOGRAPHY 128

[99] G. Wahba.Spline Models for Observational Dat&CBMS-NSF Regional Con-
ference Series in Applied Mathematics, 59. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA., 1990.

[100] B. A. Whitehead and T. D. Choate. Evolving space-fiiling curves to distribute ra-
dial basis functions over an input spateEE Transactions on Neural Networks
5(1):15-23, 1994.

[101] B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evolution of
radial basis function centers and widths for time series predictieRE Trans-
actions on Neural Network3(4):869-880, 1996.

[102] D. Whitley. The GENITOR algorithm and selection pressure: Why rankbased
allocation of reproductive trials is best. In J. Schaffer, edifmceedings of
the Third International Conference on Genetic Algorithipages 116121, San
Mateo, Calif., 1989. Morgan Kaufmann.

[103] B. Widrow and M. E. Hoff. Adaptive switching circuit$RE-WESCON Conven-
tion Recorg 4:96-104, 1960.

[104] A. Wright. Genetic algorithms for real parameter optimization. In G. J. E. Rawl-
ins, editor,Foundations of Genetic Algorithmgages 205-218, 1991.

[105] X. Yao. Evolving artificial neural networksPIEEE: Proceedings of the IEEE
87, 1999.

[106] L.Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation9:461-478, 1997.

