
Pernambuco Federal University
Informatics Center

Model Selection of RBF Networks via
Genetic Algorithms

By
E. G. M. de Lacerda

THESIS

Recife, PE - Brazil
March, 2003

Pernambuco Federal University
Informatics Center

Model Selection of RBF Networks Via Genetic
Algorithms

By
E. G. M. de Lacerda

THESIS

Submitted to the Informatics Center of Pernambuco Federal
University in partial fulfillment of requirements for degree
of doctor of Philosophy, 2003.

Abstract

One of the main obstacles to the widespread use of artificial neural networks is the

difficulty of adequately defining values for their free parameters. This work discusses

how Radial Basis Function (RBF) neural networks can have their free parameters de-

fined by Genetic Algorithms (GAs). For such, it firstly presents an overall view of the

problems involved and the different approaches used to genetically optimize RBF net-

works. It also proposes a genetic algorithm for RBF networks with a nonredundant

genetic encoding based on clustering methods. Secondly, this work addresses the prob-

lem of finding the adjustable parameters of a learning algorithm via GAs. This problem

is also known as the model selection problem. Some model selection techniques (e.g.,

crossvalidation and bootstrap) are used as objective functions of the GA. The GA is

modified in order to adapt to that problem by means of occam’s razor, growing, and

other heuristics. Some modifications explore features of the GA, such as the ability

for solving multiobjective optimization problems and handling objective functions with

noise. Experiments using a benchmark problem are performed and the results achieved,

using the proposed GA, are compared to those achieved by other approaches. The pro-

posed techniques are quite general and may also be applied to a large range of learning

algorithms.

ii

Resumo

Um dos principais obstáculos para o uso em larga escala das Redes Neurais é a difi-

culdade de definir valores para seus parâmetros ajustáveis. Este trabalho discute como

as Redes Neurais de Funções Base Radial (ou simplesmente Redes RBF) podem ter

seus parâmetros ajustáveis definidos por algoritmos genéticos (AGs). Para atingir este

objetivo, primeiramente é apresentado uma visão abrangente dos problemas envolvi-

dos e as diferentes abordagens utilizadas para otimizar geneticamente as Redes RBF. É

também proposto um algoritmo genético para Redes RBF com codificação genética não

redundante baseada em métodos de clusterização. Em seguida, este trabalho aborda o

problema de encontrar os parâmetros ajustáveis de um algoritmo de aprendizagem via

AGs. Este problema é também conhecido como o problema de seleção de modelos. Al-

gumas técnicas de seleção de modelos (e.g., validação cruzada e bootstrap) são usadas

como funções objetivo do AG. O AG é modificado para adaptar-se a este problema por

meio de heurísticas tais como narvalha de Occam e growing entre outras. Algumas mod-

ificações exploram características do AG, como por exemplo, a abilidade para resolver

problemas de otimização multiobjetiva e manipular funções objetivo com ruído. Ex-

perimentos usando um problema benchmark são realizados e os resultados alcançados,

usando o AG proposto, são comparados com aqueles alcançados por outras abordagens.

As técnicas propostas são genéricas e podem também ser aplicadas a um largo conjunto

de algoritmos de aprendizagem.

iii

For God

and
for my father.

iv

Acknowledgments

I would like to express my gratitude to my supervisors, Dra. Teresa Ludemir and Dr.

André de Carvalho, for their permanent guidance and patience throughout my research.

I also thank to them, Dr. Aluísio Araújo and Dr. Francisco Carvalho for revising the

manuscript of the thesis. I thank my Parents for their love and support and my brothers

for encouragement. Finally, I wish to acknowledge CNPq, FAPESP and FACEPE for

their support.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 3

1.3 Organization . 4

2 Genetic Algorithms 5

2.1 Introduction . 5

2.1.1 The Binary Chromosome . 7

2.1.2 Selection . 9

2.1.3 Crossover and Mutation . 12

2.1.4 Elitism . 13

2.1.5 n-Point and Uniform Crossovers 16

2.1.6 GA Terminology . 19

2.1.7 Schema Theorem . 20

2.1.8 Which Crossover is the Best? 23

2.2 Optimization via GA . 24

2.2.1 A Brief Introduction . 24

2.2.2 GA and the Others Methods 27

2.2.3 Exploration-Exploitation Trade-off 29

2.3 RCGA - The Real-Coded Genetic Algorithm 31

2.3.1 Binary vs. Real Encoding . 31

2.3.2 Genetic Operators . 33

2.4 Practical Aspects . 40

2.4.1 Initial Population . 40

vi

CONTENTS vii

2.4.2 Objective Function . 40

2.4.3 Stopping Criteria . 41

2.4.4 Generational and Steady State Replacement 42

2.4.5 Convergence Problems . 43

2.4.6 Remapping the Objective Function 44

2.4.7 Selection Methods . 48

2.5 Summary . 50

3 Learning and RBF Networks 52

3.1 The Learning Problem . 52

3.2 The True Prediction Error . 54

3.3 Estimating the True Prediction Error 54

3.4 Introduction to Radial Basis Function Networks 58

3.5 Hybrid Learning of RBF networks . 60

3.6 Computational Considerations . 62

3.7 Ridge Regression . 62

4 Combining RBF Networks and Genetic Algorithms 64

4.1 Combining Neural Networks and Genetic Algorithms 64

4.1.1 Encoding Issues . 66

4.1.2 Desirable Properties of Genetic Encodings 68

4.1.3 Redundancy and Illegality in RBF Network Encodings 70

4.2 Review of Previous Works . 71

4.2.1 Selecting Centers from Patterns 71

4.2.2 Crossing Hypervolumes . 74

4.2.3 Functional Equivalence of RBFs 75

4.2.4 Other Models . 77

4.3 Comments . 78

5 The Proposed Genetic Encodings and their Operators 80

5.1 Model I - Multiple Centers per Cluster 81

5.1.1 Encoding . 81

5.1.2 Partitioning the Input Space 81

5.1.3 Decoding . 82

CONTENTS viii

5.1.4 The Cluster Crossover . 83

5.1.5 Mutation Operators . 84

5.2 Model II - One Center per Cluster . 85

5.2.1 Encoding . 85

5.2.2 Decoding . 87

5.2.3 Genetic operators . 87

5.3 Comments . 88

6 Model Selection via Genetic Algorithms 90

6.1 Training and Adjustable Parameters 91

6.2 Model Selection . 92

6.3 A Simple GA for Model Selection . 94

6.3.1 The Holdout Fitness Function 95

6.3.2 The Occam Elitism . 96

6.3.3 Experimental Studies . 97

6.4 Other Fitness Functions for Model Selection 101

6.4.1 The k-Fold-Crossvalidation Fitness Function 101

6.4.2 The Generalized Cross-Validation Fitness Function 101

6.4.3 The .632 Bootstrap Fitness Function 102

6.4.4 Experimental Studies . 103

6.5 Other Heuristics for Model Selection via GAs 104

6.5.1 Shuffling . 104

6.5.2 Growing . 107

6.6 The Multiobjective Optimization for Model Selection 108

6.6.1 The Multiobjective Genetic Algorithm 108

6.6.2 The Choice of the Fitness Functions 110

6.6.3 Experimental Studies . 111

6.7 Experimental Studies with Other Techniques 112

7 Conclusion 117

List of Figures

2.1 Functionf(x) = x sin(10πx) + 1 . 7

2.2 A Simple Genetic Algorithm . 8

2.3 Initial population . 9

2.4 Roulette wheel parent selection algorithm 12

2.5 Chromosomes of the first generation 14

2.6 First generation . 15

2.7 Eighth generation . 15

2.8 Twentieth-five generation . 16

2.9 The maximum and mean value of objective function as a function of

generation . 17

2.10 GA with and without elitism . 17

2.11 2-point-crossover . 18

2.12 4-point-crossover . 18

2.13 Uniform crossover . 19

2.14 Strings and Schemata . 21

2.15 A population . 23

2.16 Chromosome interpreted as a ring . 24

2.17 Infeasibility . 26

2.18 The downhill method . 28

2.19 Arithmetical crossover . 35

2.20 BLX-α applied to an unidimensional space 36

2.21 BLX-α applied to a multidimensional space 36

2.22 Heuristic crossover . 38

2.23 Premature convergence . 43

ix

LIST OF FIGURES x

2.24 Ranking and the selection pressure . 46

2.25 Linear scaling . 48

2.26 Procedure for calculating the linear scaling coefficientsa andb 49

2.27 Stochastic Universal Sampling . 50

3.1 A dataset . 55

3.2 Thek-fold-crossvalidation method fork = 5 57

3.3 Hypothesis selected byk-fold-crossvalidation withk = 10 59

3.4 A Radial Basis Function Network . 60

4.1 Genotype to phenotype mapping. 67

4.2 Reparing an illegal network . 68

4.3 Redundant RBF networks. 71

4.4 Overlapped Gaussian Functions. 71

4.5 Lucasius and Kateman’s variable length crossover 73

4.6 Trade mutation . 73

4.7 Crossing Hypervolumes . 76

4.8 Decoding the chromossome formed by a list of 5-gene sequences 78

5.1 Partioning the input space by means of clusters of patterns 82

5.2 Chromosome decoding . 83

5.3 The cluster crossover . 85

5.4 Traditional crossover generates duplicated genes 86

5.5 Cluster crossover using the template bit string (0,1,1) 86

6.1 The data set partition by the holdout method. 96

6.2 Mackay’s Hermite polynomial. 98

6.3 Comparing the performance of occam and traditional elitism in terms of

the number of basis functions . 99

6.4 Comparing the performance of occam and traditional elitism in terms of

the error on the test set. 100

6.5 Thek-fold-crossvalidation method withk = 5. 102

6.6 Comparing the performance of several kinds of fitness in terms of the

number of basis functions. 105

LIST OF FIGURES xi

6.7 Comparing the performance of several kinds of fitness in terms of the

number of basis functions. 106

6.8 Pareto ranking method. 109

6.9 Comparing the performance of the multiobjective GA in terms of the

number of basis functions. 112

6.10 Comparing the performance of the multiobjective GA in terms of the

error on the test set. 113

6.11 Comparing the performance of the multiobjective GA with other tech-

niques in terms of the number of basis functions. 115

6.12 Comparing the performance of the multiobjective GA with other tech-

niques in terms of the error on the test set. 116

Notation of Chapter 2

S feasible set
D solution set
N population size
l bit string (chromossome) length

fi fitness
f̄ average fitness

f(·), g(·) objective (or fitness) functions
H schema

O(H) order of a schemaH
δ(H) defining length of a schemaH

U(x, y) uniform distribution (beingx and y the lower
and upper limits of this distribution)

N(µ, σ) normal distribution with meanµ and standard
deviationσ

σ standard deviation
r ∼ F it indicates thatr is a random number drawn

from a distributionF
cj = [cj1, cj2, . . . , cjn]T jth offspring (real-coded GA)
pj = [pj1, pj2, . . . , pjp]

T jth parent (real-coded GA)

xii

Notation of Chapter 3

D dataset
(xi, yi) ith example of the dataset

xi input vector
yi desired output (output for short)
p number of examples in dataset
H hypothesis space
h hypothesis

e(h) true error of hypothesish
ê(h) estimate of true error of hypothesish

m number of hidden units
‖·‖ euclidean norm
〈·〉 average

cj = [c1j, c2j, . . . , cnj]
T vector center of thejth hidden unit
n dimension of the input space (or the number of

input units)
w = [w1, . . . , wm]T Weight vector.wj is the weight connecting the

jth hidden unit and the output unit
w0 bias
σj width of thejth hidden unit
α overlap factor for widths

zj(·) activation function (or basis function) of thejth
hidden unit

Z design matrix, which is a matrix with thej th
column[zj (x1) , zj (x2) , . . . , zj (xp)]

T

Z+ pseudo-inverse ofZ
y = [y1, y2, . . . , yp]

T desired output vector
β ridge or regularization parameter
I identity matrix

xiii

Notation of Chapters 4 and 5

D decoding function
E problem-specific genetic encoding
F feasible set
P phenotype space
G genotype space
L legal set

P, Q chromossome (or individual)
pi, qi ith component of a chromossome (in general,

encodes parameters associated with a basis
function)

Si ith cluster (K-means algorithm)
Ri ith region of the input space (associated with

clusterSi)
K number of regions (or clusters)
rj identifier indicating that thejth center is inside

the regionRrj
of the input space

li = [li1, . . . , lin]T lower limits of regionRi

ui = [ui1, . . . , uin]T upper limits of regionRi

bj boolean flag: ifbj = TRUE then pj is valid,
otherwisepj is discarded during the decoding

xiv

Notation of Chapter 6

L learning algorithm
E example space (X × Y)
X input space
Y output space
θ set of parameters for a learning algorithmL
τ training parameters
λ it represents both adjustable parameters and

chromossome
h(λ,D) hypothesish built by learning algorithmL with

adjustable parametersλ and datasetD
h(x; λ,D) represents the prediction ofh(λ,D) for the data

pointx
e(λ) true error of hypothesis with adjustable param-

eterλ
ê(λ,D) estimate of thee(λ) using the information from

the datasetD
δ(x, y) loss function (e.g., for regressionδ(x, y) = (x−

y)2)
Dt training set
Dh holdout or validation set

k occam elitism size
n elitism size
p number of examples inD (i.e.,p = |D|)
B number of bootstrap datasets (or samples)

f(λ) fitness of chromossomeλ
a <p b ∀i(ai ≤ bi)∧∃i(ai < bi), the vectorb is said to

be dominated bya
s selection pressure (best/median fitness ratio)

xv

Chapter 1

Introduction

1.1 Motivation

“Your requests shed light
upon your objectives.”

(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

Artificial Neural Networks (ANNs) are computational tools inspired by biological

nervous system with applications in science and engineering. This work is about a

kind of ANN for applications in multivariate nonlinear regression, classification and

times-series called Radial Basis Function (RBF) Network. Although ANNs have usu-

ally achieved good performances in several domains, those performances and the ANN

training process are directly influenced by an appropriate choice of the network architec-

ture. Unfortunately, the space of network architectures is infinite and complicated and

there is no general purpose, reliable, and automatic method to search that large space.

Several alternative approaches have been proposed to search the space of network

architectures. These approaches may roughly be grouped into four categories:

• Trial and Error;

• Constructive Algorithms;

• Pruning Algorithms;

1

1.1 Motivation 2

• Modern Optimization Metaheuristics.

When the Trial and Error method [15, 75] is employed, different values for the

network parameters must be selected, trained and compared before the choice of an

ultimate network. The disadvantage of this method becomes more apparent if, after the

choice of the best values, the patterns set is changed, making necessary to restart the

design process. This search can be done more efficient if heuristics are used to guide it.

In the constructive approach [19, 78, 80], a network starts its training with a minimal

architecture and, according to the problem complexity, new units and connections are

inserted, aiming to improve the network performance. Often the constructive approach

is combined with pruning techniques [106, 21] which optimizes the networks’ perfor-

mance by removing units and connections that are irrelevant or redundant. Despite

being fast, the constructive approach are based on hillclimbing methods and because of

this they only produce suboptimal solutions.

Metaheuristics are the most exciting fields in approximate optimization techniques

of the last two decades. They have had successes in solving several difficult optimization

problems that arise in many practical areas. Commonly used metaheuristics are simu-

lated annealing [50], tabu search [33] and genetic algorithms [34]. Genetic algorithms,

GA, (the metaheuristic used in this work) aim at solving search and optimization prob-

lems by simulating biological evolution. GAs works with a population of individuals.

An individual can be seen as a state (or a point) in the search space. A traditional GA

carried out the search or optimization by means of three biologically-inspired operators

namelyselection, crossoverandmutation. The GA “selects” individuals, “combines”

(by means of crossover) individuals with each other and “mutates” them in order to

produce a new generation of individuals. In this way, populations evolve through suc-

cessive generations in the direction of the best solution. The selection operator drives

the population to regions of better individuals. Mutation and crossover operators drive

it to explore unknown regions of the search space. Eventually, the population converges

to the best chromosome. When a GA is applied to RBF networks, it generates several

networks’ variations (new individuals) and combines and mutates their features, thus

generating new networks with improved performances through a number of generations.

GAs are one of the standard techniques of searching in complicated search spaces.

So one of the reasons to apply GAs to the RBF Networks is due to the complex na-

ture of their optimization which involves aspects of both numerical and combinatorial

1.2 Objective 3

optimization with a complicated multimodal cost surface.

Although most of the GAs for ANN optimization has been focused on Multilayer

Perceptron, MLP, networks [105] (a very popular kind of ANN), their long training time

is a strong negative factor concerning the design efficiency. RBF networks are known

for requiring a much shorter training period. To take advantage of this feature, novel

methods for optimizing RBF Networks via GAs are proposed in this work.

In fact, the search of network architectures (i.e., the search by the best number of

hidden units of the network) is an instance of a generic problem known as model se-

lection. The model selection problem arises repeatedly in machine learning. It is the

problem of estimating the true error of different hypotheses (also called models) in order

to choose the (approximate) best one. Other instances of this same problem follow:

• The search by the best amount of pruning of a decision tree;

• The search by the best degree of a polynomial fit to a set of points;

• The search by the best subset of variables of a multivariate linear regression

model;

• The search by the best value of ridge (or regularization) parameter of the ridge

regression.

Unlike other metaheuristics, GAs provide, in our opinion, a better framework for the

model selection problem, owing to itspeculiarcapacity of handling a lot of hypotheses

simultaneously and multiples (and noise) objective functions. Nevertheless, the use of

this capacity for model selection has been less studied than other aspects of GAs such

as encoding and genetic operators.

In spite of GA produce, in general, good results when it optimizes machine learning

models, the computational cost is most of times expensive. Thus, the motivations of

this work, in short, it is to explore the fast training of RBF networks to obtain a less

expensive genetic optimization and explore the potential of GAs for model selection.

1.2 Objective

This work deals with the optimizing RBF networks via GAs in two aspects:

1.3 Organization 4

1. The genetic encoding of RBF networks (chapters 5 and 4).

This work studies encoding issues such as redundancy and illegality (that be-

comes the encoding of RBF networks a no trivial one) and proposes operators

and encodings to an efficient combination of RBF networks and GAs.

2. The model selection problem via GA (chapter 6).

This work tackles the model selection problem by exploring and modifying the

GA search mechanism itself. This search mechanism enables GAs to use (and to

create) a lot of model selection specific heuristics (e.g., occam elitism, growing

and shuffling), to cope with noise estimation of the true error and to be used for

multiobjective optimization. The aim of this research intends to improve the net-

work performance and complexity as well as to study the use of traditional model

selection methods (such as crossvalidation and bootstrap) by GAs and to propose

less expensive alternatives to them (but as efficient as them) whose applications

are also useful for other machine learning models optimized by GAs.

1.3 Organization

This text is organized as follows.

Chapter 2 is a tutorial on Genetic Algorithms, which is a class of Evolutionary Al-

gorithms with emphasis over the crossover operator. Chapter 3 introduces learning con-

cepts and gives a brief introduction to RBF networks. Chapter 4 gives an introduction

to the optimization of RBF networks via GAs and presents review of previous works

and related problems. Chapter 5 shows a proposed genetic encoding and the respective

operators. Chapter 6 describes the model selection problem and a GA approach for this

problem.

Chapter 2 is based on the works [57, 58]. Chapter 4 is adapted from [60]. There are

two genetic encodings presented in chapter 5, named model I and model II, respectively.

The model I is in [55, 56, 60] and Model II is in [61, 59]. Finally, Chapter 6 is based on

works [63, 62].

Chapter 2

Genetic Algorithms

“The capacity to proceed
joyfully through life is

a blessing. Nevertheless,
remember to watch the

direction that your feet are
taking along the way.”

(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

“To be born, to die, to be reborn again,
and to always progress. That is the Law.”

(Allan Kardec’s comment on
the evolution of the spirit)

2.1 Introduction

Since the 1960s, computational techniques inspired in evolutionary processes of living

beings have been developed as a metaphor of the Darwinian principles of natural evolu-

tion and survival of the fittest. Such techniques are termedEvolutionary Computation.

Genetic Algorithms, GAs (an evolutionary algorithm) have been used broadly in search

and optimization.

Optimization is the search for a better solution to solve a given problem. It consists

of trying several solutions and to use information collected in this process in order to

5

2.1 Introduction 6

improve the quality of the solutions. A simple example of optimization is the improve-

ment of the picture of a TV set. New solutions for TV images are found by adjusting

the antenna. The picture of TV gets better and better and, eventually, the best (optimal)

solution is found. In general, an optimization problem has:

• A search space, which contains all possible solutions of the problem.

• An objective function, used to evaluate the solutions, associates, to each solution,

a value (a figure of merit, also named fitness in the GA literature).

In mathematical terms, optimization consists of searching a solution that maximizes

(or minimizes) the objective function. For example, consider the following function to

be maximized [71]:

Maximize f(x) = x sin(10πx) + 1 (2.1)

Subject to −1 ≤ x ≤ 2

Although Problem 2.1 is a simple one, it is not easy to find its highest value (the so-

calledglobal maximum) because there is a number oflocal maximain this function,

as shows Figure 2.1. A local maximum is the highest value of a function in a finite

neighborhood but not on the boundary of that neighborhood. The maximum global for

this problem is atx = 1.85055 whose value isf(1, 85055) = 2.85027. Section 2.2

shows that Problem 2.1 cannot be solved by several optimization methods.

To solve Problem 2.1, a simple GA randomly generates an initial population of in-

dividuals. Each individual of the population represents a potential solution by encoding

it into a data structure calledchromosome. Each individual is evaluated and given a

measure of how good it is to solve the problem at hand. This measure is namedfitness.

The next steps produce, in successive generations, new populations. Three basic

operations are used to transform a current population into a new population:selection,

crossoverandmutation. The selection operator selects a sample of individuals favor-

ing the high-fitness individuals1. The crossover takes two selected individuals (called

parents) and combines its parts creating new ones (called offspring). Mutation takes an

1The purpose here is to mimic the Darwinian principle of natural selection which high-fitness individ-
uals must have greater survival probably.

2.1 Introduction 7

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

f(
x)

x

local maxima

global maximum

Figure 2.1: Functionf(x) = x sin(10πx) + 1

offspring and creates a transformed individual by modifying its parts randomly. The

transformed individuals will compose the new generation of individuals. That proce-

dure is repeated until a satisfactory solution is found. Figure 2.2 shows a simple GA.

The following section shows each step of a simple GA in details.

2.1.1 The Binary Chromosome

The first step to solve the Problem 2.1 is to represent the parameterx of the problem as a

chromosome. Here, a string with 22 bits will be used (more bits increase the numerical

precision). Thus, an example of a typical chromosome could be

s1 = 1000101110110101000111 (2.2)

2.1 Introduction 8

“LetP (t) be the population at generationt.”
t← 0
initialize P (t)
evaluateP (t)
WHILE the stopping criterion is not satisfiedDO

t← t + 1
select parentsP (t) from P (t− 1)
apply crossover overP (t)
apply mutation overP (t)
evaluateP (t)

END WHILE

Figure 2.2: A Simple Genetic Algorithm

In order to know what solution chromosomes1 represents, it is necessary to decode it.

Firstly, the conversion from the binary base to the decimal base is carried out2:

d = (1000101110110101000111)2 = 2.288.967 (2.3)

Becaused is a number in the interval[0, 2l − 1] (wherel is the string size), one must

map it to the range of the problem. To do this, the following formula may be used

x = min + (max−min)
d

2l − 1
(2.4)

thus,

x1 = −1 + (2 + 1)
2.288.967

222 − 1
= 0, 637197 (2.5)

represents the solution coded in chromosomes1.

It is worth noting that objective functions with several parameters have them repre-

sented in the same chromosome in such a way that each parameter takes a segment of

the string. For each chromosomesi, a fitnessfi is assigned (a measure of how good it

2The value of a bit strings = (b1, b2, . . . , bl) (wherebi ∈ {0, 1}) in the decimal base is computed as
follows: d =

∑l
i=1 2l−isi.

2.1 Introduction 9

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

f(
x)

x

Figure 2.3: Initial population

is to solve the problem). The fitness is based on the objective function value, as shown

in the next section.

2.1.2 Selection

In general, a GA starts with a random initial population. The initial population for

Problem 2.1 with 30 chromosomes is shown in one of the columns of the Table 2.1.

This population is sorted in decreasing order of objective function value. Table 2.1 also

shows the value of the variablex represented by a chromosome, the objective function

value and the fitness. The chromosomes were randomly generated because there is no

prior knowledge about the region of the search space where the solution of the problem

can be found. Figure 2.3 graphically shows the initial population.

Inspired in natural selection process of living beings, the GA selects the best chro-

mosomes (i.e., the high-fitness chromosomes) from the initial population in order to

generate offspring by means of the crossover and mutation operators. An intermedi-

ate population, calledmating pool, is then created by allocating these selected parent

chromosomes.

The selection algorithm most used is theroulette wheel selection[34]. Its basic idea

is to determine the selection probability for each chromosome proportional to its fitness

value. Iffi is a fitness value ofith chromosome, then its selection probabilitypi is given

2.1 Introduction 10

Table 2.1: Initial Population

Objective Accumulated
Rank Chromosome xi Function Fitness Fitness

i si f(xi) fi

∑i
k=1 fk

1 1101000000011110110111 1,43891 2,35251 2,00000 2,00000
2 1100000110100100011111 1,26925 2,04416 1,93103 3,93103
3 1010111001010110010000 1,04301 2,01797 1,86207 5,79310
4 1001111000011001000101 0,85271 1,84962 1,79310 7,58621
5 1001110110111000011100 0,84829 1,84706 1,72414 9,31035
6 0000110011111010010110 -0,84792 1,84610 1,65517 10,96552
7 0011000000100111010010 -0,43570 1,39248 1,58621 12,55172
8 0111100101000001101100 0,42098 1,25777 1,51724 14,06897
9 0100000000110011101000 -0,24764 1,24695 1,44828 15,51724
10 0100000010001111011110 -0,24343 1,23827 1,37931 16,89655
11 0000100101000000111010 -0,89156 1,23364 1,31035 18,20690
12 0001101001100010101111 -0,69079 1,19704 1,24138 19,44828
13 1010000110011000011011 0,89370 1,17582 1,17241 20,62069
14 0110100001011011000100 0,22292 1,14699 1,10345 21,72414
15 1000100011110001000011 0,60479 1,09057 1,03448 22,75862
16 1100110011001010001110 1,39988 0,99483 0,96552 23,72414
17 0100011001000100011101 -0,17655 0,88140 0,89655 24,62069
18 0011010011110100101000 -0,37943 0,77149 0,82759 25,44828
19 0010001101001100101100 -0,58633 0,75592 0,75862 26,20690
20 1101110101101111111111 1,59497 0,74904 0,68966 26,89655
21 0011011011001101110110 -0,35777 0,65283 0,62069 27,51724
22 0010010001001111100111 -0,57448 0,58721 0,55172 28,06897
23 1100101110110011111000 1,38714 0,45474 0,48276 28,55172
24 0010011001100110100111 -0,54999 0,45001 0,41379 28,96552
25 1101110010010100100001 1,58492 0,27710 0,34483 29,31035
26 1100101011000111010011 1,37631 0,06770 0,27586 29,58621
27 0000010000100100110001 -0,95144 0,04953 0,20690 29,79310
28 1110100001000000010001 1,72169 -0,08458 0,13793 29,93103
29 1110101000111100000000 1,74494 -0,72289 0,06897 30,00000
30 1111101100000001010111 1,94147 -0,87216 0,00000 30,00000

2.1 Introduction 11

by

pi =
fi∑N

i=1 fi

(2.6)

The roulette wheel algorithm mimics a weighted roulette wheel. The roulette wheel

is built in such a way that the size of its slots is proportional to the fitness value of

its corresponding chromosome. One selects a chromosome by spinning the wheel. By

repeating this process a number of times equal to the population size, the set of the

selected parent chromosomes is produced.

The roulette wheel method can be performed by the following practical procedure:

one computes a column of accumulated fitness in a table as, for example, in the Ta-

ble 2.1. Next, one generates a random numberr (from an uniform distribution) between

0 andSumFitness, whereSumFitness is the sum of the fitnesses for the whole pop-

ulation. Finally, the chromosome to be selected is the first (from top to bottom) one

that has the accumulated fitness larger thanr. For example, ifr = 28.131 then the

chromosome in the line 23 of the Table 2.1 is selected and its copy is allocated in the

mating pool. The same steps are repeated until the mating pool is filled with a number

of individuals equal to the population size. The roulette wheel algorithm is showed in

Figure 2.4.

A way of obtaining the fitness values is to set them equal to an objective function

value. Nevertheless, the roulette wheel algorithm does not work with negative objective

function values. Moreover, an objective value too large can take a very large slot of the

wheel causing convergence problems like the ones showed in Section 2.4.5. It is pos-

sible to leave the roulette wheel algorithm and to use then-way tournament selection

algorithm instead. In this case,n chromosomes are chosen with same probability, and

the chromosome with highest fitness is selected and then allocated in the mating pool.

The same steps are repeated until the mating pool is filled with a number of individ-

uals equal to the population size. The2-way tournament selection (also called binary

tournament selection) is commonly used. Another way of avoiding those problems is to

re-scale the value of objective function suitably (as shown in Section 2.4.6) or to use the

so-calledrankingmethod [6].

In Table 2.1, the fitnesses were defined by the ranking method. The first (the best)

chromosome in the ranking had an arbitrary fitness equal to 2.0, and, for the last (the

worst) chromosome the value 0.0 was assigned (a better way to do this is shown in

2.1 Introduction 12

SumFitness← ∑N
i=1 fi /* sum up all fitness values

in the population*/
Rand← random(0, SumFitness) /* generate a random

number between 0 and
SumFitness*/

PartialSum← 0
i← 0
REPEAT

i← i + 1
PartialSum← PartialSum + fi

UNTIL PartialSum≥ Rand

RETURN i /* return the ith chromos-
some*/

Figure 2.4: Roulette wheel parent selection algorithm

Section 2.4.6). The remainder fitnesses were set by interpolating those two extremes

using a straight line, that is,fi = 2(N − i)/(N − 1), whereN is the population size.

2.1.3 Crossover and Mutation

Crossover and mutation are search mechanisms employed to scan unknown regions of

the search space. Crossover is the main genetic operator and mutation is, in general,

regarded as a background operator. Crossover takes two selected chromosomes (called

parents) from the mating pool and swaps their parts creating a new one as follows: an

integer numberk, called cut point, is selected uniformly from the interval[1, l−1] where

l is the string length. Next, two of the selected individuals swaps their parts between the

positionk + 1 andl, inclusively. For example:

parent1 (0010101011100000111111)

parent2 (0011111010010010101100)

cut point

⇒ (0010101011010010101100) offspring1
(0011111010100000111111) offspring2

cut point

2.1 Introduction 13

Crossover is applied with a given probability called thecrossover rate. Typically, the

crossover rate is between 0.6 and 1.0. If crossover does not pass in the probability test,

then the offspring are formed by identical copies of the parents. This fact allows that

some solutions are not destroyed by crossover. The probability test can be implemented

by generating a random numberr between 0 and 1. Ifr < crossover rate then the

crossover is performed.

After crossover,eachbit of the offspring may be mutated (i.e., flipped) with a low

probability, calledmutation rate. For example:

offspring

(00101 010110100 10101100)
⇒ mutated offspring

(00100 01011 0101 10101100)

Note that mutation may destroy relevant information of the chromosome. On the

other hand, mutation also allows new information to be created into a chromosome.

Hence the use of the mutation is useful but must be moderated by using a low mutation

rate (typically 0.0001). Figure 2.5 shows the first generation of the chromosomes for

Problem 2.1. The crossover was applied to each pair of chromosomes of the mating pool

and mutation was applied to every bit of the offspring. The first generation, graphically

showed in Figure 2.6, presents very little improvement, that is, several chromosomes

are still far from the global maximum.

Next, the GA continues creating new generations for a fixed number of generations.

Figure 2.7 and 2.8 show the eighth and the last (or twentieth-five) generations where the

largest part of the population is close to the global maximum. Most of the times, there

is not clear stopping criterion for GA, however, if 95% of the population is representing

the same objective function value then it is possible to say that the GA converged. When

the maximum value of the objective function is known, then this value may be used as

a stopping criterion.

2.1.4 Elitism

Figure 2.9 shows, for each generation, the value of the objective function for the best

chromosome and the average value of the objective function over the whole population.

It is worth noting that the best chromosome may be lost, when the GA goes from the

current generation to the next generation, due to either crossover or mutation. There-

fore, it is interesting to transfer the current best chromosome to next generation without

2.1 Introduction 14

Ranking Intermediate Population
(mating pool)

Crossover
and

Mutation

First Generation
(the underline indicates

mutation)

Cut
point

 1 1101000000011110110111 1101000000011000011100 12

 5 1001110110111000011100 1001110110111110110111 12

 12 0001101001100010101111 0001101001100010010110 12

 6 0000110011111010010110 0010110011110000101111 12

 19 0010001101001100101100 0110001101000100011101 9

 17 0100011001000100011101 0100011001001100101100 9

 15 1000100011110001000011 1000100011110001010010 17

 7 0011000000100111010010 0001000000100111000011 17

 10 0100000010001111011110 0100000010001111101100 16

 8 0111100101000001101100 0111100101000001011110 16

 6 0000110011111010010110 0000110011111010010110 21

 18 0011010011110100101000 0011010011110100100000 21

 9 0100000000110011101000 0100100000010010101111 13

 12 0001101001100010101111 0001101001100011101000 13

 17 0100011001000100011101 0100011001000100010010 17

 7 0011000000100111010010 0011001000100111011101 17

 11 0000100101000000111010 0000111001010110010001 3

 3 1010111001010110010000 1010100101010000011011 3

 3 1010111001010110010000 1010111001010110010111 19

 1 1101000000011110110111 1101000100011110110000 19

 15 1000100011110001000011 1000100010011001000101 9

 4 1001111000011001000101 1001111001110001000011 9

 13 1010000110011000011011 1010000110011000011010 20

 6 0000110011111010010110 0100111011111010010110 20

 15 1000100011110001000011 1000010000100100110001 3

 27 0000010000100100110001 0000100011110001000011 3

 8 0111100101000001101100 0110000101000011101100 19

 19 0010001101001100101100 1010001101001100101000 19

 8 0111100101000001101100 0111100101000100111010 5

 11 0000100101000000111010 0000100101000011101100 5

Figure 2.5: Chromosomes of the first generation

2.1 Introduction 15

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

f(
x)

x

Figure 2.6: First generation

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

f(
x)

x

Figure 2.7: Eighth generation

2.1 Introduction 16

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.5 0 0.5 1 1.5 2

f(
x)

x

Figure 2.8: Twentieth-five generation

modifications because, in principle, there is no reason to lose the best solution. This

strategy is calledelitism which is very common in traditional GAs. The elitism was

proposed by DeJong (1975) [25] in one of the pioneering works about GAs.

Figure 2.10 shows the performance of the best chromosome through generations,

using the GA with and without elitism. The values plotted in the graph represent the

average over 100 runs of the GA. In this problem 2.1, it is clearly shown that the GA with

elitism found the solution faster than the GA without elitism. Because GAs sometimes

find local maxima instead of global maximum, for both GAs the average falls bellow

the value of the global maximum.

2.1.5 n-Point and Uniform Crossovers

The types of crossover operators more broadly used for bit string representation are the

n-point and uniform crossovers. The 1-point crossover is the same crossover presented

in Section 2.1.3. The 2-point crossover is shown in Figure 2.11. Two cut points are

randomly chosen and the section between the two cut points are interchanged. The 4-

point crossover is shown in Figure 2.12. The most usedn-point crossover had been the

2-point crossover.

In the uniform crossover, the offspring takes each bit from one of the parents with

equal probability. This can be performed as follows. For each pair of parents, a mask

2.1 Introduction 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25

O
bj

ec
tiv

e
fu

nc
tio

n

Generation

Best
Mean

Figure 2.9: The maximum and mean value of objective function as a function of gener-
ation

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 5 10 15 20 25

O
bj

ec
tiv

e
fu

nc
tio

n

Generation

With elitism
Without elitism

Figure 2.10: GA with and without elitism

2.1 Introduction 18

Figure 2.11: 2-point-crossover

Figure 2.12: 4-point-crossover

of random bits is generated, as can be seen in Figure 2.13. If the first bit of the mask

is equal to one then the first bit of the parent1 is copied to the first bit of the offspring1.

Otherwise, the first bit of the parent2 is copied. This procedure is then repeated for the

remainder bits. In the creation of the offspring2 the procedure is inverted: if the first bit

of the mask is equal to one then the first bit of the parent2 is copied to the first bit of

the offspring2 and so on. Note that the uniform crossover is not the same thing as the

(l− 1)-point crossover, wherel is the bit string size, once (l− 1)-point crossover always

takes half of the bits from each parent.

In [27], the performance of several crossovers was studied. The conclusion, ac-

cording to [11], is that there is no large difference among them. Moreover, the GA is, in

general, robust in such a way that even under a certain range of parameter variation (e.g.,

mutation and crossover rate, number of cut points), its performance is not significantly

modified [37]. More discussion is shown later in Section 2.1.8.

Next section presents the relationship between terms used in the GA literature and

Biology.

2.1 Introduction 19

Figure 2.13: Uniform crossover

2.1.6 GA Terminology

The GA literature is rich in terms from Biology. Assuming that a potential solution may

be represented as a set of parameters, some definition follows.

Chromosome. The data structure in which a potential solution is encoded.

Gene. A parameter of a potential solution. Genes are joined to form a chromosome.

Individual. This is formed by a chromosome (or more than one) and its fitness.

Alleles. The values that a gene can take. For example, if a gene represents colors then

its alleles are blue, yellow, green and so on.

Genotype. The terms genotype and chromosome are often used interchangeably in GA

literature. But there is a distinction between them. In Biology a genotype is

formed by one or more chromosomes. Genotype is the total genetic information

of an organism or phenotype. As in most of the GA applications an unique chro-

mosome contains the total genetic information of the organism, then this unique

chromosome also represents the genotype of the organism.

Phenotype. The solution or organism built from the genotype. For example, consider a

chromosome which codes parameters (such as dimensions of beams) of the design

of a bridge. The encoded parameters represents the genotype of the bridge. Its

respective phenotype is the real bridge over the river (built from this genotype).

Epistasis. In Biology, epistasis is the iteration between genes in which the presence of a

gene suppresses the effect of other genes. Consider, for example, the optimization

of the combination of colors of a doctor’s office. Genes are the color of clothes,

2.1 Introduction 20

furniture and wall. White is, in general, the color used for clothes. White is always

the good color for clothes, it doesn’t matter what the colors of the others genes

are. Thus, clothes is a non-epistatic gene once it does not iterate, in general, with

others genes. Furniture and wall are clearly epistatic genes, once a good color

for the wall can lose its effect in the presence of a strange color for the furniture.

Mathematically, epistasis means nonlinearity.

To a complete description of the GA terms, see [45].

2.1.7 Schema Theorem

The Holland schema theorem aims to give a theoretical foundation for GAs. However,

its understanding can improve the constructing of practical GA applications. According

to this theory, GA handles certain parts of the bit string called schemata. A schema is

a string formed by symbols 0, 1, and *. The star * is the a “don’t care” symbol which

matches either a 0 or a 1.

Examples of schemata are showed in Figure 2.14. The schemataH1 = 1****,

H2 = **10* and H3 = *0*01 contain the same string 10101 (which is contained in

25 = 32 schemata). Strings 11001, 11011, and 10101 are contained in the same schema

1****. The following definitions are useful:

Definition 2.1 Order of a schemaH, in symbolsO(H), is the number of 0s and 1s

present inH.

Definition 2.2 Defining lengthof a schemaH, in symbolsδ(H), is the distance be-

tween the first 0 or 1 symbol and the last 0 or 1 symbol (see Figure 2.14).

One can see, in Figure 2.15, that there are a relationship between certain schemata

and the fitness value. For example, strings that start with 1 seem to have higher fitness.

In other words, strings that are contained in the schema 1**** seem to have higher

fitness. Figure 2.15 also suggests that strings with many 1’s have higher fitness. In other

words, strings contained in schemata like 111*1, 1*11*, 111**, 111*1 seen to have

higher fitness than strings contained in schemata with many 0’s as 000*0, 0*00*, 000**

and 000*0.

2.1 Introduction 21

H1 H2 H3

1**** **10* *0*01
11001

√

11011
√

10101
√ √ √

δ(H1) = 0 O(H1) = 1
δ(H2) = 1 O(H2) = 2
δ(H3) = 3 O(H3) = 3

Figure 2.14: Strings and Schemata

Given a schemaH, an interesting issue is to know the ratio between the numberm

of strings in the current population belonging to the schemaH and the numberm′ of

strings in the next population belonging to the schemaH. To know this ratio, suppose

a GA with roulette wheel selection, but without crossover and mutation. Letb be the

average fitness over all strings of the current population and leta to be the fitness of the

schemaH. The fitness of the schemaH is defined as being the average fitness over all

strings of the current population belonging toH. Thus the desired ratio betweenm and

m′ is given by

m′ =
a

b
m (2.7)

Equation 2.7 says that the number of schemaH increases in next population ifH is an

above-average schema(i.e., if a > b). In fact (and this can be easily proved [34]), the

number of above-average schemata increasesexponentiallyin the subsequent popula-

tions. This claim isalmostthe schema theorem, because this analysis does not consid-

ered the crossover and mutation effects. These operators disrupt the schemata before

they pass to next population. For example, consider the following crossover operation:

Schema in parentp1 (01 ∗ | ∗ ∗10)

Schema in parentp2 (∗ ∗ ∗| ∗ 101)

Schema in offspringc1 (01 ∗ | ∗ 101)

The schema inp2 (which has ashortdefining length) pass to the offspringc1, how-

ever, the schema inp1 (which has along defining length) do not pass to the offspring.

Note that long schemata are easily disrupted by crossover. However, there is a kind of

2.1 Introduction 22

schema which is not easily disrupted by crossover. These very important schemata are

called building blocks.

Building block . A schema is a building block if it is short, above-average

and of low order.

Even though these are a lot of obstacles to the passing traffic of schemata from the

current population to the next one, the Holland schema theorem says that [34]:

Holland schema theorem. The number of building blocks increases expo-

nentially in the subsequent populations.

According to schema theorem, GAs samples large rates of building blocks to fol-

lowing populations. Is this a good strategy to a GA find the optimal? Yes, but only if

following hypothesis holds:

Building block hypothesis. Joining building blocks together in the same

chromosome gives higher fitness.

If the above hypothesis holds then GAs are working correctly by favoring the build-

ing blocks and by eliminating the bad schemata. Functions in which the building block

hypothesis fails are called GA-deceptive. Fortunately, the building block hypothesis

holds for many of objective functions of the real world. GA-deceptive functions tend to

contain a isolated optimal surrounded by bad points. Finding such isolated optimal is

like to find a needle in a haystack. It worth noting that GA-deceptive functions are also

difficult to any optimization method.

Other important theoretical issue is on the quantity of information handled by GAs.

In spite of handling only a population ofn chromosomes, the actual quantity of informa-

tion handled by GA is much larger. It can be proved that GAs handlesO(n3) schemata!

[34]. This large quantity of information handled with onlyn chromosomes is termed

implicit parallelismand it is one of the explanations for good performance of GAs.

Keeping in mind that GAs depends on recombination of buildings blocks, then the

encoding of the solution must encourage the formation of building blocks. Per example,

if two genes are related (epistatic) then they must be close to each other in the encoding

in order to avoid easy disruption of these genes.

2.1 Introduction 23

String Fitness
10010 300
00110 5
11100 400
00111 100

Figure 2.15: A population

2.1.8 Which Crossover is the Best?

In [27], crossovers operators were compared empirically. However, this work did not

achieve a conclusive answer, about which crossover is the best, because the differences

of performance among them were not large enough. It follows that, in practice, to

know which is the best crossover appears to be no critical issue (at least for traditional

crossovers).

Theoretically, under the light of the schemata, it is possible to analise the crossovers.

For example, the schema 1*******11 is disrupted by 1-point-crossover in any cut

point. There is not this problem with the 2-point-crossover. Note that there are sev-

eral cut points in which 2-point crossover does not disrupt this building block (e.g.,

1**|****|*11). In theory, 2-point-crossover is better than 1-point-crossover. This claim

is visualized when the chromosome is interpreted as a ring. See Figure 2.16. Under

this view point, 2-point-crossover can become a 1-point-crossover if its first cut point

is always fixed on the junction of the ring. Therefore 1-point-crossover is merely one

particular case of the 2-point-crossover. Furthermore, 2-point-crossover allows the for-

mation of building blocks on a junction of the ring whereas 1-point-crossover does not

allows this formation. So 2-point-crossover handles more building blocks than 1-point-

crossover.

N -point-crossovers suffer fromlinkagephenomenon in which adjacent genes tend

to be inherited together as a group. As an example, consider an objective function whose

genesa, b, c, d, e, f , g, h, i, andj are coded into a string such as

1010 11011 1011 11101 10101 10101 1010 1101 1110 0101

a b c d e f g h i j

The adjacent genes (such ase andf) tend to be inherited together. Genes coded

apart (such asb and g), by contrast, tend to be separated by 1-point-crossover or 2-

2.2 Optimization via GA 24

loop

1
01

0
1
0

1
0 1

0
1
0

Figure 2.16: Chromosome interpreted as a ring

point-crossover. This fact seen to indicate that the ordering of genes can influence the

evolution. So a few techniques have been proposed for automatic reordering the po-

sitions of genes during the evolution (e.g., the inversion operator [47]). But there is a

drawback here: if, besides optimizing the genes, GA optimized the ordering of genes

then a search space would increase enormously. This is one of the reasons because

techniques as the inversion operator have been rarely used.

Uniform crossover does not suffer of the linkage phenomena since ordering of genes

is irrelevant for it. Uniform crossover has also other advantages:2-point-crossover can

not combine any material of the parents but uniform crossover can. For example the

offspring 11111 can be produced by parents 01001 and 10110 using uniform crossover.

But there are not a way to produce offspring 11111 from 01001 and 10110 using2-point-

crossover. Moreover, uniform crossover disrupts schemata of same order with same

likelihood. UnderN -point-crossover, such likelihood varies according to the defining

length of the schema. Table 2.2 summarizes the comparison between uniform crossover

and 2-point-crossover.

2.2 Optimization via GA

2.2.1 A Brief Introduction

In general, a numeric function optimization problem has the form

minimize f(x)

subject to x ∈ S

2.2 Optimization via GA 25

Table 2.2: Uniform crossover vs.2-point-crossover
Uniform crossover 2-point-crossover

Combines any material of the par-
ents.

Only a limited quantity of mate-
rial of parents can be combined.
That is, an offspring produced by
2-point-crossover can be also pro-
duced by uniform crossover. But
the reciprocal claim does not hold.

Disrupts schemata of same order
with same likelihood.

Does not disrupt schemata of the
same order with same likelihood
(depends on the defining length).

Short schemata are easily disrupted.
Short schemata are difficult to be
disrupted.

Long schemata are easily disrupted,
but less likely than under 2-point-
crossover.

Long chromosome are easily dis-
rupted.

The ordering of genes is irrelevant.The ordering of genes is relevant.

wheref : D → < is known asobjective function. D is calledsearch space, or solution

space. CommonlyD = <n. S is calledfeasible setandS ⊆ D. In what follows, some

examples are given:

Example 1

minimize f(x1, x2)

subject to x2
1 + x2

2 = 5

Example 2

minimize f(x1, x2)

subject to x2
1 + 2x2

2 ≤ 5

Example 3

minimize f(x)

subject to x ∈ <n

There are two types of solution for an optimization problem:

1. Local minimum : a pointx∗ ∈ S is a local minimum off overS if there is an

ε > 0 such thatf(x) ≥ f(x∗) for all x ∈ S within a distanceε of x∗.

2.2 Optimization via GA 26

Figure 2.17: Infeasibility

2. Global minimum : a pointx∗ ∈ S is a global minimum off overS if f(x) ≥
f(x∗) for all x ∈ S.

There are two kinds of objective functions:unimodal functions, which have an

unique minimum, andmultimodal functions, which have multiple local minima. Op-

timization problems can be classified into categories as follows:

1. Constrained vs. unconstrained. An optimization problem is said be constrained

if its parametersx have constraints or limits (see examples 1 and 2). Figure 2.17

shows a constrained problem. The feasible set contains all feasible solutions (i.e.,

the solutions that satisfy all constraints). A problem is said be unconstrained if

its parameters can take any value (see example 3). Most optimization techniques

work better with unconstrained optimization.

2. Linear vs. nonlinear programming. A problem is known as a linear program-

ming problem when it is formulated in terms of linear objective functions and

linear constraints. The standard technique to solve linear programming prob-

lems is the Simplex Method [23]. On the other hand, if the objective function

and/or constraints are nonlinear, then the problem is said be a nonlinear program-

ming problem. There is not a general technique to solve nonlinear programming

problems. However, for some particular cases of nonlinear problems (e.g., the

so-called quadratic programming), there are efficient computational techniques.

2.2 Optimization via GA 27

3. Continuous vs. discrete. Parameters can be continuous or discrete. Problems

with continuous parameters have an infinite number of solutions. Discrete param-

eters occur in a special kind of optimization known ascombinatorial optimization

and have only an finite number of potential solutions. In general, combinatorial

optimization involves a certain combination of the parameters as, for example,

find the best ordering of a list of tasks or actions.

2.2.2 GA and the Others Methods

In order to place GAs in the context of optimization consider some kinds of optimization

methods.

1. Generate and test search(also known asexhaustiveor random search) uses

two modules. A generator module produces systematically or randomly potential

solutions. A test module evaluates every potential solution and then accept or

reject it. The generator module could generate all solutions before the test module

run. However, it is more common an interchanged usage of the two modules. The

generate and test search is an unintelligent approach, rarely used in practice.

2. Analytical methods use calculus techniques to obtain the minimum of a func-

tion. They have drawbacks: they give no information whether the minimum is

either local or global and they require derivatives. Furthermore, if the number of

parameters is large, then it is very hard to find every minimum, making analytical

methods impracticable for real world problems.

3. Downhill methods starts the search at some random point of the search space.

Next, “downhill” moves are made on the objective function surface. Eventually

the bottom of the surface is reached. Several methods use the information from

derivatives (gradient) to make intelligent “downhill” movements. Nevertheless,

this approach does not guarantee that the reached bottom of the surface is the

global minimum. For example, Figure 2.18 shows the case where “downhill”

moves, starting at a random point A, lead the algorithm to point B. And, because

no further downhill moves can be made from B, the algorithm is stuck in the

local minimum B. State of the art downhill methods that use derivatives include

the conjugate-gradient family methods (e.g., Fletcher-Reeves algorithm) and the

2.2 Optimization via GA 28

Figure 2.18: The downhill method

quasi-newton family methods (e.g., BFGS algorithm). Simplex Nelder-and-Mead

downhill method is an interesting alternative because it does not use derivatives.

The downhill methods are efficient and fast. Their drawback is the incapacity

to find the global minimum, unless the function is well-behaved and unimodal

[66, 9, 82].

GAs have been used in complicated optimization problems, where downhill and

analytic methods fail. Some advantages and features of the GAs follow:

• GAs works with both continuous and discrete parameters or combinations of

them.

• GAs execute simultaneous searches over several regions of the search space, once

GAs work with a population instead of an unique point.

• GAs use a payoff (objective function) information, instead of derivatives or other

auxiliary knowledge.

• GAs do not need a profound mathematical knowledge about the problem at hand

in order to solve it.

• GAs optimize a large number of parameters.

• GAs work with a coding of parameters, not the parameters themselves.

• GAs can optimize several objective functions (multiobjective optimization) pro-

viding a list of solutions, not a simple solution.

2.2 Optimization via GA 29

• GAs are flexible to deal with arbitrarily constrained optimization problems.

• GAs are stochastic, not deterministic.

• GAs have successfully found global minimum even on very complex and compli-

cated objective function surfaces.

• GA computer implementations are portable and modular. In the sense of that their

search mechanism do not depend on problem-specific parts and they can be ported

to other applications.

• GAs are tolerant to incomplete and noise data.

• GAs are easily hybridized (or work cooperatively) with others techniques.

GAs require a very large number of objective function evaluations. If such evalua-

tions are expensive, then GAs can become computationally impracticable, that is, GAs

cannot arrive at a good solution in a reasonable time. Furthermore, GAs converge slower

than downhill methods. Thus GAs should not be used if a problem can be solved by a

fast downhill method.

2.2.3 Exploration-Exploitation Trade-off

A characteristic of the generate-and-test search methods is the search for unknown

points of the search space. This characteristic is calledexploitation. On the other hand,

the downhill methods characterize themselves by using information gained about the

points previously visited. This characteristic is calledexploration. Any efficient method

that searches for a global minimum must use both exploitation and exploration [10].

GAs combines both exploitation and exploration. A factor that influences the quan-

tity of exploration and exploitation in the GA search is the selection pressure. In-

formally, the term selection pressure is widely used to characterize either the strong

(called high selective pressure) or the weak (called low selection pressure) emphasis

of selection of the best individuals [5]. Informally, the selection pressure is given by

the expected number of copies, in the mating pool, of the best individual3. In fitness-

proportionate selection, the selection pressure is given byfmax/f (ratio of the value of

3Nevertheless, more formal studies have been made (e.g.,[35, 13]).

2.2 Optimization via GA 30

the best fitness to the value of the average fitness). In then-way tournament selection,

the selection pressure is given byn.

Crossover and mutation lead the GA to unknown points of the search space (ex-

ploitation). The selection operator uses the fitness information of the points previously

visited and drives the GA to the best regions of the search space (exploration). Eventu-

ally, the GA converges to the global minimum.

The crossover can combine the good parts of the parent chromosomes (i.e., the build-

ing blocks). Consequently, the offspring may have (in principle) higher fitness than their

parents. Mutation also plays an important role in the search once it allows that any point

of search space can be visited. The selection operator discards low fitness chromosomes

and, thus, several genes are discarded too. It is worth noting that when the mutation is

absent (low exploitation), the discarded genes cannot be recovered because the crossover

does not create new genes. The crossover only combines existent genes.

When the selection pressure is very high, the GA has a behavior similar to the down-

hill methods (too much exploration). The best individuals have very high fitness. Such

high fitness individuals tend to dominate the following populations once that their genes

spread through generations with very high probability. Hence the GA converges fast

(possibly to a local minimum) without exploiting unknown points of the search space.

On the other hand, when the selection pressure is low, the GA has a behavior similar

to the random search (so much exploitation) because the fitness is approximately equal

for all individuals of the population. Here GA becomes closely related with the so-

called random walk stochastic process. The increasing of diversity is other factor that

increase the exploration.

In short, if the selection pressure is low then the GA converges slowly, however, the

search space is quite exploited. When the selection pressure is high, the GA converges

quickly but it does not exploit unknown points.

All these factors lead the conclusion that the GA convergence depends on a com-

promise between exploitation and exploration. This compromise is arbitrarily regulated

either by the selection pressure or by the diversity. In fact, many parameters of the GA

(as shown later) are different ways of increasing either the selection pressure (exploita-

tion) or the diversity (exploration).

Besides the selection operator, another factor may cause the loss of diversity: the

genetic drift. The genetic drift is the variation that happens by chance in the frequence

2.3 RCGA - The Real-Coded Genetic Algorithm 31

of genes. It affects mainly small populations. Obviously, the loss of diversity impedes

that the GA exploits the search space. As a result, the GA may converge to a local

minimum. This problem is calledpremature convergence. Adequate mutation rates can

keep a good diversity of genes and therefore to combat the genetic drift.

2.3 RCGA - The Real-Coded Genetic Algorithm

This section presents the Real-Coded Genetic Algorithm, RCGA, compares the binary

encoding with the real encoding and presents a list of operators for the real encoding.

2.3.1 Binary vs. Real Encoding

To illustrate this section, consider the following function to be maximized:

Maximize f(x1, x2) = 0.5−

(
sin

√
x2

1 + x2
2

)2

− 0.5

(1.0 + 0.001 (x2
1 + x2

2))
2 (2.8)

Subject to −100 ≤ x1 ≤ 100

−100 ≤ x2 ≤ 100

This function is a benchmark function known as F6 in the GA literature [24]. The

maximum global of F6 is at(0.0), whose value isf(0.0) = 1.

Binary Encoding

The Problem 2.8 has two parameters or genes (x1 andx2). Each gene is coded into a

segment of the bit string chromosome. The bit string length depends on the required

numerical precision. Each decimal point of accuracy requires3.3 bits. If the user wants

eight decimal positions then8 × 3.3 = 26.4 ≈ 27 bits are required for each gene.

It follows that the chromosome needs 27 bits× 2 genes= 54 bits for eight decimal

positions. For example:

011010010010011010000010110100011100010000111001011000

2.3 RCGA - The Real-Coded Genetic Algorithm 32

In order to decode this chromosome, firstly, it is divided into two strings of 27 bits:

011010010010011010000010110

100011100010000111001011000

Next, the conversion from the binary base to the decimal base is carried out:

d1 = (011010010010011010000010110)2 = (55129110)10

d2 = (100011100010000111001011000)2 = (74518104)10

Finally, the two strings are mapped to the interval of the problem using the formula:

xi = ai + (bi − ai)
di

2l − 1
(2.9)

wherexi ∈ [ai, bi] anddi is the value of the bit string, associated withxi, converted to

the decimal base. Thus

x1 = −100 + (100− (−100))
55129110

227 − 1
= −17.851224 (2.10)

x2 = −100 + (100− (−100))
74518104

227 − 1
= 11.040629 (2.11)

Real Encoding

In the real encoding, the chromosome is a vector of floating point numbers in which

each component of the vector is a parameter of the problem. The solution given in

(2.10) and (2.11) is straightforwardly coded into the vector:

[−17.851224, 11.040629]T

which is more friendly for human than a bit string. Moreover, the nature of the real

encoding makes easier to propose new genetic operators (as showed later). The real

encoding is also more compatible with traditional optimization methods, once the chro-

mosome is already in the form (a vector of floating point numbers) commonly used by

these methods. Therefore, the real encoding is simpler to combine or hybridize with

2.3 RCGA - The Real-Coded Genetic Algorithm 33

traditional optimization methods. Besides these advantages, real encoding has shown

better performance than binary encoding, mainly in optimization problems with contin-

uous parameters. Some researchers pointed out that binary encoding is prone to generate

large chromosomes [72]. For example, a problem with 100 parameters may require a

string of at least 2700 bits for good accuracy. Large chromosomes make the search

space large, causing loss of efficiency in the search.

The binary encoding is more portable than the real encoding, because many prob-

lems can not be coded into a vector of floating point numbers. The binary encoding is

historically important. It was used in the pioneers works of GAs by Holland (1975).

It is simple for theoretical analysis. Some theoretical arguments have been favorable

to binary encoding, but counter arguments have also been given. Therefore, there are

advocates for both binary and real encodings (see [46] for a discussion).

2.3.2 Genetic Operators

This section shows a (non exhaustive) list of operators for real encoding. Throughout

this section the following notation is used. Parents are represented by vectors

p1 = [p11, p12, . . . , p1l]
T

p2 = [p21, p22, . . . , p2l]
T

and the offspring by:

c = [c1, c2, . . . , cl]
T

wherepij, ci ∈ <. If more than one offspring exists, then theith offspring is represented

by ci = [ci1, ci2, . . . , cil]
T. Genes can have arbitrary constraints. But, for simplicity, in

this section the geneci of the offspringc is in the interval[ai, bi] whereai, bi ∈ <. If

the geneci does not satisfies this constraint (i.e.,ci /∈ [ai, bi]) then the offspring is said

to be infeasible.U(x, y) denotes an uniform distribution beingx andy the lower and

upper limits of this distribution.N(µ, σ) denotes a normal distribution with meanµ and

standard deviationσ. The notationr ∼ F indicates thatr is a random number drawn

from a distributionF (for example,r ∼ U(x, y)).

Most of the genetic operators for RCGA may roughly be put into four classes [32]:

1. Conventional operators;

2.3 RCGA - The Real-Coded Genetic Algorithm 34

2. Arithmetical operators;

3. Direction-based operators;

4. Mutation operators.

Conventional Operators

Conventional operators are adaptations from the operators for binary encoding (e.g.,

n-point and uniform crossovers). Conventional operators work well with binary encod-

ing, but with continuous encoding they merely exchange genes values without create

new information (i.e., new continuous numbers). It is better then to use arithmetical

operators.

Arithmetical Operators

Arithmetical operators perform a linear combination of the parent vectors.

Average or intermediate crossover [24]. Given two parentsp1 andp2,

the offspringc has the form

c =
1

2
(p1 + p2)

Arithmetical crossover [71]. Given two parentsp1 andp2, the offspring

c1 andc2 have the form:

c1 = rp1 + (1− r)p2

c2 = (1− r)p1 + rp2

wherer ∼ U(0, 1).

The arithmetical crossover is equal to the average crossover ifr = 0.5. It produces

an offspring enclosed in the segment of lineI joining the parent points (see Figure 2.19).

It follows that arithmetical crossover is not able to find the minimum if it is not enclosed

in the initial population. Hence it is interesting to have a crossover that extrapolates the

segment of line joining the parent points. This can be carried out by the blend crossover.

2.3 RCGA - The Real-Coded Genetic Algorithm 35

Possible child
Parent

II

pp
11

pp
22

Figure 2.19: Arithmetical crossover

Blend (BLX-α) crossover [28]. Given two parentsp1 andp2, the off-

springc has the form:

c = p1 + rT(p2 − p1)

wherer = [r1, . . . , rl]
T with ri ∼ U(−α, 1 + α).

The BLX-α is shown in Figure 2.20 for the unidimensional case and in Figure 2.21

for the multidimensional case. In the unidimensional case, ifα = 0 the offspring lies

within the segment of lineI joining the parent pointsp1 andp2. Parameterα extends

the segmentI. For example, ifα = 0.5, then the segmentI is extended in0.5I for each

extreme. In the multidimensional case, BLX-α creates the offspring randomly within a

hyper-rectangle defined by parents points. Unlike the arithmetical crossover, BLX with

α > 0 has an extrapolating property.

The BLX-0.5 is often used because the offspring may be either inside or outside the

segment of lineI with the same probability. The BLX-α had been successfully applied

in many problems. It is perhaps the most used crossover for RCGAs.

Example. Consider the following two parents for the Problem 2.8:

p1 = [30.173, 85.342]T

p2 = [75.989, 10.162]T

2.3 RCGA - The Real-Coded Genetic Algorithm 36

αα II

pp
11

pp
22

ααII

Possible child
Parent

Figure 2.20: BLX-α applied to an unidimensional space

CC11

CC
22

Possible child
Parent

Figure 2.21: BLX-α applied to a multidimensional space

2.3 RCGA - The Real-Coded Genetic Algorithm 37

Applying BLX with extended 0.5 (BLX-0.5) and the random vectorr = [r1, r2]
T =

[1.262, 0.234]T with r1, r2 ∼ U(−0.5, 1 + 0.5) results in:

c1 = 30.173 + 1.262(75.989− 30.173) = 87.993

c2 = 85.342 + 0.234(10.162− 85.342) = 67.750

Thus, the offspring is given by:

c = [87.993, 67.750]T

Another crossover follows.

Linear Crossover [104]. Given two parentsp1 andp2, the offspringc1,

c2 andc3 have the form:

c1 = 0.5p1 + 0.5p2

c2 = 1.5p1 − 0.5p2

c3 = −0.5p1 + 1.5p2

Direction-based operators

Direction-based crossovers are formed by introducing fitness or gradient information

into the crossover in order to determine the direction of the search.

Heuristic crossover [71]. Assuming that the fitness functionf(·) is to be

minimized, then, given two parentsp1 andp2, the offspringc has the form:

c =

 p1 + r(p1 − p2) if f(p1) ≤ f(p2)

p2 + r(p2 − p1) if f(p1) > f(p2)

wherer ∼ U(0, 1) (if fitness functionf(·) is to be maximized then above

relational operators≤ and> must be inverted). See Figure 2.22.

Another example of an operator that uses the fitness information is the quadratic

crossover [1] in which performs a numerical fit to the fitness function using three par-

2.3 RCGA - The Real-Coded Genetic Algorithm 38

Figure 2.22: Heuristic crossover

ents [42]. In [32], there are examples of operators that use the gradient information to

determine the direction of the search.

Mutation operators

Mutation operators create offspring by altering parents with a random number taken

from some distribution.

Uniform mutation. It replaces the gene of the parent by a uniform random

number. That is, if thekth gene ofp is selected for mutation, the offspring

c has the form:

ci =

 U(ai, bi), if i = k

pi, otherwise

where[ai, bi] is the feasible range of the geneci.

Gaussian mutation. It replaces the gene of the parent by a Gaussian

random number. That is, if thekth gene ofp is selected for mutation, the

offspringc has the form:

ci =

 N(pi, σ), if i = k

pi, otherwise

Real number creep [24]. It adds a small random generated number to

a gene. The random generated number can have a variety of distributions

(uniform, normal, etc). So, this operator is like the uniform and Gaussian

2.3 RCGA - The Real-Coded Genetic Algorithm 39

mutations, except that the randomly generated number must be small. The

underlying idea is to generate similar chromosomes by adding small num-

bers to their genes. This is very useful when the chromosome is close to a

minimum because the creep operator can quickly lead the GA to the mini-

mum by generating chromosomes around the minimum.

Boundary mutation [71]. It replaces the gene of the parent by either

its lower or its upper bound. That is, if thekth gene ofp is selected for

mutation, the offspringc has the form:

ci =


ai, if i = k and a binary random digit is 0

bi, if i = k and a binary random digit is 1

pi, otherwise

where[ai, bi] is the feasible range of the geneci.

Non uniform mutation [71]. It replaces the gene of the parent by a random

number taken from a non uniform distribution. That is, if thekth gene ofp

is selected for mutation, the offspringc has the form:

ci =


pi + ∆(t, bi − pi), if i = k and a binary random digit is 0

pi −∆(t, pi − ai), if i = k and a binary random digit is 1

pi, otherwise

wheret is the generation number. The function∆(t, y) has the follow-

ing property: it gives a value in the range[0, y], such that a probability of

∆(t, y) returning a value close to zero increases ast increases. Initially (as

t is small) this operator searches the space uniformly. At later generations

(ast is large), it searches the space locally. In [71], the following function

was used:

∆(t, y) = yr
(
1− t

tmax

)b

,

wherer ∼ U(0, 1), tmax is the maximal generation number andb is a pa-

rameter determining the degree of nonuniformity (in [71], the authors used

b = 6 as default).

2.4 Practical Aspects 40

2.4 Practical Aspects

This section makes some comments about practical aspects of GA which the authors

consider useful or interesting. Such comments were taken from the literature on Genetic

Algorithms (especially from [42]).

2.4.1 Initial Population

Some practical comments to generate the initial population are:

1. Prior knowledge. Information about promising regions of the search space can

be used to generate initial populations. For example, individuals can be generated

with bias to the promising regions.

2. Seeding. Solutions obtained by other optimization methods can be inserted in the

initial population. This makes sure that the GA does not perform worse than the

other methods. Furthermore, GA can converge faster if the inserted solution is

close to the global minimum.

3. Dealing with small populations. The following can be useful for very small

populations which presumably do not cover some regions of the search space.

• To generate an initial population so that it is larger than the next populations

in order to improve the search space covering.

• Initial population is generated in such a way that it represents points in the

form of a grid over the search space. Hence it can uniformly cover the search

space.

• Generate the first half of the population. Next, invert every bit of the first

half, then set the second half equal to the inverted first half. This insures that

every bit have both the values 0 and 1 within the population. Furthermore

this can improve the diversity.

2.4.2 Objective Function

The objective functions in some real-world problems can be very complicated, consum-

ing a lot of computer time. Some problems require, in each individual evaluation, a

2.4 Practical Aspects 41

complete simulation of a process, which may take a long time. Some ways to deal with

time-consuming objective functions are suggested.

1. Avoid revaluating duplicated individuals by using the fitness of previously eval-

uated individuals. Some precautions can be useful as well:

• Avoid generating identical chromosomes in the initial population.

• Check whether the offspring is equal to the parents.

• Check whether crossover and/or mutation were applied to the parents. If

they were not applied, then the offspring are equal to the parents.

• Keep the population always with distinct chromosomes. This also helps to

keep the diversity.

• Before evaluate a new chromosome, check whether it is already in some

place within population. In extreme cases, it can be worth storing all chro-

mosomes of the preceding generations in order to check whether the off-

spring has been evaluated in a past generation.

2. Simplify the objective function. In early generations of the GA, it is only neces-

sary a rough estimation of the fitness to make the GA able to find the promising

regions of the search space. Then, a simplified and faster version of the pro-

cedure that calculates the fitness could be used in early generations. In the last

generations, where the individuals are similar to each other, the original objective

function should be used to make an exact distinction among the individuals.

3. Add a downhill method in the end. A GA is fast in finding the region of the

global minimum. However, the GA is slow to go down this region. In the last

generations, the GA can be suspended and replaced by a downhill method (which

quickly goes to the bottom of the region) to complete the search.

2.4.3 Stopping Criteria

Some usual stopping criteria for GAs are:

• Maximum number of generations.

2.4 Practical Aspects 42

• Correct answer. Stop if the GA found the minimum value of the objective func-

tion.

• Convergence. If no improvement happens during several generations, then stop.

The GA can have found the global minimum, but be sure here because GAs some-

times converge to a local minimum. Alternatively, the following methods can be

used:

- A gene is said to have converged when 95% of the population share the

same value. A population is said to have converged when all its genes have

converged [10].

- If either the average fitness or its standard deviation has not changed signif-

icantly under several generations, then stop the GA.

2.4.4 Generational and Steady State Replacement

GAs work by replacing individuals in a population with new ones. Common types of

replacement schemes are:

• Generational replacement;

• Generational replacement with elitism;

• Steady state replacement;

• Steady state replacement without duplicates.

Consider a population withN individuals. In the generational replacement, the

whole population is replaced in each generation, that is,N offspring are produced to

replaceN parents. Alternatively, one may replace the whole population by theN best

individuals taken from the union among all parents and all offspring. However, in this

case, the selection pressure is increased.

In the case of the generational replacement with elitism, thek best individuals (typ-

ically k = 1) in the population are never replaced by inferior individuals. This type of

replacement was used in Section 2.1.4. Note that the higher the value ofk, the higher

the selection pressure.

2.4 Practical Aspects 43

Figure 2.23: Premature convergence

In the steady state replacement, only two (or one) offspring are produced in each

“generation”. Then these two offspring replace the two worst individuals in the popula-

tion. Alternatively, the two oldest individuals of the population may be replaced by the

new ones. This is based on the idea that old individuals already have spread out their

genes over the population and hence they can be discarded. The generalized form of the

steady state replacement createsk < N offspring to replacek parents. The crossover

rate is often higher (≈ 1) in the steady state replacement than in the generational re-

placement.

The steady state replacement often produces many duplicate individuals in the pop-

ulation [24]. The steady state replacement without duplicates is an alternative scheme

which does not replace an individual with an offspring if there is already a duplicate of

that offspring in the population.

2.4.5 Convergence Problems

The premature convergence is a classical GAs problem. It occurs when individuals

with high fitness (but not optimal) appear in the population, while the true optimal in-

dividuals have not risen yet. Such high fitness individuals (known as superindividuals)

generate an excessive number of offspring. Thus, the superindividuals spread out their

genes throughout the population, whereas other genes disappear. So the population is

dominated by superindividuals’ genes, once the population is finite. As a result, the GA

converges to a local maximum/minimum, as shown in Figure 2.23.

One can prevent the premature convergence by limiting the number of offspring

2.4 Practical Aspects 44

for each individual. This limitation can be carried out by scaling, ranking, tournament

selection or other methods described in sections 2.4.6 and 2.4.7. The maintenance of

the diversity of individuals also helps to combat the premature convergence, once this

problem is caused by the loss of diversity itself. The increasing of the mutation rate

may improve the diversity (more genes are created). Another alternative to improve the

diversity is to avoid duplicate individuals in the population.

Another convergence problem in GAs is due to the overcompression of the fitness

range. This is explained as follows. Consider changing the objective function of the

optimization problem given by Equation 2.8 to the following new objective function:

f(x1, x2) = 2000−

(
sin

√
x2

1 + x2
2

)2

− 0, 5

(1, 0 + 0, 001 (x2
1 + x2

2))
2 (2.12)

According to the Equation 2.12, the values of the objective function become almost the

same for all population, as shown in the Table 2.3. These situations reduce the selection

pressure. In other words, they practically eliminate the GA selection mechanism, since

all individuals have the same selection probability. It follows that the GA loses its search

capacity, becoming merely a random walk process.

A related convergence problem is known as slow finishing [10]. Because almost all

individuals are similar to each other near the end of a GA run, almost all individuals

have similar fitness. Again, this is a case of overcompression of the fitness range, and

so the GA converges slowly. Overcompressed range problems can be combated with

the same methods used to combat premature convergence: scaling, ranking or other

methods shown in sections 2.4.6 and 2.4.7.

2.4.6 Remapping the Objective Function

The value of the objective function is not always appropriated to the fitness value. For

example, the value of the objective function may:

• be negative (the roulette wheel selection does not work);

• lie in an overcompressed range (eliminates the selection);

2.4 Practical Aspects 45

Table 2.3: Overcompression of the fitness range

Objective Selection
Individual function probability

A 2,000.999588 20.004%
B 2,000.826877 20.002%
C 2,000.655533 20.001%
D 2,000.400148 19.998%
E 2,000.102002 19.995%

• be very high with respect to others points of the function (causes premature con-

vergence);

Because of this, remapping the objective function to an appropriated value can then be

necessary. There are several ways to do this as discussed next.

Ranking

Basically, the ranking methods sort the population by the value of objective function

and assign the fitness according to rank. The following paragraphs show some ranking

methods.

In the linear ranking, the fitness is given by [6, 102]:

fi = min + (max−min)
N − i

N − 1
(2.13)

wherei is the index of the individual in a list sorted in order of decreasing value of the

objective function, andN is the population size. Linear ranking requires:

1 ≤ max≤ 2 (2.14)

max+ min = 2. (2.15)

It is worth noting that the linear ranking fitness represents the expected number of

copies of an individual in the mating pool. Therefore, max is the expected number

of copies of the best individual in the mating pool. So max can be interpreted as the

selection pressure (see 2.2.3). The ranking solves the problem of overcompression of

2.4 Practical Aspects 46

1 N

rank

min

max
high selection
pressure

2 3

fi
tn

e
s
s

(a)

1 N

min

max

2 3

fi
tn

e
s
s

rank

low selection
pressure

(b)

Figure 2.24: Ranking and the selection pressure

range (see Table 2.3) discussed in Section 2.4.5 by expanding the fitness range, as shown

in the Table 2.4.

Table 2.4: Linear ranking

Objective Selection
Chromosome function Rank Fitness probability

A 2,000.999588 1 2.0 40%
B 2,000.826877 2 1.5 30%
C 2,000.655533 3 1.0 20%
D 2,000.400148 4 0.5 10%
E 2,000.102002 5 0.0 0%

By adjusting the parameter max from the Equation 2.13, the selection pressure can

be controlled. In Figure 2.24(a), the high selection pressure strongly favors the best

individuals and then drives the search to the highest fitness regions of the search space

(much exploitation). In Figure 2.24(b), the low selection pressure weakly favors the

best individuals, driving the search to unknown regions of the search space (much ex-

ploration).

In the exponential ranking, the fitness is given by [71]

fi = q(1− q)i−1 (2.16)

2.4 Practical Aspects 47

whereq ∈ [0, 1] andi is the index of the individual in a list sorted in order of decreasing

value of the objective function. Alternatively, the fitness may be normalized by dividing

the Equation 2.16 by1 − (1 − q)N . The exponential ranking allows a larger selection

pressure than the one allowed by linear ranking.

Linear Scaling

In the linear scaling, the fitness is obtained by the following linear mapping:

f = ag + b

whereg is the value of the objective function andf is the scaled fitness (see Figure 2.25).

The coefficientsa andb are determined by limiting the expected number of copies, in

the mating pool, of the best individual (because an excessive number of copies causes

loss of diversity). The linear scaling [34] transforms the fitness in such a way that the

average fitness becomes equal to the average value of the objective function:

f̄ = ḡ, (2.17)

and the maximum fitness becomes equal toC times the average fitness

fmax = Cf̄ (2.18)

The parameterC (typically between 1.2 and 2.0) can be used to control the selection

pressure. The coefficientsa andb are determined as follows. We have

f̄ =
1

N

N∑
i=1

(agi + b) = aḡ + b (2.19)

From 2.17 and 2.19, we have

ḡ = aḡ + b (2.20)

Note thatfmax = agmax + b. Replacing this equation and 2.19 in 2.18, we have

agmax + b = C(aḡ + b) (2.21)

2.4 Practical Aspects 48

Figure 2.25: Linear scaling

From 2.21 and 2.20, we have

a =
ḡ(C − 1)

gmax − ḡ
, b =

ḡ(gmax − Cḡ)

gmax − ḡ

When the scaling produces negative fitnesses, the coefficientsa andb are computed

using another method (by imposingfmin = 0). These two methods are in the procedure

in the Figure 2.26, where the testgmin > (Cḡ − gmax)/(C − 1) verifies whether there

are negative fitnesses.

2.4.7 Selection Methods

The Darwinian natural selection is one of the biological evolution principles that GAs

attempts to mimic. It provides the force that drives a GA towards the best regions of the

search space. The following selection methods are broadly used:

• Roulette wheel selection;

• n-Way tournament selection;

• Stochastic universal sampling.

The roulette wheel selection is described in the Section 2.1.2. Next, the ramainder

methods are described in this section.

2.4 Practical Aspects 49

ḡ ← 1
N

∑N
i=1 gi

IF gmin > (Cḡ − gmax)/(C − 1) THEN
∆← gmax − ḡ
a← (C − 1)ḡ/∆
b← ḡ(gmax − Cḡ)/∆

ELSE
∆← ḡ − gmin

a← ḡ/∆
b← −ḡgmin/∆

END IF
RETURN a andb

Figure 2.26: Procedure for calculating the linear scaling coefficientsa andb

n-Way Tournament Selection

Then-way tournament method selects each individual as follows: one randomly choose,

with the same probability,n individuals and the best one (the winner) among them is

selected. This procedure is repeated until to select (in general)N individuals whereN

is the population size. Whenn is equal to two, this method is called binary tournament

selection.

A generalization of this method is the probabilisticn-way tournament selection.

Whether or not an individual wins the tournament depends on its victory probability.

The best individual of the tournament set wins the tournament with probabilityq (where

0, 5 < q < 1), the second one wins with probability1 − q, the third one wins with

probabilityq(1−q)2, and so on. The higher the tournament sizen or victory probability

q, the higher the selection pressure. Note that ifn = N , the probabilistic tournament

selection is equivalent to the exponential ranking, while ifn = 1, it is equivalent to a

random selection. Note also that neither scaling nor ranking is necessary for then-way

tournament selection.

2.5 Summary 50

Figure 2.27: Stochastic Universal Sampling

Stochastic Universal Sampling

Both roulette wheel selection and stochastic universal sampling [6], SUS, are fitness-

proportionate schemes. However, the roulette wheel selection presents a large variance

for the expected number of copies (in the mating pool) of an individual. The SUS

corrects this problem by using a scheme theoretically as perfect as possible.

The population is shuffled and a pie graph is built by associating each slice to an

individual. The slice size is proportional to the individual’s fitness. Next,N equally

spaced pointers are placed around the pie whereN is the population size. Finally, every

pointed individual is selected, as shown in Figure 2.27.

2.5 Summary

The following are some of major points of the chapter:

• The main GA operators are three ones: crossover, mutation and selection. By

favoring the high-fitness individuals, the selection operator drives the GA to high-

fitness regions of the search space. Whereas crossover and mutation allow GA

explore unknown regions of search space. The simultaneous combination of the

three GA operators will make GA converge to the highest fitness individual.

• In general, the GA convergence depends on two aspects: exploitation and ex-

ploration. Equivalently, GA convergence depends on selection pressure and the

2.5 Summary 51

diversity once high selection pressure provokes high exploration. Whereas high

diversity provokes high exploitation.

• GA is a productive technique to deal with complex optimization problems that

cannot be solved by conventional optimization methods.

• Nontraditional GAs (such as the real coded GA) are most of the time better to

solve real world problems than the binary GA.

• Despite GA being straightforward to apply to lot of optimization problems, some

practical aspects must be considered in the optimization via GAs. The main prac-

tical aspects to be considered to make the GA suitable to solve a specific opti-

mization problem are:

1. The genetic encoding;

2. A way to create the initial population;

3. The selection pressure and other user-controlled parameters;

4. The design of the genetic operators;

5. The choice of the objective function.

Chapter 3

Learning and RBF Networks

“ Give your lessons wisely
in the school of life while

the book of trials still rests
in your hands. Learning is a

blessing, and there are thousands
of brothers and sisters nearby

awaiting a scholarship
in reincarnation.”

(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This Chapter introduces learning concepts and gives a brief introduction to RBF

networks.

3.1 The Learning Problem

Frequently, in machine learning, one looks for a function that estimate the outputy of a

system for an inputx. Examples of these systems arise in many different settings:

Example 1. A system for image recognition. For example, a system to classify a

digital image whose input is a vectorx containing pixels/colors of the image and the

outputy is the identification of the image.

Example 2. A system for illness diagnosis. For example, a system classifies a tumor

by responding whether it is either benign (y = 0) or malignant (y = 1), where the input

52

3.1 The Learning Problem 53

is a vectorx containing features of the patient.

Example 3. A system for prediction of consumption of electrical energy. For ex-

ample, a function whose outputy is the hourly consumed energy and the input vectorx

contains the date, time of day, outside temperature, and speed wind.

Our effort in this work is to find an approximation or a predictionh for a future

outputy of the system. The process in which an approximated functionh is built is

calledlearning. The learning process has three components [97]:

1. A generator of random input vectorsx, drawn independently from a fixed but

unknown distributionP (x).

2. A supervisor which returns an outputy to every input vectorx, according to a

conditional distribution functionP (y|x), also fixed but unknown.

3. A learning algorithm capable of representing a set of functionsh ∈ H.

A learning algorithm is an algorithm to build functionsh ∈ H. A function h is

called ahypothesisand the set of all hypothesish is called thehypothesis spaceand it is

denoted byH. There are learning algorithms that represent their hypotheses as boolean

functions [96], neural networks [88], decision trees [83, 14], decisions lists [86, 22],

inference rules [73, 84], linear discriminant functions [29, 103], splines [99], hidden

Markov models [85], Bayesian networks [44] and stored list of examples [93, 2].

The learning problem is formulated as follows.

The (supervised) learning problemis that of choosing from the given set of hy-

pothesish ∈ H the one which approximates best the supervisor’s response. The selec-

tion is based on a dataset ofp independent examples:

D = {(xi, yi); i = 1, . . . , p} (3.1)

but the joint probability distributionP (y,x) = P (y|x)P (x) is unknown and the only

available information is contained in the datasetD.

3.2 The True Prediction Error 54

3.2 The True Prediction Error

In order to select the best hypothesis, one estimates thetrue prediction error[26] (true

error for short), denoted bye, in which is a measure of how good a hyphotesisf is at

preticting the supervisor responsey for input vectorx.

In regression problems, the true errore(h) is given by expected squared difference

between a supervisor response and a hypothesis response:

e(h) = E〈y − h(x)2〉 (3.2)

where the expectation E refer to repeated sampling of examples drawn from an unknown

joint probability distribuitionP (x, y) = P (y|x)P (x). Equation 3.2 can also be written

as

e(h) = lim
n→∞

1

n

n∑
i=1

(yi − h(xi))
2 (3.3)

=
∫

(y − h(x))2P (x, y)dxdy (3.4)

The standard tool to estimate the true error is thek-fold-crossvalidation method [95,

51]. Other estimates of true error are holdout and bootstrap methods (see Chapter 6).

Next section shows how to estimate the true error usingk-fold-crossvalidation over a

simple regression problem.

3.3 Estimating the True Prediction Error

Consider a learning problem whose datasetD is obtained as follows. The input exam-

plesx are drawn from uniform distributionU(−4, 4) and the outputy is drawn from

conditional distribution:

y ∼ P (y|x) = f(x) + ε (3.5)

where:

• The noiseε is drawn from normal distribution with mean zero and varianceσ2 = 0.03;

3.3 Estimating the True Prediction Error 55

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
x

f(x)
examples

Figure 3.1: A dataset

• The functionf(x) is a hermite polinomial [68]:

f(x) = 1.1(1− x− 2x2) exp

(
−x2

2

)
(3.6)

In Figure 3.1 is shown the datasetD in which the solid line is the functionf (Equa-

tion 3.6).

In this example, the learning algorithm represents hypotheses by means of Radial

Basis Function (RBF) Networks (described in Section 3.4). The learning algorithm

builds a RBF network by determining its parameter setting. Unfortunately, the learn-

ing algorithm1 is unable to determine all parameters of RBF networks (it is unable to

determine the number of hidden units of the RBF network). Therefore, the number of

hidden units will be determined by trial and error. In Table 3.1, it is shown 10 possible

choices of hidden units and the true error of the respective hypothesis built by learning

algorithm.

1This learning algorithm is described in Section 3.5 with overlap factorα = 1.5.

3.3 Estimating the True Prediction Error 56

Table 3.1: True error for several RBF network hypotheses

Number of
Hidden Units True Error

5 0.0605944
6 0.0495772
7 0.0296295
8 0.0147486
9 0.0112011
10 0.0100640 *
11 0.0104499
12 0.0188118
13 0.0151860
14 0.0186200
15 0.0222238

The best hypothesis (from Table 3.1) has 10 hidden units because it minimizes the

true error. However, the true error is unknown by user and because of this the user

cannot claim that the best hypothesis has 10 hidden units. Fortunately, the user may

estimate the true error byk-fold-cross-validation and to use the estimates (instead of the

true errors) in order to choose a hypothesis.

Thek-fold-crossvalidation method divides the datasetD in k subsets (also named

folds): D1,D2, . . . ,Dk. The folds have equal size and are mutually exclusive. It pro-

ducesk hypothesesh1, . . . , hk, where each one is built by learning algorithm from the

datasetD \ Dj (see Figure 3.2). The performanceêj obtained by the hypothesishj is

measured on the datasetDj:

êj =
1

|Dj|
∑

(x,y)∈Dj

(y − hj(x))2 (3.7)

Let ê(h) to be thek-fold-crossvalidation estimate of the true error for hypothesish.

The estimatêe(h) is equal to average of the performances of thek hypotheses:

ê(h) =
1

k

k∑
j=1

êj (3.8)

3.3 Estimating the True Prediction Error 57

D1

D2 D3 D4 D5 build h1

︸
︷
︷
︸

D1

D2

D3 D4 D5 build h2

︸
︷
︷
︸

D1 D2

D3

D4 D5 build h3

︸
︷
︷
︸

D1 D2 D3

D4

D5 build h4

︸
︷
︷
︸

D1 D2 D3 D4

D5

build h5

︸
︷
︷
︸

Figure 3.2: Thek-fold-crossvalidation method fork = 5

=
1

k

k∑
j=1

 1

|Dj|
∑

(x,y)∈Dj

(y − hj(x))2

 (3.9)

Because|D1| = |D2| = . . . = |Dk| = |D|/k then

ê(h) =
1

D

k∑
j=1

∑
(x,y)∈Dj

(y − hj(x))2 (3.10)

In Table 3.2, it is shown the10-fold-crossvalidation (k = 10) estimate for each

hypothesis from Table 3.1. According to this estimate (Equation 3.10), the user chooses

the hypothesis with 11 hidden units. This hypothesis (plotted in Figure 3.3) is similar

to the best hypothesis from Table 3.1 (in terms of number of hidden units). This result

shows that 10-fold-crossvalidation provided a good estimate for this example.

Note that there are two kinds of parameters in a hypothesis: the parameters (also

called training parameters) that are determined automatically by learning algorithm and

the parameters (also called adjustable or tunning parameters) that are not determined by

learning algorithm. In this example, the adjustable parameter is the number of hidden

units of the RBF network.

3.4 Introduction to Radial Basis Function Networks 58

Table 3.2: Estimate of true error for several RBF network hypotheses

Number of Estimate of
Hidden Units True Error True Error

5 0,0605944 0,1488140
6 0,0495772 0,1193860
7 0,0296295 0,0866174
8 0,0147486 0,0587643
9 0,0112011 0,0871740
10 0,0100640 * 0,0719187
11 0,0104499 0,0387574 *
12 0,0188118 0,0445568
13 0,0151860 0,0505755
14 0,0186200 0,0949899
15 0,0222238 0,0458567

The problem of estimating the true error for a hypothesis using different values of

adjustable parameters in order to choose the approximate best one is known asmodel

selection[41].

The model selection process in this example was done by trial and error. To search

by trial and error the set of values of adjustable parameters is impracticable if such set

is large. In this situation, a genetic algorithm can be used to search the set of values of

adjustable parameters. This issue is addressed later (in Chapter 6). Next the hypothesis

representation used throughout this text (the RBF Network) is presented.

3.4 Introduction to Radial Basis Function Networks

RBF Networks have their origin in the solution of the multivariate interpolation problem

[81, 15]. These networks have traditionally only one hidden layer (see Figure 3.4).

Properly trained, they can approximate an arbitrary functionf : <n → < by mapping:

f (x) ≈ h(x) = w0 +
m∑

j=1

wjzj (x) (3.11)

3.4 Introduction to Radial Basis Function Networks 59

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

y

x

f(x)
hypothesis with 11 hidden units

examples

Figure 3.3: Hypothesis selected byk-fold-crossvalidation withk = 10

where,x ∈ <n, {wi; i = 1, . . . ,m} denotes theweightscoefficients,w0 is thebiasand

zj (x) represents theactivation function(also known as radial basis function), which is

given by:

zj (x) = φ

(
‖x− cj‖

σj

)
(3.12)

where‖·‖ is the Euclidean norm,cj = [cj1, cj2, . . . , cjn]T is thecenter vector, σj is the

width, which is a scaling factor for the radius‖x− cj‖, andφ (·) is a non-linear func-

tion that monotonically decreases (or increases) asx moves away fromcj. A common

example of a radial basis function is the Gaussian functionφ (v) = exp (−v2/2). Others

examples are:φ (v) = v (linear);φ (v) = v3 (cubic);φ (v) = v2 log v (thin plate spline);

φ (v) =
√

v2 + 1 (multiquadratic); andφ (v) = 1/
√

v2 + 1 (inverse multiquadratic).

3.5 Hybrid Learning of RBF networks 60

w0

wm

bias

zm(x)

z1(x)
w1

x1

xn

x1

xn

Σ
h()x

input layer hidden layer output layer

Figure 3.4: A Radial Basis Function Network

3.5 Hybrid Learning of RBF networks

Several training techniques have been proposed to train RBF networks. A well known

training technique[75] employs a hybrid approach that combines unsupervised and su-

pervised learning. In order to see how it works, let

{(xi, yi) ; i = 1, . . . , p} (3.13)

be the set of the training examples wherexi is aninput vectorandyi its desired output.

The unsupervised learning stage defines the center and width of the radial basis

functions. Simple methods makeci = xαi
, for i = 1, . . . ,m, whereαi ∈ {1, . . . , p}

is randomly chosen. Usually, the number of centers,m, is determined by trial and

error. Nevertheless, this approach is prone to generate large networks, overfitting, and

numerical problems (mainly when the data set is noisy)[78].

A more efficient approach employs a clustering algorithm, such asK-means[4] or

self-organizing feature map[52]. Roughly speaking, theK-means starts by randomly

assigning thep input vectorsxj to K setsS1, . . . , SK . Next, it computes the mean

vectors of each set as:

mi =
1

|Si|
∑

xj∈Si

xj (3.14)

In the following steps, it re-assigns all input vectorsxj to the nearest clusterSi (i.e.,

nearest mean vector) and recalculates the mean vector for each cluster. This two steps

procedure is repeated until there is no further change in the mean vectors. These vectors

3.5 Hybrid Learning of RBF networks 61

become the centers (i.e.,ci = mi for i = 1, . . . , K). Another alternative is to partition

the input space in regions using a decision-tree [53].

The widths are usually defined by computationally inexpensive heuristics [89]. Moody

and Darken, in [75], suggest that a single valueσ for all basis functions gives good re-

sults. They usedσ = 〈‖ci−cj‖〉, wherecj is the nearest center fromci and〈·〉 indicates

the average over all such pairs. Others methods use a different valueσi for each basis

function. In [89], each widthσi is defined as

σi = α‖ci − cj‖, (3.15)

whereα is an overlap factor andci andcj are defined as before.

The Least Squares Problem

In the supervised learning stage, the RBF network with fixed centers and widths can be

interpreted as a case of multivariate linear regression on the training set:

y = Zw + e (3.16)

wherey = [y1, y2, . . . , yp]
T is the desired output,Z is thedesign matrix, which is a

matrix with thej th column[zj (x1) , zj (x2) , . . . , zj (xp)]
T, w = [w1, w2, . . . , wm]T is

the output layer weight vector ande is the error. The vectorw is determined minimizing

the sum of squared errors:

Findw that minimizesSSE = eTe (3.17)

A simple method to find the solution of this linear least squares problem may be

obtained solving the well-known linear system (callednormal equations):

(
ZTZ

)
w = ZTy (3.18)

Nevertheless, this simple method to solve the least squares problem is prone to numeri-

cal problems as shown in the next section.

3.6 Computational Considerations 62

3.6 Computational Considerations

The three following methods are usually used to solve a least squares problem (described

by the Equations 3.16 and 3.17):

• Cholesky decomposition;

• QR decomposition;

• Singular value decomposition (SVD).

The Cholesky decomposition of the matrixZTZ is the faster way to solve the linear

system 3.18 (i.e., the normal equations). However, the solution of a least squares prob-

lem directly from normal equations 3.18 via Cholesky decomposition is susceptible to

roundoff errors. Because of this, a method called QR decomposition (of the matrixZ)

may be better than Cholesky decomposition due to its numerical stability [64, 41].

Another numerical problem, called ill-conditioning2, can arise due to large and noise

training datasets. In general, Cholesky and QR decompositions fail to provide satisfac-

tory results if there are ill-conditioned matrices (e.g., ifZTZ is ill-conditioned) in the

least square problem. In this case, the use of SVD has been recommended [82]. SVD

does not directly use the normal equations, instead of this, SVD computes the pseudo-

inverse matrixZ+. Thus, the weight vectorw is given by

w = Z+y (3.19)

where

Z+ =
(
ZTZ

)−1
ZT (3.20)

Another way to deal with ill-conditioning problems by using regularization (see

section 3.7).

3.7 Ridge Regression

Ridge regression (also called weight decay) is a particular type of regularization. The

regularization technique is often used to avoid overfitting in neural networks [43]. Penalty

2Ill-conditioned matrices are close to singular.

3.7 Ridge Regression 63

or regularization functions are added to the SSE in order to control the smoothness prop-

erties of the network. The ridge regression minimizes the cost function:

Findw that minimizesC = SSE + βwTw (3.21)

whereβ is the regularization (or ridge) parameter, which control the smoothness of the

RBF network. The solution to this least squares problem is obtained solving the linear

system:

(ZTZ + βI)w = ZTy (3.22)

whereI is the identity matrix. The SVD is not necessary to solve the system (3.22),

since regularization itself avoids numerical problems. Thus, faster algorithms (such as

Cholesky or LU decomposition [82]) able to solve linear systems can be used instead of

SVD.

This fast approach (i.e., the use of regularization combined with either Cholesky or

LU decomposition) is very useful to design RBF networks using Genetic Algorithms,

once short computational time to evaluate RBF networks is critical to the overall perfor-

mance. Because of this, this fast approach is used in all the experiments in this work.

Chapter 4

Combining RBF Networks and Genetic

Algorithms

“Do not run away from the lessons
to be learnt along your evolutionary

path, however difficult or painful
they may be, so that later on life may

open up the sanctuary of wisdom to you..”
(Book: Christian Agenda,

André Luiz - medium F.C.Xavier.)

This Chapter shows several ways to combine RBF networks and GAs. Encoding

issues and some problems involved in the combination of RBF Networks with Genetic

Algorithms are also described (mainly the redundancy problem). Finally, a review of

previous works is given.

4.1 Combining Neural Networks and Genetic Algorithms

Roughly speaking, ANNs can be combinated with GAs in three different ways:

• Evolutionary design. It is the evolution of neural architectures and of the algo-

rithmic parameters. The parameters to be optimized may include the number of

layers, the number of hidden units, the activation function and the algorithmic

parameters, such as learning rate.

64

4.1 Combining Neural Networks and Genetic Algorithms 65

• ANN training . A GA may be used as a training algorithm to optimize the values

of the network weights and centers.

• Evolution of learning rule . Given an ANN, this method looks for an efficient

learning rule.

In the case of evolutionary design, in general, each individual can be seen as a state

of the space of neural architectures. Beginning the process with a population of geno-

typical representations of neural architectures, usually randomly generated, a generator

reconstructs each network (phenotype) from its representation (genotype), according to

a chosen encoding procedure. Then, in order to evaluate their performances, all the

networks are trained, in general, with the same dataset. Next an evaluation function de-

termines the current state of the population, establishing the fitness (an aptitude grade)

for each architecture according to its performance or generalization over the dataset.

Through a selection method, such as the roulette wheel, the architectures are selected

according to a relative probability associated to their fitnesses. The selection continues

until the next population of candidates is completed. Later, the candidates go through

a reproduction stage guided by mutation and crossover genetic operators. By means

of these operators, a new generation of neural architectures is constructed. In order to

avoid the possible disappearance of the best architectures from the population, an elitist

policy can also be used, which automatically sends best networks to the next generation.

This cycle is repeated and the population evolves gradually towards genotypes that

correspond to phenotypes with higher performances. This cycle is carried out a certain

number of times until the algorithm finds appropriate solutions to the problem.

The evolutionary design also includes the evolution of algorithmic parameters. Ex-

amples of algorithmic parameters are the learning rate and the number of epochs of

the Backpropagation algorithm or the regularization parameter of the ridge regression

method used in the RBF Network training.

In ANN training, the GA is used as a training algorithm to optimize the centers

and widths (and optionally the weights) of RBF networks. In the evolution of learning

rule, given an ANN, this method looks for an efficient learning rule [18, 105]. In [18],

learning rules, competitive with the Delta Rule (also known as LMS algorithm [103]),

were evolved.

4.1 Combining Neural Networks and Genetic Algorithms 66

Although most of the evolutionary approaches for ANN design have been focused

on MLP networks [105], their long training time is a strong negative factor concerning

the chromosome evaluation efficiency. RBF networks are known for requiring a much

shorter training period. To take advantage of this feature, a few methods have also been

proposed to optimize the parameters of RBF networks.

RBF networks training optimization has been pursued by other approaches like OLS

(Orthogonal Least Squares) [19, 78, 79] and RAN (Resource Allocating Network) [80,

48, 106]. Despite being very fast, these methods perform a local search; thus they can

easily fall in local minima and produce sub-optimal solutions. GAs, on the other hand,

are global search methods (see section 2.2). They can provide an efficient alternative

for the optimization of RBF networks. When RBF networks are genetically optimized,

several parameters may be considered, such as:

• Number of hidden units: m;

• Basis functions: z1, . . . , zm used by each unit;

• Centers: c1, . . . , cm wherecj = [cj1, cj2, . . . , cjn]T is a vector center of the basis

functionzj;

• Widths: σ1, . . . , σm whereσj is the width of basis functionzj;

• Weights: w = [w1, . . . , wm]T wherewj is the weight connecting thejth hidden

unit and the output unit.

The current evolutionary optimization approaches usually optimize a subset of these

parameters. The weights, for example, are most of the time determinated by least

squares methods. In next section, some problems involved in the combination of RBF

Networks with GAs are described.

4.1.1 Encoding Issues

The choice of the adequate encoding for the chromosomes is a central issue for the

optimization of RBF Networks through GAs. The encoding defines the class of neural

architectures that can be evolved. Moreover, the definition of genetic operators is, in

general, based on the encoding chosen. These factors contribute directly or indirectly to

4.1 Combining Neural Networks and Genetic Algorithms 67

Figure 4.1: Genotype to phenotype mapping.

the efficiency (with respect to processing time and fitness values obtained) of the genetic

optimization [7].

Traditional encodings use binary string. However, in order to provide a represen-

tation more suitable to the characteristics of the problem being solved, a large range

of encodings have been proposed [32]. Encodings have varied from real strings (used

mostly in numerical optimization) and integer permutation encodings (used in some

combinatorial optimization problems) to general data structures, often used in engineer-

ing problems.

To evaluate a chromosome, GAs map a point from the genotype space to the phe-

notype space. From this mapping, many important issues concerning genetic encodings

may arise. Here, it is useful to distinguish two important concepts on the genotype-

phenotype mapping: infeasibility and illegality (Figure 4.1).

A phenotype is infeasible if it lies outside the feasible region of the optimization

problem. A genotype is illegal if it cannot be mapped to the phenotype space. Note

that infeasibility is derived from the nature of the constrained optimization problems

whereas illegality is derived from the nature of problem-specific encoding. Therefore,

infeasibility and illegality are unrelated concepts. In order to better explain these con-

cepts, two examples of illegality are given.

Example 1: consider the Traveling Salesman Problem, TSP: a seller visitsN cities

(e.g., cities A, B, C, D, and E), returning to the first city. Each city is visited only once.

In this example, two possible tours are (BACDE) and (EBDAC). The application of a

two-point crossover [34] to these tours results in:

4.1 Combining Neural Networks and Genetic Algorithms 68

Reparing

Input

Output

Inval id uni t

Chromosome

Decoding

Input

Output

Figure 4.2: Reparing an illegal network

Tour 1 (BACDE)

Tour 2 (EBDAC)

Offspring (BADAE)⇒ illegal tour

Clearly, this offspring is illegal because its tour is invalid, once the city A is visited

twice. Repair techniques are usually employed to convert a illegal chromosome to a

legal one. For example, the well-know PMX crossover [34] often used in the TSP is

essentially a two-point crossover combined with a repair procedure to fix the illegal

chromosome produced by the two-point crossover.

Example 2: some encodings used for ANNs optimization [40] can produce invalid

networks. For example, the ANN from Figure 4.2 has one hidden unit without input

connections. Thus, the chromosome that produced this network is illegal. A repair

procedure could delete that invalid unit.

4.1.2 Desirable Properties of Genetic Encodings

Consider the following notation used througout this section.

• E denotes a problem-specific genetic encoding.

• G denotes the genotype space, i.e., the set of all genotype representable in the

chosen encodingE .

• P denotes the phenotype space (or solution set), i.e., the set of all solutions for

the otimization problem.

4.1 Combining Neural Networks and Genetic Algorithms 69

• F ⊆ P denotes the feasible set, i.e., the set of all phonotype inP that is not

infeasible.

• L ⊆ G denotes the legal set, i.e., the set of all genotypes inG that is not illegal.

• D : L → P denotes the decoding function, i.e., the function that produces a

phenotypep corresponding to a genotypeg. Note that the domain ofD isL, once

illegal genotypes cannot be mapped to the phenotype space.

Based on the works of [32] and [7], some desirable properties of genetic encodings

are listed as follows.

1. Nonredundancy. D is injective. The mapping between encodings and solutions

must be injective.

If a non injective mapping occurs, the GA waste time in searching because one or

more individuals may be duplicated in the genotype space. Hence, the injective

mapping (nonredundancy) is a desirable property for an encoding. Next section

details this property for RBF networks.

2. Legality. G = L. Any instance of an encoding corresponds to a solution.

3. Feasibility. RangeD = F .

4. Completeness. D is surjective. Any solution has a corresponding encoding.

This property guarantees that any point of the search space is accessible by the

GA search.

5. Goldness. Let p∗ ∈ P to be the best solution. If there exist al ∈ L such that

p∗ = D(l). That is to say, the best solution has a corresponding encoding.

6. Nonredundant completeness. D is bijective. The encoding is nonredundant and

complete.

7. Strong casuality (or well-conditioning). Small variations on the genotype space

due to mutation imply small variations in the phenotype space.

This focus whether the neighborhood of a chromosome (in the genotype space) is

also preserved in the corresponding phenotype space. A search process is strongly

4.1 Combining Neural Networks and Genetic Algorithms 70

casual (or well-conditioned) if it do not destroy the neighborhood of a chromo-

some. Weak casuality (or ill-conditioning) refer to the case where small variations

on the genotype space imply large changes in the phenotype space, and vice versa

[32]. According to [91], strong casuality is a desirable property of genetic encod-

ings.

4.1.3 Redundancy and Illegality in RBF Network Encodings

The encoding of RBF networks may suffer from a problem named redundancy. In the lit-

erature of genetic optimization of ANNs, redundancy is also known by different names:

functional equivalence problem [77], competing conventions problem [90] and permu-

tation problem[38]. Redundancy occurs if the mapping from chromosomes (genotype

space) to the RBF Networks (phenotype space) is not an injective mapping.

Two chromosomes are redundant if their associated RBF networks perform the same

input-output mapping1. An example of redundant encoding is shown as follows. Con-

sider a generic chromosome of the form:

P = (p1,p2, . . . ,pm) (4.1)

wherepi encodes parameters (e.g., centers and widths) associated with the basis func-

tion zi. By using this encoding, the RBF networks on the left and right sides of Fig-

ure 4.3 could be encoded by the chromosomes(a,b, c) and(c, a,b), respectively. Al-

though these networks can perform the same input-output mapping (since they have

the same units), they have distinct chromosomes. This may significantly increases the

search space.

According to [38], the traditional crossover operator is not appropriated for redun-

dant encoding, once it may generate offsprings with duplicated basis function (illegal-

ity). For example:

Parent 1 (a b c)

Parent 2 (c a b)

Offspring (a a b)⇒ duplicated basis function

1In section 4.2.3, there is a formal definition of redundancy for RBF networks.

4.2 Review of Previous Works 71

������������
A

B

C

i
������������
C

A

B

i

Figure 4.3: Redundant RBF networks.

Figure 4.4: Overlapped Gaussian Functions.

Although two identical basis function into the same chromosome is unlikely, it is

possible to have two similar basis function, as can be seen in Figure 4.4 [38]. In this

figure, the basis functionsa andC are not identical, but they are very similar because

they play similar roles in the network (once they have Gaussian functions overlapping

each other). Such problems make the design of the crossover operator very difficult and

may significantly increase the search time.

4.2 Review of Previous Works

Three works were relevant for this research. They are described in the following sec-

tions. Other works are briefly described.

4.2.1 Selecting Centers from Patterns

Billings and Zheng [12] addressed the combinatorial aspect of RBF networks optimiza-

tion [12]. In their work, a GA selects a subset of the input patterns to become the center

vectors. Each chromosome is a variable-length string representing a subset of patterns.

4.2 Review of Previous Works 72

For example, the chromosome P.

P = (100 7 411 286)

represents a RBF network with four centers placed on the patterns labeled 100, 7, 411

and 286. The authors used thin-plate-spline basis function and employed the genetic

operators proposed by Lucasius and Kateman [65]. These operators are suited to solve

a combinatorial optimization problem known assubset selection problem.

Two types of crossovers were used: the fixed length crossover and the variable length

crossover. The lenghts of the parents are preserved in the fixed length crossover, while

they are changed in the variable length crossover.

Let P1 and P2 be the parents. In the fixed length crossover, the common genes in

both parents are first searched and two binary template strings, T1 and T2, are created

to mask the common genes in both parents. The bits belonging to T1 and T2 are set to

one if the corresponding gene is a common gene and zero otherwise. For example,

581023

8462

T1 =P1 =

9 T2 =P2 =

01010

10010

In this case, the fourth bit of T1 is set to one because the fourth gene of P1 (namely

8) is present in both parents. Next, the operator selects a random number of distinct

genes from the end of P1 and exchanges the same number of distinct genes with P2.

The common genes in both parents are preserved. The following example shows the

offspring obtained by exchanging two genes of P1 with two genes of P2:

48623

85102

F1 =

9F2 =

823

8429 6

10 5

The variable length crossover is quite similar to the fixed length crossover, but it

exchanges a random number of distinct genes from the end of P1 with a random num-

ber of distinct genes from the end of P2. Figure 4.5 shows the offspring obtained by

exchanging two genes of P1 with three genes of P2.

In this work, the Lucasius and Kateman’s trade mutation was also used. Consider

a complementary training set defined as the difference between training set and the

4.2 Review of Previous Works 73

3 69 857P1 =

8 1 452P2 =

0 00 110T1 =

1 0 010T2 =

857P1 =

8 52P2 =

3 9 6

1 4

3 481 257F1 =

8 9 65F2 =

Figure 4.5: Lucasius and Kateman’s variable length crossover

Figure 4.6: Trade mutation

set of patterns coded in the chromosome. The trade mutation replaces the genes of a

chromosome with patterns randomly selected from the current complementary training

set in an import-export fashion (see Figure 4.6) [31].

Addition and delete operators were also used. According to the authors, they help

to keep the population diversity. The addition operator concatenates a random number

of genes to the end of a chromosome. The delete operator deletes a random number of

genes from a chromosome, starting from a randomly defined chromosome position. The

networks were evaluated using a data set from a liquid level system. The authors used

500 training patterns, 500 validation patterns, a population of 60 individuals and each

algorithm run for 400 generations. The authors used a multiobjective genetic algorithm

with two objective functions: the Akaike Information Criterion (AIC) [3] over both

training set and validation set in which improved the generalization.

This work, published in 1995, presents the following interesting ideas:

4.2 Review of Previous Works 74

1. The use of a multiobjective genetic algorithm.

2. Commonly, previous GA models for neural networks minimized simple error

functions such as Sum-Squared Error, SSE (or similar functions such as Mean

Squared Error, MSE) whereas this GA minimizes a model selection criterion func-

tion (namely AIC).

3. In general, previous GAs models for neural networks used only the training set

to compute the objective function whereas this model uses simultaneously both

training and validation sets in order to compute the objective function.

4. The encoding is quite simple. However, this simplicity restricts the centers to the

input training patterns causing too large regions of search space be skipped during

the searching process.

4.2.2 Crossing Hypervolumes

Carse and Fogarty [17] proposed a method to genetically optimize centers by crossing

hypervolumes of the input space. In this work, a chromosomeP is represented by a list

of tuples as follows

P = (p1, . . . ,pm) . (4.2)

where the tuplepi is given by:

pi = (c1j, σ1j, c2j, σ2j, . . . , cnj, σnj) . (4.3)

A tuplepi encodes the parameters of the following basis function:

zi(x) =
n∏

j=1

exp

(
−(xj − cij)

2

σ2
ij

)
(4.4)

which may have a different width for each component of the center vector. This encod-

ing has the same form of the generic (and redundant) encoding showed in section 4.1.3

(Equation 4.1). It follows that it is prone to redundancy too. This drawback was tackled

by authors by means of a modified 2-point crossover which exchanges hypervolumes

of the input space instead of chunks of the chromosome structure. This hypervolume is

4.2 Review of Previous Works 75

determined by two crosspoint vectorsa,b ∈ <n, whose elements are given by:

aj = minj + (maxj −minj) r1 (4.5)

bj = aj + (maxj −minj) r2 (4.6)

wherer1 andr2 are randomly selected from the range[0, 1] with uniform probability

density and[minj, maxj] is the allowed range for the componentxj of the input vector

x.

After the modified 2-point crossover, the first offspring contains all the tuplespi

from the first parent which satisfy:

∀j, ((cij > aj) ∧ (cij < bj)) ∨ ((cij + maxj −minj) < bj) (4.7)

together with all the tuplespi from second parent which do not satisfy this condition.

The second offspring contains the remaining tuplespi from both the parents. It is shown

an example of this crossover in Figure 4.7 by crossing hypervolumes on a 2-dimensional

input space.

This work suggested that redundancy problem affects the GA performance by show-

ing experiments which the performance of the modified 2-point crossover is better than

the one of the conventional 2-point crossover. This work also presented an interesting

idea of crossing hypervolumes of input spaces. This idea is quite general because it

can be adapted, as shown in Chapter 5, to other types of crossovers in order to cross

hypervolumes in different ways.

4.2.3 Functional Equivalence of RBFs

This section shows other approach to deal with the functional equivalence problem. In

[77], the functional equivalence between chromosomes is formally expressed as:

Definition 4.1 Letpi = (wi, σi, c1, c2, . . . , cn). Two chromosomesP = (p1,p2, . . . ,pm)

andP′ = (p′1,p
′
2, . . . ,p

′
m) are functionally equivalentif and only if there exists a per-

mutationπ of the set(1, . . . ,m), such thatpi = p′π(i), for eachi ∈ {1, . . . ,m}.

Neruda [77] proposes a unique encoding, namedcanonical parameterization, to rep-

resent a class of functionally equivalent chromosomes. For such, he uses a lexicographic

4.2 Review of Previous Works 76

Figure 4.7: Crossing Hypervolumes

ordering for the tuplespi as follows.

Consider the(n + 2)-tuplesp andq. One can say thatp precedesq (in symbols

p ≺ q) if there exists an indexk ∈ {1, . . . , n + 2} such thatpj = qj, for j < k and

pk < qk. The chromosomeP = (p1,p2, . . . ,pm) is a canonical parameterization if:

p1 ≺ p2 ≺ . . . ≺ pm (4.8)

The GA, proposed in this article, requires that the chromosomes be canonical pa-

rameterizations. The genetic operators were adapted to preserve this property. Mutation

is applied on elements of a randomly chosen tuplepi generating a new tuplep′i, which

4.2 Review of Previous Works 77

must be restricted to the limits:

pi−1 ≺ p′i ≺ pi+1 (4.9)

The application of a 1-point-crossover on the parentsP = (p1, . . . ,pm) andQ =

(q1, . . . ,qm), with cut point in the positioni, produces the offspring:

(p1, . . . ,pi,qi+1, . . . ,qm)

which is valid only ifpi ≺ qi+1; otherwise another cut point must be chosen.

By eliminating structurally different chromosomes representing networks with the

same functionality (i.e., redundancy), this model clearly reduces the search space. It

would be interesting to see its performance. However, in the article consulted, the author

did not present any experimental results for his model.

4.2.4 Other Models

Maillard and Gueriot[69] modified the model described in Section 4.2.1 by allowing

the centers to assume other points besides the training input vectors. In this model, the

authors also investigated the use of several types of basis functions in the same network.

According to the authors, networks with different basis functions presented a smaller

number of hidden nodes and achieved lower error rates than those using only Gaussian

functions. The chromossome is a variable length list of five gene sequences. Each 5-

gene sequence codes the characteristics of a basis function as shows Figure 4.8. The

center of a basis function is defined as the weighted barycenter of two patterns labeled

as Id1 and Id2 in Figure 4.8.

Whitehead and Choate [100] proposed a genetic approach that evolves space-filling

curves to set the center vectors. The underlying idea involves the mapping of the centers

from an-dimensional region of the input space (defined by such space-filling curves)

to a unidimensional space in which the chromosome is encoded. This reduces the num-

ber of degrees of freedom of the genetic encoding. In another article, the same au-

thors evolved the centers and widths of the radial basis functions through a cooperative-

competitive GA [101]. In this method, each individual encodes only one hidden unit.

The whole population represents a unique RBF network. The individuals compete and

4.3 Comments 78

Id1T σλId2

width of the basis function

weight of the barycenter

Id of the second pattern

Id of the first pattern

type of basis function
(e.g., gaussian, thin plate spline, multiquadratic, etc.)

λ
position
of the centerId1

Id2

input space

Figure 4.8: Decoding the chromossome formed by a list of 5-gene sequences

cooperate among themselves to improve the overall performance of the network repre-

sented by the population.

Chen, Wu and Alkadhimi, in [20], train RBF networks with a combination of GAs

and the ROLS algorithm (Recursive Orthogonal Least Squares). Firstly, GA evolves

the widths and a regularization parameter of the ROLS algorithm. Next, the ROLS

algorithm defines the number and position of the center vectors. Others works involving

GA and RBF networks are [8, 92, 16, 39, 98, 54, 70].

4.3 Comments

Three works [12, 77, 17] served as a starting point for ideas in this research:

• In [12] (see section 4.2.1), a multiobjective optimization GA method for RBF

networks was presented in which the objective functions were model selection

criteria (namely the Akaike information criterion). Inspired on this approach, it is

proposed, in Chapter 5, a multiobjective GA using other different model selection

criteria.

• In [77] (see section 4.2.3), it was given a light on the redundant problem in RBF

networks by presenting a theoretical treatment on this problem.

• In [17], it was shown how deal with redundant problems in RBF networks by

crossing hypervolumes on input space instead structural chunks of chromosome.

4.3 Comments 79

Inspired on this approach, it is proposed, in the Chapter 6, a crossover that also

cross hypervolumes on input space.

Despite of being interesting, other works, shown in section 4.2.4, do not directly

influence this research. In fact, most of these works empathize the encodings itself.

Whereas this research empathizes the objective functions (mainly the model selection

criteria). Moreover, some works do not deal with redundant problem. Whereas this

research consired the redundant problem in order to design the proposed RBF encoding

in Chapter 5.

Chapter 5

The Proposed Genetic Encodings and

their Operators

“If the question is excessively
complex, wait one more day or

one more week in order to resolve it.
Time does not pass in vain.”

(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This chapter presents the GA proposed in this research by describing the encoding

and the genetic operators. The objective functions and others components are described

in the next chapter. Two new genetic encodings are proposed here:

1. Model I (also called the model with multiple centers per cluster);

2. Model II (also called the model with one center per cluster).

They are described as follows.

80

5.1 Model I - Multiple Centers per Cluster 81

5.1 Model I - Multiple Centers per Cluster

5.1.1 Encoding

In the model I, the chromosome is a variable length list of tuples given by:

P = (p1,p2, . . . ,pmP
) (5.1)

wheremP is the number of hidden units coded in the chromosomeP. The tuplepj,

1 ≤ j ≤ mP, codes a basis function and is given by:

pj = (rj; σj; cj1, cj2, . . . , cjn) (5.2)

The parameters of the basis function coded intopj are:

• σj ∈ [0, 1] is the coded width.

• cj1, . . . , cjn ∈ [0, 1] are the coded coordinates of the center.

• rj is a integer identifier indicating that the center is inside the regionRrj
of the

input space (this region is discussed below).

5.1.2 Partitioning the Input Space

The partition of the input space creates a set ofK regions{R1, . . . , RK}, which are

placed in the areas where there is high density of training input patterns, as showed

in Figure 5.1. The width of the regionRi along each coordinate direction is deter-

mined by the corresponding components of the vectorsli = [li1, . . . , lin]T andui =

[ui1, . . . , uin]T. That is,

Ri = {x ∈ <n : li1 ≤ x1 ≤ ui1, . . . , lin ≤ xn ≤ uin} (5.3)

In other words, the componentslik anduik are the lower and upper limits, respectively,

of the regionRi along a coordinate direction.

In this work, the vectorsli andui are obtained from the clusters of training input

patterns generated by theK-means clustering algorithm [4]. ConsiderSi a cluster of

5.1 Model I - Multiple Centers per Cluster 82

R1

R2

R3

x1

x
2

Figure 5.1: Partioning the input space by means of clusters of patterns

input training patterns. The vectorsli andui are obtained from clusterSi as follows:

lik = min
x∈Si

xk (5.4)

uik = max
x∈Si

xk (5.5)

for all k = 1, . . . , n. By using the above procedure, the regionRi encompass all patterns

of the clusterSi.

5.1.3 Decoding

Consider the following chromosome to be decoded:P = (p1,p2, . . . ,pm) where

pj = (rj; σj; cj1, cj2, . . . , cjn). The parameterrj ∈ [1, K] is coded as a integer. The

parametersσj, cj1, cj2, . . . , cjn are coded as floating-point values and normalized as:

σj, cj1, cj2, . . . , cjn ∈ [0, 1]. The decoding is carried out as follows

c′jk = lrj ,k + cjk(urj ,k − lrj ,k), for k = 1, . . . , n. (5.6)

σ′j = sσj (5.7)

where the coefficients is a scaling factor (in this works is equal to the half the maximum

distance separating pairs of training input patterns). Thus, the center of basis function

5.1 Model I - Multiple Centers per Cluster 83

R1

R2

R3

x1

x
2

training pattern
center

chromosome
(r1;σ1; c11, c12)(r2;σ2; c21, c22) · · · (rm;σm; cm1, cm2)

decoding

Figure 5.2: Chromosome decoding

coded intopj is given by

cj =


c′j1

c′j2
...

c′jn

 (5.8)

A decoding example is shown in Figure 5.2.

5.1.4 The Cluster Crossover

The proposed GA uses a modified crossover operator, here named cluster. It is described

as follows. First, consider the parents:

P = (p1, . . . ,pmP
)

Q =
(
q1, . . . ,qmQ

)
Second, create a template bit string randomly(b1, b2, . . . , bK), bi ∈ {0, 1}, for i =

1, . . . , K. Finally, perform the cluster crossover as follows:

5.1 Model I - Multiple Centers per Cluster 84

for i = 1 to K do
if bi = 1 then

Move all genespj that are member of regionRi to the 1st offspring
else

Move all genesqj that are member of regionRi to the 1st offspring
endif
Move the rest of the genes to the 2nd offspring.

endfor
In Figure 5.3 is shown a example of the cluster crossover applied to the regions

illustrated in Figure 5.1.

Cluster Crossover vs. Traditional Crossovers

The use of the traditional crossover operators might produce duplicated genes into the

same chromosome, as shown in the following example.

Consider a case in which the centers are on the one-dimensional space. In this simple

case, the chromosomes are formed by a variable list of 3-tuples (region, width, center).

Figure 5.4 shows the traditional crossover producing an offspring with duplicated genes.

By crossing hypervolumes, the cluster crossover avoids the illegality problem in this

example as illustrated in Figure 5.5.

The cluster crossover works like the traditional uniform crossover but crosses re-

gionsRi instead of structural chunks of chromosomes (as is usually performed by stan-

dard uniform crossover). To put in another way, the cluster crossover is a method for

performing the crossing of hypervolumes on phenotype space, whereas the standard

uniform crossover operators are performed on the genotype space. It is similar in spirit

to the Carse and Fogarty’s crossover (see Section 4.2.2).

5.1.5 Mutation Operators

The following mutation operators are used:

• The uniform mutation replaces widths, centers and region identifiers by uniform

random numbers (see Section 2.3.2 for details).

• The creep mutation adds a Gaussian noise to the value of widths and centers.

The added noise is small, so creep mutation plays the role of a local search (see

Section 2.3.2 for details).

5.2 Model II - One Center per Cluster 85

Figure 5.3: The cluster crossover. The offspring 1 randomly takes a region (cluster)
from one of the parents. The offspring 2 takes the rest of the regions.

• The addition and delete operators add and delete randomly chosen hidden units.

5.2 Model II - One Center per Cluster

In this section, it is presented the model II. The main difference between the model I and

the model II is that the model II contains only one center per cluster rather than multiple

centers per cluster.

5.2.1 Encoding

In the model II, the chromosome is a fixed length list of tuples given by:

P = (α,p1,p2, . . . ,pK) (5.9)

whereα is the overlap factor (from the Equation 3.15),K is the number of regions. The

tuplepj codes a basis function, and is expressed by:

pj = (bj, cj1, cj2, . . . , cjn) (5.10)

5.2 Model II - One Center per Cluster 86

Figure 5.4: Traditional crossover generates duplicated genes

Figure 5.5: Cluster crossover using the template bit string (0,1,1)

The parameters of the basis function coded intopj are:

• cj1, . . . , cjn ∈ [0, 1] are the coded coordinates of the centercj. The centercj is

inside the regionRj (i.e.,cj ∈ Rj).

• bj is a boolean flag: ifb = TRUE thenpj is valid, otherwisepj is discarded during

the decoding.

In spite of having fixed length, the chromosome may produce network architec-

tures with variable sizes because some basis functions will be discarded (depending on

whetherbj is TRUE or not). The procedure used to generate regions is the same one

discussed in the section 5.1.2.

5.2 Model II - One Center per Cluster 87

5.2.2 Decoding

Consider the following chromosome to be decoded:P = (α,p1,p2, . . . ,pK). The

parametersα, cj1, cj2, . . . , cjn were coded as floating-point values and normalized in the

interval[0, 1]. The decoding is caried out as follows:

c′jk = lrj ,k + cjk(urj ,k − lrj ,k) (5.11)

α′ = sα (5.12)

for k = 1, . . . , n. The coefficients = 5 is a scaling factor. Thus, the center of basis

function coded intopj is given by

cj =


c′j1

c′j2
...

c′jn

 (5.13)

The overlap factorα′ is used in the Equation 3.15 to determine the width´sσi (i.e,

σi = α′‖ci − cj‖).

5.2.3 Genetic operators

Two crossovers are proposed for the model II:

1. Cluster crossover;

2. Cluster crossover combined with the blend crossover.

The cluster crossover, described in section 5.1.4, is adapted for the model II as

follows. Let P1 = (p11, . . . ,p1K) andP2 = (p21, . . . ,p2K) be the parents, where

pkj = (bkj, cjk1, cjk2, . . . , ckn). Let Q = (q1, . . . ,qK) be their child. The cluster

crossover for model II is then given by:

for j = 1 to K then
qj = p1j or p2j with equal probability.

endfor

5.3 Comments 88

Note that the cluster crossover itself does not change the value of the centers. To do

this, the cluster crossover is combined with the blend crossover (a well-known crossover

for real-coded GAs described in section 2.3.2) as follows:

for j = 1 to K then
if (b1j = 1) and (b2j = 1) then

qj = BlendCrossover(pmj,pnj)
else

qj = p1j or p2j with equal probability.
endif

endfor

in which the subroutineBlendCrossover() refers to the blend crossover.

The combination of cluster and blend crossovers for model II is straightforward

because each region has only a center. For model I, however, the combination of cluster

and blend crossovers is not obvious because there are multiple centers of the parents

inside the same region. It follows that the model I rely only on the mutation greep

operator to change the float-point value of the centers.

As before, the traditional mutation operator and some other variations are used. The

creep mutation adds a noise with normal distribution to widths and centers. Addition

and Deletion operators add and delete a hidden unit randomly chosen.

5.3 Comments

A lot of traditional RBF network learning methods used to find the position of the gaus-

sians (e.g., the k-means [75] and others [87, 76]) are based on assumption that gaussians

should be on regions of clustering of training set points because a Gaussian outside of

such regions is prone to be spurious once its response tends to be zero. The proposed en-

codings also impose the gaussians to remain in such regions by restricting the gaussians

to hyper rectangular regions on clustering regions. There are some promising ideals in

the proposed encoding:

• By restricting the gaussians to clustering regions, the GA keeps only (approxi-

mately) good networks in the population once avoid handling spurious gaussians.

It follows that the search space is also reduced.

5.3 Comments 89

• Unlike traditional learning methods, the GA allows that the gaussians are evolved

in any place on clustering regions1.

• The crossover is only performed between clustering regions. So the encoding is

nonredundant and legal (except in the atypical case when the corners of the hyper-

rectangles overlap) because the crossover between two legal chromosomes does

not produce an illegal offspring.

• It is possible to add more parameters to the chromosome (e.g., widths, basis func-

tions) if this is needed. Moreover, in the proposed encoding both network com-

plexity and performance can be evolved simultaneously.

Some comments follow by comparing the proposed encoding and the encodings

given by Billings and Zheng [12] (see section 4.2.1) and Carse and Fogarty [17] (see

section 4.2.2). Despite the search space of the Billings and Zheng’s encoding to be

smaller than the proposed encoding, it is too restrictive because it limits the centers to

the input pattern positions whereas, in the proposed encoding, the centers may lie on

any place within a cluster. In Carse and Fogarty’s encoding, the crossover is performed

between random regions of the input space. But, it seems be a better idea to perform the

crossover between clustering regions because clusters are regions with higher probabil-

ity of finding the best centers. Hence the search space is reduced.

It is worth noting that the encoding is only a component of the GA. Therefore, the

encoding itself is not the unique responsible for evolving good networks because the

choice of objective function also plays an important role in the GA search as shown in

next chapter. Furthermore, some strategies and modifications in the traditional GA can

influence strongly the search. Such issues are also addressed in next chapter.

1In the traditional k-means, per example, the gaussians are always fixed on mean of the cluster.

Chapter 6

Model Selection via Genetic

Algorithms

“Keep your balance. Unbridled
passions and desires

are forces of destruction
within the Divine Creation.”

(Book: Christian Agenda,
André Luiz - medium F.C.Xavier.)

This chapter addresses the problem of finding the adjustable parameters of a learning

algorithm using Genetic Algorithms, GAs. This problem is also known as the model se-

lection problem. Some model selection techniques (e.g., crossvalidation and bootstrap)

are used as objective functions of the GA. The GA is modified in order to adapt to that

problem by means of occam’s razor, growing, and other heuristics. Some modifications

explore features of the GA, such as the ability for handling multiple and noise objective

functions. This chapter addresses GA search mechanism, instead of other more studied

aspects like encoding and genetic operators (mainly for neural networks [105]). It is

organized as follows.

Section 6.1 gives some useful definitions. Section 6.2 describes formally the model

selection problem. Section 6.3 presents a simple GA method with occam elitism for

model selection and some experimental results. Crossvalidation, bootstrap, and other

objective functions are presented in Section 6.4, together with some experimental re-

90

6.1 Training and Adjustable Parameters 91

sults. Section 6.6 evaluates a multiobjective GA employing two heuristics (growing and

shuffling) that aim to improve the quality of the genetic hypothesis. Finally, in section

6.7, the GA is compared to two constructive algorithms used to determinate the RBF

network architecture.

6.1 Training and Adjustable Parameters

Most Machine Learning methods focus the problem of approximating a target function

f : X → Y by using the information from a dataset (i.e., a sample of examples(xi, yi),

for i = 1, . . . , p, wherex ∈ X andyi = f(xi)). In principle, a learning algorithmL
builds a hypothesish ∈ H that approximates the target functionf by determining an

set of parametersθ. Most of the time, however, there are some parameters in the setθ

in which the learning algorithm itself is unable to determine: the adjustable parameters.

Thus, for a particular learning algorithmL, there are two kinds of parameters in the set

of parametersθ:

Definition 6.1 A set of parameters is said betraining parameters(denoted byτ) if it is

determined automatically byL.

Definition 6.2 A set of parameters is said beadjustable parameters(denoted byλ) if it

is not determined byL.

Note thatθ = τ ∪ λ and τ ∩ λ = ∅. The adjustable parameters are typically

determined by human subjective judgment based on previous experience, rule of thumbs

or heuristics provided by authors and practitioners of the learning algorithm.

In other words, the adjustable parameters are determined by minimizing an estimate

of thetrue prediction error[26] (true error for short) over a set of adjustable parameters

that is known to work well on the dataset. A common example of this procedure is to

train a neural network using the backpropagation learning algorithm [88]. The back-

propagation sets the weight parameters of the network, but is unable to obtain the num-

ber of hidden units (which are the adjustable parameters of the problem). The search

carried out by the user in order to find the best adjustable parameter is essentially the

trial-and-test optimization method, which becomes inefficiency if the search space is too

large. Hence, it is necessary the human subjective judgment and heuristics to make the

6.2 Model Selection 92

trial-and-test method more efficient. Others common examples of adjustable parameters

are the amount of pruning of a decision tree, the degree of a polynomial fit to a set of

points, the ridge parameter of the ridge regression, and the best subset of variables of a

multivariate linear regression model.

6.2 Model Selection

The problem of estimating the true error of hypothesis using different adjustable param-

eters in order to choose the (approximate) best one is known asmodel selection[41].

The purpose of this work is to present Genetic Algorithms as an alternative to the trial-

and-test optimization method for model selection.

More formally, the optimization problem to be solved by GA is described as follows.

A hypothesish : X → Y (whereX × Y = E is the example space) is built by the

learning algorithmL from a choice of adjustable parameterλ and a training data set

D. It is assumed that the learning algorithm is deterministic. That is, for a particular

choice ofλ andD, the learning algorithm always builds the same hypothesis. Thus,

the hypothesish can be represented ash(λ,D). The notationh(x; λ,D) represents the

prediction ofh(λ,D) for the data pointx (i.e.,h(x; λ,D) = h(λ,D)(x)).

The true error measures how well a hypothesish(λ,D) predicts the response value

of a future example (see also Sections 3.2 and 3.3). The true error is defined as

e(λ) = E〈δ(y, h(x; λ,D))〉 (6.1)

whereδ(x, y) is a loss function. The expectation in (6.1) refers to repeated sampling

of examples randomly drawn from the example spaceE with the same probability that

was used to select the examples from training datasetD. Regression problems usually

employ the quadratic loss functionδ(x, y) = (x − y)2 (see an example in Sections 3.2

and 3.3). Classification problems usually make use of the0/1 loss function:δ(x, y) = 1

if x = y, otherwiseδ(x, y) = 0. By using the0/1 loss function, the functione(λ)

represents the probability of correctly classified examples.

The problem of choosing the adjustable parameter (i.e., the model selection prob-

lem) can be defined as:

Findλ that minimizese(λ) (6.2)

6.2 Model Selection 93

The true errore(λ) is unknown, once the only available information on the target func-

tion is contained into the datasetD. Because of this, a number of methods for estimating

the true error have been proposed [26]. The most commonly used methods for true error

estimation are:

• Holdout;

• Crossvalidation;

• Bootstrap.

Consider that̂e(λ,D) is an estimation of thee(λ) using the information from the

datasetD by means of those methods. The problem of optimizating the adjustable

parameter could be reformulated as

Findλ that minimizeŝe(λ,D) (6.3)

The best estimations of the true error are usually obtained by the crossvalidation and

bootstrap methods, which transform this optimization problem into a difficult problem.

Crossvalidation and bootstrap are computer procedures, but may be interpreted as sim-

ple functions from the optimization view point. As objective functions, they have the

following drawbacks:

1. These functions are not easy to be handled algebraically and hence derivatives are

not easy to calculate;

2. These functions are also multimodals (i.e., there exist various pointsλ that mini-

mizes them locally);

3. For a given pointλ, to obtain the response of the functions crossvalidation and

bootstrap, a large amount of CPU time may be needed, making their minimization

hard for any optimization technique (including GAs).

Because of the complex nature of this optimization problem, GAs are a natural can-

didate for solving it. Unlike other optimization metaheuristics, GAs provide a suitable

framework for the model selection problem, due to its peculiar search mechanism able

to handle many hypotheses simultaneously. This search mechanism enables GAs to use

6.3 A Simple GA for Model Selection 94

(and to create) new heuristics (as shown later), to cope with noise estimation of the true

error and to be used for multiobjective optimization.

6.3 A Simple GA for Model Selection

The application of GAs for model selection involves the optimization of the adjustable

parameters. It is worth noting that the adjustable parameters of a hypothesis do not only

depend on the features of the hypothesis, but also on the learning algorithm. Different

learning algorithms can produce different adjustable parameters for the same hypothe-

sis.

To avoid proliferating notation, the symbolλ will represent both the chromosome

and the adjustable parameters it encodes. Throughout the text, the dataset

D = {(xi, yi); i = 1, . . . , p} (6.4)

represents the set of all the examples avaliable for the problem at hand.

A typical GA for model selection has the following characteristics:

1. The chromosome encodes only the adjustable parameters.

2. A learning algorithmL embedded in the procedure that evaluate the chromosome.

The learning algorithmL is used to determine the training parameters.

3. A method for estimating the true error.

A simple GA for model selection is illustrated as follows:

6.3 A Simple GA for Model Selection 95

main program

“LetP (t) = {λ1, . . . , λN}
be the population at generationt.”

t← 0
initialize(P (t))
evaluate(P (t))
while the stopping criterion is not satisfieddo

t← t + 1
P (t)← select(P (t− 1))
P (t)← crossover(P (t))
P (t)← mutation(P (t))
evaluate(P (t))

end while

procedure evaluate(P)

for eachλi in the populationP do
Estimate the true error̂e(λi,D)
Set fitnessfi of λi equal toê(λi,D)

end for

The above procedureevaluate() computes the fitness function, that is, the estima-

tion of the true error̂e for each chromossome by using some traditional methods for

model selection, such as holdout, crossvalidation and bootstrap. In the next section, the

holdout function is presented.

6.3.1 The Holdout Fitness Function

One of the most used methods for model selection, the holdout method [51], as can be

seen in Figure 6.1, divides the datasetD into two parts: the training setDt, on which

the hypothesis is built, and the holdout setDh (also known as validation set), on which

its performance is measured. Thus,Dh = D \ Dt. Let h(λ, Dt) be the hypothesis built

from the datasetDt using the adjustable parameterλ. The fitness of the chromosomeλ

is given by:

f(λ) =
1

|Dh|
∑

(x,y)∈Dh

δ(y, h(x; λ, Dt)) (6.5)

6.3 A Simple GA for Model Selection 96

Dt

training set

Dh

holdout set

︸ ︷︷ ︸
D

Figure 6.1: The data set partition by the holdout method.

In order to improve the simple GA illustrated in section 6.3, the use of the occam elitism

is proposed.

6.3.2 The Occam Elitism

Occam’s razor is a principle attributed to the 14th century philosopher William of Oc-

cam. The principle states that “entities should not be multiplied unnecessarily”. With

this “razor”, Occam cut out all superfluous, redundant explanations. Scientists have

reintepreted the Occam’s razor. A useful statement of the principle for scientists is,

“when you have two competing theories which make exactly the same predictions, the

one that is simpler is the better.” Machine learning scientists [74] have stated that prin-

ciple as “prefer the simplest hypothesis that fits the data”. For this work, the following

statement is used:

Occam’s razor: given two hypothesis with the same estimation of true

error, the one that is simpler is the better because it is likely to have lower

true error.

The traditional elitism is a well known strategy in GAs which works by never re-

placing then best chromosomes in a population with inferior solutions. That is,

Elitism : then best chromosome are kept from generation to generation.

The occam elitism is based on the assumption that then best chromosomes in the

population are equivalent in terms of estimation of true error (at least under some statis-

tical confident limit). Because (according the Occam’s razor) thek simplest hypotheses

among then best chromosomes are better than then− k remaining hypotheses, thosek

simplest hypotheses shouldn’t be replaced with inferior solutions. In other words,

6.3 A Simple GA for Model Selection 97

Occam elitism: thek simplest hypothesis among then best chromosomes

are kept from generation to generation.

Next section shows experiments comparing the traditional elitism with the occam

elitism.

6.3.3 Experimental Studies

In the experiments performed, the proposed GA (model II) was applied to a benchmark

dataset: a Hermite polynomial approximation [68] (see Figure 6.2), which is defined by:

f(x) = 1.1(1− x− 2x2) exp

(
−x2

2

)
(6.6)

The datasets used in the experiment were generated under the same conditions

adopted in [78]. Each dataset has 40 examples randomly chosen in the range [-4, +4]

with added gaussian noise. The following noise variances were used: 0.0001, 0.0003,

0.001, 0.003, 0.01, 0.03, and 0.1. For each noise variance, the GA program was exe-

cuted, at least, 50 times (where each execution used a different random dataset) and the

results were averaged1. The GA program used the parameters in table 6.1.

The holdout method generated the holdout dataset with 50% of the original dataset.

The performance of the hypotheses was measured using the Root-Mean-Square Error

(RMSE =p−1
√

SSE) over a test set with 200 uniformly spaced noiseless examples in the

range [-4, +4]. The occam elitism was used withn = 5 andk = 1. Thus, the smallest

network among the five best chromosomes was kept from generation to generation.

According to the results of the Figure 6.3.3, which shows the number of centers as

a function of noise level, the occam elitism produced notably smaller networks than

the traditional elitism. Moreover, GA with occam elitism also produced a smaller true

error, as shows the Figure 6.3.3. These results show that the occam elitism seems to be

an effective method. Because of this, all the following experiments in this work will use

the occam elitism (withn = 5 andk = 1).

1GA may output outliers (spurious networks with large errors) due to premature convergence. The
average value is strongly influenced (become biased towards) by the outliers. Because of this it was used
the 5% trimmed mean instead of the mean. The 5% trimmed mean means that both the top 5% and the
bottom 5% of a ranked sample are discarded and the mean is calculated for the rest of the sample.

6.3 A Simple GA for Model Selection 98

Table 6.1: GA parameters.

Population 500
Generations 500
Number of regions 15
Crossover rate 0.60
Mutation rate 0.05
Addition rate 0.3
Deletion rate 0.3
Basis function Gaussian

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1 0 1 2 3 4

f(
x)

x

Figure 6.2: Mackay’s Hermite polynomial.

6.3 A Simple GA for Model Selection 99

 0

 2

 4

 6

 8

 10

 12

 14

 0.0001 0.001 0.01 0.1

nu
m

be
r o

f c
en

te
rs

noise variance

occam elitism
traditional elitism

Figure 6.3: Comparing the performance of occam and traditional elitism in terms of the
number of basis functions

6.3 A Simple GA for Model Selection 100

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1

R
M

SE

noise variance

occam elitism
traditional elitism

Figure 6.4: Comparing the performance of occam and traditional elitism in terms of the
error on the test set.

6.4 Other Fitness Functions for Model Selection 101

6.4 Other Fitness Functions for Model Selection

This section presents some methods widely used in machine learning for model selec-

tion purposes (i.e., to select a hypothesis (a model) among several candidate hypothe-

ses).

6.4.1 The k-Fold-Crossvalidation Fitness Function

This method [95, 51] divides the datasetD (Equation 6.4) ink subsets (also named

folds): D1,D2, . . . ,Dk. The folds have equal size and are mutually exclusive. It pro-

ducesk hypothesesh1, . . . , hk, where each one is built from the datasetD \ Dj (see

Figure 6.5) using the adjustable parameterλ as follows: hj = h(λ,D \ Dj), for j =

1, . . . , k. The performance obtained by each hypothesishj is measured on the dataset

Dj. The fitness ofλ is equal to average of the performances of thek hypotheses. That

is, the fitness of the chromosomeλ is given by:

f(λ) =
1

|D|

k∑
j=1

∑
(x,y)∈Dj

δ(y, hj(x)) (6.7)

If k = |D|, thek-fold-crossvalidation is known as theleave-one-outcrossvalidation.

6.4.2 The Generalized Cross-Validation Fitness Function

The Generalized Cross-Validation (GCV) [36] is a formula derived from the leave-one-

out crossvalidation under the assumption that the model is linear. Thus, GCV is often

used in linear models. RBF networks are nonlinear models, but, in practice, GCV has

been used in model selection for RBF networks [78, 43]. Because GCV is computation-

ally inexpensive, it becomes attractive to be used with GAs. The chromosome is trained

with the whole datasetD. The fitness of the chromosomeλ is given by:

f(λ) = GCV =
p SSE

(p−m)2
(6.8)

where SSE denotes the sum of squared errors on the datasetD, m is the number of

weights (free parameters) andp is the number of examples inD.

6.4 Other Fitness Functions for Model Selection 102

D1

D2 D3 D4 D5 build h1

︸
︷
︷
︸

D1

D2

D3 D4 D5 build h2

︸
︷
︷
︸

D1 D2

D3

D4 D5 build h3

︸
︷
︷
︸

D1 D2 D3

D4

D5 build h4

︸
︷
︷
︸

D1 D2 D3 D4

D5

build h5

︸
︷
︷
︸

Figure 6.5: Thek-fold-crossvalidation method withk = 5.

If the RBF network learning uses ridge regression (see section 3.7) to compute the

weights, the GCV is modified in order to include the ridge parameterβ [36]:

f(λ) = GCV =
(1/p)‖(I−A)y‖2

[(1/p)trace(I−A)]2
(6.9)

whereA = Z(ZTZ− βI)−1ZTy.

6.4.3 The .632 Bootstrap Fitness Function

The .632 bootstrap method is a member of the bootstrap family introduced by Efron

[26]. All bootstrap based estimates are computed by using a set of bootstrap datasets.

A bootstrap dataset is created by samplingp = |D| examples (with replacement) from

D. This method createsB bootstrap datasets:D1,D2, . . . ,DB. Note that the datasets

are not mutually exclusive. It producesB hypothesesh1(λ), . . . , hB(λ), where each

one is built from the datasetDj using the adjustable parameterλ. That is, hj =

6.4 Other Fitness Functions for Model Selection 103

h(λ,Dj), for j = 1, . . . , B. The fitness of the chromosomeλ, obtained by the .632

bootstrap function, is given by

f(λ) = 0.368 · err+ 0.632 · ε0 (6.10)

The terms of the Equation 6.10 are described as follows. The termerr is the perfor-

mance of a hypothesis built from the datasetD measured on the same datasetD. This

measure refers to the training error of the hypothesis. Mathematically, it is given by:

err =
1

p

p∑
i=i

δ(yi, h(xi; λ,D)) (6.11)

The termε0 denotes the average error obtained from bootstrap datasets not containing

the data point being predicted. In other words,ε0 is computed by using a bootstrap

dataset as training set and the remaining examples as test set. It is given by:

ε0 =
1

p

p∑
i=1

∑
b∈Ci

δ(yi, hb(xi; λ))/Bi (6.12)

whereCi is the set of indices of the bootstrap dataset not containing theith data point,

andBi is a number of such bootstrap datasets.

Because the derivation of the coefficients of the Equation 6.10 (namely 0.368 and

0.632) is complex, it is not described here (see [26] for details). In [41] there is an

overview of the functions showed in this section. The following section shows the

experiments performed to optimize these functions using the proposed GA (model II).

6.4.4 Experimental Studies

The experiments presented in this section compare four fitness functions: holdout, cross-

validation, bootstrap, and GCV. The holdout result was taken from section 6.3.3. The

crossvalidation function used ten folds (i.e., the 10-fold crossvalidation) and the .632

bootstrap used 20 bootstrap datasets.

Note that in each chromosome evaluation using holdout only one training is carried

out (namely the training over the holdout set). GCV also performs one training per

evaluation. Whereas the 10-fold-crossvalidation performs 10 training sessions (owing

6.5 Other Heuristics for Model Selection via GAs 104

to 10 folds) in each evaluation and bootstrap performs 20 training sessions (owing to 20

bootstrap datasets). Obviously, the crossvalidation and bootstrap consume much CPU-

time. This is a drawback for GAs, once GAs need fast objective functions in order to

reduce its processing time.

Because holdout and GCV consume little CPU-time, they become attractive as fit-

ness functions. The drawback is that holdout can lead the learning algorithm to overfit

the holdout set once it is always the same during the execution of the GA. A possible so-

lution to this problem is shown in section 6.5.1. GCV did also not give a good estimate

of the true error and overfitted the dataset. As GCV is a criterion derived from the linear

models, it does not seem to be suitable for nonlinear models such as RBF networks,

mainly if optimized by a powerful algorithm such as GA.

Crossvalidation and bootstrap make a more efficient use of the dataset by re-sampling

it a lot of times. So they have, in general, better performance than holdout and GCV as

it is confirmed in Figure 6.4.4. However, in terms of complexity, holdout produced net-

works as small as those produced by 10-fold-crossvalidation (see Figure 6.4.4). Some

alternative methods are suggested in next sections to avoid the long processing time of

the crossvalidation and bootstrap functions.

6.5 Other Heuristics for Model Selection via GAs

Three heuristics for model selection via GAs are used in this work:

1. Occam razor;

2. Shuffling;

3. Growing.

The occam razor was presented in section 6.3.2. Shuffling and growing are presented

in next sections.

6.5.1 Shuffling

In order to improve the quality of the genetic hypotheses, the population evaluation pro-

cedure is modified by shuffling the dataset just before the fitness evaluation. Consider

6.5 Other Heuristics for Model Selection via GAs 105

 0

 2

 4

 6

 8

 10

 12

 14

 0.0001 0.001 0.01 0.1

nu
m

be
r o

f c
en

te
rs

noise variance

Holdout
10-fold-crossvalidation

.632 boostrap
GCV (generalized crossvalidation)

Figure 6.6: Comparing the performance of several kinds of fitness in terms of the num-
ber of basis functions.

6.5 Other Heuristics for Model Selection via GAs 106

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1

R
M

SE

noise variance

Holdout
10-fold-crossvalidation

.632 boostrap
GCV (generalized crossvalidation)

Figure 6.7: Comparing the performance of several kinds of fitness in terms of the num-
ber of basis functions.

6.5 Other Heuristics for Model Selection via GAs 107

that shuffle() is a computer procedure that shuffles the datasetD producing the shuf-

fled datasetD∗. The modified evaluation procedure is shown as follows (it replaces the

corresponding procedure illustrated in section 6.3):

procedure EvaluateWithShuffling(P)

for eachλ in the populationP do
SetD∗ equal toshuffle(D)
Estimate the true error̂e(λ,D∗)
Set the fitnessf of λ equal toê(λ,D∗)

end for

The shuffling’s underling idea is to avoid the holdout set to be kept constant, and

therefore avoid overfitting. Nevertheless, the shuffling transforms the holdout into a

noise function. GAs, however, are robust to deal with noise functions [34]. In case of

elitism, the chromosomes that are kept from generation to generation should be revalu-

ated in each generation in order to verify if their good performance is not due to stochas-

tic errors. The occam elitism should also to use larger parameters (e.g.,k = 10 and

n = 50 for a population size = 500) so that the best individuals do not disappear easily

from the population due to stochastic errors in the fitness evaluation.

6.5.2 Growing

Stanley and Miikkulainen[94] observed that complexity in nature is developed over

time, rather than introduced in the beginning. Based on this observation, they proposed

evolving hypotheses starting with minimal hypotheses. This means to set the initial

population with minimal networks (e.g., one basis function) instead of random (and

probably large) hypotheses. New hypotheses are introduced incrementally as mutations

occur. Only those hypotheses that are found to be useful survive through generations.

An experimental justification for the use of growing is as follows. In all experi-

ments performed so far, the number of basis function was limited to 15 basis functions

(remember that the number of regions, reported in section 6.3.3, also indicates the max-

imum number of basis functions). This low limit was used because if GAs start with a

higher limit (e.g., 35 basis functions), it may arrive to poor results and large hypotheses.

6.6 The Multiobjective Optimization for Model Selection 108

This occurs due to the large hypotheses of the initial population that tend to domi-

nate the population causing a phenomena known as premature convergence. Such large

hypotheses are suboptimal solutions named superindividuals. The use of the growing

approach seems to solve this problem once it avoids the production of large hypotheses

(superindividuals) in early stages of the evolution. Growing was successfully used for

genetic design of RBF networks in [8].

Experiments involving shuffling and growing heuristics are presented in the sec-

tion 6.6.3.

6.6 The Multiobjective Optimization for Model Selec-

tion

In section 6.4.4, the holdout and GCV functions no give good results (due to overfitting)

when they were optimized individually. In this section, they are optimized simultane-

ously. This results in a multiobjective optimization problem. The method used in this

work to deal with the multi-objective optimization problem using GAs is described in

the next section (it was based on the GA described in [30]).

6.6.1 The Multiobjective Genetic Algorithm

Let f1, f2, . . . , fq be the set of objective functions to be minimized. Instead of a single

objective function, each chromosome is now evaluated by a multi-objective function.

A chromosome fitness is defined by a vector where each component is the value of

an objective function. In order to compare chromosomes through these vectors, the

following definitions are used [30]:

Definition 6.3 Let a andb be vectors of objective function values. A vectorb is said

to be dominated by (or inferior to) a vectora iff a is partially-less-thanb (in symbols

a <p b), where:

a <p b ⇐⇒ ∀i(ai ≤ bi) ∧ ∃i(ai < bi) (6.13)

6.6 The Multiobjective Optimization for Model Selection 109

���

���

�

�
�

�

�

�

�
�

Figure 6.8: Pareto ranking method.

Definition 6.4 A vectora is said to be non-dominated (or non-inferior) if there is not

any other vector (in the population) that dominatesa.

The set of all non-dominated vectors of the population is named thePareto-optimal

set(also named the Pareto frontier). The goal of the multi-objective optimization prob-

lem is to find the Pareto-optimal set.

Ranking

Using the concept of non-domination, it is possible to rank the population. Pareto rank-

ing methods are proposed in [34, 30]. According to [30], an individualP that is domi-

nated byn individuals in the current population has its rank given by:

rank(P) = 1 + n. (6.14)

All nondominated individuals are assigned rank 1. Figure 6.8 shows an example where

rank 4 is absent.

6.6 The Multiobjective Optimization for Model Selection 110

Fitness Assignment

Let P1, . . . ,PN be the population sorted by ascendent order of rank, whereN is the

population size. The fitness of each individual is given by:

fitness(Pk) = s− 2(k − 1)(s− 1)

N − 1
(6.15)

wheres ∈ {1, 2} is an user defined parameter named selection pressure (best/median

fitness ratio). See section 2.2.3. Experiments have showed thats equal to either 1.1 or

1.2 provides good results. In order to ensure that individuals with the same rank have

the same fitness, they are averaged by:

fitness(Pk) = 〈fitness(Pi)〉 (6.16)

where〈·〉 denotes the average over all individualsPi with rank equal to rank(Pk) (i.e,

∀i(rank(Pi) = rank(Pk)). Parents are sampled for crossover and mutation using the

Stochastic Universal Sampling, SUS, technique (see section 2.4.7).

6.6.2 The Choice of the Fitness Functions

Two inexpensive fitness functions were chosen to be optimized via the multiobjective

GA. Namely, Holdout and GCV functions. They are described as follows.

1. Holdout fitness function. As before, the datasetD is divided into two parts: the

training setDt, on which the hypothesis is built, and the holdout setDh. The first fitness

of the chromosomeλ is given by holdout function:

f1(λ) =
1

|Dh|
∑

(x,y)∈Dh

δ(y, h(x; λ, Dt)) (6.17)

2. GCV fitness function. Unlike the previous GCV presented in section 6.4.2, here,

the GCV is applied toDt (instead of the whole datasetD):

f2(λ) =
pt SSEt

(pt −m)2
(6.18)

6.6 The Multiobjective Optimization for Model Selection 111

where SSEt denotes the sum of squared errors on the datasetDt, m is the number of

weights (free parameters) andpt is the number of examples inDt.

Occam Elitism

The occam elitism was adapted for the multiobjective GA as follows: all the simplest

hypotheses of the Pareto set are kept from generation to generation. In the last gen-

eration, a criterion is needed to choice an unique hypothesis from the Pareto set. The

following criterion was adopted: pick up the simplest hypothesis from the Pareto set. If

there exists more than one such hypothesis then pick the median of them.

Experiments involving the multiobjective GA and the heuristics (from section 6.5)

are presented in the next section.

6.6.3 Experimental Studies

In the experiments carried out in section 6.4.4, the holdout function did not perform well

because large hypotheses tend to overfit the holdout set. The same happened with the

GCV method. Nevertheless, the simultaneous optimization of both holdout and GCV

seems be a promising idea, due to the results shown in Figures 6.6.3 and 6.6.3.

These experiments also showed that the multiobjetive GA with shuffling and grow-

ing were better that the multiobjetive GA without them. That is, the shuffling and grow-

ing heuristics incorporated into a multiobjective GA improved its performance in both

error on test set and complexity. The results obtained suggest that multiobjective GA

with shuffling and growing is comparable to crossvalidation and bootstrap.

A possible explanation to this good result is that GCV penalizes large hypotheses

(once its denominator diminishes in large hypotheses). As a consequence, GCV con-

tributes to avoid the overfitting of the holdout. In spite of making the holdout function

a noise function, the use of shuffling also contributes to avoid holdout overfitting (once

the holdout set is not fixed). Growing adds basis functions incrementally, making the

selection of centers more rigorous (once complexity is only added if necessary) and nat-

ural. The combined effect of all these alternative methods seems be useful for model

selection.

6.7 Experimental Studies with Other Techniques 112

 0

 2

 4

 6

 8

 10

 12

 14

 0.0001 0.001 0.01 0.1

nu
m

be
r o

f c
en

te
rs

noise variance

CV
Bootstrap

Holdout + GCV
Holdout + GCV + shuffling + growing

Figure 6.9: Comparing the performance of the multiobjective GA in terms of the number
of basis functions.

6.7 Experimental Studies with Other Techniques

In this section, the GA is compared to two constructive algorithms used to determinate

the RBF network architecture. Namely, RAN-EKF (Resource Allocating Network with

Extended Kalmon Filter) [48] and ROLS (Regularized Orthogonal Least Squares) [78].

The RAN-EKF and ROLS results were extracted from [78]. In this experiments, the

best GA (obtained from the section 6.6.3) was used. Namely, the multiojective GA

with occam elitism, shuffling and growing from the Figures 6.6.3 and 6.6.3. As shown

in Figure 6.7, GA generated RBF networks with a very small number of centers in all

6.7 Experimental Studies with Other Techniques 113

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1

R
M

SE

noise variance

CV
Bootstrap

Holdout + GCV
Holdout + GCV + shuffling + growing

Figure 6.10: Comparing the performance of the multiobjective GA in terms of the error
on the test set.

6.7 Experimental Studies with Other Techniques 114

levels of noise. In addition, GA generalization capacities(see Figure 6.7) were better

then the ROLS algorithm. Therefore, GA was able to generate parsimonious networks

and still keep good generalization. Nevertheless, GA took a long training time (which

are orders of magnitude greater than other approaches) to achieved these results. But for

a large number of applications, where recognition performance is more important than

the training time, the results obtained suggest that the genetic approach is an attractive

solution for the design of efficient RBF networks.

6.7 Experimental Studies with Other Techniques 115

 0

 2

 4

 6

 8

 10

 12

 14

 0.0001 0.001 0.01 0.1

nu
m

be
r o

f c
en

te
rs

noise variance

Holdout + GCV + shuffling + growing
RANEKF

ROLS

Figure 6.11: Comparing the performance of the multiobjective GA with other tech-
niques in terms of the number of basis functions.

6.7 Experimental Studies with Other Techniques 116

 0.001

 0.01

 0.1

 1

 0.0001 0.001 0.01 0.1

R
M

SE

noise variance

Holdout + GCV + shuffling + growing
RANEKF

ROLS

Figure 6.12: Comparing the performance of the multiobjective GA with other tech-
niques in terms of the error on the test set.

Chapter 7

Conclusion

“Think of your adversary as
a bearer of equilibrium; if we

have need of friends to
stimulates us, we equally
need someone to show us

our errors.”
(Book: Christian Agenda,

André Luiz - medium F.C.Xavier.)

In this work, it was proposed encodings for RBF networks. Some features of these

encodings are

• The centers are evolved only on clustering regions of training patterns. It follows

that the GA handles only (approximately) good networks in the population by

avoiding (spurious) gaussians outside the cluster regions.

• The encodings are nonredundant and legal (according to the definition given in

section 4.1.2).

• The crossover is performed on phenotype space (i.e., between regions of the input

space corresponding clustering regions of the chromosomes) instead of genotype

space (by merely interchanging structural chunks of chromosomes).

It worth noting that the proposed encoding were designed so that network complex-

ity and performance can be evolved simultaneously, but it was also designed to becomes

117

Conclusion 118

the search space as small as possible. Because of this the centers are strongly biased to-

wards the clustering regions of training patterns and only a minimal set of parameters

was considered in the GA optimization. Experiments involving those encodings were

presented in chapter 6.

Experiments, in section 6.4.4, showed that the use of the holdout method as objective

function is not an effective method and that crossvalidation and boostrap are, in general,

the best objective functions for model selection using GAs. Nevertheless, they consume

much CPU-time. GAs need fast objective functions to have a reasonable processing

time, so the use of crossvalidation and boostrap may not be suitable for GAs.

Experiments, in section 6.6.3, showed that by means of modifications in the tra-

ditional GA, it is possible to make a GA (with holdout) an efficient model selection

algorithm without the need to use crossvalidation and boostrap. Four modifications in

the traditional GA were carried out in which generated better hypotheses than those hy-

potheses generated by holdout using the traditional GA. The modifications are described

as follows:

• To use the occam elitism to keep the simplest hypotheses (among the best ones)

from generation to generation. Experiments showed that the occam elitism dimin-

ishes the complexity of the hypotheses and their true error.

• To shuffle the dataset just before to compute the fitness function may avoid the

overfitting of the holdout method.

• To use the growing approach to start the initial population with minimal hypothe-

ses and add complexity incrementally. Growing avoids the bias towards large

hypotheses in the initial population. Growing makes the evolving of complexity

a process more rigorous and natural.

• To optimize two inexpensive objective functions (namely holdout and GCV) si-

multaneously seems to be better than optimize each one individually.

All of theses methods are computationally inexpensive and, if combined, they may

produce results equivalent to both crossvalidation and bootstrap, which require a large

amount of computer processing. Because these methods do not depend on a particular

Conclusion 119

encoding, they are quite general. Except for some unimportant details, they can be ap-

plied to other machine learning models (e.g., decision trees, MLP networks) optimized

by GA almost without modifications.

In section 6.7, GA was compared to two traditional approaches to optimize RBF

networks. The GA approach was more accurate than the best of the other approaches

and yields networks with significantly less number of hidden units in all experiments

this work.

This research showed that GA is able to generate parsimonious networks and still

keep good generalization. Nevertheless, GA took a long training time (which are or-

ders of magnitude greater than other approaches) to achieved these results. But for a

large number of applications, where recognition performance is more important than

the training time, the results obtained suggest that the genetic approach is an attractive

solution for the design of efficient ANNs. This research also showed that GAs may pro-

vide a suitable framework for the model selection problem. Nevertheless, this potential

still need be more explored.

Bibliography

[1] A. A. Adewuya. New methods in genetic search with real-valued chromosomes.
Master’s thesis, M.I.T., 1996.

[2] D. Aha, D. Kibler, and M Albert. Instance-based learning algorithms.Machine
Learning, 6:37–66, 1991.

[3] H. Akaike. A new look at the statistical model identification.IEEE Transactions
on Automatic Control, 19:716–723, 1974.

[4] M. R. Anderberg.Cluster Analisys for Applications. Academic Press, New York,
1973.

[5] T. Bäck. Selective pressure in evolutionary algorithms: A characterization of
selection mechanisms. InProceedings of the First IEEE Conference on Evolu-
tionary Computation, pages 57–62, Piscataway. NJ, 1994. IEEE Press.

[6] J. Baker. Reducing bias and inefficiency in the selection algorithm. In J. Grefen-
stette, editor,Proc. of the Second International Conference on Genetic Al-
gorithms and Their Applications, pages 14–21, Hillsdale, New Jersey, 1987.
Lawrence Erlbaum Associates.

[7] K. Balakrishnan and V. Honavar. Properties of genetic representations of neu-
ral architectures. InProceedings of the World Congress on Neural Networks
(WCNN’95), pages 807–813, Washington, D.C., 1995.

[8] A. Barreto and H. Barbosa. Growing compact RBF networks using a genetic
algorithm. InVII Brazilian Symposium on Neural Networks, 2002.

[9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty.Nonlinear Programming - Theory
and Algorithms. Jonh Wiley and Sons, second edition, 1993.

[10] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algorithms:
Part 1, fundamentals.University Computing, 15(2):58–69, 1993. Avaliable by
ftp on ENCORE in file: GA/papers/over92.ps.gz.

120

BIBLIOGRAPHY 121

[11] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algortihms:
Part 2, research topics.University Computing, 15(4):170–181, 1993. Avaliable
by ftp on ENCORE in file: GA/papers/over93-3.ps.gz.

[12] S. A. Billings and G. L. Zheng. Radial basis function network configuration using
genetic algorithms.Neural Networks, 8(6):877–890, 1995.

[13] T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In
L. Eshelman, editor,Genetic Algorithms: Proceedings of the 6th International
Conference (ICGA95), San Francisco, CA, 1995. Morgan Kaufmann.

[14] L. Breiman, J. Friedman, R. Olshen, and C Stone.Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[15] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adap-
tive networks.Complex Systems, 2:321–355, 1988.

[16] B. Burdsall and C. Giraud-Carrier. GA-RBF: A self-optimising RBF network.
In Proc. of the Third International Conference on Artificial Neural Networks and
Genetic, pages 348–351. Springer-Verlag, 1997.

[17] B. Carse and T. C. Fogarty. Fast evolucionary learning of minimal radial basis
function neural networks using a genetic algorithm. In T.C. Forgaty, editor,AISB
Workshop on Evolucionary Computing, Lectures Notes in Computer Science N.
1143, pages 1–22. Springer-Verlag, 1996.

[18] D. J. Chalmers. The evolution of learning: an experiment in genetic connection-
ism. In D. S. Touretzky, Elman J. L., and G. E. Hinton, editors,Connectionist
models: proceedings of the 1990 summer school, Pittsburgh, San Mateo, CA,
1991. Morgan Kaufmann.

[19] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algo-
rithm for radial basis function networks.IEEE Transactions on neural networks,
2(2):302–309, 1991.

[20] S. Chen, Y. Wu, and K. Alkadhimi. A two-layer learning method for radial basis
function networks using combined genetic and regularised ols algorithms. InPro-
ceedings of the 1st IEE/IEEE International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, pages 245–249, 1995.

[21] Y. H. Cheng and C. S. Lin. A learning algorithm for radial basis function net-
works: with the capability of adding and pruning neurons.Proc. IEEE, pages
797–801, 1994.

BIBLIOGRAPHY 122

[22] P. Clark and T. Niblett. The CN2 induction algorithm.Machine Learning, 3,
261-284.

[23] G. B. Dantzig.Linear Programming and Extensions. Princeton University Press,
Princenton, NJ, 1963.

[24] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[25] K. DeJong. The analysis and behaviour of a class of genetic adaptive systems.
PhD thesis, University of Michigan, 1975.

[26] B. Efrom and R. J. Tibshirani.An Introduction to the Bootstrap. Chapman and
Hall, 1993.

[27] L. J. Eshelman, R. A. Caruna, and J. D. Schaffer. Biases in the crossover land-
scape. In J. D. Schaffer, editor,Proc. of the Third Int. Conf. on Genetic Algo-
rithms, pages 10–19, San Mateo, CA, 1989. Morgan Kaufmann.

[28] L. J. Eshelman and D. J. Shaffer. Real-coded genetic algorithms and interval-
schemata. In D. L. Whitley, editor,Foundations of Genetic Algorithms 3, pages
187–203. San Mateo, CA: Morgan Kaufman, 1992.

[29] R. A. Fisher. The use of multiple measurements in taxonomic problems.Annals
of Eugenics, 7:179–188, 1936. Reimpresso in: Contributions to Mathematical
Statistics. New York, Jonh Wiley, 1950.

[30] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective opti-
mization: formulation, discussion and generalization. InProceedings of the 5th
International Conference on Genetic Algorithms, pages 416–423, San Mateo,
1993. Morgan Kaufmann Publishers, Inc.

[31] C. M. M. Fonseca.Multiobjective genetic algorithms with application to con-
trol engineering problems. PhD thesis, Department of Automatic Control and
Systems Engineering - University of Sheffield, 1995.

[32] M. Gen and R. Cheng.Genetic Algorithms and Engineering Optimization. Wiley,
2000.

[33] F. Glover and M. Laguna.Tabu Search. Kluwer Academic Publisher, 1997.

[34] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[35] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used
in genetic algorithms. In G. Rawlins, editor,Foundations of Genetic Algorithms,
pages 69–93. Morgan Kaufmann, San Mateo, 1991.

BIBLIOGRAPHY 123

[36] G. H. Golub, M. Heath, and G. Wahba. Generalised cross-validation as a method
for choosing a good ridge parameter.Technometrics, 21(2):215–223, 1979.

[37] J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE trans SMC, 16:122–128, 1986.

[38] P. J. B. Hancock. Genetic algorithms and permutation problems: a comparison
of recombination operators for neural net structure specification. InProceed-
ings of the IEEE Workshop on Combinations of Genetic Algorithms and Neural
Networks, pages 108–122, 1992.

[39] J. V. Hansen and R. D. Meservy. Learning experiments with genetic optimization
of a generalized regression neural network.Decision Support Systems, 18:317–
325, 1996.

[40] S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural
networks. InProceedings of the 4th International Conference on Genetic Algo-
rithms, pages 360–369. Morgan Kaufmann, 1991.

[41] T. Hastie, R. Tibshirani, and J. Friedman.The elements of statistical learning:
data mining, inference, and prediction. Springer, 2002.

[42] R. L. Haupt and S. E. Haupt.Pratical Genetic Algorithms. Wiley-Intercience,
1998.

[43] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, sec-
ond edition, 1999.

[44] D. Heckerman. A tutorial on learning Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, WA, 1995.

[45] J. Heitkötter and D. Beasley. The hitch-hiker’s guide to evolutionary compu-
tation: A list of frequently asked questions (faq). USENET: comp.ai.genetic.
Available via anonymous FTP from rtfm.mit.edu/pub/usenet/news.answers/ai-
faq/genetic/ About 110 pages., 1998.

[46] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algo-
rithms: operators and tools for behavioural analysis.Artificial Intelligence Re-
view, 12(4):265–319, 1998.

[47] J. H. Holland.Adaptation in Natural and Artificial Systems. MIT Press, 1975.

[48] V. Kadirkamanathan and M. Niranjan. A function estimation approach to sequen-
tial learning with neural networks.Neural Computation, 5(6):954–975, 1993.

BIBLIOGRAPHY 124

[49] Allan Kardec. The Gospel Explained by the Spiritist Doctrine. Allan Kardec
Educational Society, 2003. www.febnet.com.br.

[50] S. Kirpatrick, C. D. Gellat Jr., and M. P. Vecchi. Optimization by simulated
annealing.Science, pages 671–680, 1983.

[51] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. InInternational Joint Conference on Artificial Intelligence
(IJCAI), 1995.

[52] T. Kohonen. Self-organized formation of topologically correct feacture maps.
Biological Cybernetics, 43:59–69, 1982.

[53] M. Kubat. Decision trees can initialize radial-basis function networks.IEEE
Transactions on Neural Networks, 9(5):813–821, 1998.

[54] L. I. Kuncheva. Initializing of an RBF network by a genetic algorithm.Neuro-
computing, 14:273–288, 1997.

[55] E. G. M. Lacerda and A. C. P. L. F. Carvalho. Combinando os algoritmos genético
e k-média para configurar redes de funções base radial. InAnais do IV Simpósio
Brasileiro de Redes Neurais, pages 95–97, Goiânia, Brazil, 1997.

[56] E. G. M. Lacerda and A. C. P. L. F. Carvalho. Credit analysis using radial basis
function networks. In3rd International Conference on Computational Intelli-
gence and Multimedia Applications, ICCIMA’99, New Dheli, India, September
1999. IEEE Computer Press.

[57] E. G. M. Lacerda and A. C. P. L. F. Carvalho. Introdução aos algoritmos genéti-
cos. InJornada de Atualização em Informática - Anais do XIX Congresso Na-
cional da Sociedade Brasileira de Computação, Rio de Janeiro-RJ, 1999.

[58] E. G. M. Lacerda and A. C. P. L. F Carvalho. Introdução aos algoritmos genéticos.
In C. O. Galvão and M. J. S. Valença, editors,Sistemas inteligentes: aplicações a
recursos hídricos e ciências ambientais. Ed. Universidade/UFRGS : Associação
Brasileira de Recursos Hídricos, Porto Alegre, RS, 1999. Coleção ABRH de
Recursos Hídricos - ISBN 85-7025-527-6.

[59] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary op-
timization of RBF networks. InVIth Brazilian Symposium on Neural Networks,
2000.

[60] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary
optimization of RBF networks. In R. J. Howlett and L. C. Jain, editors,Radial

BIBLIOGRAPHY 125

Basis Fuction Networks 1: Recent Developments in Theory and Applications.
Physica Verlag, 2001. Studies in Fuzziness and Soft Computing, Vol. 66 - ISBN
3-7908-1367-2.

[61] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Evolutionary opti-
mization of RBF networks.International Journal of Neural Systems, 11(3):287–
294, 2001.

[62] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. Model selection
via genetic algorithms for RBF networks.Journal of Intelligent Fuzzy Systems,
13:111–122, 2002.

[63] E. G. M. Lacerda, A. C. P. L. F. Carvalho, and T. B. Ludermir. A study of
crossvalidation and bootstrap as objective functions for genetic algorithms. In
VII Brazilian Symposium on Neural Networks, 2002.

[64] C. L. Lawson and R. J. Hanson.Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, NJ, 1974. 2nd edition: 1995, Philadelphia: SIAM.

[65] C. Lucasius and G. Kateman. Towards solving subset selection problems with
the aid of the genetic algorithm. InParallel Problem Solving from Nature Vol. 2.
Elsevier Science Publishers, 1992.

[66] D. G. Luenberger.Linear and Nonlinear Programming. Addison-Wesley, second
edition, 1986.

[67] André Luiz. Christian Agenda. Allan Kardec Publishing LTD, London, third
edition, 1998. Dictated by the spirit André Luiz to Francisco Cândido Xavier.

[68] D. J. C. MacKay. Bayesian interpolation.Neural Computation, 4(3):415–447,
1992.

[69] E. P. Maillard and D. Gueriot. RBF neural network, basis functions and genetic
algorithm. InProceedings of International Conference on Neural Networks Vol.
4, pages 2187–2192, 1997.

[70] M. W. Mak and K. W. Cho. Genetic evolution of radial basis function centers for
pattern classification. InProc. of The 1998 IEEE International Joint Conference
on Neural Networks, volume 1, pages 669–673, 1998.

[71] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1994.

[72] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems.Evolutionary Computation, 4(1):1–32, 1996.

BIBLIOGRAPHY 126

[73] R. Michalski. A theory and methodology of inductive learning.Artificial Intelli-
gence, 20:111–161, 1983.

[74] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[75] J. Moody and C. J Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2):281–294, 1989.

[76] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M Hummels. On the
training of radial basis function classifiers.Neural Networks, 5:595–603, 1992.

[77] R. Neruda. Functional equivalence and genetic learning of RBF networks. In
D. W. Pearson, N. C. Steele, and R.F. Albrecht, editors,Artificial Neural Nets
and Genetic Algorithms, pages 53–56. Springer-Verlag, 1995.

[78] M. J. L. Orr. Regularisation in the selection of radial basis function centers.
Neural Computation, 7(3):606–623, 1995.

[79] M. J. L. Orr. Introduction to radial basis function networks. Technical report, In-
stitute for Adaptive and Neural Computation, Division of Informatics, Edinburgh
University, 1996.

[80] J. Platt. A resource-allocating network for function interpolation.Neural Com-
putation, 3(2):213–225, 1991.

[81] M. Powell. The theory of radial basis function approximation in 1990. In
W. Light, editor,Advances in Numerical Analysis, vol.3, pages 105–210. Claren-
don, Oxford, 1992.

[82] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical
Recipes in C. Cambridge University Press, second edition, 1992.

[83] J. Quinlan. Induction of decision trees.Machine Learning, 1:81–106, 1986.

[84] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

[85] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition.Proceedings of the IEEE, 77(2):257–286, 1989.

[86] R. Rivest. Learning decision lists.Machine Learning, 2:229–246, 1987.

[87] A. Roy, S. Govil, and R. Miranda. An algorithm to generate radial basis function
(rbf)-like nets for classification problems.Neural Networks, 8(2):179–201, 1995.

BIBLIOGRAPHY 127

[88] D. E. Rumelhart, G. E. Hilton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, editors,Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1: Foundations, pages 318–362, Cam-
bridge, MA, 1986. Mit Press.

[89] A. Saha and J. D. Keller. Algorithms for better representation and faster learning
in radial basis function networks. In D. S. Touretzki, editor,Advances in Neural
Information Processing Systems, volume 2, pages 482–489, 1990.

[90] J. D. Schaffer, D. Whitley, and L. J. Eschelman. Combinations of genetic algo-
rithms and neural networks: a survey of the state of the art. In D. Whitley and
J. D. Schaffer, editors,Proceedings of the International Workshop on Combina-
tions of Genetic Algorithms and Neural Networks (COGANN-92), pages 1–37.
IEEE, 1992.

[91] B. Sendhoff, M. Kreutz, and W. von Seele. A condition for the genotype-
phenotype mapping: Causality. In T. Bäck, editor,Proceedings of the Seventh
International Conference on Genetic Algorithms (ICGA’97), pages 354–361, San
Francisco, 1997. Morgan Kauffman.

[92] A. F. Sheta and K. D. Jong. Time-series forecasting using ga-tuned radial basis
functions.Information Sciences, 133:221–228, 2001.

[93] C. Stanfill and D. Waltz. Toward memory-based reasoning.Communications of
the ACM, 29(12):1213–1228, 1986.

[94] K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Technical Report TR-AI-01-290, The University of Texas
at Austin - Department of Computer Sciences, 2001.

[95] M. Stone. Crossvalidatory choice and assessment of statistical predictions.Jour-
nal of the Royal Statistical Society B. 2, pages 111–147, 1974.

[96] S. Unger. The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ,
1989.

[97] V. Vapnik. Principles of risk minimization for learning theory. In John Moody,
Steven Hanson, and Richard Lippmann, editors,Advances in Neural Information
Processing Systems - NIPS 1991, volume 4, pages 831–838, 1992.

[98] J. M. Vesin and R. Grüter. Model selection using a simplex reproduction genetic
algorithm.Signal Processing, 78:321–327, 1999.

BIBLIOGRAPHY 128

[99] G. Wahba.Spline Models for Observational Data. CBMS-NSF Regional Con-
ference Series in Applied Mathematics, 59. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA., 1990.

[100] B. A. Whitehead and T. D. Choate. Evolving space-fiiling curves to distribute ra-
dial basis functions over an input space.IEEE Transactions on Neural Networks,
5(1):15–23, 1994.

[101] B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evolution of
radial basis function centers and widths for time series prediction.IEEE Trans-
actions on Neural Networks, 7(4):869–880, 1996.

[102] D. Whitley. The GENITOR algorithm and selection pressure: Why rankbased
allocation of reproductive trials is best. In J. Schaffer, editor,Proceedings of
the Third International Conference on Genetic Algorithms, pages 116–121, San
Mateo, Calif., 1989. Morgan Kaufmann.

[103] B. Widrow and M. E. Hoff. Adaptive switching circuits.IRE-WESCON Conven-
tion Record, 4:96–104, 1960.

[104] A. Wright. Genetic algorithms for real parameter optimization. In G. J. E. Rawl-
ins, editor,Foundations of Genetic Algorithms, pages 205–218, 1991.

[105] X. Yao. Evolving artificial neural networks.PIEEE: Proceedings of the IEEE,
87, 1999.

[106] L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation, 9:461–478, 1997.

