
Pós-Graduação em Ciência da Computação

NAT2TEST: Generating Test Cases from Natural
Language Requirements based on CSP

By

Gustavo Henrique Porto de Carvalho

PhD Thesis

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE/2016

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

GUSTAVO HENRIQUE PORTO DE CARVALHO

NAT2TEST: GENERATING TEST CASES FROM NATURAL
LANGUAGE REQUIREMENTS BASED ON CSP

PHD THESIS PRESENTED TO THE CENTRO DE INFORMÁTICA OF
UNIVERSIDADE FEDERAL DE PERNAMBUCO IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR IN COMPUTER SCIENCE.

 SUPERVISOR: AUGUSTO SAMPAIO (UFPE, BRAZIL)
 CO-SUPERVISOR: ANA CAVALCANTI (U. OF YORK , UK)

RECIFE/2016

 Catalogação na fonte
Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

C331n Carvalho, Gustavo Henrique Porto de
NAT2TEST: generating test cases from natural language requirements

based on CSP / Gustavo Henrique Porto de Carvalho. – 2016.
 248 f.: il., fig., tab.

 Orientador: Augusto Cezar Alves Sampaio.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2016.

 Inclui referências e apêndices.

 1. Engenharia de software. 2. Métodos formais. 3. Verificação de sistemas.
I. Sampaio, Augusto Cezar Alves (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2016-069

Gustavo Henrique Porto de Carvalho

NAT2TEST: Generating Test Cases from Natural Language Requirements based
on CSP

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutora em Ciência da
Computação

Aprovado em: 26/02/2016.

__
Orientador: Prof. Dr. Augusto Cézar Alves Sampaio

BANCA EXAMINADORA

Prof. Dr. Paulo Henrique Monteiro Borba

Centro de Informática / UFPE

__
Prof. Dr. Márcio Lopes Cornélio

Centro de Informática / UFPE

Prof.. Dr. Juliano Manabu Iyoda
Centro de Informática / UFPE

Prof. Dr. Adenilso da Silva Simão

Instituto de Ciências Matemáticas e de Computação / USP

Profa. Dra. Ana Cristina Vieira de Melo

Instituto de Ciências Matemáticas e de Computação / USP

Acknowledgements

The results presented here were obtained with the support of many people and, thus, I would
like to give them all my deepest thanks. I would like to thank the Centro de Informática at
Universidade Federal de Pernambuco for supporting this work by providing an excellent study
and research environment. Professor Flávia Barros for her essential help on natural-language
processing techniques, and Professor Alexandre Mota for discussing the formal aspects of our
research. The discussions and advices of other members of the Software Reliability Group were
very important, as well as, the reviews provided by anonymous referees of the submitted papers
that significantly contributed to improve this work.

I would like to thank Embraer, for providing us with challenging research problems, as well as
examples from the aerospace domain. Professor Jan Peleska, for providing us with an interest-
ing case from Mercedes-Benz (Daimler). Thanks to the financial support provided by FACEPE,
CAPES, CNPq, and the European Commission via the Seventh Framework Programme.

Special and deep thanks to my supervisors, Professor Augusto Sampaio and Professor Ana Cav-
alcanti, for their professional and personal attention, always available for listening and helping,
for the enlightening opportunities they afforded me. I have no proper words to thank them for
their support.

I would also like to thank all my friends and my family for sharing the difficulties and the joys.
Maria do Rosário Bezerra (my mother-in-law) and Laís Alves (my sister-in-law) for the nice
moments. Luiz Carvalho Neto (my brother) for the delightful violin lessons. Luiz Carvalho Ju-
nior (my father) and Ione Carvalho (my mother) for their unconditional support and love. Ana
Paula Carvalho (my eternal girlfriend, wife and my best friend) for her understanding, support,
friendship, love, cherish, and for our baby boys (Lucas and Pedro). Last but not least, to God.

Resumo

Testes baseados em modelos (MBT) consiste em criar modelos para especificar o com-
portamento esperado de sistemas e, a partir destes, gerar testes que verificam se implementações
possuem o nível de confiabilidade esperado. No contexto de sistemas críticos, estes modelos
são normalmente (semi)formais e deseja-se uma definição precisa das condições necessárias
para garantir que uma implementação é correta em relação ao modelo da especificação. Esta
definição caracteriza uma relação de conformidade, que pode ser usada para provar que uma es-
tratégia de MBT é consistente (sound). Apesar dos benefícios, aqueles sem familiaridade com
a sintaxe e a semântica dos modelos empregados podem relutar em adotar estes formalismos.

Aqui, propõe-se uma estratégia de MBT para gerar casos de teste a partir de linguagem
natural controlada (CNL). Esta estratégia (NAT2TEST) dispensa a necessidade de conhecer a
sintaxe e a semântica das notações formais utilizadas internamente, uma vez que os modelos
intermediários são gerados automaticamente a partir de requisitos em linguagem natural. Esta
estratégia é apropriada para sistemas reativos baseados em fluxos de dados: uma classe de sis-
temas embarcados cujas entradas e saídas estão sempre disponíveis como sinais. Estes sistemas
também podem ter comportamento dependente do tempo (discreto ou contínuo).

Na estratégia NAT2TEST, inicialmente, os requisitos são analisados sintaticamente de
acordo com a CNL proposta neste trabalho para descrever sistemas reativos. Em seguida, a
semântica informal dos requisitos é caracterizada utilizando a teoria de gramática de casos.
Posteriormente, deriva-se uma representação formal dos requisitos considerando um modelo
definido neste trabalho para sistemas reativos. Finalmente, este modelo é traduzido em uma
especificação em communicating sequential processes (CSP) para permitir a geração de testes.
Este trabalho prova que a estratégia de testes proposta é consistente considerando a relação de
conformidade temporal baseada em entradas e saídas também definida aqui: csptio. Além de
CSP, foi explorada a geração de outras notações formais (SCR e IMR), a partir das quais é pos-
sível gerar casos de teste usando ferramentas comerciais (T-VEC e RT-Tester, respectivamente).
Todo o processo é automatizado pela ferramenta NAT2TEST.

A estratégia NAT2TEST foi avaliada considerando exemplos da literatura, da indústria
aeroespacial (Embraer) e da automotiva (Mercedes). Foram analisados o desempenho e a ca-
pacidade de detectar defeitos gerados através de operadores de mutação. Em geral, a estratégia
NAT2TEST apresentou melhores resultados do que a referência adotada: testes aleatórios. A
estratégia NAT2TEST também foi comparada com ferramentas comerciais relevantes.

Palavras-chave: Testes baseados em modelos. Linguagem natural controlada. Gramática de
casos. Sistemas reativos baseados em fluxos de dados. Processos sequenciais comunicantes.
Relação de conformidade temporal baseada em entradas e saídas.

Abstract

High trustworthiness levels are usually required when developing critical systems, and
model-based testing (MBT) techniques play an important role generating test cases from speci-
fication models. Concerning critical systems, these models are usually created using formal or
semi-formal notations. Moreover, it is also desired to clearly and formally state the conditions
necessary to guarantee that an implementation is correct with respect to its specification by
means of a conformance relation, which can be used to prove that the test generation strategy
is sound. Despite the benefits of MBT, those who are not familiar with the models syntax and
semantics may be reluctant to adopt these formalisms. Furthermore, most of these models are
not available in the very beginning of the project, when usually natural-language requirements
are available. Therefore, the use of MBT is postponed.

Here, we propose an MBT strategy for generating test cases from controlled natural-
language (CNL) requirements: NAT2TEST, which refrains the user from knowing the syntax
and semantics of the underlying notations, besides allowing early use of MBT via natural-
language processing techniques; the formal and semi-formal models internally used by our
strategy are automatically generated from the natural-language requirements. Our approach is
tailored to data-flow reactive systems: a class of embedded systems whose inputs and outputs
are always available as signals. These systems can also have timed-based behaviour, which may
be discrete or continuous.

The NAT2TEST strategy comprises a number of phases. Initially, the requirements are
syntactically analysed according to a CNL we proposed to describe data-flow reactive systems.
Then, the requirements informal semantics are characterised based on the case grammar theory.
Afterwards, we derive a formal representation of the requirements considering a model of data-
flow reactive systems we defined. Finally, this formal model is translated into communicating
sequential processes (CSP) to provide means for generating test cases. We prove that our test
generation strategy is sound with respect to our timed input-output conformance relation based
on CSP: csptio. Besides CSP, we explore the generation of other target notations (SCR and
IMR) from which we can generate test cases using commercial tools (T-VEC and RT-Tester,
respectively). The whole process is fully automated by the NAT2TEST tool.

Our strategy was evaluated considering examples from the literature, the aerospace (Em-
braer) and the automotive (Mercedes) industry. We analysed performance and the ability to
detect defects generated via mutation. In general, our strategy outperformed the considered
baseline: random testing. We also compared our strategy with relevant commercial tools.

Keywords: Model-based testing. Controlled natural language. Case grammar. Data-flow reac-
tive system. Communicating sequential processes. Timed input-output conformance relation.

List of Figures

1.1 Phases of the NAT2TEST strategy [0.1in] . 18

2.1 SysReq-CNL – a grammar for system requirements [0.1in] 27
2.2 Example of inference of the thematic roles content within actions [0.1in] 35
2.3 Example of inference of the thematic roles content within conditions [0.1in] 36

3.1 The vending machine specification – abstract representation [0.1in] 40
3.2 Example of signals for the vending machine [0.1in] 41
3.3 The vending machine specification – e-DFRS representation 42
3.4 The vending machine specification – example of delay transitions [0.1in] 67
3.5 Example of time lock [0.1in] . 74
3.6 The vending machine specification – TIOTS [0.1in] 78
3.7 The vending machine specification – TIOTS representation of delay transitions [0.1in] 80

5.1 The NAT2TEST tool [0.1in] . 131
5.2 The NAT2TEST tool architecture [0.1in] . 132
5.3 NAT2TEST tool – parsing requirements [0.1in] 133
5.4 NAT2TEST tool – inferring thematic roles [0.1in] 134
5.5 NAT2TEST tool – editing initial value of DFRS variables [0.1in] 134
5.6 NAT2TEST tool – viewing DFRS’ functions and traceability information [0.1in] . . . 135
5.7 NAT2TEST tool – dynamic creation of e-DFRSs [0.1in] 136
5.8 NAT2TEST tool – viewing the generated CSP [0.1in] 137
5.9 The vending machine specification – SCR [0.1in] 143

List of Tables

1.1 Example of requirement frame for REQ001 (vending machine) [0.1in] 19
1.2 Example of test case for REQ001 (vending machine) [0.1in] 20

2.1 Example of requirement frame for REQ003 (turn indicator system) [0.1in] 32

3.1 Example of requirement frame for REQ001 (vending machine) [0.1in] 50

5.1 Example of test case for REQ004 (vending machine) [0.1in] 139
5.2 Performance metrics [0.1in] . 147
5.3 Metrics concerning mutant-based strength analysis [0.1in] 150
5.4 Mutation score with respect to the NAT2TEST specialisations [0.1in] 152

6.1 Related work – modelling timed-systems from NL requirements [0.1in] 155
6.2 Related work – timed input-output conformance relations [0.1in] 159

List of Acronyms

ACT Action . 18

AGT Agent . 18

AIAA American Institute of Aeronautics and Astronautics . 22

BO Business Object . 132

BNF Backus-Naur Form. 133

CF Case Frame . 30

CAC Condition Action . 31

CFG Context Free Grammar . 27

CFV Condition From Value . 31

CMD Condition Modifier .31

CNF Conjunctive Normal Form . 27

CNL Controlled Natural Language. .16

CPN Coloured Petri Net . 151

CPT Condition Patient . 31

CSP Communicating Sequential Processes . 15

CTV Condition To Value . 31

DAO Data Access Object . 132

DFRS Data-Flow Reactive System . 17

e-DFRS Expanded Data-Flow Reactive System . 38

EBNF Extended Backus-Naur Form. .27

FDR Failures-Divergences Refinement . 19

GLR Generalized LR. 133

GUI Graphical User Interface . 21

IOLTS Input-Output Labelled Transition System . 75

IMR Intermediate Model Representation . 19

ITML IMA Test Modelling Language . 14

LALR Look-Ahead LR . 133

LOC Lines of Code . 148

LTL Linear Temporal Logic . 154

LTS Labelled Transition System . 15

MBT Model-Based Testing . 14

MC/DC Modified Condition/Decision Coverage . 152

NAT2TEST NATural Language Requirements to TEST Cases . 17

NL Natural Language . 154

NLP Natural Language Processing . 15

NPP Nuclear Power Plant . 21

PAT Patient . 18

PC Priority Control . 21

POS Parts of Speech . 26

SCR Software Cost Reduction . 14

SMT Satisfiability Modulo Theories . 20

SUT System Under Test . 14

SysReq-CNL System Requirements Controlled Natural Language . 17

RF Requirement Frame . 31

s-DFRS Symbolic Data-Flow Reactive System. .38

TE Test Environment . 142

TIS Turn Indicator System . 21

TIOTS Timed Input-Output Transition System . 22

TOV To Value . 18

TR Thematic Role . 30

UC Use Case. .156

UML Unified Modeling Language . 14

VM Vending Machine . 17

VGS Vector Generation System . 142

Contents

1 Introduction 14
1.1 Model-based testing . 14
1.2 Natural-language processing . 15
1.3 Research question . 16
1.4 NAT2TEST – an overview . 17
1.5 Empirical evaluations . 21
1.6 Scientific and technological contributions . 21
1.7 Thesis structure . 23

2 Syntactic and semantic analysis 24
2.1 Phase I – syntactic analysis . 24

2.1.1 The SysReq-CNL – a CNL for system requirements 24
2.2 Phase II – semantic analysis . 29

2.2.1 Thematic roles, case frames, and requirement frames 30
2.2.2 Contextual and inference rules . 32

2.3 Concluding remarks . 37

3 A formal model for requirement frames 38
3.1 Definition and properties of an s-DFRS . 39

3.1.1 Overview of DFRSs . 39
3.1.2 Formal model of an s-DFRS . 43

3.2 Phase III – generation of s-DFRS . 49
3.2.1 Identifying variables . 49
3.2.2 Identifying functions . 53
3.2.3 Creating an s-DFRS . 58

3.3 Definition and properties of an e-DFRS . 59
3.3.1 Formal model of an e-DFRS . 59
3.3.2 From s-DFRSs to e-DFRSs . 64
3.3.3 Verifying properties of requirements via e-DFRSs 71

3.4 Theoretical validation . 75
3.4.1 Formal model of TIOTS . 75
3.4.2 From e-DFRSs to TIOTSs . 77
3.4.3 Soundness of mapping to TIOTS . 79

3.5 Concluding remarks . 81

4 A sound test strategy based on CSP 82
4.1 Communicating sequential processes . 82
4.2 Phase IV – encoding DFRS models as CSP processes 85

4.2.1 Overview of CSP representation of DFRS models 85
4.2.2 Creating memory representation . 93
4.2.3 Encoding function transitions . 96
4.2.4 Encoding delay transitions . 100
4.2.5 Creating a CSP specification . 101
4.2.6 Assumptions of CSP representation 101

4.3 CSP-TIO processes . 104
4.4 A CSP timed input-output conformance relation 106

4.4.1 Definition of csptio conformance . 106
4.4.2 Verifying csptio conformance . 115

4.5 Test-scenario generation and selection . 117
4.6 Phase V – sound test-case generation . 121
4.7 Concluding remarks . 127

5 Tool support and empirical evaluation 128
5.1 Considered examples of critical systems . 129

5.1.1 Vending machine . 129
5.1.2 Nuclear power plant . 130
5.1.3 Priority command . 130
5.1.4 Turn indicator system . 130

5.2 NAT2TEST tool . 131
5.2.1 CNL-Parser – Phase I . 132
5.2.2 RF-Generator – Phase II . 134
5.2.3 DFRS-Generator – Phase III . 134
5.2.4 CSPM-Generator – Phase IV . 136
5.2.5 TC-Generator – Phase V . 136
5.2.6 SCR-Generator – Alternative I . 139
5.2.7 IMR-Generator – Alternative II . 142

5.3 Empirical evaluations . 146
5.3.1 Performance analysis . 146
5.3.2 Mutant-based strength analysis . 149
5.3.3 Practical validation of DFRS models 150

5.4 Concluding Remarks . 151

6 Related Work 154
6.1 Modelling timed-systems from NL requirements 154
6.2 Timed input-output conformance relations . 158

13

6.3 Concluding remarks . 162

7 Conclusions 163
7.1 Future work . 165

References 167

Appendix 173

A List of requirements 174
A.1 Vending machine . 174
A.2 Nuclear power plant . 174
A.3 Priority command . 175
A.4 Turn indicator system . 175

B DFRS – definitions and proofs 178
B.1 Definition and properties of an s-DFRS . 178

B.1.1 Inputs, Outpus and Timers . 178
B.1.2 Initial state . 178
B.1.3 Functions . 179
B.1.4 Complete definition . 181

B.2 Definition and properties of an e-DFRS . 181
B.2.1 Transition relation . 181
B.2.2 Complete definition . 183

B.3 From s-DFRSs to e-DFRSs . 185
B.4 Formal model of TIOTSs . 190
B.5 From e-DFRSs to TIOTSs . 191
B.6 Soundness of fromDFRStoTIOTS . 198

B.6.1 Disjointness of t.I and t.O . 198
B.6.2 Time compatibility . 226
B.6.3 Property of the initial state . 236
B.6.4 Pertinence of states . 237
B.6.5 Well typed transitions . 238
B.6.6 Proof of soundness . 239

C CSP-based testing theory 243
C.1 CSPM specification for the vending machine 243

141414

1
Introduction

During the last fifty years, there has been a significant increase of embedded HW-SW
components in critical systems. A report from NASA (WEST, 2009) highlights that, from 1960
to 2000, the amount of functionalities provided to military aircrafts by embedded software
has grown from 8% to 80%. This scenario is not restricted to the aeronautical industry. The
automotive industry, for instance, has become even more dependent on embedded components.
In 2009 some cars already consisted of about 100 million lines of code (CHARETTE, 2009).

Clearly, this trend increases software size and complexity, and strongly impacts embed-
ded critical systems safety and reliability. Currently, many researches are focusing on how to
achieve the trustworthiness levels required for these systems. To this end, Model-Based Test-
ing (MBT) techniques play an important role generating test cases from specification models.

1.1 Model-based testing

One of the goals of MBT is to make the testing process more agile, less susceptible
to errors, and less dependent on human interaction. This goal is usually reached by means of
automatic generation (and execution) of test cases, besides automatic generation of test data,
from specification models.

As such, the quality of these specification models is crucial for an effective testing
campaign. Thus, it is desirable to describe the expected system behaviour via some formal
or semi-formal notation, which may concern different abstraction levels. Examples of nota-
tions are Unified Modeling Language (UML) (OMG, 2015), Lustre (BERGERAND, 1986),
Software Cost Reduction (SCR) (HEITMEYER; BHARADWAJ, 2000), IMA Test Modelling
Language (ITML) (EFKEMANN; PELESKA, 2011), among others. The main aim here is to
avoid inconsistent and incomplete specifications: contradictory and unspecified behaviour, re-
spectively.

When MBT is applied to analyse critical systems, it is also desired to clearly and for-
mally state the conditions necessary to guarantee that the System Under Test (SUT) is correct
with respect to its specification by means of a conformance relation, which can be used to prove

1.2. NATURAL-LANGUAGE PROCESSING 15

that the test generation strategy is sound. A conformance relation assumes that, besides the
specification, the implementation behaviour can also be described using the same notation of
the specification model. This requirement is known as the testability hypothesis. Conformance
is then defined as a mathematical relation between the specification and implementation models.
In this situation, we say we have a formal MBT strategy (GAUDEL, 1995).

Initially, most conformance relations proposed in the literature addressed only func-
tional (qualitative) system behaviour, and thus are unable to tackle non-functional real-time
(quantitative) properties. One prominent relation is ioco (TRETMANS, 1999) that relates input
and output events of Labelled Transition Systems (LTSs).

More recently, time-based relations have been devised: iocoDTA (KHOUMSI; JÉRON;
MARCHAND, 2003), tiocoTTG (KRICHEN; TRIPAKIS, 2004), rtioco (LARSEN; MIKUCIO-
NIS; NIELSEN, 2004), tiocoM (BRIONES; BRINKSMA, 2005), tiocoTorX (BOHNENKAMP;
BELINFANTE, 2005), tiocoSch, tiocoR

M, and tiocoζ (SCHMALTZ; TRETMANS, 2008), be-
sides tiocoAnd (ANDRADE et al., 2011). Some of these relations have a similar name (tioco)
and, thus, we added subscripts to differentiate each of them.

Since the majority of these relations assumes LTSs as specification models, some lim-
itations need to be considered when adopting them. Although it is possible to represent data
operations using events as an abstraction, an LTS is not directly suitable for this purpose. Be-
sides that, LTSs are not the best choice for compositional analyses and compositional test gen-
eration, which might be an important characteristic when dealing with larger and more complex
systems. For instance, opposed to LTSs, process algebras such as Communicating Sequential
Processes (CSP) allow that observations of a program may be deduced from the observations
of its components with the aid of their denotational semantics, with no need to refer to the
operational semantics directly (ROSCOE, 2010).

Despite the benefits of formal MBT, those who are not familiar with the models syntax
and semantics may be reluctant to adopt theses formalisms. Moreover, most of these models
are not available in the very beginning of the project, when usually natural-language require-
ments are available. One possible alternative to overcome these limitations is to employ Natural
Language Processing (NLP) techniques to derive the required models from natural-language
specifications automatically.

1.2 Natural-language processing

The demand of stating the desired system behaviour using formal models may some-
times be an obstacle for adopting formal MBT techniques, despite all its benefits. The model
notations may be not easy to interpret by, for instance, aerospace and automotive develop-
ment engineers. Hence, a specialist (usually mathematicians, logicians, computer engineers
and scientists) is required when such languages, and their corresponding techniques, are used
in business contexts.

1.3. RESEARCH QUESTION 16

Furthermore, most of these models are not yet available in the very beginning of the
system development project. In the initial phases, only high-level requirement descriptions are
usually available. According to the Federal Aviation Administration (FAA), which published a
report (FAA, 2009) that discusses current practices concerning requirements engineering man-
agement, “... the overwhelming majority of the survey respondents indicated that requirements

are being captured as English text...”. This supports the thesis that, at the very beginning of
system development, typically only natural-language requirements are documented. Therefore,
due to these limitations, the need to be familiar with the models syntax and semantics and the
absence of specification models in the very beginning of the system development, the use of
MBT is postponed or neglected.

As previously said, one possible alternative to overcome these limitations is to provide
means for deriving specification models automatically from the already existing documenta-
tion, in particular, natural-language requirements. In this sense, NLP techniques can be helpful.
If formal models are derived from natural-language requirements, besides applying MBT tech-
niques, one can reason formally about properties of specifications that can be difficult to analyse
by means of manual inspection, such as inconsistency and incompleteness.

NLP has been studied since the 1950s, initially focusing on machine translation. Cur-
rently, we can identify a vast diversity of NLP applications, such as question-answering systems,
natural-language interfaces, automated services over the telephone, tutoring systems, informa-
tion extraction, text summarisation, among others (ALLEN, 1995). A complete NLP system
usually counts on five processing levels, depending on its aim: morphological analysis, syntac-
tic analysis, semantic mapping, discourse analysis and pragmatic analysis. Concerning MBT,
the works (BODDU et al., 2004; SNEED, 2007; SANTIAGO JUNIOR; VIJAYKUMAR, 2012)
address the joint use of MBT and NLP based on the second and third NLP levels cited before.

There is a trade-off concerning the application of NLP in MBT. Some studies are able
to analyse a broad range of sentences, whereas others rely on controlled versions of natural
language. The works that adopt the former approach usually depend on a higher level of user
intervention to derive models and to generate test cases. Differently, the restrictions imposed by
a Controlled Natural Language (CNL) might allow a more automatic approach when generating
models and test cases. Ideally, a compromise between these two possibilities should be sought
to provide a useful degree of automation along with a natural-language specification feasible to
be used in practice.

1.3 Research question

In the light of the discussion presented so far, the main research question of this work
is: how to automatically and formally generate test cases from natural-language requirements?
As disccussed in Section 1.6, this question has already been addressed within more restricted
contexts, where no data operations or time aspects are considered. In this work, we are partic-

1.4. NAT2TEST – AN OVERVIEW 17

ularly interested in systems whose behaviour can be described via data operations and that is
time-dependent.

Here, we propose a formal MBT strategy for generating test cases from natural-language
requirements: NATural Language Requirements to TEST Cases (NAT2TEST). Actually, it is
a general approach that can be specialised via the adoption of different formal models and test
generation tools. Nevertheless, we focus on a formal approach based on the CSP (ROSCOE,
2010) process algebra: NAT2TESTCSP.

We dispense the need to know the syntax and semantics of the underlying notations,
besides allowing early use of MBT, by means of NLP. In this way, the formal and semi-formal
models internally used by the NAT2TEST strategy are automatically generated from the natural
language requirements.

1.4 NAT2TEST – an overview

Hereafter, we provide a general explanation of the NAT2TEST strategy interleaved with
an example to illustrate its application. As a running example, we consider a Vending Machine
(VM), which is an adaptation of the coffee machine presented in (LARSEN; MIKUCIONIS;
NIELSEN, 2004).

Running example Initially, the VM is in an idle state. When it receives a coin, it goes to the
choice state. When the coffee option is selected, the system goes to the weak or strong coffee
state. If coffee is selected within 30 seconds after inserting the coin, the system goes to the
weak coffee state. Otherwise, it goes to the strong coffee state. Therefore, if the user selects the
coffee option too quickly, a weak coffee is dispensed instead of a strong one.

The NAT2TEST strategy is tailored to generate tests for Data-Flow Reactive Systems
(DFRSs): a class of embedded systems whose inputs and outputs are always available as signals.
The input signals can be seen as data provided by sensors, whereas the output data are provided
to system actuators. These systems can also have timed-based behaviour, which may be discrete
or continuous.

Our test-generation strategy comprises a number of phases, as illustrated by Figure 1.1.
The three initial phases are fixed: (1) syntactic analysis, (2) semantic analysis, and (3) DFRS
generation; the remaining phases depend on the target formalism.

In this work, requirements are written according to a CNL based on English: the Sys-
tem Requirements Controlled Natural Language (SysReq-CNL), specially designed for editing
requirements of data-flow reactive systems. The first phase of the NAT2TEST strategy (syntac-
tic analysis) is responsible for verifying whether the requirements are in accordance with the
SysReq-CNL grammar. For each valid requirement, its corresponding syntax tree is identified.

1.4. NAT2TEST – AN OVERVIEW 18

Figure 1.1: Phases of the NAT2TEST strategy

[Source: author]

Example The following requirement (VM) adheres to the SysReq-CNL grammar.

� REQ001 – When the system mode is idle, and the coin sensor changes to true, the

coffee machine system shall: reset the request timer, assign choice to the system

mode. �

In the second phase (semantic analysis), the requirements are semantically analysed
using the case grammar theory. In this theory, a sentence is not analysed in terms of the syntactic
categories or grammatical functions, but in terms of the semantic (thematic) roles played by each
word/group of words in the sentence. Therefore, for each syntax tree the group of words that
correspond to a thematic role is identified. The collection of thematic roles for a requirement is
called the requirement frame.

Example Table 1.1 shows the requirement frame for REQ001. We note that the thematic
roles are grouped into conditions and actions. The roles that appear in actions are the following:
Action (ACT) – the action performed if the conditions are satisfied; Agent (AGT) – entity who
performs the action; Patient (PAT) – entity who is affected by the action; and To Value (TOV) –
the patient value after action completion. Similar roles are used in the conditions. �

Afterwards, the third phase (DFRS generation) derives DFRS models – an intermedi-
ate formal characterisation of the system behaviour from which other formal notations can be

1.4. NAT2TEST – AN OVERVIEW 19

Table 1.1: Example of requirement frame for REQ001 (vending machine)

Condition #1 - Main Verb (CAC): is
CPT: the system mode CFV: -
CMD: - CTV: idle
Condition #2 - Main Verb (CAC): changes
CPT: the coin sensor CFV: -
CMD: - CTV: true
Action - Main Verb (ACT): reset
AGT: the coffee machine system TOV: -
PAT: the request timer
Action - Main Verb (ACT): assign
AGT: the coffee machine system TOV: choice
PAT: the system mode

[Source: author]

derived, such as SCR, Intermediate Model Representation (IMR), and CSP. The possibility
of exploring different formal notations allows analyses from several perspectives, using differ-
ent languages and tools (e.g., T-VEC (BLACKBURN; BUSSER; FONTAINE, 1997) for SCR,
RT-Tester (PELESKA et al., 2011) for IMR). Besides that, it makes our strategy extensible.

Example A DFRS model comprises disjoint sets of input and output variables, as well as
timers. The system behaviour is represented as functions, which have guards, along with the
corresponding system reaction (represented as assignments). In what follows, one can see
the guards, as well as the corresponding assignments, obtained from the requirement frame
of REQ001. Some syntax sugar is used to simplify the explanation.

current(the system mode) = idle ∧ current(the coin sensor) = true ∧
previous(the coin sensor) = false→ the request timer := 0; the system mode := choice

The predicate states that when the current value of the variable the system mode is idle, the
current value of the coin sensor is true, but it was false previously (it changed to true, as spec-
ified in the requirement), then the system should react resetting the timer the request timer,
besides assigning choice to the variable the system mode. �

In this work, we focus on the use of the process algebra CSP to generate test cases. In
this context, the NAT2TEST strategy (NAT2TESTCSP) comprises two additional phases. First,
the DFRS model is encoded as CSP processes (CSP generation). With the aid of the Failures-
Divergences Refinement (FDR)1 and Z3 tools2, symbolic and concrete test cases are generated.

1FDR tool – http://www.cs.ox.ac.uk/projects/fdr/
2Z3 tool – http://z3.codeplex.com/

http://www.cs.ox.ac.uk/projects/fdr/
http://z3.codeplex.com/

1.4. NAT2TEST – AN OVERVIEW 20

Table 1.2: Example of test case for REQ001 (vending machine)

TIME request coin mode output
0.0 false false idle strong
1.0 false true choice strong

[Source: author]

Example To generate test cases, we use FDR to enumerate traces (sequences of events) from
CSP specifications. From the traces, we obtain the test input data, as well as the expected output
data. Time information is symbolically encoded in these traces. In what follows, one can see an
excerpt from a trace yielded by FDR for the VM. The symbol “...” abstracts some events.

< output.the system mode.I.1.the coffee machine output.I.0, ...,
input.the coffee request button.B.false.the coin sensor.B.true, ...,

delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false, ...,

output.the system mode.I.0.the coffee machine output.I.0, ... >

The first event represents the initial output values of the system. The following events
inform that the coin sensor should be set to true, and the system reacts going to the choice state
(represent by the value 0). The delay event comprises boolean values that, when true, denote
symbolically that a corresponding time constraint (etai) has been satisfied. In this case, there is
no constraint restricting the amount of time that might advance and, thus, all values are false.
Regarding the system mode, the value 1 denotes the idle state. Concerning the machine output,
0 represents strong coffee (the standard initial value of this output signal). To obtain concrete
test cases, it is necessary to use Z3 to instantiate the values related to the time-based behaviour.
Table 1.2 shows part of a concrete test case obtained from the previous trace. �

Considering a CSP timed input-output conformance relation we defined (csptio), we
prove that our testing theory is sound. In other words, if the execution of a generated test case
leads to a fail verdict, it implies that the SUT is not correct with respect to its specification
model, considering the definition of the aforementioned relation.

Moreover, the verification that an implementation conforms to its specification, based
on csptio, is mechanised in terms of a high-level strategy by reusing successful techniques and
tools: refinement checking (FDR) and Satisfiability Modulo Theories (SMT) solving (Z3). The
former tool is used to analyse the conformance of data-related aspects as refinement checking,
whereas the latter is employed to analyse the temporal aspects as constraint satisfaction prob-
lems. Therefore, its mechanisation does not require the implementation of complex algorithms
or the manipulation of complex data structures. Furthermore, our mechanisation is sound with
respect to the csptio definition.

1.5. EMPIRICAL EVALUATIONS 21

The NAT2TEST strategy is automated by the NAT2TEST tool,3 which is written in
Java, and its Graphical User Interface (GUI) is built using the Eclipse RCP framework. The
tool can be easily installed and it runs on multiple platforms.

1.5 Empirical evaluations

The NAT2TEST strategy, via its supporting tools, is evaluated considering examples
from the literature, but also from the aerospace and the automotive industry: (i) a vending
machine (VM – the toy example previously mentioned); (ii) a simplified control system for
safety injection in a nuclear power plant (Nuclear Power Plant (NPP) – publicly available), (iii)
the priority command function (Priority Control (PC) – provided by Embraer4, our industrial
partner); and (iv) part of the turn indicator system of Mercedes vehicles (Turn Indicator System
(TIS) – publicly available).

For each example, we analyse two aspects: (i) performance, and (ii) the ability to detect
defects by means of mutation analysis. As a baseline we consider the generation and execution
of random tests using Randoop (PACHECO et al., 2007). Although random testing is mainly
designed for unit testing, it fits into our analysis purposes as we execute the generated test cases
on reference implementations in Java, since we do not have access to the embedded implemen-
tations due to security policies.

Moreover, to provide an empirical argument to whether the DFRS models are expressive
enough to represent the behaviour of a timed reactive system defined using natural language,
we assess whether test cases, either independently written by domain specialists from industry
or generated by a commercial tool (RT-Tester) from the same set of requirements, are compat-
ible with the corresponding DFRS models. By being compatible, we consider that there is a
sequence of transitions in the DFRS model that illustrate the delays, the system inputs and the
expected outputs described in the test case.

1.6 Scientific and technological contributions

In summary, the two main scientific contributions of this work are the following: (i) a
formal testing theory based on a CSP timed input-output conformance relation (csptio), which
extends with time aspects the relation cspio (NOGUEIRA; SAMPAIO; MOTA, 2014); and
(ii) a formal model (DFRS) for timed reactive systems that can be automatically derived from
natural-language requirements.

Regarding our first contribution, it differs from other formal testing theories (for in-
stance, see the ones mentioned in Section 1.1), since, as far as we know, it is the first CSP-based

3Available for download at: http://www.cin.ufpe.br/~ghpc/
4Empresa Brasileira de Aeronáutica

http://www.embraer.com/en-us/pages/home.aspx

http://www.cin.ufpe.br/~ghpc/
http://www.embraer.com/en-us/pages/home.aspx

1.6. SCIENTIFIC AND TECHNOLOGICAL CONTRIBUTIONS 22

testing theory to support control, data and time information. In particular, we consider a sym-
bolic codification of time that allows us to use standard CSP; we are not using Timed CSP
(REED; ROSCOE, 1988) or tock-CSP (ROSCOE; HOARE; BIRD, 1997) to deal with discrete
and continuous time. These notations were not considered for two main reasons. First, as time
is not symbolically encoded, it is easier to face state-explosion problems when analysing mod-
els. Second, the respective tool support for timed analyses is not mature enough. Moreover, as
we use CSP as our underlying notation, opposed to state-based notations such as Timed Input-
Output Transition Systems (TIOTSs), compositional aspects of conformance testing might be
pursuit as future work, since compositionality is a central aspect of CSP.

Concerning our second contribution, the formal model proposed here (DFRS) stands out
by the richness of the model generated solely from natural-language requirements. The DFRS
can represent input-output variables, besides discrete and continuous time information. In con-
trast, other works only cover one of these two aspects (ACEITUNA; DO; SRINIVASAN, 2014;
BACKES et al., 2015; BODDU et al., 2004; NOGUEIRA; SAMPAIO; MOTA, 2014; ESSER;
STRUSS, 2007; SIEGL; HIELSCHER; GERMAN, 2010) or rely on user intervention (AMBRI-
OLA; GERVASI, 2006; ILIC, 2007; LEVESON et al., 1994; MILLER et al., 2006; SCHNELTE,
2009; SANTIAGO JUNIOR; VIJAYKUMAR, 2012), when it is necessary to identify and clas-
sify entities, besides extracting information by hand.

Besides these two scientific contributions, it is worth mentioning the technological out-
come of this research: the NAT2TEST tool – a fully operational tool that supports all phases of
the strategy proposed here.

To accomplish these scientific and technological contributions, we have achieved the
following specific results:

1. A CNL (SysReq-CNL) for specifying requirements of data-flow reactive systems;

2. An application of NLP and of the case grammar theory with respect to MBT;

3. Algorithms for deriving formal specifications (CSP, SCR, IMR) from DFRSs;

4. A CSP timed input-output conformance relation (csptio);

5. A sound mechanisation of csptio conformance verification using FDR/Z3;

6. A formal testing theory that is proved sound with respect to csptio;

7. Empirical evaluations of the proposed MBT strategy for different domains;

8. Tool support for the MBT strategy proposed here.

In 2014, this study was mentioned as a highlight in the Year in Review issue of the
Aerospace America Magazine, a publication of the American Institute of Aeronautics and As-
tronautics (AIAA) (CARVALHO et al., 2014d).

1.7. THESIS STRUCTURE 23

1.7 Thesis structure

The remainder of this work is structured within the following chapters.

� Chapter 2 describes the first two phases of the NAT2TEST strategy. It presents the
lexicon (dictionary) and the grammar of our CNL for data-flow reactive systems
(SysReq-CNL). Afterwards, it presents the second phase of our strategy, by ex-
plaining the case grammar theory, how the content of the thematic roles are inferred
from syntax trees, and contextual rules that are verified concerning the system re-
quirements.

� Chapter 3 formalises the DFRS model. In particular, its symbolic and its expanded
representations. Besides that, it presents the algorithms that derive DFRS models
from thematic roles. Moreover, it performs a theoretical validation of these models
by connecting such a representation to established ones in the literature.

� Chapter 4 explains how the process algebra CSP can be used to represent DFRSs.
Then, it defines our formal testing theory, along with our CSP timed input-output
conformance relation, which is used to prove the soundness of the testing theory.

� Chapter 5 describes the tool support for the NAT2TEST strategy by going through
each of its constituent components. Furthermore, it discusses the empirical evalua-
tions performed in this work.

� Chapter 6 discusses the state-of-the-art related to the two main scientific contribu-
tions of this study: timed conformance relations and formal models for natural-
language requirements.

� Chapter 7 presents our conclusions and discusses future work.

242424

2
Syntactic and semantic analysis

The first phase (Syntactic Analysis) of the NAT2TEST strategy verifies whether the sys-
tem requirements are written according to a particular CNL. In the following phase (Semantic
Analysis) an informal semantics are given to the requirements.

The ideas presented in this chapter are first discussed in (CARVALHO et al., 2013a),
and later detailed in (CARVALHO et al., 2014c). In this chapter, we present these two phases:
syntactic analysis (Section 2.1), semantic analysis (Section 2.2).

2.1 Phase I – syntactic analysis

To be automatically processed by the NAT2TEST strategy, the system requirements
must be written according to the grammar of the SysReq-CNL. For each valid requirement, the
corresponding syntax tree is generated and used as input by the subsequent phase (Semantic
Analysis).

2.1.1 The SysReq-CNL – a CNL for system requirements

In general, a CNL consists of a subset of a particular natural language (e.g., English),
aiming to avoid textual ambiguity and complexity (WYNER et al., 2010). Some organisations
adopt simple CNLs to provide standardization to technical documentation. These CNLs consist
of guideline rules, such as: “write short sentences”, and “avoid using passive voice”.

Examples of such CNLs are: Avaya Controlled English1, for technical publications in
the telecommunication and computing industry (O’BRIEN, 2003); Caterpillar Technical En-
glish (CTE), used by Caterpillar Inc. (a heavy equipment manufacturing company) to sup-
port consistent, high-quality authoring and translation of technical documents from English
into a variety of target languages (KAMPRATH et al., 1998); and the prominent ASD-STE2

(AeroSpace and Defence Simplified Technical English), a CNL created for the aerospace in-

1http://www.avaya.com/usa/
2http://www.boeing.com/boeing/phantom/sechecker/se.page

http://www.avaya.com/usa/
http://www.boeing.com/boeing/phantom/sechecker/se.page

2.1. PHASE I – SYNTACTIC ANALYSIS 25

dustry which aims for people to write clear documentation, making texts easier to understand,
especially for non-native English speakers (ASD, 2005).

A different approach involves more formal CNLs, which can be used to write system
specifications in order to improve the reliability of the overall software development process.
These CNLs are based on a predefined vocabulary and on a restricted set of grammar rules,
used to identify the sentences underlying syntactic structure, which can be further mapped into
some formal representation (HEITMEYER; BHARADWAJ, 2000). The challenge is to define a
syntactic structure that allows automatic processing of requirements, but without losing writing
naturalness.

In this light, we designed the SysReq-CNL, specially tailored for editing requirements
of data-flow reactive systems: a class of embedded systems whose inputs and outputs are al-
ways available as signals. The input signals can be seen as data provided by sensors, whereas
the output data are provided to system actuators. These systems can also have timed-based
behaviour, which may be discrete or continuous.

Although the SysReq-CNL prevents some sources of ambiguity, such as the use of pro-
nouns, it is still possible to write ambiguous requirements due to lexical ambiguity (see Sec-
tion 5.2.1). This way, there might be more than one syntax tree per input requirement. In this
case, the NAT2TEST strategy terminates, and the requirement analyst shall manually remove
the ambiguity, and thus define which syntax tree shall be considered as the correct interpretation
of the requirement.

In what follows, one can see an example of an unambiguous requirement that adheres
to the SysReq-CNL grammar. The tool support of our strategy guides the user when writing
requirements according to the SysReq-CNL grammar (see Section 5.2.1). Requirements that
do not adhere to this grammar cannot be analysed, and the tool indicates the source of problem
such that the user can correct it.

� When the system mode is idle, and the coin sensor changes to true, the coffee ma-

chine system shall: reset the request timer, assign choice to the system mode.

The development of the SysReq-CNL was monitored by our industrial partner (Em-
braer), who considered it simple to understand and easy to use, besides imposing standardization
to requirements without losing naturalness. Despite the close connection with Embraer, since
the creation of this CNL was influenced by examples provided by Embraer, the SysReq-CNL
has proved to be suitable to express requirements in other domains, as well illustrated by the
examples carried out in this work.

Our CNL is defined by a phrase structure context free grammar, and a lexicon containing
the application domain vocabulary. The current version of SysReq-CNL (CARVALHO et al.,
2014c) is an enhancement of the one described in (CARVALHO et al., 2013a). The main
difference is an improved grammar structure to cover new writing scenarios. Furthermore,

2.1. PHASE I – SYNTACTIC ANALYSIS 26

now we also consider a pre-processing step to enable text reuse. These differences are better
explained later on.

When extending the SysReq-CNL via the definition of new grammar elements and rules
it suffices to update the phases directly related to the change. Depending on the change, the
impact might be restricted to the syntactic analysis phase or other phases might be updated as
well, for instance, to define new contextual and inference rules, and how this new information
should be used when deriving the requirements formal model.

2.1.1.1 The SysReq-CNL lexicon

As already mentioned, the SysReq-CNL lexicon conveys the vocabulary of the ap-
plication domain. Its entries are classified into lexical categories, also known as Parts of
Speech (POS) (ALLEN, 1995). In this work, we consider the following frequently used lexical
categories:

� determiners (DETER), words that determine (limit) the meaning of a noun (e.g., a
number, an article or a personal pronoun) (CRYSTAL, 2008);

� nouns (NSING for singular and NPLUR for plural);

� adjectives (ADJ);

� adverbs (ADV);

� verbs with inflections, for example, VBASE - base form, VPRE3RD - for the 3rd

person in present form;

� conjunctions (CONJ);

� prepositions (PREP).

In order to simplify the SysReq-CNL grammar rules, we create two special categories:
NUMBER for numbers, and COMP for comparisons (e.g., less than). Yet, we have special
entries to identify keywords that are used in the grammar definition: “and” (AND), “or” (OR),
“not” (NOT), “shall” (SHALL), “:” (COLON), and “,” (COMMA).

Finally, we highlight that, as the lexicon is domain dependent, it must be manually
created and maintained considering the system current domain. Despite the initial effort, the
vocabulary tends to become stable, which minimizes the maintenance effort. This is a natural
assumption for NLP systems that rely on a pre-defined set of lexical entries. Yet, it is possible to
reuse part of an existing lexicon for a new application domain (e.g., prepositions, conjunctions,
etc.).

2.1. PHASE I – SYNTACTIC ANALYSIS 27

Figure 2.1: SysReq-CNL – a grammar for system requirements

Requirement → ConditionalClause COMMA ActionClause PERIOD;
ConditionalClause → CONJ AndCondition;
AndCondition → AndCondition COMMA AND OrCondition

| OrCondition;
OrCondition → OrCondition OR Condition

| Condition;
Condition → NounPhrase VerbPhraseCondition;
VerbPhraseCondition → VerbCondition NOT? ComparativeTerm? VerbComplement;
VerbCondition → VPRE3RD | VTOBE PRE3 | VTOBE PRE | VTOBE PAST3 |

VTOBE PAST;
ComparativeTerm → (COMP (OR NOT? COMP)?);
ActionClause → NounPhrase VerbPhraseAction;
VerbPhraseAction → SHALL (VerbAction VerbComplement

| COLON VerbAction VerbComplement
(COMMA VerbAction VerbComplement)+);

VerbAction → VBASE;
VerbComplement → VariableState? PrepositionalPhrase*;
PrepositionalPhrase → PREP VariableState;
VariableState → (NounPhrase | ADV | ADJ | NUMBER);
NounPhrase → DETER? ADJ* Noun+;
Noun → NSING | NPLUR;

[Source: author]

2.1.1.2 The SysReq-CNL grammar

We follow the phrase structure grammar theory, originally introduced by Noam Chom-
sky, which assumes a binary division of the clause into a noun phrase and a verb phrase. These
phrases can be further divided into other constituents, until we reach the word level (CRYSTAL,
2008). A constituent can be a word or a phrase (group of words) that occurs as a unit in the
grammar rewrite rules. Note that these constituents will be nodes in the syntax tree.

This way, the SysReq-CNL grammar consists of phrase structure rewrite rules which
define the syntactic structures accepted by our parser. Our grammar was defined as a Context
Free Grammar (CFG), represented in the Extended Backus-Naur Form (EBNF) notation; see
Figure 2.1 – words in uppercase denote terminal symbols, and a “;” delimits the end of each
production. In this work, terminal symbols correspond to lexical categories.

The grammar start symbol is Requirement, which consists of a ConditionalClause and
an ActionClause. Therefore, the requirements have the form of action statements guarded by
conditions.

A ConditionalClause begins with a conjunction, and then its structure is similar to a
Conjunctive Normal Form (CNF) – conjunction of disjunctions. The conjunctions are delimited
by a COMMA and the AND keyword, whereas the disjunctions are delimited by the OR key-
word. The elementary condition (Condition) comprises a NounPhrase (one or more nouns even-
tually preceded by a determiner and adjectives) and a VerbPhraseCondition. A VerbPhraseC-

2.1. PHASE I – SYNTACTIC ANALYSIS 28

ondition begins with a VerbCondition (the to be verb or any other in the present or past tense).
A VerbCondition is followed by an optional NOT, which negates the meaning of the next term,
an optional ComparativeTerm and a VerbComplement.

An ActionClause begins with a NounPhrase followed by a VerbPhraseAction, which
is rewritten as SHALL followed by at least one VerbAction and one VerbComplement. If more
than one VerbAction and VerbComplement is used, then it is necessary to add a COLON after
the SHALL keyword and use the COMMA to delimit the elements. A VerbComplement is an
optional VariableState (a NounPhrase, an adjective, an adverb or a number) followed by zero
or more PrepositionalPhrase, which consists of a preposition and a VariableState.

This concise grammar is able to represent requirements written using several different
sentence formations, and it is not restricted to one specific application domain. We have suc-
cessfully applied the SysReq-CNL in the different domains considered in this work: VM, NPP,
PC, and TIS (see Section 5.1).

Bellow, we present a typical requirement as it was originally written by the Embraer
requirements team, and the corresponding form, rewritten to adhere to the SysReq-CNL. This
requirement is part of the specification of the PC. As it can be seen, the rewritten requirement
is similar to the original version.

� Original: The Priority Logic Function shall assign value 0 (zero) to Command In-
Control output when: left Priority Button is not pressed AND right Priority Button
is not pressed AND left Command is on neutral position AND right Command is on
neutral position.

� Rewritten: When the left priority button is not pressed, and the right priority button
is not pressed, and the left command is on neutral position, and the right command
is on neutral position, the Priority Logic Function shall assign 0 to the Command-
In-Control output.

Now we present other examples of typical requirement adhering to the SysReq-CNL.

� REQ001 - When the system mode is idle, and the coin sensor changes to true, the

coffee machine system shall: reset the request timer, assign choice to the system

mode. [VM]

� REQ002 - When the water pressure becomes higher than or equal to 900, and the

pressure mode is low, the Safety Injection System shall assign permitted to the pres-

sure mode. [NPP]

� REQ003 - When the voltage is greater than 80, and the flashing timer is greater than

or equal to 220, and the left indication lights are off, and the right indication lights

are off, and the flashing mode is left flashing or the flashing mode is left tip flashing,

2.2. PHASE II – SEMANTIC ANALYSIS 29

the lights controller component shall: assign on to the left indication lights, assign

off to the right indication lights, reset the flashing timer. [TIS]

� REQ004 - When the voltage is greater than 80, and the flashing timer is greater

than or equal to 220, and the left indication lights are off, and the right indication

lights are off, and the flashing mode is right flashing or the flashing mode is right

tip flashing, the lights controller component shall: assign off to the left indication

lights, assign on to the right indication lights, reset the flashing timer. [TIS]

The current version of the SysReq-CNL (CARVALHO et al., 2014c) has some improve-
ments with respect to its first version (CARVALHO et al., 2013a). Initially, it was not possible
to have an adverb derived from a VariableState. This restriction prevents recognizing require-
ments, such as the third example above mentioned (REQ003), since the words “off” and “on”
are adverbs in the context of a VariableState.

Besides this expressiveness change, now we allow more concise specifications by means
of text reuse. To support text reuse, we offer aliases and condition prefixes. To exemplify a
possible usage of aliases, consider the third and the fourth examples. They might be rewritten
considering the definition of an alias (e.g., ACTION 1) to refer to reset the flashing timer, which
appears in both requirements. To refer to an alias, one just needs to refer to the alias name within
the requirement. Besides that, the writer can reuse condition prefixes, which are identical for
two or more different requirements, using a special keyword (...).

Let ACTION 1 refer to reset the flashing timer, ACTION 5 to assign on to the left

indication lights, assign off to the right indication lights, and ACTION 6 to assign off to the

left indication lights, assign on to the right indication lights, then REQ003 and REQ004 can be
rewritten as a single requirement as follows.

� When the voltage is greater than 80, and the flashing timer is greater than or equal

to 220, and the left indication lights are off, and the right indication lights are off,

... and the flashing mode is left flashing or the flashing mode is left tip flashing, the

lights controller component shall: ACTION 5, ACTION 1.

... and the flashing mode is right flashing or the flashing mode is right tip flashing,

the lights controller component shall: ACTION 6, ACTION 1.

Despite the reuse benefits of these two features, they are optional. Moreover, our parser
is not aware of them as they are just pre-processed. Therefore, the parser input are requirements
without aliases or condition prefixes.

2.2 Phase II – semantic analysis

The second processing phase of the NAT2TEST strategy receives as input the generated
syntax tree, and delivers a requirement semantic representation. In this work, we adopt the case

2.2. PHASE II – SEMANTIC ANALYSIS 30

grammar theory (FILLMORE, 1968) to represent meaning. In this theory, a sentence is analysed
in terms of the semantic (thematic) roles played by each word/group of words in the sentence
(e.g., agent, patient, location, object, and instrument, among others). A simple example of this
system is: “Mary (agent) broke (action) the window (patient) with a stone (instrument)”. The
thematic roles used in this work are detailed in the following section.

Thematic roles are organised into case frames (detailed below), a structure which repre-
sents the semantic meaning of the sentence. The obtained case frame based semantic represen-
tation, which is informal, can then be mapped later into an internal formal model to provide a
formal semantics for the system requirements. Note that this informal semantic representation
decouples the formal model generation process from the SysReq-CNL syntactic rules. Thus,
the formal model generation process will not be affected by updates in the CNL (e.g., to capture
new syntactic structures) that do not cause changes to the underlying semantics.

2.2.1 Thematic roles, case frames, and requirement frames

In the case grammar theory, the verb is the main element of the sentence, and it de-
termines its possible semantic relations with words in the sentence; that is, the role that each
word plays with respect to the action or state described by the sentence’s verb. Considering
the previous example regarding “Mary”, the possible relationships with the verb “break” are
represented by the agent, patient and instrument Thematic Roles (TRs).

The verb’s associated TRs (or cases) are aggregated into a Case Frame (CF). In practical
terms, a CF can be viewed as a structure consisting of slots (each one representing a verb’s
thematic role) to be filled in by sentence elements. So, the TRs in a CF specify the structural
context of the verb.

Note that this classification system may resemble the functional syntactic analysis,
which classifies the sentence elements by their function in a sentence (e.g., subject, object,
predicative, etc.). It is even possible to establish a correspondence between some of our TRs
and these functional classes (e.g., agent 7→ subject; action 7→ verb and patient 7→ object). How-
ever, the functional classification does not provide the fine grained (semantic) analysis needed
in our approach to generate formal models of the specification. For instance, concerning some
verbs, the indirect object might refer to the patient (e.g., assign 10 to x. – x is the patient),
whereas it might refer to different roles (e.g., change from 10 to 20), regarding other verbs.
Thus, we use TRs instead of functional classes.

Continuing our explanation about case frames, it is important to say that each verb in the
language vocabulary corresponds to only one CF. However, one CF may be related to several
verbs (those which bear the same TRs – e.g., “add” and “subtract”). In a CF, thematic roles
may be obligatory or optional (e.g., the CF for the verb “break” has “agent” and “patient” as
obligatory roles, whereas the TR “instrument” is optional).

In this work, we consider nine thematic roles (the adopted nomenclature was inspired

2.2. PHASE II – SEMANTIC ANALYSIS 31

by (ALLEN, 1995)). The Condition Modifier role was defined by us, whereas the other TRs
were obtained from the related literature.

As seen before, requirements have the form of action statements guarded by conditions.
The underlying semantics is that when the conditions are true, the corresponding actions shall
be performed. Note that the verbs (or verbal phrases) used in the condition clauses are different
from the ones used in the action statements. As such, we consider specific TRs for condition
clauses, and other TRs for the action statements.

Below, we can find the TRs associated with action statements.

� ACT: the action performed if the conditions are satisfied;

� AGT: entity who performs the action;

� PAT: entity who is affected by the action;

� TOV: the Patient value after action completion.

Now we list the TRs associated with conditions.

� Condition Action (CAC): the action that concerns each condition;

� Condition Patient (CPT): the entity related to each condition;

� Condition From Value (CFV): the CPT previous value;

� Condition To Value (CTV): the value satisfying the condition;

� Condition Modifier (CMD): a modifier related to the condition.

In our CNL, as a requirement comprises more than one verb (at least one condition
and one action), we have more than one CF related to each phrase. All derived CFs are joined
afterwards to compose what we call a Requirement Frame (RF). In other words, a RF is a
structure to encode data such as the one presented in Table 2.1: a collection of case frames for
conditions and action statements.

Considering the requirement REQ003, previously presented in Section 2.1.1.2 and re-
produced below, Table 2.1 shows the corresponding case frames.

� REQ003 - When the voltage is greater than 80, and the flashing timer is greater than

or equal to 220, and the left indication lights are off, and the right indication lights

are off, and the flashing mode is left flashing or the flashing mode is left tip flashing,

the lights controller component shall: assign on to the left indication lights, assign

off to the right indication lights, reset the flashing timer. [TIS]

2.2. PHASE II – SEMANTIC ANALYSIS 32

Table 2.1: Example of requirement frame for REQ003 (turn indicator system)

Condition #1 - Main Verb (CAC): is
CPT: the voltage CFV: -
CMD: greater than CTV: 80
Condition #2 - Main Verb (CAC): is
CPT: the flashing timer CFV: -
CMD: greater than or equal to CTV: 220
Condition #3 - Main Verb (CAC): are
CPT: the left indication lights CFV: -
CMD: - CTV: off
Condition #4 - Main Verb (CAC): are
CPT: the right indication lights CFV: -
CMD: - CTV: off
Condition #5 - Main Verb (CAC): is
CPT: the flashing mode CFV: -
CMD: - CMD: left flashing
OR - Main Verb (CAC): is
CPT: the flashing mode CFV: -
CMD: CTV: left tip flashing

Action - Main Verb (ACT): assign
AGT: the lights controller component TOV: on
PAT: the left indication lights
Action - Main Verb (ACT): assign
AGT: the lights controller component TOV: off
PAT: the right indication lights
Action - Main Verb (ACT): reset
AGT: the lights controller component TOV: -
PAT: the flashing timer

[Source: author]

2.2.2 Contextual and inference rules

In this section, we explain how we infer the contents of each thematic role from the
syntax trees obtained after the first phase of the NAT2TEST strategy. Before the inference
process, some contextual rules are verified according to the verbs being used. These rules
inspect the syntax trees for semantic errors.

Currently, we consider the verbs: to add, to assign, to be, to become, to change, to reset,
and to subtract. It is worth mentioning that they are sufficient to write all requirements of the
examples considered in this work. Nevertheless, one can extend the NAT2TEST strategy incor-
porating new verbs. It suffices to update the phases directly related to the change: define new
contextual and inference rules, besides how this new information should be used when deriv-
ing the requirements formal model. The contextual rules are defined considering the expected

2.2. PHASE II – SEMANTIC ANALYSIS 33

grammar structure of the aforementioned verbs, while the inference rules take into consider-
ing the structure of the SysReq-CNL grammar. In what follows, we discuss the NAT2TEST
contextual and inference rules.

Rule 1. The verbs to add, to assign, to reset, and to subtract shall be used only in action
statements.

Rule 2. The verbs to be, to become, and to change shall be used only in the conditions of a
requirement.

Rule 1 restricts the use of verbs that express an action to the context of action statements.
Analogously, Rule 2 restricts the use of verbs that express a possible value or a modification
between values to the conditions of a requirement.

Depending on the verb, some thematic roles are mandatory, others shall not be used,
whereas some are optional. In what follows, we define rules that state which thematic roles are
related to each verb.

Rule 3. Concerning the verbs to add, to assign, and to subtract, all thematic roles associated
with action statements are mandatory.

Rule 4. Concerning the verb to reset, the thematic role TOV is not used, and the other thematic
roles associated with action statements are mandatory. We assume to reset to be equivalent to
assigning a standard value. This standard value may be dependent on the context (e.g., in the
context of boolean values, reset is equivalent to assign false, whereas the default value is 0 when
dealing with numerical values).

Rule 5. Concerning the verbs to be and to become, the thematic role CFV is not used, the
thematic role CMD is optional, and the other thematic roles associated with conditions are
mandatory. We assume to become X to be equivalent to changes from not X to X.

Rule 6. Concerning the verb to change, the thematic roles CFV and CMD are optional, and the
other thematic roles associated with conditions are mandatory. The use of to change without
the CFV is equivalent to the use of to become.

For instance, changes to X is equivalent to write becomes X. We also have one rule to
avoid an incoherent use of the CMD thematic role.

Rule 7. Concerning the thematic role CMD, incoherent modifiers shall not be used. Thus, it is
not possible to have greater than and lower than simultaneously for the same thematic role as
it does not make sense.

Finally, the last rules concern the prepositions and number of complements that shall be
used with each verb.

Rule 8. Concerning the verb to add, the structure is: to add X to Y.

2.2. PHASE II – SEMANTIC ANALYSIS 34

Rule 9. Concerning the verb to assign, the structure is: to assign X to Y.

Rule 10. Concerning the verb to be, the structure is: to be X.

Rule 11. Concerning the verb to become, the structure is: to become X.

Rule 12. Concerning the verb to change, the structure is: to change from X to Y or to change
to Y.

Rule 13. Concerning the verb to reset, the structure is: to reset X.

Rule 14. Concerning the verb to subtract, the structure is: to subtract X from Y.

To exemplify the need for these last rules, consider the phrase “When input1 becomes
from 10, and input2 changes from 20, the system shall: add 30 to output1 to output2, assign 40,
subtract 50, reset from output2.”. Despite being syntactically correct, the phrase does not make
sense since it does not respect the expected verb structure. It violates the Rules 11, 12, 8, 9, 14,
and 13, in this order.

It is worth emphasising that these rules need to be updated if new verbs are considered to
write the requirements. However, as previously said, this set of verbs and rules were sufficient
to describe requirements from different domains and structures.

The contents of each thematic role are inferred from the syntax trees generated after the
first phase of the NAT2TEST strategy. This is done by visiting the syntax trees searching for
particular patterns. The mapping process starts by identifying the requirement’s verbs.

We have verbs in conditions, which are mapped to the CAC role, and in actions, which
correspond to the ACT role. The CAC and ACT verbs will sometimes guide the selection of
the appropriate thematic roles to compose the requirement’s CF. This happens when the syntax
tree structure is not enough to determine the correct semantic mapping. In what follows, we
present the patterns related to each thematic role. These patterns are applied individually to
each requirement’s condition and action.

Rule 15. ACT: comprises the terminals of VBASE (a verb on its base form).

Rule 16. AGT: comprises the terminals of the NounPhrase that is a direct descendant of Ac-
tionClause.

Rule 17. PAT: comprises the terminals of
(i) the VariableState that is a descendant of the PrepositionalPhrase that is a descendant of
VerbPhraseAction, if the corresponding ACT is equal to add, assign, or subtract;
(ii) the VariableState that is a descendant of VerbPhraseAction, if the corresponding ACT is
equal to reset.

Rule 18. TOV: comprises the terminals of the VariableState that is a direct descendant of the
VerbComplement that is a descendant of VerbPhraseAction, if the corresponding ACT is equal
to add, assign, or subtract.

2.2. PHASE II – SEMANTIC ANALYSIS 35

Figure 2.2: Example of inference of the thematic roles content within actions

Syntax Tree:
...
| −ActionClause
| −NounPhrase
| −DETER
| −the)
| −Noun
| −NSING
| −system

| −VerbPhraseAction
| −SHALL
| −shall
| −COLON
| − :
| −VerbAction
| −VBASE
| −assign
| −VerbComplement
| −VariableState
| −NUMBER
| −30.0
| −PrepositionalPhrase
| −PREP
| −to
| −VariableState
| −NounPhrase
| −Noun
| −NSING
| −output1

ACT: assign [Rule 15]
AGT: the system [Rule 16]
PAT: output1 [Rule 17.(i)]
TOV: 30.0 [Rule 18]

[Source: author]

To exemplify these rules, consider the phrase: “When input1 is not lower than 31.5,
and input2 changes from false to true, the system shall: assign 30.0 to output1, reset output2.”.
Figure 2.2 shows the syntax tree obtained from the first action, as well as the corresponding
thematic roles along with the patterns (rules) applied.

The following inference rules are related to thematic roles that appear within conditions.

Rule 19. CAC: comprises the terminals of VerbCondition.

Rule 20. CPT: comprises the terminals of the NounPhrase that is a direct descendant of Con-
dition.

Rule 21. CFV: comprises the terminals of the VariableState that is a direct descendant of the
PrepositionalPhrase that is a descendant of VerbPhraseCondition, if the corresponding CAC is

2.2. PHASE II – SEMANTIC ANALYSIS 36

Figure 2.3: Example of inference of the thematic roles content within conditions

Syntax Tree:
...
| −Condition
| −NounPhrase
| −Noun
| −NSING
| −input1

| −VerbPhraseCondition
| −VerbCondition
| −VTOBE PRE3
| −is
| −NOT
| −not
| −ComparativeTerm
| −COMP
| −lower than
| −VerbComplement
| −VariableState
| −NUMBER
| −31.5,

CAC: is [Rule 19]
CPT: input1 [Rule 20]
CMD: not lower than [Rule 23]
CFV: - (no rule)
CTV: 31.5 [Rule 22.(i)]

[Source: author]

equal to change, and if the preposition associated with the PREP of this PrepositionalPhrase is
from.

Rule 22. CTV: comprises the terminals of:
(i) the VariableState that is a direct descendant of the VerbComplement that is a descendant of
VerbPhraseCondition, if the corresponding CAC is equal to be or become;
(ii) the VariableState that is a direct descendant of the PrepositionalPhrase that is a descendant
of VerbPhraseCondition, if the corresponding CAC is equal to change, and if the preposition
associated with the PREP of this PrepositionalPhrase is to.

Rule 23. CMD: the terminals of ComparativeTerm appended to a not, if there is a node NOT
that is a direct descendant of VerbPhraseCondition.

To exemplify some of the last rules, consider again the phrase: “When input1 is not
lower than 31.5, and input2 changes from false to true, the system shall: assign 30.0 to output1,
reset output2.”. Figure 2.3 shows the syntax tree obtained from the first condition, as well as
the corresponding thematic roles along with the patterns (rules) applied.

2.3. CONCLUDING REMARKS 37

2.3 Concluding remarks

This chapter detailed the first two steps necessary to derive test cases from system re-
quirements written in natural language. First, the system requirements are analysed to assert
whether they comply to the grammar of the SysReq-CNL – a CNL specially tailored for editing
requirements of data-flow reactive systems. This CNL allows writing requirements that have
the form of action statements guarded by conditions. Therefore, it might not be suitable for
modelling natural-language requirements outside the domain of reactive systems.

Afterwards, the case grammar theory is used to provide an informal semantic inter-
pretation for the system requirements. Moreover, rules tailored for the verbs being used are
considered to identify potential semantic errors in the requirements. If no errors are found, we
are ready to assign a formal interpretation to the system requirements based on the inferred
thematic roles. This is the main goal of the third phase of the NAT2TEST strategy.

383838

3
A formal model for requirement frames

In the semantic analysis, thematic roles are used to provide an informal semantics to the
system requirements. Now we derive a formal representation for the requirements. Therefore,
we define here a symbolic, timed and state-rich automata-based notation for representation
of natural-language requirements: Data-Flow Reactive System (DFRS) (CARVALHO et al.,
2014b), which is derived automatically from the requirement frames.

DFRS models can be translated to more concrete notations (SCR, IMR, CSP, among
others) and, thus, reuse the tool support available for these notations. Therefore, a DFRS allows
exploring the original requirements from different perspectives, besides being independent of
a specific tool. Moreover, translating requirement frames to an intermediate formal notation
such as DFRSs is a promising alternative, since it was devised considering particularities of the
specific domain of this work: reactive systems. The direct translation from requirement frames
to more concrete notations is a more elaborate task, since it would be necessary to consider the
particularities of the chosen notation when representing the behaviour of reactive systems.

DFRSs have two representations: a more abstract (symbolic) representation – Symbolic
Data-Flow Reactive Systems (s-DFRSs), which inherently avoids an explicit representation of
possibly infinite sets of states and, thus, the state space explosion problem; and an expanded rep-
resentation – Expanded Data-Flow Reactive System (e-DFRS), which is built dynamically from
its symbolic counterpart, possibly limited to some bound, and then used to bounded analyses
such as requirements reachability, determinism, and completeness. To avoid confusion, con-
sider that, hereafter, s-DFRS and e-DFRS refer to symbolic and expanded DFRSs, respectively,
while DFRS refers to both of them.

In this chapter, besides presenting the formal definition in Z (ISO, 2002) of s-DFRSs
(Section 3.1) and e-DFRSs (Section 3.3), we also describe the algorithms related to the third
phrase of the NAT2TEST strategy, when s-DFRSs models are derived from RFs (Section 3.2).

Furthermore, we also prove that an e-DFRS can be characterised as a TIOTS – a la-
belled transition system extended with time, which is widely used to characterise conformance
relations for timed reactive systems (Section 3.4). Being more abstract than a TIOTS, a DFRS
comprises a more concise representation of timed requirements and, thus, easier to represent

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 39

and to process computationally. For instance, a TIOTS can have an infinite number of states,
whereas s-DFRSs are characterised by finite elements.

3.1 Definition and properties of an s-DFRS

In this section, first, we give an informal overview of the definition of DFRSs, and
then we provide a formal definition for its symbolic representation. It is important to say that
all definitions in Z presented here are syntactically correct and typed checked with the CZT
plug-in for Eclipse1.

3.1.1 Overview of DFRSs

A DFRS models an embedded system whose inputs and outputs are always available,
as signals. The input signals can be seen as data provided by sensors, whereas the outputs
as data provided to actuators. Each signal carries a binary value that represents boolean and
numerical values. Hereafter, we directly refer to boolean (true and false, represented as 1 and
0, respectively) and numerical values, instead of their binary representation.

It is assumed that a DFRS can also have internal timers, which might be used to trigger
timed-based behaviour. An e-DFRS represents a timed system with continuous or discrete
behaviour modelled as a state-based machine. Each state comprises a valuation for each element
of the system: its inputs, outputs, and timers, as well as its global clock.

The states of an e-DFRS are connected by delay and function transitions. A delay
transition represents the observation of the input signal values after a given delay, whereas the
function transition represents how the system reacts to the input signals: the observed values of
the output signals. The transitions are encoded as assignments to input and output variables as
well as timers.

As a running example, we consider the VM briefly discussed in the introduction and
fully presented in Chapter 5.1. Briefly recapping its main behaviour, after receiving a coin
and a coffee request, the VM produces weak or strong coffee depending upon the time elapsed
between inserting the coin and requesting coffee. The time required to produce weak coffee is
also different from that of strong coffee.

As shown in Figure 3.1, in this example we have two input signals related to the coin
sensor (sensor) and the coffee request button (request). A true value means that a coin was
inserted and the coffee request button was pressed. There are two output signals related to the
system mode (mode) and the vending machine output (output). The values communicated by
these signals reflect the system possible states (idle, choice, weak, strong, and reset) and the
possible outputs (undefined, weak, and strong).

1http://czt.sourceforge.net/eclipse/

http://czt.sourceforge.net/eclipse/

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 40

Figure 3.1: The vending machine specification – abstract representation

Vending Machine

request timer

sensor

request

mode

output

[Source: author]

The VM has just one timer: the request timer, which is used to register the moments
when a coin is inserted, when the coffee request button is pressed, and when the coffee is
produced. Figure 3.2 illustrates a scenario where there is continuous observation of the input
and output signals. If we had chosen to observe the system discretely, we would have a similar
scenario, but with a discrete number of samples over time.

In Figure 3.2, a coin is inserted 2 seconds after starting the vending machine (the signal
sensor changes to 1 – true). Immediately, the system state changes from idle to choice. Here,
the system states are encoded as follows: idle 7→ 1, choice 7→ 0, weak 7→ 3, strong 7→ 2, and
reset 7→ 4. Therefore, this change is represented by changing the value of the signal mode from
1 to 0. In this example, the signal sensor remains true for 3 seconds.

When 10 seconds have elapsed since the coin was inserted, which happens 2 seconds
after starting the vending machine, the user requests a coffee (the signal request becomes true
when the system global clock is equal to 12). At this moment, the system state changes to
weak coffee (the signal mode becomes 3). In this example, the signal request remains true for 4
seconds.

As the coffee request occurs within 30 seconds of the coin being inserted, the system
produces a weak coffee, which is represented as the value 2 of the signal output, 20 seconds
after receiving the coffee request. We recall that a weak coffee is produced within 10 and 30
seconds after the coffee request. Then, as stated by the requirements, the system goes to the
reset state (the value of signal mode becomes 4), and 3 seconds later it goes back to the idle

state, besides resetting the output to undefined (the signal output becomes 1).
As a state-based notation, the example illustrated in Figure 3.2 is represented in a an

e-DFRS as a set of states and transitions (see Figure 3.3). The states are related by delay (D)
and function (F) transitions. As already mentioned, the former represents time elapsing along
with input stimuli, whereas the latter describes an instant reaction of the system. It is important
to emphasize that the diagram presented in Figure 3.3 is just an illustration of part of an e-DFRS
based on the particular scenario depicted in Figure 3.2.

The first state is the top and left-most one: s, r, m, o, t and gc represent the current value
of the coin sensor, the coffee request button, the system mode, the system output, the request
timer and the system global clock, respectively. The delay transition emanating from this state
denotes that after 2 seconds a coin is inserted and, thus, the value of s changes to 1.

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 41

Figure 3.2: Example of signals for the vending machine

0

1

2 5 40
time(s)se

ns
or

0

1

12 16 40
time(s)re

qu
es

t

0

1

2

3

4

2 12 32 35 40
time(s)

m
od

e

0

1

2

32 35 40
time(s)

ou
tp

ut
[Source: author]

Afterwards, the system reaction is illustrated by a function transition that changes the
system mode to choice (0), besides resetting the request timer. This reset operation is performed
to register the moment when the coin is inserted, as this information is required when deciding
if the system should produce a weak or a strong coffee.

The reset of a timer is represented by assigning 0 to it, but it is encoded as assigning the
current value of the system global clock to the corresponding timer. This is possible as we have
a single and global clock source (the system global clock). Otherwise, we would need to update
the value of all timers every time a delay transition is performed. We provide more details about
this design decision when formalising the e-DFRS elements.

We note that the changes produced by the transitions are highlighted in bold in Fig-
ure 3.3. Moreover, each delay transition comprises the values of all input signals, whereas each
function transition considers a subset of the output signals, besides the internal request timer,
when appropriate.

When the user requests a coffee (third delay transition), as it is requested 10 seconds
after inserting the coin (gc− t = 12−2 = 10), the system goes to the weak (3) state, and resets
again the request timer. Later (20s), it changes the system output to 2 to denote the production
of weak coffee. Finally, 3 seconds later it returns to the idle (1) state.

The main difference between an s-DFRS and its expanded version, characterised as
just explained and illustrated in Figure 3.3, is that the characterisation of an s-DFRS defines
the initial state and means of calculating the next states via a set of functions. Differently, an
e-DFRS comprises the set of all states and how they are related by delay and function transitions.
Now, after presenting an informal discussion of DFRS models, we define the s-DFRS precisely.

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 42

Figure 3.3: The vending machine specification – e-DFRS representation
[s ≡ coin sensor, r ≡ the coffee request button, m ≡ the system mode,

o ≡ the system output, t ≡ the request timer, and gc ≡ the system global clock]

s = 0
r = 0
m = 1
o = 1
t = 0

gc = 0

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 2

s = 1
r = 0

m = 0
o = 1
t = 2

gc = 2

s = 0
r = 0
m = 0
o = 1
t = 2

gc = 5

s = 0
r = 1
m = 0
o = 1
t = 2

gc = 12

s = 0
r = 1

m = 3
o = 1
t = 12

gc = 12

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 16

s = 0
r = 0
m = 3
o = 1
t = 12

gc = 32

s = 0
r = 0

m = 4
o = 2
t = 32

gc = 32

s = 0
r = 0
m = 4
o = 2
t = 32

gc = 35

s = 0
r = 0

m = 1
o = 1
t = 32

gc = 35

s = 0
r = 0
m = 1
o = 1
t = 32

gc = 40

(D) – 2s

s := 1
r := 0

(F)

m := 0
t := 0

(D) – 3s s := 0
r := 0

(D) – 7s

s := 0
r := 1

(F)

m := 3
t := 0

(D) – 4s s := 0
r := 0

(D) – 16s

s := 0
r := 0

(F)

m := 4
o := 2
t := 0

(D) – 3s s := 0
r := 0

(F)

m := 1
o := 1

(D) – 5s

s := 0
r := 0

[Source: author]

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 43

3.1.2 Formal model of an s-DFRS

Formally, an s-DFRS is a 6-tuple: (I, O, T, gcvar, s0, F). Inputs (I) and outputs (O) are
system variables, whereas timers (T) are a distinct kind of variable, which can be used to model
temporal behaviour. The system global clock is gcvar, a variable whose values are non-negative
numbers representing a discrete or a dense (continuous) time. The initial state is s0, and F is a
set of functions. In what follows, we describe in Z the constituent components of an s-DFRS.

3.1.2.1 Inputs, outpus and timers

We use a given set NAME to represent the set of all valid variable names, and define gc

to be the name of the system global clock; as specified in the sequel, the component gcvar is
a pair that maps gc to its type. Also VNAME is the set of all system variables except for the
global clock.

[NAME]

gc : NAME

VNAME == NAME \{gc}

Based on these definitions, we define SVARS and STIMERS to represent inputs and outputs as
different mappings of the same type, and timers, respectively, as finite partial functions from
VNAME to TYPE. We assume that the system has a finite number of inputs, outputs and timers;
timers only hold non-negative values (nat or ufloat).

SVARS == {f : VNAME 7 7→ TYPE | f 6= /0 ∧ ran f ⊆ {bool, int,float}}
STIMERS == {f : VNAME 7 7→ TYPE | ran f = {nat} ∨ ran f = {ufloat}}

We consider as valid types boolean, integer and float types (bool, int, nat, float, ufloat). The
type ufloat stands for unsigned float numbers.

TYPE ::= bool | int | nat | float | ufloat

More complex types are not needed since we are dealing with systems whose inputs and outputs
are signals. As float numbers are not part of Standard Z, we provide an axiomatisation that fulfils
our needs. For a more comprehensive axiomatisation, we refer, for instance, to ProofPower-Z2.

The schema DFRS VARIABLES defines the variables of a DFRS as a set of inputs (I),
outputs (O), timers (T) and a global clock (gcvar). In Z, a schema is a named element used

2http://www.lemma-one.com/ProofPower/index/index.html

http://www.lemma-one.com/ProofPower/index/index.html

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 44

to structure and encapsulate definitions for reuse. As I and O are distinct and non-empty sets,
we have that a DFRS has at least one input and one output variable. Differently, one can have
a system with no timers: a DFRS whose behaviour is not dependent on time elapsing. These
three sets (I, O and T) are disjoint.

DFRS VARIABLES

I,O : SVARS

T : STIMERS

gcvar : NAME×TYPE

gcvar = (gc,nat) ∨ gcvar = (gc,ufloat)

disjoint 〈dom I,domO,domT〉
ranT ⊆ {gcvar.2}

We note that our model can represent discrete, gcvar = (gc,nat), or continuous time, gcvar =

(gc,ufloat), systems. Besides that, the type of all timers must be the same (ranT ⊆ {gcvar.2}):
one can analyse the behaviour of the system discretely or continuously, but not in both ways
simultaneously. In Z, the notation .i allows us to access the i-th element of a tuple. Therefore,
gcvar.2 stands for the type of the system global clock.

Example 1 Besides the global clock, five variables are identified in the VM example (see Fig-
ure 3.3): two system inputs (the coin sensor—s, the coffee request button—r), two outputs
(the system mode—m, the coffee machine output—o), and one timer (the request timer—
t). The sensor and the button are modelled by booleans that indicate whether a coin has been
inserted or the button has been pressed. The system mode and the output of the VM are non-
negative numbers. The request timer is modelled as a non-negative natural number since the
temporal properties of the VM are defined in terms of discrete values (e.g., “... 30 seconds ...”
instead of “... 30.0 seconds ...”). �

3.1.2.2 Initial state

A state is a relation between names and values, which include boolean and numerical
values. The letter R refers to R, and R+ to the positive elements of R. The element VALUE is
a free type: a set with explicit structuring information – constructors 〈〈〉〉 are used to represent
boolean and numerical values (b〈〈...〉〉 and i〈〈...〉〉,n〈〈...〉〉, f 〈〈...〉〉,uf 〈〈...〉〉, respectively).

BOOL VALUES ::= TRUE | FALSE

VALUE ::= b〈〈BOOL VALUES〉〉 | i〈〈Z〉〉 | n〈〈N〉〉 | f 〈〈R〉〉 | uf 〈〈R+〉〉

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 45

Each name within a state is mapped to two values: the first one represents the previous value,
and the second one the current value. Therefore, Figure 3.3 shows a simplified and not the actual
representation of states. For instance, in the first state, s = 0 should be s 7→ (b(false),b(false)),
and, in the second state, s = 1 should be s 7→ (b(false),b(true)). Note that in Figure 3.3 we use
numbers to represent boolean values.

STATE == NAME 7→ (VALUE×VALUE)

Keeping the previous value of variables allows us to trigger system reactions to more complex
behaviour. For example, the system goes to the choice state at the exact moment when the coin
sensor changes from false to true; in other words, when the previous value of s is 0 and the
current one is 1.

To simplify the access to current and previous values of a state, we consider two projec-
tion functions that yield the set of previous and current values of a given state: previousValues

and currentValues, respectively. Their definition is not provided here as they are straightfor-
ward. Here, we concentrate on the most important definitions, but all omitted ones can be
found in Appendix B.

The initial state of an s-DFRS is then defined as one possible state.

DFRS INITIAL STATE == [s0 : STATE]

A variable n, whose type is t, is well typed in a state s if, and only if, n belongs to the domain
of s, and the previous and current values associated with n in s belong to the set of possible
values of t. This property of well typedness for variables in the context of a state is captured
by the following predicate. Here, we use sets to denote predicates. The underlying idea is that
well typed var is a set composed by all well typed variables. Therefore, we represent the fact
of being well typed as belonging to well typed var.

well typed var : P(STATE×NAME×TYPE)

∀s : STATE ; n : NAME ; t : TYPE ; v1,v2 : VALUE |
n ∈ doms ∧ (s(n)).1 = v1 ∧ (s(n)).2 = v2 •

(s,n, t) ∈ well typed var⇔ v1 ∈ values(t) ∧ v2 ∈ values(t)

The function values yields all possible values of a specific type t. Although we could directly
access the range of a type, we use this auxiliary function to avoid legibility issues on bigger
predicates.

Now, we lift the definition of well typedness for a state. Considering a set f of variables
(names related to types), a state s is well typed if, and only if, it provides a value for each
variable (that is, its domain is that of the function f) and those variables are well typed in s.

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 46

well typed state : P(STATE× (NAME 7→ TYPE))

∀s : STATE ; f : NAME 7→ TYPE • (s, f) ∈ well typed state⇔
doms = dom f ∧ (∀n : dom f ; t : TYPE | f (n) = t • (s,n, t) ∈ well typed var)

Example 2 Considering the example shown in Figure 3.3, its initial state is:

{(s 7→ (b(false),b(false)), r 7→ (b(false),b(false)),

(m 7→ (n(1),n(1)),o 7→ (n(1),n(1)),
(t 7→ (n(0),n(0)),gc 7→ (n(0),n(0))}

Regarding the variables m (the system mode) and o (the coffee machine output), as previ-
ously said, the natural numbers represent elements of the enumeration: {0 7→choice, 1 7→idle,
2 7→preparing strong coffee, 3 7→preparing weak coffee, 4 7→reset}, and {0 7→strong coffee,
1 7→undefined output, 2 7→weak coffee}, respectively. �

3.1.2.3 Functions

The system behaviour is defined as a non-empty finite set (F1) of functions (see schema
DFRS FUNCTIONS) that describe how the system reacts in a given context. There is one
function per system component; if the system comprises parallel components, we are going to
have one function describing the behaviour of each component.

DFRS FUNCTIONS == [F == F1 FUNCTION]

A function is a set of tuples. Each one models how the system reacts in a given context, which
is characterised by a pair of static (sGuard) and timed (tGuard) guards, each one being a set
(conjunction) of boolean expressions. The system reaction is denoted as a set of assignments
(asgmts). Note that one of the guards can be empty, but not both. As formalised later, the static
guards range over input and output variables, whereas timed guards are restricted to timers.

FUNCTION == {sGuard, tGuard : EXP ; asgmts : ASGMTS | sGuard∪ tGuard 6= /0}

When both guards evaluate to true in a given state, the system reacts instantly performing the
corresponding assignments. These reactions are the function transition (F) shown in Figure 3.3.
An s-DFRS does not capture this dynamic behaviour (occurrence of reactions explicitly), but
only includes the definition of the function that symbolically characterises the reactions.

The guards are expressions (EXP) whose structure adheres to a CNF: a finite set of
conjunctions (CONJ) of disjunctions (DISJ), where each disjunction has at least one binary

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 47

expression (BEXP).

EXP == CONJ

CONJ == FDISJ

DISJ == F1 BEXP

A binary expression relates a variable (VAR) with a literal (VALUE) by means of an operator
(OP), which can be less than or equal to (le), less than (lt), equal to (eq), greater than (gt), and
greater than or equal to (ge).

BEXP == {v : VAR ; op : OP ; literal : VALUE}
OP ::= le | lt | eq | ne | gt | ge

The element VAR refers to the current or previous value of the corresponding variable. By
previous value we mean the last value received as input, if it refers to an input variable, or the
last value produced as output, otherwise.

VAR ::= current〈〈VNAME〉〉 | previous〈〈VNAME〉〉

Timers are variables continuously evolving in a discrete or dense fashion, depending on its type
and, thus, the notion of previous value does not apply. For instance, what would be the previous
value of a timer whose current value is 3.52 seconds? So, although the model syntactically per-
mits retrieving the previous values of timers, we prohibit this usage (see the following definition
of var consistent be).

A binary expression is said to be consistent with respect to a set of variables (f) and a
set of timers (T) if, and only if, v (the first element of a binary expression) refers to a variable
name (n) within f , and the third element (literal) is consistent with the type of the corresponding
variable (it is one of the possible values of this variable). Moreover, if one of the operators le, lt,
gt or ge is used, literal must not be a boolean value. Finally, as explained in the last paragraph,
if n is the name of a timer, then the binary expression must consider the current value of this
variable. This consistency property is formalised by the following predicate.

var consistent be : P(BEXP× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀be : BEXP ; f ,T : VNAME 7→ TYPE ; n : VNAME | varName(be) = n •
(be, f ,T) ∈ var consistent be⇔
(n ∈ dom f) ∧ be.3 ∈ values(f (n)) ∧
(be.2 = le ∨ be.2 = lt ∨ be.2 = gt ∨ be.2 = ge⇒ be.3 /∈ values(bool)) ∧
(n ∈ domT⇒ be.1 ∈ rancurrent)

To get the name referenced by a binary expression, we rely on the auxiliary function varName,

3.1. DEFINITION AND PROPERTIES OF AN S-DFRS 48

which projects the VNAME within the constructors current or previous. This concept of con-
sistency is lifted to guards, which are said to be consistent if, and only if, all of its binary
expressions are consistent.

The last component of a function entry is a finite and non-empty set of assignments
(ASGMTS). The right-hand side of an assignment (ASGMT) is a value (VALUE), and the left-
hand side is the name of a variable (VNAME). Note that it is not possible to define a set of
assignments that considers different values to the same variable (e.g., {(x,n(0)),(x,n(1))}). If
such a scenario were allowed (non-deterministic assignments), it would not be clear what would
be the value of x after the assignments.

ASGMT == VNAME×VALUE

ASGMTS == {asgmts : F1 ASGMT |
(∀asgmt1,asgmt2 : asgmts | asgmt1.1 = asgmt2.1 • asgmt1 = asgmt2)}

This restriction does not prevent us from dealing with non-deterministic requirements. For ex-
ample, it is possible to say that the system can non-deterministically assign 0 or 1 to x in a
certain situation. In this case, we would have two entries within the function, and the set of
assignments of one would be {(x,n(0))}, whereas {(x,n(1))} would be the assignment of the
other one. Note that the property defined here with respect to assignments can be statically ver-
ified, whereas the verification of non-deterministic requirements demands a dynamic analysis.

As defined for expressions, the names mentioned by assignments should refer to one of
the system variables, and the assigned value should be consistent with the type of this variable.
The following predicate (well typed asgmts) formalises these assumptions.

well typed asgmts : P(ASGMTS× (NAME 7→ TYPE))

∀asgmts : ASGMTS ; f : NAME 7→ TYPE • (asgmts, f) ∈ well typed asgmts⇔
∀asgmt : asgmts • asgmt.1 ∈ dom f ∧ asgmt.2 ∈ values(f (asgmt.1))

Example 3 Considering the VM, the requirement that states that the system goes to the choice

mode, and resets the request timer, when a coin is inserted while in the state idle, is formalised
as follows:

{ ({ {(current(m),eq,n(1))}, {(current(s),eq,b(true))}, {(previous(s),eq,b(false))} }, /0,
{(m,n(0),(r,n(0))}) }

The static condition is a conjunction of three binary expressions. The first denotes that the
system mode is 1 (idle), the second that the current value of s is true, and the third that the
previous value of s was false (a coin was inserted). The time guard is empty, and when the
static guard evaluates to true, the system shall assign 0 to m (go to the choice state), and assign
0 to r (reset the request timer). �

3.2. PHASE III – GENERATION OF S-DFRS 49

3.1.2.4 Complete definition of an s-DFRS

Considering the schemas defined (DFRS VARIABLES, DFRS INITIAL STATE, and
DFRS FUNCTIONS), an s-DFRS is defined as follows.

s DFRS

DFRS VARIABLES

DFRS INITIAL STATE

DFRS FUNCTIONS

(s0, I∪O∪T ∪{gcvar}) ∈ well typed state

∀ f : F • ∀entry : f •
(entry.1, I∪O,T) ∈ var consistent exp ∧
(entry.2,T,T) ∈ var consistent exp ∧
(entry.3,O∪T) ∈ well typed asgmts

The schema s DFRS defines a type that comprises the set of all valid s-DFRSs. Two invariants
hold for all valid elements of this type. An invariant is a constraint that must always be satisfied.
First, the initial state is well typed with respect to all system variables. Second, for all entries of
all functions defined, the static guard is defined only in terms of input and output variables, the
timed guard only considers timers, and the assignments can only modify the value of outputs
and timers.

3.2 Phase III – generation of s-DFRS

An s-DFRS is derived from requirement frames according to three consecutive steps.
First, the system variables are identified. Then, the functions that describe the system behaviour
are defined. Finally, an s-DFRS is created from these two pieces of information. The following
sections detail each step. To illustrate them, we consider the following requirement of the VM,
as well as the corresponding requirement frame (see Table 3.1).

� When the system mode is idle, and the coin sensor changes to true, the coffee ma-

chine system shall: reset the request timer, assign choice to the system mode.

3.2.1 Identifying variables

We consider inputs as variables provided to the system by the environment; their values
cannot be modified by the system. Thus, a variable is classified as an input if, and only if, it
appears only in conditions. Otherwise, if it also appears in action statements, it is classified as
an output. To distinguish between timers and other variables, we require the former to have the

3.2. PHASE III – GENERATION OF S-DFRS 50

Table 3.1: Example of requirement frame for REQ001 (vending machine)

Condition #1 - Main Verb (CAC): is
CPT: the system mode CFV: -
CMD: - CTV: idle
Condition #2 - Main Verb (CAC): changes
CPT: the coin sensor CFV: -
CMD: - CTV: true
Action - Main Verb (ACT): reset
AGT: the coffee machine system TOV: -
PAT: the request timer
Action - Main Verb (ACT): assign
AGT: the coffee machine system TOV: choice
PAT: the system mode

[Source: author]

word “timer” as a suffix. Timers can appear both in conditions and in statements. Our algorithm
for identifying variables (Algorithm 1) receives as input a list of requirement frames and yields
a list of variables.

After initializing the output (line 1), the algorithm iterates over the list of requirement
frames (line 2) analysing each condition (lines 3–4), which comprises a conjunction of dis-
junctions, and each action (line 15). When analysing conditions, we extract variables from the
Condition Patient (CPT) role.

For example, Table 3.1 shows that “the system mode” is the CPT of the first condition.
Thus, if the corresponding variable has not yet been identified (lines 6–7), we create a new
variable considering the CPT content, replacing white spaces by an underscore (lines 8–9),
which is done by the “toString” function (line 5). So, in this case, we create the variable
the system mode. Then, we verify whether the variable has the word “timer” as a suffix; if so,
it is classified as a timer, otherwise it is an input (lines 10–11). Then we add the created variable
to the list of identified variables (line 12).

To infer the type of the variable we analyse the value associated with it in the case frame,
which is the content of the CTV role. For instance, the variable the system mode is associated
with the value “idle” in the first condition of Table 3.1. Thus, the algorithm extracts the CTV
content (line 13), and uses it to infer the variable type, which is done by the inferType function
(line 14) that is later explained (see Algorithm 2).

Lines 15–27 are analogous to those previously explained. The differences are as fol-
lows:

� The variables are identified from the patient (PAT) role;

� If a variable that is initially identified as an input appears in action statements, it is
reclassified as an output (lines 24–25);

3.2. PHASE III – GENERATION OF S-DFRS 51

Algorithm 1: Identify Variables
input : reqCFList
output : varList

1 varList = new List();
2 for reqCF ∈ reqCFList do
3 for andCond ∈ reqCF do
4 for orCond ∈ andCond do
5 varName = toString(orCond.CPT);
6 var = varList.find(varName);
7 if var == null then
8 var = new Var(varName);
9 var.type = undefined;

10 if varName.endsWith(“timer”) then var.kind = timer;
11 else var.kind = input;
12 varList.add(var);

13 value = toString(orCond.CTV);
14 inferType(var,value,varList);

15 for action ∈ reqCF do
16 varName = toString(action.PAT);
17 var = varList.find(varName);
18 if var == null then
19 var = newVar(varName);
20 var.type = undefined;
21 if varName.endsWith(“timer”) then var.kind = timer;
22 else var.kind = output;
23 varList.add(var);

24 else if var.kind = input then
25 var.kind = output;

26 value = toString(action.TOV);
27 if value 6= null then inferType(var,value,varList);

28 for var ∈ varList do
29 if var.type = enum then
30 if var.possibleValuesList.size() = 1 then var.type = boolean;
31 else var.type = integer;

32 else if var.kind = timer ∧ var.type = undefined then
33 var.type = float

34 gcVar = newVar(gc);
35 allDiscrete = true;
36 allContinuous = true;
37 for var ∈ varList do
38 if var.kind = timer ∧ var.type = integer then allContinuous = false;
39 if var.kind = timer ∧ var.type = float then allDiscrete = false;

40 if allDiscrete then gcVar.type = integer;
41 else if allContinuous then gcVar.type = float;
42 else throw Exception(“timers: incompatible types”);
43 varList.add(gcVar);

[Source: author]

3.2. PHASE III – GENERATION OF S-DFRS 52

� The variable value is the content of the TOV role, excluding the case (line 27) when
the “reset” verb is used (see the first action of Table 3.1). In this case, the TOV
is empty and what is assigned to the timer is the system global clock, which is
an integer or a float. In such a situation, we do not try to infer the type of the
timer. If this timer is also mentioned in a condition, its type is determined by the
value associated with it in this condition. If this timer is never mentioned within a
condition, its type is left undefined (lines 32–33), and then we assume that its type
will be float, representing continuous time.

Lines 34–43 create the system global clock (gc), besides inferring its type. If all timers
are discrete (integer) or continuous (float), the type of gc is integer or float, respectively. If there
are mixed types, an exception is thrown (line 42). Finally, lines 29–31 are related to the type
inference outcome, which is explained in what follows.

3.2.1.1 Type inference

Algorithm 2 infers the variable type. First, this function verifies whether the value
received as argument is already listed as a possible value of the corresponding variable (line 1).
If not, this value is added to the list of possible values of the respective variable (line 2), and
this value is used to infer the variable type.

Algorithm 2: Infer Type
input : var,value,varList
output : −

1 if value /∈ var.possibleValuesList then
2 outVar.possibleValuesList.add(value);
3 newType = undefined;
4 var = varList.find(varName);
5 if var.kind = timer then
6 if isFloat(value) then newType = float;
7 else if isInteger(value) then newType = integer;
8 else throw Exception(“incompatible type for a timer”);

9 else
10 if isBoolean(value) then newType = boolean;
11 else if isFloat(value) then newType = float;
12 else if isInteger(value) then newType = integer;
13 else newType = enum;

14 if var.type 6= undefined∧ var.type 6= newType then
throw Exception(“type change is not allowed”) ;

15 else var.type = newType;

[Source: author]

If the variable is a timer, the associated values need to be numbers (float or integer),
otherwise an exception is raised (lines 5–8). If the variable is an input or an output, its type
might be boolean (if the value is the boolean constants “true” or “false” – line 10), a float or an

3.2. PHASE III – GENERATION OF S-DFRS 53

integer (lines 11-12), or an enum (e.g., if the value is a string such as “idle” – see Table 3.1). It
is worth mentioning that the enum type is not expected within DFRS models. Therefore, later
it is mapped to an integer.

If the type of the variable is undefined, the function assigns the inferred type to the
corresponding variable (line 15). However, if the variable already has a type, it is verified
whether the inferred type from the current value is the same. If not, an exception is raised,
since we expect type coherence between the values used with respect to the same variable (line
14). In other words, for instance, a variable cannot be treated as a boolean and as an integer
simultaneously.

Finally, lines 29–31 of Algorithm 1 map an enum type to a boolean or an integer. It is
mapped to a boolean when the enumeration has only one possible value (line 30). For instance,
for the variable the coffee request button, whose possible value is “pressed”, we assume that
“pressed” denotes true, whereas “not pressed” means false. However, if the number of possible
values is greater than 1, the variable is classified as an integer (line 31). This is the case of
the variable the system mode, whose possible values are “choice”, “idle”, “preparing strong

coffee”, “preparing weak coffee”, “reset”. The type of this variable is integer considering an
arbitrary mapping such as: {0 7→choice, 1 7→idle, 2 7→preparing strong coffee, 3 7→preparring

weak coffee, 4 7→reset}.

3.2.2 Identifying functions

Algorithm 3 identifies functions that describe the system behaviour. We identify one
function for each different agent (AGT). We consider an agent as a system component, since
this thematic role denotes the entity that performs an action. This algorithm yields a list of
functions indexed by the corresponding agents. As previously formalised, each function is a list
of action statements mapped to the respective static and timed guards.

The algorithm iterates over the list of requirement frames (line 2) to identify the guards
(lines 3–24) and the corresponding actions (lines 25–28). The variables staticGuard and timed-

Guard are declared to store the static and timed guards that are extracted from the conditions
(conjunctions of disjunctions) of each requirement (lines 3–7). Then, for each disjunction, we
obtain the corresponding boolean expression by means of the function generateConditionEx-

pression (line 8). Then, lines 9–16 find out the type (static or timed) of the expression. If the
expression concerns a timer variable, it represents a timed guard (line 12), otherwise it is a static
one (line 15).

With this information, we check whether each conjunction concerns the same type of
guards (static or timed). If it is not the case, an exception is raised (lines 13, 16). This is
necessary, since we want to divide the conditions into two disjoint categories (static and timed)
without performing boolean algebra manipulation. As examples, we consider the following
abstract cases: c1 : T ∧ (c2 : T ∨ c3 : S)∧ c4 : S and c1 : T ∧ (c2 : S∨ c3 : S)∧ c4 : S, where ci

3.2. PHASE III – GENERATION OF S-DFRS 54

Algorithm 3: Identify Functions
input : reqCFList,varList
output : functionMap

1 functionMap = new Map();
2 for reqCF ∈ reqCFList do
3 staticGuard, timedGuard = null;
4 for andCond ∈ reqCF do
5 guardType = undefined;
6 newTerm = null;
7 for orCond ∈ andCond do
8 exp = generateConditionExpression(orCond,varList);
9 varName = toString(orCond.PAT);

10 var = varList.find(varName);
11 if var.kind = timer then
12 if guardType = undefined then guardType = timed;
13 else if guardType = static then throw Exception(“format error”);

14 else
15 if guardType = undefined then guardType = static;
16 else if guardType = timed then throw Exception(“format error”);

17 if newTerm = null then newTerm = exp;
18 else newTerm = newTerm + “∨” + exp;

19 if guardType = static then
20 if staticGuard = null then staticGuard = (newTerm);
21 else staticGuard = staticGuard + “∧” + (newTerm);

22 else
23 if timedGuard = null then timedGuard = (newTerm);
24 else timedGuard = timedGuard + “∧” + (newTerm);

25 actionList = new List();
26 for action ∈ reqCF do
27 actionStatement = generateStatement(action,varList);
28 actionList.add(actionStatement);

29 componentName = toString(reqCF.actions.get(0).AGT);
30 function = functionMap.find(componentName);
31 if foundFunction = null then
32 function = new Function();
33 functionMap.add(componentName, function);

34 previousActionList = function.find(staticGuard, timedGuard);
35 if previousActionList 6= null then
36 previousActionList.add(actionList)

37 else
38 function.add(staticGuard, timedGuard,actionList)

[Source: author]

3.2. PHASE III – GENERATION OF S-DFRS 55

denotes the i-th condition, and “:S” and “:T” indicates whether the condition concerns a static
or a timed guard, respectively. The first expression does not comprise two disjoint sets of static
and timed guards, whereas the second one does (timed: c1; static: (c2∨ c3)∧ c4). Lines 17–18
group each disjunction in newTerm, and lines 19–24 group the disjunctions in staticGuard or
timedGuard depending on the type of the disjunctions.

After identifying the static and timed guards, the algorithm iterates over the list of ac-
tions of the requirement frame and creates a list of action statements using the function generat-

eStatement (lines 25–28). Then, the algorithm checks whether a function is already created for
the current agent. If not, it creates a new function and maps it to the current agent (lines 29–33).
Finally, the element staticGuard× timedGuard×actionList is added to the corresponding func-
tion (lines 37–38). If an entry for the pair staticGuard× timedGuard already exists, the list of
actions is added to this entry (lines 35–36). In what follows, we explain the auxiliary functions:
generateConditionExpression and generateStatement.

3.2.2.1 Generating condition expressions

Algorithm 4 yields a boolean expression from a single case frame, which comprises the
condition thematic roles. The variable name is obtained from the CPT role (line 1). Initially
(lines 2–7), the algorithm verifies whether the verb being used, which is obtained from the CAC
role, denotes the previous value of a variable. This is the case when the verbs “was” and “were”

are used. In this situation, the boolean expression concerns not the current value of a variable,
but its previous one. As explained in Section 3.1.2.3, we use the predicate previous(v) to denote
the previous value of v, and current(v), to denote its current value.

For instance, the fragment “v was 2” means the condition where the previous value of v

is 2, previous(v) = 2. As we do not allow the use of the predicate previous(v) when v is a timer,
the algorithm raises an exception if it happens (line 5).

The next step is to obtain the value, which is compared to the variable. First, the value
is obtained from the CTV role (line 8). If the value is a string, we consider as value the index of
this string within the list of possible values of the corresponding variable (line 9). For a concrete
example, see the one shown in the end of Section 3.1.2.2.

Afterwards, the algorithm inspects the content of the CMD role to find out which oper-
ator is used in the expression (line 10). Lines 11–16 check the content of the CMD role, and
set boolean flags accordingly. If “lesser than” or “greater than” is used with a non-boolean
variable, an exception is raised (line 16). Based on the boolean flags, lines 17–25 assign to
operator the operator symbol used in the expression.

After that, it creates the expression assembling these three elements: variable, operator,
and value (line 26). Line 27 negates the expression if the negation flag is true: when “not” is
used as a modifier.

Finally, lines 28–45 deal with a special case that occurs when the verbs “change” or
“become” are used. When “change” is used, as explained in depth in Section 2.2.2, we expect

3.2. PHASE III – GENERATION OF S-DFRS 56

Algorithm 4: Generate Condition Expression
input : cond,varList
output : exp

1 varName = toString(cond.CPT);
2 var = varList.find(varName);
3 verb = cond.CAC;
4 if verb.equals(“was”)∨ verb.equals(“were”) then
5 if var.kind = timer then throw Exception(“previous cannot be used with timers”);
6 else varName =“previous(” + varName + “)”;

7 else varName =“current(” + varName + “)” ;
8 value = toString(cond.CTV);
9 if ¬ isInteger(value)∧¬ isFloat(value)∧¬ isBoolean(value) then

value = var.possibleValuesList.getIndex(value) ;
10 modifier = cond.CMD;
11 negation, lesserThan,greaterThan,equalTo = false;
12 if modifier.contains(“not”) then negation = true;
13 if modifier.contains(“lesser than”) then lesserThan = true;
14 if modifier.contains(“greater than”) then greaterThan = true;
15 if modifier.contains(“equal to”) then equalTo = true;
16 if (lowerThan∨greaterThan)∧ var.type = boolean then

throw Exception(“lt/le/gt/ge cannot be used with booleans”) ;
17 operator = new String();
18 if lesserThan then
19 if equalTo then operator =“le”;
20 else operator =“lt”;

21 else if greaterThan then
22 if equalTo then operator =“ge”;
23 else operator =“gt”;

24 else
25 operator =“eq”;

26 exp = varName + operator + value;
27 if negation then exp =“¬ (” + exp + “)” ;
28 if verb.contains(“change”)∨ verb.contains(“become”) then
29 prevExp = null;
30 if cond.CFV 6= null then
31 auxiliaryCond = new OrCond();
32 auxiliaryCond.CPT = cond.CPT;
33 auxiliaryCond.CAC =“was”;
34 auxiliaryCond.CTV = cond.CFV;
35 previousExp = generateConditionExpression(auxiliaryCond);

36 else
37 auxiliaryCond = new OrCond();
38 auxiliaryCond.CPT = cond.CPT;
39 auxiliaryCond.CAC =“was”;
40 auxiliaryCond.CTV = cond.CTV;
41 auxiliaryCond.CMD = cond.CMD;
42 previousExp = generateConditionExpression(auxiliaryCond);
43 previousExp = ¬ previousExp;
44 previousExp =“¬ (” + previousExp + “)”;

45 exp = prevExp + “∧” + exp;

[Source: author]

3.2. PHASE III – GENERATION OF S-DFRS 57

one of the two following structures: “v changes from x to y” or “v changes to y”, whose
meaning is previous(v) = x∧ current(v) = y and previous(v) 6= y∧ current(v) = y, respectively.
In the first case, the CFV is not null, whereas in the second case it is null. It is important to note
that the expression current(v) = y is already built by the algorithm (denoted as exp). Therefore,
we just need to create a second condition expression related to the previous value of v. Lines
30–44 create a temporary and auxiliary case frame with the verb “was”, which enforces the
use of previous(v), and then we recursively call the function generateConditionExpression. If
CFV is not null (lines 30–35), e.g., “changes from x to y”, the CTV in the auxiliary case frame
comprises the current CFV (x), otherwise (e.g., “changes to y”) it is the negation of the current
CTV (y). After that, we compose the yielded expression (previousExp) with the expression
previously identified by the algorithm (exp) (line 45). When the verb “become” is used (e.g.,
“becomes y”), the algorithm behaves similarly to the case “changes to y”.

This algorithm is tightly dependent on the verbs used. However, the verbs currently
supported by our approach are sufficient to express requirements from different examples and
domains. If more verbs are used, one just needs to extend this function, informing how to form
an expression from its thematic roles. No extra change is needed, since the DFRS model is not
dependent on the verbs being used in the requirements.

3.2.2.2 Generating action statements

Algorithm 5 generates an action statement from a case frame that depicts an action.
First, lines 1–3 retrieve the verb from the ACT role, as well as the name of the variable involved
in the action from the PAT role. If the variable is a timer and the verb is not reset, an exception
is raised, since timers can only be reset (line 4).

Algorithm 5: Generate Statement
input : action,varList
output : actionStatement

1 verb = action.ACT;
2 varName = toString(action.PAT);
3 var = varList.find(varName);
4 if var.kind = timer∧¬ verb.equals(“reset”) then

throw Exception(“timers can only be reset”) ;
5 value = null;
6 if verb.equals(“reset”) ∧ var.type = integer then value =“0”;
7 else if verb.equals(“reset”) ∧ var.type = float then value =“0.0”;
8 else value = toString(action.TOV);
9 if ¬ isInteger(value)∧¬ isFloat(value)∧¬ isBoolean(value) then

value = var.possibleValuesList.getIndex(value) ;
10 actionStatement = new Statement();
11 actionStatement = varName + “:=” + value;

[Source: author]

The next step concerns the identification of the value being assigned to the involved

3.2. PHASE III – GENERATION OF S-DFRS 58

variable (lines 5–9). If the verb is “reset”, the value that is assigned to the timer is 0 or 0.0,
depending on its type (integer or float). As already mentioned, and detailed when describing
how an s-DFRS is used to produce an expanded one in Section 3.3.2, this assignment actually
means assigning to the timer the system global clock. If the variable is not a timer, the value is
the content of the TOV role (line 8). If the content of TOV is not an integer, a float or a boolean,
it is a string. Therefore, we consider as value the index of this string within the list of possible
values of the corresponding variable (line 9). Finally, the action statement is created assembling
the variable and the assigned value (lines 10–11).

3.2.3 Creating an s-DFRS

Based on the algorithms previous described, we create an s-DFRS from a list of re-
quirement frames. This is done by Algorithm 6. First, the algorithm calls identifyVariables to
identify the system variables (line 1). Then, it divides this list into inputs, outputs, timers, and
the global clock (lines 2–9).

Algorithm 6: Derive s-DFRS
input : reqCFList
output : dfrs

1 varList = identifyVariables(reqCFList);
2 inputList,outputList, timerList = new List();
3 gc = null;
4 initialBinding = new Map();
5 for var ∈ varList do
6 if var.kind = input then inputList.add(var);
7 else if var.kind = output then outputList.add(var);
8 else if var.kind = timer then timerList.add(var);
9 else gc = var;

10 if var.type = integer then initialBinding.add(var.name,0);
11 else if var.type = float then initialBinding.add(var.name,0.0);
12 else initialBinding.add(var.name, false);

13 functionMap = identifyFunctions(reqCFList,varList);
14 dfrs = new s DFRS();
15 dfrs.I = inputList;
16 dfrs.O = outputList;
17 dfrs.T = timerList;
18 dfrs.s0 = initialBinding;
19 dfrs.gcvar = gc;
20 dfrs.F = functionMap;

[Source: author]

This algorithm also creates an initial binding considering 0 as the initial default value
for integers, 0.0 for floats, and false for booleans (lines 10–12). Afterwards, the algorithm calls
identifyFunctions to identify the functions that describe the system behaviour (line 13). In the
end (lines 14–20), the algorithm creates an s-DFRS considering the list of inputs, outputs and
timers, as well as the initial binding and the functions identified.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 59

The algorithms presented here were tested considering examples from the literature and
from the industry, when test cases, independently written or generated, were analysed to check
whether they are compatible with the corresponding DFRS models, which were obtained by the
application of the previously presented algorithms. See Section 5.3.3 for further details.

3.3 Definition and properties of an e-DFRS

Here, we formalise e-DFRSs (Section 3.3.1), and show how they can be obtained from
their symbolic counterpart (Section 3.3.2). Although s-DFRS models have the information we
need to generate test cases (see Chapter 4), we introduce here another notation for three main
reasons. First, e-DFRSs provides a formal semantics of s-DFRSs. Second, they can be used to
verify properties of the system requirements (Section 3.3.3). Finally, as a state-based notation,
it allows us to connect such a semantic representation to established ones in the literature and,
thus, characterise the expressiveness of DFRS models.

3.3.1 Formal model of an e-DFRS

An e-DFRS differs from the symbolic one as it encodes the system behaviour as a state-
based machine, whereas an s-DFRS does that symbolically via definition of functions. As we
detail later, states are obtained from an s-DFRS by applying its functions to states where the
corresponding guards evaluate to true, but also letting the time evolve.

3.3.1.1 Transition relation

An e-DFRS has a set of states, which is named S by the schema DFRS STATES below.
Besides that, it also has an initial state (s0), which is an element of S. We note that, by definition,
S has at least one state (the initial state), since it is an element of STATES, which represents the
non-empty power set of STATE.

STATES == P1 STATE

DFRS STATES == [S : STATES ; s0 : STATE | s0 ∈ S]

A transition relation (an element of TRANSREL defined below) comprises a set of transitions
(TRANS). A transition relates two states by a label (TRANS LABEL). As shown in Figure 3.3,
this label can be of a delay (del) or a function (fun) transition.

TRANS LABEL ::= fun〈〈ASGMTS〉〉 | del〈〈DELAY×ASGMTS〉〉
TRANS == (STATE×TRANS LABEL×STATE)

TRANSREL == PTRANS

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 60

A function transition represents the system instantaneous reaction as assignments (ASGMTS),
which are performed atomically. It is worth noting that, although the function transition de-
scribes an instantaneous reaction, it is possible to model system reactions that occur after some
time elapsing. We just need to consider a timer, which is reset when the event of interest hap-
pens, and then use it later to check the elapsed time and to decide on what event to engage next.
For instance, this approach is used in the VM example (see Figure 3.3). When the coffee request
button is pressed, the request timer is reset (see the first state on the second row). Afterwards,
when a specific time has elapsed, the system reacts producing coffee (see the last state on the
third row).

A delay transition represents model stimuli from the environment (input signals values)
that happen immediately after a delay (DELAY). We note that environment stimuli are modelled
as a set of assignments (ASGMTS). A delay can represent a discrete or dense (continuous) time
elapsing. The former delay is characterised by a positive natural number (N1), whereas the
latter by a positive float number (R+

1).

DELAY ::= discrete〈〈N1〉〉 | dense〈〈R+
1 〉〉

The reason for not allowing delays equal to 0 is that the delay transition represents interaction
with the environment and, thus, it is not reasonable to assume that the environment can interact
with the system, providing it with new stimuli, without time elapsing.

Aiming at legibility, we define auxiliary functions (functionTransition, delayTransition)
to project the elements of a transition. The definition of delayTransition is shown below. It is a
partial function, since it can only be applied to delay transitions; its domain is equal to the set
of valid delay transitions (domdelayTransitions = randel). To obtain the delay and assignments
embedded in a delay transition (denoted by label below), we use the inverse definition of the
constructor del (del∼), which yields a pair of delay and assignments (DELAY×ASGMTS) from
a given delay transition (label below). The inverse of del is well defined, since, by definition
in Z, all constructors are defined as injections. Therefore, del∼ exists, since the inverse of an
injection is also a function. The function functionTransition is defined similarly.

delayTransition : TRANS LABEL 7→ DELAY×ASGMTS

domdelayTransition = randel

∀ label : TRANS LABEL | label ∈ randel • delayTransition(label) = (del∼)(label)

All transitions of an e-DFRS are required to be well typed: a function transition must belong to
the set of well typed function transitions (well typed function transition), while a delay transi-
tion must belong to the analogous set (well typed delay transition), besides being compatible
with the type of the system global clock (clock compatible transition).

To be well typed, a function transition must modify only values of outputs and timers.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 61

In other words, the system does not interfere with the environment stimuli, which are modelled
by input variables. This property is formalised by well typed function transition when stating
that the domain of functionTransition is a subset of or equal to the union of the domains of O

and T . The outputs and timers that are not changed by the transition retain the same value.
Similarly, a delay transition is well typed if, and only if, its statements modify only

values of inputs. Furthermore, there must be one statement concerning each input; on the
occurrence of each delay transition, the system receives the current value of all its inputs. The
predicate well typed delay transition formalises these two requirements when stating that the
domain of delayTransition is equal to the domain of I.

well typed function transition : P(TRANS LABEL×
(VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀ label : TRANS LABEL ; O,T : VNAME 7→ TYPE |
label ∈ ran fun • (label,O,T) ∈ well typed function transition⇔
(dom(functionTransition(label))⊆ (domO∪domT))

well typed delay transition : P(TRANS LABEL× (VNAME 7→ TYPE))

∀ label : TRANS LABEL ; I : VNAME 7→ TYPE | label ∈ randel •
(label, I) ∈ well typed delay transition⇔
dom(delayTransition(label)).2 = dom I

One might find strange that here we expect the assignments to range over all inputs, whereas
the function transition can cover only a subset of its outputs. We could have also assumed here
that the inputs that are not mentioned by the assignments retain the same value. However, this
modelling decision would make the translation from s-DFRSs to e-DFRSs more complicated.
We return to this topic later, when explaining how e-DFRSs are obtained from symbolic ones.

clock compatible transition : P(TRANS LABEL× (NAME×TYPE))

∀ label : TRANS LABEL ; gcvar : NAME×TYPE •
(label,gcvar) ∈ clock compatible transition⇔
label ∈ randel ∧
((delayTransition(label)).1 ∈ randiscrete⇒ gcvar.2 = nat) ∧
((delayTransition(label)).1 ∈ randense⇒ gcvar.2 = ufloat)

The delay transitions also need to be compatible with the system global clock in the sense that
if the delay is discrete (an element of randiscrete), the type of the system global time must be
nat, whereas if the delay is dense (an element of randense), the type of the clock must be ufloat.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 62

As a consequence, all delay transitions share the same type of delay, meaning that they are all
discrete or dense. This is captured by the clock compatible transition property.

Now, we define in the schema DFRS TRANSITION RELATION the transition relation
(TR) of an e-DFRS as an element of TRANSREL.

As previously said, we assume that when the system is ready to react it does so instan-
taneously. Therefore, it would not make sense to have both delay and function transitions from
the same state, since the system always react (performing the function transition), instead of
letting the time evolve (performing the delay transition). This invariant is formalised in what
follows by the first predicate: for every two transitions (trans1 and trans2) emanating from
the same state (trans1.1 = trans2.1), they are either function (they belong to ran fun) or delay
transitions (they belong to randel).

DFRS TRANSITION RELATION

TR : TRANSREL

∀ trans1, trans2 : TR | trans1.1 = trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ randel

∀ trans : TR • ¬ (trans.1 = trans.3)

Another invariant associated with TR is the absence of self-transitions: for all transitions,
¬ (trans.1 = trans.3) holds. In the case of delay transitions, self-transitions do not make sense
as every delay transition advances the time by some amount greater than 0 and, thus, the global
clock of the next state is different from the previous one. Concerning function transitions, self-
transitions are superfluous, since the absence of function transitions already indicates that the
system state has not changed.

For a concrete example, we refer to the second delay transition presented in Figure 3.3:
after the delay of 3s, there is no reaction by the system (there is no function transition), and the
system state remains the same until the following delay transition. Moreover, we note that the
possibility of adding a function transition to this state (the last state on the second row) would
violate the invariant that requires that only function or delay transitions fire from the same state.

3.3.1.2 Complete definition of an e-DFRS

An e-DFRS is an element of the type defined by the following schema: e DFRS. Here-
after, for simplicity, we only consider discrete delays, since dense delays are analogously de-
fined. For all valid e-DFRSs, three invariants hold. First, all states are well typed (they range
over the same set of variables defined as the system inputs, outputs, timers and global clock,
besides mapping values consistent with the corresponding variable types). Second, all transi-
tions are well typed. Third, the state reached by any transition is defined by the previous state
updated by the assignments performed by the transition.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 63

To formalise this last property, we rely on the auxiliary function nextState. Given a
source state and a set of assignments, the function nextState yields a new state updating all
system variables, but the global clock, according to these assignments. When dealing with delay
transitions, besides considering the output of the function nextState, we also update the global
clock adding to its value in the source state the delay performed. This last case is formalised by
the last invariant (trans.2 ∈ randel⇒ trans.3 = ...). After extracting the value embedded in the
delay transition via the inverse definition of discrete (discrete∼), and similarly the current value
of the system global clock (value mapped to gc) in the source state ((n∼)((trans.1(gc)).2)), we
add these two values and the result is defined as the current value of the system global clock in
the target state. The constructor n indicates that this result is a natural number. We note that
the current value of the system global clock in the source state ((trans.1(gc)).2) becomes the
previous value of gc in the target state.

e DFRS

DFRS VARIABLES

DFRS STATES

DFRS TRANSITION RELATION

∀s : S • (s, I∪O∪T ∪{gcvar}) ∈ well typed state

∀ trans : TR • {trans.1, trans.3} ⊆ S ∧
(trans.2, I,O,T,gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun⇒ trans.3 =

nextState(trans.1,T, functionTransition(trans.2))) ∧
(trans.2 ∈ randel⇒ trans.3 =

nextState(trans.1,T,(delayTransition(trans.2)).2)⊕
{(gc,((trans.1(gc)).2,n((n∼)((trans.1(gc)).2)+

(discrete∼)((delayTransition(trans.2)).1))))})

The state yielded by the function nextState is obtained by overriding the values of the previ-
ous state by the assignments of a given transition (s⊕ ...). Moreover, it updates accordingly
the previous and current values of the variables: when a variable has its value updated, the
current value of the previous state ((n,(v1,v2))) becomes the previous value of the next state,
(n,(v2,asgmts(n))).

We note that there is a different definition when dealing with timers (n ∈ domT). In this
case, the reset of a timer, which is represented by assigning 0, is encoded as an assignment of
the current value of the global clock, (s(gc)).2. As the system has a single clock, it is easier to
encode time reset by assigning the current value of the global clock, instead of assigning 0 and
updating its value every time a delay transition is performed.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 64

nextState : (STATE× (NAME 7→ TYPE)×ASGMTS)→ STATE

∀s : STATE ; T : (NAME 7→ TYPE) ; asgmts : ASGMTS • nextState(s,T,asgmts) = s⊕
({n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s ∧ n ∈ dom asgmts ∧

n /∈ dom T • (n,(v2,asgmts(n)))}∪
{n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s ∧ n ∈ dom asgmts ∧

n ∈ dom T • (n,(v1,(s(gc)).2))})

Therefore, when evaluating timed guards such as t < v, where t is a timer and v a value, we
actually evaluate the result of (gc− t) < v, where gc is the current value of the system global
clock. Despite this representation, the previous value of the timer remains unchanged.

3.3.2 From s-DFRSs to e-DFRSs

The function expandedDFRS defines how an e-DFRS can be obtained from a symbolic
one. The inputs (I), outputs (O), timers (T), the global clock (gcvar), and the initial state (s0) are
the same within both representations (dfrs.I = symDFRS.I ∧ dfrs.O = symDFRS.O ∧ dfrs.T =

symDFRS.T ∧ dfrs.gcvar = symDFRS.gcvar ∧ dfrs.s0 = symDFRS.s0). The transition relation
(TR) is obtained via the auxiliary function buildTR.

dfrs.TR = buildTR({dfrs.s0}, /0,dfrs.I,dfrs.O,dfrs.T,symDFRS.F)

The states of an e-DFRS (S) are defined as the states related by this transition relation (trans.1
and trans.3), besides the initial state.

expandedDFRS : s DFRS→ e DFRS

∀symDFRS : s DFRS ; dfrs : e DFRS • expandedDFRS(symDFRS) = dfrs⇔
dfrs.I = symDFRS.I ∧ dfrs.O = symDFRS.O ∧ dfrs.T = symDFRS.T ∧
dfrs.gcvar = symDFRS.gcvar ∧ dfrs.s0 = symDFRS.s0 ∧
dfrs.TR = buildTR({dfrs.s0}, /0,dfrs.I,dfrs.O,dfrs.T,symDFRS.F) ∧
dfrs.S =

⋃
{trans : dfrs.TR • {trans.1, trans.3}}∪{dfrs.s0}

The function buildTR has six parameters: a set of states to visit (toVisit), a set of visited states
(visited), the inputs (I), the outputs (O), the timers (T), and the functions of an s-DFRS (F). We
note that in expandedDFRS, with respect to the function buildTR, toVisit has a single state to
visit ({dfrs.s0}), and visited is an empty set. Recursively, the function buildTR identifies new
states to visit by the application of function and delay transitions that can emanate from the
already visited states.

As an inductive function, the base case for builtTR happens when toVisit is empty. For
this value of toVisit, we have that buildTR(toVisit,visited, I,O,T,F) is an empty transition rela-

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 65

tion. In the inductive case, toVisit is not empty and, thus, there is at least one state s in the states
to visit (s : toVisit).

The result of buildTR is then defined as the union of the relation transition (tr1) obtained
via genTransitions, which considers the emanating transitions from s, with the result of the
recursive application of buildTR. This recursive application considers the not yet visited states,
and also the new states reached by tr1 (toVisit∪{trans : tr1 • trans.3}) \ (visited∪{s}). We
note that we also need to add s to the set of visited states (visisted∪{s}).

buildTR : ((PSTATE)× (PSTATE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1F1 FUNCTION))→ TRANSREL

∀ toVisit,visited : PSTATE ; I,O,T : NAME 7→ TYPE ; F : F1F1 FUNCTION •
(toVisit = /0⇒ buildTR(toVisit,visited, I,O,T,F) = /0) ∧
(toVisit 6= /0⇒∃s : toVisit ; tr1 : TRANSREL •

genTransitions(s, I,O,T,F) = tr1 ∧
buildTR(toVisit,visited, I,O,T,F) = tr1∪

buildTR((toVisit∪{trans : tr1 • trans.3})\ (visited∪{s}),
visited∪{s}, I,O,T,F))

The function genTransitions identifies either function or delay transitions from a given state
s. Delay transitions are performed from stable states, whereas function transitions occur in
non-stable states.

A state s is stable, (s, ...) ∈ is stable, when it does not represent a situation that triggers
a system reaction: for all entries of the functions (entry ∈ f) of an s-DFRS (f ∈ F), their static
(entry.1) and timed guards (entry.2) evaluate to false. The predicates static guards true and
timed guards true, which are not presented here (see Appendix B), are defined as the set of all
static and timed guards that evaluate to true in a given state.

is stable : P(STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1F1 FUNCTION))

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
(s, IO,T,F) ∈ is stable⇔
∀ f : F • ∀entry : f • (s,entry.1, IO,T) /∈ static guards true ∨

(s,entry.2,T) /∈ timed guards true ∨ s = nextState(s,T,entry.3)

A state is also considered to be stable if the reaction denoted by the assignments associated with
these guards lead to a target state that is equal to the current one (s = nextState(s,T,entry.3)). In
other words, the assignments do not have any effect. If there is no effect, this state is considered
stable, since we do not have self transitions.

If a state s is stable, there are delay transitions emanating from s for all possible delays,
delay ∈ possibleDelays(...), which is formalised later, and all possible valid assignments, those

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 66

whose values are consistent with the variable types (asgmts.2 ∈ values(I(asgmts.1))). These
assignments also range over the complete set of inputs (domasgmts = dom I). The reached
state is defined by the function nextState, but also updating the system global clock based on
the performed delay (nextState(...)⊕{(gc, ...+ ...)}).

These three information (the given state – s; the delay transition considering a de-
lay value and assignments – del((delay,assigmts)); and the reached state – nextState(...)⊕
{(gc, ...)}) are used to define the delay transition part of the result of genTransitions.

Figure 3.4 shows a concrete example of delay transitions emanating from the initial
state of the VM. We note that we have a transition for each valid combination of input values:
the coin sensor and the request button remain false (first state on first row), only the coin sensor
becomes true (third state on first row), only the request button becomes true (first state on second
row), and both signals become true (second state on second row).

genTransitions : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (F1F1 FUNCTION))→ TRANSREL

∀s : STATE ; I,O,T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
((s, I∪O,T,F) ∈ is stable⇒ genTransitions(s, I,O,T,F) =

{delay : DELAY ; asgmts : ASGMTS |
delay ∈ genPossibleDelays(s, I∪O,T,F) ∧
domasgmts = dom I ∧ (∀asgmt : asgmts • asgmt.2 ∈ values(I(asgmt.1))) •

(s,del((delay,asgmts)),nextState(s,T,asgmts)⊕
{(gc,((s(gc)).2,n((n∼)((s(gc)).2)+(discrete∼)(delay))))})}) ∧

((s, I∪O,T,F) /∈ is stable⇒ genTransitions(s, I,O,T,F) =

{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s,entry.1, I∪O,T) ∈ static guards true ∧
(s,entry.2,T) ∈ timed guards true •

(s, fun(entry.3),nextState(s,T,entry.3))})

Although only the transitions with delay equal to 1 second are shown, there are transitions
with greater delays (2s, 3s, ...) emanating from the initial state. In this case, all delays are
possible and, thus, there is no upper bound. This leads to an infinite number of delay transitions
emanating from the initial state.

To understand how we define the maximum valid delay, we first need to explain the
concept of enabling delays, which is captured by the following partial function enablingDelays.
The domain of this function is the set of states that are stable, (s, ...) ∈ is stable. Given a stable
state s and a single entry (entry) of a function of an s-DFRS, the function enablingDelays yields
a set of delays such that, after advancing the time by this delay ((gc, ...+ ...)), without changing
any input value, the reached state (next) is not stable, (next, ...) /∈ is stable. In other words, if
we just let the time evolve by some amount, we are going to see some reaction of the system.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 67

Figure 3.4: The vending machine specification – example of delay transitions

s = 0
r = 0
m = 1
o = 1
t = 0

gc = 0

s = 0
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 0
m = 1
o = 1
t = 0

gc = 1

s = 0
r = 1
m = 1
o = 1
t = 0

gc = 1

s = 1
r = 1
m = 1
o = 1
t = 0

gc = 1

(D) – 1s

s := 0
r := 0

(D) – 1s

s := 1
r := 0

(D) – 1s s := 0
r := 1

(D) – 1s s := 1
r := 1

[Source: author]

enablingDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×FUNCTION)

7→ PDELAY

domenablingDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
entry : FUNCTION | (s, IO,T,{{entry}}) ∈ is stable • (s, IO,T,entry)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; entry : FUNCTION •
enablingDelays(s, IO,T,entry) = {delay : DELAY ; next : STATE | next = s⊕
{(gc,((s(gc)).2,n((n∼)((s(gc)).2)+(discrete∼)(delay))))} ∧

(next, IO,T,{{entry}}) /∈ is stable • delay}

The situation described in the end of the last paragraph (reaching a non-stable state by just let-
ting the time advance) happens in the VM when the system is producing coffee. After pressing
the coffee request button, if a weak coffee is going to be produced, we observe this system
reaction within 10 to 30 seconds.

Therefore, if we are in the first state on the third row (Figure 3.3), for delays greater
than or equal to 10 and lower than or equal to 30, we observe a system reaction leading the
system to the reset state, besides changing accordingly the system output. In such a state, for
instance, it would not make sense to have a delay transition, whose delay is 31, since we would
be modelling an input received after elapsing 31 seconds, but before this input being received
we should have observed a system reaction. This captures the principle of delayable transitions:
the time might advance an arbitrary amount as long as it does not disable an enabled transition.

Considering the situation explained in the last paragraph for the VM example, the func-
tion enablingDelays yields the set 10..30. It is worth noting that the result of enablingDelays

can be an infinite set, for example, if a weak coffee should be produced at least 10 seconds after
its request. In such a case, as we do not have an upper bound, the result of enablingDelays is

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 68

10..∞.
Now, given a stable state s, and considering all functions of an s-DFRS (F), the func-

tion maxDelays yields the upper bound (upperBound) of the set enabling delays (delays =

enablingDelays(...)) with respect to each entry (entry ∈ f) of the s-DFRS functions (f : F). If
delays is not empty, discrete(upperBound) ∈ delays, and there is an upper bound, ∀n : delays •
(discrete∼)(n) ≤ upperBound, delays is not infinite; this upper bound is considered in the re-
turn of maxDelays. In other words, its result considers the maximum delay allowed, based on
the delayable principle, for each entry of the functions of an s-DFRS.

To define the set of possible delays that we need to consider when generating delay
transitions, we rely on the function genPossibleDelays. For a given state s, if the result of the
application of maxDelays is empty (maxDelays(...) = /0), it means that there is no upper bound
we need to consider: all delays are possible, genPossibleDelays(...) = {delay : DELAY}.

maxDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1F1 FUNCTION))

7→ FN1

dommaxDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
F : (F1F1 FUNCTION) | (s, IO,T,F) ∈ is stable • (s, IO,T,F)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
maxDelays(s, IO,T,F) =

{f : F ; entry : FUNCTION ; delays : PDELAY ; upperBound : N1 |
entry ∈ f ∧ delays = enablingDelays(s, IO,T,entry) ∧
discrete(upperBound) ∈ delays ∧
(∀n : delays • (discrete∼)(n)≤ upperBound) • upperBound}

Otherwise, we can perform all delays that are lower than or equal to the lowest upper bound
defined by maxDelays, (discrete∼)(delay) ≤ miniumDelay(...). The function mininumDelay

yields this lowest upper bound, whose definition is not shown here as it is straightforward (see
Appendix B).

To finish our explanation of how to obtain an e-DFRS from a symbolic one, we need to
detail how function transitions are created. If we refer to the definition of genTransitions, pre-
sented at the beginning of this section and partially reproduced below, we can see that function
transitions, (s, fun(...), ...), emanate from states that are not stable. (s, ...) /∈ is stable.

For every entry (entry ∈ f) of the functions of an s-DFRS (f : F), whose static (entry.1)
and timed guards (entry.2) evaluate to true, we add a function transition with the corresponding
assignments, fun(entry.3), leading to a target state that is the previous one modified by these
assignments (nextState(...)). In the VM example, we have a deterministic system. However, for
non-deterministic systems, we would have more than one function transition emanating from
the same source state.

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 69

genPossibleDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(F1F1 FUNCTION)) 7→ PDELAY

domgenPossibleDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
F : (F1F1 FUNCTION) | (s, IO,T,F) ∈ is stable • (s, IO,T,F)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
(maxDelays(s, IO,T,F) = /0⇒

genPossibleDelays(s, IO,T,F) = {delay : DELAY}) ∧
(maxDelays(s, IO,T,F) 6= /0⇒

genPossibleDelays(s, IO,T,F) = {delay : DELAY |
(discrete∼)(delay)≤ minimumDelay(maxDelays(s, IO,T,F))})

In summary, from the initial state of an s-DFRS, we recursively identify which states are reached
by function and delay transitions. The set of all reachable states, which is defined as the states
of an e-DFRS, besides their transitions, is considered the transition relation of an e-DFRS.

genTransitions : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (F1F1 FUNCTION))→ TRANSREL

∀s : STATE ; I,O,T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
... ∧
((s, I∪O,T,F) /∈ is stable⇒ genTransitions(s, I,O,T,F) =

{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s,entry.1, I∪O,T) ∈ static guards true ∧
(s,entry.2,T) ∈ timed guards true •

(s, fun(entry.3),nextState(s,T,entry.3))})

The other elements of an e-DFRS are directly obtained from the corresponding symbolic ones.
It is important to note that, when obtaining an e-DFRS from an s-DFRS, some structural infor-
mation is lost, namely, the element F (set of functions), since this information is diluted over
the labels of delay and function transitions.

3.3.2.1 Soundness of generation of an e-DFRS

Besides presenting a function that yields an e-DFRS from a symbolic one, it is important
to show that this function is sound: for all s-DFRSs, all invariants of e DFRS hold in the
obtained e-DFRS (Theorem 3.3.1). Although presenting the complete proof is not within the
scope of this work, we provide here a proof sketch that the function expandedDFRS is sound.

Theorem 3.3.1. Soundness of expandedDFRS

∀d : s DFRS • expandedDFRS(d) ∈ e DFRS

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 70

The three invariants of DFRS VARIABLES (reproduced below) trivially hold as the el-
ements I, O, T , and gcvar are the same of the corresponding s-DFRS, and these properties are
also invariants of valid s-DFRSs.

gcvar = (gc,nat) ∨ gcvar = (gc,ufloat)

disjoint 〈dom I,domO,domT〉
ranT ⊆ {gcvar.2}

The invariant of DFRS STATE (s0 ∈ S) also holds, since expandedDFRS defines S as the union
of the states of TR with s0. The invariants of DFRS TRANSITION RELATION (reproduced
below) are also preserved by the function expandedDFRS.

∀ trans1, trans2 : TR | trans1.1 = trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ randel

∀ trans : TR • ¬ (trans.1 = trans.3)

The first one holds because function transitions are only created from non-stable states, whereas
delay transitions are created from stable states. As one state cannot be non-stable and stable
simultaneously, all transitions emanating from a state are function or delay ones. We also do not
have self transitions as the delay transitions advance the time by a value greater than 0 and, thus,
it leads to a different state (a different value for global clock). The function transition is only
performed if it has a collateral effect (changes the value of at least one variable) and, thus, it also
leads to a different state. Therefore, the second invariant of DFRS TRANSITION RELATION

also holds.
The function expandedDFRS also preserves the invariants of e DFRS. Concerning the

first one (reproduced below), a state is said to be well typed if, and only if, it ranges over
the complete set of system variables, and the values assigned to them are consistent with the
variable types.

∀s : S • (s, I∪O∪T ∪{gcvar}) ∈ well typed state

Considering the definition of buildTR, the states of an e-DFRS are reachable from its initial
state, which is well typed based on the definition of s-DFRSs, performing delay and function
transitions. Each transition only changes the values mapped to the variables, but not the set of
variables. Therefore, all states consider the same set of variables, which are all system variables.
Concerning the consistency of values, the assignments performed by the transitions also need
to be consistent with the variable types and, thus, this consistency is respected in all states.

Now, we explain why the invariants related to the transition relation (reproduced below)

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 71

also hold.

∀ trans : TR • {trans.1, trans.3} ⊆ S ∧
(trans.2, I,O,T,gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun⇒ trans.3 = nextState(trans.1,T, functionTransition(trans.2))) ∧
(trans.2 ∈ randel⇒ trans.3 =

nextState(trans.1,T,(delayTransition(trans.2)).2)⊕{(gc,((trans.1(gc)).2,
n((n∼)((trans.1(gc)).2)+(discrete∼)((delayTransition(trans.2)).1))))})

The first invariant is clearly preserved, since expandedDFRS defines S as all states related by
TR, besides its initial state. Regarding the second invariant of e DFRS, which states that all
transitions are well typed, it is a consequence of how delay and function transitions are defined
by the function genTransitions. As one can notice from the definition of this function, the delay
transition considers all input variables, and the delay value is consistent with the system global
clock. Therefore, the delay transitions are well typed and clock compatible. The function
transitions are defined considering the assignments mapped to static and timed guards of the
functions of an s-DFRS. Considering the definition of s-DFRSs, these assignments are well
typed and, thus, consider a subset of the system outputs and timers. Therefore, the function
transitions of an e-DFRS are also well typed.

Finally, the last invariants of e DFRS say that the target state of a delay and a function
transition is defined by the source state updated with the corresponding assignments, besides
advancing the system global clock by the delay value in delay transitions. This is exactly how
the next (target) states are defined by the auxiliary function genTransitions and, thus, this last
invariant holds too.

3.3.3 Verifying properties of requirements via e-DFRSs

By exploring the state space of an e-DFRS, we can verify interesting properties of the
system requirements. Besides checking whether the requirements are ambiguous (hereafter,
called inconsistent) or incomplete, we can also verify the presence of unreachable requirements
and time lock.

3.3.3.1 Consistent requirements

The system requirements are said to be consistent if, and only if, they do not describe
different system reactions for the same context (state). Definition 3.3.1 formalises this concept.

Definition 3.3.1. Consistent requirements: let reqs be an arbitrary set of requirements, and
symDFRS the corresponding s-DFRS obtained via Algorithm 6; the following predicate defines

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 72

when these requirements are said to be consistent:

consistent(reqs)⇔∃dfrs : e DFRS | dfrs = expandedDFRS(symDFRS) •
∀s : dfrs.S • (s,dfrs.I∪dfrs.O,dfrs.T,symDFRS.functions) /∈ is stable⇒
∀ f 1, f 2 : symDFRS.F • ∀e1 : f 1 ; e2 : f 2 •

(s,e1.1,dfrs.I∪dfrs.O,dfrs.T) ∈ static guards true ∧
(s,e2.1,dfrs.I∪dfrs.O,dfrs.T) ∈ static guards true ∧
(s,e1.2,dfrs.T) ∈ timed guards true ∧
(s,e2.2,dfrs.T) ∈ timed guards true⇒ e1 = e2

According to the algorithms presented in Section 3.2, each requirement is mapped to
an entry of a function. Therefore, if the requirements are consistent, for all states (s) of the
e-DFRS (dfrs), if the guards of two entries (e1,e2) of two arbitrary functions (f 1, f 2) evaluate
to true ({(...,e1.1, ...),(...,e2.1, ...)} ⊆ static guards true and {(...,e1.2, ...),(...,e2.2, ...)} ⊆
timed guards true) in the same non-stable state, (s, ...) /∈ is stable, these entries are the same
(e1 = e2). In such a case, we say that the requirements are consistent. Otherwise, we would
have two different system reactions for the same state. �

To give an example of inconsistent requirements, we consider the following ones:

� When input1 is true, the system shall assign 1 to output1.

� When input1 is true, the system shall assign 2 to output1.

These two requirements are not consistent, since they describe different system reactions (as-
signing 1 or assigning 2, respectively) for the same context (when input1 is true).

3.3.3.2 Complete requirements

The requirements are said to be complete if for every possible system input (after each
delay transition), there is some system reaction (a function transition). This notion of complete-
ness is formalised by Definition 3.3.2

Definition 3.3.2. Complete requirements: let reqs be an arbitrary set of requirements, and
symDFRS the corresponding s-DFRS obtained via Algorithm 6; the following predicate defines
when these requirements are said to be complete:

complete(reqs)⇔∃dfrs : e DFRS | dfrs = expandedDFRS(symDFRS) •
∀s1,s2 : dfrs.S | (∃ trns : dfrs.TR | trns.1 = s1 ∧ trns.3 = s2 ∧ trns.2 ∈ randel) •
∃s3 : dfrs.S ; trns2 : dfrs.TR • trns2.1 = s2 ∧ trns2.3 = s3 ∧ trns.2 ∈ ran fun

�

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 73

To exemplify complete requirements, we consider a simple system that has a single input
(input1) and a single output (output1). The following requirements are said to be complete:

� When input1 is true, the system shall assign 1 to output1.

� When input1 is false, the system shall assign 2 to output1.

We note that for every possible value of input1 (true or false), the requirements define the
expected system reaction (assigning 1 or assigning 2, respectively). Therefore, after every delay
transition, there is a function transition.

3.3.3.3 Reachable requirements

A requirement is reachable if there is a state of the e-DFRS where the guards of the
function entry obtained from this requirement evaluate to true. If there is no such a state, we say
that this requirement is not reachable, since it describes a system reaction that will never occur.
Definition 3.3.3 defines formally the notion of reachable requirements.

Definition 3.3.3. Reachable requirements: let reqs be an arbitrary set of requirements, and
symDFRS the corresponding s-DFRS obtained via Algorithm 6; the following predicate defines
when these requirements are said to be reachable:

reachable(reqs)⇔∃dfrs : e DFRS | dfrs = expandedDFRS(symDFRS) •
∀ f : symDFRS.F • ∀entry : f • ∃s : dfrs •

(s,dfrs.I∪dfrs.O,dfrs.T,symDFRS.functions) /∈ is stable ∧
(s,entry.1,dfrs.I∪dfrs.O,dfrs.T) ∈ static guards true ∧
(s,entry.2,dfrs.T) ∈ timed guards true

�

To give an example of an unreachable requirement, we consider the following one:

� When input1 is true, and input1 is false, the system shall assign 1 to output1.

This requirement is not reachable (its reaction is never observed), since its condition does not
evaluate to true in any possible state due to the fact that the same boolean variable (input1)
cannot be true and false simultaneously.

3.3.3.4 Absence of time lock

Finally, the last property concerns the absence of time lock (see Definition 3.3.4). A
time lock is characterised by a state from which it is not possible to perform delay transitions,
immediately and even from states reachable by this state. If such a state exists, we have a
time lock, since delay transitions cannot occur and, thus, time cannot elapse. Another way of

3.3. DEFINITION AND PROPERTIES OF AN E-DFRS 74

Figure 3.5: Example of time lock

input1 = 0
out1 = 0
gc = 0

input1 = 1
out1 = 0
gc = 1

input1 = 1
out1 = 1
gc = 1

input1 = 1
out1 = 2
gc = 1

(D) – 1s

input := 1

(F) out1 := 1 (F)
out1 := 2

(F)

out1 := 2

(F)

out1 := 1

[Source: author]

expressing this property is to say that time lock happens if there is a state from which it is not
possible to reach stable states (states that have delay transitions).

Definition 3.3.4. No time lock: let reqs be an arbitrary set of requirements, and symDFRS the
corresponding s-DFRS obtained via Algorithm 6; the following predicate defines when these
requirements describe a system without time lock:

noTimeLock(reqs)⇔∃dfrs : e DFRS | dfrs = expandedDFRS(symDFRS) •
∀ trans : dfrs.TR | trans.2 ∈ ran fun • ∃ trans2 : dfrs.TR •| trans2.2 ∈ randel •

(trans.3, trans.1,dfrs.TR) ∈ is reachable

�

To give an example of time lock, we consider the same one that was given to illustrate
Definition 3.3.1. Figure 3.5 shows part of the corresponding e-DFRS. We note that when input1
becomes true (equal to 0), the system reaches a state from which is not possible to reach a stable
state, since it can perform indefinitely function transitions. In such a situation, we say that there
is a time lock.

If the specification is inconsistent or there is an unreachable requirement, we can easily
identify the requirements involved as we keep traceability between the s-DFRS functions and
the system requirements.

The properties defined in this section (Section 3.3.3) can be verified by exploring the
e-DFRS state space. However, as an e-DFRS possibly comprises an infinite set of states, one
possibility would be the specification of a bound for this check. Then, one can dynamically
create an e-DFRS until this bound is reached, and, while it is created, check whether the desired
properties are met (bounded model checking). Eligible criteria for this bound are the number of

3.4. THEORETICAL VALIDATION 75

delay (function) transitions performed, and an upper bound for the system global clock, among
others. Other possibilities would involve performing the analyses with the aid of interactive
theorem provers or even by hand.

3.4 Theoretical validation

While an e-DFRS can be viewed as a semantics for the s-DFRS, from which it is ob-
tained, in order to connect such a semantic representation to established ones in the literature,
we show that an e-DFRS can be encoded as a TIOTS. This is an alternative timed model based
on the widely used Input-Output Labelled Transition System (IOLTS) and ioco (TRETMANS,
1999). First, we define TIOTSs in Z (Section 3.4.1), and then we show how it can be obtained
from e-DFRSs (Section 3.4.2) via a sound process (Section 3.4.3).

3.4.1 Formal model of TIOTS

A TIOTS is a 6-tuple (Q, q0, I, O, D, T), where Q is a (possibly infinite) set of states,
q0 is the initial state, I represents input and O output actions, D is a set of delays, and T is a
(possibly infinite) transition relation on states.

In a TIOTS, the states are related by labelled transitions. A label can be an input or an
output action, a delay, or an internal action. The given set TIOTS ACTION represents all valid
actions, and TIOTS ACTIONS a set of actions. A TIOTS delay (an element of TIOTS DELAY)
represents a discrete or a dense time elapsing, but differently from an e-DFRS delay, a delay in
a TIOTS can also be 0. TIOTS DELAYS is a set of delays.

[TIOTS ACTION]

TIOTS ACTIONS == PTIOTS ACTION

TIOTS DELAY ::= tiots discrete〈〈N〉〉 | tiots dense〈〈R+〉〉
TIOTS DELAYS == PTIOTS DELAY

The schema TIOTS LABELS formalises the concept of TIOTS labels.

TIOTS LABELS

I,O : TIOTS ACTIONS

D : TIOTS DELAYS

disjoint 〈I,O〉
D ∈ tiots time compatible

The sets of input and output actions are disjoint, and the delays need to be time compatible,
which means that all delays are of the same type (discrete or dense). The time compatible

3.4. THEORETICAL VALIDATION 76

delays are characterised by the elements of a set tiots time compatible, whose simple definition
is omitted here (see Appendix B).

A state is an element of the given set TIOTS STATE, and TIOTS STATES SET is a
non-empty set of states. The initial state of a TIOTS (q0) is necessarily an element of the set of
states of a TIOTS (Q). The schema TIOTS STATES formalises this invariant.

[TIOTS STATE]

TIOTS STATES SET == P1 TIOTS STATE

TIOTS STATES == [Q : TIOTS STATES SET ; q0 : TIOTS STATE | q0 ∈ Q]

The transition relation (T), which is an element of the set of all possible TIOTS transition
relations (TIOTS TRANSREL), relates two states by means of a label. A label is an element
of TIOTS TRANS LABEL. A TIOTS has four types of transitions: input, output, delay and
internal transitions, which are labelled with input actions, output actions, delay events, and
internal actions, represented by the invisible event τ (tau), respectively.

The schema TIOTS TRANSITION RELATION defines the component T . Finally, a
TIOTS is defined by the schema TIOTS, which requires that each transition relates states of Q

and is well-typed.

TIOTS TRANS LABEL ::= in〈〈TIOTS ACTION〉〉 | out〈〈TIOTS ACTION〉〉 |
tiots del〈〈TIOTS DELAY〉〉 | tau

TIOTS TRANS == (TIOTS STATE×TIOTS TRANS LABEL×TIOTS STATE)

TIOTS TRANSREL == PTIOTS TRANS

TIOTS TRANSITION RELATION

T : TIOTS TRANSREL

TIOTS

TIOTS LABELS

TIOTS STATES

TIOTS TRANSITION RELATION

∀entry : T • {entry.1,entry.3} ⊆ Q ∧ (entry.2, I,O,D) ∈ well typed tiots transition

A transition is said to be well typed (an element of well typed tiots transition) if, and only
if, its label is equal to τ , in, out, or del (label = tau, label ∈ ran in, label ∈ ranout, label ∈
ran tiots del, respectively).

3.4. THEORETICAL VALIDATION 77

well typed tiots transition : P(TIOTS TRANS LABEL×
TIOTS ACTIONS×TIOTS ACTIONS×TIOTS DELAYS)

∀ label : TIOTS TRANS LABEL ; I,O : TIOTS ACTIONS ; D : TIOTS DELAYS •
(label, I,O,D) ∈ well typed tiots transition⇔
(label = tau) ∨ (label ∈ ran in ∧ (in∼) label ∈ I) ∨
(label ∈ ranout ∧ (out∼) label ∈ O) ∨
(label ∈ ran tiots del ∧ (tiots del∼) label ∈ D)

If the label represents an input action (label∈ ran in), it comprises elements of I, (in∼) label∈ I.
Similarly, the same idea applies to output actions and delays, where O and D are considered,
respectively.

3.4.2 From e-DFRSs to TIOTSs

Before formalising the generation of a TIOTS from an e-DFRS, we explain the intuition
behind the generation process. While a function transition is mapped to an output action, a
delay transition is mapped to a delay followed by an input action. When a function transition
leads to a non-stable event, this transition is mapped to an internal hidden event, since only
stable communication of outputs can be observed. If a delay transition leads to a state from
which there are other delay transitions (after the first delay no system reaction is observed), we
also consider an output action between these two transitions to show explicitly that the system
outputs have not changed.

Figure 3.6 shows the TIOTS obtained from the first five transitions presented in Fig-
ure 3.3. To differentiate input from output actions, we add “?” as a prefix to the former, and
“!” to the latter. We note that the actions performed are strings that represent the value received
for all system inputs or generated for all system outputs, even if the function transition does
not range necessarily over the complete set of system outputs. We note that an output action is
performed between the delay transitions, whose delays are 3s and 7s, to show that the system
outputs remain unchanged. In this short example, we do not have τ events, as all states reached
by function transitions are stable. However, considering the example shown in Figure 3.5, the
corresponding TIOTS does not have any output action after the delay transition, but a loop of τ

events due to the time lock.
The function fromDFRStoTIOTS defines how a TIOTS is obtained from an e-DFRS.

The main step is how to obtain the TIOTS transition relation (tiots.T), which is defined by
mapTransitionRelation. The TIOTS inputs (tiots.I), outputs (tiots.O) and delays (tiots.D) are
defined as the result of auxiliary projection functions (getInputActions, getOutputActions, and
getDelays, respectively). Basically, these functions yield the labels of TIOTS transitions.

The function mapState is a total injection from DFRS states to TIOTS ones. It is used
to define the initial state (tiots.q0) of the TIOTS; it is the result of this function when applied

3.4. THEORETICAL VALIDATION 78

Figure 3.6: The vending machine specification – TIOTS

2s ?s.1.r.0 !m.0.o.1 3s

?s.0.r.0

!m.0.o.17s?s.0.r.1!m.3.o.1

[Source: author]

to the initial state of the e-DFRS. The states (tiots.Q) of a TIOTS are the ones related by its
transition relation (tiots.T), which are characterised by getStates, besides its initial state.

fromDFRStoTIOTS : e DFRS→ TIOTS

∀dfrs : e DFRS ; tiots : TIOTS •
fromDFRStoTIOTS(dfrs) = tiots⇔
tiots.Q = getStates(tiots.T)∪{tiots.q0} ∧ tiots.q0 = mapState(dfrs.s0) ∧
tiots.I = getInputActions(tiots.T) ∧ tiots.O = getOutputActions(tiots.T) ∧
tiots.D = getDelays(tiots.T) ∧
tiots.T = mapTransitionRelation(dfrs.TR,dfrs.I,dfrs.O)

To obtain the TIOTS transition relation, the function mapTransitionRelation considers two
partitions of e-DFRS transitions: one with function transitions, getTransitions(tr, ran fun), an-
other with delay transitions, getTransitions(tr, randel). The function getTransitions filters func-
tion/delay transitions from a given transition relation (tr). The functions mapFunTransitions and
mapDelTransitions consider these partitions and yield transition relations (tr1, and tr2), whose
union is defined as the result of mapTransitionRelations (mapTransitionRelation = tr1∪ tr2).

mapTransitionRelation : TRANSREL× (NAME 7→ TYPE)× (NAME 7→ TYPE)→
TIOTS TRANSREL

∀ tr : TRANSREL ; I,O : (NAME 7→ TYPE) • ∃ tr1, tr2 : TIOTS TRANSREL •
tr1 = mapFunTransitions(getTransitions(tr, ran fun), tr,O) ∧
tr2 = mapDelTransitions(getTransitions(tr, randel), tr, ranmapState, I,O) ∧
mapTransitionRelation(tr, I,O) = tr1∪ tr2

One important concern is related to the fresh states that are needed during this process. There-
fore, we note that the third argument of mapDelTransitions is ranmapState (all TIOTS states

3.4. THEORETICAL VALIDATION 79

that can be obtained from DFRS states), which is later used to identify fresh ones. For instance,
one can see in Figure 3.6 that the first and third states are obtained from the first and second
states in Figure 3.3, whereas the second state does not have any correspondence with a DFRS
state.

The recursive function mapFunTransitions applies mapFunTransition for each function
transition that leads to a stable state. The latter function yields an output action, out(...), relating
the TIOTS states obtained from the source, mapState(s1) and target, mapState(s2), states of the
e-DFRS function transition.

mapFunTransition : (TRANS× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dom(mapFunTransition) = (STATE× ran fun×STATE)× (NAME 7→ TYPE)

∀s1,s2 : STATE ; label : TRANS LABEL ; O : (NAME 7→ TYPE) | label ∈ ran fun •
mapFunTransition((s1, label,s2),O) = {(mapState(s1),

out(genAction(currentValues(domOC s2))),mapState(s2))}

The output action, out(...), is defined in terms of the current values of the output variables
in the target state (currentValues(domOC s2)). An example of output action is !m.0.o.1 (see
Figure 3.6). When the function transition leads to a non-stable state, mapFunTransitions yields
a transition relation, whose single element relates the source, mapState(trans.1), and target,
mapState(trans.3), states with a τ event, {(mapState(trans.1), tau,mapState(trans.3))}.

The process of mapping delay transitions is more complicated due to three main reasons.
First, as previously explained, we need to identify fresh states (that do not have correspondence
to DFRS states); second, as also commented before, we need to define an output action be-
tween consecutive delay transitions; finally, the delay transitions that have the same amount of
time elapsing are grouped into non-time deterministic partitions, since they have a particular
treatment. To exemplify this last situation, we consider the states presented in Figure 3.4. The
TIOTS transition relation obtained from this example is shown in Figure 3.7. One can see that
first we have a delay of 1s leading to a state from which there are multiple possible input ac-
tions. The complete definition of how delay transitions are mapped into TIOTS transitions can
be seen in Appendix B.

3.4.3 Soundness of mapping to TIOTS

Here we prove that the function fromDFRStoTIOTS is sound: for all e-DFRSs, all in-
variants of TIOTS hold in the obtained TIOTS (Theorem 3.4.1).

Theorem 3.4.1. Soundness of fromDFRStoTIOTS

∀d : e DFRS • fromDFRStoTIOTS(d) ∈ TIOTS

3.4. THEORETICAL VALIDATION 80

Figure 3.7: The vending machine specification – TIOTS representation of delay
transitions

1s

?s.0.r.0 ?s.1.r.0

?s.0.r.1 ?s.1.r.1

[Source: author]

The detailed proof is available in Appendix B; here we present a proof sketch. Concern-
ing the invariants of TIOTS LABELS (reproduced below), the sets I and O are disjoint because
they are defined by the auxiliary function genAction, which is an injection, applied to different
elements: the value of DFRS input and output variables, respectively.

disjoint 〈I,O〉
D ∈ tiots time compatible

The TIOTS delays are compatible (all of them are discrete or dense) because the e-DFRS delays
are time compatible, and the TIOTS delays preserve the delay type (discrete and dense delays
in an e-DFRS are translated to discrete and dense delays in a TIOTS, respectively).

The invariant of TIOTS STATES (q0 ∈Q) also holds, since the states of a TIOTS (Q) are
defined by fromDFRStoTIOTS as the union of the application of getStates with its initial state
(q0). Therefore, it is valid that q0 is an element of Q.

Concerning the invariants of TIOTS (reproduced below), as Q is obtained from all states
mentioned by T , it is trivial that all states related by T belong to Q.

∀entry : T • {entry.1,entry.3} ⊆ Q ∧ (entry.2, I,O,D) ∈ well typed tiots transition

To be well typed, an input transition must be labelled with an element of I, and an output
transition with an element of O. Similarly, a delay transition must be labelled with an element
of D. As the sets I, O, and D are defined in terms of the labels used on the TIOTS transitions,
this invariant also holds. Therefore, we conclude that the function fromDFRStoTIOTS is also
sound.

3.5. CONCLUDING REMARKS 81

3.5 Concluding remarks

This chapter detailed the third phase of the NAT2TEST strategy, when a formal seman-
tics is given for the system requirements via DFRS models. A DFRS models an embedded
system whose inputs can be seen as data provided by sensors, whereas its outputs as data pro-
vided to actuators. A DFRS can also have internal timers, which might be used to trigger
timed-based behaviour.

There are two representations of DFRSs: a symbolic (s-DFRS) and an expanded one
(e-DFRS). The former, which is automatically derived from requirement frames, inherently
avoids an explicit representation of possibly infinite sets of states and, thus, the state space
explosion problem. The latter is built dynamically from its symbolic counterpart, possibly
limited to some bound, and then used to bounded analyses such as requirements reachability,
determinism, and completeness.

Here, we also proved by hand that an e-DFRS can be characterised as a TIOTS – a
labelled transition system extended with time, which is widely used to characterise conformance
relations for timed reactive systems. Being more abstract than a TIOTS, a DFRS comprises a
more concise representation of timed requirements.

A classical notation for modelling timed reactive systems is timed automata. DFRS,
however, is specifically designed to facilitate automatic generation of formal models from
natural-language requirements. In particular, DFRS is tailored for embedded systems whose
inputs and outputs are always available, as signals. The advantage of a DFRS model is the
fact that, as opposed to classical timed reactive systems notations such as timed automata, it
is a state-rich notation that embeds and enforces a number of properties of the models that are
required of reactive embedded systems. For example, DFRS models enforce the principle of
delayable transitions; use delay transitions to represent environment sitimuli and, thus, they
cannot range over the output signals and timers of the system; include no self-transitions; en-
sure that there are no delay and function transitions emanating from any state. If we were to use
general purpose notations such as timed automata to capture the natural-language requirements,
the translation would be more complicated and costly.

828282

4
A sound test strategy based on CSP

After providing a formal representation of system requirements via DFRS models, here
we show how we can use the process algebra CSP as a target of such models and, thus, provide
means for generating test cases (CARVALHO; SAMPAIO; MOTA, 2013b). It comprises the
last two phases of the NAT2TESTCSP strategy: CSP generation, and generation of test cases.

It might be argued that test cases could be generated directly from DFRS models, and
this is indeed the case. However, algorithms would need to be devised for that specific purpose.
In particular, these algorithms would need to more elaborate than a traditional graph transversal,
since e-DFRS models might comprise an infinite set of states, and it would be desirable to guide
the graph transversal by test purposes (a list of observations required to be present in the test).
In our CSP representation, we reuse successful and general-purpose algorithms for generating
test cases.

The main challenge of encoding DFRS models as CSP processes is to achieve a CSP
representation capable of dealing with discrete and continuous time, besides providing tool sup-
port for generating test cases from such a representation. We tackle this challenge by devising a
symbolic time encoding, and by reusing successful and general-purpose techniques (refinement
checking and SMT solving) for generating symbolic test cases. Furthermore, we prove that
this testing strategy is sound with respect to a CSP timed input-output conformance relation we
define, csptio.

In Section 4.1 we present the process algebra CSP, then we show how DFRSs are
encoded using such notation (Section 4.2). Afterwards, we define CSP-TIO processes (Sec-
tion 4.3), a central concept of our testing theory. Then, we define the csptio conformance
relation (Section 4.4), which is the basis for our sound testing strategy (Section 4.6) considering
test scenarios selected and generated as described in Section 4.5.

4.1 Communicating sequential processes

CSP is a formal language designed to describe behavioural aspects of systems. The
fundamental element of a CSP specification is a process. CSP has two primitive processes:

4.1. COMMUNICATING SEQUENTIAL PROCESSES 83

one that represents successful termination (SKIP) and another that stands for an abnormal ter-
mination (STOP), also interpreted as a deadlock. In the simplest semantic model of CSP, the
behaviour of a process is described by the set of sequences of events it can communicate to
other processes. Events are atomic. To define a process as a sequence of events, we use the
prefix process (ev→ P), where ev is an event and P a process. We can use the prefix operator
to create an infinite (recursive) process such as P = a→ b→ P.

To define alternating behaviours, CSP offers (external, internal, and conditional) choice
operators. An external choice (2) represents a deterministic choice between two processes,
whereas the internal one (u) involves a non-deterministic choice. The conditional (if) choice
operator is similar to the conditionals of standard programming languages. The if choice opera-
tor can also be represented as P = Q<I b>I R: if b is true, P behaves as Q, otherwise its behaviour
is the one of R.

Two other relevant operators are the sequential and parallel composition operators. For
example, the following sequential composition P = P1 ; P2 states that the behaviour of P is
equivalent to the behaviour of P1, followed by the behaviour of P2, if and when P1 terminates
successfully.

Concerning the parallel composition, CSP allows a composition with (‖) or without
(|||) synchronisation between the composed processes. CSP processes synchronise between
themselves by means of events. In the composition P‖

X
Q the processes P and Q synchronise on

the events in X, whereas P X‖Y Q requires synchronisation on the events in X∩Y .
A channel can be declared to denote a particular set of events. The term c!e, where c

is a channel, denotes the event c.e resulting from the evaluation of e, which is any CSP valid
expression, whereas the term c?v denotes any event c.v where v is a value of the declared type
of c. For instance, considering channel c : {0,1,2}, c?v means c.0, c.1 or c.2. It is also possible
to interpret these symbols (! and ?) as a communication sending or receiving a value through a
channel, respectively.

Other two CSP operators used in this work are interrupt and hiding. The former (4) is
used to represent one process taking control of another process. For instance, P = Q4 R means
that P behaves as Q until the first external event of R is performed. The hiding operator (\) is
used to encapsulate events within a process and, thus, making them internal (represented as the
special event τ). CSP also has a functional language for manipulating local data. Therefore, in
this language, the state is represented by the processes parameters.

From a CSP specification written in its machine-readable version called CSPM, the FDR
tool can check desirable properties, such as: (1) deadlock-freedom, (2) divergence-freedom,
(3) deterministic behaviour, and (4) refinement according to different semantic models (traces,
failures, and failures-divergences). The first model considers the sequences of events that a
process can perform. The second one augments this representation by also recording the events
that a process cannot perform after a particular trace. The last one also consider divergent
behaviour (when an infinite sequence of internal events can be performed – a livelock).

4.1. COMMUNICATING SEQUENTIAL PROCESSES 84

Our testing strategy is based on the traces semantic model. The rationale behind this
assumption is that a black-box test case assesses only visible events of the SUT. Based on
(ROSCOE, 2010), and presented as in (NOGUEIRA, 2012), Definition 4.1.1 characterises the
traces for the CSP primitive processes and for the operators used in this work. A complete
definition for all CSP operators can be found in (ROSCOE, 2010).

Definition 4.1.1. Traces of CSP processes: let P and Q be CSP processes and Σ the set of all
events these processes can perform. The traces of CSP processes are defined as follows.

T (SKIP) = {〈〉,〈X〉}
T (a→ P) = {〈〉}∪{〈a〉_s | s ∈T (P)}
T (P 2 Q) = T (P)∪T (Q)

T (P ; Q) = (T (P)∩Σ∗)∪{s_t | s_〈X〉 ∈T (P)∧ t ∈T (Q)}
T (P<I b>I Q) = {s | s ∈T (P)∧ eval(b)}∪{t | t ∈T (Q)∧¬ eval(b)}
T (P \ X) = {s\X | s ∈T (P)}
T (P4 Q) = T (P)∪{s_t | s ∈T (P)∩Σ∗∧ t ∈T (Q)}
T (P‖

X
Q) =

⋃
{s‖

X
t | s ∈T (P)∧ t ∈T (Q)}

T (P X‖Y Q) =
⋃
{s X‖Y t | s ∈T (P)∧ t ∈T (Q)}

T (P ||| Q) =
⋃
{s ||| t | s ∈T (P)∧ t ∈T (Q)}

Informally speaking, the traces of a process P, which is denoted as T (P), is the set of
all possible sequences of events that the process P can perform. All processes can perform the
empty trace (<>). The process SKIP generates the special event X, which denotes successful
termination, and then behaves as STOP, when no more events can be communicated. The traces
of the prefix process (a→ P) includes those obtained by appending the event a to the traces of
P. The traces of a sequential composition (P ;Q) include the traces of P before termination, that
is, without X, and the traces of P that denote successful termination (that is, the X is the last
event) followed by the traces of Q. It is worthy mentioning that the special event X is removed
from the traces of P as a consequence of the expression T (P)∩Σ∗, since the special event X
is not considered as part of the alphabet (Σ) of a process. The alphabet of a process denotes the
events a process can perform.

The process “P<I b>I Q” represents a conditional choice operator, and the traces of this
process is equal to traces of P if the condition evaluates to true, otherwise it is equal to the traces
of Q. The process “P \ X” denotes hiding and, thus, the events of X are hidden within the traces
of P. The process “P4 Q” denotes interruption, and the corresponding traces comprises the
traces of P, as well as the traces of P, but removing the X event if applicable, appended to the
traces of Q.

The traces of a parallel composition is defined as the parallel composition of their re-
spective traces. In this case, the events from the synchronization set X evolve together, whereas
other events evolve independently. The traces of alphabetised parallelism P X‖Y Q is defined

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 85

as the alphabetised composition of their respective traces. In this case, the events from X ∩Y

evolve together, whereas P and Q evolve independently with respect to the elements of X and
Y , respectively. Finally, the traces of the interleaving of two processes P ||| Q is equal to the
interleaving of the traces of P and Q.

4.2 Phase IV – encoding DFRS models as CSP processes

Now, we show how we can represent DFRS models as CSP processes. To accomplish
this goal, we create processes to represent the behaviour defined by the function genTransitions,
which was presented in Section 3.3.2. In this sense, we might say that our CSP representation
takes into account an s-DFRS, along with the mechanism that generates its expanded version.
A possible analogy that can be made is that a CSP specification represents an s-DFRS model,
whereas the LTS defined by the operational semantics of CSP (see (ROSCOE, 2010) for more
details about LTSs) corresponds to the respective e-DFRS model. Before presenting the algo-
rithms that generate CSP specifications from DFRS models, we explain how CSP is used to
encode DFRSs.

Section 4.2.1 presents an intuition of how CSP is used to represent DFRS models. Af-
terwards, the following sections detail the algorithms that generate this representation: how
communication via shared memory (Section 4.2.2), function transitions (Section 4.2.3) and de-
lay transitions (Section 4.2.4) are represented in CSP. Then, Section 4.2.5 shows how these
algorithms are used together to generate the final CSP representation. Finally, Section 4.2.6
discusses our assumptions regarding this representation.

4.2.1 Overview of CSP representation of DFRS models

First, as a DFRS comprises input, output and timer variables, and CSPM does not have
an explicit representation of global variables (communication via shared memory), we create
processes to encode such a notion. Among the different ways of representing state information
(value of inputs, outputs and timers) in CSP, we adopt an alternative that creates an interleaving
of processes, each one representing a single variable (memory cell). As discussed in (ROSCOE,
2010), this solution is appropriate for concurrent access. Moreover, FDR has compression
algorithms suitable for minimising the state-space for such a representation. The general outline
of the memory definition is:

datatype TYPE = type1 | ... | typen

datatype VAR = input1 | ... | inputi | output1 | ... | outputj | ...

initialBinding = { (input1, value1), ... }

channel get, set : VAR.TYPE

MCELL(var,val) = get!var!val→ MCELL(var,val)

2 set!var?val’ : range(tag(val))→ MCELL(var,val’)

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 86

MEMORY(binding) = ||| (var,val) : binding @ MCELL(var,val)

SYSTEM MEMORY = MEMORY(initialBinding)

The datatype VAR represents the names of the s-DFRS variables, besides auxiliary vari-
ables. The datatype TYPE represents the possible values that the variables can assume (their
types). Although DFRSs comprise only primitive types, the CSP specification defines a type
for each variable. This is done to minimise state-explosion problems, since the memory process
considers that each cell can assume any possible value of the variables’ type.

Although it is possible to represent floating-point numbers in CSP, this is out of the
scope of this work. Therefore, here we consider DFRS with only integer and boolean inputs and
outputs. However, this restriction does not prevent us from modelling discrete and continuous
time, since time is symbolically represented in CSP, as detailed later.

Considering the VM example, we have the variables and types shown in Code 4.1. Some
variables (lines 14–15) are auxiliary, and explained later. The names the system mode values

and the coffee machine output values represent the possible values the system mode and the
coffee machine output can assume, based on the enumerations identified for these variables (see
Section 3.1). In CSPM, –– defines a single-line comment.

Code 4.1: CSP – variables (vending machine)

1 −− the_sys tem_mode v a l u e s = {0 = cho ice , 1 = i d l e ,
2 −− 2 = p r e p a r i n g s t r o n g c o f f e e , 3 = p r e p a r i n g weak c o f f e e }
3 t h e _ s y s t e m _ m o d e _ v a l u e s = {0 , 1 , 2 , 3}
4
5 −− t h e _ c o f f e e _ m a c h i n e _ o u t p u t v a l u e s = {0 = s t r o n g , 1 = weak}
6 t h e _ c o f f e e _ m a c h i n e _ o u t p u t _ v a l u e s = {0 , 1}
7
8 d a t a t y p e TYPE = I_ the_sys t em_mode . t h e _ s y s t e m _ m o d e _ v a l u e s |
9 I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . t h e _ c o f f e e _ m a c h i n e _ o u t p u t _ v a l u e s |

10 B . Bool
11
12 d a t a t y p e VAR = t h e _ c o f f e e _ r e q u e s t _ b u t t o n | t h e _ c o i n _ s e n s o r |
13 the_sys tem_mode | t h e _ c o f f e e _ m a c h i n e _ o u t p u t |
14 o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n | o l d _ t h e _ c o i n _ s e n s o r |
15 f u n T r a n s | t h e _ r e q u e s t _ t i m e r | e t a 1 | e t a 2 | e t a 3 | e t a 4 | gc

[Source: author]

The memory is represented as an interleaving of memory cells (MCELL). Each cell
represents one variable, which is initialised according to the set binding. The set initialBinding

comprises pairs of variables and values, which are obtained from the initial state (s0) of s-DFRSs.
Code 4.2 shows part of this set for the VM example. The system mode is initially 1,

since this value represents the idle state within the enumeration associated with this variable.
The process SYSTEM MEMORY is the memory initialised considering this set.

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 87

Code 4.2: CSP – initial binding (vending machine)

1 i n i t i a l B i n d i n g = {
2 (t h e _ c o f f e e _ r e q u e s t _ b u t t o n , B . f a l s e) , (t h e _ c o i n _ s e n s o r , B . f a l s e) ,
3 (the_system_mode , I_ the_sys t em_mode . 1) ,
4 (t h e _ c o f f e e _ m a c h i n e _ o u t p u t , I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 0) ,
5 . . .
6 }

[Source: author]

The value stored in each cell can be read or updated by the channels get and set. There-
fore, the MCELL process offers an external choice between these two possibilities (read/write).
It is worth mentioning that it is only possible to write a value compatible with the type of the
variable stored in the corresponding memory position. This restriction is imposed by the tag and
range functions. These functions yield the type associated with a cell and its possible values,
respectively. For the VM, the definition of these functions are shown in Code 4.3.

Code 4.3: CSP – tag and range functions (vending machine)

1 r a n g e (I_ the_sys t em_mode) =
2 { I_ the_sys tem_mode . 0 , I_ the_sys t em_mode . 1 ,
3 I_ the_sys tem_mode . 2 , I_ the_sys t em_mode . 3 }
4
5 r a n g e (I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t) =
6 { I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 0 , I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 1 }
7
8 r a n g e (B) = {B . f a l s e , B . t r u e }
9

10 t a g (I_ the_sys t em_mode . _) = I_ the_sys t em_mode
11 t a g (I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . _) = I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t
12 t a g (B . _) = B

[Source: author]

Now, after explaining how communication via shared memory is represented in CSP, we
proceed with the explanation of how DFRSs are encoded as CSP processes. Let SPECIFICATION

be the CSP process that encodes the genTransition function, the process SYSTEM is defined as
the parallel composition of this process with SYSTEM MEMORY. This parallel composition
ensures that the get and set events performed by the specification process reads and updates the
memory process accordingly.

SYSTEM = SPECIFICATION ‖
{|get,set|}

SYSTEM MEMORY

As previously explained, an e-DFRS performs delay and function transitions. The for-
mer occurs when the system is in a stable state, whereas the latter when the state is not stable.
The process SPECIFICATION captures this behaviour. The process FUN performs events that

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 88

correspond to function transitions until a stable state is reached. When it happens, this pro-
cess finishes successfully and, then, SPECIFICATION behaves as delay transitions. The event
stableState is only a mark to indicate that a stable state was reached. Basically, time evolves
(represented by the DELAY process, explained later) and new inputs are received (process
INPUTS). Afterwards, it is checked whether a new stable state was reached; in CSP, we have
a recursive definition for SPECIFICATION. The first events of this process (set!timeri!B.false)
are related to how time is symbolically encoded CSP, and are explained later.

SPECIFICATION =

set!timer0!B.false→ ... → set!timern!B.false→
FUN ; stableState→ INPUTS ; DELAY ;

SPECIFICATION

Initially, the process FUN sets the auxiliary variable funTrans to false. This variable
is used to check whether the system has successfully engaged on function transition. This
analysis is performed inside the process FUN TRANS. After behaving as FUN TRANS, we
read the current value of funTrans, which is stored in the local variable engaged (note: B is a
type flag to denote that engaged keeps a boolean value). If events related to a function transition
were performed, this local variable will be true. In such a situation, the process behaves as FUN

recursively. Otherwise, FUN behaves as OUTPUTS.

FUN = set!funTrans!B.false→ FUN TRANS ; get!funTrans?B.engaged→
if engaged then FUN else OUTPUTS

The process OUTPUTS reads from the memory the current value (vi) of each system
output (outputi), and performs a compound event combining all the values produced as output
by the system at this moment. An analogy can be made between this event and the event created
in TIOTSs to represent the assignments of a function transition (see Section 3.4.2). Afterwards,
this process ends successfully, and, as explained before, events related to delay transitions occur.

OUTPUTS = get!output1?v1→ ... → get!outputj?vj→
output.output1.v1.outputj.vj→ SKIP

The process FUN TRANS reads from the memory the current value of the system vari-
ables (inputs, outputs, and auxiliary variables), and, then, behaves as SYSTEM BEHAVIOUR.
That is, the process that performs events related to function transitions. We note that the values
read from the memory are passed as arguments to this process.

FUN TRANS =

get!input1?v1→ ... → get!inputi?vi→

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 89

get!output1?vi+1→ ... → get!outputj?vi+j→
get!auxiliary1?vi+j+1→ ... → get!auxiliaryk?vi+j+k →
SYSTEM BEHAVIOUR(v1, ... vi, vi+1, ... vi+j, vi+j+1, ... vi+j+k)

The process SYSTEM BEHAVIOUR is defined as follows.

SYSTEM BEHAVIOUR(...) =

(static guard1 and eta1 and collateral effect1 &

set!funTrans!B.true→ assignments1→ REQ1→ SKIP)

2 ... 2

(static guardm and etam and collateral effectm &

set!funTrans!B.true→ assignmentsm→ REQm→ SKIP)

2

(not(guard1 and ... and guardm) & SKIP)

The SYSTEM BEHAVIOUR process has an external choice for each entry of each func-
tion of the s-DFRS (see Section 3.1.2.3). The static guard of the entry (static guardi) is trans-
lated to the CSP syntax, whereas a (boolean) flag is created for the timed guard (etai). Briefly,
this flag is true when the corresponding timed guard should evaluate to true, and false otherwise.
This flag is explained later, when presenting how time is symbolically encoded in CSP. Besides
these two expressions, there is a third one (collateral effecti), since according to the definition
of stable states (see the definition of is stable in Section 3.3.2) a function transition is only
performed when the static and timed guards evaluate to true, but the corresponding assignments
of the transition have a collateral effect (change the value of at least one variable and, thus, lead
to a new state).

To give a concrete example, we consider the requirement of the VM that states that the
system goes to the choice mode, and resets the request timer, when a coin is inserted while in
the state idle. As shown in Section 3.1.2.3, this requirement (REQ001) is formalised as follows.

{ ({ {(current(m),eq,n(1))}, {(current(s),eq,b(true))}, {(previous(s),eq,b(false))} }, /0,
{(m,n(0),(r,n(0))}) }

The static condition is a conjunction of three binary expressions. The first denotes that the
system mode is 1 (idle), the second that the current value of the sensor s is true, and the third
that the previous value of s was false (a coin was inserted). The time guard is empty, and when
the static guard evaluates to true, the system assigns 0 to m (go to the choice state), and assigns
0 to r (reset the request timer).

In CSP, this entry is represented as follows. Note that [] is the CSPM version of 2, and
that condition & P is a shortcut to if condition then P else STOP (ROSCOE, 2010).

Code 4.4: CSP – SYSTEM BEHAVIOUR fragment (vending machine)

1 SYSTEM_BEHAVIOUR (. . .) =

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 90

2 (n o t (v _ o l d _ t h e _ c o i n _ s e n s o r == t r u e) and
3 v _ t h e _ c o i n _ s e n s o r == t r u e and v_the_sys tem_mode == 1 and
4 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 0) &
5 s e t ! f u n T r a n s !B . t r u e −> r e s e t . t h e _ r e q u e s t _ t i m e r −>
6 s e t ! t h e _ r e q u e s t _ t i m e r !B . t r u e −>
7 s e t ! the_sys tem_mode ! I_ the_sys t em_mode . 0 −>
8 REQ001 −> SKIP)
9 [] . . .

[Source: author]

Lines 2–3 represent the static guard: the current value of the coin sensor is true, but
its previous value was false (note that v old ... is an auxiliary variable declared in the CSP to
store the previous value of the coin sensor), and the system mode is 1. As this requirement
does not have a timed guard, no flag is generated. The expression that captures the collateral
effect can be seen in line 4. The effect of this requirement is assigning 0 to the system mode,
besides resetting the request timer. Therefore, the corresponding function transition occurs if
the current system mode is not 0 or the request timer was not already reset. Here, as time is
symbolically represented, other auxiliary variable (v the request timer) is created to store that
this timer was already reset.

If the e-DFRS function transition occurs, in the CSP model we set funTrans to true to
record that a function transition was performed (see the previous explanation of how we encode
in CSP the idea of stable states), besides performing the transition collateral effect: setting the
request timer flag to true, and changing the system mode to 0. The events reset.the request timer

and REQ001 are marks used later. For instance, the event REQ001 allows us to generate test
scenarios that necessarily cover the particular requirement REQ001 (an interesting coverage
criteria).

Besides having external choices for every entry of each function of the s-DFRS, there is
an additional external choice (the last external choice of the process SYSTEM BEHAVIOUR).
This choice states that, if all other guards evaluate to false, no function transition is performed.
Therefore, the guard of this last choice is the negation of the conjunction of all other guards
(not(guard1 and ... and guardm); guardi denotes (static guardi and etai and collateral effecti).
If this condition is met, the variable funTrans is not set to true. In other words, we have a record
that no function transition was performed.

To conclude our explanation of how we represent DFRSs in CSP, we need to show
how delay transitions are represented. As explained in Section 3.3, a delay transition represents
model stimuli from the environment (inputs) that happen immediately after a delay. The process
INPUTS, mentioned before, represents these stimuli.

INPUTS =

c input1?new v1→ get!input1?current v1→
set!old input1!current v1→ set!input1!new v1→

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 91

...

c inputi?new vi→ get!inputi?current vi→
set!old inputi!current vi→ set!inputi!new vi→
input.input1.new v1.inputi.new vi→ SKIP

For every system input (inputi), first, we obtain a new value from its possible ones.
This action is performed reading a new value (new vi) from a channel declared for each input
(c inputi), which ranges over the possible values of each system input. Afterwards, we read the
current value of the input (current vi), and store this value in the auxiliary variable created to
keep the previous value of this input (old inputi). Then, we update the input value considering
the new obtained value (set!inputi!new vi). Finally, similarly to the process OUTPUTS, we per-
form a compound event communicating the values read as input by the system at this moment.
An analogy can be made between this event and the event created in TIOTSs to represent the
assignments of a delay transition (see Section 3.4.2).

A concrete example of this process can be seen in Code 4.5 for the VM example. Lines
2–5 obtains a new value for the coffee request button, copies the current value to the corre-
sponding old variable, and then updates the current value of this variable. Lines 6–9 are similar,
but regarding the coin sensor. Finally, lines 10–11 show the compound event mentioned in the
last paragraph.

Code 4.5: CSP – process INPUTS (vending machine)

1 INPUTS =
2 c _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ? n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
3 g e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
4 s e t ! o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n !B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
5 s e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n !B . n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
6 c _ t h e _ c o i n _ s e n s o r ? newV_the_co in_senso r −>
7 g e t ! t h e _ c o i n _ s e n s o r ?B . v _ t h e _ c o i n _ s e n s o r −>
8 s e t ! o l d _ t h e _ c o i n _ s e n s o r !B . v _ t h e _ c o i n _ s e n s o r −>
9 s e t ! t h e _ c o i n _ s e n s o r !B . newV_the_co in_senso r −>

10 i n p u t . t h e _ c o f f e e _ r e q u e s t _ b u t t o n . B . n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n
11 . t h e _ c o i n _ s e n s o r . B . newV_the_co in_senso r −> SKIP

[Source: author]

As already mentioned, we support both discrete and continuous time by capturing time
aspects in a CSP process symbolically. Concrete values are given later by an SMT solver, if
one desires to generate concrete test cases (see Section 5.2.5). To analyse the system behaviour
according to a discrete time model, we just need to configure the solver to work with integer
numbers. However, to generate concrete test cases within a continuous-time domain, the solver
needs to consider real numbers. The process DELAY captures this symbolic representation.

DELAY =

set!eta1!B.false→ ... → set!etam!B.false→

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 92

get!input1?v1→ ... → get!inputi?vi→
get!output1?vi+1→ ... → get!outputj?vi+j→
get!auxiliary1?vi+j+1→ ... → get!auxiliaryk?vi+j+k →
(

(static guard1 & set!eta1B.true→ SKIP)

2 ... 2

(static guardm & set!etamB.true→ SKIP)

2

(not(static guard1 and ... and static guardm) & SKIP)

)

; get!eta1?v1→ ... → get!etam?vm→
delayChannel.eta1.v1.etam.etam→ SKIP

For each timed guard we introduce an auxiliary variable named etai. Initially, this pro-
cess sets false to all etai variables and reads from the memory the value of system variables
(inputs, outputs and other auxiliary variables, such as variables keeping old values). After-
wards, this process analyses if the system is in a state where a static guard (static guardi) is
true and there is a corresponding timed guard. If this is the case, it means that the amount
of elapsed time influences if this transition is taken or not. Due to the underlying delayable
assumption (see Section 3.3.2), we say that some amount of time has elapsed that makes this
guard true. Then we set to true the corresponding etai variable. Therefore, when the pro-
cess SYSTEM BEHAVIOUR evaluates this condition, as the flag will be true, the corresponding
statements will be performed.

The concrete amount of elapsed time is determined later by the solver, when generating
concrete test cases (Section 5.2.5). However, this amount respects the temporal constraints
associated with etai (Section 4.4 details how this is achieved by the solver). Therefore, we keep
a traceability between the eta variables and timed guards. For instance, Code 4.6 shows this
mapping for the VM example (embedded as comments). We note that gc stands for the system
global clock, and that the timed guards are shown in prefix notation (a standard format for SMT
solvers).

Code 4.6: Traceability between eta variables and timed guards (vending machine)

1 −− e t a 1 |−> (> (− gc t h e _ r e q u e s t _ t i m e r) 3 0 . 0)
2 −− e t a 2 |−> (AND (<= (− gc t h e _ r e q u e s t _ t i m e r) 5 0 . 0)
3 (>= (− gc t h e _ r e q u e s t _ t i m e r) 3 0 . 0))
4 −− e t a 3 |−> (<= (− gc t h e _ r e q u e s t _ t i m e r) 3 0 . 0)
5 −− e t a 4 |−> (AND (<= (− gc t h e _ r e q u e s t _ t i m e r) 3 0 . 0)
6 (>= (− gc t h e _ r e q u e s t _ t i m e r) 1 0 . 0))

[Source: author]

If the system is in a state where the amount of elapsed time has no influence (the nega-
tion of the conjunction of all static guards), there is no relevant time constraint, and no eta

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 93

variable is set to true. This behaviour is captured by the last external choice.
Finally, after reading the updated value of the eta variables, similarly to INPUTS and

OUTPUTS, the DELAY process performs a compound event considering the value of these
variables. We leave the explanation of the need of this compound event to when we explain our
CSP timed input-output conformance relation (Section 4.4).

Code 4.7 shows a fragment of the DELAY process for the VM example.

Code 4.7: CSP – fragment of DELAY (vending machine)

1 DELAY =
2 s e t ! e t a 4 !B . f a l s e −> s e t ! e t a 3 !B . f a l s e −>
3 s e t ! e t a 2 !B . f a l s e −> s e t ! e t a 1 !B . f a l s e −>
4 . . . −>
5 (
6 . . .
7 []
8 ((v_the_sys tem_mode == 2) & s e t ! e t a 2 !B . t r u e −> SKIP)
9 []

10 . . .
11 []
12 ((v_the_sys tem_mode == 3) & s e t ! e t a 4 !B . t r u e −> SKIP)
13 []
14 (n o t (. . .) & SKIP)
15) ; . . .
16 d e l a y . e t a 1 . v _ e t a 1 . e t a 2 . v _ e t a 2 . e t a 3 . v _ e t a 3 . e t a 4 . v _ e t a 4 −>
17 SKIP

[Source: author]

The external choices highlighted (lines 8, 12) correspond to the situations when the sys-
tem produces strong (the system mode is 2) and weak (the system state is 3) coffee, respectively.
In the former situation, the eta2 variable is set to true (see in Code 4.6 that it is mapped to the
time required for producing strong coffee – from 30.0 to 50.0 time units), whereas in the latter
situation, the eta4 variable is set to true (see in Code 4.6 that it is mapped to the time required
for producing weak coffee – from 10.0 to 30.0 time units). Appendix C shows the complete
CSP specification for the VM example. In the following sections, we present the algorithms
that generate a CSP specification from DFRS models. Afterwards, we discuss assumptions of
this representation.

4.2.2 Creating memory representation

Algorithm 7 generates two CSP processes (MCELL and MEMORY – lines 5–10) to
simulate the memory where the value of the system inputs and outputs are stored. Before
generating these processes, some auxiliary code is also generated (lines 1–3). This code is also
part of the CSP memory definition (lines 1–4). In the end, a CSP process is created considering
an instance of the memory based on the initial binding (line 5–10).

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 94

Algorithm 7: generateMEMORY – generates process SYSTEM MEMORY
input : dfrs
output : memoryCSP,etaBinding,varList

1 valuesCSP = generateValues(dfrs);
2 typesCSP = generateTypes(dfrs);
3 variablesCSP,bindingCSP,etaBinding,varList = generateVarBinding(dfrs);
4 memoryCSP = valuesCSP + typesCSP + variablesCSP + bindingCSP;
5 memoryCSP = memoryCSP +
6 “channel get, set : VAR.TYPE
7 MCELL(var,val) = get!var!val -> MCELL(var,val)
8 [] set!var?val’ : range(tag(val)) -> MCELL(var,val’)
9 MEMORY(binding) = ||| (var,val) : binding @ MCELL(var,val)

10 SYSTEM MEMORY = MEMORY(initialBinding)”;

[Source: author]

Algorithm 8 generates a set of possible values concerning the system inputs and out-
puts that are used later to define types. Besides that, it also generates the code for the following
functions in CSP: range and tag. The former yields a set of possible values with a tag preceding
each value, and the latter yields a tag for each type (boolean or integer types that consider the
previous identified set of possible values instead of the full range of integer numbers – it is nec-
essary to minimise state explosion problems). We note here that, although the formal definition
of DFRSs does not have this information of possible values of variables, the NAT2TEST tool
(see Chapter 5) keeps this information, besides allowing the user to edit it (adding new possible
values).

Line 1 (Algorithm 8) initialises the return variable. A different set of possible values is
generated for each input and output that are not boolean (lines 2–5). As boolean is a pre-defined
type in CSP, we do not need to create a set to enumerate its possible values. Currently, we do
not support float numbers in CSP (lines 17–18). Therefore, we just define the functions range

and tag concerning boolean values (lines 19–20).
If there is an input or output that is an integer (line 5), we create a set that comprises the

list of possible values of this variable (lines 6–13). The name of this set is the variable name
appended to I , which denotes it is an integer (line 6). Then, we define the functions range and
tag concerning this set (lines 14–16). Regarding the VM, the output produced by the execution
of Algorithm 8 is the first six lines shown in Code 4.1, besides the definitions presented in
Code 4.3.

Algorithm 9 defines a new datatype TYPE that comprises integer types considering the
previously identified set of possible values instead of the full range of integer numbers (lines 6–
10); as well as a boolean type (lines 11–12). It is worth emphasising that each type is identified
by its respective tag: B for booleans or I †, where † represents the name of one specific variable.
For the VM, the output of this algorithm are the lines 8–10 of Code 4.1.

Algorithm 10 generates the list of variables that are going to be stored in the memory
(system inputs and outputs, besides auxiliary variables), an initial binding to these variables, and

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 95

Algorithm 8: generateValues – generates a list of possible values
input : dfrs
output : valuesCSP

1 valuesCSP = new String();
2 for var ∈ dfrs.I,dfrs.O do
3 if var.type = boolean then
4 continue;

5 else if input.type = integer then
6 tagName =“I ” + var.name;
7 listOfValues = null;
8 rangeOfValues = null;
9 for value ∈ input.possibleValuesList do

10 if listOfValues = null then listOfValues = value;
11 else listOfValues = listOfValues + “, ” + value;

12 if rangeOfValues = null then rangeOfValues = tagName + “.” + value;
13 else rangeOfValues = rangeOfValues + “, ” + tagName + “.” + value;

14 valuesCSP = valuesCSP + var.name + “ values = {” + listOfValues + “}”;
15 valuesCSP = valuesCSP + “range(” + tagName + “) = {” + rangeOfValues + “}”;
16 valuesCSP = valuesCSP + “tag(” + tagName + “.) = ” + tagName;

17 else
18 throw Exception(“float numbers are not yet supported in the CSP level”);

19 valuesCSP = valuesCSP + “range(B) = {B.false, B.true}”;
20 valuesCSP = valuesCSP + “tag(B.) = B”;

[Source: author]

Algorithm 9: generateTypes – generates CSP types
input : dfrs
output : typesCSP

1 typesCSP = null;
2 for var ∈ dfrs.I,dfrs.O do
3 if var.type = boolean then
4 continue;

5 else
6 tagName =“I ” + var.name;
7 if typesCSP = null then
8 typesCSP =“datatype TYPE = ” + tagName + “.” + var.name + “ values”;

9 else
10 typesCSP = typesCSP + “ | ” + tagName + “.” + var.name + “ values”;

11 if typesCSP = null then typesCSP =“datatype TYPE = B.Bool” ;
12 else typesCSP = typesCSP + “ | B.Bool” ;

[Source: author]

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 96

a mapping between the DFRS timed guards and the eta variables, which are created to represent
these guards symbolically. This mapping will be used later. A list of the variables contained in
the memory is also a return of this algorithm. This list is used to help the implementation of
other algorithms, as explained later.

Lines 1–3 adds to the list of variables some auxiliary variables. Lines 4–5 adds to this
list the system inputs, outputs, and timers. Lines 6–17 iterate over the list of functions (line 7)
and the entries (static guard × timed guard→ list of assignments) of each function (line 8) to
perform two tasks.

The first task (lines 9–13) concerns adding to the list of variables a new eta variable for
each timed guard. It also adds to the etaBinding a mapping between the created eta variabled
and the corresponding guard. The second task (lines 14–17) is related to use of prev in the
guards. When it happens, we create an old variable for each variable associated with a prev.

Lines (18–34) iterate over the list of variables identified, and defines an initial binding
for them: 0 for integers and false for boolean variables. These values are preceded by their
corresponding tag. In the end (lines 35–36), the CSP code related to the variables and the initial
binding is created. For the VM, this is code shown in Code 4.1 (lines 12–15) and Code 4.2.
Now, after creating the memory representation in CSP, we proceed with the explanation of how
function and delay transitions of DFRSs are encoded in CSP.

4.2.3 Encoding function transitions

As explained in the beginning of Section 4.2, function transitions are represented by
the CSP process FUN. It performs events that correspond to function transitions until a stable
state is reached. Algorithm 11 yields the body of the FUN process, as well as list of local
variables passed as arguments to SYSTEM BEHAVIOUR. This is used to help the generation of
the process SYSTEM BEHAVIOUR.

Lines 1–3 generate the code of process FUN, besides initialising the variable localVarList.
In what follows, lines 4–14 create the code of the process FUN TRANS. First, the value of the
variables are read from the memory (lines 5–9) and stored in local variables (preceded by v).
The value of the variables gc and funTrans are not relevant here and, thus, are not considered.
Then, the process FUN TRANS behaves as SYSTEM BEHAVIOUR passing the created local
variables as arguments.

Algorithm 12 generates the process SYSTEM BEHAVIOUR. Lines 1–2 create auxiliary
variables for this algorithm. Lines 3–7 create the signature of this process considering the list
of local variables that are passed as argument to it.

Then, for each function (line 8), the algorithm generates an external choice (lines 9–
15) for each entry (staticGuard × timedGuard → actionList). This choice is guarded by the
following condition (guard): the static guard (line 14), the eta variable related to the timed guard
(lines 16–19) are both true (line 20), besides being true that the assignments contained in the

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 97

Algorithm 10: generateVarBinding – generates CSP variables and initial binding
input : dfrs
output : variablesCSP,bindingCSP,etaBinding,varList

1 varListiableList = new List();
2 varList.add(“gc”);
3 varList.add(“funTrans”);
4 for var ∈ dfrs.I,dfrs.O,dfrs.T do
5 if varList.find(var.name) = null then varList.add(var.name);

6 timedGuardCounter = 1;
7 for f ∈ dfrs.F do
8 for (staticGuard, timedGuard,actionList) ∈ f do
9 if timedGuard 6= null then

10 etaName =“eta” + timedGuardCounter;
11 varList.add(etaName);
12 etaBinding.put(timedGuard,etaName);
13 timedGuardCounter = timedGuardCounter+1;

14 list = {varName | staticGuard.contains(“prev(” + varName + “)”)};
15 for varName ∈ list do
16 if varList.find(varName) = null then
17 varList.add(“old ” + varName);

18 variables = new String();
19 binding =“(funTrans, B.false)”;
20 for varName ∈ varList do
21 if varList.getIndex(varName) 6= 0 then variables = variables + “ | ” ;
22 variables = variables+ varName;

23 binding = binding + “, ”;
24 auxName = varName;
25 if auxName.startsWith(“old ”) then auxName = auxName.remove(“old ”) ;

26 initialValue = null;
27 if auxName.startsWith(“eta”) ∨ dfrs.T.find(auxName)! = null then
28 initialValue =“B.false”;

29 else
30 var = dfrs.I.find(auxName);
31 if var = null then var = dfrs.O.find(auxName);
32 if var.type = integer then initialValue =“I ” + input.name + “.0” ;
33 else initialValue =“B.false” ;

34 binding = binding + “(” + varName + “, ” + initialValue + “)”;

35 variablesCSP =“datatype VAR = ” + + variables;
36 bindingCSP =“initialBinding = {” + binding + “}”;

[Source: author]

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 98

Algorithm 11: generateFUN – generates processes FUN and FUN TRANS
input : dfrs,varList
output : funCSP, localVarList

1 funCSP = “set!funTrans!B.false -> FUN TRANS ; get!funTrans?B.engaged”;
2 funCSP = funCSP + “ -> if engaged then FUN else OUTPUTS”;
3 localVarList = new List();

4 funCSP = funCSP + “FUN TRANS =”;
5 for var ∈ varList ∧!var.name.equal(“gc”) ∧!var.name.equal(“funTrans”) do
6 funCSP = funCSP + “get! + var.name;
7 funCSP = funCSP + “?” findTag(var,dfrs) + “v ” + var.name;
8 funCSP = funCSP + “ -> ”;
9 localVarList.add(“v ” + var.name);

10 funCSP = funCSP + “SYSTEM BEHAVIOUR(”;
11 for var ∈ localVarList do
12 if localVarListist.indexOf (var)! = 0 then funCSP = funCSP + “, ”;
13 funCSP = funCSP + var;

14 funCSP = funCSP + “)”;

[Source: author]

action list have some collateral effect (line 15). If this condition is fulfilled, the CSP auxiliary
variable is set to true (line 23), the actions in actionList (lines 24–36) are performed, and then
the CSP process performs an event to indicate which requirement is originally associated to this
behaviour (lines 37–39). This event is used later to select test scenarios (see Section 4.5). Line
41 generates the CSP code that declare these events.

It is worth noting three details. When the assignment in the action list comprises a vari-
able that has an old counterpart, before updating its value, we copy to its old version (old)
its current value (lines 32–34). Second, we group in combinedNegation the conjunction of the
negation of each CSP guard. This is done to create a last external choice, when no associated
actions are performed (line 40). Third, concerning actions related to timers, that is reset op-
erations, we generate a communication over the channel reset (lines 26–28), since time is just
symbolically modelled in CSP. Line 42 generates the CSP code that declares these reset events.
Concerning the VM example, Code 4.4 shows a fragment of the CSP process generated by this
algorithm.

Algorithm 12 relies upon some auxiliary functions: findTag, changeFormat, genCollat-

eralGuard, genReqEvents, getResetEvents. The definition of these functions are not presented
here as they are straightforward: findTag yields the tag (I or B) associated to a given variable,
changeFormat changes the format of conditional expression from the DFRS notation to CSP,
genCollateralGuard generates a conditional expression that ensures that the list of actions has a
collateral effect (i.e., the value of at least one variable is going to be changed), genReqEvents and
genResetEvents generate the CSP code that declares the requirement and reset-related events,
respectively.

To finish our encoding of s-DFRSs as CSP, Algorithm 13 generates the code of the pro-

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 99

Algorithm 12: generateBEHAVIOUR – generates process SYSTEM BEHAVIOUR
input : dfrs, localVarList,etaBinding
output : behaviourCSP

1 reqList,resetList = new List();
2 behaviourCSP = new String();
3 behaviourCSP =“SYSTEM BEHAVIOUR(”;
4 for var ∈ localVarList do
5 if localVarList.indexOf (var)! = 0 then behaviourCSP = behaviourCSP + “, ”;
6 behaviourCSP = behaviourCSP + var;

7 behaviourCSP = behaviourCSP + “) =”;

8 for f ∈ dfrs.F do
9 firstCondition = true;

10 combinedNegation = null;
11 for (staticGuard, timedGuard,actionList) ∈ f do
12 if firstCondition then firstCondition = false;
13 else behaviourCSP = behaviourCSP + “[]”;
14 guard = changeFormat(staticGuard);
15 collateral = genCollateralGuard(actionList);
16 if timedGuard 6= null then
17 etaName = etaBinding.find(timedGuard);
18 etaName =“v ” + etaName;
19 guard = guard + “ and ” + etaName;

20 guard = guard + “ and ” + collateral;
21 if combinedNegation = null then combinedNegation =“not(” + guard + “)” ;
22 else combinedNegation = combinedNegation + “and not(” + guard + “)” ;
23 behaviourCSP = behaviourCSP + “(” + guard + “ & set!funTrans!B.true -> ”;
24 for action ∈ actionList do
25 varName = action.before(“:=”);
26 if dfrs.T.find(varName) 6= null then
27 behaviourCSP = behaviourCSP + “reset.” + varName + “ -> ”;
28 resetList.add(varName);

29 else
30 value = action.after(“:=”);
31 tagName = findTagName(varName,dfrs);

32 if localVarList.indexOf (“v old ” + varName)! = 0 then
33 behaviourCSP = behaviourCSP + “set!old ” + varName + “!”
34 + tagName + “.v ” + varName + “ -> ”;

35 behaviourCSP = behaviourCSP + “set!”
36 + varName + “!” + tagName + “.” + value + “ -> ”;

37 reqID = f .getRequirementID((staticGuard, timedGuard,actionList));
38 reqList.add(reqID);
39 behaviourCSP = behaviourCSP + reqID + “ -> SKIP)”;

40 behaviourCSP = behaviourCSP + “[] (” + combinedNegation + “ & SKIP)”;

41 behaviourCSP = behaviourCSP + genReqEvents(reqList);
42 behaviourCSP = behaviourCSP + genResetEvents(resetList);

[Source: author]

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 100

cess OUTPUTS, which performs an output event when a stable state is reached. After declaring
the channel output (lines 1–4), the value of the output variables are read from the memory and
kept on local variables (lines 6–7). Then, this process performs the output event (lines 8–10).

Algorithm 13: generateOUTPUTS – generates process OUTPUTS
input : dfrs
output : outputsCSP

1 outputsCSP =“channel output : ”;
2 for var ∈ dfrs.O do
3 if dfrs.O.indexOf (var)! = 0 then outputsCSP = outputsCSP + “.”;
4 outputsCSP = outputsCSP + “VAR.TYPE”;

5 outputsCSP = outputsCSP + “OUTPUTS =”;

6 for var ∈ dfrs.O do
7 outputsCSP = outputsCSP + “get!” + var.name + “?v ” + var.name + “ ->′′;

8 outputsCSP = outputsCSP + “output”;
9 for var ∈ dfrs.O do outputsCSP = outputsCSP + “.” + var.name + “v ” + var.name ;

10 outputsCSP = outputsCSP + “ -> SKIP”;

[Source: author]

4.2.4 Encoding delay transitions

As explained in the beginning of Section 4.2, delay transitions are represented by the
CSP processes INPUTS and DELAY . To generate these two processes we rely on two algo-
rithms (generateINPUTS and generateDELAY) whose body is similar to the ones described in
Algorithm 13 and in Algorithm 12. Due to the similarity, we omit them here, but provide only
an explanation of the differences

The differences with respect to the INPUTS are described in what follows. Instead of
declaring the channel output, it creates the channel input, considering the number of system in-
puts. This channel is used to communicate the new values received as input. Therefore, before
performing the communications over the channel input, we generate the code that simulates the
receiving of new input values: an additional channel is created for each system input, consider-
ing its list of possible values, and a value is read from this channel. Before saving the new read
value into the memory, we copy the current value of the system inputs to its old counterparts, if
they exist. Code 4.5 shows the code generated by generateINPUTS for the VM example.

The generation of DELAY starts by generating the code that sets all eta variables to false.
Then, as in SYSTEM BEAHAVIOUR, we have external choices created after the entries of the
DFRS functions. The difference here is that the guard of each external choice considers only
the static guard. Moreover, the body of each choice is not derived from the list of actions, but it
sets the eta variable mapped to timed guard associated with the considered static guard. Finally,
after reading the updated values of the eta variables, it communicates over the channel delay

these values. Therefore, it also declares this channel delay. The output of generateDELAY with
respect to the VM example is partially shown in Code 4.7.

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 101

4.2.5 Creating a CSP specification

To finish the generation of the CSP representation of s-DFRSs, Algorithm 14 generates
the definition of SPECIFICATION: a process that sets to false the auxiliary variables created
after the DFRS timers (lines 1–3), and, then, behaves as FUN, followed by DELAY and INPUTS

when a stable state is reached. Afterwards, it behaves recursively as SPECIFICATION (lines
4–5). Finally, this algorithm generates the code of the process SYSTEM (lines 6–7), which
composes SPECIFICATION in synchronous parallelism with the SYSTEM MEMORY .

Algorithm 14: generateSPEC – generates process SPECIFICATION
input : dfrs
output : specificationCSP

1 specificationCSP =“SPECIFICATION = ”;
2 for var ∈ dfrs.T do
3 specificationCSP = specificationCSP + “set!” + var.name + “B.false ->”;

4 specificationCSP = specificationCSP + “ FUN ; stableState ->” +
5 “INPUTS ; DELAY ; SPECIFICATION”;
6 specificationCSP = specificationCSP + “SYSTEM = SPECIFICATION”
7 “[| {| get, set |} |] SYSTEM MEMORY”;

[Source: author]

Algorithm 15: generateCSP – creates a CSP specification
input : dfrs
output : csp

1 memoryCSP,etaBinding,varList = generateMEMORY(dfrs);
2 funCSP, localVarList = generateSystemBehaviours(dfrs,varList);
3 behaviourCSP = generateBEHAVIOUR(dfrs, localVarList,etaBinding);
4 outputsCSP = generateOUTPUTS(dfrs);
5 inputsCSP = generateINPUTS(dfrs,varList);
6 delayCSP = generateDELAY(dfrs,etaBinding);
7 specificationCSP = generateSPEC(dfrs);

8 csp = memoryCSP + funCSP + behaviourCSP + outputsCSP +
9 inputsCSP + delayCSP + specificationCSP;

[Source: author]

Using the previously defined functions, Algorithm 15 creates a CSP specification to
simulate the corresponding DFRS.

4.2.6 Assumptions of CSP representation

To represent DFRSs as CSP processes, some premises shall hold with respect to the
DFRS models. They are necessary due to our symbolic representation of time. Now, we present
and discuss them.

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 102

In non-stable states, considering the entries of the s-DFRS functions whose static guard
is true, only one distinct timed guard can be true (Definition 4.2.1). To understand this restric-
tion, remember that we use eta variables to represent that a particular timed guard was satisfied
by a delay, and that only one eta variable can be set to true per execution of the CSP process
DELAY . Therefore, if a delay could satisfy more than one distinct timed guard, our CSP process
would not model properly the DFRS, since only one eta variable would be set to true.

Definition 4.2.1. No more than one timed guard evaluates to true: let sdfrs be an s-DFRS,
and edfrs the e-DFRS obtained from sdfrs by the application of expandedDFRS, the following
property shall hold when using CSP to represent DFRS models:

∀s : edfrs.S | (s,edfrs.I∪ edfrs.O,edfrs.T,sdfrs.F) /∈ is stable •
#{f : sdfrs.F ; sG, tG : EXP ; asgmts : ASGMTS | (sG, tG,asgmts) ∈ f ∧

(s,sG,edfrs.I∪ edfrs.O,edfrs.T) ∈ static guards true ∧
(s, tG,edfrs.T) ∈ timed guards true • tG}= 1

A second premise is that the DFRS comprises only satisfiable timed guards (Defini-
tion 4.2.2). Being more precise, for all stable states where a given static guard is true, but its
timed guard is false, there shall exist some delay that satisfies this timed guard. If this property
does not hold, in the CSP, we would set true to an eta variable, but in practice the constraint
associated with this variable is not satisfiable. Therefore, our CSP representation would not be
an appropriate representation of the DFRS.

Definition 4.2.2. Satisfiable timed guards: let sdfrs be an s-DFRS, and edfrs the e-DFRS ob-
tained from sdfrs by the application of expandedDFRS, the following property shall hold when
using CSP to represent DFRS models:

∀s : edfrs.S ; f : sdfrs.F ; sG, tG : EXP ; asgmts : ASGMTS | (sG, tG,asgmts) ∈ f ∧
(s,edfrs.I∪ edfrs.O,edfrs.T,sdfrs.F) ∈ is stable ∧
(s,sG,edfrs.I∪ edfrs.O,edfrs.T) ∈ static guards true ∧
(s, tG,edfrs.T) /∈ timed guards true • ∃d : DELAY •

d ∈ enablingDelays(s,edfrs.I∪ edfrs.O,edfrs.T,(sG, tG,asgmts))

Other restriction (Definition 4.2.3) is related to the dependence of inputs with respect to
satisfiable timed guards. Let s be a stable state, (sG, tG,asgmts) an entry of a function f , such
that sG is true, tG is false, and there is a maximum delay (upper bound) that enables tG from
s, there must not exist a set of input assignments (asgmt2) that disables sG. If this property
does not hold, our CSP representation would not be appropriate as it would allow the following
situation: the system is in a state such that sG is true, the CSP specification behaves as INPUTS,
sG is disabled, when performing DELAY , since sG is false now, the corresponding eta is not
set to true and, thus, the CSP specification has modelled a situation where a set of inputs might

4.2. PHASE IV – ENCODING DFRS MODELS AS CSP PROCESSES 103

happen unconstrained with respect to time, which is not the case (remember the upper bound).

Definition 4.2.3. No dependence of inputs for satisfiable timed guards: let sdfrs be an s-DFRS,
and edfrs the e-DFRS obtained from sdfrs by the application of expandedDFRS, the following
property shall hold when using CSP to represent DFRS models:

∀s : edfrs.S ; f : sdfrs.F ; sG, tG : EXP ; asgmts : ASGMTS | (sG, tG,asgmts) ∈ f ∧
(s,edfrs.I∪ edfrs.O,edfrs.T,sdfrs.F) ∈ is stable ∧
(s,sG,edfrs.I∪ edfrs.O,edfrs.T) ∈ static guards true ∧
(s, tG,edfrs.T) /∈ timed guards true ∧
maxDelays(s,edfrs.I∪ edfrs.O,edfrs.T,(sG, tG,asgmts)) 6= /0 ∧
(∃d : DELAY • d ∈ enablingDelays(s,edfrs.I∪ edfrs.O,edfrs.T,(sG, tG,asgmts))) •
¬ (∃asgmts2 : ASGMTS ; s2 : STATE • domasgmts2 = domedfrs.I ∧

(∀asgmt : asgmts2 • asgmt.2 ∈ values(edfrs.I(asgmt.1))) ∧
s2 = nextState(s,edfrs.T,asgmts2) ∧
(s2,sG,edfrs.I∪ edfrs.O,edfrs.T) /∈ static guards true)

Finally, another restriction is the one presented in Definition 4.2.4. Briefly, from a non-
stable state (s), it is not possible to reach other non-stable state (s2) performing only function
transitions such that a static guard that was false in s becomes true in s2, considering that in s

the timed guard associated to this static guard was already true.

Definition 4.2.4. No interdependence of function transitions and timed guards: let sdfrs be an
s-DFRS, and edfrs the e-DFRS obtained from sdfrs by the application of expandedDFRS, the
following property shall hold when using CSP to represent DFRS models:

∀s : edfrs.S ; f : edfrs.F | (s,edfrs.I∪ edfrs.O,edfrs.T,sdfrs.F) /∈ is stable •
¬ (∃s2 : edfrs.S ; sG, tG : EXP ; asgmts : ASGMTS • (sG, tG,asgmts) ∈ f ∧

(s,sG,edfrs.I∪ edfrs.O,edfrs.T) /∈ static guards true ∧
(s, tG,edfrs.T) ∈ timed guards true ∧
(s2,sG,edfrs.I∪ edfrs.O,edfrs.T) ∈ static guards true ∧
s2 ∈ funReachable(s) ∧ s2 6= s)

Our CSP representation is also not capable of modelling such a behaviour, since in s, as
sG is false, the eta variable associated with tG would not be set to true, and when sG becomes
true after a sequence of function transitions, the corresponding asgmts would not be performed
since the eta variable was not set to true previously.

These properties, similarly to the ones presented in Section 3.3.3, can be dynamically
verified during the creation of an e-DFRS via bounded model checking: while the model is
created, we check whether the desired properties are met. Eligible criteria for this bound are
the number of delay (function) transitions performed, and an upper bound for the system global

4.3. CSP-TIO PROCESSES 104

clock. As discussed in Section 4.4.2, bounds such as these ones are commonly used when
analysing properties of timed reactive systems.

4.3 CSP-TIO processes

Hereafter we develop out testing theory based on CSP. This theory is an extension of
the one presented in (NOGUEIRA; SAMPAIO; MOTA, 2014) considering particularities of our
models (data-flow reactive systems), and particularly handling time. The work in (NOGUEIRA;
SAMPAIO; MOTA, 2014) defines a CSP I/O process as a triple (P,αI,αO) composed by a CSP
process (P), and its input (αI) and its output (αO) events, such that αI∩αO = /0. Here, we extend
this notion to define CSP timed input-output processes as shown below.

Definition 4.3.1. CSP-TIO processes: a CSP-TIO process is a tuple (P,αI,αO,αT ,αR,αA),
where P is a CSP process, αI and αO represent input and output events, respectively, αT and αR

represent time evolving and timer reset events, and αA comprises auxiliary events used during
test-scenario generation and test selection. These sets are disjoint (disjoint〈αI,αO,αT ,αR,αA〉)
and, together, they define the alphabet of the CSP-TIO process (α =

⋃
{αI,αO,αT ,αR,αA}).

A CSP-TIO process also has a particular property: its traces present an alternation of
input, time and output events. To define this property, consider the function iotAlt (Defini-
tion 4.3.2)

Definition 4.3.2. Function iotAlt: let TIO be a CSP-TIO process, t a trace, pos ∈ {0,1,2}, head

and tail functions that yield the head and tail of non-empty sequences. The function iotAlt is
defined as follows.

iotAlt(TIO, t, pos) =
if t = 〈〉 then true
else if (pos = 0 ∧ head(t) ∈ αTIOO) ∨

(pos = 1 ∧ head(t) ∈ αTIOI) ∨
(pos = 2 ∧ head(t) ∈ αTIOT) then

iotAlt(TIO, tail(t), (pos+1)%3)
else false

The rationale for requiring this property (formally defined in Definition 4.3.3) is the
reasonable expectation that a data-flow reactive system, as a class of embedded systems whose
inputs and outputs are always available as signals, exhibit an alternating sequence of: receiving
new inputs (input events), after some delay (time events), and then producing new values for its
output signals (output events). Initially, we have the initial values communicated by its output
signals considering the initial values of the input signals. We note that in Definition 4.3.3, the
property holds if the trace t belongs to T (TIOP \ (αTIOR ∪αTIOA)), that is, if we ignore (hide)
the reset and auxiliary events of the CSP-TIO process.

4.3. CSP-TIO PROCESSES 105

Definition 4.3.3. Alternation of input, time and output events: let TIO be a CSP-TIO process,
and iotAlt as presented in Definition 4.3.2; then ∀ t : T (TIOP \ (αTIOR∪αTIOA)) • iotAlt(TIO, t,0).

Furthermore, we also assume that a CSP-TIO process is a non-terminating process, and
it is not used to represent systems with time lock (a state from which a time event can no longer
happen). These assumptions are reasonable, since we consider in this work embedded systems
whose inputs and outputs are always available, as signals. These assumptions in conjunction
with Definition 4.3.3 implies that a CSP-TIO process is always able to produce some output
after each input.

To give a concrete example, consider the CSP-TIO process for the VM (VM CSP-TIO)
shown in Code 4.8. First, we hide from SYSTEM its internal events (lines 1–2). As internal
events we consider the communications over the channels get and set (used to synchronise with
the MEMORY process and, thus, simulate communication via shared memory); and channels
that comprise the set of possible values of input variables.

Code 4.8: CSP – CSP-TIO process (vending machine)

1 S _ i n t e r n a l = { | ge t , s e t ,
2 c _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n , c _ t h e _ c o i n _ s e n s o r | }
3
4 S = SYSTEM \ S _ i n t e r n a l
5
6 S _ i n p u t s = { | i n p u t | }
7 S _ o u t p u t s = { | o u t p u t | }
8 S_t ime = { | d e l a y | }
9 S _ r e s e t = { r e s e t . t h e _ r e q u e s t _ t i m e r }

10 S _ a u x i l i a r y = {REQ003 , REQ005 , REQ001 , REQ002 , REQ004 , s t a b l e S t a t e }
11
12 S _ a l p h a b e t = un ion (S _ i n p u t s , un ion (S _ o u t p u t s ,
13 un ion (S_time , un ion (S _ r e s e t , S _ a u x i l i a r y))))
14
15 VM_CSP−TIO = (S , S _ i n p u t s , S _ o u t p u t s , S_time , S _ r e s e t , S _ a u x i l i a r y)

[Source: author]

The inputs, outputs and time events are defined as the events communicated over the
channels input, output, and delay, respectively (lines 6–8). In the VM, the event used to denote
reset of timers is reset.the request timer and, thus, S reset is the singleton set composed by
this event (line 9). The first five events of S auxiliary are used to select test scenarios guided
by a requirement-coverage criteria (see Section 4.5). The last event (stableState) is used during
generation of test scenarios, as explained later.

The property defined in Definition 4.3.3 holds for VM CSP-TIO as a consequence of the
definition of the process SPECIFICATION. First, it behaves as FUN, which eventually behaves
as OUTPUTS and, thus, produces an output event, then behaves as INPUTS (generating an input
event), and finally as DELAY (generating a time event). Afterwards, SPECIFICATION behaves
recursively and, thus, alternating again within this sequence of output, input and time events.

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 106

4.4 A CSP timed input-output conformance relation

As we use the process algebra CSP, a natural choice for a conformance relation would
be one of the traditional CSP refinement notions (traces, failures or failures-divergences). How-
ever, we consider a different approach influenced by particular characteristics of the kind of
systems we are dealing with.

First, the inputs and outputs of a data-flow reactive system are always available, as
signals. Second, the systems considered have a clear separation between inputs and outputs.
Finally, as defined by Definition 4.3.3, there is a particular alternation of input, time and output
events. As the relation ioco (TRETMANS, 1999) is a traditional relation that also segregates
input and output events, besides having also influenced the definition of timed relations, we
consider it as a basis for our work. In Section 4.4.1, we present and discuss our CSP timed
input-output conformance relation: csptio. Then, in Section 4.4.2, we show how conformance
verification with respect to csptio is mechanised.

4.4.1 Definition of csptio conformance

The relation csptio can be seen as a timed extension of cspio (NOGUEIRA; SAMPAIO;
MOTA, 2014), which is inspired by ioco itself and is formalised in terms of CSP constructs and
traces refinement. In contrast to cspio, however, we can reason about time (discrete and contin-
uous). Our conformance relation assumes that the specification S = (SP,αSI ,αSO,αST ,αSR,αSA)

is a CSP-TIO process (see Definition 4.3.1), and that the SUT I = (IP,αII ,αIO,αIT ,αIR,αIA) can
also be modelled in such a formalism (testability hypothesis).

Differently from S, implementations (I) do not have reset and auxiliary events: αIR = /0
and αIA = /0. These are reasonable assumptions, since an implementation, as a black-box, only
exposes the values communicated over its output signals. Therefore, the alphabet of an imple-
mentation comprises only its inputs, outputs and time elapsing events (αI =

⋃
{αII ,αIO,αIT}),

which is a direct consequence of being a CSP-TIO process and αIR = /0, αIA = /0.
The alphabet of I is assumed to be compatible with that of S (Definition 4.4.1). Al-

though our compatibility definition allows reasoning about partial specifications (implementa-
tions might consider more input and output events than specifications), we assume that both
consider the same input and output signals. What is allowed is considering new values for these
signals.

Definition 4.4.1. Compatibility of alphabets: let S and I be CSP-TIO processes, their alphabets
are compatible if, and only if, αSI ⊆ αII ∧ αSO ⊆ αIO .

To give a concrete example, we consider a specification with one input signal (in1),
whose values range over the set {0,1}. The set αSI is {input.in1.0, input.in1.1}. Suppose one
implementation (imp1) that has two input signals (in1, in2), both ranging over the set {0,1}. In

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 107

such a situation, αII is:

{input.in1.0.in2.0, input.in1.1.in2.0, input.in1.0.in2.1, input.in1.1.in2.1}

and, thus, its alphabet is not compatible with the one of the considered specification. However,
suppose another implementation (imp2) with the same input signal (in1), but more possible
values ({0,1,2}). In such a case, its alphabet is compatible with that of the specification. More-
over, the specification can be seen as a partial one, since it does not state how the system should
react over the input input.in1.2.

The time events of specifications and implementations are not related, since we assume
that time is symbolically modelled in specifications (as shown in Section 4.2), whereas it is
a concrete concept on implementations. In other words, we assume that, with the aid of a
projection function proj : αIT → N, we can extract from the time events of implementations
(αIT) the concrete amount of time elapsed. For instance, let elapse.10 be an event in αIT ,
proj(elapsed.10) = 10. Here, we consider for simplicity N, since our CSP representation does
not consider floating-point numbers. Therefore, {ev : αIT • proj(ev)} ⊆ N. Finally, the reset
and auxiliary event of specifications do not have any relation with implementation events, since
αIR = /0 ∧ αIA = /0.

Besides the relation between alphabets, another important aspect when reasoning about
conformance is quiescence. This is defined as the situation when the system is unable to perform
an output event now or in the future, without performing first an input event. If we recall
the property of alternating input, time and output events that holds for CSP-TIO processes
(Definition 4.3.3), we easily note that after performing an output event, a CSP-TIO process is
always quiescent, since it is not possible for it to perform an output without performing first an
input event.

In some conformance relations (e.g., ioco), it is necessary to annotate the model with
information regarding quiescence. It is important to reason whether the implementation is less
quiescent (an expected property), and not more quiescent (an undesired property). In csptio,
despite having quiescence, it is not necessary to annotate this information, since both specifi-
cations and implementations are always quiescent at the same states (after performing output
events) due to Definition 4.3.3. If this is not true, then the property presented in Definition 4.3.3
does not hold, and we would not be considering CSP-TIO processes – a fundamental expecta-
tion, as explained in the beginning of this section.

Both specifications and implementations are also expected to be input-complete (also
known as input-enabled) with respect to their input alphabets (αSI and αII , respectively) at cer-
tain states. Regarding specifications, this is ensured by the way we generate CSP specifications
from s-DFRSs. In Section 4.2, when explaining the process INPUTS, we have discussed that
the new value for the input signals can be any value of its types (c inputi ranges over the possi-
ble values of each system input). When creating CSP-TIO models for implementations, we also

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 108

expect that the input-enabled property holds. However, it is worth noting that as a consequence
of Definition 4.3.3 again, a CSP-TIO process only expects input events at certain moments (just
after performing output events). Therefore, input-completeness only applies to these states.

This conformance relation is defined in terms of the traces semantics. In order to define
it, we need two auxiliary functions: out and elapse. Intuitively, the function out receives a CSP-
TIO process, besides a trace, and yields the output events that can be performed after this trace
(see Definition 4.4.2). It is important to note that, since out is not concerned with time-related
information, events that do not belong to αTIOI ∪αTIOO are not considered. Therefore, the trace
t is restricted (|̀) to the events of αTIOI ∪αTIOO , and all other events (αTIO \ (αTIOI ∪αTIOO)) are
hidden (\) in TIOP.

Definition 4.4.2. Function out: let TIO be a CSP-TIO process, and t a trace, the function out is
defined as follows:

out(TIO, t) = {ev : αTIOO |
(t |̀ (αTIOI ∪αTIOO))a 〈ev〉 ∈T (TIOP \ (αTIO \ (αTIOI ∪αTIOO)))}

The function elapse yields the amount of time that might elapse after performing a par-
ticular trace. However, since specifications and implementations deal with time differently, we
have two versions of this function: elapseCon, used when considering concrete time represen-
tation (implementations), and elapseSym, used when considering symbolic time representation
(specifications).

The function elapseSym yields the amount of time that might elapse from a symbolic time
event. As explained in Section 4.3, the time events of a specification are the communications
over the channel delay. In Section 4.2, we have shown that this channel is defined considering
eta variables: an etai variable is a (boolean) flag created after one timed guard. We recall that we
keep traceability between the eta variables and their corresponding timed guards (see Code 4.6).
When a true value is associated with one of these eta variables, we know that at this moment
the time elapsed respects the timed guard associated with this variable. Note that no more than
one true value will be communicated over the channel delay, since the eta variables are reset in
the beginning of DELAYS, and each choice sets only one of these variables to true.

Consider that map : αST → String is a mapping function that yields the timed guard
associated to the given time event via the inspection of which eta variable is set to true. If no
variable is set to true, it means that the amount of time that might elapse is unconstrained.

To find out the concrete values that satisfy time constraints, we rely on a constraint
solver. In this work, we use the SMT solver Z3. In summary, the function elapseSym yields
a set of concrete values that represent the time that might elapse after a certain trace t (see
Definition 4.4.3). In this definition, isSAT denotes the algorithm that uses the solver to find the
concrete values for time elapsing (see Algorithm 16).

Definition 4.4.3. Function elapseSym: let TIO be a CSP-TIO process of a specification, t a

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 109

trace, and map a function that yields from symbolic time events strings that represent the time
constraints associated with the event (map : αST → String), then function elapseSym is defined
as follows:

elapseSym(TIO, t,map) = {ev : αTIOT ; delay : N |
(t |̀ αTIOT)a 〈ev〉 ∈T (TIOP \ (αTIO \αTIOT)) ∧
isSAT(αTIOT ,αTIOR,(t |̀ αTIOT ∪αTIOR)a 〈ev〉,map,delay) • delay}

Analogously to out (Definition 4.4.2), the function elapseSym restricts the trace to sym-
bolic time events (αTIOT), and hides from TIOP all other events, since it is only concerned with
time events. It is important to note that, with respect to isSAT , we consider the traces restricted
to time (αTIOT), but also to reset (αTIOR) events. This is necessary, since, as explained later, the
reset events are relevant to assessing the satisfiability of constraints.

The definition of isSAT is given in Algorithm 16. Given the time (αTIOT) and reset
(αTIOTR) events, the trace performed, along with the time event ((t |̀ αTIOT ∪αTIOR) a 〈ev〉),
the map function, and a possible delay (delay), the function isSAT verifies whether this delay
satisfies the time constraint associated with ev. If so, delay belongs to the output of elapseSym.
To perform this analysis, in line 1, isSAT calls buildSMTProblem to derive an SMT problem,
then, it adds a new constraint to this problem (line 2) before checking its satisfiability (line 3
– checkSAT is the function provided by the SMT solver to check whether there is a solution
for the given SMT problem). Before explaining the goal of this new constraint, we explain the
function buildSMTProblem.

Algorithm 16: Definition of isSAT
input : αT ,αR, t,map,delay
output : satisfiable

1 constraints, indexMap = buildSMTProblem(αT ,αR, t,map);
2 constraints.push(“(assert (= d”+indexMap.get(“ d”) +“ ”+delay+“))”);
3 satisfiable = checkSAT(constraints);

[Source: author]

Algorithm 17 describes how the function buildSMTProblem derives an SMT problem
from a given trace. Intuitively, we create variables to represent the global clock and timers at
different instants (gci and timeri, respectively), and, for each time and reset events, constraints
are added to the SMT problem to constrain how time evolves (these variables are updated). For
instance, when we find a (symbolic) time event that does not restrict how the time evolves, we
create the constraints below (note that they are in prefix notation):

(declare-fun gci () Int)

(declare-fun dj () Int)

(assert (> dj 0))

(assert (= gci (+ gci−1 dj)))

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 110

If there is no constraint on how the time evolves, the global clock (gci) is constrained to be equal
to its previous value (gci−1) added by a delay (dj) that needs to be greater than 0. However,
when the amount of time elapsed needs to satisfy some time constraint (the one mapped to the
eta variable whose value is true), we create an additional constraint. For instance, suppose that
the following constraint needs to be satisfied (> (- gc t) 30), the additional constraint is:

(assert (> (- gci tk) 30))

As one can notice, we only need to append to the variables concerned (gc and t) their current
indexes. When a reset event is found with respect to a timer t, we create the constraints:

(declare-fun tk () Int)

(assert (= tk gci))

That is, at this moment, the value of the timer (tk) becomes equal to the current value of the
global clock (gci). Time (αTIOT) and reset (αTIOR) events are the only ones in the given trace
as we restrict traces to elements of these two sets, since they are the only events with relevant
information about time evolving.

Algorithm 17 systematises the generation of constraints from traces. First, it initialises
auxiliary variables (lines 1–2) to store the constraints (constraints) and the current index of the
global clock, timers, and delays (indexMap). These indexes are initially 1 (lines 3–4, 9).

Afterwards, constraints are generated to declare variables for the SMT problem at their
initial stage: the global clock (gc1), lines 5–7; and timers (t1), lines 8–12. Initially, the value
of these variables is 0 (lines 6 and 11). After declaring these variables, their indexes are incre-
mented (lines 7 and 12).

Then, the algorithm loops over the events of the trace t (lines 13–14). If the event is a
time one (h ∈ αT – line 15), we generate constraints as previously explained (lines 16–21). In
what follows, after updating the indexes of the SMT variables (lines 22–23), we check whether
the amount of time elapsed needs to be constrained (line 24). As explained earlier, it happens
when the time event has a value true associated with some eta variable. If it is the case, we
retrieve the constraint associated with this time event with the aid of the function map (line 25).
Afterwards (lines 26–27), this constraint is modified to append the current indexes of the SMT
variables to the name of these variables. Finally, an additional constraint is created and pushed
into the stack of constraints (lines 28–29).

For reset events (h ∈ αR – line 30), we generate the constraints that ensure that the
current value of the timer mentioned by this event (the function getTimerName yields the name
of the timer being mentioned – line 31) is equal to the current value of the global clock (lines
32–34). To exemplify the usage of getTimerName within the VM example, when it is applied
to the event reset.the request timer, it yields the request timer.

To illustrate Algorithm 17, we consider part of the trace (up to the last delay event)
shown in Section 4.5 with respect to the VM example. We reproduce below this trace, restricted

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 111

Algorithm 17: Definition of buildSMTProblem
input : αT ,αR, t,map
output : constraints, indexMap

1 constraints = new ConstraintsStack < String > ();
2 indexMap = new HashMap < String, Integer > ();

3 indexMap.put(“ d”),1);
4 indexMap.put(“gc”,1);
5 constraints.push(“(declare-fun gc”+indexMap.get(“gc”)+“ () Int)”);
6 constraints.push(“(assert (= gc”+indexMap.get(“gc”)+“ 0))”);
7 indexMap.put(“gc”, indexMap.get(“gc”)+1);

8 for timer ∈ dfrs.T do
9 indexMap.put(timer,1);

10 constraints.push(“(declare-fun ”+timer+“”+indexMap.get(timer)+“ () Int)”);
11 constraints.push(“(assert (= ”+timer+“”+indexMap.get(timer)+“ 0))”);
12 indexMap.put(timer, indexMap.get(timer)+1);

13 while !empty(t) do
14 h = head(t);
15 if h ∈ αT then
16 constraints.push(“(declare-fun d”+indexMap.get(“ d”)+“ () Int)”);
17 constraints.push(“(assert (> d”+indexMap.get(“ d”)+“ 0))”);
18 constraints.push(“(declare-fun gc”+indexMap.get(“gc”)+“ () Int)”);
19 constraints.push(“(assert (= gc”+indexMap.get(“gc”)+1+
20 “ (+ gc”+indexMap.get(“gc”)+
21 “ d”+indexMap.get(“ d”))+“)))”);

22 indexMap.put(“gc”, indexMap.get(“gc”)+1);
23 indexMap.put(“ d”, indexMap.get(“ d”)+1);

24 if h.indexOf (“true”)! =−1 then
25 constraint = map(h);
26 for v ∈ indexMap ∧ constraint.indexOf (v)! =−1 do
27 constraint = constraint.replace(v,v+ indexMap.get(v));

28 constraint =“(assert ”+constraint+ “)”;
29 constraints.push(constraint);

30 else if h ∈ αR then
31 var = getTimerName(h);
32 constraints.push(“(declare-fun ”+var+“”+indexMap.get(var)+“ () Int)”);
33 constraints.push(“(assert (= ”+var+“”+indexMap.get(var)+
34 “ gc”+indexMap.get(“gc”)+“))”);
35 indexMap.put(var, indexMap.get(var)+1);

36 t = tail(t);

[Source: author]

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 112

to time and reset events, since, as explained, these are the events relevant to the time-related
analysis.

This trace depicts the situation when the coin sensor becomes true after some delay
(first event – unconstrained), the system resets the request timer (second event), this sensor
becomes false again after some other delay (third event – unconstrained), and then the coffee
request button is pressed after a delay that satisfies the constraint mapped to eta1 (fourth event
– constrained by eta1).

<

delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false,

reset.the request timer,

delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false,

delay.eta1.B.true.eta2.B.false.eta3.B.false.eta4.B.false

>

Given this trace, the function buildSMTProblem yields the following SMT problem. Note that
the constraints are grouped for legibility purposes into five blocks (separated by blank lines).

(declare-fun gc1 () Int)

(declare-fun the request timer1 () Int)

(assert (= gc1 0))

(assert (= the request timer1 0))

(declare-fun gc2 () Int)

(declare-fun d1 () Int)

(assert (> d1 0))

(assert (= gc2 (+ gc1 d1)))

(declare-fun the request timer2 () Int)

(assert (= the request timer2 gc2))

(declare-fun gc3 () Int)

(declare-fun d2 () Int)

(assert (> d2 0))

(assert (= gc3 (+ gc2 d2)))

(declare-fun gc4 () Int)

(declare-fun d3 () Int)

(assert (> d3 0))

(assert (= gc4 (+ gc3 d3)))

(assert (> (- gc4 the request timer3) 30))

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 113

The first block is concerned with the declaration of the variables of the SMT problem
in their initial stage. Then, we have one block for each event of the trace. The second block
declares the constraint to advance time with no constraints (first event of the trace). The third
block represents the reset of the request timer (second event of the trace). The fourth block is
another time elapse with no constraint (third event of the trace). The fifth block advances the
time such that the system goes to the producing-strong-coffee mode (fourth event of the trace).
To reach this state, the coffee request needs to be performed 30 time units after the coin has
been inserted. Provided with this satisfiability problem, an SMT solver such as Z3 searches for
solutions (also known as models): values for all variables declared such that all constraints are
satisfied.

Now, we return to the explanation of the function isSAT . The goal of this function is
to check whether a given delay (delay) is possible with respect to the last event of the given
trace (t). To make this analysis, Algorithm 16 adds an extra constraint to the SMT problem
(line 2):

(assert (= dk delay))

This constraint requires the last performed delay (dk) to be equal to the given delay. If the
solver finds a solution for this modified SMT problem, then isSAT yields satisfiable. Regarding
the example shown above, this additional constraint is (assert (= d3 delay)). One final impor-
tant remark about our explanation of building SMT problems: we consider discrete time (the
SMT variables are declared as integers), but to reason about continuous time it would suffice to
declare these variables as float.

Now, we proceed our explanation of the calculation of the time that can elapse, but with
respect to implementations, which deal with concrete time delays. Before presenting elapseCon,
we define two auxiliary functions: subTimedTrace and elementAt.

The function subTimedTrace (Definition 4.4.4) yields a subtrace from a given one (t),
starting from its first element up to the i-th element that belongs to αT . Intuitively, it yields a
subtrace that contains i+ 1 elements from αT . Considering this, the function is defined recur-
sively over t: if the head is not an element of αT , it does not decrement i, since the subtrace
must have i+ 1 elements of αT . If the head is an element of αT , and if it is the i-th element,
the function stops considering this last element, otherwise, it continues until this situation is
reached.

Definition 4.4.4. Function subTimedTrace: let t be a trace, αT a set of events, i a natural number
(i ∈ N), and assume that #(t |̀ αT)> i, the function subTimedTrace is defined as follows:

subTimedTrace(t, αT , i) =
if head(t) /∈ αT then head(t) a subTimedTrace(tail(t), αT , i)
else

if i = 0 then head(t) else head(t) a subTimedTrace(tail(t), αT , i-1)

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 114

The function elementAt (Definition 4.4.5) yields the i-th element of a trace (t). There-
fore, it recursively iterates over the given trace until the i-th element is reached.

Definition 4.4.5. Function elementAt: let t be a trace, i a natural number (i ∈ N), and assume
that #t > i, the function subTimedTrace is defined as follows:

elementAt(t, i) = if i = 0 then head(t) else elementAt(tail(t), i-1)

Considering these two functions, given a trace t of the specification, elapseCon (see Def-
inition 4.4.6) yields the amount of time that might elapse after performing this trace. Since
elapseCon deals with concrete time elapses, whereas elapseSym considers symbolic representa-
tions, we need to find the traces of the implementation (t1) that correspond to the given trace
t of the specification. These traces perform the same sequence of input and output events of
t (t1 |̀ (αII ∪αIO) = t |̀ (αSI ∪αSO)), and the same number of time events (#(t1 |̀ αIT) = #(t |̀
αST)). Moreover, each i-th concrete time delay of t1 (proj(elementAt(t1 |̀ αIT)) is a valid delay
considering the corresponding symbolic time event of the specification.

To verify this property we rely on isSAT (see Definition 16), and the previously defined
functions subTimedTrace and elementAt. Then, for all time events of the implementation (ev :
αIT) that can happen after the trace t1 (restricted to time events – αIT), the function elapseCon

yields the concrete time delay associated with these time events (proj(ev)).

Definition 4.4.6. Function elapseCon: let I and S be CSP-TIO processes of an implementation
and a specification, respectively, t a trace from S, proj : αIT → N a function that projects from
time events the concrete amount of time elapsed, and isSAT , subTimedTrace, map and elementAt

the functions defined previously, then function elapseCon is defined as follows:

elapseCon(I,S, t,proj,map) = {t1 : T (IP) ; ev : αIT |
t1 |̀ (αII ∪αIO) = t |̀ (αSI ∪αSO) ∧ #(t1 |̀ αIT) = #(t |̀ αST) ∧
(∀ i : N | i≥ 0 ∧ i < #(t1 |̀ αIT) • isSAT(αST ,αSR,

subTimedTrace(t |̀ (αST ∪αSR),αST , i),map,proj(elementAt(t1 |̀ αIT), i))) ∧
(t1 |̀ αIT)a 〈ev〉 ∈T (IP \ (αI \αIT)) • proj(ev)}

Now, based on the previously defined functions (out, elapseSym, and elapseCon) we de-
fine csptio: a CSP timed input-output conformance relation (see Definition 4.4.7).

Definition 4.4.7. CSP timed input-output conformance relation (csptio): let S and I be CSP-
TIO processes, proj : αIT →N a mapping function from time events of I to natural numbers, and
map : αST → String a mapping function from time events of S to strings (constraints), I csptio
S if, and only if, the following property holds:

∀ t : T (SP) • out(I, t)⊆ out(S, t) ∧ elapseCon(I,S, t,proj,map)⊆ elapseSym(S, t,map)

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 115

The intuition behind this definition is that, after a trace t of the specification (t∈T (SP)),
the implementation shall output a subset of the expected outputs allowed by the specification
(out(I, t)⊆ out(S, t)). Furthermore, the implementation cannot have an amount of elapsed time
not allowed in the specification (elapseCon(I,S, t,proj,map)⊆ elapseSym(S, t,map)).

To illustrate csptio, suppose an implementation (I1) that always produces weak coffee
as output, independently of the time elapsed between inserting the coin and the coffee request.
The relation I1 csptio VM CSP-TIO does not hold since there is a trace from the specification
where producing strong coffee is the only expected option and, thus, it is the single element
in out of VM CSP-TIO, but, for the same trace, out of I1 is equal to producing weak coffee.
Therefore, as out of I is not a subset of out of VM CSP-TIO for such a trace, ¬ (I cpstio

VM CSP-TIO).
Concerning time-based behaviour, another implementation (I2) that dispenses weak cof-

fee within [9,12] time units after the coffee request is also not in conformance with VM CSP-

TIO, since 9 belongs to elapseCon of I2, but not to elapseSym of VM CSP-TIO, for a trace
representing the production of weak coffee.

Differently, a third implementation (I3) that always dispenses strong coffee within 33
time units after the request is in conformance with VM CSP-TIO, since elapseCon(I3, ...) =
{33} for the traces that dispense strong coffee, and it is true that {33} belongs to elapseSym of
VM CSP-TIO, since, according to the specification, a strong coffee is dispensed within [30,50]
time units after the request.

4.4.2 Verifying csptio conformance

We have mechanised the verification that an implementation conforms to its specifica-
tion, based on csptio, in terms of a high-level strategy by reusing successful techniques and
tools: refinement checking (FDR) and SMT solving (Z3). Furthermore, our mechanisation is
sound with respect to the csptio definition (Theorem 4.4.1). The theorem is itself an automated
means for checking conformance with respect to csptio.

Here, we provide a proof sketch. Let us analyse separately the conjunction terms. The
proof of the first term is similar to the proof of Theorem 3 presented in (NOGUEIRA; SAM-
PAIO; MOTA, 2014), but lifted to CSP-TIO processes. Here, as the CSP processes have more
information than input and output actions, we hide all events of the alphabets of the specifica-
tion (αS) and of the implementation (αI) that are not inputs or outputs (SP \ (αS \ (αSI ∪αSO))

and IP \ (αI \ (αII ∪αIO)), respectively).
The first term is a refinement expression. If an input event occurs in the implementation,

but not in the specification, on the right-hand side of the refinement, the parallel composition
does not progress through this event (this event is refused). As the refinement considers the
traces model, refused events are not taken into account. Therefore, new input events in the
implementation are allowed. The goal of the process ANY(αIO ,STOP) is to avoid that the

4.4. A CSP TIMED INPUT-OUTPUT CONFORMANCE RELATION 116

right-hand side refuses output events that the implementation can perform, but the specification
cannot. Therefore, if after a common trace the implementation performs output events not
expected in the specification, these events appear in the traces of the implementation and the
refinement expression is false.

Theorem 4.4.1. Mechanisation of csptio: let S and I be CSP-TIO processes; I csptio S holds
if, and only if, the following predicate holds:

(SP \ (αS \ (αSI ∪αSO))vT

(SP \ (αS \ (αSI ∪αSO))4 ANY(αIO ,STOP)) ‖
αII∪αIO

IP \ (αI \ (αII ∪αIO))) ∧

(∀ t : T (S) ; d : N • d ∈ elapseCon(I,S, t,proj,map)⇒
∃ev : αST • (t |̀ αST)a 〈ev〉 ∈T (SP \ (αS \αST)) ∧

isSAT(αST ,αSR,(t |̀ αST ∪αSR)a 〈ev〉,map,d))

The second term of Theorem 4.4.1 is just another way, more appropriate for a constraint
solver, of expressing set inclusion. Briefly, we check that every concrete delay of the imple-
mentation (after a certain trace of the specification) is also feasible on the specification after
the same trace. If this holds, it means that the set of possible delays of the implementation is
a subset of the delays of the specification. The restrictions (|̀) over traces, and the hiding (\)
performed is to focus our analyses on time-related events (see explanation of Definition 4.4.3).

When implementing the mechanisation described in Theorem 4.4.1, two important as-
sumptions are made with respect to infinity. As a consequence of the type of systems considered
in this work (embedded systems whose inputs and outputs are always available, besides the fact
that these systems should be free of time-lock – time can always advance) we have two sources
of infinity: T (S) and elapseCon (thus, IP too).

Our CSP representation of s-DFRSs (specifications) is a non-terminating process: it
does not have deadlocks introduced by STOP, it does not have deadlocks due to synchronisation,
and SPECIFICATION is a never ending process. This affirmation can be easily checked using
FDR via a deadlock-freedom analysis. Therefore, although the operational model (LTS) of S

might be finite, we have an infinite number of traces, since a new event can always be performed.
Therefore, since we have an infinite set of traces, implementing the verification of the

second term would lead to a non-terminating program. As we discuss in Section 6.2, this is
a common practical problem of reasoning about non-terminating timed systems. Some timed
conformance relations adopt some timeout criterion, such as the number of events performed or
a time upper bound, whereas other relations take into account techniques for symbolic analysis
of time to avoid the explicit definition of a stopping criterion. In this work, we follow the first
approach: we limit the time verification to traces of length k, an arbitrarily defined value.

Due to the expected absence of time-lock, and the fact that time is concretely represented
in implementations, typically elapseCon might also yield an infinite set. Therefore, as also

4.5. TEST-SCENARIO GENERATION AND SELECTION 117

usually adopted when testing timed-systems, we also limit delays up to an arbitrarily defined
timeout (b upper bound for delays). Considering this, the computation of elapseCon is performed
by enumerating, with the aid of the techniques discussed in Section 4.5, test-scenario selection
and generation, the traces t1 that satisfy the conditions stated by Definition 4.4.6. Therefore, in
practice, we are concerned with I csptiok,b S: I is in conformance with S considering traces with
no more than k events, and delays no greater than b.

4.5 Test-scenario generation and selection

Test scenarios are central elements used to construct test cases, since they describe par-
ticular execution flows of the specification we are interested in testing. First, we describe how
test scenarios can be systematically generated via refinement checking; then, how test purposes
can be used to select test scenarios of interest. Except by the definition of the process ACCEPT ′,
which fits to our purposes, we reuse here the test-scenario generation and test-scenario selection
techniques proposed in (NOGUEIRA; SAMPAIO; MOTA, 2014).

To generate test scenarios from a process P, we create a modified version of P (P′)
that has mark events (MARK = {accept.n} for n ∈ N), which do not belong to the alphabet of
P (MARK ∩αP = /0), in the execution flows of P we are interested in testing. To enumerate
these flows we rely on refinement checking. In the CSP traces model, P vT P′ is defined as
T (P′) ⊆ T (P): the traces of P′ are required to be a subset of the traces of P. As P′ has
events (the mark ones) that does not belong to P, clearly this refinement expression does not
hold. Therefore, we can use FDR to obtain a counterexample for this refinement. To provide a
concrete example, consider the requirement REQ003 of the VM:

� When the system mode is choice, and the coin sensor is false, and the coin sensor
was false, and the coffee request button changes to pressed, and the request timer is
greater than 30.0, the coffee machine system shall: reset the request timer, assign
preparing strong coffee to the system mode.

Let VM CSP-TIO be the CSP-TIO process defined in Code 4.8, and S′ a modified ver-
sion of S such that, as soon as a stable state (performing the event stableState) is reached after
an execution flow related to REQ003, S′ performs the mark event accept.1 (later, in this section,
when defining test purposes, we show how S′ is created from its counterpart S). If we use FDR
to assess whether S vT S′ holds, we get a negative answer along with a counterexample (trace
trace1).

This trace describes the following scenario: initially, the system mode is idle (1) and
the machine output is strong coffee (0 – default value). After some delay (not restricted to any
constraint, since all eta variables are false), the coin sensor becomes true. Although the order of
events are input events followed by time ones, the interpretation is that the input was received

4.5. TEST-SCENARIO GENERATION AND SELECTION 118

after the delay represented by the time events. Now, the system resets the request timer and
goes to the choice mode (0). This reaction is the one described by the requirement REQ003.

Afterwards, the coin sensor becomes false again. The output signals remain the same.
When the coffee request button is pressed after a delay that satisfies the constraint mapped to
eta1 (the request was made at least 30.0 time units after inserting the coin), the system resets
again the request timer, besides going to the preparing strong coffee mode (2). This behaviour
is the one described by the requirement REQ003. Therefore, just after reaching a stable state,
the mark event is performed. As this event does not belong to the alphabet of the unmodified
version of process S, this trace does not belong to T (S), but belongs to T (S′) and, thus, is a
counterexample of the refinement expression SvT S′.

trace1 = <

output.the system mode.I the system mode.1.

the coffee machine output.I the coffee machine output.0,

stableState,

input.the coffee request button.B.false.the coin sensor.B.true,

delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false,

reset.the request timer, REQ001,

output.the system mode.I the system mode.0.

the coffee machine output.I the coffee machine output.0,

stableState,

input.the coffee request button.B.false.the coin sensor.B.false,

delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false,

output.the system mode.I the system mode.0.

the coffee machine output.I the coffee machine output.0,

stableState,

input.the coffee request button.B.true.the coin sensor.B.false,

delay.eta1.B.true.eta2.B.false.eta3.B.false.eta4.B.false,

reset.the request timer, REQ003,

output.the system mode.I the system mode.2.

the coffee machine output.I the coffee machine output.0,

stableState, accept.1

>

The FDR refinement checking algorithm, when looking for counterexamples, yields the
shortest one first. Although it is possible to ask FDR to yield more than one counterexample,
this does not fit into our purposes since it might find different execution paths that lead to the
same trace. Therefore, for our purposes, these different execution paths would comprise the
same test scenario.

4.5. TEST-SCENARIO GENERATION AND SELECTION 119

Nevertheless, we can force FDR to identify new and different counterexamples from
the shortest one to the largest one. To accomplish this goal, first, we create a process from
the obtained counterexample. This is performed by the auxiliary process CE. It recursively
iterates over the elements of the trace performing events until it reaches the trace end, when it
deadlocks. The process STOP is used instead of SKIP, since the former does not insert any new
event in the traces model.

CE(trace) = if trace = 〈〉 then STOP else head(trace)→ CE(tail(trace))

To get the next counterexample (test scenario), we check a slightly different refinement
expression. Let t be the first yielded counterexample, the second one is obtained verifying
whether S 2CE(t)vT S′ holds. When we compose the process yielded by CE in external choice
with S, we add to the traces of the left-hand process the trace t, which ends with the mark event
(accept.1). Therefore, as this counterexample can no longer be considered a counterexample
of the refinement expression, this forces FDR to find a different trace of S that leads to the
event accept.1. This idea can be repeated n times to generate n counterexamples. When the
refinement holds, it means that all counterexamples have been found (all traces leading to the
mark event).

S 2 CE(t1)2 ...2 CE(tn)vT S′

The strategy presented so far can, thus, be used to generate as many as desired test
scenarios. Now, we need to understand how to select test scenarios based on the properties
we want to observe and test. In other words, how we add mark events to the desired places to
create the modified process S′ from its counterpart S. To accomplish this goal, we rely on test
purposes, which are also CSP processes.

A test purpose describes characteristics that are required to be present in the obtained
test scenarios. Regarding CSP specifications, a test purpose specifies the traces that need
to be present in the generated test scenarios. Here, we consider Definition 11 of the work
(NOGUEIRA; SAMPAIO; MOTA, 2014) (reproduced below as Definition 4.5.1).

Definition 4.5.1. CSP test purpose: let TP and S be CSP processes, m an event from MARK,
and X ⊆ (αS)

∗ a subset of the traces constructed from αS, where αS denotes the alphabet of S,
the process TP is a test purpose for S if it is deterministic and ∀ t : T (TP) • (t ∈ X) ∨ (t /∈ X ∧
t = t′ a 〈m〉 ∧ t′ ∈ X).

Intuitively, a test purpose TP for a CSP process S comprises traces (test scenarios of
interest) appended with a mark event. To ease the task of writing test purposes in CSP based
on Definition 4.5.1, previous work define a set of primitive processes that combined enables the
creation of more complicated test purposes (NOGUEIRA; SAMPAIO; MOTA, 2014). Here, we
reuse some of these definitions, but we also define one tailored for our purposes (ACCEPT’).

4.5. TEST-SCENARIO GENERATION AND SELECTION 120

The process ACCEPT is the most basic primitive process for defining test purposes. It
receives an integer (id), performs the event accept.id, and then it deadlocks. Basically, this
process is used to create mark events (accept.id ∈MARK).

channel accept : Int

ACCEPT(id) = accept.id→ STOP

The process ANY has two parameters. The first one is a set of events (events). The
second one is another CSP process (NEXT). After performing any event that belongs to events,
it behaves as the process NEXT .

ANY(events, NEXT) = 2 ev : events @ ev→ NEXT

To explain the process UNTIL, we need to understand the auxiliary process RUN first:
it continuously offers events that belongs to events. Then, the process UNTIL offers indefinitely
the events that belongs to events1 but not to events2 (diff (events1,events2)). When some event
from events2 is performed this behaviour is interrupted, and UNTIL behaves as NEXT .

RUN(events) = 2 ev: events @ ev→ RUN(events)

UNTIL(events1, events2, NEXT) = RUN(diff(events1,events2))4 ANY(events2, NEXT)

These processes are defined in (NOGUEIRA; SAMPAIO; MOTA, 2014). Here, we also
propose the auxiliary process ACCEPT’ tailored for CSP-TIO processes. It ensures that a mark
event is only inserted after reaching a stable state. Otherwise, the test scenario would contain
the information of the stimuli provided for the system (inputs), but not necessarily the system
reaction (outputs).

ACCEPT’(alphabet, id) = UNTIL(alphabet, {stableState}, ACCEPT(id))

This process (ACCEPT’) is defined in terms of the UNTIL process. It continuously
offers events of the alphabet of the CSP-TIO process until a stable state is reached, when it
behaves as ACCEPT(id) (inserts a mark). Finally, to modify an original process (P) to insert a
mark, we compose the process with a test purpose (TP) using the CSP interface parallel operator
(P ‖

αP

TP). In CSPM the auxiliary process PP creates this parallelism ([| α |] is the CSPM syntax

for ‖
α

).

PP(alphabet, P1, P2) = P1 [| alphabet |] P2

Using these processes, we can easily elaborate a test purpose to select test scenarios that
cover certain requirements. As shown in Section 4.2, the process SYSTEM BEHAVIOUR has
events named after the requirements identifiers (e.g., REQ003) and, thus, it is possible to trace
to the system requirements the location where the system is exhibiting the behaviour of a certain
requirement. For example, in Code 4.9 we can see the test purpose that selects test scenarios
that cover the requirement REQ003 (line 1), besides how the process S′, previously considered
when explaining the generation of test scenarios, is defined (line 2).

4.6. PHASE V – SOUND TEST-CASE GENERATION 121

Code 4.9: CSP – test purpose (vending machine)

1 TP_REQ003 = UNTIL (S _ a l p h a b e t , {REQ003 } , ACCEPT’ (S _ a l p h a b e t , 1))
2 S ’ = PP (S _ a l p h a b e t , S , TP_REQ003)

[Source: author]

Although we have presented how to select and generate test scenarios to cover particular
requirements, it is a weak coverage criterion. For instance, as one can observe analysing the pre-
viously shown counterexample (trace1), besides covering requirement REQ003 it also covers
requirement REQ001. A possible more interesting criterion would be to consider the structure
of the operational model (LTS) obtained from a CSP process. In that way, we could take into
account structural criteria such as node and transition coverage. However, this is outside the
current scope of our research.

4.6 Phase V – sound test-case generation

In Section 4.5, we have explained how test scenarios can be selected and incrementally
generated from CSP-TIO specifications. Now, we explain how we build symbolic test cases
from test scenarios. These test cases are called symbolic, since they are built from test scenarios
that deal with a symbolic time representation. We show that the way we build these test cases
is sound with respect to csptio (Definition 4.4.7). In other words, if the test execution fails, it
implies that the implementation does not conform to the specification.

A symbolic test case is also a CSP-TIO process (Definition 4.6.1). It interacts with the
implementation CSP-TIO process to indicate whether it is a valid implementation with respect
to a specification according to csptio.

Definition 4.6.1. Test case CSP-TIO process: let I and S be CSP-TIO processes of an imple-
mentation and a specification, respectively; a test case generated from S to test I is a CSP-TIO
process TC = (TCP,αTCI ,αTCO,αTCT ,αTCR,αTCA), such that αTCI ⊆ αIO , αTCO ⊆ αII ∪VERD,
αTCT ⊆ αIT , αTCR = αTCA = /0, where VERD = {pass, fail, inconclusive}.

The outputs of a test case are the inputs provided for an implementation, besides the
test case verdict (VERD = {pass, fail, inconclusive}), whereas the inputs of a test case are the
outputs generated by the implementation. Therefore, we have an alphabet inversion. Regarding
time events, a test case share the same time events of the implementation, since it has to assess
whether the performed delays are expected with respect to the specification. As implementa-
tions do not have reset and auxiliary events, as previously explained, these sets are also empty
in test cases. These restrictions over the constituent elements of the test-case alphabet are also
formalised in Definition 4.6.1.

The execution (EXEC(I,TC)) of a test case (TC) against an implementation (I) is for-
malised as the parallel synchronisation of the test case (TCP) and the implementation (IP) CSP
processes.

4.6. PHASE V – SOUND TEST-CASE GENERATION 122

EXEC(I, TC) = IP ‖
αII∪αIO∪αIT

TCP

The execution of a test case might lead to three distinct verdicts: pass, fail or inconclusive
(VERD = {pass, fail, inc}). It is said to pass when the implementation behaviour is coherent
with the specification. It is said to fail when the behaviour is not coherent. An inconclusive
verdict is reached when the implementation exhibits a behaviour that is correct with respect to
the specification, but is not the one being assessed by the test case being currently executed. In
our testing theory, we define CSP processes for these three verdicts.

channel pass, fail, inc

PASS = pass→ STOP

FAIL = fail→ STOP

INC = inc→ STOP

To verify the presence of a verdict v ∈ VERD in the execution of a test case, we can verify the
following refinement expression. After hiding all events of the test case (note that αTCI ⊆ αIO ,
αTCO ⊆ αII , αTCT ⊆ αIT), but the events related to verdicts (v ∈ VERD), we check whether
v→ STOP is a trace of the execution. If it is, then this verdict v is reached by the execution of
the given test case.

VER(v, I, TC) ≡ EXEC(I,TC) \ (αII ∪αIO ∪αIT) vT v→ STOP

Now, we explain how we create a test case from a given test scenario. The CSP process
T TC BUILDER (timed test-case builder) yields the process component of a test case (TCP).
Its parameters are: S, I, atrace, timeBinding, and timeEval. The first two parameters are the
CSP-TIO processes of the specification and the implementation.

The third parameter (atrace) is an annotated trace created from a test scenario. First,
auxiliary events must be removed from test scenarios, since they are only used within the pro-
cess of selecting and generating test scenarios: let ts be a test scenario, the corresponding an-
notated trace is built from ts |̀ (αS \αSR). For each event of the restricted test scenario, two
additional pieces of information are recorded. Therefore, each element of atrace is a tuple
(evi,outsi,delaysi), where evi stands for the event, outsi is the set of output events the specifica-
tion performs after the trace 〈ev1, ...,evi−1〉, including evi if it is an output of the specification
(evi ∈ αSO). Similarly, delaysi keeps the time events (αST) of the specification after the trace
〈ev1, ...,evi−1〉. However, differently from outsi, even if evi is a time event (evi ∈ αST), it does
not belong to delaysi. To construct annotated traces from test scenarios we rely on Algorithm 1
presented in (NOGUEIRA; SAMPAIO; MOTA, 2014), lifted to record time events as well.

The last two parameters of T TC BUILDER are related to testing the time-related be-
haviour. The variable timeBinding is a set of pairs (n,v), where n is the global clock or the
timers defined in the specification, and v their current value. For instance, in the VM, the initial
configuration of timeBinding is {(gc,0),(the request timer,0)}. The last parameter (timeEval)

4.6. PHASE V – SOUND TEST-CASE GENERATION 123

is similar to the function map : αST → String used for elapse Sym: it maps each symbolic time
event to a function that, provided a time binding, assesses whether a time constraint is satisfied.
In what follows, we present a fragment of the timeEval definition for the VM example.

eval default(binding) = true

eval eta1(binding) =

if getValue(binding, gc) - getValue(binding, the request timer) > 30

then true else false

...

timeEval = {

(delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.false, eval default),

(delay.eta1.B.true.eta2.B.false.eta3.B.false.eta4.B.false, eval eta1),

...

(delay.eta1.B.false.eta2.B.false.eta3.B.false.eta4.B.true, eval eta4)

}

The function eval default, which always yields true, is mapped to the time event that denotes
time evolution with no constraints. In other words, in such a situation, any delay satisfies the
constraints, since there are none. Differently, the function eval eta1, considering the provided
binding, evaluates whether the difference between the value of the global clock and the request
timer is greater than 30. Note that the function eval eta1 is mapped to the time event where
eta1 is true, and that the time constraint associated to this eta variable is exactly the one just
described (see Code 4.6). The auxiliary function getValue, considering a given binding, yields
the value of the provided variable. The set passed as argument to pick is always a singleton,
since the name of the variables and time events are unique.

pick({element}) = element

getValue(binding, name) = pick({value | (n, value) <- binding, n == name})

Within the definition of T TC BUILDER, some other auxiliary functions are needed. Given
two mappings such as the ones previously described (timeEval and timeBinding) and a symbolic
time event, the function eval analyses whether the time constraint mapped to the time event
evaluates to true in the provided time binding.

eval(mapping, binding, event) = getValue(mapping, event)(binding)

Given a concrete time delay, the function evolveTime yields a new time binding by advancing
the global clock by this delay. The function resetTimer also yields a new time binding, but by
resetting the value of a given timer. We recall that the reset operation is defined as assigning to
the timer the current value of the global clock.

evolveTime(binding, delay) =

union(

4.6. PHASE V – SOUND TEST-CASE GENERATION 124

{(var, value) | (var, value) <- binding, var != gc},

{(var, value + delay) | (var, value) <- binding, var == gc}

)

resetTimer(binding, timer) =

union(

{(var, value) | (var, value) <- binding, var != timer},

{(var, getValue(binding, gc)) | (var, value) <- binding, var == timer}

)

Based on the definitions presented so far, we are now able to define how to build sound test
cases via the process T TC BUILDER (Definition 4.6.2). This CSP process iterates recursively
over each tuple (ev,outs,delays) of the given annotated trace, and it yields a pass verdict when
the last element of the a trace is reached.

If ev is a reset event, after resetting the timer mentioned by ev (resetTimer(...) – note
that we use here the function getTimerName explained in Algorithm 17), the test case behaves
recursively as T TC BUILDER considering the tail of the annotated trace.

If ev is not a time-related event (ev /∈ αSR and ev /∈ αST), it is an input or an output of the
specification (an output or an input of the test case, respectively, due to the alphabet inversion
explained before). If it is a specification output (ev : αSO), there are three possible scenarios:

� the output is the expected one, and the process behaves as T TC BUILDER consid-
ering the annotated trace tail (first external choice);

� the output is not the one expected by the current test case, but it is a possible
output according to the specification and, thus, an inconclusive verdict is reached
(ANY(outs\{ev}, INC);

� the output is not the one expected by the current test case, neither one admissible by
the specification and, thus, a fail verdict is reached (ANY(αIO \outs,FAIL)).

If ev is a specification input (a test case output), it is communicated to the implemen-
tation and the test case continues considering the annotated trace tail (first external choice).
Remember that the implementation alphabet is compatible with the specification alphabet, be-
sides being input-enabled.

Definition 4.6.2. Definition of T TC BUILDER: let I and S be CSP-TIO processes of an im-
plementation and a specification, respectively, ev an event, outs⊆ αSO and delays⊆ αST sets of
events, timeBinding a set of pairs (n,v), where n is the name of the system global clock or of a
system timer, and v the value associated with this name, and timeEval a function from αST to

4.6. PHASE V – SOUND TEST-CASE GENERATION 125

time evaluation functions, as described earlier. Then, T TC BUILDER is defined as follows:

T TC BUILDER(S, I,〈〉, timeBinding, timeEval) = PASS

T TC BUILDER(S, I,〈(ev,outs,delays)〉a tail, timeBinding, timeEval) =

if ev ∈ αSR then

T TC BUILDER(S, I, tail,

resetTimer(timeBinding,getTimerName(ev)), timeEval)

else

ev /∈ αST & ev→ T TC BUILDER(S, I, tail, timeBinding, timeEval)

2

ev ∈ αSO & ANY(outs\{ev}, INC)2 ANY(αIO \outs,FAIL)

2

2 evtime ∈ αIT • evtime→
if eval(timeEval,evolveTime(timeBinding,prj(evtime)),ev) then

T TC BUILDER(S, I, tail,

evolveTime(timeBinding,prj(evtime)), timeEval)

else

if true ∈ {d : delays •
eval(timeEval,evolveTime(timeBinding,prj(evtime)),d)}

then INC else FAIL

In the case ev is not a specification input, output or reset event, it is a time event. As
the implementation represents time concretely, the test case needs to be ready to engage on any
communication over the possible implementation time delays (2 evtime ∈ αIT • evtime). This is
the underlying reason for stating that the time events of a test case is equal to the time events of
the implementation being tested (αTCT = αIT – see Definition 4.6.1).

After synchronising on this event (evtime), the test case performs the following analyses,
which are analogous to the ones performed with respect to specification output events.

� the implementation delay (evtime) is coherent with the current time event (eval(...)

evaluates to true), and, thus, after evolving the time by the implementation delay
(evolveTime(...)), the test case behaves as T TC BUILDER considering the anno-
tated trace tail;

� the implementation delay (evtime) is not coherent with the current time event of the
test case (ev), but it is a possible delay according to the specification (true ∈ {...}),
and, thus, an inconclusive verdict is reached (INC);

� the implementation delay is not coherent with the current time event of the test case
(ev), besides being not a possible one according to the specification, and, thus, a fail
verdict is reached (FAIL).

4.6. PHASE V – SOUND TEST-CASE GENERATION 126

To illustrate the usage of T TC BUILDER, consider the following situations:

� An implementation that always dispenses weak coffee for any given delay between
inserting the coin and pressing the coffee request button, and an annotated trace built
from a test scenario where a strong coffee is dispensed. In such a situation, when
testing the dispense of strong coffee (i.e., expecting the implementation to perform
the event ev), if the implementation is ready to perform the same event ev, the test
case passes. However, it is not going to be the case, since the implementation always
dispenses weak coffee. An inconclusive verdict is also not applicable, since in such
a situation the only admissible output according to the specification is strong coffee
and, thus, outs\{ev} = /0. Therefore, when the implementation performs the event
representing the dispense of weak coffee, as this event is different from ev, the test
case fails since this event of the implementation belongs to αIO \outs.

� An implementation that has a faulty behaviour such that, after inserting the coin, if
the user does not press the coffee request button within 10s, the machine assumes
the button was pressed anyway; and an annotated trace built from a test scenario
where a strong coffee is dispensed. In such a situation, an inconclusive verdict is
reached, since the implementation, after receiving the coin, always performs events
denoting time elapsing lower than or equal 10s, which are admissible events by the
specification, but are not the events this particular test case wants to observe (time
elapses greater than or equal to 30s, such that strong coffee is dispensed).

� An implementation that always dispenses weak coffee within 15s after receiving the
user request, and an annotated trace built from a test scenario were a where a weak
coffee is dispensed. In such a situation, the execution of the test case reaches a pass
verdict, since the implementation time elapse (15s) is admissible with respect to the
implementation, which says that weak coffee is dispensed within 10s to 30s after the
request.

� An implementation that always dispenses weak coffee within 31s after receiving the
user request, and an annotated trace built from a test scenario were a where a weak
coffee is dispensed. In such a situation, the execution of the test case reaches a fail
verdict, since the implementation time elapse (31s) is not admissible with respect
to the implementation, which says that weak coffee is dispensed within 10s to 30s
after the request.

Now, we define what is a sound test case: if a test execution leads to a fail verdict,
it follows that the implementation does not conform to the specification according to csptio
(Definition 4.6.3).

4.7. CONCLUDING REMARKS 127

Definition 4.6.3. Sound test case: let I and S be CSP-TIO processes of an implementation
and a specification, respectively, TC a CSP-TIO test case, then TC is a sound test case if
VER(fail, I,TC)⇒¬ (I csptio S).

Theorem 4.6.1 states that T TC BUILDER is sound. In other words, a CSP-TIO pro-
cess yielded by T TC BUILDER is sound; it does not deliver a false fail verdict.

Theorem 4.6.1. Soundness of T TC BUILDER: let I and S be CSP-TIO processes of an
implementation and a specification, respectively, atrace an annotated trace obtained from S

with no auxiliary events, timeBinding and timeEval elements as explained before, then TC =

T TC BUILDER(S, I,atrace, timeBinding, timeEval) is a sound test case, such that αTCI = αIO ,
αTCO = αSI , and αTCT = αIT .

We provide here a proof sketch of Theorem 4.6.1. According to Definition 4.6.2, a fail
verdict occurs in one of two situations: after a given trace (t), the implementation output is not
a valid one with respect to the specification or the implementation concrete time delay is not a
valid delay considering the specification symbolic time event. If the first situation is true, we
have that ¬ (out(I, t)⊆ out(S,T)) and, thus, ¬ (I csptio S). The second situation is the one that
¬ (elapseCon(I,S, t,proj,map)⊆ elapseSym(S, t,map)) and, thus, ¬ (I csptio S) as well.

4.7 Concluding remarks

Initially, after a brief overview of the process algebra CSP, this chapter has explained
how DFRSs can be encoded as CSP processes. Then, we have formally defined a CSP-TIO
process: a tuple composed by the CSP process obtained from a DFRS, along with its distinct
input, output, time, reset and auxiliary alphabets.

Afterwards, considering CSP-TIO processes, we have proposed a CSP timed input-
output conformance relation (csptio), whose sound mechanisation is supported by a refinement
checker (FDR) and a constraint solver (Z3). Then, we have explained how test scenarios can
be systematically selected and generated from CSP-TIO processes. These test scenarios are
used to generate symbolic test cases within our formal testing theory, which is based on csptio.
Furthermore, we have also proved that our process of generating symbolic test cases is sound
with respect to csptio.

128128128

5
Tool support and empirical evaluation

The NAT2TEST strategy, which provides means for generating test cases from natural-
language requirements, is automated by the NAT2TEST tool (CARVALHO et al., 2015). In this
chapter, firstly, we describe the examples considered to evaluate the NAT2TEST strategy with
the aid of its tool support (Section 5.1). Afterwards, we present the constituent components of
the NAT2TEST tool (Section 5.2):

� CNL-Parser (Section 5.2.1): verifies whether the system requirements are written in
accordance with the SysReq-CNL grammar.

� RF-Generator (Section 5.2.2): identifies requirement frames from the syntax trees
yielded by the CNL-Parser.

� DFRS-Generator (Section 5.2.3): derives an s-DFRS from requirements frames, be-
sides guiding the creation of the corresponding e-DFRS.

� CSPM-Generator (Section 5.2.4): encodes DFRSs as CSPM processes.

� TC-Generator (Section 5.2.5): generates test cases from the CSP representation.

� SCR-Generator (Section 5.2.6): generates test cases using an alternative representa-
tion (SCR) with the aid of the commercial tool T-VEC1.

� IMR-Generator (Section 5.2.7): generates test cases using an alternative representa-
tion (IMR) with the aid of the commercial tool RT-Tester2.

The VM example is used to exemplify the tool features. Finally, we present and discuss
the empirical analyses performed to evaluate the NAT2TEST tool (Section 5.3). We analyse
two aspects: (i) performance (Section 5.3.1), and (ii) the ability to detect defects by means of
mutation analysis (Section 5.3.2).

1http://www.t-vec.com/solutions/products.php
2http://www.verified.de/en/products/rt-tester

5.1. CONSIDERED EXAMPLES OF CRITICAL SYSTEMS 129

Ideally, we would like to have evaluated the NAT2TEST strategy considering real (em-
bedded) implementations. However, as two of the considered examples are from the literature,
and regarding the other two we did not have access to their implementations due to security
policies, we systematically created reference Java programs following the natural-language re-
quirements, and used the generation of mutants as means for systematic introduction of errors.
In such a analysis, we consider as a baseline the generation and execution of random tests using
Randoop (PACHECO et al., 2007).

Moreover, to provide an empirical argument to whether the DFRS models are expressive
enough to represent the behaviour of a timed reactive system as defined using natural language,
we assess whether test cases, either independently written by domain specialists from industry
or generated by a commercial tool (RT-Tester) from the same set of requirements, are compati-
ble with the corresponding DFRS models (Section 5.3.3).

5.1 Considered examples of critical systems

We evaluate the NAT2TEST tool considering examples from the literature, but also from
the aerospace and the automotive industry: (i) a vending machine (VM – toy example); (ii) a
simplified control system for safety injection in a nuclear power plant (NPP – publicly avail-
able), (iii) the priority command function (PC – provided by Embraer3, our industrial partner);
and (iv) part of the turn indicator system of Mercedes vehicles (TIS – publicly available). In
what follows, we describe these examples.

5.1.1 Vending machine

As a toy example, we consider a vending machine (VM) that is an adaptation of the
coffee machine presented in (LARSEN; MIKUCIONIS; NIELSEN, 2004). Initially, the VM
is in an idle state. When it receives a coin, it goes to the choice state. After inserting a coin,
when the coffee option is selected, the system goes to the weak or strong coffee state. If coffee
is selected within 30 seconds after inserting the coin, the system goes to the weak coffee state.
Otherwise, it goes to the strong coffee state. Therefore, if the user selects the coffee option too
quickly (less than 30s), a weak coffee is dispensed instead of a strong one.

The time required to produce a weak coffee is different from that of a strong coffee. The
machine outputs a weak coffee between 10 to 30 seconds after a user request, whereas 30 to 50
seconds are necessary for a strong coffee. After producing a weak or strong coffee, the system
goes back to the idle state.

This system has two input signals (one that detects when a coin is inserted, another to
detect when the request button is pressed) and two output signals (the current system mode, and

3Empresa Brasileira de Aeronáutica
http://www.embraer.com/en-us/pages/home.aspx

http://www.embraer.com/en-us/pages/home.aspx

5.1. CONSIDERED EXAMPLES OF CRITICAL SYSTEMS 130

which type of coffee should be produced).

5.1.2 Nuclear power plant

We consider a simplified version of a control system for safety injection in a nuclear
power plant (NPP) as described in (LEONARD; HEITMEYER, 2003). If the water pressure is
too low (less than 900 units), the system injects coolant into the reactor, otherwise there is no
need to inject coolant. Two switches also comprise the described system: one that overrides
safety injection, and another that resets the system after blockage.

The work reported in (LEONARD; HEITMEYER, 2003) presents a formal definition
of this system using the SCR notation. Considering this formal specification, we wrote require-
ments in natural language, which are considered here as input to our test generation strategy.

This system has three input signals (the actual water pressure, a switch to block the
injection of coolant, and a switch that reset the system after blockage) and three output signals
(the safety injection mode, the current blockage mode, and the pressure mode). Differently
from the VM, this example does not have time-dependent behaviour.

5.1.3 Priority command

The priority command function (PC) decides whether the pilot or copilot will have pri-
ority in controlling the airplane side sticks. The system monitors whether the pilot and copilot
side sticks are in the neutral position, and whether the side stick priority button has been pressed.
Taking into account this information, a control logic is applied to decide who is going to have
priority. This example was provided by Embraer, our industrial partner.

This system has four input signals (the stick position and the status of the priority button
for both the pilot and the co-pilot) and one output signal (a priority command). Although the
order the events (stick movement and priority request) occur is relevant, similarly to the NPP
example, the actual time the events occur is not relevant to determine the system behaviour.

5.1.4 Turn indicator system

We also considered a simplification of the turn indicator system specification that is
currently used by Daimler for automatically deriving test cases, concrete test data and test pro-
cedures. In 2011 Daimler allowed the publication of this specification to serve as a “real-world”
benchmark supporting research of MBT techniques.

Our simplification results in a size reduction of the original model presented in (PE-
LESKA et al., 2011), but serves well as a proof of concept, because it still represents a safety-
critical system portion with real-time and concurrent aspects. The system has three inputs:
(1) the turn indicator lever, which may be in the idle, left or right position; (2) the emergency
flashing button; and (3) the battery voltage. The system outputs are the car flashing lights.

5.2. NAT2TEST TOOL 131

Figure 5.1: The NAT2TEST tool

[Source: author]

The simplified TIS comprises two parallel components: the flashing mode component,
which is responsible for controlling the system flashing state (only left or right lights flashing,
left and right lights flashing, left or right tip flashing, and no lights flashing), and the lights

controller component, which is responsible for turning on and off the flashing lights respecting
the flashing periods (320 milliseconds on and 240 milliseconds off).

5.2 NAT2TEST tool

The NAT2TEST tool is written in Java (it is multi-platform), and its GUI is built using
the Eclipse RCP4 framework, which provides means to create client-side applications quickly
using a collection of plug-ins. Figure 5.1 shows the tool interface.

Each phase of the NAT2TEST strategy, presented in Section 1.4, is realised by a differ-
ent component. Figure 5.2 shows an analysis diagram of the tool architecture, which follows
a traditional layered structure – presentation, business, and data layers. The first layer com-
prises screens (e.g., ProjEditor, ReqEditor, etc.) that interact with the business layer via the
LocalFacade. Despite that, its porting to a web-based environment would be straightforward.
It would suffice to create a web-based GUI that would interact with the LocalFacade via some
networking protocol.

The business layer has a set of controllers that are responsible for interacting with the

4http://wiki.eclipse.org/index.php/Rich_Client_Platform

http://wiki.eclipse.org/index.php/Rich_Client_Platform

5.2. NAT2TEST TOOL 132

Figure 5.2: The NAT2TEST tool architecture

[Source: author]

components that realise each phase of the NAT2TEST strategy. Besides that, it also persists
data (i.e., projects, requirements and dictionaries) via Business Objects (BOs) and Data Ac-
cess Objects (DAOs). We do not persist other elements (e.g., the s-DFRS model), as they can
be automatically derived from the requirements within seconds. In the following sections we
describe each component in terms of implementation details and functionalities provided.

5.2.1 CNL-Parser – Phase I

The CNL-Parser is responsible for analyzing the system requirements according to the
SysReq-CNL grammar, yielding the corresponding syntax trees. However, before the syntac-
tic analysis takes place, it is necessary to classify each word in the input requirement into its
corresponding lexical class. Thus, the syntactic analysis phase also includes the morphologi-
cal analysis level, performing a morphosyntactic analysis of the input requirements. Note that,
in linguistics, the morphosyntactic analysis defines the POS categories of words using criteria
from both morphology and syntax fields.

In NLP, the algorithm that performs this analysis is known as a POS-Tagger (ALLEN,
1995). Unlike programming languages, in natural language the same lexeme may bear more
than one classification (lexical ambiguity). For example, off can be an adverb, a preposition or
an adjective.

In this work, we implemented a customized POS-Tagger that searches all possible clas-

5.2. NAT2TEST TOOL 133

Figure 5.3: NAT2TEST tool – parsing requirements

[Source: author]

sifications of each lexeme. Let a clause be composed of “word1 ... wordk ... wordn”; if the word
that is being currently analyzed is the k-th word, our POS-Tagger verifies for each group of
words, starting from the k-th word (“wordk”, “wordk wordk+1”, ..., “wordk ... wordn”), whether
it is a lexeme in the SysReq-CNL lexicon. For instance, consider the following fragment: “...

according to ...”. Let the current word under analysis be “according”. First, the POS-Tagger
will try to classify just “according”, but it also tries “according to”, and so on. In this case, the
valid classification will be obtained for the group “according to”, which is a preposition.

The lexemes and their categories are given as input to the CNL-Parser. In this work, we
implemented a version of the Generalized LR (GLR) parsing algorithm (TOMITA, 1986). It is
important to emphasize that this algorithm is more than a simple parser, but actually a parser
generator. In other words, one can update the SysReq-CNL and no extra change is required
in the code, since the algorithm implemented will generate a suitable parser automatically.
Moreover, as the SysReq-CNL is written in EBNF and the GLR parsing algorithm expects
as input a grammar in Backus-Naur Form (BNF), we have also implemented an automatic
translator between these two notations.

The GLR algorithm generalizes the traditional Look-Ahead LR (LALR) parser (see
(AHO et al., 2006)) algorithm to handle non-deterministic and ambiguous grammar. This
kind of algorithm is required since the natural support for lexical ambiguity can enable non-
deterministic and ambiguous scenarios. This way, the parser may generate more than one
syntax tree per input requirement. In this case, the NAT2TEST strategy terminates, and the
requirement analyst shall manually remove the ambiguity, and thus define which syntax tree
shall be considered as the correct one.

When writing requirements, the NAT2TEST tool also provides other functionalities,
such as editing the domain-specific dictionary, besides defining and referencing aliases to pro-
mote text reuse, as previously mentioned. Furthermore, the tool is also capable of assisting the
user while writing the requirements by informing the next expected grammatical classes. Fig-
ure 5.3 shows the NAT2TEST tool graphical interface for editing requirements; in particular,
considering the requirement REQ001 of the VM example.

5.2. NAT2TEST TOOL 134

Figure 5.4: NAT2TEST tool – inferring thematic roles

[Source: author]

Figure 5.5: NAT2TEST tool – editing initial value of DFRS variables

[Source: author]

5.2.2 RF-Generator – Phase II

The RF-Generator component is implemented using the visitor design pattern to analyse
the syntax trees, considering the inference rules defined in Section 2.2. These rules are used to
associate each word, or group of words, identified in the syntax tree with the corresponding
thematic roles. Besides that, this component also verifies whether the contextual rules also
presented in Section 2.2 are not violated. If they are, the user is alerted and asked to perform
the appropriate editing. Figure 5.4 shows the requirement frame derived from the requirement
REQ001 of the VM example.

5.2.3 DFRS-Generator – Phase III

The DFRS-Generator component is the one that implements the algorithms presented
in Section 3.2. Figure 5.5 shows the inferred variables, along with their types for the VM. The
tool also allows the user to edit the initial values and, thus, the initial state.

In Figure 5.6 one can see part of the function obtained from the VM requirements. It
is important to note that the tool keeps traceability information between the requirements and
the function entries. We also note that there is some syntactic sugar to prevent a verbose rep-
resentation. For instance, previous is reduced to prev, and current is simply hidden. Moreover,

5.2. NAT2TEST TOOL 135

Figure 5.6: NAT2TEST tool – viewing DFRS’ functions and traceability information

[Source: author]

the format of the timed guard, as well as the assignment of timers, show explicitly how timers
are dealt with by our strategy: the reset of a timer is encoded as assigning the value of gc to
the timer, and comparisons concerning the timer mean comparing the difference between the
current value of gc and the timer. More details are provided in Section 3.3.2, where we explain
how to obtain an e-DFRS from a symbolic one.

The tool also supports validation of the requirements by animating the s-DFRS; in other
words, by manually exploring the state space of the corresponding e-DFRS. It is accomplished
by an implementation of the function genTransitions (see Section 3.3.2), allowing us to create
and explore the states of an e-DFRS dynamically (see Figure 5.7). When the animator screen
is opened, it automatically creates the e-DFRS initial state (state 0): the initial state of the
corresponding s-DFRS, which is obtained from the system requirements.

On the top right, the tool shows the possible delay or function transitions that can be
performed from the selected state. A double-click on a transition creates an edge to the target
state to represent it. If the transition is a delay one, a pop-up opens, and the user can inform the
amount of (discrete or continuous) time that advances with the delay transition, and new values
for the input signals. On the right, the tool shows the history of performed transitions. On the
bottom, the tool shows the value of the system variables considering the selected state.

Figure 5.7 illustrates part of the e-DFRS for the example shown in Figure 3.3, but it also
describes the transition that leads to the production of strong coffee. We note that from the state
3, if the coffee request button is pressed 12 seconds after inserting the coin, the system goes
to the weak mode (the system mode := 3), which is represented by the state 5. Differently,
if the request is made 32 seconds after inserting the coin, the system goes to the strong mode
(the system mode := 2), which is represented by the state 7.

With the aid of this tool support, we assess whether test cases, either independently
written by domain specialists from industry or generated by a commercial tool from the same set
of requirements, are compatible with the corresponding DFRS models. We detail this analysis
in Section 5.3.3.

5.2. NAT2TEST TOOL 136

Figure 5.7: NAT2TEST tool – dynamic creation of e-DFRSs

[Source: author]

5.2.4 CSPM-Generator – Phase IV

The CSPM-Generator component encodes DFRSs as CSP processes. More specifically,
it describes in CSPM how the expanded DFRS is obtained from the symbolic one. As explained
in details in Section 4.2, first, processes are created to represent a shared (global) memory, which
comprises the current values of the DFRS inputs and outputs. Time is modelled symbolically to
prevent state explosion when compiling the CSP specification and generating the corresponding
LTS. When some behaviour depends on the amount of time elapsed, we just assume that the
delay occurred satisfies the temporal constraints, and we perform a specific event to represent
this assumption. Later, we use Z3 to find concrete values for delays that satisfy these constraints
(see Section 5.2.5).

Then, the tool creates a CSP process from the functions of the symbolic DFRS. Here,
we also keep traceability with the original requirements by means of events named after the re-
quirements identifier. When these events occur, it implicitly states that the system is presenting
the behaviour described by the corresponding requirement. Finally, some auxiliary processes
are generated to represent the occurrence of function and delay transitions. Figure 5.8 shows a
fragment of the CSPM code generated for the VM example.

5.2.5 TC-Generator – Phase V

This component generates concrete test cases. The testing theory presented and devel-
oped in Chapter 4 has a premise that the implementation model is or can be modelled as a

5.2. NAT2TEST TOOL 137

Figure 5.8: NAT2TEST tool – viewing the generated CSP

[Source: author]

CSP-TIO process. If one desires to test an implementation that is not formally modelled as
a CSP-TIO process, the NAT2TEST strategy can also be used, although we cannot guarantee
the soundness of the testing process, since soundness is proved with respect to test cases as
CSP-TIO processes.

To analyse the behaviour of an implementation that is not a CSP-TIO process, we derive
concrete test cases, which can be seen as purely test data, from test scenarios. No test oracle
is automatically associated with the generated concrete test cases, since, in our formal testing
theory, the oracle is embedded in the process T TC BUILDER and, thus, test scenarios do not
have this information.

Therefore, to use concrete test cases to analyse the behaviour of an implementation, it
is necessary to first create test drivers, to send the test data to the implementation and to read
the produced outputs from them, besides writing a test oracle. Assuming that, concrete test
cases can be provided as input for simulating models (e.g., Simulink models) or testing code
(e.g., C code). In this work, we performed this task when evaluating the NAT2TEST strategy,
as described in Section 5.3.2.

The generation of concrete test cases is done in two steps: (1) the enumeration of test
scenarios via the FDR model checker (as explained in Section 4.5), and (2) the instantiation of
time-related events via Z3 (considering Algorithm 17 – Section 4.4.1). The enumeration of test

5.2. NAT2TEST TOOL 138

cases is performed with the aid of a TCL5 script.
Due to the potential large (possibly infinite) number of test cases, it is important to con-

sider some coverage criteria (e.g., maximum number of test cases, coverage of nodes/transitions
of the LTS, requirement coverage, among others) to guide the test-generation process. Here, we
consider requirement coverage: one can select which requirements should be covered by the
generated test cases. To meet this criteria the tool uses the idea explained in Section 4.5. For
instance, considering the following requirement (REQ004) of the VM example:

� When the system mode is preparing weak coffee, and the request timer is greater

than or equal to 10.0, and the request timer is lower than or equal to 30.0, the coffee

machine system shall: assign idle to the system mode, assign weak to the coffee

machine output.

FDR yields the following trace (sequence of events performed). Note that the symbol “...” is
used to abstract some events or parts of a compound one.

< output.the system mode.I.1.the coffee machine output.I.0, ...,
input.the coffee request button.B.false.the coin sensor.B.true, ...,

delay...B.false...,reset the request timer, ...,

output.the system mode.I.0.the coffee machine output.I.0, ...,
input.the coffee request button.B.false.the coin sensor.B.false, ...,

delay...B.false..., ...,

output.the system mode.I.0.the coffee machine output.I.0, ...,
input.the coffee request button.B.true.the coin sensor.B.false, ...,

delay...eta2.B.true...,reset the request timer, ...,

output.the system mode.I.3.the coffee machine output.I.0, ...,
input.the coffee request button.B.false.the coin sensor.B.false, ...,

delay...eta3.B.true, ...,

output.the system mode.I.1.the coffee machine output.I.1,
accept >

Basically, we can split the events into three distinct groups: input, output, and time-
related events (delays and resets). From the first two, the tool infers the stimuli provided to
the system, as well as the expected response. For example, the first input event represents
the situation when the coffee request button is not pressed (false), and the coin sensor is true.
Similarly, the first output event tells us that the system should react by going to the choice state
(represented by 0), and the machine output is still equal to its initial value (assuming 1).

One concrete test case is obtained with the aid of Z3. From the reset and delay events
we automatically generate a satisfiability problem. More specifically, there is a mapping from

5http://www.tcl.tk/

http://www.tcl.tk/

5.2. NAT2TEST TOOL 139

each eta variable that appears in the trace to a time constraint that needs to be fulfilled. Z3 is
then used to find solutions (delays) that satisfy these constraints. More details are available in
Section 4.4.1.

Figure 5.1, previously presented in Section 5.2, shows the screen where the user can
select which requirements the test cases are going to cover, as well as inspect the generated test
cases, which are presented in a tabular form. The concrete test case depicted in Figure 5.1, and
reproduced in Table 5.1, is one possible concrete test case obtained from the previous trace. In
this test case, a weak coffee is produced, since the user requested the coffee 2 seconds after
inserting the coin. The coffee was delivered 10 seconds after the request. We note that in this
test case the initial value of the machine output signal is strong.

Table 5.1: Example of test case for REQ004 (vending machine)

TIME request coin mode output
0.0 false false idle strong
1.0 false true choice strong
2.0 false false choice strong
3.0 true false preparing weak coffee strong

13.0 false false idle weak

[Source: author]

In Table 5.1, request, coin, mode, and output stands for the system inputs (namely,
the coffee request button, the coin sensor) and the system outputs (namely, the system mode,
the coffee machine output), respectively. For legibility purposes, in the two rightmost columns,
the numbers were replaced by their respective values according to the enumerations of each sig-
nal (see Figure 5.5): 0 7→ choice,1 7→ idle,3 7→ preparing weak coffee for the system mode, and
0 7→ strong,1 7→ weak for the coffee machine output.

5.2.6 SCR-Generator – Alternative I

To compare our proposal of using refinement checking to generate test cases with strate-
gies employed by the industry, we consider two popular tools for that goal: T-VEC and RT-
Tester. The first generates test cases from SCR specifications (as presented in the current sec-
tion), whereas the second one is based on an intermediate representation called IMR (Sec-
tion 5.2.7).

To allow a fairer comparison with our approach, we create an interface for using these
tools within the context of natural-language requirements. Although it is possible and actually
more promising to generate these notations from DFRS models, we derive SCR and IMR spec-
ifications directly from requirement frames, since the DFRS models were devised later, and it
is not within the scope of this work to show how DFRSs models could be used instead.

Currently, SCR is being applied in several different control system industries (HEIT-

5.2. NAT2TEST TOOL 140

MEYER; BHARADWAJ, 2000), like Grumman, Bell Laboratories and Lockheed. Our work
uses the T-VEC (BLACKBURN; BUSSER; FONTAINE, 1997) tool for automating the gener-
ation of tests from SCR specifications. It is a non-linear constraint solving theorem prover that
helps ensuring requirements satisfiability, besides supporting testing. Moreover, T-VEC also
allows the generation of test drivers in different programming languages, which assess the SUT
with respect to the generated tests.

SCR employs monitored and controlled variables to define system requirements. It also
has mode classes, used to model system states, and terms, internal variables declared for reuse
purposes. SCR also allows the definition of a set of assumptions to impose constraints on the
variables. It is also possible to define assertions describing properties, such as security and
safety.

Functions define the behaviour of a system by specifying how changes of monitored
variables, and even controlled ones, affect each controlled variable. Functions describe condi-
tions (predicates) that, when valid, change a specific variable in a particular way. SCR allows
two types of predicates: condition predicate, which is defined considering a single system state;
and event predicate, which takes into account the changes that happen between two states.

An SCR event predicate has the form: †(c) WHEN d, where † stands for @T, @F, @C.
A dashed (′) variable is the variable value in the new state, and an undashed variable stand
for its value in the previous state, the meaning of these event predicates are: @T(c) WHEN d

≡¬ c∧ c′ ∧ d, @F(c) WHEN d ≡ c∧¬ c′ ∧ d, and @C(c) WHEN d ≡ c 6= c′ ∧ d. If WHEN d is
omitted, the meaning is defined considering only the previous and current value of c. To clarify
the meaning of these event predicates, consider the following examples, and remember that a
dashed variable stands for the value of this variable in the current state, whereas an undashed
one refers to the value of this variable on the previous system state.

� @T(x < 3) WHEN y = 4 ≡ NOT(x < 3) AND (x′ < 3) AND (y = 4)

� @F(x < 30) ≡ (x < 30) AND NOT(x′ < 30)

� @C(x < 30) ≡ (x < 30) 6= (x′ < 30)

From the first SCR proposal, some extensions were introduced. For instance, the support
for the WHERE and WHILE semantics, in addition to WHEN: WHERE means that d is true
only in the next state and WHILE means that d is true in the previous and next states (ATLEE;
GANNON, 1993). The SCR we are generating follows the grammar presented in (LEONARD;
HEITMEYER, 2003), but it also accepts this enhancement.

The SCR generation starts by determining the variables and their types. Variables are ex-
tracted from the PAT and CPT roles. Variables may be classified as controlled or as monitored.
A variable v that is used in conditions is classified as monitored as it does not change. Its name
starts with the prefix “m ” (e.g., CPT{the coin sensor} becomes the “m the coin sensor”
variable). Otherwise, if v appears as a patient, its value can change. Therefore it is classified

5.2. NAT2TEST TOOL 141

as controlled, and receives a name starting with the prefix “c ”. Variables that appear both
in conditions and in actions give rise to a monitored and a controlled variable. The former
represents the system input, whereas the latter the system reaction.

To determine the variable types, we examine the contents of the thematic roles that are
related to that specific variable occurrence. For example, if v appears as a CPT, we examine
the contents of CFV and CTV. If v appears as a patient, we examine the values of TOV. This
inference process is analagous to the one used when inferring variables of a DFRS model (see
Section 3.2).

The next step consists of identifying SCR functions to describe how the controlled vari-
ables evolve according to modifications of other variables. A function is created for each con-
trolled variable (var). It comprises one or more predicates obtained from the system require-
ments whose patient is the controlled variable (var).

As previously explained, there are two types of predicates in SCR: condition and event
predicates. Predicates of the first type is generated when the requirement considers only the
current value of variables (var is false). However, when the requirement mentions the current
but also the previous value, event predicates are considered (var changes from false to true).
For instance, the requirement REQ001 of the VM (reproduced below):

� REQ001 - When the system mode is idle, and the coin sensor changes to true, the

coffee machine system shall: reset the request timer, assign choice to the system

mode. [VM]

is translated to the following event predicate related to the variable c the system mode:

(@T(m the coin sensor = true)) AND (m the system mode’ = 0) -> 1

Consider that, regarding the system mode, the value 0 stands for the idle state, and 1 for the
choice state. The left-hand expression of -> is the guard, whereas the right-hand expression
(1) is the expected system reaction when the guard is fulfilled (assigning 1 to the variable
c the system mode). We note that the previous predicate does not deal with the temporal
aspect of the requirement (resting the request timer). We explain how time is modelled in SCR
later.

When only condition or event predicates are associated with a controlled variable, the
process of generating functions is straightforward. However, when a mixed scenario is the
case, a special handling is required, since this is not allowed in SCR. In such a situation, two
auxiliary variables are created: “c event ” to group the event predicates, and “c cond ” to
group the condition predicates. Then, the controlled variable function is defined based on these
two auxiliary variables. This way, the controlled variable changes triggered by any change of
one of these variables using the @C operator (see in Figure 5.9 the definition of the variable
c the system mode).

5.2. NAT2TEST TOOL 142

In some extensions of SCR there is a natural handling for time, namely via the operator
DUR. However, the SCR version accepted by T-VEC does not implement this operator. There-
fore, we need to create a special handling for time in our codification. Briefly, we create a new
auxiliary monitored variable to denote the time, which is used when timed-based behaviour is
necessary. In (CARVALHO et al., 2014c) we detail how SCR specifications are created from
requirement frames, providing details for the aspects briefly mentioned here. The idea infor-
mally presented here is implemented in the SCR-Generator component. Figure 5.9 shows the
SCR specification automatically generated for the VM example.

First, monitored and controlled variables are declared, besides auxiliary ones (m TIME

to represent the time, c cond the syste mode and c event the system mode to group the
condition and event predicates related to the system mode). We note that outputs that are also
inputs (the system mode) also give rise to monitored variables.

Afterwards, we show the definition of some functions. As previously explained, there
are in SCR two types of predicates: condition (enclosed by if-fi blocks) and event (enclosed by
ev-ve blocks) ones. The expression before the symbol -> represents the guard, whereas the one
after is the expected system reaction (the value that is assigned to the controlled variable when
the corresponding guard evaluates to true).

To generate test cases from the SCR specification, we use the T-VEC tool. T-VEC uses
a tabular representation of SCR (BLACKBURN; BUSSER; FONTAINE, 1997), and thus the
SCR specification is created using the T-VEC Tabular Modeler. Then, we use one component of
T-VEC, the Vector Generation System (VGS), to automatically generate test cases from the SCR
specification. When generating test cases, we can use the various configuration possibilities
provided by the VGS component, such as generation guided by coverage criteria.

5.2.7 IMR-Generator – Alternative II

Here, system behaviour is internally modelled by state machines, captured in the IMR
notation. The system model is arranged in hierarchical components c ∈ C, so that a partial
function pC : C 7→C mapping each component but the root cr to its parent is defined (PELESKA
et al., 2011). Each component may declare variables, and hierarchic scope rules are applied in
name resolution. Interfaces between Test Environment (TE) and SUT, as well as global model
variables, are declared at the level of cr. All variables are typed. When parsing the model the
scope rules are applied to all expressions and unique variable symbol names are used from then
on. Therefore we can assume that all variable names are unique and taken from a symbol set V

with pairwise disjoint subsets I,O,T ⊂ V denoting TE→ SUT inputs, SUT→ TE outputs and
timers, respectively.

Each leaf component is associated with a state machine s ∈ SM, where SM denotes the
set of all state machines which are part of the model. State machines are composed of locations

5.2. NAT2TEST TOOL 143

Figure 5.9: The vending machine specification – SCR

spec the coffee machine system
monitored variables
m the system mode : INTEGER;
m the request timer : FLOAT, initially 0;
m the coin sensor : BOOLEAN;
m the coffee request button : BOOLEAN;
m TIME : FLOAT, initially 0;

controlled variables
c the coffee machine output : INTEGER;
c the system mode : INTEGER;
c the request timer : FLOAT;
c cond the system mode : INTEGER;
c event the system mode : INTEGER;

function definitions
var c the coffee machine output :=
if
[] ((m TIME - m the request timer) <= 30.0) AND

((m TIME - m the request timer) >= 10.0) AND (m the system mode = 2) -> 0
[] ((m TIME - m the request timer) <= 50.0) AND

((m TIME - m the request timer) >= 30.0) AND (m the system mode = 3) -> 1
fi

var c the system mode :=
ev
[] @C(c cond the system mode) -> c cond the system mode’
[] @C(c event the system mode) -> c event the system mode’
ve

var c cond the system mode :=
if
[] ((m TIME - m the request timer) <= 30.0) AND

((m TIME - m the request timer) >= 10.0) AND (m the system mode = 2) -> 0
[] ((m TIME - m the request timer) <= 50.0) AND

((m TIME - m the request timer) >= 30.0) AND (m the system mode = 3) -> 0
fi

var c event the system mode :=
ev
[] (@T(m the coin sensor = true)) AND (m the system mode’ = 0) -> 1
[] (@T(m the coffee request button = true)) AND

((m TIME’ - m the request timer’) <= 30.0) AND
(m the coin sensor = false) AND (m the coin sensor’ = false) AND
(m the system mode’ = 1) -> 2

[] (@T(m the coffee request button = true)) AND
((m TIME’ - m the request timer’) > 30.0) AND
(m the coin sensor = false) AND (m the coin sensor’ = false) AND
(m the system mode’ = 1) -> 3

ve

[Source: author]

5.2. NAT2TEST TOOL 144

(also called control states) ` ∈ L(s) and transitions

τ = (`,g,α, `′) ∈ Σ(s)⊆ L(s)×G×A×L(s)

connecting source and target locations ` and `′, respectively. Transition component g∈Bexpr(V)

denotes the guard condition of τ , which is a Boolean expression over symbols from V . For timer
symbols t ∈ T occurring in g we only allow boolean conditions elapsed(t,c) with constants c.
Intuitively speaking, elapsed(t,c) evaluates to true if at least c time units have passed since
t’s most recent reset. Transition component α ∈ A = P(V ×Expr(V)) denotes a set of value
assignments to variables in V , according to expressions from Expr(V). A transition without
assignments is associated with an empty set α =∅.

The work reported in (PELESKA et al., 2011) allows for the hierarchical decomposition
of locations into OR-states, but for the purposes of our work flat machines are sufficient. Thus,
every control state is also a Basic Control State, that is, a leaf in the hierarchy of control states.
For a more comprehensive definition of the IMR notation, refer to (PELESKA et al., 2011).

Now, we present an overview of how an IMR can be extracted from requirement frames.
Recall that the AGT role represents who performs the action. Thus, for each different AGT we
create a new IMR component. Each system component comprises a state machine with a single
location, and, based on the requirement frames, we infer self-transitions.

To illustrate this, we consider again the requirement REQ001 of the VM (reproduced
below):

� REQ001 - When the system mode is idle, and the coin sensor changes to true, the

coffee machine system shall: reset the request timer, assign choice to the system

mode. [VM]

From its requirement frame, we extract the following transition: τ = (`i,gi,j,αi,j, `i), where `i

represents the location of the ith state machine, which is the one corresponding to the the coffee

machine system. The guard of this transition is [mode = 1 ∧ sensor = true ∧ old sensor =

false], where mode represents the system mode, sensor the current value of the coin sensor, and
old sensor the last value of the coin sensor. The name idle is represented as 1, and choice as 0.

Moreover, the actions associated with this transition are {(mode,0),(request timer,0)}, where
request timer represents the request timer.

To extract transitions like the one just presented, and to create an IMR from the require-
ment frames, we rely upon three main algorithms: identifying variables, identifying transitions,
and creating IMRs. Hereafter, we present an intuition about these algorithms. A complete
explanation can be found in (CARVALHO et al., 2014a).

In the IMR, variables are of three possible kinds: input, output and global variables.
Besides that, we support the following data types: integer, floating point numbers, boolean and
clock (timers). We note that there is a natural support for timers in this notation.

5.2. NAT2TEST TOOL 145

We consider inputs as variables provided to the SUT by the testing environment; their
values cannot be modified by the system. Thus, a variable is classified as an input if, and only
if, it appears only in conditions. All other variables, except the ones whose type is a clock,
are classified as outputs. Clock variables (timers) are always classified as global variables.
To distinguish between timers and other variables, we require the former to have the word
“timer” as a suffix. Besides the input, output and clock variables, we create additional global
variables do keep the old values of inputs and outputs. We know when old variables are required
inspecting the content of the CAC role. If verbs such as was, becomes, among others are used,
we know that the corresponding condition will refer to old value of variables. Old variables are
prefixed by “ old”. To infer the type of the variables we analyse the value associated with it in
the requirement frame, which is the content of the roles: CTV, CFV, and TOV.

For each requirement frame, we also extract transitions: guard expressions and state-
ments. The transitions are associated with their respective AGT representing a system compo-
nent (one component per agent). The transitions are derived from the requirement conditions,
whereas actions are the source for identifying assignments. Finally, we assemble the variables
and transitions previously identified into one IMR top component, which comprises all system
components identified after AGT roles.

As one might note, despite the particularities of each notation, the process described
here and in Section 5.2.6 for deriving a formal model from requirement frames has many com-
mon points. This was our motivation for proposing the general model DFRS, from which
different formal notations can be derived. This way, on which translation we only need to focus
on the specific characteristics of each notation, since general aspects (such as identification of
variables, and types) were already identified when generating the DFRS model.

For generating test cases with associated test data from IMR models, we rely on the
RT-Tester tool (PELESKA et al., 2011). First, the model behaviour is formally encoded by
means of a transition relation Φ. Following previous works (CLARKE; GRUMBERG; PELED,
1999), we describe transition relations relating pre- and post-states by means of first order pred-
icates over unprimed and primed symbols from BCS∪V ∪ {t̂}, where BCS =def

⋃
s∈SM L(s)

(“BCS” stands for “basic control states”). The unprimed symbols refer to the symbol value in
the pre-state, and the primed symbols to post-state values. The variables with prefix “ old” are
interpreted as unprimed symbols.

The transition relation distinguishes between discrete transitions ΦD and timed transi-

tions (also called delay transitions) ΦT , allowing the model execution time t̂ to advance and
inputs to change, while the basic configuration, internal (excluding the special “old” variables)
and output variables remain frozen. The delay transition is also responsible for updating the
variables with prefix “ old”. Thus, before changing the value of inputs, it copies the current
value of each variable, which has an old version, to its old version. Discrete transitions take
place whenever at least one state machine has an enabled transition, and they perform the as-
signments associated with the enabled transitions.

5.3. EMPIRICAL EVALUATIONS 146

After encoding IMR models as transition relations, test cases are expressed as logical
constraints identifying model computations which are suitable to investigate a given test ob-
jective. These constraints are symbolic test cases since at this stage no concrete test data to
stimulate a model computation satisfying them exists. To solve these constraints we use the
SMT solver of the RT-Tester. Thus, the solution can be seen as a test case composed by a se-
quence of test vectors where each test vector comprises the value of inputs and the system state
with respect to a particular time moment.

5.3 Empirical evaluations

We evaluate the NAT2TEST strategy, in particular the specialisation that considers the
process algebra CSP, considering examples from the literature, but also from the aerospace and
the automotive industry (see Section 5.1). For each domain, we analyse two aspects: (i) the
performance (Section 5.3.1) of each phase of the strategy (phase I – syntatic analysis; phase II
– semantic analysis; phase III - DFRS generation; phase IV – CSP generation; and phase V –
test generation), as well as the time required to execute the generated concrete test cases; and
(ii) the ability to detect defects by means of mutation analysis. As a baseline we considered the
generation and execution of random tests using Randoop (PACHECO et al., 2007).

It is important to bear in mind that threats to validity apply to this work. Despite that,
the results allow interesting insights and provide some evidence about the feasibility of our
proposal.

� Conclusion validity: design decisions considered when creating the reference Java
programs might influence the results obtained, in particular, the ability of detecting
errors via random testing. Moreover, the conclusions were not drawn with the aid of
statistical analyses due to the few examples considered.

� Construct validity: our analysis regarding the ability to detect defects considered
mutation analysis of Java programs, and random testing as baseline. Considering
the nature of the domain of this work (timed reactive systems), it would be better to
have considered embedded software instead of Java code.

� External validity: as we considered few examples, and they are of relatively small
to medium size, we cannot statistically generalise the reached conclusions.

5.3.1 Performance analysis

In this section, all time measurements correspond to an environment configured by an
i3 CPU with 2.27GHz equipped with 4 GB of RAM memory running the Ubuntu 14.04 LTS
operating system. Table 5.2 presents the metrics related to our performance analysis considering
the average time obtained from multiple runs (no outliers were eliminated).

5.3. EMPIRICAL EVALUATIONS 147

Table 5.2: Performance metrics

NAT2TEST
VM NPP PC TIS

of requirements/words: 5/232 11/268 8/294 17/580
Time to process the reqs.: 0.11s 0.07s 0.14s 0.35s
of cond./actions/TRs: 18/10/130 21/11/149 26/8/162 54/34/406
Time to identify the RFs: 0.10s 0.14s 0.10s 0.20s
of I/O/T: 2/2/1 3/3/0 4/1/0 3/2/1
Time to generate the s-DFRS: 0.02s 0.01s 0.01s 0.01s
CSP specification (LOC): 134 135 112 189
Time to generate the CSP: 0.04s 0.02s 0.01s 0.01s
of concrete test cases: 25 55 30 51
Time to create tests (FDR2/Z3): 94.87s/1.19s 39.23s/0.90s 4.52s/0.47s 778.28s/0.86s
Time to run the tests: 10.20s 2.91s 0.44s 12.44s
NAT2TESTCSP – Total Time: 106.53s 43.28s 5.69s 792.16s

Randoop
of test cases: 100 100 100 100
Time to generate the tests: 3.18s 1.52s 3.48s 4.50s
Time to run the tests: 25.10s 34.25s 22.16s 121.68s
Randoop – total time: 28.28s 35.77s 25.64s 126.18s

[Source: author]

5.3. EMPIRICAL EVALUATIONS 148

The first three examples (VM, NPP, and PC) comprise simpler specifications, with a
smaller lexicon (dictionary), besides less requirements and words, when compared with the TIS
example. Within 0.11s, 0.07s, and 0.14s the respective requirements (5 for the VM, 11 for
the NPP, and 8 for the PC) were parsed. Concerning the TIS (a larger specification with 682
words), 0.35s were necessary to analyze its 17 requirements. The actual number of words of the
TIS is 682; however, using the aliases techniques described in Section 2.1.1.2, 102 were spared
due to reuse.

After parsing the requirements, the obtained syntax trees are processed by the RF-
Generator component. The contextual and inference rules presented in Section 2.2 were suc-
cessfully used to infer the thematic roles from the requirements’ syntax trees. By success-
fully we mean that the identified thematic roles were manually inspected and all of them corre-
spond to the expected result. This component identified 130, 149, 162 and 406 thematic roles
(among 18/10, 21/11, 26/8, 54/34 conditions/actions, respectively) for each example, within
0.10s, 0.14s, 0.10s, and 0.20s, respectively.

From the requirement frames, we generate s-DFRS models. In these examples, it com-
prises systems with 2 (VM) to 4 (PC) inputs, and with 2 (VM, TIS) to 3 (NPP) outputs. Note
that the examples NPP and PC do not have timers, that is, they do not have temporal-based
behaviour. Therefore, no timers are required in these examples.

Afterwords, we encode the DFRS models as CSP processes. For the considered exam-
ples, the CSP models range from 112 Lines of Code (LOC) for the PC example to 189 LOC
(TIS). The CSP specifications are generated in less than 0.05s.

Using FDR and Z3, we generate 5 concrete test cases for each requirement, except for
the TIS system, in which case only three test cases were considered for each requirement. Here,
we use the approach explained in Section 4.5 to select and generate test scenarios. Then, as
explained in Section 5.2.5, we generate concrete test cases.

As one can clearly see in Table 5.2, the enumeration of test scenarios via FDR is the
most time-consuming step. It is important to say that in these experiments we have not explored
FDR compression and optimisation techniques yet.

Finally, the automatically generated test cases were used to find faults systematically
created by code mutation in Java programs (see Section 5.3.2). Within 10.20s, 2.91s, 0.44s, and
12.44s the complete set of tests were ran against all mutants generated from the VM, NPP, PC
and TIS programs, respectively. Therefore, the total amount of time required to perform the
entire NAT2TESTCSP strategy, besides running the generated test cases, was about 13 minutes
for a medium size example (TIS), whereas only 5.69s were necessary for the simplest example
(PC).

To provide a baseline, we used Randoop (PACHECO et al., 2007) to randomly generate
test cases from the same Java programs created for each analysed example. In these experiments
we needed to consider a relatively small set of random test cases. The reason is not the time
required to generate these tests (Table 5.2 shows that the tests were generated within 5s), but

5.3. EMPIRICAL EVALUATIONS 149

the amount of memory needed to run these random tests. With more test cases, we got a Java
OutOfMemory exception concerning the Java PermGen space.

Each random test created by Randoop instantiates a Java object. With this object, Ran-
doop performs several random manipulations, and finally asserts its state to check whether it is
equal to the expected one. Hence, a huge number of objects are created within a short amount
of time, and the Java garbage collector does not handle them as fast. To give some figures,
concerning the TIS example, assuming an average of 10 objects being created per test, a set of
100 test cases and 1,000 mutants, one might have about 1,000,000 objects being created within
a time frame that would not be enough for proper garbage collection.

5.3.2 Mutant-based strength analysis

The use of mutation operators yields a statistically trustworthy comparison of test cases
strength because they create erroneous programs in a controlled and systematic way (AN-
DREWS; BRIAND; LABICHE, 2005). Thus, a good test case should be able to detect the
introduced error (i.e., kill the mutant). Sometimes the alive mutant is equivalent to the correct
program. However, in general, such a verification is undecidable and too error-prone to be made
manually.

In this work we follow a conservative approach in which we assume that all alive mu-
tants are considered different. This assumption makes the results of the empirical analysis the
worst case. In other words, if some alive mutants are semantically equivalent to the original
program, what might happen, the resulting mutation score would be higher as these mutants
would not be considered. Therefore, as previously said, the results presented here consist of a
worst-case analysis.

To perform the mutant-based strength analysis reported in this section, we created refer-
ence (concerning at least the automatically generated test cases by our strategy and by Randoop)
Java implementations for the four examples considered in this work. The Java code was cre-
ated according to the following approach: we created a single method whose body consists of
if-else clauses written after the system requirements. The return of this method is a string with
the expected state of the system after executing this method for the given inputs. To avoid a
non-deterministic test result due to the unpredictability of time, we modelled the system global
time as a system variable. Hence, the test procedure is able to control the system time evolv-
ing. Despite that, we still have the possibility of time-related faults. For instance, the mutation
process can lead to situations where a timer variable is reset in an inappropriate moment or the
system fails to read the correct value of the global time.

We generated mutants systematically and deterministically using the µJava tool (MA;
OFFUTT; KWON, 2005). We considered all method-level mutant operators (a total of 15 op-
erators) provided by µJava. Given a base class, the µJava tool automatically generates new
classes applying its mutant operators. For example, the statement x++ can be changed to ++x,

5.3. EMPIRICAL EVALUATIONS 150

Table 5.3: Metrics concerning mutant-based strength analysis

VM NPP PC TIS
Java (LOC): 48 66 46 94
Mutants: 238 319 135 1,127

NAT2TESTCSP
Killed: 174 247 105 362
Mutation Score: 73.11% 77.43% 77.78% 32.12%

Randoop
Killed: 67 85 113 139
Mutation Score: 28.15% 26.65% 83.70% 12.33%

[Source: author]

x--, and --x, and thus the tool generates three new versions of the base class.
After generating mutants, we ran the generated test cases against each mutant to com-

pute the mutation score, and thus evaluate the test suite (composed by all test cases) strength.
Concerning our approach, we needed to manually instrument the Java code to link the test
inputs/outputs with the Java code variables. Table 5.3 summarizes the collected metrics.

As it can be seen in Table 5.3, fewer mutants were generated for the first three Java
programs (238, 319 and 135, respectively) than the last one (1,127). The best mutation score
was obtained for the Embraer example (PC – 77.78%). Contrarily, we had the worst score with
the TIS example (32.12%). The Randoop tests killed less mutants for all examples but the PC.

The PC example is a typical scenario where random testing can yield good results: the
code comprises only a small set of boolean variables (5 variables to be precise – 4 inputs and 1
output), besides not considering time-dependent behaviour. Therefore, it is not hard to enumer-
ate all possibilities (32). However, when we are dealing with more complex examples (more
variables, besides time-dependent behaviour), Table 5.3 shows that our approach outperforms
random testing (particularly using Randoop), that is, it was able to unveil more faults than a
random test generation strategy and within considerably less amount of time.

5.3.3 Practical validation of DFRS models

Besides analysing performance and mutant-based strength analysis, we provide an em-
pirical argument to whether the DFRS models are expressive enough to represent the behaviour
of a timed reactive system as defined using natural language. It is an important evaluation, since
DFRS models are a central element of our strategy.

Considering the same four examples (see Section 5.1), and supported by the mechani-
sation of the strategy particularly presented in Section 5.2.3 (the DFRS animator), we assess
whether test cases, either independently written by domain specialists from industry or gener-
ated by a commercial tool (RT-Tester) from the same set of requirements, are compatible with
the corresponding DFRS models. By being compatible, we consider that there is a sequence
of delay and function transitions of the e-DFRS, which is obtained from the s-DFRS generated

5.4. CONCLUDING REMARKS 151

from the NL requirements, that illustrate the delays, the system inputs and the expected outputs
described in the test case.

To analyse whether the test cases are compatible with the corresponding DFRS models,
we have developed a depth-first search algorithm that explores the state space of an e-DFRS
guided by a test case. We provide to the model the inputs described by each test vector, and
check whether the outputs provided by the system are equal to those in the vector. This com-
parison is straightforward (that is, the test oracle is trivial) since we are dealing with primitive
types.

The verdict of this compatibility analysis has been successful, since all test cases are
compatible with the corresponding DFRS models and, thus, it gives some evidence that the
DFRS models for the four examples did not fail to capture the underlying semantics of the
natural-language requirements. The time required to performe this analysis ranged from 9ms
(VM) to 192ms (TIS).

5.4 Concluding Remarks

This chapter presented the tool developed to support the NAT2TEST strategy. The
NAT2TEST tool is written in Java (it is multi-platform), and its GUI is built using the Eclipse
RCP framework. Each phase of the strategy is implemented by one different component to
promote reuse. For instance, one might reuse the CNL-Parser, the RF-Generator, and the DFRS-
generator to obtain DFRS models from natural-language requirements and, then, derive formal
specifications, considering notations not targeted here, such as Coloured Petri Nets (CPNs)
(JENSEN, 1996), via the implementation of a new generator (e.g., CPN-Generator). We have
actually explored this particular path, as further discussed in Chapter 7.

Here, we also evaluated the NAT2TEST strategy, in particular the specialisation that
considers the process algebra CSP – NAT2TESTCSP, considering examples from the literature,
but also from the aerospace and the automotive industry. For each example, we analysed two
aspects: (i) performance, and (ii) the ability to detect defects by means of mutation analysis. As
a baseline, we considered random testing (Randoop). In general, our strategy was able to unveil
more faults than a purely random test generation strategy and within considerably less amount
of time.

To compare our proposal of using refinement checking to generate test cases with strate-
gies employed by the industry, we considered two alternatives for the NAT2TESTCSP strategy
(NAT2TESTSCR and NAT2TESTIMR), which are based on the notations SCR and IMR. In such
cases, the test generation is performed with the aid of popular tools for this goal: T-VEC and
RT-Tester, respectively. The achieved results are fully presented in (CARVALHO et al., 2014c)
and (CARVALHO et al., 2014a).

It is important to clarify that the results achieved using T-VEC and RT-Tester shall not
be used to say that one or other is better or worse than the generation of test cases via refinement

5.4. CONCLUDING REMARKS 152

Table 5.4: Mutation score with respect to the NAT2TEST specialisations

VM NPP PC TIS
NAT2TESTCSP: 73.11% 77.43% 77.78% 32.12%
NAT2TESTSCR: 57.74% 48.28% 95.52% 37.48%
NAT2TESTIMR: 54.67% 69.04% 87.50% 98.05%

[Source: author]

checking (in particular, FDR). Such a comparison would be biased due to the fact that the focus
of this research, since from its beginning, was to explore the use of refinement checking to
generate test cases and, thus, we might have not employed the same investigative effort on the
NAT2TEST specialisations that use SCR and IMR.

Nevertheless, it is an important exercise to apply part of our strategy, with the aid of
commercial testing tools, to analyse whether the generation of test cases from natural-language
requirements can lead to relevant results. With respect to the mutant-based strength analy-
sis criterion, Table 5.4 summarises the achieved figures by these three specialisations of the
NAT2TEST strategy.

As one can see, the CSP-based approach achieved higher mutation scores for the first
two examples (VM and NPP). With respect to the VM example, the highest score was achieved
with the aid of T-VEC, whereas for the TIS example, with the aid of the RT-Tester. Regarding
the VM, we justify the higher results of T-VEC and RT-Tester to the adoption of better cov-
erage criteria. Using FDR, we generated a fixed number of test cases for each requirement.
However, T-VEC and RT-Tester offer more efficient coverage criteria such as Modified Condi-
tion/Decision Coverage (MC/DC) (HAYHURST et al., 2001). Therefore, we believe that if we
considered better coverage criteria for selecting test scenarios, we would be able to unveil more
errors and, thus, achieve higher mutation scores, without generating more test scenarios.

The high mutation score achieved with the aid of the RT-Tester with respect to the TIS
example is quite intriguing, since the tool achieved significantly lower scores in less complex
examples, such as the VM and the NPP, and no specific configuration was used when generating
test cases for the TIS. Our main hypothesis for this result is that the generated test cases for
the TIS are considerably longer (more steps) than the ones generated for the VM and NPP.
Therefore, we believe that the longer test cases were able to reach system states that were
not reached by the shortest test cases of the VM and the NPP. An interesting investigation,
not performed since it is outside the scope of this research, is trying to force the RT-Tester to
generate longer test cases for the VM and the NPP to compare the obtained results.

Regarding performance, as expected, the NAT2TESTCSP variant, mainly with respect to
the TIS example, was considerably slower (792.12s) than the other two variants (NAT2TESTSCR:
93.87s; NAT2TESTIMR: 87.61s). We say that this was expected as these tools (T-VEC and RT-
Tester) were designed and optimised for the particular goal of generating test cases, whereas
FDR is a general-purpose model checker. Moreover, as previously said, we have not explored

5.4. CONCLUDING REMARKS 153

FDR compression and optimisation techniques. This might have led to better performance.
Finally, other performed empirical evaluation concerned the expressiveness of DFRS

models. We assessed whether test cases, either independently written by domain specialists
from industry or generated by a commercial tool (RT-Tester) from the same set of requirements,
are compatible with the corresponding DFRS models. The obtained results showed that all
considered test cases are indeed compatible.

154154154

6
Related Work

In this chapter, we discuss the related work with respect to the two main scientific con-
tributions of this research: formal modelling of timed-systems from Natural Language (NL) re-
quirements (Section 6.1), and formal testing theories based on timed input-output conformance
relations (Section 6.2).

6.1 Modelling timed-systems from NL requirements

Formal modelling natural languages is not a new-term research topic. Here, we analyse
works from six distinct perspectives: (1) domain: whether the modelling approach is tailored
for a specific domain; (2) input: how the system requirements are documented; (3) model: the
underlying formal notation used to represent the system behaviour; (4) data: whether this nota-
tion can explicitly deal with variables; (5) time: whether this notation can explicitly deal with
temporal behaviour; and (6) requirement analyses: which properties of the requirements can be
analysed via this notation. Table 6.1 summarises our analyses of related work considering these
six perspectives.

Some notations only consider the occurrence of events (e.g., the button has been pressed,
the voltage is higher than 10), as opposed to others that have an explicit model of variables and
values. The fundamental difference between these two approaches is that the second one is
easier to connect with generation of automated test cases, since data (variables and values) are
embedded in the model. However, as a drawback, if one considers a large amount of variables
and possible values, the number of possibilities can be a problem to deal with, when symbolic
techniques are not used. As the ultimate goal of our work is the generation of test cases, we
consider as more appropriate for our purposes the second approach, when variables and values
are part of the model.

Similarly, as we want to model and test temporal aspects of systems, which can be
discrete or continuous, we also want to incorporate time as an element of the model. Some
approaches consider limited temporal analysis, for instance, when representing and verifying
Linear Temporal Logic (LTL) properties. Here, we do not consider these works as allowing

6.1. MODELLING TIMED-SYSTEMS FROM NL REQUIREMENTS 155

Table 6.1: Related work – modelling timed-systems from NL requirements

Domain Input Model Data Time Analyses
LEE; CHA; KWON General UCs CMPN No No Consistency

Completeness
LIU et al. General UCs Act. diagr. No No Consistency

Integrity
SCHWITTER General NL reqs. FOL No No Not reported

ACEITUNA; DO; SRINIVASAN General NL reqs. CCM Yes No Off-nominal
BACKES et al. Emb. NL reqs. AADL Yes No Realisability
BODDU et al. General NL reqs. FMONA Yes No Consistency
NOGUEIRA; SAMPAIO; MOTA Mobile UCs CSP Yes No Not reported
ESSER; STRUSS General NL reqs. FRL No Yes Not reported
SIEGL; HIELSCHER; GERMAN General NL reqs. TUM No Yes Consistency

Completeness

AMBRIOLA; GERVASI General NL reqs. CNM Yes Yes Consistency
Completeness
Ambiguity

ILIC General NL reqs. B method Yes Yes Consistency
LEVESON et al. Emb. NL reqs. RSML Yes Yes Consistency

Completeness
MILLER et al. Emb. NL reqs. RSML−e Yes Yes Consistency

Completeness
Reachability

SCHNELTE Auto. NL reqs. TQE Yes Yes Reachability
SANTIAGO JUNIOR; VIJAYKUMAR General NL reqs. Statecharts Yes Yes Not reported
NAT2TEST Emb. NL reqs. DFRS Yes Yes Consistency

Completeness
Reachability
Time lock

[Source: author]

6.1. MODELLING TIMED-SYSTEMS FROM NL REQUIREMENTS 156

time modelling, since only the sequencing of events is considered.
Considering these remarks, we group similar works into three distinct categories (see

Table 6.1). While the first group comprises techniques that do not support data and time infor-
mation on requirements, the second one supports at least one of these two concepts. The last
group, to which our approach belongs, supports both of them. In what follows, we summarise
the previous studies, while comparing them with our own work.

While some approaches are tailored for Use Cases (UCs) described in NL (LEE; CHA;
KWON, 1998; LIU et al., 2014; NOGUEIRA; SAMPAIO; MOTA, 2014), processing NL re-
quirements is more common. In (LEE; CHA; KWON, 1998), a variant of Petri Nets (Constraints-
based Modular Petri Nets – CMPNs) is proposed for modelling use cases. To generate the corre-
sponding CMPN model, one needs to fill an action-condition table manually, besides clarifying
event names, which represent the actions described in the use cases. There is no support for
data and time. On the other hand, using the CMPN model, it is possible to perform consistency
and completeness analyses automatically.

In (LIU et al., 2014) and (NOGUEIRA; SAMPAIO; MOTA, 2014), use cases are used
as source for the generation of formal models: the former uses a restricted and formal version
of activity diagrams, and the latter CSP. The CNL considered in (NOGUEIRA; SAMPAIO;
MOTA, 2014) is tailored for mobile applications, whereas the strategy described in (LIU et al.,
2014) is for general purpose. Data is considered in (NOGUEIRA; SAMPAIO; MOTA, 2014)
via annotations in the use cases. Only events are considered in (LIU et al., 2014), where it is
also shown how the derived activity diagrams can be used to verify the consistency and integrity
of requirements.

A previous work (SCHWITTER, 2002) propose a computer-processable CNL for writ-
ing unambiguous and precise requirements: PENG. The specification written in PENG can be
deterministically translated into first-order predicate logic (FOL). Data and time aspects are not
considered, nor is the analysis of properties of the requirements.

In (ACEITUNA; DO; SRINIVASAN, 2014), a Casual Component Model (CCM) is
used to model the behaviour described by NL requirements. This formal model needs to be
manually created from the specification. In CCM, the states can be used to model valuations of a
variable (e.g., s1 – switch(off), s2 – switch(on)), from which a NuSMV specification (CIMATTI
et al., 1999) is automatically derived. Then, temporal logic can be used to seek off-nominal
(undesired) behaviour.

The approach of (BACKES et al., 2015) also considers variables, and it is tailored for
embedded systems. It uses as internal notation AADL (Architecture Analysis and Design Lan-
guage), where assume-guarantee contracts are manually created. In this work, it is possible to
assess whether these contracts and the corresponding requirements are realisable. Differently
from other approaches, the authors show how to perform this analysis in a compositional way.

The work reported in (BODDU et al., 2004) presents a requirements analysis tool called
RETNA. This tool accepts NL requirements and, with user interaction, it translates the require-

6.1. MODELLING TIMED-SYSTEMS FROM NL REQUIREMENTS 157

ments into a logical notation: FMONA, which is a high-level language for describing weak
monadic second-order logic. This model can then be used to analyse whether the NL require-
ments are consistent.

In (ESSER; STRUSS, 2007) requirements are written in a limited standardized format.
The requirements need to be written according to a strict if-then sentence template, which,
however, can be used to represent time properties. Despite describing how to translate these
templates to the Formal Requirement Language (FRL), the work does not elaborate on how
this model could be used to check properties of the requirements. In (SIEGL; HIELSCHER;
GERMAN, 2010) it is also possible to represent timed-behaviour using Timed Usage Models
(TUM), which are Markov Chain Usage Models (MCUM) with time information. This model
is manually created from the system requirements. Consistency and completeness properties
can be verified automatically. Differently from other approaches, this model can also take into
account probabilistic properties.

The works analysed so far do not take into account both data and time aspects and,
thus, differ from our approach: the DFRS models consider both of them. The approaches pro-
posed in (AMBRIOLA; GERVASI, 2006; ILIC, 2007; LEVESON et al., 1994; MILLER et al.,
2006; SCHNELTE, 2009; SANTIAGO JUNIOR; VIJAYKUMAR, 2012) are closer related to
our work, since they share the fact that data and time are both supported.

The CIRCE environment, which enables analysis of natural-language requirements, is
presented in (AMBRIOLA; GERVASI, 2006). In this environment, requirements are inter-
preted according to the CIRCE Native Meta-Model (CNM). Besides analysing properties of
requirements, this environment allows the generation of UML models and code from the CNM
notation. Differently from our strategy, it requires manual effort when modelling the system
requirements. Here, one needs to create by hand designations and definitions. The former
establishes equivalences between different terms that refer to the same entity, and the latter es-
tablishes notations for expressing requirements in a succinct way. While these two elements
have a well-defined and formal structure, the requirements description statements are expected
to be free-form text.

In (ILIC, 2007), the B method (ABRIAL, 1996) is used to construct formal models for
system requirements. In this work, the requirements need to be translated to predefined tem-
plates for describing events, data and time, from which B specifications are systematically trans-
lated. Each template defines the information that is mandatory. Comparing to our approach, the
thematic roles are the counterpart of these templates. As just said, in (ILIC, 2007), one needs
to classify manually the requirements according to these templates, besides filling them. Dif-
ferently, thematic roles are automatically inferred from the requirements in the NAT2TEST
strategy.

In (LEVESON et al., 1994; MILLER et al., 2006), the Requirements State Machine
Language (RSML) is used as formal model for NL requirements. A restricted version of this
notation (RSML−e) is adopted in (MILLER et al., 2006), where events are not allowed. This

6.2. TIMED INPUT-OUTPUT CONFORMANCE RELATIONS 158

notation, which is argued to be tailored for embedded systems, is used to document the system
requirement. In (LEVESON et al., 1994), this internal model is analysed by proposed algo-
rithms to check whether the requirements are consistent and complete. In (MILLER et al.,
2006), these analyses are automated with the aid of NuSMV and PVS (OWRE; RUSHBY;
SHANKAR, 1992). These two studies require user intervention to classify and edit require-
ments. This is not a necessity within the NAT2TEST strategy.

In (SCHNELTE, 2009), assuming that the system specification is manually represented
conforming to a set of templates, developed for automotive systems, a Temporal Qualified Ex-
pression (TQE) is derived. It is also necessary to identify manually signal names along with its
possible values. Differently, in our approach, the signal names, their types, and possible values
are automatically inferred.

In (SANTIAGO JUNIOR; VIJAYKUMAR, 2012), the SOLIMVA methodology is pre-
sented. The methodology has tool support to translate automatically NL requirements into
statechart models. Another tool (GTSC) is used to generate test cases. In this work, besides
writing the requirements, one needs to identify and partition inputs and outputs. This is not
required in our approach. Moreover, this work does not explain how the statechart models can
be used to analyse requirements, but considers this as a possible line for future work.

In summary, the NAT2TEST strategy formally describes system requirements using
DFRS models, which are explained in details in Chapter 3. Similarly to other approaches pre-
viously identified, the formal model used to represent the system behaviour considers both
data and time information. It can also be used to check system properties such as consistency,
completeness, reachability, and absence of time lock. Our work stands out from the similar
approaches reported here by the richness of the model generated solely from NL requirements
without user intervention.

The absence of user intervention in our strategy is a consequence of the compromise
reached by the defined controlled natural language. As we focus on a specific domain of em-
bedded systems, whose behaviour can be described as actions guarded by conditions, we can
impose some restrictions, while allowing the requirements to be expressed as a textual spec-
ification, and automatically obtain a formal model from these requirements. However, these
restrictions make our approach not suitable for writing requirements that do not adhere to this
format of actions and guards.

6.2 Timed input-output conformance relations

We compare our CSP timed input-output conformance relation (csptio) with the confor-
mance relations listed below. As some of these relations have a similar name (tioco) we added
subscripts to differentiate each of them.

� iocoDTA (KHOUMSI; JÉRON; MARCHAND, 2003);

6.2. TIMED INPUT-OUTPUT CONFORMANCE RELATIONS 159

Table 6.2: Related work – timed input-output conformance relations

Relation Tool Notation Data Delay Quiescience Partial Test
iocoDTA No DTA No Arb. Yes N/M Yes
tiocoTTG TTG TIOTS No Obs. N/M Yes Yes
rtioco T-UPPAAL TIOTS No Obs. Yes No Yes
tiocoM N/M TIOTS No Arb. Yes N/M Yes
tiocoTorX TorX TIOTS No Arb. Yes N/M Yes
tiocoSch N/M TIOTS No Obs. N/M Yes N/M
tiocoR

M N/M TIOTS No Arb. Yes Yes N/M
tiocoζ N/M TIOTS No Unb. Yes Yes N/M
tiocoAnd WIP TIOSTS Yes N/M N/M N/M Yes
csptio FDR/Z3 CSP Yes Arb. Yes Yes Yes

[Source: author]

� tiocoTTG (KRICHEN; TRIPAKIS, 2004);

� rtioco (LARSEN; MIKUCIONIS; NIELSEN, 2004);

� tiocoM (BRIONES; BRINKSMA, 2005);

� tiocoTorX (BOHNENKAMP; BELINFANTE, 2005);

� tiocoSch (SCHMALTZ; TRETMANS, 2008);

� tiocoR
M (SCHMALTZ; TRETMANS, 2008);

� tiocoζ (SCHMALTZ; TRETMANS, 2008);

� tiocoAnd (ANDRADE et al., 2011).

In our comparison, we considered the following aspects: (i) tool support, (ii) notation
to model the specification, (iii) support for data communication, (iv) assumption concerning
observability of delays, (v) quiescence definition, (vi) support for partial specifications, (vii)
definition of a test generation strategy. Table 6.2 summarises the comparison (N/M means “not
mentioned”, and WIP means “work in progress”).

Tool support. Most timed conformance relations do not have yet (or do not mention) tool to
support its verification. The relation tiocoTTG is supported by the prototype tool TTG. This tool
is built on top of the IF environment (BOZGA et al., 2000). This tool was applied to analyse
a small case study and the K9 Martian Rover executive of NASA (BRAT et al., 2004). The
relation rtioco is supported by the tool T-UPPAAL, which is built on top of the UPPAAL on-
the-fly model checking tool engine. This tool was applied on an industrial case study provided
by Danfoss Refrigeration Controls Divison that consists of an Electronic Cooling Controller
(EKC) for industrial cooling plants.

The relation tiocoTorX is verified by a timed extension of the TorX, which is an on-the-
fly testing tool that tests for ioco (TRETMANS, 1999) conformance. In this case, the work does

6.2. TIMED INPUT-OUTPUT CONFORMANCE RELATIONS 160

not report a more detailed use of the tool. Finally, the tiocoAnd mentions a tool that is currently
being developed, and it reports an application with respect to a toy example. The verification of
csptio is provided by means of FDR and Z3, as explained in Section 4.4.2.

Therefore, as it can be seen in Table 6.2, some timed input-output conformance rela-
tions are only theoretically defined; its mechanisation is not necessarily defined. Differently, as
explained in Section 4.4.2, we propose a mechanisation for verification of csptio-conformance.
Furthermore, we prove that our mechanisation is sound with respect to csptio definition.

Modelling notation. Almost all relations model the specification as a TIOTS. The exceptions
are iocoDTA and tiocoAnd. The former uses a class of Determinizable Timed Automata (DTA) to
model the specification, whereas the latter considers a symbolic TIOTS (TIOSTS).

Differently from these relations, csptio models the specification as a CSP process, and
thus does not need to handle operational models like transition systems. It is mechanised in
terms of a high-level strategy by reusing successful techniques and tools: refinement check-
ing (FDR) and SMT solving (Z3). Besides that, the use of a process algebraic approach
is more modular. An evidence of the modularity of a process algebraic approach is shown
in (NOGUEIRA; SAMPAIO; MOTA, 2014): it is shown how to deal with control aspects and
then how to consider data as a conservative extension. Handling time as we do here is also
a conservative extension of the theory presented in (NOGUEIRA; SAMPAIO; MOTA, 2014).
Particularly, Theorem 4.4.1 is an orthogonal extension of Theorem 5.1 (from (NOGUEIRA;
SAMPAIO; MOTA, 2014)), which allowed us to lift both the refinement assertion and the proof
of the untimed conformance verification. Furthermore, our algebraic and symbolic approach
seems more suitable to explore compositional properties, which we plan to develop as future
work.

Data support. The majority of the relations do not support data communication. The only
exception is tiocoAnd, which symbolically deals with data aspects. Similarly, csptio also sup-
ports data. A worth mentioning difference between these two relations is that just time aspects
are symbolically modelled in csptio, whereas tiocoAnd deals with time and data symbolically.
Therefore, the relation tiocoAnd might have a better scalability than csptio since the operational
model constructed from the TIOSTS tends to be smaller than the LTS obtained from CSP spec-
ifications of DFRS models.

Type of delay. Concerning the type of delay, we can identify two types of conformance rela-
tions. The first one comprises relations that assume that all delays are observable (referred to
as “Obs.” in Table 6.2). This assumption is not too realistic as in practice a timeout needs to be
defined when analysing the behaviour of a timed system, and thus only delays up to this timeout
can be observable.

Concerning the second type, only delays up to some bound are observable. This is a

6.2. TIMED INPUT-OUTPUT CONFORMANCE RELATIONS 161

more realistic assumption. Concerning this second type, we have two inner divisions: the rela-
tion tiocoζ considers an unbounded delay (referred to as “Unb.” in Table 6.2), whereas others
define an arbitrary upper bound (referred to as “Arb.” in Table 6.2). The first inner division
is more general since the results of conformance verification is not limited to an upper bound,
whereas in the second case it is said that an implementation is correct with respect to its speci-
fication only up to the defined upper bound. However, as previously said, in practice a timeout
needs to be defined. The relation tiocoAnd does not mention what is assumed with respect to the
type of delays. Regarding verification of csptio in practice, as discussed in Section 4.4.2, our
conformance relation fits the arbitrary upper bound category.

Quiescence definition. An important aspect of a conformance relation is whether it considers
the notion of quiescence: an absence of output, which is considered to be observable. The notion
of quiescence provides additional information about the system behaviour, and thus allows to
distinguish faulty behaviours that is not related to the generation of wrong outputs. Concerning
the analysed relations, most of them support quiescence. Regarding csptio, as discussed in
Section 4.4, quiescence is an element considered by our relation. However, due to the type of
systems dealt with by us (a class of embedded systems whose inputs and outputs are always
available as signals), it is not necessary to annotate quiescence in the model, what is a standard
practice in other relations.

Partial specifications. It is commonly useful to specify the system behaviour incrementally.
To consider this characteristic, the conformance relation cannot be defined as a trace inclusion
relation. Part of the analysed relations support this concept, whereas others do not mention
clearly whether they consider partial specifications in their conformance relations. The rela-
tion rtioco is the only one that explicitly states that partial specifications are not allowed. As
discussed in Section 4.4, we also allow partial specification. However, also due to the type of
systems dealt with by us, we consider a different notion of partial specifications when com-
pared to other conformance relations: the implementation shall consider the same set of input
and output signals, but new value for them might be considered.

Test strategy. Most works define a sound testing strategy based on the proposed conformance
relations. The exceptions are the relations tiocoSch, tiocoR

M, and tiocoζ , which focus on the
definition of a conformance relation. These works mention that the relations can form the basis
for a theory of test generation, but they do not say whether it is a work in progress or a planned
one. Concerning csptio, as presented in Section 4.5, we also consider a testing theory based on
our conformance relation.

We believe that our timed input-output conformance relation distinguishes itself from
other relations defined in the literature by the simultaneous support for reasoning about time and
data aspects via a notation such as CSP. As previously discussed, csptio verification does not

6.3. CONCLUDING REMARKS 162

need to handle operational models like transition systems, and as an algebraic and symbolic ap-
proach, it seems more suitable to explore compositional properties, which can be a fundamental
characteristic when analysing complex and large systems.

6.3 Concluding remarks

This chapter compared the two main scientific contributions of this research (DFRS
models, and formal testing theory based on csptio) with respect to the state-of-the-art. Concern-
ing the first contribution, we compared it with others according to aspects such as application
domain, manipulation of variables, time support, and supported requirement analyses. Regard-
ing the second contribution, tool support, considered notation, and data support were aspects
taken into account by the analyses.

As discussed throughout this chapter, we believe that our contributions address inter-
esting and challenging problems and, thus, they extend the state-of-the-art regarding formal
modelling of timed systems from natural-language requirements, besides the research area of
timed input-output conformance relations. The DFRS model is a symbolic, timed and state-rich
automata-based notation for representation of natural-language requirements, which is derived
automatically from requirements that specify in a high-level fashion how states can be reached
via transitions. Finally, to the extent of our knowledge, our timed input-output conformance
relation is the first conformance relation that simultaneously support symbolic time and data
aspects using a process algebra.

163163163

7
Conclusions

This work presented a model-based testing strategy for generating test cases from natural-
language requirements: NAT2TEST. Actually, it is a general framework that can be specialised
via the adoption of different formal models and test generation tools. Nevertheless, we focus
on a formal approach based on the CSP process algebra: NAT2TESTCSP.

We dispense the need to know the syntax and semantics of the underlying notations,
besides allowing early use of MBT, by means of NLP. In this way, the formal and semi-formal
models internally used by the NAT2TEST strategy are automatically generated from the natural
language requirements.

The NAT2TESTCSP strategy comprises five phases. The first phase verifies whether
the system requirements are in accordance with the SysReq-CNL grammar, a CNL specially
designed for editing requirements of data-flow reactive systems. For each valid input require-
ment, its corresponding syntax tree is identified. In the second phase (semantic analysis), the
requirements are semantically analysed using the case grammar theory. In this theory, a sen-
tence is not analysed in terms of the syntactic categories or grammatical functions, but in terms
of the semantic (thematic) roles played by each word/group of words in the sentence. There-
fore, for each syntax tree the group of words that correspond to a thematic role is identified.
The collection of thematic roles for a requirement is called the requirement frame.

Afterwards, the third phase (DFRS generation) derives DFRS models — an intermedi-
ate formal characterisation of the system behaviour from which other formal notations can be
derived — such as SCR, IMR, and CSP. The possibility of exploring different formal notations
allows analyses from several perspectives, using different languages and tools. Besides that, it
makes our strategy extensible.

The fourth phase consists of using the process algebra CSP as a target to DFRS models.
Finally, in the fifth and last phase, we select and generate test scenarios, from which test cases
are built with the aid of FDR and Z3. Here, we prove that test cases built using our CSP
testing infrastructure are sound with respect to csptio: a CSP timed input-output conformance
relation. By soundness, we mean that if a test execution leads to a fail verdict, it follows that
the implementation does not conform to the specification according to csptio.

164

The NAT2TEST strategy is automated by the NAT2TEST tool, which is written in Java,
and its GUI is built using the Eclipse RCP framework. The tool can be easily installed and it
runs on multiple platforms.

The proposed strategy is evaluated considering examples from the literature, but also
from the aerospace and the automotive industry. For each example, we analyse two aspects:
(i) performance, and (ii) the ability to detect defects by means of mutation analysis. As a
baseline we consider the generation and execution of random tests using Randoop. In general,
our strategy outperformed the considered baseline: random testing.

Therefore, our contributions include theoretical results, tool implementation, as well as
empirical evaluations. In this light, we might say that this research successfully achieved its
goal providing an answer to its main research question: how to automatically and formally gen-
erate test cases from natural-language requirements, and, in particular, regarding timed reactive
systems. In what follows, considering the two main scientific and challenging achievements of
this work, we situate our contributions with respect to the state-of-the-art.

A formal model of timed-systems from NL requirements. The DFRS model provides a
formal semantics for the system requirements. It is able to represent the system behaviour
considering both data and time information. Actually, there are two representations of DFRSs: a
symbolic (s-DFRS) and an expanded one (e-DFRS). The former, which is automatically derived
from requirement frames, inherently avoids an explicit representation of possibly infinite sets
of states and, thus, the state space explosion problem. The latter is built dynamically from
its symbolic counterpart, possibly limited to some bound, and then used to bounded analyses
such as consistency, completeness, reachability, and absence of time lock. Therefore, our work
stands out from the similar approaches reported here by the richness of the model generated
solely from NL requirements without user intervention.

A CSP timed input-output conformance relation and a strategy for sound test case gen-
eration. A CSP-TIO process is a tuple composed by a CSP process obtained from DFRS
models, along with its distinct input, output, time, reset and auxiliary alphabets. Considering
CSP-TIO processes, we propose a systematic mechanism for selecting and generating test sce-
narios. These test scenarios are used to generate test cases within our formal testing theory,
which is based on a CSP timed input-output conformance relation (csptio). We prove that there
is a sound mechanisation of conformance verification based on csptio, with the aid of a refine-
ment checker (FDR) and a constraint solver (Z3). Furthermore, we prove that our process for
creating CSP test cases from test scenarios is sound with respect to csptio. Our formal testing
theory distinguishes itself from others by the simultaneous support for reasoning about time and
data aspects via a notation such as CSP, which might be more suitable to explore compositional
properties than approaches that need to handle operational models like transition systems.

7.1. FUTURE WORK 165

7.1 Future work

As future work, we envisage the following tasks.

Reduce assumptions concerning CSP encoding of DFRSs. As explained in Section 4.2.6,
our representation of DFRS models as CSP processes has some assumptions. If they are not
respected, the CSP representation is not accurate. These assumptions are restrictive, since some
valid DFRSs cannot be used to generate test cases via CSP. Therefore, a relevant future work
consists of reflecting upon these restrictions to find ways of generating the CSP representation
with less assumptions.

Propose other coverage criteria. Commercial testing tools such as T-VEC and RT-Tester
support more possibilities of coverage criteria (e.g., MC/DC) than our testing strategy (require-
ment coverage). As discussed in Section 5.4, this can lead to the generation of more promising
test suites, since more aspects of the system behaviour are tested and, thus, the possibility of
unveiling errors tends to increase.

Define a sound testing strategy for concrete test cases. In this work we prove that our CSP-
based testing theory is sound with respect to csptio. To execute CSP-based test cases (symbolic
test cases), the implementation needs to be modelled as CSP processes too. When this is not the
case, we offer the possibility of generating concrete test cases, which can be seen as purely test
data. However, soundness is not guaranteed in this case. Therefore, the systematic generation
of sound concrete test cases is an interesting topic for future research.

Investigate compositional properties of csptio. The verification of whether csptio holds for
a specification and an implementation model is a costly operation. Therefore, studying com-
positional properties of csptio plays an important role since it allows the analysis of complex
systems by individually verifying its constituent components. For instance, in (NOGUEIRA;
SAMPAIO; MOTA, 2014), it is proved that the relation cspio is compositional considering that
the specification is input-enabled, and the specification and the implementation have the same
alphabet.

Investigate compositional properties of the test generation strategy. The definition of the
conditions necessary to compositional testing based on the csptio-based generation strategy is
an important research topic, since it would minimise the effort of testing a complex system by
testing its constituent components. To illustrate this topic, suppose that tests were generated
and executed for one component. Now, this component is combined (e.g., sequentially), such
that some of its outputs signals are provided as input for a new component. It would minimise

7.1. FUTURE WORK 166

the test generation effort if we could reuse part of the tests generated for the first component,
when testing the second one.

Evolve the NAT2TEST tool. Despite the current advanced state of the tool, new important
features should be considered. For instance, the analyses described in Section 3.3.3 via bounded
model checking has not been implemented yet. Other example consists of conformance veri-
fication based on csptio. In this case, the verification can be performed by using directly FDR
and Z3; it is still to be integrated with the NAT2TEST tool infrastructure.

Perform more empirical analyses. As described in Chapter 5, the NAT2TEST strategy has
already been evaluated considering four examples from different domains. Nevertheless, to
investigate the potential practical application of the proposed strategy, more empirical analyses
need to be performed, considering bigger and more complex systems.

Consider notations other than CSP for modelling DFRSs. For example, in (SILVA; CAR-
VALHO; SAMPAIO, 2015), we started an investigation of using CPNs to represent DFRS mod-
els. In this way, we plan to exploit the maturity of tools such as the CPN tools to analyse prop-
erties of the system requirements, besides generating test cases. Therefore, investigating how
we can represent DFRSs as other formal notations than CSP might allow us to perform analyses
we are not able to carry out today.

Evolve the NAT2TEST strategy to deal with hybrid systems. Hybrid systems are a class
of embedded systems with a great number of applications (e.g., in cyber-physical systems). In
such systems, it is necessary to model the input and output trajectories of the system dynamics
(AERTS; MOUSAVI; RENIERS, 2015). This modelling is usually achieved by considering
difference and differential equations. Addressing the generation of test cases for hybrid systems
will have a vertical impact on the NAT2TEST strategy. In other words, each of its constituent
phases needs to evolve in the light of this new domain. For example, associating difference and
differential equations to the system requirements, changing the DFRS models to consider this
new information, adopting a testing strategy that supports hybrid systems, and so on. Regarding
this last topic, in (KHAKPOUR; MOUSAVI, 2015) it is discussed conformance relations for
hybrid systems. Therefore, dealing with hybrid systems within the NAT2TEST strategy is an
interesting, challenging and relevant research topic for future work.

167167167

References

ABRIAL, J.-R. The B-book: assigning programs to meanings. New York: Cambridge
University Press, 1996.

ACEITUNA, D.; DO, H.; SRINIVASAN, S. A Systematic Approach to Transforming System
Requirements into Model Checking Specifications. In: INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING, New York. Proceedings. . . ACM, 2014. p.165–174.
(ICSE Companion).

AERTS, A.; MOUSAVI, M. R.; RENIERS, M. A Tool Prototype for Model-Based Testing of
Cyber-Physical Systems. In: INTERNATIONAL COLLOQUIUM ON THEORETICAL
ASPECTS OF COMPUTING, Cali. Proceedings. . . Springer International Publishing, 2015.
p.563–572.

AHO, A. V. et al. Compilers: principles, techniques, and tools. 2.ed. Essex: Prentice Hall,
2006.

ALLEN, J. Natural Language Understanding. California: Benjamin/Cummings, 1995.

AMBRIOLA, V.; GERVASI, V. On the Systematic Analysis of Natural Language
Requirements with CIRCE. Automated Software Engineering, [S.l.], v.13, n.1, p.107–167,
2006.

ANDRADE, W. et al. Abstracting Time and Data for Conformance Testing of Real-Time
Systems. In: INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,
VERIFICATION AND VALIDATION WORKSHOPS, Berlin. Proceedings. . . [S.l.: s.n.],
2011. p.9–17.

ANDREWS, J. H.; BRIAND, L. C.; LABICHE, Y. Is Mutation an Appropriate Tool for
Testing Experiments? In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, New York. Proceedings. . . ACM, 2005. p.402–411.

ASD. A Guide for the Preparation of Aircraft Maintenance Documentation in the
International Aerospace Maintenance Language, Specification ASD-STE-100. [S.l.]:
AeroSpace and Defence - Industries Association of Europe, 2005. (Issue 3).

ATLEE, J. M.; GANNON, J. State-Based Model Checking of Event-Driven System
Requirements. IEEE Transactions on Software Engineering, Piscataway, v.19, n.1, p.24–40,
Jan. 1993.

BACKES, J. et al. Requirements Analysis of a Quad-Redundant Flight Control System. In:
NASA FORMAL METHODS, USA. Proceedings. . . Springer International Publishing, 2015.
p.82–96. (Lecture Notes in Computer Science, v.9058).

BERGERAND, J.-L. Lustre, un Langage Déclaratif pour le Temps Réel . 1986. Tese
(Doutorado em Ciência da Computação) — INPG.

BLACKBURN, M.; BUSSER, R.; FONTAINE, J. Automatic Generation of Test Vectors for
SCR-style Specifications. In: ANNUAL CONFERENCE ON COMPUTER ASSURANCE,
USA. Proceedings. . . [S.l.: s.n.], 1997.

REFERENCES 168

BODDU, R. et al. RETNA: from requirements to testing in a natural way. In: IEEE
INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, Japan.
Proceedings. . . [S.l.: s.n.], 2004. p.262–271.

BOHNENKAMP, H.; BELINFANTE, A. Timed Testing with TorX. In: THE
INTERNATIONAL CONFERENCE ON FORMAL METHODS, Berlin, Heidelberg.
Proceedings. . . Springer-Verlag, 2005. p.173–188. (FM’05).

BOZGA, M. et al. IF: a validation environment for timed asynchronous systems. In:
COMPUTER AIDED VERIFICATION, Berlin Heidelberg. Proceedings. . . Springer-Verlag,
2000. p.543–547. (Lecture Notes in Computer Science, v.1855).

BRAT, G. et al. Experimental Evaluation of Verification and Validation Tools on Martian Rover
Software. Formal Methods in System Design, Hingham, v.25, n.2-3, p.167–198, Sept. 2004.

BRIONES, L. B.; BRINKSMA, E. A test generation framework for quiescent real-time
systems. In: INTERNATIONAL WORKSHOP ON FORMAL APPROACHES TO
SOFTWARE TESTING, Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2005. p.64–78.

CARVALHO, G. et al. Test Case Generation from Natural Language Requirements based on
SCR Specifications. In: SYMPOSIUM ON APPLIED COMPUTING, Coimbra, Portugal.
Proceedings. . . [S.l.: s.n.], 2013a. v.2, p.1217–1222.

CARVALHO, G. et al. Model-Based Testing from Controlled Natural Language
Requirements. In: WORKSHOP ON FORMAL TECHNIQUES FOR SAFETY-CRITICAL
SYSTEMS, New Zealand. Proceedings. . . Springer International Publishing, 2014a. p.19–35.
(Communications in Computer and Information Science, v.419).

CARVALHO, G. et al. A Formal Model for Natural-Language Timed Requirements of
Reactive Systems. In: INTERNATIONAL CONFERENCE ON FORMAL ENGINEERING
METHODS, Luxembourg. Proceedings. . . Springer International Publishing, 2014b. p.43–58.
(Lecture Notes in Computer Science, v.8829).

CARVALHO, G. et al. NAT2TESTSCR: test case generation from natural language
requirements based on SCR specifications. Science of Computer Programming, [S.l.], v.95,
Part 3, n.0, p.275 – 297, 2014c.

CARVALHO, G. et al. NAT2TEST: from natural language requirements to test cases.
Aerospace America Magazine, [S.l.], v.52, p.45, 2014d.

CARVALHO, G. et al. NAT2TEST Tool: from natural language requirements to test cases
based on CSP. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
AND FORMAL METHODS, York. Proceedings. . . Springer International Publishing, 2015.

CARVALHO, G.; SAMPAIO, A.; MOTA, A. A CSP Timed Input-Output Relation and a
Strategy for Mechanised Conformance Verification. In: INTERNATIONAL CONFERENCE
ON FORMAL ENGINEERING METHODS, New Zealand. Proceedings. . . Springer Berlin
Heidelberg, 2013b. p.148–164. (LNCS, v.8144).

CHARETTE, R. This Car Runs on Code. IEEE Spectrum, [S.l.], 2009.

REFERENCES 169

CIMATTI, A. et al. NuSMV: a new symbolic model verifier. In: THE 11TH
INTERNATIONAL CONFERENCE ON COMPUTER AIDED VERIFICATION, London.
Proceedings. . . Springer-Verlag, 1999. p.495–499. (CAV ’99).

CLARKE, E. M.; GRUMBERG, O.; PELED, D. A. Model Checking. Cambridge,
Massachusetts: The MIT Press, 1999.

EDITION 6th (Ed.). A Dictionary of Linguistics and Phonetics. [S.l.]: Wiley-Blackwell,
2008.

EFKEMANN, C.; PELESKA, J. Model-Based Testing for the Second Generation of Integrated
Modular Avionics. In: INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,
VERIFICATION AND VALIDATION WORKSHOPS, Germany. Proceedings. . . [S.l.: s.n.],
2011. p.55–62.

ESSER, M.; STRUSS, P. Obtaining Models for Test Generation from Natural-Language like
Functional Specifications. In: INTERNATIONAL WORKSHOP ON PRINCIPLES OF
DIAGNOSIS. Proceedings. . . [S.l.: s.n.], 2007. p.75–82.

FAA. Requirements Engineering Management Findings Report. USA: U.S. Department of
Transportation - Federal Aviation Administration, 2009.

FILLMORE, C. J. The Case for Case. In: UNIVERSALS IN LINGUISTIC THEORY, USA.
Proceedings. . . New York: Holt: Rinehart: and Winston, 1968. p.1–88.

GAUDEL, M. claude. Testing Can Be Formal, too. In: INTERNATIONAL CONFERENCE
OF THEORY AND PRACTICE OF SOFTWARE DEVELOPMENT, Denmark.
Proceedings. . . Springer-Verlag, 1995. p.82–96.

HAYHURST, K. et al. A Practical Tutorial on Modified Condition/Decision Coverage.
[S.l.: s.n.], 2001.

HEITMEYER, C.; BHARADWAJ, R. Applying the SCR Requirements Method to the Light
Control Case Study. Journal of Universal Computer Science, [S.l.], v.6, p.650–678, 2000.

ILIC, D. Deriving Formal Specifications from Informal Requirements. In: INTERNATIONAL
COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, China. Proceedings. . .
[S.l.: s.n.], 2007. v.1, p.145–152.

ISO. Z formal specification notation (ISO/IEC 13568). [S.l.]: International Organization for
Standardization, 2002.

JENSEN, K. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use.
[S.l.]: Springer-Verlag1, 1996.

KAMPRATH, C. et al. Controlled Language for Multilingual Document Production:
experience with caterpillar technical english. In: SECOND INTERNATIONAL WORKSHOP
ON CONTROLLED LANGUAGE APPLICATIONS, Netherlands. Proceedings. . . [S.l.: s.n.],
1998.

KHAKPOUR, N.; MOUSAVI, M. R. Notions of Conformance Testing for Cyber-Physical
Systems: overview and roadmap (invited paper). In: INTERNATIONAL CONFERENCE ON
CONCURRENCY THEORY, Spain. Proceedings. . . [S.l.: s.n.], 2015. v.42, p.18–40.

REFERENCES 170

KHOUMSI, A.; JÉRON, T.; MARCHAND, H. Test Cases Generation for Nondeterministic
Real-Time Systems. In: INTERNATIONAL WORKSHOP ON FORMAL APPROACHES TO
TESTING OF SOFTWARE, Canada. Proceedings. . . Springer Berlin Heidelberg, 2003.
v.2931, p.131–146.

KRICHEN, M.; TRIPAKIS, S. Black-Box Conformance Testing for Real-Time Systems. In:
INTERNATIONAL SPIN WORKSHOP, Spain. Proceedings. . . Springer Berlin Heidelberg,
2004. v.2989, p.109–126.

LARSEN, K.; MIKUCIONIS, M.; NIELSEN, B. Online Testing of Real-time Systems using
Uppaal: status and future work. In: DAGSTUHL SEMINAR – PERSPECTIVES OF
MODEL-BASED TESTING, Germany. Proceedings. . . [S.l.: s.n.], 2004. v.04371.

LEE, W. J.; CHA, S. D.; KWON, Y. R. Integration and analysis of use cases using modular
Petri nets in requirements engineering. IEEE Transactions on Software Engineering, [S.l.],
v.24, n.12, p.1115–1130, Dec 1998.

LEONARD, E.; HEITMEYER, C. Program Synthesis from Formal Requirements
Specifications Using APTS. Higher Order and Symbolic Computation, Hingham, MA,
USA, v.16, p.63–92, 2003.

LEVESON, N. G. et al. Requirements Specification for Process-Control Systems. IEEE
Transactions on Software Engineering, Piscataway, v.20, n.9, p.684–707, Sep 1994.

LIU, S. et al. Automatic Early Defects Detection in Use Case Documents. In: THE
ACM/IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING, New York. Proceedings. . . ACM, 2014. p.785–790. (ASE ’14).

MA, Y.-S.; OFFUTT, J.; KWON, Y. R. MuJava: an automated class mutation system.
Software Testing, Verification and Reliability, Chichester, v.15, n.2, p.97–133, June 2005.

MILLER, S. P. et al. Proving the shalls. International Journal on Software Tools for
Technology Transfer, [S.l.], v.8, n.4-5, p.303–319, 2006.

NOGUEIRA, S. Test Generation and Compositional Conformance Verification from
Input-Output CSP Models. 2012. Tese (Doutorado em Ciência da Computação) — Centro de
Informática - Universidade Federal de Pernambuco.

NOGUEIRA, S.; SAMPAIO, A.; MOTA, A. Test generation from state based use case models.
Formal Aspects of Computing, [S.l.], v.26, n.3, p.441–490, 2014.

O’BRIEN, S. Controlling Controlled English - An Analysis of Several Controlled Language
Rule Sets. In: JOINT CONFERENCE COMBINING THE 8TH INTERNATIONAL
WORKSHOP OF THE EUROPEAN ASSOCIATION FOR MACHINE TRANSLATION
(EAMT) AND THE 4TH CONTROLLED LANGUAGE APPLICATIONS WORKSHOP:
CONTROLLED LANGUAGE TRANSLATION (CLAW), Ireland. Proceedings. . . [S.l.: s.n.],
2003. p.105–114.

OMG. Unified Modeling Language. [S.l.]: Object Management Group, 2015.

OWRE, S.; RUSHBY, J. M.; SHANKAR, N. PVS: A prototype verification system. In:
INTERNATIONAL CONFERENCE ON AUTOMATED DEDUCTION, Saratoga.
Proceedings. . . Springer-Verlag, 1992. p.748–752. (Lecture Notes in Artificial Intelligence,
v.607).

REFERENCES 171

PACHECO, C. et al. Feedback-directed Random Test Generation. In: THE
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, Minneapolis.
Proceedings. . . IEEE Computer Society, 2007.

PELESKA, J. et al. Automated Model-Based Testing with RT-Tester. [S.l.]: Universität
Bremen, 2011.

PELESKA, J. et al. A Real-World Benchmark Model for Testing Concurrent Real-Time
Systems in the Automotive Domain. In: THE IFIP INTERNATIONAL CONFERENCE ON
TESTING SOFTWARE AND SYSTEMS, Berlin, Heidelberg. Proceedings. . .
Springer-Verlag, 2011. p.146–161. (ICTSS’11).

REED, G. M.; ROSCOE, A. W. A Timed Model for Communicating Sequential Processes.
Theoretical Computer Science, [S.l.], v.58, p.249–261, 1988.

ROSCOE, A. W. Understanding Concurrent Systems. [S.l.]: Springer, 2010.

ROSCOE, A. W.; HOARE, C. A. R.; BIRD, R. The Theory and Practice of Concurrency.
[S.l.]: Prentice Hall PTR, 1997.

SANTIAGO JUNIOR, V.; VIJAYKUMAR, N. L. Generating Model-based Test Cases from
Natural Language Requirements for Space Application Software. Software Quality Journal,
[S.l.], v.20, p.77–143, 2012.

SCHMALTZ, J.; TRETMANS, J. On Conformance Testing for Timed Systems. In:
INTERNATIONAL CONFERENCE ON FORMAL MODELLING AND ANALYSIS OF
TIMED SYSTEMS, France. Proceedings. . . Springer Berlin Heidelberg, 2008. v.5215,
p.250–264.

SCHNELTE, M. Generating Test Cases for Timed Systems from Controlled Natural Language
Specifications. In: INTERNATIONAL CONFERENCE ON SYSTEM INTEGRATION AND
RELIABILITY IMPROVEMENTS, USA. Proceedings. . . [S.l.: s.n.], 2009. p.348–353.

SCHWITTER, R. English as a Formal Specification Language. In: THE INTERNATIONAL
WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, France.
Proceedings. . . [S.l.: s.n.], 2002.

SIEGL, S.; HIELSCHER, K.-S.; GERMAN, R. Model Based Requirements Analysis and
Testing of Automotive Systems with Timed Usage Models. In: THE IEEE INTERNATIONAL
REQUIREMENTS ENGINEERING CONFERENCE, Australia. Proceedings. . . [S.l.: s.n.],
2010. p.345–350.

SILVA, B. C. F.; CARVALHO, G.; SAMPAIO, A. Test Case Generation from Natural
Language Requirements Using CPN Simulation. In: BRAZILIAN SYMPOSIUM ON
FORMAL METHODS, Belo Horizonte, Brazil. Proceedings. . . [S.l.: s.n.], 2015. p.178–193.

SNEED, H. Testing against Natural Language Requirements. In: THE INTERNATIONAL
CONFERENCE ON QUALITY SOFTWARE, USA. Proceedings. . . [S.l.: s.n.], 2007.
p.380–387.

TOMITA, M. Efficient Parsing for Natural Language. [S.l.]: Kluwer Academic Publishers,
1986.

REFERENCES 172

TRETMANS, J. Testing Concurrent Systems: a formal approach. In: INTERNATIONAL
CONFERENCE ON CONCURRENCY THEORY, London. Proceedings. . . Springer-Verlag,
1999. p.46–65.

WEST, A. NASA Study on Flight Software Complexity. [S.l.]: NASA, 2009.

WYNER, A. et al. On Controlled Natural Languages: properties and prospects. In:
CONTROLLED NATURAL LANGUAGE, Berlin, Heidelberg. Proceedings. . . Springer
Berlin Heidelberg, 2010. p.281–289. (Lecture Notes in Computer Science, v.5972).

Appendix

174174174

A
List of requirements

A.1 Vending machine

� When the system mode is idle, and the coin sensor changes to true, the coffee ma-
chine system shall: reset the request timer, assign choice to the system mode.

� When the system mode is choice , and the coin sensor is false, and the coin sensor
was false, and the coffee request button changes to pressed, and the request timer is
lower than or equal to 30.0, the coffee machine system shall: reset the request timer,
assign preparing weak coffee to the system mode.

� When the system mode is choice, and the coin sensor is false, and the coin sensor
was false, and the coffee request button changes to pressed, and the request timer is
greater than 30.0, the coffee machine system shall: reset the request timer, assign
preparing strong coffee to the system mode.

� When the system mode is preparing weak coffee, and the request timer is greater
than or equal to 10.0, and the request timer is lower than or equal to 30.0, the coffee
machine system shall: assign idle to the system mode, assign weak to the coffee
machine output.

� When the system mode is preparing strong coffee, and the request timer is greater
than or equal to 30.0, and the request timer is lower than or equal to 50.0, the coffee
machine system shall : assign idle to the system mode , assign strong to the coffee
machine output.

A.2 Nuclear power plant

� When the water pressure becomes greater than or equal to 9, and the pressure mode
is low, the Safety Injection System shall assign permitted to the pressure mode.

A.3. PRIORITY COMMAND 175

� When the water pressure becomes greater than or equal to 10, and the pressure mode
is permitted, the Safety Injection System shall assign high to the pressure mode.

� When the water pressure becomes lower than 9, and the pressure mode is permitted,
the Safety Injection System shall assign low to the pressure mode.

� When the water pressure becomes lower than 10, and the pressure mode is high, the
Safety Injection System shall assign permitted to the pressure mode.

� When the blockage button becomes pressed, and the reset button is not pressed, and
the pressure mode is not high, the Safety Injection System shall assign true to the
overridden mode.

� When the reset button becomes pressed, and the pressure mode is not high, the
Safety Injection System shall assign false to the overridden mode.

� When the pressure mode becomes high, the Safety Injection System shall assign
false to the overridden mode.

� When the pressure mode becomes not high, the Safety Injection System shall assign
false to the overridden mode.

� When the pressure mode is low, and the overridden mode is true, the Safety Injection
System shall assign off to the safety injection mode.

� When the pressure mode is low, and the overridden mode is false, the Safety Injec-
tion System shall assign on to the safety injection mode.

� When the pressure mode is permitted or the pressure mode is high, the Safety Injec-
tion System shall assign off to the safety injection mode.

A.3 Priority command

These requirements are not presented since they concern private information.

A.4 Turn indicator system

� ACTION 1: Reset the flashing timer

� ACTION 4: Assign off to the indication lights

� ACTION 5: Assign left flashing to the indication lights

� ACTION 6: Assign right flashing to the indication lights

A.4. TURN INDICATOR SYSTEM 176

� ACTION 7: Assign both flashing to the indication lights

� When the voltage becomes lower than or equal to 80, the lights controller component
shall: ACTION 4, ACTION 1.

� When the voltage becomes greater than 80 or the flashing mode becomes left flash-
ing, and the voltage is greater than 80, and the flashing mode is left flashing, the
lights controller component shall: ACTION 5, ACTION 1.

� When the voltage becomes greater than 80 or the flashing mode becomes right flash-
ing, and the voltage is greater than 80, and the flashing mode is right flashing, the
lights controller component shall: ACTION 6, ACTION 1.

� When the voltage becomes greater than 80 or the flashing mode becomes both flash-
ing, and the voltage is greater than 80, and the flashing mode is both flashing, the
lights controller component shall: ACTION 7, ACTION 1.

� When the voltage is greater than 80, and the flashing mode is no flashing, the lights
controller component shall: ACTION 4, ACTION 1.

� When the voltage is greater than 80, and the flashing timer is greater than or equal
to 340, and the indication lights are left flashing or the indication lights are right
flashing, the lights controller component shall: ACTION 4, ACTION 1.

� When the voltage is greater than 80, and the flashing timer is greater than or equal
to 220, and the indication lights are off, and the flashing mode is left flashing, the
lights controller component shall: ACTION 5, ACTION 1.

� When the voltage is greater than 80, and the flashing timer is greater than or equal
to 220, and the indication lights are off, and the flashing mode is right flashing, the
lights controller component shall: ACTION 6, ACTION 1.

� When the voltage is greater than 80, and the flashing timer is greater than or equal
to 220, and the indication lights are off, and the flashing mode is both flashing, the
lights controller component shall: ACTION 7, ACTION 1.

� When the turn indicator lever changes to the left position, and the emergency flash-
ing is off, the flashing mode component shall: assign left flashing to the flashing
mode, ACTION 1.

� When the turn indicator lever changes to the right position, and the emergency flash-
ing is off, the flashing mode component shall: assign right flashing to the flashing
mode, ACTION 1.

A.4. TURN INDICATOR SYSTEM 177

� When the emergency flashing becomes on, the flashing mode component shall: as-
sign both flashing to the flashing mode, ACTION 1.

� When the emergency flashing is on, and the emergency flashing was on, and the
turn indicator lever changes to the left position, the flashing mode component shall:
assign left flashing to the flashing mode, ACTION 1.

� When the emergency flashing is on, and the emergency flashing was on, and the turn
indicator lever changes to the right position, the flashing mode component shall:
assign right flashing to the flashing mode, ACTION 1.

� When the emergency flashing is on, and the emergency flashing was on, and the
turn indicator lever changes to the idle position, and the flashing mode is not both
flashing, the flashing mode component shall: assign both flashing to the flashing
mode, ACTION 1.

� When the emergency flashing becomes off, and the turn indicator lever is on the left
position, and the turn indicator lever was on the left position, and the flashing mode
is not left flashing, the flashing mode component shall: assign left flashing to the
flashing mode, ACTION 1.

� When the emergency flashing becomes off, and the turn indicator lever is on the
right position, and the turn indicator lever was on the right position, and the flashing
mode is not right flashing, the flashing mode component shall: assign right flashing
to the flashing mode, ACTION 1.

178178178

B
DFRS – definitions and proofs

B.1 Definition and properties of an s-DFRS

B.1.1 Inputs, Outpus and Timers

[NAME]

gc : NAME

VNAME == NAME \{gc}

TYPE ::= bool | int | nat | float | ufloat

SVARS == {f : VNAME 7 7→ TYPE | f 6= /0 ∧ ran f ⊆ {bool, int,float}}
STIMERS == {f : VNAME 7 7→ TYPE | ran f = {nat} ∨ ran f = {ufloat}}

DFRS VARIABLES

I,O : SVARS

T : STIMERS

gcvar : NAME×TYPE

gcvar = (gc,nat) ∨ gcvar = (gc,ufloat)

disjoint 〈dom I,domO,domT〉
ranT ⊆ {gcvar.2}

B.1.2 Initial state

BOOL VALUES ::= TRUE | FALSE

B.1. DEFINITION AND PROPERTIES OF AN S-DFRS 179

[R]

R+ : PR

R+ ⊂ R

VALUE ::= b〈〈BOOL VALUES〉〉 | i〈〈Z〉〉 | n〈〈N〉〉 | f 〈〈R〉〉 | uf 〈〈R+〉〉

STATE == NAME 7→ (VALUE×VALUE)

previousValues : STATE→ (NAME 7→ VALUE)

∀s : STATE • previousValues(s) =

{n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s • (n,v1)}

currentValues : STATE→ (NAME 7→ VALUE)

∀s : STATE • currentValues(s) =

{n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s • (n,v2)}

DFRS INITIAL STATE == [s0 : STATE]

B.1.3 Functions

values : TYPE→ PVALUE

values(bool) = ranb

values(int) = ran i

values(nat) = rann

values(float) = ran f

values(ufloat) = ranuf

well typed var : P(STATE×NAME×TYPE)

∀s : STATE ; n : NAME ; t : TYPE • (s,n, t) ∈ well typed var⇔
n ∈ doms ∧ (s(n)).1 ∈ values(t) ∧ (s(n)).2 ∈ values(t)

B.1. DEFINITION AND PROPERTIES OF AN S-DFRS 180

well typed state : P(STATE× (NAME 7→ TYPE))

∀s : STATE ; f : NAME 7→ TYPE • (s, f) ∈ well typed state⇔
doms = dom f ∧ (∀n : dom f ; t : TYPE | f (n) = t • (s,n, t) ∈ well typed var)

VAR ::= current〈〈VNAME〉〉 | previous〈〈VNAME〉〉
OP ::= le | lt | eq | ne | gt | ge

BEXP == {v : VAR ; op : OP ; literal : VALUE}
DISJ == F1 BEXP

CONJ == FDISJ

EXP == CONJ

varName : BEXP→ VNAME

∀be : BEXP ; n : VNAME • varName(be) = n⇔
(be.1 ∈ ranprevious⇒ previous(n) = be.1) ∧
(be.1 ∈ rancurrent⇒ current(n) = be.1)

var consistent be : P(BEXP× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀be : BEXP ; f ,T : VNAME 7→ TYPE ; n : VNAME | varName(be) = n •
(be, f ,T) ∈ var consistent be⇔
(n ∈ dom f) ∧ be.3 ∈ values(f (n)) ∧
(be.2 = le ∨ be.2 = lt ∨ be.2 = gt ∨ be.2 = ge⇒ be.3 /∈ ranb) ∧
(n ∈ domT⇒ be.1 ∈ rancurrent)

var consistent dis : P(DISJ× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀dis : DISJ ; f ,T : VNAME 7→ TYPE •
(dis, f ,T) ∈ var consistent dis⇔
(∀be : dis • (be, f ,T) ∈ var consistent be)

var consistent conj : P(CONJ× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀conj : CONJ ; f ,T : VNAME 7→ TYPE •
(conj, f ,T) ∈ var consistent conj⇔
(∀dis : conj • (dis, f ,T) ∈ var consistent dis)

B.2. DEFINITION AND PROPERTIES OF AN E-DFRS 181

var consistent exp : P(EXP× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀exp : EXP ; f ,T : VNAME 7→ TYPE •
(exp, f ,T) ∈ var consistent exp⇔ (exp, f ,T) ∈ var consistent conj

ASGMT == VNAME×VALUE

ASGMTS == {asgmts : F1 ASGMT | (∀asgmt1,asgmt2 : asgmts |
asgmt1.1 = asgmt1.1 • asgmt1 = asgmt1)}

well typed asgmts : P(ASGMTS× (NAME 7→ TYPE))

∀asgmts : ASGMTS ; f : NAME 7→ TYPE • (asgmts, f) ∈ well typed asgmts⇔
∀asgmt : asgmts • asgmt.1 ∈ dom f ∧ asgmt.2 ∈ values(f (asgmt.1))

FUNCTION == {sGuard, tGuard : EXP ; asgmts : ASGMTS | sGuard∪ tGuard 6= /0}

DFRS FUNCTIONS == [F == F1 FUNCTION]

B.1.4 Complete definition

s DFRS

DFRS VARIABLES

DFRS INITIAL STATE

DFRS FUNCTIONS

(s0, I∪O∪T ∪{gcvar}) ∈ well typed state

∀ f : F • ∀entry : f •
(entry.1, I∪O,T) ∈ var consistent exp ∧
(entry.2,T,T) ∈ var consistent exp ∧
(entry.3,O∪T) ∈ well typed asgmts

B.2 Definition and properties of an e-DFRS

B.2.1 Transition relation

STATES == P1 STATE

DFRS STATES == [S : STATES ; s0 : STATE | s0 ∈ S]

B.2. DEFINITION AND PROPERTIES OF AN E-DFRS 182

R+
1 : PR+

R+
1 ⊂ R+

DELAY ::= discrete〈〈N1〉〉 | dense〈〈R+
1 〉〉

TRANS LABEL ::= fun〈〈ASGMTS〉〉 | del〈〈DELAY×ASGMTS〉〉
TRANS == (STATE×TRANS LABEL×STATE)

TRANSREL == PTRANS

functionTransition : TRANS LABEL 7→ ASGMTS

dom functionTransition = ran fun

∀ label : TRANS LABEL | label ∈ ran fun • functionTransition(label) = (fun∼)(label)

delayTransition : TRANS LABEL 7→ DELAY×ASGMTS

domdelayTransition = randel

∀ label : TRANS LABEL | label ∈ randel • delayTransition(label) = (del∼)(label)

well typed function transition : P(TRANS LABEL×
(VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀ label : TRANS LABEL ; O,T : VNAME 7→ TYPE |
label ∈ ran fun • (label,O,T) ∈ well typed function transition⇔
(dom(functionTransition(label))⊆ (domO∪domT))

well typed delay transition : P(TRANS LABEL× (VNAME 7→ TYPE))

∀ label : TRANS LABEL ; I : VNAME 7→ TYPE | label ∈ randel •
(label, I) ∈ well typed delay transition⇔
dom(delayTransition(label)).2 = dom I

B.2. DEFINITION AND PROPERTIES OF AN E-DFRS 183

clock compatible transition : P(TRANS LABEL× (NAME×TYPE))

∀ label : TRANS LABEL ; gcvar : NAME×TYPE •
(label,gcvar) ∈ clock compatible transition⇔
label ∈ randel ∧
((delayTransition(label)).1 ∈ randiscrete⇒ gcvar.2 = nat) ∧
((delayTransition(label)).1 ∈ randense⇒ gcvar.2 = ufloat)

well typed transition : P(TRANS LABEL× (VNAME 7→ TYPE)×
(VNAME 7→ TYPE)× (VNAME 7→ TYPE)× (NAME×TYPE))

∀ label : TRANS LABEL ; I,O,T : VNAME 7→ TYPE ; gcvar : NAME×TYPE •
(label, I,O,T,gcvar) ∈ well typed transition⇔
(label ∈ ran fun⇒ (label,O,T) ∈ well typed function transition) ∧
(label ∈ randel⇒ (label, I) ∈ well typed delay transition ∧

(label,gcvar) ∈ clock compatible transition)

DFRS TRANSITION RELATION

TR : TRANSREL

∀ trans1, trans2 : TR | trans1.1 = trans2.1 •
{trans1.2, trans2.2} ⊆ ran fun ∨ {trans1.2, trans2.2} ⊆ randel

∀ trans : TR • ¬ (trans.1 = trans.3)

B.2.2 Complete definition

nextState : (STATE× (NAME 7→ TYPE)×ASGMTS)→ STATE

∀s : STATE ; T : (NAME 7→ TYPE) ; asgmts : ASGMTS • nextState(s,T,asgmts) = s⊕
({n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s ∧ n ∈ dom asgmts ∧

n /∈ dom T • (n,(v2,asgmts(n)))}∪
{n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ s ∧ n ∈ dom asgmts ∧

n ∈ dom T • (n,(v1,(s(gc)).2))})

addR : (R×R)→ R

B.2. DEFINITION AND PROPERTIES OF AN E-DFRS 184

e DFRS

DFRS VARIABLES

DFRS STATES

DFRS TRANSITION RELATION

∀s : S • (s, I∪O∪T ∪{gcvar}) ∈ well typed state

∀ trans : TR • {trans.1, trans.3} ⊆ S ∧
(trans.2, I,O,T,gcvar) ∈ well typed transition ∧
(trans.2 ∈ ran fun⇒ trans.3 =

nextState(trans.1,T, functionTransition(trans.2))) ∧
(trans.2 ∈ randel⇒

(((del∼)(trans.2)).1 ∈ randiscrete⇒ trans.3 =

nextState(trans.1,T,(delayTransition(trans.2)).2)⊕
{(gc,((trans.1(gc)).2,

n((n∼)((trans.1(gc)).2)+
(discrete∼)((delayTransition(trans.2)).1))))}) ∧

(((del∼)(trans.2)).1 ∈ randense⇒ trans.3 =

nextState(trans.1,T,(delayTransition(trans.2)).2)⊕
{(gc,((trans.1(gc)).2,

uf (addR((uf ∼)((trans.1(gc)).2),
(dense∼)((delayTransition(trans.2)).1)))))}))

B.3. FROM S-DFRSS TO E-DFRSS 185

B.3 From s-DFRSs to e-DFRSs

static bexps true : P((NAME 7→ VALUE)×BEXP)

∀ f : (NAME 7→ VALUE) ; be : BEXP • (f ,be) ∈ static bexps true⇔
(f (varName(be)) ∈ ranb⇒

(b∼)(f (varName(be))) = (b∼)(be.3)) ∧
(f (varName(be)) ∈ ran i⇒

(be.2 = le⇒ (i∼)(f (varName(be)))≤ (i∼)(be.3)) ∧
(be.2 = lt⇒ (i∼)(f (varName(be)))< (i∼)(be.3)) ∧
(be.2 = eq⇒ (i∼)(f (varName(be))) = (i∼)(be.3)) ∧
(be.2 = ne⇒ (i∼)(f (varName(be))) 6= (i∼)(be.3)) ∧
(be.2 = gt⇒ (i∼)(f (varName(be)))> (i∼)(be.3)) ∧
(be.2 = ge⇒ (i∼)(f (varName(be)))≥ (i∼)(be.3))) ∧

(f (varName(be)) ∈ rann⇒
(be.2 = le⇒ (n∼)(f (varName(be)))≤ (n∼)(be.3)) ∧
(be.2 = lt⇒ (n∼)(f (varName(be)))< (n∼)(be.3)) ∧
(be.2 = eq⇒ (n∼)(f (varName(be))) = (n∼)(be.3)) ∧
(be.2 = ne⇒ (n∼)(f (varName(be))) 6= (n∼)(be.3)) ∧
(be.2 = gt⇒ (n∼)(f (varName(be)))> (n∼)(be.3)) ∧
(be.2 = ge⇒ (n∼)(f (varName(be)))≥ (n∼)(be.3)))

timed bexps true : P((NAME 7→ VALUE)×BEXP)

∀ f : (VNAME 7→ VALUE) ; be : BEXP • (f ,be) ∈ timed bexps true⇔
(f (varName(be)) ∈ rann⇒

(be.2 = le⇒ ((n∼)(f (gc))− (n∼)(f (varName(be))))≤ (n∼)(be.3)) ∧
(be.2 = lt⇒ ((n∼)(f (gc))− (n∼)(f (varName(be))))< (n∼)(be.3)) ∧
(be.2 = eq⇒ ((n∼)(f (gc))− (n∼)(f (varName(be)))) = (n∼)(be.3)) ∧
(be.2 = ne⇒ ((n∼)(f (gc))− (n∼)(f (varName(be)))) 6= (n∼)(be.3)) ∧
(be.2 = gt⇒ ((n∼)(f (gc))− (n∼)(f (varName(be))))> (n∼)(be.3)) ∧
(be.2 = ge⇒ ((n∼)(f (gc))− (n∼)(f (varName(be))))≥ (n∼)(be.3)))

B.3. FROM S-DFRSS TO E-DFRSS 186

static guards true : P(STATE×EXP× (VNAME 7→ TYPE)× (VNAME 7→ TYPE))

∀s : STATE ; sGuard : EXP ; IO,T : (VNAME 7→ TYPE) •
(s,sGuard, IO,T) ∈ static guards true⇔
(sGuard, IO,T) ∈ var consistent exp ∧
∀dis : sGuard • ∃be : dis •

(be.1 ∈ ranprevious⇒ (previousValues(s),be) ∈ static bexps true) ∧
(be.1 ∈ rancurrent⇒ (currentValues(s),be) ∈ static bexps true)

timed guards true : P(STATE×EXP× (VNAME 7→ TYPE))

∀s : STATE ; tGuard, tGuard : EXP ; T : (VNAME 7→ TYPE) •
(s, tGuard,T) ∈ timed guards true⇔
(tGuard,T,T) ∈ var consistent exp ∧
∀dis : tGuard • ∃be : dis •

(be.1 ∈ ranprevious⇒ (previousValues(s),be) ∈ timed bexps true) ∧
(be.1 ∈ rancurrent⇒ (currentValues(s),be) ∈ timed bexps true)

is stable : P(STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1F1 FUNCTION))

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
(s, IO,T,F) ∈ is stable⇔
∀ f : F • ∀entry : f • (s,entry.1, IO,T) /∈ static guards true ∨

(s,entry.2,T) /∈ timed guards true ∨ s = nextState(s,T,entry.3)

enablingDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×FUNCTION) 7→
PDELAY

domenablingDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
entry : FUNCTION | (s, IO,T,{{entry}}) ∈ is stable • (s, IO,T,entry)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; entry : FUNCTION;
delays : PDELAY • enablingDelays(s, IO,T,entry) = delays⇔
((s(gc)).2 ∈ values(nat)⇒ delays = {delay : DELAY ; next : STATE | next = s

⊕{(gc,((s(gc)).2,n((n∼)((s(gc)).2)+(discrete∼)(delay))))} ∧
(next, IO,T,{{entry}}) /∈ is stable • delay}) ∧

((s(gc)).2 ∈ values(ufloat)⇒ delays = {delay : DELAY ; next : STATE | next = s

⊕{(gc,((s(gc)).2,uf (addR((uf ∼)((s(gc)).2),(dense∼)(delay)))))} ∧
(next, IO,T,{{entry}}) /∈ is stable • delay})

B.3. FROM S-DFRSS TO E-DFRSS 187

leqR : P(R×R)

maxDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(F1F1 FUNCTION)) 7→ FDELAY

dommaxDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
F : (F1F1 FUNCTION) | (s, IO,T,F) ∈ is stable • (s, IO,T,F)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION;
maxdelays : FDELAY • maxDelays(s, IO,T,F) = maxdelays⇔
((s(gc)).2 ∈ values(nat)⇒ maxdelays =

{f : F ; entry : FUNCTION ; delays : PDELAY ; upperBound : N1 |
entry ∈ f ∧ delays = enablingDelays(s, IO,T,entry) ∧
discrete(upperBound) ∈ delays ∧
(∀n : delays • (discrete∼)(n)≤ upperBound) •

discrete(upperBound)}) ∧
((s(gc)).2 ∈ values(ufloat)⇒ maxdelays =

{f : F ; entry : FUNCTION ; delays : PDELAY ; upperBound : R+
1 |

entry ∈ f ∧ delays = enablingDelays(s, IO,T,entry) ∧
dense(upperBound) ∈ delays ∧
(∀n : delays • ((dense∼)(n),upperBound) ∈ leqR) •

dense(upperBound)})

minimumDelay : F1 DELAY 7→ DELAY

domminimumDelay⊆ {delays : F1 DELAY |
(∀d : delays • d ∈ randiscrete) ∨ (∀d : delays • d ∈ randense)}

∀delays : F1 DELAY ; lowerBound : DELAY •
minimumDelay(delays) = lowerBound⇔
lowerBound ∈ delays ∧
((∀d : delays • d ∈ randiscrete)⇒

(∀d : delays • (discrete∼)(lowerBound)≤ (discrete∼)(d))) ∧
((∀d : delays • d ∈ randense)⇒

(∀d : delays • ((dense∼)(lowerBound),(dense∼)(d)) ∈ leqR))

B.3. FROM S-DFRSS TO E-DFRSS 188

genPossibleDelays : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(F1F1 FUNCTION)) 7→ PDELAY

domgenPossibleDelays = {s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE);
F : (F1F1 FUNCTION) | (s, IO,T,F) ∈ is stable • (s, IO,T,F)}

∀s : STATE ; IO : (NAME 7→ TYPE) ; T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
(maxDelays(s, IO,T,F) = /0⇒

genPossibleDelays(s, IO,T,F) = {delay : DELAY}) ∧
(maxDelays(s, IO,T,F) 6= /0⇒

((s(gc)).2 ∈ values(nat)⇒ genPossibleDelays(s, IO,T,F) =

{delay : DELAY | (discrete∼)(delay)≤
(discrete∼)(minimumDelay(maxDelays(s, IO,T,F)))}) ∧

((s(gc)).2 ∈ values(ufloat)⇒ genPossibleDelays(s, IO,T,F) =

{delay : DELAY | ((dense∼)(delay),

(dense∼)(minimumDelay(maxDelays(s, IO,T,F)))) ∈ leqR}))

B.3. FROM S-DFRSS TO E-DFRSS 189

genTransitions : (STATE× (NAME 7→ TYPE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (F1F1 FUNCTION))→ TRANSREL

∀s : STATE ; I,O,T : (NAME 7→ TYPE) ; F : F1F1 FUNCTION •
((s, I∪O,T,F) ∈ is stable⇒

((s(gc)).2 ∈ values(nat)⇒ genTransitions(s, I,O,T,F) =

{delay : DELAY ; asgmts : ASGMTS |
delay ∈ genPossibleDelays(s, I∪O,T,F) ∧
domasgmts = dom I ∧
(∀asgmt : asgmts • asgmt.2 ∈ values(I(asgmt.1))) •

(s,del((delay,asgmts)),nextState(s,T,asgmts)⊕
{(gc,((s(gc)).2,n((n∼)((s(gc)).2)+

(discrete∼)(delay))))})}) ∧
((s(gc)).2 ∈ values(ufloat)⇒ genTransitions(s, I,O,T,F) =

{delay : DELAY ; asgmts : ASGMTS |
delay ∈ genPossibleDelays(s, I∪O,T,F) ∧
domasgmts = dom I ∧
(∀asgmt : asgmts • asgmt.2 ∈ values(I(asgmt.1))) •

(s,del((delay,asgmts)),nextState(s,T,asgmts)⊕
{(gc,((s(gc)).2,uf (addR((uf ∼)((s(gc)).2),

(dense∼)(delay)))))})})) ∧
((s, I∪O,T,F) /∈ is stable⇒ genTransitions(s, I,O,T,F) =

{entry : FUNCTION | (∃ f : F • entry ∈ f) ∧
(s,entry.1, I∪O,T) ∈ static guards true ∧
(s,entry.2,T) ∈ timed guards true •

(s, fun(entry.3),nextState(s,T,entry.3))})

buildTR : ((PSTATE)× (PSTATE)× (NAME 7→ TYPE)×
(NAME 7→ TYPE)× (NAME 7→ TYPE)× (F1F1 FUNCTION))→ TRANSREL

∀ toVisit,visited : PSTATE ; I,O,T : NAME 7→ TYPE ; F : F1F1 FUNCTION •
(toVisit = /0⇒ buildTR(toVisit,visited, I,O,T,F) = /0) ∧
(toVisit 6= /0⇒∃s : toVisit ; tr1 : TRANSREL •

genTransitions(s, I,O,T,F) = tr1 ∧
buildTR(toVisit,visited, I,O,T,F) = tr1∪

buildTR((toVisit∪{trans : tr1 • trans.3})\
(visited∪{s}),visited∪{s}, I,O,T,F))

B.4. FORMAL MODEL OF TIOTSS 190

expandedDFRS : s DFRS→ e DFRS

∀symDFRS : s DFRS ; dfrs : e DFRS • expandedDFRS(symDFRS) = dfrs⇔
dfrs.I = symDFRS.I ∧ dfrs.O = symDFRS.O ∧ dfrs.T = symDFRS.T ∧
dfrs.gcvar = symDFRS.gcvar ∧ dfrs.s0 = symDFRS.s0 ∧
dfrs.TR = buildTR({dfrs.s0}, /0,dfrs.I,dfrs.O,dfrs.T,symDFRS.F) ∧
dfrs.S =

⋃
{trans : dfrs.TR • {trans.1, trans.3}}∪{dfrs.s0}

B.4 Formal model of TIOTSs

[TIOTS ACTION]

TIOTS ACTIONS == PTIOTS ACTION

TIOTS DELAY ::= tiots discrete〈〈N〉〉 | tiots dense〈〈R+〉〉
TIOTS DELAYS == PTIOTS DELAY

tiots time compatible : PTIOTS DELAYS

∀D : TIOTS DELAYS • D ∈ tiots time compatible⇔
(∀d : D • d ∈ ran tiots discrete) ∨

(∀d : D • d ∈ ran tiots dense)

TIOTS LABELS

I,O : TIOTS ACTIONS

D : TIOTS DELAYS

disjoint 〈I,O〉
D ∈ tiots time compatible

[TIOTS STATE]

TIOTS STATES SET == P1 TIOTS STATE

TIOTS STATES == [Q : TIOTS STATES SET ; q0 : TIOTS STATE | q0 ∈ Q]

TIOTS TRANS LABEL ::= in〈〈TIOTS ACTION〉〉 | out〈〈TIOTS ACTION〉〉 |
tiots del〈〈TIOTS DELAY〉〉 | tau

TIOTS TRANS == (TIOTS STATE×TIOTS TRANS LABEL×TIOTS STATE)

TIOTS TRANSREL == PTIOTS TRANS

B.5. FROM E-DFRSS TO TIOTSS 191

TIOTS TRANSITION RELATION

T : TIOTS TRANSREL

well typed tiots transition : P(TIOTS TRANS LABEL×
TIOTS ACTIONS×TIOTS ACTIONS×TIOTS DELAYS)

∀ label : TIOTS TRANS LABEL ; I,O : TIOTS ACTIONS ; D : TIOTS DELAYS •
(label, I,O,D) ∈ well typed tiots transition⇔
(label ∈ ran in⇒ (in∼) label ∈ I) ∧
(label ∈ ranout⇒ (out∼) label ∈ O) ∧
(label ∈ ran tiots del⇒ (tiots del∼) label ∈ D)

TIOTS

TIOTS LABELS

TIOTS STATES

TIOTS TRANSITION RELATION

∀entry : T • {entry.1,entry.3} ⊆ Q ∧ (entry.2, I,O,D) ∈ well typed tiots transition

B.5 From e-DFRSs to TIOTSs

mapState : STATE� TIOTS STATE

genAction : (NAME 7→ VALUE) 7� TIOTS ACTION

domgenAction 6= /0

mapDelay : DELAY� TIOTS DELAY

∀n1 : N1 ; n2 : R+
1 •

mapDelay(discrete(n1)) = tiots discrete(n1) ∧
mapDelay(dense(n2)) = tiots dense(n2)

B.5. FROM E-DFRSS TO TIOTSS 192

mapFunTransitionOut : (TRANS× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dom(mapFunTransitionOut) = (STATE× ran fun×STATE)× (NAME 7→ TYPE)

∀ trans : TRANS ; O : (NAME 7→ TYPE) | trans.2 ∈ ran fun •
mapFunTransitionOut(trans,O) = {(mapState(trans.1),

out(genAction(currentValues(domOC trans.3))),mapState(trans.3))}

mapFunTransitionTau : TRANS 7→ TIOTS TRANSREL

dom(mapFunTransitionTau) = (STATE× ran fun×STATE)

∀ trans : TRANS | trans.2 ∈ ran fun •
mapFunTransitionTau(trans) = {(mapState(trans.1), tau,mapState(trans.3))}

mapFunTransitions : (TRANSREL×TRANSREL× (NAME 7→ TYPE)) 7→
TIOTS TRANSREL

dommapFunTransitions = {tr : TRANSREL | ∀ trans : tr • trans.2 ∈ ran fun}×
TRANSREL× (NAME 7→ TYPE)

∀ funTR, tr : TRANSREL ; O : (NAME 7→ TYPE) •
(funTR = /0⇒ mapFunTransitions(funTR, tr,O) = /0) ∧
(funTR 6= /0⇒∃ trans : funTR ; tr1 : TIOTS TRANSREL •

((∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
tr1 = mapFunTransitionOut(trans,O)) ∧

(¬ (∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
tr1 = mapFunTransitionTau(trans)) ∧

mapFunTransitions(funTR, tr,O) = tr1∪
mapFunTransitions(funTR\{trans}, tr,O))

TRANSREL NTD : PTRANSREL

∀ tr : TRANSREL NTD • tr 6= /0 ∧
∀ trans1, trans2 : tr • trans1.1 = trans2.1 ∧

trans1.2 ∈ randel ∧ trans2.2 ∈ randel ∧
(delayTransition(trans1.2)).1 = (delayTransition(trans2.2)).1

getNTDDelay : TRANSREL NTD→ DELAY

∀ tr : TRANSREL NTD • ∃ trans : tr •
getNTDDelay(tr) = (delayTransition(trans.2)).1

B.5. FROM E-DFRSS TO TIOTSS 193

TRANSREL PART : P(PTRANSREL NTD)

∀ tr : TRANSREL PART • ∀p1,p2 : tr •
p1∩p2 = /0 ∧ getNTDDelay(p1) 6= getNTDDelay(p2)

groupNTDDelays : TRANSREL 7→ TRANSREL PART

domgroupNTDDelays = {tr : TRANSREL | ∀ trans : tr • trans.2 ∈ randel}
∀ tr : TRANSREL •

⋃
(groupNTDDelays(tr)) = tr

getStates : TIOTS TRANSREL→ TIOTS STATES SET

∀ tr : TIOTS TRANSREL • getStates(tr) =
⋃
{trans : tr • {trans.1, trans.3}}

mapTDDelTransition : (TRANS×TRANSREL×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dommapTDDelTransition = (STATE× randel×STATE)×TRANSREL×
TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)

∀ trans : TRANS;
tr : TRANSREL ; used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) |

trans.2 ∈ randel • ∃q3 : TIOTS STATE ; tr1 : TIOTS TRANSREL • q3 /∈ used ∧
((∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
∃q4 : TIOTS STATE • q4 /∈ used∪{q3} ∧

tr1 = {(q3, in(genAction(currentValues(dom IC trans.3))),q4),
(q4,out(genAction(currentValues(domOC trans.3))),
mapState(trans.3))}) ∧

(¬ (∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
tr1 = {(q3, in(genAction(currentValues(dom IC trans.3))),

mapState(trans.3))}) ∧
mapTDDelTransition(trans, tr,used, I,O) = tr1∪{(mapState(trans.1),

tiots del(mapDelay(delayTransition(trans.2)).1),q3)}

B.5. FROM E-DFRSS TO TIOTSS 194

mapTDDelTransitions : (TRANSREL×TRANSREL×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dommapTDDelTransitions = {tr : TRANSREL | (∀ trans : tr • trans.2 ∈ randel) ∧
(∀ trans1, trans2 : tr | trans1 6= trans2 • trans1.1 6= trans2.1 ∨

(delayTransition(trans1.2)).1 6= (delayTransition(trans2.2)).1)}×
TRANSREL×TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)

∀delTR, tr : TRANSREL ; used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) •
(delTR = /0⇒ mapTDDelTransitions(delTR, tr,used, I,O) = /0) ∧
(delTR 6= /0⇒∃ trans : delTR ; tr1 : TIOTS TRANSREL •

tr1 = mapTDDelTransition(trans, tr,used, I,O) ∧
mapTDDelTransitions(delTR, tr,used, I,O) = tr1∪

mapTDDelTransitions(delTR\{trans},
tr,used∪getStates(tr1), I,O))

finite partition : (PTRANSREL NTD)

∀part : TRANSREL NTD • part ∈ finite partition⇔
(∃n : N • ∃ f : 1..n�→ part • true)

B.5. FROM E-DFRSS TO TIOTSS 195

mapNTDDelTargetStates : (TRANSREL NTD×TRANSREL×TIOTS STATE×
TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→
TIOTS TRANSREL

dommapNTDDelTargetStates = {part : TRANSREL NTD |
(part ∈ finite partition ∧ #part > 1) ∨ part /∈ finite partition}×

TRANSREL×TIOTS STATE×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)

∀part : TRANSREL NTD ; tr : TRANSREL ; q3 : TIOTS STATE;
used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) •

(part = /0⇒ mapNTDDelTargetStates(part, tr,q3,used, I,O) = /0) ∧
(part 6= /0⇒∃ trans : part ; tr1 : TIOTS TRANSREL •

((∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
∃q4 : TIOTS STATE • q4 /∈ used∪{q3} ∧

tr1 = {(q3, in(genAction(currentValues(dom IC trans.3))),q4),
(q4,out(genAction(currentValues(domOC trans.3))),
mapState(trans.3))}) ∧

(¬ (∃ trans2 : tr • trans2.1 = trans.3 ∧ trans2.2 ∈ randel)⇒
tr1 = {(q3, in(genAction(currentValues(dom IC trans.3))),
mapState(trans.3))}) ∧
mapNTDDelTargetStates(part, tr,q3,used, I,O) = tr1∪

mapNTDDelTargetStates(part \{trans}, tr,q3,
used∪getStates(tr1), I,O))

mapNTDDelTransitions : (TRANSREL NTD×TRANSREL×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dommapNTDDelTransitions = {part : TRANSREL NTD |
(part ∈ finite partition ∧ #part > 1) ∨ part /∈ finite partition}

×TRANSREL×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)

∀part : TRANSREL NTD ; tr : TRANSREL;
used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) •
∃q3 : TIOTS STATE ; trans : part | q3 /∈ used •

mapNTDDelTransitions(part, tr,used, I,O) =

mapNTDDelTargetStates(part, tr,q3,used∪{q3}, I,O)∪
{(mapState(trans.1), tiots del(mapDelay(delayTransition(trans.2)).1),

q3)}

B.5. FROM E-DFRSS TO TIOTSS 196

mapSetOfNTDDelTransitions : (TRANSREL PART×TRANSREL×
TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→
TIOTS TRANSREL

dommapSetOfNTDDelTransitions = {trs : TRANSREL PART | ∀part : trs •
(part ∈ finite partition ∧ #part > 1) ∨ part /∈ finite partition}
×TRANSREL×TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)

∀ trs : TRANSREL PART ; trB : TRANSREL;
used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) •

(trs = /0⇒ mapSetOfNTDDelTransitions(trs, trB,used, I,O) = /0) ∧
(trs 6= /0⇒∃ trA : trs ; tr1 : TIOTS TRANSREL •

tr1 = mapNTDDelTransitions(trA, trB,used, I,O) ∧
mapSetOfNTDDelTransitions(trs, trB,used, I,O) = tr1∪

mapSetOfNTDDelTransitions(trs\{trA}, trB,used∪getStates(tr1),
I,O))

getTDDelays : TRANSREL PART→ PTRANSREL

∀ trs : TRANSREL PART • getTDDelays(trs) =

{part : trs | part ∈ finite partition ∧ #part = 1}

mapDelTransitions : (TRANSREL×TRANSREL×TIOTS STATES SET×
(NAME 7→ TYPE)× (NAME 7→ TYPE)) 7→ TIOTS TRANSREL

dommapDelTransitions = {tr : TRANSREL | ∀ trans : tr • trans.2 ∈ randel}×
TRANSREL×TIOTS STATES SET× (NAME 7→ TYPE)× (NAME 7→ TYPE)

∀delTR, tr : TRANSREL ; used : TIOTS STATES SET ; I,O : (NAME 7→ TYPE) •
∃ tr1, tr2 : TIOTS TRANSREL ; parts : TRANSREL PART •

parts = groupNTDDelays(delTR) ∧
tr1 = mapTDDelTransitions(

⋃
(getTDDelays(parts)), tr,used, I,O) ∧

tr2 = mapSetOfNTDDelTransitions(parts\getTDDelays(parts), tr,

used∪getStates(tr1), I,O) ∧
mapDelTransitions(delTR, tr,used, I,O) = tr1∪ tr2

getTransitions : (TRANSREL× (PTRANS LABEL))→ TRANSREL

∀ tr : TRANSREL ; labelType : PTRANS LABEL •
getTransitions(tr, labelType) = {trans : tr | trans.2 ∈ labelType}

B.5. FROM E-DFRSS TO TIOTSS 197

mapTransitionRelation : TRANSREL× (NAME 7→ TYPE)× (NAME 7→ TYPE)→
TIOTS TRANSREL

∀ tr : TRANSREL ; I,O : (NAME 7→ TYPE) • ∃ tr1, tr2 : TIOTS TRANSREL •
tr1 = mapFunTransitions(getTransitions(tr, ran fun), tr,O) ∧
tr2 = mapDelTransitions(getTransitions(tr, randel), tr, ranmapState, I,O) ∧
mapTransitionRelation(tr, I,O) = tr1∪ tr2

getInputActions : TIOTS TRANSREL→ TIOTS ACTIONS

∀ tr : TIOTS TRANSREL • getInputActions(tr) =

{trans : tr | trans.2 ∈ ran in • (in∼)(trans.2)}

getOutputActions : TIOTS TRANSREL→ TIOTS ACTIONS

∀ tr : TIOTS TRANSREL • getOutputActions(tr) =

{trans : tr | trans.2 ∈ ranout • (out∼)(trans.2)}

getDelays : TIOTS TRANSREL→ TIOTS DELAYS

∀ tr : TIOTS TRANSREL • getDelays(tr) =

{trans : tr | trans.2 ∈ ran tiots del • (tiots del∼)(trans.2)}

fromDFRStoTIOTS : e DFRS→ TIOTS

∀dfrs : e DFRS ; tiots : TIOTS •
fromDFRStoTIOTS(dfrs) = tiots⇔
tiots.Q = getStates(tiots.T)∪{tiots.q0} ∧ tiots.q0 = mapState(dfrs.s0) ∧
tiots.I = getInputActions(tiots.T) ∧ tiots.O = getOutputActions(tiots.T) ∧
tiots.D = getDelays(tiots.T) ∧
tiots.T = mapTransitionRelation(dfrs.TR,dfrs.I,dfrs.O)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 198

B.6 Soundness of fromDFRStoTIOTS

B.6.1 Disjointness of t.I and t.O

B.6.1.1 Transformation: implies-and to and-or

Lemma 1.

(a⇒ b) ∧ (¬ a⇒ c)⇔ (a ∧ b) ∨ (¬ a ∧ c)

provided
¬ (b ∧ c)

proof
(a ⇒ b) ∧ (¬ a ⇒ c)

⇔ [propositional calculus]

(¬ a ∨ b) ∧ (a ∨ c)

⇔ [propositional calculus]

(¬ a ∧ a) ∨ (¬ a ∧ c) ∨ (b ∧ a) ∨ (b ∧ c)

⇔ [propositional calculus]

(¬ a ∧ c) ∨ (b ∧ a) ∨ (b ∧ c)

⇔ [proviso]

(¬ a ∧ c) ∨ (b ∧ a) ∨ (false)

⇔ [propositional calculus]

(a ∧ b) ∨ (¬ a ∧ c)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 199

B.6.1.2 Inductive property: 2nd template

Lemma 2.

∀ f : PX×A×B 7→ PZ ; g : X×B 7→ PZ ; h : X 7→ PZ ; xx : PX ; a : A ; b : B ; z : Z •
z ∈ f (xx,a,b)⇒∃x : xx • h(x) 6= g(x,b) ∧

(P(x,a)⇒ z ∈ h(x)) ∧ (¬ (P(x,a))⇒ z ∈ g(x,b))

provided
∀xx : PX ; a : A ; b : B •

(xx = /0⇒ f (xx,a,b) = /0) ∧
(xx 6= /0⇒∃x : xx • h(x) 6= g(x,b) ∧

(P(x,a)⇒ f (xx,a,b) = h(x)∪ f (xx\{x},a,b)) ∧
(¬ (P(x,a))⇒ f (xx,a,b) = g(x,b)∪ f (xx\{x},a,b)))

proof
Let xx, a, b, and z range over values in the sets P X, A, B, and Z, respec-
tively; and f , g and h be of
the following types: P X × A × B 7→ P Z, X × B 7→ P Z, and X 7→ P Z, respec-
tively. We prove the result by induction on the size of xx.

Base case 1: suppose #xx = 0

z ∈ f (/0,a,b)

⇒ [proviso]

z ∈ /0

⇔ [property of sets]

false

⇒ [propositional calculus]

∃ x : xx • h(x) 6= g(x,b) ∧
(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b))

�

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 200

Inductive step: assume the result holds for #xx = n.
We now prove that it holds for #xx = n+1

z ∈ f (xx,a,b)

⇒ [proviso]

∃ x : xx • z ∈ f (xx,a,b) ∧ h(x) 6= g(x,b) ∧
(P(x,a) ⇒ f (xx,a,b) = h(x) ∪ f (xx\{x},a,b)) ∧
(¬ (P(x,a)) ⇒ f (xx,a,b) = g(x,b) ∪ f (xx\{x},a,b))

⇔ [Lemma 1, provided

¬ (f (xx,a,b) = h(x) ∪ f (xx\{x},a,b) ∧
f (xx,a,b) = g(x,b) ∪ f (xx\{x},a,b))

since h(x) 6= g(x,b)]

∃ x : xx • z ∈ f (xx,a,b) ∧ h(x) 6= g(x,b) ∧
((P(x,a) ∧ f (xx,a,b) = h(x) ∪ f (xx\{x},a,b)) ∨
(¬ (P(x,a)) ∧ f (xx,a,b) = g(x,b) ∪ f (xx\{x},a,b)))

⇒ [property of ∪]

∃ x : xx • h(x) 6= g(x,b) ∧
((P(x,a) ∧ (z ∈ h(x) ∨ z ∈ f (xx\{x},a,b))) ∨
(¬ (P(x,a)) ∧ (z ∈ g(x,b) ∨ z ∈ f (xx\{x},a,b))))

⇔ [predicate calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧
P(x,a) ∧ (z ∈ h(x) ∨ z ∈ f (xx\{x},a,b))) ∨

(∃ x : xx • h(x) 6= g(x,b) ∧
¬ (P(x,a)) ∧ (z ∈ g(x,b) ∨ z ∈ f (xx\{x},a,b)))

⇔ [propositional calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧
((P(x,a) ∧ z ∈ h(x)) ∨ (P(x,a) ∧ z ∈ f (xx\{x},a,b)))) ∨

(∃ x : xx • h(x) 6= g(x,b) ∧
((¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨ (¬ (P(x,a) ∧ z ∈ f (xx\{x},a,b)))))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 201

⇒ [propositional calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧
((P(x,a) ∧ z ∈ h(x)) ∨ z ∈ f (xx\{x},a,b))) ∨

(∃ x : xx • h(x) 6= g(x,b) ∧
((¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨ z ∈ f (xx\{x},a,b)))

⇔ [predicate calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ z ∈ f (xx\{x},a,b)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ z ∈ f (xx\{x},a,b))

⇔ [propositional calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ z ∈ f (xx\{x},a,b))

⇒ [inductive hypothesis]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧

∃ x2 : xx\{x} • h(x2) 6= g(x2,b) ∧
(P(x2,a) ⇒ z ∈ h(x2)) ∧ (¬ (P(x2,a)) ⇒ z ∈ g(x2,b)))

⇒ [propositional calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx •

∃ x2 : xx\{x} • h(x2) 6= g(x2,b) ∧
(P(x2,a) ⇒ z ∈ h(x2)) ∧ (¬ (P(x2,a)) ⇒ z ∈ g(x2,b)))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 202

⇒ [property of sets]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx •

∃ x2 : xx • h(x2) 6= g(x2,b) ∧
(P(x2,a) ⇒ z ∈ h(x2)) ∧ (¬ (P(x2,a)) ⇒ z ∈ g(x2,b)))

⇔ [predicate calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧ P(x,a) ∧ z ∈ h(x)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧ ¬ (P(x,a)) ∧ z ∈ g(x,b)) ∨
(∃ x : xx • h(x) 6= g(x,b) ∧

(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b)))

⇔ [predicate calculus]

(∃ x : xx • h(x) 6= g(x,b) ∧
((P(x,a) ∧ z ∈ h(x)) ∨ (¬ (P(x,a)) ∧ z ∈ g(x,b)))) ∨

(∃ x : xx • h(x) 6= g(x,b) ∧
(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b)))

⇔ [Lemma 1, provided

h(x) 6= g(x,b)]

(∃ x : xx • h(x) 6= g(x,b) ∧
(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b))) ∨

(∃ x : xx • h(x) 6= g(x,b) ∧
(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b)))

⇔ [propositional calculus]

∃ x : xx • h(x) 6= g(x,b) ∧
(P(x,a) ⇒ z ∈ h(x)) ∧ (¬ (P(x,a)) ⇒ z ∈ g(x,b))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 203

B.6.1.3 Inductive property: 3rd template

Lemma 3.

∀ f : PX×A×B×C×D 7→ PZ;
g : X×A×B×C×D 7→ PZ ; xx : PX ; a : A ; b : B ; c : C ; d : D ; z : Z •

z ∈ f (xx,a,b,c,d)⇒ (∃x : xx ; b2 : B • z ∈ g(x,a,b2,c,d))
provided
∀xx : PX ; a : A ; b : B ; c : C ; d : D •

(xx = /0⇒ f (xx,a,b,c,d) = /0) ∧
(xx 6= /0⇒∃x : xx ; b2 : B •

f (xx,a,b,c,d) = g(x,a,b,c,d)∪ f (xx\{x},a,b2,c,d))

proof
Let xx, a, b, c, d and z range over val-
ues in the sets P X, A, B, C, D, and Z, respectively; and f , and g be of the fol-
lowing types: P X × A × B × C × D 7→ P Z, X × A × B
× C × D 7→ P Z, respectively. We prove the result by induction on the size of xx.

Base case 1: suppose #xx = 0

z ∈ f (/0,a,b,c,d)

⇒ [proviso]

z ∈ /0

⇔ [property of sets]

false

⇒ [propositional calculus]

∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d)
�

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 204

Inductive step: assume the result holds for #xx = n.
We now prove that it holds for #xx = n+1

z ∈ f (xx,a,b,c,d)

⇒ [proviso]

∃ x : xx ; b2 : B • z ∈ f (xx,a,b,c,d) ∧
f (xx,a,b,c,d) = g(x,a,b,c,d) ∪ f (xx\{x},a,b2,c,d)

⇒ [property of ∪]

∃ x : xx ; b2 : B •
z ∈ g(x,a,b,c,d) ∨ z ∈ f (xx\{x},a,b2,c,d)

⇔ [predicate calculus]

(∃ x : xx • z ∈ g(x,a,b,c,d)) ∨
(∃ x : xx ; b2 : B • z ∈ f (xx\{x},a,b2,c,d))

⇒ [inductive hypothesis]

(∃ x : xx • z ∈ g(x,a,b,c,d)) ∨
(∃ x : xx ; b2 : B • (∃ x2 : xx\{x} ; b3 : B • z ∈ g(x2,a,b3,c,d)))

⇒ [property of sets]

(∃ x : xx • z ∈ g(x,a,b,c,d)) ∨
(∃ x : xx ; b2 : B • (∃ x2 : xx ; b3 : B • z ∈ g(x2,a,b3,c,d)))

⇔ [predicate calculus]

(∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d) ∧ b2 = b) ∨
(∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d))

⇒ [propositional calculus]

(∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d)) ∨
(∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 205

⇔ [propositional calculus]

∃ x : xx ; b2 : B • z ∈ g(x,a,b2,c,d)

B.6.1.4 Mapping function transitions

Lemma 4.

∀ t : TIOTS • ∀d : e DFRS • ∀ trans : t.T •
trans ∈ mapFunTransitions(getTransitions(d.TR, ran fun),d.TR,d.O)⇒
((trans.2 ∈ ranout ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran fun •

trans.2 = out(genAction(currentValues(domd.OC trans2.3)))) ∨
(trans.2 ∈ ran tau))

proof
Let t, d, and trans range over values in the sets TIOTS, e DFRS, and TIOTS TRANS,
respectively.

trans ∈ mapFunTransitions(getTransitions(d.TR, ran fun), d.TR, d.O)

⇒ [Lemma 2
f ≡ mapFunctionTransitions, g ≡ mapFunTransitionOut, h ≡ mapFunTransitionTau,

xx ≡ funTR, X ≡ TRANS, a ≡ tr, A ≡ TRANSREL

b ≡ O, B ≡ (NAME 7→ TYPE), z ≡ trans, Z ≡ TIOTS TRANS]

∃ trans2 : getTransitions(d.TR, ran fun) •
((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans ∈ mapFunTransitionOut(trans2, d.O)) ∧
(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans ∈ mapFunTransitionTau(trans2))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 206

⇒ [definition of mapFunTransitionOut, and mapFunTransitionTau]

∃ trans2 : getTransitions(d.TR, ran fun) •
((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans ∈
{(mapState(trans2.1),

out(genAction(currentValues(dom d.O C trans2.3))),
mapState(trans2.3))}) ∧

(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒
trans ∈ {(mapState(trans2.1), tau, mapState(trans2.3))})

⇒ [property of sets]

∃ trans2 : getTransitions(d.TR, ran fun) •
((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∧
(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans.2 = tau)

⇔ [Lemma 1, provided

¬ (trans.2 = out() ∧ trans.2 = tau)

due to the definition of TIOTS TRANS LABEL]

∃ trans2 : getTransitions(d.TR, ran fun) •
((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ∧

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ∧

trans.2 = tau)

⇒ [propositional calculus]

∃ trans2 : getTransitions(d.TR, ran fun) •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tau

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 207

⇔ [predicate calculus]

(∃ trans2 : getTransitions(d.TR, ran fun) •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨

(trans.2 = tau)

⇔ [property of functions]

(∃ trans2 : getTransitions(d.TR, ran fun) • trans.2 ∈ ran out ∧
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨

(trans.2 ∈ ran tau)

⇔ [predicate calculus]

(trans.2 ∈ ran out ∧
∃ trans2 : getTransitions(d.TR, ran fun) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau)

⇔ [definition of getTransitions]

(trans.2 ∈ ran out ∧
∃ trans2 : TRANSREL | trans2 ∈ { transA : d.TR | transA.2 ∈ ran fun } •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau)

⇔ [definition of set comprehension]

(trans.2 ∈ ran out ∧
∃ trans2 : TRANSREL | (∃ transA : TRANSREL • transA ∈ d.TR ∧

transA.2 ∈ ran fun ∧ trans2 = transA) •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨

(trans.2 ∈ ran tau)

⇔ [predicate calculus – one-point rule]

(trans.2 ∈ ran out ∧
∃ trans2 : TRANSREL | trans2 ∈ d.TR ∧ trans2.2 ∈ ran fun •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 208

⇔ [predicate calculus]

(trans.2 ∈ ran out ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran fun •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨

(trans.2 ∈ ran tau)

B.6.1.5 Transformation: implies-or-and to or

Lemma 5.

((a⇒ b ∨ c) ∧ (¬ a⇒ b))⇒ (b ∨ c)

provided
¬ (b ∧ c)

proof
(a ⇒ b ∨ c) ∧ (¬ a ⇒ b)

⇔ [propositional calculus]

((a ⇒ b) ∨ (a ⇒ c)) ∧ (¬ a ⇒ b)

⇔ [propositional calculus]

((a ⇒ b) ∧ (¬ a ⇒ b)) ∨ ((a ⇒ c) ∧ (¬ a ⇒ b))

⇔ [propositional calculus]

((¬ a ∨ b) ∧ (a ∨ b)) ∨ ((a ⇒ c) ∧ (¬ a ⇒ b))

⇔ [propositional calculus]

((¬ a ∧ b) ∨ (b ∧ a) ∨ b) ∨ ((a ⇒ c) ∧ (¬ a ⇒ b))

⇔ [propositional calculus]

(((¬ a ∨ a) ∧ b) ∨ b) ∨ ((a ⇒ c) ∧ (¬ a ⇒ b))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 209

⇔ [propositional calculus]

b ∨ ((a ⇒ c) ∧ (¬ a ⇒ b))

⇔ [Lemma 1, provided ¬ (b ∧ c)]

b ∨ (a ∧ c) ∨ (¬ a ∧ b)

⇒ [propositional calculus]

b ∨ c ∨ b

⇔ [propositional calculus]

b ∨ c

B.6.1.6 Mapping delay transitions

Lemma 6.

∀ t : TIOTS • ∀d : e DFRS • ∀ trans : t.T •
trans ∈ mapDelTransitions(

getTransitions(d.TR, randel),d.TR, ranmapState,d.I,d.O)⇒
((trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ randel •

trans.2 = in(genAction(currentValues(domd.IC trans2.3)))) ∨
(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ randel •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨
(trans.2 ∈ ranout ∧ ∃ trans2 : d.TR | trans2.2 ∈ randel •

trans.2 = out(genAction(currentValues(domd.OC trans2.3)))))

proof
Let t, d, and trans range over values in the sets TIOTS, e DFRS, and TIOTS TRANS,
respectively.

trans ∈ mapDelTransitions(getTransitions(d.TR, ran del),

d.TR, ran mapState, d.I, d.O)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 210

⇒ [definition of mapDelTransitions]

∃ tr1, tr2 : TIOTS TRANSREL ; parts : TRANSREL PART •
parts = groupNTDDelays(getTransitions(d.TR, ran del)) ∧
tr1 = mapTDDelTransitions(⋃

(getTDDelays(parts)), d.TR, ran mapState, d.I, d.O) ∧
tr2 = mapSetOfNTDDelTransitions(parts \ getTDDelays(parts), d.TR,

ran mapState ∪ getStates(tr1), d.I, d.O) ∧
mapDelTransitions(getTransitions(d.TR, ran del), d.TR,

ran mapState, d.I, d.O) = tr1 ∪ tr2 ∧
trans ∈ mapDelTransitions(getTransitions(d.TR, ran del),

d.TR, ran mapState, d.I, d.O)

⇒ [property of sets]

∃ tr1 : TIOTS TRANSREL ; parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

trans ∈ mapTDDelTransitions(
⋃
(getTDDelays(parts)), d.TR,

ran mapState, d.I, d.O) ∨
trans ∈ mapSetOfNTDDelTransitions(parts \ getTDDelays(parts), d.TR,

ran mapState ∪ getStates(tr1), d.I, d.O)

⇒ [Lemma 3
f ≡ mapTDDelTransitions, g ≡ mapTDDelTransition

xx ≡ delTR, X ≡ TRANS, a ≡ tr, A ≡ TRANSREL

b ≡ used, B ≡ TIOTS STATES SET, c ≡ I, d ≡ O]

C,D ≡ (NAME 7→ TYPE), z ≡ trans, Z ≡ TIOTS TRANS]

∃ tr1 : TIOTS TRANSREL ; parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

(∃ trans2 :
⋃
(getTDDelays(parts)) ; used2 : TIOTS STATES SET •

trans ∈ mapTDDelTransition(trans2, d.TR, used2, d.I, d.O)) ∨
trans ∈ mapSetOfNTDDelTransitions(parts \ getTDDelays(parts), d.TR,

ran mapState ∪ getStates(tr1), d.I, d.O)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 211

⇒ [definition of mapTDDelTransition]

∃ tr1 : TIOTS TRANSREL ; parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

(∃ trans2 :
⋃
(getTDDelays(parts)) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

trans ∈ mapSetOfNTDDelTransitions(parts \ getTDDelays(parts), d.TR,

ran mapState ∪ getStates(tr1), d.I, d.O)

⇔ [predicate calculus]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ tr1 : TIOTS TRANSREL ; parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

trans ∈ mapSetOfNTDDelTransitions(parts \ getTDDelays(parts), d.TR,

ran mapState ∪ getStates(tr1), d.I, d.O))

⇒ [Lemma 3
f ≡ mapSetOfNTDDelTransitions, g ≡ mapNTDDelTransitions

xx ≡ trs, X ≡ P TRANSREL NTD, a ≡ trB, A ≡ TRANSREL
b ≡ used, B ≡ TIOTS STATES SET, c ≡ I, d ≡ O]

C,D ≡ (NAME 7→ TYPE), z ≡ trans, Z ≡ TIOTS TRANS]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) ; used2 : TIOTS STATES SET •
trans ∈ mapNTDDelTransitions(part, d.TR, used2, d.I, d.O))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 212

⇒ [definition of mapNTDDelTransitions]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) ; used2 : TIOTS STATES SET •
∃ q3 : TIOTS STATE ; trans2 : part | q3 /∈ used2 •

trans ∈ mapNTDDelTargetStates(part, d.TR, q3,
used2 ∪ {q3}, d.I, d.O) ∨

trans ∈ {(mapState(trans2.1),
tiots del(mapDelay(delayTransition(trans2.2)).1), q3)})

⇒ [Similarly to Lemma 2, f ≡ mapNTDDelTargetStates]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) ; used2 : TIOTS STATES SET •
∃ q3 : TIOTS STATE ; trans2 : part | q3 /∈ used2 •

(((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒
∃ q4 : TIOTS STATE • q4 /∈ used2 ∪ {q3} ∧ trans ∈
{(q3, in(genAction(currentValues(dom d.I C trans2.3))), q4),
(q4, out(genAction(currentValues(dom d.O C trans2.3))),

mapState(trans2.3))}) ∧
(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans ∈ {(q3, in(genAction(currentValues(dom d.I C trans2.3))),
mapState(trans2.3))})) ∨

trans ∈ {(mapState(trans2.1),
tiots del(mapDelay(delayTransition(trans2.2)).1), q3)})

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 213

⇒ [property of sets]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
(((∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∧

(¬ (∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del) ⇒
tranA.2 = in(genAction(currentValues(dom d.I C trans2.3))))) ∨

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇒ [Lemma 5
a ≡ ∃ transA : d.TR • transA.1 = trans2.3 ∧ transA.2 ∈ ran del,

b ≡ trans.2 = in(genAction(currentValues(dom d.I C trans2.3))),
c ≡ trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))

provided ¬ (b ∧ c) due to definition of TIOTS TRANS LABEL]

(∃ trans2 :
⋃
(getTDDelays(groupNTDDelays(getTransitions(d.TR, ran del)))) •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 214

⇔ [predicate calculus]

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ trA : TRANSREL | trA =
⋃

getTDDelays(parts) • ∃ trans2 : trA •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇔ [predicate calculus]

∃ parts : TRANSREL PART |
parts = groupNTDDelays(getTransitions(d.TR, ran del)) •

(∃ trA : TRANSREL | trA =
⋃

getTDDelays(parts) • ∃ trans2 : trA •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇒ [property of groupNTDDelays]

∃ parts : TRANSREL PART |
⋃

parts = getTransitions(d.TR, ran del) •
(∃ trA : TRANSREL | trA =

⋃
getTDDelays(parts) • ∃ trans2 : trA •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 215

⇔ [definition of getTransitions]

∃ parts : TRANSREL PART |
⋃

parts = { transA : d.TR | transA.2 ∈ ran del } •
(∃ trA : TRANSREL | trA =

⋃
getTDDelays(parts) • ∃ trans2 : trA •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts \ getTDDelays(parts) • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇒ [property of sets]

∃ parts : TRANSREL PART •
(∀ part : parts • ∀ transA : part • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
(∃ trA : TRANSREL | trA =

⋃
getTDDelays(parts) • ∃ trans2 : trA •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇔ [definition of getTDDelays]

∃ parts : TRANSREL PART •
(∀ part : parts • ∀ transA : part • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
(∃ trA : TRANSREL |
trA =

⋃
{ part : parts | part ∈ finite partition ∧ #part = 1 } •

∃ trans2 : trA •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 216

⇒ [property of sets]

∃ parts : TRANSREL PART •
(∀ part : parts • ∀ transA : part • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
(∃ trA : TRANSREL •

(∀ transA : trA • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
∃ trans2 : trA •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(∃ part : parts • ∃ trans2 : part •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇒ [property of sets]

∃ parts : TRANSREL PART •
(∀ part : parts • ∀ transA : part • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
(∃ trA : TRANSREL •

(∀ transA : trA • transA ∈ d.TR ∧ transA.2 ∈ ran del) ∧
∃ trans2 : d.TR • trans2.2 ∈ ran del ∧

(trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))) ∨

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
(trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)))

⇒ [predicate calculus]

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
(trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))) ∨

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
(trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 217

⇔ [propositional calculus]

∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
(trans.2 = in(genAction(currentValues(dom d.I C trans2.3))) ∨
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))) ∨
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇔ [predicate calculus]

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨

(∃ trans2 : d.TR • trans2.2 ∈ ran del ∧
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1))

⇔ [property of functions]

(trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨

(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(trans.2 ∈ ran out ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 218

B.6.1.7 Mapping transitions

Lemma 7.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒
∀ trans : t.T •

(trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ randel •
trans.2 = in(genAction(currentValues(domd.IC trans2.3)))) ∨

(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ randel •
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(trans.2 ∈ ranout ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ randel) •

trans.2 = out(genAction(currentValues(domd.OC trans2.3)))) ∨
(trans.2 ∈ ran tau))

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

⇒ [defintion of fromDFRStoTIOTS]

t.T = mapTransitionRelation(d.TR, d.I, d.O)

⇔ [definition of mapTransitionRelation]

∃ tr1, tr2 : TIOTS TRANSREL • t.T = tr1 ∪ tr2 ∧
tr1 = mapFunTransitions(getTransitions(d.TR, ran fun), d.TR, d.O) ∧
tr2 = mapDelTransitions(getTransitions(d.TR, ran del), d.TR,

ran mapState, d.I, d.O)

⇔ [predicate calculus – one-point rule]

t.T = mapFunTransitions(getTransitions(d.TR, ran fun), d.TR, d.O) ∪
mapDelTransitions(getTransitions(d.TR, ran del), d.TR, ran mapState, d.I, d.O)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 219

⇒ [property of sets]

∀ trans : t.T •
trans ∈ mapFunTransitions(getTransitions(d.TR, ran fun), d.TR, d.O) ∨
trans ∈ mapDelTransitions(getTransitions(d.TR, ran del), d.TR,

ran mapState, d.I, d.O)

⇒ [Lemma 4]

∀ trans : t.T •
(trans.2 ∈ ran out ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran fun •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau) ∨
trans ∈ mapDelTransitions(getTransitions(d.TR, ran del), d.TR,

ran mapState, d.I, d.O)

⇒ [Lemma 6]

∀ trans : t.T •
(trans.2 ∈ ran out ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran fun •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau) ∨
(trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨
(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨
(trans.2 ∈ ran out ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3))))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 220

⇔ [predicate calculus]

∀ trans : t.T •
(trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨
(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨
(trans.2 ∈ ran out ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ ran del) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau)

B.6.1.8 Property of genAction

Lemma 8.

∀ t : TIOTS ; d : e DFRS;
f : (TIOTS ACTION� TIOTS TRANS LABEL) ; g : (VNAME 7 7→ TYPE) •

(∀a : A • ∃ trans : t.T • a = (f ∼)(trans.2) ∧
∃ trans2 : d.TR • trans.2 = f (genAction(currentValues(domgC trans2.3))))⇒

(∀a : A • ∃h : (NAME 7→ VALUE) • a = genAction(h) ∧ domh⊆ domg)

proof
Let t, d, f , and g range over values in the sets TIOTS, e DFRS,
(TIOTS ACTION � TIOTS TRANS LABEL), and (VNAME 7 7→ TYPE), respectively.

∀ a : A • ∃ trans : t.T • a = (f ∼)(trans.2) ∧
∃ trans2 : d.TR • trans.2 = f (genAction(currentValues(dom g C trans2.3)))

⇔ [predicate calculus]

∀ a : A • ∃ trans : t.T • ∃ trans2 : d.TR •
a = (f ∼)(trans.2) ∧ trans.2 = f (genAction(currentValues(dom g C trans2.3)))

⇔ [predicate calculus – one-point rule]

∀ a : A • ∃ trans2 : d.TR •
a = (f ∼)(f (genAction(currentValues(dom g C trans2.3))))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 221

⇔ [property of injective functions – x = (f ∼)(f (h(y))) ⇔ x = h(y)]

∀ a : A • ∃ trans2 : d.TR •
a = genAction(currentValues(dom g C trans2.3))

⇔ [predicate calculus – one-point rule]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
h = currentValues(dom g C trans2.3)

⇔ [definition of currentValues]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
h = { n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈ dom g C trans2.3 • (n,v2) }

⇔ [definition of C]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
h = { n : NAME ; v1,v2 : VALUE | (n,(v1,v2)) ∈

{ x : NAME ; y1,y2 : VALUE | (x,(y1,y2)) ∈ trans2.3 ∧
x ∈ dom g • (x,(y1,y2)) }

• (n,v2) }

⇔ [definition of set comprehension]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
h = { n : NAME ; v1,v2 : VALUE |

(∃ x : NAME ; y1,y2 : VALUE | (x,(y1,y2)) ∈ trans2.3 ∧
x ∈ dom g ∧ (n,(v1,v2)) = (x,(y1,y2)))

• (n,v2) }

⇔ [predicate calculus – one-point rule]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
h = { n : NAME ; v1,v2 : VALUE |

(n,(v1,v2)) ∈ trans2.3 ∧ n ∈ dom g • (n,v2) }

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 222

⇒ [property of set comprehension]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
∀ e : h • (∃ n : NAME ; v1,v2 : VALUE |

(n,(v1,v2)) ∈ trans2.3 ∧ n ∈ dom g • e = (n,v2))

⇒ [property of cartesian product – e = (a,b) ⇒ e.1 = a]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
∀ e : h • ∃ n : NAME ; v1,v2 : VALUE |

(n,(v1,v2)) ∈ trans2.3 ∧ n ∈ dom g • e.1 = n

⇒ [property of sets – (a ∈ X ∧ b = a) ⇒ (a ∈ X ∧ b ∈ X)]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
∀ e : h • ∃ n : NAME ; v1,v2 : VALUE |

(n,(v1,v2)) ∈ trans2.3 ∧ n ∈ dom g • e.1 ∈ dom g

⇒ [propositional calculus]

∀ a : A • ∃ trans2 : d.TR ; h : (NAME 7→ VALUE) • a = genAction(h) ∧
∀ e : h • ∃ n : NAME ; v1,v2 : VALUE • e.1 ∈ dom g

⇔ [predicate calculus]

∀ a : A • ∃ h : (NAME 7→ VALUE) • a = genAction(h) ∧
∀ e : h • e.1 ∈ dom g

⇔ [definition of ⊆]

∀ a : A • ∃ h : (NAME 7→ VALUE) • a = genAction(h) ∧ dom h ⊆ dom g

B.6.1.9 Proof of disjointness of t.I and t.O

Lemma 9.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒ disjoint 〈t.I, t.O〉)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 223

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

⇒ [definition of fromDFRStoTIOTS]

t = fromDFRStoTIOTS(d) ∧
t.I = getInputActions(t.T) ∧ t.O = getOutputActions(t.T)

⇔ [definition of getInputActions and getOutputActions]

t = fromDFRStoTIOTS(d) ∧
t.I = { trans : t.T | trans.2 ∈ ran in • (in∼)(trans.2) } ∧
t.O = { trans : t.T | trans.2 ∈ ran out • (out∼)(trans.2) }

⇒ [property of set comprehension]

t = fromDFRStoTIOTS(d) ∧
(∀ i : t.I • ∃ trans : t.T | trans.2 ∈ ran in • i = (in∼)(trans.2)) ∧
(∀ o : t.O • ∃ trans : t.T | trans.2 ∈ ran out • o = (out∼)(trans.2))

⇒ [Lemma 7]

(∀ i : t.I • ∃ trans : t.T | trans.2 ∈ ran in • i = (in∼)(trans.2) ∧
((trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨
(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨
(trans.2 ∈ ran out ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ ran del) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau))) ∧

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 224

(∀ o : t.O • ∃ trans : t.T | trans.2 ∈ ran out • o = (out∼)(trans.2) ∧
((trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨
(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨
(trans.2 ∈ ran out ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ ran del) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau)))

⇔ [definition of TIOTS TRANS LABEL –
disjoint 〈 ran in, ran out, ran tiots del, ran tau〉]

(∀ i : t.I • ∃ trans : t.T • i = (in∼)(trans.2) ∧
trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∧
(∀ o : t.O • ∃ trans : t.T • o = (out∼)(trans.2) ∧

trans.2 ∈ ran out ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ ran del) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3))))

⇒ [propositional calculus]

(∀ i : t.I • ∃ trans : t.T • i = (in∼)(trans.2) ∧
∃ trans2 : d.TR •

trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∧
(∀ o : t.O • ∃ trans : t.T • o = (out∼)(trans.2) ∧

∃ trans2 : d.TR •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))))

⇒ [Lemma 8, where a ≡ i, A ≡ t.I, f ≡ in, g ≡ d.I]

(∀ i : t.I • ∃ h : (NAME 7→ VALUE) • i = genAction(h) ∧ dom h ⊆ dom d.I) ∧
(∀ o : t.O • ∃ trans : t.T • o = (out∼)(trans.2) ∧

∃ trans2 : d.TR •
trans.2 = out(genAction(currentValues(dom d.O C trans2.3))))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 225

⇒ [Lemma 8, where a ≡ o, A ≡ t.O, f ≡ out, g ≡ d.O]

(∀ i : t.I • ∃ h : (NAME 7→ VALUE) • i = genAction(h) ∧ dom h ⊆ dom d.I) ∧
(∀ o : t.O • ∃ h : (NAME 7→ VALUE) • o = genAction(h) ∧ dom h ⊆ dom d.O)

⇔ [predicate calculus]

∀ i : t.I ; o : t.O • ∃ h1, h2 : (NAME 7→ VALUE) •
dom h1 ⊆ dom d.I ∧ dom h2 ⊆ dom d.O ∧
i = genAction(h1) ∧ o = genAction(h2)

⇒ [definition of e DFRS]

∀ i : t.I ; o : t.O • ∃ h1, h2 : (NAME 7→ VALUE) •
dom d.I ∩ dom d.O = /0 ∧
dom h1 ⊆ dom d.I ∧ dom h2 ⊆ dom d.O ∧
i = genAction(h1) ∧ o = genAction(h2)

⇒ [property of sets]

∀ i : t.I ; o : t.O • ∃ h1, h2 : (NAME 7→ VALUE) •
h1 6= h2 ∧ i = genAction(h1) ∧ o = genAction(h2)

⇒ [definition of genAction – injective function]

∀ i : t.I ; o : t.O • i 6= o

⇔ [definition of disjoint]

disjoint 〈 t.I, t.O 〉

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 226

B.6.2 Time compatibility

B.6.2.1 Transformation: implies to equivalence

Lemma 10.

((a⇒ b) ∧ (c⇒ d))⇒ ((a⇒ b) ∧ (c⇔ d))

provided
(a ∨ c) ∧ ¬ (b ∧ d)

proof
(a ⇒ b) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ (a ⇒ b) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ (¬ a ∨ b) ∧ (c ⇒ d)

⇔ [proviso]

(a ⇒ b) ∧ ((¬ a ∧ (a ∨ c)) ∨ b) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ ((¬ a ∧ (¬ a ⇒ c)) ∨ b) ∧ (c ⇒ d)

⇒ [propositional calculus]

(a ⇒ b) ∧ (c ∨ b) ∧ (c ⇒ d)

⇔ [proviso]

(a ⇒ b) ∧ (c ∨ (b ∧ ¬ (b ∧ d))) ∧ (c ⇒ d)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 227

⇔ [propositional calculus]

(a ⇒ b) ∧ (c ∨ (b ∧ (¬ b ∨ ¬ d))) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ (c ∨ (b ∧ (b ⇒ ¬ d))) ∧ (c ⇒ d)

⇒ [propositional calculus]

(a ⇒ b) ∧ (c ∨ ¬ d) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ (d ⇒ c) ∧ (c ⇒ d)

⇔ [propositional calculus]

(a ⇒ b) ∧ (c ⇔ d)

B.6.2.2 Transformation: implies elimination

Lemma 11.

(∀x : X | Q(x) • f (y) = k1⇒ P1(x)) ∧ (∀x : X | Q(x) • f (y) = k2⇒ P2(x))

⇒
(∀x : X | Q(x) • P1(x)) ∨ (∀x : X | Q(x) • P2(x))

provided
(f (y) = k1 ∨ f (y) = k2) ∧ ¬ (∀x : X | Q(x) • P1(x) ∧ P2(x))

proof
(∀ x : X | Q(x) • f (y) = k1 ⇒ P1(x)) ∧
(∀ x : X | Q(x) • f (y) = k2 ⇒ P2(x))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 228

⇔ [propositional calculus]

(∀ x : X | Q(x) • ¬ (f (y) = k1) ∨ P1(x)) ∧
(∀ x : X | Q(x) • ¬ (f (y) = k2) ∨ P2(x))

⇔ [predicate calculus]

(¬ (f (y) = k1) ∨ (∀ x : X | Q(x) • P1(x))) ∧
(¬ (f (y) = k2) ∨ (∀ x : X | Q(x) • P2(x)))

⇔ [propositional calculus]

(¬ (f (y) = k1) ∧ ¬ (f (y) = k2)) ∨
(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
((∀ x : X | Q(x) • P1(x)) ∧ (∀ x : X | Q(x) • P2(x)))

⇔ [propositional calculus]

(¬ (f (y) = k1 ∨ f (y) = k2)) ∨
(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
((∀ x : X | Q(x) • P1(x)) ∧ (∀ x : X | Q(x) • P2(x)))

⇔ [proviso]

(¬ (true)) ∨
(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
((∀ x : X | Q(x) • P1(x)) ∧ (∀ x : X | Q(x) • P2(x)))

⇔ [propositional calculus]

(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
((∀ x : X | Q(x) • P1(x)) ∧ (∀ x : X | Q(x) • P2(x)))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 229

⇔ [predicate calculus]

(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
(∀ x : X | Q(x) • P1(x) ∧ P2(x))

⇔ [proviso]

(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨
(false)

⇔ [propositional calculus]

(¬ (f (y) = k1) ∧ (∀ x : X | Q(x) • P2(x))) ∨
(¬ (f (y) = k2) ∧ (∀ x : X | Q(x) • P1(x))) ∨

⇒ [propositional calculus]

(∀ x : X | Q(x) • P1(x)) ∨ (∀ x : X | Q(x) • P2(x))

B.6.2.3 Proof of time compatibility

Lemma 12.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒ t.D ∈ tiots time compatible)

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 230

⇒ [definition of e DFRS]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR •

(trans.2, d.I, d.O, d.T, d.gcvar) ∈ well typed transition

⇒ [definition of well typed transition]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR | trans.2 ∈ ran del •

(trans.2, d.gcvar) ∈ clock compatible transition

⇒ [definition of clock compatible transition]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR | trans.2 ∈ ran del •

((delayTransition(trans.2)).1 ∈ ran discrete ⇒ d.gcvar.2 = nat) ∧
((delayTransition(trans.2)).1 ∈ ran dense ⇒ d.gcvar.2 = ufloat)

⇒ [Lemma 10, where a ≡ ((delayTransition(trans.2)).1 ∈ ran discrete,

b ≡ d.gcvar.2 = nat, c ≡ ((delayTransition(trans.2)).1 ∈ ran dense,

d ≡ d.gcvar.2 = ufloat, (a ∨ c) due to the definition of DELAY ,
¬ (b ∧ d) due to the definition of TYPE]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR | trans.2 ∈ ran del •

((delayTransition(trans.2)).1 ∈ ran discrete ⇒ d.gcvar.2 = nat) ∧
((delayTransition(trans.2)).1 ∈ ran dense ⇔ d.gcvar.2 = ufloat)

⇒ [Lemma 10, where c ≡ ((delayTransition(trans.2)).1 ∈ ran discrete,

d ≡ d.gcvar.2 = nat, a ≡ ((delayTransition(trans.2)).1 ∈ ran dense,

b ≡ d.gcvar.2 = ufloat, (a ∨ c) due to the definition of DELAY ,
¬ (b ∧ d) due to the definition of TYPE]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR | trans.2 ∈ ran del •

((delayTransition(trans.2)).1 ∈ ran discrete ⇔ d.gcvar.2 = nat) ∧
((delayTransition(trans.2)).1 ∈ ran dense ⇔ d.gcvar.2 = ufloat)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 231

⇒ [propositional calculus]

t = fromDFRStoTIOTS(d) ∧
∀ trans : d.TR | trans.2 ∈ ran del •

(d.gcvar.2 = nat ⇒ (delayTransition(trans.2)).1 ∈ ran discrete) ∧
(d.gcvar.2 = ufloat ⇒ (delayTransition(trans.2)).1 ∈ ran dense)

⇔ [predicate calculus]

t = fromDFRStoTIOTS(d) ∧
(∀ trans : d.TR | trans.2 ∈ ran del •

d.gcvar.2 = nat ⇒ (delayTransition(trans.2)).1 ∈ ran discrete) ∧
(∀ trans : d.TR | trans.2 ∈ ran del •

d.gcvar.2 = ufloat ⇒ (delayTransition(trans.2)).1 ∈ ran dense)

⇒ [Lemma 11, where f (y) ≡ d.gcvar.2, k1 ≡ nat ≡, k2 ≡ ufloat,

x ≡ trans, X ≡ d.TR, Q(x) ≡ trans.2 ∈ ran del,

P1(x) ≡ (delayTransition(trans.2)).1 ∈ ran discrete,

P2(x) ≡ (delayTransition(entry.2)).1 ∈ ran dense,

(f (y) = k1 ∨ f (y) = k2) due to the definition of TYPE,
¬ (∀ x : X | Q(x) • P1(x) ∧ P2(x)) due to the definition of DELAY]

t = fromDFRStoTIOTS(d) ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

(delayTransition(trans.2)).1 ∈ ran discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

(delayTransition(trans.2)).1 ∈ ran dense))

⇒ [definition of mapDelay,

∀ x : DELAY • mapDelay(x) ∈ ran tiots discrete ⇔ x ∈ ran discrete]

t = fromDFRStoTIOTS(d) ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

(delayTransition(trans.2)).1 ∈ ran dense))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 232

⇒ [definition of mapDelay,

∀ x : DELAY • mapDelay(x) ∈ ran tiots dense ⇔ x ∈ ran dense]

t = fromDFRStoTIOTS(d) ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇒ [definition of fromDFRStoTIOTS]

t.D = getDelays(t.T) ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [definition of getDelays]

t.D = { trans : t.T | trans.2 ∈ ran tiots del • (tiots del∼)(trans.2) } ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇒ [property of set comprehension]

(∀ dV : t.D •
∃ trans : t.T | trans.2 ∈ ran tiots del • dV = (tiots del∼)(trans.2)) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 233

⇒ [Lemma 7]

(∀ dV : t.D •
∃ trans : t.T | trans.2 ∈ ran tiots del • dV = (tiots del∼)(trans.2) ∧

((trans.2 ∈ ran in ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = in(genAction(currentValues(dom d.I C trans2.3)))) ∨

(trans.2 ∈ ran tiots del ∧ ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∨

(trans.2 ∈ ran out ∧
∃ trans2 : d.TR | (trans2.2 ∈ ran fun ∨ trans2.2 ∈ ran del) •

trans.2 = out(genAction(currentValues(dom d.O C trans2.3)))) ∨
(trans.2 ∈ ran tau))) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [definition of TIOTS TRANS LABEL –
disjoint 〈 ran in, ran out, ran tiots del, ran tau〉]

(∀ dV : t.D •
∃ trans : t.T • dV = (tiots del∼)(trans.2) ∧ trans.2 ∈ ran tiots del ∧
∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1)) ∧
((∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [predicate calculus]

(∀ dV : t.D • ∃ trans : t.T • trans.2 ∈ ran tiots del ∧
∃ trans2 : d.TR | trans2.2 ∈ ran del •

trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1) ∧
dV = (tiots del∼)(trans.2)) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 234

⇒ [propositional calculus]

(∀ dV : t.D • ∃ trans : t.T • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
trans.2 = tiots del(mapDelay(delayTransition(trans2.2)).1) ∧
dV = (tiots del∼)(trans.2)) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇒ [predicate calculus]

(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = (tiots del∼)(tiots del(mapDelay(delayTransition(trans2.2)).1))) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [property of injective functions – x = (f ∼)(f (g(y))) ⇔ x = g(y)]

(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1) ∧

((∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete) ∨

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [propositional calculus]

((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1) ∧

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete)) ∨

((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1) ∧

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 235

⇔ [predicate calculus]

((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1 ∧
trans2.2 ∈ ran del ⇒

mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots discrete) ∧
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete)) ∨
((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •

dV = mapDelay(delayTransition(trans2.2)).1 ∧
trans2.2 ∈ ran del ⇒

mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots dense) ∧
(∀ trans : d.TR | trans.2 ∈ ran del •

mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇔ [propositional calculus]

((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1 ∧
mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots discrete) ∧

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots discrete)) ∨

((∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1 ∧
mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots dense) ∧

(∀ trans : d.TR | trans.2 ∈ ran del •
mapDelay((delayTransition(trans.2)).1) ∈ ran tiots dense))

⇒ [propositional calculus]

(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1 ∧
mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots discrete) ∨

(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del •
dV = mapDelay(delayTransition(trans2.2)).1 ∧
mapDelay((delayTransition(trans2.2)).1) ∈ ran tiots dense)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 236

⇒ [property of sets a = b ∧ b ∈ c ⇒ a ∈ c]

(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del • dV ∈ ran tiots discrete) ∨
(∀ dV : t.D • ∃ trans2 : d.TR | trans2.2 ∈ ran del • dV ∈ ran tiots dense)

⇒ [propositional calculus]

(∀ dV : t.D • ∃ trans2 : d.TR • dV ∈ ran tiots discrete) ∨
(∀ dV : t.D • ∃ trans2 : d.TR • dV ∈ ran tiots dense)

⇔ [predicate calculus]

(∀ dV : t.D • dV ∈ ran tiots discrete) ∨ (∀ dV : t.D • dV ∈ ran tiots dense)

⇔ [definition of tiots time compatible]

t.D ∈ tiots time compatible

B.6.3 Property of the initial state

Lemma 13.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒ t.q0 ∈ t.Q)

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

⇒ [definition of fromDFRStoTIOTS]

t = fromDFRStoTIOTS(d) ∧
t.Q = getStates(t.T) ∪ {t.q0}

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 237

⇒ [propositional calculus]

t.Q = getStates(t.T) ∪ {t.q0}

⇒ [property of sets]

t.q0 ∈ t.Q

B.6.4 Pertinence of states

Lemma 14.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒∀entry : t.T • {entry.1,entry.3} ⊆ t.Q)

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

⇒ [definition of fromDFRStoTIOTS]

t = fromDFRStoTIOTS(d) ∧
t.Q = getStates(t.T) ∪ {t.q0}

⇒ [propositional calculus]

t.Q = getStates(t.T) ∪ {t.q0}

⇒ [property of sets]

getStates(t.T) ⊆ t.Q

⇔ [predicate calculus – one-point rule]

∃ s : TIOTS STATE SET • s = getStates(t.T) ∧ s ⊆ t.Q

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 238

⇔ [definition of getStates]

∃ s : TIOTS STATE SET • s ⊆ t.Q ∧ s =
⋃
{ trans : t.T • {trans.1, trans.3} }

⇒ [property of set comprehension and distributed union]

∃ s : TIOTS STATE SET • s ⊆ t.Q ∧ ∀ entry : t.T • entry.1 ∈ s ∧ entry.3 ∈ s

⇔ [property of sets]

∃ s : TIOTS STATE SET • s ⊆ t.Q ∧
∀ entry : t.T • entry.1 ∈ s ∧ entry.3 ∈ s ∧ entry.1 ∈ t.Q ∧ entry.3 ∈ t.Q

⇒ [propositional calculus]

∃ s : TIOTS STATE SET • ∀ entry : t.T • entry.1 ∈ t.Q ∧ entry.3 ∈ t.Q

⇔ [predicate calculus]

∀ entry : t.T • entry.1 ∈ t.Q ∧ entry.3 ∈ t.Q

⇔ [definition of ⊆]

∀ entry : t.T • {entry.1, entry.3 } ⊆ t.Q

B.6.5 Well typed transitions

Lemma 15.

∀ t : TIOTS • ∀d : e DFRS •
(t = fromDFRStoTIOTS(d)⇒
∀entry : t.T • (entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

proof
Let t and d range over values in the sets TIOTS and e DFRS, respectively.

t = fromDFRStoTIOTS(d)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 239

⇒ [defintion of fromDFRStoTIOTS]

t.I = getInputActions(t.T) ∧
t.O = getOutputActions(t.T) ∧
t.D = getDelays(t.T)

⇔ [definition of getInputActions, getOutputActions, getDelays]

t.I = { trans : t.T | trans.2 ∈ ran in • (in∼)(trans.2) } ∧
t.O = { trans : t.T | trans.2 ∈ ran out • (out∼)(trans.2) } ∧
t.D = { trans : t.T | trans.2 ∈ ran tiots del • (tiots del∼)(trans.2) }

⇒ [property of set comprehension]

(∀ trans : t.T | trans.2 ∈ ran in • (in∼)(trans.2) ∈ t.I) ∧
(∀ trans : t.T | trans.2 ∈ ran out • (out∼)(trans.2) ∈ t.O) ∧
(∀ trans : t.T | trans.2 ∈ ran tiots del • (tiots del∼)(trans.2) ∈ t.D)

⇔ [predicate calculus]

∀ entry : t.T •
(entry.2 ∈ ran in ⇒ (in∼)(entry.2) ∈ t.I) ∧
(entry.2 ∈ ran out ⇒ (out∼)(entry.2) ∈ t.O) ∧
(entry.2 ∈ ran tiots del ⇒ (tiots del∼)(entry.2) ∈ t.D)

⇔ [definition of well typed tiots transition]

∀ entry : t.T • (entry.2, t.I, t.O, t.D) ∈ well typed tiots transition

B.6.6 Proof of soundness

Theorem 3.4.1. Soundness of fromDFRStoTIOTS

∀d : e DFRS • fromDFRStoTIOTS(d) ∈ TIOTS

proof
∀ d : e DFRS • fromDFRStoTIOTS(d) ∈ TIOTS

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 240

⇔ [predicate calculus – one-point rule]

∀ d : e DFRS • ∃ t : TIOTS • t = fromDFRStoTIOTS(d)

⇔ [definition of TIOTS]

∀ d : e DFRS • ∃ t : TIOTS | t = fromDFRStoTIOTS(d) •
disjoint 〈 t.I, t.O 〉 ∧
t.D ∈ tiots time compatible ∧
t.q0 ∈ t.Q ∧
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition

⇔ [predicate calculus – one-point rule]

∀ d : e DFRS • ∀ t : TIOTS • t = fromDFRStoTIOTS(d) ⇒
(disjoint 〈 t.I, t.O 〉 ∧
t.D ∈ tiots time compatible ∧
t.q0 ∈ t.Q ∧
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

⇔ [propositional calculus]

∀ d : e DFRS • ∀ t : TIOTS •
(t = fromDFRStoTIOTS(d) ⇒ disjoint 〈 t.I, t.O 〉) ∧
(t = fromDFRStoTIOTS(d) ⇒ t.D ∈ tiots time compatible) ∧
(t = fromDFRStoTIOTS(d) ⇒ t.q0 ∈ t.Q) ∧
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 241

⇔ [predicate calculus]

∀ t : TIOTS • ∀ d : e DFRS •
(t = fromDFRStoTIOTS(d) ⇒ disjoint 〈 t.I, t.O 〉) ∧
(t = fromDFRStoTIOTS(d) ⇒ t.D ∈ tiots time compatible) ∧
(t = fromDFRStoTIOTS(d) ⇒ t.q0 ∈ t.Q) ∧
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

⇔ [Lemma 9]

∀ t : TIOTS • ∀ d : e DFRS •
(t = fromDFRStoTIOTS(d) ⇒ t.D ∈ tiots time compatible) ∧
(t = fromDFRStoTIOTS(d) ⇒ t.q0 ∈ t.Q) ∧
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

⇔ [Lemma 12]

∀ t : TIOTS • ∀ d : e DFRS •
(t = fromDFRStoTIOTS(d) ⇒ t.q0 ∈ t.Q) ∧
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

⇔ [Lemma 13]

∀ t : TIOTS • ∀ d : e DFRS •
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • {entry.1, entry.3} ⊆ t.Q ∧

(entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

⇔ [Lemma 14]

∀ t : TIOTS • ∀ d : e DFRS •
(t = fromDFRStoTIOTS(d) ⇒
∀ entry : t.T • (entry.2, t.I, t.O, t.D) ∈ well typed tiots transition)

B.6. SOUNDNESS OF FROMDFRSTOTIOTS 242

⇔ [Lemma 15]

true

243243243

C
CSP-based testing theory

C.1 CSPM specification for the vending machine

Code C.1: CSPM specification (vending machine)

1 t h e _ s y s t e m _ m o d e _ v a l u e s = {0 , 1 , 2 , 3}
2 t h e _ c o f f e e _ m a c h i n e _ o u t p u t _ v a l u e s = {0 , 1}
3
4 r a n g e (I_ the_sys t em_mode) =
5 { I_ the_sys tem_mode . 0 , I_ the_sys t em_mode . 1 ,
6 I_ the_sys tem_mode . 2 , I_ the_sys t em_mode . 3 }
7
8 r a n g e (I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t) =
9 { I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 0 , I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 1 }

10
11 r a n g e (B) = {B . f a l s e , B . t r u e }
12
13 t a g (I_ the_sys t em_mode . _) = I_ the_sys t em_mode
14 t a g (I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . _) = I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t
15 t a g (B . _) = B
16
17 d a t a t y p e TYPE = I_ the_sys t em_mode . t h e _ s y s t e m _ m o d e _ v a l u e s |
18 I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . t h e _ c o f f e e _ m a c h i n e _ o u t p u t _ v a l u e s |
19 B . Bool
20
21 d a t a t y p e VAR = t h e _ c o f f e e _ r e q u e s t _ b u t t o n | t h e _ c o i n _ s e n s o r |
22 the_sys tem_mode | t h e _ c o f f e e _ m a c h i n e _ o u t p u t |
23 o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n | o l d _ t h e _ c o i n _ s e n s o r |
24 f u n T r a n s | t h e _ r e q u e s t _ t i m e r |
25 e t a 1 | e t a 2 | e t a 3 | e t a 4 | gc
26
27 i n i t i a l B i n d i n g = {
28 (t h e _ c o f f e e _ r e q u e s t _ b u t t o n , B . f a l s e) ,
29 (t h e _ c o i n _ s e n s o r , B . f a l s e) ,
30 (the_system_mode , I_ the_sys t em_mode . 1) ,
31 (t h e _ c o f f e e _ m a c h i n e _ o u t p u t , I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 0) ,

C.1. CSPM SPECIFICATION FOR THE VENDING MACHINE 244

32 (o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n , B . f a l s e) ,
33 (o l d _ t h e _ c o i n _ s e n s o r , B . f a l s e)
34 (funTrans , B . f a l s e) ,
35 (t h e _ r e q u e s t _ t i m e r , B . f a l s e) ,
36 (e t a1 , B . f a l s e) ,
37 (e t a2 , B . f a l s e) ,
38 (e t a3 , B . f a l s e) ,
39 (e t a4 , B . f a l s e)
40 }
41
42 c h a n n e l ge t , s e t : VAR. TYPE
43 MCELL(var , v a l) = g e t ! v a r ! v a l −> MCELL(var , v a l)
44 [] s e t ! v a r ? va l ’ : r a n g e (t a g (v a l)) −> MCELL(var , va l ’)
45 MEMORY(b i n d i n g) = | | | (var , v a l) : b i n d i n g @ MCELL(var , v a l)
46
47 SYSTEM_MEMORY = MEMORY(i n i t i a l B i n d i n g)
48
49 c h a n n e l maxDelay : VAR. TYPE .VAR. TYPE .VAR. TYPE .VAR. TYPE
50 c h a n n e l d e l a y : VAR. TYPE .VAR. TYPE .VAR. TYPE .VAR. TYPE
51
52 c h a n n e l i n p u t : VAR. TYPE .VAR. TYPE
53 c h a n n e l o u t p u t : VAR. TYPE .VAR. TYPE
54
55 c h a n n e l c _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n : Bool
56 c h a n n e l c _ t h e _ c o i n _ s e n s o r : Bool
57
58 INPUTS =
59 c _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ? n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
60 g e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
61 s e t ! o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n !B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
62 s e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n !B . n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
63 c _ t h e _ c o i n _ s e n s o r ? newV_the_co in_senso r −>
64 g e t ! t h e _ c o i n _ s e n s o r ?B . v _ t h e _ c o i n _ s e n s o r −>
65 s e t ! o l d _ t h e _ c o i n _ s e n s o r !B . v _ t h e _ c o i n _ s e n s o r −>
66 s e t ! t h e _ c o i n _ s e n s o r !B . newV_the_co in_senso r −>
67 i n p u t . t h e _ c o f f e e _ r e q u e s t _ b u t t o n . B . n e w V _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n
68 . t h e _ c o i n _ s e n s o r . B . newV_the_co in_senso r −> SKIP
69
70 c h a n n e l REQ003 , REQ005 , REQ001 , REQ002 , REQ004
71
72 c h a n n e l r e s e t : { t h e _ r e q u e s t _ t i m e r }
73
74 SYSTEM_BEHAVIOUR(v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ,
75 v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n , v _ o l d _ t h e _ c o i n _ s e n s o r ,
76 v _ t h e _ c o i n _ s e n s o r , v_the_system_mode , v_e ta1 ,
77 v _ t h e _ r e q u e s t _ t i m e r , v_e ta2 , v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t ,
78 v_e ta3 , v _ e t a 4) =
79 (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and

C.1. CSPM SPECIFICATION FOR THE VENDING MACHINE 245

80 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
81 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
82 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and
83 (v_the_sys tem_mode == 0)) and v _ e t a 1 and
84 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 2) &
85 s e t ! f u n T r a n s !B . t r u e −> r e s e t . t h e _ r e q u e s t _ t i m e r −>
86 s e t ! t h e _ r e q u e s t _ t i m e r !B . t r u e −>
87 s e t ! the_sys tem_mode ! I_ the_sys t em_mode . 2 −> REQ003 −> SKIP)
88 []
89 ((v_the_sys tem_mode == 2) and v _ e t a 2 and
90 (v_the_sys tem_mode != 1 or v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t != 0) &
91 s e t ! f u n T r a n s !B . t r u e −>
92 s e t ! the_sys tem_mode ! I_ the_sys t em_mode . 1 −>
93 s e t ! t h e _ c o f f e e _ m a c h i n e _ o u t p u t ! I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 0 −>
94 REQ005 −> SKIP)
95 []
96 (((n o t ((v _ o l d _ t h e _ c o i n _ s e n s o r == t r u e)) and
97 (v _ t h e _ c o i n _ s e n s o r == t r u e)) and (v_the_sys tem_mode == 1)) and
98 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 0) &
99 s e t ! f u n T r a n s !B . t r u e −> r e s e t . t h e _ r e q u e s t _ t i m e r −>

100 s e t ! t h e _ r e q u e s t _ t i m e r !B . t r u e −>
101 s e t ! the_sys tem_mode ! I_ the_sys tem_mode . 0 −> REQ001 −> SKIP)
102 []
103 (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
104 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
105 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
106 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and
107 (v_the_sys tem_mode == 0)) and v _ e t a 3 and
108 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 3) &
109 s e t ! f u n T r a n s !B . t r u e −> r e s e t . t h e _ r e q u e s t _ t i m e r −>
110 s e t ! t h e _ r e q u e s t _ t i m e r !B . t r u e −>
111 s e t ! the_sys tem_mode ! I_ the_sys tem_mode . 3 −> REQ002 −> SKIP)
112 []
113 ((v_the_sys tem_mode == 3) and v _ e t a 4 and
114 (v_the_sys tem_mode != 1 or v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t != 1) &
115 s e t ! f u n T r a n s !B . t r u e −>
116 s e t ! the_sys tem_mode ! I_ the_sys tem_mode . 1 −>
117 s e t ! t h e _ c o f f e e _ m a c h i n e _ o u t p u t ! I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . 1 −>
118 REQ004 −> SKIP)
119 []
120 (n o t (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
121 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
122 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
123 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and
124 (v_the_sys tem_mode == 0)) and v _ e t a 1 and
125 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 2)) and
126 n o t ((v_the_sys tem_mode == 2) and v _ e t a 2 and
127 (v_the_sys tem_mode != 1 or v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t != 0)) and

C.1. CSPM SPECIFICATION FOR THE VENDING MACHINE 246

128 n o t (((n o t ((v _ o l d _ t h e _ c o i n _ s e n s o r == t r u e)) and
129 (v _ t h e _ c o i n _ s e n s o r == t r u e)) and (v_the_sys tem_mode == 1)) and
130 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 0)) and
131 n o t (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
132 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
133 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
134 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and
135 (v_the_sys tem_mode == 0)) and v _ e t a 3 and
136 (v _ t h e _ r e q u e s t _ t i m e r != t r u e o r v_the_sys tem_mode != 3)) and
137 n o t ((v_the_sys tem_mode == 3) and v _ e t a 4 and
138 (v_the_sys tem_mode != 1 or v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t != 1)) &
139 SKIP)
140
141 DELAY(d e l a y C h a n n e l) =
142 s e t ! e t a 4 !B . f a l s e −>
143 s e t ! e t a 3 !B . f a l s e −>
144 s e t ! e t a 2 !B . f a l s e −>
145 s e t ! e t a 1 !B . f a l s e −>
146 g e t ! o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?
147 B . v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
148 g e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?
149 B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
150 g e t ! o l d _ t h e _ c o i n _ s e n s o r ?B . v _ o l d _ t h e _ c o i n _ s e n s o r −>
151 g e t ! t h e _ c o i n _ s e n s o r ?B . v _ t h e _ c o i n _ s e n s o r −>
152 g e t ! the_sys tem_mode ? I_ the_sys tem_mode . v_the_sys tem_mode −>
153 (
154 (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
155 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
156 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
157 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and (v_the_sys tem_mode == 0)) &
158 s e t ! e t a 1 !B . t r u e −> SKIP)
159 []
160 ((v_the_sys tem_mode == 2) & s e t ! e t a 2 !B . t r u e −> SKIP)
161 []
162 (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
163 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
164 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
165 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and (v_the_sys tem_mode == 0)) &
166 s e t ! e t a 3 !B . t r u e −> SKIP)
167 []
168 ((v_the_sys tem_mode == 3) & s e t ! e t a 4 !B . t r u e −> SKIP)
169 []
170 (n o t (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
171 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
172 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
173 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and
174 (v_the_sys tem_mode == 0))) and n o t ((v_the_sys tem_mode == 2)) and
175 n o t (((((n o t ((v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and

C.1. CSPM SPECIFICATION FOR THE VENDING MACHINE 247

176 (v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n == t r u e)) and
177 (v _ o l d _ t h e _ c o i n _ s e n s o r == f a l s e)) and
178 (v _ t h e _ c o i n _ s e n s o r == f a l s e)) and (v_the_sys tem_mode == 0))) and
179 n o t ((v_the_sys tem_mode == 3)) &
180 SKIP)
181)
182 ; g e t ! e t a 1 ? v _ e t a 1 −> g e t ! e t a 2 ? v _ e t a 2 −> g e t ! e t a 3 ? v _ e t a 3 −>
183 g e t ! e t a 4 ? v _ e t a 4 −>
184 d e l a y C h a n n e l . e t a 1 . v _ e t a 1 . e t a 2 . v _ e t a 2 . e t a 3 . v _ e t a 3 . e t a 4 . v _ e t a 4 −>
185 SKIP
186
187 FUN_TRANS =
188 g e t ! e t a 1 ?B . v _ e t a 1 −>
189 g e t ! e t a 2 ?B . v _ e t a 2 −>
190 g e t ! e t a 3 ?B . v _ e t a 3 −>
191 g e t ! e t a 4 ?B . v _ e t a 4 −>
192 g e t ! o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?
193 B . v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
194 g e t ! t h e _ c o f f e e _ r e q u e s t _ b u t t o n ?
195 B . v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n −>
196 g e t ! o l d _ t h e _ c o i n _ s e n s o r ?B . v _ o l d _ t h e _ c o i n _ s e n s o r −>
197 g e t ! t h e _ c o i n _ s e n s o r ?B . v _ t h e _ c o i n _ s e n s o r −>
198 g e t ! the_sys tem_mode ? I_ the_sys tem_mode . v_the_sys tem_mode −>
199 g e t ! e t a 1 ?B . v _ e t a 1 −>
200 g e t ! t h e _ r e q u e s t _ t i m e r ?B . v _ t h e _ r e q u e s t _ t i m e r −>
201 g e t ! e t a 2 ?B . v _ e t a 2 −>
202 g e t ! t h e _ c o f f e e _ m a c h i n e _ o u t p u t ?
203 I _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t . v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t −>
204 g e t ! e t a 3 ?B . v _ e t a 3 −>
205 g e t ! e t a 4 ?B . v _ e t a 4 −>
206 SYSTEM_BEHAVIOUR(v _ o l d _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n ,
207 v _ t h e _ c o f f e e _ r e q u e s t _ b u t t o n , v _ o l d _ t h e _ c o i n _ s e n s o r ,
208 v _ t h e _ c o i n _ s e n s o r , v_the_system_mode , v_e ta1 ,
209 v _ t h e _ r e q u e s t _ t i m e r , v_e ta2 ,
210 v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t , v_e ta3 , v _ e t a 4)
211
212 FUN = s e t ! f u n T r a n s !B . f a l s e −>
213 FUN_TRANS
214 ; g e t ! f u n T r a n s ?B . engaged −>
215 i f engaged t h e n FUN e l s e OUTPUTS
216
217 OUTPUTS =
218 g e t ! the_sys tem_mode ? v_the_sys tem_mode −>
219 g e t ! t h e _ c o f f e e _ m a c h i n e _ o u t p u t ? v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t −>
220 o u t p u t . the_sys tem_mode . v_the_sys tem_mode
221 . t h e _ c o f f e e _ m a c h i n e _ o u t p u t . v _ t h e _ c o f f e e _ m a c h i n e _ o u t p u t −>
222 SKIP
223

C.1. CSPM SPECIFICATION FOR THE VENDING MACHINE 248

224 c h a n n e l s t a b l e S t a t e , d e l a y T r a n s i t i o n
225
226 SPECIFICATION =
227 s e t ! t h e _ r e q u e s t _ t i m e r !B . f a l s e −>
228 FUN ; s t a b l e S t a t e −>
229 d e l a y T r a n s i t i o n −> DELAY(maxDelay) ; INPUTS ; DELAY(d e l a y)
230 ; SPECIFICATION
231
232 SYSTEM = SPECIFICATION [| { | ge t , s e t | } |] SYSTEM_MEMORY

[Source: author]

	Introduction
	Model-based testing
	Natural-language processing
	Research question
	NAT2TEST – an overview
	Empirical evaluations
	Scientific and technological contributions
	Thesis structure

	Syntactic and semantic analysis
	Phase I – syntactic analysis
	The SysReq-CNL – a CNL for system requirements

	Phase II – semantic analysis
	Thematic roles, case frames, and requirement frames
	Contextual and inference rules

	Concluding remarks

	A formal model for requirement frames
	Definition and properties of an s-DFRS
	Overview of DFRSs
	Formal model of an s-DFRS

	Phase III – generation of s-DFRS
	Identifying variables
	Identifying functions
	Creating an s-DFRS

	Definition and properties of an e-DFRS
	Formal model of an e-DFRS
	From s-DFRSs to e-DFRSs
	Verifying properties of requirements via e-DFRSs

	Theoretical validation
	Formal model of TIOTS
	From e-DFRSs to TIOTSs
	Soundness of mapping to TIOTS

	Concluding remarks

	A sound test strategy based on CSP
	Communicating sequential processes
	Phase IV – encoding DFRS models as CSP processes
	Overview of CSP representation of DFRS models
	Creating memory representation
	Encoding function transitions
	Encoding delay transitions
	Creating a CSP specification
	Assumptions of CSP representation

	CSP-TIO processes
	A CSP timed input-output conformance relation
	Definition of csptio conformance
	Verifying csptio conformance

	Test-scenario generation and selection
	Phase V – sound test-case generation
	Concluding remarks

	Tool support and empirical evaluation
	Considered examples of critical systems
	Vending machine
	Nuclear power plant
	Priority command
	Turn indicator system

	NAT2TEST tool
	CNL-Parser – Phase I
	RF-Generator – Phase II
	DFRS-Generator – Phase III
	CSPM-Generator – Phase IV
	TC-Generator – Phase V
	SCR-Generator – Alternative I
	IMR-Generator – Alternative II

	Empirical evaluations
	Performance analysis
	Mutant-based strength analysis
	Practical validation of DFRS models

	Concluding Remarks

	Related Work
	Modelling timed-systems from NL requirements
	Timed input-output conformance relations
	Concluding remarks

	Conclusions
	Future work

	References
	Appendix
	List of requirements
	Vending machine
	Nuclear power plant
	Priority command
	Turn indicator system

	DFRS – definitions and proofs
	Definition and properties of an s-DFRS
	Inputs, Outpus and Timers
	Initial state
	Functions
	Complete definition

	Definition and properties of an e-DFRS
	Transition relation
	Complete definition

	From s-DFRSs to e-DFRSs
	Formal model of TIOTSs
	From e-DFRSs to TIOTSs
	Soundness of fromDFRStoTIOTS
	Disjointness of t.I and t.O
	Time compatibility
	Property of the initial state
	Pertinence of states
	Well typed transitions
	Proof of soundness

	CSP-based testing theory
	CSPM specification for the vending machine

